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Abstract. This paper studies a stochastic algorithm for Hammerstein
systems with piece-wise linearities. By using a switching function, the
model of the nonlinear Hammerstein systems be changed to an identi-
fication model, then based on the derived model, a stochastic gradient
identification algorithm is used to estimate all the unknown parameters
of the systems. An example is provided to show the effectiveness of the
proposed algorithm.
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1 Introduction

Hammerstein systems consist of a static nonlinear block followed by a linear
dynamic block which are widely used in many areas, e.g., nonlinear filtering,
actuator saturations, audio-visual processing, signal analysis. There exists a lot
of work on identification of these nonlinear systems [IH6]. Some work assumed
that the nonlinearity is the polynomial nonlinearity [6HS], others assumed that
the nonlinearity is the hard nonlinearity [2,[3,[0H12][14]. Hard nonlinearity can-
not be written as an analytic function of the input and is more common in
engineering practice. Recently, identification of Hammerstein systems with hard
nonlinearity has been received much attention [3,[9,10,T3HI5]. For example, Bai
used a deterministic approach and the correlation analysis method to estimate
the parameters of systems with hard input nonlinearities [9]. Chen proposed
a novel estimation algorithm for dual-rate Hammerstein systems with preload
nonlinearity [13], and studied identification problems for Hammerstein systems
with saturation and dead-zone nonlinearities [3].

This paper deals with the identification of Hammerstein systems with piece-
wise linearities. By using the switching function, the model of the Hammerstein
systems can be turned into an identification model, then based on the derived
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model, a stochastic gradient algorithm (SG) is proposed to estimate the unknown
parameters of the systems.

Briefly, the paper is organized as follows. Section [2] describes the piece-wise
linearities and derives an identification model. Section [ studies estimation algo-
rithms for the identification model. Section [ provides an illustrative example.
Finally, concluding remarks are given in Section [Bl

2 The Piece-Wise Linearities

Consider a Hammerstein system

A(2)y(t) = B(2)f (u(t) + (D), (1)

where y(t) is the system output, u(¢) is the system input, and v(t) is a stochastic
white noise with zero mean, and A(z) and B(z) are polynomials in the unit
backward shift operator [z 71y (t) = y(t — 1)] and

Az) i=1+arz P a2z + -+ a2 ™,
B(z) := Y s R . U

The nonlinear input f(u(t)) is a piece-wise linearity which is shown in Figure [Tl
and can be expressed as

myu(t), u(t) >0,
s = { et ol 2o

where my and my are the corresponding segment slopes.
Define a switching function,

nie) = nlut] = { 2, "2 2
Then the output y(¢) can be written as
F((t)) = Oy~ ma)u(®)h(u(t)) + oy + ma)u(t), 2)
s flu)

2V

Fig. 1. The piece-wise linearity
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and Equation (Il) can be written as
A(2)y(t) = B(2)((m1 — ma)u(t)h(u(t))
4 ma)ult) + o(t). Q)

From (B]), we can see that the output y(¢) of the nonlinear block can be written
as an analytic function of the input.

3 The Estimation Algorithms

Define the parameter vector € and the information vector ¢(t) as

0 := [b1(m1 — ma2), ba(m1 — m2),b3(m1 —ma),- -,

bp(m1 — ma), 1b1(m1 + ma),
1 1
9 72bn(m1 + ma),
ai,az, a3, ,a,|" € R3",
p(t) :=[u(t — Dh(t —1),u(t —2)h(t — 2),
u(t —3)h(t —3),--- ,u(t —n)h(t —n),
u(t - 1)au(t - Q)au(t - 3)3 Tty
u(t - n)’ _y(t - 1)7 _y(t - 2)7 R}
—y(t _ n)]T c R?m7

1
2b (m1 +m2),
bs(m1 + ma),- -

gets

y(t) = " (1) + v(?). (4)
If 8 has been estimated, none of the identification schemes can distinguish b;,7 =
1,2,3,--- ,n and m;,i = 1,2 from the estimated 6. Therefore, to get a unique

parameterization, in this paper, we adopt the assumption that the first coefficient
by equals 1, i.e., by = 1.
The parameter vector 6 and the information vector ¢(t) be defined as

0 := [(m1 —ma2), ba(my — ma), bg(m1 — ma),

7bn(m1 _m2)a mi +m2)7

o
;bQ(ml +ma), ;bs(ﬂh + mg),
) 2bn(m1 +mg), a1,
az,az, - ,ap|" € R, (5)
p(t) :=[u(t — Dh(t —1),u(t —2)h(t — 2),
u(t —3)h(t —3), - ,u(t —n)h(t —n),
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u(t —1),u(t —2),u(t—3), - ,u(t —n),
_y(t_l)a_y(t_Q)""a
—y(t —n)]" € R*", (6)

Using the following SG algorithm to estimate the parameter vector 6 in (B):

b10) = (¢~ 1)+ 711 (o) ~ 7 (0(t - 1) ™

p(t) = [ult = Dh(t — 1), u(t = 2)h(t - 2),
u(t —3)h(t —3), - ,u(t —n)h(t —n)
,U(t - 1)v u(t - 2)v u(t - 3)a T au(t - n)a
_y(t_ 1)a_y(t_2)7 a_y<t_n)]Ta (8)
r(t) =r(t —1) + lle@)]? r(0) = 1. (9)
where r(lt) is the step-size and the norm of matrix X is defined by [|X||? :=
tr[ X X
The convergence of the SG algorithm is relatively slower compared with the
recursive least squares algorithm. In order to improve the tracking performance

of the SG algorithm, we can introduce a A in the SG algorithm to get the SG
algorithm with a forgetting factor (the FF-SG algorithm for short) as follows:

b(t) = B(t — 1)+ #1100 — 7 (00 1), (10)
o(t) = [u(t — D)h(t — 1), u(t — 2)h(t — 2),

u(t —3)h(t —3), - ,u(t —n)h(t —n),

w(t —1),u(t — 2),u(t —3), - ,u(t —n),

_y(t_ 1)7_y(t_2)7"' 7_y(t_n)]T (11)
r(t) = Xr(t = 1) + [le()]%,

0<A<, r(0)=1. (12)

4 Example

Consider the following linear dynamic block,
[1—0.1¢ Jy(t) = [a7" +1.2¢7 2] f(u(t)) + o(1),

the input {u(t)} is taken as a persistent excitation signal sequence with zero
mean and unit variance, and {v(t)} is taken as a white noise sequence with zero
mean and variance o2 = 0.102, the piece-wise linearity is shown in Figure [[l and
with parameters: m; = 1, mo = 0.8. Then we have

0= [m1 — mg,bg(ml — mg),0.5(m1 + mg),
0.5b3(m1 + ma), a1]"
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Fig. 2. The parameter estimation errors ¢ versus t

= [a1, a9, a3, aq, a5, ]"
=0.2,0.24,0.9,1.08,—0.1]",
() = [h(ult — 1)ult — 1), h(ult — 2))u(t —2),
u(t - 1)vu(t - 2)3 7y(t - 1)}T

Applying the proposed SG and FF-SG algorithms to estimate the parameters of
this system, the parameter estimates and their errors are shown in Tables
and the parameter estimation errors 6 := || — 6]|/]0]| versus ¢ are shown in
Figure 2

Table 1. The SG estimates and errors

t a1 a2 a3 (e %} (0759 5 (%)
100 -0.0422 0.0043 0.4938 0.5448 -0.2357 52.9384
200 -0.0291 0.0224 0.5536 0.6047 -0.2483 47.3742
300 -0.0180 0.0347 0.5844 0.6351 -0.2537 44.4015
500 -0.0108 0.0442 0.6168 0.6669 -0.2658 41.6292

1000 0.0009 0.0534 0.6589 0.7046 -0.2646 37.9839

1500 0.0055 0.0585 0.6771 0.7217 -0.2663 36.4216

2000 0.0102 0.0630 0.6906 0.7342 -0.2663 35.2145

2500 0.0135 0.0666 0.7024 0.7442 -0.2663 34.2374

3000 0.0160 0.0690 0.7093 0.7510 -0.2653 33.5802
True values 0.2000 0.2400 0.9000 1.0800 -0.1000

Let &; be the ith element of the vector 6. From the definition of 6, we have:
a1 = Gs, by = gf Furthermore, we can compute the estimates 1m; = a3 + %',
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Table 2. The FF-SG estimates and errors

t a1 a2 a3 (e %} (0759 5 (%)
100 0.1174 0.0619 0.8128 0.9035 -0.1812 20.0681
200 0.1927 0.1290 0.9055 1.0303 -0.1449 9.0010
300 0.2224 0.1689 0.8981 1.0440 -0.1097 5.7755
500 0.2285 0.1994 0.9009 1.0734 -0.1009 3.4647
1000 0.2206 0.2145 0.9003 1.0762 -0.1026 2.2923
1500 0.2105 0.2298 0.8962 1.0786 -0.1004 1.0502
2000 0.2033 0.2333 0.8983 1.0778 -0.1023 0.5736
2500 0.1952 0.2395 0.8952 1.0825 -0.0981 0.5179
3000 0.1980 0.2361 0.8958 1.0754 -0.1055 0.6487

True values 0.2000 0.2400 0.9000 1.0800 -0.1000

5 Conclusions

An approach to identify Hammerstein systems with piece-wise linearity is pre-
sented in this paper. The model of the nonlinear system be turned into an
identification model by using a switching function, then based on the identifica-
tion model, we proposed an SG algorithm and an FF-SG algorithm to estimate
all the parameters of the system. The simulation results verify the proposed
algorithm.
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