
Joaquin Garcia-Alfaro Frédéric Cuppens
Nora Cuppens-Boulahia Ali Miri
Nadia Tawbi (Eds.)

 123

LN
CS

 7
74

3

5th International Symposium, FPS 2012
Montreal, QC, Canada, October 2012
Revised Selected Papers

Foundations and
Practice of Security

Lecture Notes in Computer Science 7743
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Joaquin Garcia-Alfaro Frédéric Cuppens
Nora Cuppens-Boulahia Ali Miri
Nadia Tawbi (Eds.)

Foundations and
Practice of Security
5th International Symposium, FPS 2012
Montreal, QC, Canada, October 25-26, 2012
Revised Selected Papers

13

Volume Editors

Joaquin Garcia-Alfaro
TELECOM SudParis, 91011 Evry CEDEX, France
E-mail: joaquin.garcia-alfaro@acm.org

Frédéric Cuppens
Nora Cuppens-Boulahia
TELECOM Bretagne, 35512 Cesson Sévigné CEDEX, France
E-mail:{frederic.cuppens, nora.cuppens}@telecom-bretagne.eu

Ali Miri
Ryerson University, Toronto, ON, M5B 2K3, Canada
E-mail: ali.miri@ryerson.ca

Nadia Tawbi
Université Laval, Quebec, QC, G1V 0A6, Canada
E-mail: nadia.tawbi@ift.ulaval.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37118-9 e-ISBN 978-3-642-37119-6
DOI 10.1007/978-3-642-37119-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013934231

CR Subject Classification (1998): E.3, E.4, K.6.5, C.2.0, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the revised version of the papers presented at the 5th
International Symposium on Foundations and Practice of Security (FPS 2012).
The symposium was held at ETS (École de technologie supérieure), in Montréal,
Canada, during October 25–26, 2012. The event covered a wide and rich spec-
trum of research in different areas of theoretical and practical security solutions
for information systems.

In response to the call for participation, 62 papers from 28 different countries
were submitted to FPS 2012. These submission were evaluated on the basis of
their significance, novelty, and technical quality. All submissions went through a
careful anonymous review process (three or more reviews per submission) aided
by 55 Technical Program Committee members and 32 external referees. In the
end, 22 full papers, accompanied by three short papers, were presented at the
event. The final program also included two invited talks by Douglas Stinson
(University of Waterloo, Canada) and Ana Rosa Cavalli (TELECOM & Man-
agement SudParis, France). Our special thanks to Douglas and Ana for accepting
our invitation and for their presence during the event and talks.

We would like to thank everyone who gave his or her time, energy, and ideas
to assist in organizing this event, including all the members of the Organizing
Committee, Program Committee members, and all the external referees. In par-
ticular, we would like to highlight and acknowledge the tremendous efforts of
Chamseddine Talhi (Local Arrangements Chair), who worked tirelessly on var-
ious symposium-related tasks. Our gratitude goes also to Evangelos Kranakis
and Michel Barbeau, for their unconditional help since the beginning of this
event. We also thank art designer Berta Mir Daza, for all her help, availability,
and commitment. Thanks very much for your contribution to the success of the
event.

Many thanks go to the sponsors who made this event possible: the Fields
Institute for Research in Mathematical Sciences, ETS (École de technologie
supérieure), Ryerson University, Institut Mines-Télécom, Labsticc (Laboratoire
en sciences et techniques de l’information, de la communication et de la connais-
sance), the IN3 research institute of the Open University of Catalonia, and the
Montréal section of the IEEE. We also acknowledge the support of the following
projects of the Spanish MICINN: TSI2007-65406-C03-03 E-AEGIS, TIN2011-
27076-C03-02 CO-PRIVACY and CONSOLIDER INGENIO 2010 CSD2007-
0004 ARES.

VI Preface

Last but by no means least we thank to all the authors who submitted papers,
and to all the symposium attendees.

November 2012 FPS 2012 Chairs

Organization

General Chairs

Frédéric Cuppens TELECOM Bretagne, France
Ali Miri Ryerson University, Canada

Program Chairs

Nora Cuppens-Boulahia TELECOM Bretagne, France
Joaquin Garcia-Alfaro TELECOM SudParis, France
Nadia Tawbi Université Laval, Canada

Local Arrangements Chair

Chamseddine Talhi École de technologie supérieure, Canada

Organizing Chairs

Esma Aimeur Université de Montréal, Canada
Chamseddine Talhi École de technologie supérieure, Canada
Nadia Tawbi Université Laval, Canada

Program Committee

Gildas Avoine Catholic University of Louvain, Belgium
Diala Abihaidar Dar Al Hekma College, Saudi Arabia
Carlisle Adams Ottawa University, Canada
Kamel Adi Université du Québec en Outaouais, Canada
Esma Aimeur Université de Montréal, Canada
Michel Barbeau Carleton University, Canada
Hanifa Boucheneb Polytechnique Montréal, Canada
Jordi Castella-Roca Rovira i Virgili University, Spain
Ana Cavalli TELECOM SudParis, France
Frédéric Cuppens TELECOM Bretagne, France
Nora Cuppens-Boulahia TELECOM Bretagne, France
Vanesa Daza Universitat Pompeu Fabra, Spain
Mourad Debbabi Concordia University, Canada
Roberto Di Pietro Roma Tre University of Rome, Italy

VIII Organization

Nicola Dragoni Technical University of Denmark, Denmark
David Evans University of Derby, UK
Marc Frappier Université de Sherbrooke, Canada
José M. Fernández École Polytechnique de Montréal, Canada
Sara Foresti University of Milan, Italy
Martin Gagné Joseph Fourier University, France
Sebastien Gambs University of Rennes 1, France
Flavio D. Garcia Radboud University Nijmegen,

The Netherlands
Joaquin Garcia-Alfaro TELECOM SudParis, France
Abdelwahab Hamou-Lhadj Concordia University, Canada
Jordi Herrera-Joancomarti Autonomous University of Barcelona, Spain
Bruce Kapron University of Victoria, Canada
Evangelos Kranakis Carleton University, Canada
Hyoungshick Kim University of British Columbia, Canada
Pascal Lafourcade Joseph Fourier University, France
Yassine Lakhnech Joseph Fourier University, France
Georgios Lioudakis National Technical University of Athens,

Greece
Giovanni Livraga University of Milan, Italy
Luigi Logrippo Université du Québec en Outaouais, Canada
Javier Lopez University of Malaga, Spain
Joan Melia-Segui Universitat Pompeu Fabra, Spain
Mohamed Mejri Université Laval, Canada
Ali Miri Ryerson University, Canada
Guillermo Navarro-Arribas Autonomous University of Barcelona, Spain
Jordi Nin Universitat Politecnica de Catalunya, Spain
Melek Onen Eurecom, France
Andreas Pashalidisi K. U. Leuven, Belgium
Silvio Ranise FBK, Security and Trust Unit, Italy
Jean-Marc Robert École de technologie supérieure, Canada
Rei Safavi-Naini Calgary University, Canada
Claudio Soriente ETH Zurich, Switzerland
Alessandro Sorniottia IBM Research Zurich, Switzerland
Anna Squicciarini Penn State University, USA
Douglas Stinson University of Waterloo, Canada
Chamseddine Talhi École de technologie supérieure, Canada
Issa Traore University of Victoria, Canada
Carmela Troncoso K.U. Leuven, Belgium
Nadia Tawbi Université Laval, Canada
Alexandre Viejo Rovira i Virgili University, Spain
Lena Wiese University of Hildesheim, Germany
Nicola Zannone Eindhoven University of Technology,

The Netherlands

Organization IX

External Referees

Khalifa Toumi TELECOM SudParis, France
Stere Preda Concordia University, Canada
Cédric Lauradoux INRIA Rhone-Alpes, France
Arnau Vives-Guasch Rovira i Virgili University, Spain
Cristina Romero-Tris Rovira i Virgili University, Spain
Marcelo Brocardo University of Victoria, Canada
Abdelfattah Amamra École de technologie supérieure, Canada
Samir Ouchani Concordia University, Canada
Jan Stanek IBM Research Zurich, Switzerland
Roel Verdult Radboud University Nijmegen,

The Netherlands
Bassam Sayed University of Victoria, Canada
Maria Koukovini National Technical University of Athens,

Greece
Josep Balasch K.U. Leuven, Belgium
Cesar Andres Sanchez Universidad Complutense de Madrid, Spain
Anis Bkakria TELECOM Bretagne, France
Stere Preda Concordia University, Canada
Sherif Saad University of Victoria, Canada
Robert Warren Carleton University, Canada
Elias Bou-Harb Concordia University, Canada
Kris Haralambiev IBM Research Zurich, Switzerland
Mohsen Alimomeni University of Calgary, Canada
Alessio Di Mauro Technical University of Denmark, Denmark
Behzad Malek Ottawa University, Canada
Mahavir Jhawar University of Calgary, Canada
Elisa Costante Eindhoven University of Technology,

The Netherlands
Eugenia Papagiannakopoulou National Technical University of Athens,

Greece
Mina Askari University of Calgary, Canada
Alfredo Rial K. U. Leuven, Belgium
Ai Ho Thanh Université de Montréal, Canada
Felipe Lalanne TELECOM SudParis, France
Davide Papini Technical University of Denmark, Denmark
Tania Martin Catholic University of Louvain, Belgium

Table of Contents

Cryptography and Information Theory

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data
Encryption . 1

Jie Li and Jianliang Zheng

Proofs of Retrievability via Fountain Code . 18
Sumanta Sarkar and Reihaneh Safavi-Naini

MARC: Modified ARC4 . 33
Jianliang Zheng and Jie Li

Detection of HTTP-GET Attack with Clustering and Information
Theoretic Measurements . 45

Pawel Chwalinski, Roman Belavkin, and Xiaochun Cheng

Key Management and Cryptographic Protocols

A Generic Algebraic Model for the Analysis of Cryptographic-Key
Assignment Schemes . 62

Khair Eddin Sabri and Ridha Khedri

Message Transmission and Key Establishment: Conditions for Equality
of Weak and Strong Capacities . 78

Hadi Ahmadi and Reihaneh Safavi-Naini

COMPASS: Authenticated Group Key Agreement from Signcryption . . . 95
Nick Mailloux, Ali Miri, and Monica Nevins

Privacy and Trust

Classifying Online Social Network Users through the Social Graph 115
Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı

A Formal Derivation of Composite Trust . 132
Tim Muller and Patrick Schweitzer

IPv6 Stateless Address Autoconfiguration: Balancing between Security,
Privacy and Usability . 149

Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

XII Table of Contents

Policies and Applications Security

Policy Administration in Tag-Based Authorization 162
Sandro Etalle, Timothy L. Hinrichs, Adam J. Lee,
Daniel Trivellato, and Nicola Zannone

Enabling Dynamic Security Policy in the Java Security Manager 180
Fabien Autrel, Nora Cuppens-Boulahia, and Frédéric Cuppens

A Novel Obfuscation: Class Hierarchy Flattening . 194
Christophe Foket, Bjorn De Sutter, Bart Coppens, and
Koen De Bosschere

RESource: A Framework for Online Matching of Assembly with Open
Source Code . 211

Ashkan Rahimian, Philippe Charland, Stere Preda, and
Mourad Debbabi

Touchjacking Attacks on Web in Android, iOS, and Windows Phone . . . 227
Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du

Network and Adaptive Security

Short-Term Linkable Group Signatures with Categorized Batch
Verification . 244

Lukas Malina, Jordi Castellà-Roca, Arnau Vives-Guasch, and
Jan Hajny

GHUMVEE: Efficient, Effective, and Flexible Replication 261
Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and
Koen De Bosschere

Extracting Attack Scenarios Using Intrusion Semantics 278
Sherif Saad and Issa Traore

On Securely Manipulating XML Data . 293
Houari Mahfoud and Abdessamad Imine

Mitigating Collaborative Blackhole Attacks on DSR-Based Mobile Ad
Hoc Networks . 308

Isaac Woungang, Sanjay Kumar Dhurandher,
Rajender Dheeraj Peddi, Issa Traore

QoS Aware Adaptive Security Scheme for Video Streaming
in MANETs . 324

Tahsin Arafat Reza and Michel Barbeau

A Case Study of Side-Channel Analysis Using Decoupling Capacitor
Power Measurement with the OpenADC . 341

Colin O’Flynn and Zhizhang Chen

Table of Contents XIII

Short Papers

Towards Modelling Adaptive Attacker’s Behaviour 357
Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin

Scalable Deniable Group Key Establishment . 365
Kashi Neupane, Rainer Steinwandt, and Adriana Suárez Corona

Information-Theoretic Foundations of Differential Privacy 374
Darakhshan J. Mir

Author Index . 383

MaD2: An Ultra-Performance Stream Cipher

for Pervasive Data Encryption

Jie Li1 and Jianliang Zheng2

1 Department of Computer Science, Graduate Center,
City University of New York, New York, NY, USA

2 Independent Scholar, New York, NY, USA
zheng@ee.ccny.cuny.edu

Abstract. MaD2 is an ultra-performance stream cipher that runs into
one clock cycle per byte on a typical personal computer. With an encryp-
tion/decryption rate significantly higher than the disk data transfer rate,
it can be employed to secure data at rest with almost no user observable
performance degradation. The cipher resists various known cryptana-
lytic attacks. Its keystream demonstrates good statistical properties and
clears all the NIST statistical tests, the new Diehard battery of tests,
and the TestU01 batteries of tests.

Keywords: Stream Cipher, Data Encryption, Encryption at Rest, High
Performance, Cloud Computing.

1 Introduction

Pervasive data encryption means two things: encrypt all data and encrypt data
while they are moving on the wire and at rest as well. Not all data are secrets and
need to be secured, but such a need arises when data classification is difficult
or expensive (e.g., in cloud computing) or when encryption needs to be done
at a layer below the application (e.g., for whole disk or communication channel
encryption). Encryption at rest refers to the fact that the data is physically stored
in an encrypted format. This is different from encryption in flight, which is only
applied to data to be transported. Encryption at rest may affect the usability of
some applications, but it is getting more popular nowadays for several reasons.
First, most computers and computing devices are connected to networks and face
attacks that keep growing in both quantity and complexity. Second, the boom of
virtual computing and cloud computing makes it difficult or impossible to put
up a physical defense line against attacks. Third, the risk of losing sensitive data
increases due to the wide use of portable computing devices, which are more
likely to get lost or be stolen. Finally, the breach of data at rest usually has a
more serious consequence than the breach of data on the wire, since the former
can contain much more information than the latter.

Past several years have witnessed significant advances in data encryption, in-
cluding the release of Advanced Encryption Standard (AES) [1] and the develop-
ment of eStream project (http://www.ecrypt.eu.org/stream/). Nonetheless,

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ecrypt.eu.org/stream/

2 J. Li and J. Zheng

data encryption is still a costly operation and its performance penalty is still too
high. For example, the data encryption speed of AES on an Intel Core i3 per-
sonal computer is about two times slower than the speed of disk I/O. This means
data I/O performance will be degraded by a factor of 3 when data are encrypted
using AES. Stream ciphers such as RC4 [2] and eStream candidates [3,4,5,6] are
faster than block cipher AES, but they still slow down data access by a factor
of 1.5 or more. The fast development of the Internet and the ongoing transition
from private computing to cloud computing call for more data encryption and
more efficient data encryption. In light of this, we developed a new stream cipher
called MaD2, which is several times faster than any existing ciphers we know.
As we will show, this new cipher resists various known cryptanalytic attacks.
It also demonstrates good statistical feature and passes all the NIST statistical
tests [7], the new Diehard battery of tests [8] including the “tough” tests in [9],
and the TestU01 batteries of tests [10].

The rest of this paper is structured as follows. In section 2, we describe the
algorithm in detail. Next, in section 3, we present the security analysis of our
stream cipher. Then, in section 4 and 5, we give the statistical testing results
and performance testing results respectively. Finally, in section 6, we conclude
with a summary.

2 Algorithm Details

In this section we present the algorithm details. We first give a brief review of
RC4 [2], which will be modified and used as one of the building blocks in MaD2.
We then cover the key scheduling, initialization of internal state, and keystream
generation of MaD2. All components will be described using pseudo code and
the following notations are used:

Notation Usage

starting a comment line
++ increment (x++ is same as x = x + 1)
% modulo
<< left logical bitwise shift
>> right logical bitwise shift
& bitwise AND
| bitwise OR
^ bitwise XOR
[] array subscripting (subscript starts from 0)

Hexadecimal numbers are prefixed by “0x” and all variables and constants are
unsigned integers in little endian.

2.1 RC4

RC4 is simple and ideal for software implementation. It maintains an inter-
nal state, which consists of a permutation of all 28 = 256 possible octets and
two 8-bit indices for accessing elements in the permutation. The permutation

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 3

Listing 1. RC4
� �

1 ## addition (+) and increment (++) operations ##

2 ## are performed modulo 256 ##

3

4 # Key Scheduling Algorithm (KSA)

5 for i from 0 to 255

6 S[i] = i

7 endfor

8 j = 0

9 for i from 0 to 255

10 j = j + S[i] + key[i % keylength]

11 swap(S[i], S[j])

12 endfor

13

14 # Pseudo - Random Generation Algorithm (PRGA)

15 i = 0

16 j = 0

17 while GeneratingOutput

18 i++

19 j = j + S[i]

20 swap(S[i], S[j])

21 n = S[i] + S[j]

22 output S[n]

23 endwhile
� �

is first initialized to the identity permutation and then shuffled using a secret
key according to the key scheduling algorithm (KSA) given on lines 5 to 12 of
Listing 1. Afterwards, pseudo-random number sequence is generated using the
pseudo-random generation algorithm (PRGA) given on lines 15 to 23 of List-
ing 1. The PRGA iterates as many times as needed and during each iteration it
continues to shuffle the permutation by swapping two elements and outputs one
octet. To encrypt or decrypt a message, simply act the pseudo-random number
sequence on the message using bitwise XOR.

2.2 Key Scheduling

Our key scheduling algorithm is modified from RC4 KSA and shown in Listing 2.
It iterates 320 times instead 256 times to shuffle the identity permutation. In
RC4 the first keylength bytes of S are likely to have similar patterns after key
scheduling if similar keys that only differ at the end are used. This problem
can be fixed by adding keylength iterations in additional to the original 256
iterations. But it is unwise to make the number of iterations depend on the key
size, because it leaks information about the key size and can be exploited by a
side-channel attack. Since the maximum allowed key size in MaD2 is 64 bytes
(i.e., keylength ≤ 64), we choose to add 64 iterations regardless of the actual key

4 J. Li and J. Zheng

Listing 2. Key Scheduling Algorithm
� �

1 # addition (+) and increment (++) operations

2 # are performed modulo 256

3 for i from 0 to 255

4 S[i] = i

5 endfor

6 i = 0

7 j = 0

8 k = 0

9 for r from 0 to 319

10 j = j + S[i] + key[i % keylength]

11 k = k ^ j

12 left_rotate (S[i], S[j], S[k])

13 i++

14 endfor

15 i = j + k
� �

size. Note that we use a new 16-bit unsigned integer r instead of the 8-bit index
i as the loop counter in the second loop. This is because we need to iterate 320
times but index i can only have 256 different values. Except r, all other variables
are 8-bit unsigned integers. MaD2 introduces a third index k, which is initialized
to 0 and then XORed with index j during each iteration. It also replaces the
swap operation with a left rotation operation among S [i], S [j], and S [k] (i.e.,
tmp = S [i], S [i] = S [j], S [j] = S [k], S [k] = tmp), which in effect performs more
swaps. At the end we set the value of index i to the sum of index j and k and
persist all three indices for future use.

RC4 can accept a key that is as large as 256 bytes, but in practice a much
smaller one is used. As aforementioned, the maximum key size in MaD2 is 64
bytes (512 bits). Out of the 64 bytes, we only claim security for 56 bytes. Like
RC4, MaD2 does not specify the use of an initialization vector (IV) or a nonce,
but an application can use an IV as part of the key in the key scheduling.

2.3 Initialization of Internal State

We maintain a data structure shown in Fig. 1, which comprises four 512-byte
state tables, denoted as Sa, Sb, Sc, and Sd, and four 64-bit integers, denoted
as a, b, c, and d. The first two state tables Sa and Sb and the four integers
a, b, c, and d construct the internal state of our cipher. The other two state
tables Sc and Sd are used for buffering keystream sequence generated from the
internal state. The first 256 bytes of Sa are also referred to as state table S to
indicate that they play the role of the permutation table S in key scheduling.
The concatenation of Sa and Sb is sometimes used as a large 1024-byte state
table, referred to as Sw.

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 5

Sa Sb Sc Sd

512 bytes

64-bit integers:

internal state keystream buffer

a b c d

512 bytes 512 bytes 512 bytes

Sw

S

Fig. 1. Data Structure

To initialize the internal state, state table S (i.e., the first 256 bytes of Sa) is
initialized according to the KSA given in Listing 2. Once initialized, S is further
used to bootstrap the remaining part of the internal state. First the data in S
are copied to the second half of Sa, then S is shuffled using the following code:

addition (+) and increment (++) operations

are performed modulo 256

for r from 0 to 255

i++

j = j + S[i]

k = k ^ j

left_rotate (S[i], S[j], S[k])

endfor

Note that we cannot use index i to control the above loop because we do not
want to reset its value. The copy-and-shuffle procedure repeats until state table
Sb is also populated. Finally 32 pseudo-random bytes are generated as follows:

addition (+) and increment (++) operations

are performed modulo 256

for r from 0 to 7

i++

j = j + S[i]

k = k ^ j

swap (S[i], S[j])

m = S[j] + S[k]

n = S[i] + S[j]

output S[m]

output S[n]

output S[m ^ j]

output S[n ^ k]

endfor

These 32 bytes are converted into four 64-bit integers using little endian and as-
signed to integer a, b, c, and d. This completes the initialization and the internal

6 J. Li and J. Zheng

state now contains four permutations of {0, 1, ..., 255} and four initialized 64-bit
integers.

2.4 Keystream Generation

MaD2 takes advantages of modern 64-bit platforms and uses 64-bit operations
to generate keystream. All state tables (Sa, Sb, Sc, Sd, and Sw) are cast into and
used as 64-bit integer arrays in the keystream generation. When an encryption or
decryption request is received, the keystream buffer (i.e., Sc + Sd) is checked. If
it is not empty, the data stored in it are used to perform the required encryption
or decryption operation. After all the data in the buffer are consumed, the cipher
refreshes the buffer according to the keystream generation algorithm shown in
Listing 3. Variable x is a byte array of size 64 used for indirection operation,
that is, its bytes are used as indices to access state tables. It is computed from
a, b, c, d, and two constants m and n. Each byte of x has a value falling in
the range [0, 127] and any two bytes with a distance less than 4 have distinct
values. e, f, g, and h are intermediate values computed at the beginning of and
used throughout each keystream buffer refreshing operation (simply referred
to as keystream refreshing henceforth). During each keystream refreshing, the
algorithm iterates 64 times and two 64-bit integers are generated during each
iteration, with one saved in Sc and the other in Sd. Note that, for each full
block of data (1024 bytes), buffer refreshing can be skipped since encryption or
decryption can be performed directly on the data.

The combination of Sw [x [i]], Sw [x [i]ˆ0x7c], Sa[ii], and Sb[ii] introduces
pseudo-random indirect access and guarantees all state table integers get in-
volved during each keystream refreshing. The way we choose these four state
table integers during each iteration deserves some explanations. First note that
both Sw [x [i]] and Sw [x [i]ˆ0x7c] can access either state table Sa or Sb but they
can never access the same state table, which also means each state table has the
same chance to be accessed by them. Integer ii is computed in such a way that
its lower two bits cycle through the values 0, 1, 3, 2 instead of the normal 0, 1,
2, 3, but otherwise it is same as the counter i. The sequence 0, 1, 3, 2, when
expressed in binary format 00, 01, 11, 10, has a characteristic that any two adja-
cent numbers differ by one single bit only. This arrangement, together with the
use of constants m and n, results in a special feature, namely, these four state
table integers are distinct and they are also different from any of the four state
table integers used in the previous or next iteration. By distinct and different,
we mean they point to different state table integers, which do not necessarily
but with a high probability have different values. One can verify this feature
by observing the following facts: Sw [x [i]] and Sw [x [i]ˆ0x7c] are distinct; so are
Sa[ii] and Sb[ii]; the lower two bits of x [i] and x [i]ˆ0x7c come from n and cycle
through the values 3, 2, 0, 1, while those of ii cycle through the values 0, 1, 3, 2.

For efficiency and simplicity, only a few types of operations are used. They are
bitwise AND, bitwise OR, bitwise XOR, addition, left logical bitwise shift, and
right logical bitwise shift, each taking only one clock cycle for most processors

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 7

Listing 3. Keystream Generation
� �

1 ## additions are performed modulo ##

2 ## 0x10000000000000000 ##

3

4 # declare a byte array of size 64

5 byte x[64]

6

7 # cast the byte array into 64-bit integer array

8 x[64] => x64 [8]

9

10 # populate array x (through x64)

11 m = 0x7c7c7c7c7c7c7c7c

12 n = 0x0302000103020001

13 x64[0] = (a & m) | n

14 x64[1] = (b & m) | n

15 x64[2] = (c & m) | n

16 x64[3] = (d & m) | n

17 x64[4] = ((a >> 1) & m) | n

18 x64[5] = ((b >> 1) & m) | n

19 x64[6] = ((c >> 1) & m) | n

20 x64[7] = ((d >> 1) & m) | n

21

22 # compute e, f, g, and h

23 e = a + Sw[a >> 57]

24 f = b + Sw[b >> 57]

25 g = c + Sw[c >> 57]

26 h = d + Sw[d >> 57]

27

28 # output and update the internal state

29 ii = 0

30 for i from 0 to 63

31 a = a << 1

32 b = b >> 1

33 ii = ii ^ i

34 a = a + (e ^ Sw[x[i]])

35 b = b + (f ^ Sw[x[i]^0 x7c])

36 c = c + (g ^ Sa[ii])

37 d = d + (h ^ Sb[ii])

38 ii = ii & 1

39 Sc[i] = c ^ (a + d)

40 Sd[i] = d ^ (b + c)

41 Sw[x[i]] = a + b

42 endfor
� �

8 J. Li and J. Zheng

when operands are immediate constants or register variables [11]. All four integers
a, b, c, and d are updated during each iteration.

Besides integer a, b, c, and d, one integer from state table Sa or Sb is also
updated via Sw [x [i]] during each iteration. On average each integer has a 50%
chance to get updated during each keystream refreshing. In other words, nearly
half of Sa and Sb is updated during each keystream refreshing. Is it fast enough
to update half of Sa and Sb during each keystream refreshing? The answer is
“yes”. Due to the shift operations, the value of a is determined by the most
recent 64 values of Sw [x [i]] (and the fixed e) used to update it and the value of b
is largely determined by the most recent 64 values of Sw [x [i]ˆ0x7c] (and the fixed
f) used to update it. On the other hand, c and d are permanently affected by
any state table integer that has been involved in the computation of their values.
This means the update of a single state table integer can completely change the
evolution path of c and d. From the way how a, b, c, and d are computed, it
suffices to only update some of the integers in Sa and Sb during one keystream
refreshing.

3 Security Analysis

In this section we analyze the security of our cipher.

3.1 Period Length

For an n-bit internal state, the maximum possible period length is 2n. Depending
on the state transition algorithm, the actual period length may be much shorter.
For pseudo-random mappings with no restrictions (simply referred to as pseudo-
random mappings hereafter), the average period is about 2n/2. Given that MaD2
has a 8448-bit internal state and its state transition follows pseudo-random map-
pings, the expected period of the internal state is about 24224 ≈ 3.55× 101271.

3.2 Resistance against Known Attacks

In this subsection, we give a cryptanalysis of our cipher in the context of known
attacks, including special attacks mounted against RC4 and other generic attacks.

Attacks against RC4. RC4 key scheduling algorithm and keystream gener-
ation algorithm are both based on simple pseudo-random permutations. This
approach makes RC4 one of the most efficient and popular stream ciphers so
far. Nonetheless the simplicity of the cipher also leads to some security issues.

In [12], Roos described a class of weak keys in RC4. In [13], Golić derived a
linear model of RC4 using the linear sequential circuit approximation method.
According to this model, it requires about 64n/225 keystream words to de-
tect the linear statistical weakness of RC4. This is significantly smaller than
2M ,where M = n2n + 2n is the bit size of RC4 internal state. In 2001, Fluhrer
et al. described two significant weaknesses of RC4 key scheduling algorithm [14].

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 9

The first one is the existence of large classes of weak keys, whose length is divis-
ible by some non-trivial power of two, i.e., � = 2qm for some q > 0. The second
weakness is a related key vulnerability. The authors observed that when the same
secret part of the key is used with numerous different exposed values, it takes
relatively little work to rederive the secret part by analyzing the initial word
of the keystreams. The significance of this finding is that many applications,
including the Wired Equivalent Privacy (WEP) protocol, construct RC4 keys
by concatenating a long term secret key with a varying but publically known
IV, thus vulnerable to this related key attack. A strong correlation between the
observable i, S [n] and the internal j, S [i], S [j] was reported by Klein in [15].
This strong correlation improves the attack described in [14] and enabled Tews
et al. to break 104-bit WEP in less than one minute [16].

There are other attacks reported in the open literature. The success of those
attacks has revealed several design problems of RC4:

1. The key scheduling algorithm is too simple – 256 swaps are not enough to
break the correlation between the input key and the initialized internal state.

2. The internal state evolves relatively simply and slowly. This helps transfer
the initial correlation into later states and the keystream.

3. Permutations are reversible and easier to analyze than unrestricted irre-
versible mappings.

MaD2 uses rotation operations instead of swap operations to initialize the first
256 bytes of its internal state. This is more efficient and has a better mixing
effect. In addition, limiting the maximum key size of MaD2 to 64 bytes helps
prevent related key attacks, since any differences between two input keys will
come into play within the first 64 iterations of key scheduling, giving more time
for diffusion compared with a longer key that might be used with RC4. Diffusion
is most effective when different keys result in different index j and/or k, which has
a high probability to happen in MaD2. More importantly, the first 256 bytes of
the internal state, once initialized, is further used to initialize the entire internal
state to make sure sufficient diffusion is achieved. This overall design makes it
very difficult to find simple correlation relationships between the input key and
the initialized internal state as in [12,14,15]; nor is it possible to derive a linear
model to approximate MaD2 as done for RC4 in [13].

MaD2 uses a more sophisticated keystream generation algorithm than RC4.
Each output integer is computed from three integers (a, c, and d, or b, c, and
d), all in turn computed from many state table integers. This can effectively
prevent the correlation, if any, from being transferred into the keystream. Using
pseudo-random mappings instead of pseudo-random permutations makes MaD2
more resistant to algebraic cryptanalysis. Since pseudo-random mappings are
irreversible, MaD2 also possesses another feature that RC4 lacks, that is, know-
ing a state does not enable one to go back to its previous state. Knowing the
keystream additionally does not help much either, since each output integer is
computed from many internal integers and the computation involves indirect
access (via Sw [x [i]] and Sw [x [i]ˆ0x7c]), which is nonlinear.

10 J. Li and J. Zheng

Time-Memory Tradeoff Attacks. Time-Memory tradeoff attacks rely on
precomputation to reduce the effort needed for recovering the internal state
and/or secret key [17]. This type of attacks proceed as follows: assume that the
cipher is in a certain state and calculate a number of output bits and put the
pair (output, state) in a sorted list; after enough pairs are calculated and stored,
try to match a received output sequence with the saved output sequences; if the
match is successful, then with some likelihood the internal state or partial of it
may be determined, which may further lead to the recovery of the secret key.
The parameters in a Time-Memory tradeoff attack are time (T), memory (M),
and amount of output data (D). In general T × M2 × D2 = S2, where S is
the state space of the cipher and D2 ≤ T [17]. The precomputation time P is
computed as P = S/D. The design strength of MaD2 is 448 bits. For the brute-
force equivalent attack with T = 2448 and D ≤ √T = 2224, M = S/D/

√
T ≥

28448/2224/2224 = 28000, that is, the lower bound on memory for the attack is
28000 bits, which is simply impractical.

Guessing Attacks. Guessing attacks can be more efficient than brute-force
search if a stream cipher is not designed properly [18]. The strategy for this
type of attacks is to guess a small part of the internal state and then deduce
the remaining part. This is particularly powerful when applied to word-based
stream ciphers. The reason is that word-based stream ciphers have a relatively
small number of internal words and any word guessed has a good chance to
participate in the computation of next iteration if the algorithm is not designed
with caution. The consequence is that more and more words get revealed and
the cipher is eventually broken. MaD2 is designed to be resistant to this type of
attacks.

To be successful, an attacker must be able to do two things, namely, be able
to efficiently verify his guessing (guess and verify) and be able to determine
more unknowns based on his guessing (guess and determine). While it may not
come for free, it is usually assumed that an attacker has access to some of the
keystream when launching a guessing attack. In MaD2, if an attacker knows some
of the keystream, for example, the value of Sc[i] at a certain moment, he can
guess two of the three integers (a, c, and d) and then compute the third integer.
If he also knows Sd [i], he can further compute the value of b. The attacker needs
to guess 128 bits to figure out the values of all four integers a, b, c, and d. Once
the attacker knows a and b, he can compute Sw [x [i]]= a+ b. To know x [i] and
therefore identify which integer is to be updated, he needs to guess another 5
bits (out of the 7 bits, the lower 2 bits are known apriori). So the attacker needs
to guess 133 bits (128 bits if he chooses not to know x [i]) in total during the
first iteration of guessing.

During the second iteration, the attacker needs to guess 128 bits like in the
first iteration to figure out the new values of a, b, c, and d, and then another 128
bits to figure out the values of two of e, f, g, and h (and also two of the four state
table integers Sw [x [i]], Sw [x [i]ˆ0x7c], Sa[ii], and Sb[ii]). Note that since the
attacker only needs to find out two values (one must be c or d) so as to know all
the values of a, b, c, and d during each iteration, it is not necessary for him to find

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 11

out all the values of e, f, g, and h. Also notice that the second 128 bits guessing
is based on the fact that the four state table integers Sw [x [i]], Sw [x [i]ˆ0x7c],
Sa[ii], and Sb[ii] are distinct and they are also different from any of the four
state table integers used in the previous iteration. If two integers, for example
Sw [x [i]] and Sa[ii], are identical, then the attacker only needs to guess 64 bits
instead of 128 bits. If a state table integer used in the previous iteration, for
example the already known Sw [x [i]], can appear in the next iteration, then the
128 bits guessing is also reduced to 64 bits. Here we have ignored the relatively
small cost that is needed to make two integers point to the same state table
integer (a probability of 1

128 = 2−7 or a cost of 7 bits) or make a state table
integer used in the previous iteration appear in the next iteration (a probability
of 2× 1

128 = 2−6 or a cost of 6 bits; the coefficient 2 comes from that each of the
two state table integers whose values need to be determined can take the known
value).

During the third iteration, the attacker still needs to find out the new values
of two of the four integers a, b, c, and d. To achieve this, he needs to know the
values of two of the four state table integers Sw [x [i]], Sw [x [i]ˆ0x7c], Sa[ii], and
Sb[ii]. He does not need to guess 128 bits, however, because he already knows
the values of three distinct state table integers, one during the first iteration and
two during the second iteration. The one whose value is found during the first
iteration has a probability of 2−5 to appear in the third iteration, thus reducing
the workload from 128 bits to 64 + 5 = 69 bits.

The first three iterations require more than 448 bits of work, which is our
design strength. But let us go a little further to see what the cost the attacker
needs to pay if he continues. During the fourth iteration, all the three state table
integers whose values are found during the first two iterations have a chance to
reappear. But since one has already reappeared in the third iteration (otherwise
the third iteration requires a 128 instead of 69 bits guessing), only the two state
table integers whose values are found during the second iteration can reappear in
the fourth iteration1. The probability that they both reappear is 1

32× 1
32 = 2−10.

This shows that the attack cost is only 10 bits during the fourth iteration.
The above attack is not unique and different attack strategies can be taken,

but none is likely to be more efficient than the above one. To conclude this
analysis, we also want to point out that it is infeasible to break the 64-bit inte-
gers into smaller units so as to reduce the attack cost. If the smaller units, say
bytes, can be computed independently, then the attack cost will be significantly
reduced. This is because each 64 bits can be reduced to, for example, eight 8
bits, which is equivalent to 11 bits only (8× 28 = 211).

Algebraic Attacks. So far algebraic attacks on stream ciphers are mainly
applied to those whose internal state is updated in a linear way. Most LFSR-
based stream ciphers fall into this category. A typical LFSR-based stream cipher
consists of an internal state S, a linear state update function L, and a nonlinear

1 For this to happen, the attacker must not have chosen to work on Sa[ii] and Sb[ii],
since the value of ii cannot repeat during one keystream refreshing.

12 J. Li and J. Zheng

output function f. Let S0 denote the initial internal state at time t = 0, then at
time t the internal state is Lt(S0) and the keystream output is zt = f(Lt(S0)).
The goal of an algebraic attack is to recover the initial state or the secret key
by coming up with and solving a system of nonlinear equations based on the
algebraic relations between the internal state bits (or secret key bits) and the
observed keystream bits.

MaD2 is word-based and both its state update function and output func-
tion are nonlinear. The analysis of this type of stream ciphers against algebraic
attacks is more difficult than those for LFSR-based stream ciphers. The only
related work we can find is by Wong et al., who analyzed the RC4 family of
stream ciphers against algebraic attacks in [19]. The analysis and experiment
results from the authors suggest that RC4 is most likely immune to algebraic
attacks at present.

MaD2 shares some common features with RC4: The operations of MaD2 in-
clude word addition; its key scheduling algorithm is based on permutation; its
keystream generation involves indirect access. Aside from those common fea-
tures, MaD2 is different from RC4. First, MaD2 has a huge internal state that is
substantially larger than that of RC4, meaning during an algebraic attack more
equations (and likely of higher degrees) need to be handled and more keystream
bits need to be collected. Second, MaD2 switches from pseudo-random permu-
tations to pseudo-random mappings once the state initialization is complete.
The simple algebraic structure of pseudo-random permutations has helped the
authors to construct the equations and reduce their degrees in [19]. Building
and solving equations for MaD2 will be more difficult and costly. Finally, the
keystream generation of MaD2 is more complex and involves more operations
than that of RC4, which will also make algebraic attacks more difficult for MaD2
than for RC4.

Distinguishing Attacks. A distinguishing attack technique that targets stream
ciphers using linear masking was proposed by D. Coppersmith et al. and applied
to SNOW 1.0 [20]. A stream cipher usually includes some nonlinear process in
its design. The nonlinear process resembles a block cipher and its states are
deemed uncorrelated if they are far away in time. Linear masking tries to mask
the correlation among states close in time. It masks those states using indepen-
dent parts of a linear process. The basic idea of the attack is to find some linear
combination of the linear process that vanishes. When this same combination
is applied to the output stream, the linear process would vanish. This way the
attacker is left with the nonlinear process only, for which he can further look
for a characteristic that can be distinguished from randomness. Distinguishing
attacks have also been mounted for other stream ciphers that use linear mask-
ing, including SNOW 2.0 and Sosemanuk [21,22,23]. MaD2 does not use linear
masking, thus rendering this type of distinguishing attacks irrelevant.

Due to the complex initialization and keystream generation, the large state
and long period length, that both the update and output functions are nonlinear,
and that it passes standard statistical tests, MaD2 is unlikely vulnerable to
distinguishing attacks.

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 13

4 Statistical Testing

A couple of statistical testing tools have been developed, among which are the
most widely used NIST statistical test suite [7] and Diehard battery of tests [8].
A more stringent statistical test suite is TestU01 [10]. We tested our keystream
generation using these three statistical test suites and the results are summarized
in this section.

4.1 NIST Statistical Test Suite

The NIST tests are based on hypothesis testing. Each test is formulated to test
a specific null hypothesis, i.e., a specific sequence of zeroes and ones is random.
A probability value (P-value) is computed for each test, which summarizes the
strength of the evidence against the null hypothesis. The probability that the null
hypothesis for randomness is rejected for a random sequence is called the level of
significance (α) of the test. If P-value ≥ α, then the null hypothesis is accepted;
i.e., the sequence appears to be random. If P-value < α, then the null hypothesis
is rejected; i.e., the sequence appears to be non-random. Typically, α is chosen
in the range [0.001, 0.01]. The NIST statistical test suite contains 15 tests (with
some of them containing multiple sub-tests and generating multiple P-values).

The empirical results can be interpreted in different ways. The two approaches
adopted by NIST are examining the proportion of sequences that pass a statis-
tical test and checking the distribution of P-values for uniformity. The first ap-
proach is reasonably accurate for large sample sizes (e.g., ≥ 1000 sequences). The
second approach needs at least 55 sequences to provide statistically meaningful
results.

We tested 1000 keystream sequences, each containing one million bits (125
KB). The significance level (α) is set to 0.01 in all tests. A random key is gen-
erated for each sequence and used to initialize the cipher. This random key can
be up to 64 bytes and is generated from a modified RC4 using clock value as
the input key. The only difference between the modified RC4 and the original
RC4 is that the modified one discards the first 512 bytes of the pseudo-random
output. MaD2 passed all the NIST statistical tests.

4.2 Diehard Battery of Tests

Most of the tests in Diehard return a P-value, which should be uniform on [0,1)
if the input file contains truly independent random bits. A P-value near 0 or 1
indicates deviation from true randomness. This is in contrast with NIST tests,
where a bigger P-value indicates better randomness. Some of Diehard tests yield
more than one P-value, in which case a Kolmogorov–Smirnov (KS) test might be
run on those P-values to produce a single P-value that indicates randomness [24].
The new Diehard release contains 17 tests, including some “tough” tests [9].

The C language implementation of Overlapping Sums Test is not a faithful
interpretation of the author’s original Fortran language implementation and none

14 J. Li and J. Zheng

of the (pseudo-)random number generators we tested can pass this test (please
see the web page athttp://www.varioustopics.com/cryptography/782655-
diehards-overlapping-sum-test.html for more details). So we exclude this
test from our testing. The remaining 16 tests are divided into two groups based
on the minimum random sequence size that is needed by each test. GCD,
Gorilla, and Overlapping Permutations need a much longer random sequence
than other tests and are put in a group. All other tests are put in another
group. For GCD, Gorilla, and Overlapping Permutations, we tested 50 ran-
dom sequences, each containing 2176 million bits (272 MB). For other tests,
we tested 100 random sequences, each containing 96 million bits (12 MB). Using
this setup, at least 100 P-values are generated for each test. MaD2 passed all
the tests except the Birthday Spacings test. To find the problem, we tested
another three (pseudo-)random number generators: RC4, SHA1 (running in
counter mode), and QRNG (a quantum random number generator available at
http://qrng.physik.hu-berlin.de/). All of them failed this test too, which
suggests it is more likely a problem with the test itself.

4.3 TestU01 Batteries of Tests

TestU01 is the most comprehensive statistical test suite that is publically avail-
able so far. It is a software library implemented in the ANSI C language. It offers
a collection of utilities for the empirical statistical testing of uniform random
number generators. Six pre-defined batteries of tests are available in TestU01.
They are SmallCrush, Crush, BigCrush, Rabbit, Alphabit, and BlockAlphabit.
Any (pseudo-)random number generator that implements both the GetU01 (void
*param, void *state) and GetBits (void *param, void *state) interfaces defined
in the unif01 Gen struct of TestU01 can use all the 6 pre-defined batteries of
tests.

TestU01 requires much more (pseudo-)random numbers than the NIST and
Diehard suites. It takes more than 12 hours to run all the 6 batteries on our
machine. MaD2 is implemented in C programming language and created as a
unif01 Gen object. Both GetU01() and GetBits() interfaces are implemented
so that all 6 batteries of tests can be applied. Built-in parameters are used for
SmallCrush, Crush, and BigCrush. For Rabbit, Alphabit, and BlockAlphabit,
the size of bit sequence is set to 32 × 109. MaD2 cleared all the 6 TestU01
batteries of tests.

5 Performance Testing

The speed testing results for MaD2 keystream generation are given in Table 1.
The testing results for RC4 and HC-128 [3] (the fastest one among the four
software-efficient finalists of eStream) are also included in the table for com-
parison. The testing is done for a software implementation using C program-
ming language. The C implementation closely follows the pseudo code given in
section 2. There are no special optimizations done at the source code level except

http://www.varioustopics.com/cryptography/782655-diehards-overlapping-sum-test.html
http://www.varioustopics.com/cryptography/782655-diehards-overlapping-sum-test.html
http://qrng.physik.hu-berlin.de/

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 15

Table 1. Keystream Generation Speed (cycle/byte)

Generator
Keystream size (KB)

1 5 10 100 1000 10000

RC4 9.53 7.67 7.09 6.98 7.04 7.04

HC-128 55.21 13.27 7.96 3.58 3.15 3.11

MaD2 (32-bit) 51.45 12.16 7.83 3.46 2.99 2.98

MaD2 (64-bit) 42.08 9.05 5.07 1.30 0.93 0.91

that register variables are used to minimize memory access whenever possible.
Most modern compilers are smart enough and know more about code generation
than the developer [25]. Therefore we leave optimizations largely to the compiler.

Both 32-bit and 64-bit executables compiled using Microsoft Visual C/C++
Optimizing Compiler Version 16 with option /O2 (optimized for maximum
speed) are tested. RC4 and HC-128 are not 64-bit algorithms, but their 64-
bit executables seem running slightly faster on our machine (Intel Core i3 370M,
2.4GHz, 64 KB L1 data cache, 64 KB L1 instruction cache, 512 KB L2 cache)
and are chosen for the testing.

For each sequence size, we run each executable 30 times and get the average
value of the top 3 speeds. The reason we exclude low speeds in our calcula-
tion is that the measured cycles may contain contributions from some system
processes that we cannot stop and the small cycles more likely reflect the ac-
tual performance. The data given here are more for relative comparison than
for benchmarking, which would require more comprehensive testing on differ-
ent platforms. For the same reason, we refrain from using the commercial Intel
C/C++ compiler, which has the potential to generate faster executables than
Microsoft Visual C/C++ compiler on Intel platforms.

The state initialization of MaD2 takes about 38000 cycles, which is about
10 times slower than that of RC4. For this reason, RC4 beats MaD2 for short
keystreams. For a 10 KB keystream, the 64-bit MaD2 executable outperforms
RC4, which in turn outperforms the 32-bit MaD2 executable. For long keystreams
(1 MB or more), the 32-bit MaD2 executable is more than 2 times faster than
RC4 and the 64-bit MaD2 executable runs into one clock cycle per byte and is
more than 7 times faster than RC4. Both the 32-bit and 64-bit MaD2 executa-
bles outperform HC-128 in all cases. For sequences of 1 MB or more, the 64-bit
MaD2 executable is more than 3 times faster than HC-128.

6 Conclusion

In this paper we have presented a new word-based stream cipher, which can be
efficiently implemented in software and is most efficient on 64-bit processors.
On a typical Intel Core i3 personal computer, the cipher can run into one clock

16 J. Li and J. Zheng

cycle per byte, which is several times faster than any existing software ciphers we
know. This makes it an appealing candidate for pervasive data encryption. It has
a huge internal state of 8448 bits and is secure against various known attacks,
although, as a new cipher, it is still subject to extensive cryptanalysis. We have
also tested the pseudo-random number generation function of our cipher using
the NIST suite, Diehard suite, and TestU01 suite. The testing did not raise any
red flag.

References

1. FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Pro-
cessing Standards Publication 197 (2001)

2. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd edn. John Wiley & Sons (1995)

3. Wu, H.: The Stream Cipher HC-128, http://www.ecrypt.eu.org/stream/
hcpf.html

4. Boesgaard, M., et al.: The Stream Cipher Rabbit. eSTREAM report 2005/024
(2005), http://www.ecrypt.eu.org/stream/papers.html

5. Bernstein, D.J.: Salsa20/8 and Salsa20/12. eSTREAM report 2006/007 (2006),
http://www.ecrypt.eu.org/stream/papers.html

6. Berbain, C., et al.: Sosemanuk, a fast software-oriented stream cipher. eSTREAM
report 2005/027 (2005), http://www.ecrypt.eu.org/stream/papers.html

7. Runkin, A., et al.: Statistical Test Suite for Random and Pseudo Random Number
Generators for Cryptographic Applications. NIST special publication 800-22

8. Marsaglia, G.: DIEHARD Battery of Tests. New version,
http://www.csis.hku.hk/~diehard/

9. Marsaglia, G., Tsang, W.: Some Difficult-to-Pass Tests of Randomness. Journal
Statistical Software 7(3) (2002)

10. L’Ecuyer, P., Simard, R.J.: Testu01: A C Library for Empirical Testing of Random
Number Generators. ACM Trans. Math. Softw. 33(4) (2007)

11. Fog, A.: Instruction tables – Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs (2012),
http://www.agner.org/optimize/instruction_tables.pdf

12. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher. Posting to sci.crypt
(1995)

13. Golić, J.D.: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997)

14. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

15. Klein, A.: Attacks on the RC4 Stream Cipher. Designs, Codes and Cryptogra-
phy 48, 269–286 (2008)

16. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60
Seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867,
pp. 188–202. Springer, Heidelberg (2008)

17. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

http://www.ecrypt.eu.org/stream/hcpf.html
http://www.ecrypt.eu.org/stream/hcpf.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.csis.hku.hk/~diehard/
http://www.agner.org/optimize/instruction_tables.pdf

MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption 17

18. Hawkes, P., Rose, G.: Guess-and-Determine Attacks on SNOW. In: Nyberg, K.,
Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 37–46. Springer, Heidelberg (2003)

19. Wong, K.K., Carter, G., Dawson, E.: An Analysis of the RC4 Family of Stream Ci-
phers against Algebraic Attacks. In: Proceedings of the Eighth Australasian Con-
ference on Information Security, Brisbane, Australia, vol. 105, pp. 67–74 (2010)
ISBN: 978-1-920682-86-6

20. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of Stream Ciphers with Lin-
ear Masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532.
Springer, Heidelberg (2002)

21. Watanabe, D., Biryukov, A., De Cannière, C.: A Distinguishing Attack of SNOW
2.0 with Linear Masking Method. In: Matsui, M., Zuccherato, R.J. (eds.) SAC
2003. LNCS, vol. 3006, pp. 222–233. Springer, Heidelberg (2004)

22. Nyberg, K., Wallén, J.: Improved Linear Distinguishers for SNOW 2.0. In: Rob-
shaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg
(2006)

23. Lee, J.-K., Lee, D.-H., Park, S.: Cryptanalysis of Sosemanuk and SNOW 2.0 Using
Linear Masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 524–
538. Springer, Heidelberg (2008)

24. Soong, T.T.: Fundamentals of Probability and Statistics for Engineers, p. 327.
John-Wiley and Sons Ltd. (2004) ISBN: 0470868147

25. Leitner, F.V.: Source Code Optimization, http://www.linux-kongress.org/2009/
slides/compiler survey felix von leitner.pdf

http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

Proofs of Retrievability via Fountain Code

Sumanta Sarkar and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Canada
{sarkas,rei}@ucalgary.ca

Abstract. Proofs of Retrievability (PoR) allows a client (verifier) to
store a file at an untrusted remote storage, and later be able to check the
integrity of the file through an interactive challenge-response protocol.
A challenge specifies a random subset of blocks and the response is a
function of the challenged block. An unbounded-use PoR scheme allows
an arbitrary number of challenge-response interactions. Efficient PoR
schemes must minimize the communication complexity of the challenge-
response protocol, the storage overhead and computation of response by
the prover. The security of a PoR scheme is against an erasing adversary
and by showing the existence of an extractor which can extract the file
from the set of challenges and their corresponding correct responses.

In this paper, we modify the unbounded-use PoR scheme of Shacham
andWaters (2008) such that the number of challenged data blocks in each
round is determined by a probability distribution over a set of possible
values. For the security parameter l, the average number of challenged
blocks is O(log l), and so is smaller that the original scheme of Shacham
and Waters, and in the worst case, is O(l). The response to a challenge is
obtained by XORing the challenged data blocks and so is very fast. We
show that to ensure security the original verification method of Shacham
and Waters must be slightly modified.

Keywords: Cloud storage, linear homomorphic authenticator, Proofs
of Retrievability, Raptor code.

1 Introduction

Cloud storage allows stored data to be accessible from anywhere at any time,
and provides an attractive solution for back up of valuable data.

Storing a file in cloud however means there is no guarantee that the file stays
intact. A dishonest cloud may erase some portions of the file to reduce its storage
cost. To check that the file is correctly stored, a client can trivially download
the whole file and check if the calculated MAC value of the file matches with
the previously stored one. However, this becomes infeasible if the file size is
large. Juels and Kaliski [5] introduced Proofs of Retrievability (PoR) protocol
which verifies the integrity of the stored file through an audit protocol. The client
applies an erasure code on the file M and stores the encoded file M ′ in the cloud.
The encoded file M ′ is divided into blocks. The erasure code is such that the file
M can be recovered from a fraction ρ of blocks of the encoded file M ′. Along

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 18–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Proofs of Retrievability via Fountain Code 19

with M ′, the client also stores some extra information Δ(M) which will be used
in the verification. The client only keeps a short key locally which it uses for the
verification. Later during the audit which is through an interactive challenge-
response protocol, the client plays the role of a verifier and the cloud plays the
role of the prover. The security of a PoR scheme is formalized by showing the
existence of an extractor which retrieves the file with very high probability from
an erasing adversary that can pass the challenge-response protocol with some
reasonable probability. The extractor collects the correct responses and decodes
the file M from them. The efficiency of a PoR system is measured in terms of,

1. The computational cost of preparing a file for storing in the cloud, and
calculating the response,

2. Communication cost required during a challenge-response interaction and,
3. The extra storage (overhead) needed for storing the file M .

The cost of encoding of the file M and creating Δ(M) is only once, and so is a
fixed cost. However, the challenge-response protocol is run many times and hence
it is important to reduce its cost. The cloud may engage in multiple audits with
different users and so more efficient computation of response will improve its per-
formance. Small size challenge improves the communication cost of the protocol,
and also the computation cost of the prover as less blocks will be involved in the
computation of response. The system in practice needs an unbounded number of
challenge-response interactions (unbounded-use). In a public verifiable schemes,
anyone knowing the appropriate public key can perform the verification. The
system is called private verifiable when only the owner of the file who stores the
file can run the challenge-response protocol.

In this paper, we are interested in private verifiable PoR schemes and present
an unbounded-use scheme that improves the cost of response computation and
the cost of communication of challenges in the average case.

The construction is based on the the construction of Shacham andWaters [10],
and uses Fountain codes for challenge and response and file retrieval. Fountain
codes are a special class of erasure codes which can generate an unbounded
number of encoded symbols and have fast encoding and decoding algorithm
[6,11]. We present a PoR scheme where the responses are the encoded symbols of
a Raptor code [11] which is a special class of Fountain codes. Our scheme uses the
probabilistic generation of encoded symbols in the Raptor code to determine the
number of blocks to be challenged (and the expected response), and thus differs
from all existing PoR schemes, where a fixed number of blocks are challenged in
the challenge-response protocol.

1.1 Related Work

Proofs of Retrievability (PoR) was introduced by Juels and Kaliski (JK) [5] and
subsequently has been extended and improved [10,2,3]. Proof of Storage (PoS)
introduced by Naor and Rothblum [8] and Provable Data Possession (PDP)
introduced by Ateniese et al. [1] are two closely related models for checking

20 S. Sarkar and R. Safavi-Naini

the integrity of the file stored in the cloud, The details of PoR, PoS and PDP
models differ, however they have the same insight: in a secure system if the
cloud’s response is verified, then there will be an extractor and by interacting
with the cloud client will be able to retrieve the file with very high probability.

Juels and Kaliski (JK) [5] proved the NR scheme is secure in the model of
Proofs of Retrievability and has quadratic communication complexity (in terms
of security parameter) for response. This was improved to linear complexity
by Shacham and Waters (SW) [10]. They achieved this by using homomorphic
linear authenticators following a similar approach of Ateniese et al. [1]. Such
authenticators aggregate the authenticators of individual file blocks and form
a response that has the same size as that of a single authenticator. Shacham
and Waters constructed both private and public verifiable unbounded-use PoR
scheme, their public verifiable scheme are in the Random oracle model. Without
using the random oracle, i.e., in the standard model, Dodis et al. [3] achieved the
best known communication complexity for sending a challenge, which is linear
in terms of the security parameter. They studied the PoR schemes explicitly
using a coding theory approach. They viewed the set of all correct responses
corresponding to the file M ′ stored in the cloud as a codeword C which is a
challenge-response encoding of M ′. The set of all responses for the same file
M ′ from the prover form a word C′ which may differ from C. The extractor
decodesM from C′. This view of PoR enables us to choose the challenge-response
encoding suitably in order to present improved PoR schemes.

Shacham and Waters Private PoR

We give an overview of the private PoR construction of [10] as our construction
is based on that.

Storage(Encoding)

1. The client encodes the file M using an erasure code and obtains the encoded
file M ′.

2. The encoded file is divided into n blocks m1, . . . ,mn; each mi is an element
of Zp and p is a prime.

3. A random number θ is chosen from Zp.
4. Corresponding to each block mi, an authenticator σi is created using a pseu-

dorandom function (PRF) fkey as

σi = fkey(i) + θmi

5. The file blocks {mi} and {σi} are stored in the cloud.

Audit

1. In the audit protocol, the client (verifier) chooses w random indices i from
{1, . . . , n} and w random coefficients νi from Zp and sends Q = {(i, νi)} to
the prover.

Proofs of Retrievability via Fountain Code 21

2. The prover calculates

σ =
∑

(i,νi)∈Q

νiσi and r =
∑

(i,νi)∈Q

νimi. (1)

The pair (r, σ) is sent as a response.
3. After receiving the response, the verifier checks if the response is correct as

follows
σ

?
=

∑
(i,νi)∈Q

νifkey(i) + θr.

The novelty of this scheme is that the authenticators are homomorphic, which
enables the verifier to check the integrity of multiple blocks using a single inter-
action.

Erasure Codes, Fountain Codes

An [n, k] erasure code is a linear code which encodes k-message symbols into
n coded symbols such that the k message symbols can be recovered from a
subset of n codeword symbols, as long as the number of erased coded symbols
is below a threshold that is determined by the minimum distance of the code.
Reed Solomon codes are optimal erasure code in the sense that the k-symbol
message can be recovered from any k coded symbols. That is (n− k) symbols of
the codeword can be erased, while maintaining recovery of the message.

Using block codes such as RS-codes for erasure decoding requires one to esti-
mate the erasure rate (probability) of the file in advance in order to choose the
rate R = k/n of the code. In Fountain codes the sender generates potentially a
limitless string of encoded symbols. The receiver can recover the message from
sufficiently many encoded symbols. The decoding is usually done using belief
propagation technique [4]. LT code by Luby [6] and Raptor codes by Shokrol-
lahi [11] are two important classes of Fountain codes. The Raptor code has
two stages of encoding. First, k message symbols (x1, . . . , xk) are encoded to
(y1, . . . , yn) by an [n, k] erasure code. Then the Fountain codeword symbols are
generated by an LT code using linear combinations of symbols chosen randomly
from {y1, . . . , yn}. Raptor codes have linear encoding and decoding complexity.
A good survey of Fountain codes is in [7].

1.2 Our Contributions

We consider PoR with private verification. We present a PoR scheme that uses
the linear homomorphic authenticators and encoding of [10] but replaces the
challenge and response system by a new system that is based on Fountain codes.
The scheme supports unbounded number of challenge-response interactions be-
tween the verifier and the prover. The extractor uses the decoding algorithm of
Fountain codes to decode the original file.

We consider the file blocks to be elements of Fl
2 = {0, 1}l, where l is the

security parameter, and the challenge coefficients to be always 1. A challenge set

22 S. Sarkar and R. Safavi-Naini

simply includes a random set of indices {i1, . . . , iw}. The response is by XOR
of w − 1 binary blocks of size l each, and so the prover only needs w − 1 block
XORs to compute a response. This requires O(wl) steps. However, the prover
computation (1) in SW PoR needs w multiplications over Zp, where p is an l-bit
prime, followed by addition. This requires O(wl2) steps for the multiplication
and O(wl) steps for the addition. This means that the response computation in
our case will be much faster.

However, in this setup, that is when challenge coefficients are all 1, [10] de-
scribes an attack (irrespective of XOR or modular addition), in which prover
does not store the file in its actual form but still responds correctly with high
probability. To avoid this attack we introduce an extra verification step. Details
are given in Section 3.

In our scheme, the size of the challenge set w is not fixed: it is chosen prob-
abilistically according to the degree distribution that is used in the encoding of
the Raptor code.

We show that the size of a challenge set, on average is O(log l) and, in the
worst case is O(l). This means that to compute a response, the prover must
process on averageO(log l) blocks and in the worst case, O(l) blocks. All existing
unbounded-use PoR schemes have fixed size challenge of size O(l).

2 Background

For the security model we follow [10] and use l as the security parameter. A PoR
scheme consists of four algorithms Kg, St, P and V .
– Kg(): This randomized algorithm generates a secret key sk and the public

key pk.
– St(sk,M): This randomized algorithm takes the secret key sk and the client

file M ∈ {0, 1}∗. Then it processes M and outputs M∗ which is stored in
the cloud. It also produces a tag t. The tag contains informations about the
file and additional secret information encrypted under using a symmetric
encryption system.

– P ,V : The randomized algorithm that correspond to the prover and the
verifier, respectively. During the protocol execution, both algorithms have
as input, t that is output by St. The prover also takes the processed file M∗

as input and the verifier takes sk as the input. At the end of the protocol,
the verifier V outputs 0 or 1, where 1 means the file is being stored on the
cloud. Precisely,

{0, 1} R← (V(pk, sk, t) � P(pk, t,M∗)).

We require the PoR to be correct and sound. Correctness means that if the
prover is honest then

(V(pk, sk, t) � P(pk, t,M∗)) = 1.

Proofs of Retrievability via Fountain Code 23

A PoR is sound if any prover that convinces the verification means that it
actually holds the file.

Consider the following setup game between the adversary A and the environ-
ment:

1. The environment generates a key pair (pk, sk) by running Kg and provides
pk to A.

2. The adversary can now interact with the environment. It can make queries to
a store oracle, providing, for each query, a file M . The environment computes
(M∗, t)← St(sk,M) and returns both M∗ and t to the adversary.

3. For any M on which it previously made a store query, the adversary can
undertake executions of the PoR protocol, by specifying the corresponding
tag t. In these protocol executions, the environment plays the part of the
verifier and the adversary plays the role of the prover: V(pk, sk, t) � A.
When a protocol execution completes, the adversary is provided with the
output of V . These protocol executions can be arbitrarily interleaved with
each other and with the store queries described above.

4. Finally, the adversary outputs a challenge tag t returned from some store
query, and the description of a prover P ′.

Definition 1. The prover P ′ is ε-admissible if it convincingly answers an ε
fraction of challenges, i.e., if

Pr[(V(pk, sk, t) � P ′) = 1] ≥ ε.

Now we define the PoR.

Definition 2. A PoR scheme is ε-sound if there exists an extraction algorithm
such that, for every adversary A, whenever A playing the setup game, outputs
an ε-admissible prover P ′ for a file M , the extraction algorithm recovers M from
P ′, except with negligible probability.

2.1 Raptor Code

Suppose the message is (x1, . . . , xk), where each xi is of l-bits, is to be trans-
mitted through an erasure channel. First (x1, . . . , xk) is encoded to (y1, . . . , yn)
by an erasure code Cn which can recover (x1, . . . , xk) from any ρn number of
symbols. Symbols y1, . . . , yn are called input symbols. This step of encoding is
called precoding. Next another round of encoding is applied to the n symbols
{y1, . . . , yn} by a fountain code, in particular an LT code [6]. To encode n sym-
bols using an LT code, a degree distribution is defined using a polynomial

w(x) =

n∑
i=1

wix
i

where wi is the probability of choosing i, i ∈ {1, . . . , n} . An encoded symbol is
produced from the symbols y1, . . . , yn using the LT code as follows:

24 S. Sarkar and R. Safavi-Naini

Fig. 1. Raptor Code structure

– Randomly choose a degree, say j, using w(x).
– Choose uniformly at random, j symbols from the set {y1, . . . , yn}, and XOR

them to produce the encoded symbol

ri = yi1 ⊕ . . .⊕ yij .

Suppose r1, . . . , rN are received at the receiver’s end. These are called out-
put symbols. If we think of a bipartite graph as given in Figure 1 with nodes
y1, . . . , yn on one side and nodes r1, . . . , rN on the other side, then ri is connected
to the nodes yi1 , . . . , yij if and only if ri = yi1 ⊕ . . . ⊕ yij . The decoding of LT
code is by using belief propagation whose success depends on the sparsity of this
graph. The decoding can be described by the following example where symbols
are over F2. Suppose source has symbols y1, y2, y3 and the received symbols are
r1 = 1, r2 = 0, r3 = 1, r4 = 1.

y1 = 1

y1 + y2 + y3 = 0

y2 + y3 = 1

y1 + y2 = 1.

So in the graph, degree of r1 is 1, degree of r2 is 3, degree of r3 is 2 and the
degree of r4 is 2.

First equation gives y1 = 1; pass the value of y1 to the other equations to
find,

y2 + y3 = 1

y2 + y3 = 1

y2 = 0.

Proofs of Retrievability via Fountain Code 25

The third equation gives y2 = 0; pass the value of y2 to the other equations.

y3 = 1

y3 = 1.

Finally y3 = 1. Now it is clear that to start this decoding one needs to have one
node ri with degree 1 and at each iteration, passing the value of recovered node
yi, means reducing by 1 the degree of each ri to which yi is connected by an
edge. The decoding continues if there is an ri with degree 1. Otherwise it halts.

After collecting k+e, for e > 0, symbols ri, the receiver uses the LT decoder to
recover ρn symbols of {y1, . . . , yn}. The receiver can then apply erasure decoding
of Cn to recover the message symbols x1, . . . , xk.

From the decoding process, it is clear that for low decoding complexity the
graph needs to be sparse. This means average number of edges between yi nodes
and ri nodes should be small. The average number of edges is obtained as the
mean of the distribution w(x), i.e., w′(1), where w′(x) is the derivative of w(x).
The following results are from the Raptor code construction given in [11].

Let α > 0 be a real number, set D = 	4(1 + α)/α
 and define

wD(x) =
1

μ+ 1
(μx +

D∑
i=2

xi

(i − 1)i
+

xD+1

D
), (2)

where μ = (α/2) + (α/2)2. The average of wD is

ln(1/α) + β +O(α), (3)

where 1 < β < 1 + γ + ln(9), the constant γ is the Euler’s constant.

Lemma 1. [11, Lemma 4] There exists a positive real number c (depending on
α) such that with an error probability of at most e−cn any set of (1+α/2)n+1 out-
put symbols of the LT-code with distribution wD and n-input symbols y1, . . . , yn
are sufficient to recover at least ρn input symbols from {y1, . . . , yn} via belief

propagation decoding, where ρ = 1− α/4
1+α .

Using this lemma we get the following result.

Theorem 1. [11, Theorem 5] Let α > 0 be a real number, k an integer, D =
	4(1 + α)/α
, R = (1 + α/2)/(1 + α), n = 	k/R
. Let Cn be an erasure code
which can decode (1−R)/2 erasures. Then the Raptor code with precode Cn and
the LT-code with the distribution wD(x) which encodes k symbols, can decode
from (1 + α)k output symbols.

Proof. From Lemma 1 one needs (1 + α/2)n + 1 output symbols ri to get ρn
symbols of {y1, . . . , yn} with error probability e−cn. Note that replacing n =
	k/R
 we get (1 + α/2)n + 1 = (1 + α)k + 1 ≈ (1 + α)k. In this case ρ =
1 − (1 − R)/2. So from ρn symbols of {y1, . . . , yn} one can decode the message
symbols x1, . . . , xk by using the erasure decoding of Cn. ��

26 S. Sarkar and R. Safavi-Naini

3 A PoR Scheme Based on Raptor Codes

In this section, we discuss PoR construction based on the Raptor code. Dodis
et al. [3] viewed the set of all possible correct responses corresponding to the
encoded file M ′ as a codeword C, which they call a challenge-response encoding
of M ′. The set of all responses received from the prover for the a file M ′, form a
word C′ which may differ from C. The job of the extractor is to decode M from
C′. We follow this view and use LT code as the encoding of the challenge and
response. Thus after encoding file M by an erasure code and storing the encoded
file M ′ in the cloud, the responses are the encoded symbols of the Raptor code
applied to M . In fact, the whole structure of this PoR matches the Raptor code,
where the message file is encoded by a precode and after that streams of encoded
symbols are generated by the LT code. To have a PoR, it only remains to have a
verification algorithm which verifies that a response (encoded symbol of the LT
code) is correct. Bowers et al. [2] also had the same view, where the responses are
formed by the encoding of a code which they call “inner code”. However, their
scheme only supports bounded number of challenges as the challenge is based on
the precomputed challenge-response pairs. By using Raptor code, we can directly
invoke the decoding analysis of that code to analyze the extractor of the PoR.
It is to be noted that the notion of the extractor comes in the security proof.
Therefore, extractor does not need to be very efficient. This is it is sufficient to
be able to decode the file with negligible decoding failure probability.

3.1 The Construction

We use the same homomorphic authenticators as [10] for the verification. We
construct the Raptor-PoR protocol for private verification as follows.

Raptor-PoR
Let the erasure probability of the cloud be 1 − ρ. Let the client file be M =
(x1, . . . , xk), each xi is an element of Fl

2. For each xi, the authenticator also has
l-bits, so we choose l as the security parameter. The mapping PRF : {0, 1}∗ ×
Kprf → {0, 1}l is a pseudorandom function. In Raptor-PoR, the algorithm kg
and St are run to process the file for the storage. In the audit, the algorithm
V is run by the verifier and P is run by the prover. The algorithm V has three
modules: V .T agcheck, V .Chal and V .V er.

Storage (Encoding)

– Kg(): A random symmetric encryption key kenc
R← Kenc and a randomMAC

key kmac
R← Kmac are chosen. The secret key is sk = (kenc, kmac). Since this

is private verification, there is no public key pk.
– St(sk,M): First M = (x1, . . . , xk) is encoded by an erasure code Cn to

obtain M ′ = (y1, . . . , yn), where Cn is such that any ρn symbols from
(y1, . . . , yn) will be enough for the reconstruction of M . Now choose a PRF

key kprf
R← Kprf and a random binary l× l matrix A = [A1, . . . , Al]

T , where

Proofs of Retrievability via Fountain Code 27

each Ai is an l-bit row vector.
Let t0 = n||Enckenc(kprf ||A1|| · · · ||Al), and t = t0||MACkmac(t0) be the file
tag.
For each i, where 1 ≤ i ≤ n, create authenticators σ1, . . . , σn as

σi = PRFkprf
(i)⊕ yiA for 1 ≤ i ≤ n.

Each σi is also an l-bit symbol. Then M∗ = (y1, . . . , yn, σ1, . . . , σn) is the
processed file. Send M∗ and t to the cloud.

Audit

– V .T agcheck(sk, t) : Obtains kmac and kenc from the secret key sk. Re-
ceives the tag t from the prover and verify it by the kmac, if MAC does
not match, quit the audit. Otherwise, using the symmetric key kenc, decrypt
Enckenc(kprf ||A1|| · · · ||Al) and recover n, kprf and the matrix A.

– V .Chal(n) : Choose an integerw using the degree distribution with the gener-
ator polynomialwD(x) =

∑n
i=1 wix

i. Then choosew indices, say {i1, . . . , iw},
uniformly from {1, . . . , n} and choose one index, say c, uniformly at random
from {i1, . . . , iw}. Send Q = ({i1, . . . , iw}, {c}) to the prover.

– P(Q,M∗) : In response to the challenge Q compute

r = yi1 ⊕ . . .⊕ yiw (4)

σ = σi1 ⊕ . . .⊕ σiw .

Send resp = (r, σ, yc, σc) to the verifier.
– V .V er(A, kprf , resp) : After receiving prover’s response, check whether

σ
?
= rA⊕

∑
i∈{i1,...,iw}

PRFkprf
(i),

σc
?
= PRFkprf

(c)⊕ ycA.

3.2 Security Proofs

For the file retrieval, the client relies on the correct response value which is
the linear sum of the challenged blocks. If the prover were only asked to send
the value r and σ instead of (r, σ, yc, σc), the prover could pass the verification
process without storing the actual file, with very high probability. This kind of
attack has been shown in [10, Appendix B]. We discuss the attack in Appendix
A which shows the cloud can store the file in a different form but still can pass
the verification, i.e., provides correct response value, with probability 1/2. To
avoid this attack, the verifier introduces an extra layer of verification in which
the prover also sends yc and its corresponding authenticator σc.

Theorem 2. Suppose the MAC is unforgeable, the symmetric encryption scheme
is semantically secure and the PRF is secure. Then, the following is true with
an overwhelming probability: no adversary against the soundness of the proposed

28 S. Sarkar and R. Safavi-Naini

PoR scheme, will be able to pass the verification test in a challenge-response
instance, except by responding correct values (r, σ, yc, σc) which is the response
computed by an honest prover.

Proof. Applying the proof of [10, Theorem 4.1], it can be shown that if the
response values r and σ pass the verification, i.e., they comply with the relation
σ = rA ⊕∑

i∈{i1,...,iw} PRFkprf
(i), then r is the correct sum of yi1 , . . . , yiw .

The proof relies on the security of the MAC, the symmetric encryption and the
PRF, which guarantee that a dishonest prover can not forge the authenticators
σi’s. The proof idea is the following. The authenticator σi for the data block yi
cannot be forged if the matrix A and the PRF key kprf are kept secret. Note that
kprf and A are stored in the cloud in the encrypted form using a semantically
secure symmetric encryption. Further authenticity of the the encrypted value is
maintained by a secure MAC.

However, in this setup, a correct value of r, does not guarantee that r is
computed by summing the actual values of yi1 , . . . , yiw . Some different values
y′i1 , . . . , y

′
iw may lead to the same sum r, i.e. r = yi1⊕· · ·⊕yiw = y′i1⊕· · ·⊕y′iw . It

can be seen in Appendix A, how a dishonest prover can compute r correctly with
nonnegligible probability without storing the actual file. Suppose a dishonest
prover computes r correctly but with different yi1 , . . . , yiw with probability φ. If
that prover does not have the actual value of yc, then to pass the second step of
verification, i.e., σc = PRFkprf

(c)⊕ycA, it has to forge the authenticator σc. But
the authenticator is proved to be secure. Therefore, the dishonest prover has no
choice but to guess yc for which σc is the authenticator. In this case the prover
passes this step of verification with probability 1

2l (since, yc is an l-bit element).
Thus the dishonest prover passes the two steps of verification with probability
φ 1

2l < 1
2l , which is negligible. ��

We use the same erasure code Cn and degree distribution wD(x) as that of the
Raptor code to construct the PoR scheme. The retrieval of the file is simply the
decoding process of the Raptor code. Referring to the parameters of the Raptor
code described in Section 2.1, the extractor needs (1+α)k output symbols for the
retrieval of the file. The client file has k blocks each of size l-bits, where k = poly(l).
Below we express different parameters of the Raptor code in terms of l.

1. Take α = 1/l.

2. Rate of the precode Cn is R = 1+α/2
1+α = 2l+1

2l+2 . Then n = k/R = k 2l+2
2l+1 =

poly(l), since k = poly(l).
3. Choose Cn such that the erasure probability that it can handle is 1 − ρ =

(1−R)/2 = 1
4(l+1) .

4. For LT code: D = 4(l+ 1), μ = 1
2l +

1
4l2 , the degree distribution is

wD(x) =
2l + 1

4l2 + 2l + 1
x+

4l2

2l + 1
(
x2

1.2
+

x3

2.3
+ . . .+

x4(l+1)

(4l + 3)(4l + 4)
+

x4l+5

4l + 4
).

The mean of this distribution is ln(l)+β+O(1/l), where 1 < β < 1+γ+ln(9),
the constant γ is the Euler’s constant.

Proofs of Retrievability via Fountain Code 29

Using these parameters, we can use the decoding result of the Raptor code
(Theorem 1). Thus we have the following result on the file retrieval.

Theorem 3. If the prover is ε-admissible then running the PoR protocol for
(1+1/l)k

ε iterations, the extractor will be able to retrieve the file with error prob-

ability e−poly(l).

Proof. When the extractor plays against an ε-admissible prover, then each out-
put symbol is correct with probability ε. Therefore, to collect (1 + 1/l)k output

symbols the extractor should run (1+1/l)k
ε challenge-response interactions. By

Theorem 1, the extractor needs (1+ 1/l)k output symbols to recover ρ fractions
of symbols of the precode Cn, where the error probability is e−O(n). Note that
n = poly(l) and so the error probability is e−poly(l), which is negligible. ��

3.3 Cost Comparison

The three known unbounded PoR constructions are from Juels and Kaliski [5],
Shacham and Waters [10], and Dodis et al. [3]. In all of these schemes, the cloud

storage is 2|M|
R , where |M | is the size of the client file and R is the rate of the

code that encodes M before storing it in the cloud. Clearly, the encoded file size
is |M |/R. The factor 2 comes from the set of all authenticators. Our scheme has

the same cloud storage cost, i.e., 2|M|
R . The precode, which encodes the file M ,

has rate R = 2l+1
2l+2 . Thus cloud storage is 2(2l+2)|M|

2l+1 .
For a challenge of size w, the response r is the XOR of w elements, and σ is

the XOR of another w elements of Fl
2. The response computation of [3] is the

same as in [10]. We also use homomorphic linear authenticators and compare the
cost of computing a response in our scheme with that of Shacham and Waters
[10]. In [10], for a challenge of size w, response r and σ are computed (see (1)) by
using w multiplications over Zp and followed by the addition of w − 1 elements
of Zp, where p is an l-bit prime. The multiplication of two l-bit numbers over Zp

requires O(l2) steps and for addition it is O(l). Therefore, for SW scheme, the
response calculation in (1) requires O(wl2) steps. As we consider the file blocks
over Fl

2 and the challenge coefficients νi to be always 1, the computation does
not require multiplication and response calculations only needs (w−1), the same
cost is required for computing σ, and thus requires O(wl) steps in total. This
means that the response computation is much faster in our case.

We note that all previous schemes challenge a fixed number of blocks of order
O(l). In our scheme, the number of challenged blocks is not fixed: for a security
parameter l, the size of the challenge set is chosen from the interval [1, 4l + 5]
according to the probability distribution wD(x) with α = 1/l. Thus the number
of challenged blocks is O(l) but, the size of the challenge set on average is the
mean of the distribution wD(x). For α = 1/l, the mean is ln(l) + β + O(1/l),
where 1 < β < 1 + γ + ln(9), the constant γ is the Euler’s constant. Therefore
on the average number of challenged indices is O(log l).

In our scheme, a challenge includes O(log l) indices in the average case and
the size of the response is O(l). So the total communication complexity is O(l),
which is the same for the existing unbounded PoR schemes [5,10,3].

30 S. Sarkar and R. Safavi-Naini

Table 1. Response cost comparison between Raptor-PoR and PoR of Shacham and
Waters [10]

Computation of a Response Number of Challenged
for w-size challenge blocks

RAPTOR-PoR O(wl) O(log l)
(Average)

SW PoR O(wl2) O(l)

4 Conclusions

In this paper, we presented a PoR scheme, based on the Shacham-Waters scheme
[10], that uses variable length challenges and has efficient response computation.
Our construction uses ideas from fountain codes and unlike other PoR schemes,
the size of challenge set is not fixed. The number of challenged blocks on average
however is O(log l) which is less than other known schemes.

For implementation of the scheme in practice, we need to divide the file into
several chunks of suitable size and apply encoding on each chunk separately. For
example, one can divide the file into chunks each having 223 symbols of size of
1 byte each. Then use the (255, 223) Reed-Solomon code over GF (28) to encode
each chunk, and finally obtain the encoded file by concatenating the encoded
chunks. The encoded file is further divided into blocks each having l bits, where
l is the security parameter (10 bytes, for instance), and authenticators of size l
bits for each block is computed. Finally the encoded file and the authenticators
are stored in the cloud. The challenge response will be as before but the decoding
of the original file from the responses will need extra steps. From the correct
responses the extractor needs to collect l-bit blocks which belongs to the encoding
of the same chunk and decode the chunk when it has received enough symbols of
that particular encoded chunk. The analysis of the extractor also will be slightly
different.

An efficient implementation of this scheme will establish its importance in
practice.

Acknowledgments. The authors would like to thank Alberta Innovates Tech-
nology Future which has partially supported this work. The authors are also
thankful to Liangfeng Zhang for his valuable editorial comments.

References

1. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: Ning, et al. (eds.) [9],
pp. 598–609

2. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: Sion, R., Song, D. (eds.) CCSW, pp. 43–54. ACM (2009)

Proofs of Retrievability via Fountain Code 31

3. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of Retrievability via Hardness Amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

4. Gallager, R.G.: Low-Density Parity-Check Codes. PhD thesis, MIT Press, Cam-
bridge, MA (1963)

5. Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: Ning,
et al. (eds.) [9], pp. 584–597

6. Luby, M.: LT codes. In: FOCS, p. 271. IEEE Computer Society (2002)
7. Mackay, D.J.C.: Fountain codes. IEEE Communications 152, 1062–1068 (2005)
8. Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: FOCS,

pp. 573–584. IEEE Computer Society (2005)
9. Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.): Proceedings of the 2007 ACM

Conference on Computer and Communications Security, CCS 2007, Alexandria,
Virginia, USA, October 28-31. ACM (2007)

10. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

11. Shokrollahi, A.: Raptor codes. IEEE Transactions on Information Theory 52(6),
2551–2567 (2006)

A Verification without Storing the Actual File

Suppose, the cloud stores the file in a different way which is as follows. It selects
randomly one block yj from the encoded file y1, . . . , yn and replaces each yi as
yi = yi ⊕ aiyj for all i �= j, where ai is chosen randomly from {0, 1}. Then it
removes yj forever. In this situation cloud still may be able to pass the verifi-
cation. Suppose, a challenge of w indices {i1, . . . , iw} sent by the client, which
does not include j. Then the cloud computes the response as

R = yi1 ⊕ ai1yj ⊕ . . .⊕ yiw ⊕ aiwyj

= r ⊕ yj(ai1 ⊕ . . .⊕ aiw).

The other response, i.e., the sum of the authenticators will be

σ = σi1 ⊕ . . .⊕ σiw .

Note that this pair (R, σ) will verify if and only if R = r. Now R = r holds if
ai1 ⊕ . . . ⊕ aiw = 0. Suppose, w is even. Then this happens if the weight of the
string (ai1 , . . . , aiw) is even which can happen in

(
w
2

)
+ . . . +

(
w
w

)
many ways.

Then the probability

P (ai1 ⊕ . . .⊕ aiw = 0) =

(
w
2

)
+ . . .+

(
w
w

)
2w

≈ 2w−1

2w

=
1

2
.

32 S. Sarkar and R. Safavi-Naini

On the other hand if the challenge {i1, . . . , iw} contains the index j, suppose
iw = j. Then the cloud computes the response as

R = yi1 ⊕ ai1yj ⊕ . . .⊕ yiw−1 ⊕ aiw−1yj

= yi1 ⊕ . . .⊕ yiw−1 ⊕ yj(ai1 ⊕ . . .⊕ aiw−1).

The response from an honest cloud in this case would be r = yi1⊕. . .⊕yiw−1⊕yj .
Therefore, R = r is held if ai1 ⊕ . . . ⊕ aiw−1 = 1. This happens if the weight
of the string (ai1 , . . . , aiw−1) is odd and that can happen in

(
w−1
1

)
+ . . . ,

(
w−1
w−1

)
ways. Note that since we are considering w even, so w− 1 is odd. Therefore, the
probability

P (ai1 ⊕ . . .⊕ aiw = 1) =

(
w−1
1

)
+ . . .+

(
w−1
w−1

)
2w−1

=
2w−2

2w−1

=
1

2
.

So we see that the cloud can pass the verification process with probability 1/2.

MARC: Modified ARC4

Jianliang Zheng1 and Jie Li2

1 Independent Scholar, New York, NY, USA
zheng@ee.ccny.cuny.edu

2 Department of Computer Science, Graduate Center,
City University of New York, New York, NY, USA

Abstract. RC4, often referred to as Alleged RC4 (ARC4) in open
literature, was and probably still is the most popular stream cipher.
Although some weaknesses in its key scheduling algorithm have been
reported and new faster and claimed secure stream ciphers have been
proposed, ARC4 is likely to remain as a big player in cryptographic ap-
plications. In this paper, we propose a new variant of ARC4, called Mod-
ified ARC4 (MARC), which enhances the security of ARC4 by modifying
its key scheduling algorithm and improves the performance by modifying
its pseudo-random generation algorithm. MARC retains the simplicity
of ARC4 and is faster than most software-efficient finalists of eStream.

Keywords: RC4, ARC4, MARC, Stream Cipher, High Performance.

1 Introduction

RC4 was designed by Ron Rivest in 1987 and kept as a trade secret of RSA
Security until it leaked out in 1994. Because RSA Security has never officially
released the algorithm and the name RC4 is trademarked, what is often referred
to in the open literature is ARC4 (Alleged RC4) [1]. Due to the huge number of
internal states, no practical attacks have been mounted on the internal state so
far. However, RC4 has some weaknesses in its key scheduling algorithm [2]. This
has been exploited to break the Wired Equivalent Privacy (WEP) encryption
used within 802.11 wireless local area networks. RSA Security responded to this
and recommended that “The initial key scheduling component of RC4 should
for now be routinely amended for new applications to include hashing and/or
discarding the first 256 bytes of pseudo-random output.” [3]

In this paper, we propose a new variant of ARC4, called Modified ARC4
(MARC), which enhances the security of ARC4 by modifying its key schedul-
ing algorithm and improves the performance by modifying its pseudo-random
generation algorithm. MARC retains the simplicity of ARC4 and is faster than
all the software-efficient finalists of eStream [4,5,6,7] except HC-128 [4]. It is the
fastest one among the variants of ARC4 [8,9,10,11] we know.

The rest of this paper is organized as follows: Section 2 describes the algorithm
details. Section 3 gives a security analysis of the algorithm. Section 4 and 5 pro-
vide the statistical testing results and performance testing results respectively.
Finally section 6 concludes the paper.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 33–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 J. Zheng and J. Li

Listing 1. ARC4
� �

1 ## addition (+) and increment (++) operations ##

2 ## are performed modulo 256; % means modulo. ##

3

4 # Key Scheduling Algorithm (KSA)

5 for i from 0 to 255

6 S[i] = i

7 endfor

8 j = 0

9 for i from 0 to 255

10 j = j + S[i] + key[i % keylength]

11 swap(S[i], S[j])

12 endfor

13

14 # Pseudo - Random Generation Algorithm (PRGA)

15 i = 0

16 j = 0

17 while GeneratingOutput

18 i++

19 j = j + S[i]

20 swap(S[i], S[j])

21 n = S[i] + S[j]

22 output S[n]

23 endwhile
� �

2 Design

In this section we present the algorithm details. We first give a brief review of
ARC4 [1] and then describe the differences between ARC4 and MARC.

2.1 ARC4

ARC4 is simple and ideal for software implementation. It maintains an inter-
nal state, which consists of a permutation of all 28 = 256 possible octets and
two 8-bit indices for accessing elements in the permutation. The permutation
is first initialized to the identity permutation and then shuffled using a secret
key according to the key scheduling algorithm (KSA) given on lines 5 to 12 of
Listing 1. Afterwards, pseudo-random number sequence is generated using the
pseudo-random generation algorithm (PRGA) given on lines 15 to 23 of List-
ing 1. The PRGA iterates as many times as needed and during each iteration it
continues to shuffle the permutation by swapping two elements and outputs one
octet. To encrypt or decrypt a message, simply act the pseudo-random number
sequence on the message using bitwise XOR.

MARC: Modified ARC4 35

2.2 MARC

The KSA and PRGA of MARC are shown in Listing 2. The new KSA iterates
576 times instead 256 times to shuffle the identity permutation. In ARC4 the
first keylength bytes of S are likely to have similar patterns after key scheduling
if similar keys that only differ at the end are used. The additional 256 + 64
= 320 iterations (the maximum allowed keylength in MARC is 64) are used for
breaking such patterns. Note that we use a new 16-bit unsigned integer r instead
of the 8-bit index i as the loop counter in the second for loop. This is because
we need to iterate 576 times but index i can only have 256 different values. Ex-
cept r, all other variables are 8-bit unsigned integers. The new KSA introduces
a third index k, which is initialized to 0 and then XORed with index j during

Listing 2. Modified ARC4 (MARC)
� �

addition (+) and increment (++) operations

are performed modulo 256; except variable r,

which is a 16-bit unsigned integer , all other

variables are 8-bit unsigned integers ;

^ means bitwise XOR.

Key Scheduling Algorithm (KSA)

for i from 0 to 255

S[i] = i

endfor

i = 0

j = 0

k = 0

for r from 0 to 575

j = j + S[i] + key[i % keylength]

k = k ^ j

left_rotate (S[i], S[j], S[k])

i++

endfor

Pseudo - Random Generation Algorithm (PRGA)

(j and k are from KSA)

i = j + k

while GeneratingOutput

i++

j = j + S[i]

k = k ^ j

swap(S[i], S[j])

m = S[j] + S[k]

n = S[i] + S[j]

output S[m]

output S[n]

output S[m ^ j]

output S[n ^ k]

endwhile
� �

36 J. Zheng and J. Li

each iteration. It also replaces ARC4’s swap operation between S [i] and S [j]
with a left rotation operation among S [i], S [j], and S [k] (i.e., tmp = S [i], S [i]
= S [j], S [j] = S [k], S [k] = tmp) during each iteration.

The new PRGA keeps the values of index j and k from KSA and sets the
initial value of index i to the sum of index j and k. It shuffles the permutation
like ARC4 PRGA but outputs 4 octets instead of one octet during each iteration
using index j, k, m, and n (m is the sum of S [j] and S [k]; n is the sum of S [i]
and S [j]). The 4 octets are: S [m], S [n], S [m ˆ j], and S [n ˆ k]. The combination
of m, n, mˆj, and nˆk renders excellent statistical properties as attested by the
most stringent statistical testing tools (see section 4).

3 Security

In this section we discuss the security of MARC. We will not give a com-
plete cryptanalysis here. Instead we will only focus on the differences between
MARC and ARC4. For detailed cryptanalysis of ARC4, the reader is referred
to [2,12,13,14,15].

The main weakness of ARC4 is its simple KSA. A simple remedy is to discard
the first n× 256 (n = 1, 2, ...) bytes of output, which in effect introduces more
shuffling before generating pseudo-random numbers. The KSA of MARC iterates
576 times and each time it rotates three values. The KSA of ARC4 only iterates
256 times and each time it swaps two values. If one rotation is computed as 1.5
swaps, then MARC swaps 864 times. This is more than three times of ARC4.
Note that this is not exactly the same as dropping 864 - 256 = 608 bytes at the
beginning since the shuffling during pseudo-random number generation does not
involve the key as key scheduling does.

For similar keys that only differ at the end, the differences do not come into
play before the keylength-th (keylength ≤ 64) iteration of key scheduling. This
means the first keylength bytes are very likely to have a similar distribution for
those keys. MARC deals with this by shuffling the first 64 bytes one more time
than the other part. At the end of key scheduling, MARC also sets the value
of index i to the sum of index j and k and persists all three indices for future
use. Because the output sequence is highly sensitive to the values of the index
i, j, and k, making indices depend on the secret key instead resetting them to 0
at the beginning of the PRGA also helps solve the correlation problem among
similar keys.

To measure the differences between MARC KSA and ARC4 KSA, we per-
formed avalanche testing for both of them. The testing steps are:

1. Randomly select a key of size 64 (worst case for diffusion), denoted as K1.
2. Get the following variants of K1:

(a) K2 = 1’s complement of K1
(b) K3 = flip of K2 (left right flip)
(c) K4 = 1’s complement of K3

If K2 and K3 are same (i.e., input is symmetric), then K3 and K4 are not
used.

MARC: Modified ARC4 37

3. For each of the above K1, K2, K3, and K4, we flip one bit of it each time
(starting from the most significant bit) and compare the initialized state
with the unflipped version.

4. Repeat above steps until the number of flippings reaches the required num-
ber, which is 106 (the actual number of flippings may exceed 106, since we
do not stop until all the bits of a key or its variant are flipped).

Ideally, for the flipping of each input bit we want the flipping of each output
bit to be like the flipping of a coin, which is a binomial distribution with a
probability p = 0.5 for each of the two possible outcomes. According to the
central limit theorem, it can be approximated using normal distribution for a
not too small sample size szSample with mean μ = szSample× p and standard
deviation σ =

√
szSample× p× (1− p). For a normal distribution, an outcome

has a probability of 68.3% to be μ ± σ, a probability of 95.4% to be μ ± 2σ,
and a probability of 99.7% to be μ ± 3σ. For each output bit, we check if its
flipping probability falls in the range [μ − nσ, μ + nσ] (n = 1, 2, 3, checked in
that order). The corresponding output bit gets n point(s) if the probability does
fall in the range; it gets 4 points otherwise. These four different values, from the
best 1 point to the worst 4 points, are depicted using different colors: dark gray
() for 1, gray () for 2, light gray () for 3, and white for 4.

The testing results for both ARC4 KSA and MARC KSA are shown in Fig. 1.
Each small square plotted in one of the four different colors shows how well the
flipping of an input bit (row) causes the flipping of an output bit (column). The
input bit range is [1, 32]. The three output bit ranges are [1, 32], [257, 288],
and [513, 544] respectively. ARC4 KSA has a really poor avalanche effect at the
beginning of the internal state (Fig. 1 (a)). The testing revealed that the flipping
probability is far below the ideal value 0.5 for those bits at the beginning. The
situation improves as we move the output bit range away from the beginning of
the internal state (Fig. 1 (b)). The avalanche effect is significantly better when
the output bit range is shifted out of the first keylength (here 64) bytes of the
internal state (Fig. 1 (c)). MARC KSA has a better avalanche effect than ARC4
KSA in all three cases.

The internal state of ARC4 evolves relatively slowly and what matters more is
the change of n if a short sequence (e.g., a few bytes) is to be generated. In this
case, it makes no big difference whether one generates 4 bytes using 4 different
values of index n or using 4 different indices at once, as long as the 4 values of
n and the 4 different indices are both computed in a proper way. In ARC4, n
= S [i] + S [j]. S [i] iterates through the state table but does not guarantee each
value is accessed exactly once due to the swap operation. S [j] is more irregular
and unpredictable. In MARC, the new m = S [j] + S[k] (is actually S [i] +
S [k] compared with n if considering the effect of swap operation) is computed
in a similar way as n. The computation of the other two values, mˆj = (S [i]
+ S [k])ˆj (using the S [i] value before swapping) and nˆk = (S [i] + S [j])ˆk,
involves all three indices and mixes two different levels of data, i.e., the indices
and the state elements located through the indices. These two levels of data are
bitwise XORed together. The bitwise XOR operation is linear in F2, but cannot

38 J. Zheng and J. Li

(a) ARC4 (output offset
= 0)

(b) ARC4 (output offset
= 32 bytes)

(c) ARC4 (output offset
= 64 bytes)

(d) MARC (output offset
= 0)

(e) MARC (output offset
= 32 bytes)

(f) MARC (output offset
= 64 bytes)

Fig. 1. Avalanche Testing Results for ARC4 KSA and MARC KSA

be handled using pure linear algebra in the residue class ring Z/2nZ or in the
field F2n . In summary, each of the four indices m, n, mˆj, and nˆk is either
computed similarly as the index n in ARC4 or in a more complicated way.

4 Statistical Testing

In this section we present the statistical testing results of MARC using NIST
statistical test suite [16], the new Diehard battery of tests [17], and the more
stringent TestU01 batteries of tests [18].

4.1 Testing Results from NIST Statistical Test Suite

The NIST Statistical Test Suite. The NIST tests are based on hypothesis
testing. Each test is formulated to test a specific null hypothesis, i.e., a spe-
cific sequence of zeroes and ones is random. A probability value (P-value) is
computed for each test, which summarizes the strength of the evidence against

MARC: Modified ARC4 39

Table 1. Statistical Testing Results
(NIST)

Test NoP
ARC4 MARC

P-valueT PoS P-valueT PoS

1 1 0.161703 991 0.534146 989

2 1 0.146982 998 0.733899 994

3 2
0.572847 989 0.769527 986

0.928857 989 0.632955 988

4 1 0.229559 984 0.777265 993

5 1 0.595549 991 0.552383 987

6 1 0.134172 992 0.566688 991

7 1 0.274341 988 0.163513 985

8 148 0.470224 989 0.518298 989

9 1 0.404728 992 0.532132 988

10 1 0.029401 988 0.862883 988

11 1 0.676615 990 0.302657 987

12 8 0.299100 587
592

0.570090 615
621

13 18 0.417622 585
592

0.673667 614
621

14 2
0.530120 991 0.599693 986

0.576961 989 0.245490 986

15 1 0.771469 991 0.077607 986

Table 2. Statistical Testing Results
(Diehard)

Test NoP
ARC4 MARC

P-valueT x-p P-valueT x-p

1 11 5.3e-10 0 5.4e-006 1

2 2 0.816537 0 0.304126 0

3 33 0.170722 1 0.479073 0

4 5 0.534146 0 0.204439 0

5 2 0.024356 0 0.699313 0

6 26 0.711915 1 0.052326 1

7 20 0.100709 0 0.271619 0

8 82 0.339928 1 0.198214 0

9 1 0.289667 0 0.514124 0

10 25 0.815812 1 0.838472 1

11 11 0.492614 0 0.297118 0

12 11 0.415748 0 0.404407 0

13 21 0.587668 1 0.202783 0

14 1 0.494392 0 0.350485 0

16 3 0.334538 0 0.540878 0

17 4 0.875539 0 0.847183 0

the null hypothesis. It is the probability that a perfect random number gener-
ator would have produced a sequence less random than the sequence that was
tested, given the kind of non-randomness assessed by the test. If a P-value for
a test is determined to be equal to 1, then the sequence appears to have per-
fect randomness. A P-value of zero indicates that the sequence appears to be
completely non-random. The NIST statistical test suite comprises 15 tests: Fre-
quency, Block Frequency, Cumulative Sums, Runs, Longest Run of Ones, Rank,
Discrete Fourier Transform, Non-overlapping Template Matching, Overlapping
Template Matching, Universal Statistical, Approximate Entropy, Random Ex-
cursions, Random Excursions Variant, Serial, and Linear Complexity.

The empirical results can be interpreted in different ways. The two approaches
adopted by NIST are examining the proportion of sequences that pass a statistical
test and checking the distribution of P-values for uniformity. The first approach
is reasonably accurate for large sample sizes (e.g., ≥ 1000 sequences). The second
approach needs at least 55 sequences to provide statistically meaningful results.

40 J. Zheng and J. Li

Testing Setup. We tested and compared the pseudo-random number gener-
ation of ARC4 and MARC. For each of them, we tested 1000 pseudo-random
sequences, each containing one million bits (125 KB). For each sequence, a ran-
dom key is generated and used to initialize the generator. This random key can
be up to 64 bytes and is generated from a modified ARC4 PRNG using clock
value as the input key. The only difference between the modified ARC4 PRNG
and the original ARC4 PRNG is that the modified one discards the first 512
bytes of the pseudo-random output.

Testing Results. The testing results are shown in Table 1. The number of P-
values (NoP) returned by each test is listed in the second column. The P-valueT
measures the uniform distribution of the P-values returned by a test and a
value equal to or larger than 0.0001 means success. The proportion of sequences
(PoS) is given in another column. For 1000 sequences, a minimum value of 980
is required to pass the test. Some tests return more than one P-value. If more
than 2 P-values are returned, we group those P-values into two groups based
on whether they pass the test or not and give one average value for each group.
For a few tests, some sequences may be invalid, in which case we will give out
the number of sequences actually used, e.g., 587

592 means 592 sequences are used
and 587 of them pass the test. The testing results show, both generators passed
the NIST statistical tests.

4.2 Testing Results from Diehard Battery of Tests

The Diehard Battery of Tests. The Diehard battery of tests are developed by
George Marsaglia at Florida State University and first published in 1995. Most
of the tests in Diehard return a P-value, which should be uniform on [0,1) if the
input file contains truly independent random bits. A P-value near 0 or 1 indicates
deviation from true randomness. This is in contrast with NIST tests, where a
bigger P-value indicates better randomness. Some of Diehard tests yield more
than one P-value, in which case a Kolmogorov–Smirnov (KS) test might be run
on those P-values to produce a single P-value that indicates randomness [19].
The new Diehard release contains 17 tests, including some “tough” tests [20].
They are Birthday Spacings (including the new “tough” Birthday Spacings),
GCD (new “tough” test), Gorilla (new “tough” test), Overlapping Permutations,
Ranks of 31x31 and 32x32 matrices, Ranks of 6x8 Matrices, Monkey Tests on
20-bit Words, Monkey Tests OPSO/OQSO/DNA, Count the 1’s in a Stream of
Bytes, Count the 1’s in Specific Bytes, Parking Lot Test, Minimum Distance
Test, Random Spheres Test, The Squeeze Test, Overlapping Sums Test, Runs
Up and Down Test, and The Craps Test.

Unlike NIST test suite, Diehard test suite does not provide specific criteria
for determining the success or failure of a test, but only says that the P-values
should be uniform on [0, 1). This results in different interpretations of the testing
results. We will evaluate our testing results in two ways, that is, checking the
distribution of P-values for uniformity and counting the number of P-values that
are smaller than 0.00001 or larger than 0.9999.

MARC: Modified ARC4 41

Testing Setup. The C language implementation of Overlapping Sums Test
(test 15) is not a faithful interpretation of the author’s original Fortran language
implementation and none of the (pseudo-)random number generators we
tested can pass this test (please see the web page at http://www.varioustopics
.com/cryptography/782655-diehards-overlapping-sum-test.html for more
details). So we exclude this test from our testing. The remaining 16 tests are di-
vided into two groups based on the minimum random sequence size that is needed
by each test. GCD, Gorilla, and Overlapping Permutations (test 2, 3, 4) need a
much longer random sequence than other tests and are put in a group. All other
tests are put in another group. For GCD, Gorilla, and Overlapping Permutations,
we tested 50 random sequences for each random number generator, each contain-
ing 2176 million bits (272 MB). For other tests, we tested 100 random sequences
for each randomnumber generator, each containing 96million bits (12MB). Using
this setup, at least 100 P-values are generated for each test.

Testing Results. The Diehard testing results are given in Table 2. The values
given in “x-p” column are numbers of extreme P-values (i.e., P-values smaller
than 0.00001 or larger than 0.9999). Both generators passed all the tests except
for the first test. To find the problem, we tested another two (pseudo-)random
number generators: SHA1 (running in counter mode) and QRNG (a quantum
random number generator available at http://qrng.physik.hu-berlin.de/).
Both of them failed this test too, which suggests it could be a problem with
the test itself. ARC4 has a few more extreme P-values than MARC, but is still
within the normal range (one out of 105).

4.3 Testing Results from TestU01 Batteries of Tests

The TestU01 Batteries of Tests. TestU01 is the most comprehensive statis-
tical test suite that is publically available so far. It is a software library imple-
mented in the ANSI C language. It offers a collection of utilities for the empirical
statistical testing of uniform random number generators. Six pre-defined batter-
ies of tests are available in TestU01. They are SmallCrush, Crush, BigCrush,
Rabbit, Alphabit, and BlockAlphabit. Any (pseudo-)random number generator
that implements both the double (*GetU01) (void *param, void *state) and un-
signed long (*GetBits) (void *param, void *state) interfaces defined in TestU01
can use all the 6 pre-defined batteries of tests.

In the current version, Crush uses approximately 235 random numbers and
applies 96 statistical tests (it computes a total of 144 test statistics and P-
values), whereas BigCrush uses approximately 238 random numbers and applies
106 tests (it computes 160 test statistics and P-values). When invoking the bat-
tery Rabbit, Alphabit, and BlockAlphabit, one must specify the number of bits
available for each test. Other parameters of each test are chosen automatically as
a function of the number of available bits. Rabbit and Alphabit apply 40 and 17
different statistical tests respectively. BlockAlphabit applies the Alphabit bat-
tery of tests repeatedly to a generator or a binary file after reordering the bits
by blocks of different sizes (with sizes of 2, 4, 8, 16, 32 bits).

http://www.varioustopics.com/cryptography/782655-diehards-overlapping-sum-test.html
http://www.varioustopics.com/cryptography/782655-diehards-overlapping-sum-test.html
http://qrng.physik.hu-berlin.de/

42 J. Zheng and J. Li

Table 3. Statistical Testing Results (TestU01)

Battery Parameters Tests NoP
Failures

ARC4 MARC

SmallCrush Built-in 10 15 0 0

Crush Built-in 96 144 0 0

BigCrush Built-in 106 160 0 0

Rabbit 32× 109 bits 26 40 0 0

Alphabit 32× 109 bits 9 17 0 0

BlockAlphabit 32× 109 bits 6× 9 102 0 0

Testing Setup. TestU01 requires much more (pseudo-)random numbers than
the NIST and Diehard suites. It takes more than 12 hours to run all the 6
batteries on our machine. Each generator is implemented in C programming
language and created as a unif01 Gen object. Both GetU01() and GetBits()
interfaces are implemented for each generator so that all 6 batteries of tests can
be applied. Built-in parameters are used for SmallCrush, Crush, and BigCrush.
For Rabbit, Alphabit, and BlockAlphabit, the size of bit sequence is set to 32×
109.

Testing Results. The testing results from TestU01 batteries of tests are given
in Table 3. The 6 batteries of tests return 478 P-values. Each P-value is in-
terpreted as follows: a value in the interval [10−3, 1 − 10−3] means the test is
successful; a value outside the interval [10−10, 1 − 10−10] (i.e., too close to 0
or 1) indicates a clear failure; and a value in between is a suspect value. For a
suspect P-value, we repeat the test 5 times. If no failures or suspect P-values
are observed during the retries, we clear the test; otherwise we mark the test
as failed. Both ARC4 and MARC passed all the tests, but ARC4 has 2 suspect
P-values during the first run while MARC has none.

5 Performance Testing

The speed testing results for MARC are given in Table 4. The testing results for
ARC4 and the four software-efficient finalists of eStream are also included in the
table for comparison. The testing is done for a software implementation using C
programming language. The C implementation closely follows the pseudo code
given in section 2. There are no special optimizations done at the source code
level except that register variables are used to minimize memory access whenever
possible. Most modern compilers are smart enough and know more about code
generation than the developer [21]. Therefore we leave optimizations largely to
the compiler.

MARC: Modified ARC4 43

Table 4. Pseudo-Random Number Generation Speed (cycle/byte)

Generator
Sequence size (KB)

1 5 10 100 1000 10000

ARC4 9.53 7.67 7.09 6.98 7.04 7.04

MARC 17.46 6.60 5.21 3.98 3.89 3.86

HC-128 55.21 13.27 7.96 3.58 3.15 3.11

Rabbit 12.20 10.06 9.63 9.51 9.52 9.49

Salsa20 8.94 8.95 8.95 8.89 8.90 8.88

Sosemanuk 48.67 13.48 9.70 5.79 5.61 5.36

Both 32-bit and 64-bit executables compiled using Microsoft Visual C/C++
Optimizing Compiler Version 16 with option /O2 (optimized for maximum
speed) are tested. ARC4 and eStream finalists are not 64-bit algorithms, but
their 64-bit executables seem running slightly faster on our machine (Intel Core
i3 370M, 2.4GHz, 64 KB L1 data cache, 64 KB L1 instruction cache, 512 KB L2
cache) and are chosen for the testing.

For each sequence size, we run each executable 30 times and get the average
value of the top 3 speeds. The reason we exclude low speeds in our calculation
is that the measured cycles may contain contributions from some system pro-
cesses that we cannot stop and the small cycles more likely reflect the actual
performance. MARC outperforms all generators except HC-128.

6 Conclusion

In this paper we have presented a variant of ARC4 called MARC. It enhances
the key scheduling algorithm of ARC4 and resists to known attacks that exploit
the weakness in ARC4’s key scheduling. It also improves the pseudo-random
generation algorithm of ARC4 and has a better performance than ARC4 and
most eStream finalists. It passed all the NIST statistical tests, the new Diehard
battery of tests, and all the 6 TestU01 batteries of tests.

References

1. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd edn. John Wiley & Sons (1995)

2. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

3. RSA Security Response to Weaknesses in Key Scheduling Algorithm of RC4,
http://www.rsa.com/rsalabs/node.asp?id=2009

http://www.rsa.com/rsalabs/node.asp?id=2009

44 J. Zheng and J. Li

4. Wu, H.: The Stream Cipher HC-128,
http://www.ecrypt.eu.org/stream/hcpf.html

5. Boesgaard, M., et al.: The Stream Cipher Rabbit. eSTREAM report 2005/024
(2005), http://www.ecrypt.eu.org/stream/papers.html

6. Bernstein, D.J.: Salsa20/8 and Salsa20/12. eSTREAM report 2006/007 (2006),
http://www.ecrypt.eu.org/stream/papers.html

7. Berbain, C., et al.: Sosemanuk, a fast software-oriented stream cipher. eSTREAM
report 2005/027 (2005), http://www.ecrypt.eu.org/stream/papers.html

8. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

9. Zoltak, B.: VMPC One-Way Function and Stream Cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004)

10. Maitra, S., Paul, G.: Analysis of RC4 and Proposal of Additional Layers for Bet-
ter Security Margin. In: International Conference on Cryptology in India. IIT,
Kharagpur (2008)

11. Khine, L.L.: A New Variant of RC4 Stream Cipher. World Academy of Science,
Engineering and Technology 50 (2009)

12. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher. Posting to sci.crypt
(1995)

13. Golić, J.D.: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997)

14. Klein, A.: Attacks on the RC4 Stream Cipher. Designs, Codes and Cryptogra-
phy 48, 269–286 (2008)

15. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60
Seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867,
pp. 188–202. Springer, Heidelberg (2008)

16. Runkin, A., et al.: Statistical Test Suite for Random and Pseudo Random Number
Generators for Cryptographic Applications. NIST special publication 800-22

17. Marsaglia, G.: DIEHARD Battery of Tests. New version,
http://www.csis.hku.hk/~diehard/

18. L’Ecuyer, P., Simard, R.J.: Testu01: A C Library for Empirical Testing of Random
Number Generators. ACM Trans. Math. Softw. 33(4) (2007)

19. Soong, T.T.: Fundamentals of Probability and Statistics for Engineers, p. 327.
John-Wiley and Sons Ltd. (2004) ISBN: 0470868147

20. Marsaglia, G., Tsang, W.: Some Difficult-to-Pass Tests of Randomness. Journal
Statistical Software 7(3) (2002)

21. Leitner, F.V.: Source Code Optimization, http://www.linux-kongress.org/2009/
slides/compiler survey felix von leitner.pdf

http://www.ecrypt.eu.org/stream/hcpf.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.csis.hku.hk/~diehard/
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

Detection of HTTP-GET Attack with Clustering

and Information Theoretic Measurements

Pawel Chwalinski, Roman Belavkin, and Xiaochun Cheng

School of Engineering and Information Sciences, Middlesex University, London, UK
{p.chwalinski,r.belavkin,x.cheng}@mdx.ac.uk

Abstract. One of the attacks observed against HTTP protocol is
HTTP-GET attack using sequences of requests to limit accessibility of
webservers. This attack has been researched in this report, and a novel,
off-line clustering technique has been developed to tackle it. In general,
the technique uses entropy-based clustering and application of infor-
mation theoretical measurements to distinguish among legitimate and
attacking sequences.

It has been presented that the introduced method allows for formation
of recent patterns of behaviours observed at a webserver, that remain un-
known for the attackers. Subsequently, statistical and information theo-
retical metrics are introduced to measure difference between a sequence
of requests, and legitimate patterns of behaviour.The method recognises
more than 80% of legitimate and attacking sequences, regardless of strate-
gies chosen by attackers.

Keywords: HTTP-GET Attack, Information Theory, Clustering, In-
trusion Detection.

1 Introduction

In theory, web-browsing is based on GET requests generated by sender. For two-
node communication, sender repeats sending GET requests to receiver; who in
return replies with requested data.

Scenario for running the HTTP-GET attack is alike with standard techniques
used by attackers performing Distributed Denial of Service (DDoS) attack. At
first, a number of hosts are infected with a computer virus, and attackers take
control over the number of zombies (i.e. infected machines). Subsequently, at-
tackers generate a large volume of traffic at victim’s website with the application
of infected hosts, which continue to send GET requests.

The problem that is tackled in this paper is not related to virus detection
or prevention; nor is it related to malicious code propagation. On the contrary,
an off-line detection of flooding hosts has been investigated. The difficulty in
detection of the attack stems from legitimate nature of attacking hosts. Rather
than sending ill-formatted network packets, attackers make their zombies comply
with computer network regulations, and mimic genuine activity. In addition, low
rate arrival of zombies and their request frequency, make them look as system-
friendly connections for rate-based Intrusion Detection Systems (IDS).

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 45–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

46 P. Chwalinski, R. Belavkin, and X. Cheng

Indeed, some researchers claim that the intention is the only difference among
connections [26]. In addition, because of stealthy appearance of the zombies,
their activity becomes indistinguishable from legitimate data flow [20]. More-
over, detection mechanisms based on traffic characteristics become invalid [27].
Yet another obstacle with HTTP-GET attack is a ubiquitous problem in intru-
sion detection called flash crowd effect. It is a situation when many legitimate
users visit a website in a short time. Thus, the webserver experiences the influx
of new hosts, but it should be recognised as lawful activity.

Therefore, in general, the detection problem comes down to intention classi-
fication, and in fact this is the main problem of this research. One approach to
differentiating between valid and attacking connections is to focus on the recent
behaviour of actual users. Specifically, given the actual structure of a website,
legitimate connections visit similar pages in groups. As a result, sessions inter-
ested in similar categories, avoid browsing other categories that again seem to
be interesting to different groups of users. Thus, because the attackers do not
know the actual interest in a website’s content, they will fail to reproduce actual
sequences of requests.

Therefore, the main contribution of this work is the development of new clus-
tering algorithm that allows for recent interest discovery among visiting users.
The clustering approach has been inspired by work of Barbará [3], where en-
tropy based clustering is used to cluster categorical data points. In this work,
this approach has been applied to sequences of categorical requests. In addition,
three techniques have been introduced to improve the algorithm speed, and un-
desirable effect of sequences order (see Sect. 2.3).

The organisation of the paper is as follows. Initially, the description of the
algorithm is presented with techniques that improve its performance. Subse-
quently, its is shown how to assign training and attacking sequences to existing
clusters. Next, two strategies of attacking hosts are presented that appear to
closely mimic human agents. However, it is shown that it is difficult to repeat
behaviour encoded with the clustering algorithm. Subsequently, statistical mea-
surements to detect attacking hosts are introduced; and detection performance
of the measurements is provided. The paper concludes with the related work
section, and description of future work.

2 Clustering

In order to discover recent interest in a website’s content, the clustering algorithm
is introduced to group sequences of requests observed at a server.

2.1 Definitions and Notations

Suppose there is a dataset D containing n sequences of requests s1, s2, . . . , sn.
Subsequently, the dataset is randomly divided into two sets: DT for training
(i.e. clustering), and DV for validating; each containing nT and nV sequences
respectively. Set DT is composed of roughly three times as many sequences as

Detection of HTTP-GET Attack 47

DV . Moreover, a sample space Ω is introduced, containing nC numerical labels,
representing actual categories of a webserver, such that Ω={1, 2, . . . , nC}.

In addition, set DA (explained in detail in Sect. 3) is generated consist-
ing of nA=nV attacking sequences. Furthermore, DV

⋃
A=DV

⋃
DA, containing

nV
⋃

A=nV +nA sequences will be used for detection of attacking sequences. For
each i, 1≤i≤n, si is a realization of a random sequence that takes on values in
Ω. Moreover, each sequence si consists of ni ∈ {r∧, . . . , r∨} numbers such that
si=(si,1, si,2, . . . , si,j , . . . , si,ni), r

∧, r∨ denote minimum and maximum number
of requests respectively, and each si,j takes on values in Ω.

In general, for categorical data points entropy-based clustering is used
[3],[16]. For a joint distribution p(x, y), entropy h(x, y) is calculated as [18]:

h(x, y)=−
∑
x

∑
y

p(x, y) log p(x, y) (1)

Generally, high entropy corresponds to flatter distribution, whereas smaller en-
tropy denotes skewer distribution. Thus, for IDS purposes one seeks clusters with
smaller entropy to group elements representing similar behaviour [15]. Random
variables x and y used in joint distribution in (1) correspond to observing a pair
of requests (x, y) ∈ Ω ×Ω.

2.2 Clustering Criteria

In order to group sessions stored in DT into k clusters, k empirical joint distribu-
tions p(x, y) are obtained by analysing sequences from each cluster. Specifically,
if there is set C={C1, C2, . . . , Ck} of k clusters, the goal is to minimise the
average entropy of the clusters, which is computed as follows:

E{H}=
k∑

j=1

(|Cj |
|DT | {hj}

)
(2)

Therefore, having grouped b, 1≤b≤nT sequences fromDT given (2), every time a
sequence si, b<i≤nT is to be added to the composition of clustersC, a cluster Cj ,
1≤j≤k is picked where adding sequence si decreases the scaled (i.e. multiplied by
|Cj|
|DT |) cluster’s entropy the most. Sometimes, creating a new cluster is actually

the best placement for sequence si. Therefore, k is not fixed; it changes while
adding new sequences to C, and depends on the factors described below.

2.3 Minimising the Effect of Sequences Order

It is important to note that the order of sequences can play a crucial role in the
clustering algorithm (i.e. decreasing or increasing its performance). In order to
attenuate the unwanted effect of ordering, the following potentially improving
processes have been introduced: Re-clustering, Merging and Partitioning.

48 P. Chwalinski, R. Belavkin, and X. Cheng

Re-clustering. Re-clustering process is proposed to find a better cluster for a
sequence si, 1≤i≤b, including clusters that were not present during initial addi-
tion of si, after having processed b, 1≤b≤nT sequences from DT . In other words,
suppose that while grouping si there are k clusters, and si has been added to
Cj , 1≤j≤k. It might be the case, that after having grouped other b sequences,
there exists another cluster Cj′ , 1≤j′≤k, j′ �= j such that placing the previously
added si inside Cj′ , minimises (2) further. Therefore, after processing a batch of
b sequences, the algorithm is stopped, and the whole set C is re-clustered.

Merging. Yet another process that can minimise (2) is merging. While con-
nections are being added to cluster composition C, it might be the case that
there are some clusters that pose similar characteristics, however they exist as
two different instances.

One way of comparing two joint distributions pi(x, y), 1≤i≤k, and pj(x, y),
1≤j≤k is the application of Kullback-Leibler (KL) divergence [10] formula:

DKL(pi||pj)=
∑∑
x,y∈Ω

pi(x, y) log
pi(x, y)

pj(x, y)
(3)

However, KL divergence is not symmetric, nor does it satisfy triangle inequal-
ity. Thus, while deciding whether or not two clusters Ci and Cj are similar,
a dual KL divergence is calculated given the corresponding pi(x, y) and pj(x,
y). Then, empirically a threshold ηKL is calculated specifying whether two Ci

and Cj are similar. Thus, Ci and Cj are merged when DKL(pi||pj)≤ηKL, and
DKL(pj ||pi)≤ηKL.

Partitioning. The clustering approach based on minimisation of (2) is com-
putationally expensive [3]. In order to increase the speed of the algorithm, a
partitioning of connections is introduced.

Before the algorithm is applied, dataset DT is partitioned into a set of par-
titions B containing a small number of partitions p. Each Bi ∈ B, 1≤i≤p is a
range of the ordered sequences’ indexes, such that Bi={Bi,1, . . . Bi,di}, where
di, 1≤di≤nT denotes the index of a di-th sequence from DT corresponding to
the last element’s index from Bi. For two adjacent rangesBi, and Bj={Bj,1, . . . ,
Bj,dj}, 1≤j≤p, j �= i, the following relationship exists: Bi,1<Bi,di<Bj,1<Bj,dj ≤
nT . For each partition Bi, the clustering algorithm is applied with re-clustering
and merging to prepare ki clustersC

B
i ={Ci,1, Ci,2, . . . , Ci,ki} for blockBi. When

each partition of indexes has been processed, each set of clusters CB
i contains

best arrangements of ki clusters, given (2), for its own sample of connections
only. Afterwards, the sets of clusters CB

i are merged together. Subsequently,
merging and re-clustering is performed on the newly obtained set of clusters
C={CB

1 ,C
B
2 , . . . ,C

B
p } until there is no improvement of (2). This process saves

time, because merging and re-clustering are not as computationally expensive
as minimising (2) for a large sample of connections, allowing k to dynamically
change.

Detection of HTTP-GET Attack 49

2.4 Algorithm - The Summary

In general, the clustering algorithm can be represented with Algorithm 1. Ini-
tially, connections are divided into p same-length blocks. For each block, the
clustering routine is performed to minimise its own version of (2). Merging and
re-clustering are performed as well after every b connections have been processed
within each Bi, 1≤i≤p block. When clustering of each block Bi has been finished
and corresponding sets of clusters have been prepared, there are many clusters
spread across composition B. Thus, the clusters from each Bi are gathered and
analysed as one set of clusters C. Subsequently, until the value of (2) cannot be
minimised further, set C is merged and re-clustered alternately.

Algorithm 1. Clustering algorithm

1: divide connections into p partitions B
2: for all Bi ∈ B, 1≤i≤p do
3: j = Bi,1

4: for all sj, j ∈ Bi do
5: no of processed connections=0
6: while no of processed connections<b and j ≤ Bi,di do
7: if adding sj to Ci,t, 1≤t≤ki minimises (2) then
8: assign sj to Ci,t

9: else
10: Create new cluster Cnk containing sj

nk=ki + 1, ki=nk

11: end if
12: no of processed connections ++, j ++
13: end while
14: Re-cluster Bi, Merge Bi

15: end for
16: end for
17: integrate all Ci ∈ B to get C
18: repeat
19: Re-cluster C,Merge C
20: until (2) cannot be minimised further

2.5 Results of the Clustering Algorithm

To present the algorithm performance, a dataset has been obtained from a day-
long activity recorded at http://msnbc.com, on the 28th of September, 1999.
This dataset is composed of sequences of numbers, corresponding to categories
that were visited by users. The dataset has been used before in detection of web
interest [7],[19] and clustering of web sessions [11].

For the obtained dataset, sequences containing at least r∧=2 and maximum
r∨=30 requests, and those that have visited at least 2 categories are analysed.
Thus, there are nT=296, 071 training and nV =82, 518 sequences; and there are
nC=17 categories.

http://msnbc.com

50 P. Chwalinski, R. Belavkin, and X. Cheng

Initially, (i.e. when k=1) the entropy of cluster composition C={C1} amounts
to hk=5.9926. Having applied the clustering algorithm with b=1000, ηKL=1.5,
k=1078 clusters have been generated. As a result, the ordered entropy range
is introduced H={h1, h2, . . . , hk}, such that h1 ≡ minH=1.2789 is the entropy
of a cluster having the smallest entropy h1. Similarly, hk ≡ maxH=7.9297 is
the maximum entropy after the application of the algorithm. The average en-

tropy of the composition is Ĥ=
∑k

i=1 hk

k =4.3815, and the scaled average entropy
amounts to E{H}=3.5529. Table 1 contains information about required time

Table 1. Clustering time depending on different values of nT

nT 50,000 100,000 150,000 200,000 250,000 296,071

Time 54 min 1 hr 33 min 3 hr 5 min 5 hr 59 min 7 hr 22 min 8 hr 48 min

to cluster batches of various sizes. The clustering experiments were run on a
stand-alone machine containing Intel Core Duo CPU 3.32 GHz, with Matlab
R2012a installed. Note well, that Matlab could have worsened the result be-
cause of its high-level programming-language dependency. In addition, the time
periods are consistent with [3], and should allow to learn daily activity of web
users overnight.

2.6 Cluster Assignment Criterion

Having clustered the connections form DT , the connections from DV and DA

should be assigned to the set of clusters C. The actual detection technique of
attacking hosts is provided in Sect. 5.

In order to find a best cluster for a sequence si, 1≤i≤nV
⋃

A, a technique
based on maximum likelihood principle is introduced. This method is a common
practice, while looking for a best cluster for new connection si [16]. In simple
terms, the best model (i.e. cluster) is the one, under which an observation attains
the highest likelihood. Probability of observing sequence si inside cluster Cj ,
1≤j≤k with corresponding joint distribution pj(x, y) can be thought of in the
following way (having assumed that two consecutive requests si,l, si,l+1, 1≤l<ni

are independent):

pj(si,1, si,2, . . . , si,ni)=pj(si,1)

ni∏
l=2

pj(si,l|si,l−1) (4)

Subsequently, the probability of generating sequence si is calculated for each
cluster, and then Cj is chosen for which (5) attains the highest value:

Cj= argmax
C1,C2,...,Ck

logL(si;C)=P (si|C) (5)

where L(si;C) is the likelihood of obtaining connection si inside Cj , and P (si|C)
is likelihood of the sequence given a collection of all joint probability distributions
generated by each cluster from C.

Detection of HTTP-GET Attack 51

3 Strategies of Attacking Hosts

For many years, low likelihood of any activity has been considered anomalous
[5]. As a result, DA could be composed of sequences whose requests are uni-
formly distributed. However, it is crucial to define realistically the attacking
hosts’ strategies. Therefore, we have decided to define attacking strategies that
remind human behaviour as follows.

Suppose that having requested a link from category c ∈ Ω, a programmed
zombie faces a decision-making problem whether with probability pR to remain
inside the same category (i.e. request a link from c-th category again), or with
probability pM=1 − pR move to any of the remaining categories (i.e. request
a link from category cm ∈ Ω\{c}). Given this decision-making problem, two
attacking strategies are considered: frequently-changing and rarely-changing.

3.1 Frequently-Changing Hosts

Frequently-changing hosts are the ones that tend to change categories more fre-
quently comparing to the rarely-changing zombies. Specifically, for this type of
attacking hosts pM=pR=0.5. In other words, while making requests zombies will
stay inside or move to another category with equal probability pM=pR=0.5. Ob-
serve that a frequently-changing host changes categories rarely than a uniformly
programmed host mentioned above, and thus its behaviour reminds human ac-
tivity more.

A detection of these hosts should focus on rarely observed transitions. How-
ever, there are high-entropy clusters inside which, relatively more unique transi-
tions are observed comparing to low-entropy clusters. For this reason attackers
find it easier to fit in inside high-entropy clusters. However, it remains unknown
for attackers how many times each category is requested on average inside these
clusters. Therefore, Mahalanobis distance has been chosen to detect sessions de-
viating from the pattern of the average categorical interest. In addition, mutual
information is applied to measure likelihood of transition between sessions. Both
techniques are described in the following section.

3.2 Rarely-Changing Hosts

Suppose that one wants to generate sequences DA similar to DT . Because in-
formation encoded in C remains for attackers unknown, suppose they have
found out how many different categories are visited on average inside DT .
As a result, while analysing DT , a vector eT has been calculated contain-
ing the expected number of various categories, given the number of requests,
such that eT=[E{nc

r∧},E{nc
r∧+1

}, . . . ,E{nc
r∧+t

}, . . . ,E{nc
r∨}], where E{nc

r∧+t
}

denotes the expected number of visited categories after
∧
+t requests. Subse-

quently, pR=0.92, pM=0.08 have been estimated to create randomly generated
dataset DA, whose corresponding eA is similar to eT. Therefore, these zombies
will remain for many more requests in one category than the above-mentioned
counterparts.

52 P. Chwalinski, R. Belavkin, and X. Cheng

Clearly, the values of pR and pM suggest that human visitors prefer to request
only few categories per visit; and it is relatively easy to come up with this idea
for attackers. However, because attackers aim is to flood webservers and make
their zombies invisible for IDS, they program their zombies to remain inside a
category for longer. Note well that Mahalanobis distance will not be as effec-
tive as in the case of the frequently-changing hosts. It stems from the fact that
rarely-changing hosts generate sequences more similar to patters encoded inside
C. As a result, one could be interested in the likelihood of the longest same-
request segment introduced in Sect. 5.3. This will be supported with mutual
information comparisons for clusters where the increased number of attacking
connections is suspected.

The introduced statistical measurements are described in Sect. 5. What fol-
lows, is a presentation of session distribution across clusters.

4 Detection of Attacking Attempt

It is assumed that, if there is a set of new links or files uploaded on-line that
propel, say, “behaviour” Ci, 1≤i≤k, then one could expect a surge of connections
for Ci within a limited time period. Similar assumptions and observations have
been reported in scientific literature [8],[27]. The same regularity is observed
while comparing DV (circles) against DT (crosses) (see Fig. 1a or 2a). Specif-
ically, most sequences from DT and DV fall inside low-entropy clusters. When

1 2 3 4 5 6 7 8
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Validating Sequences DV

(a) Percentage of sequences from datasets
DT and DV

1 2 3 4 5 6 7 8
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Combined Sequences DV ∪A

(b) Percentage of sequences from datasets
DT and DV

⋃
A

Fig. 1. Comparison of sequence distribution with (1b), and without (1a) attacking se-
quences. Evidently, the distribution changes with the arrival of the frequently-changing
sequences.

the set DV
⋃

A consists of sequences generated by the frequently-changing hosts,
one can learn that the distribution of DV

⋃
A has switched to the right hand side

of the chart (see Fig. 1b). It stems from the fact that the frequently-changing
hosts will populate clusters with higher entropies (i.e. clusters where relatively
more categories are visited).

Detection of HTTP-GET Attack 53

1 2 3 4 5 6 7 8
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Validating Sequences DV

(a) Percentage of sequences from sets DT

and DV

1 2 3 4 5 6 7 8
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Combined Sequences DV ∪A

(b) Percentage of sequences from sets DT

and DV
⋃

A

Fig. 2. Comparison of sequence distribution with (2b), and without (2a) attacking
sequences. The distribution of the set DV

⋃
A with rarely-changing hosts shifts towards

the expected distribution (Fig. 2a), but still differs.

Similarly, when the attacking sequences inside set DV
⋃

A follow pattern of
the rarely-changing hosts defined in Sect. 3.2, the distribution has shifted from
the right-hand side of the chart, but still deviates from the original distribution
presented in Fig. 2a. The comparison of sequence distributions can give a hint
which type of attack has been observed. Thus, by analysing the distributions,
one can evaluate whether legitimate (Fig. 1a, Fig. 2a), the frequently-changing
(Fig. 1b) or the rarely-changing (Fig. 2b) connections have been observed at the
system.

The introduced solution has been compared against K-means algorithm. The
cosine similarity distance has been used as it captures best human interest in
websites [23]. Recall that the pairs of requests (x, y) ∈ Ω×Ω are used in entropy
minimisation, and in total there are (nC)2 possible pairs. Therefore, connections
from DT and DV

⋃
A are transformed into (nC)2 long vectors, where each com-

ponent contains a counter of how many times each pair has been requested, and
K = (nC)2.

Subsequently, an entropy range H is calculated for K generated clusters, and
clusters are sorted in ascending order of entropy values. Initially, the distribu-
tions of connections from DT , and DV have been compared against each other.
Again, sequences from both sets tend to populate low-entropy clusters (see Fig.
3a). However, very similar distributions of sequences are observed when DV

⋃
A

is composed of validating and frequently-changing (Fig. 3b) or validating and
rarely-changing (Fig. 3c) sequences. This shows, that K-means clustering does
not provide as much insight into attackers strategy as the entropy-based cluster-
ing. In addition, while comparing H ranges (for the entropy-based and K-means
algorithms), one can note that entropy-based clustering produces clusters with
lower entropy, thus provides better arrangement of data. Moreover, k has been
determined by the corresponding algorithm’s calculations and is not manually
set as K.

54 P. Chwalinski, R. Belavkin, and X. Cheng

2 3 4 5 6 7 8
0%

1%

2%

3%

4%

5%

6%

7%

8%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Validating Sequences DV

(a) Training DT and validating DV se-
quences

2 3 4 5 6 7 8
0%

1%

2%

3%

4%

5%

6%

7%

8%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Combined Sequences DV ∪A

(b) Training DT with validating and
frequently-changing DV

⋃
A sequences

2 3 4 5 6 7 8
0%

1%

2%

3%

4%

5%

6%

7%

8%

Entropy Range H

P
er
ce
n
ta
g
e
o
f
S
eq
u
en

ce
s
in

S
a
m
p
le

Training Sequences DT

Combined Sequences DV ∪A

(c) Training DT with validating and rarely-changing DV
⋃

A sequences

Fig. 3. Distribution of sessions with K-means clustering. Despite using different sets
(i.e. validating sequences (3a), validating and frequently-changing sequences (3b) or
validating and rarely-changing sequences (3c)) the distributions are similar and do not
give any insights into the nature of processing batch .

5 Detection of Attacking Hosts

It might be the case that the attacking hosts guess the actual pattern of be-
haviour. However, because internet attackers cannot have access to the profile
generated by legitimate users, the attackers cannot know how many times and
in which order the correct categories have been requested. Therefore, it is crucial
to develop a measure to check how “anomalous” one sequence behaves.

5.1 Mahalanobis Distance

To measure expected categorical interest among connections within a cluster,
one can use Mahalanobis distance. For this purpose, for each cluster Ci, 1≤i≤k
a corresponding covariance matrix Σi is calculated, together with a vector of
average categorical requests μi=[μi,1, μi,2, . . . , μi,nC]. Subsequently, each training
connection sj, 1≤j≤|Ci| from Ci, is transformed into a vector form vj=[vj,1, vj,2,
. . . , vj,l, . . . , vj,nC], where each vj,l denotes how many times l-th category has
been requested during session sj. As a result, training Mahalanobis distance can
be calculated in the following way:

dM (vj, Ci)=

√
(vj − μi)TΣ

−1
i (vj − μi) (6)

Detection of HTTP-GET Attack 55

Subsequently, vectors of Mahalanobis distances mM
i =[mM

i,
∧,mM

i,
∧

+1, . . . ,m
M
i,t,

. . . ,mM
i,r∨] are obtained, where each t-th component contains the maximum

Mahalanobis value observed inside Ci for t-request-long sequences. For any t

component for which mM
i,t=0, maximum value of Mahalanobis distance η

M∨

i will

be stored, such that η
M∨

i ≡ max
v1,v2,...,v|Ci|

dM (·, Ci). The reason why η
M∨

i is intro-

duced, stems from the fact that sometimes there is a cluster Cl, 1≤l≤k, where
sequences containing t requests are not observed. To observe sequences con-
taining t requests inside Cl is assumed to be anomalous. However, because it
is preferred to let “well-fitted” connections through (instead of setting mM

l,t=0,
and effectively blocking deviating t-request-long sequences), therefore the maxi-
mum values are set (keeping in mind the possibility of allowing more legitimate
connections in).

In principle, if a sequence sj, 1≤j≤nV
⋃

A has been assigned to cluster Ci

its Mahalanobis distance dM (sj, Ci) will be computed. As a result, if dM (sj,
Ci)≤mM

i [nj], then sj will be marked as legitimate connections. Otherwise, sj
will be marked as anomalous.

5.2 Mutual Information and Statistical Independence as Anomalous
Measurement

Mutual information between two discrete random variables X,Y is defined in
the following way:

I(X ;Y)=
∑∑
y∈Y,x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)

Mutual information provides a measure of independence between two random
variables. It is equal to zero (i.e. I(X ;Y)=0) for independent variables, and
increases when knowing realisation of one variable reduces uncertainty of the
other. As a result, a measure is introduced based on statistical independence.

Suppose that for each cluster Ci, 1≤i≤k, nC(nC−1)
2 − nc joint probability dis-

tributions p(x, y) are obtained, between two different categories x, y ∈ Ω only
(i.e. where x �= y). In simpler words, if one considers set Ω ×Ω for each cluster

Ci, then
nC(nC−1)

2 − nc joint distributions are obtained between two different
categories (i.e. distributions from either strictly upper or lower triangular part
from Ω ×Ω matrix are considered).

Subsequently, for each cluster Ci a two-dimensional vector mi is introduced,

where each j-th column contains m
∧

i,j minimum and maximum m
∨

i,j value of
mutual information while requesting j-th category.

As a result, while analysing sequences from DT , mutual information is cal-
culated between pairs of two consecutive and different categorical requests. In
other words, for sequence sl=(sl,1, sl,2, . . . , sl,t, . . . , sl,nl

), 1≤l≤nT if the follow-
ing holds sl,t−1 �= sl,t �= sl,t+1 �= sl,t−1, then two dependencies will be calculated:
I(sl,t−1; sl,t), and I(sl,t; sl,t+1). The values of I(sl,t−1; sl,t), and I(sl,t; sl,t+1) are
stored in vector ml containing |ml| elements.

56 P. Chwalinski, R. Belavkin, and X. Cheng

Because it is assumed that human users will follow similar patterns of behaviour
in DV as in DT , then it should not be the case that two different categorical
requests from sequence sl, say sl,t−1, sl,t, produce value of mutual information

greater or smaller than the correspondingm
∧

i,t,m
∨

i,t. Otherwise, it is assumed that
transition sl,t−1, sl,t has never been observed in Ci, and is anomalous.

5.3 Likelihood of the Same-Category Segment

Suppose there is a sequence si=(si,1, si,2, . . . , si,l, . . . , si,ni), 1≤i≤nT assigned to
a cluster Cj , 1≤j≤k. For an arbitrary t �= 0, r∧≤l − t<l<l + t≤ni, a segment

s
∨

i,t = {si,l−t, si,l−t+1, . . . , si,l+t} is introduced, denoting the longest substring
observed inside si after t-th request, and composed of the same elements si,l−t,
such that si,l−t = si,l−t+1 = . . . = si,l+t. As a result, one could be interested

in the likelihood of observing segment s
∨

i,t among other connections from Cj .
Therefore, a joint distribution Pj(s∨, nr) has been introduced, with a sample
space Ωs∨,nr={(s∨, nr) ∈ A}, A={(r∧, r∧), . . . , (r∨, r∨)}. Pj(s∨, n

r) describes
a distribution of an arbitrary segment s∨ composed of requests coming from one
category given a number of requests nr.

Therefore, for each sequence si belonging to Cj , conditional probability

Pj(s
∨

i |ni) of the longest segments of the same categorical requests, given the
number of requests ni is calculated in the following way:

Pi(s
∨

i,·|ni)=

nj∏
l=r∧

Pi(s
∨

i,l|l) (7)

Note well that while t varies from r∧ to ni, there will be a number of different

same-category segments s
∨

i,t inside si.

Subsequently, for each cluster Cj , set Lj={�1(s∨, n1), �2(s∨, n
2), . . . �t(s∨,

nt), . . . , �|Ci|(s
∨, n|Ci|)} is introduced, where �t(s∨, nt) denotes loglikelihoods of

the longest same-element segments, observed in sequence st.
In this report it is assumed that if loglikelihood �j(s∨, nj) is smaller than

1
2 minLi, then sj will be marked illegitimate (12 minLj is changed to minLj for
softer detection approaches, see Sect. 5.4).

5.4 Soft and Hard Detection Ranges

As it is shown in the following section, regardless of a strategy the attacking
hosts are programmed with, attackers do not know, and cannot predict recent
patterns of behaviour ; nor can they guess the number of connections that ex-
pressed behaviour encoded in different clusters from C. In addition, connection
distribution across clusters is similar for DV and DT (see Sect. 4). As a result,
the attackers fail to repeat transitions encoded in DT , and most of their zom-
bies are assigned to higher entropy clusters. Therefore, classification of sequences
from DV

⋃
A should vary for clusters with low and high entropy, and be divided

Detection of HTTP-GET Attack 57

into two ranges: “soft” and “hard”. As a result, an entropy range HH={h1, . . . ,
ht}, 1≤t<k is introduced for which “hard” detection technique range is applied
(released to “soft” for fewer populated clusters). For the same reason, there is
a corresponding range HS={ht+1, . . . , hk} for which “soft” detection method
applies. Clearly H=HH

⋃
HS, and |H| = |C| = k.

In addition, while analysing connections fromDV
⋃

A, special attention should
be paid to clusters for which an increased number of connections is observed

comparing to DT . Therefore, initially the percentages fT
i , f

V
⋃

A
i , 1≤i≤k of se-

quences from batches DT and DV
⋃

A assigned to cluster Ci are calculated. If

fT
i <f

V
⋃

A
i , then it is assumed that a big fraction of sequences from DV

⋃
A as-

signed to Ci are attacking. Otherwise, if there is a cluster Cj , 1≤j≤k for which

fT
j ≥ f

V
⋃

A
j then it is assumed that most of the sequences from DV

⋃
A are

legitimate.
Therefore, for i, 1≤i≤k if entropy of a cluster Ci has been selected for HH and

fT
i <f

V
⋃

A
i , then “hard” detection techniques will be used against connections

from DV
⋃

A assigned to Ci. In addition, suppose Cj was assigned to HH. How-

ever, because fT
j ≥ f

V
⋃

A
j , “soft” detection measures would be used instead.

It stems from the fact that distribution of connections inside DV and DT are
similar. As a result, even though j ∈ HH it is still reasonable to assume that
most of the connections from DV

⋃
A inside Cj are legitimate.

6 Application of Statistical Measurements

Given the entropy range H and its division into “hard” and “soft” ranges, the
performance of the detection techniques is introduced.

For the first batch (i.e. the dataset with frequently-changing and validating
connections), mutual information will be used to detect anomalous sequences
for “soft” clusters. On the contrary, for “hard” clusters, mutual information
will be supported with Mahalanobis distance. Similarly, for the other batch (i.e.
the dataset with rarely-changing and validating connections), for “soft” clus-
ters minLj is used for comparison, which is supported with mutual information
and changes to 1

2 minLj for “hard” clusters. The performance of the detection
method is presented in Fig. 4. Initially, ht has been set to the smallest entropy
value, and entire the cluster set C has been checked with “soft” detection tech-
nique. For the dataset with the frequently-changing hosts, 88% of sequences from
DV , and 75% of sequences from DA have been correctly classified (a circle in Fig.
4a); this corresponds to 98% of sequences from DV , and only 20% of sequences
from DA for the other dataset (a circle in Fig. 4b). Subsequently, ht has been
iteratively moved to hk, when the whole set of clusters has been checked against
“hard” technique. In this setting, 84% of sequences in DV , and 81% of sequences
in DA from the dataset with the frequently-changing hosts have been recognised
(a diamond in Fig. 4a); this corresponds to recognition of 78% of sequences in
DV , and 85% of sequences in DA for the other dataset (a diamond in Fig. 4b).
Note well that Fig. 4 shows only the performance of the algorithm for possible
ht ∈ H.

58 P. Chwalinski, R. Belavkin, and X. Cheng

0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165
0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

False Positive

T
ru
e
P
o
si
ti
v
e

Performance Curve
FP: 0.1205, TP: 0.7531
FP: 0.1647, TP: 0.8122
FP: 0.1597, TP: 0.8093

(a) Performance curve for DV
⋃

A com-
posed of validating and frequently-
changing hosts.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False Positive

T
ru
e
P
o
si
ti
v
e

Performance Curve
FP: 0.0271, TP: 0.2018
FP: 0.2228, TP: 0.8489
FP: 0.2029, TP: 0.8280

(b) Performance curve for DV
⋃

A com-
posed of validating and rarely-changing
hosts.

Fig. 4. Performance of the detection measurements against two attacking strategies:
frequently-changing (4a), and rarely-changing(4b)

The best detection setting against frequently-changing zombies recognises 81%
of attacking and 84% legitimate sequences , for ht=h292=3.8630 (a square in Fig.
4a). The best performance against the rarely-changing hosts has been observed
for ht=h104=2.8563, that is when 80% of legitimate and 83% of attacking zom-
bies have been recognised (a square in Fig. 4b). Threshold ht is larger for the
frequently-changing zombies, because of the increased number of these zom-
bies being assigned to higher-entropy clusters. The opposite is observed for the
rarely-changing zombies, as their sequences have been generated to be similar
to sequences from DV . The time needed for processing of nV

⋃
A = 2nV =2 · 82,

518=165, 036 sequences takes roughly 10 minutes, and is similar to [17].

7 Related Work

Xie developed IDS based on Hidden-Markov Models [26],[27]. Their model,
rather than considering categories, uses objects stored at a website (i.e. images,
scripts etc.), and frequency of requested objects. The rationale behind using
Hidden-Markov Models for web stems from its successful application for wire-
less devices [1], and turns us to be successful for caching, pre-fetching and next
page prediction [12]. Therefore, for web application it is reasonable to consider
sequences of requests as product of conditional probabilities as in Sect. 2.6.

Stevanovic has introduced clustering of web sessions based on Self-Organising
Maps [21], [22]. In addition, Adaptive Reasoning Theory neural network has been
chosen to provide difference in variances among: human visitors, well-behaved
web crawlers, malicious crawlers and unknown visitors. The authors have man-
aged to recognise 95% human-generated sequences. In addition, K-means clus-
tering used successfully for sequence-independent analysis [13].

In [24], the authors have developed a system based on Mahalanobis distance
for payload analysis. Moreover, known variations of HTTP-GET attack have
been tested against the trained system with linear discriminant analysis that
assigns sequences to the legitimate set or any of the known attacks.

Detection of HTTP-GET Attack 59

Mao et. al. [17] have developed a sequence-based detection method for dif-
ferent attacks. Their methods is based on graph-theoretical representation of
system events, and takes on a sample of known instances of attacks as well.
The accuracy performance of the system ranges between 80% to 90%. Also, the
authors have showed that their system can process 300,000 sequences in 20 min-
utes. Moreover, there are many sound scientific publications developing detection
methods against known attacks instances [2],[6],[9],[25].

8 Result Discussion and Future Work

In this paper a detectionmethod has been presented against two types of attacking
hosts: frequently-changing and rarely-changing. It has been shown that the intro-
duced clustering algorithm allows for detection of either of the attacking attempts.

We have shown a novel detection technique against HTTP-GET attacks, based
on various statistical distances and using entropy-minimisation for clustering.
The main advantage of our work should be attributed to considerably good re-
sults, given that the frequency of arriving request is not considered, and only
categorical interest is taken into consideration. In addition, no a priori informa-
tion is assumed for attacking behaviour. Moreover, the method works similarly
(i.e. attains similar detection rate) for two scenarios of attacks. Also, categories
could be files or even hyper-links, that is why the clustering method is not lim-
ited to web categories only.

The only techniques for improving performance of classification are either
to extend feature space or improve dataset decomposition, or both [14]. We
still refrain from temporal analysis (time-independent assumptions make pass-
ing detection test harder for attackers), and believe that better data clustering
approach can be obtained with cross-entropy approach [4]. Using cross-entropy
will allow to replace iterative clustering method defined in Sect. 2, with adap-
tive optimisation settings. In addition, because there are many sequences inside
DT and DV that follow almost uniform distribution of requests (indicating that
human agents can follow uniform pattern of requests, as it has been indicated
in [21]), it is really difficult to find a right measurement for clusters spread
across different entropy range. Therefore, finding a better, attack-independent
measurements is scheduled for our future work as well.

Acknowledgement. The authors would like to thank the anonymous referees
for their helpful comments and suggestions to improve this work.

References

1. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive web navigation for wireless
devices. In: Proceedings of the 17th International Joint Conference on Artificial
Intelligence, vol. 2, pp. 879–884. Morgan Kaufmann Publishers Inc., San Francisco
(2001)

60 P. Chwalinski, R. Belavkin, and X. Cheng

2. Ariu, D., Tronci, R., Giacinto, G.: Hmmpayl: An intrusion detection system based
on hidden markov models. Computers and Security 30(4), 221–241 (2011)

3. Barbará, D., Li, Y., Couto, J.: Coolcat: an entropy-based algorithm for categorical
clustering. In: Proceedings of the Eleventh International Conference on Information
and knowledge Management, CIKM 2002, pp. 582–589. ACM, New York (2002)

4. de Boer, P.-T., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the
cross-entropy method. Annals of Operations Research 134, 19–67 (2005),
doi:10.1007/s10479-005-5724-z

5. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–
232 (1987)

6. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning dfa representations of
http for protecting web applications. Computer Networks 51(5), 1239–1255 (2007);
From Intrusion Detection to Self-Protection

7. Jalali, M., Mustapha, N., Nasir Sulaiman, M., Mamat, A.: Webpum: A web-based
recommendation system to predict user future movements. Expert Systems with
Applications 37(9), 6201–6212 (2010)

8. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: characterization and implications for CDNs and web sites. In: Proceedings
of the 11th International Conference on World Wide Web, WWW 2002, pp. 293–
304. ACM, New York (2002)

9. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection
of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)

10. Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Math-
ematical Statistics 22(1), 79–86 (1951)

11. Kumar, P., Radha Krishna, P., Bapi, R.S., Kumar De, S.: Rough clustering of
sequential data. Data and Knowledge Engineering 63(2), 183–199 (2007)

12. Lee, C.-H., Lo, Y.L., Fu, Y.-H.: A novel prediction model based on hierarchi-
cal characteristic of web site. Expert Systems with Applications 38(4), 3422–3430
(2011)

13. Lee, S., Kim, G., Kim, S.: Sequence-order-independent network profiling for detect-
ing application layer ddos attacks. EURASIP Journal on Wireless Communications
and Networking 2011(1), 50 (2011)

14. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Trans. Inf. Syst. Secur. 3, 227–261 (2000)

15. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In:
IEEE Symposium on Security and Privacy, pp. 130–143 (2001)

16. Li, T., Ma, S., Ogihara, M.: Entropy-based criterion in categorical clustering. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, pp. 68–75. ACM, New York (2004)

17. Mao, C.-H., Pao, H.-K., Faloutsos, C., Lee, H.-M.: Sbad: Sequence based attack
detection via sequence comparison. In: PSDML, pp. 78–91 (2010)

18. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948)

19. Speiser, M., Antonini, G., Labbi, A., Sutanto, J.: On nested palindromes in click-
stream data. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2012, pp. 1460–1468. ACM, New
York (2012)

20. Srivatsa, M., Iyengar, A., Yin, J., Liu, L.: Mitigating application-level denial of
service attacks on Web servers: A client-transparent approach. ACM Trans. Web 2,
15:1–15:49 (2008)

Detection of HTTP-GET Attack 61

21. Stevanovic, D., Vlajic, N., An, A.: Unsupervised Clustering of Web Sessions to
Detect Malicious and Non-malicious Website Users. Procedia CS 5, 123–131 (2011)

22. Stevanovic, D., Vlajic, N., An, A.: Detection of malicious and non-malicious web-
site visitors using unsupervised neural network learning. Applied Soft Computing
(2012)

23. Strehl, A., Ghosh, J., Mooney, R.: Impact of Similarity Measures on Web-page
Clustering. In: Proceedings of the 17th National Conference on Artificial Intelli-
gence: Workshop of Artificial Intelligence for Web Search (AAAI 2000), Austin,
Texas, USA, July 30-31, pp. 58–64. AAAI (July 2000)

24. Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P., Jia, W., Yeh, W.-C.: A Two-
Tier System for Web Attack Detection Using Linear Discriminant Method. In:
Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 459–471.
Springer, Heidelberg (2010)

25. Ulmer, C., Gokhale, M., Gallagher, B., Top, P., Eliassi-Rad, T.: Massively parallel
acceleration of a document-similarity classifier to detect web attacks. Journal of
Parallel and Distributed Computing 71(2), 225–235 (2011); Data Intensive Com-
puting

26. Xie, Y., Yu, S.-Z.: A Novel Model for Detecting Application Layer DDoS Attacks.
In: Proceedings of the First International Multi-Symposiums on Computer and
Computational Sciences (IMSCCS 2006), vol. 2, pp. 56–63. IEEE Computer Soci-
ety, Washington, DC (2006)

27. Xie, Y., Yu, S.-Z.: Monitoring the application-layer DDoS attacks for popular web-
sites. IEEE/ACM Trans. Netw. 17, 15–25 (2009)

A Generic Algebraic Model for the Analysis

of Cryptographic-Key Assignment Schemes

Khair Eddin Sabri1 and Ridha Khedri2

1 Department of Computer Science
King Abdulla II School for Information Technology

The University of Jordan
k.sabri@ju.edu.jo

2 Department of Computing and Software
Faculty of Engineering
McMaster University
khedri@mcmaster.ca

Abstract. One of the means to implement information flow policies is
by using a cryptographic approach commonly referred to as key assign-
ment schemes. In this approach, information is made publicly available
to users but in an encrypted form. Then, keys are assigned to users such
that each key reveals a specified part of the information. Usually the
distribution of keys follows a predefined scheme that specifies the ability
of users to reveal information.

In this paper, we present an algebraic approach based on idempotent
commutative semirings to define, specify, and analyse key assignment
schemes. Then, we illustrate its usage on two key assignment schemes
selected from the literature. Also, we propose amendments to the stud-
ied schemes to extend their scopes. The proposed generic algebraic ap-
proach enables the verification of security properties at an abstract level
in systems that use key assignment schemes. The verification takes into
consideration the algebraic properties of schemes, and the considered re-
lationships among the assigned keys. Then, it enables the verification
of the secrecy properties of the system through algebraic calculations.
All the calculations can be automated using a theorem prover such as
Prover9.

1 Introduction

The confidentiality of information is an important aspect considered in many
organizations. Policies specifying users access to information ensure the confi-
dentiality of information. Then, they are embodied in access control mechanisms
enabling organizations to restrict information access to legitimate users only.

Another way to achieve the confidentiality of information is through the use of
cryptography where objects (e.g., files) are encrypted. Encryption and decryp-
tion keys are used in a such a way that each key decrypts parts of the objects and
reveals the part of the information that is intended for the key owner. For that
reason, keys are distributed to users to allow each one to decrypt the objects

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 62–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Generic Algebraic Model for the Analysis 63

and reveal the information she is allowed to reveal. In [14,15], we classify key
distribution schemes into key-based schemes or object-based schemes. A key-
based scheme focuses on the relationship between keys and their use to decrypt
objects, while an object-based scheme focuses on objects and the required con-
ditions to decrypt each one of them. In this paper, we consider only key-based
schemes.

In a key-based scheme, objects are organized in a hierarchical structure. They
are classified into security levels denoted by c such that, for some i and j natural
numbers, ci ≤ cj indicates that the security level cj is more sensitive than the
security level ci. Therefore, a user having an access to an information classified as
cj can also have an access to an information classified as ci. Usually the relation
≤ is a partial order relation (i.e., ≤ is transitive, reflexive, and antisymmetric).
This information accessibility that is based on the security levels is commonly
referred to as the simple security property or hierarchical access control .

Users should hold the appropriate keys to get the authorized information at
their levels and the levels below them in the hierarchy. There can be different
approaches to assign keys to users. One approach requires assigning each user
several keys such that each key reveals the information of one security class.
This approach is not efficient and adds overhead to the user. Another approach
requires having several copies of the information encrypted with different keys.
This approach enhances the chances of a crypto-analysis to reveal the confidential
information. A better approach is to let each user handle one key and to have
only one copy of an encrypted information.

1.1 Motivation and Contribution

Several techniques exist in the literature to handle key assignment [1,2,9,16].
However, several of them have been found to be flawed or very weak in preserv-
ing the secrecy of confidential information as given in [6]. Crampton et al. [6]
advocate the adoption of a generic model for key assignment schemes that would
be used for evaluating proposals for key assignment schemes. We think that for-
mal analysis of proposed key assignment schemes is another means for asserting
their dependability. A mathematical framework for the verification of a proposed
scheme enables us to mathematically assert, within the boundary of the hypothe-
sis of our mathematical model, its correctness in preserving the confidentiality of
the information. Having an abstract view of these schemes gives a better under-
standing of key assignment. Also, it allows identifying the relationships among
them and helps in proposing more general schemes.

In this paper, we propose a generic model for the specification and analysis of
cryptographic-key assignment schemes. The model is articulated in Definition 2.
Based on this model, we analyse two representative schemes: the Akl-Taylor key
assignment [1] scheme, and a scheme based on the Chinese remainder theorem [5].
We also show how they can be generalised and extended to assign more than
one key to a security class. We also illustrate the automation of the analysis of
systems that use key assignment schemes using the Prover9 theorem prover.

64 K.E. Sabri and R. Khedri

1.2 Organisation

In Section 2, we give the required mathematical background. In Section 3, we
define a key assignment scheme. Then, we present its usage in the specification
and analysis of key assignment schemes. In Section 4, we report on the schemes
for cryptographic-key assignment found in the literature. Finally, we present a
brief discussion and conclude in Section 5.

2 Mathematical Background

The algebraic key-structure presented in this section is used in [14,15] to
capture the properties of cryptographic keys. The idea is while cryptographers
examine keys from the perspective of a cryptographic system, the algebraic key-
structure captures the algebraic properties that cryptographic keys in general
satisfy. Within a specific cryptographic system, the keys might have additional
properties than the common properties satisfied by keys in general. We will elab-
orate on this issue in Section 3. A key is thought of as a piece of information
that determines the output of a cryptographic algorithm or cipher. In [14,15],
other structures are proposed to model ciphers, combinations of keys and ci-
phers, and messages. The operators of the algebraic structure are used to rep-
resent functions on keys, ciphers, and messages. For example, a binary operator
of the key-structure is used to represent combining keys. An inverse operator
of the cipher structure is used to specify encryption or decryption depending on
the context. In this section, we present the mathematical background needed to
specify keys.

Let + and · be two binary operators. The operator + is associative iff ∀(x, y, z |
x, y, z ∈ S : x + (y + z) = (x + y) + z). It is commutative iff ∀(x, y | x, y ∈
S : x + y = y + x). The constant 0 is said to be the left and right identity
of + iff ∀(x | x ∈ S : 0 + x = x + 0 = x). The operator + is idempotent
iff ∀(x | x ∈ S : x + x = x). We say that · distributes over + on both
the left and right iff ∀(x, y, z | x, y, z ∈ S : x · (y + z) = x · y + x · z) and
∀(x, y, z | x, y, z ∈ S : (x + y) · z = x · z + y · z).

A semigroup is an algebraic structure A =
(
S, ·), where S is a set and · is an

associative binary operator. If the operator · is also commutative, we call A a
commutative (Abelian) semigroup. Furthermore, if the operator · is idempotent,
we call A an idempotent commutative semigroup. Let S �= ∅ be a set and + and
· binary operations on S. Then

(
S,+, ·) is called a semiring if

(
S,+

)
is a commu-

tative semigroup,
(
S, ·) is a semigroup, and · distributes over + on both the left

and right. If the semigroup
(
S, ·) has a neutral element 1

s
, we call 1

s
the identity

of the semiring
(
S,+, ·). If the semigroup

(
S,+

)
has a neutral element 0

s
, we

call it the zero of the semiring
(
S,+, ·). We call 0

s
the multiplicatively absorbing

if 0s is absorbing in
(
S, ·) i.e., ∀(x | x ∈ S : 0s · x = x · 0s = 0s). If

(
S,+

)
is an idempotent semigroup, we call

(
S,+, ·) an additively idempotent semiring.

If
(
S, ·) is a commutative semigroup, we call

(
S,+, ·) a commutative semiring.

If
(
S,+, ·) is an additively idempotent semiring, then there exists an ordering

A Generic Algebraic Model for the Analysis 65

relation such that for a, b ∈ S we have a � b ⇐⇒ a+ b = b. The relation � is
referred to as the natural ordering relation associated to the semiring.

Let C be a set. A partial order (or order) on C is a binary relation ≺ on C
such that, for all x, y, z ∈ C, (1) x ≺ x, (2) x ≺ y ∧ y ≺ x =⇒ x = y, and (3)
x ≺ y ∧ y ≺ z =⇒ x ≺ z.

A set equipped with a partial order is called an ordered set, partially ordered
set, or poset. C is said to be a chain if, for all x, y ∈ C, either x ≺ y or y ≺ x.
When (C,≺) satisfies only Properties (1) and (3), but not (2), we say that it is
a pre-ordered set (or quasi-ordered set). For a pre-ordered set (P,≺), its dual

(P,<) is defined as for all x, y, we have x < y
def⇐⇒ y ≺ x.

Definition 1 (Key-Structure). Let K def
= (K,+

k
, ∗

k
, 0

k
) be an algebraic struc-

ture that is an additively idempotent commutative semiring with a multiplica-
tively absorbing zero 0

k
. We call K a key-structure.

The structure (K,+
k
, ∗

k
, 0

k
) can be seen as the structure of keys where K is a set

of keys. The operators +
k
and ∗

k
can be seen as combining keys. The difference

between them is that the +
k
operator combines keys in such a way that only

one key is used to encrypt/decrypt one unit of plaintext/ciphertext. While the
∗
k
operator combines keys which are its arguments in such a way to use them

simultaneously to encrypt or decrypt one unit. The key 0
k
can be perceived as a

special key that is not suitable neither for decryption nor for encryption. If the
combination of two keys is not appropriate, one writes k1∗kk2 = 0

k
. Caesar cipher

uses the key ci that shifts the alphabet of the text i mod 26 positions. Vigenère
cipher uses a table that contains all the 26 possible shifting of the alphabets
to encrypt/decrypt a letter in the text, we choose one row only from the table.
This selection can be represented through +

k
. Therefore, we can represent the

table as kv = c0 +k
c1 +k

· · · +
k
c25. Vigenère cipher uses also a keyword kw to

select the appropriate row of the table. Both the table and the keyword should
be used together for the encryption or decryption of an alphabet in the text. We
can represent that as kw ∗k kv.

The operators of the key-structure can also be used to specify a generalisation
of the RSA cipher that is introduced by Boyd [3]. This technique is based on dis-
tributing a set of keys to users such that all the keys should be combined together
to decrypt a cipher. The combination of two keys (k1,m) and (k2,m) is given by
Boyd [3] as (k1 × k2,m). This combination is associative and commutative and
can be represented using the operator ∗

k
as (k1,m) ∗

k
(k2,m) � (k1 × k2,m).

A unary operator, called an inverse, is usually defined in the literature on
keys to relate a key used in encryption to that used in decryption. However, our
representation of keys is slightly different from the ones found in the literature.
We include all the information required for both encryption and decryption in
one key. For example, the RSA key involves a public key for encryption (e, n)
and a private key (d, n) for decryption. In the key, n is the multiplication of
two large prime numbers (e.g., p and q), and e and d satisfy the congruence
relation ed ≡ 1 (mod ϕ(n)) where ϕ(n) = (p− 1)(q− 1). We write an RSA key
as one key (e, d, n), where only one part of the key is required for encryption

66 K.E. Sabri and R. Khedri

(i.e., (e, n)) or decryption (i.e., (d, n)). This representation avoids the use of an
inverse operator related to the cipher as our aim is to focus on the key-structure
without taking encryption and decryption into consideration. There are several
models of the key-structure presented in [14,15].

3 Key Assignment Schemes

In this section, we present an algebraic model for key assignment schemes and
show its use in analysing key assignment schemes.

Definition 2 (Key assignment scheme). We call a key-assignment scheme
the system (K, C,≺, a), where:
– K is a key-structure,
– (C,≺) is a poset, and
– a ⊆ K → C is a surjective (onto) function.

C and a are respectively identified as the set of security classes, and the assign-
ment function. The poset (C,≺) is said to be the poset of the scheme S.
The function a needs to be surjective to ensure that each element in C (i.e.,
each security class) is assigned a key. Usually, keys are assigned to users, and
users at their turn are assigned to security classes. Then, for all x, y ∈ U , x ≺u y
if and only if the security class of x is lower than the security class of y. The
structure (U,≺u) is a poset. Therefore, we need only to consider the security
classes as there is an order isomorphism between (C,≺) and (U,≺u), which is
the map s from U onto C such that x ≺u y if and only if s(x) ≺ s(y). The map
s(x) gives the security class of the user x. We assume that each class contains
at least one user. Therefore, the two above posets are essentially the same as
they are isomorphic. We need to have a as function to ensure that no key gets
assigned to more than one security class, which would make the assignment
scheme nonsecure. Obviously, a class can be assigned several keys.

On the domain of the key-assignment function a, we define a relation that
we denote by ≺d. We read k1 ≺d k2 as part of the information that can be re-
vealed by using k1 can be also revealed by using k2. Obviously, (dom (a),≺d) is
a pre-order (quasi-order) as it is reflexive, transitive, and not necessarily anti-
symmetric. Next, we present this relation within the key structure.

The structure K is an additively idempotent commutative semiring. Therefore,
it has a natural order relation ≤ inherent to it (i.e., ∀(x, y | x, y ∈ K : x ≤
y ⇐⇒ x +

k
y = y)). One can read k1 ≤ k2 as the key k1 is a sub-key of

the key k2. The meaning of “sub-key” would depend on the interpretation of
the operation +

k
on keys. For example, in the Vigenère table, each row in that

table can be considered as a subkey of the whole table. We find in [8] a preorder
relation based on ≤. We denote it by � and it is defined as:

a � b
def⇐⇒ ∃(c | c ∈ K : a ≤ b ∗

k
c).

A Generic Algebraic Model for the Analysis 67

The relation � is a pre-order (the proof can be found in [8]). Therefore, it can
be taken as the relation ≺d. In the sequel, we will discuss and illustrate its usage
and that of its dual as the relation ≺d.

The following proposition holds for any additively idempotent commutative
semiring with a multiplicatively absorbing zero 0 and an identity 1. Therefore,
it holds for any key structure with an identity 1

k
. There are many key structures

that have an identity key (i.e., has no effect when combining it with another key).
For example, a key in RSA cipher can be represented as (k1,m) and combining
the keys (k1,m) and (k2,m) can be as (k1 × k2,m). Therefore, we can have the
identity key as (1,m). We show the use of this proposition in the analysis of key
assignment schemes in the next subsections.

Proposition 1 (e.g., [8]). Let K = (K,+
k
, ∗

k
, 0

k
, 1

k
) be a key structure with

an identity 1
k
. Let k1, k2 ∈ K be keys. We have:

1. k1 ≤k
k2 =⇒ k1 � k2

2. k1 ∗k k2 � k2
3. k1 � k2 =⇒ k1 +k

k3 � k2 +k
k3

4. k1 � k2 =⇒ k1 ∗k k3 � k2 ∗k k3

5. k � 1
k

Identity (1) indicates that the ordering relation between keys (i.e., sub-key re-
lation) implies the relation � between keys. Identity (2) relates the combining
keys operator to the relation �. Identities (3) and (4) are standard isotony laws
with respect to combining keys. Identity (5) relates the 1

k
keys to the relation �.

Definition 3. Let S def
= (K, C,≺, a) be a key-assignment scheme. Given a key-

derivation relation ≺d defined on dom (a), the scheme S is said to be cluster-
secure with regard to ≺d iff ∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) ∧ (a(ki) ≺
a(kj)) : ¬(kj ≺d ki)).

Definition 3 states that a key-assignment scheme is a cluster secure if, within
a closer (i.e., connected subgraph) of the poset of the scheme, low class keys
cannot reveal the information of its higher classes.

Definition 4. Let S def
= (K, C,≺, a) be a key-assignment scheme. Given a key-

derivation relation ≺d defined on dom (a), the scheme S is said to be class-secure
with regard to ≺d iff C is a chain and S is cluster-secure.

Definition 4 states that if a key-assignment scheme which all its security classes
are comparable with the relation ≺ and that is a cluster secure, then it is class-
secure. The fact that (C,≺) is a chain leads to having a poset with one connected
graph and all the classes can be compared.

Definition 5. Let S def
= (K, C,≺, a) be a key-assignment scheme. Given a key-

derivation relation ≺d defined on dom (a), the scheme S is said to be user-secure
with regard to ≺d iff ∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) : ¬(kj ≺d ki))).

Definition 5 states that a key-assignment scheme that contains independent keys
such that no key can reveal the information that can be revealed from other keys
is called user-secure.

68 K.E. Sabri and R. Khedri

Proposition 2. Let S def
= (K, C,≺, a) be a key-assignment scheme. If S is user-

secure, then it is cluster-secure.

Proof.S is user-secure

⇐⇒ 〈 Definition 5 〉
∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) : ¬(ki ≺d kj))

=⇒ 〈 ((a(ki) ≺ a(kj)) ∨ ¬(a(ki) ≺ a(kj)) ⇐⇒ true). Range split.
Weakening (i.e., (p ∧ q) =⇒ p for p, q predicates) 〉

∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) ∧ (a(ki) ≺ a(kj)) : ¬(ki ≺d kj))

⇐⇒ 〈 Definition 3 〉
S is cluster-secure

We have the other direction of the implication only when every class contains
only one user.

Lemma 1. Let S def
= (K, C,≺, a) be a cluster-secure key-assignment scheme.

We have

∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) : a(ki) ≺ a(kj))

=⇒ ∀(ki, kj | ki, kj ∈ dom (a) ∧ (ki �= kj) : ¬(ki ≺d kj))

Proof. It is obvious due to monotonic ∀-body rule.

3.1 Specifying the Akl-Taylor Technique

The Akl-Taylor [1] technique is a pioneer technique in key assignment by deriving
one key from another. The technique assigns to each user a key ki such that
ki = κti (mod m) where κ is a private number, m is a public number that
is the product of two large prime numbers, and ti is a public number formed
from a multiplication of prime numbers. A key kj can be derived from ki iff

tj is divisible by ti as k
tj/ti
i = (κti)tj/ti (mod m) = κtj (mod m) = kj . For

example, letm = 11×17 = 187 (we use small prime numbers instead of large ones
for illustration only) and κ = 13 such that the greatest common divisor between
m and κ is 1. We can assign to a first user the public number 3 × 5 × 7 = 105
and therefore, the key becomes 13105 (mod 187) = 98. We can assign to a second
user a public number that divides 105 such as 5× 7 = 35 and therefore, the key
becomes 1335 (mod 187) = 21. We can assign to a third user a public number
that divides 35 such as 7 and therefore, the key becomes 137 (mod 187) = 106.
The key 106 can be used to derive the keys 98 and 21 as 10615 (mod 187) = 98
and 1065 (mod 187) = 21. Also, the key 21 can be used to derive the key 98 as
213 (mod 187) = 98.

The main idea behind the Akl-Taylor technique [1] is that each key is repre-
sented as ki = κti (mod m) where κ is a private data, m is public data formed
by multiplying two large prime numbers, and ti is a product of a set of (distinct)
prime numbers. Therefore, for a given m, we have log ki

log κ = ti. This equation

A Generic Algebraic Model for the Analysis 69

indicates that when κ is given, a key is determined by the exponent ti which is
the product of a set of distinct prime numbers. The server that distributes the
keys, determines the values of κ and keeps it private. In analysing the Akl-Taylor
scheme, Crampton et al. [6] as well find that it is sufficient to represent a key as
a set of primes.

Generalisation of the Akl-Taylor Technique
Once κ is fixed, the exponent ti determines the key. One can generalize the Akl-
Taylor technique by perceiving keys as sets of products of distinct elements of
a given set of prime numbers that we denote by INp. For instance, a key having
an exponent ti = 2× 3× 7 can be represented as {{2, 3, 7}} for a given κ and m.
This representation is valid due to the commutativity of the multiplication (i.e.,
the order does not matter as in a set there is no order among its elements). The
use of a set of sets allows us to represent a set of keys such that each internal

set corresponds to a key of the Akl-Taylor technique. Let P
def
= {p1 × · · · × pn |

∃(p1 · · · pn | pi ∈ INp : ∀(pi, pj | pi, pj ∈ INp : i �= j =⇒ pi �= pj))}.
We define a function rep that takes an exponent of a key and returns its set
representation.

rep : P → P(P(INp))

rep(p1 × p2 × · · · × pn)
def
= {{p1, p2, · · · , pn}} .

We note that this function is a bijection. Also, if we assign to an agent a set of
keys which their exponents correspond to ti = 2× 3× 7 and tj = 11× 17× 2, we
can say that the agent has the set of keys represented by {{2, 3, 7}, {2, 11, 17}}.
Let FF

def
= (P(P(INp)),+k

, ∗
k
, 0, 1) be a structure where the elements of S are

sets of subsets of INp and where ∗
k
and +

k
are defined as follows:

∗
k
: P(P(INp))× P(P(INp))→ P(P(INp))

A ∗
k
B

def
= {a ∪ b : a ∈ A, b ∈ B} .

+
k
: P(P(INp))× P(P(INp))→ P(P(INp))

A+
k
B

def
= A ∪B ,

The structure FF
def
= (P(P(INp)),+k

, ∗
k
, 0, 1) is a key structure with an iden-

tity 1
k
. The proof of this claim invokes basic set theory properties. Since FF

is a model for our key-structure, the system (FF, C,≺, a) is a key assignment
scheme. We can define on it, the relations ≤ and � introduced at the begin-
ning of Section 3. The relation ≤ is identical to ⊆. The definition of � be-

comes a � b
def⇐⇒ ∃(c | c ∈ P(P(INp)) : a ⊆ b ∗

k
c). We can define

k1 ≺d k2
def⇐⇒ k1 � k2. In this case ≺d is �. We will see in the next example

that ≺d is the dual of �. It simply depends on the model of the key structure
that we are considering.

The system (FF, C,≺, a) presents a generalization of the Akl-Taylor technique.
The key in our case is not a single key but a set of keys e.g., {κ2×3, κ5×7}. In the

70 K.E. Sabri and R. Khedri

Akl-Taylor technique, (C,≺) has to be a tree, while in our framework it can be
a forest. Therefore, for dealing with more than a tree structure and for handling
more than one key per user, the Akl-Taylor technique is a special case of the one
we propose. We may need this generalization if a user is involved in more than
one scheme.

κ

κ2 κ3

κ2×3 κ2×3×7 κ3×11

{∅}

{{2}} {{3}}

{{2, 3}} {{2, 3, 7}} {{3, 11}}
(a) (b)

c1

c2 c3

c4 c5 c6

Fig. 1. An example of the Akl-Taylor scheme and its equivalent scheme

Example 1. Figure 1 shows an example of the Akl-Taylor scheme and its rep-
resentation using our mathematical structure. In the system (FF, C,≺, a), FF
is defined as above, C = {c1, c2, c3, c4, c5, c6} such that c4 ≺ c2, c5 ≺ c2,
c5 ≺ c3, c6 ≺ c3, c2 ≺ c1, c3 ≺ c1, and the function a is defined as a =
{(∅, c1), ({{2}}, c2), ({{3}}, c3), ({{2, 3}}, c4), ({{2, 3, 7}}, c5), ({{3, 11}}, c6)}. For
instance, the key κ2×3 is derived from κ2. Indeed,

κ2×3 ≺d κ2

⇐⇒ 〈 A key is determined by its exponent & k1 is derived from k2
iff k1 � k2, and

log ki

log κ = ti 〉
rep(2× 3) � rep(2)

⇐⇒ 〈 Definition of the function rep, and Definition of � 〉
∃(c | c ∈ P(INp) : {{2, 3}} ≤ {{2}} ∗

k
c)

⇐⇒ 〈 Definition of x ≤ y for x and y elements of an idempotent
commutative semiring 〉

∃(c | c ∈ P(INp) : {{2, 3}}+
k
{{2}} ∗

k
c = {{2}} ∗

k
c)

⇐⇒ 〈 Definition of +
k
on the structure FF 〉

∃(c | c ∈ P(INp) : {{2, 3}} ∪ {{2}} ∗
k
c = {{2}} ∗

k
c)

⇐= 〈 c = {{3}} ∈ P(INp), and the definition of ∗
k
on the structure

FF 〉
∃(c | c ∈ P(INp) : {{2, 3}} ∪ {{2, 3}} = {{2, 3}})

⇐⇒ 〈 Idempotence of ∪, c ∈ P(INp), and ∃(c |: true) ≡ true 〉
true

One can verify that the given example is cluster-secure by checking that (ci ≺
cj =⇒ ¬(a(ci) � a(cj))).

From this example, we observe that to apply the general theory of the frame-
work, we had only to perform the following tasks: (1) give a detailed meaning

A Generic Algebraic Model for the Analysis 71

(an interpretation) to each of the operators of the key structure, (2) define the
order of the poset of the scheme, and (3) articulate the key-assignment function.
The tasks (2) and (3) are specific to the application that the specifier is consider-
ing, while (1) is to set up the concrete mathematical model of the key structure
used by the specifier. All the rest of the theory remains valid and can be used
automatically. The next example that we give when we discuss specifying the
Chen-Chung technique requires the specifier to perform the same three tasks.

Algebraic Analysis Based on Proposition 1
We use Proposition 1 to obtain interesting properties regarding the derivation
of keys in the Akl-Taylor technique. Identity (1) states that a subkey relation
implies the derivation relation. For example, if an information is concealed using
the set of keys {κ11}, then any set of keys that contains {κ11} (e.g., {κ2×5, κ11})
can also be used to get that information. Here, {κ11} ≤ {κ2×5, κ11}, then the
key κ11 can be derived from {κ2×5, κ11}. Therefore, users involved in more than
one hierarchy can combine their keys by using +

k
to reveal some information

coming from the two hierarchies.
Identity (2) states that a combination of two keys can be derived from any

one of them. This can be seen clearly in the Akl-Taylor technique. For example
the key {k3×5×7×9} can be derived from {k3×9} or the key {k5×7}. This identity
can be used in key distribution. Assume that we have a key {κ19} and we need
this key to reveal an information that is encrypted using the key {κ2×5}. The
identity shows that if we conceal the information using the set of keys {κ2×5} ∗

k

{κ19} (which is equal to {κ2×5×19}), then both keys can be used to reveal that
information.

Identity (3) is suitable to specify the situation when two users are involved
in two different hierarchies of keys. In this case, if both users update their set
of keys with the same key, this does not affect the derivation of keys between
them. Identity (4) specifies the situation when a new key is added to the system.
Suppose that two users have the keys k5×7 and k5×7×9. Assume that a new
key k11 is added to the system that would enable us to derive the keys k5×7

and k5×7×9. Combining these two keys with k11 such that the first key becomes
k5×7×11 and the second one becomes k5×7×9×11 does not affect the derivation
relation between them. Identity (5) states that 1

k
can be used to obtain any

key. The identity key 1
k
of the key-structure corresponds to the root key in the

Akl-Taylor technique and is equal to κ.

3.2 The Chinese Remainder Technique

Chen-Chung [5] propose a technique based on the Chinese remainder theorem.
Below, we present the main steps of their technique. We omit the steps related
to the cryptosystem because it does not affect the key assignment scheme. Also,
note that ri is called a key and Hi is called a private information [5] while in this
paper we call ri a private information and Hi a key. We changed their naming
to be consistent with the terminology adopted in this paper. However, changing

72 K.E. Sabri and R. Khedri

the terminology has no effect since both ri and Hi are private. The key Hi is
used to get rj for all cj ≺ ci. Note that ≺ is a partial order relation.

We suppose that there arem security classes.We select randomlym pairwise co-
prime numbers n1 . . . nm. We take N =

∏
1≤i≤m ni, ri as the private information

of class i, and we take yi as an integer number such that (N/ni)×yi (mod ni) = 1.
We take Xi = (N/ni) × yi, and Hi =

∑
(rj ×Xj) (mod N) such that cj ≺ ci.

The security class ci contains the information ni and ri such that ni is public while
ri is private. Each user at class ci has a key Hi to get the information rj of other
classes as rj = Hi (mod nj). We provide the following example to illustrate the
above technique.

Assume that there are three security classes c1, c2, and c3 such that c3 ≺ c2
and c2 ≺ c1. In this case, we take m = 3. Let n1 = 3, n2 = 5, and n3 = 7. We
have N = 3 × 5 × 7 = 105. Let r1 = 1, r2 = 2, and r3 = 3. We have y1 = 2
where 35×y1 (mod 3) = 1, y2 = 1 where 21×y2 (mod 5) = 1, and y3 = 1 where
15× y3 (mod 7) = 1. Also, we have X1 = 70, X2 = 21, and X3 = 15. Finally, we
have H1 = 70 + 42 + 45 = 157 and H2 = 42 + 45 = 87.

It can be easily verified that the information r2 can be obtained from H1 as
157 (mod 5) = 2. The value of r3 can be obtained from H1 as 157 (mod 7) = 3,
and r1 can be obtained from H1 as 157 (mod 3) = 1.

To add a new security class cm+1, one needs to update all the values ofHi where
ci ≺ cm+1, and generate the public value of cm+1 and its secret information as
follows: (1) Select a newprimenumbernm+1; (2)LetN = N×nm+1; (3)Let r(m+1)

be the private information of classm+ 1; (4) Let ym+i be an integer number such
that (N/nm+1) × ym+1 (mod nm+1) = 1; (5) Let Xm+1 = (N/nm+1) × ym+1;
(6) Update Hi of ci for cm+1 ≺ ci asHi = Hi + rm+1 ×Xm+1 (mod N); (7) Let
Hm+1 =

∑
(rj ×Xj) (mod N) such that cj ≺ cm+1.

Continuing with our example, assume that we add a new class such that that
c3 ≺ c4 and c4 ≺ c1. Let nm+1 = 11. The poset of the scheme is given by
Figure 2. Therefore, the new value of N is 1155. Let r4 = 4, we have y4 = 2 as
105× y4 (mod 11) = 1. Also, we have X4 = 105× 2 = 210. The new value of H1

becomes H1 = 157+(4×201) = 961 and the value of H4 is 45+804 = 849. This
technique is not correct as H1 cannot be used anymore to obtain the values r2,
r3, or even r4. For example, 961 (mod 5) = 1 while the value of r2 is 2.

C1

C2
C4

C3

H1

H2
H4

H3

Fig. 2. An example of a hierarchy of classes

A Generic Algebraic Model for the Analysis 73

Specifying the Chen-Chung Technique
To formally specify the techniqueofChen-Chungusing our generic algebraicmodel,
we takem security classes where a confidential information ri is associated with a
class ci. Also,we takempairwise co-primenumbersn1 · · ·nm andN =

∏
1≤i≤m ni.

Let yi be an integer number such that (N/ni)×yi (mod ni) = 1 andXi = (N/ni)×
yi. The keyHi assigned to class ci isHi =

∑
((rj ×Xj) (mod N)) for all cj ≺ ci.

It can be easily verified that Hi (mod nj) = 0 for i �= j and Hi (mod ni) = ri.
Let the set Si,j = {F | F =

∑
i≤x≤j Hx} contains all possible summations of

the keysHi constructed for them security classes.We define a function rep similar
to the one defined in the previous subsection that takes a key and returns its set
representation.

rep : F → P(P(F))

rep(H1 +H2 · · ·Hn)
def
= {{H1, H2, · · · , Hn}} .

Let FF
def
= (P(P(F)),+

k
, ∗

k
, 0, 1) be a structure where the elements of S are

sets of subsets of F and where ∗
k
and +

k
are defined the same as for our rep-

resentation of the Akl-Taylor technique on Page 69. It is easily checked that
with these definitions of +

k
and ∗

k
the structure FF is a model for the key-

structure. Therefore, we can define on it the relations ≤ as ⊆ and the relation

� as a � b
def⇐⇒ ∃(c | c ∈ P(P(F)) : a ⊆ b ∗

k
c). We can define

k1 ≺d k2
def⇐⇒ k2 � k1. In this case ≺d is the dual of �. We can read this rela-

tion as every element of the key k2 can derive all the confidential information ri
which can be derived from some elements of the key k1.

An Amended Version of to the Chen-Chung Technique
We showed at the beginning of this section that handling the addition of a
new class is not correct in the original technique of Chen-Chung. We noticed
that the new set of keys cannot be formulated as Si,j and the property of keys
Hi (mod nj) = 0 for i �= j and Hi (mod ni) = ri that is necessary for the
correctness of the technique does not hold. The reason for that is the use of two
different values of N where the value of N has been changed to N×nm+i during
the addition of a new class.

To correct this method, we should have the value of N fixed and not changed
during the addition of a new class. Since the value of N depends on the number
of security classes m, we can have m to be the maximum number of classes that
can be created. In this case, we do not need to change the value of N when a
new class is added. We illustrate our idea through the example given previously
in this section. Assume that the total number of classes that can be added is 4.
Assume that ni ∈ {3, 5, 7, 11}. Therefore, N = 1155. Assume the initial scheme
contains only three classes where r1 = 1, r2 = 2, and r3 = 3. Therefore, y1 = 1,
y2 = 1, y3 = 2, X1 = 385, X2 = 231, X3 = 330. Then, H1 = 1837, H2 = 1452,
and H3 = 990. Assume a new class is added where r4 = 4. Now y4 = 2 and
X2 = 210. The new H4 = 1830 and the new H1 = 1837 + 840 = 2677.

74 K.E. Sabri and R. Khedri

Algebraic Analysis Based on Proposition 1
Proposition 1 shows some properties of the derivation relation. In this section,
we show their relationship to the Chen-Chung technique. Identity (1) shows that
if k1 is a subkey of k2, then there is some information that can be revealed from
k2 which can also be revealed from k1. A key k1 is a subkey of k2 in this context
if it is a subset of k2.

Identity(2) shows that any information that can be revealed from a key can
also be revealed from its ∗

k
combination with another key. In the above example,

we have c3 ≺ c2. Therefore, the key H2 ∗k H3, which is translated in our current
model to H2 + H3 (mod N), is given to the user at class c2 to reveal all the
information that can be revealed by the classes c2 and c3. Identity (3) states
that if k1 can reveal information that can be revealed from k2, then extending
both keys would not affect the confidentiality of the information.

Identity(4) covers the case where we have ci ≺ cj and a new class ck is added
such that ck ≺ ci. For the above example, if we add a new class c4 such that
c4 ≺ c1, the new value of H1 becomes H1 = H1 ∗k H4 and the new value of
H2 becomes H2 = H2 ∗k H4. Identity (4) says that this combination would not
affect the ability of H1 to derive the information that can be derived using H2.
Identity (5) shows that any information that can be derived from the 1

k
of the

proposed model can be derived from any key.

3.3 Verification

Our key assignment scheme allows us to specify systems that manage key dis-
tribution and verify some properties such as the ability of a user to get an
information intended for a higher class, or the ability of using several keys to
reveal an information that can be revealed by using another key.

Example 2. We are specifying the key assignment scheme for a hospital that
contains part-time, over-night, and full-time nurses or doctors. We take the fol-
lowing as the keys distributed to the classes of users. Part-time nurses class cpn
gets a key that is constructed using k1, k2, and k4 and is equal to k1 ∗k k2 ∗k k4.
Over-night nurses class cnn gets a key that is constructed using k1, k3, and k4
and is equal to k1 ∗k k3 ∗k k4. Full-time nurses class cfn gets a key that is con-
structed using k1 and k4 and is equal to k1 ∗k k4. Part-time doctors class cpd gets
a key that is constructed using k2 and k4 and is equal to k2 ∗k k4. Over-night
doctors class cnd gets a key that is constructed using k3 and k4 and is equal to
k3 ∗k k4. Full-time doctors class cfd gets the key k4. Assume that our hospital
system should satisfy the following confidentiality properties.

Property 1: A doctor should be able to reveal the information that can be
revealed through the key of a nurse that is in the same class. For instance,
a part-time doctor can get the information of a part-time nurse. We formally
articulate this property as follows: (k1∗kk4 ≺d k4) ∧ (k1∗kk3∗kk4 ≺d k3∗k k4) ∧
(k1 ∗k k2 ∗k k4 ≺d k2 ∗k k4).

A Generic Algebraic Model for the Analysis 75

Property 2: A full time nurse should be able to reveal the information that can
be revealed through the key of part-time and over-night nurses. (k1 ∗k k3 ∗k k4+k

k1 ∗k k2 ∗k k4) ≺d (k1 ∗k k4).

Property 3: There is no key relationship between part-time and over-night nurses
(i.e., user-secure for these two keys). ¬(k1 ∗k k2 ∗k k4 ≺d k1 ∗k k3 ∗k k4) ∧
¬(k1 ∗k k3 ∗k k4 ≺d k1 ∗k k2 ∗k k4).

Property 4: Part-time and over-night nurses cannot use their keys together to
reveal the information that can be revealed through the key of a full-time nurse
¬(k1 ∗k k4 ≺d (k1 ∗k k3 ∗k k4 +k

k1 ∗k k2 ∗k k4)).

In this example we assume that k1 ≺d k2 ⇐⇒ k1 � k2. We verify the
above properties by using the key-structure given in Definition 1 with the aid of
Prover9 [12], which is an automated theorem prover for proving propositions in
first-order and equational logic. We formalise all the axioms of the key-structure.
Then, we use Prover9 to verify each property.

Property 1 and Property 2 focus on the correctness of the method. Prover9
established the proof of these properties. Property 3 and Property 4 are harder
to prove. Prover9 is not able to prove them. A thorough analysis reveals that
we need additional properties on the keys k1, k2, k3, and k4. These proper-
ties/assumptions are ignored in some methods which results in breaches of secu-
rity. Some of these assumptions are obvious but they should be analysed carefully
at the implementation level, otherwise the system can be vulnerable to different
attacks. One of the assumptions is that the elementary keys (k1, k2, k3, and
k4) are independent. Another assumption is that combining two keys does not
give 0

k
or 1

k
. Also, we should assume that the property k1 � k1 ∗k k2 does not

hold. Therefore, the complete specification of the key assignment properties that
enables us to prove the Properties 1–4 would be the axioms of the key-structure
in addition to the following axioms:

1. ∀(i, j | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4 ∧ i �= j : ¬(ki � kj))
2. ∀(i, j | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4 ∧ i �= j : ki ∗k kj �= 0)
3. ∀(i, j | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4 ∧ i �= j : ki ∗k kj �= 1)
4. ∀(i, j | 1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 4 ∧ i �= j : ¬(ki � ki ∗k kj))

4 Literature Review

One of the widely known techniques proposed for key assignment by deriving
one key from another key is the technique introduced by Akl-Taylor [1]. Other
techniques are proposed to improve it. For instance, in [11], MacKinnon et al.
show that the key generation in the Akl-Taylor technique becomes inefficient in
large systems and provide an improved algorithm. In [7], Harn and Lin propose
a bottom-up design in key derivation instead of top-down as in the Akl-Taylor
technique to improve the storage size of the public data.

76 K.E. Sabri and R. Khedri

In [9], Kuo et al. present a technique based the Chinese remainder theorem
(e.g., [17]) and the Rabin cryptosystem [13]. Their technique allows handling
the dynamic access control problem such as adding and deleting security classes.
Based on the technique of Kuo et al. [9], Chen-Chung [5] present an improved
technique that reduces the computation time and the storage size. However,
Zhong and Lin [18] show that the part related to adding a new class is incorrect.

Chien and Jan [4] propose a technique that does not need public key cryp-
tography to decrease the cost of computation. Their technique is based on hash
functions. In [2], Atallah et al. propose an efficient technique in terms of space
and computation that supports an arbitrary graph based also on hash functions.
Atallah et al. [2] provide an improvement over Chien and Jan’s technique when
a security class is deleted. Other techniques such as those of Liaw et al. [10] and
Sandhu [16] limit their structure into a tree to increase the efficiency of com-
putation and storage. Crampton et al. [6] present and discuss several generic
schemes for key assignment and compare their relative merits.

5 Discussion and Conclusion

In this paper, we applied the key-structure of the framework presented in [14,15]
to the problem of key assignment. We present a generic model for key assignment
schemes. This model does not depend on a specific crypto-system. It allows us to
articulate security properties among security classes to key assignment schemes,
then to prove whether the adopted scheme satisfies these properties. The proof
is done in an algebraic calculational way that can be easily automated using a
theorem prover such as Prover9.

To the best of our knowledge, the only work that classifies key assignment
schemes is the work of Crampton et al. [6]. In [6], the authors introduce five generic
schemes and claim that every existing technique is an instance of one of their
schemes. We can represent all of these schemes within our mathematical struc-
tures. We summarize these schemes and relate them to our structures. The first
scheme is the trivial key assignment scheme. This scheme allows each user the han-
dling of a set of keys. Each key can be used to reveal a secret. The construction
of keys can be represented as +

k
. The second scheme is the trivial key encrypting

key assignment scheme. This scheme is based on encrypting the required key for
revealing the secret using the user key. This scheme does not involve keys only
or their properties but takes secrets and ciphers into consideration. This scheme
can be specified by using the key-structure together with the secrets and ciphers
structures presented in [14,15]. Similarly, the third is a direct key encrypting key
assignment scheme where the user keys are encrypted. The fourth scheme is an
iterative key encrypting key assignment scheme and is similar to the third scheme
but decryption is in an iterative way. Finally, the fifth scheme is based on deriving
a key from another one as in the Akl-Taylor technique. We already illustrated how
it can be handled within our proposed model.

To the best of our knowledge, this is the first work that analyzes formally key
derivation at this abstract level and in a generic way.We intend as a future work to
investigate other key assignment schemes to assess their strengths andweaknesses.

A Generic Algebraic Model for the Analysis 77

References

1. Akl, S., Taylor, P.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Transaction on Computer Systems 1(3), 239–248 (1983)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Transactions on Information and System
Security 12(3), 1–43 (2009)

3. Boyd, C.: Some Applications of Multiple Key Ciphers. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 455–467. Springer, Heidelberg (1988)

4. Chien, H.-Y., Jan, J.-K.: New hierarchical assignment without public key cryptog-
raphy. Computers & Security 22(6), 523–526 (2003)

5. Chen, T.-S., Chung, Y.-F.: Hierarchical access control based on Chinese remainder
theorem and symmetric algorithm. Computers & Security 21(6), 565–570 (2002)

6. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access con-
trol. In: Proceedings of the 19th IEEE workshop on Computer Security Foundations
(CSFW 2006), Venice, Italy, pp. 98–111. IEEE Computer Society (2006)

7. Harn, L., Lin, H.-Y.: A cryptographic key generation scheme for multilevel data
security. Computer Security 9(6), 539–546 (1990)

8. Höfner, P., Khedri, R., Möller, B.: Feature Algebra. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 300–315. Springer, Heidelberg
(2006)

9. Kuo, F.H., Shen, V.R.L., Chen, T.S., Lai, F.: Cryptographic key assignment scheme
for dynamic access control in a user hierarchy. IEEE Proceedings Computers and
Digital Techniques 146(5), 235–240 (1999)

10. Liaw, H.T., Wang, S.J., Lei, C.L.: A dynamic cryptographic key assignment scheme
in a tree structure. Computers & Mathematics with Applications 25(6), 109–114
(1993)

11. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers 34(9), 797–802 (1985)

12. McCune, W.: Prover9 and Mace4, http://www.cs.unm.edu/~mccune/prover9/
13. Rabin, M.: Digitalized signatures and public-key functions as intractable as fac-

torization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer
Science (1979)

14. Sabri, K.E.: Algebraic Framework for the Verification of Confidentiality Properties.
PhD thesis, McMaster University (2010)

15. Sabri, K.E., Khedri, R.: Algebraic framework for the specification and analysis of
cryptographic-key distribution. Fundamenta Informaticae 112(4), 305–335 (2011)

16. Sandhu, R.S.: On some cryptographic solutions for access control in a tree hier-
archy. In: ACM 1987: Proceedings of the 1987 Fall Joint Computer Conference
on Exploring Technology: Today and Tomorrow, pp. 405–410. IEEE Computer
Society Press, Los Alamitos (1987)

17. Yan, S.Y.: Number theory for computing. Springer (2002)
18. Zhong, S., Lin, T.: A comment on the chen-chung scheme for hierarchical access

control. Computers & Security 22(5), 450–452 (2003)

Message Transmission and Key Establishment:

Conditions for Equality
of Weak and Strong Capacities

Hadi Ahmadi and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary
{hahmadi,rei}@ucalgary.ca

Abstract. Secure communication using noisy resources has been first
studied in the contexts of secure message transmission (SMT) by Wyner
as well as Csiszár-and-Körner, and secret key establishment (SKE) by
Ahlswede-and-Csiszár as well as Maurer. The work defines secrecy (resp.
secret-key (SK)) capacity as the highest achievable rate of secure trans-
mission (resp. key establishment). Maurer and Wolf later focused on SKE
and noticed that the secrecy requirement in the SK capacity definition
was weak as it required only the “ratio” between the adversary’s infor-
mation and the key length to be negligible. They suggested a stronger
definition of the SK capacity by requiring absolute information leakage
to be negligible. They provided an interesting proof for the equality of
weak and strong SK capacities in the above scenarios (setups).

Followup work has since studied several setups for SKE by considering
the weak SK capacity without discussing whether the results also hold
for the strong definition. In this paper, we pose the question whether
the equality of weak and strong SK capacities can be derived in gen-
eral for all discrete memoryless communication setups. We also extend
this study to message transmission and investigate the equality of weak
and strong secrecy capacities. For SKE, we show that weak and strong
SK capacities are equal for any setup that allows reliable transmission
in any direction. For SMT, the secrecy capacities are equal when the
setup allows the sender to use randomness. We furthermore provide triv-
ial counterexamples that show these sufficient conditions are not always
necessary for the equality of the capacities. Whether the conditions can
be removed or relaxed by tight (necessary and sufficient) conditions re-
mains an interesting question for future.

Keywords. Secret key capacity, secrecy capacity, information reconcil-
iation, privacy amplification.

1 Introduction

Wyner [21] and subsequently Csiszár and Körner [9] pioneered the study of
secure message transmission (SMT) over noisy wiretap channels. Their study
shows when the wiretapper’s channel is noisier than the main channel, the sender
can send arbitrarily long messages securely by using long enough codes over the

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 78–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Equality of Weak and Strong Capacities 79

wiretap channel. Since communication resources are generally expensive, it is
preferred to design “optimal” codes which send more message bits securely by
using the channel as few number of times as possible. This leads to the definition
of the secrecy capacity, i.e., the highest information rate (in bits per channel use)
that can be sent in a secure and reliable manner. The work in [9,21] proved how
to obtain this capacity for a wiretap channel. Maurer [14] considered the above
communication scenario for secret key establishment (SKE), where he defined
the secret-key (SK) capacity as the highest rate of secret key that can be shared
by using the communication resources. For the one-way wiretap channel [9, 21],
the SK capacity equals the secrecy capacity as the highest key rate is achieved
by sending a random key using a secure message transmission code. Maurer [14]
thus revisited the SKE problem assuming a public discussion channel in addition
to correlated randomness (e.g., obtained from a wiretap channel). The public
discussion channel is a free noiseless channel that can be used unlimitedly by the
parties in both directions; however, its content is completely observable by the
eavesdropper. Maurer proved that the SK capacity in the new “setup” is strictly
higher than that of a single wiretap channel. Similar results were independently
derived by Ahlswede and Csiszár [1].

In the definition of the SK capacity in [1, 14], the secrecy condition requires
the SKE protocol to leak negligible information about the key; however, the in-
formation leakage is measured in “rate” (per key bit on average). This implies
that the absolute amount of leakage can be unbounded (as the key length in-
creases), although the leakage rate is close to zero. Maurer and Wolf [15] refer to
this definition as the weak SK capacity and suggest strong SK capacity which,
rather than leakage rate, requires the SKE protocol to leak “absolutely” negli-
gible information about the key. This raises two questions: (1) is it possible to
achieve strongly secret keys for setups in [1, 9, 14, 21], and (2) is this strength-
ening doable without sacrificing the key rate? The work in [15] gave positive
answers to both questions using an elegant construction of strongly-secure SKE
protocols from weakly secure ones, which proves the equality of the weak and
strong SK capacities for a wiretap channel with/without public discussion.

Thee has been since a lot of research on SKE in various setups, where the
SK capacity has been investigated. Most of them however considered weak se-
crecy without discussing whether the results on the SK capacity also hold when
strong secrecy is required (cf. [2–5,11,13,18]). This has once again brought about
ambiguity in the relation between weak and strong SK capacities for many com-
munication setups considered thereafter. In addition to the above, there is a
similar question about the equality of weak and strong secrecy capacities in se-
cure message transmission. To the best of our knowledge, this latter question
has not been addressed by the work in [15] or any work thereafter.

1.1 Motivation

Investigating the equality of weak and strong secrecy capacities (for SMT) is rea-
sonably important since it is different from SKE and it has not been covered by
the previous work. One may however ask about the importance of reinvestigating

80 H. Ahmadi and R. Safavi-Naini

the equality of capacities in SKE noting that Maurer-and-Wolf’s (MW) proof [15]
is quite generic to be adapted to other setups. In what follows, we argue that the
MW approach does not apply to “all” existing communication setups and needs
to be re-examined to see when it stays valid.

The study in [15] shows the equality of weak and strong SK capacities in the
following two settings: (1) correlated randomness and public discussion channel
(PDC) [1, 14], and (2) one-way discrete memoryless wiretap channel (DMWC).
We focus on their proof method (for the second setup because it is more generic
and does not rely on PDC as a free noiseless channel resource. The MW ap-
proach proceeds in two phases. The first phase shows that the weak SK capacity
is equal to the so-called uniform SK capacity (which requires the key distribution
to be close to uniform). The second phase shows that it is possible to construct a
strongly secure SKE protocol using a uniformly-secure protocol without sacrific-
ing the key rate. This construction mainly consists of four steps: (i) independent
repetition of the uniformly-secure protocol, (ii) information reconciliation with
universal hashing, (iii) privacy amplification using a seeded-extractor, and (iv)
uniformization. For information reconciliation, Alice uses the wiretap channel to
send error-correction bits. For privacy amplification, she uses her (free) indepen-
dent source to generate uniformly random bits and sends them to Bob over the
wiretap channel, so they both agree on the random seed used in the extractor.
By repeating the uniformly-secure protocol sufficiently many times, in step (i),
the number of channel uses in steps (ii) and (iii) becomes negligible and the key
rate tends toward that of the uniformly-secure protocol.

The MW approach is indeed generic enough to work for other discrete mem-
oryless setups. Revisiting this approach, one can assure that a slight rephrasing
of the key rate analysis makes it applicable to most of the current setups. Such
setups include the correlated randomness and wiretap channel setup in [13, 18]
and a pair of wiretap channels in [2, 3]. Yet, the proof is based on two main
assumptions that make it not adaptable to “all” setups.

– There is a channel with positive (reliability) capacity in at least one direction.
– There is a free local source of randomness available to at least one party.

The first assumption is hidden in the proof as for the one-way DMWC, the
secrecy capacity is “equal” to the SK capacity: When the weak SK capacity is
positive, the channel is capable of (secure hence) reliable transmission needed
for information reconciliation. The above property does not hold for many com-
munication scenarios such as [2,4,5,13,18]. More crucially, there are instances of
two-way wiretap channels [4] where, in spite of positive SK capacity, it is impos-
sible to have even a single bit of reliable transmission. This implies that reliable
transmission is not generally an implicit capability of all setups with positive SK
capacity and hence is required to be checked separately in each case.

Similarly, the second assumption does not hold in all scenarios, e.g., when local
randomness is not free. We note that the freeness of local randomness is not the
main issue. The MW approach requires generation of uniform randomness of
length negligible to the key length; hence, using a local random source with a
constant cost does not affect the key rate analysis and so the equality result.

Equality of Weak and Strong Capacities 81

However, the existence of local randomness is crucially required by the MW
approach. The secret-key from noise scenario in [5] assumes no local random
source in the system and this renders the MW approach inapplicable.

1.2 Our Work

We provide a formal treatment of the problems by studying SMT and SKE in
a general discrete memoryless communication setup. We define a setup as a set
of communication resources, i.e., sources and channels, with certain underlying
assumptions that model a communication scenario between Alice and Bob in
the presence of a passive adversary, Eve. A discrete memoryless setup is one in
which all channels and sources are discrete-alphabet and memoryless and can
be used as many times as required.

The SKE Problem. We investigate the relation between the weak and strong
SK capacities in general, by acquiring whether any of the two assumptions by
the MW approach can be removed. Fortunately, we can show that the second
assumption is not necessary: The equality of weak and strong SK capacities holds
regardless of whether or not access to local sources of randomness is granted. We
prove this by modifying step (iii) of the MW approach: Our privacy amplification
requires a two-source extractor instead of a seeded extractor. The two inputs for
the two-source extractor are obtained by two independent instances of steps (i)
and (ii); this leads to an interesting consequence that our privacy amplification
step does not depend on any resources in the setup, in contrast with that of the
MW approach that needs resources to generate random bits as well as to send
them to the other party. Our analysis shows that the modified construction still
results in a strongly-secure SKE protocol that achieves the weak SK capacity.

We however do not know whether the need for reliable transmission (from
Alice to Bob or vise versa) during information reconciliation can be relaxed or
removed. This leaves us with the following conclusion.

The weak and strong SK capacities equal in any discrete memoryless setup
that allows positive-rate reliable data transmission in at least one direction.

The SMT Problem. We give a construction of a strongly-secure SMT protocol
using a weakly-secure SMT protocol. The construction consists of the following
steps: The sender (i) expands the message using a two-source extractor inverter,
(ii) splits the message to many independent message pieces and sends each by
the weakly-secure protocol, (iii) sends error correction bits for information recon-
ciliation, and the receiver (iv) extracts the message by the two-source extractor.
This construction is strongly-secure and achieves the weak secrecy capacity. The
construction needs randomness for the sender in step (ii), and reliable transmis-
sion in step (iv) for information reconciliation. It is easy to observe that reliable
transmission requirement can be removed since any setup with positive (weak)
secrecy capacity allows reliable message transmission too. However, it remains
open whether we can remove or relax the need for randomness in step (ii). This is

82 H. Ahmadi and R. Safavi-Naini

exactly dual to the SKE problem where the remaining condition is the possibility
of reliable transmission. The conclusion is the following.

The weak and strong secrecy capacities equal in any discrete memoryless setup
that allows the sender to use randomness.

1.3 Discussion

Setup Assumptions. We consider only “discrete memoryless setups”. This
family of setups is large enough to capture a great number of studies on SKE and
SMT. Besides, our results also hold for setups with continuous alphabet resources
(e.g., Gaussian sources and channels [20]) as well as state-dependent channels [16]
with independently and identically distributed (i.i.d.) state sequence.

Message Transmission vs. Key Agreement. The results on the equality of
weak and strong capacities in SMT and SKE are quite related, but not identical.
In SKE, the parties aim to share a secret that is not necessarily known before
the protocol. In SMT however, the sender aims to deliver an existing message.
If a protocol leaks information about the message, it is impossible compensate
this leakage as the message cannot be changed. This makes us use an extractor
inverse function to expand a message before sending it.

Equality Requirements: Necessity vs. Sufficiency. The conditions that we
derive for the equality of the weak and strong capacities are not always necessary.
In Section 6, we discus special cases to support this. It remains yet an interesting
problem to find whether we can remove the conditions from the claims or there
are tighter (necessary and sufficient) conditions for the equality.

1.4 Notation

We use calligraphic letters (X), uppercase letters (X), and lowercase letters (x)
to denote finite alphabets, random variables, and their realizations over sets, re-
spectively. We denote the length of sequences by using superscripts (xn). For two
random variables X and Y over alphabets X and Y, we denote by PX (or PY),
PX,Y and PY |X the marginal, joint, and conditional probability distributions,
respectively, and by H(X,Y) and H(Y |X) the joint and conditional (Shan-
non) entropies, respectively. We furthermore use H∞(X) = − log(maxx PX(x))
to denote the min-entropy of X and use ‖ X − Y ‖s to denote the statistical
(variational) distance [8] between the two random variables X and Y .

2 Model, Definitions, and Results

2.1 Discrete Memoryless Communication Setup

Consider a communication scenario with legitimate parties Alice and Bob who
want to achieve a security goal in the presence of a passive adversary, Eve. De-
pending on the communication model, Alice, Bob, and Eve may have access to

Equality of Weak and Strong Capacities 83

specific types of sources and channels. We refer to a communication scenario
that specifies a set of resources, i.e., sources and channels, available to the par-
ties by a setup. The performance of a message transmission (or key agreement)
protocol over a setup is measured in terms of rate, that is the number of mes-
sage (or key) bits divided by the cost imposed to the setup by the protocol. This
overall cost is the sum of those costs imposed to each resource. The cost for a
resource is generally a function of how many times the resource is used as well
as a per-use cost value (the cost of using the resource only once). In this work,
We particularly consider discrete memoryless setups, wherein resources have the
following properties:

– Each resource is discrete-alphabet and memoryless, i.e., using the resource
independently many times results in independent outputs.

– Each resource can be used for as many, n, times as required: the total cost
for such a resource is obtained by multiplying its per-use cost by n.

The above conditions let us give abstract definitions for general channel/source
resources. We define a channel as an alphabet tuple (XA,XB,YA,YB ,YE), a
channel probability distribution PYA,YB,YE |XA,XB

over the alphabets, and a per-
use cost value. The alphabets respectively denote the channel inputs from Alice
and Bob as well as the channel outputs to Alice, Bob, and Eve. This channel
model is an extension of Shannon’s two-way discrete memoryless channel [19] to
when it leaks to a wiretapper [4]. Notice that the model captures any discrete-
alphabet, memoryless channel resource in the literature (cf. [1, 2, 9, 11, 14, 21]).

We furthermore define a source as an alphabet triple (XA,XB,XE), a proba-
bility distribution PYA,YB ,XE , and a per-use cost. This definition lets us capture
any independent (local) or correlated source(s) of randomness [1,13,14,18] with
arbitrary cost value. We note some communication scenarios, such as [5], may not
assume any such sources in their setup. The following gives a formal definition
for cost of a protocol using a setup.

Definition 1 (Cost). Let S be a discrete memoryless setup that consists of m
resources R1,R2, . . . ,Rm with per-use costs c1, c2, . . . , cm, respectively. Let Π be
a protocol over the setup that uses the above resources for n1, n2, . . . , nm number
of times, respectively. The cost of executing Π over S is defined as

CostSΠ =

m∑
i=1

cini. (1)

The above definition of cost becomes much simpler considering the currently
existing cases. Many communication setups in the literature [1,4,9,14,21] include
only one costly resource with the per-use cost of 1 (the rest of the resources are
free), implying that the total cost equals to the number of times the resource is
used. There are also examples of setups with two costly resources, such as a pair
of DMWCs [2,3] and DMWC with multiple-sources [13], where the total cost is
obtained by adding the number of times each resource is used.

84 H. Ahmadi and R. Safavi-Naini

2.2 Message Transmission and Key Establishment

In this part, we describe reliable message transmission (RMT), secure message
transmission (SMT), and secret key establishment (SKE) over a discrete mem-
oryless setup. In RMT, either Alice or Bob wants to send a message reliably
to the other party; however, the message is not required to be kept secure from
Eve. We use forward (or backward) direction to mention the direction of message
transmission from Alice to Bob (or vice versa). An RMT protocol may proceed
in multiple rounds possibly to achieve higher transmission rates.

Definition 2 (Reliability capacity). For real constants R ≥ 0 and δ > 0, an
RMT protocol, Π, in a discrete memoryless setup, S, is called (R, δ)-reliable if
it allows the sender to send a K-bit uniform message M (for large enough K),
where the receiver receives M̂ and the following holds

reliability: Pr(M = M̂) ≥ 1− δ. (2a)

rate:
K

CostSΠ
≥ R− δ. (2b)

The forward (resp. backward) reliability capacity of the setup S is the largest
R ≥ 0 such that, for any arbitrarily small δ > 0, there exists an (R, δ)-reliable
forward (resp. backward) RMT protocol. The maximum reliability capacity CS

m

is the maximum of the forward and the backward reliability capacities.

Secure message transmission is an extension of the above when the message is
required to remain secure given Eve’s view of the communication.

Definition 3 (Secrecy capacity). For real constants Rs ≥ 0 and δ > 0,
a SMT protocol, Π, as in Definition 2 is called (Rs, δ)-weakly, respectively, -
strongly secure if in addition to (2), the following holds

weak secrecy: H(M |V iewE) ≥ K(1− δ), (3)

respectively,

strong secrecy: H(M |V iewE) ≥ K − δ, (4)

where V iewE is Eve’s view of the communication. The weak/strong forward/
backward secrecy capacity of the setup S, respectively denoted by CS

wfs, C
S
wbs,

CS
sfs, and CS

sbs, is the largest Rs ≥ 0 such that, for any arbitrarily small δ > 0,
there exists an (R, δ)-weakly/strongly forward/backward SMT protocol.

In secret key establishment, Alice and Bob use the resources to generate random
variables SA and SB over a set S, as the key estimates, in a reliable and secure
way: the reliability means that SA = SB with high probability and the security
requires Eve’s view V iewE not to reveal information about SA (or SB).

Equality of Weak and Strong Capacities 85

Definition 4 (Weak SK capacity). For real constants Rs ≥ 0 and δ > 0,
a SKE protocol, Π, in a discrete memoryless setup, S, is called (Rs, δ)-weakly-
secure if it results in SA, SB, and V iewE as defined above such that it holds

reliability: Pr(SA = SB) ≥ 1− δ. (5a)

weak secrecy: H(SA|V iewE) ≥ H(SA)(1− δ), (5b)

randomness: H(SA) ≥ CostSΠ(Rs − δ), (5c)

The weak secret key (SK) capacity, CS
wsk, is the largest Rs such that, for any

arbitrarily small δ > 0, there exists an (Rs, δ)-weakly-secure SKE protocol.

Definition 4 has two weaknesses. The first is the key randomness: (5c) does not
require the key to be even close to uniform. The second weakness is the secrecy:
(5b) requires Eve’s uncertainty about the key to be arbitrarily small, only in
rate. Uniformity is partially addressed in Definition 5.

Definition 5 (Uniform SK capacity). The SKE protocol Π in Definition 4
is called (Rs, δ)-uniformly-secure if in addition to (5a)-(5c) it holds that

uniformity: H(SA) ≥ log |S| − δCostSΠ . (6)

The uniform SK capacity, CS
usk, is the largest Rs such that, for any arbitrarily

small δ > 0, there exists an (Rs, δ)-uniformly-secure SKE protocol.

We define strongly-secure protocols that satisfy stronger uniformity and secrecy
conditions: (i) the key SA ∈ S is perfectly uniform and (ii) the secrecy condition
is on Eve’s absolute uncertainty, rather than the rate.

Definition 6 (Strong SK capacity). A SKE protocol Π, as in Definition 4,
is called (Rs, δ)-strongly-secure the following holds

reliability: Pr(SA = SB) ≥ 1− δ. (7a)

strong secrecy: H(SA|V iewE) ≥ H(S)− δ, (7b)

strong uniformity: H(SA) = log |S| ≥ (Rs − δ)CostSΠ . (7c)

The strong SK capacity, CS
ssk, is the largest Rs such that, for any arbitrarily

small δ > 0, there exists an (Rs, δ)-strongly-secure SKE protocol.

2.3 Main Results

Definition 3 trivially implies that strong secrecy in message transmission implies
weak secrecy. Similarly, one can observe from Definitions 4-6 that strong security
in SKE implies uniform security, which itself implies weak security.

86 H. Ahmadi and R. Safavi-Naini

Proposition 1. For any discrete memoryless setupS, an (Rs, δ)-strongly-secure
SMT protocol with at least one message bit is (Rs, δ)-weakly-secure, implying

CS
sfs ≤ CS

wfs and CS
sbs ≤ CS

wbs.

Proposition 2. For any discrete memoryless setup S, any (Rs, δ)-uniformly-
secure SKE protocol is (Rs, δ)-weakly-secure and any (Rs, δ)-strongly-secure SKE
protocol (with at least one key bit) is (Rs, δ)-uniformly-secure. This implies that

CS
ssk ≤ CS

usk ≤ CS
wsk.

In the rest of the paper, we acquire conditions that allow us to write the above
inequalities in the opposite direction. The ultimate results of this paper are the
following two theorems.

Theorem 1. For any discrete memoryless setup S, the weak and strong SK
capacities are equal if the setup allows for reliable transmission in at least one
direction, i.e., CS

m > 0.

Theorem 2. For any discrete memoryless setup S, the weak and strong (for-
ward or backward) secrecy capacities are equal if the setup allows the sender to
use randomness.

3 Preliminaries

We define the main concepts and primitives used in our proofs. We start by
typical sequences whose occurrence probability is close to a typical probability.

Definition 7. [8, Chapter 3] For ε > 0, integer n > 0, and distribution PX

over the set X , the sequence xn is called ε-typical with respect to PX if

|nH(X) + logP (xn)| ≤ nε, where P (xn) =

n∏
i=1

PX(xi).

Consider a source that generates independently and identically distributed (i.i.d.)
symbols according to a certain distribution. Lemma 1 shows that the source out-
put is, with high probability, a typical sequence as its length increases.

Lemma 1. [8, Chapter 3] Let Xn be a random sequence of length n which
is drawn i.i.d. according to the probability distribution PX . For any ε > 0, for
sufficiently large n > 0, the sequence Xn is, with probability at least 1 − ε, an
ε-typical sequence with respect to PX .

The following, which is a straightforward simplification of [15, Lemma 6], shows
a somehow similar result about the min-entropy of i.i.d. sequences.

Lemma 2. For any joint distribution PXZ , let X
n and Y n be drawn i.i.d. ac-

cording to PXZ . For any ε > 0, for sufficiently large n, there exists an event E
such that Pr(E) ≥ 1− ε/n, and furthermore, for all z ∈ Zn,

H∞(Xn|Zn = z, E) ≥ n (H(X |Y)− ε) .

Equality of Weak and Strong Capacities 87

Strengthening the notion of security from weak to strong includes two funda-
mental concepts, namely information reconciliation and privacy amplification.
Information reconciliation can be attained by sending error-correction informa-
tion from a universal family of hash functions.

Definition 8. [6] A family H of hash functions h : X → Y is called universal
if, for any x1 and x2 in X , the equality h(x1) = h(x2) happens with probability
1/|Y| when h(.) is chosen uniformly at random from H.

Lemma 3. [15] Let Xn and Y n be random sequences of length n drawn i.i.d.
according to the joint probability distribution PX,Y . For any ε > 0, for sufficiently
large n > 0, L = (1+ ε)nH(X |Y), and any universal family H of functions from
Xn to {0, 1}L, there exists a function h ∈ H such that Xn can be decoded from
Y n and h(Xn) with error probability at most ε.

Privacy amplification is the task of compressing a weakly-secure key to strongly-
secure key. This purpose can be achieved by a (seeded) extractor.

Definition 9. [17] For positive integer k and positive ε, a function Ext :
{0, 1}n × {0, 1}d → {0, 1}r is called a (k, ε)-extractor if, for any random vari-
able X ∈ {0, 1}n with H∞(X) ≥ k, it holds ‖ Ext(X,Ud) − U r ‖s≤ ε, where
U l is an independent uniform distribution over {0, 1}l. The function is called a
(k, ε)-strong-extractor if ‖ [Ud, Ext(X,Ud)]− Ud+r ‖s≤ ε.

Definition 9 relies on the existence of a uniform random seed. Not all discrete
memoryless setups provide users with uniform randomness. Hence, we apply
two-source extractors that extract strongly-secure keys from two independent
weakly-secure keys. We also recall a recent result on their constructions.

Definition 10. [7] For positive integers k1, k2 and positive ε, a function TExt :
{0, 1}n1 × {0, 1}n2 → {0, 1}r is called a (k1, k2, ε)-two-source-extractor if, for
any two independent random variables X1 ∈ {0, 1}n1 with H∞(X1) ≥ k1 and
X2 ∈ {0, 1}n2 with H∞(X2) ≥ k2, it holds ‖ TExt(X1, X2)− U r ‖s≤ ε.

Lemma 4. [12] For any choice of parameters n > 0, 0 < k1 ≤ n, 0 < k2 ≤ n,
and ε > 0 that satisfy k1 + k2 ≥ n + Ω(polylog(n/ε)), there exists an efficient
(k1, k2, ε)-two-source-extractor, TExt : {0, 1}n × {0, 1}n → {0, 1}r, with

r = max(k1, k2) + k1 + k2 − n− 4 log(1/ε).

To convert a weakly-secure SMT protocol to a strongly-secure one, we use ex-
tractor inverters, defined as follows.

Definition 11. For a two-source extractor TExt : {0, 1}n1×{0, 1}n2 → {0, 1}r,
its inverter is a deterministic function Inv : {0, 1}ρ × {0, 1}r → {0, 1}n1 ×
{0, 1}n2 with ρ = n1 + n2 − r such that for Rnd uniform over {0, 1}ρ, the
random variable Inv(Rnd, Y) is uniformly selected from the set {(X1, X2) ∈
{0, 1}n1 × {0, 1}n2 : TExt(X1, X2) = Y }.

88 H. Ahmadi and R. Safavi-Naini

4 Proof of Theorem 1: Weak to Strong SK Capacity

Similarly to Maurer and Wolf’s approach [15], we divide the proof in two phases:
(1) the equality of weak and uniform SK capacities and (2) the equality of
uniform and strong capacities.

4.1 Equality of Weak and Uniform SK Capacities

The first phase of the proof exactly follows the MW approach [15, Lemma 5]
in constructing, for arbitrarily small δ > 0, an (Rs, δ)-uniformly-secure SKE
protocol Πu by using an (Rs, δ

′)-weakly-secure protocol Πw (for suitably small
δ′). The protocol Πu is obtained roughly by repeating the protocol Πw inde-
pendently many times to get sequences of i.i.d. secret keys, and accept these
sequences only if they are ε-typical with respect to the output distribution of
Πw, for suitably small ε > 0 (determined from δ). The protocol Πu is proved to
be uniformly-secure and to have the same rate as that of Πw. This proof does
not depend on any communication resources (sources/channels) in addition to
those required repeatedly for executing the weakly-secure protocol Πw.

Lemma 5. [15, Lemma 5] For any discrete memoryless setup S, the weak and
uniform SK capacities are equal, i.e., CS

wsk = CS
usk.

4.2 Equality of Uniform and Strong SK Capacities

The equality means for any δ > 0, there exists a (CS
usk, δ)-strongly-secure proto-

col Πs. The MW approach [15] to show this for setups in [9,14,21] constructs Πs

by using a (CS
usk, δ

′)-uniformly-secure protocol Πu for suitably small δ′ > 0. The
construction is in four steps: (i) independent repetition of Πu, (ii) information
reconciliation, (iii) privacy amplification, and (iv) uniformization.

Our method of constructing Πs is similar to the above except for step (iii),
privacy amplification, where we use a (deterministic) two-source extractor in
place of the seeded extractor. We denote the keys returned by the (CS

usk, δ
′)-

uniformly-secure protocol Πu by SuA ∈ Su for Alice and SuB ∈ Su for Bob.
We also use VuE to denote Eve’s view of this protocol. Let K = log |Su|, N
be a sufficiently integer, and L and r be integers such that L ≤ δ1NK and
r ≥ 2NK(1− δ4), for sufficiently small δ1, δ4 as mentioned in Appendix A.

Step (i): Independent Repetition. Alice and Bob repeat Πu over the setup
S independently 2N times. This results in the pairs of independent sequences
(SN

uA1, S
N
uA2) for Alice, (SN

uB1, S
N
uB2) for Bob, and the view (V N

uE1, V
N
uE2) for Eve.

* This step requires resources for 2N repetition of Πu that costs 2NCostSΠu
.

Step (ii): Information Reconciliation. Either party finds suitable functions
h1 and h2 from a universal family of hash functions H : SN

u → {0, 1}L, applies h1

and h2 to their pair of sequences and sends the outputs reliably (not securely) to
the other party. This additional information lets the parties come up with equal

Equality of Weak and Strong Capacities 89

pairs of sequences with high probability. For instance, Alice can find functions
h1 and h2 in H such that the knowledge of (h1(S

N
uA1), h2(S

N
uA2)) together with

(SN
uB1, S

N
uB2) can be used to obtain (SN

uA1, S
N
uA2) with high probability. We de-

note by (S′N
uA1, S

′N
uA2) and (S′N

uB1, S
′N
uB2) the sequences owned by Alice and Bob at

the end of this step, respectively. We also use (VrE1, VrE2) to denote Eve’s view
of the information reconciliation step for the two key sequences, respectively.
* This step requires resources for transmission of 2L bits reliably in either direction.

Step (iii): Privacy Amplification. Let Bin : SN
u → {0, 1}n, where n =

	NK
, be an injective binary mapping function. Alice calculates the n-bit strings
S̃A1 = Bin(S′N

uA1) and S̃A2 = Bin(S′N
uA2), and Bob calculates S̃B1 = Bin(S′N

uB1)
and S̃B2 = Bin(S′N

uB2). Alice and Bob apply the two-source extractor TExt :
{0, 1}n×{0, 1}n → {0, 1}r of Lemma 4 on their n-bit strings to extract strongly-
secure keys over the set S = {0, 1}r. Alice calculates S̃A = TExt(S̃A1, S̃A2) and
Bob calculates SB = TExt(S̃B1, S̃B1). Eve’s overall view of this protocol is
denoted by V iewE = (V N

uE1, V
N
uE2, VrE1, VrE2).

Step (iv): Uniformitarian.. Alice obtains SA by sending S̃A over a prob-
abilistic channel, with uniform distribution PSA|S̃A

, that minimizes the error

probability Pr(SA �= S̃A) over all such distributions.

Appendix A shows that Πs is a (CS
usk , δ)-strongly-secure protocol for arbitrarily

small δ > 0. The requirement for the proof is that the reliability capacity CS
m be

positive, since the construction requires to send 2L information bits reliably in
one direction. Combining Lemmas 5 and 6 completes the proof of Theorem 1.

Lemma 6. Let the maximum reliability capacity CS
m be positive. For any δ > 0,

the protocol Πs, constructed as above, is a (CS
usk, δ) strongly-secure SKE protocol

for the setup S, implying CS
ssk = CS

usk.

Proof. See Appendix A.

Remark. Another approach to privacy amplification (step (iii)) without requir-
ing randomness is to applying a deterministic (one-source) extractor. Assuming
that the output distribution of the uniformly-secure SKE protocol is known, one
can use deterministic extractors whose existence has been proved (cf. [10, Corol-
lary 17.5]). The use of two-source extractors in the above is preferred as they are
constructive and do not assume any knowledge about the distribution of SuA,
SuB, and VuE except those implied by the protocol definition.

5 Proof of Theorem 2: Weak to Strong Secrecy Capacity

We show this equality for the forward (Alice-to-Bob) direction of SMT; the
backward direction can be shown similarly. Let CS

wfs be the weak forward secrecy
capacity of the setup S. We give a four-step construction that for any δ > 0,
gives a (CS

wfs, δ)-strongly-secure forward SMT protocolΠs by using a (CS
wfs, δ

′)-
weakly-secure forward SMT protocol Πw for sufficiently small δ′.

90 H. Ahmadi and R. Safavi-Naini

Similarly to Section 4.2, let K and N be sufficiently large integers and L ≤
δ1NK and r ≥ 2NK(1 − δ4) be integers as chosen in Appendix A. Let Πw

be capable of sending K bits of information from Alice to Bob, M ∈ {0, 1}r
be the message to be sent by Πs, and the function Inv : {0, 1}ρ × {0, 1}r →
{0, 1}n × {0, 1}n, where n = NK and ρ = 2n − r, be the inverter for the two-
source extractor TExt : {0, 1}n × {0, 1}n → {0, 1}r of Lemma 4.

Step (i): Message Expanding. Alice expands the message M to (SA1, SA2) =
Inv(Rnd,M), where Rnd ∈ {0, 1}ρ is uniformly random.
* This step requires resources for ρ uniform bits, where ρ = 2NK − r ≤ 2NKδ4.

Step (ii): Split and Sent. Alice splits SA1 and SA2 into N independent K-bit
pieces, (SA1,i)

2
i=1 and (SA2,i)

N
i=1, and sends each piece independently using the

weakly-secure protocol Πw. Bob obtains message estimates SB1 = (SB1,i)
N
i=1

and SB2 = (SB2,i)
N
i=1. Eve’s view of this is (VE1, VE2) = (VE1,i, VE2,i)

N
i=1.

* This step requires resources for 2N repetition of Πw that costs 2NCostSΠw
.

Step (iii): Information Reconciliation. Alice finds error-correction functions
h1 and h2 from a universal family of hash functions H : {0, 1}n → {0, 1}L. She
calculates h(SA1) and h(SA2), and sends them reliably to Bob. Bob uses these
to decode (SB1, SB2) into (ŜA1, ŜA2). Eve’s view of this is (VrE1, VrE2).
* This step requires reliable transmission of 2L bits, which costs at most 2LCostSΠw

.

Step (iv): Message Extraction. Bob calculates M̂ = TExt(ŜA1, ŜA2).

Proving this construction is strongly-secure requires the setup to allow local
randomness for Alice to use in step (ii), message expansion. The proof is very
similar to that of Appendix A for SKE; hence, omitted from the paper.

6 Concluding Remarks

Maurer and Wolf [15] proved the equality of weak and strong SK capacities for
the setups in [1,9,14,21]. Their approach can also be applied to a general discrete
memoryless setup as long as the following two conditions hold: (1) randomness
is accessible, and (2) reliable transmission is possible. We have modified this
approach and proved the above equality only requiring condition (2). We have
also provided a proof for the equality of the weak and strong secrecy capacities
in SMT, where we require condition (1). This shows a duality between SMT
and SKE (see Table 1). In both cases, we have not shown whether these derived
conditions are necessary. In the following, we argue against their necessity.

We argue that the condition of Theorem 1 is not always necessary. A trivial
counterexample is a multiple-source (XA,XB,XE) with per-use cost of 1 and
distribution PXA,XB ,XE that generates XA = XB for Alice and Bob as well as
XE for Eve such that H(XA|XE) = c for some constant c > 0. The setup has
zero reliability capacity as there is no communication channel. However, Alice
and Bob can establish a strongly-secure key of rate c by generating many source

Equality of Weak and Strong Capacities 91

Table 1. The requirements for proving the equality of capacities

Requirement MW approach Our approach Our approach
(SK capacity) (SK capacity) (Secrecy capacity)

Randomness access required - required

Reliable transmission required required -

outputs and applying a two-extractor. It is easy to show that both weak and
strong SK capacities equal c. Similarly, the condition of Theorem 2 is not always
necessary. Consider a scenario where Alice is connected to Bob through a one-
way noisy channel that does not leak to Eve. Alice can send a message to Bob
using deterministic coding and without requiring randomness. Both weak and
strong secrecy capacities in this case equal the channel (reliability) capacity.

It is interesting to know whether there are non-trivial setups for which these
conditions are not required, and to derive necessary and sufficient conditions for
the equality of weak and strong secrecy/SK capacities.

References

1. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryp-
tography. Part I: secret sharing. IEEE Transaction on Information Theory 39,
1121–1132 (1993)

2. Ahmadi, H., Safavi-Naini, R.: Secret key establishment over a pair of indepen-
dent broadcast channels. In: International Symposium on Information Theory and
its Application, pp. 185–190 (2010); Full version on the arXiv preprint server,
arXiv:1001.3908

3. Ahmadi, H., Safavi-Naini, R.: New results on key establishment over a pair of inde-
pendent broadcast channels. In: International Symposium on Information Theory
and its Application, pp. 191–196 (2010); Full version on the arXiv preprint server,
arXiv:1004.4334v1

4. Ahmadi, H., Safavi-Naini, R.: Common Randomness and Secret Key Capacities of
Two-Way Channels. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 76–93.
Springer, Heidelberg (2011)

5. Ahmadi, H., Safavi-Naini, R.: Secret Keys from Channel Noise. In: Paterson, K.G.
(ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 266–283. Springer, Heidelberg
(2011)

6. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

7. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing 17,
230–261 (1988)

8. Cover, T.M., Thomas, J.: Elements of information theory, 2nd edn. Wiley-IEEE
(2006)

9. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans-
action on Information Theory 24, 339–348 (1978)

10. Csiszár, I., Körner, J.: Information theory: coding theorems for discrete memoryless
systems, 2nd edn., Cambridge (2011)

92 H. Ahmadi and R. Safavi-Naini

11. Csiszár, I., Narayan, P.: Common randomness and secret key generation with a
helper. IEEE Transaction on Information Theory 46, 344–366 (2000)

12. Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved Randomness Extraction from
Two Independent Sources. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX and RANDOM 2004. LNCS, vol. 3122, pp. 334–344. Springer,
Heidelberg (2004)

13. Khisti, A., Diggavi, S., Wornell, G.: Secret key generation with correlated sources
and noisy channels. In: IEEE International Symposium on Information Theory, pp.
1005–1009 (2008)

14. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Transaction on Information Theory 39, 733–742 (1993)

15. Maurer, U., Wolf, S.: Information-Theoretic Key Agreement: From Weak to Strong
Secrecy for Free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
351–368. Springer, Heidelberg (2000)

16. Mitrpant, C., Han Vinck, A.J., Luo, Y.: An achievable region for the Gaussian wire-
tap channel with side information. IEEE Transaction on Information Theory 52,
2181–2190 (2006)

17. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Science 52, 43–52 (1996)

18. Prabhakaran, V., Eswaran, K., Ramchandran, K.: Secrecy via sources and chan-
nels - a secret key - secret message rate trade-off region. In: IEEE International
Symposium on Information Theory, pp. 1010–1014 (2008)

19. Shannon, C.E.: Two-way communication channels. In: 4th Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, pp. 611–644 (1961)

20. Tekin, E., Yener, A.: The general Gaussian multiple access channel and two-way
wire-tap channels: achievable rates and cooperative jamming. IEEE Transactions
on Information Theory 54, 2735–2751 (2008)

21. Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54, 1355–1367
(1975)

A Proof of Lemma 6: Analyzing Πs

Prerequisites.We shall show that the protocolΠs is a (C
S
usk , δ)-strongly-secure

SKE protocol, i.e., it satisfies reliability, strong secrecy, and strong uniformity as
in Definition 6. The following analysis is given assuming that “Alice” sends the
2L bits of information for reconciliation. Similar analysis works when Bob sends
information reconciliation bits. Using the reliability property of Πu, we write

∀1 ≤ i ≤ N, 1 ≤ j ≤ 2 : Pr(SuAj,i �= SuAj,i) ≤ δ′.

Fano’s inequality (cf. [8, Ch 2]) and the independence of Πu repetitions give us

∀1 ≤ j ≤ 2 : H(SN
uAj |SN

uBj) ≤ N (δ′K + 1) .

We combine the above with Lemma 3 to reach the following. For any δ1 > 0, by
choosing ε1 sufficiently small, there exists L satisfying

L ≤ (1 + ε1)N (δ′K + 1) ≤ δ1NK, (8)

for which information reconciliation succeeds with probability ≥ 1− 2ε1, i.e.,

Equality of Weak and Strong Capacities 93

Pr(S′N
uA1 = S′N

uB1) ≥ 1− ε1 and Pr(S′N
uA2 = S′N

uB2) ≥ 1− ε1. (9)

The secrecy and uniformity properties of Πu (see (5b) and (6)) imply

∀1 ≤ i ≤ N, 1 ≤ j ≤ 2 : H(SuAj,i|VuEj,i) ≥ (1 − δ′)
(
K − δ′CostSΠu

)
. (10)

Strong Secrecy: Proving (7b). Eve’s view V iewE of the protocol originates
from the first two steps of the above construction, where resources in the setup
are used. In step (i), she observes (V N

uE1, V
N
uE2). We use Lemma 2, with ε2 in

place of ε, for the following. Let ε2 ≤ 1/(NK2) so that the event Ej holds with
probability Pr(Ej) ≥ 1− ε2 ≥ 1− 1

NK2 . From the lemma, for all views vj ,

H∞(S̃jA|V N
uEj = vj , Ej) (a)

= H∞(SN
uAj |V N

uEj = vj , Ej)
(b)

≥ N
(
(1− δ′)(K − δ′CostSΠu

)− ε2
)

≥ NK(1− δ2), (11)

for some δ2 > 0 that can be made arbitrarily small based on δ′ and ε2 when N
and K are sufficiently large. Equality (a) is due to the injective binary mapping
function and inequality (b) follows from (10) and Lemma 2.

In step (ii), Eve observes the independent variables VrEj , for 1 ≤ j ≤ 2, each
of which reveals some information about the information reconciliation (error-
correction) bits hj(S

N
uAj). This implies the Markov chain VrEj ↔ hj(SuAj,i) ↔

(SN
uAj , V

N
uEj), which lets us write the following. For any instance of Eve’s view

v′j there exists an L-bit string w such that, for ε3 > 0 and 1 ≤ j ≤ 2, we have

H∞(S̃jA|V N
uEj = vj , VrEj = v′j , Ej) ≥ H∞(S̃jA|V N

uEj = vj , hj(S
N
uAj) = w, Ej)

(a)

≥ H∞(S̃jA|V N
uEj = vj , Ej)− L− ε3 (with prob. ≥ 1− 2−ε3)

(b)

≥ NK(1− δ1 − δ2)− ε3 (with prob. ≥ 1− 2−ε3).

Inequality (a) follows from a trivial property of the min-entropy function (cf.
[15]), and inequality (b) is due to (8), (11), and Lemma 3. We continue, by
choosing ε3 = log(NK2), which leads to

H∞(S̃jA|V N
uEj = vj , VrEj = v′j , Ej) ≥ NK(1− δ3) (with prob. ≥ 1− 1

NK2),

for arbitrarily small δ3 > 0, by choosing N and K sufficiently large. The above
inequality shows that, with high probability for any instance of Eve’s view, each
S̃jA is arbitrarily close to uniform in rate. Applying the two-source extractor
makes the output arbitrarily close to uniform in terms of its absolute value. This
is shown in the following. For sufficiently small ε4 > 0, let γ = 2−ε4NK and the
extractor output length r satisfy

r = 3NK(1− δ3)−NK − 4 log(1/ε) ≥ 2NK(1− δ4),

94 H. Ahmadi and R. Safavi-Naini

for δ4 > 0 which can be made arbitrarily small by choosing N and K sufficiently
large. According to Lemma 4, the output S̃A of the two-source extractor given
V iewE = ve, E1, and E2 is γ-close to uniform with probability 1− 1

NK . Similarly
to [15, Lemma 6], the above implies

H(S̃A|V iewE = ve, E1, E2) ≥ r − 2ε4NK (with prob. ≥ 1− 1
NK2).

By taking into consideration the probabilities of E1 and E2, we arrive at

H(S̃A|V iewE) ≥ (1− 1

NK2
+ Pr(E1) + Pr(E2))(r − 2ε4NK)

≥ (1− 3

NK2
)(r − 2ε4NK) ≥ r − δ5, (12)

for δ5 < δ, by choosing N and K sufficiently large. This proves strong secrecy
as r = log |S|.

Reliability: Proving (7a). We first note that (12) also shows H(S̃A) ≥ r −
δ5, i.e., the absolute entropy of S̃A can be made arbitrarily close to uniform.
Similarly to [15], the uniformization step converts S̃A to a completely uniform

variable SA with error probability Pr(SA �= S̃A) ≤ ε5 for arbitrarily small ε5 > 0.
The following steps eventually prove the reliability property by using (9).

Pr(SA �= SB) ≤ Pr(SA �= S̃A ∨ S̃A �= SB) ≤ Pr(SA �= S̃A) + Pr(S̃A �= SB)

≤ Pr(SA �= S̃A) + Pr(S′N
uA1 �= S′N

uB1) + Pr(S′N
uA2 �= S′N

uB2) ≤ ε5 + 2ε1 < δ,

for appropriately small ε1 and ε5 when N and K are sufficiently large.

Strong Uniformity: Proving (7c). The protocol Πs provides r-bit secret
key. Obviously perfect uniformity holds as SA is uniformly distributed thanks
to the uniformization step. The rest is to analyze the key rate and show that it
is arbitrarily close to the uniform SK capacity CS

usk. Before all, note that the
protocol Πu satisfies the randomness condition (5c), i.e., K/CostSΠu

≥ CS
usk−δ′.

The cost CostSΠs
of the protocol Πs equals those of steps (i) and (ii), i.e.,

2NCostSΠu
plus the cost of sending 2L information bits by either party. We

note that other steps do not use any communication resource and hence have no
effect on the total cost. We recall from Definition 2 that, for any ε6 > 0 and large
enough N and K (hence L), there exists a protocol that send 2L information
bits in either (forward or backward) direction with error probability ε6 and cost
at most 2L

CS
m−ε6

. The SK rate achieved by the protocol Πs is obtained as follows.

H(SA)

CostSΠs

=
r

CostSΠs

≥ 2NK(1 − δ4)

2NCostSΠu
+ 2L/(CS

m − ε6)
≥ 2NK(1− δ4)

2NCostSΠu
+ 2δ1NK/(CS

m − ε6)

≥ CostSΠu
(CS

usk − δ′)(1− δ4)

CostSΠu
+ δ1CostSΠu

CS
usk/(C

S
m − ε6)

=
(CS

usk − δ′)(1− δ4)

1 + δ1CS
usk/(C

S
m− ε6)

≥ CS
usk(1− δ),

The last inequality is attained by choosing ε6, δ1, δ4, and δ′ suitably small for
sufficiently large N and K. This proves that the strong SK capacity equals to
the uniform SK capacity.

COMPASS: Authenticated Group Key

Agreement from Signcryption

Nick Mailloux1, Ali Miri1,2, and Monica Nevins1

1 Department of Mathematics and Statistics
University of Ottawa, Ottawa, ON, Canada

nickmailloux@gmail.com, mnevins@uottawa.ca
2 Department of Computer Science

Ryerson University, Toronto, ON, Canada
Ali.Miri@ryerson.ca

Abstract. In this paper, we propose a new authenticated group key
agreement protocol that uses identity-based signcryption to achieve the
optimal communication complexity of a single broadcast message per
member in a single round of communication, set by Becker and Wille.
Our protocol is provably secure in the random oracle model, provided
that the signcryption scheme is secure. By choosing a signcryption
scheme that satisfies some additional criteria, our protocol provides key
integrity in an efficient manner.

Keywords: Authenticated group key agreement, communication effi-
ciency, identity-based cryptography, key integrity, signcryption.

1 Introduction

Communication efficiency is one of the fundamental goals in the design of group
key agreement (GKA) protocols. Our main concern is to reduce the number of
rounds of communication, while also reducing the number of broadcast messages
that must be sent and received by group members in each round. [4] derived lower
bounds of n broadcast messages in only a single round of communication for con-
tributory group key agreement protocols, wheren is the size of the multicast group.

[6] proposed an efficient group key agreement protocol in which the multicast
group consists of a group of responders, that broadcast their key contributions
in the clear, and a distinguished group leader, that sends her secret contribution
to each responder in some confidential and authenticated manner. The group
session key is computed using the public contributions of the responders and the
secret contribution of the group leader. This type of protocol is often referred to
as a computationally asymmetric group key agreement protocol, since each group
member contributes equally to the session key, but most of the computational
burden is shifted to the group leader.

Prior to the work of [27], confidentiality and authentication were solely pro-
vided by encryption and signature schemes, respectively. Zheng proposed a
new cryptographic primitive known as signcryption, that provides both confi-
dentiality and authentication at a lower cost than the sequential composition of

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 95–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

96 N. Mailloux, A. Miri, and M. Nevins

encryption and signature schemes. However, [1] suggested that efficiency may
not be our only concern when designing such a scheme and proposed that the
term signcryption refer to any secure scheme that provides both confidentiality
and authentication in the public key setting.

Around the same time, [5] proposed the first practical and provably-secure
identity-based encryption (IBE) scheme. Identity-based cryptography, proposed
by [21], simplifies the issue of certificate management in the public key setting
by allowing Alice’s public key to be any string that uniquely identifies her,
such as an email address. This approach requires a trusted third party, known
as the private key generator (PKG), to generate the public system parameters
and distribute the private keys corresponding to each user’s identity using some
master secret key. As a result, there is no need for a certificate authority (CA) to
issue digital certificates binding Alice’s public key to her identity. This quality is
particularly convenient for the purposes of signcryption, since Bob can decrypt
and verify the authenticity of Alice’s ciphertext without communicating with a
third party. Consequently, a better part of the signcryption schemes proposed
in the literature are based on some identity-based public key infrastructure (ID-
PKI), such as the schemes from [3,8,13,24].

1.1 Our Contribution

In this paper, we propose a computationally asymmetric authenticated group
key agreement (AGKA) protocol that achieves the optimal level of communi-
cation efficiency set in [4]. Our protocol requires the responders to publicly
broadcast their signed key contributions, while the group leader uses signcryp-
tion to transport her secret key contribution in a confidential and authenticated
manner. Consequently, we refer to our protocol as the COMPutationally Asym-
metric Signcryption Scheme based AGKA protocol, or the COMPASS protocol
for short. We reduce the security of the protocol to the confidentiality and
unforgeability of the signcryption scheme in the random oracle model.

While any secure signcryption scheme may be used in the COMPASS protocol,
we choose an identity-based signcryption scheme for two reasons in particular.
Firstly, since signcryption schemes thrive in an identity-based environment, this
will produce the most efficient protocol. Secondly, since many of the signcryp-
tion schemes from the literature are based on an ID-PKI, we have a wealth of
schemes to choose from. Furthermore, to produce the most efficient and secure
protocol as possible, we choose an identity-based signcryption scheme that sat-
isfies some specific properties in terms of scalability and signature verifiability.
These properties also allow us to provide many of the strong contributory prop-
erties proposed in [2], such as verifiable contributiveness and key integrity, which
will be discussed further in Section 2.3.

1.2 Related Work

[7] proposed the first provably-secure group key agreement protocol that meets
the lower bound of [4]. Similar to the COMPASS protocol, their protocol takes a

COMPASS: Authenticated Group Key Agreement from Signcryption 97

computationally asymmetric approach to group key agreement. However, their
protocol is less efficient, in part because they require the group leader to use
separate encryption and signature schemes to securely transport her secret key
contribution to the responders. In addition, their protocol was shown to be
vulnerable to unknown key share attacks by [16].

Recently, [26] proposed a provably-secure one round asymmetric AGKA, in
which messages are encrypted using a publicly computable encryption key. They
use the term asymmetric in a different context, to refer to the fact that each user
has their own secret decryption key. Other recent AGKA protocols can be found
in [11] and [18].

The notion of using signcryption schemes in group key establishment has
been considered before. Shortly after introducing signcryption to the crypto-
graphic community, [28] proposed the idea of using signcryption schemes for
authenticated key establishment. They presented several different protocols for
signcryption-based key distribution and key agreement, including one for the
case of multicast group communication. However, their protocol requires a group
leader to choose a session key and signcrypt it for each responder, taking a dis-
tributive approach to key establishment. To the best of our knowledge, the
COMPASS protocol is the first efficient and secure AGKA protocol that can be
implemented using any secure signcryption scheme.

1.3 Organization of the Paper

The structure of this paper is as follows: In Section 2, we provide some prelim-
inary definitions, including definitions of identity-based signature and signcryp-
tion schemes and the formal model used to prove the security of the COMPASS
protocol. In Section 3, we define several desirable properties of signcryption
schemes and their effect on our protocol. We present the proposed COMPASS
protocol and compare the communication efficiency to other GKA protocols in
Section 4. In Section 5, we provide a formal proof of the security of our pro-
tocol. In Section 6, we provide a concrete example to illustrate the COMPASS
protocol using an identity-based signcryption scheme from the literature, and
discuss some open problems and future work in Section 7.

2 Preliminaries

2.1 Identity-Based Signcryption

An identity-based public key infrastructure (ID-PKI), such as that of [5], sim-
plifies the management of public key certificates and is the ideal setting for
the COMPASS protocol. Furthermore, it is both efficient and convenient to use
identity-based signature and signcryption schemes that employ the same ID-PKI
in the COMPASS protocol. We formally define the concepts of identity-based
signature and signcryption schemes here.

98 N. Mailloux, A. Miri, and M. Nevins

Definition 1. An identity-based signature scheme S is characterized by three
randomized algorithms Setup, Extract and Sign, and a deterministic algorithm
Verify. They are described as follows:

– Setup(�): Given a security parameter �, a trusted authority known as the
private key generator (PKG) generates the pair 〈msk, params〉 at random,
where msk is the master secret key, known only to the PKG, and params
refer to the public system parameters. These parameters include a global
public key Ppub.

– Extract(params,msk, ID): Upon input of params, the master secret key msk
and an identity string ID ∈ {0, 1}∗, the PKG returns the private signing key
dID corresponding to the user ID.

– Sign(params,dID,m): Upon input of params, the signer’s private signing key
dID and a plaintext message m ∈ M, the algorithm returns the signature σ.

– Verify(params, ID,m, σ): Upon input of params, the public key ID and a sig-
nature σ, the algorithm returns if σ is a valid signature by the sender ID
on the message m and ⊥, otherwise.

The above algorithms must satisfy the standard consistency constraint that,
given a signature σ = Sign(params, dID,m), we have = Verify(params, ID,m, σ).

Definition 2. An identity-based signcryption scheme SC consists of three ran-
domized algorithms Setup, Extract and Sign/Encrypt, and one deterministic algo-
rithm Decrypt/Verify. The algorithms Setup and Extract comprising the ID-PKI
are as defined in Definition 1. The remaining algorithms are described as fol-
lows:

– Sign/Encrypt(params,dA, IDb,m): Upon input of params, the private key dA
of the sender A, the identity IDB of the recipient B and a plaintext message
m ∈M, the algorithm returns the signcrypted ciphertext c.

– Decrypt/Verify(params,dB, IDA, c): Upon input of params, the private key dB
of the recipient B, the identity IDA of the sender A and the signcrypted
ciphertext c, the algorithm returns the messagem if c decrypts into a message
bearing A’s signature, or ⊥ otherwise.

The above algorithms must satisfy the standard consistency requirement that,
given a ciphertext c = Sign/Encrypt(params, dA, IDB, m), we have that m =
Decrypt/Verify(params, dB , IDA, c).

2.2 Group Communication Model

We use the model of [9], which is the conventional model for authenticated group
key establishment and was used to prove the security of the GKA protocol in [7].
The following definitions are adapted from [9] to reflect the use of an ID-PKI.

COMPASS: Authenticated Group Key Agreement from Signcryption 99

Participation. We assume there is a fixed set of potential participants U =
{U0, U1, ..., Uη}, where the number of users is polynomial in the security param-
eter �. Each participant Ui ∈ U is associated with a unique identity IDi ∈ {0, 1}∗.
The model allows different instances of a user, known as oracles, to be involved in
distinct, but possibly concurrent, executions of the protocol. We denote instance
α of a particular user Ui by Π α

i and of a general user U by Π .

Initialization. Before the protocol is initialized, the PKG generates the global
parameters params and master secret key msk using the Setup algorithm. After-
wards, the PKG issues a public/private key pair to each user Ui ∈ U using the
Extract algorithm. We assume that the public key set is known by all partici-
pants.

Adversarial Model. We allow the adversary A to control all communication
between instances of users. While interacting with the various instances, we
allow the adversary to have certain capabilities that correspond to real world
abilities or attacks. We model these capabilities by allowing the adversary to
issue the following queries:

– Extract(Ui): Returns the private key di of user Ui obtained from the Extract
algorithm.

– Send(Π α
U ,M): Sends the message M to instance α of user U and returns the

response generated by the oracle.
– Execute(Ui1 , ..., Uin): Executes the protocol for a group of users {Ui1 , ..., Uin},

chosen by the adversary, and returns the transcript of the execution.
– Reveal(Π α

U): Returns the session key K if oracle Π α
U has accepted the session

key.
– Corrupt(U): Returns the private key dU of user U , but does not reveal any

internal data of any instance of U .
– Test(Π α

U): Models the semantic security of a session key and may only be
asked once. It generates a random bit b ∈ {0, 1}. Oracle Π α

U returns the
session key K if b = 1 and a random session key if b = 0.

The security model allows for both passive and active adversaries. A passive
adversary is given access to the Extract,Execute,Reveal,Corrupt and Test queries.
An active adversary is additionally given access to the Send query.

2.3 Security Definitions

Partnering. In our protocol, every message is broadcast to all users in the
session. As a result, we define the notion of partnering as it is given in [9], using
session IDs and partner IDs. A session ID for an oracle Π α

U is denoted sidαU
and is equal to the concatenation of all messages that are sent and received by
instance Π α

U in the execution of the protocol. A partner ID for an oracle Π α
U is

denoted pidαU and consists of the identities of all the users establishing a key in

the αth session. We say that oracles Π α
i and Π β

j are partnered if, and only if,

sidαi = sidβj and pidαi = pidβj .

100 N. Mailloux, A. Miri, and M. Nevins

Freshness. An oracle Π α
i is said to be fresh (or hold a fresh session key K) if

it satisfies the following:

1. Π α
i has accepted the session key K and the adversary did not issue

Reveal(Π α
i), or Reveal(Π β

j) for any oracle Π β
j partnered with Π α

i
2. the adversary has not issued a Corrupt query for user Ui before a query of

the form Send(Π α
i , ∗), or Send(Π β

j , ∗) for any oracle Π β
j partnered with Π α

i .

Security Game. The security of a protocolP is defined in terms of the following
game between the adversary A and an infinite set of oracles Π α

U , for U ∈ U and
α ∈ N:

– Phase 1: The adversary A issues queries defined above to the oracles. Af-
terwards, A issues the Test query to a fresh oracle Π α

i .
– Challenge: The challenger C responds with the session key Kb as per the Test

query.
– Phase 2: A continues to query the oracles, but may not issue a Corrupt query

for any user, or the Reveal query for oracle Π α
i or any oracle Π β

j partnered
with Π α

i .
– Response: The adversary outputs a guess b′ as to the value of the bit b. The

adversary wins the game if b′ = b.

We measure the adversary’s advantage in the security game by her ability to
distinguish between the session key and a random value. The advantage of A
in attacking P is defined as

AdvA,P(�) = |2 · Pr [b′ = b]− 1|
for the security parameter �.

Secure AGKA Protocol. We say that a protocol P is a secure authenticated
group key agreement protocol if it satisfies the following properties:

1. Validity: Partner oracles Π α
i and Π β

j accept the same session key in the
presence of a passive adversary A.

2. Indistinguishability: The advantage AdvA,P(�) of any probabilistic polyno-
mial time (PPT) active adversary A is negligible.

Contributory Protocols. Contributivity properties of group key agreement
protocols have been discussed in [2]. A group key agreement protocol P is said to
be contributory if each user contributes to the session key equally, ensuring that
no user can predetermine the session key. A contributory protocol P provides
group integrity if each party is assured of every other party’s participation. A
contributory protocol P provides verifiable contributiveness if each session par-
ticipant is assured of all other participants’ contributions to the session key; in
particular this implies group integrity, since assurance of a participant’s contri-
bution implies assurance of their participation. Finally, a contributory protocol
P is said to provide key integrity if each participant is assured that the session
key is a function of only the contributions of all valid participants. Clearly, key
integrity implies verifiable contributiveness.

COMPASS: Authenticated Group Key Agreement from Signcryption 101

3 Selecting a Signcryption Scheme

To produce the most efficient and secure protocol possible, we choose a sign-
cryption scheme that satisfies some specific properties. We define the various
signcryption properties here and discuss the effect each property has on the
protocol.

3.1 Multi-receiver Signcryption

A signcryption scheme provides efficient support for multiple recipients and is
known as a multi-receiver signcryption scheme, if the sender A can signcrypt
a message for a group of recipients without executing the Sign/Encrypt algo-
rithm for each individual recipient. A number of multi-receiver identity-based
signcryption schemes have been proposed in the literature. [8] showed that his
identity-based signcryption scheme can be extended to support multiple recipi-
ents, while [24] proposed an efficient multi-receiver variant of the identity-based
signcryption scheme of [13] .

Using a multi-receiver signcryption scheme, we reduce the computational costs
of the group leader in the COMPASS protocol.

3.2 S-Verifiable Signcryption

A signature scheme provides non-repudiation if the recipient of a message can
prove to a third party that the message was indeed signed by the sender. It is
more difficult to provide this property in signcryption schemes, without requiring
the recipient to divulge their long-term private key. A signcryption scheme is
said to be S-verifiable [23] for some signature scheme S, if the Decrypt/Verify
algorithm outputs a detachable signature σ for the signcrypted message that
the recipient can verify using S. For example, the identity-based signcryption
schemes of [13,24] produce a detachable signature for the identity-based signature
scheme of [12]. Since non-repudiation results from the unforgeability of S, the
detachable signature may be forwarded to a third party for verification, providing
non-repudiation in the signcryption scheme.

The property of S-verifiability is used to simplify the authentication of mem-
ber contributions in the COMPASS protocol. If the group leader uses an S-
verifiable signcryption scheme and the responders use the signature scheme S,
the detachable signature for the leader’s secret contribution and the signatures
for the responders’ public contributions can all be authenticated using the Verify
algorithm of S.

3.3 Batch Verification

Informally speaking, a signature scheme is batch verifiable if a recipient can verify
a set of signatures without executing the Verify algorithm for each individual
signature. As discussed in [17], a batch verification algorithm should detect
with high probability whether each individual signature in the batch is valid.

102 N. Mailloux, A. Miri, and M. Nevins

A number of batch-verifiable identity-based signature schemes were proposed in
[17], including a batch verifiable variation of the Cha-Cheon scheme.

Using a batch verifiable signature scheme S in the COMPASS protocol, each
member efficiently verifies the signatures of every other member at once, sub-
stantially reducing the computational costs of the protocol. Furthermore, since
each member is assured of the authenticity of every key contribution, we provide
the property of key integrity.

3.4 Multipurpose Signatures

Most signature schemes from the literature require the input of some randomized
ephemeral data, say r, and produce a signature σ containing an element X that
is authentically linked to the signer and is produced as a function of the value r.
For example, in the Cha-Cheon signature scheme, a signer with public/private
key pair (QID, dID) produces a signature of the form σ = (X,Z), where any third
party can authenticate the message using X = rQID and Z. We refer to such a
signature as a multipurpose signature with ephemeral public value X .

By using a scheme S that produces multipurpose signatures in the COMPASS
protocol, the responders can use the ephemeral public value X as their publicly
broadcast key contribution, rather than choosing a random string Ni and pro-
ducing a signature for Ni. As a result, the responder need only broadcast a single
multipurpose signature, rather than a signature and a contribution, reducing the
size of the broadcast message.

4 COMPASS Authenticated Group Key Agreement

4.1 The COMPASS Protocol

Let SC be an identity-based signcryption scheme, as given in Definition 2, pro-
viding the properties discussed in Section 3. In particular, let SC be S-verifiable
for some identity-based signature scheme S, as given in Definition 1, with batch
verification algorithm Batch.

Suppose we have group of n + 1 members U = {U0, ..., Un}, where member
U0 is the group leader and the rest of the members belong to the group of
responders R. Using the Setup and Extract algorithms of the ID-PKI, each
group member Ui ∈ U is associated with the public/private key pair (IDi, di). To
begin group communication, the group leader sends out some session identifier,
say sessionID ∈ {0, 1}∗. A summary of the protocol is given in Table 1. The
COMPASS protocol runs in a single round of communication, as follows:

Round 1. Each responder Ui ∈ R signs the message “U ‖ sessionID”1 using the
Sign algorithm of S to obtain the multipurpose signature σi containing ephemeral
public value Xi. Member Ui broadcasts the signature σi to the rest of the group.

1 By requiring each member to sign the session identifier sessionID and the multicast
group U , we provide resilience to insider impersonation and unknown key share
attacks, as shown in [16].

COMPASS: Authenticated Group Key Agreement from Signcryption 103

Table 1. Summary of the COMPASS Protocol

COMPASS

Round 1
Ui : σi ← Sign(“U ‖ sessionID”, di), 1 ≤ i ≤ n

Ui
B−→ U : σi, 1 ≤ i ≤ n

U0 : N
r←− {0, 1}∗

U0 : ci ← Sign/Encrypt(“U ‖ sessionID ‖ N”, d0, IDi), 1 ≤ i ≤ n

U0
B−→ U : 〈c1, ..., cn〉

Key Computation
Ui : 〈“U ‖ sessionID ‖ N”, σ0〉 ← Decrypt/Verify(ci, di, ID0), 1 ≤ i ≤ n
Ui : Batch((“U ‖ sessionID ‖ N”, σ0, ID0) ,

(“U ‖ sessionID”, σ1, ID1) , ..., (“U ‖ sessionID”, σn, IDn)), 0 ≤ i ≤ n

K = H1(X1, ..., Xn)⊕H2(U ‖ sessionID ‖ N)

The group leader U0 chooses a secret contributionN ∈R {0, 1}∗ and signcrypts
the message “U ‖ sessionID ‖ N” for each responder using the Sign/Encrypt
algorithm of SC, producing the ciphertext set 〈c1, ..., cn〉. She broadcasts the
set of signcrypted ciphertexts, along with a list L indicating which ciphertext ci
corresponds to which responder Ui.

Key Computation. Upon receiving the set of signcrypted values from the
group leader, each responder Ui extracts their specific ciphertext ci and, using
their long-term private key di, the long-term public key of the leader ID0 and
the Decrypt/Verify algorithm of SC, decrypts it to recover the leader’s secret
contribution N and the detachable signature σ0.

Each group member batch verifies the signatures {σ0, ..., σn} using the Batch
algorithm. If the verification succeeds, they compute the session key as a function
of the public key contributions {X1, ..., Xn} of the responders and the secret
contribution N of the group leader. The session key is given by

K = H1(X1, ..., Xn)⊕H2(U ‖ sessionID ‖ N),

for some cryptographic hash functions H1 and H2, which will be modelled as
random oracles.

4.2 Efficiency of the COMPASS Protocol

We compare the efficiency of the COMPASS protocol with three of the more
prominent GKA protocols from the literature: the Tree-based Group Diffie-
Hellman (TGDH) protocol of [19], the Burmester-Desmedt (BD) protocol of [10]

104 N. Mailloux, A. Miri, and M. Nevins

Table 2. Communication costs and group key properties compared with the TGDH,
BD and CKA protocols. We use ♦ to denote that the protocol does not require the
authentication of all contributions.

COMPASS TGDH BD CKA

Rounds (Max) 1 �log2 (n+ 1)� 2 1

Messages Unicast − − − −
(Total) Multicast n+ 1 2n 2(n+ 1) n+ 1

Contributory Key � � � �
Authentication � − − �♦

Group Integrity � × × �
Verifiable Contributiveness � × × ×

Key Integrity � × × ×

and the Conference Key Agreement (CKA) protocol of [7] in terms of communi-
cation costs and key agreement properties in Table 2. The exact computational
costs of the protocol will ultimately depend on the choice of signcryption scheme.
In Section 6, we provide a concrete example of the COMPASS protocol and pro-
vide a thorough account of the computational costs in this case.

The COMPASS protocol runs in a single round of communication and requires
only one broadcast message by each group member, which meets the optimal
communication complexity for group key agreement. The CKA protocol achieves
the same communication efficiency, while the BD protocol requires twice as many
messages sent in twice as many rounds. The TGDH protocol does not provide
constant round complexity, requiring as many rounds as the height of the binary
key tree, and a total of 2n broadcast messages.

Since the signcryption scheme SC and the signature scheme S provide unforge-
ability, the batch verification stage ensures that all contributions are authentic and
have not been tampered with by an adversary, and that each member is in posses-
sion of the same session string. Since each member Ui computesK as a product of
the authenticated responder contributions {X1,...,Xn}, the authenticated leader
contributionN and the session string, they are assured that the session keyK has
been authentically contributed to by every member in the group. Furthermore,
since the session key is computed using only the authenticated values, they are
assured that an adversary has not introduced any extraneous contributions. As a
result, the COMPASS protocol provides the strongest contributory property of key
integrity. Since the TGDH and BD protocols do not provide authentication, they
cannot guarantee these properties. The CKA protocol provides group integrity,
since the key is computed using only member contributions. However, since the
protocol does not require authentication of responder contributions, it does not
provide verifiable contributiveness or key integrity.

5 Security Proof

To prove that the COMPASS protocol is a secure authenticated group key agree-
ment protocol, we must show that it satisfies the validity and indistinguishability

COMPASS: Authenticated Group Key Agreement from Signcryption 105

requirements from Section 2.3. Since the validity of the protocol is straightfor-
ward, we show that the advantage of any PPT active adversary attacking the
COMPASS protocol is negligible.

Since signcryption combines the concepts of encryption and signature schemes,
the standard notions of security for identity-based signcryption schemes are exis-
tential unforgeability under adaptive chosen message attacks (EUF-IBSC-CMA)
and indistinguishability under adaptive chosen ciphertext attacks (IND-IBSC-
CCA2), as discussed in [13]. We prove the security of the COMPASS protocol
using the formal model for analyzing identity-based signcryption schemes from
[13], by showing that an adversary has no advantage in breaking a simulation of
the scheme. We allow the adversary to submit a set of recipients (where the iden-
tity ID of the sender is different from the set of receiver identities {IDi1 , ..., IDin})
in the Sign/Encrypt query to account for multi-receiver signcryption.

Let AdvCOMPASS(t, qex) denote the maximum advantage of any adversary at-
tacking the COMPASS protocol in running time t and making qex Execute queries.
We suppose that SC is an S-verifiable identity-based signcryption scheme that is
both EUF-IBSC-CMA secure and IND-IBSC-CCA2 secure in the multi-receiver
signcryption mode. We suppose that the hash functions H1 and H2 are modelled
as random oracles.

Theorem 1. The proposed COMPASS protocol with identity-based signcryption
scheme SC is a secure AGKA protocol. Specifically,

AdvCOMPASS(t, qex) ≤ (n+ 1) qexAdv
Distinguish
SC (t) + (n+ 1)AdvForgeSC (t),

where AdvForgeSC (t) is the maximum advantage of any EUF-IBSC-CMA forger F
of the signcryption scheme SC and AdvDistinguish

SC (t) is the maximum advantage
of any IND-IBSC-CCA2 algorithm D attacking the indistinguishability of the
signcryption scheme SC, all running in time t.

Proof. Following the approach of [7], we show that an adversary A with a non-
negligible advantage AdvCOMPASS in breaking a simulation of the COMPASS pro-
tocol can be used to break the security of the underlying signcryption scheme.
Informally speaking, we simultaneously play the role of the adversary in the
EUF-IBSC-CMA or IND-IBSC-CCA2 security game, while also playing the role
of the set of oracles in the AGKA security game with the COMPASS adver-
sary. If the adversary has any advantage, we use it to gain an advantage in the
signcryption security games.

We divide the proof into two separate cases. We assume that the adversary
gains her advantage by either (1) forging the leader’s signature within the ci-
phertext for the signcryption scheme SC or (2) breaking the protocol without
altering authentication transcripts. In case (1), we use the adversary A to con-
struct a forging algorithm F for the signcryption scheme SC. In case (2), we
use the adversary to build a distinguishing algorithm D to attack the semantic
security of SC.

To simplify the notation, we assume that the multicast group U = {U0, ..., Un}
remains the same from one session to another. The dynamic case is handled

106 N. Mailloux, A. Miri, and M. Nevins

similarly. We allow the adversary to choose the leader from the group U for
each session. To indicate the different possible roles of the members, we use the
notation {Ui0 , Ui1 , ..., Uin} to represent the multicast group of the ith session,
where each Uij , 0 ≤ j ≤ n, corresponds to some Uk ∈ U . To be as general
as possible, we assume that we do not have prior knowledge of the adversary’s
choice for the group leader.

Signature within the Ciphertext Forgery on SC. Suppose an adversaryA
gains her advantage by forging the signed contribution (within the ciphertext)
of the group leader, thereby fooling the responders into sharing a session key
with her. We can use the adversary to construct a forger F for the signcryption
scheme SC with non-negligible advantage in the EUF-IBSC-CMA security game.

Lemma 1. Let Forge be the event that an adversary A outputs a valid forgery
for the signcryption scheme SC. Then

Pr [Forge] ≤ (n+ 1)AdvForgeSC (t).

Proof. We suppose the adversaryA gains her advantage by forging the signature
(within ciphertext) of the group leader Uρ. The forger F chooses a random
Ud ∈ U with identity IDd as its guess for the leader Uρ and as the user for which
he wishes to forge a signcrypted ciphertext in the EUF-IBSC-CMA security
game. F honestly generates the public/private key pairs for each user with
identity different from IDd using the Extract oracle and, using these keys and the
Sign/Encrypt and Decrypt/Verify oracles, simulates the group key oracle queries
of A in the usual way. If at any point, A issues the Corrupt query on IDd, then
F ’s guess for the value of ρ was incorrect and F aborts the simulation. However,
if A outputs a new ciphertext c that decrypts to a valid message-signature pair
for Ud, resulting in the event Forge, F returns the ciphertext.

Suppose that A succeeds in forging a signature within ciphertext with proba-
bility Pr [Forge]. The probability that this is a forgery for the user Ud is 1/ (n+ 1).

Thus, the probability of success forF is given byAdvForgeF ,SC(t) =
1

n+1 Pr [Forge], and

since AdvForgeF ,SC(t) ≤ AdvForgeSC (t), we have Pr [Forge] ≤ (n+ 1)AdvForgeSC (t).

Indistinguishability Attack on SC. Now suppose that an adversary A gains
her advantage without forging the protocol transcripts. We use A to build a dis-
tinguishing algorithm D for the signcryption scheme SC that has non-negligible
advantage in the IND-IBSC-CCA2 security game.

Lemma 2. Let Distinguish be the event that an adversary A can distinguish
between ciphertexts of the signcryption scheme SC. Then

Pr [Distinguish] ≤ (n+ 1) qexAdv
Distinguish
SC (t),

where qex is the number of Execute queries issued by A.

COMPASS: Authenticated Group Key Agreement from Signcryption 107

Proof. We suppose the adversary A gains her advantage by distinguishing be-
tween the signcrypted ciphertexts sent by the group leader Uρ. The algorithm
D chooses a random Ud ∈ U with identity IDd as its guess for the group leader
Uρ and the sender of the signcrypted ciphertext in the IND-IBSC-CCA2 security
game, and sets the remaining members of U as the receivers. The distinguisher
D chooses m0,m1 ∈R {0, 1}∗ and outputs the sender identity IDd, the set of
receiver identities {IDi}i�=d and the messages {m0,m1} in IND-IBSC-CCA2 se-
curity game. The challenger responds with the challenge signcryption cipher-
text c∗ = Sign/Encrypt(mφ, IDd, {IDi}), which has the form 〈γ1, ..., γn〉 since
the plaintext message is signcrypted for each individual receiver. We suppose
that A makes a maximum of qex Execute queries, where qex is polynomial in
the security parameter �. D chooses a random session identifier β ∈ [1, qex] for
which he will give the adversary the challenge ciphertext c∗.

The algorithm D models the hash functions H1 and H2 as random oracles. To
be consistent amongst the adversary’s queries, D maintains the following lists,
where α refers to the session number:

– List L1 records entries of the form (α,X1, ..., Xn, h1) to maintain consistency
in oracle H1 queries, where h1 = H1(X1, ..., Xn).

– List L2 records entries of the form (α,U , sessionID, N, h2) to maintain con-
sistency in oracle H2 queries, where h2 = H2(“U ‖ sessionID ‖ N”).

– List LAGKA records entries of the form

(α,U , sessionID, IDα1 , σα1 , ..., IDαn , σαn , IDα0 , N, σ, cα1 , ..., cαn , h1, h2,K)

to maintain consistency in Send, Execute and Reveal queries. This list is
essentially a transcript of the αth session of the protocol.

We denote the αth entry of a list by L(α). Using these lists, the algorithm D
responds to A’s queries as follows:

Send(Π α
U ,M)] Algorithm D handles Send queries in the following cases:

1. If M =“init ‖ leader”, so that the message is to initiate the protocol with
U as the leader, we have the following three subcases:

(a) If U = Ud and α = β, then D returns the signcrypted values 〈γ1, ..., γn〉
in place of the leader’s signcrypted contribution values 〈cα1 , ..., cαn〉.

(b) If U �= Ud and α = β, then D’s choice for the group leader was incorrect
and the algorithm fails.

(c) Otherwise, D chooses a random N ∈ {0, 1}∗ and responds with the
ciphertexts 〈cα1 , ..., cαn〉 obtained from Sign/Encrypt(“U ‖ sessionID ‖
N”, IDU , {IDα1 , ..., IDαn}). The algorithm records (U ,sessionID, IDU ,N ,
cα1 ,...,cαn) in LAGKA(α).

2. If M =“init ‖ responder”, so that the message is to initiate the protocol
with U as the responder, we have the following two subcases:

(a) If U = Ud and α = β, then D’s choice for the group leader was incorrect
and the algorithm fails.

108 N. Mailloux, A. Miri, and M. Nevins

(b) Otherwise, D runs the protocol normally as a responder. We note that
the security game does not giveD access to the signature scheme S. How-
ever, we can still sign responder contributions due to the S-verifiability of
the signcryption scheme. The algorithm queries Sign/Encrypt(“U ‖ sess-
ionID”, IDU , ID

′
i) for some identity ID′

i to obtain a ciphertext c′ and
subsequently queries Decrypt/Verify(c′, IDU , ID

′
i) to obtain (“U ‖ sess-

ionID”, σU), where σU is a valid signature on “U ‖ sessionID” for the
responder U . We note that there is no restriction on queries of this
form in the IND-IBSC-CCA2 security game. D returns the signature
and records (U , sessionID, IDU , σU) in LAGKA(α).

3. If M is not to initiate the protocol, then Π α
U accepts the message M and

responds as follows. If M represents the signed contribution of a responder,
then D records (IDU , σU) in LAGKA(α). In addition, we have the following
subcases:

(a) If U is the group leader and M represents the last responder contribution
σαi for session α, then D verifies the signatures of all responders and
accepts the session key if the verification holds. D outputs the outcome
of acceptance.

(b) If U is a responder and M represents the set of signcryption ciphertexts
(cα1 , ..., cαn) of the leader for session α, then D accepts the information,
provided it is in the expected format. As long as α �= β, D obtains
the valid message-signature pair (“U ‖ sessionID ‖ N”, σ) by querying
Decrypt/Verify(cαi , IDαi , IDU). Algorithm D verifies all responder signa-
tures and the detachable signature, outputs the outcome of acceptance
and records (U , sessionID, IDU , N , σ, cα1 , ..., cαn) in LAGKA(α).

Execute(Ui0 , Ui1 , ..., Uin) D executes the protocol for the leader Ui0 and the re-
sponders R = {Ui1 , ..., Uin}, according to the steps outlined in the Send query.

Reveal(Π α
U) We first assume that oracle Π α

U has accepted the session key and
thus, Π α

U has collected all responder contributions {Xα1 , ..., Xαn} and the leader
contributionN . The session keys are given by the bitwise addition of the outputs
h1 and h2 of the random oracles H1 and H2, respectively. If the key for session
α has not yet been revealed, D obtains h1 and h2 from LAGKA(α) if they exist,
or queries H1 and H2 otherwise. D returns K = h1 ⊕ h2 as the αth session key
and adds K to LAGKA(α). If the key for session α has been revealed before, D
returns K from LAGKA(α).

Corrupt(U) If U is the group leader, D responds with the private key obtained
from the Extract query. Otherwise, D aborts the simulation.

Test(Π α
U) If α = β and the group leader of the αth session is Ud, then D

returns a random string as the session key. Otherwise, the algorithm fails.
At some point during the game, A will output a guess for the value of b.

Recall that A queries the hash functions H1 and H2 to compute the session key.
Since these hash functions are modelled as random oracles,A has no advantage in
guessing session keys that were not amongst these oracle queries. The algorithm
D examines all queries H2(U ‖ sessionID ‖ N) made by A to the oracle H2,

COMPASS: Authenticated Group Key Agreement from Signcryption 109

which D has recorded in the list L2. If at any point, D finds a query with
N = m0, then it outputs φ = 0 as its guess. Otherwise, D returns φ = 1.

Suppose that A distinguishes between the ciphertexts with probability
Pr [Distinguish]. The probability that the simulation does not fail (i.e. α = β
and Uρ = Ud) is 1/ (n+ 1) qex. Thus, the probability of success for D is

given by AdvDistinguish
D,SC (t) = 1

(n+1)qex
Pr [Distinguish], and since AdvDistinguish

D,SC (t) ≤
AdvDistinguish

SC (t), then Pr [Distinguish] ≤ (n+ 1) qexAdv
Distinguish
SC (t).

This completes the proof for theorem 1 for both possible cases.

6 An Example of the COMPASS Protocol

In this section, we provide a concrete example of the COMPASS protocol using
the signcryption scheme of [24], which we call the YYHZ signcryption scheme.
As discussed in Section 3, the YYHZ scheme is an efficient multi-receiver vari-
ant of the identity-based signcryption scheme of [13]. Furthermore, the YYHZ
signcryption scheme provides S-verifiability using the identity-based signature
scheme of [12], which produces multipurpose signatures and was shown to sup-
port efficient batch verification by [17]. As a result, the YYHZ signcryption
scheme is an optimal candidate for the COMPASS protocol.

[22] showed that the proofs for confidentiality and authentication in [24] were
flawed and proposed a slightly modified version that is IND-IBSC-CCA2 and
EUF-IBSC-CMA secure in the multi-receiver signcryption model. Consequently,
we use the modified version from [22] in the YYHZ-COMPASS protocol.

6.1 Setup Phase

The YYHZ signature scheme uses an ID-PKI similar to that of the IBE scheme of
[5]. The ID-PKI relies on a special mathematical primitive known as a bilinear
pairing. Let G1 and G2 be cyclic groups of large prime order q, where we take
G1 to be a subgroup of points on an elliptic curve and G2 to be a subgroup
of the multiplicative group of a finite field. A pairing is a non-degenerate map
e : G1 × G1 → G2 that satisfies the property that e(aP, bQ) = e(P,Q)ab for
all a, b ∈ Z

×
q and P,Q ∈ G1. For more information, we refer the reader to [5].

The PKG uses the Setup and Extract algorithms of the ID-PKI to issue a
public/private key pair (Qi, di) to each group member Ui ∈ U . The algorithms
are defined as follows:

– Setup: Given a security parameter �, the PKG generates the public system
parameters

params = 〈G1,G2, e, q, P, Ppub, R, θ,H0, H1, H2, H3, H4, H5〉 .
where P is a generator of G1, R ∈R G

×
1 and {Hi} are cryptographic hash

functions, to be defined in the protocol. The PKG chooses a master secret
key s ∈R Z×

q and computes the global public key Ppub = sP and the public
value θ = e(R,Ppub).

110 N. Mailloux, A. Miri, and M. Nevins

– Extract: Given an identity IDi, the PKG returns the public key Qi = H0(IDi),
using H0 : {0, 1}∗ → G

×
1 , and the private key di = sQi.

6.2 The YYHZ-COMPASS Protocol

To begin group communication, each member obtains the session identifier
sessionID ∈ {0, 1}∗, which may be taken from some preexisting list. The YYHZ-
COMPASS protocol is executed in a single round as follows:

Round 1 (Responders). Using the Cha-Cheon signature scheme, each respon-
der Ui ∈ R signs the session string “U ‖ sessionID” by

1. Choosing ri ∈R Z×
q .

2. Computing

– Xi = riQi,
– hi = H1(Xi,“U ‖ sessionID”) using H1 : G1 × {0, 1}∗ → Z×

q ,
– Zi = (ri + hi)di.

3. Broadcasting the signature σi = (Xi, Zi) to the rest of the group.

Round 1 (Group Leader). Meanwhile, the group leader U0 chooses a se-
cret key contribution N ∈R {0, 1}∗ and uses the YYHZ signcryption scheme to
signcrypt her contribution for the group of responders by

1. Choosing r0, k0 ∈R Z×
q .

2. Computing

– T = k0P,
– X0 = r0Q0,
– h0 = H2 (T,X0, “ID0 ‖ U ‖ sessionID ‖ N”) using H2 : G2

1 × {0, 1}∗ →
Z×
q ,

– Z0 = (r0 + h0)d0,
– ω = e(Z0, P),
– y = (“U ‖ sessionID ‖ N” ‖ σ0) ⊕ H3 (ω), using H3 : G2 → {0, 1}∗,

where σ0 = (X0, Z0),
– W = ω · θk0 ,
– ci = k0 (Qi +R) , for each responder Ui ∈ R.

3. Broadcasting the ciphertext set 〈y, T,W, c1, c2, ..., cn〉, along with some list
L indicating which ciphertext ci corresponds to which responder Ui.

Key Computation. Upon receiving the ciphertext ci from the group leader,
each responder Ui computes the session key by

1. Computing

– ω′ = W · e(di, T) · e(Ppub, ci)
−1,

– “U ‖ sessionID ‖ N”‖ σ0 = y ⊕H3 (ω
′) , 2

2 We note that each responder may verify that ω′ = e(Z0, P) to be sure that they are
in possession of the correct value ω, although this computation is not necessary.

COMPASS: Authenticated Group Key Agreement from Signcryption 111

Table 3. Computational costs compared with the LKKR and CHL protocols

Protocol YYHZ-COMPASS LKKR CHL
Leader u0 Responder ui

P 3 4 − −
Total 4n+ 3 5hn+ 5h 6n+ 6

M 4n+ 6 3n+ 5 − −
Total 3n2 + 9n+ 6 4h+9

2
n+ 2h n2 + 11n+ 10

to recover the group leader’s secret contribution N and the detachable sig-
nature σ0 = (X0, Z0).

2. Choosing (δ0, δ1, ..., δn) ∈R

(
Z×
q

)n+1
.

3. Batch verifying the set of signatures {σ0, σ1, ..., σn} by checking that

e(
∑n

i=0
δiZi, Q) = e(

∑n

i=0
δi (Xi + hiQi) , Ppub),

as in [17].
4. If the verification holds, they compute the session key as

K = H4(X1, ..., Xn)⊕H5(“U ‖ sessionID ‖ N”),

using the hash functions H4 : Gn
1 → {0, 1}∗ and H5 : {0, 1}∗ → {0, 1}∗.

6.3 Efficiency of the YYHZ-COMPASS Protocol

We compare the computational costs of the YYHZ-COMPASS protocol with two
of the more prominent pairing-based GKA protocols from the literature: the
LKKR protocol of [20], based on the TGDH protocol from [19], and the CHL pro-
tocol of [14], based on the BD protocol from [10]. Since the LKKR protocol does
not provide authentication, we include the costs incurred by using the authenti-
cated tripartite key exchange from [25]. To ease in our comparison, we assume
that n+1 = 3h for some h ∈ Z

+, so that the LKKR key tree is a perfect ternary
tree of height h. We present the costs of the modified CHL protocol proposed by
the authors in [15], so that it is protected against insider impersonation attacks.

We compare the protocols in terms of total pairing computations P and total
scalar multiplicationsM in the elliptic curve group G1. We also provide the indi-
vidual computational costs of the leader and responder for the YYHZ-COMPASS
protocol. As shown in Table 3, the YYHZ-COMPASS protocol provides huge
computational gains over the LKKR and CHL protocols in terms of the more
expensive pairing operation.

7 Conclusions and Future Work

In this paper, we proposed a computationally asymmetric authenticated group
key agreement protocol from identity-based signcryption schemes, which we call

112 N. Mailloux, A. Miri, and M. Nevins

the COMPASS protocol, that achieves the lower bound for communication com-
plexity derived by [4]. By choosing a signcryption scheme that satisfies some
desirable criteria, we ensure computational and communication efficiency, while
also providing the strongest contributory property of key integrity from [2]. We
provided a formal proof reducing the semantic security of the protocol to the
security of the underlying signcryption scheme in the random oracle model and
provided a concrete example of the COMPASS protocol using the multi-receiver
signcryption scheme from [24], which is more computationally efficient than two
of the more well-known pairing-based AGKA protocols from the literature.

While we illustrated the COMPASS protocol using the signcryption scheme
from [24], it would be interesting to consider other identity-based signcryption
schemes from current literature, such as the efficient S-verifiable signcryption
scheme of [3]. To produce an efficient group key agreement protocol, their sign-
cryption scheme must be modified to support multiple recipients and provide
batch verification of signatures in the underlying signature scheme, while pre-
serving the provable security of the scheme. Can we construct new identity-based
signcryption schemes that yield even more efficient COMPASS protocols?

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated Group Key Agreement and
Friends. In: CCS 1998: Proceedings of the 5th ACM Conference on Computer and
Communications Security, pp. 17–26. ACM Press, New York (1998)

3. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Hei-
delberg (2005)

4. Becker, K., Wille, U.: Communication Complexity of Group Key Distribution. In:
CCS 1998: Proceedings of the 5th ACM Conference on Computer and Communi-
cations Security, pp. 1–6. ACM Press, New York (1998)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boyd, C.: On Key Agreement and Conference Key Agreement. In: Mu, Y.,
Pieprzyk, J.P., Varadharajan, V. (eds.) ACISP 1997. LNCS, vol. 1270, pp. 294–302.
Springer, Heidelberg (1997)

7. Boyd, C., González Nieto, J.M.: Round-Optimal Contributory Conference Key
Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174.
Springer, Heidelberg (2002)

8. Boyen, X.: Multipurpose Identity-Based Signcryption – A Swiss Army Knife for
Identity-Based Cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 383–399. Springer, Heidelberg (2003)

9. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenti-
cated Group Diffie-Hellman Key Exchange. In: CCS 2001: Proceedings of the 8th
ACM Conference on Computer and Communications Security, pp. 255–264. ACM,
New York (2001)

COMPASS: Authenticated Group Key Agreement from Signcryption 113

10. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

11. Cao, X., Kou, W., Du, X.: A pairing-free identity-based authenticated key agree-
ment protocol with minimal message exchanges. Information Science 180, 2895–
2903 (2010)

12. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

13. Chen, L., Malone-Lee, J.: Improved Identity-Based Signcryption. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)

14. Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based Group Key Agreement with
Bilinear Maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 130–144. Springer, Heidelberg (2004)

15. Choi, K.Y., Hwang, J.Y., Lee, D.H.: ID-Based Authenticated Group Key Agree-
ment Secure Against Insider Attacks. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences 91, 1828–1830 (2008)

16. Choo, K.R.: Key Establishment: Proofs and Refutations, PhD, Queensland Uni-
versity of Technology, Brisbane, Australia (2006)

17. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signa-
ture Batch Verification. Cryptology ePrint Archive, Report 2008/015 (2008)

18. Guo, H., Li, Z., Mu, Y., Zhang, X.: Provably secure identity-based authenticated
key agreement protocols with malicious private key generators. Information Sci-
ence 181, 628–647 (2011)

19. Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Trans-
actions on Information and System Security 7, 60–96 (2004)

20. Lee, S., Kim, Y., Kim, K., Ryu, D.-H.: An Efficient Tree-Based Group Key Agree-
ment Using Bilinear Map. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003.
LNCS, vol. 2846, pp. 357–371. Springer, Heidelberg (2003)

21. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

22. Sharmila Deva Selvi, S., Sree Vivek, S., Srinivasan, R., Pandu Rangan, C.: An
Efficient Identity-Based Signcryption Scheme for Multiple Receivers. In: Takagi, T.,
Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 71–88. Springer, Heidelberg
(2009)

23. Shin, J.-B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg
(2003)

24. Yu, Y., Yang, B., Huang, X., Zhang, M.: Efficient Identity-Based Signcryption
Scheme for Multiple Receivers. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer,
C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 13–21. Springer, Heidelberg
(2007)

25. Zhang, F., Liu, S., Kim, K.: ID-Based One Round Authenticated Tripartite Key
Agreement Protocol with Pairings. Cryptology ePrint Archive, Report 2002/122
(2002)

114 N. Mailloux, A. Miri, and M. Nevins

26. Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Provably secure one-round
identity-based authenticated asymmetric group key agreement protocol. Informa-
tion Science 181, 4318–4329 (2011)

27. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

28. Zheng, Y., Imai, H.: Compact and Unforgeable Key Establishment over an ATM
Network. In: Proceedings of IEEE INFOCOM 1998, vol. 2, pp. 411–418. IEEE,
Inc. (1998)

Classifying Online Social Network Users

through the Social Graph�

Cristina Pérez-Solà1 and Jordi Herrera-Joancomart́ı1,2

1 Dept. d’Enginyeria de la Informació i les Comunicacions
Universitat Autònoma de Barcelona
08193 Bellaterra, Catalonia, Spain
{cperez,jherrera}@deic.uab.cat

2 Internet Interdisciplinary Institute (IN3) - UOC

Abstract. In this paper, we address the problem of classifying online
social network users using a naively anonymized version of a social graph.
We use two main user attributes defined by the graph structure to build
an initial classifier, node degree and clustering coefficient, and then ex-
ploit user relationships to build a second classifier. We describe how to
combine these two classifiers to build an Online Social Network (OSN)
user classifier and then we evaluate the performance of our architecture
by trying to solve two different classification problems (a binary and
a multiclass problem) using data extracted from Twitter. Results show
that the proposed classifier is sound and that both classification prob-
lems are feasible to solve by an attacker who is able to obtain a naively
anonymized version of the social graph.

Keywords: Online Social Networks, Relational Classifiers, Graph
Anonymization.

1 Introduction

Online Social Networks (OSN) are web services that allow users to create a public
(or partially public) profile describing some information about themselves and
share information with other users of the network [1]. Their most characteristic
feature is that they allow users to create explicit relationships between them in
the network. Graphs that are used to represent these explicit links are called
social graphs and they have been widely used to analyze OSN in a broad variety
of studies. A social graph is defined as a graph where nodes represent users in
an OSN and edges denote explicit links between them. Node attributes are then
information about the user (such as age, gender, or sexual preferences).

Recent studies report that high homophily is observed on OSN user commu-
nications. For instance, it has been shown in [2] that attention is homophilous
within Twitter elite users, with users listening to what other similar users have

� This work was partially supported by the Spanish MCYT and the FEDER funds un-
der grants TSI2007-65406-C03-03 “E-AEGIS”, TIN2010-15764 “N-KHRONOUS”,
and CONSOLIDER CSD2007-00004 “ARES”.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 115–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 C. Pérez-Solà and J. Herrera-Joancomart́ı

to say in the network. Since users pay attention to other similar users, it seems
reasonable to think that it is possible to use the information about who is linked
to whom in an OSN to classify these OSN users, even when attributes describing
those users have been removed from the graph.

Classification is one of the basic techniques in data mining processes. Given
a set of labeled samples, the goal is to assign labels to the rest of the dataset.
By doing so, it is possible to learn desired properties of those samples. It is
immediate to see that depending on the nature of these inferred properties,
user’s privacy may be compromised with the classification process.

User classification is far from being an innoxious process. On one hand, if
the categories used on the process correspond to sensitive attributes, classifica-
tion can directly lead to private attribute disclosure. One of the most famous
examples of this specific problem was reported in [3], where the authors were
able to predict the sexual orientation of Facebook users that did not have that
information on their profile by using information on their friend’s profiles. On
the other hand, a user may not be concerned about the attribute disclosure per
se but about the consequences that this disclosure may have. For instance, being
classified in a specific group may be the difference between getting a mortgage
loan denied or approved. In any case, classification results in the disclosure of
user attributes that the user did not explicitly approve. Since the user is not able
to control the disclosure of the information about himself anymore1, a privacy
breach occurs.

In this paper, we address the problem of classifying OSN users using a naively
anonymized copy of a social graph. In order to create a naively anonymized copy,
all identifying attributes are usually removed from the original graph. In our case,
we go one step beyond and remove all identifiers and node attributes, so that no
semantic information can be used in the classification process. Note that since
no edges have been added nor deleted from the original graph, the anonymized
copy has exactly the same structure than the original graph.

We assume that the adversary, who wants to classify OSN users, is able to
learn labels for some subset of the nodes of the graph a priori. These nodes,
for which the attacker is able to obtain labels beforehand, are used as training
samples in the classification process. Then, the adversary infers labels for the rest
of the dataset, learning information from users for which no prior information
could be found.

The main contribution of this paper is to demonstrate that the graph struc-
ture alone is enough to classify OSN users and, therefore, a naive anonymization
technique that removes node attributes is not enough to protect users privacy.
To prove our claim, we use the Twitter network as a testbed and we classify
Twitter users into two different sets of categories. Initially, we classify users as
either individual users or companies. We refer to this classification as the binary
classification problem. After that, we move on to a more detailed classification,

1 Here we are referring to Westin’s privacy definition [4] which states that Privacy is
the claim of individuals, groups, or institutions to determine for themselves when,
how, and to what extent information about them is communicated to others.

Classifying Online Social Network Users through the Social Graph 117

allocating users into five different categories: bloggers, celebrities, media, orga-
nizations or non-elite users. We designate this classification as the multiclass
classification problem. Results show that even with the only information of the
graph structure, users can be classified up to a certain accuracy level.

The rest of the paper is organized as follows. Section 2 reviews the state
of the art. In Section 3, we describe the Twitter network, the data collection
process, and its representation. Section 4 analyses the information contained in
the Twitter social graph. Then, Section 5 discuses the architecture proposed
for the classification process. In Section 6 we detail the experimental results
obtained using the classifier presented in Section 5. Finally, Section 7 provides
the conclusions and gives some guidelines for further research.

2 State of the Art

In contrast with traditional non-relational data, networked data is characterized
for containing entities and some kind of relationships between them. Nowadays,
OSN are one of the most popular examples of networked data, containing infor-
mation about users and their interaction.

The problem of classifying networked data has been a recent focus of activity
in the machine learning research community, with special interest on adapting
traditional machine learning techniques to networked data classification.

In [5], the authors present a relational classifier toolkit. Beyond the actual
toolkit itself and by describing each of its modules, the authors review different
algorithms that can be used to classify networked data.

Many algorithms for relational classifiers have been proposed in the past. In [6]
the authors present the Relational Neighbor (RL) classifier based on the principle
of homophily, where the probability of a sample belonging to a given class is pro-
portional to the number of neighbors of that sample belonging to the same class.
The Weighted Vote Relational Classifier (WVRN) estimates class-membership
of a node as the weighted mean of the class-membership probabilities of the
neighbors of that node. The Class-Distribution Relational Neighbor classifier
(CDRN) is presented in [5], where the probability of class membership of a node
is estimated by the similarity of its class vector with the class reference vector.
The class vector of a node is defined as the vector of summed linkage weights
to the various classes and the class reference vector for a given class is the av-
erage of the class vectors for nodes known to be of that class. Network Only
Bayes classifier (nBC) [7] uses naive Bayes classification based on the classes
of the nodes’ neighbors to classify hyperlinked documents. In [8] the Network-
Only Link-Based classification (nLB) is presented, which uses regularized logistic
regression models to classify networked data.

Collective inference may improve probabilistic inference in networked data
[9]. Many collective inference methods are used in relational learning: Gibbs
sampling [10], relaxation labeling [7], and iterative classification [8,11] are the
most used.

118 C. Pérez-Solà and J. Herrera-Joancomart́ı

Experimental methodologies for both within-network and between network
classification are reviewed in [12], where the approaches of different authors to
the problem are summarized.

Relational classification has been applied to email classification [13], with a
dataset of mails being linked only by parent-children relationships; to topic clas-
sification of hypertext documents [7]; to predict movie success with IMDBb data,
linking movies with a shared production company [6,5]; to sub-topic prediction
in machine learning papers [5]; to age, gender, and location prediction of bloggers
[14]; and many other networked data classification problems.

Networked data has also been studied from a privacy preservation point of
view. Several methods have been proposed to anonymize networked data, al-
though most of them are not suitable for large scale graphs. Moreover, it has
been shown that anonymizing networked data while maintaining its utility is also
difficult. Far from being solved, the problem of anonymizing networked data is
open and still challenging.

The first step for anonymizing networked data is to remove identifying at-
tributes. Usually, random identifiers are then included. This procedure is known
as naive anonymization [15].

Some anonymization techniques include graph perturbation methods, where
edges and/or nodes are added and deleted to modify the graph structure. Ran-
dom perturbation [15] consist on randomly deleting m edges of the initial graph,
and afterwards randomly adding m new edges. In [16], the authors propose sev-
eral strategies for anonymizing graphs which are combined with traditional tab-
ular data anonymization techniques. These strategies add and/or delete edges
of the graph taking into account different criteria instead of randomly select-
ing the modified edges. Some other techniques try to adapt the k -anonymity
paradigm for tabular data to networked data. Depending on their definition for
a k -anonymous graph, several proposals appear: in [17], the authors modify the
graph so that there is at least k nodes with the same degree; in [18], the authors
assume that the attacker knows the neighborhood at distance 1 of a node and
they say that a graph is k -anonymous if at least k different nodes have the same
neighborhood graph (or an isomorphism of that graph); other variants can be
found in [19] and [20]. Although all these techniques offer better anonymization
than the naive approach, the utility of the released graph is usually affected. For
this reason, naive anonymization is still used to anonymize graph data before
releasing it.

3 The Twitter Network

Twitter is a famous microblogging service that allows users to publish messages
up to 140 characters. Twitter has gained popularity as an almost real-time source
of information and as a platform for organizing masses.

Users messages in the Twitter network are called tweets. Users can subscribe
to other users’ updates so that they receive all their tweets, establishing in this
way topological links between users. These relationships are not bidirectional,

Classifying Online Social Network Users through the Social Graph 119

so Alice can be following Bob’s updates and Bob may not be following Alice’s
updates at all.

Twitter is used with many different purposes and, because of that, many
different uses are given to each Twitter account. While behind some of these
accounts there is only a single non-famous person who comments on his topics
of interest, entire multinationals can be found backing on other accounts. Even
some of the news media companies have their own Twitter account. This diversity
of users is both enriching and a challenge for anyone who deals with Twitter data,
from its own engineers to advertisers or external data analysts.

In 2009, Twitter introduced a new feature in their network: the Twitter lists.
These lists allow users to create lists of Twitter accounts, so that it is possible
to organize both followed and not-followed users. Each Twitter list has its own
view that shows a stream of tweets from all the users included in that list. By
doing so, users can get an aggregated overview on what is going on on that
list. Moreover, once a list has been created, any other user of the network can
subscribe to that list. This feature considerably increases the functionality of
Twitter lists by allowing people to use the lists of other users to enhance their
experience in the network.

3.1 Obtaining Twitter Data

Twitter allows developers to access its stored data via Twitter APIs. We used this
feature in order to obtain, on one hand, information about user’s relationships
and, on the other hand, list membership data.

To obtain users relationships, we start by selecting an initial node which will
be used as the seed for our crawl. After that, we fetch the list of followers of that
initial user and proceed with the crawling in a Breadth First Search manner2.
Social graphs are then created from this information in an almost immediate
way. Users obtained from the crawling process are mapped to nodes of the social
graph and edges are placed within users that explicitly create a relationship
in the network. Since Twitter links are directed, we use a directed graph to
represent those social graphs.

After obtaining users and their relationships, we proceed to obtain list mem-
bership information, discovering in which lists does every of the previously
crawled users appear. For each list, name, slug, and description are retrieved, as
well as their subscribers and members count, and ownership information.

3.2 Twitter Data Representation

Social networks are usually visualized as graphs, where nodes represent users and
edges describe relationships among them. Having this identification in mind, we
use G = (V,E) to describe our Twitter social graph. The set V = {vi, for i =
1, · · · , n} contains the nodes of the graph that are identified as users of the
Twitter network. On the other hand, E is the set of edges, ordered pairs of

2 For a detailed description of the BFS algorithm, the readers can refer to [21].

120 C. Pérez-Solà and J. Herrera-Joancomart́ı

different elements of V . As already mentioned, edges in social graphs represent
relationships among users and, in our case, the edge (vi, vj) represents that user
vi follows user vj in the Twitter network. Notice that since Twitter relationships
are not bidirectional (as in Facebook), the corresponding graph is directed and
even if vi follows vj ((vi, vj) ∈ E), it does not imply that user vj also follows
user vi ((vj , vi) ∈ E).

In an undirected graph, we denote by Γ (vi) the set of adjacent nodes of vi
and the node degree is the cardinality of such set, deg(vi) = |Γ (vi)|. However, in
a directed graph, we must distinguish between successors Γ (vi) and predecessors
Γ−1(vi) of a node vi. The set of successors of vi is defined as Γ (vi) = {vj ∈ V
s.t. ∃ e ∈ E with e = (vi, vj)}. In a similar fashion, the set of predecessors of
vi can be defined as Γ−1(vi) = {vj ∈ V s.t. ∃ e ∈ E with e = (vj , vi)}. Both
definitions provide the concept of outdegree and indegree of a node vi that can
be formally defined as |Γ (vi)| and |Γ−1(vi)|, respectively.

4 Network Information in the Twitter Dataset

In order to classify Twitter users based on the network topology, first we have
to check if there really exist information in the network topology that allows us
to distinguish between different types of users. In order to do so, we follow two
different approaches.

Our first approach consist on finding a set of attributes of the nodes of the
network, such that nodes in the same category have similar values while nodes
in different categories present significantly different values. However, instead of
taking into account local semantic node attributes that are usually present in
OSN data, we restrict ourselves to information that can be extracted from the
network itself, that is, information that can be obtained from the mere existence
of nodes and the relationships created between them. There exist many different
network metrics describing the importance of a node in the network that could
be used as node attributes in a classification process. However, calculating some
of these measures is computationally expensive for large networks and, as we will
see, it may not be necessary to use them. In this section, we describe two network
properties that are easy to compute and from which we build our classifiers: node
degree and clustering coefficient.

One of the most direct metric for nodes is their degree. In Twitter, node
degree alone already gives quite a lot of information about the type of user of
the network. It is immediate to observe that, for instance, celebrities have really
high indegree due to the fact that lots of fans follow what the celebrity says on
Twitter, while not so popular users tend to have smaller indegree values.

Figure 1(a) shows an indegree versus outdegree scatter plot for nodes classified
in two different categories, users and companies, corresponding to the binary
classification problem. Each of the samples is represented by a single mark,
with companies represented by crosses and users by dots. We can appreciate
that most of the individual users have an indegree similar to its outdegree.
On the contrary, companies tend to have notable differences between indegree

Classifying Online Social Network Users through the Social Graph 121

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

10
5

Real indegree

R
ea

l o
ut

de
gr

ee
Node degree

Companies
Users

(a) Scatter plot of node inde-
gree and outdegree for users
and companies (dataset 1)

(b) Relationship profile for users and
companies (dataset 1)

Fig. 1. Information for the binary classification problem

and outdegree, showing higher indegrees than outdegrees on most of the cases.
However, we can also observe that there are some companies that present an
indegree versus outdegree ratio similar to that showed by individual users. This
indicates us that although some kind of classification can be done with node
degrees, it will not lead us to specially good results.

Clustering coefficient is a measure of how well connected the neighborhood
of a node is. When the neighborhood of a node is fully connected, the cluster-
ing coefficient is 1, whereas when there are no connections between one node’s
neighbors, the clustering coefficient is 0. For the Twitter network, this means
that when a user’s followers also create following relationships between them,
the clustering coefficient of the user is high; in contrast, when user’s followers
are not connected between them, clustering coefficient becomes low. Specifically,
clustering coefficient of a node v is defined as the number of connections between
v’s neighbors divided by the number of possible connections that could exist be-
tween them. Social networks are known to exhibit high clustering coefficients
but, do different kinds of users present different cluster coefficient values? Our
intuition says that normal users will present higher clustering coefficient values
than elite users because of their use of the network: elite users such as celebrities
or media make a usage of the network similar to that of a traditional diffusion
media and, therefore, they will not exhibit this high clustering found in social
networks.

The second approach that we use to classify Twitter users is by taking advan-
tage of the type of users to which they are connected. Recent studies [2] show
that Twitter users tend to listen to other users in the same category. Then, we
can use the categories assigned to a node’s communication neighbors in order
to determine the category of that node. We want to use a similar approach to
differentiate users from the network topology, taking advantage of which types
of user are they following and which types of users are following them up.

In order to do so, we analyze if there are any differences between categories in
terms of network linkage. We compare how users of each of the defined categories

122 C. Pérez-Solà and J. Herrera-Joancomart́ı

are connected to users in any category. Figure 1(b) shows the relationship profile
for the binary classification problem (individual users versus companies). Values
on the edges represent the percentage of existing relationships of the specific
type from the total of the outgoing or incoming relationships. Therefore, users
outgoing relationships are directed, in 65% of cases, to other users, and in 35%,
to companies. On the contrary, companies outgoing relationships are directed
to users or other companies in a more equitable way (45% for users, 55% for
companies). Incoming edges also present the same kind of phenomenon, with
users being followed mostly by users and companies having a more equitable
incoming profile. All together, these differences on the relationship profiles of
the two different categories will be exploited to build our classifier.

5 Classifier Proposal

In this section, we propose a relational classifier that takes advantage of the
homophily showed by OSN users. However, in order to classify a user depending
on the classes of his neighbors, we need to actually know the classes of those
neighbors, which at the same time presents this very same problem. Therefore,
we can not use the relationship profile of a user to classify that user at an
initial stage. We need to assign a prior classification to nodes before using the
relationship profile to classify users. So we design our Twitter user classifier as a
two module classifier: an initial classifier, which makes a first labeling of users into
the desired categories; and a relational classifier, which uses the results on the
previous classifier to exploit the relationship profile to classify. The performance
of the initial classifier is not critical since its results are only used as inputs for the
relational classifier. Moreover, the relational classifier can be applied iteratively,
so that the results of one execution of the relational classifier can be used as new
labels for a new execution of the relational classifier.

Initial
classifier

Relational
classifier

Data
preprocessing

Data
preprocessing

Clus. coeff.
&

degrees

Class
labels New class

labels
Neighborhood
analysis

Fig. 2. Classifier modules scheme

The architecture of this classifier is shown in Figure 2. It is possible to appreci-
ate that, apart from the two classifier modules, there is also a data preprocessing
module applied just before the classifiers and a neighborhood analysis stage that
analyses the current labels and generates the relationship profiles of each of the
samples. Figure 2 also indicates that the class labels leaving the relational clas-
sifier are used in the successive iterations as input labels for the neighborhood
analysis module. It is worth mention that classification at stage t+ 1 uses only
labels designed at stage t.

Classifying Online Social Network Users through the Social Graph 123

This architecture is similar, to some extent, to the one used by NetKit [5]. In
such proposal, the authors define the three main components of a node-centric
network learning system: the non-relational model, the relational model, and the
collective inference method. The non-relational model uses only local information
of the entities that are going to be classified. This non-relational model can
be used to create priors which are used as the initial state for the relational
model. The relational model uses the relations of the entities in the network and
the attributes of the neighbors of those entities. Finally, the collective inference
method faces the problem of having to classify a user depending on his neighbors
classification, which applies recursively to all connected nodes of the dataset.
Although our architecture resembles the one used by NetKit, note that there
are many differences between both approaches: the non-relational model of our
work does not use node attributes but properties that can be extracted from the
network structure itself; no attributes are neither used on the relational phase
on our proposal; and, as we will see, we instantiate the relational model with a
Support Vector Machine classifier, which differs from all the relational models
proposed in [5]. Note that by not using any node attributes in our classification,
our proposal can be used with naively anonymized graphs whose node attributes
are removed before being released.

Classification problems consist on assigning samples of an input set into a
given number of categories. In our scenario, we denote our category set as C =
{ck, for k = 1, · · · ,m}. Then, our classifier will assign a value in C to each
node vi from the input dataset. However, since our classifier uses an iterative
procedure to estimate the correct category of each node, we denote by catt(vi)
the predicted category in the t iteration. Then, cat0(vi) is the predicted category
for node vi performed by the initial classifier.

5.1 Initial Classifier

The initial classifier uses the structural node properties described in Section 4:
node degree and clustering coefficient. So for this classifier, each node is rep-
resented as a 3 dimensional sample, which describes its clustering coefficient,
indegree, and outdegree values. Note that although these attributes are struc-
tural properties of the nodes in the network, there is no need to known the
attributes of the neighbors of a given node to compute them.

The initial classifier is built upon a Support Vector Machine classifier3 with
soft margins, a Gaussian Radial Basis Function kernel, and a scaling factor of 1.
Our dataset contains some weird nodes that, although being labeled as members
of one type, they exhibit values on the computed attributes very similar to those
shown on nodes of the other types. For this reason, we use a soft margin classifier
in order to find a solution that better distinguishes the majority of the nodes
while neglecting to classify these outliers. Using a Radial Basis Function as kernel
shows good enough results for the initial classifier. Other kernels such as high

3 For those readers not familiar with Support Vector Machines, references [22] and
[23] cover the basics of such techniques.

124 C. Pérez-Solà and J. Herrera-Joancomart́ı

degree polynomials also offer similar performance results but they need more
computational time to be able to train the classifier.

After all this data processing is done, the support vectors are computed from
the test dataset with Quadratic programming method and the final result is an
initial classification, where each node vi has been assigned to a category ck for
some k ∈ {1, · · · , |C|}.

5.2 Relational Classifier

Once we have an initial classification of users into categories, obtaining cat0(vi) =
ck ∀i = 1, · · · , n, we can use this information to build a second classifier which
takes into account to what types of users is each user connected to. We assume
that the class of a node depends only on the classes of their direct neighbors, such
that the probability of a node belonging to a given class is independent of the
rest of the graph but his immediate neighborhood. This makes the problem of
inferring class membership more tractable. Then, in a similar way than with the
Class-Distribution Relational neighbor Classifier [5,24,25], we construct the node
vi class vector CV (vi) as the vector of summed linkage weights to the various
known classes. Since our topological social graph does not have weights on the
edges, we assume that each edge has a weight of exactly 1. So the kth position
of the class vector CV (t)(vi)k computed in the t iteration of the process is the
number of neighbors of vi within the predicted class in the previous classification
stage t − 1. However, since we are dealing with directed graphs, we extend the
class vector to contain two different values for each category, corresponding to
the predecessors and the successors of the analyzed node. In this way, each
CV (vi) vector component has exactly 2 dimensions, the first corresponding to
the successors and the second corresponding to the predecessors:

CV (t)(vi)k,1 = |{vj ∈ Γ (vi) s.t. cat
t−1(vj) = ck}|

CV (t)(vi)k,2 = |{vj ∈ Γ−1(vi) s.t. cat
t−1(vj) = ck}|

Following the scheme showed in Figure 2, CV (t)(vi) is the result of the neighbor-
hood analysis box in the t-th iteration, which is used as input for the relational
classifier, after being properly preprocessed. As depicted in Table 2, apart from
these attributes derived from the relationship profile of the users, we also add
the 3 dimensions used in the initial classifier to each of the samples. In this
manner, we use as much information as we have at each stage to conduct our
classification.

Once the vectors for each of the samples have been constructed, we build
a classifier with the same parameters than the initial classifier: using Support
Vector Machines with a Gaussian Radial Kernel Function and a scaling factor
equal to 1.

This relational classifier is applied iteratively. Since the output of the refine-
ment classifier should be better than that of the initial classifier, we can use the
output of the relational classifier to compute new values for the percentages of

Classifying Online Social Network Users through the Social Graph 125

users in outgoing and incoming edges, and then apply the relational classifier
again to improve classification performance. Ideally, we would like to run the re-
lational classifier iteratively as many times as needed until the results converge.
However, this method may not always converge, so some other termination con-
dition has to be set to stop the iterative process. In our case, we fixed a maximum
amount of iterations and considered as final results those obtained when that
maximum amount of iterations is reached.

6 Experimental Results

As we have already mentioned, the adversary goal is to classify Twitter users
using a naively anonymized copy of the social graph. Such anonymized copy
does not include node labels but it has exactly the same structure than the
original graph: no edges nor nodes have been added nor deleted. However, in
our scenario, we go one step beyond naive anonymization and we also remove
all node attributes, so that the adversary cannot use any semantic information
in the classification process.

In order to perform the attack, the adversary is able to learn labels for some
subset of the nodes of the graph a priori. These nodes for which the attacker is
able to obtain labels beforehand are used as training samples in the classification
process. Then, the adversary infers labels for the rest of the dataset, learning
information from users for which no prior information could be found.

The data to perform the experiments for the validation of the proposed attack
have been obtained from the Twitter network. More precisely, we have collected
two different Twitter samples using a Breadth First Search scheduler algorithm,
each of one starting from a different user in the Twitter network. To obtain each
of the corresponding social graphs, we have explored around 300 nodes, which
lead us to discover almost a million (936.423) different Twitter users. We use
those graphs to test our classifier architecture with two different classification
objectives: a binary classification attack (individual users versus companies) and
a multiclass classification attack with five different categories (four elite users
categories plus a non-elite user class).

We evaluate the success of the attack using the classical machine learning ap-
proach of repeated random sub-sampling validation. We use the same approach
than in [5] to create training and test sets. Given a crawled graph G = (V,E), we
randomly pick a subset of labeled nodes Vtrain ⊂ V to be used as the training set.
Then, the test set Vtest is defined as the rest of the nodes, so Vtest = V �Vtrain.
Therefore, we are facing a within-network classification problem, having a sce-
nario with labeled nodes linked with nodes for which the class in unknown.

The experimentation methodology is the same for both classification attacks
and for both datasets. We repeat the process of randomly selecting test and
training sets, building classifiers based on the training information and evaluating
the results with the test set 100 times. Then, we use mean correct classification
rate values to evaluate the attack success. By repeating the experiment 100 times
we pursue to minimize the artifacts of selecting specific samples for the training
and test sets.

126 C. Pérez-Solà and J. Herrera-Joancomart́ı

We repeat each of the experiments for different training set sizes (65%, 50%,
35%, and 20%) in order to evaluate the effects of the number of labeled nodes
in the attack success.

The next subsections review the specific configuration parameters used in
each of the two different classification attacks, the class labeling ground of truth
definition for each one, and the obtained results when using our classifier archi-
tecture to classify samples of the collected datasets.

6.1 Binary Classification Attack

Firstly, we use the classifier described in the previous section to classify users in
two different categories: individual users and companies (or organizations).While
some of the collected Twitter accounts are used by individual users in a personal
capacity, others are used by companies or organizations to promote themselves,
their products, or to maintain a link with their costumers or members. Our goal
with this attack is to distinguish between these two different uses of Twitter.
Following the introduced notation, our binary classification attack consists on
classifying users into two different categories (|C| = 2), where c1 = “individual”
and c2 = “company”.

In order to train the classifier and to be able to evaluate the success of the
attack, we perform a manual labeling of all users in the two collected graphs,
marking each user as either an individual user or a company. Table 1 shows the
number of users belonging to each of the categories. We can observe that there
is a similar distribution of samples of each of the two classes in both datasets.

Table 1. Number of users in each category

Category Dataset 1 Dataset 2

c1 = “individual” 159 161
c2 = “company” 144 174

At the beginning of the classification process, the initial classifier receives as
input data the 3-dimensional samples that contain the nodes’ clustering coeffi-
cient, indegree and outdegree (upper vector in Table 2). Its output is a set of
binary class labels that classify all nodes vi within a given category ck, obtain-
ing cat0(vi) = ck. Such information is used during the neighborhood analysis
to construct the 7 dimensional samples used by the relational classifier. These
7 dimensions (lower vector in Table 2) comprehend the same 3 dimensions in-
cluded in the initial classifier plus 4 new dimensions created by analyzing to
which classes does every node connect; in this case, the number of successors
classified as individual users, CV (t)(vi)1,1, the number of successors classified
as companies, CV (t)(vi)2,1, the number of predecessors classified as individ-
ual users, CV (t)(vi)1,2, and the number of predecessors classified as companies,
CV (t)(vi)2,2.

Classifying Online Social Network Users through the Social Graph 127

Table 2. Sample dimensions for the binary classification problem

cc Indeg Outdeg

Initial

cc Indeg Outdeg CV1 = individual CV2 = company

Initial In Out In Out

Figure 3 draws the results of the attack success, showing the rates of correct
node classification at each iteration step (x axes) for both datasets (solid lines
for dataset 1, dashed lines for dataset 2) for different training and test set sizes
(circles for 65% of samples into the training set, asterisks for 50%, diamonds for
35%, and triangles for 20%). We can observe that, although the initial classifica-
tion (iteration 0) never gets over a 63% of correctly classified samples, the correct
rate increases considerably with the first relational classification stage (iteration
1), and keeps increasing with the following iterations until it stabilizes (around
iteration 5), presenting correct rates close to 73% when the training set contains
65% of the nodes of the graph. As it is expected, the attack success increases
as the training set size also increases because nodes in the training set are used
to construct the relationship profiles of nodes in the test set, so increasing the
training set size also increases the amount of correct information available when
classifying.

We can also observe that similar results are obtained with both datasets, with
differences in the final classification performance being lower than 2%. This seems
to indicate that our proposed classifier architecture can be used to attack the
Twitter network and classify users in these two classes regardless of the specific
part of the network analyzed.

6.2 Multiclass Classification Attack

Our second experiment uses the same classifier architecture to group users in
five different categories (the four used by [2] to describe elite users plus a new
category to describe non-elite users). So this second attack intends to classify
Twitter users in one of the following five categories (|C| = 5): c1 = “normal
user”, c2 = “blogger”, c3 = “celebrity”, c4 = “media”, and c5 = “organization”.

In order to build the classifier for this multiclass problem, we use a combina-
tion of binary Support Vector Machine classifiers with one-versus all methodol-
ogy: we construct 5 binary classifiers, each of them considering positive samples
the nodes of one class and negative samples the nodes of all other classes. Then,
we assign each test sample to the class that classifies it with the greatest mar-
gin. Individual binary classifiers are build with the configuration detailed in
Section 5.1.

In this scenario, in order to train the classifier and to evaluate the success
of the attack, we perform an automatic user labeling process using the Twitter
lists feature (following a similar procedure than in [2]). In this case, we use just

128 C. Pérez-Solà and J. Herrera-Joancomart́ı

0 1 2 3 4 5 6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

Iteration

C
or

re
ct

 r
at

e

Correct rates

D1−65% train

D1−50% train

D1−35% train

D1−20% train

D2−65% train

D2−50% train

D2−35% train

D2−20% train

Fig. 3. Binary classification attack success

Table 3. Number of users in each category

Category Users

c1 = “normal user” 16(5%)
c2 = “blogger” 46(14%)
c3 = “celebrity” 86(26%)
c4 = “media” 93(27%)

c5 = “organization” 94(28%)

one of our datasets, since the list labels were defined with English words and the
other dataset contains mostly non-English speaking users.

Unlike the binary classification attack, the number of nodes assigned to each
of the categories is distributed unequally in the multiclass classification problem,
with some categories containing very few nodes and others with as much as 28%
of all nodes. Table 3 shows the number of users labeled in each category.

The inputs for the initial classifier are the same 3-dimensional samples than
in the binary case (clustering coefficient, indegree, and outdegree). However, the
inputs of the relational classifier have now 13 dimensions: the initial 3 dimensions
plus 10 relational dimensions obtained by studying the 5 classes in both outgoing
(CV (t)(vi)j,1 for j = 1, · · · , 5) and incoming edges (CV (t)(vi)j,2 for j = 1, · · · , 5).
Table 4 shows each of the dimensions for the initial and relational classifiers.

Figure 4 shows the results of the multiclass attack for different training and
test set sizes. We can observe that, although the initial classification (iteration
0) is always below 50%, the correct rate increases considerably with the first
relational classification stage (iteration 1). However, further iterations of the
relational classification do not substantially increase the correct rate value. As
with the binary classification problem, the performance of the classifier decreases
when the training set size also decreases.

Classifying Online Social Network Users through the Social Graph 129

Table 4. Sample dimensions for the multiclass classification problem

cc Indeg Outdeg

Initial

cc Indeg Outdeg CV1 =user CV2 =blog CV3 =celeb CV4 =media CV5 =org

Initial In Out In Out In Out In Out In Out

0 1 2 3 4 5 6 7 8 9 10

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

C
or

re
ct

 r
at

e

Correct rates

Cat
a
 − 65% train

Cat
a
 − 50% train

Cat
a
 − 35% train

Cat
a
 − 20% train

Fig. 4. Multiclass classification attack success

7 Conclusions and Further Work

In this paper, we have shown that it is possible to classify OSN users using a
naively anonymized copy of a social graph. By using the proposed architecture
we analyze two different classification attacks, aimed to show that classification is
feasible at different levels. Our goal was also to demonstrate that the information
found in the social graph was enough to perform classification. In the binary
classification attack, our architecture is able to achieve success rates up to 65%
assuming that the attacker knows only the a priori classification of the 20%
of users. In the multiclass classification attack the success rate is lower, up to
52% when the attacker knows only the 20% of correct labels. Furthermore, by
using data from two almost disjoint user set samples (there is just one user
from the 936.423 collected which appears in both datasets), we show that social
graph structure is indeed enough to classify users and that this is not a local
phenomenon appearing just in a specific isolated set of users of the network.

Given the faced scenario, two different approaches are the natural continuation
of this work. On one hand, we can assume that the attacker is able to obtain
some attributes of the nodes, being able to improve the classification using this
information. Further work remains to be done with this approach to integrate
both information from the social structure and semantic information found in

130 C. Pérez-Solà and J. Herrera-Joancomart́ı

node attributes to improve OSN user classification. On the other hand, we can
also assume that the attacker obtains a copy of the graph released after an
anonymization process other that the naive anonymization. In this case, further
work also remains to be done to analyze the impact of different anonymization
techniques on the classification performance.

References

1. Boyd, D., Ellison, N.B.: Social network sites: Definition, history, and scholarship.
Journal of Computer-Mediated Communication 13(1) (2007)

2. Wu, S., Hofman, J.M., Mason, W.A., Watts, D.J.: Who says what to whom on
twitter. In: Proc. of World Wide Web Conference, WWW 2011 (2011)

3. Jernigan, C., Mistree, B.F.T.: Gaydar: Facebook friendships expose sexual orien-
tation. First Monday 14(10) (2009)

4. Westin, A.: Privacy and Freedom. Atheneum (1970)
5. Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a

univariate case study. J. Mach. Learn. Res. 8, 935–983 (2007)
6. Macskassy, S.A., Provost, F.: A simple relational classifier. In: Proc. of the 2nd

Workshop on Multi-Relational Data Mining, KDD 2003, pp. 64–76 (2003)
7. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hy-

perlinks. In: SIGMOD 1998: Proc. of the 1998 ACM SIGMOD International Con-
ference on Management of Data, vol. 27, pp. 307–318. ACM Press, New York
(1998)

8. Lu, Q., Getoor, L.: Link-based classification using labeled and unlabeled data. In:
Proc. of the ICML 2003 Workshop on the Continuum from Labeled to Unlabeled
Data, Washington, DC (2003)

9. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational
classification. In: KDD 2004: Proc. of the 2004 ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, pp. 593–598. ACM Press, New York (2004)

10. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence PAMI-6(6), 721–741 (1984)

11. Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI 2000
Workshop on Learning Statistical Models from Relational Data (2000)

12. Gallagher, B., Eliassi-Rad, T.: An examination of experimental methodology for
classifiers of relational data. In: Proc. of the 7th IEEE Int. Conf. on Data Mining
Workshops, ICDMW 2007, pp. 411–416. IEEE Computer Society (2007)

13. Carvalho, V.R., Cohen, W.W.: On the collective classification of email ”speech
acts”. In: SIGIR 2005: Proc. of the 28th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 345–352. ACM,
New York (2005)

14. Bhagat, S., Cormode, G., Rozenbaum, I.: Applying Link-Based Classification to
Label Blogs. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum,
A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD/SNA-KDD 2007. LNCS,
vol. 5439, pp. 97–117. Springer, Heidelberg (2009)

15. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing Social Net-
works. Technical report (2007)

Classifying Online Social Network Users through the Social Graph 131

16. Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph
Data. In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds.) PinKDD 2007. LNCS,
vol. 4890, pp. 153–171. Springer, Heidelberg (2008)

17. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, pp. 93–106. ACM, New York (2008)

18. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, ICDE 2008, pp. 506–515. IEEE Computer Society, Washington, DC
(2008)

19. Zou, L., Chen, L., Özsu, M.T.: k-automorphism: a general framework for privacy
preserving network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)

20. Ford, R., Truta, T.M., Campan, A.: P-sensitive k-anonymity for social networks.
In: Stahlbock, R., Crone, S.F., Lessmann, S. (eds.) DMIN, pp. 403–409. CSREA
Press (2009)

21. Knuth, D.E.: Art of Computer Programming: Fundamental Algorithms, 3rd edn.,
vol. 1. Addison-Wesley Professional (July 1997)

22. Hearst, M., Dumais, S., Osman, E., Platt, J., Scholkopf, B.: Support vector ma-
chines. IEEE Intelligent Systems and their Applications 13(4), 18–28 (1998)

23. Manning, C.D., Raghavan, P., Schtze, H.: Support vector machines & machine
learning on documents. In: Introduction to Information Retrieval, pp. 319–348.
Cambridge University Press (2008)

24. Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with
identifier attributes. Machine Learning 62(1-2), 65–105 (2006)

25. Rocchio, J.: Relevance Feedback in Information Retrieval, pp. 313–323. Prentice
Hall (1971)

A Formal Derivation of Composite Trust

Tim Muller and Patrick Schweitzer

University of Luxembourg, CSC and SnT
{tim.muller,patrick.schweitzer}@uni.lu

Abstract. Trust appears in asymmetric interactions, where one party
(the active party) can easily betray a stakeholder (the passive party).
Over the Internet, the amount of information that a passive party can
use to determine the integrity of an active party is often limited. The
scenario where there is only one passive party and one active party is
well studied, and has been solved under some assumptions. We generalize
the setting to allow for more parties. In particular, the paper contains a
formal derivation of conjunction (and disjunction) of trust opinions.

1 Introduction

Trust has a diverse meaning to different people. Consequently, definitions of
trust in the literature vary. A definition of trust can be found in [1]: “First, one
trusts another only relatively to a goal, i.e. for something s/he wants to achieve,
that s/he desires. (..) Second, trust itself consists of beliefs. Trust is a mental
state (..) about the behavior (..) relevant for the result.” From that definition,
we see that the authors clearly see trust as a mental state, regarding interactions
where the result (rather than the intention) is important. In [2] an economical
perspective is taken: “Trust is a psychological state comprising the intention
to accept vulnerability based upon positive expectations of the intentions or
behavior of another.” Here, it is clear that intention is relevant, and trust is
still about a mental state and a specific interaction. Existing reputation systems
must take trustworthiness as an objective property, rather than a mental state,
in order for reputation to have meaning. Definitions with a psychological accent
often do not depend on interactions, but tie trust to agents, as written in [3]:
“Trust in things or people entails the willingness to submit to the risk that they
may fail us, with the expectation that they will not (..).” These definitions, as
well as informal intuitions share properties that are difficult to characterize. In
this paper, we take the view that trust helps us to reason about trust systems
(such as reputation systems and recommender systems) on the Internet. This
means that trustworthiness, or integrity, is taken as an inherent property of the
agents. It also means that agents trust each other with respect to interactions
within the system. Furthermore, it means that only the result of the interaction
matters, not the intention of the agent.

In each of the previously discussed definitions of trust an agent makes an
assessment of another agent’s future behavior using information they have gath-
ered in the past. Such an assessment is called a simple trust opinion. If an agent

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 132–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Formal Derivation of Composite Trust 133

makes an assessment about the future behavior of several agents, it is called a
composite trust opinion. A trust opinion does not only predict the future behav-
ior that is most likely, but also indicates the certainty of the prediction. In this
paper, we formalize the aforementioned notion of trust, using trust opinions. To
obtain meaningful results, we must specialize the notion of trust.

In an interaction, there are several parties that have an agreement. There is
at least one active party, who has an opportunity to ignore the agreement, and
there is one passive party, which cannot affect the outcome of the interaction and
may be harmed if active parties ignore the agreement. If an active party adheres
to the agreement, we say the active party’s behavior is good behavior, if he fails
to adhere, we say it is bad behavior. Since the passive party may be harmed
if one of the active parties shows bad behavior, the passive party may form a
trust opinion about the active parties before (potentially) interacting. If an agent
forms a (composite) trust opinion about (several) agents, he is called the subject.
The combination of the active parties concerning the potential interaction is
called the target. To express composite trust opinions we denote the target in
propositional logic, where atomic propositions represent good or bad behavior
of active parties. To illustrate the use of composite trust, consider the following
example.

Example 1. Take an imaginary web service, CLOUD, that offers computational
power to users, by CPU-scavenging in a similar fashion to BOINC [4], i.e.
CLOUD is a grid. A user that delegates a computation is a client, and a user
that offers CPU cycles is a provider. Unlike BOINC, the CLOUD system is a
commercial system, where clients pay for computations, and providers get paid
for offering computational power.

The identity of the machines in CLOUD is visible, and users can delegate
computations to specific (groups of) machines. The infrastructure of CLOUD
is very open, which means that malicious users can easily join as a provider.
Malicious users may sometimes take shortcuts in the computation, providing
wrong results. Furthermore, non-malicious users may prematurely terminate a
computation before a result is provided, for example, when the computer shuts
down, restarts or drops the network. It may occur that a single computation is
delegated to a group of computers working concurrently to reduce latency. It
may also occur that a single computation is delegated to more than one (group
of) provider(s), to avoid extra latency when one of the (groups of) providers
fails.

A client, A, on CLOUD has an instance of an NP-complete problem, and
sends the problem to a provider, D, and a copy of the problem to a pair of
concurrent providers, B and C. See Figure 1 for a visual representation of the
interaction.

In our terminology, clients are passive parties (i.e. potential subjects), and
providers are active parties (i.e. potential targets). Good behavior for a provider
is delivering a correct result within a specified time frame. Bad behavior for a
provider is returning a wrong result, returning it too late, or not at all. Since
a client can quickly verify a (positive) solution to an NP-complete problem,

134 T. Muller and P. Schweitzer

D

C

B

A

Fig. 1. The two outgoing arrows from A are delegations for a computation. One for D,
the other is split and runs concurrently on B and C.

correct and incorrect solutions can easily be distinguished. Hence, it suffices for
the subject A to receive at least one correct result within the specified time frame
from the target. If either the single provider D or both other providers B and
C provide the correct result in time, the whole target’s behavior is considered
good. We can denote this composite trust opinion as D ∨ (B ∧C).

The subject not only wants to know the probability that the target succeeds,
but also the uncertainty. If the probabilities b, c and d of B, C and D succeeding
are independent, then one may anticipate that the expected probability of the
target succeeding to be d+ b · c− d · b · c. We formally show the foresight on this
trust opinion to be correct in Section 4.

To derive trust opinions, as the ones in the previous example, in a formal way,
we need to define the context. We assume to be in an environment where all in-
formation comes from interactions between passive and active parties and that
active parties operate independently of each other. Furthermore, we assume that
each active party has an (hidden) integrity parameter that represents the prob-
ability of good behavior in unknown contexts. Therefore, in our framework, a
trust opinion is a probability distribution over integrity parameters. From such
a probability distribution, one can derive the expected probability of good be-
havior and the uncertainty of the estimate. In Section 3, we define the context
(including trust opinions) formally.

The framework that we operate in is inspired by work in [5] and [6], where
the authors independently derived a formal trust model (the beta model) of
trust opinions. The context of the beta model is very similar to ours, but only
allows simple trust opinions, not composite trust opinions. In the beta model,
probability distributions known as beta distributions [7] represent trust opinions.

The beta model inspired several very popular extensions, such as Subjective
Logic [8], TRAVOS [9] and CertainTrust [10]. Like our trust model, Subjective
Logic contains conjunction and disjunction operators, and CertainTrust has been
extended to CertainLogic [11] which also contains these operators. Unlike in our
trust model, their trust model composite trust opinions are beta distributions.
In Section 4, we show that models where composite trust opinions are beta
distributions must violate reasonable assumptions

A Formal Derivation of Composite Trust 135

Not all models with conjunction, disjunction and uncertainty are based on
the beta model; important examples are Fuzzy logic [12] and Dempster-Shafer
theory [13,14]. Trying to apply our results to these models is more difficult, due
to some inherently different assumptions and approaches.

There are also trust models that are based on the beta model, which have
been extended beyond it. Often, they are the result of tweaking the assumptions
of the beta model. In [15], for example, the assertion that behavior is good or
bad is generalized into an assertion that a behavior value is selected from a
range of values. For CLOUD, this means that incorrect results are distinguished
from late results, or lack of results. In [16], the assumption of equal weight to
all interactions is dropped. In the case of CLOUD, this implies that interactions
that lie further in the past are less relevant than more recent interactions; or
that providers behave differently during peak-load periods and off-peak periods.

In Section 2 of this paper, we introduce the necessary concepts from prob-
ability theorem. On the basis of these concepts, we formalize the assumptions
necessary to reason about trust in our context, in Section 3. We argue that it
is useful to have such a collection of simple assumptions from which to derive
trust opinions (as opposed to defining how to derive trust opinions directly).
That trust operators can be derived from the assumptions is shown in Section 4,
where we derive conjunction and disjunction.

2 Preliminaries

The setting of the model is probabilistic in nature. We require the following
concepts from probability theory (see e.g. [17,18]).

Definition 1 (σ-algebra, measure, probability measure). Let Ω be a set
of events. A set F of subsets of Ω is called a σ-algebra if the following three
properties hold.

1. ∅ ∈ F .
2. If A ∈ F it follows that Ω \A ∈ F .
3. If A1, A2, . . . ⊂ F it follows that

⋃
n An ∈ F .

Let P be a map from F → R∪{∞}. Then, this map is called a measure if

1. P (∅) = 0.
2. P (A) ≥ 0 for all A ∈ F .
3. If A1, A2, . . . ⊂ F such that Ak ∩ Al = ∅ for all k �= l, it follows that

P (
⋃

n An) =
∑

n P (An).

If P maps to [0, 1] and P (Ω) = 1, it is called a probability measure.

The tuple (Ω,F) from Definition 1 is called a measurable space. The triple
(Ω,F , P) is called a measure space. If P is additionally a probability measure,
the triple is called a probability space.

136 T. Muller and P. Schweitzer

Definition 2 (Random Variable). Let (Ω,F , P) be a probability space and
(E, E) a measurable space. A mapping X : Ω → E is a random variable, if

{ω ∈ Ω|X(ω) ∈ B} ∈ F for all B ∈ E .
When Ω and E are at most countable, the σ-algebras F and E can be assumed
to be the power sets over Ω and E, respectively.

In probability theory, the expression {ω ∈ Ω|X(ω) ∈ B} is often abbreviated to
{X ∈ B}.
Definition 3 (Probability space of a random variable). Let (Ω,F , P) be
a probability space, (E, E) a measurable space and X : Ω → E a random variable.
Then PX(B) := P ({X ∈ B}), B ∈ E defines a probability measure PX on (E, E).
The expression P ({X ∈ B}) is usually shorthanded to P (X ∈ B).

Definition 4 (Distribution of a random variable). The probability measure
PX is called the distribution of the random variable X.

The probability space (E, E , PX) is called discrete, if E is at most countable.

Definition 5 (Independence of random variables). Let (Ω,F , P) be a
probability space and let X1, . . . , Xn be n random variables (over Ω) with val-
ues in the measurable spaces (Ei, Ei), i ∈ {1, . . . , n}. The random variables
X1, . . . , Xn are called independent, if for arbitrary B1 ∈ E1, . . . , Bn ∈ En, the
events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are independent.

This definition is equivalent to the following.

X1, . . . , Xn indep. ⇔ P (X1 ∈ B1, . . . , Xn ∈ Bn) =

n∏
i=1

PXi(Bi) for Bi ∈ Ei.

As shorthand notation we write X ⊥⊥ Y, Z when X,Y, Z are independent.

Definition 6 (Conditional independence of variables). Let (Ω,F , P) be
a probability space and let X,Y, Z be random variables (from Ω) with values in
the measurable spaces (Ei, Ei), i ∈ {X,Y, Z}. Two random variables X and Y
are conditionally independent given the variable Z if

P (X ∈ A, Y ∈ B|Z ∈ C) = P (X ∈ A|Z ∈ C)P (Y ∈ B|Z ∈ C).

for each A ∈ EX , B ∈ EY and C ∈ EZ .
As shorthand we write P (X,Y |Z) = P (X |Z)P (Y |Z), (X ⊥⊥ Y)|Z or even
X ⊥⊥ Y |Z. Note that the definition is equivalent to P (X |Y, Z) = P (X |Z).

Theorem 1 (Law of total probability). Let (Ω,F , P) be a probability space,
A and C events and let B1, . . . , Bn be a partition in that probability space. Then

P (A|C) =

n∑
i=1

P (A|Bi, C)P (Bi|C).

A Formal Derivation of Composite Trust 137

The law of total probability also holds for continuous random variables X, and
Y with positive density functions fX and fY , respectively.

fY (y) =

∫ ∞

−∞
fY (y|X = x) · fX(x) dx.

Theorem 2 (Bayes’ law for conditional probabilities). Let (Ω,F , P) be a
probability space and B and C events and let A1, . . . , An be a partition in that
probability space. Then

P (Aj |B,C) =
P (B|Aj , C)P (Aj |C)

P (B|C)
=

P (B|Aj , C)P (Aj |C)∑n
i=1 P (B|Ai, C)P (Ai|C)

.

Note that in this form Bayes’ theorem also holds for variables (instead of events).
This is true for discrete random variables, continuous random variables as well
as a mixture of discrete and continuous random variables. If continuous variables
are involved, they need to have a positive density function.

Theorem 3 (Product distribution). Let X and Y be two independent con-
tinuous variables, with positive probability density functions f(x) and g(x). Then
U = X · Y is a continuous random variable with probability density function h.
Explicitly

h(u) =

∫ ∞

−∞

1

|y| · f(
u

y
) · g(y) dy.

An important distribution we refer to in the next sections is the beta distribution.

Definition 7 (Beta distribution). A beta distribution is a family of continu-
ous probability distributions in the interval [0, 1], parameterized by two positive
parameters, α, β ≥ 1. The probability density function of a beta distribution with
parameters α and β is

fB(x;α, β) =
xα−1(1− x)β−1∫ 1

0 yα−1(1 − y)β−1 dy
.

The expression under the fractions is known as the beta function on α and β, and

for positive integers α and β, the beta function fulfills B(α, β) = (α−1)!(β−1)!
(α+β−1)! .

To quantify information, we define a notion of entropy as in [19].

Definition 8 (Entropy). The entropy H of a discrete random variable X with
possible values x1, ..., xn for n ∈ N is given by H(X) = E(I(X)), where E is
the expected value and I(X) is the random variable denoting the information
content of X. If p denotes the probability mass function of X and c ∈ N, then
the entropy can explicitly be written as1

H(X) =

n∑
i=1

p(xi) I(xi) =

n∑
i=1

p(xi) log
1

p(xi)
.

1 In our considerations the base of the logarithm is not important.

138 T. Muller and P. Schweitzer

If p(xi) is equal to 0 for some i ∈ {1, . . . , n} and n ∈ N, then p(xi) log(p(xi)
−1)

is taken to be 0.
Entropy can be extended for continuous random variables X ranging from a

to b, with probability density function fX

h(X) =

∫ b

a

fX(x) log(
1

fX(x)
) dx.

3 Model Assumptions

On a flea market, you see the sellers face to face, see whether they are well orga-
nized and you can determine whether they are popular. On an online e-commerce
system, such detailed information is not available. You choose the seller based
on previous interactions with this sellers, often by including information about
interactions that others claim to have had with these sellers. Our trust model is
much more relevant for e-commerce systems (and other online services, such as
CLOUD), than it is for an actual flea market.

In this section, we formalize the assumptions that we have for trust in a
system based on asymmetric interactions (like transactions in e-commerce sys-
tems), where expectations are clearly defined. First, we informally introduce
our assumptions with motivations, then we formally state the assumptions as
relations between random variables.

To reiterate some assertions from the introduction: Interactions are the build-
ing blocks in our trust analysis. Interactions are between a passive party (the
subject) and active parties (the target). A subject may form a trust opinion
about a target, before the subject interacts as passive party with the active
parties in the target. The observed behavior of the active party is objectively
classified as good (well) or bad (badly). Furthermore, the probability that the
active party behaves well is determined by its integrity parameter p. An agent
will most likely exhibit non-probabilistic behavior, and will therefore behave well
in some situations and badly in others. However, we do not know the correlation
between situations and behaviors, nor do we necessarily know the situation. In
the light of this, we can view the integrity p as the chance that an agent is in a
situation where his behavior is good (or even where behaving well is in his best
interest in some iterative game2, as in [20]). Lastly, we assume that p neither
changes over time nor with respect to the environment. This assumption allows
us to treat previous interactions in a mathematically coherent way, since all in-
teractions are equally relevant for the current situation. In the model, an agent
will never know the integrity of another agent, but will have an estimate based
on these previous interactions.

To formulate the above assumptions in a formal manner, we need to define
interactions of agents, integrity parameters of agents, sets of interactions that
agents made in the past, and composite targets. To comply to notation used

2 Agents expect to interact multiple times with other agents, and even if betrayal is
profitable on the short run, it may be more profitable to conform on the long run.

A Formal Derivation of Composite Trust 139

in probability theory (Bernoulli, binomial and beta distributions), we refer to
good behavior of the active party as success, s, and bad behavior as failure,
f. We are often interested in the previous interactions between a passive party
and an active party, which we call an interaction history of the passive party
about the active party. Furthermore, we take an interaction history to be a pair of
natural numbers: the first number as representing the number of successes (good
behavior by an active party), the second number as representing the number of
failures. Let A denote the set of agents. The targets T are defined by ϕ ::= A ∈
A |ϕ ∧ ϕ |ϕ ∨ ϕ. For A,B,C ∈ A, T ∈ T and a set of events Ω, we define the
following random variables.

– ET : Ω → {s, f} is a discrete random variable modeling the outcome of the
corresponding interaction with target T .

– RT : Ω → [0, 1] is a continuous random variable modeling the (hidden) in-
tegrity parameter of target T , defining the probability of success.

– OA
B : Ω → N × N is a discrete random variable modeling the interaction

history of A about B, representing the past interactions between A as passive
party and B as active party.

Recall that a trust opinion is a distribution over the integrity parameter of a
target, based on the interaction history about the involved active parties. Hence,
if a subject A establishes a trust opinion about a target T , where B,C, . . . are
the active parties in T (denoted B,C, . . . ∈ act(T)), the density function looks
like fRT (x|OA

B ∩ OA
C ∩ . . .). In this setting, the only type of information that is

important to the subject, are the interaction histories of this subject. If there
are other types of information (interaction histories of others, recommendations,
a priori knowledge) available, they can be modeled as additional conditions (on
additional random variables).

The definition of the random variables alone does not suffice to compute a
query such as fRB∧C (x|OA

B ∩ OA
C). To calculate these trust opinions, we need

to provide the dependencies and independencies between the random variables.
These (in)dependencies are merely a formal denotation of the assumptions that
we have. For a more concise formulation of these (in)dependencies, we introduce
sets of random variables.

E := {ET : T ∈ T},
R := {RT : T ∈ T},
O := {OA

B : A,B ∈ A},
W := E ∪ R ∪O.

Let x ∈ [0, 1], n, k ∈ N and λ : N → [0, 1] be a probability distribution. For
all A,B ∈ A and S, T ∈ T we set up the following dependency and independent
relations as our assumptions.

D1 RA is the uniform distribution on [0, 1].
If we know nothing about the integrity of A, we assert all values equally
likely. For specific applications, statistical data about behaviors of agents
may be used to construct an alternative distribution. A suitable distribution
has a probability density function that is non-zero on (0, 1).

140 T. Muller and P. Schweitzer

D2 P (ET=s|RT=p) = p.
We assume that the probability of good behavior is determined by the in-
tegrity parameter p.

D3 ES∧T = s iff ES = s and ET = s, for act(S) ∩ act(T) = ∅.
We define conjunctions of independent targets in such a way that the con-
junction succeeds if both targets succeed.

D4 ES∨T = s iff ES = s or ET = s, for act(S) ∩ act(T) = ∅.
We define disjunctions of independent targets in such a way that the dis-
junction succeeds if at least one target succeeds.

D5 There exists a function f , with RS∧T = f(RS , RT), when act(S)∩act(T) = ∅.
We assert that the integrity of a composite target is determined by the
integrity of its active parties.

D6 P (OA
B=(k, n− k)|RB=x) =

(
n

n−k

)
xk(1− x)n−kλ(n).

Assumes that the probability that A and B had an interaction history with
size n is λ(n), and that each past interaction had success probability x.

I1 For W ∈W\{OA
B}, it holds that OA

B ⊥⊥ W |RB.
The interaction history is completely determined by its size, and the proba-
bility of a success in a single interaction (by Dependency D6).

I2 For W ∈W\{ES : A ∈ act(S), ES ∈ E}, it holds that EA⊥⊥ W |RA.
The behavior of A is completely determined by its integrity parameter (by
Dependency D2).

I3 For W ∈W\{RB}, it holds that RB ⊥⊥ W |EB ∩
⋂

C∈A{OC
B}.

The only indicators of the integrity parameter of B, are interactions with it.

Independency I2 can be generalized for composite targets.

Proposition 1. For all W ∈ W\{ES : act(T) ∩ act(S) �= ∅, RS ∈ E}, it holds
that ET ⊥⊥ W |RT .

Proof. Apply structural induction. The base case precisely matches Indepen-
dency I2. For the induction step use, that by definition of act(·), it holds that
act(T) ∪ act(T ′) = act(T ∧ T ′) = act(T ∨ T ′).

Our assumption is that trust adheres to D1-D6 and I1-I3.
A trust opinion of A about T can now be seen as the probability density

function given by fRT (x|ϕ), where ϕ is a condition that represents all knowledge
of A about T , modulo the relations of the random variables. Typically, ϕ is the
intersection of OA

C , for different agents C ∈ A. In other words, subjects have
interaction histories about a group of active parties. If we restrict ϕ to merely
the interaction history about a single active party, we get a beta distribution
representing a simple trust opinion.

Lemma 1. The simple trust opinion obtained from an interaction history with
m successes and n failures is the beta distribution fB(x;m+ 1, n+ 1).

A Formal Derivation of Composite Trust 141

Proof.

fRB (x|OA
B=(m,n))

=
P (OA

B=(m,n)|RB=x) · fRB (x)∫ 1

0
P (OA

B=(m,n)|RB=x′) · fRB (x
′) dx′

=

(
m+n
m

)
xm(1− x)nλ(m+ n) · fRB (x)∫ 1

0

(
m+n
m

)
(x′)m(1− x′)nλ(m+ n) · fRB (x

′) dx′

=

(
m+n
m

)
xm(1− x)n∫ 1

0

(
m+n
m

)
(x′)m(1− x′)n dx′

=fB(x;m+ 1, n+ 1).

The beta model ([5] and [6]) is based upon the notion that simple trust opin-
ions are beta distribution. We can imagine an operator, trust aggregation, that
updates trust opinions by adding more interactions. Formally, if we have a trust
opinion X based on interaction history (xs, xf) and a trust opinion Y based on
interaction history (ys, yf), then the aggregate of X and Y is a trust opinion
based on (xs + ys, xf + yf). As such, the beta model inherits the mathematical
property that the set of beta distributions is closed under trust aggregation.

Our assumptions regarding simple trust opinions are in line with the beta
model, and are in fact sufficient to derive it (as demonstrated in Lemma 1).
Hence, those assumptions can be seen as valid for the numerous models based
on the beta model [8,9,10]. We extend the assumptions about simple trust
opinions, by adding assumptions about composite trust opinions (Dependen-
cies D3, D4 and D5). Under these assumptions, we show in Theorem 5 that
composite trust opinions cannot generally be represented as beta distributions.

4 Composite Trust

In Example 1, we introduced the CLOUD grid. An example of a composite
target was D ∨ (B ∧ C), where B, C and D are providers. The subject, A, has
a (potentially empty) interaction history about B, C and D. In Example 2, we
formally derive the trust opinion of A.

Example 2. The subject wants to form a trust opinion about D∨ (B∧C), using
only the interaction history of A about active parties B, C and D. The random
variables OA

B, O
A
C and OA

D represent the interaction history of A about B, C and
D. The random variableRD∨(B∧C) represents the (unknown) integrity parameter
of the target D ∨ (B ∧ C), and the random variable ED∨(B∧C) represents the
(unknown) outcomes of the next interaction with the target D ∨ (B ∧ C). We
are interested not just in the probability of the next outcome of the target is a
success (ED∨(B∧C)), but also in additional information, i.e. the random variable
RD∨(B∧C). Figure 2 depicts the relation between the users and the involved
random variables. As stated in Section 3, given failures and successes of past
interactions (bs, bf, cs, cf, ds, df), the query for the trust opinion is of the shape

142 T. Muller and P. Schweitzer

D

C

B

A

OA
C = (cs, cf)

OA
D = (ds, df)

OA
B = (bs, bf)

RB∧C

RD∨(B∧C)

Fig. 2. Solid arrows represent interaction histories. Dashed arrows represent composite
trust opinions. Arrows are labeled with the relevant random variables.

fRD∨(B∧C)
(x|OA

B = (bs, bf) ∩OA
C = (cs, cf) ∩ OA

D = (ds, df)). In other words, the
trust opinion represents the probability distribution of a random variable that
predicts the probability that the target succeeds.

Whenever a subject wants to compute a composite trust opinion about a target,
he chooses the correct conditions and the correct random variable to form a
distribution over, as illustrated in Example 2. Therefore, we can assume, with-
out loss of generality, that we are given the term representing the probability
distribution, and we want to compute an explicit probability density function.

We are interested in a random variable RT , where T is not a single agent
(unless the subject wants a simple trust opinion). However, we have not provided
direct relations between RT and observation histories OA

B or integrity parameters
of single agents RA. The only random variable that we can immediately relate
RT to is ET . For more concise notation, we note the following lemma.

Lemma 2. If S and T do not share any active parties, then RS∧T = RS ·RT .

Proof. The product RS ·RT of two random variables is defined as (RS ·RT)(ω) :=
RS(ω) ·RT (ω).

By Dependency D2, it holds that

P (ES∧T = s|RS∧T = x) = x.

And, using Proposition 1 as well as Dependencies D2 and D3 we obtain

P (ES∧T |RS = y ∩RT = z)

=P (ES = s ∩ ET = s|RS = y ∩RT = z)

=P (ES = s|ET = s ∩RS = y ∩RT = z) · P (ET = s|RS = y ∩RT = z)

=P (ES = s|RS = y) · P (ET = s|RT = z)

=y · z.

A Formal Derivation of Composite Trust 143

Assume, without loss of generality, that RS(ω) = y and RT (ω) = z. By De-
pendency D5, there is a function f such that x = P (ES∧T = s|RS∧T =
x) = P (ES∧T = s|f(RS , RT) = x). That implies that x = f(y, z), and thus
P (ES∧T = s|f(RS , RT) = f(y, z)) = f(y, z). Now, since RS(ω) = y and
RT (ω) = z, we have

f(y, z)

=P (ES∧T = s|f(RS , RT) = f(y, z)) = f(y, z)

=P (ES∧T)

=P (ES∧T |RS = y ∩RT = z)

=y · z.

Thus RS ·RT = f(RS , RT) = RS∧T .

A similar proof exists for disjunction, using independency over union rather than
intersection, yielding RS∨T = RS +RT −RS ·RT

We can derive the probability density function of RS∧T under any condition ϕ.

Theorem 4. If S and T do not share any active parties, then

fRS∧T (x|ϕ) =
∫ 1

x

1

y
· fRS (

x

y
|ϕ) · fRT (y|ϕ) dy.

Proof. Apply Theorem 3 and Lemma 2. It suffices to verify the integral bounds.
fRS(

x
y |ϕ) = 0 for 0 > x

y and 1 < x
y , so we can ignore cases where y < x and

y > 1.

The case for disjunction can be calculated in a similar fashion. Theorem 4 is
sufficient to derive trust opinions about arbitrary targets (where no active parties
appear more than once), given arbitrary interactions with the active parties.

Corollary 1. For every (finite) target where no active parties appear more than
once, an explicit function for the trust opinion can be computed by the subject.

Proof. Apply structural induction over the shape of the target. The base case
(simple trust opinions) is proven in Lemma 1. To prove the induction step, take
Theorem 4 as a rewrite rule from left to right.

In Example 3, we derive an explicit formula for the trust opinion of B ∧C, and
look at some of its properties.

Example 3. Assume that the subject, A, wants to establish a trust opinion about
the target, B∧C. In the past, A has interacted as a passive party with B several
times; five times B behaved well, and once badly. Furthermore, A has interacted
with C, too; four times C behaved well, and twice badly. The trust opinion of A

144 T. Muller and P. Schweitzer

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 3. From left to right: trust opinion about B, about C and about B ∧ C

about B ∧C is fRB∧C (x|OA
B = (5, 1)∩OA

C = (4, 2)). Using Theorem 4, the trust
opinion can be computed as∫ 1

x

1

y
· fRB (

x

y
|OA

B = (5, 1) ∩OA
C = (4, 2)) · fRC (y|OA

B = (5, 1) ∩OA
C = (4, 2)) dy.

By Independency I3, we obtain∫ 1

x

1

y
· fRB (

x

y
|OA

B = (5, 1)) · fRC (y|OA
C = (4, 2)) dy.

Which by Lemma 1 is equal to

∫ 1

x

1
y · (xy)6 · (1− x

y)
2 · y5 · (1 − y)3

B(5, 1) · B(4, 2) dy.

The formula can be formulated without an integral, and instead using some
combinatorial functions, so that it reduces to

x2 · (1− x)4 · Γ (2) · Γ (3) · 2F1(2, 3; 5;
x−1
x)

Γ (5) · B(5, 1) · B(4, 2) .

where Γ is the gamma function, B the beta function (not to be confused with
the beta distribution) and 2F1 a hypergeometric distribution. This, in turn,
simplifies to

2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).

The conjunction operation is depicted graphically in Figure 3. The rightmost
distribution is the conjunction of the other two distributions. Recall that the
abscissa depicts the integrity parameter of the targets in question. Thus, the
more mass is on the right hand side of the graph, the bigger the probability that
the target has a high integrity. As we can see, both active parties (B and C)
have a relatively high integrity, but their conjunction (B ∧ C) does not.

The expected value of the trust opinion about a target is equal to the proba-
bility that the target succeeds, computation for B ∧ C yields 15

32 . The expected
value for the single agent B to succeed is 3

4 and for C to succeed is 5
8 . Not

coincidentally, the expected value for B ∧ C is the product of that of B and C,
namely 15

32 = 3
4 · 58 .

A Formal Derivation of Composite Trust 145

The entropy of the trust opinion can be calculated by applying Definition 8
to our probability density function. This results in an entropy value of approx-
imately −0.67685 bits. The entropy in the trust opinions for the single agents
B and C is −0.86157 bits and −0.62058 bits, respectively. We can see that the
amount of information we have about B ∧ C is between the amount of infor-
mation we have on B and on C. This does not generally hold. If we swap the
successes and failures, the entropy for B and C does not change, but the entropy
for B ∧C becomes −2.0811 bits. The reason for the difference in information is
obvious, as conjunction is not symmetric with respect to the duality of successes
and failures. For conjunction, a failure carries more information, since failures
outweigh successes similar to how false overrules true in the logical conjunction.

As we suspected in Section 1, and seen for a specific case in Example 3, the
expected behavior of a conjunction of targets, is equal to product of the expected
behavior of both targets.

Corollary 2. If S and T do not share any active parties, then

E(RS∧T) = E(RS) ·E(RT).

Proof. Immediate consequence of Lemma 2.

Although the derivation in Example 3 seems asymmetrical with respect to S and
T , commutativity and associativity hold.

Corollary 3. Conjunctions and disjunctions of independent trust opinions are
commutative and associative.

Proof. Immediate consequence of Lemma 2.

In Example 3, we have shown a specific composite trust opinion to be

fRB∧C (x|OA
B = (5, 1) ∩OA

C = (4, 2)) = 2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).

Now, one can wonder whether there exists a beta distribution with a probability
density function of that shape. It is important to realize that if (composite) trust
opinions are closed under conjunction (and disjunction), then there must be such
a beta distribution.

Theorem 5. A composite trust opinion need not be representable by a beta dis-
tribution.

Proof. The expression 2205x4(1 + 4x − 5x2 + 2x(2 + x) log(x)), is a composite
trust opinion, but not a polynomial. The probability density function of a beta
distribution is always a polynomial (see Definition 7). Hence that composite
trust opinion is not based on a beta distribution.

From Theorem 5, we can conclude that every trust model in which the trust opin-
ions are (isomorphic to) beta models violates one of the assumptions.
A famous example is Subjective Logic [8] (binomial, without base rate), other

146 T. Muller and P. Schweitzer

examples include CertainLogic [11]. As the methodology of this paper is inspired
by Subjective Logic, Dependencies D1, D2 and D6 are in line with the assump-
tions in Subjective Logic. Furthermore, the Independencies I1, I2, and I3 are
also based on (non-formal formulations in) Subjective Logic. By the pigeon hole
principle, Dependency D3 for conjunctions (or Dependency D4 for disjunctions)
or Dependency D5 must be violated. Dependency D3 states that ES∧T = s iff
ES = s and ET = s (for independent S and T), and Dependency D5 asserts that
the integrity of a composite target is determined by the integrity of the active
parties. We believe that these assertions may not be considered erroneous. We do
not propose to alter Subjective Logic, as one of the strong points of Subjective
Logic is its simple representation (triples with belief, disbelief and uncertainty
components), which is isomorphic to beta distributions. And, as proven in The-
orem 5, we cannot adhere to all assumptions and have a representation of trust
opinions isomorphic to beta distributions.

5 Conclusion

The paper makes several assumptions about the trust domain. The assump-
tions are designed having interactions over the Internet in mind. There, agents
have trust opinions about other agents, and they update their trust opinions
when new information becomes available. We argue that a trust opinion is not
just an estimated integrity parameter of a target, but that a trust opinion is
a probability distribution over the integrity of a target. The advantage is that
the subject can derive much more than just the expected value from a probabil-
ity distribution. Examples of additional key figures that can be deduced from a
probability distribution are uncertainty (as entropy), confidence intervals, most
probably integrity value (which does not usually equal the expected integrity),
error margins (as variance) and the impact of new information (by updating the
probability distribution with the new information).

The idea of using probability distributions over an integrity parameter is not
new in the trust domain, as it was used in [5] and [6]. The novel idea is to not
just use probability distributions over integrity as trust opinions, but to pick
fX(x|I) as the probability distribution, where X is the target of the trust opin-
ion, and I is the information the subject has. To get an explicit formula for
the probability density function, we must introduce specific assumptions. The
advantage of deriving the formula from these assumptions is threefold. First,
by having explicit assumptions, any criticism on the resulting formula must be
reducible to a disagreement about one of the assumptions. Second, if there is a
disagreement about the assumptions, one can simply alter the assumption, and
look at the implications. In particular, the assumption that all integrity param-
eters are equally likely for a simple target in the absence of information, is a
strong assumption. The assumption can be replaced by asserting a different ini-
tial distribution of integrity parameters, and the model does not fundamentally
change. Third, extending the formalism with new constructs may be achieved
by adding new random variables and assumptions thereon.

A Formal Derivation of Composite Trust 147

An obvious candidate for extending the model is trust chaining, i.e. having
the ability to use a recommendation as a (potential) source of information. If we
extend the framework with trust chaining, we need to introduce random vari-
ables for (possible) recommendations, and introduce assumptions about when
agents make honest recommendations and when they make dishonest recommen-
dations. The suggested variants for trust chaining in different models are even
more diverse than for conjunction and disjunction, partially due to different im-
plicit assumptions and partially due to different insights [21]. Our approach may
help unifying some insights, as well as force the assumptions to be formulated
explicitly, thereby mitigating misunderstandings.

In this paper, however, we have applied the approach to composite trust
opinions; trust opinions about conjunctions and/or disjunctions of agents. Thus,
we have derived an explicit definition of a trust opinion of the shape “Can I
trust that both A and B will behave according to agreement?” Of course, more
general statements exist, where for “A and B” any propositional formula can be
substituted and our result also generalizes to encompass these as well. We have
proven some properties about composite trust opinions. First, the trust opinion
about a target S ∧T has the expected value s · t, where s and t are the expected
values of the trust opinion about S and T . (Similarly, for S∨T , it is s+ t−s · t.)
Second, a composite trust opinion is in general not a beta distribution. Hence,
no trust model with elements isomorphic to beta distributions can satisfy all our
assumptions.

References

1. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In: Proceedings of the 3rd International
Conference on Multi Agent Systems. ICMAS ’98, IEEE Computer Society (1998)
72–79

2. Rousseau, D.: Not so different after all : A cross-discipline view of trust. Academy
of Management Review 23(3) (1998) 393–404

3. Nooteboom, B.: Trust: Forms, Foundations, Functions, Failures and Figures. Ed-
ward Elgar (2002)

4. Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage.
In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Comput-
ing. GRID ’04, Washington, DC, USA, IEEE Computer Society (2004) 4–10

5. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference. Volume 160., Citeseer (2002) 324–337

6. Mui, L., Mohtashemi, M.: A computational model of trust and reputation. In: Pro-
ceedings of the 35th Hawaii International Conference on System Science (HICSS).
(2002)

7. Johnson, N.L., Kotz, S., Balakrishnan, N.: Beta Distributions. In: Continuous
Univariate Distributions. 2 edn. Volume 2. Wiley (1995)

8. Jøsang, A.: Artificial reasoning with subjective logic. In: 2nd Australian Workshop
on Commonsense Reasoning. (1997)

9. Teacy, W., Patel, J., Jennings, N., Luck, M.: TRAVOS: Trust and Reputation in
the Context of Inaccurate Information Sources. Autonomous Agents and Multi-
Agent Systems 12 (2006) 183–198

148 T. Muller and P. Schweitzer

10. Ries, S.: Certain trust: a trust model for users and agents. In: Proceedings of the
2007 ACM symposium on Applied computing. SAC ’07, ACM (2007) 1599–1604

11. Ries, S., Habib, S., Mühlhäuser, M., Varadharajan, V.: Certainlogic: A logic for
modeling trust and uncertainty. In: Trust and Trustworthy Computing. Volume
6740 of Lecture Notes in Computer Science. Springer (2011) 254–261

12. George J. Klir, B.Y.: Fuzzy sets and fuzzy logic: Theory and applications. Upper
Saddle River, New Jersey : Prentice Hall (1995)

13. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Statist. 38(2) (1967) 325–339

14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
15. Jøsang, A., Haller, J.: Dirichlet Reputation Systems. In: International Conference

on Availability, Reliability and Security, Los Alamitos, CA, USA, IEEE Computer
Society (2007) 112–119

16. ElSalamouny, E., Sassone, V., Nielsen, M.: HMM-Based Trust Model. In: Formal
Aspects in Security and Trust. Volume 5983 of LNCS. Springer (2010) 21–35

17. Billingsley, P.: Probability and measure. 3 edn. Wiley (1995)
18. Gut, A.: Probability: A Graduate Course (Springer Texts in Statistics). Springer

(April 2007)
19. McEliece, R.J.: Theory of Information and Coding. 2 edn. Cambridge University

Press (2001)
20. McCabe, K.A., Rigdon, M.L., Smith, V.L.: Positive reciprocity and intentions in

trust games. Journal of Economic Behavior & Organization 52(2) (2003) 267 –
275

21. Jøsang, A., Marsh, S., Pope, S.: Exploring different types of trust propagation. In:
Trust Management. Volume 3986 of LNCS. Springer (2006) 179–192

IPv6 Stateless Address Autoconfiguration:

Balancing between Security,
Privacy and Usability

Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

Hasso-Plattner-Institute at University of Potsdam,
Potsdam, Germany

{ahmad.alsadeh,hosnieh.rafiee,christoph.meinel}@hpi.uni-potsdam.de

Abstract. Included in the IPv6 suite is a method for devices to auto-
matically configure their own addresses in a secure manner. This tech-
nique is called Cryptographically Generated Addresses (CGAs). CGA
provides the ownership proof necessary for an IPv6 address without re-
lying on any trust authority. However, the CGAs computation is very
high, especially for a high security level defined by the security pa-
rameter (Sec). Therefore, the high cost of address generation may keep
hosts that use a high Sec values from changing their addresses on a
frequent basis. This results in hosts still being susceptible to privacy re-
lated attacks. This paper proposes modifications to the standard CGA
to make it more applicable security approach while protecting user pri-
vacy. We make CGA more privacy-conscious by changing addresses over
time which protects users from being tracked. We propose to reduce the
CGA granularity of the security level from 16 to 8. We believe that an
8 granularity is more feasible for use in most applications and scenarios.
These extensions to the standard CGA are implemented and evaluated.

Keywords: IPv6 Security, IPv6 Address Autoconfiguration, Users’
Privacy.

1 Introduction

IPv6 comes with many enhancements to IPv4. One major enhancement is the
stateless autoconfiguration feature, which allows a node to self-determine its own
address without the need of a Dynamic Host Configuration Protocol (DHCP)
server. The autoconfiguration feature enables nodes to directly connect to the
network. The host uses the information advertised by the router and its interface
identifier (IID) information to construct its address.

The most well-known way of setting the IID is based on Neighbor Discovery
(ND) [1] and Stateless Address Autoconfiguration (SLAAC) [2]. SLAAC embeds
a network devices Ethernet Media Access Control (MAC) address into an IPv6
address. Since every MAC address is unique, IPv6 could allow devices to be glob-
ally uniquely identified. Unfortunately this uniqueness property can allow for the
tracking of an individuals device thus violating the users privacy. In practice, a lot
of devices (e.g., laptops, cell phones, etc.) are associated with individual users.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 149–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 A. AlSa’deh, H. Rafiee, and C. Meinel

IPv6 privacy extensions [3] help to protect users from being tracked. This tech-
nique is used to assign temporary IPv6 address values that change over time.
Changing the addresses over time makes it more difficult for eavesdroppers to
track nodes as they roam between networks. It is also harder to make a correla-
tion between addresses when different addresses are used for different activities
corresponding to the same node. Although the privacy extensions protect the
users’ privacy, they cannot prevent attacks related to IP spoofing.

Besides dealing with the privacy issues, ND and SLAAC are also directed
at malicious operators. RFC 3756 [4] describes possible attacks against ND.
The SEcure Neighbor Discovery (SEND) [5] was developed to counteract the
vulnerabilities in ND and SLAAC.

SEND ismainly dependent onCryptographicallyGeneratedAddresses (CGAs)
[6]. CGA is a technique that offers the authentication of IPv6 addresses without
the need of a third party or additional security infrastructure. In CGA addresses,
the IIDs are generated by one-way hashing of the nodes public key and other aux-
iliary parameters such as Modifier, Subnet Prefix and Collision Count. Thus the
IPv6 node address is bound to its public key.

The high computational cost is the main disadvantage for usingCGA. It is likely
that once a host generates an acceptable CGA, it will continue to use this address.
This results in hosts using CGAs still being susceptible to privacy related attacks.
It is therefore important to find a way to balance between security, privacy and
usability issues of CGA before the wide deployment of IPv6 is undertaken.

IPv6 privacy extensions provide the privacy protection necessary for nodes in
IPv6 networks but it cannot secure the addresses. While the CGA can prevent
address theft related attacks, it is computationally heavy and might be vulner-
able to privacy related attacks. Therefore, it is important to find an in between
approach which offers security and protection of the users’ privacy.

In this paper we define a mechanism that eliminates the security and privacy
concerns in IPv6 SLAAC. To protect the users’ privacy, we present a modified
CGA implementation that integrates the privacy extensions approach into CGA.
In this way, CGA will prevent IPv6 address spoofing related attacks while chang-
ing addresses over time will protect the users’ privacy. We also propose to reduce
the security level CGA granularity from 16 to 8, to better increase the chance of
having a better security level (Sec) and avoiding the large step between the succes-
sive Sec values. We also modify the CGA implementation to allow for the genera-
tion of the public key pair on-the-fly to increase the randomness of CGA addresses
and to enhance the users’ privacy protection.

The paper is organized as follows. In Section 2, we briefly introduce the IPv6
Neighbor Discovery Protocol (NDP) and discuss its security and the privacy
implications. In Section 3, we discuss the related work to solve the NDP privacy
and security issues. In Section 4, we provide the details of the modifications we
propose for CGA to achieve the security and privacy in feasible way. In section
5, we evaluate the implementation and usage of the modified CGA and discus
the compatibility concerns and deployment limitations. In Section 6, we present
our conclusions.

CGA: Balancing between Security, Privacy and Usability 151

2 Neighbor Discovery Protocol (NDP)

ND for IPv6 [1] and IPv6 SLAAC [2] together are referred to as NDP. NDP is
one of the main protocols in the IPv6 suite. It is heavily used for several critical
functions, such as discovering other existing nodes on the same link, determining
others link layer addresses, detecting duplicate addresses, finding routers and
maintaining reachability information about paths to active neighbors.

2.1 Stateless Address Autoconfiguration (SLAAC)

In IPv6 SLAAC, the node creates the rightmost 64 bits (IID), which identifies
an individual node within a local network. The IID is often configured from the
Extended Unique Identifier (EUI-64) that is generated based on the interface
hardware identifier - usually the MAC address of the network card. Afterwards,
the node combines the subnet prefix with the IID to form a complete 128 bits
IPv6 address. The subnet prefix can be the reserved local link prefix used to
generate local link addresses or the prefix which is advertised by the router
through the Router Advertisement (RA) message. Finally, the Duplicate Address
Detection (DAD) algorithm is run by the node to ensure that there is no address
conflict on the same link. The IID includes two bits which are reserved by the
IPv6 addressing architecture for special purpose. The 7th bit from the left in
the 64-bit IID is the Universal/Local bit (u bit). The 8th bit from the left is the
Individual/Group (g bit).

2.2 SLAAC Privacy Implications

IPv6 SLAAC leads to serious privacy implications because IPv6 address may
reveal sufficient information to identify the hardware and track the individual.
Generating an IID based on the MAC address results in a static IID. This IID
will remain the same same in all networks the node contacts. This means that
the host MAC address is exposed to the Internet because any website a user
visits will log his IP. Consequently, an attacker can use data mining techniques
to correlate the users activity based on the IID. A more worrying case concerns
mobile devices (e.g., cell phones, laptops, PDAs, etc.) because most of these
devices are associated with individual users. An attacker can use the IID to
track the movement and the usage of a particular device. Once the location
and the identity of the user are determined, an attacker can target the user for
identity theft or other related crimes [7].

2.3 NDP Vulnerabilities

It is easy to perform attacks against NDP because it has no authentication
mechanism. For instance, it is difficult for a node to distinguish between a fake
and the authorized routers’ advertisements. The newly connected node cannot
validate the routers before having an IP address. Thus, a malicious node can
send a fake RA to perform Denial-of-Service (DoS) or Man-in-the-Middle (MitM)

152 A. AlSa’deh, H. Rafiee, and C. Meinel

attacks and effectively receive, drop, or replay the packets. An attacker can also
generate DoS on DAD to prevent a node from obtaining a network address. A
malicious node may block the legitimate node from getting a new IPv6 address
by always responding to every DAD attempt with the spoofed message that “I
have this address”. The victim would thus find out that every IPv6 address that
it tried to use was being used by other nodes. It would therefore be unable to
obtain an IP address to access the network. RFC 3756 [4] describes the possible
attacks against NDP.

3 Approaches to Mitigate NDP Privacy and Security
Implications

3.1 Privacy Extensions for SLAAC in IPv6

IPv6 privacy extensions [3] describe a technique for assigning temporary IPv6
addresses that change over time. Changing the addresses over time makes it
more difficult for eavesdroppers and other information collectors to correlate
IP address with host (user) when different addresses used for different activity
correspond to the same host. The random IID is generated via a hash function
using a quantity which forces randomization of the IID. A node can use different
IIDs with different prefixes to have a set of global addresses that cannot be easily
linked to each other. The temporary address would be used for a certain period
of time and then would be deprecated.

Although the privacy extensions can protect a users’ privacy it cannot pre-
vent IP spoofing related attacks. The privacy extensions have no authentication
mechanism with which to enable the receiver to verify the identity of the sender.
Therefore, an attacker can usurp other users’ addresses to carry out a wide vari-
ety of attacks. Fortunately another approach which is called CGA [6] can provide
the authentication needed to prevent address theft in the IPv6 environment.

3.2 Cryptographically Generated Addresses (CGAs)

CGA Generation Algorithm. In CGA, the IID portion of IPv6 address is
created from a cryptographic hash of the address owner’s public key and other
auxiliary parameters - Modifier, Collision Count and Subnet Prefix. The address
owner computes two hash values (Hash1 and Hash2). The combination of the two
hash values increases the computational complexity for the attacker to do the
brute-force search attack. Since the 64-bit are not enough to provide sufficient
security against brute-force attacks in the foreseeable future, the standard CGA
uses the Hash Extension (Hash2) to increase the security strength above 64-
bit. The computational complexity of Hash2 depends on the Sec value. Sec is
an unsigned 3-bit integer having a value between 0 and 7 which indicates the
security level of the generated address.

Each CGA is associated with a CGA parameters data structure, which con-
tains the following fields:

CGA: Balancing between Security, Privacy and Usability 153

– Modifier (128 bits): it is initialized to a random value.
– Subnet Prefix (64 bits): it is set to the routing prefix value advertised by the

router at the local subnet.
– Collision Count (8 bits): it is the result of a collision counter used for DAD

algorithm to ensure the uniqueness of the generated address.
– Public Key (variable length): it is set to the DER-encoded public key of the

address owner.
– Extension Field has a variable length for future needs.

Fig. 1 shows a schematic of the CGA generation algorithm. CGA generation
begins with determining the address owner’s public key and selecting the proper
Sec value. The Hash2 computation loop then continues until finding the final
Modifier. The Hash2 value is a hash of the combination of the Modifier and the
Public Key which are concatenated with a zero-value for the Subnet Prefix and
the Collision Count. The address generator tries different values of the Modifier
until 16×Sec-leftmost bits of Hash2 become zero. Once a match is found, the
loop for the Hash2 computation terminates. Then the final Modifier value is
saved and used as an input for the Hash1 computation. The Hash1 value is a
hash of the combination of the whole CGA parameters. The IID is then derived
from Hash1. The Sec value is encoded into the three leftmost bits of the IID.
Finally, the DAD algorithm is run by the client to ensure that the address is
unique within the same subnet. If an address collision occurs, increment the
Collision Count and compute Hash1 again to get the IID. However, after three
collisions, CGA algorithm stops and reports an error.

To assert the ownership of the address and to protect the message, the address
owner uses the private key that corresponds to the Public Key in the CGA
parameters to sign messages sent from that address. Finally, the node will send
the message, the CGA parameters, and the signature.

Fig. 1. CGA Generation Algorithm

154 A. AlSa’deh, H. Rafiee, and C. Meinel

CGA verification takes as input an IPv6 address and CGA parameters. If the
verification succeeds, the verifier knows that the public key belongs to that ad-
dress. Then, the verifier uses the public key to authenticate the signed messages
from the address owner.

The CGA algorithm increases the computational cost for both the attacker
and the address generator (owner). The address generator needs O(216×Sec)
brute-force search to satisfy the Hash2 condition and for finding the final Modi-
fier. The attacker needs to do a brute-force attack against an (16×Sec+59)-bit
hash value which costs O(216×Sec+59). Fulfilling the condition of Hash2 is the
computationally expensive part of the CGA generation. Selecting a high Sec
value may cause unacceptable delay in address generation. Even there is a prob-
abilistic guarantee that the CGA address generation will stop after a certain
number of iterations, but it is impossible to tell exactly how long it will take for
the CGA generation when Sec is not zero.

CGA Privacy Concerns. With CGA, the Modifier is used to enhance the
privacy by adding randomness to the address. Changing the Modifier over time
leads to different IIDs. Therefore, CGA can provide IPv6 addresses with the
privacy they need.

However, there are two apparent limitations to this privacy protection. First,
hosts that use a high Sec value may choose not to change their addresses fre-
quently. Due to the high computational complexity of generating Hash2, it is
likely that once a host generates an acceptable CGA it will continue to use this
fixed IID in multiple activities thus reducing its need for frequent regeneration -
at least for that subnet. The result is that hosts using CGAs are still susceptible
to privacy related attacks. Second, the Public Key of address owner is attached
with message that is sent to the receiver. This means that the node can still be
identified by its public key.

Therefore, the CGA has a privacy implication (especially for high Sec value)
and the privacy extensions approach is vulnerable to the address spoofing related
attacks. In the next section we will integrate the two approaches in a balanced
way to attain both the security and the privacy in a usable method.

4 Modifications to Standard CGA

We propose three main modifications to the standard CGA process to attain
the users’ privacy in a practical manner. First, we modify the CGA to have a
lifetime that indicates how long the address is bound to an interface. Second,
we reduce the granularity of CGA security levels to get more practical security
levels. Third, we generate the keys, on-the-fly, using CGA code to ensure more
security and privacy for the users of CGA addresses.

4.1 Setting a Lifetime for Temporary CGA Addresses

We propose to change the CGA addresses periodically to protect the users pri-
vacy. Each CGA address has an associated lifetime that indicates how long the

CGA: Balancing between Security, Privacy and Usability 155

address is bound to an interface. Once the lifetime expires, the CGA address is
deprecated. While a CGA address is in a deprecated state, its use is discour-
aged, but not strictly forbidden. New communication (e.g., the opening of a new
TCP connection) should use a new CGA address when possible. A deprecated
address should be used only by applications that have been using it and would
have difficulty switching to another address without a service disruption. When
the lifetime expires and the address is not used by an opened connection, the
CGA address is removed from the network interface by the kernel and no longer
used.

The lifetime of a temporary CGA address depends on several parameters and
actions. For instance, the lifetime should depend on the time needed for a host to
generate a new CGA address, the time needed for an attacker to break the CGA
address and user desired setting for security and privacy. The following lists the
conditions under which a new temporary CGA address should be generated:

– When a host joins new subnet. In this case, the new CGA parameters will
be used to generate the new address. A new public key will be used for
calculating both the Hash1 and Hash2 values. In the standard CGA it is not
necessary to use new CGA when the node moves to new subnet.

– Before the lifetime for the in-use CGA address has expired. To ensure that
the CGA address is always available and valid, new CGAs should be regen-
erated in advance before the predecessor will be deprecated. In practice, a
valid lifetime should not be zero. Using the standard privacy extensions, the
default interval is 24 hours; however, we recommend a minimum lifetime of
one hour.

– When the subnet prefix lifetime has expired. A new CGA address will then
need to be regenerated. It must include the newly received prefix used in
calculating Hash1.

– When the user needs to override the default value of the lifetime in order
to generate a new CGA address. The CGA implementation should offer the
user the ability to override the current lifetime values and force the CGA
algorithm to generate a new address.

Determining the proper lifetime for a CGA address depends on the privacy and
security level constraints. For the security level analysis we refer to the security
model which has been proposed by Bos et al. [8] for studying the security and
efficiency of the CGA. The necessary notation used in the CGA time analysis is
defined as follows:

– TG: The average time needed for a node to generate a CGA.
– TA: The average time needed for an attacker to impersonate an address.
– T1: The time needed to compute Hash1.
– T2: The time needed to compute Hash2.
– b: The number of available bits in the address, which is the truncated output

of Hash1 (IID).
– g: The granularity of the security level in CGA.
– s: The number of bits needed to satisfy the Hash2 condition (s=g × Sec),

which is the truncated output of Hash2.

156 A. AlSa’deh, H. Rafiee, and C. Meinel

The address generator needs on average (2s × T2) in order to fulfill the Hash2
condition, plus T1 to generate the IID from Hash1. Therefore, the cost of address
generation, TG, is:

TG = (2g×Sec × T2) + T1 (1)

An attacker has two ways to impersonate a node - by satisfying the constraints
on Hash1 and then the conditions on Hash2 or vice versa. Beginning with Hash1,
the attacker must first perform the attack on Hash1, which takes (2b×T1) hash
function evaluations. Once fulfilled, the conditions on Hash2 for the generated
Modifier should be satisfied, which takes 2s hash function evaluations. Thus,
the total time for impersonation when beginning with Hash1 (H1) becomes TA :
H1 = (2b × T1 + T2)2

s.
When the attacker starts from Hash2, the conditions on Hash2 are met at a

cost of (2s × T2) hash function evaluations. Next, Hash1 is verified if it matches
the target address. Hash1 verification costs 2b. Therefore, the total cost when
beginning with Hash2 (H2) becomes TA : H2 = (2s × T2 + T1)2

b.
The attacker can choose between the two ways to minimize his attack cost.

Hence, the time for impersonation an address (TA) is:

TA = min
{
(259 × T1 + T2)2

g×Sec, (2g×Sec × T2 + T1)2
59
}

(2)

The resistance of CGA against impersonation is mainly controlled by increasing
the number of bits on the Hash2 condition s=g × Sec. For the standard CGA,
with g=16 and Sec value between 0 and 7, the number of operations required
for impersonation on a specific node is:

TA =

⎧⎪⎨
⎪⎩
259 × T1 if Sec = 0,

(259 × T1 + T2)2
16×Sec if 1 ≤ Sec ≤ 3,

(216×Sec × T2 + T1)2
59 if 4 ≤ Sec ≤ 7,

(3)

In next subsection, we propose to reduce the granularity of CGA for practical and
usability reasons. When the granularity, g, is ≤ 8 the cost of address generation
TG becomes:

TG =
{
(28×Sec × T2) + T1 if 0 ≤ Sec ≤ 7 (4)

And the number of operations required for the impersonation of a specific node
becomes:

TA =

{
259 × T1 if Sec = 0,

(259 × T1 + T2)2
8×Sec if 1 ≤ Sec ≤ 7.

(5)

We can surmise from equation 5, that it would be easier for the attacker to start
by calculating Hash1 then fulfilling the Hash2 condition. Here, the assumption
is that the hash function has no known weaknesses.

The lifetime of a CGA address (Tl) should be safe enough so the attacker is
not able to impersonate the other nodes’ addresses. We recommend that TA be

CGA: Balancing between Security, Privacy and Usability 157

at least nTl (where n is an integer) in order to have a safe margin. Clearly, the
speed of hash function computation depends on the CPU speed of the computing
device. Reading the CPU speed by using the CGA code makes it possible to
determine whether or not the selected lifetime is suitable. On the other hand, the
Tl time should be greater than the time required for the node to generate a CGA
address. It is not feasible to invest the time and resources of the computing device
to create an address and then, after a very short period of time, deprecate this
address. We recommend that Tl be greater than mTG (where m is an integer).
Therefore, Tl can be described by the following equation:

mTG ≤ Tl ≤ TA

n
(6)

Where m and n are integers.

4.2 Reducing the Granularity of CGA Security Levels

In the CGA generation algorithm, the granularity factor 16 is relatively large.
The multiplier 16 was chosen to increase the maximum length of the Hash Ex-
tension [6] up to 112 bits, but the benefit of this is questionable [9]. Currently,
Sec value 0 or 1 can be used in practice. For Sec value 2, the CGA address gen-
eration process may take several hours or days. We carried out a test on a set of
5 samples using 2.67 GHz CPU speed which gave us an average CGA generation
time of 5923857 Milliseconds (1 hour and 39 minutes). The CGA computation
for a Sec value of 3 will take, on average, more than 12 years on a 2.67 GHz
CPU.

Smaller granularity is more suitable for CGA computations. Therefore, we
proposed to reduce the granularity factor from 16 to 8 for the following reasons:

– The granularity factor 16 is quite large and causes a big jump in CGA
computation time for successive Sec values. Having values in between is
better than waiting for a very long time to reach the second security level
(Sec+1). A smaller granularity factor gives the users the opportunity to have
better security level particularly if the user is not willing to wait a long time
for the CGA generation. Having a Sec value of 1 with a granularity factor
of 8 is better than a Sec value of 0 with a granularity factor of 16.

– Changing the CGA addresses over time in order to protect the users’ privacy
makes it unnecessary to select a high security level. It does not make sense
for the address owner to select a high Sec value that is expensive in time
and CPU cycles if the address will be changed after a short period of time.
For instance, it is not reasonable to select a high Sec value which costs the
address owner several days if the address will be changed every one hour due
to the privacy need. However, the security level should be sufficient to cover
a lifetime period. For example, if the lifetime is one day, the security level
should be safe enough so that the attacker cannot break the address within
several days.

158 A. AlSa’deh, H. Rafiee, and C. Meinel

– The privacy concerns are usually much more important for mobile devices.
The mobile devices generally have limited resources (battery, memory, and
processing power). For a high Sec value, the CGA computation will take too
long a time and will consume too much of the computing device’s energy.
Smaller granularity is more suitable for these devices.

– The multiplication factor of 8 increases the maximum length of the Hash
Extension up to 56 bits. Therefore, the total hash length will be between
59 and 115 bits, which are adequate for current CPU speeds. Decrementing
the granularity to 4 or 2 might lead to weaker hash values which leave small
margin of safety. With granularity 4, the total hash length will be between
59 and 87 bits.

4.3 Automatic Key Pair Generation

We propose to generate the key pairs automatically by using the CGA code as
proposed in [10]. The default key size is 1024 bits. This can be changed by the
use of the CGA parameter setting interface. Setting the keys automatically is
better for the following reasons:

– Generating the key pair on-the-fly each time the host needs a new address
enhances the CGA security and protects the user’s privacy. The automatic
generation of the public key increases the randomness of the CGA and con-
sequently enhances its security against a brute-force attack. Moreover, each
time the node moves to a new location, it will get a new CGA address and
will use a new public key. Therefore, it will not be easy for attackers to track
users based on their addresses or even to correlate traffic to their public keys.

– Minimizing the amount of required configurations so that the end user does
not need to know the technical details behind the cryptography. There is
also no need to use an external program to generate the key pairs. It is not
easy for the user to generate key pairs manually each time the host wants
to generate a new address. It becomes more tedious when the CGA address
changes frequently due to privacy time constrains.

– Keys are not stored in a particular path before starting the CGA compu-
tation. The keys are therefore not vulnerable to theft. In our CGA imple-
mentation, the key pairs are stored in computer memory (RAM) for quick
accessibility, but also the digested keys are stored in an XML file for further
usage, such as after rebooting the system while the IP address is still valid
or the host is connected to the same subnet.

– The average time to generate a key pair with a RSA 1024-bit key using
1000 samples is 27.8 Milliseconds, while the average time for Standard CGA
generation with Sec value 1 and a 1024-bit key size is 439.6 Milliseconds. So,
the key generation takes about 6.3% of the total CGA generation time. We
took these measurements on a computer with 2.67 GHz.

CGA: Balancing between Security, Privacy and Usability 159

5 Modified CGA Implementation and Its Evaluation

5.1 Modified CGA Implementation

To test the above mentioned modifications, we modified the CGA part of SEND
implementation for the Windows operating system (WinSEND)[11]. WinSEND
works as a service to provide security for Windows NDP. WinSEND has the
SEND functionalities and can generate IP addresses in a secure manner.

Our modified version of CGA automatically offers the default parameters to
generate a temporary CGA address. The default value for the minimum lifetime
is 24 hours, similar to the proposed preferred lifetime in RFC 4941, and the
public key size is 1024-bit. The default value for Sec is 2 and the granularity is
8. The user can override these parameters via CGA setting (See Fig. 2).

Fig. 2. Modified CGA settings parameters

To get a rough idea about the time required for generating a CGA address
for different Sec values with associated granularity factors, we used the results
shown in Table 1. The CGA generation algorithm is run on a 2.67 GHz Quad
core CPU computer. The results are taken over 1000 samples with a 1024-bit
key size.

Table 1. CGA Generation Time in Milliseconds (ms) for Different Sec Values with
Different Granularity Over 1000 Samples

Granularity
Sec 4 8 16

1 117ms 121ms 427ms
2 128ms 425ms 5923857ms
3 135ms 88217ms *
4 409ms * *

160 A. AlSa’deh, H. Rafiee, and C. Meinel

5.2 Limitations and Deployment Considerations

Our proposed modification to the standard CGA is compatible with addressing
scheme and could be implemented as an extension to RFC 3972. The CGA-
enabled nodes need to consider the granularity factor 8 in CGA generation and
verification algorithms. This task is not complicated, eventually feasible modifi-
cations can be upgraded. The other modification for changing the addresses over
time and generating keys on-the-fly do not affect the CGA algorithm and the
way of communication. It is more implementation decisions which do not change
the CGA algorithm.

There are some implications and deployment considerations for changeable
addresses. Most of these limitations are also valid for the privacy extensions
approach (RFC 4941) as explained below:

– The changeable address may cause unexpected difficulties with some applica-
tions. Some servers reject the connection from clients whose address cannot
be mapped into a DNS name that also maps back into the same address.

– Changing the addresses frequently (e.g., every few minutes) has a perfor-
mance implication and will severely impact user experience.

– Protecting the user’s privacy may conflict with the administrative need to
effectively maintain and debug the network.

– The implementation needs to keep track of the addresses being used by the
upper layer in order to be able to remove the deprecated addresses from the
internal data structure when these addresses are no longer used by the upper
protocols, but not before.

Tracking users at other layers, such as tracking through DNS, cookies, or browser
characteristics is out of the scope of this paper. However, in order to have privacy
protection at higher-layers, we believe that the underlying protocols must also
have privacy protection mechanisms.

6 Conclusion

It is very important to be sure that the increasing deployment of IPv6 will be
done in a secure way without compromising the Internet users’ privacy. It is
proposed that CGA be used to prove the ownership of an IPv6 address and
to prevent spoofing of existing IPv6 addresses, but it might be susceptible to
privacy related attacks. On the other hand, the privacy extensions protect the
users’ privacy but are of no value to related address spoofing attacks. In this pa-
per we showed how to integrate the privacy extensions into CGA to resolve both
privacy and security issues for IPv6 addresses. We also changed the granularity
of the CGA security level and generated the public-key pair on-the-fly to make
CGA more practical. We also provided a mechanism for the CGA implemen-
tation with which to automatically set the maximum lifetime and to decrease
administrative tasks. This approach definitely involves tradeoffs between pri-
vacy, security, usability and the cost of address generation but it is a very viable
solution.

CGA: Balancing between Security, Privacy and Usability 161

Our proposal has several benefits over the current CGA scheme, including:
(1) the ability to diminish the CGA possible privacy concerns and protect users
from being tracked; (2) the ability to configure when new CGA should be created;
and (3) the possibility to have finer granularity for CGA security level. We have
implemented and tested the CGA modification and found that it generates new
CGA address as designed while not impacting Internet activities.

References

1. Narten, T., Nordmark, E., Simpson, W., Soliman, H.: Neighbor Discovery for IP
version 6 (IPv6). RFC 4861, Internet Engineering Task Force (September 2007)

2. Thomson, S., Narten, T., Jinmei, T.: IPv6 Stateless Address Autoconfiguration.
RFC 4862, Internet Engineering Task Force (September 2007)

3. Narten, T., Draves, R., Krishnan, S.: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941, Internet Engineering Task Force (September
2007)

4. Nikander, P., Kempf, J., Nordmark, E.: IPv6 Neighbor Discovery (ND) Trust Mod-
els and Threats. RFC 3756 (Informational), Internet Engineering Task Force (May
2004)

5. Arkko, J. (ed.), Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery
(SEND). RFC 3971, Internet Engineering Task Force (March 2005)

6. Aura, T.: Cryptographically Generated Addresses (CGA). RFC 3972, Internet En-
gineering Task Force, updated by RFCs 4581, 4982 (March 2005)

7. Groat, S., Dunlop, M., Marchany, R., Tront, J.: The privacy implications of state-
less IPv6 addressing. In: Proceedings of the Sixth Annual Workshop on Cyber Se-
curity and Information Intelligence Research, CSIIRW 2010, pp. 52:1–52:4. ACM,
New York (2010)

8. Bos, J.W., Özen, O., Hubaux, J.-P.: Analysis and optimization of cryptographically
generated addresses. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 17–32. Springer, Heidelberg (2009)

9. Alsa’deh, A., Rafiee, H., Meinel, C.: Stopping Time Condition for Practical IPv6
Cryptographically Generated Addresses. In: 2012 International Conference on In-
formation Networking (ICOIN), pp. 257–262 (2012)

10. Rafiee, H., Alsa’deh, A., Meinel, C.: Multicore-based Auto-scaling SEcure Neighbor
Discovery for Windows Operating Systems. In: 2012 International Conference on
Information Networking (ICOIN), pp. 269–274 (2012)

11. Rafiee, H., AlSa’deh, A., Meinel, C.: WinSEND: Windows SEcure Neighbor Dis-
covery. In: 4th International Conference on Security of Information and Networks
(SIN 2011), Sydney, Australia, November 14-19, pp. 243–246. ACM (2011)

Policy Administration in Tag-Based Authorization

Sandro Etalle1,2, Timothy L. Hinrichs3, Adam J. Lee4, Daniel Trivellato1,
and Nicola Zannone1

1 Eindhoven University of Technology
2 University of Twente

3 University of Illinois at Chicago
4 University of Pittsburgh

Abstract. Tag-Based Authorization (TBA) is a hybrid access control model that
combines the ease of use of extensional access control models with the expres-
sivity of logic-based formalisms. The main limitation of TBA is that it lacks sup-
port for policy administration. More precisely, it does not allow policy-writers
to specify administrative policies that constrain the tags that users can assign,
and to verify the compliance of assigned tags with these policies. In this paper
we introduce TBA2 (Tag-Based Authorization & Administration), an extension
of TBA that enables policy administration in distributed systems. We show that
TBA2 is more expressive than TBA and than two reference administrative models
proposed in the literature, namely HRU and ARBAC97.

Keywords: access control, policy administration, auditing.

1 Introduction

Access control systems in real-world organizations are mostly based on extensional ap-
proaches to access control (e.g., access control lists), as their ease of use is preferred
to the flexibility of logic-based models. Authorization policies in extensional models
are based on simple assignments of rights to users, or on the characterization of users
in terms of properties (e.g., roles) and the assignment of rights based on those prop-
erties. Nevertheless, the lack of expressiveness of extensional models severely limits
the constraints that can be expressed in authorization policies. A hybrid approach to
access control that combines the usability of extensional models and the flexibility and
expressiveness of logic-based formalisms would offer great benefits for the deployment
of access control systems in real-world organizations.

To accommodate this need, Tag-Based Authorization (TBA) has been proposed by
Hinrichs et al. [15], based on the work by Najafian Razavi and Iverson [20] and Wang
et al. [26]. TBA is a hybrid access control model that relies on formal logic for the def-
inition of authorization policies, and on extensional models for describing a system’s
subjects and objects in terms of simple properties (e.g., roles). This integration allows
relatively untrained users to choose descriptive tags for the system’s subjects and ob-
jects; security experts then write logical policies that define access authorizations using
combinations of those tags. The resulting access control model is flexible and easy to
use, yet expressive enough to match the needs of complex application domains.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 162–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Policy Administration in Tag-Based Authorization 163

As an example application domain for the TBA model, consider Operation Atalanta,
a military operation involving several EU navies that collaborate to prevent criminal
activities (such as smuggling and pirate attacks) off the Somali coast. The information
gathered and exchanged by the collaborating vessels is typically processed and classi-
fied by the vessels’ operators (e.g., a transiting ship is marked as suspicious). Yet, the
policies for accessing this information are regulated by complex context- and content-
based conditions and must be written by higher-rank personnel. By explicitly distin-
guishing the task of characterizing information and the task of writing the authorization
policy, TBA leads to a better separation of duties and valorization of the skills of a
vessel’s workforce than the existing access control models.

If on the one hand allowing low-rank users to assign tags to subjects and objects
greatly enhances the usability of the access control system, on the other hand it en-
ables low-rank users to influence the system’s authorizations. In fact, inaccurate tags
(whether by intention or accident) can circumvent the intended authorization policy of
the system. The main limitation of TBA in this respect is the lack of support for pol-
icy administration. In particular, TBA does not allow policy-writers to: (1) define which
users may assign which tags to which subjects and objects, i.e., to specify administrative
policies; (2) hold users accountable for the tags they assign, and verify the compliance
of tags with administrative policies; and (3) revoke incorrect tags or tags assigned by
unauthorized users. In the scenario above, for instance, it is important to allow only
operators with appropriate clearance to tag sensitive information, and to verify whether
the assigned tags comply with this policy (possibly revoking the tags that do not satisfy
the policy).

In a centralized system, these issues can be addressed by means of a traditional ac-
cess control mechanism that regulates the tagging process and a logging mechanism
that records users’ actions. In a distributed system, however, these solutions are insuf-
ficient as they would require entities in one security domain to trust the enforcement
and logging mechanisms of systems in different security domains. Furthermore, tracing
the objects exchanged in a distributed system might be difficult, complicating or even
preventing the revocation process.

In this paper, we extend the TBA model from [15] to enable policy administration
in distributed systems. In particular, we introduce TBA2 (Tag-Based Authorization &
Administration), an extension of TBA that allows security administrators to specify
constraints on the tagging process and to verify the compliance of tags with adminis-
trative policies by combining traditional “a priori” access control mechanisms with “a
posteriori” verification. Technically, our extension consists of associating an issuer to
each tag, which identifies the user who assigned the tag. For example, all the tags issued
by an operator will be marked with the identifier of the operator. In contrast to previous
work on a posteriori verification (e.g., [7]), this enables policy compliance verification
without the need of an auditing infrastructure, by exploiting the observability of users’
actions (i.e., “signed” tags). As a consequence, TBA2 represents a lightweight solution
for the enforcement of authorization and administrative policies in distributed systems.
We show that the proposed model is more expressive than the original TBA model
and than two well-known administrative models proposed in the literature, namely the
Harrison, Ruzzo, and Ullman model [13] and ARBAC97 [23].

164 S. Etalle et al.

The paper is organized as follows. Section 2 reviews the TBA model and discusses
its limitations. Section 3 introduces TBA2, and Section 4 evaluates its expressive power.
Section 5 discusses related work, and Section 6 concludes the paper.

2 Background

Tag-Based Authorization (TBA) [15] is a hybrid access control model combining the
flexibility and expressiveness of logic-based formalism with the ease of use of exten-
sional models. In this section we first present the definitions of the TBA model given
in [15] that are relevant for this paper, and then we identify the main limitations of TBA
with respect to its deployment in a distributed system.

2.1 The TBA Model

In this paper we use S to denote the set of subjects, O to denote the set of objects, and
R to denote the set of rights that can be assigned within a system. T denotes the set
of possible tags that can be assigned to S and O, and tag : S ∪O → 2T is a function
that maps a subject or object to the set of tags assigned to it. Tag denotes the set of all
possible tag functions. A TBA authorization policy is written in some logical access
control language 〈P ,L, |=〉 defined as follows.

Definition 1 (TBA). For a function tag and a logical language 〈P ,L, |=〉, where

– tag: S ∪O → 2T maps a subject or object to the set of tags assigned to it
– P : the set of all authorization rules
– L: the set of queries including allow(s,o,r) for all subjects s, objects o, rights r
– |=: a subset of P × Tag × L

authTBA(s, o, r) if and only if P ′, tag |= allow(s, o, r) for some P ′ ⊆ P .

The operator |= dictates which queries are true given the set of authorization rules P and
a function tag. The following example based on the scenario introduced in Section 1
illustrates TBA using Datalog as the policy language.

Example 1 (TBA). Consider two subjects s1 and s2 and two objects o1 and o2 that are
tagged as follows:

– tag(s1) = {uk navy,operation atalanta,operations specialist}
– tag(s2) = {fr navy}
– tag(o1) = {cargo ship,radar}
– tag(o2) = {gulf of aden,sat 732,high res}

Further, consider the following policy rules:

1. allow(Sx,Ox,read) :- uk navy ∈ tag(Sx), cargo ship ∈ tag(Ox)
2. allow(Sx,Ox,read) :- fr navy ∈ tag(Sx), cargo ship ∈ tag(Ox)
3. allow(Sx,Ox,read) :- operations specialist ∈ tag(Sx), radar ∈ tag(Ox)
4. allow(Sx,Ox,read) :- uk navy ∈ tag(Sx), operation atalanta ∈ tag(Sx),

high res ∈ tag(Ox), sat 732 ∈ tag(Ox)

Policy Administration in Tag-Based Authorization 165

This policy allows the members of the British and French Navy (denoted uk navy and
fr navy respectively) to access documents about cargo ships (rules 1 and 2), opera-
tions specialists to access documents about radar systems (rule 3), and all members of
the British Navy serving on Operation Atalanta to access high resolution satellite pho-
tographs taken by sat 732 (rule 4). As a result, subject s1 can access objects o1 and o2,
while subject s2 can only access object o1.

Tag-based authorization differs from standard logical access control models in that the
tag function has a fixed semantics defined outside of the policy. In particular, the se-
mantics of tag is defined by the users of a system, who assign tags to the system’s
subjects and objects. The fixed semantics of tag forces security administrators to de-
fine authorization policies at a higher level of abstraction than the usual S ×O × R.
More precisely, TBA policies are defined over the space of tags 2T × 2T × R, i.e.,
subjects and objects are replaced by tag sets. This abstraction might result in a less
flexible system if the tag-space is not exhaustive enough to accommodate a particular
situation; however, the model can be easily adapted to define policies over (S ∪ 2T)×
(O ∪ 2T)× R (which combines the space of tags and the ones of subjects and objects)
by adding to the set of tags T a tag identifying each subject and object in a system.

In [15], the authors evaluate the expressive power of TBA by expressing a range
of well-known policy idioms. In particular, they show that TBA can be successfully
employed to represent an access matrix, attribute-based access control policies, role-
based access control policies, discretionary access control, mandatory access control,
and three rule types of the RT [18] policy language (namely, all rule types except for
“linked roles”). In addition, their results show that TBA is strictly more expressive than
common access control models such as SDCO [21], ARBAC97 [23], and BLP [3].

2.2 Limitations of TBA

The applicability of TBA is due to a key observation: within a system, the users respon-
sible for creating and categorizing (i.e., tagging) data are usually not in charge and do
not have the expertise to define the security policies governing the system. For example,
on a navy vessel some operators have the task of analyzing the surrounding maritime
traffic and identifying suspicious behaviors, other operators gather intelligence and add
details to these suspicious activities, etc. The policy governing the access to this infor-
mation, on the other hand, is defined by the authorities in command of operations.

By assigning tags to subjects and objects, however, users directly influence the au-
thorizations within a system. For this reason, it is necessary to enable policy-writers
(e.g., security administrators) to control the tagging process. In this respect, we identify
two key issues that are not addressed by the TBA model:

1. Administrative policies: Security administrators should be able to specify policies
defining which users are allowed to assign and revoke which tags to which subjects
and objects. For instance, the security administrator of a navy vessel should be able
to restrict to the commanding officer the right to promote the vessel’s officers to
higher ranks. In addition, it should be possible to regulate the propagation of users’
rights, i.e., the extent to which a user can delegate its tagging rights to other users.

166 S. Etalle et al.

2. Tag Verification and Revocation: It should be possible to hold users accountable
for the tags they assign, and to verify the compliance of tags with administrative
policies by checking who assigned them. Consider, for instance, a document con-
taining information about a suspected pirate attack, distributed by the French Navy
to its allies in Operation Atalanta. If some tag is added to the document by a user
outside the navy’s system, the security administrator of the French Navy should be
able to verify whether the user was authorized to label the document (e.g., if the
user is an operator of an allied navy, rather than an unknown subject). Accordingly,
“invalid” tags identified in the verification process should be revoked.

Even though some simple administrative policies could be expressed in TBA, the fact
that the “issuer” of a tag is not taken into account by the model makes it impossible
to specify constraints that link tags based on the subject who assigned them (e.g., RT’s
linked roles [18]). Therefore, TBA does not allow the specification of rules such as “a
subject can revoke only the tags that she assigned”, or “a subject can mark a document
as sensitive only if she is (tagged as) a senior officer by a navy that the EU labels as
member of Operation Atalanta”.

More than the specification of administrative policies, however, the major limitation
of TBA is represented by the lack of mechanisms for verifying their enforcement. In a
centralized system, administrative polices can be enforced by means of an access con-
trol system that governs the tagging process. Tag verification can be achieved by means
of a logging mechanism that records all the tags assigned by the system users. Secu-
rity administrators can then simply audit these logs to verify their compliance with the
system’s policies, and revoke the invalid tags identified in the process. In a distributed
system, however, these solutions are insufficient for the following reasons:

1. They require entities in one security domain to trust the administrative policies (and
their enforcement) of systems in different security domains.

2. Since tags may be assigned by users of different systems, and the issuer of a tag is
not considered by the TBA model, verifying the compliance of the tags assigned
by a subject with respect to administrative policies might not be feasible. In fact,
this might require inspecting the logs of possibly all the systems in the distributed
system. It is unlikely, however, that a system would disclose its logs to systems
from a different security domain for auditing purposes. In addition, as information
is exchanged between different systems, tracing the tags assigned by a certain user
(e.g., to revoke them) becomes very difficult, if not impossible.

In the next section we show how the TBA model can be extended to address these
limitations.

3 The TBA2 Model

In this section we present the Tag-Based Authorization & Administration (TBA2) model,
an extension of TBA that enables policy administration in distributed systems. TBA2

extends TBA by associating an issuer to each tag, which identifies the user who assigned
the tag. Intuitively, tags become signed statements issued by a user within a system. For-
mally, we modify the definition of the tag function introduced in Section 2.1 as follows:

Policy Administration in Tag-Based Authorization 167

tag : S ∪O → 2S×T , which returns the set of issuer-tag pairs associated to a subject
or object. Representing tags as signed statements is a first step towards addressing the
limitations of TBA mentioned in Section 2.2. In the next subsections we discuss how
TBA2 can solve those limitations in details.

For the sake of simplicity, the solution we propose is based on the assumption that
the set T of possible tags that a user can assign is common to all the systems in the
distributed system. In a real-world distributed system, however, the set of assignable
tags might vary from system to system, as entities in different security domains might
employ different terms to denote similar concepts. Semantic alignment techniques [14,
24] could be required to align the systems’ vocabularies. An additional assumption
we make is that each subject and object belongs to one system, which represents the
security domain where a subject operates, or the system that owns an object (or that has
exclusive rights on it). Given a subject or object identifier, it is possible to determine
the system to which the subject or object belongs.

3.1 Authorization and Administration Policies

Administrative policies constrain the tags that a user is authorized to assign or revoke.
The advantage of TBA2 with respect to TBA is that it links every tag to the user who
assigned it, enabling security administrators to specify fine-grained administrative poli-
cies.

TBA2 requires the set of rights R to include the rights assign tag and revoke tag .
Then, TBA2 is defined as follows.

Definition 2 (TBA2). For a function tag and a logical language 〈P ∪ A,L, |=〉, where

– tag: S ∪O → 2S×T returns the issuer-tag pairs associated to a subject or object
– P : the set of all authorization rules
– A: the set of all administrative rules
– L: the set of queries including allow(s, o, r), allow(s, o, r′, ST), and
allow(s, s′, r′, ST) for all subjects s and s′, objects o, rights r, right
r ′ ∈ {assign tag, revoke tag}, and set of signed tags ST ⊆ 2S×T

– |=: a subset of (P ∪A)× Tag × L

authTBA2 (s, o, r) if and only if P ′, tag |= allow(s, o, r)
authTBA2 (s, o, r′, ST) if and only if A′, tag |= allow(s, o, r′, ST)
authTBA2 (s, s′, r′, ST) if and only if A′, tag |= allow(s, s′, r′, ST)

for some P ′ ⊆ P , A′ ⊆ A.

The following example presents TBA2 authorization and administrative policies.

Example 2 (TBA2). Consider three subjects s1, s2, and s3 and an object o belonging to
a system governed by the British Navy, which are tagged as follows:

– tag(s1) = {(uk navy,senior officer)}
– tag(s2) = {(uk navy,junior officer)}
– tag(s3) = {(uk navy,junior officer)}
– tag(o) = {(uk navy,secret)}

168 S. Etalle et al.

The subjects’ tags are issued by the British Navy (denoted as “uk navy”) and indicate
that subject s1 has rank senior officer, while s2 and s3 have rank junior officer. Object
o is tagged by the British Navy as secret. The access to object o and the administration
of rights within the system are regulated by the following rules:

1. allow(Sx,o,read) :- (eu,navy) ∈ tag(Sy), (Sy ,senior officer) ∈ tag(Sx)
2. allow(Sx,Ox,assign tag ,{(Sx,Tx)}) :- (eu,navy) ∈ tag(Sy),

(Sy ,senior officer) ∈ tag(Sx),
(eu,navy) ∈ tag(Sz), (Sz ,secret) ∈ tag(Ox)

3. allow(Sx,Sy ,assign tag ,{(Sx,senior officer)}) :- (eu,navy) ∈ tag(Sz),
(Sz ,senior officer) ∈ tag(Sx),
(Sz ,junior officer) ∈ tag(Sy)

4. allow(Sx,Ox,revoke tag ,{(Sx,Tx)}) :- (Sx,Tx) ∈ tag(Ox)
5. allow(Sx,Sy ,revoke tag ,{(Sx,Tx)}) :- (Sx,Tx) ∈ tag(Sy)

The first rule is an authorization rule stating that object o can be read by a subject
Sx if Sx is labeled as senior officer by an EU navy Sy . Rules 2, 3, 4 and 5 are ad-
ministrative rules. Rule 2 allows senior officers of EU navies to assign tags to objects
labeled as secret by any EU navy. Rule 3 allows senior officers of EU navies to as-
sign a senior officer tag to junior officers of the same navy (therefore delegating their
rights). Finally, rules 4 and 5 allow the issuer of a tag to revoke the tag. Assuming tag
(eu,navy) ∈ tag(uk navy), the policy allows subject s1 to read object o and to assign a
senior officer tag to subjects s2 and s3.

3.2 Semantics of Administrative Policies

The effects of the exercise by a subject s of the administrative rights assign tag and
revoke tag for a set of (signed) tags ST are shown in Figure 1. The effects of invoking
allow(s , o, assign tag, ST) are intuitive, and imply that a tag st (for each st ∈ ST)
is added to the set tag(o). On the other hand, the assignment of a set of tags ST by a
subject s to a subject s′ can be seen as the delegation of some of the rights (or roles)
of s to s′. Delegation can be implemented according to two models: grant or trans-
fer [8]. In the grant model, after a successful delegation both s and s′ are able to benefit
from the delegated rights or roles. On the contrary, according to the transfer model
subject s loses the delegated rights or roles. Figure 1(a) shows the effects of invoking
allow(s , s ′, assign tag, ST) using the grant model. The transfer model would imply
that all the tags in ST are removed from the set tag(s) after being added to tag(s ′).

Similarly to the tag assignment operation, also the effects of invoking allow(s , s ′,
revoke tag, ST) depend on the revocation model employed by the system. To motivate
the existence of different revocation models, we describe a scenario based on the tags
and rules in Example 2. Assume that senior officer s1 wants to temporarily delegate her
rights to junior officer s2 because of an emergency. Then, s1 assigns a senior officer
tag to s2. Later, subject s2 delegates her rights to s3, and accordingly assigns tag se-
nior officer to s3. When the emergency is over, s1 returns to her regular duties and
revokes the senior officer tag from s2. Now, the question is whether s3’s senior officer
tag should also be automatically revoked or not.

Policy Administration in Tag-Based Authorization 169

allow(s,o,assign tag,ST)
∀ st ∈ ST : tag(o) = tag(o) ∪ {st}

allow(s,s′,assign tag,ST)
∀ st ∈ ST :

tag(s ′) = tag(s ′) ∪ {st}
(a) Semantics of allow(s, o, assign tag , ST) and allow(s, s ′, assign tag , ST)

allow(s,s′,revoke tag,ST)
∀ st ∈ ST : tag(s ′) = tag(s ′)\{st}
let ST = {(s1 , t1), . . . , (sn , tn)}
∀ so ∈ S ∪O , t ∈ T such that (s ′, t) ∈ tag(so)
if ∃A′ ⊆ A such that

A′, tag |= allow(s ′, so, assign tag , {(s ′, t)}) if (s1 , t1), . . . , (sn , tn) ∈ tag(s ′)
and ∀A′′ ⊆ A we have that

A′′, tag � allow(s ′, so, assign tag , {(s ′, t)}) if (s1 , t1), . . . , (sn , tn) /∈ tag(s ′)
then

if so ∈ S then
let ST ′ be the set of such tags (s ′, t)
invoke allow(s ′, so, revoke tag , ST ′)

else
tag(so) = tag(so)\{(s ′, t)}

(b) Semantics of allow(s, s ′, revoke tag ,ST) with Cascading Revocation

allow(s,s′,revoke tag,ST)
∀ st ∈ ST : tag(s ′) = tag(s ′)\{st}
let ST = {(s1 , t1), . . . , (sn , tn)}
∀ so ∈ S ∪O , t ∈ T such that (s ′, t) ∈ tag(so)
if ∃A′ ⊆ A such that

A′, tag |= allow(s ′, so, assign tag , {(s ′, t)}) if (s1 , t1), . . . , (sn , tn) ∈ tag(s ′)
and ∀A′′ ⊆ A we have that

A′′, tag � allow(s ′, so, assign tag , {(s ′, t)}) if (s1 , t1), . . . , (sn , tn) /∈ tag(s ′)
then

tag(so) = tag(so)\{(s ′, t)} ∪ {(s, t)}
(c) Semantics of allow(s, s ′, revoke tag , ST) with Non-Cascade Revocation

allow(s,o,revoke tag,ST)
∀ st ∈ ST : tag(o) = tag(o)\{st}

(d) Semantics of allow(s, o, revoke tag , ST)

Fig. 1. Effects of the invocation of rights assign tag and revoke tag

Two main revocation models have been proposed in the literature. The first model,
called cascading revocation [4, 12], aims to overturn all the changes to a system autho-
rizations made exploiting the tags being revoked. This implies that if a subject s revokes
a set of tags ST from a subject s′, then all tags subsequently assigned by s′ (and by the
subjects to which s′ assigned a tag) without other supporting authorizations must be re-
cursively revoked. The effects of invoking allow(s , s ′, revoke tag, ST) with cascading
revocation are shown in Figure 1(b). A domain that typically resorts to cascading re-
vocation is data protection. Whenever an individual revokes the consent (i.e., the right)
to process her personal data to a service provider, all the authorizations on the data of the

170 S. Etalle et al.

service provider and of the subcontractors to whom the service provider delegated the
processing of the data are revoked.

The dual model of cascading revocation is called non-cascade revocation [6] (or sim-
ple revocation in [4]). In non-cascade revocation, if a subject s revokes a set of tags ST
from a subject s′, instead of revoking the tags that s′ assigned exploiting the authoriza-
tions deriving from ST (as done by cascading revocation), these tags are modified as if
they were issued by s. Intuitively, this requires s to be allowed to both revoke tags ST
from subject s′ and to assign tags ST in her place. The rationale behind non-cascade
revocation is clarified by the following example. In most organizations, the authoriza-
tions that users possess are related to their role within the organization. Suppose there
is a change in the role of a user s′. This may imply a change also in the privileges of
s′: new rights will be granted to s′ and some of her previous rights will be revoked.
Applying cascading revocation would result in the undesirable effect of deleting all the
authorizations that s′ granted and, recursively, all the authorizations granted through
them, which then might need to be re-issued. Moreover, all the tags assigned by s′ that
depend on the revoked rights would be invalidated. A better solution to this scenario is
to preserve the authorizations granted by user s′, possibly substituting s′ with another
user as the grantor (i.e., issuer) of those authorizations. In [6], for instance, s′ is replaced
by the user s who is revoking her rights. The semantics of allow(s , s ′, revoke tag, ST)
with non-cascade revocation is shown in Figure 1(c).

According to both semantics presented above, since objects cannot fur-
ther delegate their rights to other subjects or objects, the effects of invoking
allow(s , o, revoke tag, ST) are the same in cascading and non-cascade revocation
(Figure 1(d)).

3.3 Tag Verification

Tag verification is the process of verifying the compliance of tags with administrative
policies. More precisely, the goal of tag verification is to determine whether a user is (or
was) authorized to assign a given tag. Typically, the enforcement of authorization and
administrative policies within a system is achieved by means of a priori access control
mechanisms. In a distributed system, however, relying exclusively on a priori mech-
anisms requires entities in one security domain to trust systems in different security
domains for policy enforcement. Thanks to the observability of users’ actions deriving
from the signing of tags, TBA2 allows security administrators to complement a priori
mechanisms with a posteriori tag verification using a lightweight auditing mechanism.

Technically, we say that a tag t assigned by a subject s to an object o (respectively to
a subject s′) is valid if for a set of administrative rules A′ and a set of signed tags ST
such that (s, t) ∈ ST we have that

A′, tag |= allow(s , o, assign tag, ST) (resp. A′, tag |= allow(s , s ′, assign tag, ST))

Otherwise, we say that the tag is invalid. This validity check can be used both as an
a priori mechanism for the enforcement of administrative policies and a posteriori for
auditing purposes.

The verification of a tag (s, t) against the administrative policy of a system might
require the verification of a set of tags (s1, t1), . . . , (sn, tn) against the policies of systems

Policy Administration in Tag-Based Authorization 171

in different security domains. In fact, to verify whether tag (s, t) is valid, we need in turn
to verify the validity of the supporting tags of (s, t), i.e., the tags that authorized subject
s to issue (s, t). Consider, for instance, rule 3 in Example 2, which states that “senior
officers of EU navies may assign a senior officer tag to junior officers of the same navy”.
To verify whether the senior officer tag assigned by subject s1 to subject s2 is valid,
we need first to confirm that s1 is actually a senior officer and s2 has a junior officer
tag issued by the same navy. This verification process is similar to the credential chain
discovery problem in trust management. Accordingly, trust management algorithms [19,
25] can be employed to support the verification of tags’ validity.

An additional problem of tag verification is that in a distributed system entities in
one security domain might not trust systems in different security domain to perform the
validity check. In this respect, we identify three types of trust relationships that can be
of interest for tag verification in TBA2, resulting in three possible verification strategies.
In what follows, we refer to the object (resp. subject) to which a tag is assigned as the
target object (resp. subject) of the tag. The first possible verification strategy is issuer
verification of tags, where the system to which the issuer of a tag belongs is trusted
for checking the validity of the tag. The second strategy is target verification, which
enables systems to verify the validity of the tags assigned to an object according to the
intention of the object’s owner. A possible application scenario for target verification is
the protection of digital media, where only the content owner is entitled to define the
authorizations to access the object. Finally, local verification of tags can be employed in
scenarios where there is no mutual trust among systems in different security domains.
With local verification, the system which is interested in verifying the validity of a tag
performs the check with respect to its local administrative policy.

The following example illustrates local verification of tags based on the administra-
tive policy in Example 2.

Example 3 (Tag Verification). The French Navy distributes a document d containing the
location of a suspected pirate attack to the other navies involved in Operation Atalanta.
When d is received by the British Navy, it contains the following tags:

– tag(d) = {(fr navy,secret),(s4,inaccurate information)}
where subject s4 is labeled as follows:

– tag(s4) = {(it navy,reconnaissance pilot)}
Since in Example 2 there is no rule defined by the British Navy that implies allow(s4 , d ,
assign tag, {(s4 , inaccurate information)}), the tag added by subject s4 is consid-
ered invalid. In fact, the policy of the British Navy allows only senior officers to tag
documents marked as secret by an EU navy. The British Navy might thus decide to pro-
ceed with further investigations before concluding the inaccuracy of d’s information.

For the sake of simplicity, the auditing mechanism discussed in this section verifies
the compliance of tags with respect to the administrative policies that are currently in
force. In other words, a tag is considered valid if its assignment is authorized by the
administrative policy in force at the moment in which the tag is verified. An alternative
verification mechanism could verify tags with respect to the administrative policy in
force at the moment in which the tag was assigned. Intuitively, the implementation of

172 S. Etalle et al.

the latter mechanism is more complex and requires, e.g., timestamped tags and repos-
itories containing all the administrative policies adopted by a system over time. An
extension of the TBA2 model in this direction is discussed in Section 6.

3.4 Tag Revocation

Whenever security administrators identify invalid tags, they should revoke them to pre-
serve the consistency of function tag with respect to administrative policies. In a cen-
tralized system, revocation can be performed by simply deleting incorrect tags from the
system. In a distributed system, revoking a set of tags is more complicated because it
might not be possible to trace the tags issued by a given subject, and security adminis-
trators cannot delete tags assigned to subjects and objects residing in different security
domains. TBA2 enables a simple solution to this problem, where security administra-
tors communicate the issuer-tag pairs to be revoked to other systems by broadcasting or
publishing in an appropriate location revocation lists of tags. The recipient systems can
then decide whether to revoke the listed tags or ignore the recommendation.

Definition 3 (Revocation List). A revocation list is a triple 〈s , so,T ′〉 where T ′ ⊆ T
is a set of tags, s is the issuer of the tags in T ′, and so is the target subject or object.

Intuitively, a revocation list contains the set T ′ of tags assigned by a subject s to subject
or object so which should be revoked according to the system publishing the revocation
list.

Example 4 (Revocation List). The revocation list for the invalid tag identified by the
British Navy in Example 3 is the following: 〈s4 , d , {inaccurate information}〉. The
revocation list is published by the British Navy on its public record of invalid tags.

The decision of the security administrator of a system sys on whether to actually revoke
the set of tags listed in a revocation list 〈s , so,T ′〉 published by a system sys ′ is strictly
correlated to the verification strategy employed by sys . If sys resorts to issuer (resp.
target) verification, for instance, sys trusts the system to which s (resp. so) belongs to
perform the validity check of tags T ′. Consequently, if s (resp. so) belongs to sys ′, the
security administrator of sys is likely to delete tags T ′ from its system. On the contrary,
if sys resorts to local verification, it might decide to proceed with further investigations
before deleting the tags. The revocation list published by the British Navy in Example
4, for instance, might be taken into consideration by the vessels of the British Navy, but
ignored by the vessels of other EU countries, because derived through local verification
with respect to the British Navy’s policy.

As an alternative to revocation lists, we consider the use of negative tags. Negative
tags are signed tags that state that a certain tag assigned to a subject or object is not (or
no longer) valid according to the issuer of the negative tag. The advantage of negative
tags is that they enable the verification of revoked tags, which might not be possible
if the tags are deleted. However, this might lead to a very large number of tags (both
“positive” and negative) assigned to each subject and object.

Rather than simply deleting invalid tags (or issuing negative tags), other approaches
can be employed for restoring the compliance of tags with administrative policies.

Policy Administration in Tag-Based Authorization 173

In some critical or uncertain situation, for instance, security administrators might de-
cide to simply highlight the invalid tags and refer to a competent user for determining
what to do with them. Alternatively, systems may rely on repair constraints [11] to de-
termine how to handle invalid tags. A repair constraint might, for example, dictate in
which conditions cascading rather than non-cascade revocation should be applied on a
tag.

4 Evaluation of TBA2

In this section we evaluate the expressive power of the TBA2 model. First, it is easy to
demonstrate that TBA2 is strictly more expressive than TBA. In fact, by not bounding
the tags’ issuers, TBA2 can express exactly the same constraints definable by TBA. On
top of this, associating an issuer to each tag enables the specification of authorization
and administrative rules discriminating based on the issuer of tags, such as for instance
linked roles in RT [18]. A linked role is a rule of the form A.r ← B .r1 .r2 , which states
that subject A assigns a subject Sx (implicitly defined) to role r if Sx is labeled as a
member of role r2 by a subject Sy who is assigned to role r1 by subject B. The reason
why linked roles cannot be represented in TBA is that they require the binding of the
subject of the first role r1 to the issuer of the second role r2. TBA2 rules 1, 2, and 3 in
Example 2 are examples of RT’s linked roles.

We now show how TBA2 can represent policies from two reference administrative
models proposed in the literature, namely the Harrison, Ruzzo, and Ullman (HRU)
model [13] and ARBAC97 [23]. The HRU model [13] employs an access matrix for
the specification of the rights of users on the objects in a system, and relies on a set
of commands for modifying users’ authorizations. The model includes three predefined
commands: commands CONFER and REVOKE allow the owner of an object to re-
spectively grant to and revoke from other subjects any right on the objects she owns;
command TRANSFER allows users to delegate their rights to other users. In TBA2 we
use allow(s , o, assign tag,T ′) to define commands CONFER and TRANSFER, and
allow(s , o, revoke tag,T ′) to define the REVOKE command. We assume the tags in T
to consist of pairs 〈s , r〉, representing each possible right r ∈ R of a subject s ∈ S. The
tags associated to an object define the rights of the users of a system on that object.

Example 5 (Mapping HRU to TBA2). The following three rules define commands CON-
FER, TRANSFER, and REVOKE respectively:

1. allow(Sx,Ox,assign tag ,{(Sy,Rx)}) :- (sys ,〈Sx,own〉) ∈ tag(Ox)
2. allow(Sx,Ox,assign tag ,{(Sy,Rx)}) :- (sys ,〈Sz ,own〉) ∈ tag(Ox),

(Sz ,〈Sx,R∗
x〉)∈ tag(Ox)

3. allow(Sx,Ox,revoke tag ,{(Sy,Rx)}) :- (sys ,〈Sx,own〉) ∈ tag(Ox)

The first rule states that the owner Sx of an object Ox can assign any right Rx on Ox to
any subject Sy . The tag representing the ownership of an object is a “system tag”; we
use sys to denote the issuer of system tags. Rule 2 represents the right of a subject Sx

to delegate a right Rx on object Ox to a subject Sy, provided that Rx is a transferable
right (denoted by symbol ∗ in the HRU model) assigned to Sx by the owner Sz of object
Ox. Finally, rule 3 states that the owner of an object can revoke any right on that object.

174 S. Etalle et al.

Note that the HRU model allows users to define additional commands to modify the au-
thorizations within a system. Since those commands are arbitrary, and are not described
in the model, we cannot evaluate the expressiveness of TBA2 with respect to them.

Next, we show how to represent in TBA2 the administrative policies supported by
ARBAC97 [23], an administrative model for role-based access control. In ARBAC97,
roles are divided into two classes: administrative roles and regular roles. Both classes
of roles are organized into hierarchies, where each role inherits all the rights assigned
to the children nodes in the hierarchy. The ARBAC97 model relies on four commands
for the specification of administrative policies:

1. can assign(ar , φ, {rr1 , . . . , rrn})
2. can revoke(ar , {rr1 , . . . , rrn})
3. can assignp(ar , φ, {rr1 , . . . , rrn})
4. can revokep(ar , {rr1 , . . . , rrn})

where φ (called prerequisite condition) is a boolean expression on regular roles, which
defines the requirements on the membership (or non-membership) of a user to some
roles. Commands (1) and (2) are used to specify the right to assign and revoke roles,
while commands (3) and (4) define the rights to assign and revoke permissions. More
precisely, command (1) defines the right of a member of the administrative role ar (or
a member of an administrative role above ar in the hierarchy) to assign to a user who
satisfies the prerequisite conditions φ the membership to regular roles rr1, . . . , rrn.
Command (2) assigns to members of the administrative role ar (or higher roles in the
hierarchy) the right to revoke regular roles rr1, . . . , rrn. Similarly, command (3) al-
lows members of the administrative role ar (or higher) to assign to roles rr1, . . . , rrn
any permission whose assignment to regular roles satisfies φ, and command (4) enables
members of ar (or higher) to revoke any right to roles rr1, . . . , rrn. To represent AR-
BAC97, we consider a set of administrative roles AR and regular roles RR to be defined
as tags in T . The assignment of a user to a role is represented by the assignment of a
tag from RR to the user. In addition, similarly to the previous example, we employ tags
consisting of pairs 〈s , r〉 to represent a right r ∈ R of a subject s ∈ S. Finally, for rep-
resenting a prerequisite condition φ, we rewrite φ in disjunctive normal form, i.e., into
a formula of the form (CR11 ∧ . . . ∧CR1m1) ∨ . . . ∨ (CRp1 ∧ . . . ∧ CRpmp), where
CRij (with i ∈ {1, . . . , p}, j ∈ {1, . . . ,mi}) is either crij or ¬crij , with crij ∈ RR,
and the negation symbol ¬ denotes non-membership to a regular role. Negation as fail-
ure is employed to interpret negated roles: a user is not a member of a role crij if she is
not assigned a tag (s,crij), for any s ∈ S.

Example 6 (Mapping ARBAC97 to TBA2). The following TBA2 rules define ARBAC97
commands (1), (2), (3), and (4) respectively:

1. allow(Sx,Sy ,assign tag ,{(Sx,rr1),. . .,(Sx,rrn)}) :- (∗,ar) ∈ tag(Sx), (∗,cr11) &
tag(Sy),

. . ., (∗,cr1m1) & tag(Sy)
· · ·
allow(Sx,Sy ,assign tag ,{(Sx,rr1),. . .,(Sx,rrn)}) :- (∗,ar) ∈ tag(Sx), (∗,crp1) &
tag(Sy),

. . ., (∗,crpmp) & tag(Sy)

Policy Administration in Tag-Based Authorization 175

2. allow(Sx,Sy ,revoke tag ,{(∗,rr1),. . . ,(∗,rrn)}) :- (∗,ar) ∈ tag(Sx)
3. allow(Sx,Sy ,assign tag ,{(Sx,〈Sy ,Rx〉)}) :- (∗,ar) ∈ tag(Sx), (∗,rr1) ∈ tag(Sy),

(∗,cr11) ∈ tag(Scr11), (∗,〈Scr11 ,Rx〉) & tag(Ocr11),
. . .,
(∗,cr1m1) ∈ tag(Scr1m1

), (∗,〈Scr1m1
,Rx〉) &

tag(Ocr1m1
)

· · ·
allow(Sx,Sy ,assign tag ,{(Sx,〈Sy ,Rx〉)}) :- (∗,ar) ∈ tag(Sx), (∗,rrn) ∈ tag(Sy),

(∗,crp1) ∈ tag(Scrp1), (∗,〈Scrp1 ,Rx〉) & tag(Ocrp1),
. . .,
(∗,crpmp) ∈ tag(Scrpmp

), (∗,〈Scrpmp
,Rx〉) &

tag(Ocrpmp
)

4. allow(Sx,Sy ,revoke tag ,{(∗,〈Sy,Rx〉)}) :- (∗,ar) ∈ tag(Sx), (∗,rr1) ∈ tag(Sy)
· · ·
allow(Sx,Sy ,revoke tag ,{(∗,〈Sy,Rx〉)}) :- (∗,ar) ∈ tag(Sx), (∗,rrn) ∈ tag(Sy)

where ∗ indicates any subject in S, and& is either ∈ or /∈ depending on the correspond-
ing element in φ. The first set of rules allows a subject Sx with administrative role ar
to assign to a subject Sy whose roles satisfy the formula (CRi1 ∧ . . . ∧ CRimi) (for
any i ∈ {1, . . . , p}) to regular roles rr1, . . . , rrn. The second rule allows a member
Sx of administrative role ar to revoke to a subject Sy regular roles rr1, . . . , rrn, inde-
pendently from the subject who assigned them. The set of rules in item 3 states that a
subject Sx who is a member of administrative role ar may assign a right Rx to a subject
Sy , provided that Sy is a member of regular role rrj (with j ∈ {1, . . . , n}), and Rx is a
right whose assignment to regular roles satisfies (CRi1 ∧ . . . ∧ CRimi). Finally, the set
of rules in item 4 gives to a subject Sx having administrative role ar the right to revoke
any right to the members of role rrj .

In the example above we do not consider inheritance of rights among roles in a hierar-
chy. Rather, we assume that a rule is defined for each administrative role ar having a cer-
tain right. A role hierarchy could be easily defined using a predicate higher role(ar1 ,
ar2), and adding to each rule a condition higher role(ar , armin), where armin is the
minimum role in the hierarchy to which the rule applies. In addition, we slightly mod-
ify the semantics of commands (3) and (4). Whereas in ARBAC97 permissions are as-
signed to roles, in our representation they are assigned to the members of a role. From
the practical point of view, however, the two semantics are equivalent.

The examples above demonstrate that TBA2 can express the administrative con-
straints defined by HRU and ARBAC97. As a matter of fact, neither HRU nor AR-
BAC97 fully exploit the expressiveness of TBA2. As shown by Example 6, for instance,
ARBAC97 does not exploit the capability of TBA2 of constraining the issuer of a tag
and the rights that a member of an administrative role may assign. With respect to
the HRU model, TBA2 allows for the specification of much more complex constraints
than those defined in commands CONFER, TRANSFER, and REVOKE, e.g., based on
the properties of subjects and objects. This implies that, in terms of expressive power,
TBA2 represents a more comprehensive solution than the considered models.

176 S. Etalle et al.

5 Related Work

TBA has been studied informally in [20, 26], though that work allows tags on subjects
but not on objects. Next to it, substantial work has been done on logical access control
models, both based on Datalog (e.g., [2, 18, 22]) as well as on more expressive logics
(e.g., [1, 9, 27]). While many of the existing logical access control languages can be
used to encode tag-based authorization policies, it is the commitment to document and
user tagging (an activity that can be carried out by users with a wide range of technical
expertise) that makes TBA useful to a broad class of organizations.

The work related to the contributions of this paper spans two main topics: policy
administration and auditing mechanisms. While many access control models for dis-
tributed systems have been proposed in the literature, policy administration received
much less consideration. A number of administration models exist [4, 5, 10, 13, 17, 23],
but they focus mainly on the expressivity of administrative policies, and do not consider
the challenges associated with their enforcement in a distributed setting. The innovation
of TBA2 in this respect lies in the fact that it allows for an easy verification of policy
compliance, thus not requiring entities in one security domain to trust systems in differ-
ent security domains for the enforcement of administrative policy. In addition, we have
shown that TBA2 is more expressive than two reference administrative models, namely
ARBAC97 [23] and HRU [13].

Similarly to TBA2, the existing a posteriori solutions (e.g., [7]) perform the verifi-
cation of policy compliance through auditing mechanisms. However, to achieve this,
they rely on logging mechanisms that record users’ actions, and trusted auditing au-
thorities that verify the compliance of those actions with policies. Our model represents
a lightweight solution for policy compliance verification that does not require the re-
alization of such an auditing infrastructure. We propose the use of trust management
algorithms [19, 25] to support the verification of policy compliance.

6 Discussion and Conclusions

In this paper we have introduced TBA2, an extension of the TBA model [15] that en-
ables policy administration in distributed systems. Similarly to TBA, TBA2 allows rel-
atively untrained users to assign descriptive tags to a system’s subjects and objects;
trained security experts then write logic-based authorization policies that define access
rights in terms of those tags. In addition, by linking each tag to its issuer (i.e., the user
who assigned it), TBA2 enables the specification of fine-grained administrative policies
whose enforcement can be verified through a lightweight auditing technique. We have
shown that our model is more expressive than TBA and than the HRU [13] and AR-
BAC97 [23] administrative models. Thus, TBA2 represents a flexible, easy to use, yet
expressive access control solution which matches the needs of real-world organizations.

The auditing mechanism proposed in Section 3.3 verifies tags’ validity with respect
to the administrative policy currently in force within a system. In some situations, how-
ever, it is preferable to verify the validity of a tag with respect to the administrative
policies effective when the tag was issued. For example, assume that the commanding
officer of a British Navy vessel is summoned by the EU for a meeting at the Operation

Policy Administration in Tag-Based Authorization 177

Atalanta’s headquarter. Then, the commanding officer would have to temporarily dele-
gate the command of the vessel and the deriving responsibilities and authorizations to
another officer until her return. During this period, the appointed officer will have to
take several decisions which might lead to the granting and revocation of authorizations
to the vessel’s operators and to the tagging of several data objects exchanged among
the collaborating navies. With the verification mechanism presented in Section 3.3, the
revocation of the officer’s rights by the commanding officer upon her return would have
the undesirable effect of invalidating all the authorizations and tags assigned by the
officer during her command. The design of an auditing mechanism verifying tags’ va-
lidity with respect to the administrative policy in force when a tag was assigned would
require two main extensions to the TBA2 model. First, it would require the association
of a timestamp to each tag to demonstrate when it was issued. Second, all the adminis-
trative policies employed by a system during its lifetime would need to be stored in a
repository, together with the time interval in which they were effective. Then, whenever
a tag needs to be verified, its timestamp can be used to retrieve from the repository the
policy that was in force when the tag was issued, against which the validity check must
be performed. The resulting enforcement mechanism is similar to those used for the
enforcement of history-based access control policies [16].

To conclude, we point out that the model proposed in this paper enables security
administrators to verify the compliance of users’ actions with respect to the adminis-
trative policies in force within a system, but provides no guarantee that these policies
are correctly specified. The verification of administrative policies with respect to the
desired security properties of a system can be achieved through model checking tech-
niques [28]. Finally, we argue that even though TBA2 is presented as an access control
solution for distributed systems, also centralized systems would benefit from employing
the model. In fact, the association of each tag to its issuer enhances the “observability”
of user’s actions, simplifying the detection of policy violations, and may be used as a
discriminant by other users in the system to determine whether a certain tag should be
considered valid. Signed tags are currently employed by several existing web applica-
tions and social networks (e.g., Facebook).

Acknowledgments. This work has been done in the context of the THeCS project,
which is supported by the Dutch national program COMMIT. Adam J. Lee was sup-
ported in part by the US National Science Foundation under awards CNS-0964295 and
CNS-1228697.

References

1. Abadi, M., Burrows, M., Lampson, B.: A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and Systems 15(4), 706–734 (1993)

2. Becker, M.Y., Fournet, C.Y., Gordon, A.D.: SecPAL: Design and semantics of a decentralized
authorization language. Journal of Computer Security 18(4), 619–665 (2010)

3. Bell, D.E.: Looking Back at the Bell-La Padula Model. In: Proceedings of ACSAC 2005, pp.
337–351. IEEE Computer Society (2005)

178 S. Etalle et al.

4. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: Revocation
Schemes for Delegation Licences. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 190–205. Springer, Heidelberg (2008)

5. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A delegation
model for extended RBAC. Int. J. Inf. Sec. 9(3), 209–236 (2010)

6. Bertino, E., Samarati, P., Jajodia, S.: An Extended Authorization Model for Relational
Databases. IEEE Trans. Knowl. Data Eng. 9(1), 85–101 (1997)

7. Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-
based compliance control. Int. J. Inf. Sec. 6(2), 133–151 (2007)

8. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. Int. J. Inf.
Sec. 7(2), 123–136 (2008)

9. Crampton, J., Loizou, G., Oshea, G.: A logic of access control. The Computer Journal 44(1),
137–149 (2001)

10. Dekker, M., Crampton, J., Etalle, S.: RBAC administration in distributed systems. In: Pro-
ceedings of SACMAT 2008, pp. 93–102. ACM (2008)

11. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing incon-
sistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

12. Griffiths, P.P., Wade, B.W.: An authorization mechanism for a relational database system.
ACM Trans. Database Syst. 1(3), 242–255 (1976)

13. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-
tions of the ACM 19(8), 461–471 (1976)

14. Heeps, S., Sventek, J., Dulay, N., Schaeffer Filho, A.E., Lupu, E., Sloman, M., Strowes, S.:
Dynamic Ontology Mapping for Interacting Autonomous Systems. In: Hutchison, D., Katz,
R.H. (eds.) IWSOS 2007. LNCS, vol. 4725, pp. 255–263. Springer, Heidelberg (2007)

15. Hinrichs, T.L., Garrison III, W.C., Lee, A.J., Saunders, S., Mitchell, J.C.: TBA: A Hybrid of
Logic and Extensional Access Control Systems. In: Barthe, G., Datta, A., Etalle, S. (eds.)
FAST 2011. LNCS, vol. 7140, pp. 198–213. Springer, Heidelberg (2012)

16. Koshutanski, H., Martinelli, F., Mori, P., Vaccarelli, A.: Fine-grained and History-based Ac-
cess Control with Trust Management for Autonomic Grid Services. In: Proceedings of ICAS
2006, pp. 34–43. IEEE Computer Society (2006)

17. Li, N., Mao, Z.: Administration in role-based access control. In: Proceedings of ASIACCS
2007, pp. 127–138. ACM (2007)

18. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a Role-Based Trust-Management
Framework. In: Proceedings of S&P 2002, pp. 114–130. IEEE Computer Society (2002)

19. Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery in trust
management. Journal of Computer Security 11(1), 35–86 (2003)

20. Najafian Razavi, M., Iverson, L.: Supporting selective information sharing with people-
tagging. In: Proceedings of CHI 2008, pp. 3423–3428. ACM (2008)

21. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3(2), 85–
106 (2000)

22. Ribeiro, C., Zuquete, A., Ferreira, P., Guedes, P.: SPL: An access control language for secu-
rity policies with complex constraints. In: Proceedings of NDSS 2011 (2001)

23. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based administra-
tion of roles. ACM Trans. Inf. Syst. Secur. 2(1), 105–135 (1999)

24. Trivellato, D., Spiessens, F., Zannone, N., Etalle, S.: Reputation-Based Ontology Alignment
for Autonomy and Interoperability in Distributed Access Control. In: Proceedings of CSE
2009, vol. 3, pp. 252–258. IEEE Computer Society (2009)

Policy Administration in Tag-Based Authorization 179

25. Trivellato, D., Zannone, N., Etalle, S.: GEM: a Distributed Goal Evaluation Algorithm for
Trust Management. Journal of Theory and Practice of Logic Programming (2012) (to appear)

26. Wang, Q., Jin, H., Li, N.: Usable Access Control in Collaborative Environments: Autho-
rization Based on People-Tagging. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 268–284. Springer, Heidelberg (2009)

27. Wijesekera, D., Jajodia, S.: Policy algebras for access control - the predicate case. In: Pro-
ceedings of CCS 2001, pp. 171–180. ACM (2001)

28. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems through
model checking. Journal of Computer Security 16(1), 1–61 (2008)

Enabling Dynamic Security Policy

in the Java Security Manager

Fabien Autrel, Nora Cuppens-Boulahia, and Frédéric Cuppens

Telecom-Bretagne, 35576 Cesson Sévigné, France
{fabien.autrel,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. The Java execution environment includes several security
mechanisms. They are found in the language itself, in the class loader,
in the class verifier and in the sandbox in which bytecode is executed.
The sandbox isolates the executed bytecode from the host on which the
Java Virtual Machine (JVM) is executed. The security policy enforced
by the sandbox can be configured depending on who runs a program and
the origin of the program and offers fine-grained mechanisms to control
resource access. However the security policy language offers no higher-
level paradigms, such as the abstraction of users into roles, to enable the
management of Java security policies into large infrastructures. Moreover
those policies are static and cannot change depending on the state of the
environment into which they are deployed. We propose in this article an
approach to use the OrBAC model to configure the sandbox security pol-
icy, allowing the use of an implementation-independent policy language
which offers facilities to manage large sets of JVMs, enables the expres-
sion of dynamic security policies and offers an advanced administration
model.

Keywords: security policy, JVM, OrBAC, automatic configuration.

1 Introduction

The Java security model relies on several mechanisms. The Java language itself
provides strong type checking, a garbage collector and access control to class
members and methods. The Java Virtual Machine (JVM) also implements a
class loader and a class verifier which checks various properties of the loaded
bytecode. The component which isolates the JVM from the operating system
in a sandbox is called the security manager. The security manager handles the
external boundary of the JVM, it controls how code executed by the JVM in-
teracts with resources outside of the JVM. This security manager is configured
by a security policy specified in a file loaded when an instance of the JVM is
created. This security policy is static and expressed into a language specific to
the JVM which offers many low level security mechanisms. For example access
control can be done on, among other resources, the file system, network connec-
tions, thread management and the Abstract Window Toolkit (AWT) framework.
If we consider the fact that the security policy language offers no mechanisms to

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 180–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enabling Dynamic Security Policy in the Java Security Manager 181

manage the expression and deployment of policies on large infrastructures, con-
figuring this security policy for one user on a given machine is feasible but doing
it for hundreds of users with various profiles on hundreds of machines becomes
a tedious and error prone task.

Given the increasing size of infrastructures into which more and more complex
information systems are integrated, system administrators must often configure
the security of a wide range of components using ad-hoc configuration languages.
This requires them to learn many languages and prevent them from having a
global view on the whole system security policy. We believe that the adminis-
trators should use ideally one language to express the security policy of a whole
system, which should then be enforced through a set of translators that generate
configuration files for all the components.

The OrBAC [1] model attempts to address this problematic by offering several
abstract concepts such as abstract entities and contextual security rules which
can be used to express a dynamic security policy independently from its im-
plementation. Moreover The OrBAC model offers a framework to analyze and
solve rules conflicts, which is impossible to do using multiple security policy lan-
guages. The OrBACmodel also features an administration model, the AdOrBAC
[2] model, which can be used to decentralize security policy administration.

We present in this paper an approach to express and enforce dynamic security
policies for the JVM security manager. Section 2 presents the existing work
related to the expression and management of JVM security policies. Section 3
presents the JVM security policy language and how it is used. Section 4 presents
the OrBACmodel. Section 5 shows how the OrBACmodel can be used to express
JVM security policies. Section 6 illustrates how policies expressed in OrBAC can
be enforced in a JVM. Section 7 concludes this paper and presents future works.

2 Related Work

To our knowledge there are few proposal that address the problems related to the
expression of JVM security policies. The standard Java Runtime Environment
(JRE) includes Policy T ool, a very simple application which generates JVM
security policies. This application aims at making the policy specification easier
by providing a user interface instead of editing directly policies in a text editor.
In [3] the authors define a new policy model which includes both positive and
negative authorizations. The authors use those two kinds of authorizations to
define exceptions, which are not supported in the standard JRE policy language.
They also define constraints as temporal constraints exclusively, enabling them to
associate temporal conditions to the policy. The concept of permission delegation
is also introduced in the model. Since the authors focus on the use of Java in
distributed systems by using the Jini[4] framework, the notion of delegation is
here restricted to the case of two JVMs communicating through the network and
exchanging permissions.

However the only constraint on multi-step delegation is the delegation dura-
tion time, not the depth of a delegation chain. The authors also propose to use

182 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

the notion of groups, a group being a set of principals. This group concept is
close to the notion of role in RBAC[5] or OrBAC. The policies are expressed
in XML. Although this work addresses many problems in the expression and in
the management of JVM security policies, the fact that it focuses on distributed
systems and that the security model is an extension of the existing one makes
the contribution less interesting in the context of large infrastructure adminis-
tration. Actually a system administrator still has to use the new ad-hoc language
to configure the JVM security policy and has no global view over the security
policy of the whole system.

In [6] the authors use an Authorization Specification Language (ASL [7]) to
express security policies for mobile devices. The implementation is done using a
modified JRE security manager which parses XACML policies translated from
the ASL representation. Unfortunately the authors only present the XACML
format and not the abstract policy expressed in ASL.

In [8] the authors address the lack of flexibility of the Java 2 Micro Edition
(J2ME) security model. They extend the J2ME security model and use the Secu-
rity Policy Language (SPL) language [9] to express the security policy enforced
on mobile devices. The J2ME is only used on mobile devices and does not use
the security manager of the standard JRE so this work is not applicable in our
context. The use of SPL offers policy administrators a wider view of the security
deployed on a mobile device.

In [10], the authors present an approach to express firewall security policies
using the OrBAC model to translate them into native firewall configuration
languages. The model is independent from the targeted firewall implementation.
The authors choose to represent each firewall by an organization, each firewall
defining its own security policy through the specification of abstract rules in the
corresponding organization. Although this paper focuses on the abstraction of
firewall policy and does not address JVM policy modeling, we adopt a similar
approach by defining the security policy enforced in sets of JVM hosts into
organizations (cf section 5.2).

3 JVM Security Policies

The current security model implemented by the JVM security manager relies
on different security mechanisms. In this paper we focus on the closed security
policy which defines the sandbox boundaries. This policy specifies the permis-
sions granted to bytecode depending on its source and the principal as which it
is executed, a principal being the identity assigned to an entity, which can be
the result of an authentication. This contrasts with previous JDK version before
version 1.4 where access control was based only on which code is executed.

3.1 Policy Syntax

By default a single system-wide policy is defined in a file and user specific poli-
cies can optionally be defined. The system-wide policy file defines an optional

Enabling Dynamic Security Policy in the Java Security Manager 183

keystore entry which is used to check the public keys associated with signed
bytecode. The rest of the policy file defines the permissions granted to code
through the specification of ”grant” entries. A grant entry specifies the sources
and principals which are granted a list of permissions. The policy file syntax is
defined as follows:

grant signedBy "signer_names", codeBase "URL",
principal principal_class_name "principal_name",
... {

permission permission_class_name "target_name", "action", signedBy "signer_names";
...

};

Permissions have an action parameter which is not mandatory for all permis-
sions. Note that the JRE security policy is static by construction, no dynamic
conditions can be associated with permissions. We believe that current security
requirements met by system administrators show the need for dynamic policies.
System administrators should not have to learn such configuration language but
should instead use higher level paradigms to express the security of an informa-
tion system. Note that in this paper we do not address the security problems
related to the lack of protection of a Java Runtime Environment (JRE) default
installation. For example if the underlying operating system’s access control
mechanisms do not correctly restrict the access to a JRE setup, some of its com-
ponents could be changed and/or the policy file could be easily modified [11].

3.2 Permission Types

The Java 2 security manager default implementation defines a set of permission
types which define the granularity of the JVM sandbox boundary. We do not
present the complete Java security policy due to space limitations and since
most of the permissions types are related to very specific use cases. The use case
presented in section 5 focuses on network access and file system access hence we
only use the security manager FilePermission and SocketPermission types .

4 The OrBAC Model

The OrBAC model addresses many problems faced by system administrators
in big infrastructures when specifying security policies. For example, a company
infrastructure may be spread across different countries with different legislations,
the employee turnover can be very high, its contractors may need to access its
information system and more generally, the security policy must be modified
on a regular basis. In such context, the need for multiple administrators and a
dynamic security policy become central.

OrBAC aims at modeling a security policy centered on the organization which
defines it or manages it. An OrBAC policy specification is done at the organi-
zational level, also called the abstract level, and is implementation-independent.
The enforced policy, called the concrete policy, is inferred from the abstract
policy. This approach makes all the policies expressed in the OrBAC model

184 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

reproducible and scalable. Actually once the concrete policy is inferred, no mod-
ification or tuning has to be done on the inferred policy since it would possibly
introduce inconsistencies. Everything is done at the abstract policy specification
level. The inferred concrete policy expresses security rules using subjects, actions
and objects. The abstract policy, specified at the organizational level, is specified
using roles, activities and views which respectively abstract the concrete sub-
jects, actions and objects. The OrBAC model uses a first order logic formalism
with negation. However since first order logic is generally undecidable, we have
restricted our model in order to be compatible with a stratified Datalog program
[12]. A stratified Datalog program can be evaluated in polynomial time.

Each organization specifies its own security rules. Some role may have the
permission, prohibition or obligation to do some activity on some view given
an associated context is true. The context concept [13] has been introduced in
OrBAC in order to express dynamic rules. Contexts are defined through logical
rules which express the condition that must be true in order for the context
to be active. In the OrBAC model such rules have the predicate hold in their
conclusion. As suggested in [13], contexts can be combined in order to express
conjunctive contexts (denoted &), disjunctive contexts (denoted ⊕) and context
negation (denoted ctx, ctx being a context name). Once the security policy
has been specified at the organizational level, it is possible to instantiate it by
assigning concrete entities to abstract entities.

5 Expressing JVM Policies in OrBAC

In this section we show how the JVM policy model can be represented using
OrBAC. The main idea motivating this initiative is that ideally system admin-
istrators should be able to use the same security policy model to specify the
security policy of a whole system. In the case of the OrBAC model, administra-
tors should be able to use the same abstract entities to define the security rules
which are enforced by heterogeneous security components. For example let us
consider a generic doctor role used in a hospital policy to express the security
rules common to all physicians. This role is refined by defining sub-roles such as
surgeon, radiologist or anethesist to specify security rules that only apply to
specialists. A person empowered in one of the sub-roles of the doctor role may
access various data about his/her patients using various peripherals and applica-
tions which all must enforce the security policy. Among those applications some
are executed in the Java runtime environment and others are natively executed.

In this article, we consider as a use-case a Java client application which accesses
a database containing the patients medical files. Informally, the security policy as-
sociated with this application is the following: physicians can use the application,
the application can open network connections to the database and can make some
modifications to the local file system in order for it to correctly run.

Enabling Dynamic Security Policy in the Java Security Manager 185

5.1 Supported Permissions Types

As said in section 3.2, in this paper we only focus on the FilePermission and
SocketPermission types. We review here in details what they represent and how
they are expressed in the JVM security policy model. Although we do not model
other permission types in this article, the policy translation and deployment
mechanism would still be the same.

FilePermission Permission Type. The FilePermission type represents
an access to a file or directory. An instance of this permission consists of a path-
name and the set of actions which can be done on the pathname. A pathname
is either a file or a directory and the syntax allows the use of wild cards. The
∗ indicates all the files in a directory and − indicates all the files in a directory
plus recursively all files and directories contained in the directory. The possible
actions on a file or directory are read, write (which implies the permission to
create), execute and delete.

SocketPermission Permission Type. The SocketPermission type repre-
sents an access to the network via sockets. An instance of this permission consists
of a host specification and a set of operations which specifies how connections
can be established with the host. A host name is specified as follows:

host = (host name | IPaddress) [: port range]
port range = portnumber | −portnumber | portnumber−[portnumber]

Four connection methods can be specified: accept, connect, listen and resolve.
resolve is implied by the first three methods, i.e if the JVM can connect to
other machines, accept connections or listen to connection then it can resolve
host names. Note that this representation of network activities do not take into
account network protocols and their attributes and states, limiting considerably
the expression of network security policy compared to personal firewalls.

5.2 OrBAC Representation of JVM Policies

This section focuses on the definition of OrBAC abstract entities (organizations,
roles, activities, views, contexts, rules) necessary to model the file system and
network permissions of the Java security policy model.

Organizations. In the context of this article, a possible modeling choice would
be to represent each machine running the JVM by an organization but this would
possibly lead to a huge number of organizations, making the specification of JVM
policies more complicated and error prone than the manual configuration of the
machines. We argue here that a set of machines running the same Java appli-
cations can be abstracted into one organization in which the common security
policy is defined. For example if we consider tablet PCs used by physicians when
visiting their patients in a hospital, we can assume that they will all be running
the same set of Java applications, or at least they can be grouped in sets of
machines running the same applications. We use organization attributes to infer

186 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

the set of JVM hosts on which a JVM security policy must be deployed. More
precisely, let us consider a set Svm1 of machines hosting the JVM on which a set
of Java applications will be run. The predicate jvm target is used to associate
each element of Svm1 with an organization Ovm1 modeling this set.

To avoid defining several times the same subset of the security policy in differ-
ent organizations, an organization hierarchy should be defined. This way com-
mon security rules can be defined in the super organization of organizations
representing different machine sets sharing some common Java application(s).
We chose to define a default JVM organization as the root of the hierarchy
representing the sets of machines running Java applications. Figure 1 shows an
example of such hierarchy defined using the MotOrBAC[14] tool where Ovm1

and Ovm2 represent two subsets of machines sharing some common applications
for which the policy is defined in OcommonApps. MotOrBAC is a security policy
editor which implements the OrBAC model.

Fig. 1. A simple example of an organization hierarchy defined in a hospital

Roles. In our approach we do not define specific roles linked to the specification
of JVM security policies. The roles are completely defined by the use case for
which a security policy is specified. However since a Java application may send
and receive network packets, some activities, defined further below, model those
operations. We do not propose a new model from scratch for the modeling of
network operations but rather use the approach defined in [10]. Actually we do
not follow exactly the same semantic regarding the modeling of network traffic
direction. In [10] a role models a machine sending network packets to a machine
modeled as a view. This requires to create views corresponding to some roles
to be able to specify traffic going from and to a machine. In our case the roles
model users using a Java application running on a machine which sends and
receive traffic. We do not create corresponding views for each role to be able to
express the security policy for incoming traffic but choose to encode the network
traffic direction in the activities modeling the traffic emission and reception.

Activities. As said previously, we only model in this paper the FilePermission
and SocketPermission types. The actions defined by the FilePermission type
are already very generic operations that do not need much abstraction to define
the corresponding activities. In fact in our experience, we noticed that the read,
write and delete activities which abstract actions consisting in accessing various
data storage entities are often present in OrBAC policies. The action of executing
something is more specific to the use of software and is also easy to abstract

Enabling Dynamic Security Policy in the Java Security Manager 187

into the execute activity. We choose to model the FilePermission actions by
making the hypothesis that in a super-organization of the JVM organization
defined previously, generic read, write, delete and execute activities are defined.
A super-activity of read, write and delete can be modeled as the handle activity,
thus simplifying the specification of file system security rules for a JVM.

Regarding the modeling of the SocketPermission type, we follow the ap-
proach presented in [10] to specify network security policies with OrBAC, i.e
activities are seen as abstraction of network services. The activity hierarchy de-
fined in [10] consists of activities all protocols, tcp, udp and icmp. However we
have seen in section 5.1 that the SocketPermission type offers coarse granu-
larity and do not take into account network protocols. We define a sub-activity
of the all protocols activity called bidirectionnal defined in the JVM organi-
zation and two sub-activities of the bidirectionnal activity, send and receive,
also defined in the JVM organization. This way we modify locally, i.e in the
JVM organization, the semantic of the activity modeling proposed in [10] but
retain the ability to use the structure of views related to the firewall security
policy. This allows us to use the aforementioned approach along with our ap-
proach to integrate the security policy specification of JVM hosts inside a more
global security policy. The SocketPermission type does not allow to use the net-
work protocol type to express the network security policy but port numbers can
be used to identify network services. Actions considered as the bidirectionnal,
send and receive activities have a port attribute which expresses a port or a
port range. For example the following assertions represent two actions modeling
the ssh and mysql services:

action(ssh). action(mysqlV 5). port(ssh, 22). port(mysqlV 5, 3306).
Port ranges are expressed the same way they are in the SocketPermission

type syntax.

Views. To model the FilePermission type, the set of views to be defined
and their hierarchies depend mainly on the design of the Java applications the
subjects will use. We choose to represent files and directories by objects having
a path attribute expressing the target path. Such an attribute is modeled using
the following predicate:

targetPath(obj, path)
This models the fact that object obj has a target path represented by path.

We use the same syntax as the FilePermission type to express the path. For
example to represent a directory application/log located in the current user
home directory by an object called fooDir, the following assertion would be
true:

targetPath(fooDir, ${user.home}${/}application${/}log)
This object would then be used in a view representing a set of directories or

files belonging to some applications having the same right on them. Here the
${/} substring is a platform-independent representation of the file separator.

Views for the SocketPermission type are defined in a similar way as in [10].
Such views represent sets of network machines, identified by their address or
name. For example the toDatabase view can be defined to represent a set of

188 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

machines on which databases are installed. Objects representing network ma-
chines have an address attribute which represents the machine ip address or
network name. View definitions can be used to manage large sets of machines.
Indeed, instead of manually inserting large numbers of objects into views, view
definitions can be used to automatically insert objects depending on the network
address. For instance the following view definition, defined in the hospital orga-
nization of the example used earlier, says that an object representing a network
machine H is used in the toDatabase view representing databases if H is part of
some subnet and that it is not used in the toBackup view which models network
backup hosts:

use(hospital,H, toDatabase) :-
networkAddress(H,A),
subNet(A, 10.0.0.0, 24),
¬use(hospital,H, toBackup).
Using the same model as in [10] allows system administrators to use the same

views that have been defined when expressing the network security policy in
OrBAC, thus giving administrators a more global view of their security policy.

Contexts. In section 3.1, we saw that the JVM security manager can grant
rights to code depending on the location from which the bytecode is fetched
(from the local file system or the network) and the identity of the subject who
has signed the bytecode. This feature can be modeled by OrBAC contexts: we
define two contexts types corresponding to the two conditions.

The first context type, named codeBase, models the code source condition
expressed by the codeBase keyword in the JVM security policy syntax. The
following derivation rule shows an example of such context:

hold(JVM,S, , , codeBaseFoo) :-
byteCode(S,B),
codeBase(B, database.intranet.mycompany.com).
This context is true in organization JVM if the bytecode executed by the sub-

ject S has been downloaded from a server database.intranet.mycompany.com
in the intranet of some company.

The second context type, named signedCode, models the code source con-
dition expressed by the signedBy keyword in the JVM security policy syntax.
The following derivation rule shows an example of such context:

hold(JVM,S, , , signedCodeFoo) :-
byteCode(S,B),
signedBy(B, peter).
This context is true in organization JVM if the bytecode executed by the

subject S has been signed by Peter. The JVM security policy syntax support
the specification of code signed by multiple subjects, which can be easily taken
advantage of in our modeling. For example the following context models a con-
dition where at least one of the developers of some bytecode must have signed
it in order to be true:

Enabling Dynamic Security Policy in the Java Security Manager 189

hold(JVM,S, , , signedCodeFoo) :-
byteCode(S,B),
developpedBy(B,D),
signedBy(B,D).
Here the developpedBy(b, d) predicate is true if bytecode b has been developed

by subject d.
Those contexts can be defined and used in the specifications of security rules

inside the JVM organization.

Security Rules. In our approach we use the standard implementation of the
JVM security manager, which implements a closed policy. Hence in this paper
the translation process only translates permissions specified in the JVM organi-
zation and its sub-organizations. The JVM security policy is specified inside the
organization hierarchy defined in the JVM organization using the roles defined
in the super organizations of JVM . The activities, views and contexts defined
previously are used to define all the JVM abstract permissions.

However the system administrators are not limited to the use of the previ-
ously defined context types when specifying the abstract permissions. As said in
the introduction of this paper, JVM security policies are static. In our approach
any other OrBAC context type can be used to make the policy dynamic. Actu-
ally contexts can be composed using conjunction and disjunction operators to
associate complex contextual conditions with permissions. When a context state
changes for some concrete entity triple {subject, action, object} in the JVM or-
ganization or one of its sub-organizations, the new inferred concrete policy is
pushed on the hosts specified in the corresponding organization attributes. Such
context can be, but is not limited to, a temporal context, a spatial context ex-
pressing a condition on the position of a subject in space, a condition on some
concrete entity attribute or a condition on the system state. Since the JVM se-
curity manager standard implementation does not refresh the security policy if
the policy file is modified after a JVM instance is started, we have modified the
standard implementation to trigger this refreshment.

6 Enforcing JVM OrBAC Policies

In this section we present the OrBAC JVM policy to JVM policy translation
algorithm and illustrate it with an example and an implementation. The transla-
tor which also updates the security policy files on target hosts running a JVM is
implemented as a MotOrBAC plug-in. MotOrBAC is used to specify the abstract
security policy and associate concrete entities with abstract entities. It is also
used to specify the list of hosts on which the security policy must be deployed.

6.1 Translation Algorithm

The algorithm does not translate the abstract security policy but rather the con-
crete security policy which is inferred by the OrBAC Application Programming

190 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

Interface (API) inference engine. The OrBAC API is used by MotOrBAC to
process OrBAC policies. The concrete permissions inferred by the OrBAC API
have many attributes like the contexts to which they are associated and the or-
ganization in which they have been inferred. Each inferred concrete permission
is parsed to generate a grant entry. The JVM security policy syntax does not
support the specification of different policies for different users in one file. Hence
the translation process generates one policy file per subject.

Let us consider a subject for which a set P of concrete permissions related
to a JVM security policy has been generated. For each permission p in P , the
translation process generates a grant entry for each contextual condition on the
origin of the code. Then for each of those entries, the list of signers are added if
the contextual condition contains such condition. The type of permission to add
to the grant entry and its attributes are extracted from the parameters of p.

When the list of permissions for a subject changes because some contexts have
been activated or deactivated, the corresponding security policy file is generated
and pushed on the hosts the user may use.

6.2 Example

We consider an example based on the one presented in section 5.2 of an OrBAC
policy specified in a hospital. We assume that physicians use tablet PCs when
they visit their patients to access their files. The client application is a Java
applet, which must be signed by the main developer bob, running inside a web
browser which connects to a database where patient files are stored. The applet
can connect to the database but not the opposite. The applet used by physicians
uses a directory structure created in the user home directory. This directory is
called appletDir and contains three other directory storing specific files: the
resource directory, which can only be read, the log directory, which can only
be written and the temp directory which can be read and written. We assume
that the OrBAC policy is already structured according to the roles defined in
the hospital and that a network security policy has been defined according to
the approach in [10]. Hence we assume a doctor role has been defined in organi-
zation hospital. We define a sub-organization of the JVM organization, called
appletOrg, in which the security policy applied to peripherals running the applet
is deployed. The list of hosts on which the policy is deployed is specified in the
appletOrg organization.

The technical details for the considered use case are the following:

– a DNS server is used in the private network
– the database server and the client Java applet are run on Linux machines
– the database is a Mysql 5 database listening on port 3306 and hosted on

machine database.intranet.hospital.com
– the web page from which the applet is retrieved is:

http : //applet.intranet.hospital.com

A mysql action models the action of using the Mysql database. Its port attribute
is set to 3306. It is considered as the send activity in the JVM organization

Enabling Dynamic Security Policy in the Java Security Manager 191

because the applet connects to the database but does not accept connections.
Two actions readF ilesystem and writeF ilesystem are considered respectively
as the read and write activities in the JVM organization.

We assume that the database server has already been modeled by a view
database in the network related part of the OrBAC policy. The object db1 is
used in this view in the hospital organization. Its address attribute is set to
the host name specified above. Three views are defined to model the applet di-
rectories: resource, log and temp. Three objects resource applet1, log applet1
and temp applet1 are used respectively in the resource, log and temp views
in the JVM organization. Their targetPath attribute is set respectively to
${user.home}${/}appletDir ${/}resource, ${user.home}${/}appletDir${/}log
and ${user.home}${/} appletDir${/}temp.

We define a codeBase context to model the condition on the applet source
bytecode:

hold(appletOrg, S, , , cbCtx) :-
byteCode(S,B),
codeBase(B, applet.intranet.hospital.com).
The following signedBy context models the condition on the applet signed

bytecode:
hold(appletOrg, S, , , scCtx) :-
byteCode(S,B),
signedBy(B, bob).
We also define a visitT ime temporal context in the hospital organization

which is only active when doctors are visiting their patients. Using the previously
defined abstract entities we can write the abstract permissions corresponding to
the example:

permission(appletOrg, doctor, send, database, scCtx&cbCtx&visitT ime)
permission(appletOrg, doctor, read, resource, scCtx&cbCtx)
permission(appletOrg, doctor, write, log, scCtx&cbCtx)
permission(appletOrg, doctor, handle, temp, scCtx&cbCtx)

Assuming that a subject daniel is empowered in the doctor role in the hospital
organization and that the visitT ime is active for daniel in the hospital organi-
zation, the following concrete permissions are inferred:
permission(daniel,mysql, db1)
permission(daniel, readF ilesystem, resource applet1)
permission(daniel, writeF ilesystem, log applet1)
permission(daniel, readF ilesystem, temp applet1)
permission(daniel, writeF ilesystem, temp applet1)

6.3 Implementation

We have developed a MotOrBAC plug-in implementing the translation process
and the configuration of the JVM hosts. Four virtual machines have been created
to represent the database server, a tablet PC running the applet, a web server
from which the applet is downloaded and the administrator host running MotOr-
BAC and the plug-in. Generated policy configuration files are uploaded by the

192 F. Autrel, N. Cuppens-Boulahia, and F. Cuppens

plug-in into the users home directory through ssh connections using public key
authentication. The list of hosts to which the files are transfered is inferred from
the appletOrg organization attributes as specified in section 5.2. Configuration
files are transfered to the hosts whenever a change in contexts state have been
triggered. We have modified the standard JVM security manager implementation
to reload the security policy while a JVM instance is executed when a change
is detected in the policy file. This way JVM security policies are dynamically
updated as the concrete policy evolves in time.

From the concrete permissions inferred in the previous section and the con-
crete entities attributes, a JVM security policy configuration files is generated:

grant signedBy "bob", codeBase "http://applet.intranet.hospital.com" {
permission Java.io.FilePermission "\${user.home}\${/}appletDir\${/}resource", "read";
permission Java.io.FilePermission "\${user.home}\${/}appletDir\${/}log", "write";
permission Java.io.FilePermission "\${user.home}\${/}appletDir\${/}temp", "read,write";
permission Java.net.SocketPermission "database.intranet.hospital.com:3306", "connect";

};

Note that generated grant entries having the same signedBy and codeBase
conditions are grouped to generate smaller files. We use the rsync program
to generate less network traffic when uploading the configuration files. Note
that although we have used only Linux machines in our proof of concept, the
generated policy files could directly be used on other operating systems as we
used generic variables to identify the current user home directory and the file
system separator.

7 Conclusion

In this article we presented an approach to abstract the JVM security policy
model into the OrBAC model and a proof of concept using the MotOrBAC tool.
This allows system administrators to use a powerful dynamic security model
to express the security requirements applied to JVM instances instead of ap-
plying the ad-hoc policy language defined in the standard JRE. We think that
the main advantage of this approach is that system administrators can use the
same model and the same abstract entities to define security policies applied
to heterogeneous security components, thus giving them a global view of their
information system without having to specify separate policies in different lan-
guages for each component. Moreover the dynamic nature of OrBAC policies
and the dynamic deployment of configuration files implemented in our approach
provides means to change the security properties of running Java applications,
which is not possible for a standard JRE.

Another main advantage of this approach is that system administrators can
use the AdOrBAC [2] model to administrate the specification of JVM policies in
OrBAC. MotOrBAC implements the AdOrBAC model, including the delegation
model, which means that administration tasks can be managed. For example a
system administrator can delegate to another subject the right to define only
permission related to the network policy of JVMs.

Using the standard security manager implementation limits the granularity of
the policies we can express, especially regarding the network policies. We plan

Enabling Dynamic Security Policy in the Java Security Manager 193

to modify the security manager implementation to refine its boundaries and
directly integrate the OrBAC API inside it. This way OrBAC policies specified
with MotOrBAC could be directly interpreted without the need for a translator.

Acknowledgements. This research has been supported by the European Com-
mission and the ANR, respectively in the framework of the ITEA2Role-ID project
(Grant agreement no.08007) and the SELKIS project (ARN ARPEGE project).

References

1. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Miège,
Y.D.A., Saurel, C., Trouessin, G.: Organization based access control. In: IEEE
4th International Workshop on Policies for Distributed Systems and Networks,
Policy 2003 (2003)

2. Cuppens-Boulahia, N., Cuppens, F., Coma, C.: Multi-granular licences to decen-
tralize security administration. In: First International Workshop on Reliability,
Availability, and Security (WRAS), Paris, France (2007)

3. Samson, F.: Alternative Java Security Policy Model. Phd. thesis, Université Laval
(2004)

4. River, A.: Jini: a network architecture for the construction of distributed systems
(2010), http://river.apache.org

5. Ferrailo, D.F., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed
NIST standard for rbac. ACM Transactions on Information and System Security
(2001)

6. Zhang, X., Parisi-Presicce, F., Sandhu, R.: Towards remote policy enforcement for
runtime protection of mobile code using trusted computing (2006)

7. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, SIGMOD 1997, pp.
474–485. ACM, New York (1997)

8. Dragovic, I.I.B., Crispo, B.: Extending the java virtual machine to enforce fine-
grained security policies in mobile devices. In: Proceedings of the Annual Computer
Security Applications Conference, ACSAC (2007)

9. Ribeiro, C., Zúquete, A., Ferreira, P., Guedes, P.: Spl: An access control language
for security policies with complex constraints. In: Proceedings of the Network and
Distributed System Security Symposium, pp. 89–107 (1999)

10. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust, FAST (2004)

11. Wheeler, D., Conyers, A., Luo, J., Xiong, A.: Java security extensions for a java
server in a hostile environment. In: Proceedings of the 17th Annual Computer
Security Applications Conference, ACSAC 2001, p. 64. IEEE Computer Society,
Washington, DC (2001)

12. Ullman, J.D.: Principles of database and knowledge-base systems. Computer Sci-
ence Press (1989)

13. Cuppens, F., Cuppens-Boulahia, N.: Modeling contextual security policies. Inter-
national Journal of Information Security (IJIS) 7(4) (August 2008)

14. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Motorbac 2: a security
policy tool. In: Third Joint Conference on Security in Networks Architectures and
Security of Information Systems, SARSSI (2008)

http://river.apache.org

A Novel Obfuscation: Class Hierarchy Flattening

Christophe Foket�, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

Computer Systems Lab
Electronics and Information Systems Department

Ghent University
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

{cfoket,bcoppens,kdb,brdsutte}@elis.ugent.be

Abstract. This paper presents class hierarchy flattening, a novel ob-
fuscation technique for programs written in object-oriented, managed
programming languages. Class hierarchy flattening strives for maximally
removing the inheritance relations from object-oriented programs, thus
hiding the overall design of the program from reverse engineers and
other attackers. We evaluate the potential of class hierarchy flattening by
means of a fully automated prototype tool for Java bytecode. For real-life
programs from the DaCapo benchmark suite, we demonstrate that the
transformation effectively hinders both human and tool analyses, and
that it does so at limited overheads.

Keywords: Java bytecode, obfuscation, class hierarchy, program design.

1 Introduction

Reverse engineering and modification of managed code are well-understood and
common practices, with many legitimate goals [16]. Malicious developers can
abuse them, however, to attack Java and .NET applications with the goals of
software piracy, software IP theft, and data theft. Their attacks are facilitated by
the fact that managed code is executed at a high abstraction level. To combine
run-time efficiency with programmer productivity, a large amount of symbolic
information needs to be presented to the virtual machines that execute the code.
This is needed, e.g., to enable effective and efficient just-in-time (JIT) compila-
tion, to support efficient garbage collection, and to support reflection and byte-
code verification. This symbolic information is also what makes managed code
easier to understand, reverse engineer, decompile, modify, reuse and steal.

With respect to reverse engineering (and all practices for which reverse en-
gineering is a prerequisite), many different obfuscation techniques have been
proposed. Some try to prevent automatic decompilation [5,17], some try to hide
data (flow) properties [8,34] or control flow properties [8,9,17,19,20,22,24,33]

� The authors want to thank the Agency for Innovation by Science and Technology in
Flanders (IWT) for their support and Ghent University, the Hercules Foundation and
the Flemish Government - department EWI who funded the STEVIN Supercomputer
Infrastructure at Ghent University on which we carried out part of this work.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 194–210, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Novel Obfuscation: Class Hierarchy Flattening 195

from both tools and humans. Others try to remove information that is useful in-
formally, such as field and method identifiers [2,5]. Finally, a few have proposed
obfuscating the overall application design by altering the class and interface hi-
erarchy to make it harder to understand for software engineers [28]. The latter
techniques aim for the opposite of classic code refactoring [27,31].

This paper takes application design obfuscation one step further. Instead of
merely modifying an application’s type hierarchy, we propose a technique called
class hierarchy flattening (CHF) to get rid of it altogether. Given a number of
constraints because of, e.g., compatibility with external libraries, CHF strives for
a class hierarchy that is as flat as possible, i.e., in which application classes are
siblings rather than subtypes and supertypes. We discuss the necessary analyses
and transformations to automate CHF and present a proof-of-concept tool. We
evaluate the level of software protection provided by CHF and its overhead.

The remainder of this paper is structured as follows. First, Section 2 discusses
the conceptual goals of CHF by means of an example program. The transforma-
tion itself is discussed in some detail in Section 3, and evaluated in Section 4. We
compare CHF to related work in Section 5. Finally, Section 6 draws conclusions
and discusses some future extensions.

2 Rationale: An Example Program

To set the context for a detailed discussion of our obfuscating class hierarchy
transformation, we first present an example consisting of a media player. It
consists of three main parts: (1) the player initializer (2) support for media files
and (3) support for media streams contained in the media files. Different subtrees
of the class hierarchy implement those parts, as shown in Figure 1. The code in
Figure 2(a) illustrates their interaction.

The main method of class Player creates an array of MediaFile objects to be
played (line 10). It then queries each of the media files in this list for its media
streams (line 12), which are initialized when the media file is accessed with the
readFile method. Figure 2(a) shows how this is done for the MP3File class,
which represents MP3 files containing MPEG audio streams.

During playback, the player checks the run-time type of the MediaStream

object associated with the stream (lines 13 and 15) to decide where it needs to
be output. Depending on the actual run-time type of the MediaStream objects,
they are either cast to AudioStream or VideoStream, such that the correct
play method is invoked (lines 14 and 16). The play methods essentially output
the raw bytes of the media streams’ analog signals for a specific output device.
Those bytes are obtained, decrypted (lines 35–36) and decoded (line 37) with the
getRawBytesmethod declared in MediaStream. Note that because the decoding
process is different for each type of media stream, the decodemethod is declared
as abstract, such that it can be implemented by subclasses of MediaStream. The
decryption process, on the other hand, is the same for each type of media stream
and is therefore handled by the MediaStream class.

196 C. Foket et al.

MediaStream

- da ta :b yte[]
- KEY :b yte[]

decode (byte[]) :b yte[]
+ getRawBytes() :byte[]

AudioStream

au dioBu ffer :int[]

decode (byte[]) :b yte[]
decodeSample() :byte []

VideoStream

vid eoBu ffer :int[][]

decode (byte[]) :b yte[]
decodeFrame() :b yte[]

MediaFile

filePath :String
mediaStreams :M edia Strea m[]

readFile () :void
+ ge tStreams() :Me diaS tream []

MP3File

readFile () :void

MP4File

rea dFile () :void

java.lang.Object

XvidStream

de code Fram e() :b yte[]

MPGAStream

de code Samp le() :byte []

DTSStream

de code Samp le() :byte []

Player

+ ma in(St ring[]) :vo id
+ play (Au dioSt ream) :vo id
+ play (Vid eoSt ream) :vo id

Fig. 1. Class hierarchy of a simple DRM media player

From a software-engineering point of view, the media player application is well
structured. The inheritance relations are meaningful and code shared between
different classes is located in a common superclass. While we could have further
improved the structure of the program by factoring out the casts and run-time
type checks, we chose not to do so for educational purposes.

From a security perspective, however, some problems arise. First, the class
hierarchy provides reverse engineers with information about the relationships
between classes and the abstraction levels of the functionalities provided by
classes (with classes higher in the hierarchy typically providing more abstract
functionality). Secondly, code sharing through inheritance enables attacks in
which compromising one class can cause all of its subclasses to be compromised.
All media streams are decrypted using the getRawBytes method declared in
MediaStream. Therefore, when an attacker reverse-engineers this method, he
will be able to decrypt all supported media stream types. Finally, we observe
that the program contains much type information, which simplifies both manual
analysis and automated analysis that rely on, a.o., point-to set computations.

These issues can be solved by rewriting the well-structured hierarchy into the
unstructured class collection of Figure 3. To determine how classes are related,
an attacker can then no longer rely on the class hierarchy. He will instead have
to analyze and compare all classes in the application. Furthermore, as all classes
are provided with a (diversified) copy of all fields and methods declared in their
former superclasses, they have become functionally more independent. Code is
no longer shared between related classes, so attackers can no longer attack many
classes at once by patching their common superclass. In short, more actual code
analysis and tampering will be needed to mount a successful attack.

A Novel Obfuscation: Class Hierarchy Flattening 197

public class Player{
 public void play(AudioStream as) {
 /* send as.getRawBytes() to audio device */
 }
 public void play(VideoStream vs) {
 /* send vs.getRawBytes() to video device */
 }
 public st void main(String[] args) {
 Player player = new Player();
 MediaFile[] mediaFiles = ...;
 for(MediaFile mf : mediaFiles) {
 for(MediaStream ms : mf.getStreams())
 if(ms instanceof AudioStream)
 player.play((AudioStream)ms);
 else if(ms instanceof VideoStream)
 player.play((VideoStream)ms);
 }
 }
}

public class MP3File extends MediaFile {
 protected void readFile() {
 InputStream inputStream = ...;
 byte[] audioData = new byte[...];
 inputStream.read(audioData);
 AudioStream as = new MPGAStream(audioData);
 mediaStreams = new MediaStream[]{as};
 }
}

public abstract class MediaStream {
 public st nal byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for(int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 protected abstract byte[] decode(byte[] data);
}

public class Player implements Common {
 public void play(Common as) {
 /* send as.getRawBytes() to audio device */
 }
 public void play1(Common vs) {
 /* send vs.getRawBytes() to video device */
 }
 public st void main(String[] args) {
 Common player = new Player();
 Common [] mediaFiles = ...;
 for(Common mf : mediaFiles) {
 for(Common ms : mf.getStreams())
 if(myChecker.isInstance(0, ms.getClass()))
 player.play(ms);
 else if(myChecker.isInstance(1, ms.getClass()))
 player.play1(ms);
 }
 }
}

public class MP3File implements Common {
 public void readFile() {
 InputStream inputStream = ...;
 byte[] audioData = new byte[...];
 inputStream.read(audioData);
 Common as = new MPGAStream(audioData);
 mediaStreams = new Common []{as};
 }
}

public class MediaStream implements Common {
 public st nal byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for(int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 public abstract byte[] decode(byte[] data);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(a) original code (b) a ened code

Fig. 2. Partial implementation of the Player, MediaStream and MP3File classes

Code analysis has also become harder, as the code in the transformed appli-
cation (shown in Figure 2(b)) contains less type information than the original
application. This follows from all declaration types being replaced by a new
Common type. Since this interface type serves as a common supertype for all
classes in the application and declares all their instance methods, all classes im-
plement a significantly larger number of methods. The subset of those methods
that are never called at run time can be filled in with arbitrary code, to make
the static analysis of the application even more complex.

3 Class Hierarchy Flattening

This section presents the analyses and transformations needed to automatically
transform the unprotected program into the one that is much harder to attack.

198 C. Foket et al.

MediaStream

- da ta :b yte[]
- KEY :b yte[]

decode(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

AudioStream

au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de code(byte[]) :byte[]
decodeSamp le() :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

VideoStream

vid eoBu ffer :int[][]
- da ta :b yte[]
- KEY :b yte[]

de code(byte[]) :byte[]
decodeFrame () :b yte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

MediaFile

file Path :String
me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
readFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

MP4File

- fi le Path :String
- me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
rea dFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

Xv idStream

- vid eoBu ffer :int[][]
- da ta :b yte[]
- KEY :b yte[]

de codeFram e() :b yte[]
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

MPGAStream

- au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de codeSamp le() :byte []
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

MP3File

- fi le Path :String
- me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
rea dFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

DTSStream

- au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de codeSamp le() :byte []
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

Player

+ de code(byte[]) :byte[]
+ ma in(St ring[]) :vo id
+ getRawBytes() :byte[]
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

«in terfa ce»
Common

+ de code(byte[]) :byte[]
+ getRawBytes() :byte[]
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

Fig. 3. Flattened class hierarchy of the media player

3.1 Basic Algorithm

The basic class hierarchy flattening (CHF) algorithm consists of five steps.

Step 1: Subtree selection. We assume that each application consists of a
set of application classes A that use or extend classes from a self-contained set
of library classes L that includes java.lang.Object. Classes in L are never
considered for transformation. L will usually correspond to the standard library,
while A will contain all classes that make up the actual application. In this paper,
sub(x) denotes all subclasses of class x, and super(x) its superclasses.

There is a subset X ⊂ A of classes on which our CHF transformation is not
applicable because changing those classes’ position in the hierarchy can alter
the program behavior. This includes classes on which reflective operations are
performed such as getInterfaces() (which makes the program potentially de-
pendent on the number of interfaces implemented by a class), getSuperclass(),
isAssignableFrom(), getMethod(), etc.

As library classes cannot be rewritten, we cannot change their position in the
hierarchy, nor can we adapt their methods’ signatures, which typically involve
library types themselves. To maintain type correctness, this implies that in gen-
eral any application class a ∈ sub(l) with l ∈ L, needs to stay a subclass thereof.
This further implies that we cannot make all application classes direct subclasses
of java.lang.Object. This limitation is similar to the limitations imposed to
several code refactoring transformations. Those limitations have been formalized
in literature [31], so we will not repeat them here. As the classes in X cannot be
moved in the hierarchy either, similar limitations apply to them.

A Novel Obfuscation: Class Hierarchy Flattening 199

Fig. 5. Selected subtrees Fig. 6. Flattened class hierarchy
subtrees

T =
⋃

i=1..m

Ti

∀i, j.Ti ∩ Tj = ∅
Ti ⊂ A \ X

∀c ∈ Ti.sub(c) ⊂ Ti

Fig. 4. Selection rules

For our purpose, we partition A into the set
T of transformable classes and the set N of non-
transformable classes. T is further partitioned into dis-
joint subtrees Ti according to the rules of Figure 4. They
mainly express that each subtree Ti consists of a unique
set of transformable classes for which the property holds
that if Ti includes a class c, it also includes all of its sub-
classes. An example selection of subtrees is depicted in
Figure 5. In the media player, the three subtrees corre-
spond to the three subtrees of java.lang.Object.

Each subtree will then be transformed into one flat set of classes that all
implement a common interface and that are all direct subclasses of the direct
superclass of the tree’s root. For the class hierarchy of Figure 5, the result with
four new interfaces can be seen in Figure 6.

Step 2: Interface insertion. To reach that final result, we first add the com-
mon supertype interfaces in two steps. For each subtree we encapsulate all in-
stance fields declared in all classes of the subtree with getter and setter methods
and rewrite public accesses to those fields into invocations of these getters and
setters. This is done to provide access to instance fields declared in the subtree
classes, even though interfaces cannot declare instance fields. Next, we create
a new supertype interface for each subtree. This interface declares all instance
methods of all classes in the subtree and is implemented by all classes of the sub-
tree. Whenever an original class does not implement all the required methods of
the interface, temporary dummy methods are added, some of which implement
supercalls not to change the behavior of overriding methods.

Step 3: Subtree type abstraction. Next, we rewrite the program such that
it becomes independent of the subclass relations that will be removed from the
class hierarchy. We replace all references to types in T by their corresponding
interface supertype. In practice, this comes down to replacing the types of local
variables, fields, array creations, and the types used in method signatures. The
only time we still refer to the actual classes in the subtree is for object creation.
An example of such a conversion of declarations can be seen in Figure 2, where
various declarations have been replaced by the supertype Common.

200 C. Foket et al.

As for cast operations, most of them are not needed anymore for static type
correctness because interfaces instead of concrete types are used in declarations
wherever possible. Moreover, we want to omit the remaining ones from the code
not to reveal type information. So we replace them by code that tests a type and
throws a ClassCastException whenever a run-time cast would have failed in
the original program. To minimize the number of types that needs to be tested
(and hence revealed in the code), we perform a points-to analysis on the original
program [15,23]. As such, our treatment of casts is similar to that in other code
refactoring techniques that change type hierarchies [31].

Step 4: Subtree flattening. Finally, we remove the inheritance relations be-
tween the classes in the subtrees, making subclasses independent of their super-
classes. We traverse each subtree Ti in a breadth-first fashion. For each class
c ∈ Ti, we execute the following steps for each direct subclass d of c:

1. copy the instance fields and concrete instance methods from c to d, renaming
them if necessary to avoid collisions with original fields and methods of d;

2. rewrite the code in d such that it makes use of its own private copies of the
methods and fields defined in c;

3. make d implement the same interfaces as c, to preserve assign compatibility
between variables and fields of the interface types and objects of type d;

4. make d a sibling of c by setting its superclass to the superclass of c.

During this flattening, we replace many of the temporary dummy methods that
were added when the interfaces got inserted. Not all of those methods are re-
placed, however. Consider, e.g., the MediaStream subtree. The interface for this
subtree declares both the methods decodeFrame() and decodeSample(), and
hence all classes originating from this subtree should implement those methods.
That is why we inserted dummy implementations where necessary. In this case,
some of the dummy implementations of decodeFrame() and decodeSample()

in DTSStream, MPGAStream, and XvidStream are overwritten, but those in, e.g.,
MediaStream, AudioStream, and VideoStream are not. This poses no problem:
As the non-overwritten methods were not present in the original program, and
as we are not changing the behavior of the program, they will never be executed.
We can therefore provide a dummy implementation for them, using nonsensical
code [2] or carefully chosen code, as we propose in Section 3.2.

Step 5: instanceof. The behavior of run-time type checks, introduced either ex-
plicitly by the programmer or automatically while handling casts during subtree
type abstraction, depends on the specific organization of classes in the hierarchy.
Before flattening the subtrees of Figure 1, ms instanceof AudioStream evalu-
ated to true for ms pointing to objects of either type DTSStream or MPGAStream.
In the flattened subtree, however, it evaluates to false for objects of those types.

To maintain the original behavior, we replace all occurrences of instanceof
by a lookup in a table that encodes part of the original subtype relations, namely
the part that is necessary to maintain the behavior with respect to instanceof.
Each row in the lookup table initially corresponds to one of the instanceof ex-
pression oi instanceof Aj in the program, while the columns correspond to

A Novel Obfuscation: Class Hierarchy Flattening 201

Table 1. instancoef lookup table

X
v
i
d
S
t
r
e
a
m

A
u
d
i
o
S
t
r
e
a
m

V
i
d
e
o
S
t
r
e
a
m

M
P
G
A
S
t
r
e
a
m

D
T
S
S
t
r
e
a
m

M
P
3
F
i
l
e

M
e
d
i
a
F
i
l
e

M
e
d
i
a
S
t
r
e
a
m

M
P
4
F
i
l
e

P
l
a
y
e
r

ms instanceof AudioStream false DC DC true true DC DC DC DC DC

ms instanceof VideoStream true DC DC false false DC DC DC DC DC

mf instanceof MediaFile DC DC DC DC DC true DC DC true false

(a superset of) the classes in the points-to set of all oi. For the example program
introduced in Section 2, the initial lookup table is given in Table 1.

As most of the classes will not occur in all points-to sets of all occurrences of
instanceof, a considerable number of elements in the table will be “don’t care”
(DC) values. As is done for the optimization of multi-output boolean functions
for optimizing integrated circuits [21], we can freely choose how to instantiate
those DCs, i.e., replace them by true or false. For example, as MPGAStream and
DTSStream have identical behavior, they likely originate from the same subtree.
We can hide this by instantiating their DC values in a way that makes the
classes’ behavior look different, thus hiding an existing relation between two
classes in the program. Alternatively, we can make XvidStream and Player,
which are not related at all, look related by instantiating their DC values such
that their behavior becomes identical. Likewise, we can replace the last two,
different occurrences of instanceof by two identical ones by instantiating their
DCs appropriately. This way, completely unrelated cast operations look as if
they cast related types.

In short, by instantiating the DC values in the table, we can reduce its size
and make unrelated classes and casts look related and vice versa. Furthermore,
we can use hashing and white-box crypto techniques [6] to prevent static analysis
of the table and involved code. Exploiting these opportunities is future work.

Once the final lookup table is constructed, each expression oi instanceof Aj
is replaced by a call myChecker.isInstance(ri,j,oi.getClass()) where ri,j is
the row index of the lookup table entry that corresponds to the given instanceof
expression.

3.2 Extensions

Several extensions to CHF can be considered.

Dummy methods - introducing differences/similarities. During the
subtree flattening, methods and fields are copied from parent classes into their
children. This creates an opportunity for attackers to infer the original class hier-
archy by means of diffing tools like Stigmata (http://stigmata.sourceforge.jp/).
To distract such tools, we can introduce artificial differences or similarities by

202 C. Foket et al.

choosing appropriate dummy method bodies. By copying function bodies from
unrelated classes, we can make unrelated classes look related and vice versa.

Interface Merging. CHF as described above binds each subtree to one inter-
face. This gives attackers the possibility to infer information about the original
class hierarchy from the use of interfaces. To limit the amount of information
that can be inferred, we can merge multiple (unrelated) interfaces into a single
one. Such merging can result in more dummy methods in the classes, however,
and hence in considerable overhead. This can be observed in the flattened media
player hierarchy in Figure 3, in which the three interfaces are already merged.

It is important to note that in general, the merging of interfaces needs to
be limited to subtrees originating from within the same jar files. The merged
interface can then be packaged in that same jar, such that custom class loaders,
of which it is not known which jar files they can access in the original program,
can find them precisely when and where they need them.

ObjectAllocationObfuscation.Even after interfacemerging, some statements
expose detailed type information. After the allocation on line 26 in Figure 2, as
points to an object of type MPGAStream. From this information, points-to analy-
sis deduce points-to sets of many local variables. In turn, other analyses like call
graph construction and program slicing will also regain some precision to the ad-
vantage of attackers. To prevent the propagation of precise type information at
allocation sites, we can replace individual allocations by multiple ones by means
of opaque predicates [24]. For example, line 26 can be replaced by

Common as;

if(condition1) as = new XvidStream(...);

else if(condition2) as = new DTSStream(...);

else if(condition3) as = new MPGAStream(audioData);

else as = new AVC1Stream(...);

in which the first two conditions opaquely evaluate to false, and the third one
opaquely evaluates to true. Switch statements can also be used of course. Al-
ternatively, we can introduce factories [12] that return all types that implement
an interface. Factories are more stealthy [7] as they look more like regular, well-
engineered code. Moreover, whereas context-insensitive coverage analysis suffices
to detect that potential opaque predicates or switches only evaluate to one value,
context-sensitive ones will be needed to obtain equally useful information from
factories implemented in separate methods.

The effect of such object allocation obfuscations, when not undone by an
attacker, will be that no points-to analysis, however complicated, will compute
more precise results than the analysis based on class hierarchy analysis [10].

Combining Flattening with Other Obfuscations. CHF can be combined
with several existing design obfuscations. CHF enables, e.g., more efficient class
coalescing. Coalescing MP3File and VideoStream in Figure 1 with the algorithm
proposed by Sosonkin et al. [28] would require MediaFile and MediaStream to
be coalesced as well. This would increase the number of fields in all classes
that inherit from the coalesced class by a factor two. After CHF, MP3File and

A Novel Obfuscation: Class Hierarchy Flattening 203

VideoStream can be coalesced without affecting the number of fields, and con-
sequently the size of objects, of other classes.

CHF can also prepare a program for false factoring [8]. In Figure 3 all classes
inherit directly from java.lang.Object and dependencies on the original inher-
itance relations have already been removed, so the classes can easily be reorga-
nized in a fake hierarchy by inserting random superclasses.

4 Evaluation

We implemented CHF in Soot 2.5.0 [18,32], an analysis and transformation
framework for Java bytecode. As our tool rewrites the application bytecode that
the developer has packaged in a collection of jar files, it does not require any
changes to the application’s source code.

Our implementation consists of two parts; a CHFTransformer and a refactor-
ing toolkit. The CHFTransformer implements CHF as a Soot SceneTransformer,
such that it can be applied together with Soot’s other whole program transfor-
mations. Our refactoring toolkit provides a series of refactoring transformations,
including encapsulate field, rename field/method, and variations of push down
field/method and extract interface that were required to implement CHF [11].

To detect the set of non-transformable classes and to ensure that all Java
features like reflection and dynamic class loading are handled correctly, we rely
on TamiFlex, a tool developed specifically for facilitating the static analysis
of Java programs that use such features [4]. As a profile-based tool, TamiFlex
relies on the developer to provide program inputs that generate enough coverage.
Alternatively, the developer can manually complement the coverage of TamiFlex
with his knowledge of how the program depends on reflection and class loaders.

4.1 Benchmarks

We use the DaCapo 9.12 benchmark suite [3] to evaluate the protection-wise
effectiveness and the performance-wise efficiency of CHF. This suite consists
of 14 medium to large sized realistic applications. Because of space concerns,
we report results for the four applications listed in Table 2. We opted for the
“9.12 bach” release of the DaCapo suite because TamiFlex is particularly well
tested on this version (http://dacapobench.org/soot.html). As can be seen in
the table, for three out of four benchmarks the large majority of all classes is
transformable. For eclipse, the number of transformable classes is much lower,
because of restrictions imposed by dynamically generated classes.

For all benchmarks, we generated and evaluated 1 + 1+ 5× 10 versions. The
first, base version is the original bytecode that comes with the DaCapo suite,
but with identifier names obfuscated [7]. This type of obfuscation is orthogonal
to CHF; any Java obfuscator would apply it. We applied it for our evaluation
baseline to obtain results for realistically obfuscated programs and to be able to
present realistic overheads in term of code size and memory footprint, both of
which heavily depend on the length of identifiers.

204 C. Foket et al.

Table 2. Overview of DaCapo 9.12-bach benchmarks before and after Identifier
Obfuscation (IO)

Benchmark Description
appl. # transf. # jar code size (MB)
types classes files before IO after IO

batik Scalable Vector Graphics processor 4573 3505 (77%) 6 12.5 9.3
eclipse non-GUI version of Eclipse IDE 5947 2258 (38%) 48 25.7 22.7
fop XSL-FI to PDF conversion 4479 3349 (75%) 7 11.0 8.8
luindex document indexing based on Lucene 633 526 (83%) 3 1.9 1.2

The second version was generated from the first one by our prototype im-
plementation of the basic CHF algorithm as discussed in Section 3.1. Next, we
extended the basic algorithm with interface merging (Section 3.2) and we gen-
erated program versions at different levels of interface merging. Given a merge
threshold value t ∈ {10, 20, 30, 40, 50}, the extended tool iteratively and ran-
domly picks interfaces in the program and merges them until all merged inter-
faces are implemented by at least t classes or until it can no longer find interfaces
to merge within a jar. The latter occurs a lot for eclipse, of which the classes
are partitioned over many more jar files. For each merge threshold value, the tool
generates ten different program versions with ten different random seeds. When
we present results for a level of merging in later charts, we always present the
average result obtained for the ten versions at that level. In the charts, a merging
threshold of 0 refers to the basic CHF algorithm without interface merging. In
our proof-of-concept tool, the dummy method bodies are empty. Other exten-
sions as described in Section 3.2 are left for future work. All generated program
versions were type verified and proved to work correctly on the DaCapo inputs.

4.2 Results

Protection against Human Program Understanding. As all obfuscation
researchers, we face the problem of measuring the potency of our technique. And
as in almost all of the literature (see, e.g., the literature discussed in Section 5),
we know of no suitable metrics that directly measure the resistance to, e.g.,
reverse-engineering attacks. Therefore we instead rely on established software
complexity metrics from the domain of software-engineering. In particular, we
use the static QMOODmetrics from Bansiya et al. [1]. QMOOD stands for Qual-
ity Model for Object-Oriented Design. It includes a metric for understandability
that is defined as a linear combination of other complexity metrics that measure
different aspects of a design, including abstraction, encapsulation, coupling, co-
hesion, polymorphism, complexity and size [1]. This understandability metric is a
relative metric that can only be used to compare two program versions. Given an
original program with a normalized understandability score of -0.99 (as defined
in [1]), less understandable versions will have lower scores. Figure 7(a) displays
the relative understandability for the four benchmark programs. CHF clearly
reduces human understandability significantly, with understandability dropping
as more interfaces are merged. For eclipse, less interfaces got merged at higher
merge thresholds because its classes are partitioned over more jar files. This
results in a higher understandability than the other benchmarks.

A Novel Obfuscation: Class Hierarchy Flattening 205

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0
0 10 20 30 40 50

Re
la

ve
 in

cr
ea

se

Merge threshold

ba k eclipse fop luindex
0.1

1

10

100

ab
st

ra
on

en
ca

ps
ul

a
on

co
up

lin
g

co
he

sio
n

po
ly

m
or

ph
ism

co
m

pl
ex

ity

de
sig

n
siz

e

0 10 20 30 40 50

(a) understandability results (b) QMOOD breakdown for batik

Fig. 7. QMOOD understandability

Figure 7(b) shows the breakdown of batik’s understandability over its com-
ponents for the six threshold levels. For other benchmarks, similar results are
obtained. Each bar depicts the relative value of one metric compared to the value
of that metric of the baseline program. It can be observed that CHF influences
abstraction, coupling, cohesion, and complexity of the program, of its classes
and of its class hierarchy. As such, the impact of CHF on the effort needed by an
attacker to reverse-engineer and understand the program is multidimensional.

For all benchmarks, the variation in understandability score among the 10
program versions generated for each level of interface merging was at most 12%,
the large majority of which was below 9%. This shows that interfaces can be
merged in less or more confusing combinations, but also that the decrease in un-
derstandability is determined more by the level of merging than by the particular
combinations merged.

Protection against Static Analysis Tools.We measure the ability to confuse
static analyses in terms of increases in points-to set sizes. In practice, the pre-
cision of many important client analyses, including call graph construction [14]
and virtual call resolution, can drop significantly as the result of an imprecise
points-to analysis.

0
50

10
0

15
0

20
0

orig 0 10 20 30 40 50

merge threshold

si
ze

 o
f p

oi
nt

s-
to

 s
et

Fig. 8. Points-to set sizes in batik

At the same time, the analysis costs
such as memory footprint and exe-
cution time increase with less pre-
cise points-to analyses because the
constructed call graphs becomes big-
ger. Hence, reducing the precision of
points-to analyses by causing them to
return larger points-to sets, will di-
rectly reduce both the effectiveness
and the efficiency of several static
analyses that are fundamental for
static code attacks. We made Soot
compute the points-to sets with class
hierarchy analysis [10], the points-to
analysis that cannot be hampered by

206 C. Foket et al.

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

0 10 20 30 40 50

Re
la

ve
 in

cr
ea

se

Merge threshold

ba k eclipse fop luindex

Fig. 9. Code size overhead

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la

ve
 in

cr
ea

se

Merge threshold

ba k eclipse fop luindex

Fig. 10. Memory footprint overhead

object allocation obfuscation as discussed in Section 3.2. The histogram in Fig-
ure 8 depicts the distributions of points-to set sizes of all local variables and
parameters in the methods of classes declared as (transformable or not) appli-
cation types in the batik benchmark. For the other benchmarks, we observed
very similar trends.

Clearly CHF increases the sizes of many points-to sets. In particular those
points-to sets of variables declared as merged interface types grow with the num-
ber of classes implementing those interfaces. In all benchmarks, a considerable
number of points-to sets does not grow even when more interfaces are merged.
This follows from the fact that the increases are limited to the points-to sets of
variables whose type is changed during CHF.

Not visible in the histograms, but similarly to what we observed for QMOOD,
the points-to set size increases depend much more on merging threshold than on
the particular combinations of interfaces merged.

Overhead. Figure 9 depicts the relative code size increase as a result of the basic
flattening and interface merging. Overall, more interface merging implies more
code. The increase, which results mainly from methods being duplicated and
(mostly) empty dummy methods being added, varies from one benchmark to the
other. The lower increase for eclipse is caused by its classes being partitioned
over more jar files, as a result of which fewer interfaces got merged.

Figure 10 depicts the relative memory footprint increase observed with the
Java SE Runtime Environment (build 1.6.0 30-b12) and the Java HotSpot 64-
bit Server VM (build 20.6-b03) on standard runs consisting of 10 consecutive
program executions in a benchmark harness on the default inputs. In general, the
memory footprint overhead is a linear function of the code size overhead because
classes and code are also stored in memory. The memory footprint overhead is
an order of magnitude smaller, however, because there are many class instances
(i.e, objects) allocated on the heap whose size is unaffected by CHF.

Finally, Figure 11 depicts the performance overhead in terms of the relative
execution time increase. The overheads reported in Figure 11(a) include all 10
runs of the benchmarks in their harness. This includes the warm-up runs during
which the JIT compiler is very active. As the code size grows with interface
merging, so does the time spent by the JIT compiler. Figure 11(b) shows that
during steady-state (i.e., when only the last of the 10 runs is considered during

A Novel Obfuscation: Class Hierarchy Flattening 207

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la

ve
 in

cr
ea

se

Merge threshold

ba k eclipse fop luindex 0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la

ve
 in

cr
ea

se

Merge threshold

ba k eclipse fop luindex

(a) warm-up included (b) steady-state

Fig. 11. Performance overhead

which almost no JIT compilation takes place anymore) the performance overhead
no longer depends on the merging threshold value. For most benchmarks, the
overhead is limited to less than 10%. For eclipse, the overhead is insignificant
because most of its execution time is spent in non-transformable classes. The
small variations in the observed execution time of eclipse are clearly within
the expected noise range [13]. For fop, considerably more overhead remains. A
performance analysis revealed that the getters and setters introduced during the
interface insertion are the culprits.

5 Related Work

To obfuscate the overall application design, and in particular its class hierar-
chy and the type information contained in the code, Sosonkin et al. proposed
class coalescing, class splitting, and type hiding by introducing interface types
and by replacing declarations of class types with declarations of those inter-
faces [28]. In its most extreme form, their class coalescing transformation can
coalesce all transformable classes in the program into a single class, effectively
removing the whole program design; beyond what CHF can achieve. For exam-
ple, when all classes are coalesced, all points-to sets becomes singletons that
contain all types in the program. In other words, points-to sets become com-
pletely useless. The main disadvantage of class coalescing is that the number
of member fields in coalesced classes grows far beyond the number of original
member fields in the original classes and all their superclasses. As a result, their
instances also grow bigger, which will lead to a much larger memory footprint.
The authors acknowledge this potential issue, but their experimental evaluation
is limited to execution time measurements of relatively small programs (up to
307 classes). For those, they measure slow-downs up to 130% even with limited
coalescing. Furthermore, their evaluation does not contain any criteria related
to software protection, software understandability, or software complexity, and
when limitations to the application of their transformations are observed, they
hide behind tool maturity instead of investigating more fundamental issues. By
contrast, this paper proposed an obfuscation that from the very start maximally

208 C. Foket et al.

removes the class hierarchy, and of which the code size, memory footprint, and
(smaller) performance overhead are evaluated in detail, as well as its impact
on program understandability, for a set of large, real-life programs (up to 5947
classes). Furthermore, rather than being immature, our prototype tool pushes
the application of our obfuscation to the fundamental limits relating to external
libraries, dynamic class loading and reflection.

The false factoring transformation proposed by Collberg et al. [8] refactors
a program in such a way that two or more unrelated classes come to share a
superclass, thereby giving the impression that they are related. We know of no
public tool implementing this proposal or of any experimental evaluation of it.

Given a set of transformable classes, the obfuscation techniques introduced
by Sakabe et al. [24] first changes the signature of all methods in the classes
such that each class implements the same set of overloaded methods. These
methods are then defined in an interface implemented by the classes and used
in declarations instead of the original classes. To hide the actual type of objects
bound to variables of the interface type, they propose to replace single object
creations by a set of object creations guarded by opaque predicates. CHF as
presented here is to a certain degree complementary, as explained in Section 3.2.

In the field of software refactoring, Snelting and Tip [26,27] presented a
method for analyzing and reengineering class hierarchies by extracting infor-
mation on the use of an application’s class hierarchy, from which they construct
a concept lattice that provides insights on how to improve the hierarchy to bet-
ter match the way the classes interact. Their analysis can detect where class
members can be moved to a subclass or identify where it is beneficial to split
classes. This analysis has been extended and implemented in the refactoring tool
KABA [25,29,30]. This tool uses the results from the concept analysis to present
several refactorings to the user, who can then interactively modify the class hi-
erarchy. Potentially, Snelting and Tip’s work could help an attacker find related
classes in a flattened hierarchy by allowing him to see through the smokescreen
of specially crafted dummy method implementations and by detecting unrelated
classes implementing merged interfaces. It remains an open question to assess to
which extent their tool would be useful in practice.

6 Conclusions and Future Work

This paper presented class hierarchy flattening, an obfuscating program trans-
formation for object-oriented programs written in managed code languages. The
transformation removes the class hierarchy to the extent possible to hide the
overall application design. We presented the basic technique and possible exten-
sions. Together with the basic algorithm, one of those extensions, called interface
merging, was evaluated extensively on large real-world programs. While several
aspects of the experimental results deserve further analysis, they clearly demon-
strate that class hierarchy flattening provides measurable protection against at
least some forms of human understandability and automated program analysis.
This protection is achieved at relatively low levels of run-time overhead.

A Novel Obfuscation: Class Hierarchy Flattening 209

Our future work will concentrate on more focused interface merging strategies
to outperform random merging, on extending the basic protection as discussed in
the paper, and on a more extensive evaluation involving more security metrics,
including diffing-based metrics, and more complex points-to analyses.

References

1. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

2. Batchelder, M., Hendren, L.: Obfuscating Java: The Most Pain for the Least Gain.
In: Adsul, B., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 96–110. Springer,
Heidelberg (2007)

3. Blackburn, S.M., McKinley, K.S., et al.: Wake up and smell the coffee: evaluation
methodology for the 21st century. Commun. ACM 51(8), 83–89 (2008)

4. Bodden, E., Sewe, A., et al.: Taming reflection: Aiding static analysis in the pres-
ence of reflection and custom class loaders. In: Proc. ICSE, pp. 241–250 (2011)

5. Chan, J.T., Yang, W.: Advanced obfuscation techniques for Java bytecode. Journal
of Systems and Software 71(1-2), 1–10 (2004)

6. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-Box Cryptography
and an AES Implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

7. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional (2009)

8. Collberg, C., Thomborson, C., Douglas, L.: A taxonomy of obfuscating transfor-
mations. Technical report, University of Auckland (1997)

9. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proc. ACM POP, pp. 184–196 (1998)

10. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS,
vol. 952, pp. 77–101. Springer, Heidelberg (1995)

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

13. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. In: Proc. ACM OOPSLA, pp. 57–76 (2007)

14. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23(6), 685–746 (2001)

15. Hind, M., Pioli, A.: Evaluating the effectiveness of pointer alias analyses. Science
of Comp. Programming 39(1), 31–55 (2001)

16. Holst, S.: Assessing and managing security risks unique to Java and .NET. ISSA
Journal (2009)

17. Hou, T., Chen, H., Tsai, M.: Three control flow obfuscation methods for Java
software. IEE Proceedings-Software 153(2), 80–86 (2006)

18. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective. In: Proc. CETUS 2011 (October 2011)

19. Majumdar, A., Thomborson, C.D.: Manufacturing opaque predicates in distributed
systems for code obfuscation. In: Proc. ACSC, pp. 187–196 (2006)

210 C. Foket et al.

20. Majumdar, A., Thomborson, C.D., Drape, S.: A survey of control-flow obfuscations.
In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 353–356. Springer,
Heidelberg (2006)

21. McCluskey, E.: Introduction to the theory of switching circuits. McGraw Hill Text
(1965)

22. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experience
with software watermarking. In: Proc. ACSAC, pp. 308–316 (2000)

23. Ryder, B.G.: Dimensions of Precision in Reference Analysis of Object-Oriented
Programming Languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–
137. Springer, Heidelberg (2003)

24. Sakabe, Y., Soshi, M., Miyaji, A.: Java obfuscation approaches to construct tamper-
resistant object-oriented programs. IPSJ Digital Courier 1, 349–361 (2005)

25. Snelting, G., Streckenbach, M.: KABA: Automated refactoring for improved cohe-
sion. In: Proc. of the First Workshop on Refactoring Tools, pp. 1–2 (2007)

26. Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In:
Proc. ACM FSE, pp. 99–110 (1998)

27. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM
Trans. Program. Lang. Syst. 22(3), 540–582 (2000)

28. Sosonkin, M., Naumovich, G., Memon, N.: Obfuscation of design intent in object-
oriented applications. In: Proc. ACM DRM, pp. 142–153 (2003)

29. Streckenbach, M.: KABA - a system for refactoring Java programs. PhD thesis,
Universität Passau (2005)

30. Streckenbach, M., Snelting, G.: Refactoring class hierarchies with KABA. In: Proc.
ACM OOPLSA, pp. 315–330 (2004)

31. Tip, F., Furher, R., Kieżun, A., Ernst, M., Balaban, I., De Sutter, B.: Refactoring
using type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9:1–9:47 (2011)

32. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proc. CASCON, pp. 125–135 (1999)

33. Venkatraj, A.P.R.: Program obfuscation. Master’s thesis, University of Arizona
(2003)

34. Zhou, Y., Main, A., Gu, Y.X., Johnson, H.: Information Hiding in Software with
Mixed Boolean-Arithmetic Transforms. In: Kim, S., Yung, M., Lee, H.-W. (eds.)
WISA 2007. LNCS, vol. 4867, pp. 61–75. Springer, Heidelberg (2008)

RESource: A Framework for Online Matching

of Assembly with Open Source Code

Ashkan Rahimian1, Philippe Charland2, Stere Preda1, and Mourad Debbabi1

1 Computer Security Laboratory, CIISE
Concordia University, Montreal, Quebec, Canada

{a_rahimi,s_preda,debbabi}@encs.concordia.ca
2 Mission Critical Cyber Security Section,

Defence R&D Canada - Valcartier, Quebec, Canada
philippe.charland@drdc-rddc.gc.ca

Abstract. Software reverse engineering is a fastidious task demanding
a strong expertise in assembly coding. Various existing tools may help
analyze the functionality of a binary file without executing it and an
interesting step would naturally be the search for the original source files.
Our tool called RESource considers the extraction of some features in
the assembly code so that queries can be triggered to a source repository
in a reliable way: either (1) the result is a set of references to the original
project files provided they are hosted on the repository or (2) at least
some functionalities of the binary file are unleashed. Such an approach
is very promising given its proved performances in real assembly code
applications.

Keywords: reverse engineering, assembly code, source repository.

1 Introduction

Software reverse engineering consists in studying and understanding the process
by which a machine-generated assembly language program has been created
by working backward [3]. If manually writing assembly ASM code involves spe-
cific programming skills, a compiler automatically converts a high-level language
such as C into machine code. The ASM analysis becomes extremely challenging,
especially if the compiler adds certain optimizations by rearranging the compu-
tations, changing or replacing some operations.

Common reverse engineering practices suggest two approaches – dynamic and
static – with the binary file as the starting point. By dynamic approach (e.g., [11])
we mean isolating the binary file in an application specific environment to model
its behavior by execution. Since this does not necessarily reveal all execution
flows, debugging tools (e.g., WinDbg [18], Gdb [5], Valgrind [17]) are often as-
sociated with this method. As long as only the functionality is targeted, the
dynamic approach is acceptable. In other situations, static analysis yields bet-
ter results and does not compromise the security requirements of the analysis
environment.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 211–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

212 A. Rahimian et al.

The first step of the static analysis of a binary file is the disassembly phase.
The disassembler (e.g., objdump [6] in Linux) is a program considered of in-
valuable help since it generates the ASM code of the binary file. At this level,
mastering the ASM program representation seldom leads to fully understanding
the program functionalities. More advanced disassemblers such as IDA Pro [9] are
meant to simplify the analysis by offering a rich GUI with the program divided
into basic blocks in a program flow graph (PFG). A challenging further step
is then to obtain a correct higher-level program representation, i.e., the source
files. A decompiler (e.g., Hex-rays [14] or TyDec [16]) could help a lot but since
there is not always a 1:1 correlation between the ASM and the source objects,
the automatically generated sources may be difficult to follow. For example, it
is not simple to detect the definition of object structures in ASM.

Our current purpose is a tool – RESource – to help enforce the mapping
between the machine and the source code. For that we draw inspiration from the
RE-Google project [10]. RE-Google was designed on top of the GData framework
and Google Code Search APIs [7] which were officially deprecated. Our tool
provides a functionality similar to RE-Google and introduces new ones. The
approach is the following: with the principle of code reuse in mind, our tool
will exploit some features that exist at both the source and the assembly file
levels. The tool is thus able to trigger queries based on these features on certain
repositories used by the developers’ community. If there are no query results, the
tool is still able to give us some information about the functionality of a portion
of the ASM file using an Offline Analyzer module. The information returned
by this module are related to the function stack frame, prototype, arguments,
local variables and low-level system calls. It has a built-in dictionary of common
user and kernel level API functions that are used by malware to interact with
the Windows operating system for performing tasks such as file I/O, network
communications, registry modification, working with services, etc.

The reminder of the paper is structured as follows: first we shall introduce
the motivation of our work and related background. In Section 3 we present our
methodology followed by implementation details. Two experimental scenarios
are described in Section 4, followed by the conclusion in Section 5.

2 Motivation and Related Work

The current work pertains to the domain of static analysis of ASM code and more
precisely, in the mapping of ASM to source files. Though a decompiler seems to
be the programwhich best fits our goals, we consider that an attempt of mapping
the ASM to existing source code should come first. Applications such as malware
analysis can grasp the benefits of a tool able to give reliable information about
the standard and open source files used by a malicious developer. Decompilers,
methods and tools to analyze malware code already exist. They can be used by
expert reverse engineers who seek to understand the origins and the creation
process of the malware.

RESource: Matching Open Source Code with ASM 213

IDA Pro allows disassembling a binary file and its rich GUI simplifies the
analysis of the ASM code. It is widely used thanks to its multiple features,
such as the possibility of integrating a debugger like WinDbg (which became
the de facto Microsoft debugger since Softice stopped being maintained) and
more interesting, plugins such as the Hex-Rays decompiler - “the most advanced
decompiler ever built!” [14]. Although there have been a few attempts to design
generic debuggers to work on heterogeneous platforms (e.g., GenDbg [4]), IDA
Pro proves to be one of the most complete tool in reverse engineering.

The ASM code follows rather regular patterns. Consequently, the decompiler
is able to do a mapping between registers or memory locations, abstract vari-
ables, and thus extract for example, a C-like program from the ASM file (in-
deed, most of the decompilers are not generic). Other basic C constructs (e.g.,
loops) are more difficult to extract and some decompilers fail to solve them
(e.g., Boomerang [2]). Another challenging problem is reconstructing the ab-
stract types (e.g., structures). TyDec [15] tries to tackle the problem but is
limited to an experimental level. In this case, the best practice remains the hu-
man expertise, i.e., the definition of a structure which is guessed after a first
decompilation is manually introduced and the C program is then rewritten.

Our approach is rather different in that our RESource tool is meant to inform
the reverse engineer about the standard and open source components that might
have been used by the creator of the binary file. To our knowledge, a similar
functionality is ensured only by the IDA Pro RE-Google plugin [10].

RE-Google, written in Python, relies on the IDA API and the Google Code
Search API [7]. It takes the disassembled binary code as input and creates a
query submitted to Google Code Search based on the constants, strings, and
function names. The response from the search engine is the potential source
excerpt that contains similar code. Although it supports a limited set of fea-
tures to create a query, RE-Google may confine the search to certain languages.
Additionally, it can be configured to search for a specific function within the dis-
assembly, skip certain functions, or perform a search for all available functions.
Also, the interval between two subsequent searches can be defined. Optionally,
user credentials could be supplied as part of the query to the code search en-
gine. Furthermore, there is an option for restricting (blacklisting) certain string
patterns in the result. Similarly, a constant filter function checks the immediate
values and removes flags and small values form the query if they are not relevant
for the search. The response from the search engine is parsed and the top results
are added to the code as comments.

Our goal is to design RESource as an IDA Pro plugin too, making use of
code search engines for open source software. In addition, we want to have the
capability to search in newsgroups and user-defined code repositories, taking
thus into account a larger panel of search engines than RE-Google. RESource
does not only provide extended queries by adding new features. It also allows to
reveal parts of the code functionalities whenever the query results are null. In
the next section, we describe the methodology and the concrete implementation
details of our RESource tool.

214 A. Rahimian et al.

3 Methodology

The input to our process is the ASM file resulting from the disassembly of a
target binary in IDA Pro. The specific representation of the ASM, together with
its PFG, lead us to consider the partitioning of the ASM code in blocks, each
one corresponding to begin proc / end proc, where proc stands for procedure.
Here is an example of a simple code in C.

int sum(int a, int b){

return a + b;

}

The corresponding ASM code contains a procedure that we can easily identify by
its name “sum” (IDA Pro encloses it with the begin proc and end proc keywords).
sum :

push %ebp

mov %esp,%ebp

mov 0xc(%ebp),%eax

add 0x8(%ebp),%eax

pop %ebp

ret

We thus consider an ASM file as a set of procedures that are to be individually
analyzed by our tool. Each procedure may contain some interesting features (see
Section 3.2) that our tool is able to extract and exploit in order to submit queries
to a source repository. The result is (1) either a set of links to pertaining source
files referencing the same features and which are inserted as comments in the
original ASM file or (2) the insertion of a comment about the functionality of
the current procedure after its local offline analysis (cf. Section 3.2).

Fig. 1. Algorithm Decomposition

RESource: Matching Open Source Code with ASM 215

3.1 Algorithm

We adopt a B-Method like notation [1] to describe the algorithm implemented by
our RESource tool. Fig. 1 captures the RESource algorithm decomposition in B-
like components. The algorithm has five modules: (1) ASM Process root machine
which provides the interface with the user. It imports the (2) Procedure Process
machine responsible for processing each ASM procedure. It calls the operations
of the (3) Query module in order to submit queries to a set of code repositories.
The (4) Offline Analysis module is in charge of a local analysis to extract the
program functionality and also the operations of the (5) Commenting module
which adds the pertaining comments to the original file.

ASM Process Module

MACHINE ASM Process
IMPORTS Procedure Process
SETS

PROCEDURES
CONSTANTS

ASM Original file
PROPERTIES

ASM Original file ∈ �(PROCEDURES)
VARIABLES

Some Procedures
INVARIANTS

Some Procedures ⊆ ASM Original file
INITIALISATION

Some Procedures := ∅
OPERATIONS

try read procedures(procs) = PRE procs �= ∅ ∧ procs ⊆ ASM Original file
THEN Some Procedures := procs

END;
process = PRE Some Procedures �= ∅ THEN

VAR F1, F2, p IN
WHILE Some Procedures �= ∅ DO

ANY p WHERE p ∈ Some Procedures THEN
F1, F2 ← read features(p); /*from Procedure Process */

query(F1); /*op. in Procedure Process */

analyse locally(F2); /*op. in Procedure Process */

update(p); /*op. in Procedure Process */

Some Procedures := Some Procedures \ {p};
END

END
END
END

END/*ASM Process*/

Fig. 2. ASM Process module

216 A. Rahimian et al.

Any ASM file is a SET of PROCEDURES. As we can easily depict from
Fig. 2, we take as input to our algorithm the ASM Original file. It is of type
PROCEDURES and remains CONSTANT. These assumptions are captured by
the CONSTANT and PROPERTIES clauses. The only variable we introduce is
a set of SOME PROCEDURES among those presented by IDA Pro that the
user chooses to analyze. This variable may be modified by the OPERATIONS
which must always satisfy the INVARIANT. Here, the INVARIANT states that
the procedures to be analyzed are part of the original ASM file.

Procedure Process Module

MACHINE Procedure Process
IMPORTS Query, Offline Analysis, Commenting
SETS

FEATURES
VARIABLES

OnFeat, OffFeat, queried, analysed, updated
INVARIANTS

OnFeat ⊆ FEATURES ∧ OffFeat ⊆ FEATURES ∧ queried ∈ BOOL ∧
analysed ∈ BOOL ∧ updated ∈ BOOL

INITIALISATION
OnFeat, OffFeat, queried, analysed, updated := ∅, ∅, false, false, false

OPERATIONS
F1, F2 ← read features(p) = PRE p �= ∅ THEN

/*features extraction from p : to refine*/
F1:=OnFeat; /*features for online analysis*/
F2:=OffFeat; /*features for local analysis*/
queried, analysed, updated := false, false, false;

END;
query(f) = PRE f ⊆ OnFeat ∧ queried = false THEN

IF f �= ∅ THEN
submit query(f); /*operation in Query machine*/

END
queried := true;
END;

analyse locally(f) = PRE f ⊆ OffFeat ∧ queried = true ∧ analysed = false
THEN /*local analysis for functionality extraction */

/*based on operations in Offline Analysis machine*/

analysed := true; append to log(f); /*displaying results*/
END;

update(p) = PRE queried = true ∧ analysed = true ∧ updated = false THEN
/*updates after the online query and the local analysis*/

/*based on operations in Commenting machine*/

updated := true;
END;

END/*Procedure Process*/

Fig. 3. Procedure Process module

RESource: Matching Open Source Code with ASM 217

For each procedure, there is a phase of ASM features extraction, followed by
the submission of queries to source repositories and a local analysis.

We explain these steps in the process operation of Fig. 2. The Procedure Process
module uses respectively the services of the Query and the Offline Analysis mod-
ules for the specific query and analyse locally operations (Fig. 3). These opera-
tions are to be carefully implemented since their abstract representation cannot
contain too many details. The module states only the permitted order in which
these operations are called via the PRE-condition clause.

The process operation of Fig. 2 considers a last phase of updating. The original
ASM file remains the same, i.e., constant, except for the ASM comments part
which gathers the query results and the local analysis. Therefore, the result of
the entire process is the original file updated with comments as we shall see in
Section 3.2.

Query Module

MACHINE Query
CONSTANTS

n, SEQ REPS
DEFINITIONS

Repositories == 1..n
PROPERTIES

n ∈ �AT1 ∧ SEQ REPS ∈ Repositories → Repositories
VARIABLES

Queryable Reps
INVARIANTS

Queryable Reps ∈ Repositories → BOOL
INITIALISATION

ran(Queryables Reps) := true
/* all repositories should be queryable at the beginning*/

OPERATIONS
submit query(F) = ANY r WHERE Queryable Reps(r) = true THEN

/*submit query*/

Queryable Reps(SEQ REPS(r)) := true;
END

END/*Query*/

Fig. 4. Query module

Based on the extracted features in a procedure, the role of the Query module is
to construct and submit queries to a set of source repositories which are previously
known. We could use an instantiated SET of repositories to capture this informa-
tion, but for the sake of simplicity, we choose to identify each source repository
with a natural number in the set 1..�, where � is the number of repositories.

Moreover, we also express the following requirement: a real source repository
may not be queried too frequently (e.g., wait a few seconds between each query).
Consequently there should be a mechanism to launch the query to a different

218 A. Rahimian et al.

queryable repository so that the process does not stop. The straightforward
way is to introduce a CONSTANT function SEQ REPS which gives the next
source repository to query. Implementing this is based on the observation of
some query interval slots for each real repository and by thus defining an order
of passing from one repository to another. Queryable Reps(�) = true therefore
means that the � repository can accept a query. This variable is modified in the
implementation of the submit query operation.

We do not give the B notation of the Offline Analysis and Commenting mod-
ules because their operations proved to be more challenging to implement at low
level. The append to log() operation is meant to save the execution steps in a
log file at runtime.

3.2 Implementation Details

If a B-like algorithm description is useful to examine the possible flows and
to define the operations preconditions and the invariants they have to meet,
the validity of the low level implementation is generally asserted using normal
techniques such as testing and peer code reviewing.

RESource program implements the algorithm as a Python IDA Pro plug-in.
It is worth mentioning that, unlike the RE-Google plugin [10], our extended
version does not rely on the GData framework [8], nor does it utilize Google
Code [7] as the only search engine for accessing code repositories. Instead, it
possesses a built-in query processing engine and parsing mechanism for han-
dling request/response messages. Furthermore, it supports multiple search en-
gines and it provides a framework for adding new code repositories with only a
few lines of code. Also, the program makes use of an interleaving time optimiza-
tion technique for managing multiple search engines. Despite the large number
of request/response messages, it honors the required time delays between conse-
quent messages without wasting processing time.

In terms of extracted interesting features from the ASM code, RESource is
able to get four types of features for online analysis and query building: (1)
immediate values of operands, (2) imported libraries and function calls, (3) ex-
ported functions in DLLs, and (4) strings values. In addition, it considers eight
features for offline analysis. For each function, we extract information about
its stack frame: (1) number of instructions; (2) size and number of local vari-
ables; (3) size and number of arguments; (4) size of saved registers; (5) func-
tion flags; (6) function addresses (begin, end, return); (7) function prototype
(type of input and output and calling convention); (8) calls to low level system
functions (malware dictionary). Moreover, variable scopes (local/stack-based or
global/memory-based) and simple data structures (single variables or structs)
are also highlighted for the reverse engineer.

Moreover, the program adds better result handling techniques than RE-Google
and an offline functionality analysis engine. In many situations, online results
may not be available due to the lack of extracted features, obfuscated or hard-
coded procedure, use of complex and non-standard algorithms, etc. Therefore,
the offline analyzer is of great benefit for revealing the overall functionality of a

RESource: Matching Open Source Code with ASM 219

Fig. 5. Execution Flow

portion of assembly code. It has an extendable dictionary of common functions
in Windows API along with a programmer-friendly description of each function.

Execution Flow
As illustrated in Fig. 5, there are five main modules in the Python program for
handling tasks related to Features, Queries, Repositories, Parsing and Comment-
ing. Except for the Code Search Engine (3), these modules have a counterpart
in the algorithm blocks of Fig. 1. The RESource program interacts with the IDA
Pro API for getting a list of available procedures in the disassembly, getting
function addresses and names, as well as adding comments to the file.

The execution flow starts in the main function of the script where the initializa-
tion of variables and execution time calculation is done (Initialize(RESrc Vars)).
Then, the script checks a variable (flag) to determine whether the search should be
performed on a specific function or on all the extracted functions from the disas-
sembly (RESrc(asm function list)). In the first case, the user highlights a specific
function for search and in the second case, all the functions are taken into account.

In the next step, the RESrc function counts the total number of available
procedures and prepares a loop for analyzing each item. Then, a function will be
called for extracting four types of features, namely constants, imported libraries,
exported libraries and string values from the disassembly. The output of the
Extract QFeatures() function is a potential list of features that could be used
for building a general query. This list will be refined several times before building
a specific query. Next, the features for offline analysis are extracted using the
Extract OAFeatures() function :

220 A. Rahimian et al.

feature qlist ← Extract QFeatures(asm function)

feature oalist ← Extract OAFeatures(asm function)

// OA for Offline Analysis

feature listfunc i = [fi1, fi2, ..., fin]

refined qlist ← Refine GQuery(feature qlist)

The purpose of the Offline Analysis (OA) module is to compare a function
with a list of known Windows API functions in order to get a simple statement
about the functionality and prototype of the procedure under analysis. Also,
this module assists the reverse engineer by highlighting the variables and their
scope.

The purpose of the Refine GQuery() function in the refining process is to
filter out certain characters from the feature list to prevent problems with search
engines queries. For instance, the search engines may not allow characters such
as “%, ‘, ‘ ”’ as part of query string to prevent SQL injection. Therefore, the
output query is safe for submission into code search engines. However, the user
can define what characters are blacklisted by adding ‘badkey’: ‘value’ pairs into
the “BlackDict” dictionary. For instance, the keys in the following dictionary are
simply replaced with the ‘’ character which is equivalent to removing them from
the search string.

BlackDict = {‘%d’:‘’, ‘%s’:‘’, ‘\\’:‘’, ‘%1’:‘’, ‘%2’:‘’, ...}

Also, this function encodes and prepares the list for the next steps of specific
query building:

base query ← Generate Query(refined qlist)

At this step, we have a base query that can be further encoded for particular
search engines. Search engine-specific prefix and suffix will be added to each base
query to build a standard query. The following functions are examples of query
building functions for three major code search engines.

final queryKoders ← Build Koders Query(base query)

final queryGCS ← Build GCS Query(base query)

final queryKrugle ← Build Krugle Query(base query)

The next step is to submit the query and get the response for each respective
search engine. The order of query submission and response extraction is impor-
tant for time optimization. Usually there must be a time delay between two
subsequent requests to a search engine (SE). The program uses an interleaving
technique for managing the query submission and for saving processing time (as
shown for example in Fig. 6).

For each query, a request is made and the response page is received in HTML.

html pagej ← Fetch Response(final queryj)

RESource: Matching Open Source Code with ASM 221

Fig. 6. Timing Interleaving

After getting the page, a call to the local parsing function will be made to
extract relevant information based on a predefined regular expression statement
for each search engine. Then, the matching Filenames and URLs are extracted
and stored in a dictionary.

dictionary list ← Refine Results(Parse Page(html page))

The results are processed and duplicate results are removed from the list. Also,
based on the search engine rankings, the best matches are selected and given a
priority. Lastly, the comments are updated to reflect the online search results.

function comment ← Update Commentfunction k(refined dictionary list)

In the next section, we present a practical application of our RESource program
on an open source software.

4 Experimental Results

We have adopted the PreciseCalc Project [12] given that both the sources and
binary files are available on SourceForge and Koders (http://www.koders.com)
as a code search engine. As an input to our RESource IDA Pro plugin, we use
the ASM file resulting from disassembling the PreciseCalc binary. There are 533
ASM procedures and we choose to analyse all of them.

The Extract QFeatures() function is able to extract features from 67 pro-
cedures. If there are at least two elements in the Imports list or the joint set of
Constants and String List is non-empty, then the script would try to find an ex-
act match by concatenating all the elements. This is an ideal situation where the
query would be expressive enough in terms of number and the type of elements.
If no exact match is found, then the search would be based on the strings inside
the binary. If the length of String List is larger than one, then the search query
will be built by concatenating the String elements. Finally, if there is at least
one element in the Constants List but the results set is empty, the script will
perform the search by building a query based on the concatenation of constant
elements.

The conditional rules for defining each case can be altered based on the ap-
plication under analysis and the number of available elements in the extracted
lists. Generally, there are more elements in each list when the application makes
use of Standard Windows Libraries.

222 A. Rahimian et al.

Fig. 7. Feature Extraction (excerpt from the log file)

Fig. 7 shows a few examples of interesting features extracted by the Extract
QFeatures() function. In the first one, the search is merely performed based
on the constants. Example 2 shows a situation in which only string information
is available. No import lists are detected for the first two cases. Conversely, in
examples 3 and 4, sets of imported function names are included in the search.
The original PreciseCalc project can be accurately identified by submitting a
query containing portions of the strings in example 3. Even if an exact match
is not found, the RESource program will try to find a close or a rough match
based on a combination of features.

RESource was able to detect several references to each source file in the origi-
nal project. PreciseCalc application includes functions that handle Text Editing,
GUI Processing, Timing and Registry Modification, alongside the Arithmetic,
Statistical, Geometrical and other math-related functions.

Table 1 shows sample results of the identified C++ source code. The identified
links and filenames are inserted directly in the assembly file. There are several
references to the main “preccalc.cpp” file. For instance, the functions at addresses
0x417b20, 0x41b2d0, 0x4190c0, 0x419ab0, 0x41a2b0, 0x41b4a0, 0x41be70 and
0x41c1f0 were referencing the main C++ file in the project. Fig. 8 shows one of
these references.

RESource: Matching Open Source Code with ASM 223

Table 1. Identified Source Codes

Func. no. Function ID @ Address Source Code Reference Match

70 [sub 406800] @ [0x406800] complex.cpp 100%

146 [sub 409620] @ [0x409620] lang.cpp 100%

159 [sub 40A1E0] @ [0x40a1e0] matrix.cpp 100%

261 [sub 4119B0] @ [0x4119b0] parser.cpp 100%

334 [sub 417B20] @ [0x417b20] preccalc.cpp 100%

RESource has detected several math-related functions in the disassembly. The
script has generated a comprehensive execution log that is self-explanatory and
describes the analysis process. Even though the current version of RESource
does not include heuristic query processing techniques, it is able to detect more
than 70% of the original source files with an accuracy of 100%. Also, the script
is useful for gaining insight into the functionality of the ASM file.

Concerning the Offline Analysis module, the current implementation includes
a dictionary of common Windows APIs alongside with a brief description of
each one. This dictionary was built with malware analysis in mind. Therefore, it
includes about 200 of the most common kernel and user level functions known
to be used by existing malware [13].

In our second scenario, we run RESource on severalmalware disassemblies. The
Offline analyser helps the reverse engineers to understand network connectivity
and data gathering functionalities of malware by adding relevant comments.

In Fig. 9 there are several routines of malware performing file I/O operations
and communication with a remote command and control server. In cases where
RESource returns results from both the online code repositories and the Offline
analyzer, an emergent consistency is observed. As an example, Fig. 9(e) depicts
a portion of assembly code that is capturing the screen and saves it to a file to
be remotely transmitted. As can be seen, RESource gives reliable information

Fig. 8. Identified “precalc.cpp” file @ 0x41B2D0

224 A. Rahimian et al.

(a) Routine involving file I/O

(b) References to some networking services

(c) Offline analysis only

(d) References to system services

(e) Routine revealing screen capture functionality

Fig. 9. Examples of the final outcome

RESource: Matching Open Source Code with ASM 225

in both Offline and Online comment sections. Such rich informal expression of a
comment may really be beneficial for the hectic job of a reverse engineer.

Discussion
A side by side comparison between the outputs of RE-Google and RESource was
not possible because the underlying search framework of RE-Google was dep-
recated. In other words, RE-Google is not functional anymore. RESource takes
an intra-procedural approach to extract features and build queries. It could be
argued that an inter-procedural approach could improve the accuracy of the
Online analysis. However, the search engines provide limited commands for exe-
cuting logic-based queries and some of them do not provide direct APIs to their
repositories. Adopting a heuristic query building algorithm that tries different
elements in the query string and selects the best match could improve the accu-
racy of the identified online projects. As to the accuracy of the Offline analysis,
it clearly depends on the number and selection of the functions defined in the
dictionary. In a situation where we have results from both the online and of-
fline analyzers, the reverse engineer would have the maximum information. This
happens when programs make use of standard libraries such as VCL or MFC.
In other cases, there might be no results from the online module. This happens
when malware authors use non-standard components or they use certain wrap-
pers around standard system calls. Also, they might use non-standard low level
kernel functions for performing simple I/O operations.

5 Conclusions

Software reverse engineering is a complex task. Applications like malware analy-
sis can grasp the benefits of a tool able to automatically give reliable information
about the matching between open source and assembly code.

In this paper, we established a framework to develop such a tool – RESource
– that exploits some features existing at both the source and the assembly file
levels. Based on these features, queries are triggered on certain online repositories
used by the developers’ community. If there is no query result, the tool is still
able to provide some information about the functionality of a portion of the
ASM file by a local offline analysis. The reverse engineer’s task is thus greatly
simplified.

References

1. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press (1996) ISBN 052149619-5

2. Boomerang: a general, open source, retargetable decompiler of machine code pro-
grams, http://boomerang.sourceforge.net/

3. Bryant, R.E., O’Hallaron, D.R.: Computer Systems – A programmer’s Perspective,
2nd edn. Addison Wesley (2010) ISBN 0136108040

http://boomerang.sourceforge.net/

226 A. Rahimian et al.

4. Eymery, D., Eymery, O., Borello, J.-M., Fraygefond, J.-M., Bion, P.: GenDbg:
un débogueur générique. In: Symposium Sur la Séurité des Technologies de
l’information et des Communications, SSTIC 2008, France (2008)

5. GDB: The GNU Project Debugger,
http://www.gnu.org/software/gdb/documentation/

6. GNU Binutils, http://www.gnu.org/software/binutils/
7. Google Code, http://code.google.com/
8. Google Data APIs, http://code.google.com/p/gdata-objectivec-client/
9. IDA Pro multi-processor disassembler and debugger,

http://www.hex-rays.com/products/ida/index.shtml

10. IDA Pro Re-Google Plugin, http://regoogle.carnivore.it/
11. Lagadec, P.: Dynamic Malware Analysis for Dummies. In: Symposium Sur la

Sécurité des Technologies de l’information et des Communications, SSTIC 2008,
France (2008)

12. Precise Calculator Project, http://sourceforge.net/projects/preccalc/
13. Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dis-

secting Malicious Software. No Starch Press (2012) ISBN 1593272901
14. The Hex-Rays Decompiler, http://www.hex-ays.com/
15. Troshina, K., Chernov, A., Derevenets, Y.: C Decompilation: Is It Possible? In:

Proceedings of International Workshop on Program Understanding, Altai Moun-
tains, Russia, pp. 18–27 (2009)

16. Troshina, K., Derevenets, Y., Chernov, A.: Reconstruction of Composite Types
for Decompilation. In: Proceedings of the 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation, SCAM 2010, Timisoara, Romania, pp.
179–188 (2010)

17. Valgrind – a suite of tools for debugging and profiling, http://valgrind.org/
18. WinDbg debugger for Microsoft Windows, http://www.windbg.org/

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/binutils/
 http://code.google.com/
http://code.google.com/p/gdata-objectivec-client/
http://www.hex-rays.com/products/ida/index.shtml
http://regoogle.carnivore.it/
http://sourceforge.net/projects/preccalc/
http://www.hex-ays.com/
http://valgrind.org/
http://www.windbg.org/

Touchjacking Attacks on Web

in Android, iOS, and Windows Phone�

Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du

Syracuse University, Syracuse NY, USA

Abstract. To make it easy for applications to interact with the Web,
most mobile platforms, including Android, iOS, and Windows Phone,
provide a mechanism that allows applications to embed a small but pow-
erful browser component inside. This mechanism is called WebView in
Android (it is called different names in other platforms). WebView im-
plements a number of APIs that can be used by applications to interact
with the web contents inside WebView. It has been pointed out by the
previous work that malicious applications can use these APIs to attack
the web contents inside WebView. Proposals are made by the previous
work to fix the problems of those APIs. We have discovered that by fix-
ing those APIs, WebView is still not secure. This is because the previous
work only focuses on the APIs specifically designed for WebView; they
have overlooked the APIs that WebView inherits from its super classes.
These APIs are designed for the general-purposed user interface (UI)
components, and they seem to pose no risk to those components; how-
ever, the combination of these APIs with the Web has led to new risks.
We have identified several attacks based on these APIs. Our attacks are
called Touchjacking attacks. They treat WebView as a blackbox, i.e.,
they do not use the APIs that are designed specifically for WebView; in-
stead, they only use the inherited APIs. Through these APIs, malicious
applications can attack the web contents inside WebView. The impact of
the attacks is quite significant, as all the platforms that we have studied,
including Android, iOS, and Windows Phone, are vulnerable to these
attacks.

1 Introduction

In most mobile platforms, including Android, iOS, and Windows Phone, web
browser is not just a stand-alone application anymore, it can be incorporated into
applications. This is achieved by exposing web browser as a reusable component
that can be embedded by applications. Such a component is called WebView in
Android, UIWebView in iOS, and WebBrowser in Windows Phone. For the sake
of simplicity, we only use the term WebView throughout this paper.

WebView makes it very convenient for developers to integrate browser func-
tionalities, such as web page rendering, navigation, and JavaScript execution,

� The project was supported by the Google Research Award and the NSF Award No.
1017771.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 227–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 T. Luo et al.

into their mobile applications. Applications requiring basic browser functionali-
ties can simply include the WebView library and create an instance of WebView
class. The use of WebView is pervasive. In the Android Market, 86 percent of the
top 20 most downloaded Android apps in each of the 10 categories use WebView.

WebView APIs. There are two types of APIs in WebView. One type is
the APIs implemented by the classes associated with WebView. These APIs
are designed for applications to interact with the web contents. We call this
type of APIs the web-based APIs. Examples of these APIs include loadURL,
addJavascriptinterface, CookieManager.getCookie, etc. The attacks de-
scribed in [7] target the web-based APIs. The other type of APIs are those
inherited. WebView is a specialized user interface (UI) component, and like oth-
ers, such as buttons and text fields, it is designed as a subclass of the more
generic UI components, such as the View class. As a result, WebView inherits
its super classes’ APIs. We call this type of APIs the UI-based APIs.

To enable interactions, WebView implements several APIs, allowing mobile
application code (from outside WebView) to interact with the web contents, and
JavaScript code (from inside WebView) to interact with the mobile application
contents. Luo et al. pointed out that these APIs, if not properly protected, can
lead to security problems [7]. Luo et al. has studied how those malicious apps
launch attacks on the web contents inside WebView by taking advantage of
lacking of access control on those web-based APIs and hooks [7]. However, once
a better access control is enforced on the communication channel, the attacks
can be defeated which is not difficult to achieve. For example, the loadURL is
one of the most dangerous APIs used in Luo’s attacks, but it turns out that
most applications do not use this API to inject JavaScript code into WebView.
Therefore, an easy solution is to modify this API and restrict it to load URL
only, instead of allowing it to inject JavaScript code.

Assume such an access control system can be implemented in WebView, and
all the vulnerable APIs of WebView are protected, the question is whether We-
bView is safe now. A complete access control by WebView should control all the
potential interaction channels between applications and WebView. No study has
looked at whether the UI-based APIs inherited by WebView can pose risks to the
contents that reside inside the webView. The objective of this work is to study
the feasibility of attacks using the UI-based APIs. As Figure 1(a) illustrated,
our attacks will not use any of the web-based APIs designed for WebView. In
other words, even if the problems described in [7] are fixed, there are still ways
to attack the contents in the blackbox WebView.

As we all know, when software components are reused (e.g., through libraries or
class inheritance), their features, although safe and appealing for other systems,
may bring danger to new systems. For WebView, it was not clear whether those
inherited UI-based APIs pose any threat in the new systems, especially whether
they can be used bymalicious applications to attack the contents withinWebView.
There has been no study to investigate the security impact of those UI-based APIs
inherited byWebView, mostly because these UI-based APIs have not appeared to

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 229

be problematic to other UI components. After studyingWebView, we realized that
the attacks conducted by Luo et al. only covered one type of interaction, not all.

Security Concerns on UI-Based APIs. From the security perspective,
there is one thing that clearly separates WebView from the other UI compo-
nents, such as buttons, text field, etc. In those UI components, the contents
within the components are usually owned by or are intended for the applications
themselves. For example, the content of a button is its label, which is usually set
by applications; the content of a text field is usually user inputs, which are fed
into applications. Therefore, there is no real incentive for applications to attack
the contents of these components. WebView has changed the above picture.

In mobile systems, the developers of applications and the owners of web con-
tents inside WebView are usually not the same. Contents in WebView come from
web servers, which are usually owned by those that differ from those who devel-
oped the mobile applications. It should be noted that before Facebook released
its own applications for iPhones and Android phones, most users used the ap-
plications developed by third parties (many are still using them). For example,
one of the most popular Facebook apps for Android is called FriendCaster for
Facebook, which is developed by Handmark, not Facebook. Because of such an
ownership difference, it is essential for all mobile platforms to provide the assur-
ance to web applications that their security will not be compromised if they are
loaded into another party’s mobile applications.

A WebView component with better access control enforced on all the cross-
component communication channels can be treated as a blackbox. The mobile
system guaranteed that the integrity and confidentiality of the web applications
cannot be compromised even if they were loaded into the WebView embedded
in a malicious application. Although users may not fully trust the third-party
mobile apps, they fully trust the system once they make sure that they are
using the WebView. The similar trust assumption is made when users view
private contents in an iframe which is embedded in a third-party mashup web
application. This is because users trust the isolation mechanism enforced by
the browser to constraint the access from the host webpage if it comes from a
different domain.

Overview of Our Work and Contribution. In this paper, we systemati-
cally studied the security impact of these UI-based APIs. Our attack model is
the following: First, we assume that the mobile application is malicious; it em-
beds one or more WebView components in it. The target of the attack is the
web contents within the WebView components. The attackers are interested in
stealing sensitive information from the web page, or compromising the integrity
of the web page and its interaction with user.

We further assume that the attackers can only use the UI-based APIs inher-
ited by the WebView class. In other words, the malicious applications cannot
directly interact with the web contents inside WebView. This assumption will
significantly distinguish our work from that by Luo et al. [7], which focuses
only on the web-based APIs. Putting this assumption in a different way, we are

230 T. Luo et al.

investigating whether WebView can be secured if it is redesigned to address the
attacks in [7].

We have identified several different attacks that can be launched on WebView
solely using the UI-based APIs. We have studied these attacks in three popular
mobile phone platforms, including Android, iOS, and Windows Phone. All of
them are vulnerable to our attacks. For the sake of simplicity, we will only talk
about WebView and the attacks in the context of Android.

Our discoveries are significant, as they demonstrate that securing and re-
designing the web-based APIs are not sufficient; we also need to study the APIs
that WebView inherited from its super classes, understand how dangerous they
are to the web contents inside the WebView, and find solutions to secure them.
This paper only focuses on the attack part; developing solutions to solve the
problem for Android, iOS, and Windows Phone is still a work-in-progress, and
will be published in our future papers.

2 WebView APIs

To enable applications to browse the Web from within themselves, instead
of using an external browser application, Android provides a package called
android.webkit to applications. This package contains several classes, each for
different purposes. The most important class among them is called WebView,
which is a View class that displays web pages. This class is the basis for dis-
playing web contents within applications. It uses the WebKit rendering engine
to display web pages; it also includes methods to navigate forward and back-
ward, zoom in and out, perform text searches, etc. In addition to WebView,
android.webkit also includes several other classes related to the Web, such as
CookieManager (for managing cookies), WebViewClient (for customized han-
dling of events within WebView), WebViewDatabase (for managing the WebView
database), etc.

Jointly, these classes expose many APIs to Android applications. Based
on their purposes, these APIs can be divided into two main categories (see
Figure 1(b)). One category is the APIs that are designed for the control of web
pages and their related data (e.g. cookies, histories, and caches), and we call them
the web-based APIs. The other category is the APIs that are derived from their
super classes, which are designed for the general user interface (UI) components,
and we call them the UI-based APIs.

2.1 Web-Based APIs

The classes in the android.webkit package jointly expose a number of APIs
to the applications for better manipulation and control over the web contents
inside WebView. Those APIs are quite useful for application developers to embed
and customize “browser-like” components within applications, and thus enrich
the functionalities of applications. We will not go over all those APIs; we only
describe those that are related to security.

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 231

(a) Threat Model (b) WebView APIs Overview

Fig. 1. WebView APIs

Webpage-Android Communication. Android WebView provides a bidi-
rectional communication channel between the webpage environment inside We-
bView and the native Android application runtime. For example, WebView pro-
vides a mechanism for the JavaScript code inside it to invoke Android apps’
Java code. The API used for this purpose is called addJavascriptInterface.
In addition to the JavaScript-to-Java interaction, WebView also supports the
interaction in the opposite direction, from Java to JavaScript. This is achieved
via another WebView API loadUrl.

Webpage-Related Hooks. Android applications can monitor the webpage
navigation and rendering events occurred inside WebView. This is done through
the hooks provided by the WebViewClient class. These hooks will be triggered
when their intended events occur inside WebView. Once triggered, these hooks
can access the event information, and may change the consequence of the events.
For example, by overloading the hook shouldOverrideURL, Android applications
can intercept and modify the destination URL when the user tries to navigate
to another web page or site.

Webpage Credentials. All the credentials and private data of web pages
are stored in an internal database, which is isolated from Android applications.
However, WebView exposes many APIs to allow applications to fetch or modify
the sensitive webpage contents in the internal database. For example, Android
applications can directly inject the certificate of a webpage through the API
setCertificate, cookies can be accessed using CookieManager.setCookie, and
so on.

2.2 UI-Based APIs

The android.webkit package includes a number of classes, most of which in-
herit directly from java.lang.Object, which is the root of all classes in Java.
The APIs inherited from this root class do not pose much risk. An outlier
among these classes is the WebView class, which is the main UI class in the

232 T. Luo et al.

package. This class inherits the APIs from several classes. Its inheritance tree is
the following (starting from the root): java.lang.Object, android.view.View,
android.view.ViewGroup, and android.widget.AbsoluteLayout. Moreover,
WebView also implements seven interfaces, with six of them coming from the
android.view package, and one from android.graphics [1].

Among all the classes and interfaces inherited by WebView, the most significant
class is Android.view.View, which is commonly used by Android applications.
The View class represents the basic building block for user interface components;
it usually occupies a rectangular area on the screen and is responsible for drawing
and event handling. This class serves as the base for subclasses called widgets,
which offers fully implemented UI objects, like text fields and buttons. WebView
is just a customized widget.

Our attacks focus on the APIs provided by Android.view.View. These APIs
can be classified into several categories, including Layout Management, Event
Processing, Focus Manipulation, and Properties Setting, all of which are the
basic functionalities designed for native Android UI objects. We will illustrate
some of the commonly used APIs in this View class. It should be noted that
some of the APIs inherited from the View class are overridden in the WebView

class, but we still count them as the UI-based APIs.

Layout Management. One of the basic features of Android UI objects is to
provide basic methods to handle the screen layout management. For example, a
view object has a location (expressed as a pair of left and top coordinates) and
two dimensions (expressed as a width and a height). Android applications can
use the methods, such as layout, setX, and setMinimumHeight, to configure
locations. It is possible to retrieve the location of a view object by invoking the
methods getLeft and getTop. Similar methods can also be used to get the size
information of the WebView.

Android also provides basic supports for views that need scrollbars. This in-
cludes keeping track of the X and Y scroll offsets as well as drawing scrollbars.
Using the methods like scrollBy and scrollTo, Android applications can con-
trol the displayed area of the content in the view object. Obviously, for WebView,
the contents inside the WebView are web pages.

Event Processing. Each Android view object is responsible for drawing the
rectangular area on the screen that it occupies, and handling the events in the
area. Views allow clients to set listeners through hooks that will be notified
when something interesting happens to the view. For example, by using the
method setOnKeyListener, Android applications can register an event handler
callback function which will be invoked when a key is pressed in this view.
Besides intercepting the events, the view class also exposes methods for Android
applications to pass motion events down to the target view.

Focus Manipulating. The Android framework will handle moving focus in
response to user input. To force focusing on a specific view, applications can call
requestFocus() of that view.

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 233

Properties Setting. Other advanced features related to appearance could
be the background color or alpha property of WebView, like methods
setBackgroundColor and setAlpha.

2.3 Attack Model

For all of the attacks described in this paper, we have the following assumptions:

1. We are concerned about potential malicious applications in mobile
devices. As we pointed out, the developers of the apps and the owner of the
web contents inside WebView are usually not the same. Our investigation
shows that among the top 113 apps that use WebView, 49 are third-party
apps. Therefore, it is quite common for web contents to be loaded into an
untrusted environment.

2. We assume that the users clearly know they are using WebView.
Users make sure they are using the secured blackbox WebView instance to
access web contents, and they trust that the mobile system can isolate the
contents inside WebView from those from outside.

3. We assume that the effective access control mechanism is already
enforced on the Web-based APIs exposed by the WebView. As we
mentioned before, Web-based APIs are powerful to control the web contents
inside WebView. We assume a perfect redesigned access control model has
been implemented on WebView to isolate the contents inside WebView from
outside world. This assumption clearly distinguish this work from that in [7],
because under such an assumption, the attacks describe in [7] will not be
threats any more.

4. We assume that the UI-based APIs are accessible by the apps.
WebView is a specialized user interface (UI) component, and like others,
such as buttons and text fields, it is designed as a subclass of the more
generic UI components, such as the View class.

5. We assume that malicious apps are only granted with one
permission. It should be noted that to successfully launch the attacks de-
scribed in this paper, malicious Android applications only need one permis-
sion Android.permission.INTERNET. This permission is widely granted to
86.6% of free (and 65% of paid) Android applications [4]. Generally speak-
ing, these attacks are relatively easy to launch and difficult to detect, since
they only require one very common and less-dangerous permission.

3 Touchjacking Attacks

In this section, we describe how to let users generate touch events, and how
to hijack those events for malicious purposes. We call this type of attacks the
Touchjacking attack. We describe three attacks; based on their different attack
strategies, we give them different names.

We give a brief overview of the three attacks here, and explain the details
later in this section. Figure 2 illustrates the attacks.

234 T. Luo et al.

Fig. 2. Touchjacking Attack Overview

1. WebView Redressing Attack. In this attack, malicious applications put
a smaller WebView on top of a larger one, making the smaller one look like
an element (e.g. button) within the larger one.

2. Invisible WebView Attack. In this attack, malicious applications overlay
an invisible WebView on top of a visible one, causing users to see the visible
one, but operate on the invisible one.

3. Keystrokejacking Attack. In this attack, malicious applications overlay
some native UI objects on the top of the HTML elements inside WebView;
while the user believe that they are typing in the field that belongs to a
web page, they are actually typing in a field that belongs to the malicious
applications, which can steal the information typed by the users.

3.1 Positioning Method

By default, after being loaded into a WebView, the webpage will be displayed
inside the WebView. If the size of the webpage is larger than the size of the
WebView, only the most top-left area of the webpage will be displayed ini-
tially. However, in order to carry out our attacks, certain HTML elements (e.g.
a button) of the targeted webpage must be carefully positioned. Only using the
traditional positioning methods that facilitate clickjacking attack in browsers is
not enough to meet the positioning requirement for Touchjacking attacks. We
describe some positioning techniques.

Pixel Coordination. Android applications can use the following APIs to
position a web page to a specific position inside WebView: scrollBy, scrollTo,
pageDown, pageUp. The method scrollBy(x,y) scrolls the page by x pixels
horizontally and y pixels vertically; the method scrollTo(x,y) scrolls the page
to the (x, y) position. The method pageDown and pageUp scroll the display
area to the top and bottom of a webpage. Attackers can also use the websetting
APIs to change the font size or zoom level of the webpage, such as setTextSize
and setDefaultZoom.

URL Fragment Identifier. Using pixel coordinates to position a target can
be inaccurate due to other factors, such as rendering differences between browsers

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 235

and font size differences between platforms. A solution to this problem is to use
the URL fragment identifiers to position anchor elements of the webpage. An-
chors and URL fragments are commonly used together to link to a particular
section of the text within an HTML document. When a URL containing a frag-
ment identifier is loaded, a browser will scroll the page so that the anchor is at
the top of the viewable area. An anchor can be created in two ways, either by
adding a ‘name’ attribute to an ‘a’ tag, or by adding an ‘id’ attribute to any
element. The following example shows how to navigate to the specific div tag
using URL fragment identifiers.

3.2 WebView Redressing Attack

Generally speaking, the idea behind the WebView redressing attack is to seam-
lessly merge two or more WebView containers, making them look like one. When
the non-suspicious user reacts to the contents inside WebView by clicking some
links or buttons, because what the user clicks on may belong to a different page
in another WebView, the user is tricked into reacting to the contents in another
WebView, and those contents are not even displayed to the user.

The attack consists of two or more WebViews (we will use two in our descrip-
tion). One of the WebViews is called the outer WebView, and the other is called
the inner WebView. The inner WebView loads the malicious webpage, and it is
intentionally made small, so it only displays a very small portion of the webpage
to users. This is important, as the attackers do not want the users to see the
entire page, which reveals the malicious intents. The malicious application can
use the positioning method described above to display a specific part of the page
(such as a button) to users.

The outer WebView is larger, and is for the users to view web contents.
Attackers overlay the inner WebView on top of the outer WebView, and make
it cover a selected area of the outer WebView. Because the inner WebView is
small and has no obvious boundaries, the inner WebView looks like part of the
elements on the webpage inside the outer WebView. If users react to the contents
in the outer WebView, and clicks on the buttons within the inner WebView, they
are actually reacting to the contents in the inner WebView. This is dangerous,
as the users never got a chance to see the contents that they have reacted upon.

Case Study. We demonstrate the WebView redressing attack using an exam-
ple. Facebook has been a major spam target; one of the goals of the spammers is
to find ways to post links or other information on Facebook user’s walls. Just like
email spams, no matter what improvement the company makes, spammers have
always been able to find new ways to cause problems. We will demonstrate a
new way to launch the “likejacking attack” [14] by using the WebView redressing
technique, so that the users can be tricked into “Like”ing spam pages.

In this attack scenario, assume that the malicious Android application is writ-
ten for New York Times. Normally, only the outer WebView is visible and users
will use this WebView to visit the articles at www.nytimes.com (see Figure 3(a)).
The malicious Android application can insert the inner WebView at any time

236 T. Luo et al.

when the user navigates to the New York Times page. The inner WebView con-
tains the spam article, with a Like button (see Figure 3(b); we did not show the
spam article in the figure). The attackers need to pre-calculate the location of the
inner WebView (Figure 3(b)) to redress the webpage inside the outer WebView.

After the redressing, what the user sees is shown in Figure 3(c). Clearly, it
is quite difficult for the user to see that the Like button is not part of the New
York Times page. If the user really likes this article and wants to share it through
Facebook, he/she will click on the Like button, not knowing that the button is
associated with a different article hidden in another WebView.

If the user has not logged into Facebook yet from this application, once clicking
on the Like button of the inner WebView, a dialogue window (which is a new
WebView instance) will be popped up with the Facebook’s login page inside (see
Figure 3(d)). Since it is hard for the user to realize that the dialog window is not
popped up by the outer WebView, the user may very likely log into Facebook,
and eventually share the article that he/she has never seen.

It is also likely that the user may have already logged into Facebook from the
inner WebView (due to the clicking of some legitimate Like buttons). Because
cookies are shared among all the WebView instances within the same Android
application, clicking on the Like buttons in another WebView will not result in
the pop-up dialogue window; instead, the “like” request will be automatically
sent to Facebook with the valid cookies.

(a) Outer WebView (b) Inner WebView (c) What User Sees (d) Login Dialog

Fig. 3. WebView Redressing Attack Example

3.3 Invisible WebView Attack

Both Android and iOS systems allow applications to set transparency on Web-
View (UIWebView) objects. Low opacity may result in the webpage inside We-
bView being hardly visible, or completely invisible. In Android 3.0, applications
can use the method setAlpha to set the opaque level of the WebView object.
Every native Android UI object maintains the alpha property and exposes the
setter and getter to applications. Since the WebView class was derived from the
View class, it also inherits this property. It should be noted, when a WebView
object is transparent (i.e. alpha value equals to 0), it is transparent visually, not
physically, i.e., users can still touch/click on the page inside a transparent We-
bView. The following code demonstrates how to set the WebView transparent.

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 237

WebView mWebView = (WebView) findViewById(R.id.webview);
mWebView.setAlpha(0);

The transparency feature is intended for generic UI components, and it brings
no harm to them; however, when this feature is inherited by WebView, it poses
great danger to the web contents inside WebView. We describe how this feature
can be used for attacks.

In this attack, malicious Android applications need to have two WebView
instances: one visible and the other invisible. The visible WebView will load
an attractive webpage that is controlled by attackers, and the purpose of this
page is to entice users to perform touch actions. For example, this web page
can be a small game. Another WebView is invisible, and it loads the targeted
webpage. The invisible WebView is put on top of the visible one. Therefore,
when the user touch something that is apparently in the visible WebView, the
touch actually goes to the invisible one, because it is on the top.

To successfully launch the touchjacking attack, attackers need to first calculate
the position where user may perform the touch action. Since the attacker controls
the visible webpage, it is not hard to predict the position and precisely overlay
the UI in the targeted webpage inside the invisible WebView object on top
of specific position. Attackers can use the positioning techniques mentioned in
the beginning of this section to control the place of the clickable elements (e.g.
button, link).

Case Study 1. In this attack example, we repeat the case study in the previous
subsection, but using the transparency technique to achieve the same goal. We
assume that the malicious Android application is written for New York Times,
and the user is currently reading an article from there. This time, the article itself
has a legitimate Like button to facilitate sharing via Facebook (see Figure 4(a)).

Attackers create another WebView (invisible), and load the spam page inside
it. This page contains an article that the spammers want the user to share with
their Facebook friends, and there is a Like button on this page (Figure 4(b)
shows this spam page, but we did not show the spam article inside).

The malicious application then overlays the invisible WebView on top of the
visible one. Using the positioning techniques, the attackers can make the two

(a) Visible WebView (b) Invisible WebView (c) User’s View

Fig. 4. Invisible WebView Attack Example

238 T. Luo et al.

Like buttons in both WebViews be placed at exactly the same location on the
screen, i.e., they completely overlap. Because of the transparency, what the user
sees is exactly the same as that in Figure 4(a).

When the user clicks on the Like button, the click event goes to whatever is on
the top, i.e., the transparent WebView, not the one for New York Times. As re-
sults, the spam article is shared to the user’s Facebook friends. This consequence
is the same as that in the WebView redressing attack.

Case Study 2. If the user also uses the malicious application to log into his/her
online accounts (such as Facebook), the attack can be much more severe. We use
Facebook to demonstrate how to use the Invisible WebView attack to hijack the
touch events and trick users into deleting friends from their Facebook accounts.

Before the attack is launched, users have logged into their Facebook accounts
from the visible WebView, and are viewing their Facebook pages (Figure 5(a)).
At this time, the invisible WebView is not overlaid yet. When the user clicks
a link shared by his/her friend, WebView will navigate to another webpage
(Figure 5(b)); this webpage is not malicious, but the attacker needs to know
the possible click points. At the same time, the application needs to overlay the
invisible WebView on the top, and inside the WebView should be the Facebook
webpage (Figure 5(c)).

Attacker can also precisely put the UNFRIEND link of the transparent Facebook
page on the top of the DOWNLOAD button of the visible WebView. If the user
wants to download the video as shown in Figure 5(d), the user needs to click
the DOWNLOAD button. Because the UNFRIEND button is on the top, this button
is actually clicked, and user’s some friends will be deleted from the friend list.

Although the user has never actually logged into Facebook account using the
invisible WebView, since the cookies are shared among all WebView instances
within the same Android application, the UNFRIEND request from the webpage
in the invisible WebView will be able to attach the Facebook cookies and cause
the deletion of the user’s friend.

(a) Initial Visible
WebView

(b) Visible Web-
View

(c) Invisible Web-
View

(d) What User Sees

Fig. 5. Invisible WebView Attack Example

3.4 Keystroke Hijacking Attack

In the previous attacks, attackers redirect the user’s actions toward the webpage
in a WebView instance that is different from what the user sees. In this attack,

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 239

(a) Native UI Only (b) WebView Only (c) User’s View

Fig. 6. Keystroke Hijacking Attack Example

we will demonstrate how attackers can redirect those actions to the native An-
droid UI objects (e.g. a text field) that is completely controlled by the malicious
applications. If the user’s actions involve secrets (e.g. passwords), the attacker
can get the secrets.

The attack is based on the fact that the HTML UI objects inside WebView
and the Android native UI objects are based on the same GDI (skia), and
the exterior appearance of the HTML UI objects look similar to their related
native UI objects. For example, the HTML input field looks almost the same as
the text editing widget EditText, which is a native UI component of Android.
Therefore, if we put a native UI object on top of the HTML UI object of the
same type, users will not be able to tell the difference. If they decide to type into
what appears to be a part of the webpage, they will be typing into the native
UI object that belongs to the attackers.

To successfully launch the attack, the attackers should precisely overlay the
native Android UI objects on top of the HTML objects of the web page inside
WebView, with exactly the same size and location. Since the layout of the victim
page is almost stable in many cases (e.g. login pages), attackers can quite easily
calculate the size and position of the targeted UI objects within the webpage.

Case Study. We use Gmail as an example to demonstrate how the attack
works. We separately display the two layers of layout in the malicious applica-
tions. Figure 6(a) is the upper layer, consisting of two EditText native UI com-
ponents. Figure 6(b) is the lower layer, consisting a WebView with the Gmail
login page inside. When being displayed on the screen, the two EditText UI
components will exactly overlap with the two input fields on the Gmail login
page. When users type the username and password, they actually type in the
EditText UI components, which are accessible by the attacker.

Users may be aware of the attack once they finish the input actions and sub-
mit the form, because the actual HTML input objects are empty, and an error
message will be displayed. To further disguise that, the attackers should also add
a fake submit button (native UI object). Once the fake button is clicked, the ma-
licious application should ask WebView to navigate to an error page, displaying

240 T. Luo et al.

(a) Event Dispatching APIs (b) Event Dispatching Mechanism

Fig. 7. Event Dispatching Mechanism and APIs

something like “Page cannot be displayed due to network problems”. After the
users go back to the previous page, the malicious application remove all the
overlaid native UI objects, so the users can proceed without raising suspicions.

4 Event-Simulating Attacks

The touchjacking attacks described earlier hijack real user’s touch events, while
this attack can generate fake touch events. As we have discussed in Section 2, like
all of the view-based Android UI objects, the WebView class inherits a number of
methods from the View class, including the ones needed by the event-dispatching
mechanism in Android. Those APIs are listed in Figure 7(a). However, those
event-dispatching APIs also have to be exposed to Android applications. As
results, by invoking those APIs to dispatch the action to the currently focused
HTML UI objects, applications can generate keystroke, click, and touch-screen
events within WebView without consents from users (Figure 7(b)).

Since we believe that those APIs directly interact with the web page inside the
WebView, attacks using those APIs will not treat the WebView as the blackbox.
Although this attack is more powerful than the touchjacking attacks, we believe
in the future, those APIs will be blocked by the android system. Due to the page
limitation, we cannot cover the details of this attack here.

5 Attacks on Other Platforms

To see whether the attacks we identified in this paper work on the platforms other
than Android, we have tried the attacks on iOS (version 4.3.2) and Windows
Phone 7. All the three types of Touchjacking attacks work on iOS and Windows
Phone 7. For the event-simulating attack, unlike Android, iOS does not provide
APIs to dispatch key/touch events to UIWebView. Therefore, we were not able
to directly simulate key/touch events in UIWebView. Similar to iOS, Windows
Phone does not provide any API support for programmatically invoking an event.

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 241

6 Related Work

Since the first bug report on the negative usage of iframe by [11], Clickjacking
attack [6], UI redressing attack [9], and Next Generation Clickjacking attack [15]
have been developed by taking advantage of transparent iframes. To successfully
launch a clickjacking attack, a malicious page is constructed by attackers in a way
that tricks victims into clicking on the elements in a different page that is only
barely visible or completely invisible [16]. All of these attacks can be analysed
as confused deputy attacks, where the user acts as the confused deputy [2].

Clickjacking can also be successfully launched on the browsers for mobile
platform. Moreover, more confused deputy attacks targeting on mobile devices
were proposed. The project [13] introduced the Tapjacking attack, which dis-
play a fake view (called a Toast) by generating a customized notification to
pass interaction events such as finger taps to a hidden user interface overlaid
underneath. To allow developers to prevent TapJacking, Android 2.3 provides a
feature for Views to be only interactive when it is visible by explicitly setting the
filterTouchesWhenObscured property to true.

Similar to Clickjacking and Tapjacking, the Touchjacking described in our
paper can be counted as confused deputy attack as well. But our work is the
first to study the attacks using WebViews, instead of Iframes or Toast. Although
the goal of Touchjacking is to cause confused deputy and trick users misusing
authority, the vulnerabilities that Touchjacking takes advantage of are com-
pletely different from other attacks. In other words, Touchjacking exploits the
design flaw of WebView component. Therefore, our attacks cannot be prevented
by the solutions proposed for clickjacking attacks, such as frame busting [12]
and X-Option-Header [5]. Since this paper only focuses on the attack, details of
the solutions are not included; they can be found in the work called Medium
framework [8], which introduces the concept Visual Integrity. The XSS at-
tack compromises the data integrity of particular web site, but Touchjacking and
various kinds of Clickjacking attacks only compromise the visual integrity of the
page loaded in the web container.

Touchjacking attacks differ from phishing [10] attacks because they do not
trick users to enter secret credentials into a spoofed website. Instead, users need
to enter their credentials into the real website in the WebView to establish an au-
thenticated session. The attack can proceed until the user’s session expires. The
user’s sensitive information is completely isolated from the malicious Android
application throughout the attacks.

The project [3] discovered several phishing attacks that can be mounted
against control transfer. Those attacks will take advantage of the lack of secure
application identity indicators in mobile operating systems and browsers, so the
user cannot always identify whether a link has taken him/her to the expected
application. Some of the attacks target the phishing attack on browsers and We-
bViews, but they depend on faking the whole browser or using the WebView
APIs to directly compromise the webpage. The spoofing attack we introduced
in this paper is not due to any of the four control transfer scenarios, but a new
control transfer from webpage to system.

242 T. Luo et al.

Our paper is distinguished from the work [7], which tries to exploit WebView
vulnerabilities by directly manipulating the contents inside WebView through
the powerful APIs and hooks exposed byWebView. In this paper, we assume that
all the access paths to directly communicate with the webpages inside WebView
have been blocked or securely controlled.

7 Conclusion

The security problem of the WebView technology has been studied before, but
the existing work focuses on how the APIs designed specifically for WebView
can be abused to compromise the security of the web contents inside WebView.
The work calls for adding extra access control into those APIs. This paper points
out that even if those APIs are secured, WebView is still dangerous. This is be-
cause WebView inherits many UI-based APIs from its super classes, and those
APIs can be abused as well, although in a very different way. We describe several
attacks based on these APIs. We show that using these APIs, attackers can com-
promise the integrity and confidentiality of the web contents inside WebView.

References

1. Android-Team. Webview class reference,
http://developer.android.com/reference/android/webkit/WebView.html

2. Close, T.: The confused deputy rides again! (2008),
http://waterken.sourceforge.net/clickjacking/

3. Felt, A., Wagner, D.: Phishing on mobile devices. In: Web 2.0 Security and Privacy
(2011)

4. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: Proceedings of the 2nd USENIX Conference on Web Application Devel-
opment, WebApps 2011, Berkeley, CA, USA, p. 7 (2011)

5. Firefox. The x-frame-options response header,
https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header

6. Hansen, R.: Clickjacking, http://ha.ckers.org/blog/20080915/clickjacking/
7. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on webview in the an-

droid system. In: Proceedings of the 27th Annual Computer Security Applications
Conference, pp. 343–352. ACM (2011)

8. Luo, T., Jin, X., Du, W.: Mediums: Visual integrity preserving framework. In:
Proceedings of the Third ACM Conference on Data and Application Security and
Privacy, CODASPY 2013 (2013)

9. Niemietz, M.: Ui redressing: Attacks and countermeasures revisited. In: CONFi-
dence 2011 (2011)

10. Niu, Y., Hsu, F., Chen, H.: iphish: phishing vulnerabilities on consumer electronics.
In: Proceedings of the 1st Conference on Usability, Psychology, and Security, pp.
10:1–10:8. USENIX Association, Berkeley (2008)

11. Ruderman, J.: Bug 154957 - iframe content background defaults to transparent
(2002), https://bugzilla.mozilla.org/show_bug.cgi?id=154957

12. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0 Security
and Privacy (2010)

http://developer.android.com/reference/android/webkit/WebView.html
http://waterken.sourceforge.net/clickjacking/
https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header
http://ha.ckers.org/blog/20080915/clickjacking/
https://bugzilla.mozilla.org/show_bug.cgi?id=154957

Touchjacking Attacks on Web in Android, iOS, and Windows Phone 243

13. Rydstedt, G., Gourdin, B., Bursztein, E., Boneh, D.: Framing attacks on smart
phones and dumb routers: tap-jacking and geo-localization attacks. In: Proceed-
ings of the 4th USENIX Conference on Offensive Technologies, pp. 1–8. USENIX
Association (2010)

14. Sophos. Facebook worm - likejacking (2010),
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/

15. Stone, P.: Next generation clickjacking (2010)
16. Zalewski, M.: Browser security handbook (2008),

http://code.google.com/p/browsersec/wiki/Part2

http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://code.google.com/p/browsersec/wiki/Part2

Short-Term Linkable Group Signatures

with Categorized Batch Verification

Lukas Malina1, Jordi Castellà-Roca2, Arnau Vives-Guasch2, and Jan Hajny1

1 Department of Telecommunications, Brno University of Technology,
Purkynova 118, Brno, Czech Republic

{malina,hajny}@feec.vutbr.cz
http://crypto.utko.feec.vutbr.cz

2 Department of Computer Engineering and Mathematics,
Universitat Rovira i Virgili,

Av. Paisos Catalans 26, Tarragona, Catalonia, Spain
{jordi.castella,arnau.vives}@urv.cat

Abstract. In ad hoc wireless networks like Vehicular ad hoc Network
(VANETs) or Wireless Sensor Networks (WSN), data confidentiality is
usually a minor requirement contrary to data authenticity and integrity.
Messages broadcasted from a node to other nodes should be authentic
but also keep user’s privacy in plenty scenarios working with personal
data. Group signatures (GS) are used to provide privacy and authentic-
ity to the users. Moreover, GS with batch verification can be efficient.
Nevertheless, the current solutions have practical drawbacks like using
an expensive tamper-proof hardware, the computation bottlenecks of
the verification and revocation phases, complicated certificate distribu-
tion/revocation or omitting important properties like short-term link-
ability which is demanded in several applications, e.g. change lanes of
vehicles in VANETs. To our best knowledge, our solution employs the
short group signature with short-term linkability and categorized batch
verification for the first time. Our solution provides more efficient signing
and verification than compared schemes. Moreover, the solution allows
secure and practical registration and revocation of users. The usage of
proposed scheme protects the honest users who can now join and securely
communicate without losing their privacy.

Keywords: Security, Group Signature, Batch Verification, Privacy,
Efficiency, Ad hoc Wireless Network, Short-term Linkability.

1 Introduction

There are a lot of practical and theoretical scenarios where data confidentiality
is not too important like data authenticity, integrity and user privacy during
communication. For example, privacy is demanded by users in Wireless Body
Sensor Networks (WBSN) where nodes are bound to human in order to measure
medical data and user position [1]. In WBSN, the users concern about their
potential monitoring by a malicious observer. Further, the received messages

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 244–260, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://crypto.utko.feec.vutbr.cz

Short-Term Linkable Group Signatures 245

carrying useful data from several tens of nodes must be verified as soon as possi-
ble. The same problem with privacy arises in VANETs. For better intuition, we
apply our proposed security solution to VANETs. Nevertheless, the solution can
be applied to systems where the users’ privacy, data authenticity and integrity
are required during dense communication.

The wireless communication among vehicles brings many applications which
can help drivers, prevent accidents or reduce traffic. A vehicular ad hoc network
measures useful data like speed, location, road condition or alerts and distributes
them using an On Board Unit (OBU) in a vehicle in order to increase secu-
rity on roads and reduce traffic jams. OBU can be an embedded device/a user
smartphone or a navigation with VANET application. Self-organized VANET
offers two types of communication: wireless communication between a vehicle
and a vehicle (V2V), and communication between vehicles and the VANET in-
frastructure (V2I) represented by Road-Side Units (RSU) which are connected
to a fixed infrastructure (eg. Internet). Security in VANETs plays a key role
in protecting against bogus and malicious messages, misusing at roads, eaves-
dropping etc. Common solutions guarantee the message integrity, authentication
and non-repudiation. Furthermore, privacy is required due to the possibility of
drivers tracking by malicious observers. Moreover, VANETs can serve in a dense
urban traffic where hundreds of vehicles communicate in V2V or V2I, so that
the security overhead and computation time must be minimal. In this case, the
following scenario is considered: Scenario 1 : A driver, Alice (A), with the car no.
2, which is depicted in Fig.1, can register special events (accidents, traffic jams,
roads under construction etc.). Depending on the type of event, A immediately
broadcasts a warning message through the wireless V2V communication to all
participated cars in VANET. In this scenario, an accident is depicted in Fig.1.
Supposing another driver, Bob (B), with the car no. n-1, who is in range and
coming closer to A, receives this message. B also receives more messages from
another cars in the area. Moreover, other messages can contain contradictory
warnings or can be bogus. In short time, B must consider the validity of these

n

n-1

n-6

2

Street A

Street B

Street D

n-5

n-3

n-2

Street C

Street B

Street C

Street A

Street D

3

1

accident

M1 warning message (accident)

M2 warning message (traffic jam)

M3 bogus message

M2 M1

M3

n-4

Destination of n-1 car

I. route

II. route

Fig. 1. The VANETs in urban traffic - Scenario 1

246 L. Malina et al.

messages and quickly decides changing the route (from planed I. to II.). If B
makes the right decision, he can avoid the situation referenced by the first warn-
ing message. It is obvious that the decision must come in real time and as soon
as possible. In another case, a lot of cars periodically broadcast informations
about them (speed, direction, location, break alerts etc.) and road conditions
(changing of road lanes, distance between cars etc.) each other. The type of in-
formation depends on the application used by the car, but message processing
must be efficient because the sending period of beacon messages is less than 300
ms [2].

The security proposals are challenged to connect privacy, security, efficiency
and capable management in huge vehicular networks. The open problem of Sce-
nario 1 is how a lot of anonymous messages can be verified in real time. The
related work tries to solve this problem using the batch verification of group
signatures. But this approach takes more time than expected if the number of
malicious messages appeared in batch is ≥ 15% from all messages as is claimed
in [3]. In order to improve this issue, we propose a novel solution with catego-
rized batch verification with short-term linkability which can serve to recognize
the malicious messages and excludes them from batch. Moreover, the short-term
linkability significantly improves the signing phase, so that our scheme provides
more efficient signing and verification than related works using GS.

The paper is organized as follow: The next section presents the related work
which is focused on the security and privacy protection in VANETs and our
contribution is outlined. Then, section 3 presents a basic scheme description,
requirements and main cryptographic techniques used in our proposal. Further,
section 4 introduces our solution and the phases of our scheme are described. The
important phases like signing and verification are evaluated and compared with
related solutions in section 5. Section 5 also contains the security consideration.
Finally, conclusion and future work are presented in section 6.

2 Related Work and Our Contribution

In this section, we outline the related work and our contribution.

2.1 Related Work

Generally, the protection of privacy in VANETs can be ensured by three ap-
proaches, i.e., pseudonyms, group signatures and hybrid schemes. Anonymization
through pseudonyms has been proposed in [4] and [5]. The work [6] uses anony-
mous certificates which are stored in vehicles (usually in a tamper-proof device).
This approach uses a set of short-lived pseudonyms and privacy among vehicles
is provided by changing these certified public keys. Nevertheless, in large urban
VANETs, this approach is burdened by preloading and storing a large number
of anonymous certificates with pseudonyms.

Group signatures (GS) in VANETs provide user anonymity by signing a
message on behalf of a group. GS guarantee the unlinkability of honest users

Short-Term Linkable Group Signatures 247

and the traceability of misbehaving users. The scheme [7] called GSIS uses the
combination of a group signature based on [8] with a hybrid membership revoca-
tion mechanism in the V2V communication, and Identity Based Group Signature
(IBGS) in the V2I communication. The hybrid membership revocation with the
list of revoked members (RL) works with a threshold value Tτ . In case |RL| < Tτ ,
the scheme uses revocation verification algorithm, otherwise, the scheme updates
the public/private group keys of all non-revoked members. For efficient verifica-
tion, the authors of [9] propose a GS with batch verification in V2I which takes
three pairing operations. This scheme called IBV has several drawbacks such as
using tamper proof devices, it is vulnerable to tracking or impersonation attacks,
see [10] for a complete description. The works [11] and [12] can efficiently verify
a large number of messages in V2V. These schemes use short group signatures
with fast batch verification (only two pairing operations are used instead of 5
n, where n is number of messages). Nevertheless, the performance of batch ver-
ification degrades in dense V2V communication with bogus messages. The On
Board Units (OBUs) must process the messages quickly, they have between 100
ms and 300 ms to process a message [2]. Thus, the computation of expensive
pairing and exponentiation on limited On Board Units (OBUs) is a hard require-
ment to meet because of the short response time. This fact limits the VANETS
in practice. The work [13] employs identity based group signature with the batch
verification, provides a scalable management of large VANETs and an efficient
revocation of members, but suffers from more expensive signing and verification
phases than GS.

In [14], vehicles locally generate on the fly short-lived certificates (pseudonyms)
with the help of GS. A Certification Authority (CA) maintains the mapping be-
tween identities and pseudonyms. One of the drawbacks is the security overhead
of messages that consists of the message signature by private short-lived key, pub-
lic short-lived key and the group signature of public short-lived key. In [15], the
solution called TACK uses short-lived keys (ECDSA) to secure V2V messages.
Long-term pre-distributed keys (group signatures) are used for anonymous au-
thentication in regions and to gain the new certified temporary key from the Re-
gional Authorities (RAs). TACK supports desirable short-term linkability but in
dense V2I communication leads to delay in join phase and OBU must broadcast
ECDSA public key with the certificate in V2V. In [10], the two proposals called
SPECS include the pseudonyms maintained by Trusted Authorities (TAs), the
group signature with 2-pairing batch verification and the positive and negative
bloom filter for the effectiveness of the verification phase. Nevertheless, SPECS
strongly rely on TAs and Road-Side Units RSUs. Also, the communication de-
lay plays a critical role between TAs and vehicles. In [16] the authors present a
Threshold Anonymous Announcement (TAA) service based on the adaptation
and amalgamation of direct anonymous attestation and one-time anonymous
authentication. The computational cost of the signing algorithm takes only 6
scalar multiplications and 1 pairing operation, and the computational cost of
the verification algorithm takes 5 scalar multiplications and 5 pairing opera-
tions. Nevertheless, the TAA scheme does not support batch verification.

248 L. Malina et al.

2.2 Our Contribution

Similarly like in [9], [11], [12] and [17], our proposed solution is based on group
signature. We focus on the efficiency of signing/verification, security and privacy
protection with respect to computationally limited RSUs. As related works, we
assume OBUs with enough computational power for basic modular arithmetic,
pairing and cryptographic operations.

– In the V2V communication, our solution provides the efficient signing with
short-term linkability. Our proposal uses the modified scheme of Wei et al.
(WLZ scheme) [17]. Nevertheless, our solution adds the short-term linkability
obtaining a more efficient signing phase than in the WLZ scheme. Moreover,
the WLZ scheme is focused on the V2V communication and does not describe
the registration and join phases in detail. Finally, the short-term linkability
is demanded for several applications [15] and can protect against Sybil and
Denial of Services attacks.

– In the V2V communication, our solution provides the efficient categorized
batch verification with short-term linkability. Generally in group signatures,
the batch verification of n messages is more efficient than individual verifica-
tion but the complexity of batch computation with bogus messages increases
from O(1) to O(ln n). In [3], the authors claim that if ≥ 15% of the signa-
tures are invalid, then batch verification is not more efficient than individual
verification. Our proposal modifies the WLZ scheme [17] where the batch ver-
ification costs only 2 pairings and 11n exponentiations. But the WLZ scheme
and related solutions use uncategorized batch verification which can cause
less efficient verification if bogus messages appear during attacks like the
Sybil attack, the Denial of Services (DoS) attack etc. However, our solution
applies categorized batch verification which sorts potential honest messages
to the first batch, and potential untrusted messages to the second or third
batch with lower priorities so the verification phase can be more efficient and
protect against Sybil and DoS attacks.

– In V2I communication, our scheme uses probabilistic cryptography for keep-
ing long-term unlinkability and the privacy protection of drivers. The join
or registration phase takes only two messages (request/response) and the
scheme does not need tamper-proof devices.

– We avoid the inefficient linear growth of revocation list with the secret keys
of members. Our proposal uses the revocation process with the expiration of
time stamp in certified pseudonym which revokes members by self. Vehicles
have no work with a Revocation List (RL). The proposal uses only a Group
Temporary Revocation List (GTRL) broadcasted between group managers
to deny malicious members accessing the group of VANET members.

3 Preliminaries

In this section, we outline the scheme, the requirements and the main crypto-
graphic techniques used in our proposal.

Short-Term Linkable Group Signatures 249

3.1 Scheme Description

Our scheme, depicted in Fig.2, consists of a Trusted Authority (TA), a Group
Manager (GM) and a Member (V).

– TA issues certified member pseudonyms and generates all public crypto-
graphic parameters in our solution. TA is fully trusted entity in our model
and can reveal the real ID of a member in the revocation phase. TA is con-
nected with all group managers and manages the registration of all members.

– GM is an entity which manages several Road Side Units (RSUs) and gen-
erates group secret keys to members in the join phase. In our proposal, we
assume that GM is honest and is securely connected with the own RSUs (e.g.
via Transport Layer Security). GM also can trace and open the malicious
messages in its own area but GM cannot reveal the member ID.

– V is a driver with the certified pseudonym which is embedded in vehicle’s
OBU. After the registration of the driver in TA and joining in GM’s area
through the V2I communication, V can send or broadcast messages through
the V2V communication. Further, V can report a bogus message through
the V2I communication to GM.

TA

RSU1-GM1

RSU2-GM1

GM1

RSU3-GM1

GM2

RSU2-GM2

RSU1-GM2

I2I

V1

V2

V2V

V2I

I2I

Fig. 2. The parties in our model of secure and anonymous VANET

3.2 Requirements

Our scheme is designed to satisfy these security and practical requirements:

– Privacy (Revocable Anonymity). Our scheme protects driver’s privacy
in the long-term. An honest driver with OBU can use the pseudonym signed
by TA to obtain group parameters and keys from GM. Then, its OBU
can sign every message on behalf of the group members and keep driver’s
anonymity. Every malicious driver can be revealed by the collaboration of
GM and TA. If some member breaks the rules, his/her messages can be
opened by GM and his pseudonym is sent to TA which can extract the mem-
ber’s ID. Next time, when an adversary requests a new pseudonym with a
fresh time stamp (e.g. via IETF RFC 3161), TA checks if his/her ID is in
the list of globally revoked members.

250 L. Malina et al.

– Message Integrity, Authenticity and Non-Repudiation. In V2V com-
munication, the group signature ensures that message is signed by a vehicle
which holds the right and fresh group key pair (authenticity). The system
must verify the received messages, i.e., the messages that have not been
modified once they have been sent (integrity). Members stay private but can
not deny that they created the signed messages (non-repudiation).

– Short-Term Linkability. In several VANET’s applications like the safe
changing of road lanes and the short-term mapping of vehicle movements,
the short-term linkability is a desirable property [15]. In a short period,
i.e., every 100÷300 ms, the broadcasted V2V beacon messages are used to
trace vehicle’s position and direction. The current proposals which use group
signatures cannot link related messages from one vehicle sent in a short
interval. Our scheme balances the privacy of drivers and the linkability of
messages which is available only for a short interval. On the other hand, long-
term unlinkability is ensured using the probabilistic encryption and changing
the pseudonyms in the group signature.

– Traceability. When a member misuses the VANETs for his/her own ben-
efit, he/she breaks the rules or causes an accident, the GM obtains his/her
pseudonym from his/her signed messages and, sends it to the TA, who re-
vokes the anonymity, and obtains his/her ID.

3.3 Cryptography Background

Our solution employs the ECDSA signature scheme with the public/private keys
of TA, GM, V. Additionally, we use a probabilistic ElGamal encryption/decryption
during the join of members. The modified short group signature WLZ scheme
[17] based on the BBS04 scheme [8] is used in the V2V communication. This
scheme uses bilinear maps and is based on q-SDH problem and Decision Linear
problem which have been studied in [8].

We follow the notation of [8] for the concept of bilinear maps: G1, G2 and GT

are multiplicative cyclic groups of a prime order p. Then, g1 is a generator of G1,
g2 is a generator of G2 and ψ is an isomorphism from G2 to G1 that ψ(g2) = g1.
So e is a computable bilinear map e : G1 ×G2 → GT with following properties:

– Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

– Non-degeneracy: e(g1, g2) �= 1GT .

The q-Strong Diffie-Hellman problem is a hard computational problem

where (q+2)-tuple (g1, g2, g
γ
2 , g

γ2

2 , ..., gγ
q

2) is the input and a pair (g
1

x+γ

1 , x) is the
output.

The Decision Linear Diffie-Hellman problem. Given u, v, h, ua, vb, hc ∈
G1 as input and output yes if a+ b = c and no otherwise, detailed in [8].

4 Our Solution

We focus on the practical registration and join of VANET members and the effi-
cient signing/verification of V2V messages. Our solution consists of seven phases:
Setup, Registration, Join, Signing, Categorized Verification, Trace, Revocation.

Short-Term Linkable Group Signatures 251

4.1 Setup

In the first part, TA chooses parameters (G1, G2, g1, g2, ψ, e) and generates an
ECDSA key pair sigTA/verTA, an ElGamal private key skTA and a public key
pkTA, then releases the public keys and parameters. GMs generate group sig-
nature keys, ElGamal private skGMi and public pkGMi keys for the secure V2I
communication and publish public keys. Every GMi randomly selects r1, r2 ∈
Z∗
p , h ∈ G∗

1 and sets u, v such that ur1 = vr2 = h. Then, GMi selects random
γ ∈ Z∗

p and computes w = gγ2 . The group public key is gpk = (g1, g2, u, v, w, h)
and the manager group secret key is gmsk = (r1, r2).

4.2 Registration

In the registration phase, the i-th driver (member) Vi using a vehicle with
OBU requests a valid certified pseudonym πVi from TA. For the first time, TA
must physically verify driver’s real ID, his/her driving license and OBU’s ID
number. Then Vi creates an ECDSA key pair sigVi/verVi , gives the public key
to TA which stores (IDVi , verVi) in the database, and the signed certificate
cerVi = sigTA(IDVi , verVi) is given to Vi. After the first successful registration
phase, driver can request his/her next pseudonym online. Assuming that Vi has
pkTA, verTA, the two-message of the registration phase consists of these steps:

1. Vi self-generates ElGamal key pair (skVi/pkVi) and sends the encrypted
request encpkTA(pkVi ||IDVi ||verVi ||cerVi ||sigVi(pkVi ||verVi || IDVi)) to TA.

2. TA decrypts the request and checks if the IDVi is not revoked in Global
Revocation List (GRL), the certificate cerVi and the member’s signature which
ensures member’s authenticity and commits the pkVi in the certificate with new

ElGamal key pair. Then, TA generates a challenge c
R← Zq, a time stamp Tl and

sends the encrypted response

encpkVi
(encpkTA(ID||verVi ||c) ||Tl||sigTA(Tl||encpkTA(ID||verVi ||c)||pkVi)) back

to Vi. Finally, Vi checks the signature by TA and composes the pseudonym πVi =
pkVi ||encpkTA(ID||verVi ||c)||Tl|| sigTA(Tl||encpkTA(ID||verVi ||c)||pkVi) and
stores it.

4.3 Join

A vehicle entering the i-th GMi area (several RSUs) for the first time, requests
the group public key and his/her group member secret key. We assume that RSUs
managed by GMi are securely connected through the VANET infrastructure. Let
H () be a hash function, and the two-message join phase consists of these steps:

1. Vi sends πVi = pkVi ||encpkTA(ID||verVi ||c)||Tl||sigTA(Tl||encpkTA(ID||
verVi ||c)||pkVi) ,which is encrypted using pkGMi , to GMi.

2. GMi decrypts πVi using skGMi , verifies πVi that is signed by TA and
controls if encpkTA(ID||verVi ||c) is not in Group Temporary Revocation List

252 L. Malina et al.

(GTRL) and the validity of the time stamp Tl. If πVi is ok, GM creates gskVi =

(xi, Ai), where xi = H(encpkTA(ID||verVi ||c)||Tl||γ), Ai = g
1

xi+γ

1 , and stores
(encpkTA(ID||verVi ||c), Ai, Tl)) to the join table and sends gskVi encrypted using
pkVi to Vi.

We note that ElGamal encryption/decryption is probabilistic. Due to this
fact, an observer can not link two or more encrypted messages if Vi requests
gskVi for the second time.

4.4 Signing

The signing phase applies the modified short group signature WLZ scheme
[17] which is based on the BBS04 scheme [8]. We include a counter k in the
OBUs, a member secret key gskVi = (Ai, xi) and a group public key gpk =
(g1, g2, h, u, v, w). OBU signs a message M ∈ (0,1)∗ and outputs the signature
of knowledge σ = (T1, T2, T3, R2, R3, R5, c, sα, sβ, sx, sδ, sμ).

If k = 0, Vi generates α, β, rα, rβ , rx, rδ, rμ ∈ Z∗
p , and

computes

T1 = uα, T2 = vβ , T3 = Aih
α+β ,

δ = αx, μ = βx.
(1)

p1 = e(T3, g2), p2 = e(h,w), p3 = e(h, g2). (2)

stores T1, T2, T3, δ, μ, p1, p2, p3, and computes

R1 = urα , R2 = vrβ , R3 = prx1 · p−rα−rβ
2 · p−rδ−rμ

3 ,

R4 = T rx
1 u−rδ , R5 = T rx

2 v−rμ ,
(3)

c = H(M,T1, T2, T3, R1, R2, R3, R4, R5), (4)

sα = rα + cα, sβ = rβ + cβ, sx = rx + cx,

sδ = rδ + cδ, sμ = rμ + cμ.
(5)

Finally, Vi sends the messageM with the signature σ = (T1, T2, T3, R2, R3, R5, c,
sα, sβ , sx, sδ, sμ) and increases the counter k++.

If α and β are unchanged every n messages, the short-term linkability is kept
because the pseudonyms of group signature T1, T2, T3 are also unchanged. Thus,
for n messages, when 1 ≤ k ≤ n, Vi does not need to compute equations 1,
2, contrary the WLZ scheme, but only generates random rα, rβ , rx, rδ, rμ ∈ Z∗

p

and computes equations 3, 4 and 5. This reduces all 3 bilinear operations to
0, 10 exponentiations to 9 and 14 multiplications to 9. The concrete VANET
application can decide when to fix the counter k = 0 and Vi generates new α
and β and recomputes the equations 1 and 2.

Short-Term Linkable Group Signatures 253

4.5 Categorized Verification

Our solution uses a categorized verification which sorts the incoming signed
messages to three levels of credibility. Due to the short-term linkability, Vi can
keep the Temporary List (TL) of known vehicles. Firstly, the received message
Mj is checked by Vi if it contains a valid time stamp, real and consistent data.
After that, the message with the group signature containing T3 is checked if
T3 is in TL. If yes, the recorded T3 with previous validity (W=1) is included
and sorted in the first batch. The validity W can be a boolean value which
indicates valid (W=1) or invalid (and unknown, W=0) signatures. If no, the
signed message with unknown T3 is sorted to the second batch which is verified
after the first batch verification. The rest of signed messages with T3 linked with
W=0 is verified in the third batch at the end of verification if OBU has enough
time for this. This approach improves the efficiency of the batch verification
process and helps when an attacker, who is out of the group, generates unsigned
or corrupted messages.

Batch Verification. Batch verification is investigated in [3], and it verifies
n messages in one batch. Vi uses gpk = (g1, g2, h, u, v, w) to verify messages
σj = (Tj1, Tj2, Tj3, Rj2, Rj3, Rj5, cj , sjα, sjβ , sjx, sjδ, sjμ) for j = 1, ..., n does:

restores Rj1 = usjαT−c
j1 , Rj4 = u−sjδT sx

j1 , computes a new control hash c′j
from received parameters:

c′j = H(Mj , Tj1, Tj2, Tj3, Rj1, Rj2, Rj3, Rj4, Rj5).

and checks if c′j = cj . If yes then Vi continues with verification, otherwise, the
message with the signature is inconsistent and is refused.

Vi randomly selects θ1, θ2, ..., θn ∈ Zp with lb bit,
checks batch if

j=n∏
j=1

R
θj
j3 = e(

j=n∏
j=1

(T
sjx
j3 h−sjδ−sjμg

−cj
1)θj , g2)

e(

j=n∏
j=1

(T
cj
j3h

−sjα−sjβ)θj , w)

(6)

and if
1G1 = (Rj5Rj2)

−θjT
θjsjx−θjcj
j2 v(sjβ−sjμ)θj . (7)

The signed message is valid if equations 6 and 7 hold. All T3s from new valid
signed messages are added to TL with W=1. In case that the batch verification
fails, the divide-and-conquer approach is used to identify the invalid signatures
that were added to TL with W=0. The honest messages keep the mark W=1.

Individual Verification. In the end of the divide-and-conquer approach, the
final two messages are individually verified.

Vi restores R1 = usαT−c
1 , R4 = u−sδT sx

1 , computes new control hash c′ from
received parameters:

c′ = H(M,T1, T2, T3, R1, R2, R3, R4, R5).

254 L. Malina et al.

and checks if c′ = c. If yes then Vi continues with the verification, otherwise,
the message is inconsistent and it is refused.

Then, Vi checks if

R3 = e(T3, g2)
sxe(h,w)(−sα−sβ)e(h, g2)

(−sδ−sμ)

(e(T3, w)e(g1, g2)
−1)c

(8)

and
1G1 = (R5R2)

−1T sx−cx
2 v(sβ−sμ). (9)

The signed message is valid if equations 8 and 9 hold.
We can see from equations 6 and 8 that individual verification have a cost of

5 pairing operations per one message but batch verification costs only 2 pairing
operations per n messages. This is the main reason why we avoid individual
verification and propose to use the categorized batch verification.

4.6 Trace

Every bogus signed message can be opened by GMi using the group manager se-
cret key gmsk = (r1, r2). GMi extracts the part of the member secret group key
gskVi → Ai = T3/(T

r1
1 ·T r2

2) and searches the record (encpkTA(ID||verVi ||c), Ai, Tl)
in the database. The part of the member pseudonym can be sent to TA for revo-
cation.

4.7 Revocation

When there are serious circumstances, e.g., an accident, a malicious member
is revoked globally by the cooperation of GMi and TA. GMi is able to open a
message and extract the member pseudonym that is sent to TA. TA broadcasts
rev = (encpkTA(ID||verVi ||c), Tl)||sigTA(rev) to other active GMs which check
the signature and store rev to own GTRLs until the lifetime of this pseudonym
expire. TA extracts IDVi and adds it to GRL so the malicious member can not
refresh his/her pseudonym in the next registration phase.

5 Evaluation and Security Consideration

In this section, we outline the evaluation of our solution, the comparison of the
signing and verification phases with the related works which are based on group
signatures and the security consideration of our solution.

5.1 Performance and Comparison with Related Work

We compare our proposal based on the BBS04 scheme [8] with the related
VANETs schemes which use group signatures, the scheme of Wei et al. (WLZ
scheme) [17], GSIS [7], Zhang et al. [11] and Ferrara et al. [3]. In our compari-
son, we omit the WS2010 scheme [12] due to the the problem in message signing
which is pointed out in [17]. The verification of the TAA scheme [16] takes 5

Short-Term Linkable Group Signatures 255

scalar multiplications and 5 pairing operations but the TAA scheme does not
support batch verification.

Generally, the time of bilinear pairing Tp is considered the most expensive
operation (tens times more expensive than exponentiation operation Te) and ex-
ponentiation is more expensive than multiplication Tm. Nevertheless, the actual
processing time also depends on the input size to those operations. Due to the
fact that related works are also based on the BBS04 scheme [8] we assume the
same lengths of parameters (the MNT curves with G1 = 176 bits, GT = 528 bits
and Zp = 162 bits). The work [18] shows that the modular arithmetic operations
like addition and subtraction can be computed more efficiently than multiplica-
tion and exponentiation. Due to this fact, we omit these fast operations in this
performance evaluation.

Table 1. The comparison of the verification phases

V2V scheme: Our scheme &
WLZ scheme[17]

GSIS [7] Zhang et al. [11] Ferrara et al. [3]

Batch: yes no yes yes

Length of signa-
ture:

5G1, GT , 5Zp

(2380 bits)
3G1, 6Zp (1500
bits)

7G1, GT , 5Zp

(2570 bits)
3G1, GT , 6Zp

(2032 bits)

Performance of batch verification

Pairings 2 5n 2 2

Exponentiation 11n 12n 14n 13n

Multiplication 11n+1 8n 17n 10n+1

Performance of individual verification

Pairings 5 5 5 5

Exponentiation 10 12 12 12

Multiplication 9 8 8 8

The proposal based on the group signature BBS04 scheme [8] and motivated
by Wei et al. (WLZ) [17] reaches more efficient batch verification (2 Tp + 11n
Te), where n is the number of messages, and individual verification (5 Tp + 10 Te)
than the compared schemes, see Table 1. But the related solutions like Zhang et al.
[11], Ferrara et al. [3], the WS2010 scheme [12] and also the WLZ scheme [17] use
uncategorized batch verification that can be negatively affected by malicious and
bogus messages (≥ 15% from all messages). To our best knowledge, our proposal
applies categorized batch verification with short-term linkability in VANET for
the first time. Our categorized batch verification with the temporary list of known
vehicles reaches the high correctness of the important first batch in case when the
bogus or damaged signed messages appear in the V2V communication.

As we can see in Table 2, our proposal significantly improves the perfor-
mance of the signing of x messages with short-term linkability and it costs less
operations than in the signing phase of the WLZ scheme. Pairing (3 ⇒ 0), ex-
ponentiations (10 ⇒ 9) and multiplication (14 ⇒ 9) operations are reduced.

256 L. Malina et al.

Table 2. The comparison of the signing phases

V2V scheme: Our scheme WLZ scheme [17] GSIS [7] & Zhang et
al. [11] & Ferrara et
al. [3]

Short-term linkability: yes no no

Performance of signing for the first message / the next messages

Pairings 3 / 0 3 / 3 3 / 3

Exponentiation 12 / 9 10 / 10 12 / 12

Multiplication 12 / 9 14 / 14 12 / 12

Our scheme is implemented as a proof of concept in JAVA and uses the Java
Pairing Based Cryptography (jPBC) Library 1. The implementation employs
MNT curves type D with the embedding degree k = 6, 171 b order curve and pre-
generated parameters d840347-175-161.param and is tested on a machine with
Intel(R) Xeon(R) CPU X3440 @ 2.53GHz, 4 GB Ram, Windows 7 Professional.
The signing phase of our scheme with short linkability takes approx. 60 ms per
one signature and the signing phase of the related schemes [3], [7], [11] and [17]
based on BBS scheme takes approx. 160 ms per one signature. The verification
of a single signature takes approx. 207 ms using our scheme and approx. 224 ms
using related schemes. If the batch verification is employed then the verification
of one signature takes approx. 50 ms so the batch verification of 10 signatures
takes approx 500 ms.

5.2 Security Consideration

In this section, we outline the security consideration of our solution, that is based
on the cryptographic primitives which are secure and widely accepted.

Proposition 1. In the registration phase between Vi and honest TA, the scheme
preserves message confidentiality, integrity and authenticity.

Claim 1. The request and response messages are confidential.

Proof. We suppose that breaking the security of the ElGamal encryption is at
least as hard as the decision Diffie-Hellman problem, as is proven in [19]. Then,
the registration phase keeps confidential communication between Vi and TA
due to the encryption every message by encpkTA and encpkVi

. Only holder of
the ElGamal private key skTA respectively skVi can decrypt the message.

Claim 2. The request message is authentic and can not be modified by an unau-
thorized entity.

Proof. Message integrity and authenticity are ensured by the ECDSA signature
scheme. The request message is unforgeable due to the commitment of the mem-
ber public key pkVi in the member’s certificate and in the signed part of request
by Vi using ECDSA signature key sigVi . Assumining that the ECDSA signature

1 (Available on http://gas.dia.unisa.it/projects/jpbc/index.html).

Short-Term Linkable Group Signatures 257

scheme is secure under the Elliptic Curve Discrete Logarithm Problem (ECDLP)
and the used hash function is preimage resistant and collision resistant, then,
if the request message was modified, the verification by the stored ECDSA key
verVi of the signature would be incorrect.

Claim 3. The creation of a fraudulent pseudonym is computationally unfeasible
nowadays.

Proof. If an unathorized entity wants to create a pseudonym πVi , he/she needs
the ECDSA private key sigTA of TA. Supposing that ECDSA is secure nowadays,
only trusted TA with its private ECDSA key sigTA can sign πVi . Moreover, if a
fraudulent πVi was sent to Vi having TA’s public ECDSA key verTA then the
signature of πVi would be invalid.

Proposition 2. In the join phase between members (Vi) and honest Group
Managers GMi the proposed scheme preserves message confidentiality, integrity,
authenticity and member’s privacy.

Claim 4. The request and response messages are confidential.

Proof. Every Vi who wants to join a group maintained by GMi, must send
the ciphertext (pkVi and πVi) encrypted using the certified ElGamal public key
pkGMi to GMi. GMi decrypts and checks if πVi is valid and sends gskVi encrypted
using pkVi . Only Vi knows the corresponding ElGamal private key and can
decrypt the message with gskVi . Assuming that GMi is honest, the members
joining keeps the message confidentiality, integrity and authenticity due to the
ElGamal properties.

Claim 5. The pseudonym πVi is anonymous.

Proof. Assuming that ElGamal encryption/decryption is probabilistic, an ob-
server is unable to link two or more request/response messages because cipher-
texts are different although πVi is used several times. The pseudonym πVi created
by TA does not contain the plaintext of the user identity (ID) but it contains the
encrypted fragment encpkTA(ID). GMi and other entities without the private
ElGamal key skTA are not able to open the member’s ID. Hence, the privacy
protection of members is ensured in the join phase.

Proposition 3. In the V2V communication between Vi, the proposed scheme
ensures message integrity, authenticity, member’s privacy and revocation.

Claim 6. Group signatures of messages keep integrity, authenticity and non-
repudiation.

Proof. The signing and verification phases employ the group signature with
the short-term linkability to ensure the message authenticity and integrity, the
driver anonymity in long-term way and non-repudiation. Our scheme modifies
the WLZ scheme [17] based on the BBS04 scheme [8] and inherits all its secu-
rity features including the correctness. Besides honest GMi, only a valid group
member Vi can sign a message on behalf the group. If an attacker without valid
gskVi = (Ai, xi) tries to modify the message, he/she must recompute hash c

258 L. Malina et al.

and some signature parts. Assuming that hash function is secure and the Dis-
crete Logarithm problem holds then the computation of the proof of knowledge
(sjα, sjβ , sjx, sjδ, sjμ) without xi is unfeasible nowadays. If the proof of knowl-
edge (sjα, sjβ , sjx, sjδ, sjμ) is incorrectly computed then the equations 6, 7 and
8, 6 would be not equal. The complete formal analysis can be in [8].

Claim 7. The drivers are anonymous, untraceable by the all entities besides
honest TA and their anonymities is revocable by the collaboration GM and TA.

Proof. The group signatures contain the group members’ pseudonyms T1, T2, T3

which are a linear encryption of members’ secret key Ai and random α and
β. The short-term linkability of messages does not violate the drivers’ privacy.
When the counter k is set to 0 and Vi generates a new α an β then, the new
signatures start to be unlinkable with old ones because contain new pseudonyms
T1, T2, T3. Supposing the Strong Diffie-Hellman assumption holds, every correct
message of a malicious member can be opened only by GM with gmsk = (r1, r2),
and gskVi = (Ai, xi) can be extracted. Malicious members can be revoked by
the collaboration of TA and GM.

Proposition 4. The proposed signature scheme protects against DoS attacks,
Sybil attacks and replay attacks.

Claim 8. The categorized verification protects against DoS and Sybil attacks.

Proof. If a malicious driver Eve (E) starts the Sybil attack which is a special
kind of the DoS attack then she broadcasts bogus messages that contain fake
pseudonyms and signatures. Meanwhile, the honest drivers (C, D, F,...) send
messages that contain valid pseudonyms and signatures announcing an accident
(sent by D) or a traffic jam (sent by C). If existing solutions are used, E can
flood the uncategorized batch verification process and paralyze drivers who must
discard some messages. Our proposal implements categorized batch verification.
Driver Bob (B) has a Temporary List (TL) of honest drivers. We suppose that
Bob’s TL keeps the list of known and honest drivers like D, F,... using the prop-
erty of short-term linkability which keeps the pseudonym T3 unchanged for a
short time. If B receives all messages, he checks the TL and collects the mes-
sages containing known T3 to the first batch and verifies them. Therefore, the
warning message referencing the accident from driver D is verified in time. The
messages with unknown pseudonyms like C are collected to the second batch.
The potentially untrusted messages from E with validity W=0 are verified in the
third batch only if Bob’s OBU has free time and computational capacity for this.
If Eve tries to replay recent a valid pseudonyms together with false signatures
then the recomputed hash c′j is not equal to received hash cj due to time stamps
in messages. For this reason, Eve is not able to mount a successful DoS attack
against the batch verification of signatures.

Claim 9. The proposed signature scheme protects against replay attacks.

Proof. Every message M contains besides position speed etc. also a time stamp
with actual time and date. Before verification, every received message is checked

Short-Term Linkable Group Signatures 259

if the time stamp is actual and valid. If an attacker without valid gskVi =
(Ai, xi) wants replies an old message with valid signature of a user, he/she must
modify the time stamp to valid and actual one, then, recomputes hash cj , and
recomputes all parts sjα, sjβ , sjx, sjδ, sjμ of the signature. Anyway, recomputing
valid sjx, sjδ, sjμ without xi is unfeasible under the Discrete Logarithm problem.

6 Conclusions

In this paper, we have presented our anonymous solution using short-term link-
able group signature with categorized batch verification. Our proposed solution
deals with anonymous and secure signing/verification of messages in the V2V
communication which is more efficient than related works. Further, the solu-
tion provides practical and secure registration, join and revocation of members
in VANETs. The short-term linkability significantly improves the signing phase
and is demanded in several VANET applications. Our categorized batch veri-
fication provides less errors in the important first batch of potentially honest
messages. Moreover, the categorized batch verification protects against Sybil
and DoS attacks. Our future plans are aimed at the investigation of categorized
batch verification and short-term linkability in dense traffic. The variable values,
e.g., the size of counter k affecting short-term linkability, will be determined for
various traffic scenarios.

Acknowledgments. This work was partially supported by the Technology
Agency of the Czech Republic project TA02011260; the Ministry of Industry and
Trade of the Czech Republic project FR-TI4/647; the Spanish Ministry of Science
and Innovation (through projects eAEGISTSI2007-65406-C03-01,CO-PRIVACY
TIN2011-27076-C03-01,ICTWTIN2012-32757,ARES-CONSOLIDER INGENIO
2010 CSD2007-00004 and Audit Transparency Voting Process IPT-430000-2010-
31), by the Spanish Ministry of Industry, Commerce and Tourism (through
projects eVerification2 TSI-020100-2011-39 and SeCloud TSI-020302-2010-153)
and by the Government of Catalonia (under grant 2009 SGR 1135).

References

1. Sun, J., Fang, Y., Zhu, X.: Privacy and emergency response in e-healthcare lever-
aging wireless body sensor networks. Wireless Com. 17(1), 66–73 (2010)

2. Hussain, R., Kim, S., Oh, H.: Towards Privacy Aware Pseudonymless Strategy for
Avoiding Profile Generation in VANET. In: Youm, H.Y., Yung, M. (eds.) WISA
2009. LNCS, vol. 5932, pp. 268–280. Springer, Heidelberg (2009)

3. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signa-
ture Batch Verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009)

4. Gerlach, M., Festag, A., Leinmuller, T., Goldacker, G., Harsch, C.: Security ar-
chitecture for vehicular communication. In: The 5th International Workshop on
Intelligent Transportation (March 2007)

260 L. Malina et al.

5. Fonseca, E., Festag, A., Baldessari, R., Aguiar, R.: Support of anonymity in
VANETs - putting pseudonymity into practice. In: Proceedings of IEEE Wire-
less Communications and Networking Conference (WCNC), Hong Kong (March
2007)

6. Raya, M., Hubaux, J.P.: Securing vehicular ad hoc networks. J. Comput. Secur. 15,
39–68 (2007)

7. Lin, X., Sun, X., Han Ho, P., Shen, X.: GSIS: A secure and privacy preserving
protocol for vehicular communications. IEEE Transactions on Vehicular Technol-
ogy 56, 3442–3456 (2007)

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Zhang, C., Lu, R., Lin, X., Ho, P.H., Shen, X.: An efficient identity-based batch
verification scheme for vehicular sensor networks. In: INFOCOM, pp. 246–250.
IEEE (2008)

10. Chim, T.W., Yiu, S.M., Hui, L.C.K., Li, V.O.K.: SPECS: Secure and privacy en-
hancing communications schemes for VANETs. Ad Hoc Networks 9(2), 189–203
(2011)

11. Zhang, L., Wu, Q., Solanas, A., Domingo-Ferrer, J.: A scalable robust authentica-
tion protocol for secure vehicular communications. IEEE Transactions on Vehicular
Technology 59(4), 1606–1617 (2010)

12. Wasef, A., Shen, X.S.: Efficient group signature scheme supporting batch verifica-
tion for securing vehicular networks. In: IEEE International Conference on Com-
munications, ICC (2010)

13. Qin, B., Wu, Q., Domingo-Ferrer, J., Zhang, L.: Preserving Security and Privacy
in Large-Scale VANETs. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS
2011. LNCS, vol. 7043, pp. 121–135. Springer, Heidelberg (2011)

14. Calandriello, G., Papadimitratos, P., Hubaux, J.-P., Lioy, A.: Efficient and robust
pseudonymous authentication in VANET. In: Proceedings of the Fourth ACM In-
ternational Workshop on Vehicular Ad Hoc Networks, VANET 2007, pp. 19–28.
ACM, New York (2007)

15. Studer, A., Shi, E., Bai, F., Perrig, A.: Tacking together efficient authentication,
revocation, and privacy in VANETs. In: SECON, pp. 1–9. IEEE (2009)

16. Chen, L., Ng, S.L., Wang, G.: Threshold anonymous announcement in VANETs.
IEEE Journal on Selected Areas in Communications 29(3), 605–615 (2011)

17. Wei, L., Liu, J., Zhu, T.: On a group signature scheme supporting batch verification
for vehicular networks. In: International Conference on Multimedia Information
Networking and Security, pp. 436–440. IEEE C. S., Los Alamitos (2011)

18. Malina, L., Hajny, J.: Accelerated modular arithmetic for low-performance devices.
In: The 34th International Conference on Telecommunications and Signal Process-
ing (TSP), pp. 131–135 (August 2011)

19. Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998)

GHUMVEE: Efficient, Effective,

and Flexible Replication

Stijn Volckaert�, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

Computer Systems Lab, Ghent University
{stijn.volckaert,bjorn.desutter,koen.debosschere}@elis.ugent.be

Abstract. We present GHUMVEE, a multi-variant execution engine
for software intrusion detection. GHUMVEE transparently executes and
monitors diversified replicae of processes to thwart attacks relying on a
predictable, single data layout. Unlike existing tools, GHUMVEE’s inter-
ventions in the process’ execution are not limited to system call invoca-
tions. Because of that design decision, GHUMVEE can handle complex,
multi-threaded real-life programs that display non-deterministic behav-
ior as a result of non-deterministic thread scheduling and as a result of
pointer-value dependent behavior. This capability is demonstrated on
GUI programs from the Gnome and KDE desktop environments.

Keywords: Memory Exploits, Non-determinism, Diversified Process
Replicae.

1 Introduction

Memory error exploits divert the control [2] or data flow [10] of a vulnerable
program by injecting faulty data. This is typically done by overwriting data
such as code pointers. Examples of such exploits are stack-smashing [2], return-
oriented programming [30], and return-to-lib(c) attacks [27]. Such attacks nearly
always rely on knowledge about the memory layout of the attacked application.

Several protection strategies exist to fix the vulnerabilities [5, 40], to protect
against buffer overflows at run-time [1, 12, 44] to protect against the execution
of injected code [22], and to prevent the attacker from determining the addresses
of data [29]. Modern OSes and system libraries support all of these approaches
to prevent intrusions and to prevent damage in case of intrusions. For example,
the Linux and glibc support Address Space Layout Randomization (ASLR) [29]
and Exec Shield [26] to prevent code on the stack to be executed, and length-
bounded string functions like strncpy and strncat [38]. Extensions have been
proposed in academics, such as Address Space Layout Permutation (ASLP) [20].

Many protections have been circumvented, however. Return-to-lib(c) [27] and
return-oriented programming [30] attacks simply do not require injected code to
be executed, the use of more secure library functionality like strncpy has proven
to be error-prone [25] and ASLR was attacked in a brute-force manner [37].

� The authors want to thank the Agency for Innovation by Science and Technology in
Flanders (IWT) and Ghent University for their support.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 261–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

262 S. Volckaert et al.

A more reliable protection based on intrusion detection was proposed in 2006.
Cox et al [14] implemented a Linux kernel extension to transparently run multi-
ple diversified replicae of the same application in parallel. The protection relies
on the assumption that it is much harder for an attacker to make diversified
replicae perform the exact same malicious behavior than it is to exploit vulnera-
bilities in a single application version. The replicae are executed in lock-step and
are always transparently fed the exact same input. A monitor module compares
the invoked output operations of the replicae before executing them. When the
monitor detects any discrepancies, it assumes that those result from an attack
taking place and it terminates the execution before any damage is done.

Since Cox et al, a number of other so-called multi-variant execution engines
(MVEE) have been developed [8, 9, 32–36], as well as different methods to di-
versify applications, including stacks growing in opposing directions [32], heap
layout randomization [6], redundant data diversity [28], address space partition-
ing [8], ASLR [29, 37], and code diversification [3, 4, 41].

However, a major problem of all existing MVEEs is that they cannot handle
real desktop applications. The fundamental reason is that real-world applications
are not deterministic because of non-deterministic thread scheduling and because
their behavior depends on concrete pointer values, which vary when replicae are
diversified. By contrast, pre-existing MVEEs and their diversification schemes
only function on simple, single-threaded applications. Moreover, their memory
layout diversification is limited to relatively weak, predictable forms.

This paper presents the Ghent University MVEE or GHUMVEE. Contrary
to the existing MVEEs, GHUMVEE’s design supports a wide range of features
observed in non-deterministic applications and a wider range of diversification
techniques, including the stronger protection of the less predictable, full ASLR.
Furthermore, experiments demonstrate that GHUMVEE comes with less per-
formance overhead than existing MVEEs. The most fundamental novel aspect
of GHUMVEE’s design is its ability to intervene in the execution of replicae
at program points other than system calls. This does require some cooperation
of the application developer, but as we will discuss in the paper, compilers can
easily limit the burden on the developer.

Section 2 discusses related work and the weaknesses of existing MVEE’s that
GHUMVEE’s design overcomes. Section 3 presents this design, which is evalu-
ated in Section 4. Section 5 draws conclusions.

2 Related Work

Software memory exploit techniques and countermeasures have been actively re-
searched in the past 15 years. Stack overflow attacks have long been the easiest
way to seize control of a running application. Smashing [2] the stack allows for
an attacker to inject shell code or overwrite return addresses [27]. Several solu-
tions were proposed to eliminate stack overflow attacks. StackGuard [12] inserts
canaries into the stack to detect return address overwrites. Several state-of-the-
art compilers adapted this technique later on [19, 24]. Other people proposed

GHUMVEE: Efficient, Effective, and Flexible Replication 263

the use of a secondary stack to keep copies of the return addresses [11, 21]. An
alternative is to extend the C-library functions that are commonly used to set
up the attack, with extra security checks such as bounds checking [1, 44]. Lib-
Safe [5, 40] does this at runtime and modern versions of the GCC and VC++
compilers offer alternative versions of these functions [16, 23]. Mainstream op-
erating systems also implement some form of software-enforced Data Execution
Prevention [22, 26] to prevent injected code from being executed. Most other
exploiting techniques, control-data attacks in particular, share one important
property. They all make assumptions about the memory layout of the target
application, e.g., about the absolute locations of certain functions or about the
distance between two allocated objects. Many proposed techniques attempt to
break these assumptions, all of which involve randomization. Xu [43] modified
the Linux program loader to dynamically relocate a program’s stack, heap and
shared libraries. The PaX team implemented and demonstrated Address Space
Layout Randomization [29], a well known technique with goals similar to the
latter. ASLR employs a kernel patch to relocate a program’s stack, heap and
shared libraries during startup. All mainstream operating systems have adapted
ASLR. Other techniques exist but are not as commonly used [13, 20].

In 2005, Berger and Zorn proposed DieHard [6], a framework for redundant
execution of multiple diversified program replicae. DieHard tries to protect pro-
grams against memory errors and exploits thereof by running multiple replicae of
the same program in parallel and feeding them the same input. A custom mem-
ory allocator ensures full heap randomization of the replicae: objects always have
different addresses in the different replicae. DieHard redirects all program output
through stdout to its voter module where it can isolate replicae that encounter
memory errors. DieHard does not require any kernel modifications but can only
run replicae whose only input comes from stdin, it cannot run multi-threaded
programs or any other programs with pointer-dependent behavior.

More advanced MVEEs are the N-Variant Systems [14, 28], the proof-of-
concept MVEE from Cavallaro et al [8, 9] (hereafter called CPoC), and Orches-
tra [32–36]. Figure 1 displays their basic operation. The kernel or user-space mon-
itor is responsible for running multiple replicae of a process in a user-transparent
manner. To that extent, the monitor intercepts all communication between the
replicae and the outside world. As the progress of the replicae (denoted by black
bars on the horizontal time access) may differ, they will communicate through
system calls at different moments in time. The monitor intercepts the calls, stalls
the calling replicae and waits until all of them have made a call. At that time, the
monitor compares the calls and operands, and either terminates the program or
handles the calls appropriately. For example, when sys brk is invoked to request
memory from the OS, the monitor checks the requested sizes and lets the OS
allocate memory for both replicae after which both replicae continue executing.
When sys write is invoked to write to a file, the monitor blocks one of them to
ensure transparency for the user. The result of the system call is still fed back
to both replicae, which continue their execution.

264 S. Volckaert et al.

The first one concerns the rendez-vous points at which MVEEs intervene in the
execution of the replicated program versions. The aforementioned MVEEs only
intervene in a replica to intercept system calls. By construction, those MVEEs
can therefore not handle any non-trivial multi-threaded program. The reason
is that the threads in the different replicae have to be executed in the same
order (i.e., synchronized) to avoid false alerts. No fully deterministic execution
is required (i.e., consecutive runs of the application under control of an MVEE
may feature different thread schedules), but within one execution under control
of an MVEE, all synchronization events and decisions need to be replicated.
For example, when a program allocates tasks in a pool to spawn task threads,
they need to be spawned in the same order in all replicae. And when the tasks
updates shared memory, that needs to happen in the same order in all replicae.
MVEEs that only intercept applications upon system calls cannot provide this
synchronization for two reasons. First, many modern applications feature syn-
chronization operations that do not involve system calls. These include atomic
functions, (uncontended) locks by means of futexes [17], and many custom syn-
chronization primitives. Secondly, several synchronization primitives such as the
pthread cond timedwait execute multiple system calls as part of a more abstract
decision process. To replicate these decisions, a replication mechanism at a higher
abstraction level than system calls is needed as well. As will be discussed in detail
in Section 3.3, GHUMVEE supports such a replication mechanism that solves
both issues with acceptable performance overhead.

kernel

Replica 1 Replica 2 t t

brk brk

monitor
write write

Fig. 1. Basic operation of a MVEE

The second limitation of existing MVEEs
is their lack of support for program behav-
ior that depends on exact pointer values. N-
Variant Systems and CPoC rely on address
space partitioning, in which each concrete
address that can be targeted by an attack oc-
curs in only one replica. Orchestra features
two replicae in which the stack grows in dif-
ferent directions to prevent a buffer overflow
from having the same effect in both replicae.

The problem with these address-space based approaches is that many ap-
plications’ behavior depends on concrete pointer values. Those values are then
typically hashed to index hash tables or other containers such as (supposedly
unordered) sets. When the computed hashes differ in the different replicae, their
behavior diverges in many ways. For example, when collusions in a hash table
differ in two replica, they might rehash or resize the hash tables at different
points in time. In the case of a resize, this might involve memory allocation sys-
tem calls being executed in one replica but not in the other. None of the existing
MVEEs can handle this. When iterating over supposedly unordered containers
in which objects are stored based on hashed pointer values, the order will also
depend on the concrete values. So the order of visiting objects and performing
tasks on them might differ from one replica to the other. In some cases the tasks
involve no sensitive operations, but in many cases they do. This ranges from

GHUMVEE: Efficient, Effective, and Flexible Replication 265

different files being opened for different objects, over locks being taken on the
visited objects, to worker threads being spawned for the stored objects.

In other words, if the order in which objects are stored in containers is not
controlled by the MVEE, different replicae may show diverging behavior in every
possible way. All existing MVEEs that we are aware of suffer from this problem.
This has two consequences. First, they are applicable only to relatively simple,
nice programs. For example, the programs evaluated in the existing MVEE pa-
pers are limited to a modified Apache, thttpd, SPEC benchmarks, and Snort.
Exactly how nice the programs have to be depends on the precise details of the
MVEE internals. Secondly, because of this dependence on different aspects of
nice behavior, the existing MVEEs provide only relatively weak forms of pro-
tection. Orchestra is limited to protecting buffer overflows on the stack. The
partitioned address spaces of N-Variant Systems and CPoC ore a very limited
form of layout diversification with very predictable behavior.

As discussed in Section 3.7, GHUMVEE can handle many modern programs
with address-dependent behavior, none of which are handled correctly by pre-
existing MVEEs. Moreover, GHUMVEE can replicate the applications with full
code and data layout randomization. As such, GHUMVEE makes the protection
provided by replicated execution applicable to a much wider set of applications,
and it demonstrates that stronger forms of protection can be provided. These
are the two most important contributions of this paper.

3 GHUMVEE Architecture

The GHUMVEE monitor is launched from the command line with the program
to be protected as its argument. From a database GHUMVEE then retrieves the
executables of the replicae. GHUMVEE spawns the replica processes to which
it attaches itself using Linux’ ptrace API [39]. From then on, GHUMVEE acts
as a proxy between the replicae and the kernel as depicted in Figure 1.

3.1 Rendez-Vous Points

GHUMVEE can intercept all system calls invoked by the replicae and manipulate
or stall them when needed. GHUMVEE’s rendez-vous points are system call
entries (i.e, invocations) and exits (i.e., returns). Replicae are stalled at both
types of points and not resumed until all replicae have reached the rendez-vous
point. GHUMVEE handles rendez-vous points based on the type of system call
the replicae are trying to execute. We generally distinguish four types of system
calls. The distinction is based on four factors:

I/O-Related System Calls: These system calls should be performed only
once to ensure transparency and to avoid unwanted side effects. For ex-
ample, when replicae are writing to a file, the data should be written only
once, precisely like it would happen in the original program.

266 S. Volckaert et al.

Side Effects: System calls that create, modify or delete process-bound kernel
structures have side effects. Most memory management functions are exam-
ples of such system calls. These calls are performed by all replicae in the
same manner as depicted in Figure 1.

Mutable Results: System calls that have mutable results, i.e., calls that return
different results upon every invocation, should only be performed once to
ensure that all replicae get consistent return data from these calls. Most
time-related functions are examples of such calls.

Self-Aware: System calls that make a process self-aware should only be per-
formed once. These include sys getpid and sys open(/proc/self/...).

After a system call entrance has been handled in accordance with the call’s class,
the monitor waits for the replicae to hit the next rendez-vous point. In most cases,
this is the system call’s exit. Handling this rendez-vous point is straightforward.
If the system call was executed by all replicae, the monitor checks whether all
of them received consistent results from the call. Then it either resumes them or
shuts down the system, e.g., if a call returned an error for some replica but not
for the others. If on the other hand, the call was only executed by one replica,
the monitor copies the return data into the address spaces of the slave replicae,
after which it resumes all of them.

3.2 I/O Replication and Data Transfers

As mentioned above, MVEEs generally allow I/O related system calls to be
executed only once. Nearly every existing solution deals with this restriction
differently. Cox et al [14] stall all slave replicae in kernel-space while the master
replica executes the actual I/O call. When that call returns, the monitor copies
its return value and return data to the address spaces of the slave replicae.

Later MVEEs handle I/O replication in user-space using Linux debugging
facilities such as the ptrace and waitpid APIs [39]. The ptrace API allows
for a debugger to observe and control the execution of a debuggee process by
inspecting and manipulating its internal state, while waitpid is used to poll
a debuggee for status changes such as the entrance or exit of a system call.
CPoC’s [9] implementation is similar to Cox’. The fact that CPoC stalls the
replicae in user-space does entail an additional issue, however. When a process
(e.g., a slave replica) is stalled at the entrance of a system call, that process
cannot be prevented from executing the actual call once it is resumed. To skip
such as system call, a debugger has to replace its number in register EAX by that
of another system call that has no side effects. The best choice for this purpose is
sys getpid. After replacing the system call number and resuming the replaced
slave calls, CPoC waits until the master replica returns from the original system
call and until the slaves returns from their fake sys getpid calls. CPoC then
first copies the results of the master system call from from master replica to
the monitor, and then from the monitor to all slave replicae. This process is
visualized in Figure 2(a), in which solid arrows denote control transfers and
dashed arrows denote data being copied.

GHUMVEE: Efficient, Effective, and Flexible Replication 267

master
replica

monitor

kernel

1

1: monitor intercepts I/O system calls
2: monitor allows master replica to execute call
3: kernel copies results to master
4: monitor intercepts system call return
5: monitor fetches call results using ptrace
6: monitor copies call results to slaves
7: monitor resumes all replicae

2

3

6

4

5

slave
replica

1 77

(a) CPoC’s I/O replication

replica 0

monitor

kernel

1
1: monitor intercepts I/O system calls
2: monitor executes call itself
3: call returns
4: monitor copies call results to replicae using ptrace
5: monitor resumes all replicae

2 3

replica 1

1 554 4

(b) Orchestra’s basic I/O replication

master
replica

monitor

kernel

1

1: monitor intercepts I/O system calls
2: monitor allows master replica to execute call
3: kernel copies results to master
4: monitor intercepts system call return
5: monitor copies results directly using
 PTRACE_EXT_COPYDATA
6: monitor resumes all replicae

2

3

4

slave
replica

1 66
5

(c) GHUMVEE’s I/O replication

Fig. 2. I/O replication in three MVEEs

Salamat [34] implemented a different system in Orchestra. Rather than letting
a master replica execute a system call, Orchestra executes the call on behalf of
the variants and copies the results of the call directly from the monitor to the
replicae. This is visualized in Figure 2(b).

GHUMVEE’s implementation of I/O replication is nearly identical to CPoC’s.
Like CPoC, we only allow the master replica to execute the original system call.
Unlike CPoC however, we often do not copy the results of the system call from
the master to the monitor. Instead, we copy the results directly from the master
to the slaves as shown in Figure 2(b). As a result, GHUMVEE performs one less
memory copy operation per replicated I/O call than CPoC and Orchestra.

In Figure 2, the copying between monitor and replicae is depicted with mul-
tiple arrows. This reflects the limitation of copying only one memory word at a
time with the PTRACE PEEKDATA and PTRACE POKEDATA operations. On the x86
architecture, this implies that at most 4 bytes can be copied per peek or poke,
each of which requires the monitor to perform a ptrace system call. Even in the
simplest applications, this introduces a significant performance penalty.

Salamat [34] proposed a workaround that consists of shared memory buffers
between the monitor and the replicae, the standard memcpy to copy data between
that shared memory and the monitor’s private memory, and a custom memcpy

268 S. Volckaert et al.

Fig. 3. Comparison of different data transfer methods

function injected into each replica. For every transfer of 40 bytes or more, control
in the replicae is diverted to the injected functions to transfer data from the
shared buffers to the replicae’s private memories. So every transfer requires two
copies: one into the shared memory and one out of it. A similar overhead would
exist when /proc/<pid>/mem would be used instead, as that cannot be mapped
directly into a process’ address space.

GHUMVEE avoids part of this overhead with two small extensions for the
ptraceAPI inLinux [39].ThePTRACE EXT COPYDATAandPTRACE EXT COPYSTRING

operations enable a monitor or a debugger to copy a fixed-size data block and a
NULL-terminated string directly to, from, and between any of its replicae or de-
buggees. GHUMVEE uses these extensions for all data transfer operations when it
finds them in the kernel, hence the horizontal arrows in Figure 2(c). On synthetic
performance benchmarks that stress the data transfer functionality of ourMVEE,
we obtained the results depicted in Figure 3. This figure shows that GHUMVEE’s
optional kernel extensions allow for data to be transferred much more efficiently.
In real-world benchmarks such as SPEC CPU 2006, these extensions improved
multi-variant performance by 1 to 4%.

3.3 Multi-threading and Synchronization

Arguably the biggest challenge for a MVEE is to deal with multi-threaded repli-
cae. This is complicated mainly because MVEEs running in user-space cannot
control the order in which threads are scheduled1. This implies (1) that a monitor
can observe system calls in different orders in multi-threaded replicae because
of different progress rates and different scheduling of the replicae, and (2) that
the replicae of programs with non-deterministic behavior can actually perform
different system calls in different replicae.

The first problem can be solved easily with a multi-threaded monitor. Like
the other MVEEs that support fork/exec and multi-threading, the GHUMVEE
monitor spawns a new monitor thread for every set of new processes or threads
spawned by the replicae. This works fine as long as the replicae behave deter-
ministically and execute in lock-step, because then they will spawn the same
processes and threads from within the same processes and threads. Each new

1 And even when the monitor would run in kernel-space, if has no direct control over
user-space synchronization events, so the fundamental problems remain the same.

GHUMVEE: Efficient, Effective, and Flexible Replication 269

monitor thread then attaches to the corresponding replicae threads, after which
each such monitor thread observes only the system calls in those corresponding
threads, which will happen in exactly the same order in all replicae.

The second problem is much harder to solve. Pre-existing MVEEs simply
neglect this and are hence broken for many applications, for which they report
mismatches between the replicae and halt the execution. Fundamentally, the
problem is that any synchronization race in non-deterministic programs can
lead to different replicae executing different system calls in different orders.

In GHUMVEE, we solved this problem by forcing all slave replicae to behave
exactly like the master. Whenever a synchronization race in the master replica
is decided, that same decision is imposed onto the slave. This is similar to tech-
niques used for record/replay of multi-threaded applications [31], the difference
being that in GHUMVEE all replicae run concurrently in lock step, rather than
sequentially. We therefore don’t have to store logs of the synchronization events.
Please note that GHUMVEE does not eliminate non-determinism. Rather, it
only forces all replicae to take the same decision for every synchronization race.
This way, GHUMVEE cannot introduce any deadlocks in the replicae.

Initially, we interposed [15] or detoured [18] all user-space synchronization
operations by means of fake system calls through which the monitor became
aware of the operations for which it could then enforce scheduling decisions. This
solution introduced too much overhead, however. Even simple applications like
the gcalctool calculator from the Gnome desktop environment spawn several
threads during their initialization, in which they perform mostly uncontended
synchronization. For example, we observed gcalctool performing 1.8M futex
operations during its 400 ms initialization. Interposing all those operations with
a fake system call and multiple ptrace system calls made the initialization time
grow to over 370 seconds, a slowdown with a factor 925!

As an alternative, we designed a system with which the replicae can synchro-
nize themselves. This is visualized in Figure 4. When the monitor spawns the
replicae, it allocates shared circular buffers (shown in green) between them. Fur-
thermore, the monitor preloads a dynamic library with interposers and detours
to intervene in all user-space synchronization events. Instead of executing sys-
tem calls in all replicae as in our initial solution, these new interposers record
the synchronization decisions of the master replica (e.g., the order in which its
threads acquire locks) in the shared buffers. In the figure, the master threads
record the order in which they acquired a specific lock Lm in the buffer. In the
slave replicae, the interposers read these decisions, and impose the same behav-
ior on the slaves. In the figure, when slave thread Bs first tries to acquire the
corresponding lock Ls, the interposer observes that thread As should acquire
it first, so it blocks thread Bs. When thread As tries to acquire the lock, this
succeeds, and after it is released, thread Bs will acquire it as well.

As all interposers perform their duties without additional system calls or
context switches to the monitor, the overhead of this solution is much smaller.
For example, with this solution the already mentioned gcalctool initializes in
1.7 seconds, a slowdown with factor 4.25. This is still significant, but most of it

270 S. Volckaert et al.

master thread Bm

monitor

1: thread Am acquires lock Lm
2: thread Bm acquires lock Lm after thread Am released it
3: thread Bs tries to acquire lock Ls but is blocked
4: thread As tries to acquire lock Ls and gets it
5: thread Bs acquires lock Ls after thread As released it

2 3
4

5
master thread Am slave thread AsA

B

1

slave thread Bs

Fig. 4. GHUMVEE’s synchronization decisions through shared buffers

is due to setting up the shared buffers. After the initialization the rate at which
synchronization operations are performed decreases significantly, as a result of
which this enforced synchronization between different replicae does not results in
an noticeable overhead during the normal, interactive operation of the program.

Enforcing the master’s schedule on the slave replicae in this way solves non-
determinism problems related to synchronization races, a form of non-determinism
that is generally considered acceptable program behavior and that occurs in most
modern multi-threaded programs. Our solution does not protect against non-
determinism caused by critical data races. As such data races are generally
considered as bugs, we feel this is an acceptable limitation of GHUMVEE.

3.4 Signal Handling

Besides control-data dependencies in multi-threaded applications, there are sev-
eral other sources of non-determinism. One of them is asynchronous signal de-
livery. Because most signal handlers invoke system calls, delivering signals from
external sources to replicae should happen very carefully. For example, assume
that one single-threaded replica is blocked on entry to a system call, waiting for
the other single-threaded replicae to arrive at the same point. If we then deliver a
signal to another replica that is still executing, the corresponding signal handler
in that replica will be invoked, in which a very different system call might be
invoked in turn, leaving two replicae wanting to execute different system calls.

In GHUMVEE, this is solved by delaying the delivery of signals to replicae
until they are blocked on exit of a system call. This can significantly delay
the handling of a signal. Salamat et al proposed a complex solution to deliver
signals earlier [34], which showed significant improvements for synthetic signal
handling stress tests. We investigated the need for such a complex solution for
real-world applications, and discovered that in real applications, the number of
signals is typically more than three orders of magnitude lower than the number
of system calls invoked. As such, limiting the delivery of signals to the rendez-
vous points of those system calls does not hinder performance or latency in
practice. One notable side effect of our signal handling mechanism is that some
duplicate asynchronous signals might be lost. In practice however, we have not
encountered any programs that started behaving incorrectly when a duplicate
signal was not delivered.

Unlike asynchronous signals, synchronous signals are delivered immediately.
Synchronous signals occur as a direct result of the executing instruction. Because
the MVEE keeps all replicae in a consistent state, we can assume that all replicae
will trigger the same synchronous signal on the same instruction.

GHUMVEE: Efficient, Effective, and Flexible Replication 271

3.5 Time Stamp Counter

Yet another source of non-determinism is time, of which applications can be-
come aware through the gettimeofday system call. On the x86 architecture,
the time can also obtained directly from the processor by executing the rdtsc

instruction in user mode. Salamat [34] acknowledge the problems this can cause
when different replicae get different input through rdtsc, but he offers no so-
lution beyond pointing out that programmers could use gettimeofday instead.
In practice, programmers do not follow his advice, however. A simple program
like the gcalctool calculator executes the rdtsc instruction tens of times.

GHUMVEE solves this by setting the control registers in the x86 architecture
to make all user-mode rdtsc instructions trap. The monitor handles the resulting
SIGSEGV signal by feeding all replicae the same time stamp counter value.

3.6 Shared Memory Support

Linux programs can use shared memory blocks to set up communication chan-
nels with other programs. Once such channels are in place, the programs can
communicate by reading and writing from and to the shared memory without us-
ing any system calls and without exchanging any other information. This makes
it very hard for a MVEE to perform correct replication under all circumstances.

Somewhat surprisingly, almost all programs use shared memory. So at least
partial support is needed in an MVEE. But fortunately, most programs do not
really require two-way communication channels with the outside world via shared
memory. An analysis of the usage of shared memory in our testing applications
reveals that shared memory is typically used for one of the following goals:

Shared Libraries: The Linux program loader uses shared memory blocks to
map shared libraries into the address spaces of dynamically linked programs.
This should obviously be supported by an MVEE.

Memory-Mapped I/O: When a file is mapped into a program’s address space
as shared memory, it can be read and written without the overhead of system
calls. We have encountered several programs in the KDE desktop environ-
ments that require memory-mapped I/O to start up properly.

Internal Communication: Anonymous shared memory is not accessible to
external programs. We have encountered several multi-threaded programs
that used anonymous shared memory to set up additional heaps, e.g., with
large contiguous pages. Anonymous shared memory can only be accessed
by the allocating program and its descendants. Since these descendants also
run under MVEE control, all communication through anonymous shared
memory can be controlled using the techniques described in Section 3.3.

Non-anonymous 2-Way Communication Channels: Several programs
try to set up 2-way communication with the outside world through the
System V sys ipc system call. As indicated, this cannot be handled ef-
ficiently. We also discovered, however, that all programs we studied have
backup schemes for when the System V call is not supported, i.e., when it

272 S. Volckaert et al.

fails. That backup uses the above types of shared memory, as well as reg-
ular communication channels like pipes, signals and system calls. As those
channels can be handled by MVEEs without a problem, it suffices to let the
monitor intercept the requested shared memory allocation by means of the
System V system calls and let them return as if the requests failed.

Several solutions have been proposed in the past to deal with the first three
cases [9, 34]. GHUMVEE builds on those solutions. Although the classification
above seems pretty straightforward, it is not easy to allow all safe uses of shared
memory while blocking the unsafe forms. Memory-mapped I/O is particularly
hard to support because memory-mapped files and regular 2-way communication
channels are set up the same way. Cavallaro [9] proposed to solve this problem
by using the CPU’s page exception mechanism but indicated that this approach
might incur a lot of overhead. For that reason we did not even consider this
solution. Instead GHUMVEE supports memory-mapped I/O by manipulating
the sys mmap and sys mmap2 used to map shared memory onto files. Normally,
memory-mapped files are mapped by passing the MAP SHARED flag to the mmap
call. Our monitor disables this flag and enables the MAP PRIVATE flag instead.
This way, the requested file is mapped into the address spaces of the replicae,
but any changes to the file are not written back to the file when the block is
unmapped. Instead the GHUMVEE monitor keeps track of these manipulated
blocks and performs the write-back of the file data itself.

This approach prevents programs from using shared memory based 2-way
communication channels without notifying the programs, but in practice, we
have not encountered any program that stopped working because of our solution.

3.7 Address Space Layout

Finally, we observed that many real-world applications and libraries (includ-
ing GTK+, Glib, Pango, KDE, and LibreOffice libraries) exhibit behavior that
depends on pointer values. As explained in Section 2, the main problem with
pointer values being hashed into keys to access data structures is that the data
structures are resized, restructured or iterated through in orders that depend on
keys obtained from hashing pointer values. As a result of these dependencies,
almost all non-trivial programs we tried fail on existing MVEE’s with ASLR en-
abled. Nonetheless, this problem is not mentioned in any MVEE-related paper.

We tackle this problem by interposing the hash functions that compute pointer-
dependent keys, similarly to the way we interpose synchronization operations. In
the master replica, the interposer wraps the hash function and passes the com-
puted keys to shared queues. In the slave replicae, the interposers replace the hash
functions. Instead of computing a hash key, they obtain them from the queues.
That way, all replicae use the same hash keys. This solution is not fool proof, as
it only works for limited uses of the hash keys, such as for indexing and ordering
data structures. In more complex scenarios, e.g., where the hashing is replaced
by encryption and where the encrypted keys also get decrypted, GHUMVEE can
still fail. But for the applications we tested that use the aforementioned libraries,
GHUMVEE works fine.

GHUMVEE: Efficient, Effective, and Flexible Replication 273

4 Experimental Evaluation

Validation. We tested GHUMVEE on numerous interactive, multi-threaded
programs, including Gnome tools such as gcalctool, KDE tools such as kcalc,
and LibreOffice on a quadcore Core i7 870 system running Ubuntu 11.04. For, e.g,
LibreOffice we tested operations such as opening and saving files, editing various
types of documents, running the spell checker, etc. In these tests GHUMVEE
spawned between one and four replicae from the same executable. Tests were
conducted with and without ASLR enabled. Without ASLR, all addresses oc-
curring in the replicae are identical. With ASLR, most addresses are different in
all replicae. This includes the addresses of data on the heap and on the stack,
as well as addresses of statically allocated data and code in dynamically linked
libraries. We also evaluated GHUMVEE on a number of SPEC benchmarks,
mainly to evaluate performance and to validate GHUMVEE on replicae with
code diversification. In particular, we compiled the SPEC2006 benchmark with
GCC 4.5.2 at optimization levels -O2 and -O3. This allows us to test GHUMVEE
on replicae in which even the static code addresses differ.

All tests succeeded. This demonstrates that GHUMVEE is more flexible than
existing MVEEs, in the sense that it supports a wider range of applications, as
well as a wider range of data and code diversification techniques, including full
layout randomization which presents a much less predictable target to attackers.

Transparency. From a user perspective, GHUMVEE is completely transpar-
ent. Except for having to launch an application with the GHUMVEE monitor
and the performance and memory consumption overhead involved with the use
of GHUMVEE, there is no noticeable effect.

From a developer perspective, however, GHUMVEE is not completely trans-
parent. In particular GHUMVEE’s reliance on interposers is not fully transpar-
ent. To handle synchronization as described in Section 3.3 and address space
layout differences as described in Section 3.7, someone has to implement the ap-
propriate interposers. Besides highly application-dependent use of pointer values
to index data structures, many real-world applications use custom synchroniza-
tion mechanisms [42] as well as custom memory allocators [7] besides the stan-
dard glibc and pthread primitives (despite the cited literature demonstrating
how bad that customization practice is). In all these cases, the application de-
velopers themselves are responsible (1) for ensuring that interposers can handle
all cases correctly, and (2) for providing the interposers.

For our whole test suite, we wrote 2863 lines of interposer C code. Their distri-
bution over different libraries is shown in Table 1. Of those 2983 lines, 2509 cover
the functionality in standard libraries and the header files of the GHUMVEE
interposer API. Those are readily available to all GHUMVEE users and need
not be reimplemented. For specific applications (Gnome and LibreOffice) and
the libraries they rely on, 474 lines of very simple C interposer code suffice. For
example, defining an interposer for the hash function gtk gc value hash that
takes an argument of type gpointer (as defined in that library) to produce a
hash of type guint looks as follows:

274 S. Volckaert et al.

Table 1. Programming effort for GHUMVEE’s interposers

standard library libc pthread
interposer
base lib total

lines of C code 654 766 829 2509

application library glib gtk orbit pango libreoffice total

lines of C code 105 54 78 54 183 474

interposer library
(header files)

260

INTERPOSER_DETOUR_GEN_HOOKFUNC(guint, gtk_gc_value_hash, (gpointer key)) {

MVEE_DO_SYNC(guint, (key), int, MVEE_GTK_HASH_BUFFER, 0);

return result;

}

This code specifies that the slave replicae should obtain the hashed value with
the width of an int from the master through the MVEE GTK HASH BUFFER in-
stead of computing a hash themselves (0). INTERPOSER DETOUR GEN HOOKFUNC

and MVEE DO SYNC are preprocessor macro’s defined in one of the GHUMVEE
source code headers. The first macro generates an empty trampoline [18] and
generates detour registration code that automatically detours [18] the target
function (gtk gc value hash) when the interposer library is loaded. The second
macro generates all of the synchronization code. In the master replica this syn-
chronization code writes all computed hash values into a circular buffer that is
shared between all replicae. In the slave replicae, the code reads the computed
values from that same buffer.

Writing the code for other interposers is similarly mechanistic. The effort re-
quired by the developer is therefore by and large limited to identifying the func-
tions that need to be interposed and to make them interposable. For the latter, i.e.,
for ensuring that interposers can handle all cases correctly, we only needed to mod-
ify 54 lines of code in the applications and their libraries to convert static and hence
non-interposable functions into dynamic, non-inlined interposable ones. This only
required removing the static keyword and inline attribute from the code. Ad-
ditionally, the LibreOffice link-script had to be adapted to make the symbols corre-
sponding to the hash functions visible in the linked binary. This also is a
trivial edit.

More changes were needed in glibc, which contains a large amount of inline
assembly. Besides the 654 lines of interposer code, our glibc patch is 845 lines
long. This patch can of course be reused by all GHUMVEE users.

Altogether, this limited and mechanistic programming overhead (part of which
can probably be automated by a compiler working on the basis of pragmas)
demonstrates the limited burden on application programmers to make their ap-
plications compatible with GHUMVEE. Because of its reliance on widely appli-
cable and easy to use interposers, GHUMVEE is a much more flexible tool than
existing MVEEs.

PerformanceOverhead. Tomeasure the performance overhead ofGHUMVEE,
we measured the execution times of several multi-variant combinations of SPEC

GHUMVEE: Efficient, Effective, and Flexible Replication 275

Fig. 5. Relative performance of SPEC benchmarks running under the GHUMVEE

benchmarks compiled at different optimization levels. The relative performance
(i.e., the relative execution times) are depicted in Figure 5.

Comparing the results of GHUMVEE with two O3 variants (yellow bars) to
those with one O3 variant (gray bars), we observe that on average GHUMVEE
comes with a 16% performance penalty. For O2 variants (orange vs. blue), the
performance penalty is 15%. The average overhead of GHUMVEE is hence
slightly smaller than the 17% reported for Orchestra [34], despite the fact that
GHUMVEE performs equivalence checks for many more system calls.

For 403.gcc, the only benchmark common to our evaluation and that of Or-
chestra, the overheads are 15% and 17% for O3 and O2 resp. with GHUMVEE,
and about 30% with Orchestra. Given that 403.gcc is an I/O intensive bench-
mark, this difference in performance can be attributed to the kernel extension
discussed in Section 3.2.

For 470.lbm, the overhead of 46% is particularly high. This overhead is not
due to the overhead of GHUMVEEs interventions, however. A similar overhead
can be observed when two variants of this benchmark run side by side without
an MVEE. As 470.lbm is a memory-intensive benchmark, the shared caches and
the shared memory buses on the Core i7 become the bottleneck when running
multiple variants concurrently, with or without the MVEE. This demonstrates
that although GHUMVEE limits the overhead of its interventions, it cannot
magically reduce the inherent overhead of replicating processes that are not fit
for replication due to resource contention. In this regard, GHUMVEE comes
with the same limitations as any other MVEE.

5 Conclusions

Wepresented the GhentUniversitymulti-variant execution engine orGHUMVEE,
the first intrusion detection system based on the execution of diversified replicae
that supports full ASLR and real-life applications. We presented novel techniques
to support thread synchronization and pointer-dependent program behavior, as

276 S. Volckaert et al.

well as other sources of non-determinism such as time stamp counters. To the ex-
tent a comparison with existing systems was possible, GHUMVEE proved to be
more effective, more efficient, and more flexible than existing MVEEs.

References

1. Akritidis, P., Costa, M., et al.: Baggy bounds checking: an efficient and backwards-
compatible defense against out-of-bounds errors. In: Proc. USENIX SSYM, pp.
51–66 (2009)

2. Aleph One: Smashing the stack for fun and profit. Phrack Magazine 7(49) (1996)
3. Anckaert, B.: Diversity for Software Protection. PhD thesis, Ghent University

(2008)
4. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: virtualization for diversi-

fied tamper-resistance. In: Proc. ACM DRM, pp. 47–58 (2006)
5. Baratloo, A., Singh, N., Tsai, T.: Libsafe: Protecting critical elements of stacks.

White paper, Bell Labs, Lucent Technologies (December 1999)
6. Berger, E., Zorn, B.: DieHard: probabilistic memory safety for unsafe languages.

In: Proc. ACM PLDI, pp. 158–168 (2006)
7. Berger, E.D., Zorn, B.G., McKinley, K.S.: Reconsidering custom memory alloca-

tion. In: Proc. ACM OOPSLA, pp. 1–12 (2002)
8. Bruschi, D., Cavallaro, L.: Diversified Process Replicæfor Defeating Memory Error

Exploits. In: Proc. IEEE IPCCC, pp. 434–441 (2007)
9. Cavallaro, L.: Comprehensive Memory Error Protection via Diversity and Taint-

Tracking. PhD thesis, Universita Degli Studi Di Milano (2007)
10. Chen, S., Xu, J., Sezer, E., Gauriar, P.: Non-control-data attacks are realistic

threats. In: Proc. USENIX SSYM (2005)
11. Chiueh, T.C., Hsu, F.H.: RAD: A Compile-Time Solution to Buffer Overflow At-

tacks. In: Proc. IEEE ICDCS, pp. 409–417 (2001)
12. Cowan, C., Pu, C., et al.: StackGuard: Automatic Adaptive Detection and Pre-

vention of Buffer-Overflow Attacks. In: Proc. USENIX SSYM, pp. 26–29 (1998)
13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting Pointers

from Buffer Overflow Vulnerabilities. In: Proc. USENIX SSYM, pp. 91–104 (2003)
14. Cox, B., Evans, D., et al.: N-variant systems: A secretless framework for security

through diversity. In: Proc. USENIX SSYM, pp. 105–120 (2006)
15. Curry, T.W.: Profiling and Tracing Dynamic Library Usage Via Interposition. In:

Proc. USENIX USTC, pp. 267–278 (1994)
16. Holtmann, M.: Secure Programming with GCC and GLibc (2008)
17. Franke, H., Russell, R., Kirkwood, M.: Fuss, Futexes and Furwocks: Fast Userlevel

Locking in Linux. In: Proc. Ottowa Linux Symposium (2002)
18. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In:

Proc. USENIX WINSYM (1999)
19. IBM Research: GCC extension for protecting applications from stack-smashing

attacks (2005)
20. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-

tion (aslp): Towards fine-grained randomization of commodity software. In: Proc.
ACSAC, pp. 339–348 (2006)

21. McGregor, J.P., Karig, D.K., Shi, Z., Lee, R.B.: A Processor Architecture Defense
against Buffer Overflow Attacks (2003)

22. Microsoft Corporation: Data Execution Prevention

GHUMVEE: Efficient, Effective, and Flexible Replication 277

23. Microsoft Corporation: Security Enhancements in the CRT
24. Microsoft Corporation: Visual C++ Linker Options: /GS (Buffer Security Check)

(2002)
25. Miller, T.C., de Raadt, T.: strlcpy and strlcat Consistent, Safe, String Copy and

Concatenation. In: Proc. USENIX ATEC, pp. 175–178 (1999)
26. Molnar, I.: ”Exec Shield”, new Linux security feature
27. Nergal: The advanced return-into-lib(c) exploits. Phrack Magazine 12(58) (2001)
28. Nguyen-Tuong, A., Evans, D., Knight, J.C., Cox, B., Davidson, J.W.: Security

through redundant data diversity. In: Proc. IEEE DSN, pp. 187–196 (2008)
29. PaX Team: Address Space Layout Randomization (2004)
30. Roemer, R., Buchanan, E., et al.: Return-oriented programming: Systems, lan-

guages, and applications. ACM Trans. Inf. Syst. Secur. 15, 2:1–2:34 (2012)
31. Ronsse, M., De Bosschere, K.: RecPlay: A Fully Integrated Practical

Record/Replay System. ACM Trans. Comp. Sys. 17(2), 133–152 (1999)
32. Salamat, B., Gal, A., Franz, M.: Reverse stack execution in a multi-variant execu-

tion environment. In: CATARS Workshop (2008)
33. Salamat, B., Jackson, T., et al.: Orchestra: A User Space Multi-Variant Execution

Environment. In: Proc. EuroSys, pp. 33–46 (2009)
34. Salamat, B.: Multi-Variant Execution: Run-Time Defense against Malicious Code

Injection Attacks. PhD thesis, University of California, Irvine (2009)
35. Salamat, B., Gal, A., et al.: Multi-variant Program Execution: Using Multi-core

Systems to Defuse Buffer-Overflow Vulnerabilities. In: Proc. CICIS, pp. 843–848
(2008)

36. Salamat, B., Jackson, T., et al.: Orchestra: intrusion detection using parallel ex-
ecution and monitoring of program variants in user-space. In: Proc. EuroSys, pp.
33–46 (2009)

37. Shacham, H., Goh, E.J., Modadugu, N., Pfaff, B., Boneh, D.: On the effectiveness
of address-space randomization (2004)

38. The GNU C Library: Copying and Concatenation
39. Thorvalds, L.: Linux Programmer’s Manual
40. Tsai, T., Singh, N.: Libsafe 2.0: Detection of Format String Vulnerability Exploits

(2001)
41. Williams, D., Hu, W., et al.: Security through Diversity: Leveraging Virtual Ma-

chine Technology. IEEE Security & Privacy 7(1), 26–33 (2009)
42. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization consid-

ered harmful. In: Proc. USENIX OSDI, pp. 1–8 (2010)
43. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent Runtime Randomization for Secu-

rity. In: Proc. SRDS 2003, pp. 260–269 (2003)
44. Younan, Y., Philippaerts, P., et al.: Paricheck: an efficient pointer arithmetic

checker for C programs. In: Proc. ASIACCS, pp. 145–156 (2010)

Extracting Attack Scenarios

Using Intrusion Semantics

Sherif Saad and Issa Traore

University of Victoria, BC, Canada
shsaad@ece.uvic.ca , itraore@engr.uvic.ca

Abstract. Building the attack scenario is the first step to understand
an attack and extract useful attack intelligence. Existing attack scenario
reconstruction approaches, however, suffer from several limitations that
weaken the elicitation of the attack scenarios and decrease the quality of
the generated attack scenarios. In this paper, we discuss the limitations
of the existing attack scenario reconstruction approaches and propose a
novel hybrid approach using semantic analysis and intrusion ontology.
Our approach can reconstruct known and unknown attack scenarios and
correlate alerts generated in multi-sensor IDS environment. Our exper-
imental results show the potential of our approach and its advantages
over previous approaches.

Keywords: Attack Scenario, Alerts Correlation, Intrusion Analysis, Se-
mantic analysis.

1 Introduction

In the last several years the number of computer network attacks has rapidly
increased while at the same time the attacks have become more and more com-
plex and sophisticated. Intrusion analysts and network administrators need to
understand these attacks to take appropriate responses and design adequate de-
fensive and prevention strategies. In particular, they need to reconstruct the
attack scenario (also known as attack plan) to extract attack intelligence. The
attack scenario elicits the steps and actions taken by the intruder to breach the
system. Understanding the attack scenario allows the intrusion analyst to iden-
tify the compromised resources, spot the system vulnerabilities, and determine
the intruder objectives and the attack severity.

The current generation of intrusion detection systems (IDSs) generate low
level intrusion alerts that describe individual attack events. In addition, existing
IDSs tend to generate massive amount of alerts with high rate of redundant
alerts and false positives. Typical IDS sensors report attacks independently and
are not designed to recognize attack plans or discover multistage attack scenarios.
Moreover, not all the attacks executed against the target network will be detected
by the IDS. False negatives, which correspond to the attacks missed by the IDS,
will either make the reconstruction of the attack scenario impossible or lead to
an incomplete attack scenario. Because of the above mentioned reasons, manual

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 278–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Extracting Attack Scenarios Using Intrusion Semantics 279

reconstruction of attack scenarios is a challenging task. Hence, there is a pressing
need for new techniques allowing automatic reconstruction of attack scenarios.

We propose, in this paper, a new attack scenario reconstruction technique,
which improves the attack scenario reconstruction process by combining two
complementary approaches: semantic-based alerts clustering and causality-based
attack analysis. More specifically, an initial set of candidate attack scenarios are
first identified by measuring the similarity between IDS alerts through semantic
analysis. The candidate attack scenarios are then refined by analyzing the causal
relationships between them using an intrusion ontology.

We evaluated experimentally our approach using two popular datasets yield-
ing excellent performances. In the literature the completeness (also known as
the true detection rate) and soundness of the alerts correlation are the most
adopted metrics to evaluate attack scenario reconstruction approaches. The two
metrics were proposed by Ning et al [8]. Completeness is computed as the ra-
tio between the number of correctly correlated alerts by the number of related
alerts (i.e. that belong to the same attack scenario). Soundness is defined as the
ratio between the number of correctly correlated alerts by the number of corre-
lated alerts. The completeness metric captures how well we can correlate related
alerts together while the soundness metric assesses how correctly the alerts are
correlated.

The experimental evaluation of our approach yielded for both datasets, sound-
ness and completeness ranging between 96% and 100% for the sample attack
scenarios considered.

The remaining of the paper is organized as follows. Section 2 summarizes and
discusses previous works on attack scenario reconstruction. Section 3 introduces
our semantic model and the underlying concepts and metrics. Section 4 presents
in detail our attack scenario reconstruction technique. Section 5 shows the result
of our experiment. Finally, in section 6 we conclude this paper and point out
some future research directions.

2 Related Works

Several approaches have been proposed in the literature for attack scenario re-
construction. The proposed approaches fall into one of two main categories based
on the type of data analysis techniques involved as explained below.

The first category of attack scenario reconstruction approaches use data clus-
tering and data mining techniques, either to cluster alerts based on their at-
tributes similarity or to mine alerts sequences in specific time interval. Under
this category fall the approaches proposed by Li et al., Ding et al, and Al-Mamory
and Zhang, respectively.

Li et al. investigated multi-step attack scenario reconstruction using associ-
ation rule mining algorithms [5]. The authors assumed that multi-step attacks
often happen in a certain time interval and based on this assumption an at-
tack sequence time window is defined and used for association rule mining.
The DARPA 2000 dataset was used to evaluate the proposed approach yielding
attack scenario detection rate of 92.2%.

280 S. Saad and I. Traore

Ding et al. proposed an attack scenario reconstruction model by extending the
apriori association rule mining algorithm to handle the order of intrusion alerts
occurrence [3]. The authors introduced, more specifically, a time sequence apriori
algorithm for mining intrusion alerts with respect to their order of appearance.
The DARPA 1999 dataset was used to evaluate the proposed algorithm. The
evaluation results show that the true scenario detection rate is 76% while the
soundness of the approach is 53%.

Al-Mamory and Zhang proposed a lightweight attack scenario reconstruction
technique by correlating IDS alerts based on their statistical similarity [2]. In
the proposed approach, similar raw IDS alerts are grouped into meta-alert (MA)
messages. An attack scenario is generated by correlating MA messages using a
relation matrix (RM) that defines the similarities between every two MA mes-
sages. Using the DARPA 2000 dataset, it was shown that the completeness and
the soundness of the proposed approach are 86.5% and 100%, respectively.

Attack scenario reconstruction systems that use clustering and data-mining
approaches can handle large amount of IDS alerts and in general can reconstruct
novel and unknown attack scenarios. They suffer, however, from several limita-
tions. One of these limitations is the inability of the techniques to reconstruct
complex or sophisticated multi-step attack scenarios. This is because clustering
and data-mining approaches cannot detect causality between individual attacks.
Another important issue is their proneness to construct incorrect attack sce-
narios. For instance, the alert clustering process may lead to overlapping alerts
clusters. Alerts from the same scenario may end up in different alerts clusters,
while alerts from different scenarios may be placed in the same cluster. It is not
possible, however, for one alert instance to belong to two different attack scenar-
ios at the same time. Such situation can occur because either an alert actually
belongs to one scenario and is falsely clustered into the other scenario, or there
is only one real attack scenario, and the reconstruction technique falsely assumes
that there are two scenarios.

The second category of approaches use, in most cases, rule bases for attack
scenario reconstruction, and represent attack scenarios and attack knowledge
using formal methods. Examples of works that fall under this category include
proposals by Ning et al., Ding, and Liu et al., respectively.

Ning and colleagues proposed an attack reconstruction approach that cor-
relates intrusion alerts based on the prerequisites and the consequences of the
intrusion [8]. The intrusion prerequisites are the necessary conditions for the in-
trusion to occur and the intrusion consequences are the outcomes of successful
intrusions. The DARPA 2000 DOS 1.0 attack scenario dataset was used to eval-
uate the proposed technique, yielding an equal value for the completeness and
the soundness of 93.96% .

Liu and colleagues proposed a multi-step attack scenario reconstruction tech-
nique using predefined attack models [7]. The proposed technique defines attack
models that an attacker may follow to break in the system. Each defined attack
model follows a general attack pattern involving four phases: probe, scan, intru-
sion, and goal. The attack scenario reconstruction is executed over three main

Extracting Attack Scenarios Using Intrusion Semantics 281

stages, namely, preprocessing stage, attack graph construction stage, and sce-
nario generation stage. The proposed technique was evaluated using the DARPA
2000 LLDOS1.0 dataset achieving 87.12% completeness and 86.27% soundness.

The above knowledge-based approaches can reconstruct both known and un-
known attack scenarios as long as the individual attack steps are stored in the
knowledge-base. In addition some of these approaches can capture the causality
between individual attacks. However, most of the proposed systems use hard
coded knowledge and rely on explicit knowledge. As a result, these techniques
fail to detect hidden and implicit relations between attacks, which makes it dif-
ficult for them to recognize novel attack instances in a timely fashion. Moreover,
knowledge-based techniques cannot handle concurrent attacks that do not have
any explicit causal relationship.

Based on the above literature review, it is clear that new approaches are
needed that can handle large amount of IDS alerts and allow reconstructing
automatically novel and unknown attack scenarios with high accuracy. In this
regard, we propose a new attack scenario reconstruction approach that is a
hybrid of clustering and knowledge-based techniques.

To improve the accuracy of clustering-based reconstruction, a robust alert
clustering criteria must be defined. Clustering IDS alerts is difficult because
many alerts attributes are symbolic data, and also heterogeneous IDS sensors
tend to use different formats and vocabularies to describe the alerts. To address
the above challenges, we propose to cluster the alerts based on their semantics
and not their syntactic representations. After clustering, we refine using semantic
inference the obtained clusters by identifying causally related alerts subsets and
linking such subsets to specific attack scenarios.

3 Intrusion Semantic Analysis

We use an ontology to describe the intrusion domain and encode our knowledge
base. The use of an ontology involves two main advantages. Firstly, it provides
a common vocabulary to describe IDS alert messages generated by different IDS
sensors. This allows achieving interoperability between heterogeneous IDS sen-
sors. Secondly, it provides a semantic representation for the domain of computer
and network intrusions. Using the semantic representation of IDS alerts and in-
trusion instances allows analyzing the alerts and the intrusion based on their
semantic characteristics, and inferring the underlying relationships.

Several network intrusion ontologies have been proposed in the literature
[1,13,4]. We use in our work a new intrusion ontology, introduced in our previous
work [11] that contains the required knowledge to extract intrusion intelligence.

The intrusion ontology contains many classes representing different concepts
from the intrusion analysis domain. The upper level classes of our intrusion
ontology are illustrated in Figure 1. Classes in the ontology are connected by
arcs representing the relations between them.

The relations between concepts can be quantified by measuring their semantic
relevance. In knowledge engineering and information retrieval, the notion of rel-
evance expresses how two objects are related with respect to the matter at hand.

282 S. Saad and I. Traore

Fig. 1. Intrusion Ontology Screenshot

Semantic relevance occurs between classes and individuals in the same ontology
through either explicit relations or implicit relations. Several approaches have
been proposed to calculate the semantic relevance between concepts, objects or
resources in specific domain of knowledge [10,9]. We propose in this work, a
new metric to capture the semantic relevance between intrusion alerts based on
the relations occurring between them through our ontology. More specifically,
we compute the semantic relevance between two alerts x and y as the summa-
tion of the weights of all the relations occurring between them divided by the
summation of the weights of all the relations that can occur between any two
alerts.

Given two alerts x ∈ A, y ∈ A, let Rxy denote the set of all relations between
x and y. Let R denote the set of all relations between alerts pairs from A, i.e.,
R = ∪x∈A,y∈ARxy. Given a relation r ∈ R, let w(r) denote the weight associated
with r. We define the semantic relevance between alerts x and y as follows:

semrel(x, y) =

∑

r∈Rxy

w(r)

cardinality(R)
(1)

In order to compute the semantic relevance between two alerts, we need to
identify their relations, both implicit and explicit. While explicit relations are
drawn from predefined ontological relationships, implicit relations are discovered
through semantic inference.

Extracting Attack Scenarios Using Intrusion Semantics 283

A subset of the ontological relations used to calculate the semantic relevance
between alerts are shown in Figure 2. Using these relations, a set of inference rules
were designed. The rules are represented in the Semantic Web Rule Language
(SWRL) and stored as XML files in the knowledge-base. Table 1 shows some of
the predicate sentences (used to define the rules) and their meanings.

Table 1. Predicates Sample

Predicate Sentence Description
Alert(?x) check if variable x is an Alert instance
Attack(?a) check if variable a is an Attack instance

report(?x,?a) check if variable a which is an attack instance is
reported by x which is an alert instance

Impact(?m) ∧ resultIn(?a,?m) check if variable a which is an attack instance has
an impact m which is an instance of attack impact
class

The following is an example of an inference rule that finds if two alerts have
the same attacker:

Alert(?x)∧Alert(?y)∧Attacker(?a)∧hasSource(?x, ?a)∧hasSource(?y, ?a) →
hasSameAttacker(?x, ?y)

A chain of rules can be used to infer an indirect relation between two alerts.
For example, it can be established by inference that two different alerts that
report two different attack types while having the same impact are relevant. An
example of SWRL rule to infer alerts with similar attack impact is given by:

Attack(?a)∧Attack(?b)∧ Impact(?m)∧ resultIn(?a, ?m)∧ resultIn(?b, ?m)→
hasSameImpact(?a, ?b)

Alert(?x) ∧Alert(?y) ∧ Attack(?a) ∧ Attack(?b) ∧ report(?x, ?a) ∧
report(?y, ?b) ∧ hasSameImpact(?a, ?b)→ reportSameImpact(?x, ?y)

4 Attack Scenario Reconstruction

4.1 General Approach
Our attack scenario reconstruction process starts by collecting raw alerts gen-
erated by different (heterogeneous or homogeneous) IDS sensors, with different
formats and containing possibly some false positives. The collected raw alerts are
preprocessed by converting them into a common format that takes into account
both the structures and semantics of the alert messages. Then, the converted
alerts are validated by eliminating possible false positives. To convert the alerts
into a common format, a separate profile is built for each IDS sensor. Each sen-
sor profile contains a set of formatting rules used to convert raw alerts into a
predefined format based on the vocabularies in the intrusion ontology.

The alerts resulting from the previous phases are grouped into several clusters
based on their semantic relevance. The obtained clusters are analyzed using
semantic inference to detect the causality relation between corresponding alerts.
Then, the attack scenarios are extracted using semantic inference.

284 S. Saad and I. Traore

Fig. 2. Ontological Relations between Alerts, Attack, Attacker and Target

4.2 Semantic-Based Alerts Clustering

The objective of semantic-based alerts clustering is to find groups of alerts that
are semantically relevant with respect to particular attack scenarios. A cluster
of semantically relevant alerts represents a candidate attack scenario. Given a
set A of n number of alerts there are 2n − 1 possible alerts groupings, where
each alert grouping corresponds to a candidate attack scenario. A generated
candidate attack scenario may correspond to a true or false attack scenario.

Based on the inferred relations between alerts, we calculate the semantic rel-
evance between them and construct what we refer to as the alerts correlation
graph (ACG). The ACG is an undirected weighted graph G = (V,E), where V
is a set of vertices representing alerts and E is a set of edges representing the
relations between alerts. The edges in the ACG are labeled by the values of the
semantic relevance between the alerts corresponding to adjacent vertices.

As an example, suppose we want to construct the ACG for the set of alerts
given in Table 2.

For the sake of simplicity we will assume that only three types of relations
can occur between any two alerts, namely, hasSameSource, hasSameTarget
and reportSameAttack , and also that each relation has a weight value equal
1. This means that the maximum number of relations between any two alerts is

Extracting Attack Scenarios Using Intrusion Semantics 285

Table 2. Alerts Examples

ID Source Target Attack
a1 201.134.12.11 172.16.112.10 Scan
a2 201.134.12.11 172.16.116.44 Scan
a3 135.13.216.191 172.16.113.84 Scan
a4 201.134.12.11 172.16.112.10 BufferOverFlow
a5 135.13.216.191 172.16.116.44 Scan
a6 201.134.12.11 172.16.112.10 RootAccess
a7 135.13.216.191 172.16.116.44 TelnetAccess

Fig. 3. Example of Alerts Correlation Graph

3. Based on the above considerations, the constructed ACG for the alerts set in
Table 2 is shown in Figure 3.

The edges of the ACG in Figure 3 are labelled by the semantic relevance values
between corresponding alerts. For instance, alerts a1 and a6 being linked by two
relations (i.e. hasSameSource and hasSameTarget), the semantic relevance
between them is 2/3.

Algotithm 1 illustrates the steps to build the Alerts Correlation Graph. The
algorithm takes a set A of hybrid or commonly formatted alerts as an input and
generate the alerts correlation graph as an n× n matrix G where n is the total
number of alerts in A. The entry G[i, j] is zero if the semantic relevance between
alerts ai and aj in A is less than a predefined semantic relevance threshold θ. If
the semantic relevance value w is greater than or equal θ the algorithm set the
value of G[i, j] equal to w, which indicates that there is an edge e between ai
and aj in G with weight w. The runtime complexity of Algorithm 1 is O(n2).

In graph theory a clique in an undirected graph is a subset of its vertices such
that every two vertices in the subset are connected by an edge. In our case a
clique in the ACG represents a subset of semantically relevant alerts. Therefore,
we consider every maximum clique in the ACG as a candidate attack scenario.
We use the well-known Bron-Kerbosch algorithm to find all maximum cliques in
the ACG. In the ACG shown in Figure 3, there are three maximum cliques as
illustrated by Figure 4.

286 S. Saad and I. Traore

Algorithm 1. Constructing Alerts Correlation Graph

/* A a set of IDS alerts */

/* G a matrix represent the ACG */

/* w a semantic relevance between a pair of alerts in A */

/* θ semantic relevance threshold */

/* n number of alerts in A */

Input: A, θ
Output: G
begin1

for i ← 1 to n− 1 do2

for j ← i+ 1 to n do3

w ← sem rel(ai, aj);4

if w ≥ θ then5

G[i, j] ← w ;6

end7

end8

end9

return G;10

end11

Now let c1, c2, and c3 denote the three maximum cliques in the ACG of Figure 4,
where c1 = {a1, a2, a4, a6}, c2 = {a1, a2, a3, a5} and c3 = {a2, a3, a5, a7}. By
looking closely at the above three candidate attack scenarios, we notice that they
have some common vertices (alerts). For example, a2 belong to all three of them.
Considering that an alert can belong to only one attack scenario, we need to refine
our set of candidate attack scenarios by removing common alerts between them.

To remove a common alert from different candidate attack scenarios, we cal-
culate the total semantic relevance of the common alert with respect to each
candidate attack scenario, and assign it to the candidate attack scenario yield-
ing the maximum total semantic relevance. This process will be repeated until
each alert is assigned to only one candidate attack scenario.

The total semantic relevance of an alert with respect to a specific attack
scenario is the sum of the semantic relevance between this alert and other alerts
in the same attack scenario. For example, in Figure 4 the total semantic relevance
of vertex a1 in c1 is (2/3 + 2/3 + 2/3 = 2) and in c2 is (2/3 + 1/3 + 1/3 = 1.3).
Therefore, a1 will be removed from c2 and reassign to only c1. By applying the
same method to other common vertices, we will end up with only two candidate
attack scenarios s1 and s2, where s1 = {a1, a2, a4, a6} and s2 = {a3, a5, a7}.

Algorithm 2 illustrates the main steps to extract the candidate attack sce-
narios from an alert correlation graph. The algorithm takes as input an alert
correlation graph G generated by Algorithm 1. First the set C of maximum
cliques are extracted from G using the Bron-Kerbosch algorithm. The alerts (or
vertices) in each clique are sorted based on the alert number. To detect alerts
that belong to more than one clique we apply a simple set intersection method,
where each clique in C is treated as a set. The set intersection returns a list

Extracting Attack Scenarios Using Intrusion Semantics 287

Fig. 4. Maximum Cliques in an Alerts Correlation Graph

A
′
of alerts (vertices) that belong to more than one clique. Then, the algorithm

iterates for n times, where n is the total number of alerts in A
′
. In each iteration

the algorithm calculates the alert membership to each clique in C based on the
total semantic relevance. At the end of each iteration an alert a is assigned to
a clique c, where the membership of a with c is maximum. Then, a is removed
from the other cliques in C. Finally the algorithm removes a from A

′
and ter-

minates when A
′
is empty. In addition to extracting candidate attack scenarios,

Algorithm 2 addresses also the problem of shared alerts between the candidate
scenarios.

The run time complexity of Algorithm 2 is O(3n/3)+O(n×l)+O(s2×l), where
n is the number of alerts, s is the number of alerts shared between candidate
attack scenarios, and l is the number of candidate attack scenarios in ACG.

4.3 Attack Causality Analysis

The semantic clustering only groups alerts that belong to the same attack
scenario into one cluster. Likewise, the candidate attack scenarios generated
from the semantic clustering do not provide any information about the se-
quencing of the attack or the steps the attacker executes to reach his objective.
However, the main goal of the attack scenario reconstruction is to identify the
sequence of steps and actions taken by the intruder to break into the system. An
effective way to elicit the attack sequencing consists of analyzing the causality
between the individual attacks reported in the IDS alerts.

To detect the causality between different attack instances, each attack instance
is associated with both a set of prerequisites and a set of consequences. The
attack prerequisites are the set of logical conditions to be satisfied for the attack
to succeed while the attack consequences are the set of logical conditions that will
become true when the attack succeeds. Two attacks a and b are causally related
if at least one of the consequences of one of them is among the prerequisites of
the second one.

288 S. Saad and I. Traore

Algorithm 2. Extracting Candidate Attack Scenario from ACG
/* A a set of IDS alerts */
/* G a matrix represent the ACG */
/* C a set of maximum clique in ACG */

/* A
′
a set of alerts that belong to more than one clique */

/* m membership between an alert a and clique c */
/* n number of alerts or vertices in ACG */

/* s number of alerts in A
′

*/
/* l number of maximum cliques in ACG */
Input: G
Output: C
begin1

C ← BronKerbosch(G);2
for i ← 1 to n do3

β ← 0 ;4
for j ← i to l do5

if ai ∈ cj then6
β ← β + 1;7
if β ≥ 2 then8

add ai to A
′
;9

Break ;10

end11

end12

end13

end14

while A
′ �= ∅ do15

max ← −1;16
for i ← 1 to s do17

for j ← 1 to l do18
m ← sum of the weights of all adjacent edges of ai in cj ;19
if m ≥ max then20

max ← m ;21
sAlert ← ai ;22
sClique ← cj ;23

end24

end25

end26

remove sAlert from A
′
;27

foreach clique c ∈ C do28
if c �= sClique and sAlert ∈ c then29

remove sAlert from c;30
end31

end32

end33
return C;34

end35

The knowledge corresponding to the attack prerequisites and consequences
is represented in the intrusion ontology by introducing attack prerequisites and
attack consequences relations between the Attack class and the Impact class (see
Figure 1). The attack prerequisites and consequences are defined as subclasses
of the Impact class. For any two attack instances a and b, if there is an impact
p where p is a consequence of a and a prerequisite of b, then there is a causality
relationship between a and b. In other words the intruder will execute first a and
then b. For instance, the success of a scanning attack that detects the presence
of a vulnerable FTP server is a prerequisite for a buffer overflow attack against
this FTP server. It is not possible for an intruder to execute the buffer overflow

Extracting Attack Scenarios Using Intrusion Semantics 289

attack before the scanning attack. Now, let A denote the set of consequences
of attack a and let B denote the set of prerequisites of attack b. We define the
strength of the causality relation between a and b as a value between 0 and 1
given by equation 2, where 0 indicates no causality and 1 indicates maximum
causality:

causality(a, b) =
|A ∩B|
|A ∪B| (2)

The process of detecting attack causality and reconstructing the attack scenario
graph can be described as a graph transformation operation. The attack causal-
ity detection algorithm converts the complete graph representing the candidate
attack scenario into a directed acyclic graph representing the reconstructed at-
tack scenario. The transformation consists of simply replacing the edges in the
alerts correlation graph corresponding to the semantic relevance relations be-
tween alerts with new edges that represent the causality relations between the
attacks reported by the alerts.

Algorithm 3 describes the key steps of the attack causality analysis. The algo-
rithm takes a clique (i.e. a candidate attack scenario) as an input and generates
an attack scenario graph as an output. The input clique is represented by a vec-
tor V of alerts sorted in ascending order based on their timestamps. The output
of the algorithm is an attack scenario graph represented by a set of matrices
denoted M . The algorithm starts by creating an empty matrix m1 and inserts
the first alert in V into m1. Then the algorithm iterates n− 1 times, where n is
the size of V . In each iteration, the algorithm checks the causality between one
alert ai from V and every alert b in every matrix mj in M using equation 2. If
the causality measure equal zero for every alert in every matrix mj in M , the
algorithm creates a new matrix mj+1 and adds ai to this matrix. If the causality
measure is greater than zero then the algorithm will add ai to the matrix that
returns the maximum causality with ai.

The ideal output of the algorithm is the case where M contains a single
matrix, which means that the attack scenario graph is a connected graph. The
case where M contains more than one matrix indicates that the attack scenario
graph is not a connected graph, which corresponds either to a false negative, a
novel attack, or some missing causality information.

5 Experimental Evaluation

To evaluate our approach, we use two different datasets widely used in the liter-
ature, namely, the DARPA 2000 dataset from MIT Lincoln Laboratory [6] and
the Treasure Hunt dataset [12]. Specifically, we used the LLDDOS1.0 subset of
the DARPA dataset and the DMZ partition from the Treasure Hunt dataset.
We analyzed the tcpdump files of the datasets using SNORT IDS version 2.9.2.0
running on Ubuntu box. Table 3 shows a summary of the contents of the datasets
after analyzing them with SNORT IDS. These include the number of alerts (in-
cluding redundant alerts) generated by SNORT for each dataset, the number

290 S. Saad and I. Traore

Algorithm 3. Attacks Causality Analysis
/* V a sorted vector of alerts that belong to one clique */
/* M a set of matrices that represent the attack scenario graph */
/* n number of alerts in V */
/* l number of matrices in M */
Input: V
Output: M
begin1

create m1 as an empty matrix in M ;2
add V [1] to m1;3
l ← 1;4
for i ← 2 to n do5

max ← 0;6
for j ← 1 to l do7

foreach alert b ∈ mj do8
δ ← causality(ai,b);9
if δ > max then10

max ← δ ;11
sMatrix ← mj ;12
sAlert ← b;13

end14

end15

end16
if max �= 0 then17

add ai to mj at sAlert;18
else19

l ← l + 1;20
create ml as an empty matrix in M ;21
add ai to ml;22

end23

end24
return M ;25

end26

Table 3. Datasets Statistics

Dataset LLDDOS1.0 Hunt-DMZ
Alerts 2170 671848

Intrusions 16 49
Sources 273 28
Targets 738 37
Duration ≈ 100 minutes ≈ 893 minutes

of unique intrusions or attacks reported by SNORT, the number of source and
destination IP addresses and the duration of generated network traffic.

We used the soundness and the completeness metrics, described earlier in the
Introduction, to calculate the performance of our proposed approach.

By applying our approach to the DMZ partition of the treasure hunt dataset,
6 attack scenarios were detected, five of which were attack true attack scenar-
ios and one was a false attack scenario. The true attack scenarios detected by
our approach are the following: Protocol Exploit ,Reconnaissance,Privilege
Escalation , and two Web Exploit attack scenarios. All of these attacks target
two machines inside the DMZ, while their sources are from 2 different subnets.
The attackers kept executing these attack scenarios in a brute-force manner over
a period of 15 hours. The false attack scenario is MySQL Root Attack . The
source of that attack is one machine inside the DMZ network and the target is
a host in one of the Treasure Hunt internal networks.

Extracting Attack Scenarios Using Intrusion Semantics 291

We found that out of the total number of alerts (i.e. 671848), there are 628956
alerts related to the five attack scenarios. The remaining 42892 alerts are either
false positives or single attack attempts that are irrelevant to any of the five
attack scenarios. Our approach correlates 629426 alerts, 470 of which are alerts
that are incorrectly considered part of the related alerts. Table 4 summarizes the
performance results obtained for the different attack scenarios for the treasure
hunt dataset.

Table 4. Evaluation Results with the Treasure hunt Dataset

Scenario Correlated True Related Completeness Soundness
alerts alerts alerts

Web Exploit 1 503337 503337 503337 100.00% 100.00%
Web Exploit 2 101071 100758 100758 100.00% 99.69%

Protocol Exploit 1730 1701 1705 99.77% 98.32%
Reconnaissance 3097 2973 3053 97.38% 96.00%

Privilege Escalation 20191 19981 20103 99.39% 98.96%

To compare our approach to previous approaches we used the LLDDOS1.0
attack scenario from the DARPA dataset, since most of the previous approaches
used that dataset for evaluation. Table 5 shows the completeness and the sound-
ness of our approach in comparison to previous works.

Table 5. Comparison of Attack Scenario Reconstruction Approaches Using the LLD-
DOS1.0 Dataset

Approach Completeness Soundness
Ning et al 93.96% 93.96%
Liu et al 87.12% 86.27%

Al-Mamory and Zhang 86.5% 100%
Li et al 92.2% not provided

Our Approach 100% 99.70%

As shown by Tables 5 and 4, our approach outperforms many of the previous
approaches. The completeness of our approach is promising and shows that our
approach can correlate alerts that belong to the same attack scenario with high
detection rate. At the same time the soundness of our approach is in general
better than most of the previous approaches.

6 Conclusion

We have introduced in this paper a new attack scenario reconstruction technique
using semantic and causality analysis. Our approach using semantic relevance
to correlate related alerts based on their semantics. Experimental evaluation
of our approach yields better results compared to previous works in the area
of attack scenario reconstruction. Future work will aim at improving the run
time of our approach and investigate the possibility of validating IDS alerts to

292 S. Saad and I. Traore

effectively remove false positives and irrelevant alerts. In addition, predicting
missing attack steps that result from IDS false negatives is another direction
for future work. Missing attack steps can prevent or hinder the reconstruction
of true attack scenario, therefore predicting missing attack steps is an essential
requirement to improve the attack scenario reconstruction.

References

1. Abdoli, F., Kahani, M.: Using attacks ontology in distributed intrusion detection
system. In: SCSS (1), pp. 153–158 (2007)

2. Al-Mamory, S.O., Zhang, H.L.: Scenario discovery using abstracted correlation
graph. In: 2007 International Conference on Computational Intelligence and Secu-
rity, pp. 702–706 (December 2007)

3. Ding, Y.-X., Wang, H.-S., Liu, Q.-W.: Intrusion scenarios detection based on data
mining. In: 2008 International Conference on Machine Learning and Cybernetics,
vol. 3, pp. 1293–1297 (July 2008)

4. Isaza, G.A., Castillo, A.G., Duque, N.D.: An Intrusion Detection and Prevention
Model Based on Intelligent Multi-Agent Systems, Signatures and Reaction Rules
Ontologies. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th In-
ternational Conference on PAAMS 2009. AISC, vol. 55, pp. 237–245. Springer,
Heidelberg (2009)

5. Li, W., Zhi-tang, L., Dong, L., Jie, L.: Attack scenario construction with a new se-
quential mining technique. In: Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, SNPD 2007, July 30-August 1, vol. 1, pp. 872–877 (2007)

6. Lincoln-Laboratory-MIT. Darpa intrusion detection evaluation,
http://www.ll.mit.edu/mission/communications/ist/CST/index.html

7. Liu, Z., Wang, C., Chen, S.: Correlating multi-step attack and constructing at-
tack scenarios based on attack pattern modeling. In: International Conference on
Information Security and Assurance, ISA 2008, pp. 214–219 (April 2008)

8. Ning, P., Cui, Y., Reeves, D.S.: Constructing attack scenarios through correlation
of intrusion alerts. In: CCS 2002: Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 245–254. ACM, New York (2002)

9. Rhee, S.K., Lee, J., Park, M.-W.: Semantic relevance measure between resources
based on a graph structure. In: International Multiconference on Computer Science
and Information Technology, IMCSIT 2008, pp. 229–236 (October 2008)

10. Ruotsalo, T., Hyvonen, E.: A Method for Determining Ontology-Based Seman-
tic Relevance. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS,
vol. 4653, pp. 680–688. Springer, Heidelberg (2007)

11. Saad, S., Traore, I.: Method ontology for intelligent network forensics analysis.
In: Eight International Conference on Privacy, Security and Trust (PST 2010),
Ottawa, Canada, pp. 7–14 (August 2010)

12. UCSB. The 2002 UCSB treasure hunt dataset,
http://ictf.cs.ucsb.edu/data/treasurehunt2002/

13. Undercoffer, J.L., Joshi, A., Finin, T., Pinkston, J.: A Target-Centric Ontology
for Intrusion Detection. In: The 18th International Joint Conference on Artificial
Intelligence (July 2003)

http://www.ll.mit.edu/mission/communications/ist/CST/index.html
http://ictf.cs.ucsb.edu/data/treasurehunt2002/

On Securely Manipulating XML Data

Houari Mahfoud and Abdessamad Imine

University of Lorraine and INRIA-LORIA
Nancy, France

{Houari.Mahfoud,Abdessamad.Imine}@loria.fr

Abstract. Over the past years several works have proposed access con-
trol models for XML data where only read-access rights over non-recursive
DTDs are considered. A small number of works have studied the access
rights for updates. In this paper, we present a general and expressive
model for specifying access control on XML data in the presence of
the update operations of W3C XQuery Update Facility. Our approach
for enforcing such update specification is based on the notion of query
rewriting. A major issue is that, in practice, query rewriting for recur-
sive DTDs is still an open problem. We show that this limitation can
be avoided using only the expressive power of the standard XPath, and
we propose a linear algorithm to rewrite each update operation defined
over an arbitrary DTDs (recursive or not) into a safe one in order to be
evaluated only over the XML data which can be updated by the user. To
our knowledge, this work is the first effort for securely updating XML in
the presence of arbitrary DTDs, a rich class of update operations, and a
significant fragment of XPath.

Keywords: XML Access control, XML Updating, Query Rewriting,
XPath, XQuery.

1 Introduction

The XQuery Update Facility language [1] is a recommendation of W3C that
provides a facility to modify some parts of an XML document and leave the rest
unchanged, and this through different update operations. This includes rename,
insert, replace and delete operations at the node level. The security requirement
is the main problem when manipulating XML documents. An XML document
may be queried and/or updated simultaneously by different users. For each class
of users some rules can be defined to specify parts of the document which are
accessible to the users and/or updatable by them. A bulk of work has been
published in the last decade to secure the XML content, but only read-access
rights has been considered over non-recursive DTDs [2–5]. Moreover, a few works
have considered update rights [4, 6, 7].

In this paper, we investigate a general approach for securing XML update
operations of the XQuery Update Facility language. Abstractly, for any update
operation posed over an XML document, we ensure that the operation is per-
formed only on XML nodes that can be updated by the user. Addressing such

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 293–307, 2013.
© Springer-Verlag Berlin Heidelberg 2013

294 H. Mahfoud and A. Imine

Fig. 1. Hospital DTD

concerns requires first a specification model to define update constraints and a
flexible mechanism to enforce these constraints at update time.

We now discuss a motivating example for access control with updates. Con-
sider the recursive DTD1 depicted as a graph in Fig.1. We use ’∗’ on an edge
to indicate a list, ’?’ to indicate optional edge, while dashed edges represent
disjunction. A hospital document conforming to this DTD consists of a list of
departments (dept) defined by a name, and each department has a list of chil-
dren representing patients currently residing in the hospital. For each patient,
the hospital maintains her name (pname), ward number (wardNo), family med-
ical history by means of the recursively defined parent and sibling, as well as
list of symptoms. The hospitalization is marked by the intervention of one or
many doctors depending on their specialty and the patient care requirement. For
each intervention, the hospital also maintains the information of the responsible
doctor (defined with name (dname) and specialty) and the treatment applied. A
treatment is described by its type, a list of result (Tresult), and it is followed by
a diagnosis phase. According to the results of the diagnosis (Dresult), the doctor
may decide to do another treatment. However, if the required treatment is out-
side his area of expertise, then the current doctor would solicit the intervention
of another doctor, specialist, or expert.

An instance of the hospital DTD is given in Fig. 2. Due to space limitation, this
instance is split into two parts. Figure2 (a) represents a simple hospital document
with Cardiology department, Critical care department, as well as some patients
information of these departments2. Figure2 (b) depicts the three interventions
done for patient1: intervention1, intervention2, and intervention3.

1 A DTD is recursive if and only if at least one of its elements is defined (directly or
indirectly) in terms of itself.

2 We use the notation Xi to distinguish between different instances of element type
X, like patient1.

On Securely Manipulating XML Data 295

Fig. 2. Hospital Data: (a) patients information, (b) interventions done for patient1

Example 1. (Update Policy for doctors) Suppose that the hospital wants to im-
pose a security policy that authorizes each doctor to update only the information
of treatments that she has done. For instance, the doctor Imine could update
the data of treatment1, treatment2, and treatment4 (like insert new Dresult
sub-tree into the node diagnosis4) but not treatment3. We show in the following
that this update policy, even simple, cannot be enforced by using some existing
update specification languages. �
Problem 1. (Expressiveness of Update Specification Languages) In
some case of recursive DTDs, the existing update access control models are
unable to specify some update policies. In the model proposed by Dami-
ani et al. [4], the update policy is defined by annotating the XML schema
by security attributes. For instance, adding attribute @insert=[test=’Blood
Analysis’] into element type treatment of the hospital DTD specifies that
new sub-tree can be inserted to treatment nodes having ’Blood Analysis ’ as
type. However, only local annotations can be defined (i.e. the update con-
straint concerns only the node and not its descendants) which makes the
proposed model restricted for non-recursive schema/DTD. For instance, the
updates of doctor Imine cannot be discarded for the node treatment3 as
imposed by the update policy defined above. Specifically, adding attribute
@insert=[ancestor::intervention[doctor/dname=’Imine’]] into treatment

296 H. Mahfoud and A. Imine

element type makes all treatment nodes updatable by Imine. Since the hospital
DTD is recursive, this update policy cannot be specified by the model proposed
in [4]. To specify the imposed update policy, a plausible solution may be done
by using the transitive closure operator ’* ’. In this case, the adequate update
constraint would be defined by adding the following attribute into treatment
element type:

@insert=[(parent::implies/parent::diagnosis/parent::treatment)∗/
parent::investigation[doctor/dname=$dname]]

Where $dname is treated as a constant parameter; i.e., when a concrete value,
e.g., Imine, is substituted for $dname, the previous annotation defines the up-
date right for doctor Imine. However, the transitive closure operator cannot be
expressed in the standard XPath as outlined in [8].

Due to space constraints, we do not discuss about the limitation of the update
access control model (called XACU) proposed in [6]. For more details, the reader
is referred to our extended version available online 3.

To the best of our knowledge, no model exists for specifying update policies
over recursive DTDs.

Problem 2. (Query Rewriting Limitation) For each update operation, an
XPath expression is defined to specify the XML data at which the update is
applied. To enforce an update policy, the query rewriting principle can be applied
where each update operation (i.e., its XPath expression) is rewritten according
to the update constraints into a safe one in order to be performed only over parts
of the XML data that can be updated by the user who submitted the operation.
However, this rewriting step is already challenging for a small class of XPath.
Consider the downward fragment of XPath which supports child and descendant-
or-self axes, union and complex predicates. In case of recursive DTDs, it was
shown that an XPath expression defined in this fragment cannot be rewritten
safely. More specifically, a safe rewriting of the XPath expression of an update
operation can stand for an infinite set of paths which cannot be expressed in the
downward fragment of XPath (even by using the upward-axes: parent, ancestor,
and ancestor-or-self).

To overcome this rewriting limitation, one can use the ’Regular XPath’
language [9], which includes the transitive closure operator and allows to
express recursive paths. However, it remains a theoretical achievement since no
tool exists to evaluate Regular XPath queries. Thus, no practical solution exists
for enforcing update policies in the presence of recursive DTDs.

Our Contributions. Our first contribution is an expressive model for specify-
ing XML update policies, based on the primitives of the XQuery Update Facility,
and over arbitrary DTDs (recursive or not). Given a DTD D, we annotate ele-
ment types of D with different update rights to specify restrictions on updating
some parts of XML documents that conform to D. Each update right concerns
one update operation (e.g., deny insertion of new nodes of type Tresult under

3 http://hal.inria.fr/hal-00664975

http://hal.inria.fr/hal-00664975

On Securely Manipulating XML Data 297

treatment nodes). Our model supports inheritance and overriding of update
privileges and overcomes expressivity limitations of existing models (see Prob-
lem 1). Our approach for enforcing such update policies is based on the notion of
query rewriting. However, to overcome the rewriting limitation presented above
as Problem 2, we investigate the extension of the downward fragment of XPath
using upward-axes and position predicate. Based on this extension, our second
contribution is a linear algorithm that rewrites any update operation defined in
the downward fragment of XPath into another one defined in the extended frag-
ment to be safely performed over the XML data. To our knowledge, this yields
the first model for specifying and enforcing update policies using the XQuery
update operations and in the presence of arbitrary DTDs.

Related Work. During the last years, several works have proposed access con-
trol models to secure XML content, but only read-access has been considered
over non-recursive DTDs [2–4]. There has been a few amount of work on secur-
ing XML data by considering the update rights. Damiani et al. [4] propose an
XML access control model for update operations of the XUpdate language. They
annotate the XML schema with the read and update privileges, and then the
annotated schema is translated into two automatons defining read and update
policies respectively, which are used to rewrite any access query (resp. update
operation) over the XML document to be safe. However, the update policy is
expressed only with local annotations which is not sufficient to specify some up-
date rights (see Problem 1). Additionally, the automaton processing cannot be
successful when rewriting access queries (resp. update operations) defined over
recursive schema (i.e., recursive DTD). Fundulaki et al. [6] propose an XML
update access control model, called XACU, for the XQuery update operations. A
set of XPath-based rules is used to specify, for each update operation, the XML
nodes that can be updated by the user using this operation. In the presence
of non-recursive DTD only, the XACU rules can be translated into annotations
over element types of the DTD to present an annotation-based model called
XACUannot.

The view-based access control for XML data has received an increased atten-
tion [2,5,10]. However, a major issue arises in the case of recursive security views
when XPath query rewriting becomes not possible. To overcome this problem,
some authors [10, 11] propose rewriting approaches based on the non-standard
language, “Regular XPath” [9], which is more expressive than XPath and makes
rewriting possible under recursion. However, no system exists for evaluating reg-
ular XPath queries in order to demonstrate the practicality of the proposed
approaches. Thus, the need of a rewriting system of XPath queries (resp. update
operations) over recursion remains an open issue.

Plan of the Paper. The paper is organized as follows. Section 2 reviews some
basic notions tackled throughout the paper. We describe in Section 3 our specifi-
cation model of update. Our approach for securing update operations is detailed
in Section 4. Finally, we conclude this paper in Section 5.

298 H. Mahfoud and A. Imine

2 Background

This section briefly reviews some basic notions tackled throughout the paper.

DTDs. Without loss of generality, we represent a DTD D by (Ele, Rg, root),
where Ele is a finite set of element types ; root is a distinguished type in Ele
called the root type; Rg is a function defining element types such that for any A
in Ele, Rg(A) is a regular expression α defined as follows:

α := str | ε | B | α’,’α | α’|’α | α* | α+ | α?

where str denotes the text type PCDATA, ε is the empty word, B is an element
type in Ele, α’,’α denotes concatenation, and α’|’α denotes disjunction. We refer
to A → Rg(A) as the production of A. For each element type B occurring in
Rg(A), we refer to B as a sub-element type (or child type) of A and to A as
a super-element type (or parent type) of B. The sub-elements structure can be
specified using the operators ’*’ (set with zero or more elements), ’+’ (set with
one or more elements), and ’?’ (optional set of elements). A DTD D is recursive
if some element type A is defined in terms of itself directly or indirectly.

As depicted in Fig. 1, our DTD graph representation is specified with solid
edges (which represent conjunction), dashed edges (which represent disjunction).
These edges can be labeled with one of the operators ’*’, ’+’, or ’?’. This simple
graph representation suffices to depict our hospital DTD. However, for a com-
plete representation of DTDs, a special DTD graph structure can be used, along
the same lines as [3].

XML Trees. We model an XML document with an unranked ordered finite
node-labeled tree. Let Σ be a finite set of node labels, an XML document T
over Σ is a structure defined as [9]: T=(N,R↓, R→, L), where (N,R↓) is a finite
rooted tree with child relation R↓ ⊆ N ×N , R→ ⊆ N×N is a successor relation
on (ordered) siblings, and L : N → Σ is a function assigning to every node its
label. We use the term XML Tree for this type of structures.

An XML tree T = (N,R↓, R→, L) conforms to a DTD D = (Ele,Rg, r) if the
following conditions hold: (i) the root of T is the unique node labeled with r ;
(ii) each node in T is labeled either with an Ele type A, called an A element,
or with str, called a text node; (ii) for each A element with k ordered children
n1, ..., nk, the word L(n1), ..., L(nk) belongs to the regular language defined by
Rg(A); (iv) each text node carries a string value (PCDATA) and is the leaf of the
tree. We call T an instance of D if T conforms to D.

XPath Queries. We consider a small class of XPath [12] queries, referred to as
X and defined as follows:

p := α::ntst | p [q] | p /p | p ∪ p

q := p | p =’c’ | q ∧ q | q ∨ q | ¬ (q)

α := ε | ↓ | ↓+ | ↓∗

On Securely Manipulating XML Data 299

where p denotes an XPath query and it is the start of the production, ntst is a
node test that can be an element type, ∗ (that matches all types), or function
text() (that tests whether a node is a text node), c is a string constant, and ∪, ∧,
∨, ¬ denote union, conjunction, disjunction, and negation respectively; α stands
for XPath axis relations and can be one of ε, ↓, ↓+, or ↓∗ which denote self, child,
descendant, and descendant-or-self axis respectively. Finally the expression q is
called a qualifier or predicate. The result of the evaluation of an X query p at
a context node n of an XML Tree T , is the set of nodes reachable via p from n,
denoted by n〚p〛. We denote by n � q a qualifier q that is valid at a node n.

Authors of [10] have shown that in the case of recursive security views, the
fragment X (called downward fragment) is not closed under query rewriting.
This means that is not always possible to rewrite XPath queries on views to be
safely evaluated on the source. Consequently, it is also the problem of update
operations rewriting since fragment X is the core of XQuery, XSLT and XML
Schema. Our solution to make possible the update operations rewriting is based
on the following extension:

p := α::ntst | p [q] | p /p | p ∪ p | p [n]
q := p | p =’c’ | q ∧ q | q ∨ q | ¬ (q)

α := ε | ↓ | ↓+ | ↓∗ | ↑ | ↑+ | ↑∗

we enrich X by the position predicate and the upward-axes presented by parent
axis (↑), ancestor axis (↑+), and ancestor -or -self axis (↑∗). The position predi-
cate, defined with [n](n ∈ N), is used to return the nth node from an ordered
set of nodes. For instance, the query ↓::∗[2] at a node n of an ordered returns its

second child node. We denote this extended fragment with X⇑
[n].

In our case, fragment X is used only to formulate update operations and to
define our security policies. While we will explain later how the fragment X⇑

[n]

defined above can be used to avoid the rewriting limitation.

XML Update Operations. We review some update operations of the W3C
XQuery Update Facility recommendation [1]. We study the use of the following
operations: insert, delete, and replace. For each update operation, an XPath
target expression is used to specify the set of XML node(s) in which the update
is applied. In a delete operation, target specifies the XML nodes to be deleted
(denoted target-nodes). For insert, and replace operations, target must specify a
single node (denoted target-node); otherwise a dynamic error is raised. Moreover,
the latter operations require a second argument source representing a sequence of
XML nodes. The order defined between the nodes of source must be preserved
during the insertion and replacement. In the following, names in brackets are
abbreviations of the different operations.

Insert. We distinguish different types of insert operation depending on the po-
sition of the insertion:

• insert source as first/last into target [insertAsFirst/insertAsLast]:
Here target-node must evaluate to a single element node; otherwise a dynamic

300 H. Mahfoud and A. Imine

error is raised. This operation inserts the nodes in source as first/last children
of target-node respectively.

• insert source before/after target [insertBefore/insertAfter]: Inserts the
nodes in source as preceding/following sibling nodes of target-node respectively.
In this case, target-node must have a parent node; otherwise a dynamic error is
raised.

• insert source into target [insertInto]: Inserts the nodes in source as chil-
dren of the single element node target-node (otherwise a dynamic error is raised).
Note that the positions of the inserted nodes among the children of target-node
are implementation-dependent 4. Thus, the effect of executing an insertInto

operation on target-node can be that of insertAsFirst/insertAsLast ex-
ecuted on target-node, or that of insertBefore/insertAfter executed at
children of target-node.

Delete. The operation “delete target” [delete] deletes all target-nodes along
with their descendant nodes.

Replace. The operation “replace target with source” [replace] replaces
target-node with the nodes in source. Here target-node must have a parent
node; otherwise a dynamic error is raised. If target-node is an element or text
node, then source must be a sequence of elements or text nodes respectively.
The target-node is deleted along with its descendants and replaced by the nodes
in source together with their descendants.

3 Update Access Control Model

This section describes our access control model for XML update.

3.1 Update Specifications

We follow the idea of security annotations presented in [2] and the update access
types notion introduced in [13] to define a language for specifying expressive and
fine-grained XML update policies in the presence of DTDs. An update specifica-
tion Sup expressed in the language is a simple extension of the document DTD
D associating element types with update annotations (XPath qualifiers), which
specify for any XML tree T conforms to D, the parts of T that can be updated
by the user through a specific update operation.

Definition 1. Given a document DTD D, an update type (ut) defined over
D is of the form insertInto [Bi], insertAsFirst [Bi], insertAsLast [Bi],
insertBefore [Bi,Bj], insertAfter [Bi,Bj], delete [Bi], and replace [Bi,Bj],
where Bi and Bj are element types of D. �
4 For instance, in the DataDirect XQuery implementation, available at
http://www.cs.washington.edu/research/xmldatasets/, insertInto opera-
tion has the same effect as insertAsLast.

http://www.cs.washington.edu/research/xmldatasets/

On Securely Manipulating XML Data 301

Table 1. Semantics of the update annotations Y , N , and [Q]

Annotation Semantic
annup(A,insertInto[Bi]) = Y |N |[Q] for a node n of type A, one can (Y)/cannot (N)/can if

n � Q, insert nodes of type Bi in an arbitrary position
children of n.

annup(A,insertAsFirst[Bi]) =
Y |N |[Q]

for a node n of type A, one can (Y)/cannot (N)/can if
n � Q, insert nodes of type Bi as first children of n.

annup(A,insertBefore[Bi,Bj]) =
Y |N |[Q]

for a node n of type A, one can (Y)/cannot (N)/can if
n � Q, insert nodes of type Bj as preceding sibling nodes
of any child node of n whose type is Bi.

annup(A,delete[Bi]) = Y |N |[Q] for a node n of type A, one can (Y)/cannot (N)/can if
n � Q, delete children of n whose type is Bi.

annup(A,replace[Bi,Bj]) = Y |N |[Q] for a node n of type A, one can (Y)/cannot (N)/can if
n � Q, replace children of n of type Bi by some nodes of
type Bj .

Intuitively, each update type ut represents an update operation that is restricted
to be applied only for specific element types. For example, the update type
replace [Bi,Bj] represents the update operations “replace target with source”
where target-node is of type Bi and nodes in source are of type Bj.

Based on this notion of update type, we define our update specifications as
follows:

Definition 2. An update specification Sup is a pair (D, annup) where D is a
DTD and annup is a partial mapping such that, for each element type A in D and
each update type ut defined over element types of D, annup(A, ut), if explicitly
defined, is an annotation of the form:

annup(A,ut) ::= Y | N | [Q] | Nh | [Q]h

where Q is a qualifier in our XPath fragment X . �
An update specification Sup is an extension of a DTD D associating update
annotations with element types of D. In a nutshell, a value of Y , N , or [Q] for
annup(A,ut) indicates that, for A elements in an instantiation of D, the user
is authorized, unauthorized, or conditionally authorized respectively, to perform
update operations of type ut at A (case of insertInto, insertAsFirst, or inser-
tAsLast operations) or at children of A (case of the remaining operations). Table
1 presents more specifically the semantics of the update annotations Y , N , and
[Q]5.

Our model supports inheritance and overriding of update annotations. If
annup(A,ut) is not explicitly defined, then an A element inherits from its parent
node the update authorization that concerns the same update type ut. On the
other hand, if annup(A,ut) is explicitly defined it may override the inherited au-
thorization of A that concerns the same update type ut. All update operations
are not permitted by default.

5 The semantics of annotations with the update types annup(A,insertAslast [Bi])

and annup(A,insertAfter [Bi,Bj]) are defined in a similar way as
annup(A,insertAsFirst [Bi]) and annup(A,insertBefore [Bi,Bj]) respec-
tively.

302 H. Mahfoud and A. Imine

Table 2. Semantics of downward-closed annotations (ut can be any update type)

Downward-closed
Annotation

Semantic

annup(A,ut) = Nh Same principle as annup(A,ut) = N of Table 1. Moreover,
for a node n of type A, all annotations of type ut defined
over descendant types of A are discarded regardless their
truth values.

annup(A,ut) = [Q]h Same principle as annup(A,ut) = [Q] of Table 1. More-
over, for a node n of type A, if n � Q then all annotations
of type ut defined over descendant types of A are discarded
regardless their truth values.

Finally, the semantics of the specification values Nh and [Q]h are given in
Table 2. The annotation annup(A,ut)=Nh indicates that, for a node n of type
A, update operations of type ut cannot be performed at any node of the sub-
tree rooted at n, and no overriding of this authorization value is permitted for
descendants of n. For instance, if n has a descendant node n′ whose type is A′,
then an update operation with the same type ut cannot be performed at/un-
der n′ even though the annotation annup(A

′,ut)=Y is explicitly defined (resp.
annup(A

′,ut)=[Q′] with n′ � Q′). As for the annotation annup(A,ut)=[Q]h, qual-
ifier Q must be valid at A elements, otherwise no annotation with update type
ut can override the false evaluation of Q. For instance, let n and n′ be two
nodes of type A and A′ respectively, and let n′ be a descendant node of n.
The annotation annup(A

′,ut)=[Q′] indicates that an update operation of type
ut can be performed at (children of) n′ iff: n′ � Q′. Moreover, if the annotation
annup(A,ut)=[Q]h is explicitly defined then the annotation annup(A

′,ut)=[Q′]
takes effect at descendant node n′ of n only if n � Q. This means that an update
operation of type ut can be performed at (children of) n′ iff: (n � Q ∧ n′ � Q′).
We call annotation with value Nh or [Q]h as downward-closed annotation.

Example 2. Suppose that each nurse is attached to only one department and only
one ward within this department (denoted $nurseDept and $nurseWardNo
resp.). Now, the hospital wants to impose an update policy that allows a nurse
to update data of only patients having the same ward number as her (Rule1)
and which are being treated at her department (Rule2). Moreover, all sibling
data cannot be updated (Rule3). This policy can be specified by the following
update annotations (ut denotes a general update type):

R1: annup(department,ut)=[↓::name=$nurseDept]h
R2: annup(patient,ut)=[↓::wardNo=$nurseWardNo]
R3: annup(sibling,ut)=Nh

Consider the case of the nurse having the ward number 421 and working at Crit-
ical care department, and let ut be delete [symptom]. This nurse can delete all
symptoms of Fig. 2 except: symptom2 (since patient2 has ward number 318),
symptom4 (representing part of sibling data), and symptom5 (although patient5

On Securely Manipulating XML Data 303

has ward number 421, he is attached to ENT department). Notice that the an-
notations R1 and R3 must be defined as downward-closed to enforce the im-
posed policy, otherwise annotation R2 overrides at nodes patient4 and patient5
the negative authorizations inherited respectively from the nodes sibling1 and
department2, which violates the imposed policy and makes possible the deletion
of the nodes symptom4 and symptom5. �
3.2 Rewriting Problem

As will be seen shortly, in the case of recursive DTDs, update operations rewrit-
ing is already challenging for the small fragment X of XPath. Recall the update
policy defined in Example 1. In our case, this policy can be specified by defining
only the following update annotation:

annup(intervention, ut) = [↓::doctor/↓::dname=$DName]

Where $DName is a constant parameter representing doctor’s name, and ut can
be any update type relevant to the update rules of Example 1. Now, let $DName
be Imine and ut be delete [Tresult]. The update operation delete ↓+::
treatment[↓::type=’chemotherapy’]/↓::Tresult cannot be rewritten in X to be
safe. Indeed, the Tresult nodes that doctor Imine is authorized to delete can be
represented by an infinite set of paths. This latter can be captured by rewriting
the previous update into the following one: delete ↓+::intervention[↓::doctor/↓::
dname=$DName]/(↓::treatment/↓::diagn-osis/↓::implies)*/↓::treatment[↓::
type=’chemotherapy’]/↓::Tresult, defined in Regular XPath and which, when
evaluated on the XML tree of Fig. 2, delete only the node Tresult2. However,
the Kleene star cannot be expressed in XPath [9].

We explain in the next section how the extended fragment X⇑
[n], defined in

Section 2, can be used to overcome this rewriting limitation of update operations.

4 Securely Updating XML

In this section we focus only on update rights and we assume that every node is
read-accessible by all users. Given an update specification Sup=(D, annup), we
discuss the enforcement of such update constraints where each update operation
posed over an instance T of D must be performed only at the nodes of T that
can be updated by the user w.r.t. Sup. We assume that the XML tree T remains
valid after the update operation is performed, otherwise the update is rejected.
In the following, we denote by Sut the set of annotations defined in Sup with
the update type ut and by |Sut| the size of this set. Moreover, for an annotation
function ann, we denote by {ann} the set of all annotations defined with ann,
and by |ann| the size of this set.

4.1 Updatability

We say that a node n is updatable w.r.t. update type ut if the user is granted to
perform update operations of type ut either at node n (case of insert operations)

304 H. Mahfoud and A. Imine

or over children nodes of n (case of delete and replace operations). For instance,
if a node n is updatable w.r.t. insertInto [B], then some nodes of type B can
be inserted as children of n. Moreover, Bi children of n can be replaced with
nodes of type Bj iff n is updatable w.r.t. replace [Bi,Bj].

Definition 3. Let Sup=(D, annup) be an update specification and ut be an up-
date type. A node n in an instantiation of D is updatable w.r.t. ut if the following
conditions hold:

i) The node n is concerned by a valid annotation6 with type ut; or, no anno-
tation of type ut is defined over element type of n and there is an ancestor
node n′ of n such that: n′ is the first ancestor node of n concerned by an
annotation of type ut, and this annotation is valid at n′ (called the inherited
annotation).

ii) There is no ancestor node of n concerned by an invalid downward-closed
annotation of type ut. �

Given an update specification Sup=(D, annup), we define two predicates U1
ut

and U2
ut (expressed in fragment X⇑

[n]) to satisfy the conditions (i) and (ii) of

Definition 3 with respect to an update type ut:

U1
ut := ↑∗::∗[∨(annup(A,ut)=Y |N |[Q]|Nh|[Q]h)∈Sut

ε::A][1]
[∨(annup(A,ut)=Y)∈Sut

ε::A ∨(annup(A,ut)=[Q]|[Q]h)∈Sut
ε::A[Q]]

U2
ut := ∧(annup(A,ut)=Nh)∈Sut

not (↑+::A)
∧(annup(A,ut)=[Q]h)∈Sut

not (↑+::A[not(Q)])

The predicate U1
ut has the form ↑∗::∗[qual1][1][qual2]. Applying ↑∗::∗[qual1] on a

node n returns an ordered set S of nodes (node n and/or some of its ancestor
nodes) such that for each one an annotation of type ut is defined over its element
type. The predicate S[1] returns either node n, if an annotation of type ut is
defined over its element type; or the first ancestor node of n concerned by an
annotation of type ut. Thus, to satisfy condition (i) of Definition 3, it amounts
to check that the node returned by S[1] is concerned by a valid annotation of
type ut; checked by the predicate S[1][qual2] (i.e., n � U1

ut). The second predicate
is used to check that all downward-closed annotations of type ut defined over
ancestor nodes of n are valid (i.e., n � U2

ut).

Definition 4. Let Sup=(D, annup), ut, and T be an update specification, an
update type and an instance of DTD D respectively. We define the updatabil-
ity predicate Uut which refers to an X⇑

[n] qualifier such that, a node n on T is

updatable w.r.t. ut iff n � Uut, where Uut := U1
ut ∧ U2

ut. �
For example, the XPath expression ↓+::∗[Uut] stands for all nodes which are
updatable w.r.t. ut. As a special case, if Sut = φ then Uut = false.

6 Note that an annotation annup(A, ut)=value is valid at a node n if this latter is of
type A and either value=Y ; or, value=[Q]/[Q]h and n � Q.

On Securely Manipulating XML Data 305

Property 1. For an update specification Sup=(D, annup) and an update type ut,
the updatability predicate Uut can be constructed in at most O(|annup|) time.
Moreover, |Uut|=O(|annup|). �
Example 3. Consider the three update annotations R1, R2, and R3 defined in
Example 2, and let the update type ut be delete [symptom]. According to these
annotations, the predicate Uut := U1

ut ∧ U2
ut is defined with:

U1
delete [symptom] := ↑∗::∗[ε::department ∨ ε::patient ∨ ε::sibling][1]

[ε::department[↓::name=$nurseDept]
∨ ε::patient[↓::wardNo=$nurseWardNo]]

U2
delete [symptom] := not (↑+::department[not (↓::name=$nurseDept)]) ∧

not (↑+::sibling)
Consider the case of the nurse having the ward number 421 and working at Criti-
cal care department. The predicate ↑∗::∗[ε::department ∨ ε::patient ∨ ε::sibling]
over the node patient3 of Fig. 2 returns the ordered set S={patient3, patient2,
patient1, department1} of nodes (each one is concerned by an annotation of type
delete [symptom]); S[1] returns patient3 and the predicate [ε::department[↓::
name=’Critical care’] ∨ ε::patient[↓::wardNo=’421 ’]] is valid at node patient3
(i.e. patient3 � U1

delete [symptom]). Also, we can see that patient3 � U2
delete [symptom].

Consequently, the node patient3 is updatable w.r.t. delete [symptom]
(i.e., patient3 � Udelete [symptom]). This means that the nurse is granted to delete
symptom elements of patient3 (e.g. node symptom3). However, for node patient5
we can check that the predicate U1

delete [symptom] is valid, while it is no longer the

case for the predicateU2
delete [symptom] (patient5 has an ancestor node department2

with name �= ’Critical care’). Thus, the nurse is not allowed to delete the node
symptom5. �
4.2 Rewriting of Update Operations

Finally, we detail here our approach for enforcing update policies based on the
notion of “query rewriting”. Given an update specification Sup=(D, annup). For
any update operation with target defined in the XPath fragment X , we translate
this operation into a safe one by rewriting its target expression into another
one target′ defined in the XPath fragment X⇑

[n], such that evaluating target′

over any instance T of D returns only nodes that can be updated by the user
w.r.t. Sup. We describe in the following the rewriting of each kind of update
operation considered in this paper, where DTD D = (Ele,Rg, root) and source
is a sequence of nodes of type Bj .

• “ delete target ”: For any node n of type Bi referred to by target, parent node
n′ of n must be updatable w.r.t. delete [Bi] (i.e., n

′ � Udelete [Bi]). To satisfy
this, we rewrite target expressions of delete operations into: target[∨Bi∈Ele

ε::Bi[↑::∗[Udelete [Bi]]]].

• “ replace target with source ”: A node n of type Bi referred to by target can
be replaced with the nodes in source iff its parent node n′ is updatable w.r.t.

306 H. Mahfoud and A. Imine

replace [Bi,Bj] (i.e., n
′ � Ureplace[Bi,Bj]). Thus, target expressions of replace

operations can be rewritten into:
target[∨Bi∈Ele ε::Bi[↑::∗[Ureplace[Bi,Bj]]]].

• “ insert source before/after target ”: For any node n referred to by target,
the user can insert nodes in source as preceding sibling nodes of n iff its parent
node n′ is updatable w.r.t. insertBefore [Bi,Bj] (i.e., n

′ � UinsertBefore[Bi,Bj]).
To satisfy this, target expressions of insertBefore operations can be rewritten
into: target[∨Bi∈Ele ε::Bi[↑::∗[UinsertBefore[Bi,Bj]]]]. The same principle is applied
for insertAfter operations.

• “ insert source into target ”: For any node n referred to by target, the user
can insert nodes in source as children of n (in an implementation-dependent
position), provided that he holds the insertInto [Bj] right on this node (i.e.,
n � UinsertInto[Bj]). To check this, target expressions of insertInto operations
can be simply rewritten into: target[UinsertInto[Bj]]. The same principle is applied
for insertAsFirst and insertAsLast operations.

Theorem 1. For any update specification Sup=(D, annup) and any update op-
eration with target expression defined in X , there exists an algorithm “Updates
Rewrite” that translates target into a safe one target’ (defined in X⇑

[n]) in at

most O(|D| + |annup|) time. Moreover, |target′|=O(|target|+ |annup|). �

5 Conclusion

We have proposed a general model for specifying XML update policies based on
the primitives of the XQuery Update Facility. To enforce such policies, we have
introduced a rewriting approach to securely updating XML over arbitrary DTDs
and for a significant fragment of XPath. To our knowledge, this paper presents
the first work for securely updating XML data over general DTDs.

References

1. Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: Xquery
update facility 1.0 (March 2011), http://www.w3.org/TR/xquery-update-10/

2. Fan, W., Chan, C.Y., Garofalakis, M.N.: Secure XML querying with security views.
In: ACM SIGMOD (2004)

3. Kuper, G.M., Massacci, F., Rassadko, N.: Generalized XML security views. Int. J.
Inf. Sec. 8(3), 173–203 (2009)

4. Damiani, E., Fansi, M., Gabillon, A., Marrara, S.: A general approach to securely
querying XML. Computer Standards & Interfaces 30(6), 379–389 (2008)

5. Rassadko, N.: Policy Classes and Query Rewriting Algorithm for XML Security
Views. In: Damiani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS,
vol. 4127, pp. 104–118. Springer, Heidelberg (2006)

6. Fundulaki, I., Maneth, S.: Formalizing XML access control for update operations.
In: ACM SACMAT (2007)

http://www.w3.org/TR/xquery-update-10/

On Securely Manipulating XML Data 307

7. Duong, M., Zhang, Y.: An integrated access control for securely querying and
updating XML data. In: Australasian Database Conference (2008)

8. ten Cate, B., Lutz, C.: The complexity of query containment in expressive frag-
ments of xpath 2.0. In: Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (2007)

9. Marx, M.: XPath with Conditional Axis Relations. In: Bertino, E., Christodoulakis,
S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004)

10. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular xpath queries
on XML views. In: ICDE (2007)

11. Groz, B., Staworko, S., Caron, A.-C., Roos, Y., Tison, S.: XML Security Views
Revisited. In: Gardner, P., Geerts, F. (eds.) DBPL 2009. LNCS, vol. 5708, pp.
52–67. Springer, Heidelberg (2009)

12. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: Xml path language (xpath) 2.0 (second edition). W3C Recommenda-
tion (December 2010), http://www.w3.org/TR/2010/REC-xpath20-20101214/

13. Bravo, L., Cheney, J., Fundulaki, I.: Repairing Inconsistent XML Write-Access
Control Policies. In: Arenas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 97–111.
Springer, Heidelberg (2007)

http://www.w3.org/TR/2010/REC-xpath20-20101214/

Mitigating Collaborative Blackhole Attacks

on DSR-Based Mobile Ad Hoc Networks

Isaac Woungang1, Sanjay Kumar Dhurandher2,
Rajender Dheeraj Peddi1, and Issa Traore3

1 Department of Computer Science,
Ryerson University, Toronto, Ontario, Canada

iwoungan@scs.ryerson.ca, rpeddi@ryerson.ca
2 Division of Information Technology

Netaji Subhas Institute of Technology, University of Delhi, India
dhurandher@rediffmail.com

3 Department of Computer and Electrical Engineering
University of Victoria, B.C., Canada

itraore@ece.uvic.ca

Abstract. A Mobile ad hoc network (MANET) is a collection of mo-
bile nodes that rely on co-operation amongst devices that route packets
to each other. From a security design perspective, MANETs have no
clear line of defense. This lack of security leads the network accessible
to both legitimate network users and malicious attackers. A blackhole
attack is a severe attack that can be employed against data routing in
MANETs. A blackhole is a malicious node that can falsely reply for
any route requests without having an active route to a specified destina-
tion and drop all the receiving data packets. The attack may even lead
to more devastating damage if two or more blackhole nodes cooperate
with each other to launch an attack. This type of attack is known as
collaborative blackhole attack. In this paper, a novel scheme Detecting
Collaborative Blackhole Attacks (so-called DCBA) for detecting collab-
orative blackhole attacks in MANETs is introduced. Simulation results
are provided, demonstrating the superiority of DCBA compared to Dy-
namic Source Routing (DSR) and the Bait DSR scheme (so-called BDSR)
[1] - a recently proposed scheme for detecting and avoiding collaborative
blackhole attacks in MANETs - in terms of network throughput rate and
minimum packet loss percentage, when collaborative blackhole nodes are
present in the network

Keywords: Mobile ad hoc networks, colloborative blackhole attack, Dy-
namic Source Routing (DSR).

1 Introduction

MANETs can be described as an infrastructureless wireless networks, in which
a group of mobile nodes communicate with each other over a wireless channel
in a cooperative manner. In MANETs, mobile nodes can act as both a host and

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 308–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

DCBA Scheme for MANETs 309

a router while forwarding the packets to other mobile nodes. MANETs are very
easy to deploy and are dynamic in nature, hence, these types of networks can
be used in places where terrestrial or geographical constraints are present, such
as in battlefields, disaster management situations, to name a few.

Since mobile nodes in MANETs communicate over a wireless channel, mes-
sage security and transmission are indeed a major concern. Routing protocols in
MANETs such as DSR and ad hoc demand routing protocol (AODV) were de-
signed without considering any security constraints in MANETs. Thus, AODV-
based MANETs or DSR-based MANETs may be vulnerable to several distinct
types of attacks, including blackhole attacks[2,3], wormhole attacks, sybil attacks
[4], Denial of Message (DoM) attacks, to name a few. In this paper, our focus is
on blackhole attacks.

A blackhole attack [5] is an attack where the malicious node (so-called black-
hole node) can attract all the packets by using a forged Route reply packet to
falsely claim that it has a shortest route to the destination. When the packets
reach the blackhole node, they merely disappear. In fact, the blackhole node im-
personates the destination node by sending a spoofed route reply packet to the
source node that have initiated the route discovery, hence deprives the packets
from the source node.

A blackhole node has two fundamental properties. First, it takes advantage of
the ad hoc routing protocol such as AODV or DSR to advertise itself as having
a valid route to the destination node, even though the route is spurious, with
the intention to intercept packets. Second, the node consumes the intercepted
packets. Blackhole attacks in MANETs can cause immense harm to the net-
work. When two or more malicious nodes collaborate with each other, i.e. work
as a group, the damage can be even worse. This type of attack is known as
collaborative blackhole attacks as illustrated in Figure 1.

This paper focuses on detecting collaborative blackhole nodes (i.e. malicious
and cooperating malicious nodes) in the network. The remainder of the paper
is organized as follows. Section 2 discusses some related work on schemes for

Fig. 1. Example of collaborative blackhole attack in MANET

310 I. Woungang et al.

mitigating blackhole/collaborative blackhole attacks in MANETs. In Section 3,
our proposed novel algorithm to detect and isolate blackhole nodes in MANETs
is discussed. In Section 4, the performance evaluation of our scheme is presented.
Finally, Section 4 concludes our work.

2 Related Work

Several proposals in the literature have dealt with detecting and/or avoiding
malicious blackhole nodes in MANETs. Few recent representative ones are as
follows.

In [6] Deng et al. proposed a solution which asks every intermediate node to
include the information on the next hop to destination in its route reply (RREP)
packet when the intermediate node replies to the route request (RREQ) packet.
While receiving the RREP, the source node does not transmit the data packets to
the intermediate node immediately. Rather, based on the receiving information
on the next hop, the source node sends a FutherRequest (FRq) to the next
hop node to ask whether this node has a valid route to the destination. The
source node receives a FutherReply (FRp) message from the next hop, which
includes the check result. If the answer is yes in the FRp message received by
the source node , the route is built and the source node transmits the data. If
the answer is no, the source node sends an Alarm Packet to alert other nodes
in the network about that fact. However, this method has some drawbacks,
namely (1) the process of checking the validity of RREP from an intermediate
node through FRq and (2) FRp messages obviously leads to some overhead in
the network. these issues were not addressed by the authors [6]. Moreover, their
proposed algorithm only addressed single blackhole attacks, and cannot mitigate
cooperative blackhole attacks.

In [7], Weerasinghe and Fu proposed a solution for preventing cooperative
blackhole attacks in MANETs. They proposed a slightly modified AODV pro-
tocol in which the data routing information table (DRI) and cross checking are
introduced. More precisely, each node maintains its DRI table and used it to
identify the misbehaving nodes in the network. The DRI table keeps track of
whether or not a node has transferred the data to its neighbours. Nodes are also
crosschecked by using the FREQ and FREP packets. However, the overhead
caused by the FREQ and FREP packets appeared to increase the end-to-end
delay in the network.

In [1], Tsou et al. proposed a scheme called Bait DSR (BDSR) to detect and
avoid blackhole attacks in MANETs. According to their solution, the source
node sends a bait RREQ packet before the actual routing process takes place.
This is used to bait the malicious nodes, which then reply to the bait RREQ
packet. Based on this response, malicious nodes are then detected using a reverse
tracing technique.

In [8], Marti et al. proposed a watchdog and pathrater scheme to detect mali-
cious nodes present in a MANET. The watchdog method identifies the malicious
nodes in the MANET by eavesdropping on the transmissions of the next hop

DCBA Scheme for MANETs 311

node. Watchdog compares each overheard packet with the packets in the buffer,
which contains the packets recently sent by a node. If there is a match between
the packets, the node removes the packets from the buffer; otherwise it incre-
ments a failure tally for the neighbouring node. If a packet has remained in the
buffer for longer than a certain timeout period. A node is identified as a mali-
cious node if the tally exceeds a certain threshold bandwidth. In this situation,
the source node is notified about this malicious node. The pathrater method
then helps in finding the routes that do not contain those malicious nodes. In
this scheme, each node keeps track of the trustworthiness rating of every known
node. The pathrater chooses the shortest path if there are multiple paths to
the destination. The main drawback of this method is that it might not detect
malicious node in the presence of limited transmission power, false behaviour or
partial dropping.

In [9], William et al. proposed a scheme (so-called REAct system) for detecting
malicious nodes in MANETs. Their scheme is made of three phases: audit, search
and identification. The audit phase verifies the packets forwarded from the audit
node to the destination node. The source node will choose an audit node to use
bloom filter in order to generate a behavioural proof. The source node also uses
bloom filter to produce a behavioural proof and compare it with against the
proof produced by the bloom filter generated by the audit node. As a result of
this comparison, the segment that has the malicious node is identified. However,
this method has an oblivious drawback, i.e. it can identify the blackhole attack
only after the damage has been done to the network.

In [10], Raj et al. proposed a scheme called DPRAODV to detect and isolate
blackhole attacks in MANETs. In their approach, whenever the source node re-
ceives a RREP packet, the packet first checks the value of the sequence number
in its routing table and does an additional check to find whether the RREQ
sequence number is higher than a specified threshold value. This threshold value
is dynamically updated at every predefined time interval. If the value of the
RREP sequence is higher than the threshold value, that particular node is iden-
tified as blackhole node, which is blacklisted and an ALARM packet is sent to
all other nodes in the network so that the RREP packet originated from that
malicious node is discarded and the routing table for that node is not updated.
The ALARM packet has the address of the malicious node as a parameter so
that, the neighbours know that the RREP packet from the node is to be dis-
carded. However, this algorithm suffers from excessive overhead due to the fact
the threshold value has to be updated at every time interval and special ALARM
control packets should be handled.

In [11], Tamilselvan et al. proposed an AODV-based protocol for preventing
blackhole attacks in MANETS. In their approach, the source node awaits until
the intermediate node replies with the next hop details in the RREP packet.
Whenever the source node receives the RREP packets, it records the sequence
number along with the time the packet arrived in a collect route reply table
(CRRT). After receiving the RREP packets, the source nodes calculates the
timeout value for each RREP packet, and then checks the CRRT for any repeated

312 I. Woungang et al.

next hop nodes. The route with the repeated next hop node is then considered
as safe and can be used to route the packets. However, if there is no path with
repeated next hop nodes, the algorithm chooses a random path from the CRRT,
which may lead to blackhole attack in the network.

In [13], Buchegger et al proposed a trust based solution named Cooperation Of
Nodes, Fairness In Dynamic ad hoc Networks (CONFIDANT) to avoid blackhole
attack in MANETs. Their solution is similar to the solution proposed in [8] with a
trust manager. The trust manager evaluated the events reported by the watchdog
and issues a alarm packet to warn other nodes about the malicious nodes. Each
node in the network monitors the behaviour of its neighbour and notifies the
reputation system in the event of any suspicious activity. The The reputation
system maintains a black-list of nodes at each node and shares them with nodes
in the friends-list. If the node’s trust value drops below the threshold value the
CONFIDANT protocol deletes all routes containing the misbehaving node from
the path cache and doesn’t allow the node to participate in forwarding the data
packets.

Most of the above-discussed solutions to avoid blackhole attacks in MANETs
are used to detect single blackhole attacks. In this paper, a DSR- based protocol
is presented to mitigate collaborative blackhole attacks in MANETs. Unlike
other schemes for preventing blackhole attacks, in which the malicious nodes
are identified only after the actual routing process started, in our solution, the
blackhole nodes or collaborative blackhole nodes are identified before the actual
routing process takes place.

3 Proposed Mitigation Scheme

In this section, a modified version of the DSR protocol (our so-called DCBA)
is proposed to find a secure route between the source and destination nodes
and isolate the malicious blackhole nodes in MANETs. Our approach merges
the advantage of proactive detection in the initial stage and reactive mechanism
at later stages if the proactive detection approach fails to identify the malicious
blackhole nodes. Consequently, our mechanism is different to other methods that
just use a reactive approach that would suffer a blackhole attack in its initial
stage. In our proposed algorithm, malicious nodes are identified by means of our
so-called suspicious values of nodes. A suspicious value is an important parameter
to judge the behavior of a node (i.e. either it is malicious or non-malicious). As
a source routing protocol, DSR can identify the addresses of all the nodes in a
routing path once the source node has receive the RREP message in response to
a RREQ message. However, the source node itself cannot identify exactly which
intermediate node has the route information to the destination node and the
reply RREP. This situation can result to the source node sending packets to the
fake shortest path claimed by a malicious node (among available existing ones if
any), yielding a blackhole attack that causes packets loss. However, it is difficult
to identify which malicious node(s) generated the packets loss.

Our DCBA protocol Figure 2 combines a modified DSR and the BDSR proto-
col [1], to yield a strong method for detecting collaborative blackhole attacks in

DCBA Scheme for MANETs 313

MANETs. Indeed, the packet format of the RREP message in DSR is modified
as follows. In the RREP, the reserved field is changed to the RREP initiator
address field. The latter will store the address of the node that replies to the
RREP. This RREP initiator address field can help tracing the intermediate node
that claimed it has the shortest route to the destination node. To achieve this
goal, the concept of suspicious value attached to anode is introduced, which is
described as follows.

Fig. 2. DCBA Algorithm

In our proposed method, each node has its own suspicious value, which is based
on the abnormal difference observed between the routing messages transmitted
from the node. Suspicious values for each node are stored in a table (so-called
suspicious values table). This table for each node is updated periodically after a
certain time interval. Whenever the source node receives the route reply (RREP)
packet in reply to the route request (RREQ) packet, it checks the RREP packet
for the address of the node that initiated the RREP packet. The source node
checks the suspicious value of the node that initialized the RREP packet. If this
value is higher than the threshold level, then the node is considered as malicious

314 I. Woungang et al.

and its address is stored in a blacklist table, preventing that node to further
participate in the routing process. The threshold value is variable and can be
adjusted depending on the performance of network.

In general, if an intermediate node is not the destination node, and it never
broadcasts a RREQ, but forwards a RREP for the route, then its suspicious
value is increased in the suspicious value table. Only the source node has the
right to update or modify the suspicious value table, thus whenever the source
node realizes that a nodes suspicious value is to be increased, it will notify every
other node in the network in order to have them update its suspicious values
table. When the suspicious value of a node reaches the prescribed threshold
value, it is considered as a malicious node.

3.1 Routing Mechanism

Whenever the source node wants to send some data to the destination node, it
initiates the route discovery process. In this process, the source node broadcasts

Fig. 3. DCBA algorithm flowchart

DCBA Scheme for MANETs 315

the Route Request (RREQ) packet. All the intermediate nodes that receive
this RREQ packet check their routing table for the routing information to the
destination node. If the intermediate node has the routing information to the
destination, it will reply with a Route Reply (RREP) packet to the source node.
When the source node receives the RREP packet, it checks the RREP for the
address of the node that initiated the RREP packet using the RREP imitator
address field in the RREP packet. Then, the source node checks the suspicious
value of the node that initiated the RREP. If the suspicious value of that node
is higher than the specified threshold level, then the source node sends an alarm
message to all other nodes, indicating that there is a malicious node and updates
the blacklist table with the address of that malicious node. If the suspicious value
is below the specified threshold value, the source node will start routing the data
packets. If the destination node detects that the packet delivery ratio drops to a
threshold obviously after the route had been build, the detecting mechanism will
be triggered again to avoid blackhole nodes that may have not been detected
Consequently, our mechanism can keep protecting and reacting immediately.
The flow chart of our DCBA algorithm is depicted in Fig. 3.

3.2 Correctness of DCBA

Lemma 1: DCBA algorithm converges to a correct (i.e. safe) routing path for
packet delivery in a finite time when the RREP received is from an intermediate
node.

Whenever there is a need to route the data packets, the source node initial-
izes the route discovery process and initiates the timer. On receiving the Route
REQuest (RREQ) packets, the intermediate node in the network replies with
a Route REPly (RREP) packet if it has a route to the destination node in its
routing cache or relays the RREQ packets to the neighbouring nodes. The RREP
packet contains the path to the destination, the RREP initiator address and the
hop count. On receiving the RREP packet, the source node analyzes it by check-
ing the suspicious value of the intermediate node. After analyzing all received
RREP packets, the source node selects the best route to the destination i.e. the
route with less suspicious value and least number of hops, then updates the rout-
ing table with the routing information. If the suspicious value of an intermediate
node is found to be more than the prescribed threshold value, the source node
immediately marks that intermediate node as malicious, adds it to a blackhole
list table, then it notifies all the nodes in the network about that malicious node.
The source node also discards all RREQ packets and RREP packets present in
the network after a certain timeout

Lemma 2: DCBA algorithm converges to a correct (i.e. safe) routing path for
packet delivery in a finite time when the RREP received is from a destination
node.

On receiving the RREPpacket from the destination node, the source node trusts
the RREP packet since it originated from the destination node, then starts rout-
ing the data packets. The destination node replies to the source node if there is an

316 I. Woungang et al.

abnormal difference between the sent and received packets i.e. the packet delivery
ratio. After receiving a reply from the destination node, the source node initial-
izes the reactive approach by stopping immediately the transmission of the data
packets. It also deletes all the routing information that are related to the current
route then notifies all the nodes to update their routing tables. After the routing
tables have been updated by all nodes, the source node again initializes the route
discovery process to identify a fresh and safe route to transfer the data packets.

4 Performance Evaluation

GloMosim [14] is the simulation tool used to implement the proposed DCBA
scheme for identifying the collaborative blackhole nodes. The simulation param-
eters and experimental variables are inherited from [5]. These are captured in
Table 1. A MANET with 50 nodes is designed, and the choice of malicious nodes
in the network is random. A source node and a destination node are selected,
and about 1000 data packets of 64 bytes each are transmitted from source to
destination.

The proposed DCBA scheme was compared against the normal DSR (denoted
DSR) scheme and the BDSR scheme [1], chosen as benchmark, under two varying
simulation parameters: the pause time and the percentage of malicious nodes,
on the basis of the following performance metrics:

– Packet Delivery Ratio: This metric represents the ratio between the num-
ber of packets originated by the application layer sources and the number of
packets received by the sink at the final destination. The greater the packet
delivery ratio, the better the performance of the network will be.

– Average End-to-End Delay: This metric is the average time taken by
the packet to reach the destination. This includes the time from generating
the packet from the source node up to the reception of the packet by the
destination node. It is expressed in seconds. This metric includes the overall
delay of the network including buffer queues, transmission time and induced
delay due to routing activities. The lower the value of the end-to-end delay,
the better the performance of the network will be.

– Network throughput: This metric represents the average rate of successful
message delivery over a communication channel. It can be measured as bits
per second (bps), packets per second (pps) or packet per time slot.

– Routing Overhead Ratio: The routing overhead can be defined as the
ratio of the amount of routing related control packets transmitted to the
amount of data packets transmitted by the application traffic.

The effect of the packet delivery ratio (PDR) on the percentage of malicious
nodes in the network is first investigated. The results are captures in Figure 4.
It can be observed that DSR suffers heavy loss in packets in the presence of
blackhole nodes. This can be justified by the fact that DSR does not have any
intrinsic detection and prevention mechanism to prevent blackhole attacks. Also
the BDSR scheme uses a fake RREQ technique to find the blackhole attack, it can

DCBA Scheme for MANETs 317

suffer packet loss if the malicious node does not reply to the RREQ packet. When
varying the percentage of malicious nodes from 0% to 40%, DCBA generates a
higher and consistent PDR compared to BDSR scheme, even in the presence of
collaborative blackhole nodes.

Fig. 4. DCBA algorithm - Packet delivery ratio Vs Malicious nodes

The effect of the packet delivery ratio on the pause time is also investigated,
and the results are depicted in Figure 5. It can be observed that the packet
delivery ratio drops as the pause time is increased. It can also be observed that
our DCBA scheme generates higher packet delivery ratio compared to the BDSR
scheme and the normal DSR protocol even in the presence of the collaborative
blackhole nodes. Finally, it can be observed that the packet delivery ratio for
the normal DSR protocol ranges between 94% and 66%. Our protocol DCBA
improves the situation by increasing the packet delivery ratio by more than 20%.
This can be justified by the fact that the normal DSR does not have any built-in
security mechanism.

The second performance metric used in the analysis of our solution is the
network throughput. The effect of the network throughput when the percent-
age of malicious nodes in the network increases is investigated. The results are
captured in Figure 6.

First, it can be observed that, DSR heavily suffers from the collaborative
blackhole attacks since the protocol does not have any mechanism to prevent
these attacks. Moreover, the throughput of DSR goes down under 300bps as
the number of blackhole nodes in the network increases from 0% to 40%. Sec-
ond, the throughput for the BDSR scheme ranges between 520bps and 480bps

318 I. Woungang et al.

Fig. 5. DCBA algorithm - Packet delivery ratio Vs Pause time

as the number of malicious nodes increases. Thirdly, our protocol generates a
higher throughput than the other two protocols. This is due to the fact that our
scheme prevents packet drops by malicious nodes using the proactive mechanism.
Even with the 40% of blackhole nodes, our protocol produces a throughput of
590bps. Furthermore, it can be observed that the normal DSR protocol under
collaborative blackhole attack has the lowest throughput and BDSR also has
lesser throughput when compared to that of the DCBA scheme under black-
hole/collaborative blackhole attacks.

Next the effect of the network throughput on the pause time is also inves-
tigated, and the results are depicted in Figure 7. As the pause time increases,
the paths between the source node and the destination node lasts longer and
becomes more stable. Therefore, the data packets transmitted along transient
routes (resulting from quick node movement) decreases, thus reducing the over-
all throughput. First, it can be observed that the network throughput under
normal DSR protocol decreases as the pause time increases. Secondly, it can
be observed that the throughput under the BDSR scheme is higher than that
obtained with the normal DSR scheme and our DCBA protocol has the higher
throughput compared to that of DSR and BDSR. This can be justified by the
fact that DCBA protocol is capable of mitigating the blackhole attacks in the
network.

The third performance metric used in the analysis of our solution is the routing
overhead ratio in the network. The effect of the routing overhead ratio on pause
time is depicted in Figure 8. First, it can be observed that the DSR protocol

DCBA Scheme for MANETs 319

Fig. 6. DCBA algorithm - Network throughput Vs Malicious nodes

Fig. 7. DCBA algorithm - Network throughput Vs Pause time

320 I. Woungang et al.

Fig. 8. DCBA algorithm- Routing overhead(%) Vs Pause time

routing overhead decreases as the pause time increases. This is due to the fact
that the increase in pause time causes the attacker to establish a more stable path
between the source and destination. As paths become more stable, the required
number of routing related packets reduces. Secondly, the routing overhead ratio
for the BDSR protocol is higher than that of the DSR protocol because the
BDSR scheme uses more RREQ packets to find the secure route in the presence
of blackhole nodes. Thirdly, DCBA’s routing overhead is greater than that of
the DSR scheme and less then that of the BDSR scheme because our protocol
does not need the use of fake RREQ packets as the BDSR does.

The effect of the routing overhead ratio on the percentage of malicious nodes is
depicted in Figure 9. First, the DSR protocol introduces the lowest overhead due
to the fact that it does not use any additional requests for finding secure routes.
Also the routing overhead ratio for DSR decreases as the number of malicious node
increases. This is due to the fact that the presence of more malicious node in net-
work causes immediate reply to the route requests, which in turn causes less over-
head. Second, the routing overhead of the BDSR protocol is greater than that of
the DSR protocol since BDSR uses the extra RREQ packets to bait the blackhole
nodes.Third, DCBA introduces a lower overhead compared to BDSR and more
overhead compared to DSR. This might be due to the fact that our solution uses
normal RREP packets header to check the suspicious value of the node.

The impact of the number of malicious black hole nodes on end-to-end delay is
depicted in Figure 10 . It can be observed that the delay in DSR decreases when
the percentage of blackhole nodes increases. This is justified by the fact that an

DCBA Scheme for MANETs 321

Fig. 9. DCBA algorithm- Routing overhead(%) Vs Malicious nodes

Fig. 10. DCBA algorithm- End-to-end delay Vs Malicious nodes

322 I. Woungang et al.

increase in number of malicious nodes means that the source will have to find
more routes between source to destination in less time because more blackholes
reply quickly for the route requests. Secondly, the delay for the BDSR protocol
and DCBA protocol increases with the increase in malicious nodes since it has
to avoid more malicious nodes when it tries to find out secure route from source
to destination.

5 Conclusion

In this paper, we proposed a scheme (so-called DCBA) to identify and miti-
gate blackhole/collaborative blackhole attacks in MANETs. Simulation results
showed that (1) the original DSR heavily suffers from blackhole/collaborative
blackhole attacks in terms of network throughput and packet delivery ratio, (2)
the proposed scheme outperforms both the DSR and BDSR schemes in terms of
network throughput rate and minimum packet loss percentage.

References

1. Tsou, P.C., Chang, J.M., Lin, Y.H., Chao, H.C., Chen, J.L.: Developing a bdsr
scheme to avoid black hole attack based on proactive and reactive architecture
in manets. In: 2011 13th International Conference on Advanced Communication
Technology (ICACT), Phoenix Park Gangwon-Do, Korea (South), pp. 755–760
(2011)

2. Tseng, F.H., Chou, L.D., Chao, H.C.: A survey of black hole attacks in wireless
mobile ad hoc networks. Human-centric Computing and Information Sciences 1,
1–4 (2011)

3. Hu, Y.C., Perrig, A., Johnson, D.B.: Rushing attacks and defense in wireless ad hoc
network routing protocols. In: Proceedings of the 2nd ACM Workshop on Wireless
Security, WiSe 2003, pp. 30–40. ACM, New York (2003)

4. Khokhar, R.H., Ngadi, A.N., Mandala, A.: A review of current routing attacks in
mobile ad hoc networks. International Journal of Computer Science and Security 3,
18–29 (2008)

5. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad-hoc mobile
wireless networks. IEEE Personal Communications 6, 46–55 (1999)

6. Deng, H., Li, W., Agrawal, D.P.: Routing security in wireless ad hoc networks.
IEEE Communications Magazine 40, 70–75 (2002)

7. Weerasinghe, H., Fu, H.: Preventing cooperative black hole attacks in mobile ad
hoc networks: Simulation implementation and evaluation. In: Proceedings of the
Future Generation Communication and Networking, FGCN 2007, vol. 02, pp. 362–
367. IEEE Computer Society, Washington, DC (2007)

8. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking, MobiCom 2000, pp. 255–265. ACM, New York
(2000)

9. Kozma, W., Lazos, L.: React: resource-efficient accountability for node misbehavior
in ad hoc networks based on random audits. In: WISEC, pp. 103–110 (2009)

DCBA Scheme for MANETs 323

10. Raj, P.N., Swadas, P.B.: Dpraodv: A dynamic learning system against blackhole
attack in aodv based manet. International Journal of Computer Science Issues,
IJCSI 2, 54–59 (2009)

11. Tamilselvan, L., Sankaranarayanan, V.: Prevention of blackhole attack in manet.
In: Proceedings of the 2nd International Conference on Wireless Broadband and
Ultra Wideband Communications, AUSWIRELESS 2007, pp. 21–28. IEEE Com-
puter Society, Washington, DC (2007)

12. Ramaswamy, S., Fu, H., Sreekantaradhya, M., Dixon, J., Nygard, K.: Prevention
of cooperative black hole attack in wireless ad hoc networks. In: Proceedings of
Intl Conf. on Wireless Networks, Las Vegas, Nevada, USA, pp. 570–575 (2003)

13. Buchegger, S., Le Boudec, J.Y.: Performance analysis of the confidant protocol.
In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Net-
working & Computing, MobiHoc 2002, pp. 226–236. ACM, New York (2002)

14. Glomosim, http://pcl.cs.ucla.edu/projects/glomosim/ (last accessed: August
24, 2012)

http://pcl.cs.ucla.edu/projects/glomosim/

QoS Aware Adaptive Security Scheme

for Video Streaming in MANETs

Tahsin Arafat Reza and Michel Barbeau

School of Computer Science, Carleton University,
1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada

treza@connect.carleton.ca, barbeau@scs.carleton.ca

Abstract. Real-time video streaming is delay sensitive. It has mini-
mum bandwidth and QoS requirements. Achieving target QoS for video
streaming is challenging in a decentralized and self-organized MANET.
Cryptography algorithms offer confidentiality of shared data, but they
have computation cost. Our work addresses the issue of delay overhead
caused by the introduction of cryptography that directly affects video
streaming performance. Our proposal is motivated by possibilities of
adaptive security and multimedia service. We make an effort to iden-
tify why, when and how to deploy adaptation. We propose QaASs (QoS
aware Adaptive Security scheme), an adaptive mechanism that counters
the effect of delay overhead by adapting cryptography and multimedia
properties, providing QoS while maintaining a required level of security.
We evaluate our proposal through implementation and simulation.

Keywords: Ad hoc Network, QoS, Adaptive Security, Video Encryp-
tion, Elliptic Curve.

1 Introduction

A Mobile Ad hoc Network (MANET) is a communications network where there
is no fixed infrastructure or central authority. The nodes are self-organized and
communicate with each other directly or through intermediate nodes. Nodes act
as hosts and routers. No static topology is guaranteed. There is a growing interest
for real-time video streaming in MANETs. Possible usages are remote surveil-
lance, environmental or wildlife monitoring, rescue operations, telemedicine in
adverse environments, collaborative unmanned remote exploration, ad hoc net-
work of UAVs (Unmanned Arial Vehicles) and UWVs (Unmanned Under Water
Vehicles). In a VANET (Vehicular Ad hoc Network), peers can engage in video
conference as well as stream media in an ad hoc manner.

In a computer network, security measures are deployed as a protection against
malicious attacks or intentional faults that disrupt regular operations and unau-
thorized access to resources and information. The physical construction and
functional characteristics of a MANET make it vulnerable and susceptible to
malicious attacks. Absence of infrastructure, broadcast nature of wireless trans-
mission, sole dependency on wireless links, dynamic topology, and multihop rout-
ing have been identified as the primary features that make MANETs vulnerable

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 324–340, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 325

to malicious attacks [8]. Security techniques for infrastructure-based networks
are not applicable to MANETs. For example, the use of a unique certification
authority (CA) is against the core concept of infrastructure-less networks. Eaves-
dropping, Tunneling, Spoofing, Rushing,Wormholes, Black holes and various DoS
(Denial of Service) attacks [8] are examples of security setbacks in MANETs.
Confidentiality is a must have requirement for distributing and sharing sensi-
tive information [36]. Confidentiality refers to protection against unauthorized
disclosure of information. Cryptography provides security for digital contents.
Real-time video streaming is delay sensitive, involves encoding and decoding and
has minimum bandwidth and QoS (Quality of Service) requirements [27]. QoS is
a set of service requirements (e.g., delay, data rate and error correction) to be met
by the network while transporting a packet data stream. Achieving target QoS
for video streaming is challenging in an unpredictable MANET. Cryptography al-
gorithms could be computationally intensive. Computation overhead introduced
by cryptography operations may cause additional delay to video streaming which
could directly influence playback experience.

Our work addresses the issue of delay overhead caused by the introduction of
cryptography that directly affects video streaming performance. A MANET can
be composed of a diverse range of devices with different computation capabilities.
The performance of a computationally intensive cryptography process varies de-
pending on the available system resource (e.g., memory and number of running
threads). A cryptography process may introduce additional, yet unavoidable de-
lay overhead. If a traffic source knows the capability of a target device, e.g.,
the throughput of a cryptography process, then it can infer appropriate cryp-
tography parameters that do not cause a performance bottleneck. Furthermore,
it may be possible to control multimedia traffic, thus the amount of data to
be processed by a cryptography processor. Traffic load influences network la-
tency as well as congestion, thus packet delivery ratio. By adjusting multimedia
parameters, it is possible to control the overall delay as well as provide QoS.
The receiver of multimedia service can provide periodic feedback to the source
with information such as transmission delay, delay jitter, effective frame rate and
frame loss ratio. Hence, an adaptive mechanism that trades off between security
and QoS parameters is a feasible solution to the addressed problem.

We propose QaASs (QoS aware Adaptive Security scheme), a runtime adap-
tive mechanism that counters the delay overhead by adapting cryptography and
multimedia properties, providing QoS while maintaining a required level of se-
curity. The mechanism is designed around a cryptography delay threshold value
and considers cryptography process throughput and delay, and video reception
rate. QaASs defines why, when and how to deploy adaptation. We demonstrate
the effectiveness of our proposal by presenting a number of service scenarios
demanding different requirements with results confirmed with a 95% confidence
level [7].

The rest of the paper is organized in four sections. In Sect. 2, we present a
literature review related to our problem of interest. Relevant background infor-
mation are detailed in Sect. 3. In Sect. 4, we describe our proposal. Simulation

326 T.A. Reza and M. Barbeau

and results are documented in Sect. 5. Section 6 concludes the paper and outlines
future work in this direction.

2 Related Work

The notion of adaptive security takes root in autonomic security management [13].
Shnitko [32] identified adaptive security as a problem of optimal control of an
object whose state is influenced by a set of adaptable factors and environment
parameters. He stressed on the necessity of adaptive approaches for information
security in order to cope with the uncertainty of the environment. A class of adap-
tive security approaches focus on defying the impact of performance degradation
and resource exhaustion as a result of security provisioning. [42], [25], [4] and [3]
used adaptive security for multimedia QoS, [47], [37], [13] and [23] for energy
efficiency, and [3] and [30] for computing resource efficiency. Nijim and Ali [21]
proposed an adaptive security approach to enhance disk response time. [34] pro-
posed an adaptive security method for time-critical DBMSs (Database Manage-
ment System) by partially compromising security for improved timeliness. Preda
et al. [28] described an adaptation technique for policy deployment and dynamic
refinement of contextual security policies where security devices are unaware of
context semantics. Zou et al. [49] proposed the use of adaptive security to create
an intelligent firewall to trade off between security and performance. [4] and [37]
used AHP (Analytical Hierarchical Process) for modeling an adaptive security
solution. [49] and [2] used a fuzzy logic-based approach. Alia et al. [3] presented
a Component Composition Selection problem based adaptation model enabling
fine-grained trade-offs between QoS and security. He et al. [13] presented a DSL
(Domain Specific Language) [40] to describe security adaptation policies for self-
protection with emphasizes on runtime adaptation.

Cryptography can be applied to real-time streaming video in several man-
ners. Encryption can be employed in the transform domain, within the video
encoder. The DC component and motion vectors are encrypted [11] [20]. For-
mat compliance is a key issue for this approach. The second approach is post
compression encryption, where encoded video frames are encrypted individually.
The third approach is encrypting packet payload of the multimedia streaming
protocol, e.g., RTP [26]. Spanos and Maples [35] were among the first to intro-
duce selective encryption by encrypting only the I-frames of MPEG coded video.
Kamphenkel and Blank [18] proposed an adaptive security model called Intelli-
gent Network (IN) to address the issue of delay overhead caused by cryptogra-
phy. IN offers security and congestion aware path selection and allows separate
streams in different classes of reliability. Vaidya et al. [39] proposed a secured
multipath traffic allocation technique for VoIP in MANETs. The core bitstream
of G.727 [17] coded data is transmitted over the primary path (fail-safe and
higher data rate) of and enhancement bitstream over the secondary path. In a
similar work, Gibson et al. [11] proposed selective encryption for scalable speech
coding (SNR) [9] over MANETs. SECMPEG [20], proposed by Meyer and Gade-
gast, selectively encrypts DC components, I-blocks and motion vectors, sequence
and slice headers of MPEG video according to security level. Tang incorporated

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 327

cryptography at the video coding level to achieve compression and encryption
in one step [38]. Tang’s work was among the firsts that oppose what used to
be a common belief that existence of spatial and temporal correlation in video
coding, e.g., MPEG, makes cryptography difficult to be applied at the coding
level [19]. However, the technique suffers from reduced compression rate and is
not suitable for highly sensitive video data. Iqbal et al. [15] proposed a slice-
based encryption technique for MPEG-4 H.264/AVC [12] video. MPEG-21 [16]
gBSD (generic Bitstream Syntax Description) is used as a metadata descriptor
for the compressed bitstream which can be used for adapting compressed video
data according to the network condition or application requirements. Mahmud
et al. [4] presented an adaptive security architecture for IP-based air-ground
communications. A multilevel QoS policy based technique aims to maintain a
trade-off between performance and security policies and allocates the network
resources accordingly.

3 Background

The goal of a multimedia adaptation technique is to ensure or enhance QoS.
Transcoding, simulcast and HTTP Live Streaming are examples of key multi-
media adaptation techniques [10] [41]. Availability of variable resolution and bit
rate streams are the core ideas of these techniques. MCD (Multiple Description
Coding) and H.264/SVC (Scalable Video Coding) offers varying quality for a
single coded video [10] [31]. Computation cost and infrastructure dependency
make these techniques not suitable for delay sensitive streaming and MANETs.

MPEG-4 H.264/AVC (Advanced Video Coding) [12] is a video coding stan-
dard of the ITU-T Video Coding Experts Groups and ISO/IEC Moving Pictures
Experts Group (MPEG). The H.264/AVC standard aims to provide network-
friendly representation of video data for both conversational (e.g., videocon-
ference) as well as non-conversational (e.g., video-on-demand) applications. A
H.264/AVC frame may be composed of multiple slices. There are three main
types of slices, namely I, P and B -slice. An I-slice has the macroblocks coded
using intra prediction. The P-slice extends properties of the I-slice and also
contains macroblocks coded using inter prediction with at most one motion-
compensated prediction signal per prediction block. In addition to properties
of the P-slice, the B-slice allows two motion-compensated prediction signal. A
sequence of P and B-frames and their reference I-frame compose a Group Of
Pictures (GOP). Video can be encoded at different frame rates (frames per sec-
ond or FPS and abbreviation of unit of measurement is fps), e.g., 30, 20, and
10 fps. Interested readers may refer to [12] and [43] for details.

In [29], we presented a framework for video simulation over a MANET.
Through evaluation, we have identified MANET components and demonstrated
their effectiveness. We used MP-OLSR (Multipath OLSR) [46] and 802.11e
(EDAC) [14] for stateless admission control at the MAC layer. In [29], we eval-
uated how cryptography affects H.264/AVC coded video streaming for differ-
ent cryptography schemes and traffic load. The results complement Yau et al.’s

328 T.A. Reza and M. Barbeau

work [45] that showed that AES with 128-bit key and 256-bit key has no sig-
nificant performance difference. However, ECC (Elliptic Curve Cryptography)
throughput (processed data as a function of time) performance significantly de-
creases with increasing curve size. Average cryptography delay per frame for
ECC with a 521-bit curve is 147 ms compared to 33 ms of ECC with a 256-bit
curve and sub 2 ms of AES with 256-bit key.

We are particularly interested in using ECIES (Elliptic Curve Integrated En-
cryption Scheme), for encrypting multimedia contents. The key advantages of
ECC are use of binary polynomial that does not require integer multiplication.
This reduces hardware implementation complexity. Security of a 171 - 180 bit
ECC key is equivalent to RSA cryptosystem with 1024-bit key [44] which makes
ECC a better choice for network communications, especially resource stringent
wireless communications as well as on smartcards and embedded devices. An
effective sub-index arithmetic to attack for a carefully chosen curve is yet to be
identified [48].

4 QoS Aware Adaptive Security Scheme (QaASs)

Multimedia adaptation techniques take advantage of the inherent property of
video data that allows to trade quality for performance. The risk level of a threat
is not constant. Adaptive security takes the luxury of compromising security in
order to refrain from becoming performance bottleneck for other operations.
Since, a large curve offers better security than a small curve, we can assume
the use of ECC schemes with curves in accordance to the risk level. Models
presented in [3], [5] and [13] are promising for designing context and QoS aware
adaptive security systems. Identifying measurable and adaptable security and
service parameters within give constraints are key elements towards designing an
adaptable system. In this work, we consider two adaptation dimensions, security
and multimedia. We make an effort to identify adaptable attributes from each
dimension.

The core of QaASs is an adaptation scheme that makes decisions based on
a number of attributes. The scheme is tailored to adapt both cryptography
and multimedia properties, given service constraints. We explain the operational
procedure QaASs presenting four different service constraints. We assume that
H.264/AVC is used for video encoding.

A crypto scheme is a unique combination of a cryptography algorithm and
its properties such as internal state size, block size, number of rounds, mode of
operation and key length. For example, ECC with a 128-bit curve and ECC with
a 384-bit curve are two separate crypto schemes.

The receiver of real-time video provides periodic feedback to the streaming
source. A feedback packet PKTfb is sent by the receiver every Tfb interval,
measured in seconds and customizable for a service session. PKTfb only contains
a parameter set. It would be ideal to send PKTfb over a guaranteed service like
TCP. Table 1 shows an example of PKTfb parameter set.

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 329

Table 1. Feedback packet parameters set

Parameter Symbol Unit

Average transmission delay Ttr d milliseconds

Average playback frame rate FPSpb frames/second

Frame delay jitter Jf d milliseconds

Decryption throughput TPdec KBps

Frame loss percentage Floss %(percentage)

The crypto threshold, CRPthreshold, indicates the maximum time allowed for
a video data unit (slice, frame or a GOP) to spend in cryptography operations
(encryption and decryption). Real-time video involves encoding and decoding.
In order to cope with unexpected transmission delay and jitter, streaming appli-
cations incorporate a technique, called jitter buffer [22]. Moreover, introducing
additional delay at the beginning of playback, to allow the decoder to receive
enough frames, could help to mitigate the effect of unexpected delay and jitter.
The goal is to avoid choppiness i.e., prevent the video from stalling during play-
back. Determining CRPthreshold, with different types of delays and other related
parameters in consideration, is a problem in its own right. We consider this as
a candidate for future study.

Figure 1 is a high level system diagram showing different system entities
and their relations. The video traffic evaluation module evaluates received video
traffic and forwards results to the feedback module. The video traffic evaluation
module also decides if it should forward the received packet to the decoder or
ignore it (because of delay or lost fragment). The feedback module sends peri-
odic PKTfb’s to the source. Feedback evaluator analyzes PKTfb’s and results
are forwarded to the adaptation module. The adaptation module decides what
adaptation to be carried out and control source video traffic accordingly. The
key management procedure is described in the following section.

Adaptation Option One (ADPT 1): FPS is fixed and all video data must
be encrypted.

Since, the aim is to support a diverse range of devices, different stations have
different processing capabilities. Therefore, the throughput of crypto schemes
varies across stations. Each station maintains a performance profile of crypto
schemes, CRPprf . CRPprf contains encryption and decryption throughputs for
different crypto schemes, which are pre-populated. Table 2 is an example of the
information stored in a CRPprf . The throughput is the amount of data encrypted
or decrypted by the crypto scheme per second, measured in KBps. During the
service setup phase, communicating parties exchange their CRPprf .

Let us assume that u is the streaming source and v is the receiver. The
maximum size of a video frame is n bytes. Tenc is the time required to encrypt
n bytes at station u. nenc is the size of the encrypted payload, nenc ≥ n. Tdec

is the time required to decrypt nenc bytes at station v. Here, time is measured
in milliseconds. Tz = Tx + Ty, is the playback time at v for a video frame that
was originally available at u at time Tx. Thus, the scheduled transmission time

330 T.A. Reza and M. Barbeau

Fig. 1. High level system diagram of QaASs. The arrow-headed solid lines indicate
operations at the source. The arrow-headed broken lines indicate operations at the
receiver. Double lines signify PKTfb communications. Thicker single lines are for key
management as described for ADPT 1.

Table 2. Cryptography algorithm performance profile

Crypto
Scheme

ID
Algorithm

Size of
Internal
State or

Block Size
(bits)

Key Size
or Curve
Size (bits)

Encryption
Throughput

(KBps)

Decryption
Throughput

(KBps)

1 RC4 2064 256 993.80 996.79

4 Triple-DES 64 168 930.50 931.73

5 AES 128 128 963.57 972.95

6 AES 128 256 950.87 952.50

7 Salsa20 128 512 921.23 933.66

8 Salsa20 256 512 895.35 919.56

9 ECC N/A 256 61.93 84.36

10 ECC N/A 384 33.11 46.72

is Tx+Tenc. Ty is the maximum allowed playback delay for the video frame. So,
we can write,

Ty ≥ Tenc + Ttr d + Tdec (1)

where Ttr d is the transmission delay measured in milliseconds. In order to satisfy
(1), we can choose a crypto scheme from the CRPprofile. We can say that Ty

is a function of encoding and decoding delay, CRPthreshold, initial pause time
and jitter buffer delay. For ADPT 1, CRPthreshold indicates the maximum time
allowed for a video frame to spend in cryptography operations. Hence, we must
have

CRPthreshold ≥ Tenc + Tdec (2)

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 331

For each streaming session, the sender and receiver maintain the average en-
cryption and decryption throughputs, over a predefined duration (e.g., 1 second

for a 30 fps video). Tenc =
navg

TPenc
, where navg is the average frame size in KB

and TPenc is the average encryption throughput in KBps. The Tdec calculation
follows the same procedure and considers only the decodable frames in a received
GOP. Upon receiving a PKTfb, the streaming source verifies if (2) is satisfied.
If not, from the recipient’s CRPprofile, the source chooses a crypto scheme for
which (2) is satisfied.

By switching to a higher throughput but weaker crypto scheme, to some ex-
tent, we are compromising security. Key agreement in ECIES is achieved using
ECDH (Elliptic Curve Diffie-Hellman). We assume, communicating pairs ex-
change and agree upon ECC domain parameters, the elliptic curve E and a
point P on E, during the session setup phase. They are not changed by the
rekeying procedure. The source u and receiver v generate large enough random
integers a and b respectively. u computes a point aP on E and sends it to v.
v computes a point bP on E and sends it to u. u and v compute a(bP) and
b(aP) respectively. The sizes of aP and bP are the same as P . The shared secret
x is the x-coordinate of the point abP on E. A symmetric key can be derived
from x for data encryption. We propose two rekeying options. The first option
is, only u generates a new random integer a′ and computes a′P and sends it to
v. A new symmetric key can be derived from x′. This approach would require
only one-way communications. In the second option both u and v generate new
random integers a′ and b′ respectively and therefore, a new shared secret, x′.
We would require two-way communications for this option. It is possible that
information exchanged for rekeying be sent separately or if possible, piggyback
on data traffic. The latter reduces traffic overhead. Another important issue is
the rekeying frequency. A higher frequency would require exchange of a lot more
information compared to a low rekeying frequency.

Adaptation Option Two (ADPT 2): Crypto scheme and FPS are fixed.
Encrypting frames containing inter coded macroblocks (e.g., P and B-frames)
are optional.

The more frames are encrypted, the higher the overall delay is. Frames received
out-of-order, due to delay, are discarded by the decoder and therefore, would only
contribute to resources exhaustion and bandwidth wastage. In [29], we demon-
strated how selective encryption influences overall transmission delay using three
scenarios, encrypting all frames, only I and P-frames and only I-frames. In the-
ory, if no I-block is present, in H.264/AVC, P and B-frames cannot be decoded
without their reference I-frame. ADPT 2 takes advantage of the above property
of H.264/AVC and makes encrypting inter coded frames optional. Along with I-
frames, only P-frames may be chosen for encryption. Another option is not to en-
crypt either P or B-frames at all. Upon receiving PKTfb, the streaming source
verifies if (2) is satisfied. If (2) is not satisfied, selective encryption is employed. The
adaptation decision is applied on a trial basis, i.e., as long as (2) is not

332 T.A. Reza and M. Barbeau

Table 3. H.264/AVC selective encryption options

Option I-frame P-frame B-frame

i enc enc enc

ii enc enc x

iii enc x x

satisfied. Firstly, only the B-frames are not encrypted. Secondly, P and B-frames
are not encrypted. Table 3 summarizes the selective encryption options.

Adaptation Option Three (ADPT 3): Crypto scheme is fixed and all the
transmitted video data must be encrypted. It is optional to transmit video frames
containing inter coded macroblocks.

ADPT 3 is similar to ADPT 2 but considers a more restricted scenario. Trans-
mission of frames containing inter coded macroblocks (e.g., P and B-frames) is
optional. The adaptation decision is applied on a trial basis as in ADPT 2. Dis-
carding non-intra coded frames results in reduced amount of encrypted data;
hence, reduction in overall cryptography delay. This way, we can gain streaming
performance in expense of video quality.

Adaptation Option Four (ADPT 4): Crypto scheme is fixed and all the
transmitted video data must be encrypted. Variable frame rate (FPS) is allowed.

This option adapts the frame rate. A high FPS means that more frames have
to be encrypted; thus, higher cryptography delay overhead. For ADPT 4, we
replace TPdec in PKTfb by cumulative decryption time,

∑
Tdec, as in (3).

∑
Tdec =

t=1.0s∑
t=0.0s

Tdec frame (3)

Here,
∑t=1.0s

t=0.0s Tdec frame is the cumulative decryption time for frames received
over a 1 s period. The source also maintains cumulative encryption time,

∑
Tenc,

calculated the same as above. If,
∑t=1.0s

t=0.0s frame enc is the total number of
frames encrypted over 1 s, for a video sequence coded at 30 fps with 30 frames
in each GOP,

∑t=1.0s
t=0.0s frame enc = GOPlength, where GOPlength is the GOP

length of the source video. The
∑

Tdec considers only the decodable frames in
the received GOP(s). We replace CRPthreshold in (2) by

∑
CRPthreshold where,∑

CRPthreshold ≥
∑

Tenc +
∑

Tdec (4)

In adaptation ADPT 4, we verify crypto threshold using (4). Upon receiving
PKTfb, in case (4) is not satisfied, the adaptation decision is applied on a trial
basis. FPS is gradually decreased by a margin (e.g., 5 frames) till an acceptable
minimum. Although, reduced FPS effects quality of experience, the required level
of security is maintained.

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 333

5 Simulation

We used Network Simulator (NS) to verify our proposal. We follow a well ac-
cepted video traffic simulation approach. Video traffic is generated using the
video traffic trace derived from the original H.264/AVC encoded video (coded
using JM 1.7 [33]). The video traffic trace acts as a descriptor for the compressed
video data. We used the 4:2:0 YUV foreman video sequence in CIF format con-
taining 300 frames and I, P and B-slices. For the ADPT 4, we used foreman
video coded at 30 fps, containing only I and P-frames and the GOP length is 30.
The cryptography module is implemented using the Crypto++ 5.6.1 library [6]
and integrated into NS version 2.28. Cryptography operations are carried out in
real time on actual video data, during video traffic simulation. Simulation was
carried out in a network with n2 nodes in a k × k area, positioned in a n × n
grid topology. Nodes in a grid cell are within each others communications range.
The initial positions of the source and receiver are at the opposite ends of the
diagonal of the n × n square grid. Table 4 lists the common network and sim-
ulation parameters. Video traffic starts at the 10th second. This is to allow the
proactive routing protocol some time to build the routing tables. Each slice in
the H.264/AVC sequence is encrypted individually. Results are confirmed with
a 95% confidence level.

Table 4. Network and simulation parameters

Network and Simulation Parameters

Number of nodes 36

Network topology Grid

Mobility Random Waypoint, Velocity - 0.5 m/s

Antenna and Radio propaga-
tion model

Omni directional and Two Ray Ground
Reflection

Radio range 250 m

Modulation OFDM

MAC 802.11e EDCA

Routing protocol MP-OLSR

Maximum data rate 2 Mbps

Basic data rate 1 Mbps

Node addressing IPv6

Transport layer protocols UDP for video data and TCP for others

Simulation duration 100 seconds

In order to observe the effect, the adaptation is activated at the 19th second.
For ADPT 1, 2, and 3, CRPthreshold is set to 30 ms. It is considered that for real-
time video, latency between two consecutive pictures should not be more than
150 ms [26]. CRPthreshold is chosen with encoding, decoding and transmission
delay in consideration. We begin simulation with encrypting video data using
ECC with a 348-bit curve. We compare results of the following five different
simulation scenarios, indexed S1-S5:

334 T.A. Reza and M. Barbeau

S1. Without adaptation.

S2. Single video traffic flow with adaptation and no rekeying.

S3. In presence of six video traffic flows with adaptation and no rekeying.

S4. Single video traffic flow with adaptation and with rekeying option one
(frequency: once every 1 s).

S5. Single video traffic flow with adaptation and with rekeying option two
(frequency: once every 1 s).

Figures 2, 4 and 5 show average cryptography delay and transfer time for ADPT
1, 2 and 3 respectively. For S2, gain in transfer time over absence of adaptation
are 9, 12 and 24 s for ADPT 1, 2 and 3 respectively. Using ADPT 1, in S2,
in order to satisfy CRPthreshold, crypto scheme is changed from ECC with a
384-bit curve to ECC with a 192-bit curve. In S3, five cryptography processes
cause noticeable delay for each flow, approximately an average 74 ms (Fig. 2).
As a result of which the crypto scheme is changed from ECC with a 384-bit
curve to ECC with a 128-bit curve. After withdrawing four out of five flows, the
crypto scheme is moved up to ECC with a 192-bit curve. Since, the rekeying
option two requires two-way communications and in-session key agreement, the
delay overhead in S5 is slightly higher than S4. Figure 3 shows a comparison of
network traffic caused by S1, S2, S4 and S5. S5, with frequency once in every 0.5
s, generates highest amount of bytes among the ones with adaptation, which is
still half the amount compared to S1. For evaluation of ADPT 4, CRPthreshold

is set to 1000 ms and initially there are five video traffic flows. For the selected
simulation parameters, ultimately the frame rate is reduced to just 5 fps. After
withdrawing four out of five flows, the frame rate is moved up to 15 fps and a
11 seconds gain in playback time.

Fig. 2. Adaptation option one for different scenarios

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 335

Fig. 3. Adaptation option one with rekeying

Fig. 4. Comparison of delay: no adaptation vs adaptation option two

In ADPT 1, in order to meet CRPthreshold, we switch to a higher through-
put ECC crypto scheme with a smaller curve and therefore, security is being
compromised while original video quality is maintained. In ADPT 2, based on
receiver’s feedback, we decide if frames containing inter coded macroblocks (e.g.,
P and B-frames) should be encrypted. When P or B-frames are not encrypted,
we are transmitting unencrypted data. Therefore, security is compromised but
original video quality is maintained. According to Agi and Gong [1], the pres-
ence of I-blocks in unencrypted P and B-frames is a security hole. A series of
P and B-frames could carry enough information if their base frames are corre-
lated. A frame containing an unencrypted I-block, being referenced by blocks in

336 T.A. Reza and M. Barbeau

Fig. 5. Comparison of transmission time: no adaptation vs adaptation option three

Fig. 6. Comparison of transmission time: no adaptation vs adaptation option four

subsequent frames, can be decoded. Therefore, in the case of both ADPT 1 and
2, with sufficient computing resources, it might be possible for a crypto analyst
to glean information about the video data. In ADPT 3, to satisfy CRPthreshold,
we may not transmit the unencrypted P and B-frames. Hence, video quality is
compromised but security is maintained. In ADPT 4, frame rate is adapted in
order to meet CRPthreshold. Reducing the frame rate decreases the video play-
back quality. Since all video data are encrypted with the original crypto scheme,
security is maintained. Table 5 summarizes the key elements of comparison of
the four adaptation options.

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 337

Table 5. Summary of comparison of the four adaptation options

Adaptation
Option One

Adaptation
Option Two

Adaptation
Option Three

Adaptation
Option Four

Adapted
Property

Crypto
Scheme

Inter Coded
Frame

Encryption

Inter Coded
Frame

Transmission
Video FPS

Possibility of
Compromising

Security
Yes Yes No No

Possibility of
Compromising
Video Quality

No No Yes Yes

6 Conclusion

The goal of this work was to develop a solution that addresses the issue of de-
lay overhead caused by cryptography operations. We perceived the addressed
problem in the context of real-time multimedia streaming in MANETs. We have
proposed a runtime adaptation mechanism that adapts cryptography and/or
multimedia service properties in order to meet desired QoS while maintaining
the required level of security. The adaptation mechanism utilizes service feed-
back from the receiver in real-time. We have presented four different adaptation
options exemplifying different application requirements. Our evaluation shows
that, in presence of adaptation, video transfer time is reduced by a significant
margin while using computationally intensive ECC crypto schemes. We have also
shown that, while choosing an ECC crypto scheme with higher throughput and
lower security reduces transmission delay, periodic rekeying is a viable option to
elevate security with less than apprehensible effect on performance. Adaptation
options three and four, though reduce quality, improves video transfer time with-
out compromising security. We have also presented a taxonomy of the presented
adaptation options.

In our work, we have only considered H.264/AVC. The concept can be ex-
tended for H.264/SVC and 3D/Stereoscopic coding [24]. In addition to unicast-
ing, we can verify and adapt the technique for multicasting. For our evaluation,
we have assumed the value of crypto threshold (e.g., 30 ms). Ideally, the value
of the crypto threshold should depend on the network and application. An algo-
rithm to determine the value of crypto threshold based on network, application,
user and security contexts can be a candidate for future work. We also think
Multi Criteria Decision Making [4] approaches such as AHP based solution
can be developed to realize multidimensional (e.g., adapting security and QoS
parameters simultaneously) adaptation decisions.

338 T.A. Reza and M. Barbeau

References

[1] Agi, I., Gong, L.: An Empirical Study of Secure MPEG Video Transmissions.
In: Proceedings of the Symposium on Network and Distributed System Security
(SNDSS), pp. 137–144. IEEE Computer Society, Washington, DC (1996)

[2] Alampalayam, S., Kumar, A.: An adaptive security model for mobile agents in
wireless networks. In: IEEE Global Telecommunications Conference (GLOBE-
COM), vol. 3, pp. 1516–1521 (December 2003)

[3] Alia, M., Lacoste, M., He, R., Eliassen, F.: Putting together QoS and security in
autonomic pervasive systems. In: Proceedings of the 6th ACM Workshop on QoS
and Security for Wireless and Mobile Networks (Q2SWinet), pp. 19–28. ACM,
New York (2010)

[4] Ben Mahmoud, M., Larrieu, N., Pirovano, A., Varet, A.: An adaptive security ar-
chitecture for future aircraft communications. In: IEEE/AIAA 29th Digital Avion-
ics Systems Conference (DASC), pp. 3.E.2-1–3.E.2-16 (October 2010)

[5] Blasi, L., Savola, R., Abie, H., Rotondi, D.: Applicability of security metrics for
adaptive security management in a universal banking hub system. In: Proceedings
of the Fourth European Conference on Software Architecture: Companion Volume
(ECSA), pp. 197–204. ACM, New York (2010)

[6] Crypto++, http://www.cryptopp.com

[7] Devore, J.: Probability and Statistics for Engineering and the Sciences. Cengage
Learning (2011)

[8] Djenouri, D., Khelladi, L., Badache, A.: A survey of security issues in mobile
ad hoc and sensor networks. IEEE Communications Surveys Tutorials 7(4), 2–28
(2005)

[9] Dong, H., Gibson, J., Kokes, M.: SNR and bandwidth scalable speech coding.
In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2, pp.
II-859–II-862 (2002)

[10] Furht, B.: Encyclopedia of Multimedia. Springer Reference. Springer (2008)

[11] Gibson, J., Servetti, A., Dong, H., Gersho, A., Lookabaugh, T., De Martin, J.:
Selective encryption and scalable speech coding for voice communications over
multi-hop wireless links. In: IEEE Military Communications Conference (MIL-
COM), vol. 2, pp. 792–798 (October-November 2004)

[12] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC). H.264: Ad-
vanced video coding for generic audiovisual services. Technical report (2005)

[13] He, R., Lacoste, M., Pulou, J., Leneutre, J.: A DSL for Specifying Autonomic
Security Management Strategies. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cav-
alli, A., Leneutre, J. (eds.) DPM 2010 and SETOP 2010. LNCS, vol. 6514, pp.
216–230. Springer, Heidelberg (2011)

[14] IEEE. Part 11 Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhance-
ments. IEEE Std P802.11e/D13.0 (2005)

[15] Iqbal, R., Shahabuddin, S., Shirmohammadi, S.: Compressed-domain spatial
adaptation resilient perceptual encryption of live H.264 video. In: 10th Inter-
national Conference on Information Sciences Signal Processing and their Appli-
cations (ISSPA), pp. 472–475 (May 2010)

[16] ISO/IEC. ISO/IEC 21000-7:2007 - Information technology - Multimedia frame-
work (MPEG-21) - Part 7: Digital Item Adaptation. Technical report, Interna-
tional Organization for Standardization (2007)

http://www.cryptopp.com

QoS Aware Adaptive Security Scheme for Video Streaming in MANETs 339

[17] ITU-T. 5-, 4-, 3- and 2-Bits Sample Embedded Adaptive Differential Pulse Code
Modulation (ADPCM) (1990)

[18] Kamphenkel, K., Blank, M., Bauer, J., Carle, G.: Adaptive encryption for the
realization of real-time transmission of sensitive medical video streams. In: Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pp. 1–6 (June 2008)

[19] Macq, B., Quisquater, J.: Cryptology for digital TV broadcasting. Proceedings of
the IEEE 83(6), 944–957 (1995)

[20] Meyer, J., Gadegast, F.: Security mechanisms for Multimedia data with the Ex-
ample MPEG-1 video, Project description of SECMPEG (2000)

[21] Nijim, M., Ali, A.: AdSeD: An Adaptive Quality of Security Control in Disk
Systems. In: 11th IEEE Intl. Conf. on Computational Sci. and Eng. (CSE), pp.
421–428 (July 2008)

[22] Oklander, B., Sidi, M.: Jitter Buffer Analysis. In: Proceedings of the 17th Inter-
national Conference on Computer Communications and Networks (ICCCN), pp.
1–6 (August 2008)

[23] Oliveira, T., Oliveira, S., Macedo, D., Nogueira, J.: An adaptive security manage-
ment model for emergency networks. In: 7th Latin American Network Operations
and Management Symposium (LANOMS), pp. 1–4 (October 2011)

[24] Onural, L.: An Overview of Research in 3DTV. In: 14th International Workshop
on Systems, Signals and Image Processing (IWSSIP), p. 3 (June 2007)

[25] Pereira, R., Tarouco, L.: Adaptive Multiplexing Based on E-model for Reducing
Network Overhead in Voice over IP Security Ensuring Conversation Quality. In:
4th Intl. Conf. on Digital Telecommunications (ICDT), pp. 53–58 (July 2009)

[26] Perkins, C.: RTP: audio and video for the internet. Kaleidoscope Series. Addison-
Wesley (2003)

[27] Perkins, D., Hughes, H.: A survey on quality-of-service support for mobile ad hoc
networks. Wireless Communications and Mobile Computing 2(5), 503–513 (2002)

[28] Preda, S., Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Toutain, L.: Dy-
namic deployment of context-aware access control policies for constrained security
devices. J. Syst. Softw. 84(7), 1144–1159 (2011)

[29] Reza, T.: QoS Aware Adaptive Security Scheme for Video Streaming in MANETs.
Master’s thesis, School of Computer Science, Carleton University, Ottawa, On-
tario, Canada (2012),
http://people.scs.carleton.ca/~barbeau/Theses/Tashin_Reza.pdf

[30] Samad, F., Makram, S.: Adaptive security established on the requirements and
resource abilities of network nodes. In: IEEE 35th Conference on Local Computer
Networks (LCN), pp. 752–755 (October 2010)

[31] Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding Ex-
tension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems
for Video Technology 17(9), 1103–1120 (2007)

[32] Shnitko, A.: Adaptive security in complex information systems. In: Proc. of the
7th Korea-Russia Intl Symp. on Sci. and Tech. (KORUS), vol. 2, pp. 206–210
(July 2003)

[33] Sühring, K.: H.264/AVC JM Reference Software,
http://iphome.hhi.de/suehring/tml/download/

[34] Son, H., David, R., Thuraisingham, B.: Improving timeliness in real-time secure
database systems. SIGMOD Rec. 25(1), 29–33 (1996)

[35] Spanos, G., Maples, T.: Performance Study of a Selective Encryption Scheme for
the Security of Networked, Real-Time Video. In: Fourth International Conference
on Computer Communications and Networks, pp. xviii+683 (September 1995)

http://people.scs.carleton.ca/~barbeau/Theses/Tashin_Reza.pdf
http://iphome.hhi.de/suehring/tml/download/

340 T.A. Reza and M. Barbeau

[36] Stallings, W.: Cryptography and network security: principles and practice. Pren-
tice Hall (2011)

[37] Taddeo, A., Marcon, P., Ferrante, A.: Negotiation of security services: a multi-
criteria decision approach. In: Proceedings of the 4th Workshop on Embedded
Systems Security (WESS), pp. 4:1–4:9. ACM, New York (2009)

[38] Tang, L.: Methods for encrypting and decrypting MPEG video data efficiently. In:
Proceedings of the Fourth ACM International Conference on Multimedia (MUL-
TIMEDIA), pp. 219–229. ACM, New York (1996)

[39] Vaidya, B., Denko, M., Rodrigues, J.: Secure Framework for Voice Transmission
over Multipath Wireless Ad-Hoc Network. In: IEEE Global Telecommunications
Conference (GLOBECOM), pp. 1–6 (December 2009)

[40] Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

[41] Van Deursen, D., Van Lancker, W., Van de Walle, R.: On media delivery protocols
in the Web. In: IEEE Intl. Conf. on Multimedia and Expo (ICME), pp. 1028–1033
(July 2010)

[42] Venkatramani, C., Westerink, P., Verscheure, O., Frossard, P.: Securing media for
adaptive streaming. In: Proceedings of the Eleventh ACM International Confer-
ence on Multimedia (MULTIMEDIA), pp. 307–310. ACM, New York (2003)

[43] Wiegand, T., Sullivan, G., Bjontegaard, G., Luthra, A.: Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology 13(7), 560–576 (2003)

[44] Wiener, M.: Performance Comparison of Public-key Cryptosystems (1998),
http://www.rsa.com/rsalabs/pubs/cryptobytes.html

[45] Yau, S., Yin, Y., An, H.: An Adaptive Tradeoff Model for Service Performance
and Security in Service-Based Systems. In: Proceedings of the 2009 IEEE Interna-
tional Conference on Web Services (ICWS), pp. 287–294. IEEE Computer Society,
Washington, DC (2009)

[46] Yi, J., Adnane, A., David, S., Parrein, B.: Multipath optimized link state routing
for mobile ad hoc networks. Ad Hoc Networks 9, 28–47 (2011)

[47] Younis, M., Krajewski, N., Farrag, O.: Adaptive security provision for increased
energy efficiency in Wireless Sensor Networks. In: IEEE 34th Conf. on Local
Comp. Networks (LCN), pp. 999–1005 (October 2009)

[48] Yu, B.: Establishement of elliptic curve cryptosystem. In: IEEE International
Conference on Information Theory and Information Security (ICITIS), pp. 1165–
1167 (December 2010)

[49] Zou, J., Lu, K., Jin, Z.: Architecture and fuzzy adaptive security algorithm in
intelligent firewall. In: Proceedings of MILCOM (MILCOM), vol. 2, pp. 1145–
1149 (October 2002)

http://www.rsa.com/rsalabs/pubs/cryptobytes.html

A Case Study of Side-Channel Analysis
Using Decoupling Capacitor Power Measurement

with the OpenADC

Colin O’Flynn and Zhizhang Chen

Dalhousie University, Halifax, Canada
{coflynn,z.chen}@dal.ca

Abstract. When capturing power measurements for processing with
side-channel analysis, there are many options with regards to both how
the measurement is taken, and also how that measurement is digitized.
This work concentrates on a new technique which measures the current
through a decoupling capacitor, with a probe that can easily be built
in any electronics lab. In addition an open-source digitizer board is pre-
sented, which is specifically designed to measure the signals required for
side-channel analysis. The techniques presented in this work facilitate
sharing of repeatable measurement techniques: the measurement envi-
ronment presented can easily be duplicated at a very low cost.

Keywords: side-channel analysis, decoupling, acquisition, case study.

1 Introduction

Using the power consumption of a device as a ‘side channel’ to derive secrets held
inside the device was first presented in 1998[1]. The initial two attacks, called
Differential Power Analysis (DPA) and Simple Power Analysis (SPA) have since
been augmented by even more powerful attacks such as template attacks[2] or
Correlation Power Analysis (CPA)[3]. This work does not concentrate on the
attacks; instead, this work focuses on how the power consumption of a device
under attack is measured. First, an overview of current technologies used in the
capture of power traces will be presented. From this we can define the require-
ments for a capture system, before moving onto an implementation of a capture
system meeting these requirements. In addition to a low-cost capture system,
a simplified probe type is proposed, which has the advantage of being easily
reproducible by other researchers. Finally a comparison of the proposed capture
architecture and probe will be compared to commercially available solutions, as
typically used in recent literature.

2 Review of Capture Techniques

2.1 Probe Type

There are two general classes of probes used for measuring power consumption:
a resistive shunt as used in the original work [1], or an electromagnetic (EM)

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 341–356, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

342 C. O’Flynn and Z. Chen

probe[4]. EM probes have been shown to result in more successful attacks[5],
with the advantage that EM probes do not require any modification to the
device under attack, and can even be performed at a moderate range[6].

Many types of EM probes have been used in published work, including com-
mercially manufactured probes. Comparison of different probe constructions is
found in [7, 8]. Smaller probes can be scanned over the chip surface to pick out
specific features, such as bus/data lines.

2.2 Acquisition

The required acquisition characteristics depend on both the target under at-
tack, and the type of attack being carried out. Considerations with regards to
the target under attack include the clock frequency, whether the cryptographic
algorithm is in hardware (HW) or software (SW), technology used for the chip,
and whether or not countermeasures have been implemented. Typically the cap-
ture oscilloscope achieves around 1 GS/s, as shown in Table 1.

Table 1. A few examples of capture rates in recently published papers. Sample rates
only appear if the tested attack was successful at that sample rate.

Reference Sample Rate(s) - MS/s Target Type
[9] 5000 HW - 24 MHz
[7] 500, 2000 HW
[10] 200 SW
[8] 125, 250, 500 SW - 24 MHz
[11] 500, 1000 HW

3 Ideal Acquisition System - Requirements

3.1 External Clock Inputs

Commercial oscilloscopes typically provide their own sampling clock which is
not synchronized to the device clock. In many devices, however, the device clock
is readily available either as a digital signal or by adding a buffer circuit to
the crystal oscillator. The sample clock can be derived from the device clock to
measure a consistent point; for example it can be used to measure the power
consumption on the clock edge. A comparison of measurements taken with an
unsynchronized and synchronized sample clock is shown in Fig. 1. In section 6
it will be demonstrated that this synchronized sample clock significantly relaxes
the requirement of using a high sample rate for certain attacks.

Note that sample clock synchronization is different from the trigger input that
all oscilloscopes provide. With a real-time oscilloscope, the internal sample clock
of the oscilloscope will be running at all times, and the sample occurs at the
next clock edge after the trigger. Thus even though the oscilloscope is triggered
at a repeatable time, there will be some random jitter between when the first

A Case Study of Side-Channel Analysis 343

Sample Number

A
m

pl
itu

de
Comparison of Unsyncronized (A) and Syncronized (B) Sampling Methods

Fig. 1. Eight power samples with the same input are taken and overlaid to show con-
sistency of measurements. In A the sample clock is 100 MHz but not synchronized to
the device clock, whereas in B the sample clock is 96 MHz, but synchronized with the
device clock.

sample occurs relative to this trigger for unsynchronized (free-running) sample
clocks[12]. Some oscilloscopes do provide a synchronous sampling ability, such as
the CleverScope with the ’external sampler clock input’, or the PicoScope 6000
series.

If the clock frequency varies due to either countermeasures or a low-cost os-
cillator, this would not affect the acquisition quality, since samples are always
based on the device clock.

3.2 External Clock Phase Adjust

The processing of the external clock input, the ADC, and the analog front-end
will add some delay between when the rising clock occurs on the target device,
and when the actual sample is recorded. In addition the point of interest for the
power analysis may not lie directly on the rising edge, but sometime after this
clock edge. For this reason the capture board must be able to add an adjustable
delay (phase shift) between the input clock and the actual sample point.

3.3 Adjustable Gain

The output of a probe will vary with both the probe type and the circuit under
analysis. For this reason, an adjustable gain amplifier is useful to amplify the

344 C. O’Flynn and Z. Chen

signal up to the range of the input of the digitizer. Oscilloscopes for example
provide a selectable input range - this is still insufficient for H-Field probes,
which require an external Low Noise Amplifier (LNA).

4 Low-Cost Acquisition Architecture

The architecture of the analog front-end which is used here is shown in Fig. 2. The
features previously identified as important for side-channel analysis are included:
an external clock input with adjustable phase, an internal clock, adjustable gain,
and a computer interface.

Fig. 2. Architecture of analog acquisition unit which is implemented in a combination
open-source ADC board and COTS FPGA board

The analog front-end and ADC board has been released in an open-source de-
sign called the OpenADC. The OpenADC hardware consists only of the low noise
amplifier (LNA), ADC, input connectors, and associated support circuitry such as
power supplies. This board can be connected to most FPGA development boards
with sufficient IO available - it is shown mounted on a low-cost Xilinx Spartan 6
development board from Avnet in Fig. 3. The open-source solution includes not
only the PCB designs, but example FPGA source code and capture applications
on the PC at [13]. The total cost of this acquisition solution is $140 US.

While the sample rate is limited by the 10-bit ADC selected to 105 MS/s, the
analog bandwidth is higher to maintain information on the clock edges. When
the LNA input is selected the analog bandwidth is around 110 MHz, and when
the transformer-coupled input is selected the analog bandwidth is around 500
MHz. The LNA has an adjustable gain in 100 steps up to 55 dB, allowing for
the direct connection of a wide range of measurement probes, including both
current shunt and EM.

In addition to the analog hardware and FPGA source, the PC-based capture
application source is provided. This source is written entirely in Python, pro-
viding an excellent cross-platform tool which can easily be expanded. The basic

A Case Study of Side-Channel Analysis 345

Fig. 3. The OpenADC mounted on a commercial FPGA development board. The
FPGA board provides control, USB interface, and a 48M sample memory.

library provides the hardware interface code along with the graphical display.
This can be easily integrated into other applications: Fig. 4 shows two example
applications that make use of this library.

5 Decoupling Capacitor Power Measurement

A decoupling capacitor is designed to provide a low-impedance path for high
frequency current, as typically drawn at the clock edge[14]. For side-channel
analysis with a resistive shunt, the decoupling capacitor significantly worsens the
measured signal [15]. The higher-frequency components, which are of interest for
SCA, are flowing through the decoupling capacitor and not the shunt.

Fig. 4. Example capture applications provided. The left example controls only the
OpenADC, and this example is a long (10E6 point) capture of a KeeLoq algorithm.
The example on the right interfaces to the OpenADC and SASEBO-GII board to
capture many traces with different plaintext data.

346 C. O’Flynn and Z. Chen

Measuring the current through a decoupling capacitor for side-channel anal-
ysis was first explored in [16], which used a current transformer to measure the
current flowing through individual decoupling capacitors. Current transform-
ers use the principle of induction, which dates back to Faraday’s discovery in
1831[17], to measure current flowing in a conductor without the necessity of
breaking the conductor. Using induction to measure current through a decou-
pling capacitor in-place has also been demonstrated, but such papers employed
the measurements for the design of power distribution systems, and not for side-
channel analysis [18–20]. This paper builds on such previous work by looking
at the performance of the inductive pickup for side-channel attacks, and the
physical considerations for its use.

The method thus proposed is to wrap the target decoupling capacitor in a
thin magnet wire, and connect this to the acquisition oscilloscope. Physically,
this proposed method requires no modifications to the device under test. The
localized nature of the measurement provides excellent rejection of interference,
and the performance when used in side-channel attacks will be demonstrated to
be slightly superior to other common methods.

6 SASEBO-GII Correlation Power Analysis (CPA)
Results

The Side-channel Attack Standard Evaluation Board (SASEBO) version GII
from the National Institute of Advanced Industrial Science and Technology
(AIST) in Japan provides a useful reference platform for performing side-channel
analysis attacks. Characterizations are available in literature of the performance
of this board under various attacks[15, 21]. The attack used here is a simple Cor-
relation Power Attack, for which the reference code is available from AIST[22],
with the cryptographic core under attack being the AES core provided for the
DPA Contest Version 3[22].

The performance analysis here consists of the number of traces required for
the global success rate (GSR) to stay above 80%. This performance analysis was
chosen to match recent publications of a similar nature [9, 23].

6.1 Measurement Setup

The measurement equipment consists of an Agilent 54831B Infiniium DSO as a
reference, and the OpenADC platform presented earlier as a demonstration of
low-cost capture hardware. The acquisition from the Agilent 54831B is done with
code from AIST[22] which has been modified to support the scope being used,
with a sampling rate at 2 GS/s. This scope does not support an external clock
input. Vertical voltage scale differs depending on the measurement setup being
used. For the OpenADC the sampling clock (96 MHz) is 4x the AES Core Clock
(24 MHz), which is derived from the actual AES Core Clock. The OpenADC
capture software is written in Python and the source code is available from [13].

A Case Study of Side-Channel Analysis 347

Fig. 5. Shielded magnetic field probe, before wrapping in an insulator to allow safe
probing of any area of the device under test

In all cases the internal voltage (VINT) of the FPGA is adjusted to 1.000
volts; this avoids any unintentional results occurring because the insertion of
the current shunt will naturally reduce the voltage seen by the FPGA. The
SASEBO-GII is equipped with a small adjustment range on the VINT voltage
to null out the current shunt loss.

The board as shipped did not have decoupling capacitors mounted on VINT,
which correspond to C46 - C52. Where a decoupling capacitor is mounted in
these tests, only a single 100 nF capacitor is mounted on C46, for which a
Murata GRM155R61A104KA01D size 0402 capacitor is used.

Current Shunt. The SASEBO-GII board provides connections for measuring
current used by the cryptographic FPGA via a 1-ohm current shunt. This mea-
surement uses the ‘VINT’ supply for the FPGA, which is measured at J2. This
measurement is performed both with C46 mounted and unmounted.

H-Field Probe. An H-Field probe was constructed from a loop of semi-rigid
coax. When using the 54831B oscilloscope, a MiniCircuits ZFL-1000LN Low
Noise Amplifier (LNA) boosts the signal to achieve a better response. The Ope-
nADC is directly connected to the H-Field probe, as the OpenADC contains an
integrated LNA. A photo of the magnetic field probe is shown in Fig. 5. Detailed
information about the construction process is found in [14], with some additional
examples for side-channel analysis in [7].

Shunt Measurement on Individual Capacitors. The current through an
individual capacitor was measured with a 0.22 ohm current shunt placed in series
with the capacitor. The voltage was read directly from the current shunt and
fed into the oscilloscope.

Power Pin Measurements. If the decoupling capacitors are not mounted, the
device will naturally see drops in its voltage supply as measured at the power
pin, since the power distribution system is unable to provide a low-impedance
source close to the power pin. For the SASEBO-GII board, the measurement
is taken on the underside of the board, on the positive pad of the decoupling
capacitor specified. Each decoupling capacitor pad aligns directly with the power
pin of the cryptographic FPGA, see Fig. 6

348 C. O’Flynn and Z. Chen

Fig. 6. The decoupling capacitors line up directly with the power pins; if the capacitors
are not mounted this provides a good source to measure the ripple on the voltage rail
due to high-frequency power demands. The pink square is the location of the chip
under attack on the top side of the board.

Inductive Wrapping. The proposed inductive wrap method uses 7 wraps
of AWG34 magnet wire around the decoupling capacitor C46. One end of the
magnet wire is soldered to the negative pad of the capacitor. The other side of
the wire connects through a low-noise amplifier (ZFL-1000LN) for the DSO, or
directly to the OpenADC. Fig. 7 shows a detailed photo of this setup.

Fig. 7. 7 wraps of AWG34 magnet wire around a 0402 capacitor. The yellow visible
around the capacitor is Kapton tape used to isolate the rest of the PCB.

6.2 Measurement Results

Results for the Global Success Rate (GSR) of the CPA attack are shown in
Fig. 8; Table 2 provides the number of traces require for the GSR to exceed
0.8. All of these measurements are taken with the Agilent DSO, a comparison
between the DSO and OpenADC platform is given in Fig. 10.

Current Shunt, H-Field Probe. In order to confirm the test setup, several of
the results duplicated work done elsewhere. For example, the shunt measurement
on the entire VCC-INT power system was expected to perform poorly when the
single decoupling capacitor was mounted. This can be seen by comparing Fig. 2-
A to Fig. 2-B. In addition, the H-Field probe should provide better results than

A Case Study of Side-Channel Analysis 349

Table 2. Traces required to achieve 1st order Global Success Rate (GSR) higher than
80% with a Correlation Power Analaysis (CPA) attack for several measurement tech-
niques

Measurement Method Traces for GSR > 0.8
VCC-INT Shunt Measurement 4800
VCC-INT Shunt Measurement w/ decoupling >5000
Inductive Pickup w/ decoupling w/ amplifier 3450
H-Field Probe w/ decoupling w/ amplifier 3850
Decoupling capacitor shunt w/ decoupling 4350
Voltage Probe 4550

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(A) VCC−INT Shunt Measurement, C46 Unmounted

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1
G

lo
ba

l S
uc

ce
ss

 R
at

e
(B) VCC−INT Shunt Measurement, C46 Mounted

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(C) Inductive Pickup Wrapped around C46

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(D) H−Field Probe near C46

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(E) Decoupling Capacitor C46 Shunt Measurement

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(F) Voltage Probe, C46 Unmounted

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

 A
B
C
D
E
F
G

C

F

D
A

B

E

Comparison of Different Measurement Techniques

Number of Traces

Number of Traces

Number of Traces

Fig. 8. The first order global success rate (GSR) vs. the number of traces processed
for a simple CPA attack. A through F show different measurement techniques; the
final figure shows a comparison of the first-order GSR for each of the measurement
techniques. The vertical lines show the intercept of the 1st order GSR exceeding 0.8,
where the numeric value of these intercepts is given in Table 2.

350 C. O’Flynn and Z. Chen

the shunt measurement in order to agree with [5]. This is confirmed by looking
at Fig. 2-D.

Inductive Wrapping. It can be seen that the proposed measurement technique
requires the smallest number of traces to achieve a GSR higher than 80% (>0.8).
The signal from this technique is considerably stronger than with the H-field
probe. The measured signal from the inductive wrap technique is about 10x
larger in amplitude (Vp-p) than that from the H-field probe.

The stronger signal slightly relaxes the requirements of the amplifier, and
means that the resulting SNR will be better compared to the H-field probe.
The results here show slightly better performance for the inductive wrapping
technique compared to the H-Field probe due to this improved SNR. The number
of wraps used does appear to impact the GSR, as shown in Fig. 9. Here 7 wraps
results in a better GSR than 2 wraps - the 7 wraps again resulted in a stronger
signal, reducing noise in the measurement front-end.

Shunt on Decoupling Capacitor. The results here confirm the decoupling
capacitor measurement does provide a significant improvement over attempting
to measure the current drawn through the entire system. The performance is
still lower than electromagnetic techniques; it is assumed that adding the shunt
reduces the impedance of the capacitor, thus reducing the current which flows
through it. In [16] a Current Transformer (CT) is used instead of a resistive
shunt. Inserting the CT would also slightly increase the impedance, since the
CT must be clamped around a wire in series with the decoupling capacitor.

Voltage Probe. The voltage probe is an extremely simple method of measuring
local variations in the current demand. It does require the decoupling capacitor
to be removed: for the best signal it would likely demand all nearby capacitors
to be removed, as the nearby capacitors provide some additional decoupling
that dampens the signal. For devices under attack which require the decoupling
capacitors to run, this method may not be possible.

6.3 OpenADC Measurement Results

The results in Fig. 10 show that the OpenADC performs well using the inductive
wrapping technique. The OpenADC is only sampling at 96 MSPS - but the
sampling clock is synchronized to the device clock. When the sampling clock is
not synchronized, it fails to recover the encryption key (GSR = 0). This agrees
with previously published results on a similar board, which showed a failure of
the attack at 100 MS/s [11]. The reference measurement at 2 GS/s is using the
oscilloscope’s internal timebase; that is to say a timebase that is unsynchronized
to the device clock.

The OpenADC has fine granularity on the gain of the input signal, along with
the full-scale reference voltage for the ADC. The DSO by comparison does not pro-
vide such fine granularity on the input scaling. For the inductive wrap technique
it is expected that this partially contributes to the slightly better performance of

A Case Study of Side-Channel Analysis 351

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1
G

lo
ba

l S
uc

ce
ss

 R
at

e

Inductive Wrapping Technique Comparisons

7 Wraps 1−Sided
2 wraps 1−Sided
2 Wraps 2−Sided

Number of Traces

Fig. 9. Comparison of different variations of the inductive wrapping technique. The
maximum number of wraps was set based on the physical ability to keep the wraps
around the decoupling capacitor. An ‘1-sided’ wrap has one end soldered to the ground
pad of the capacitor as in Fig. 7, where a ‘2-sided’ wrap has both ends of the wrapping
wire connected to the oscilloscope as in Fig. 13. Appendix B provides some information
about the ‘1-sided’/‘2-sided’ wrapping.

OpenADC in Syncronous Sampling Mode Compared to Commercial Digital Storage Oscilloscope (DSO)

Fig. 10. Comparison of GSR for traces gathered with the OpenADC and a normal
Digital Storage Oscilloscope (DSO), for both H-Field probe and inductive wrapping

the OpenADC: the number of bits used to represent the full-scale signal is higher
with the OpenADC compared to the DSO, since the OpenADC allows adjustment
of the signal to reach closer to the full-scale range of the ADC input.

7 Conclusions

Previous work in side-channel analysis has shown that the electromagnetic (EM)
field provides better results than a current shunt. The EM probe, however, suffers

352 C. O’Flynn and Z. Chen

from being more complex to use: it requires careful positioning if repeatable
experiments are necessary, requires a Low Noise Amplifier, and often requires
an expensive high-speed oscilloscope.

This work has shown a low-cost alternative that solves both problems: rather
than using a probe which must be positioned, the probe is built around the de-
coupling capacitors, which will naturally have most of the high-frequency (e.g.:
clock edge) currents flowing through them. It is also trivial to report the measure-
ment setup in a repeatable manner, requiring the following three characteristics:
the part number of the decoupling capacitor, type of wire used, and number of
wraps around the capacitor.

To acquire the data, it is necessary to use an ADC which is perfectly syn-
chronized to the clock of the device under test. This relaxes the requirement of
a high sample rate, allowing low-cost ADCs to be used for side-channel analysis.
In addition, the complete design is released as an open-source project, making
it available for use by researchers at [13].

There are several main areas of future work to which this capture board
can be applied. First, the capture hardware can be extended to support more
features. If the device under attack does not provide an accessible clock, a form of
‘clock recovery’ would be needed, where an adjustable ‘local oscillator’ is locked
to the remote clock. This would require the addition of a Voltage Controlled
Oscillator (VCO), which can be connected in a Phase Lock Loop (PLL) circuit.
This would lock onto the pulses in the power traces which are occurring at
the clock edge. Secondly, the OpenADC can be used as part of a hardware
implementation of attacks. Attacks could be implemented on the FPGA itself:
rather than sending the traces to the computer, they would simply be processed
in real-time. This real-time processing would simplify attacks which require a
considerable amount of traces, since there is no requirement to store them as
an intermediate step. Finally, experimentation into different analog front-end
processing, such as different filters, can easily be performed with the OpenADC.

Acknowledgments. Funded in part by NSERC Canada Graduate Scholarship.
Thanks to Pankaj Rohatgi of Cryptography Research Inc., and Akashi Satoh of
National Institute of Advanced Industrial Science and Technology (AIST) for
donation of the SASEBO-GII used in this work.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004)

A Case Study of Side-Channel Analysis 353

4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete
Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

5. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks
to Compare and Combine Power and Electromagnetic Information Leakages.
In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425.
Springer, Heidelberg (2008)

6. Jun, B., Kenworthy, G.: Is your mobile device radiating keys? In: RSA Con-
ference 2012 (2012)

7. De Mulder, E.: Electromagnetic Techniques and Probes for Side-Channel
Analysis on Cryptographic Devices. PhD thesis, KU Leuven (2010)

8. Mateos, E., Gebotys, C.: Side channel analysis using giant magneto-resistive
(gmr) sensors. In: International Workshop on Constructive Side-Channel
Analysis and Secure Design, COSADE (2011)

9. Duc, G., Guilley, S., Sauvage, L., Flament, F., Nassar, M., Selmane, N.,
Danger, J.L., Graba, T., Mathieu, Y., Renaud, P.: Results of the 2009-2010
"dpa contest v2". In: International Workshop on Constructive Side-Channel
Analysis and Secure Design, COSADE (February 2011)

10. Carluccio, D.: Electromagnetic Side Channel Analysis of Embedded Crypto
Devices. PhD thesis, Ruhr University Bochum (2005)

11. Souissi, Y., Danger, J., Guilley, S., Bhasin, S., Nassar, M.: Embedded sys-
tems security: An evaluation methodology against side channel attacks. In:
2011 Conference on Design and Architectures for Signal and Image Process-
ing (DASIP), pp. 1–8. IEEE (2011)

12. Agilent Technologies: Triggering Wide-Bandwidth Sampling Oscilloscopes
for Accurate Displays of High-Speed Digital Communications Waveforms
(2005)

13. O’Flynn, C.: Openadc (2012), http://www.newae.com/openadc
14. Smith, D.: Signal and noise measurement techniques using magnetic field

probes. In: 1999 IEEE International Symposium on Electromagnetic Com-
patibility, vol. 1, pp. 559–563. IEEE (1999)

15. Katashita, T., Satoh, A., Kikuchi, K., Nakagawa, H., Aoyagi, M.: Evalua-
tion of dpa characteristics of sasebo for board level simulations. In: Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE), pp. 36–39 (2010)

16. Danis, A., Ors, B.: Differential power analysis attack considering decoupling
capacitance effect. In: European Conference on Circuit Theory and Design,
ECCTD 2009, pp. 359–362. IEEE (2009)

17. Faraday, M.: Experimental researches in electricity. Phil. Trans. R. Soc.
Lond. 122, 125–162 (1832)

18. Weaver, J., Horowitz, M.: Measurement of via currents in printed circuit
boards using inductive loops. In: 2006 IEEE Electrical Performance of Elec-
tronic Packaging, pp. 37–40. IEEE (2006)

19. Weaver, J., Horowitz, M.: Measurement of supply pin current distributions
in integrated circuit packages. In: 2007 IEEE Electrical Performance of Elec-
tronic Packaging, pp. 7–10. IEEE (2007)

http://www.newae.com/openadc

354 C. O’Flynn and Z. Chen

20. Li, L., Kim, J., Wang, H., Wu, S., Takita, Y., Takeuchi, H., Araki, K.,
Fan, J.: Measurement of multiple switching current components through a
bulk decoupling capacitor using a lab-made low-cost current probe. In: 2011
IEEE International Symposium on Electromagnetic Compatibility (EMC),
pp. 417–421. IEEE (2011)

21. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Anal-
ysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

22. Satoh, A.: Side-channel attack standard evaluation board (sasebo) - dpa
contest (2011), http://www.morita-tech.co.jp/SASEBO/en/index.html

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

24. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shal-
mani, M.T.M.: On the Power of Power Analysis in the Real World: A Com-
plete Break of the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

Appendix A: Examples of Decoupling Capacitor
Measurements

Where the SASEBO-GII board provides provisions for using a current shunt
power measurement, commercial boards typically provide no such considerations.
In addition commercial boards often contain extensive decoupling capacitors
which dampen the signal measured with a current shunt. As an example the
board shown in Fig. 11 has been modified to add a current shunt along with an
inductive pickup wrapped around one of the decoupling capacitors. The power
trace is shown in figure Fig. 12 measured with the current shunt, and also the
inductive wrapping. Note that the average of many traces shows the current

Fig. 11. Microcontroller board which supports a classic resistive shunt measurement
at (A) and an EM measurement using the inductive wrap at (B)

http://www.morita-tech.co.jp/SASEBO/en/index.html

A Case Study of Side-Channel Analysis 355

Fig. 12. A comparison of current shunt and inductive pickup on a commercial board
with extensive and power supply decoupling. The program being executed switches
from performing lower power load immediate instructions to higher power multiply
instructions at time 1875 nS from the trigger. Red (top) is current shunt, blue (middle)
is inductive pickup. Lower half of figure shows zoomed in area from black box in top
half.

Fig. 13. Analyzing a small security device

shunt contains no visible signal, where the inductive wrap has picked up a very
clean signal corresponding to different instructions being executed.

Another example of using the inductive wrapping is with small keyfob trans-
mitters, such as those using the KeeLoq algorithm, which have been shown to be
vulnerable to power analysis [24]. The decoupling capacitor is easily identified
in Fig. 13, and a probe can be built around it.

Appendix B: Physical Considerations of Wrapping

A side-view of a typical SMD solder joint is shown in Fig. 14. It should be
apparent that wrapping a fine magnet wire around this will be difficult, as the
shape of the fillet will naturally push the wire up and off the capacitor as it
is tightened. The author used a low-temperature soldering iron to put spikes
towards the top side of the SMD joint. These spikes had the effect of providing
a ‘core’ around which to wrap the magnet wire.

356 C. O’Flynn and Z. Chen

This process can also be assisted by using a portable dispenser for the wire -
for example the Verowire Pen. The choice to solder one end of the wire to the
negative pad of the decoupling capacitor results in better mechanical stability,
and simplifies connection of the coaxial cable. Extensive testing showed this
resulted in a very clean signal; however all the boards tested had full ground
planes. One should verify the ground connection of the capacitor will provide a
clean reference path.

Fig. 14. Winding the pickup coil around an arbitrary decoupling capacitor is achieved
by adding a form with solder. In addition the choice to connect one side of the coil to
the ground of the circuit simplifies connection of the oscilloscope in some situations.

Towards Modelling Adaptive Attacker’s

Behaviour�

Leanid Krautsevich1,2, Fabio Martinelli2, and Artsiom Yautsiukhin2

1 Department of Computer Science, University of Pisa,
Largo B. Pontecorvo 3, Pisa 56127, Italy

krautsev@di.unipi.it
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,

Via G. Moruzzi 1, Pisa 56124, Italy
{fabio.martinelli,artsiom.yautsiukhin}@iit.cnr.it

Abstract. We describe our model for the behaviour of an attacker.
In the model, the attacker has uncertain knowledge about a computer
system. Moreover, the attacker tries different attack paths if initially
selected ones cannot be completed. The model allows finer-grained anal-
ysis of the security of computer systems. The model is based on Markov
Decision Processes theory for predicting possible attacker’s decisions.

Keywords: Attacker Model, Attack Graphs, Markov Decision Process.

1 Introduction

Most methods for the analysis of security of computer systems (e.g., networks,
Cloud, etc.) consider attackers as omniscient entities which know all weaknesses
of a computer system [4,11]. In addition, attackers are frequently assumed to
make only right decisions during an attack and to exploit only the best possible
way for the attack.

In contrast, descriptions of real complex attacks (e.g., [7]) show, that attackers
have limited knowledge of a target system and explore the system step by step
during the attack. Attackers make mistakes in their reasoning about the system,
and search for alternative ways to compromise the system when the initially
selected attack fails. This means that the model of powerful attacker does not
provide a real description of a situation, but prepares for a worst case scenario.
In reality, security teams have a limited budget and would like to concentrate on
the most important security issues that can be solved within the budget. Taking
into account attacker’s behaviour properly is important because some attacks
may be even not considered by the attacker because of her uncertain knowledge
about the system or lack of resources. Wasting the budget on preventing such
attacks is not the most cost-effective decision.

In this paper, we strive for a more refined attacker model introducing the
attacker’s view of a system, which is sometimes different from the real system.

� This work was partly supported by EU-FP7-ICT NESSoS and 295354 SESAMO
projects.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 357–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

358 L. Krautsevich, F. Martinelli, and A. Yautsiukhin

This view drives the actions of the attacker depending on the knowledge and
resources the attacker possesses. Moreover, in our model an attacker may give
up on her current attack and follow an alternative attack path. We use Markov
Decision Process (MDP) to model the behaviour of attacker as the method for
the selection of attack steps.

The rest of the paper is organised as follows. Section 2 explains our concerns
on uncertain knowledge of an attacker about a system. Section 3 focuses on
models of attacker’s behaviour. Related work is presented in Section 4. Section 5
concludes the paper.

2 A System and an Attacker

We consider a computer system as an attack graph G that represents the ways
to compromise the system [4,11]. A node si ∈ S of the attack graph denotes a
successfully exploited vulnerability and an edge aij ∈ A denotes further possible
exploitation of vulnerability sj after previously exploited vulnerability si. Thus,
successful exploitation of vulnerabilities leads an attacker to new states with new
privileges.

Similarly to our previous work [3] we group attackers into attacker profiles
X = {Γ, goal, intang, tang, skill} where Γ is the set of attacks γ ∈ Γ known by
the attacker, goal is the goal of the attacker, intang is an amount of intangible
resources possessed by the attacker, e.g., time, tang is the amount of tangible
resources possessed by the attacker, skill defines how trained is the attacker.
We modify the attack graph to capture properties of the attacker. First, we add
to the graph an initial node corresponding to initial privileges of the attacker.
Second, we define the goal nodes in the attack graph G that correspond to
vulnerabilities that complete the attack (the ultimate step of each attack).

We assume that the attacker has certain amount of time units to perform
the attacks. She spends a unit of time for executing a single attack step. The
attacker stays in a goal state if she reaches it before spending all units of time.
This situation is modelled by adding edges that start and end in the same goal
state.

We separate the real system and the attacker belief about the system. When
the attacker is omniscient, her view of the system coincides with the real system.
We consider a more realistic case, when the view does not coincide with the
real systems. The attacker’s knowledge about the system determines the set of
vulnerabilities that the attacker believes present in the system. These believed
vulnerabilities define a new graph GB. This graph is similar to the attack graph
for the real system while has believed vulnerabilities as nodes:

GB = (SB , AB) : SB = Strue ∪ Sfalse, AB = Atrue ∪ Afalse (1)

where Strue ⊆ S and Atrue ⊆ A are the subset of vulnerabilities and the subset
of attack steps really existing in the system and also believed by the attacker to
exist, Sfalse and Afalse are the set of vulnerabilities and the set of action that
are believed to exist but are absent in reality.

Towards Modelling Adaptive Attacker’s Behaviour 359

The set of vulnerabilities that are believed by the attacker is further reduced
according to attacker’s skills and tangible resources. Finally, the attacker has
her own view (a graph GX) of the system:

GX = (SX , AX) : SX ⊆ SB, AX ⊆ AB (2)

We assume that the system behaves probabilistically. We introduce probability
Prij of system transition from state i to state j in response to an attacker action.
For the attacker this probability is:

Prij = Prpij ·Prexpij (3)

where Prpij is the probability that the vulnerability j presents in the systems and
Prexpij is the conditional probability that the vulnerability may be successfully
exploited in case it exists in the system. The probability Prij depends only on
the successive state j while we use both indexes i and j for the uniformity with
usual definition of transition probabilities.

We measure Prpij assuming that the attacker knows which software is installed
in the system but may not know whether the software is patched or it is not.
The probability of presence of the vulnerability in the system depends on the
period passed after the vulnerability was discovered: the more time passed since
the discovery the lower the probability of presence of the vulnerability [8]. We
assume Prpij decreases linearly in time:

Prpij = − 1
Tpatch

· t+ 1 if Tpatch ≥ t (4)

Prpij = 0 if Tpatch < t

where Tpatch is the time required for patching all systems, t is time passed since
the release of a patch and for t > Tpatch we assume that all systems are patched.
The probability Prexpij may be computed on the basis of score from vulnerability
databases similarly to [2] or by security experts. Our approach does not depend
on the method of computation of Prpij and Prexpij , thus, any other methods can
be used.

Example 1. We consider a company which saves information in an on-line
database service. A competitor company would like to steal the information
by attacking the server where the database is installed. The server operates
FreeBSD 7 and MySQL 5. The database is managed by an administrator that
uses a local workstation operated by Linux Mint 12 with Pidgin Messenger in-
stalled. Moreover, the administrator manages the database from her home laptop
using a VPN connection to the workstation. The laptop runs Windows 7, Chrome
browser, and TUKEVA Password Reminder. The whole system is depicted in
Figure 1a.

The attacker composes the following attacks to the system1:

– The shortest possible attack requires registration in the on-line database
service and execution of vulnerability CVE-2012-0484 in MySQL.

1 Please, follow http://nvd.nist.gov/home.cfm for details of vulnerabilities.

http://nvd.nist.gov/home.cfm

360 L. Krautsevich, F. Martinelli, and A. Yautsiukhin

Fig. 1. a) the network system, b) the attack graph of the network system

– Another possible attack is based on vulnerability CVE-2011-3108 in Chrome
browser and CVE-2009-4781 in TUKEVA where the administrator saves
passwords to a database management tool.

– The attacker exploits CVE-2012-2369 in Pidgin gaining the access to the
workstation. Then she causes a buffer overflow on the server using CVE-
2011-4862 and exploits CVE-2012-0114 against MySQL.

– Since the laptop is connected by VPN to the workstation, the attacker gains
the access to the laptop executing CVE-2012-0173 in Windows 7. Then she
exploits CVE-2009-4781 in TUKEVA.

– The attacker may gain the access to the workstation after successful attack
to the laptop by executing CVE-2011-4913 in the Linux kernel. Then she
exploits CVE-2011-4862 on the FreeBSD server.

The resulted attack graph is displayed in Figure 1b. We enumerate the nodes
for the sake of convenience. The node s0 is the initial node. The nodes n3, n7

and n8 (coloured in grey) are goal nodes.

3 Model of Attacker’s Behaviour

We use Markov Decision Process (MDP) [9] to model decision making process
of attackers. An attacker observes a system and can influence the behaviour of
the system by making actions at moments of time (decision epochs). The system
responds to an action probabilistically. The attacker decides about further ac-
tions blindly taking into account past, current, and possible future states of the
system and also possible rewards that are connected with the actions. The goal
of the attacker is to maximise the expected total reward (e.g., money) according
to some criterion.

Formally, MDP is a set P = {S,A, P,R, T } where S is a set of system states
si, A is a set of sets Ai of actions aij ∈ Ai available for the attacker in the state
si, P is a set probabilities Prij that the system transits from state si to sj in
response to attacker’s action aij , R is a set of rewards functions rij dependent
on the state si and the action aij , T is a set of decision epochs (moments of
time) t. Regarding transition probabilities, in general, the system may transit
to any state available from si in response to the action aij . We assume that the

Towards Modelling Adaptive Attacker’s Behaviour 361

system only transits to the state sj with probability Prij or stays in the state i
with probability 1−Prij .

We model attacker’s behaviour as an MDP policy π which determines how
an attacker selects actions. The policy is composed of decision rules. A decision
rule is a procedure for the selection of an action. The attacker always selects the
same action in a state if the rules are deterministic. She selects any available
action at random if the rules are probabilistic.

A total reward uπ obtained by the attacker as a result of the execution of
policy π is computed on the basis of instant and terminal rewards:

uπ =

N−1∑
t=1

rt(st, at) + rN (sN) (5)

where rt(st, at) is an instant reward that depends on st and at, rN (sN) is the
terminal reward that depends on the state sN of the process at the last decision
epoch N . Note, that we use upper index (e.g., st for a state) to denote the
current value of a variable at a moment of time.

Deterministic Attacker. The simplest model of attackers behaviour [4,11,12]
may be defined by an optimal deterministic policy of MDP. In this case, an
attacker always prefers the best possible action in a state which belongs to the
optimal attack path in the attack graph. The algorithm for the computation of
optimal deterministic policies is the backward induction [9]. The algorithm finds
sets A∗

st,t of actions that maximise the expected total reward of the attacker.

Adaptive Attacker. We modify the behaviour of the deterministic attacker
so that she may reconsider her course of action when she cannot complete her
current attack path (see Algorithm 1). We assume that the attacker setsPrpij = 0
(and Prij = 0) when she cannot complete an attack step aij and understands
that the vulnerability sj is absent in the system. In addition, the attacker sets
Prkj = 0 for all other edges entering sj from all states sk. Then the attacker uses
the backward induction algorithm to compute a new strategy using the updated
attack graph and the amount of decision epochs τ left after the initial part of
the attack.

The attacker sets Prkj = Prexpkj for all edges entering sj from all states sk
if she cannot complete the action aij but understands that the vulnerability
sj exists in the system. Then the attack strategy is recomputed according to
the backward induction algorithm with the rest τ of the decision epochs. If the
attacker successfully exploits the vulnerability sj she adds edges a0q and sets
Pr0q = Prjq for all states sq reachable from sj in one step. This modification is
required to remember the privileges gained by the attacker for future adjustments
in her strategy.

Exploitation of Algorithm 1 allows running a simulation of interactions of an
attacker and a system. We suppose that the security metrics should be estimated
on the basis of several simulations (similarly to [4]).

362 L. Krautsevich, F. Martinelli, and A. Yautsiukhin

Example 2. Let the attacker have τ = N decision epochs. She gets terminal
rewards ($10K) if she reaches states 3, 7, 8, i.e., rN (s3) = rN (s7) = rN (s8) =
10 other terminal rewards equal 0. Instant rewards also equal 0. Due to space
limitations we skip the computation of deterministic policies. For the attack
graph presented in Figure 1, the policy is π = (a1 = a08) at the initial state
during the first decision epoch. Suppose, the action is unsuccessful because the
vulnerability was timely patched by the administrator. The attacker sets Pr08 =
0, reconsiders initial policies using τ = N−1 decision epochs, and obtains a new
policy π = (a1 = a05).

4 Related Work

There are several works which use attack graphs for the analysis of a system
[11,12]. Sheyner et al. [11] determine possible attacks to the system on the basis
of attack graph assuming deterministic attackers behaviour. LeMay et at. [4]
proposed a work that considers attack planning where successful execution of
an exploit is uncertain. In contrast to our work, the authors assume that the
attacker has complete knowledge about the system and always selects the same
path to her goal during the attack. Several attacker models for the analysis of

Algorithm 1. Model of adaptive attacker

τ := N {number of decision epochs}
t := 1 {current decision epoch}
Run the backward induction algorithm using τ to obtain A∗

st,t

while τ �= 0 do
if at = aij is successful then

for all q,Prjq �= 0 do
Pr0q := Prjq

end for
τ := τ − 1
t := t+ 1

else
if sj exists then

for all k,Prkj �= 0 do
Prkj := Prexpkj

end for
else

for all k,Prkj �= 0 do
Prkj := 0

end for
end if
τ := τ − 1
t := 1
Run the backward induction algorithm using τ to obtain A∗

st,t

end if
end while

Towards Modelling Adaptive Attacker’s Behaviour 363

cryptographic protocols assume that attacker may select alternative ways for
compromising a system [1,5,6]. In these models, attackers know the system, i.e.,
the protocol, while have bounded resources. Those resources are different from
ours, e.g., computational power and message manipulation capabilities.

The paper of Sarraute et al. [10] proposes to use Partially Observable Markov
Decision Processes for attack planning during penetration tests. The authors
analyse the system considering network configuration graph, while we consider
an attack graph. In terms of knowledge collecting, authors introduce special
actions that allow scanning network hosts. While we provide a way to update
the graph as a result of successful and unsuccessful attack steps, and adjust the
reasoning during the attack.

5 Conclusion

This work presented our initial ideas on modelling the behaviour of an attacker.
We think, such approach is important if we would like to get versatile analysis of
our system and protect it in the most efficient way. In particular, we considered
an attacker which does not know every detail about the system, but gains the
knowledge step by step. In addition, we made the attacker more flexible, i.e., the
attacker is able to re-consider her plans when the initial ones fail.

As for future work we would like to incorporate the notion of decreasing
attackers resources in our model as penalties of MDP. Moreover, within our
approach we cannot take into account zero-day vulnerabilities, but we believe
that some statistical methods could be used to tackle zero-day vulnerabilities at
least approximately. Finally, we aim at creating a software prototype to evaluate
system security on the basis of different metrics and versus various attacker
types.

References

1. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE TIT 29, 198–
208 (1983)

2. Gallon, L., Bascou, J.-J.: Cvss attack graphs. In: SITIS (2011)
3. Krautsevich, L., Martinelli, F., Yautsiukhin, A.: Formal Analysis of Security Met-

rics and Risk. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633,
pp. 304–319. Springer, Heidelberg (2011)

4. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based
security metrics using adversary view security evaluation (advise). In: QEST (2011)

5. Marchignoli, D., Martinelli, F.: Automatic Verification of Cryptographic Pro-
tocols through Compositional Analysis Techniques. In: Cleaveland, W.R. (ed.)
TACAS/ETAPS 1999. LNCS, vol. 1579, pp. 148–162. Springer, Heidelberg (1999)

6. Mitchell, J.C., Ramanathan, A., Scedrovb, A., Teaguea, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols.
TCS 353, 118–164 (2006)

7. Mitnik, K.D., Simon, W.L.: The Art of Intrusion: The Real Stories Behind the
Exploits of Hackers, Intruders and Deceivers. Wiley (2005)

364 L. Krautsevich, F. Martinelli, and A. Yautsiukhin

8. Pettersen, Y.N.: Renego patched servers: A long-term interoperability time
bomb brewing (July 20, 2012), http://my.opera.com/yngve/blog/2010/06/02/
renego-patched-servers-a-long-term-interoperability-time-bomb-brewing

9. Puterman, M.L.: Markov Decision Processes Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience (2005)

10. Sarraute, C., Buffet, O., Hoffmann, J.: Pomdps make better hackers: Accounting
for uncertainty in penetration testing. In: AAAI (2012)

11. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: IEEE SSP, pp. 273–284 (2002)

12. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts. CC 29, 2917–2933 (2006)

http://my.opera.com/yngve/blog/2010/06/02/renego-patched-servers-a-long-term-interoperability-time-bomb-brewing
http://my.opera.com/yngve/blog/2010/06/02/renego-patched-servers-a-long-term-interoperability-time-bomb-brewing

Scalable Deniable Group Key Establishment

Kashi Neupane1, Rainer Steinwandt2,�, and Adriana Suárez Corona2,��

1 Atlanta Metropolitan State College, Atlanta, GA 30310
kneupane@atlm.edu

2 Florida Atlantic University, Boca Raton, FL 33431
{rsteinwa,asuarezc}@fau.edu

Abstract. The popular Katz-Yung compiler from CRYPTO 2003 can
be used to transform unauthenticated group key establishment proto-
cols into authenticated ones. In this paper we present a modification
of Katz and Yung’s construction which maintains the round complexity
of their compiler, but for ‘typical’ unauthenticated group key establish-
ments adds authentication in such a way that deniability is achieved as
well. As an application, a deniable authenticated group key establish-
ment with three rounds of communication can be constructed.

Keywords: Group key establishment, Deniability.

1 Introduction

To simplify the design process for a group key establishment protocol, it can
be convenient to restrict first to a scenario with a passive adversary, where the
problem of authenticating protocol participants does not need to be addressed.
Once the protocol has been proven secure in such a setting, a generic construc-
tion by Katz and Yung from CRYPTO 2003 allows to achieve security against
an active adversary at the cost of one additional round [9]. Basically, this com-
piler appends nonces, along with sender and receiver identifiers, to all protocol
messages and signs all messages with a strongly unforgeable signature scheme.
This intuitive construction is round-efficient, but problematic when deniability
is added as a design goal: unforgeable signatures in a protocol transcript would
have to be explained in a way which does not involve the signing party.

In the two-party setting, deniability has been studied by Di Raimondo et al.
[7] and Yao and Zhao [11], for instance. The problem of formalizing deniable key
establishment in the group setting has been addressed in [4], where a four-round
solution in the random oracle model is presented. In [12], Zhang et al. suggest
an alternative formalization of deniability along with a three-round protocol in
the standard model. Deniable group key establishment in a setting where the
computational power of protocol participants differs is addressed by Chen et al.

� RS was supported by the Spanish Ministerio de Economı́a y Competitividad through
the project grant MTM-2012-15167.

�� ASC was supported by project MTM2010 - 18370 - C04- 01 and FPU grant AP2007-
03141, cofinanced by the European Social Fund.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 365–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

366 K. Neupane, R. Steinwandt, and A. Suárez Corona

[6] with a proposal in the random oracle model. Compared to [4] and [12], our
definition of deniability limits the adaptivity of the adversary in corrupting users,
but unlike [12] we give the adversary access to oracles that reveal session keys
and send individual messages, and we do not include secret keys of corrupted
users in the simulator’s input. From a practical point of view this formalization
of deniability seems acceptable, and we present the first general compiler to
construct authenticated and deniable group key establishment protocols from
‘typical’ passively secure constructions.

The compiler we suggest builds on the Katz-Yung construction, but replaces
the signature scheme with a suitable use of a ring signature, a message authen-
tication code, and a multiparty key encapsulation. Like the original Katz-Yung
construction, our compiler is capable of augmenting every passively secure group
key establishment to an actively secure one by adding one more round. Moreover,
if the unauthenticated protocol does not make use of long-term secrets—which
one would typically expect—the protocol output by our compiler is deniable. In
particular, applying our compiler to an unauthenticted two-round protocol as
the one described in [9], which builds on work of Burmester and Desmedt [5],
results in a deniable and authenticated three-round protocol.

2 Preliminaries

As main technical tools, we will make use of a multiparty key encapsulation along
with a suitable data encapsulation mechanism to send an identical message to
multiple protocol participants in a confidential manner. For implementing the
authentication we also make use of a message authentication code and a ring
signature. Here and in the subsequent sections, the security parameter will be
denoted by k, and notions like polynomial time or negligible refer to k.

2.1 Multi Key Encapsulation and Symmetric Encryption

In [10], Smart introduced the notion of a multi key encapsulation mechanism
(mKEM), generalizing key encapsulation to a setting with multiple recipients. A
group key establishment by Gorantla et al. [8] makes use of this primitive, and
our treatment of mKEMs follows the latter.

Definition 1 (multi key encapsulation mechanism)
A multi key encapsulation mechanism (mKEM) is a triple of polynomial time
algorithms (mKeyGen, mEncaps, mDecaps) as follows:

– mKeyGen is probabilistic. Given the domain parameters D, it generates a pair
of public and secret keys (pk, dk).

– mEncaps is probabilistic. Given a (polynomial size) set {pk1, . . . , pkn} of pub-
lic keys it generates a pair (K,C) where K ∈ {0, 1}k is a session key and C
is an encapsulation of this session key under the public keys {pk1, . . . , pkn}.

– mDecaps is deterministic. Given a secret key dk and an encapsulation C,
this algorithm outputs the session key K or a special error symbol ⊥.

Scalable Deniable Group Key Establishment 367

We require that for all key pairs (pki, dki) generated by mKeyGen the implication
(K,C) = mEncaps({pk1, . . . , pkn}) =⇒ mDecapsdki

(C) = K holds (i = 1, . . . , n).

Informally, we consider an mKEM as IND-CCA secure if no probabilistic poly-
nomial time adversary, with access to a decapsulation oracle, can distinguish
with more than negligible probability which of two keys is encapsulated in a
challenge C∗ for a set of public keys of his choice—see [8] for the formal def-
inition. To be able to actually encrypt messages in our compiler, we combine
an mKEM with a suitable data encapsulation mechanism, which we realize as a
symmetric encryption scheme offering security in the real-or-random sense (cf.
Bellare et al. [1]):

Definition 2 (symmetric encryption scheme). A symmetric encryption
scheme is a triple of polynomial time algorithms (KeyGen, Enc, Dec) as follows:

– KeyGen is probabilistic. Given the security parameter 1k, it generates a secret
key K.

– Enc is probabilistic. Given a secret key K and a message m ∈ {0, 1}∗, this
algorithm generates a ciphertext C.

– Dec is deterministic. Given a ciphertext C and a secret key K, this algorithm
outputs either a message m or a dedicated error symbol ⊥.

We require that m = DecK(EncK(m)) for all keys K and for all m ∈ {0, 1}∗.
Informally, a symmetric encryption scheme is secure in the real-or-random sense
if no efficient adversary can distinguish with more than negligible probability
whether the bitstring encrypted is a message m or a uniformly at random chosen
bitstring of the same length as m—see Bellare et al. [1] for the formal definition.

2.2 Message Authentication Codes and Ring Signatures

To solve the problem of authentication without jeopardizing deniability, our
compiler uses a message authentication code as well as a suitable ring signature.

Definition 3 (message authentication code). A message authentication
code (MAC) is a tuple (MKeyGen, Tag, Verify) of polynomial time algorithms:

– MKeyGen is probabilistic. Given the domain parameters D, it generates a se-
cret key K.

– Tag is probabilistic. Given a message m ∈ {0, 1}∗ and a secret key K it
generates a message tag θ := TagK(m) ∈ {0, 1}∗ on m.

– Verify is deterministic. Given a message m, a secret key K and a candidate
tag θ, Verify returns 1 if θ is a valid tag for the message m and 0 otherwise.

The compiler below assumes that the MAC we employ is strongly unforgeable
under adaptive chosen message attacks (cf. [2]), i. e., no probabilistic polynomial
time adversary with access to tagging and verifying oracles for keyK can produce
a valid (message, tag)-pair with more than negligible probability.

Finally, our compiler makes use of a ring signature scheme which enables a
signer to produce signatures which can be verified successfully under several
verification keys.

368 K. Neupane, R. Steinwandt, and A. Suárez Corona

Definition 4 (ring signature scheme). A ring signature scheme is a tuple of
polynomial time algorithms (RKeyGen, RSign, RVerify) as follows:

– RKeyGen is probabilistic. Given the security parameter k, it generates a pair
of keys (vk, sk), where vk is a public verification key and sk is its corre-
sponding secret signing key.

– RSign. Given a message m, a polynomial size set (a ring) of public verifica-
tion keys R = {vk1, . . . , vkn} and a secret key sks such that vks ∈ R, this
algorithm produces a signature σ.

– RVerify is deterministic. Given a message m, a signature σ and a ring
of public keys R, this algorithm returns 1 if σ is a valid signature for the
message m with respect to the ring R, and 0 otherwise.

We require that for any ring R comprised of public verification keys produced by
RKeyGen and for any message m the relation RVerify(m, RSignsk(m,R),R) = 1
holds, where sk is the secret key for a verification key vk ∈ R.

For a ring signature, it is usually expected that the adversary cannot know
which user in the ring was the actual signer of a message. A strong form of
this design goal is known as anonymity against full key exposure—we refer to
[3] for the formal definition. Of course, for a ring signature scheme we also
expect an appropriate form of existential unforgeability. More specifically, we
impose unforgeability as defined in [3], i. e., that no probabilistic polynomial time
adversary having access to ring signature and private key oracles can produce a
valid (message, ring signature, ring)-tuple with more than negligible probability.

3 Security Model

To formalize secure group key establishment, we follow Katz and Yung [9]. In
addition to authentication and semantic security, the compiler discussed in the
next section aims at the resulting protocol to be deniable. When privacy is a
concern, it is desirable that the participation of a user in a protocol cannot be
proved by showing a protocol transcript. Bohli and Steinwandt [4] formalized
this idea in the following definition of deniability for group key establishment:

Deniability According to [4]. Let Ad denote a probabilistic polynomial time
algorithm with the security parameter 1k as input. In addition, Ad obtains the
public information pk made available in the initialization phase as input (after
application of the compiler below this includes in particular the public verifica-
tion keys of the underlying ring signature scheme). Finally Ad obtains as input
an upper bound qc on the number of protocol participants that can be corrupted.

After having obtained this input, Ad interacts with protocol instances via the
Corrupt, Reveal, and Send oracle as usual.1 However, Ad must not query Test,
and at most qc queries to Corrupt can be submitted. Eventually, Ad outputs
a bitstring TAd

= TAd
(k, qc, pk)—which represents a protocol transcript that

1 To simulate the Execute oracle, Send-queries can be used, so Execute can be omitted.

Scalable Deniable Group Key Establishment 369

serves as evidence for the involvement of a particular user in the group key
establishment. We denote by TAd

= TA(k, qc) the random variable that describes
TAd

(k, qc, pk) with the randomness for Ad, for protocol instances, and in the
initialization phase, being chosen uniformly at random.

To capture deniability a second algorithm Sd, to which we refer as simulator,
is used: this simulator accepts the same input as Ad and can impose the same
maximum number qc of corrupted users as the latter. However, Sd is not allowed
to invoke any uncorrupted user. More specifically, Sd can submit up to qc queries
to Corrupt, but can neither query Reveal nor Send (nor Execute nor Test). The
output of Sd is a bitstring TSd

(k, qc, pk), and analogously as for Ad we define a
random variable TSd

(k, qc), based on uniformly at random chosen randomness.

Definition 5 (deniability). A group key establishment protocol is deniable if
for every probabilistic polynomial time adversary Ad as specified above and every
qc ∈ N0 there is a probabilistic polynomial time simulator Sd such that TAd

(k, qc)
and TSd

(k, qc) are computationally indistinguishable. In other words, no proba-
bilistic polynomial time algorithm can distinguish TAd

(k, qc) and TSd
(k, qc) with

non-negligible probability.

A More Relaxed Notion of Deniability. The definition of deniability just
discussed allows the adversary Ad to fix the corrupted parties in a fully adaptive
manner. In the definition used subsequently we restrict this freedom and require
Ad to complete all corruptions before querying Send. On the intuitive side, this
materializes the idea that the parties who are willing to conspire (and reveal
their secret keys to this aim) already enter protocol executions with this intent.
As we still allow an arbitrary subset of the users to be corrupted, the resulting
notion of deniability seems still natural and useful.

Remark 1. Unlike [12], we do not integrate authentication into the definition
of deniability. Further, differing from [12], we give the adversary used in the
definition of deniability full access to Send and Reveal and do not include secret
keys of corrupted users in the simulator’s input.

As before, let Ad denote a probabilistic polynomial time algorithm with the
security parameter 1k and public information pk from the initialization phase
as input. No upper bound on the number of corruptions is imposed. In a first
phase Ad has access to the Corrupt-oracle only, and can (adaptively) corrupt
an arbitrary subset of the users (including the case of no user or all users be-
ing corrupted). Hereafter, in a second phase, Ad interacts with the protocol
participants via the Reveal- and Send-oracle. Neither Corrupt nor Test may be
queried in this phase. Analogously as in the definition of [4], Ad outputs a bit-
string TAd

= TAd
(k, pk) to evidence the involvement of a particular user in the

group key establishement. Let TAd
= TAd

(k) be the random variable describing
TAd

(k, pk) with the randomness for Ad, for all protocol instances, and in the
initialization phase being chosen uniformly at random.

The simulator Sd obtains the same input as Ad, but can only access the
Corrupt oracle—no access to Reveal, Send, or Test is available. The output of Sd

370 K. Neupane, R. Steinwandt, and A. Suárez Corona

is a bitstring TSd
(k, pk), and analogously as for Ad we define a random variable

TSd
(k) based on uniformly at random chosen randomness. Consider the following

experiment for a probabilistic polynomial time distinguisher X outputting 0 or 1:
the challenger flips a random coin b ∈ {0, 1} uniformly at random. If b = 1, the
transcript TAd

(k) is handed to X , whereas for b = 0 the transcript TSd
(k) is

handed to X . The distinguisher X wins whenever the guess b′ it outputs for b
is correct; the advantage of X is denoted by AdvdenX :=

∣∣Pr[b = b′]− 1
2

∣∣ . In this
paper we will use the following definition of deniability:

Definition 6 ((relaxed) deniability). A group key establishment protocol is
deniable if for every polynomial time adversary Ad as specified above there exists
a probabilistic polynomial time simulator Sd such that the following holds:

– With overwhelming probability, the number of Corrupt-queries of Sd is less
than or equal to the number of Corrupt-queries of Ad.

– For each probabilistic polynomial time distinguisher X , the advantage AdvdenX
in the above experiment is negligible.

4 From Unauthenticated to Authenticated and Deniable

Subsequently we denote by (mKeyGen, mEncaps, mDecaps) an IND-CCA secure
multi key encapsulation (see [8]) and by (KeyGen, Enc, Dec) a ROR-CCA secure
symmetric encryption scheme (see [1]). To simplify the description, we assume
that KeyGen(1k) simply returns a uniformly at random chosen bitstring in {0, 1}k
(alternatively one could use keys obtained from mDecaps to fix the randomness
of KeyGen). By (MKeyGen, Tag, Verify) we denote an SUF-CMA secure message
authentication code (see [2]) and by (RKeyGen, RSign, RVerify) an RSIG-UF
secure ring signature scheme which is anonymous (see [3]).

4.1 Description of the Proposed Compiler

The proposed compiler modifies a given (semantically secure) unauthenticated
group key establishment protocol P to obtain a protocol P′ which is authen-
ticated. Moreover, if the original protocol P does not make use of long-term
secrets, then the resulting protocol P′ is deniable. Further, if the original pro-
tocol is forward secure the compiled protocol preserves this property. For the
ease of notation, assume that U0, . . . , Un−1 are the users who want to establish
a secret key. One of the protocol participants has a special role in the compiled
protocol—it is the only user that will sign a message in the newly added Round 0.
We refer to this user as initiator and without loss of generality assume that U0

plays this role. Moreover, for the ease of notation, in our description, we do not
explicitly refer to individual instances.

Finally, for the messages in protocol P, let m
(j)
i,l be the message sent by user

Ui in the j-th round to user Ul. We can without loss of generality assume that
instead of sending these messages, in Round j the user Ui broadcasts the com-

bined message mi,j = Ui||j||
(
m

(j)
i,1 , . . . ,m

(j)
i,n−1

)
. In particular, mi,j includes an

Scalable Deniable Group Key Establishment 371

(unprotected) identifier of the sender Ui of the message and of the round num-

ber. Each recipient Ul can recover m
(j)
i,l in the obvious way, and this change does

neither affect the security nor the round complexity of P.

Initialization Phase. In addition to the initialization for protocol P, each user
Ui generates a (public key, secret key)-pair (pki, dki) for the above-mentioned
multi key encapsulation scheme, and the public keys are made available to all
users (and the adversary). Similarly, each user Ui generates a (verification key,
signing key)-pair (vki, ski) for the before-mentioned ring signature scheme.

Next, our compiler adds a new round to protocol P as follows:

Introduction of Round 0. In this new initial round, each user Ui (i �= 0) chooses
a random nonce ri ∈ {0, 1}k and broadcasts Ui||0||ri. The initiator U0 performs
the following steps:

– run MKeyGen to generate a key K0 for the message authentication code;
– produce a ring signature σ := RSigsk0

(K0||pid0||U0||0||r0, pid0);
– compute (K,C)← mEncaps(pid0);
– produce a ciphertext E := EncK(K0||pid0||U0||0||r0||σ) using the symmetric

key K;
– compute a tag tag0 = TagK0

(C,E), and
– broadcast U0||0||(C,E)||tag0.

After receiving the Round 0 message of all parties, each user Ui executes the
following steps:

– set noncesUi = ((U1, r1), · · · , (Un, rn)) and store this value;
– run mDecapsdki

(C) to obtain K;
– decrypt the ciphertext E using K;
– verify the ring signature for the ring pidi and the tag tag0; if the verification

fails or if pid0 �= pidi, the protocol is aborted.

Now, in each original round of P we use K0 for authentication as follows:

Modification of Round j, j �= 0. If the protocol is not aborted, if user Ui is
supposed to broadcast mi,j in protocol P, then Ui will instead do the following:

– use K0 to compute a tag tagi,j = TagK0
(mi,j ||noncesUi).

– broadcasts mi,j ||tagi,j .
When receiving a message ml,j ||tagl,j , user Ui checks the following:

– Ul ∈ pid0
– j is the expected round number
– Verify the tag tagl,j .

If any of these checks fails, the protocol is aborted without accepting a session
key. Otherwise, the session identifier is the concatenation of all messages sent
and received by the protocol instance during its execution and the session key
is as in P.

Remark 2. With a slight abuse of notation, here we identify a partner identifier
pidj with the set of public keys of the users contained in this partner identifier.

372 K. Neupane, R. Steinwandt, and A. Suárez Corona

4.2 Security Analysis

Making no further assumptions about the protocol P, we have the following re-
sult, which says that the above compiler adds authentication as desired. Because
of the page limit, a proof of this result is not included here.

Proposition 1. With the above notation, the group key establishment obtained
from the compiler in Section 4.1 is authenticated and secure in the sense of [9]
(in particular, forward security is preserved).

In principle we can apply the compiler in Section 4.1 to some fully authenticated
protocol, which signs all messages sent by parties. In such a case we cannot ex-
pect that the compiled protocol is deniable. The more typical passively secure
protocol does not involve any long-term secrets, and in such a setting the pro-
posed compiler does ensure deniability. Again, because of the page limit we do
not include a proof here.

Proposition 2. If the group key establishment P does not involve long-term
secrets, then the group key establishment P′ obtained by applying the compiler in
Section 4.1 to P is deniable in the sense of Definition 6.

5 Conclusion

Given an unauthenticated group key establishment, the above protocol compiler
outputs an authenticated group key establishment with one additional round.
Provided that the given unauthenticated protocol does not involve long-term
secrets, the resulting protocol is also deniable. So the compiler seems an inter-
esting alternative to the popular Katz-Yung construction, if privacy guarantees
are a concern.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. Full paper of
an extended abstract that appeared in the Proceedings of the 38th Symposium on
Foundations of Computer Science. IEEE (August 1997)

2. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Con-
structions Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

4. Bohli, J.-M., Steinwandt, R.: Deniable Group Key Agreement. In: Nguyen, P.Q.
(ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 298–311. Springer, Heidelberg
(2006)

5. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

Scalable Deniable Group Key Establishment 373

6. Chen, S., Cheng, Q., Ma, C.: A Deniable Group Key Exchange Protocol for Im-
balanced Wireless Networks. In: Hu, B., Li, X., Yan, J. (eds.) 5th International
Conference on Pervasive Computing and Applications (ICPCA 2010), pp. 1–5.
IEEE (2010)

7. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable Authentication and Key
Exchange. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, pp. 400–409. ACM (2006)

8. Choudary Gorantla, M., Boyd, C., González Nieto, J.M., Manulis, M.: Generic One
Round Group Key Exchange in the Standard Model. In: Lee, D., Hong, S. (eds.)
ICISC 2009. LNCS, vol. 5984, pp. 1–15. Springer, Heidelberg (2010)

9. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

10. Smart, N.P.: Efficient Key Encapsulation to Multiple Parties. In: Blundo, C.,
Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg
(2005)

11. Yao, A.C., Zhao, Y.: Deniable Internet Key Exchange. In: Zhou, J., Yung, M. (eds.)
ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010)

12. Zhang, Y., Wang, K., Li, B.: A Deniable Group Key Establishment Protocol in
the Standard Model. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC
2010. LNCS, vol. 6047, pp. 308–323. Springer, Heidelberg (2010)

Information-Theoretic Foundations

of Differential Privacy�

Darakhshan J. Mir

Rutgers University, Piscataway NJ 08854, USA
mir@cs.rutgers.edu

Abstract. We examine the information-theoretic foundations of the in-
creasingly popular notion of differential privacy. We establish a con-
nection between differential private mechanisms and the rate-distortion
framework. Additionally, we also show how differentially private distri-
butions arise out of the application of the Maximum Entropy Principle.
This helps us locate differential privacy within the wider framework of
information-theory and helps formalize some intuitive aspects of our un-
derstanding of differential privacy.

1 Introduction

The problem of releasing aggregate information about a statistical database
while simultaneously providing privacy to the individual participants of the
database has been extensively studied in the computer science and statistical
communities. Differential privacy (DP) has been one of the main lines of re-
search that has emerged out of attempts to formalize and solve this problem,
over the last few years. See [5] for a survey. It formalizes the idea that pri-
vacy is provided if the “identification risk” an individual faces does not change
appreciably if he or she participates in a statistical database.

Often, in the context of data privacy, and more specifically, differential privacy,
the claim is made that privacy and utility are conflicting goals. The application of
differential privacy to several problems of private data analysis has made it clear
that the utility of the data for a specific measurement degrades with the level of
privacy. The greater the level of privacy, the less “useful” the data is, and vice
versa. This paper attempts to understand the precise information-theoretic con-
ditions that necessitate such a trade-off. We observe that differentially-private
mechanisms arise out of minimizing the information leakage (measured using
information-theoretic notions such as mutual information) while trying to max-
imize ”utility”. The notion of utility is captured by the use of an abstract dis-
tortion function dist that measures the distortion between the input and the
output of the mechanism. This is a general mechanism, and can be instantiated
appropriately depending on the problem domain. The main observation of this
paper is that the probability distribution that achieves this constrained mini-
mization corresponds to the so-called exponential mechanism [11]. We also show

� This work was supported by NSF award number CCF-1018445.

J. Garcia-Alfaro et al. (Eds.): FPS 2012, LNCS 7743, pp. 374–381, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Information-Theoretic Foundations of Differential Privacy 375

how differentially-private mechanisms arise out of the application of the princi-
ple of maximum entropy, first formulated by Jaynes [7]. We see that among all
probability distributions that constrain the expected distortion to stay within a
given value, the differentially private mechanism, corresponds to the distribution
that maximizes the conditional entropy of output given the input. This, to our
knowledge, is the first attempt at providing an information theoretic founda-
tion for differential privacy. In Section 2 we review the appropriate definitions
and notions from differential privacy. In Section 2.1 we discuss related work. In
Sections 3 and 4 we present our main results.

2 Definitions and Background

In this section we present the background and the related work in differential
privacy. Assume a probability distribution pX(x) on an alphabet X . X may ei-
ther be a scalar or vector space. Let Xi ∈ X be a random variable representing
the i-th row of a database. Then the random variable representing a database
of size n, (whose elements are drawn from X) is X = (X1,X2 . . . ,Xn). x repre-
sents the value that the random variable X takes, that is the observed database
x. Note that the X’s themselves may multi-dimensional representing the k at-
tributes of the database. Dwork et al. [6] define the notion of differential privacy
that provides a guarantee that the probability distribution on the outputs of a
mechanism is “almost the same,” irrespective of whether or not an individual
is present in the data set. Such a guarantee incentivizes participation of indi-
viduals in a database by assuring them of incurring very little risk by such a
participation. To capture the notion of a user opting in or out, the “sameness”
condition is defined to hold with respect to a neighbor relation; intuitively, two
inputs are neighbors if they differ only in the participation of a single individual.
For example, Dwork et al. [6] define datasets to be neighbors if they differ in a
single row. McGregor et. al [10] define differential privacy, equivalently, in terms
of probability distributions. This formulation is more useful for us.

Definition 1. [10] Let x be a database of length n, drawing each of its elements
from an alphabet X , then an ε-differentially private mechanism on Xn is a family
of probability distributions {π(o|x) : x ∈ Xn} on a range O, such that for
every neighboring x and x′, and for every measurable subset o ⊂ O, π(o|x) ≤
π(o|x′) exp(ε).

Notice that the distribution (or equivalently) mechanism is parametrized by the
input database x or x′, whichever is relevant.

One mechanism that Dwork et al. [6] use to provide differential privacy is the
Laplacian noise method which depends on the global sensitivity of a function:

Definition 2. [6] For f : Xn → R
d, the global sensitivity of f is Δf =

maxx∼x′ ||f(x)− f(x′)||1.
Another, more general (though, not always computationally efficient) method of
providing differential privacy is the so called exponential mechanism proposed by

376 D.J. Mir

McSherry and Talwar [11]. This mechanism can be said to be parametrized by a
“distortion function” dist(x,o) that maps a pair of an input data set x (a vector
over some arbitrary real-valued domain) and candidate output o (again over an
arbitrary range O) to a real valued “distortion score.” Lower valued distortions
imply good input-output correspondences. It assumes a base measure π on the
rangeO. For a given input x, the mechanism selects an output o with exponential
bias in favor of low distorting outputs by sampling from the following exponential
distribution [11]:

πε(o) ∝ exp(−εdist(x,o)) · π(o). (1)

Theorem 1. [11] The exponential mechanism, when used to select an output
o ∈ O, gives 2εΔdist-differential privacy, where Δdist is the global sensitivity
of the distortion function dist.

The exponential mechanism is a useful abstraction when trying to understand
differential privacy because it generalizes all specific mechanisms, such as the
Laplacian mechanism introduced above. The exponential mechanism because
of the generality of the input space X , the output range O and the distortion
function dist, captures all differentially private mechanisms. The πε denotes the
dependence of the posterior on π(o|x), on the parameter ε.

2.1 Related Work

Some information-theoretic notions and metrics of data privacy exist in the
literature. See [17], [3], for example. Sankar et. al [14] consider the problem of
quantifying the privacy risk and utility of a data transformation in an information-
theoretic framework. Rebello-Monedero [13] consider the problem in a similar
framework and define an information-theoretic privacy measure similar to an ear-
lier defined measure of t-closeness [8]. A connection between information theory
and differential privacy through Quantitative flow has been made by Alvim et
al. [1]. Alvim et al. [1] use the information-theoretic notion of Min-entropy for
the information leakage of the private channel, and show that differential pri-
vacy implies a bound on the min-entropy of such a channel. They also show how
differential privacy imposes a bound on the utility of a randomized mechanism
and under certain conditions propose an optimal randomization mechanism that
achieves a certain level of differential privacy. Barthe and Kopf [2] also develop
upper bounds for the leakage of every ε-differentially private mechanism. Our
work is different from (but related to) theirs in the sense that we do not aim at
finding bounds for the information leakage (or risk) of the differentially-private
mechanisms. Our aim is to understand the information-theoretic foundations
of the framework of differential privacy. Our work is in the spirit of Sankar et
al. [14] and Rebello-Monedero et al. [13] but examining how a risk-distortion
tradeoff gives rise to differentially-private mechanisms. In previous work [12] we
examine the information theoretic connections of differentially-private learning.
This was done in a specific context of learning, and the general implications were
not clear.

Information-Theoretic Foundations of Differential Privacy 377

3 Differentially-Private Mechanisms in a Risk-Distortion
Framework

Assume an input space Xn, and a range O. For any x ∈ Xn, and any output
o ∈ O, a distortion function dist is specified. Consider a probability measure
pX(x) on X and a prior probability π on O .

Given a database x, which is a set of n random independent samplesX = {X1,
. . .Xn} ∈ Xn, where each Xi is drawn i.i.d from pX(x), and an output o, the
“utility” of o for x, is given by (the negative of) a function dist : Xn×O → R.

The expected distortion of a mechanism πO|X(o|x) is:
Ex∼pX(x)nEo∼π(o|x) dist(x,o).

Rebollo-Monedero et. al [13] define a privacy risk function to be the mutual
information between the revealed and the hidden random variables. Similarly, we
define a privacy risk function R to be the mutual information between the input
(the underlying database) and the output of the differentially private mechanism,
that is, R = I(X;O). We know that the mutual information

I(X;O) = H(O)−H(O|X) = H(X)−H(X|O), (2)

whereH(X) represents the entropy of the random variable ofX andH(O|X) the
conditional entropy of O given X. So, the mutual information is the reduction
in the uncertainty about X by knowledge of output O or vice versa (See [4] for
example). Also we have that

R = I(X;O) = E log
π(O|X)p(X)

π(O)p(X)
= E log

π(O|X)

π(O)
. (3)

This is equal to the conditional Kullback-Leibler divergence between the poste-
rior and prior distributions denoted by DKL (π(O|X)‖π(O)). If the prior and
posterior distributions are the same, then the privacy risk is zero, but that also
means that the distortion may be arbitrarily high. However, we are interested
in minimizing the distortion function associated with the posterior distribution,
while minimizing the privacy risk R. As a result, we are interested in quantify-
ing this risk-distortion trade-off. Notice that untill this point, our risk-distortion
framework is formulated only in information-theoretic terms. We will see how
the differentially-private mechanism arises out of this framework.

As in Rebollo-Mondero et. al [13], we are interested in a randomized output,
minimizing the privacy risk given a distortion constraint (or viceversa). Unlike
their treatment, however, the potential outputs are more general than perturba-
tions of the input database elements to capture differentially-private mechanims
(both interactive and noninteractive). The privacy risk-distortion function is de-
fined analogously (as in Rebollo-Mondero [13]), as

R(D) = inf
πO|X : Ex,o dist(x,o) ≤ D

I(X;O) (4)

378 D.J. Mir

3.1 Connection to the Rate-Distortion Framework

Rebollo-Mondero et. al relate the risk-distortion function formulated in Equa-
tion 4 [13] to the well-known rate-distortion problem in information theory first
formulated by Shannon. (See [4], for example). Shannon’s rate-distortion the-
ory is applied in the context of lossy compression of data. The objective is to
construct a compact representation (a code) of the underlying signal (or data),
such that the average distortion of the signal reconstructed from this compact
representation is low. Rate-distortion theory determines the level of expected
distortion D, given the desired information rate R of the code or vice-versa us-
ing the rate-distortion function R(D) similar to that in Equation 4 where R is
the information rate of the code, when applied to the compression problem. So,
the rate-distortion function is defined as the infimum of the rates of codes whose
distortion is bounded by D.

Using this connection, one can prove the following:

Theorem 2. [13] The privacy risk-distortion function is a convex and non-
increasing function of D.
The problem is to minimize the privacy risk, defined thus, under the expected
distortion constraint. As a function of the probability density, πO|X(o|x), the
problem is also convex. We can also use Lagrangian multipliers to write Equa-
tion 4 in an equivalent unconstrained form. We have the functional

F [π(o|x)] = 1

ε
I(X;O) + Edist(X,O). (5)

for a positive ε. Functional F needs to be minmized among all normalized π(o|x).
So we can find the distribution that minimizes this funtion, by using standard op-
timization techniques. Standard arithmetic manipulation, leads Tishby et al. [16]
to prove the following theorem:

Theorem 3. [16] The solution of the variational problem, ∂F
∂π(o|x) = 0, for

normalized distributions π(o|x), is given by the exponential form

πε(o|x) = exp(−εdist(x,o))
Z(x)

π(o). (6)

where Z(x, ε) is a normalization (partition) function. Moreover, the Lagrange
multiplier ε is determined by the value of the expected distortion, D, is positive
and satisfies, ∂R

∂D = −ε.
We have that among all the conditional distributions, the one that optimizes this
functional in Equation 5 is πε in Equation 6 above. This is our main result, that
the distribution that minimizes the privacy risk, given a distortion constraint is
a differentially-private distribution. From examining equation 1 and Theorem 1
we have

Theorem 4. The distribution that minimizes Equation 4 defines a 2εΔdist-
differentially private mechanism.

Information-Theoretic Foundations of Differential Privacy 379

Figure 1 illustrates the tradeoff. It plots the unconstrained Lagrangian function
L(D,R) = D+ 1

εR, which because of the convexity of the risk-distortion function
is also convex. For a given privacy parameter ε, we consider lines of slope −ε. We
see that these lines intersect the curve at various points, these points represent
the risk-distortion tradeoffs for those values. As we should expect, a high privacy-
risk implies a low distortion and vice-versa. We see that for a given value of −ε,
the line that is tangent to the curve at represents the optimal tradeoff point
between the risk and the distortion. The value of the function L(D,R) on these
lines is a constant, which implies that in some way the level of privacy imposes
a value on the function L, since such a line can only intersect the curve in at
most two places.

R

D

slope=-ε

optimal tradeoff

L(D, R)

Fig. 1. Risk-distortion curve

4 Differential Privacy Arising Out of the Maximum
Entropy Principle or Minimum Discrimination
Information Principle

The principle of maximum entropy was proposed by Jaynes [7]. Suppose, a ran-
dom variable X takes a discrete set of values xi with probabilities specified by
pX(xi), and we know of constraints on the distribution pX, in the form of ex-
pectations of some functions of these random variables. Then the principle of
maximum entropy states that of all distributions pX that satisfy the constraints,
one should choose the one with the largest entropyH(X) = −∑

i p(xi) log(p(xi).
In the case of a continuous random variable, the Shannon entropy is not

useful and for such cases we apply the principle of minimum discrimination

380 D.J. Mir

information [7]. It states that given a prior p onX, a new distribution q should be
chosen so that it as hard as possible to distinguish it from the prior distribution
p, that is the new data should produce as small a gain in information as possible
given by DKL (q‖p).

We show that the application of the principle of Maximum Entropy to the
distribution π(o|x) gives rise to a differentially-private mechanism.

When trying to find a distribution πO|X(o|x), we utilize the Maximum En-
tropy Principle. Among all distributions p(o|x), we choose the one that maxi-
mizes the entropy H(O|X) subject to satisfying the constraint that the expected
distortion function dist(o,x) is bounded by a quantity D. So we have,

maximize H(O|X)

subject to
∑

dist(x,o)p(o|x)p(x) ≤ D.
From equation 2 we observe that minimizing the mutual information as in Equa-
tion 4 is equivalent to maximizing the entropy H(O|X).

Shannon introduced the concept of equivocation as the conditional entropy of
a private message given the observable [15]. Sankar et. al [14] use equivocation as
a measure of privacy of their data transformation. Their aim is also to maximize
the average equivocation of the underlying secret sample given the observables
Since I(X;O) = H(X|O) − H(X), minimizing I(X;O) is also equivalent to
maximizing the conditional entropy H(X|O), subject to constraints on the ex-
pected distortion. Therefore, the exponential distribution πε(o|x) as defined in
Equation 6 maximizes the conditional uncertainty about the underlying sample
given a constraint on the distortion function.

Now consider the worst case which differential privacy protects against, that
is given knowledge of the entire database except for one row i, represented as
X−i, if we look at the problem of maximizing the uncertainty of the random
variable Xi, we have

maximize H(Xi|O,X−i)

subject to
∑

dist(xi,x−i,o)p(xi|x−i,o)p(x−i,o) ≤ D
Again this is equivalent to minimizing the mutual information I(X,O) when
X−i and O are given.

A note on incorporating auxilliary information: Usually, differential privacy
provides guarantees on the inference, irrespective of any side or auxilliary infor-
mation. This can be easily incorporated in our framework like Sankar et. al [14]
by making all the distributions above conditional on the side information.

5 Conclusion and Future Work

We presented an information-theoretic foundation for differential privacy, which
to our knowledge is the first such attempt. We formulated differential privacy
within the broader frameworks of various problems in information theory such

Information-Theoretic Foundations of Differential Privacy 381

as the rate-distortion problem and the maximum entropy principle. There are
several directions for future work.

One, we can try to apply the risk-distortion framework to examine the gener-
ation of private synthetic data when the underlying data generating distribution
pX(x) is known. Additionally, one could try derive bounds on the mutual infor-
mation in such cases. Second, we can examine the deployment of this framework
to problems where the distortion function dist is specified. Another direction is
to examine the notion of compressive privacy [9] in this rate-distortion frame-
work and derive bounds for the rate.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Dif-
ferential privacy: On the trade-off between utility and information leakage. In: FST
2011 (2011)

2. Barthe, G., Kopf, B.: Information-theoretic bounds for differentially private mech-
anisms. In: CSF 2011 (2011)

3. Bezzi, M.: An information theoretic approach for privacy metrics. TDP 2010 3(3),
199–215 (2010)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in
Telecommunications andSignalProcessing), 2nd edn.Wiley-Interscience (July 2006)

5. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

7. Jaynes, E.T.: Information theory and statistical mechanics. ii. Phys. Rev. 1957 108,
171–190 (1957)

8. Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and -diversity. In: ICDE
2007 (2007)

9. Li, Y.D., Zhang, Z., Winslett, M., Yang, Y.: Compressive mechanism: Utilizing
sparse representation in differential privacy. CoRR, abs/1107.3350 (2011)

10. McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan, S.P.:
The limits of two-party differential privacy. In: FOCS 2010 (2010)

11. Mcsherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS 2007
(2007)

12. Mir, D.: Differentially-private learning and information theory. In: EDBT-ICDT-W
2012 (2012)

13. Rebollo-Monedero,D., Forne, J.,Domingo-Ferrer, J.: From t-closeness-like privacy to
postrandomization via information theory. IEEE TKDE 2010 22, 1623–1636 (2010)

14. Sankar, L., Rajagopalan, S., Poor, H.: A theory of utility and privacy of data
sources. In: ISIT 2010 (2010)

15. Shannon, C.: Coding theorems for a discrete source with a fidelity criterion. IRE
National Convention Record, Part 4, 142–163 (1959)

16. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In:
Allerton 1999 (1999)

17. Vora, P.L.: An information-theoretic approach to inference attacks on random data
perturbation and a related privacy measure. IEEE Trans. Inf. Theor. 2007 53(8),
2971–2977 (2007)

Author Index

Ahmadi, Hadi 78
AlSa’deh, Ahmad 149
Ananthanarayanan, Ajai 227
Autrel, Fabien 180

Barbeau, Michel 324
Belavkin, Roman 45

Castellà-Roca, Jordi 244
Charland, Philippe 211
Chen, Zhizhang 341
Cheng, Xiaochun 45
Chwalinski, Pawel 45
Coppens, Bart 194
Cuppens, Frédéric 180
Cuppens-Boulahia, Nora 180

De Baets, Tim 261
Debbabi, Mourad 211
De Bosschere, Koen 194, 261
De Sutter, Bjorn 194, 261
Dhurandher, Sanjay Kumar 308
Du, Wenliang 227

Etalle, Sandro 162

Foket, Christophe 194

Hajny, Jan 244
Herrera-Joancomart́ı, Jordi 115
Hinrichs, Timothy L. 162

Imine, Abdessamad 293

Jin, Xing 227

Khedri, Ridha 62
Krautsevich, Leanid 357

Lee, Adam J. 162
Li, Jie 1, 33
Luo, Tongbo 227

Mahfoud, Houari 293
Mailloux, Nick 95
Malina, Lukas 244
Martinelli, Fabio 357
Meinel, Christoph 149
Mir, Darakhshan J. 374
Miri, Ali 95
Muller, Tim 132

Neupane, Kashi 365
Nevins, Monica 95

O’Flynn, Colin 341

Peddi, Rajender Dheeraj 308
Pérez-Solà, Cristina 115
Preda, Stere 211

Rafiee, Hosnieh 149
Rahimian, Ashkan 211
Reza, Tahsin Arafat 324

Saad, Sherif 278
Sabri, Khair Eddin 62
Safavi-Naini, Reihaneh 18, 78
Sarkar, Sumanta 18
Schweitzer, Patrick 132
Steinwandt, Rainer 365
Suárez Corona, Adriana 365

Traore, Issa 278, 308
Trivellato, Daniel 162

Vives-Guasch, Arnau 244
Volckaert, Stijn 261

Woungang, Isaac 308

Yautsiukhin, Artsiom 357

Zannone, Nicola 162
Zheng, Jianliang 1, 33

	Cover
	Title
	Preface
	Organization
	Table of Contents
	Cryptography and Information Theory
	MaD2: An Ultra-Performance Stream Cipher for Pervasive Data Encryption
	Introduction
	Algorithm Details
	RC4
	Key Scheduling
	Initialization of Internal State
	Keystream Generation

	Security Analysis
	Period Length
	Resistance against Known Attacks

	Statistical Testing
	NIST Statistical Test Suite
	Diehard Battery of Tests
	TestU01 Batteries of Tests

	Performance Testing
	Conclusion
	References

	Proofs of Retrievability via Fountain Code
	Introduction
	Related Work
	Our Contributions

	Background
	Raptor Code

	A PoR Scheme Based on Raptor Codes
	The Construction
	Security Proofs
	Cost Comparison

	Conclusions
	References

	MARC: Modified ARC4
	Introduction
	Design
	ARC4
	MARC

	Security
	Statistical Testing
	Testing Results from NIST Statistical Test Suite
	Testing Results from Diehard Battery of Tests
	Testing Results from TestU01 Batteries of Tests

	Performance Testing
	Conclusion
	References

	Detection of HTTP-GET Attack with Clustering and Information Theoretic Measurements
	Introduction
	Clustering
	Definitions and Notations
	Clustering Criteria
	Minimising the Effect of Sequences Order
	Algorithm - The Summary
	Results of the Clustering Algorithm
	Cluster Assignment Criterion

	Strategies of Attacking Hosts
	Frequently-Changing Hosts
	Rarely-Changing Hosts

	Detection of Attacking Attempt
	Detection of Attacking Hosts
	Mahalanobis Distance
	Mutual Information and Statistical Independence as Anomalous Measurement
	Likelihood of the Same-Category Segment
	Soft and Hard Detection Ranges

	Application of Statistical Measurements
	Related Work
	Result Discussion and Future Work
	References

	Key Management and Cryptographic Protocols
	A Generic Algebraic Model for the Analysis of Cryptographic-Key Assignment Schemes
	Introduction
	Motivation and Contribution
	Organisation

	Mathematical Background
	Key Assignment Schemes
	Specifying the Akl-Taylor Technique
	The Chinese Remainder Technique
	Verification

	Literature Review
	Discussion and Conclusion
	References

	Message Transmission and Key Establishment: Conditions for Equality of Weak and Strong Capacities
	Introduction
	Motivation
	Our Work
	Discussion
	Notation

	Model, Definitions, and Results
	Discrete Memoryless Communication Setup
	Message Transmission and Key Establishment
	Main Results

	Preliminaries
	Proof of Theorem 1: Weak to Strong SK Capacity
	Equality of Weak and Uniform SK Capacities
	Equality of Uniform and Strong SK Capacities

	Proof of Theorem 2: Weak to Strong Secrecy Capacity
	Concluding Remarks
	References

	COMPASS: Authenticated Group Key Agreement from Signcryption
	Introduction
	Our Contribution
	Related Work
	Organization of the Paper

	Preliminaries
	Identity-Based Signcryption
	Group Communication Model
	Security Definitions

	Selecting a Signcryption Scheme
	Multi-receiver Signcryption
	S-Verifiable Signcryption
	Batch Verification
	Multipurpose Signatures

	COMPASS Authenticated Group Key Agreement
	The COMPASS Protocol
	Efficiency of the COMPASS Protocol

	Security Proof
	An Example of the COMPASS Protocol
	Setup Phase
	The YYHZ-COMPASS Protocol
	Efficiency of the YYHZ-COMPASS Protocol

	Conclusions and Future Work
	References

	Privacy and Trust
	Classifying Online Social Network Users through the Social Graph
	Introduction
	State of the Art
	The Twitter Network
	Obtaining Twitter Data
	Twitter Data Representation

	Network Information in the Twitter Dataset
	Classifier Proposal
	Initial Classifier
	Relational Classifier

	Experimental Results
	Binary Classification Attack
	Multiclass Classification Attack

	Conclusions and Further Work
	References

	A Formal Derivation of Composite Trust
	Introduction
	Preliminaries
	Model Assumptions
	Composite Trust
	Conclusion
	References

	IPv6 Stateless Address Autoconfiguration: Balancing between Security, Privacy and Usability
	Introduction
	Neighbor Discovery Protocol (NDP)
	Stateless Address Autoconfiguration (SLAAC)
	SLAAC Privacy Implications
	NDP Vulnerabilities

	Approaches to Mitigate NDP Privacy and Security Implications
	Privacy Extensions for SLAAC in IPv6
	Cryptographically Generated Addresses (CGAs)

	Modifications to Standard CGA
	Setting a Lifetime for Temporary CGA Addresses
	Reducing the Granularity of CGA Security Levels
	Automatic Key Pair Generation

	Modified CGA Implementation and Its Evaluation
	Modified CGA Implementation
	Limitations and Deployment Considerations

	Conclusion
	References

	Policies and Applications Security
	Policy Administration in Tag-Based Authorization
	Introduction
	Background
	The TBA Model
	Limitations of TBA

	The TBA2 Model
	Authorization and Administration Policies
	Semantics of Administrative Policies
	Tag Verification
	Tag Revocation

	Evaluation of TBA2
	Related Work
	Discussion and Conclusions
	References

	Enabling Dynamic Security Policy in the Java Security Manager
	Introduction
	Related Work
	JVM Security Policies
	Policy Syntax
	Permission Types

	The OrBAC Model
	Expressing JVM Policies in OrBAC
	Supported Permissions Types
	OrBAC Representation of JVM Policies

	Enforcing JVM OrBAC Policies
	Translation Algorithm
	Example
	Implementation

	Conclusion
	References

	A Novel Obfuscation: Class Hierarchy Flattening
	Introduction
	Rationale: An Example Program
	Class Hierarchy Flattening
	Basic Algorithm
	Extensions

	Evaluation
	Benchmarks
	Results

	Related Work
	Conclusions and Future Work
	References

	RESource: A Framework for Online Matchingof Assembly with Open Source Code
	Introduction
	Motivation and Related Work
	Methodology
	Algorithm
	Implementation Details

	Experimental Results
	Conclusions
	References

	Touchjacking Attacks on Web in Android, iOS, and Windows Phone
	Introduction
	WebView APIs
	Web-Based APIs
	UI-Based APIs
	Attack Model

	Touchjacking Attacks
	Positioning Method
	WebView Redressing Attack
	Invisible WebView Attack
	Keystroke Hijacking Attack

	Event-Simulating Attacks
	Attacks on Other Platforms
	Related Work
	Conclusion
	References

	Network and Adaptive Security
	Short-Term Linkable Group Signatureswith Categorized Batch Verification
	Introduction
	Related Work and Our Contribution
	Related Work
	Our Contribution

	Preliminaries
	Scheme Description
	Requirements
	Cryptography Background

	Our Solution
	Setup
	Registration
	Join
	Signing
	Categorized Verification
	Trace
	Revocation

	Evaluation and Security Consideration
	Performance and Comparison with Related Work
	Security Consideration

	Conclusions
	References

	GHUMVEE: Efficient, Effective, and Flexible Replication
	Introduction
	Related Work
	GHUMVEE Architecture
	Rendez-Vous Points
	I/O Replication and Data Transfers
	Multi-threading and Synchronization
	Signal Handling
	Time Stamp Counter
	Shared Memory Support
	Address Space Layout

	Experimental Evaluation
	Conclusions
	References

	Extracting Attack Scenarios Using Intrusion Semantics
	Introduction
	Related Works
	Intrusion Semantic Analysis
	Attack Scenario Reconstruction
	General Approach
	Semantic-Based Alerts Clustering
	Attack Causality Analysis

	Experimental Evaluation
	Conclusion
	References

	On Securely Manipulating XML Data
	Introduction
	Background
	Update Access Control Model
	Update Specifications
	Rewriting Problem

	Securely Updating XML
	Updatability
	Rewriting of Update Operations

	Conclusion
	References

	Mitigating Collaborative Blackhole Attacks on DSR-Based Mobile Ad Hoc Networks
	Introduction
	Related Work
	Proposed Mitigation Scheme
	Routing Mechanism
	Correctness of DCBA

	Performance Evaluation
	Conclusion
	References

	QoS Aware Adaptive Security Scheme for Video Streaming in MANETs
	Introduction
	Related Work
	Background
	QoS Aware Adaptive Security Scheme (QaASs)
	Simulation
	Conclusion
	References

	A Case Study of Side-Channel Analysis Using Decoupling Capacitor Power Measurement with the OpenADC
	Introduction
	Review of Capture Techniques
	Probe Type
	Acquisition

	Ideal Acquisition System - Requirements
	External Clock Inputs
	External Clock Phase Adjust
	Adjustable Gain

	Low-Cost Acquisition Architecture
	Decoupling Capacitor Power Measurement
	SASEBO-GII Correlation Power Analysis (CPA) Results
	Measurement Setup
	Measurement Results
	OpenADC Measurement Results

	Conclusions
	References

	Short Papers
	Towards Modelling Adaptive Attacker's Behaviour
	Introduction
	A System and an Attacker
	Model of Attacker's Behaviour
	Related Work
	Conclusion
	References

	Scalable Deniable Group Key Establishment
	Introduction
	Preliminaries
	Multi Key Encapsulation and Symmetric Encryption
	Message Authentication Codes and Ring Signatures

	Security Model
	From Unauthenticated to Authenticated and Deniable
	Description of the Proposed Compiler
	Security Analysis

	Conclusion
	References

	Information-Theoretic Foundations of Differential Privacy
	Introduction
	Definitions and Background
	Related Work

	Differentially-Private Mechanisms in a Risk-Distortion Framework
	Connection to the Rate-Distortion Framework

	Differential Privacy Arising Out of the Maximum Entropy Principle or Minimum Discrimination Information Principle
	Conclusion and Future Work
	References

	Author Index

