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Abstract. Being a typical NP-hard combinatorial optimization prob-
lem, the hybrid flow shop (HFS) problem widely exists in manufacturing
systems. In this paper, we firstly establish the model of the HFS prob-
lem by employing the vector representation. Then an improved discrete
artificial bee colony (IDABC) algorithm is proposed for this problem to
minimize the makespan. In the IDABC algorithm, a novel differential
evolution and a modified variable neighborhood search are studied to
generating new solutions for the employed and onlooker bees. The de-
struction and construction procedures are utilized to obtain solutions for
the scout bees. The simulation results clearly imply that the proposed
IDABC algorithm is highly effective and efficient as compared to six
state-of-the-art algorithms on the same benchmark instances.
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1 Introduction

Production scheduling is a decision-making process that plays a crucial role in
manufacturing and service industries [1]. As industries are facing increasingly
competitive situations, the classical flow shop model is not applicable to some
practical industry processes. As a result, the hybrid flow shop (HFS) problem
in which a combination of flow shop and parallel machines operate together
arises. Although the HFS problem, also called multi-processor or flexible flow
shop, widely exists in real manufacturing environments, e.g., in chemical, oil,
food, tobacco, textile, paper, and pharmaceutical industries, there is no effective
method to solve this problem.

As to the computational complexity, since even the two-stage HFS problem is
strongly NP-hard [2] by minimizing the maximum completion time (makespan),
the multi-stage HFS problem is at least that difficult. Despite of the intractabil-
ity, the HFS problem has great significance in both engineering and theoretical
fields. Thus, it is meaningful to develop effective and efficient approaches for
such the problem considered.
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Compared with a large number of literatures on the classic flow shop schedul-
ing problem, the HFS problem has not been well studied. Santos et al. [3] pre-
sented a global lower bound for makespan minimization that has been used to
analyze the performance of other algorithms. Neron et al. [4] used the satisfia-
bility tests and time-bound adjustments based on the energetic reasoning and
global operations to enhance the efficiency of another kind of B&B method pro-
posed in Carlier and Neron [5]. With advanced statistical tools, Ruiz et al. [6]
tested several heuristics in the realistic HFS problem and suggested that the
modified NEH heuristic [7] outperformed the other dispatching rules. The ge-
netic algorithm (GA) was applied by researchers to solve the HFS problem under
the criterion of makespan minimization [8]. On the basis of vertebrate immune
system, Engin and Doyen [9] proposed the artificial immune system (AIS) tech-
nique that incorporated the clonal selection principle and affinity maturation
mechanism. Inspired by the natural mechanism of the ant colony, Alaykyran et
al. [10] introduced an improved ant colony optimization (ACO) algorithm. Niu
et al. [11] presented a quantum-inspired immune algorithm (QIA) for the HFS
problem to minimize makespan. Liao et al. [12] developed a particle swarm op-
timization (PSO) algorithm. This algorithm hybridized the PSO and bottleneck
heuristic to fully exploit the bottleneck stage, and further introduced simulated
annealing to help escape from local optima. In addition, a local search is embed-
ded to further improve its performance.

The artificial bee colony (ABC) algorithm, simulating the intelligent foraging
behaviors of honey bee colonies, is one of the latest population-based evolu-
tionary meta-heuristics [13]. Basturk and Karaboga suggested that the ABC
algorithm has a better performance than the other population-based algorithms
for solving continuous problems [14], [15]. Nevertheless, on account of its contin-
uous nature, the studies on the ABC algorithm for combinatorial optimization
problems is very limited.

As we know, there is no published work using the ABC-based algorithm for the
HFS problem. In this paper, we firstly establish the model of the HFS problem
by employing the vector representation, and then an improved discrete artificial
bee colony (IDABC) algorithm is proposed for the problem to minimize the
makespan. The rest of the paper is organized as follows. In Section 2, the model
of the HFS problem is formulated. Section 3 presents the details of the proposed
IDABC algorithm. The simulation results are provided in Section 4. Finally,
conclusions are drawn in Section 5.

2 Problem Statement

2.1 Description of the Problem

The HFS problem can be described as follows. There are n jobs J={1,2,...,i,...,n-
1,n} that have to be performed on s stages S={1,2,...,j,...,s-1,s}, and each stage
s has ms identical machines. These identical machines are continuously available
from time zero and have the same effect. At least one stage j must has more
than one machine. Every job has to visit all of the stages in the same order
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string from stage 1 through stage s and is processed by exactly one machine at
every stage. A machine can process at most one job at a time and a job can be
processed by at most one machine at a time. The processing time pi,j is given
for each job at each stage. The scheduling problem is to choose a machine at
each stage for each job and determine the sequence of jobs on each machine so
as to minimize the makespan.

2.2 Mathematical Model

As we know, on the research of the HFS problem, there are two formats to repre-
sent a solution, namely the matrix representation and the vector representation.
In this paper, we employ the vector representation [16], which considers the se-
quence of jobs only at the stage one. This subset sequence should contain the
collection of all potentially good solutions for the problem and is a one-to-one
correspondence. Most importantly, it is very convenient to design and operate
by using this format. A subset sequence is decoded to a complete schedule by
employing a generalization of the List Scheduling (LS) algorithm to incorporate
the jobs at other stages [17], [18]. For scheduling jobs at each stage, the LS al-
gorithm is based on the first-come-first-service rule, in which the jobs with the
shortest completion time from the previous stage should be scheduled as early
as possible. It could result in a non-permutation schedule, that is, the sequence
of jobs at each stage may be different. The model of the HFS problem can be
formulated as follows in terms of this representation:

Minimize: Cmax(π1) = max
i=1,2,...n

{Cπs(i),s}
Subject to:

{
Cπ1(i),1 = pπ1(i),1

IMi,1 = Cπ1(i),1
i = 1, 2, ...m1

⎧⎪⎨
⎪⎩

Cπ1(i),1 = min
k=1,2,...m1

{IMk,1}+ pπ1(i),1

NM1 = arg min
k=1,2,...m1

{IMk,1}
IMNM1,1 = Cπ1(i),1

i = m1 + 1,m1 + 2, ...n

πj(i) = g(Cπj−1(i),j−1) i = 1, 2, ...n; j = 2, 3, ...s{
Cπj(i),j = Cπj(i),j−1 + pπj(i),j

IMi,j = Cπj(i),j
i = 1, 2, ...m1; j = 2, 3, ...s

⎧⎪⎪⎨
⎪⎪⎩

Cπj(i),j = max{Cπj(i),j−1, min
k=1,2,...mj

{IMk,j}}+ pπj(i),j

NMj = arg min
k=1,2,...mj

{IMk,j}
IMNMj ,j = Cπj(i),j

i = mj + 1,mj + 2, ...n; j = 2, 3, ...s

where πj is the job permutation at the stage j ; πk(i) is the ith job in the πk;
Cπk(i),j is the completion time of job πk(i) at the stage j ; IMi,j represents
the idle moment of machine i at the stage j ; NMj denotes the serial num-
ber of earliest available machine at the moment at the stage j ; the function
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S1(i) = g(S2(i)) (i=1,2,...n) means that S1(i) is the permutation of (1,2,...n)
based on the ascending order of S2(i) (i=1,2,...n); and argmin

k
{IMk} stands for

the argument of the minimum, i.e. the set of points of the given argument for
which the given function attains its minimum value.

In the above recursive equations, we firstly calculate the completion time of
the jobs at the stage one, then that of the stage two, until the last stage.

3 The Improved Discrete Artificial Bee Colony (IDABC)
Algorithm for the HFS Problem

3.1 Individual Representation and Initialization

Owing to the continuous nature of the ABC algorithm, it can not be directly used
for the HFS problem. So it is important to find a suitable mapping which can
conveniently convert a harmony to a solution. The model of the HFS problem
is formulated by using the vector representation in last section. As a result, we
adopt this representation in the proposed IDABC algorithm. The individual in
the IDABC algorithm is represented by a permutation of jobs at the stage one
= {π(1), π(2), ..., π(n)}.

To guarantee the initial population with a certain quality and diversity, it is
constructed randomly except that one is established by the aforementioned NEH
heuristic [7]. According to [6], the NEH heuristic, a typical constructive method
for the permutation flow shop scheduling problem, is also very robust and well
performing for the HFS problem.

3.2 Employed Bee Phase

In the original ABC algorithm, the employed bees exploit the given food sources
in their neighborhood. Here we propose a novel differential evolution scheme
for the employed bees to generate neighboring food sources. The differential
evolution scheme consists of three steps: mutation, crossover, and selection.

In the mutation part, two parameters mutation rate (MR), insert times (IT )
are introduced. For each incumbent individual, a uniformly random number is
generated in the range of [0,1]. If it is less than MR, the mutant individual is
obtained by operating the insert operation on the best individual π best in the
population IT times; otherwise, the mutant individual is gained by operating
the insert operation on a randomly selected individual IT times.

Next, partially mapped crossover (PMX) [19], a widely used crossover operator
for permutation-based, is used in the crossover part. The incumbent individual
and the mutated individual will undergo the PMX operation with a crossover rate
(CR) to obtain the two crossed individuals. On the other hand, the two crossed
individuals are the same as the mutated individual with about a probability of
(1-CR).

Following the crossover operation, the selection is conducted. The one with
the lowest value of the objective function among the two crossed individuals and
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the incumbent individual will be accepted. In other words, if either of these two
crossed individuals yields a better makespan than the incumbent individual, then
the better individual will replace the incumbent one and become a new member
in the population; otherwise, the old individual is retained.

3.3 Onlooker Bee Phase

There are NP onlooker bees and each communicates with its corresponding
employed bee. After the probability selection, also called the wheel selection,
a modified variable neighborhood search (VNS) [20] is incorporated into our
algorithm as a hybrid strategy to further improve the performance. We use two
structures of neighborhoods, which are referred to as the insert local search and
the swap local search. The procedures of the insert local search and the swap
local search are given in Fig. 1, where u and v are two positive integers chosen
randomly in the range of [1,n]. The local search combining both the insert local
search and the swap local search is illustrated as follows:

Step1. Perform the insert local search. If the individual is improved, go back to
step 2; otherwise end the procedure.
Step2. Perform the swap local search. If the individual is improved, go back to
step 1; otherwise end the procedure.

Fig. 1. The procedure of modified variable neighborhood search

If the new food source obtained is better than or equal to the incumbent
one, the new food source will be memorized in the population. The onlooker bee
phase in the IDABC algorithm provides the intensification of the local search on
the relatively promising solutions.

3.4 Scout Bee Phase

As it has been stated in the basic ABC algorithm, the scout bees search randomly
in the predefined space. This procedure will increase the population diversity and
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avoid getting trapped in local optima, whereas this will also decrease the search
efficacy. The new food source of a scout bee is produced as follows. Firstly, a
tournament selection with the size of two is applied due to its simplicity and
efficiency. That is, a scout bee selects two individuals πa and πb randomly from
the population, and compares them with each other. If the makespan of πa is
smaller than that of πb, πa wins the tournament and πb loses. Then, the scout
bee generates a new solution new by employing the destruction and construc-
tion procedures of the iterated greedy (IG) algorithm [21]. The destruction and
construction procedures are performed on the better individual πa in the tour-
nament selection and it has one parameter: destruction size (d). After that, the
new solution πnew becomes a new member in the population and the worse one
πb is discarded. In this phase, the number of scout bees is ten percent of that of
food sources.

4 Simulation Results and Comparisons

4.1 Experimental Setup

To fully examine the performance of the IDABC algorithm, an extensive ex-
perimental comparison with other powerful methods are provided. The IDABC
algorithm was coded in Visual C++ and run on an Intel Pentium 3.06 GHz PC
with 2 GB RAM under Windows 7 operating system.

The test problems used in experiments are the 98 different benchmark prob-
lems which are presented in [5]. The sizes of these problems vary from 10 jobs
and 5 stages to 15 jobs and 10 stages. The processing times of the operations in
these 98 instances are uniformly distributed between 3 and 20. Three character-
istics that define a problem are the number of jobs, the number of stages and the
number of identical machines at each stage. Therefore, we use the notation of
j10c5b1 for instance, which means a 10-job, 5-stage problem. There are 55 easy
problems and 43 hard problems. The problems with a and b machine layouts
are easy problems. The problems with c, d, and e machine layouts are relatively
harder to solve, so they are mostly grouped as hard problems.

The benchmark problems taken from Carlier and Neron [5] are relative simple.
Thus, another 10 benchmark problems generated by Liao et al. [12] recently are
also utilized in this section. In each problem, there are 30 jobs and 5 stages. At
each stage, the machine number has a uniform distribution in the range of [3,5].
The processing times in these problems are within [1,100].

In the proposed IDABC algorithm, there are five main parameters: NP, MR,
CR, IT, and d. We set the parameters NP=n (the number of jobs), MR=0.8,
CR=0.8, IT=4, and d=4 in the following experiments.

4.2 Computational Results

Comparison of Carlier and Neron’s Benchmarks. Several meta-heuristics
have been applied to Carlier and Neron’s benchmark problems. To evaluate the
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performance of the proposed IDABC algorithm in solving the HFS problem un-
der the criterion of makespan minimization, the IDABC algorithm was compared
with a B&B method [4], an AIS [9], an ACO [10], a GA [8], a QIA [11], and a
PSO algorithm [12]. The maximum run time of the algorithm was set at 1600s or
until the lower bound (LB) [3], [4] was reached. If the LB was not found within
this time limit, the search was stopped and the best solution was accepted as
the final solution.

In order to establish more accurate and objective comparisons, the compu-
tational results of these compared algorithms are obtained from their original
papers. For each test problem, the proposed IDABC algorithm was run inde-
pendently twenty times and the performance of all the compared algorithms was
summarized in Table 1. In Table 1, Solved means the number of problems which
the algorithm can solve, and Deviation denotes the average relative percentage
error to LB.

Table 1. Comparison results on Carlier and Neron’s benchmark problems

Algorithm
Easy problems Hard problems

Solved Deviation Solved Deviation

B&B 53 2.17% 24 6.88%
AIS 53 0.99% 24 3.13%
ACO 45 0.92% 18 3.88%
GA 53 0.95% 24 3.05%
QIA 29 0 12 5.04%
PSO 53 0.95% 24 2.85%

IDABC 55 0.94% 43 2.82%

As it can be noticed from Table 1, the machine layouts have an important
effect on the complexity of problems that affects solution quality. In the 55 easy
problems and 43 hard problems, B&B, AIS, GA, and PSO can solve 53 easy
problems and 24 hard problems, ACO can solve only 45 easy problems and 18
hard problems, QIA can solve only 29 easy problems and 12 hard problems,
while the proposed IDABC algorithm can solve all the 98 problems. The average
percentage deviation values of the easy and hard problems generated by IDABC
are equal to 0.94% and 2.82%. For the 55 easy problems, QIA has a zero deviation
value but it can solve only 29 of the 55 easy problems. The performance of PSO
is comparable with the proposed IDABC, but it still cannot solve problems as
many as the proposed IDABC. Thus, it is concluded that the IDABC algorithm
is more effective and efficient in comparison with other algorithms for Carlier
and Neron’s benchmark problems.

Comparison of Liao’s Benchmarks. For Liao’s benchmark problems, two
meta-heuristics: AIS and PSO, have been applied to the problems in [12]. The
computational results are shown in Table 2, where the experimental data of AIS
and PSO were obtained from their original papers, and the IDABC algorithm
was run twenty independent replications for each problem. The execution time
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for each problem is limited to 200 seconds. In Table 2, AVE, MIN, and STD
indicate the values of average, minimum, and standard deviation, respectively.
T presents the average computation time (given in seconds) that the solution
converges to the final solution.

Table 2. Comparison results on Liao’s benchmark problems

Problem
AIS PSO IDABC

AVE MIN STD T(s) AVE MIN STD T(s) AVE MIN STD T(s)

j30c5e1 485.35 479 2.58 99.44 474.70 471 1.42 96.16 465.15 463 1.50 56.81
j30c5e2 620.70 619 1.63 80.24 616.25 616 0.44 55.28 616 616 0 1.51
j30c5e3 625.70 614 4.81 116.70 610.25 602 4.70 64.56 596.4 593 1.70 49.14
j30c5e4 588.55 582 3.38 108.63 577.10 575 1.52 86.98 566.2 565 1.20 39.29
j30c5e5 618.75 610 3.42 101.19 606.80 605 1.11 79.84 602 600 1.56 57.67
j30c5e6 625.75 620 3.01 100.47 612.50 605 3.49 67.99 603.05 601 1.47 55.02
j30c5e7 641.30 635 4.67 93.56 630.60 629 0.75 87.18 626 626 0 18.68
j30c5e8 697.50 686 5.14 100.68 684.20 678 2.50 97.67 674.65 674 0.88 55.18
j30c5e9 670.20 662 3.85 100.75 654.65 651 1.87 83.80 643.65 642 1.04 67.49
j30c5e10 613.45 604 5.33 89.29 599.75 594 5.28 77.46 576.25 573 1.52 76.05
Average 618.73 611.10 3.78 99.09 606.68 602.60 2.31 79.69 596.94 595.3 1.08 47.69

In Table 2, the smallest values of AVE, MIN, STD, and T in the rows are
shown in bold, respectively. It can be noted that the overall mean values of
AVE, MIN, and STD yielded by the IDABC algorithm are equal to 596.94,
595.3, and 1.08, respectively, which are much better than those generated by AIS
and PSO. Besides, the average computation time T of IDABC: 47.69 seconds is
much shorter than that generated by AIS and PSO. From these observations, it
is shown that the IDABC algorithm can obtain a better solution than AIS and
PSO in an obviously shorter computational time. This means that the IDABC
algorithm can converge to the good solutions faster than AIS and PSO. Also, it
can be seen that the IDABC algorithm is more robust than both AIS and PSO
for Liao’s benchmark problems.

5 Conclusions

This paper establishes the model of the HFS problem by employing the vector
representation and presents an improved discrete artificial bee colony (IDABC)
algorithm for the HFS problem to minimize the makespan. Our future work is
to extend the IDABC algorithm to other kinds of scheduling problems such as
stochastic scheduling and multi-objective scheduling.
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