
An Adaptive Context Acquisition Framework

to Support Mobile Spatial and Context-Aware
Applications

André Sales Fonteles�, Benedito J.A. Neto��, Marcio Maia, Windson Viana,
and Rossana M.C. Andrade���

Group of Computer Networks, Software Engineering and Systems (GREat), Federal
University of Ceará (UFC), Campus do Pici, Bloco 910, Zip Code 60455-760,

Fortaleza, CE, Brazil
{andrefonteles,beneditoneto,marcio,windson,rossana}@great.ufc.br

http://www.great.ufc.br

Abstract. The increasing number of mobile devices allows users to ac-
cess applications anytime and anywhere. In such applications, location is
a key information to improve the interaction between user and services.
Existing applications combine location with other context information,
such as weather, user’s activity, temperature, among others. However,
developing context-aware applications is still a non-trivial task due to
the complexity to implement context management. Additionally, exist-
ing context management infrastructures are too brittle to handle changes
in the underlying execution infrastructure. In this scenario, this work
proposes a context acquisition framework, which tries to reduce the de-
velopment complexity of mobile spatial and context-aware applications.
The framework uses tuples space and OSGi to promote uncoupling and
to adapt itself according to application requirements. A proof of concept
was developed in order to show how spatial and context filters can be
easily implemented during the development of a tracking application.

Keywords: GIS, Context-Aware, Adaptation, Mobility, Android.

1 Introduction

The increasing number of mobile devices, such as smart phones and tablets,
allows users to access the Internet and a wide range of applications anytime
and anywhere. This scenario converges to the concept of Ubiquitous Computing
predicted by Mark Weiser [20], where the most profound technologies are those
that disappear, becoming part of everyday life.

Once one application can be accessed anytime and anywhere, the user’s lo-
cation can be relevant to improve the interaction among user, application and

� Master Scholarship (MDCC/DC/UFC) sponsored by CNPQ.
�� Master Scholarship (MDCC/DC/UFC) sponsored by CAPES.

��� Researcher scholarship - DT Level 2, sponsored by CNPq.

S. Liang, X. Wang, and C. Claramunt (Eds.): W2GIS 2013, LNCS 7820, pp. 100–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.great.ufc.br


An Adaptive Context Acquisition Framework 101

services provided. For example, if a user is hungry and decides to eat something,
an application can provide a list of nearby restaurants without any need of ex-
plicit asking the user for his/her location. Many mobile applications have been
already developed using spatial data in order to provide personalized services
and content, such as Google Places1, Localscope2 and Wikicrimes Mobile3, from
the WikiCrimes [7] project.

Moreover, some studies in mobile applications have combined user’s location
with a larger data set concerning the user’s situation, which is considered as
user’s context. Taking into account that Dey and Abowd [1] defines contextual
information as any information that can be used to characterize the situation of
entities considered relevant to the interaction between a user and an application,
including the user and the application themselves.

The development of mobile applications that integrate spatial information
with context data is an important research subject in many domains: from mul-
timedia [3][17] to mobile learning [9]. These applications use contextual infor-
mation (e.g., weather forecast, temporal data, user’s activity, presence of nearby
friends or devices) to provide relevant services, to adapt user interface or to
produce meta data about multimedia documents.

Despite the benefits of using contextual information to improve mobile appli-
cations, to implement context acquisition, management and exploitation meth-
ods can be a difficult task. The more contextual information is considered by
the application, the greater is the challenge.

First of all, context data is often provided by physical sensors (e.g., GPS, ther-
mometers and accelerometers) as low level information (e.g., latitude, longitude
or temperature in degrees). Applications, otherwise, expect high level context
data to adapt their behaviour according (e.g., user’s current city and if a day
is warm or cold). Context-aware applications developers should implement code
to provide this high level context information.

Second, to deal with physical sensors may require developer’s expertise in some
specific hardware. To develop a logical sensor with a context inference mechanism
need even more specific knowledge. For example, to develop a logical sensor that
given the data from an accelerometer, it infers if the user is walking, running
or still is not a trivial task. In addition, mechanisms to detect user’s situation
and react according are frequently integrated to the code responsible for the
application business logic, which makes code reuse a problematical activity.

In this scenario, we propose a context acquisition framework implemented in
the Android platform, which tries to reduce the complexity of the development
of mobile spatial and context-aware applications. The framework provides con-
text information as tuples in a shared memory space (i.e., tuple space). Mobile
applications can connect to the tuple space to query contextual information or
to subscribe for being notified when the user’s situation changes. Spatial fil-
ters can be specified and combined with other context filters to compose this

1 http://www.google.com/places/
2 http://www.cynapse.com/localscope
3 http://www.wikicrimes.org

http://www.google.com/places/
http://www.cynapse.com/localscope
http://www.wikicrimes.org


102 A.S. Fonteles et al.

notification rule. For the application developers, no knowledge concerning the
physical layer is required. As a consequence, the framework reduces coupling
among applications and the context acquisition layer. This clear separation be-
tween context acquisition and context consumption allows the framework to
adapt the way context is acquired without the perception of the applications
above. This adaptation mechanism tries to reduce resource consumption and
provides transparency when sensors are switched.

The remainder of this paper is divided as follows: Section 2 presents the
theoretical foundations of our work, which includes the description of the SySSU
middleware. Section 3 describes the proposed framework, how it extends the
SySSU middleware for including spatial and context-aware filters. The fourth
section presents a proof of concept we have developed to illustrate the notification
and adaptation mechanisms. Finally, Section 5 contains conclusions and future
works.

2 Theoretical Foundations

The development of mobile and context-aware applications is not a novel domain.
Many technologies have been proposed by researchers and companies aiming to
assist developers and software engineers in the task of designing, implementing
and testing these applications. In this section, we briefly present achievements
and limitations of these approaches. Some of them have been reused, extended or
inspired our framework. In particular, we describe SysSU, a middleware proposed
by our research group, which is adapted and extended in this work.

2.1 Context-Aware Supporting Infrastructures

In an attempt to deal with the complexity of context-aware systems, many frame-
works and middleware platforms have been proposed by researchers, as can be
seen in [2], [8] and [5]. Baldauf et al. [2] and Marinho et al. [13] identify recurrent
architecture layers and their roles in existing frameworks, as follows:

– The Sensors Layer consists of a collection of sensors, varying from physi-
cal and logical to virtual. Virtual sensors gather context information from
software application or services (e.g., accessing a weather Web Service).

– The Raw Data Retrieval Layer is responsible for retrieving context data.
Usually, this layer is composed of wrapper components, which encapsulate
sensors, making low-level details, such as hardware access, transparent to ap-
plications. Another frequently feature is interface standardization, focused
on maximize component reuse. It is possible, for instance, to replace a com-
ponent that uses GPS by one that uses cellular antenna triangulation to
provide location without major modifications in the system.

– The Preprocessing Layer is responsible for translating raw context informa-
tion into semantic-enriched information. This layer is uncommon in mobile
context-aware systems since few inference mechanisms are available on mo-
bile platforms.



An Adaptive Context Acquisition Framework 103

– The Storage/Management Layer organizes context information and offers
them via a public interface to applications.

– The Application Layer is where the applications using the framework are.
These applications are responsible for implementing methods to react and
adapt to changes in context.

One important characteristic of existing frameworks and middleware platforms
is that they provide means for applications to adapt to context changes. These
frameworks, however, do not adapt themselves to the context [5][14]. Further-
more, many of them are monolithic systems, in a sense that their components
cannot be deployed separately [14]. Their lack of adaptation capabilities plus
their inflexibility to add new components make it difficult to use them in mobile
devices with limited resources, inserted in dynamic environments with continual
changing contexts. Additionally, analyzing the previous cited surveys on con-
text awareness, there are no references to any work supporting geographic data
management and operations.

There are existing frameworks and middleware platforms somehow similar to
our approach. In [16] is proposed a context framework for mobile devices run-
ning Android called ContextDroid. Its main characteristics are: efficiency, exten-
sibility and portability. Although ContextDroid is unable to adapt its context
acquisition mechanism, it proposes a context acquisition infrastructure based on
the component oriented programming (COP) model of the Android platform.
Our proposed framework uses a similar approach, but the life cycle management
of the components is achieved using OSGi4.

Kramer et al. [10] proposes an infrastructure for context acquisition that mon-
itors context changes independently of application. This infrastructure does not
adapt itself as well, but it uses the strategy that a single instance of the in-
frastructure is shared by many applications in a device, optimizing resource
utilization. The same strategy of a single instance is adopted by our proposed
framework.

In [14] it is presented a framework capable of performing deployment and
runtime adaptation of its components. This framework aims to achieve a bet-
ter resource utilization in mobile devices. Our adaptation mechanism is inspired
by this work. At last, authors in [11] present a context-monitoring framework
called MobiCon. Our proposed framework is similar to MobiCon from many
perspectives. First of all, both architectures allow different applications to share
a single framework instance. Furthermore, MobiCon’s approach for context ac-
quisition adapts itself, minimizing the number of working components based on
the interest of the applications (expressed by queries). Despite these similarities,
MobiCon is event oriented and does not provide contextual information in a
synchronous way.

Among the studied context-aware middlewares and frameworks, location data
is treated as high-level abstractions (e.g., location=home, theater). They rarely
provide mechanisms to deal with spatial relations and operations, such as dis-
tance among points and regions, and topology relations (e.g., inside, outside).

4 http://www.osgi.org

http://www.osgi.org


104 A.S. Fonteles et al.

2.2 SysSU

SysSU (System Support for Ubiquity) [12] is an infrastructure that aims to pro-
vide mechanisms to implement the main requirements of ubiquitous systems,
such as coordination and service discovery/description. It implements a coor-
dination model formed by the composition of tuple space [4] and event based
[6] approaches. The SysSU permits the execution of operations like writing and
reading tuples, synchronously or asynchronously.

A tuple is composed of a set of key/value fields. For example, {(user,“John”),
(age,10),(gender,“M”)}. There are two ways for an application to access a tuple
published at SysSU. The first one is to query it. Doing so, the information should
be available before it is required by the application. The second one is event based
and is used when the information is not yet available or an application wants to
be notified every time a new information is published. Both methods make use
of templates and filters to select the required tuples. A template is a collection
of fields representing a set or a subset of fields composing the required tuple.
For example, to find tuples containing a field with a key “user” it would be used
the following template: {(user,?)}. A template can also be used to match values.
For example, the template {(user,?),(age,10)} returns every user with 10 years
old. The templates can be also used to select tuples with same fields, or field
with a specific value. To improve the expressiveness of a tuple selection, a filter
should be used. A selection filter is created using Java and is only limited by the
program language expressiveness. Fig. 1 shows an example of filter that select
tuples where a field age is greater than 16. To use a filter it is necessary to create

Fig. 1. Example of a filter implementation

a class that implements a Java interface called IFilter. The IFilter is composed
by a single method called filter. Everytime a query is performed, a template is
formerly used to select a subset of all the tuples in SysSU, then every lasting
tuple will pass one by one through the filter method of the IFilter instance. This
method is responsible to check if these tuples meet the given requirements of the
filter.



An Adaptive Context Acquisition Framework 105

SysSU has showed its efficiency in improve the uncoupling among applications
and services that share the tuple space to coordinate their operations. It play a
central role in our framework providing uncoupling among Android applications
and the context acquisition layer. Originally, SysSU was proposed as a client-
server architecture where the server hosted the tuple space to share information
among thin clients. In order to reuse SysSU in our framework, we had to adapt
its architecture to fully embed it in a single mobile device where applications
can simultaneously access an internal tuple space. Its filters mechanisms are
extended to support spatial and context-aware notifications.

3 Proposed Framework

We propose a framework for Android that acquires context in an adaptive man-
ner designed to be used embedded in mobile devices, which has limited resources
and are inserted in dynamic environment. This framework allows deployment
and dynamic (i.e., runtime) adaptation of its context acquisition components
(CAC) to achieve a better resource usage [14]. Besides, dynamic adaptation
enables a system to fulfill its requirements in response to changes in context at
runtime [15]. Another characteristic of this framework for better resource utiliza-
tion is that just one single instance runs per device, while many applications can
use it.

Fig. 2 shows the architecture of the proposed framework. The main entities
of the architecture are Context Acquisition Component (CAC), CAC Manager,
Adaptation Reasoner, SysSU, SysSU Filters and Application.

A CAC is a component type that wraps physical, logical and virtual sensors
and provides context information to the framework. These components can be
started, stopped, installed and removed through the CAC Manager even during
runtime. To provide such flexibility the CAC Manager makes use of OSGi frame-
work. The manager is not responsible for reasoning about what configuration of
CACs the framework will use. This is a role of the Adaptation Reasoner. The
Adaptation Reasoner decides what CACs should be used at runtime according
to the needs of the Applications.

Our framework provides a low coupled interaction with the application using
an infrastructure called SysSU. SysSU is proposed by Lima et al.[12] based on
tuple space that provides means of coordination and interaction that are decou-
pled for the development of ubiquitous systems. All the communication between
the application and the framework is done by using SysSU. Applications per-
form queries for context information through SySU. The Adaptation Reasoner
then determines a valid configuration of CACs that fulfills the requirement of the
queries and use the CAC Manager to achieve this configuration. Finally, the run-
ning CACs publish their context information at SysSU where the applications
are able to access it.

The SysSU Filters is an optional API intended to provide a collection of filters
(see Session 2.2) used to query or to subscribe to events based on contextual
information. This API also should provides spatial filters to manage geographic



106 A.S. Fonteles et al.

Fig. 2. Architecture of the proposed framework

contextual information. At the moment, we only provide two of there filter as a
proof of concept.

3.1 Context Representation

In order to allow communication between components and applications, it is
necessary to use a shared vocabulary to represent types of context information.
Each type of context information (e.g., temperature, location and weather) re-
quires a unique key or identifier that should be used by CACs, to determine
what kind of information it provides to framework and to publish information,
and by applications to query this same kind of information.

We defined, based on the Management Information Base (MIB)5 model, a
hierarchical scheme to generate unique keys, called context keys (CK), to types
of context information. Using this schema, a contextual information is refer-
enced using a sequence of names separated by points. For instance, a key con-
text.device.location references to a device’s location information. Thus, any CAC
that publishes a contextual information of a device’s location at SysSU should
use this CK. In order for an application to find that information at SysSU, the
same CK should be used.

Fig. 3 shows a subset of the hierarchy already defined to compose CKs. As
soon as new CACs providing new kinds of context are developed, this hierarchy
can be extended from any node at the tree.

5 http://www.ieee802.org/1/pages/MIBS.html

http://www.ieee802.org/1/pages/MIBS.html


An Adaptive Context Acquisition Framework 107

Fig. 3. Subset of the hierarchy already defined to compose CKs

Besides the need of CKs to identify kinds of context, it is also necessary to
specify how can such information be represented on a tuple space. Based on a
context metamodel proposed by Vieira et al. [19], we define that a tuple with
context information (called context tuple) must have at least four fields:

– ContextKey: In this field, the CK representing the kind of context informa-
tion at the context tuple should be inserted. Applications should use this
field to match tuples with their required kinds of context.

– Source: It informs the source of the information. Contextual information can
be originally provided by physical, logical and virtual sensors.

– Values: This field contains an array with the actual values of the context. For
example, in a context tuple representing an ambient temperature in Celsius,
this array would have one index with a value such as 28.

– Timestamp: This field contains the time, in milliseconds, which a contextual
information was read.

Others fields can be added according to the needs of contextual representation.
For example, in some cases, it is added an Accuracy field where the accuracy
(precision) of the reading is set (e.g., user’s location with a accuracy of 5 meters).
Fig. 4 shows examples of context tuples.

Using the CK definition and the context tuple aforementioned, applications
may access the tuple space and execute queries or subscribe themselves to be
notified when an specific context information is generated, as described in section
2.2. For instance, let an existing CAC be responsible for the address of the user,
in which its CK is context.device.location.address. Applications may access the
address of the user using the {(contextkey,“context.device.location.address”)}
template.

3.2 Spatial Filters

In most part of the mobile and context-aware applications, user’s location infor-
mation plays an important role. However, the manipulation of geographic data in
mobile applications is a difficult task, especially, for inexperienced developers in
the domain. In some cases, developers will be unable to use a remote geographic



108 A.S. Fonteles et al.

Fig. 4. Examples of context tuples

database to answer simple spatial queries such as “what is the minimum distance
in meters between the user and a given spatial point?” or “is the user inside a
given region?”. For instance, when there is no available internet connection or
when the application runs locally in the mobile device.

In addition, analyzing surveys on frameworks and middleware platforms for
context management as [2], [8] and [5], one can conclude that these infrastruc-
tures provide few services or mechanisms for dealing with geographic data.

To reduce this inconvenience, the proposed framework enables the develop-
ment and reuse of code for managing this type of data, by extending the notifica-
tion filters of SysSU with spatial operations. As part of this work, we developed
two filters for creating queries and events based on geographical information:
DistanceFilter and PlaceFilter.

The DistanceFilter is used when an application wants to know if the user is
at a minimum distance of a specific coordinate. It was developed making use of
the class Location of the Android Framework. The Location class has a method
called distanceTo that, according to the Android documentation6, returns the
approximate distance in meters between two given locations.

The PlaceFilter is used to determine if the user is within one or more geo-
graphic areas determined by a set of coordinates, as shown in Fig. 5. For example,
a PlaceFilter can be used by a mobile learning application, which requires a no-
tification when a user is inside or near to a historical monument in order to
play video or audio containing related information. This filter also makes use
of a third-party API, called JST7, to test intersections between a polygon and
a point. The JTS is an API of 2D spatial predicates and function. We did not
use map projections to transform latitude and longitude to points in a cartesian
plan, so this filter is an approximation.

6 http://developer.android.com/reference/android/location/Location.html
7 http://www.vividsolutions.com/jts

http://developer.android.com/reference/android/location/Location.html
http://www.vividsolutions.com/jts


An Adaptive Context Acquisition Framework 109

Fig. 5. Example of an area used by PlacesFilter

Like the two spatial filters aforementioned, our framework enables developers
to create new filters from the domain specific needs of their applications and
share it as a Java class for reuse purposes.

3.3 Adopted Context Definition

As we discussed before, Dey and Abowd defined context as any information that
can be used to characterize the situation of entities considered relevant to the
interaction between a user and an application. In this work, we adopted another
definition of context made by Viana [18]. Viana extends the former definition but
focusing at context acquisition, and affirms that context can be characterized as
an intersection between two dynamic and evolutionary sets, as shown in Fig. 6.

A set is named Interest Zone (IZ) and is contains all the information related
to environment and user that the system would like to know. The other set is
named as Observation Zone (OZ), where there are all contextual information
that the system can obtain. The intersection between what is interesting to
the system and what the system can observe in a certain time is considered
as context. For example, suppose a smartphone application that, according to
the ambient sound, adjust the bell volume. In this case, the ambient sound is
an element from IZ, because the system wants this information. Through the
device’s microphone is possible to capture the ambient sound, then, it is also
in the OZ. Finally, for being in both sets, the ambient sound is considered as
context to the application.

The elements that are in IZ and OZ may change over time. Following the
previous example, as the time pass, the user can configure his/her smartphone
to silent mode. If this occurs, his device will not emit any sound alert. Thus, it
does not matter to the system to have knowledge about the ambient sound to
adjust the bell. This condition removes the ambient sound from IZ, although it



110 A.S. Fonteles et al.

Fig. 6. Context as an intersection between interest zone and observation zone. Adapted
from [18]

is still in OZ. Once the ambient sound is not present in both sets at the same
time anymore, it is not considered as context. Likewise, even if the device was
not in silent mode, its microphone might be damaged, and this would be an
impediment to the capture of the ambient sound. Therefore, it would not be
in OZ and would not be part of the context, despite the fact is still present in
IZ. The behaviour previously described is known as the context evolutionary
feature. Formally speaking, we can say that the observed elements that compose
the context in a certain time t are not necessarily the same in another time t’.

Each application that uses the proposed framework must send an updated
CK list that represents its interests. This list, along with its possible interests
(dependencies) of running CACs, represents the IZ for the framework. On the
other hand, the set of all context CKs provided by running CACs represents the
OZ.

3.4 Adaptation Mechanism

The adaptation of the proposed context acquisition framework takes place in two
different moments: deployment time and runtime. Deployment time adaptation
permits the developer to install strictly those CACs with CKs required by the
applications.

Additionally, runtime adaptation is performed based on the context of the run-
ning applications. Context, as previously described, is the intersection between
Interest Zone and Observation Zone. Thus, the CAC lifecycle management al-
lows the framework to stop and remove CACs in order to optimize resource
consumption based on the current context of all applications. The main goal of
the runtime adaptation is to reach a state where IZ contains the OZ, as shown in



An Adaptive Context Acquisition Framework 111

Fig. 7. Therefore, all unnecessary CACs in a given time are stopped. When the
IZ changes, the adaptation mechanism is responsible for detecting this change
and searches for compatible CACs to handle the new IZ.

Fig. 7. Context acquisition adaptation behaviour

4 Validation

As a proof of concept, in this section we describe how an application can be
implemented using our framework to incorporate a context-aware behaviour and
easily react for location and context changes. We define a scenario where an
application tracks a user trajectory. Every coordinates pair of the trajectory is
annotated with more contextual information (e.g., ambient light, temperature
and relative humidity). These kind of contextual “log” is common on many
multimedia applications, such as Photomap [17] and Captain [3]. We also define a
region on map (e.g., an area around a square), in a certain point of the trajectory,
where an application would desire to be notified to perform some action when a
user get inside or nearby (depending on the filter). This feature is very common
in mobile location based applications. For instance, a mobile learning application
that proposes multimedia content about a historical monument when the user
is inside or in the neighbourhood, can use the same filter mechanism.

The track application was implemented in Android using our framework.
Fig. 8 shows a visual representation of some tracked points acquired during an



112 A.S. Fonteles et al.

real application usage test, in which the user walked through some street blocks.
Fig. 8 also presents a region of interest, where our application successfully get
warned.

Fig. 8. Visual representation of some tracked points acquired

To use our framework in the track application, three steps were necessary to
follow:

1. publish IZ in the tuple space;
2. filter subscription; and
3. tuple space query

The first step in the application development was to publish its IZ at SysSU
tuple space. This step was necessary to allow the framework to adapt its OZ
enabling the necessary CACs. Fig. 9 shows how we did it. SysSUAndroid is the
hotspot of our framework,

Fig. 9. Publishing application’s interest

Once the IZ was published at the tuple space, the application has subscribed
to listen new context tuples when user’s location was published by CACs. Sub-
scriptions need three phases. First, we created a tuple template as following
{(ContextKey, “context.device.location”)}. Second, we created a class called



An Adaptive Context Acquisition Framework 113

LocationReaction that implements an interface called IReacion and uses the
template. This class will be notified every time a new tuple is published if this
tuple matches with our template. Finally, in order to use the reaction, the track
application subscribed through a method called subscribe, as shown in Fig. 10.

Fig. 10. Subscribing to receive events

In our IReaction implementation, everytime the application received an event
of a new context tuple with user’s location, the application read synchronously
the state of the ambient light, temperature and relative humidity. All these
metadata was associated to the location information in a log file. Fig. 11 shows
how one can query a context information from tuple space synchronously with
our framework.

Fig. 11. Querying a context information from tuple space synchronously

Finally, we subscribed again to the framework, this time to receive events
when the user entered in a defined region (an area around a square). We created
another class implementing IReaction that was responsible to log when this situ-
ation occurs. To perform this task, the same template of the previous IReaction
were reused. In this case, it was necessary to use the PlaceFilter described in
Section 3. To use a filter together with a IReaction, we should request a method
called getRestriction, which return this filter. Fig. 12 shows how we created the
PlaceFilter instance.

Fig. 12. Creating a PlaceFilter instance



114 A.S. Fonteles et al.

This proof of concept shows how the context acquisition layer is isolated from
the application code. As seen, the developer of a mobile application should only
be concerned about creating filters and query the contextual properties to which
the application is interested. No code for accessing the physical and logical sen-
sors is required to be implemented by third application developers. This allows
the framework to change how the context acquisition is performed without the
application worry about these changes (e.g., sensor errors, sensors reconfigu-
ration to reduce resource consumption). In addition, the framework facilitates
the development of this kind of application by hiding the complexity of context
acquisition and matching.

5 Conclusion and Future Work

This paper presented an adaptive context acquisition framework to support mo-
bile spatial and context-aware applications. Its main benefits are the flexibility
to adapt the context acquisition infrastructure both at deployment time and
at runtime, minimizing resource consumption and improving overall uncoupling
between the application and the context acquisition infrastructure.

The second benefit is the ease with spatial filters that are implemented and
reused, facilitating the use of mechanisms to deal with spatial relations and
operations, such as distance among points and regions, and topology relations.
Then, spatial and other context information is aggregated, providing mechanisms
for applications to perform more elaborate queries.

As a future work, a online CAC repository is going to be developed, permit-
ting CACs to be accessed at runtime. This repository would be used in case of
an application interest can not be satisfied. Also, we would like to increase the
number of filters to be used with SysSU to facilitate the management of contex-
tual data. Finally, information regarding quality of service (QoS) is going to be
annotated on each CAC, permitting applications to consider QoS when deciding
which CAC is more appropriate in a given situation.

Acknowledgements. This work is a partial result of the UbiStructure project
supported by CNPq (MCT/CNPq 14/2011 - Universal) under grant number
481417/2011-7, and FUNCAP project number PJP-0072-00091.01.00/12. It was
also partially funded by the Program of Scientific Cooperation called STIC-
AmSud. The sponsored project is entitled Learning While Moving (LWM).

References

1. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307.
Springer, Heidelberg (1999), http://dx.doi.org/10.1007/3-540-48157-5_29

2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

http://dx.doi.org/10.1007/3-540-48157-5_29


An Adaptive Context Acquisition Framework 115

3. Braga, R.B., de Moraes Medeiros da Costa, S., de Carvalho, W.V.,
de Castro Andrade, R.M., Martin, H.: A Context-Aware Web Content Gener-
ator Based on Personal Tracking. In: Di Martino, S., Peron, A., Tezuka, T.
(eds.) W2GIS 2012. LNCS, vol. 7236, pp. 134–150. Springer, Heidelberg (2012),
http://www.springerlink.com/index/0U2052W26025Q545.pdf

4. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458
(1989), http://doi.acm.org/10.1145/63334.63337

5. Da, K., Dalmau, M., Roose, P., et al.: A survey of adaptation systems. International
Journal on Internet and Distributed Computing Systems 2(1), 1–18 (2011)

6. Eugster, P., Felber, P., Guerraou, R., Kermarrec, A.M.: The many
faces of publish/subscribe. ACM Computing Surveys 35(2), 114–131
(2003), http://portal.acm.org/citation.cfm?doid=857076.857078,
http://dl.acm.org/citation.cfm?id=857078

7. Furtado, V., Ayres, L., de Oliveira, M., Vasconcelos, E., Caminha, C., D’Orleans,
J., Belchior, M.: Collective intelligence in law enforcement - the wikicrimes system.
Inf. Sci. 180(1), 4–17 (2010), http://dx.doi.org/10.1016/j.ins.2009.08.004

8. Hong, J., Suh, E., Kim, S.: Context-aware systems: A literature review and classi-
fication. Expert Systems with Applications 36(4), 8509–8522 (2009)

9. Hwang, G., Tsai, C., Yang, S., et al.: Criteria, strategies and research issues
of context-aware ubiquitous learning. Educational Technology & Society 11(2),
81–91 (2008)

10. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensi-
ble, self contained, layered approach to context acquisition. In: Proceedings of the
Third International Workshop on Middleware for Pervasive Mobile and Embedded
Computing, p. 6. ACM (2011)

11. Lee, Y., Iyengar, S., Min, C., Ju, Y., Kang, S., Park, T., Lee, J., Rhee, Y.,
Song, J.: Mobicon: a mobile context-monitoring platform. Communications of the
ACM 55(3), 54–65 (2012)

12. Lima, F., Rocha, L., Maia, P., Andrade, R.: A decoupled and interoperable archi-
tecture for coordination in ubiquitous systems. In: 2011 Fifth Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), pp. 31–40. IEEE
(2011)

13. Marinho, F.G., Andrade, R.M., Werner, C., Viana, W., Maia, M.E.,
Rocha, L.S., Teixeira, E., Filho, J.B.F., Dantas, V.L., Lima, F., Aguiar,
S.: Mobiline: A nested software product line for the domain of mobile
and context-aware applications. Science of Computer Programming (2012),
http://www.sciencedirect.com/science/article/pii/S0167642312000871

14. Preuveneers, D., Berbers, Y.: Towards context-aware and resource-driven self-
adaptation for mobile handheld applications. In: Proceedings of the 2007 ACM
Symposium on Applied Computing, vol. 11, pp. 1165–1170 (2007)

15. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2),
14 (2009)

16. Van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Contextdroid: an
expression-based context framework for android. In: PhoneSense 2010: Interna-
tional Workshop on Sensing for App Phones, pp. 6–10 (2010)

17. Viana, W., Filho, J.B., Gensel, J., Villanova Oliver, M., Martin, H.: PhotoMap
– Automatic Spatiotemporal Annotation for Mobile Photos. In: Ware, J.M.,
Taylor, G.E. (eds.) W2GIS 2007. LNCS, vol. 4857, pp. 187–201. Springer,
Heidelberg (2007)

http://www.springerlink.com/index/0U2052W26025Q545.pdf
http://doi.acm.org/10.1145/63334.63337
http://portal.acm.org/citation.cfm?doid=857076.857078
http://dl.acm.org/citation.cfm?id=857078
http://dx.doi.org/10.1016/j.ins.2009.08.004
http://www.sciencedirect.com/science/article/pii/S0167642312000871


116 A.S. Fonteles et al.

18. Viana, W.C.: Mobilité et sensibilité au contexte pour la gestion de documments
multimédias personnels: CoMMediA. Ph.D. thesis, Université Joseph-Fourier -
Grenoble (2010), http://hal.archives-ouvertes.fr/tel-00499550/

19. Vieira, V., Tedesco, P., Salgado, A.C.: Designing context-sensitive systems: An in-
tegrated approach. Expert Systems with Applications 38(2), 1119–1138 (2011),
http://www.sciencedirect.com/science/article/pii/S0957417410004173; In-
telligent Collaboration and Design

20. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104
(1991)

http://hal.archives-ouvertes.fr/tel-00499550/
http://www.sciencedirect.com/science/article/pii/S0957417410004173

	An Adaptive Context Acquisition Frameworkto Support Mobile Spatial and Context-AwareApplications
	Introduction
	Theoretical Foundations
	Context-Aware Supporting Infrastructures
	SysSU

	Proposed Framework
	Context Representation
	Spatial Filters
	Adopted Context Definition
	Adaptation Mechanism

	Validation
	Conclusion and Future Work
	References




