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Abstract. In recent years, the linked open data (LOD) paradigm has
emerged as a promising approach to structuring, publishing, and shar-
ing data online, using Semantic Web standards. From a geospatial per-
spective, one of the key challenges consists of bridging the gap between
the vast amount of crowdsourced, semi-structured or unstructured geo-
information and the Semantic Web. Notably, OpenStreetMap (OSM)
has gathered billions of objects from its contributors in a spatial folkson-
omy. The contribution of this paper is twofold. First, we add a piece to
the LOD jigsaw, the OSM Semantic Network, structuring it as a W3C
Simple Knowledge Organization System (SKOS) vocabulary, and dis-
cussing its role in the constellation of geo-knowledge bases. Second, we
devise Voc2WordNet , a mapping approach between a given vocabulary
and WordNet, a pivotal component in the LOD cloud. Our approach
is evaluated on the OSM Semantic Network against a human-generated
alignment, obtaining high precision and recall.

Keywords: Geo-semantics, OpenStreetMap, Linked Open Data, OSM
Semantic Network, WordNet, Semantic alignment, Semantic mapping,
Voc2WordNet.

1 Introduction

Since its invention in the early 1990s, the World Wide Web (WWW) has en-
abled an unprecedented growth of digital data, offering a platform for publish-
ing, retrieving, and sharing any type of data across the globe. An enormous
volume of data has been disseminated online in a variety of formats, resulting in
an archipelago of incompatible data spaces. A crucial limitation to the full ex-
ploitation of this ocean of heterogenous data is the lack of clear semantics, which
hinders the ability to analyse, explore, and discover unexpected connections and
relations between entities.
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A prominent attempt to overcome this structural limitation of the WWW,
and provide a unified platform for data semantics, is Berners-Lee’s Semantic
Web [10]. One of the most successful outcomes of this ambitious initiative is
the so-called linked open data (LOD) paradigm, with the purpose of creating a
unified data space. To be classified as LOD, data must be released under open
licenses; saved in a machine-readable digital format; stored in non-proprietary
formats; accessible via URIs; and linked to other LOD [9].

As LOD is generated and published online, a growing web of inter-linked
datasets has emerged, resulting in the LOD cloud, also referred to as the Web of
Data, defined by Bizer et al. [11] as “a web of things in the world, described by
data on the Web” (p. 2). The more linked data is available, the more connections
can be discovered between datasets, exploiting network effects to deliver rich
and relevant results to users [21]. Large linked data repositories are maintained
online.1 Recently, the commercial potential of the paradigm has been highlighted
by Google’s Knowledge Graph, a large semantic artifact that utilises Freebase,
an LOD resource, to semantically enrich the search engine’s results [30].

As a large part of online data involves a spatial component, geographic open
data is a first class citizen in the LOD cloud [6]. Semantics is key to enabling the
usage, integration, and exploration of geographic data [1, 21]. The advantages
of the LOD paradigm applied to geographic information are particularly evident
in the context of geographic information retrieval (GIR), where existing tech-
niques have shown limited effectiveness [28]. A linked data search engine such as
DBpedia Faceted Search promises – and often returns – highly relevant results
to complex geospatial queries, such as ‘Rivers that flow into the Rhine and are
longer than 50 kilometers.’2

The emergence of the LOD infrastructure has a great potential for the dis-
semination of geographic data. A prominent example is found in the British
Ordnance Survey, which has embraced the paradigm and released some of its
resources as linked data [19]. In parallel, volunteered geographic information
(VGI) is gaining credibility as a source of detailed information generated by
non-expert users through crowdsourcing [13]. Challenging traditional top-down
cartographic engineering, OpenStreetMap (OSM) provides an open platform to
build a world map, tapping its contributors’ knowledge of their local geographic
context [12]. To date, a gap between VGI datasets and the LOD cloud exists,
and constitutes a barrier to the integration and usage of the data.

In this paper, we contribute to bridging the gap between VGI and the LOD
cloud in two ways. First, we describe how we have structured the OSM Seman-
tic Network using the W3C Simple Knowledge Organization System (SKOS), and
published online as LOD. The OSM Semantic Network offers a machine-readable,
structured, open conceptualisation of OSM semantics, and constitutes a seman-
tic support tool to interpret, search, and tap the project’s vast vector dataset. We
originally extracted the network from the OSMWiki website and other sources to
compute the semantic similarity of geographic terms [5]. Second, we outline and

1 See for example http://thedatahub.org (acc. Oct 30, 2012).
2 http://wiki.dbpedia.org/FacetedSearch (acc. Oct 30, 2012).
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evaluate Voc2WordNet , a semantic mapping technique to connect OSM terms to
WordNet synsets, enabling the discovery of rich semantic relations between terms
such as part-whole (e.g. part-of relations) and subsumption (e.g. is-a relations).
This semantic mapping is not a goal in itself, but can enable a number of search
operations on both OSM and WordNet.

The remainder of this article is organised as follows. Section 2 reviews relevant
work in the areas of LOD, open geo-knowledge bases, OSM semantics, semantic
mapping, and WordNet. Section 3 presents an LOD resource extracted from
OSM semantics, the OSM Semantic Network. Section 4 describes and formalises
a generic approach to semantic mapping onto WordNet. Subsequently, we report
on the evaluation of the approach, executed on a subset of terms from the OSM
Semantic Network (Section 5). This paper concludes with a summary of results
and directions for future research in Section 6.

2 Related Work

OSM has received wide attention, generating a large number of academic studies
and commercial projects. This section surveys related work relevant to the OSM
Semantic Network, VGI, and WordNet, with respect to geo-semantics and the
LOD paradigm.

2.1 OpenStreetMap Semantics

From its foundation in 2004, OSM has established itself as the most ambitious
VGI project [12]. From a semantic viewpoint, OSM is a semi-structured folkson-
omy, which allows contributors to create any new term to describe the objects
that they find worth mapping [32]. This radically open approach to geo-semantics
is supported by the fact that an all-encompassing geographical ontology is an
unrealistic endeavour, and that a bottom-up negotiation allows for more experi-
mentation, and attracts non-expert contributors. As project founder Steve Coast
[12] succinctly put it, “to dictate [terms] as in a top-down ontology would have
been nuts.” The downsides of the adoption of a semi-structured folksonomy in-
clude wide variability and ambiguity in the interpretation of terms, proliferation
of near-synonym terms, and lack of explicit semantic relations, resulting in a
‘spatially rich and semantically poor’ dataset [4].

In recent years, efforts have been undertaken to strengthen the thin seman-
tic ground on which OSM rests, including LinkedGeoData [2], and OSMOnto.3

Baglatzi et al. [3] devised an approach to grounding the OSM folksonomy on the
DOLCE upper-level ontology [17]. Acknowledging the extreme difficulty in im-
plementing such semantic mapping in an automatic way, they designed a game
with a purpose (GWAP) to crowdsource a human-quality mapping. In our previ-
ous work, we devised an initial semantic integration between OSM and DBpedia,
geared towards exploratory navigation of Web maps [4].

3 http://wiki.openstreetmap.org/wiki/OSMonto (acc. Oct 30, 2012).
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To tap the knowledge contained in the OSM Wiki website, we extracted the
OSM Semantic Network via a dedicated open source crawler. An early, off-line
version of the semantic network was utilised to compute the semantic similarity
of OSM terms using link-based measures [5]. In this paper, we extend the OSM
Semantic Network by re-structuring it as a SKOS vocabulary, integrating it in
the LOD cloud, and devising a mapping technique to WordNet.

2.2 WordNet as Semantic Ground

Since the early 1990s,WordNet has been a precious semantic resource formany ap-
plications in natural language processing and artificial intelligence [16]. The core
element of WordNet is the ‘synset,’ a concept that represents set of synonymous
words, called ‘word senses.’ WordNet has found particular success in the areas of
word sense disambiguation and semantic similarity [26, 7]. Different components
of the network have been exploited to model the semantic similarity of its synsets,
tapping its deep taxonomy, and the word definitions, called ‘glosses’ [e.g. 29]. Al-
though the semantic network was not designed for this purpose, it has been fre-
quently used as an upper level ontology, i.e. a general-purpose semantic ground,
for example to discover semantic connections in unstructured data [22].

From a geospatial viewpoint, GeoWordNet aggregates WordNet synsets with
the open gazetteer GeoNames [18]. To date, none of the numerous alternative
semantic resources has yet managed to dethrone WordNet from its leading po-
sition as a general-purpose semantic ground. In the context of the LOD cloud,
WordNet is used as a high-quality primary information source in many projects
[6]. The lexical database is a well-established linked dataset, wired to a number
of open knowledge bases.4 These resources are inter-linked with DBpedia, a core
node of the LOD cloud. In this paper, we devise a general technique to map a
vocabulary onto WordNet, using it as a limited, and yet rich semantic ground.

2.3 Open Data Integration

To generate LOD, it is necessary to link the new entities to existing ones in the
LOD cloud, a process often called ‘bootstrapping’ [23]. The identification of the
same concepts and entites in heterogenous data spaces is crucial to supporting
the Semantic Web. Merging different conceptual schemas is a time-honoured
challenge in computer science, started well before the advent of the WWW.
Logical reasoning, machine learning, and statistical analysis have been utilised
to tackle the problem in the context of database schemas [27].

The Ontology Alignment Evaluation Initiative (OAEI) has proposed bench-
marks and performance metrics specifically tailored to the area of ontology align-
ment and integration [15]. Several approaches to generating a mapping have been
devised, both from an intensional and an extensional viewpoint. Terminologi-
cal methods rely on simple string matching between the terms, while semantic
methods compare the representation of terms in formal semantic models. Fur-
thermore, internal methods observe aspects of the terms in isolation, such as

4 http://www.w3.org/2006/03/wn/wn20/ (acc. Oct 30, 2012).
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Table 1. Namespaces of the OSM Semantic Network and related datasets

Abbr. Description URI

osn OSM Semantic Network http://spatial.ucd.ie/lod/osn/

owl OWL http://www.w3.org/2002/07/owl\#

rdfs RDF schema http://www.w3.org/2000/01/rdf-schema\#

dc Dublin Core http://purl.org/dc/elements/1.1/

skos SKOS http://www.w3.org/2004/02/skos/core\#

wn WordNet synset http://www.w3.org/2006/03/wn/wn20/instances/synset-

ws − word sense http://www.w3.org/2006/03/wn/wn20/instances/wordsense-

wns − schema http://www.w3.org/2006/03/wn/wn20/schema/

lgdo LinkedGeoData http://linkedgeodata.org/ontology/

the attribute ranges. By contrast, external methods analyse the relational struc-
ture of the ontologies, comparing the position of the terms relative to the other
terms. Finally, extensional methods perform the alignment based on distribu-
tional properties of term instances.

Despite the variety of existing mapping techniques, to the best of our knowl-
edge, a semantic mapping technique between a vocabulary and WordNet, geared
towards the ‘bootstrapping’ of the vocabulary in the LOD cloud, has not been
devised. Voc2WordNet has the purpose of filling this specific gap. As described
in Section 4, Voc2WordNet performs the semantic mapping between a vocab-
ulary term and a specific WordNet word sense from an intensional (i.e. lexical
overlap between the lexical definitions) and an extensional perspective (i.e. the
usage frequency). The next section describes our contribution to the area of VGI
in the LOD cloud.

3 The OSM Semantic Network as Open Data

The OSM Semantic Network is a semantic artifact containing the conceptualisa-
tion of OSM tags, which we developed in our previous work to provide a semantic
support tool for OSM.5 The artifact can be used to compute the semantic similar-
ity of tags [5]. In this section, we report on how the OSM Semantic Network has
been structured using W3C Simple Knowledge Organization System (SKOS),
and published online in the LOD cloud.

From a semantic viewpoint, OSM is a semi-structured folksonomy. The terms
are documented on the OSM Wiki website, in an open process of semantic ne-
gotiation and consensus-building. Unsurprisingly, the consistency in the actual
usage and intended meaning of these terms is rather low, resulting in seman-
tic ambiguity that hinders the possibility of exploiting the project’s rich vector
dataset [25]. The OSM Semantic Network provides a machine-readable structure
that can support the automatic manipulation of OSM features in data mining,
GIR, and information integration.

Initially developed as an offline dataset, the OSM Semantic Network has been
integrated in the LOD cloud. In order to facilitate the exploration and usage of

5 http://wiki.openstreetmap.org/wiki/OSMSemanticNetwork (acc. Oct 30, 2012).
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Fig. 1. The OSM Semantic Network in context

the network, we have published it online with a human-readable web interface.6

Figure 1 shows the location of the OSM Semantic Network in the context of
LOD, and the data flow from and towards related projects, including OSM,
LinkedGeoData, WordNet, and TagInfo. For the sake of brevity, all the URIs in
the remainder of this article are shortened (see Table 1).

We have structured the OSM Semantic Network as a SKOS vocabulary [24].
SKOS is a semantic formal language designed to allow the publication and shar-
ing of technical vocabularies, taxonomies, and classification systems. In a SKOS
scheme, the main semantic unit is the skos:Concept. A concept is a term that
can be defined using lexical definitions and linked to other concepts through se-
mantic relations. The semantic relations are explicitly left as generic as possible.
Concepts can be more general or specific than other concepts (skos:broader and
skos:narrower), and can be semantically related (skos:related).

Hence, each term defined in the OSMWiki website corresponds to a SKOS con-
cept. As the URIs are a key asset in LOD, the mapping between OSM tags and
OSM Semantic Network terms is direct and intuitive. For example, the tag wa-
terway=river corresponds to the term osn:term/k:waterway/v:river. The quality
of the SKOS vocabulary was assessed based on the criteria outlined by Suominen
and Hyvönen [31]. The OSM Semantic Network is linked to the LinkedGeoData
ontology, via about 660 skos:exactMatch relations. Our approach to grounding a
given vocabulary in WordNet is described in the next section.

4 Voc2WordNet , a Semantic Mapping Algorithm

This section presents Voc2WordNet , an algorithm devised to generate a semantic
mapping between a vocabulary and the lexical databaseWordNet. The algorithm
generates a semantic mapping between a given vocabulary V containing a set
of terms (e.g. a SKOS vocabulary), and WordNet synsets that are semantically
similar. Voc2WordNet can be used to map any vocabulary onto WordNet, en-
abling some degree of interoperability. More formally, a semantic mapping m
between term t ∈ V and synset s ∈ W with relation r has the form of a triple
< t, r, s >. In the OSM Semantic Network, we define a fine-grained semantic

6 Pubby, available at http://www4.wiwiss.fu-berlin.de/pubby (acc. Oct 30, 2012).
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mapping, based on the SKOS mapping relations.7 Hence, Voc2WordNet gener-
ates three symmetric mapping relations:

Exact (skos:exactMatch): Identical terms that can be used interchangeably with
high confidence (e.g. ‘university’ in OSM and LinkedGeoData). This relation
is logically equivalent to owl:sameAs.

Close (skos:closeMatch): Similar terms that might contain some contradiction,
and therefore cannot engage in identity (e.g. ‘wood’ in OSM and ‘forest’ in
WordNet).

Related (skos:relatedMatch): Terms that are semantically related by a non-
hierarchical relation (e.g. ‘power station’ in OSM and ‘electricity’ in Word-
Net). This relation is non-transitive.

The purpose of Voc2WordNet is to obtain correct mappings m =< t, r, s >
between the vocabulary V and the WordNet synsets W . For example, the def-
inition of wn:gallery-noun-3 is “a room or series of rooms where works of art
are exhibited.” By contrast, wn:gallery-noun-1 is defined as “spectators at a
golf or tennis match,” and wn:art-noun-1 as “the products of human creativ-
ity; works of art collectively.” Hence, the desired mappings are <osn:Art gallery
close wn:gallery-noun-3> and <osn:Art gallery related wn:art-noun-1>.

Voc2WordNet generates a set M of mappings m between a given vocabulary
V and the set of WordNet synsets W . Given a term t ∈ V , Voc2WordNet utilises
a lexical matching function on the words contained in t, taking compound words
into account (e.g. ‘swimming pool’), and then splitting them if not defined in
WordNet (e.g. ‘swimming’ and ‘pool’). If the set of matching wordsenses ws is
not empty, the algorithm relies on three indicators of semantic salience:

Word sense frequency f : The usage frequency f of a WordNet word sense is
correlated with its semantic salience. In the context of a shared vocabulary,
common word senses are more likely to be correct than uncommon word
senses. For example, for t =‘field’, ws:field-noun-1 (“a piece of land cleared
of trees and usually enclosed”) has a usage frequency f = 49, whilst ws:field-
noun-12 (“all of the horses in a particular horse race”) has f = 1. Indeed,
this assumption can be false in the context of open text.

Lexical overlap ol: Similar terms tend to be defined using the same words.
The lexical overlap ol is the number of word shared by two terms. Terms
showing high lexical overlap are more likely to be salient than terms that do
not show overlap. The overlap is considered after the removal of stopwords,
and lemmatisation, excluding the term that is being defined. For example,
the overlap between the definitions of term t (“A river is a body of water”)
and wn:river-noun-1 (“Rivers are natural streams of water”) is equal to 1.

Salient taxonomy Θ: If a vocabulary is domain specific, the mapping can be
restricted to a salient taxonomy Θ, i.e. a subset of WordNet. Salient word
senses tend to engage in semantic relations with salient synsets. Looking at
the noun taxonomy of WordNet, it is possible to select high-level synsets that

7 http://www.w3.org/TR/skos-reference/\#mapping (acc. Oct 30, 2012).
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are salient to the vocabulary’s domain. If the candidate synsets engage in
some relation with such salient taxonomical roots, they are more likely to be
valid than synsets that do not. For example, let us choose wn:artifact-noun-1
as a salient root, and ‘shelter’ as t. It is possible to infer that ws:shelter-
noun-2 (“protective covering that provides protection from the weather”) is
related to the salient root through a path of transitive subsumption relations
(wns:hyponymOf ), while ws:shelter-noun-4 (“a way of organizing business
to reduce the taxes it must pay on current earnings”) is not.

Formally, we define t as the input term, Ct as the set of candidates for term
t, ws as the candidate word sense, s as the corresponding synset, and Θ as a
manually selected salient taxonomy. The non-negative θ is set to 1 if s ∈ Θ, and
0 otherwise. The salience of the three indicators are captured in a normalised
score σ as follows:

σ(t, ws, s) =
2|Ct| − rank(f(ws)) − rank(ol(t, s)) + θ

2|Ct| − 1
(1)

σ ∈ [0, 1], rank ∈ [1, |Ct|]
θ = 1 if(s ∈ Θ), θ = 0 otherwise

The salience score σ captures the semantic similarity between term t and the
synset s, through the word sense ws, relative to the set of candidates Ct. The
ranking function rank is applied on the set Ct, and returns an integer between
1 and |Ct|. The score falls in the interval [0, 1], where 0 indicates no salience,
and 1 maximum salience. For example, given a Ct with three candidates, if ws
and s have the highest frequency (rank(f) = 1), the second highest overlap
(rank(ol) = 2), and s belongs to the salient taxonomy Θ (θ = 1), then σ = .8.

In order to provide more flexibility, the algorithm filters out candidates based
on a minimum frequency (fmin), and a minimum overlap (olmin). Once the
candidate having the highest σ has been selected, an appropriate relation r
must be chosen from the set { exact, close, related }. As a selection heuristic,
we define three boolean conditions, i.e. rank(f) = 1, rank(ol) = 1, and s ∈ Θ.
If all of the three conditions are true, r = exact; if at least two conditions are
true, r = close; othwerwise r = related. The detailed workings of the algorithm
are outlined in Algorithm 1. In the next section, Voc2WordNet is evaluated on
a real-world scenario, i.e. a subset of the OSM Semantic Network.

5 Evaluation

This section describes a preliminary experimental evaluation of Voc2WordNet ,
applying the semantic mapping technique to the OSM Semantic Network. The
technique obtains a high-precision mapping between the terms defined by the
OSM Semantic Network and WordNet. First, we generate an evaluation dataset
Mh (Section 5.1). Second, we define performance measures (precision and re-
call) that compare the machine-generated mapping M with the human mapping
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Algorithm 1. Voc2WordNet(V,W, olmin, fmin, Θ)

input : vocabulary V , set of synsets W , min overlap olmin, min word sense
frequency fmin, salient taxonomy Θ

output: Set M of semantic mappings m < . . . t, r, s >

1 M ← ∅
2 foreach term t ∈ V do
3 m← findSemanticMapping(t,Wt);
4 add m to M ;
5 extract terms from lexical definition of t to set Dt;
6 foreach term d ∈ Dt do
7 md ← findSemanticMapping(d,Wt)
8 add md to M ;

9 return M .

Function findSemanticMapping(t,Wt)

1 Ct ← ∅
2 foreach ws ∈ Wt do
3 find set of matching word senses ws ∈Wt with lexicalMatch;
4 find synset s corresponding to ws in WordNet;
5 fetch word sense frequency f(ws) from WordNet;
6 compute lexical overlap between definitions ol(s, t);
7 apply filters fmin and olmin;
8 compute salience score σ(s, ws, t);
9 add pair < s,ws > to candidate set Ct;

10 select best candidate sb ∈ Ct having max(σ(s,ws, t));
11 select relation r ∈ { exact, close, related };
12 generate mapping m =< t, r, sb > and return it.

Mh (Section 5.2). An experiment on a number of parameter combinations is
executed (Section 5.3), and the performance of Voc2WordNet is discussed and
summarised (Section 5.4).

5.1 Ground Truth

To construct a mapping gold standard, we select a random sample of 30 terms
from the OSM Semantic Network, corresponding to the 0.6% of the entire
dataset. The sample terms were manually mapped to semantically salient Word-
Net synsets. By manually selecting correct mappings between the 30 terms from
the OSM Semantic Network and WordNet synsets, we obtain a human-generated
mapping Mh, which includes 114 correct mappings. This dataset can be utilised
as a ground truth to evaluate Voc2WordNet , our semantic mapping technique.
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5.2 Evaluation Measures

To evaluate the performance of Voc2WordNet , we define the following per-
formance measures. Following Euzenat [14], we assume that a correct map-
ping m belongs both to the machine mapping M and the human mapping Mh

(m ∈ M ∧ m ∈ Mh). By contrast, an incorrect mapping only belongs to the
machine mapping (m ∈ M ∧ m /∈ Mh). Hence, we define precision P and recall
R of mapping M as:

PM =
|M ∩Mh|

|M | RM =
|M ∩Mh|

|Mh| PM , RM ∈ [0, 1] (2)

All these measures fall in the interval [0, 1], with 1 as the best possible result
(M ≡ Mh), and 0 as the worst (M ∩Mh = ∅). These measures will be used as
indicators of the quality of the semantic mapping in the next sections.

5.3 Experiment Set-Up

The algorithm Voc2WordNet takes five parameters: V,W, olmin, fmin, and Θ
(see Section 4). Keeping the vocabulary V and WordNet W constant, we want
to assess the impact of the other three parameters, olmin, fmin, and Θ. Hence,
we define the following parameters:

– Salient taxonomy Θ: either Θ ≡ W (i.e. taxonomy disabled), or a taxonomy
of geographic terms (2 options);

– Minimum lexical overlap olmin: {0, 1, 2} (3 options);
– Minimum word sense frequency fmin: {0, 1, 2} (3 options).

These parameters result in 18 unique combinations of parameters. A random
disambiguation approach is added as a baseline. In order to disambiguate the
terms from the OSM Semantic Network to the corresponding word sense in
WordNet synsets, we select a subset of the WordNet taxonomy Θ that is relevant
to the OSM context, i.e. entities and processes that are employed to describe
OSM objects.

By manually observing the upper level of WordNet (i.e. synsets with depth
≤ 3), we selected eight synsets as roots of the salient taxonomy (see Table
2). All children synsets were subsequently recursively extracted, resulting in a
salient taxonomy Θ of 6,312 noun synsets, navigating the wns:hyponymOf and
wns:partMeronymOf relations. The salient taxonomy corresponds to about 7% of
the entire WordNet noun taxonomy. The algorithm Voc2WordNet was executed
on the 18 parameter combinations.

Table 2. Salient synsets in the upper part of the WordNet taxonomy

Salient taxonomical roots in WordNet

wn:location-noun-1 wn:artifact-noun-1
wn:land-noun-2 wn:activity-noun-1
wn:ecosystem-noun-1 wn:water system-noun-1
wn:natural object-noun-1 wn:natural phenomenon-noun-1
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5.4 Experiment Results

The experiment generated 18 mappings of the OSM Semantic Network on
WordNet synsets. Each mapping was compared with the human-generated
dataset described in Section 5.1, obtaining precision and recall values. In or-
der to analyse the impact of each parameter on the results, we summarise the
performance indicators in Table 3, showing the mean precision P̄M and recall
R̄M . As expected, precision and recall are inversely proportional. All of the three
filters (Θ, fmin, olmin) have a positive impact on the precision, and a negative
impact on the recall. The filter based on the salient taxonomy Θ improves the
mean precision P̄M from .72 to .81, with a minimal loss of recall. Similarly,
the filter based on fmin and olmin increases the mean precision at the expense
of the mean recall. These results support the validity of the key ideas behind
Voc2WordNet , described in Section 4.

Table 3. Experiment results of Voc2WordNet on the OSM Semantic Network. (*) Best
precision and recall.

Parameter Parameter Mean Mean
name value P̄M R̄M

Random baseline − .21 .34

Taxonomy Θ off .79 .5*
on .88* .49

Min frequency fmin (off) 0 .82 .56
1 .84* .56
2 .84* .54

Min lexical overlap olmin (off) 0 .7 .82*
1 .75 .81
2 .87* .49

Upper bounds − .88 .82

Considering the upper bounds obtained in this preliminary experiment (P =
.88, R = .82), we consider Voc2WordNet to be a promising approach to ground-
ing a vocabulary such as the OSM Semantic Network in WordNet. The optimal
choice of the three parameters largely depends on the specific context in which
Voc2WordNet is being applied. Based on specific users’ needs, precision could
be favoured over recall, or vice-versa. In order to extend this initial evaluation
further, more terms could be included in the dataset, and the manual mapping
could be performed and validated by a group of independent human subjects.
In addition, the optimal parameters could be obtained using machine learning
techniques on a desired training set of mappings.

6 Conclusions

Linked open data (LOD) constitutes a promising paradigm to create a shared
semantic space, in which heterogenous geospatial datasets can inter-operate. In
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the LOD cloud, WordNet can be used as a shared semantic ground to enable
inter-operability between heterogenous vocabularies. In this paper, we described
our two-fold contribution to the LOD cloud. First, we described the structur-
ing of the OSM Semantic Network as LOD, using the W3C Simple Knowledge
Organization System (SKOS). Second, we outlined and evaluated a semantic
mapping algorithm, Voc2WordNet , which aimed at mapping a given vocabulary
onto WordNet. The following conclusions can be drawn:

– The OSM Semantic Network bridges the semantics of OSM data and the
LOD cloud. The network is extracted from the OSM Wiki website, a reposi-
tory where contributors define, edit, and document the semi-structured folk-
sonomy of tags. The dataset is structured as a SKOS vocabulary of terms
utilised to describe OSM geographic features. We made the OSM Seman-
tic Network freely available online,8 and we linked it to existing semantic
resources, including LinkedGeoData and TagInfo.

– Despite the advances reported in this article, the OSM Semantic Network
presents a number of open challenges. As happens with crowdsourced re-
sources, the network inevitably contains some degree of noise, ambiguity,
and incorrect semantic mappings. Being a folksonomy, the OSM Semantic
Network does not necessarily reflect ontological commitments in the vec-
tor data, and should therefore be utilised taking into account the intrinsic
uncertainty of VGI.

– Our algorithm Voc2WordNet offers a general semantic mapping technique
between a specialised vocabulary and the well-known lexical database Word-
Net. Given an input term from the vocabulary, Voc2WordNet identifies
salient synsets in WordNet using three salience indicators: (1) the usage
frequency of a term; (2) the term overlap between the lexical definition of
the given term and the WordNet definition; and (3) a manually selected
salient taxonomy. These indicators can be combined to increase precision,
with a minor loss in recall. Voc2WordNet was tested on the OSM Semantic
Network, obtaining high precision (.88) and recall (.82). A more extensive
evaluation is necessary to demonstrate the effectiveness of Voc2WordNet
across different vocabularies.

The OSM Semantic Network provides general-purpose semantic support for ex-
ploiting OSM data in geo-applications. Its integration with LinkedGeoData and
WordNet enables the discovery of implicit semantic relations between map fea-
tures, e.g. subsumption or meronomy, as well as the discovery of affordances, a
promising approach to modelling the role of places. The network can support a
number of semantic tasks, facilitating the computation of semantic similarity of
geographic terms, and the matching of the same entities across LinkedGeoData,
DBpedia, GeoNames, and other geo-knowledge bases [6].

Similarly, using GeoSPARQL [8] and federated queries over the LOD cloud,9

it is possible, for example, to retrieve the schools from LinkedGeoData within

8 http://wiki.openstreetmap.org/wiki/OSMSemanticNetwork (acc. Oct 30, 2012).
9 http://www.w3.org/TR/sparql11-federated-query (acc. Oct 30, 2012).
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a given geographic location, and to use the OSM Semantic Network to perform
a semantic query expansion to features semantically related to school, such as
kindergardens, highschools, and colleges.

Structuring VGI according to the LOD paradigm provides a valuable contri-
bution to deliver richer, more structured geospatial information to both humans
and machines. However, the LOD cloud presents a number of limitations that
need to be addressed, in particular in relation to the management of identity
[20], and spatio-temporal reasoning [21]. These issues notwithstanding, the LOD
cloud already provides an open laboratory to a growing community of scien-
tists, software developers, and GIS specialists. The OSM Semantic Network and
Voc2WordNet constitute two further steps towards the inclusion of VGI into this
vast semantic space.
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