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Abstract. This paper studies a stochastic algorithm for Hammerstein
systems with piece-wise linearities. By using a switching function, the
model of the nonlinear Hammerstein systems be changed to an identi-
fication model, then based on the derived model, a stochastic gradient
identification algorithm is used to estimate all the unknown parameters
of the systems. An example is provided to show the effectiveness of the
proposed algorithm.
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1 Introduction

Hammerstein systems consist of a static nonlinear block followed by a linear
dynamic block which are widely used in many areas, e.g., nonlinear filtering,
actuator saturations, audio-visual processing, signal analysis. There exists a lot
of work on identification of these nonlinear systems [1–6]. Some work assumed
that the nonlinearity is the polynomial nonlinearity [6–8], others assumed that
the nonlinearity is the hard nonlinearity [2, 3, 9–12, 14]. Hard nonlinearity can-
not be written as an analytic function of the input and is more common in
engineering practice. Recently, identification of Hammerstein systems with hard
nonlinearity has been received much attention [3,9,10,13–15]. For example, Bai
used a deterministic approach and the correlation analysis method to estimate
the parameters of systems with hard input nonlinearities [9]. Chen proposed
a novel estimation algorithm for dual-rate Hammerstein systems with preload
nonlinearity [13], and studied identification problems for Hammerstein systems
with saturation and dead-zone nonlinearities [3].

This paper deals with the identification of Hammerstein systems with piece-
wise linearities. By using the switching function, the model of the Hammerstein
systems can be turned into an identification model, then based on the derived
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model, a stochastic gradient algorithm (SG) is proposed to estimate the unknown
parameters of the systems.

Briefly, the paper is organized as follows. Section 2 describes the piece-wise
linearities and derives an identification model. Section 3 studies estimation algo-
rithms for the identification model. Section 4 provides an illustrative example.
Finally, concluding remarks are given in Section 5.

2 The Piece-Wise Linearities

Consider a Hammerstein system

A(z)y(t) = B(z)f(u(t)) + v(t), (1)

where y(t) is the system output, u(t) is the system input, and v(t) is a stochastic
white noise with zero mean, and A(z) and B(z) are polynomials in the unit
backward shift operator [z−1y(t) = y(t− 1)] and

A(z) := 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n,

B(z) := b1z
−1 + b2z

−2 + b3z
−3 + · · ·+ bnz

−n.

The nonlinear input f(u(t)) is a piece-wise linearity which is shown in Figure 1
and can be expressed as

f(u(t)) =

{
m1u(t), u(t) ≥ 0,
m2u(t), u(t) < 0,

where m1 and m2 are the corresponding segment slopes.
Define a switching function,

h(t) := h[u(t)] =

{
1
2 , u(t) ≥ 0,
− 1

2 , u(t) < 0.

Then the output y(t) can be written as

f(u(t)) = (m1 −m2)u(t)h(u(t)) +
1

2
(m1 +m2)u(t), (2)

�

�

�
�
�

�
�

�
��

m2

m1

u

f(u)

Fig. 1. The piece-wise linearity
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and Equation (1) can be written as

A(z)y(t) = B(z)((m1 −m2)u(t)h(u(t))

+
1

2
(m1 +m2)u(t)) + v(t). (3)

From (3), we can see that the output y(t) of the nonlinear block can be written
as an analytic function of the input.

3 The Estimation Algorithms

Define the parameter vector θ and the information vector ϕ(t) as

θ := [b1(m1 −m2), b2(m1 −m2), b3(m1 −m2), · · · ,
bn(m1 −m2),

1

2
b1(m1 +m2),

1

2
b2(m1 +m2),

1

2
b3(m1 +m2), · · · , 1

2
bn(m1 +m2),

a1, a2, a3, · · · , an]T ∈ R
3n,

ϕ(t) := [u(t− 1)h(t− 1), u(t− 2)h(t− 2),

u(t− 3)h(t− 3), · · · , u(t− n)h(t− n),

u(t− 1), u(t− 2), u(t− 3), · · · ,
u(t− n),−y(t− 1),−y(t− 2), · · · ,
−y(t− n)]T ∈ R

3n,

gets
y(t) = ϕT(t)θ + v(t). (4)

If θ has been estimated, none of the identification schemes can distinguish bi, i =
1, 2, 3, · · · , n and mi, i = 1, 2 from the estimated θ. Therefore, to get a unique
parameterization, in this paper, we adopt the assumption that the first coefficient
b1 equals 1, i.e., b1 = 1.

The parameter vector θ and the information vector ϕ(t) be defined as

θ := [(m1 −m2), b2(m1 −m2), b3(m1 −m2),

· · · , bn(m1 −m2),
1

2
(m1 +m2),

1

2
b2(m1 +m2),

1

2
b3(m1 +m2),

· · · , 1
2
bn(m1 +m2), a1,

a2, a3, · · · , an]T ∈ R
3n, (5)

ϕ(t) := [u(t− 1)h(t− 1), u(t− 2)h(t− 2),

u(t− 3)h(t− 3), · · · , u(t− n)h(t− n),
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u(t− 1), u(t− 2), u(t− 3), · · · , u(t− n),

−y(t− 1),−y(t− 2), · · · ,
−y(t− n)]T ∈ R

3n, (6)

Using the following SG algorithm to estimate the parameter vector θ in (5):

θ̂(t) = θ̂(t− 1) +
ϕ(t)

r(t)
(y(t)−ϕT(t)θ̂(t− 1)), (7)

ϕ(t) = [u(t− 1)h(t− 1), u(t− 2)h(t− 2),

u(t− 3)h(t− 3), · · · , u(t− n)h(t− n)

, u(t− 1), u(t− 2), u(t− 3), · · · , u(t− n),

−y(t− 1),−y(t− 2), · · · ,−y(t− n)]T, (8)

r(t) = r(t− 1) + ‖ϕ(t)‖2, r(0) = 1. (9)

where 1
r(t) is the step-size and the norm of matrix X is defined by ‖X‖2 :=

tr[XXT].
The convergence of the SG algorithm is relatively slower compared with the

recursive least squares algorithm. In order to improve the tracking performance
of the SG algorithm, we can introduce a λ in the SG algorithm to get the SG
algorithm with a forgetting factor (the FF-SG algorithm for short) as follows:

θ̂(t) = θ̂(t− 1) +
ϕ(t)

r(t)
(y(t)−ϕT(t)θ̂(t− 1)), (10)

ϕ(t) = [u(t− 1)h(t− 1), u(t− 2)h(t− 2),

u(t− 3)h(t− 3), · · · , u(t− n)h(t− n),

u(t− 1), u(t− 2), u(t− 3), · · · , u(t− n),

−y(t− 1),−y(t− 2), · · · ,−y(t− n)]T (11)

r(t) = λr(t − 1) + ‖ϕ(t)‖2,
0 < λ < 1, r(0) = 1. (12)

4 Example

Consider the following linear dynamic block,

[1 − 0.1q−1]y(t) = [q−1 + 1.2q−2]f(u(t)) + v(t),

the input {u(t)} is taken as a persistent excitation signal sequence with zero
mean and unit variance, and {v(t)} is taken as a white noise sequence with zero
mean and variance σ2 = 0.102, the piece-wise linearity is shown in Figure 1 and
with parameters: m1 = 1, m2 = 0.8. Then we have

θ = [m1 −m2, b2(m1 −m2), 0.5(m1 +m2),

0.5b2(m1 +m2), a1]
T
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Fig. 2. The parameter estimation errors δ versus t

= [α1, α2, α3, α4, α5, ]
T

= [0.2, 0.24, 0.9, 1.08,−0.1]T,

ϕ(t) = [h(u(t− 1))u(t− 1), h(u(t− 2))u(t− 2),

u(t− 1), u(t− 2),−y(t− 1)]T.

Applying the proposed SG and FF-SG algorithms to estimate the parameters of
this system, the parameter estimates and their errors are shown in Tables 1-2
and the parameter estimation errors δ := ‖θ̂ − θ‖/‖θ‖ versus t are shown in
Figure 2.

Table 1. The SG estimates and errors

t α1 α2 α3 α4 α5 δ (%)

100 -0.0422 0.0043 0.4938 0.5448 -0.2357 52.9384
200 -0.0291 0.0224 0.5536 0.6047 -0.2483 47.3742
300 -0.0180 0.0347 0.5844 0.6351 -0.2537 44.4015
500 -0.0108 0.0442 0.6168 0.6669 -0.2658 41.6292
1000 0.0009 0.0534 0.6589 0.7046 -0.2646 37.9839
1500 0.0055 0.0585 0.6771 0.7217 -0.2663 36.4216
2000 0.0102 0.0630 0.6906 0.7342 -0.2663 35.2145
2500 0.0135 0.0666 0.7024 0.7442 -0.2663 34.2374
3000 0.0160 0.0690 0.7093 0.7510 -0.2653 33.5802

True values 0.2000 0.2400 0.9000 1.0800 -0.1000

Let α̂i be the ith element of the vector θ̂. From the definition of θ, we have:
â1 = α̂5, b̂2 = α̂2

α̂1
. Furthermore, we can compute the estimates m̂1 = α̂3 +

α̂1

2 ,

m̂2 = α̂3 − α̂1

2 .
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Table 2. The FF-SG estimates and errors

t α1 α2 α3 α4 α5 δ (%)

100 0.1174 0.0619 0.8128 0.9035 -0.1812 20.0681
200 0.1927 0.1290 0.9055 1.0303 -0.1449 9.0010
300 0.2224 0.1689 0.8981 1.0440 -0.1097 5.7755
500 0.2285 0.1994 0.9009 1.0734 -0.1009 3.4647
1000 0.2206 0.2145 0.9003 1.0762 -0.1026 2.2923
1500 0.2105 0.2298 0.8962 1.0786 -0.1004 1.0502
2000 0.2033 0.2333 0.8983 1.0778 -0.1023 0.5736
2500 0.1952 0.2395 0.8952 1.0825 -0.0981 0.5179
3000 0.1980 0.2361 0.8958 1.0754 -0.1055 0.6487

True values 0.2000 0.2400 0.9000 1.0800 -0.1000

5 Conclusions

An approach to identify Hammerstein systems with piece-wise linearity is pre-
sented in this paper. The model of the nonlinear system be turned into an
identification model by using a switching function, then based on the identifica-
tion model, we proposed an SG algorithm and an FF-SG algorithm to estimate
all the parameters of the system. The simulation results verify the proposed
algorithm.
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