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Abstract. In this paper we propose a novel human-identification scheme from 
long range gait profiles in surveillance videos. We investigate the role of multi 
view gait images acquired from multiple cameras, the importance of infrared 
and visible range images in ascertaining identity, the impact of multimodal 
fusion, efficient subspace features and classifier methods, and the role of 
soft/secondary biometric (walking style) in enhancing the accuracy and 
robustness of the identification systems, Experimental evaluation of several 
subspace based gait feature extraction approaches (PCA/LDA) and learning 
classifier methods (NB/MLP/SVM/SMO) on different datasets from a publicly 
available gait database CASIA, show significant improvement in recognition 
accuracies with multimodal fusion of multi-view gait images from visible and 
infrared cameras acquired from video surveillance scenarios. 

Keywords: multimodal, multiview, PCA, LDA, MLP, identification, SMO, 
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1 Introduction 

Automatic human identification from arbitrary views is a very challenging problem, 
especially when one is walking at a distance. Over the last few years, recognizing 
identity from gait patterns has become a popular area of research in biometrics and 
computer vision, and one of the most successful applications of image analysis and 
understanding. Also, gait recognition is being considered as a next-generation 
recognition technology, with applicability to many civilian and high security 
environments such as airports, banks, military bases, car parks, railway stations etc. 
For these application scenarios, it is not possible to capture the frontal face, and even if 
it can be captured, it is of low resolution. Hence most of traditional approaches used 
for face recognition fail. However, several physiological and biomechanical studies 
have shown that human gait is inherently multimodal, and is based on kinematic 
interaction between several motion articulators, such as lower and upper limbs and 
other biomechanics of joints. It is person specific based on body weight, height, joint 
mobility in the limbs, and other behavioural nuances. If we can model these inherently 
multimodal traits , it is possible to identify human from a distance from their gait or 
from the way they walk. Even if frontal face is not visible, it is possible to establish the 
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identity of the person using certain static and dynamic multimodal cues from frontal 
and profile face, ear and head shape, walking style and speed, hand motion during 
walking etc. If automatic identification systems can be built based on this concept, it 
will be a great contribution to surveillance and security area Further. this will make a 
significant contribution to better understanding of gait abnormalities, and development 
of human computer interfaces. However, each of these cues or traits captured from 
long range low resolution surveillance videos on its own are not powerful enough for 
ascertaining identity, A combination or fusion of each of them, along with an 
automatic processing technique can result in robust recognition. In this paper, we 
propose usage of full profile silhouettes of persons from visible range and infrared 
range camera footage for capturing inherent multi-modal cues available from of the 
gait patterns of the walking human. This also addresses the need to establish identity 
from low resolution surveillance video images. In addition, user cooperation is not 
mandatory upon data collection making it suitable for surveillance and law 
enforcement scenarios. Further, capture of long range gait biometric data from 
surveillance videos contains several biometric traits such as side face, ear, body shape, 
and gait motion, which are a combination of physiological and behavioural biometrics. 
Automatic schemes that can process this rich multimodal information can result in 
robust human identification approaches. 

In this paper, we propose the use of a principled approach involving feature 
extraction techniques based on multivariate statistical techniques, such as principle 
component analysis (PCA) and linear discriminant analysis (LDA), and efficient 
learning classifier approaches based on support vector machines and Bayesian 
classifiers. Further, we propose that the feature level fusion of multi-view 
multispectral images (from visible range cameras and infrared cameras) can enhance 
the performance of identification scheme as compared to single mode image features. 
Fusing features at the feature level is more effective than fusion at later stages, as the 
inherent multi-modality can be preserved at early stages of processing as compared to 
late fusion [2]. The experimental evaluation of the proposed approach with a publicly 
available CASIA [1] gait database shows a significant improvement in recognition 
performance as compared to other methods proposed in the literature. Rest of the 
paper is organised as follows. Next Section describes the background and motivation 
for proposed work, followed by the proposed multiview multimodal identification 
scheme in Section 3. The details of the experiments performed is described in Section 
4, and conclusions and plans for further work is described in Section 5. 

2 Background 

Current state-of-the-art video surveillance systems, when used for recognizing the 
identity of the person in the scene, cannot perform very well due to low quality video 
or inappropriate processing techniques. Though much progress has been made in the 
past decade on visual based automatic person identification through utilizing different 
biometrics, including face recognition, iris and fingerprint recognition, each of these 
techniques work satisfactorily in highly controlled operating environments such as 
border control or immigration check points, under constrained illumination, pose and 
facial expression variations. To address the next generation security and surveillance 
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requirements for not just high security environments, but also day-to-day civilian 
access control applications, we need a robust and invariant biometric trait [3] to 
identify a person for both controlled and uncontrolled operational environments. 
According to authors in [4], the expectations of next generation identity verification 
involve addressing issues related to application requirements, user concern and 
integration. Some of the suggestions made to address these issues were use of non-
intrusive biometric traits, role of soft biometrics or dominant primary and non-
dominant secondary identifiers and importance of novel automatic processing 
techniques. To conform to these recommendations; often there is a need to combine 
multiple physiological and behavioral biometric cues, leading to so called multimodal 
biometric identification system.  

Each of the traits, physiological or behavioral have distinct advantages, for 
example; the behavioral biometrics can be collected non-obtrusively or even without 
the knowledge of the user. Behavioral data often does not require any special 
hardware (other than low cost off the shelf surveillance camera).  While most 
behavioral biometrics are not unique enough to provide reliable human identification 
they have been proved to be sufficiently high accurate [5, 6]. Gait, is a powerful 
behavioral biometric, but as a single mode, on its own it cannot be considered as a 
strong biometric to identify a person. However, if we combine complementary gait 
information from another source, the multi-modal combination is expected to be 
powerful for human identification. Researchers have found that one of the most 
promising techniques is the use of multimodality or combination of differnt biometric 
traits or same biometric trait from multiple disparate sources. For example,  
researchers in [7, 8] have found that multi-modal scheme involving PCA on combined 
image of ear and face biometric results in significant improvement over either 
individual biometric. In addition, other recent attempts to improve the recognition 
accuracy include face, fingerprint and hand geometry [9]; face, fingerprint and speech 
[10]; face and iris [11]; face and ear [12]; and face and speech [13]. The fusion of  
complementary biometric information from disparate sources, however, did not attract 
much attention from the research community. This could be due to difficulty in 
acquiring the data, and processing and making sense out of them.  

3 Multimodal Identification Scheme 

For experimental evaluation of our proposed multimodal gait identification scheme, 
we used CASIA Gait Database collected by Institute of Automation, Chinese 
Academy of Sciences [1]. It is a large multi-view gait database, which is created in 
January 2005. There are more than 300 subjects. We used two different set of data 
known as dataset B and Dataset C. Dataset B was captured from 11 views with 
normal video camera, and 11 different views know as view angles. We used the data 
captured only in 90 degree view angle. The dataset C was captured with an infrared 
(thermal) camera. It takes into account four walking conditions: normal walking, slow 
walking, fast walking, and normal walking with a bag. The videos were all captured at 
night. Figure 1 shows the sample images in different view angles.   
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Fig. 1. Sample images from CASIA gait database 

However, we used 50 subjects with a set of extracted silhouettes from Dataset B 
and another set of extracted silhouettes from Dataset C. Each subject consists of 16 
images and in total 1600 images for 100 subjects (people). Figure 2 shows the 
extracted silhouettes from dataset B and C.  

 

Fig. 2. Extracted silhouettes  

We extracted the reduced dimensionality feature vector for each of the dataset 
separately by suing PCA (principal component analysis) and Linear Discriminant 
Analysis (LDA), and then have classified with different learning classifiers. Therefore 
our (cross camera feature level fusion) experiments involved evaluation of diiferent 
feature extraction and learning classifier combinations including PCA-MLP, LDA-
MLP, PCA-SMO, and LDA-SMO.  

3.1 Feature Extraction Using PCA-LDA Approach 

Principle component analysis is a way of identifying patterns in data, and expressing 
the data in such a way as to highlight their similarities and differences. Since patterns 
in data can be hard to find in data of high dimension, where the luxury of graphical 
representation is not available, PCA is a powerful tool for analysing data. The other 
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main advantage of PCA is that once we have found these patterns in the data, and we 
can compress the data, e.g. by reducing the number of dimensions, without much loss 
of information. Basically this technique used in image compression [14]. In the image 
analysis it works like; 

X=(x1, x2, x3……N2)                                                   (1) 

where the rows of pixels in the image are placed one after the other to form a one 
dimensional image. Each image is N pixels high by N pixels wide. For each image it 
creates an image vector. And then it counts all the images together in one big image-
matrix like;  

Matrix = (v1, v2, v3……vN)                                          (2)  

On the other hand, the LDA also closely related to principal component analysis 
(PCA) and factor analysis in that they both look for linear combinations of 
variables which best explain the data. LDA explicitly attempts to model the difference 
between the classes of data. PCA on the other hand does not take into account any 
difference in class, and factor analysis builds the feature combinations based on 
differences rather than similarities. Discriminant analysis is also different from factor 
analysis in that it is not an interdependence technique: a distinction between 
independent variables and dependent variables (also called criterion variables) must 
be made. LDA works when the measurements made on independent variables for 
each observation are continuous quantities. When dealing with categorical 
independent variables, the equivalent technique is discriminant correspondence 
analysis [15].  And in our experiment, LDA shows prominent than PCA. Next Section 
describes several classifiers we examined. 

3.2 Naive Bayes and MLP Neural Network Classifier 

Naive Bayes classifier can serve as a baseline classifier due to its simple probabilistic 
nature based on applying Bayes' theorem with strong (naive) independence 
assumptions. In other words, a naive Bayes classifier assumes that the presence (or 
absence) of a particular feature of a class is unrelated to the presence (or absence) of 
any other feature, given the class variable. Depending on the precise nature of the 
probability model, naive Bayes classifiers can be trained very efficiently in a 
supervised learning setting. In many practical applications, parameter estimation for 
naive Bayes models uses the method of maximum likelihood; in other words, one can 
work with the naive Bayes model without using any Bayesian methods [23]. In spite 
of their naive design and apparently over-simplified assumptions, naive Bayes 
classifiers have worked quite well in many complex real-world situations. Multi 
Layer perceptron (MLP) is a feedforward neural network with one or more layers 
between input and output layer. Feedforward implies that the data flows in on 
direction from input to output layer (forward). This type of network is trained with the 
backpropagation learning algorithm. MLPs are widely used for pattern classification, 
recognition, prediction and approximation. Multi Layer Perceptron can solve 
problems which are not linearly separable [16]. 
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3.3 SVM and SMO Classifiers 

Support Vector Machine (SVM) classifiers perform classification tasks by 
constructing hyperplanes in a multidimensional space that separates cases of different 
class labels. A support vector machine constructs a hyperplane or set of hyperplanes 
in a high- or infinite-dimensional space, which can be used for classification, 
regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane 
that has the largest distance to the nearest training data point of any class (so-called 
functional margin), since in general the larger the margin the lower the generalization 
error of the classifier. Whereas the original problem may be stated in a finite 
dimensional space, it often happens that the sets to discriminate are not linearly 
separable in that space. For this reason, in SVM, the original finite-dimensional space 
is mapped into a much higher-dimensional space, presumably making the separation 
easier in that space. To keep the computational load reasonable, the mappings used by 
SVM schemes are designed to ensure that dot products may be computed easily in 
terms of the variables in the original space, by defining them in terms of a kernel 
function selected to suit the problem.[24] The hyperplanes in the higher-dimensional 
space are defined as the set of points whose inner product with a vector in that space 
is constant. 

SMO, on the other hand is an SVM classifier with learning based on Sequential 
Minimal Optimization (SMO). SMO decomposes the overall QP problem into QP 
sub-problems, using Osuna’s theorem to ensure convergence [16]. Unlike the other 
methods, SMO chooses to solve the smallest possible optimization problem at every 
step. The advantage of SMO lies in the fact that solving for multi instance multipliers 
can be done analytically. In addition, SMO requires no extra matrix storage at all. 
There are two components to SMO: an analytic method for solving for the two 
Lagrange multipliers, and a heuristic for choosing which multipliers to optimize [17]. 

 
   y1 /= y2 =>α1- α2 = k                                                    (1) 

 
   y1= y2 => α1+α2 = k                                                      (2) 

 
However, the multi instance multipliers must fulfil all of the constraints of the full 
problem. The linear equality constraint causes them to lie on a diagonal line. 
Therefore, one step of SMO must find an optimum of the objective function on a 
diagonal line segment [17].  

4 Experiments and Results 

Different sets of experiments were performed on two datasets in CASIA database- 
Dataset B containing visible normal images of walking humans, and Dataset C 
consisting of infrared images. By using PCA and LDA techniques, we extracted the 
feature vector for both datasets, training different learning classifiers and performed  
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identification experiments with multiple fold cross validation in single mode and 
multimodal fusion mode. We used different combinations of features (for example 
PCA-Dataset B, PCA-Dataset C, LDA-Dataset B, LDA-Dataset C and the feature 
level fusion of visible and infrared gait images from Dataset B and Dataset C. Table 1 
to Table 5 show the recognition performance for each set of experiments in terms of 
recognition accuracy and several statistically significant performance measures such 
as true positive rate (TPR), false positive rate (FPR), precision, recall and Fmeasure. 

All experiments involved either 5 or 10 fold cross validation. Cross-validation is a 
technique for assessing how the results of a statistical analysis will generalize to an 
independent data set. One fold of cross-validation involves partitioning a sample of 
data into complementary subsets (training and testing subsets), performing the 
analysis on one subset (called the training set), and validating the analysis on the other 
subset (called the validation set or testing set). To reduce variability, multiple folds of 
cross-validation are performed using different partitions, and the validation results are 
averaged over the folds. We examined 5 fold and 10 fold cross-validation for each set 
of experiments. 

Table 1. Classifier Performance for Dataset B (Visible range dataset) with PCA features with 
50 dimensions. (NB – naïve Bayes; MLP – Multilayer Perceptron; TPR-true positive rate; FPR 
– false positive rate). 

 
 
The first set of experiments involve Dataset B (visible range dataset) with 50 

dimensional PCA features. As can be seen in Table 1, The recognition accuracy for 
naïve Bayes classifier with different 10-fold and 5 fold cross-validation is low, with 
48.63 % for 10 folds and 47.68 for 5 folds. Using MLP neural net classifier (with 
backpropagation learning) results in better accuracy with 79.5% for 10 folds and 
75.13% for 5 folds. However, the MLP classifier is computational intensive with long 
train and test times. This could be due to inability of PCA features to discriminate 
multiple classes (50 classes here) with the available data size or the structure of the 
neural network used. 

The second set of experiments involved use of linear discriminant analysis features 
and use of support vector machine classifier. As can be seen in Table 2, the naïve 
Bayes classifier with 50 dimensional LDA features results in significant improvement 
in performance with 92.5% recognition accuracy as compared to 48.6 % with PCA 
features for 10 fold cross-validation (CV). With 5 fold CV, the LDA features result in 
an accuracy of 92.25% as compared to 47.68% for PCA features. Due to 
computational intensive nature of neural net classifiers, we examined SVM classifier  
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Table 2. Classifier Performance for Dataset B (Visible range dataset) with LDA features with 
50 dimensions. (NB – naïve Bayes; MLP – Multilayer Perceptron; SVM-L(Support Vector 
Machine-Linear Kernel); SVM-RBF (Radial Basis Function Kernel); SVM-poly (Polynomial 
Kernel); SVM-Signmoid (Signmoidal kernel). 

 
 
for this set of experiments, as SVMs are known to have better generalization ability, are 
less computation intensive, and are based on sound theory, unlike neural networks whose 
development has followed a more heuristic path. Other advantages of SVM over neural 
networks are - whilst ANNs can suffer from multiple local minima, the solution to an 
SVM is global and unique, and SVMs have a simple geometric interpretation and give a 
sparse solution. Unlike ANNs, the computational complexity of SVMs does not depend 
on the dimensionality of the input space. ANNs use empirical risk minimization, whilst 
SVMs use structural risk minimization. SVMs outperform ANNs often, as they are less 
prone to overfitting [17]. However, the performance depends on the kernel used and 
other SVM parameters. As can be in Table 2, different types of kernels - linear kernel 
(SVM-L), radial basis function kernel (SVM-RBF), polynomial kernel (SVM-poly) and 
sigmoidal kernel (SVMsigmoid), result in different recognition accuracies. The SVM 
with linear kernel performs best with 81.3% recognition accuracy for 5 fold CV, and has 
a 78.75% for 10 fold CV. Also, for both naïve Bayes and SVM classifier with linear 
kernel, the performance with 5 fold cross-validation partition was almost similar to 10 
fold cross validation. Hence, for rest of the experiments, we used 5 fold CV partition. 

Table 3. Classifier Performance for Dataset C (Infrared range dataset) with LDA features with 
5 folds. (NB – naïve Bayes; MLP – Multilayer Perceptron; SVM-L(Support Vector Machine-
Linear Kernel); SMO(Poly)-Sequential Minimum Optimization-Polynomial Kernel. 
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For the third set of experiments, we examined Dataset C, the infrared camera gait 
image dataset, with 5 fold cross validation. As can be seen in Table 3. infrared image 
dataset performs better than visible range dataset for both PCA and LDA features. 
The recognition accuracy achieved with 50 dimensional PCA features results is 
56.3% for naïve Bayes classifier for Dataset C as compared to 47.68% for Dataset B  
(Table 1). A similar improvement in performance was achieved with 50-dimensional 
LDA features resulting in a recognition accuracy of 93.75% for Dataset C as 
compared to 92.25% for Dataset B. Further, we also examined reduced dimensional 
LDA features, as LDA features seem to model the identities better, even with large 
number of classes (50 classes/subjects). As can be seen in Table 3, there is no 
significant loss of accuracy with reduced dimensional feature vectors. With 25 
dimensional LDA feature vector, the recognition accuracy achieved was 93.5 % for 
naïve Bayes classifier (as compared to 93.75% for 50 dimensions) and the accuracies 
were 83.25% for SVM with linear kernel (86.25%). This has a significant advantage 
as the reduced dimensional feature vector results in improvement in computational 
speed. In addition, for this set of experiments, we examined a different version of 
SVM classifier – SMO, the SVM with Sequential minimal optimization(SMO). SMO 
classifier uses an efficient algorithm for solving the optimization problem needed for 
training of support vector machines, and is known to result in a better performance 
than a traditional SVM which uses much more complex quadratic optimization 
problem during training. As can be seen in Table 3, the recognition accuracy achieved 
with SMO classifier with polynomial kernel is 94% as compared to 93.25 % achieved 
with SVM classifier with linear kernel. 

Table 4. Classifier Performance for fusion of visible and infrared gait images (Dataset B + 
Dataset C) with equal weights a and with LDA features with 5 fold cross validation. (NB - 
naïve Bayes; SVM-L(Support Vector Machine-Linear Kernel; SMO(Poly)-Sequential 
Minimum Optimization- Polynomial Kernel. 

 
 
 

The fourth set of experiments involved the feature level fusion of visible and 
infrared images from Dataset B and Dataset C. As we found the LDA features to be 
more discriminatory as compared to PCA, we used LDA features for all fusion 
experiments. As can be seen in Table 4, the fusion of normal visible camera and infra 
red camera images is synergistic, resulting in improvement in recognition 
performance as compared to single mode images. For naïve Bayes classifier, 50- 
dimensional LDA features result in 98.38% accuracy and 25-dimensional LDA  
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features result in 98.5%. The recognition accuracy achieved with SVM-L (linear 
kernel) for 50-dim LDA features is 74.88% and 72.5% for 25-dim LDA vector. The 
SMO version of SVM classifier with polynomial kernel results in 98.25% accuracy 
for 50-dim LDA vector, and for 25 dimensional LDA features, the accuracy is 
97.75%. Once again for fusion mode, SMO with polynomial kernel performs better 
than traditional SVM with linear kernel. An interesting observation was that the 
multimodal fusion (feature level) performs a more dominant role as compared to the 
type of classifier or the type of features, as irrespective of classifier used (naïve Bayes 
or SVM), the recognition accuracy is significantly higher with multimodal fusion 
(higher than 95 %). 

The final set of experiments involved investigating the role of soft or secondary 
biometric information, in terms of walking style(fast walking and normal walking) for 
enhancing the recognition accuracy. The walking style data was available for visible 
camera images only for all 50 subjects (persons). We used the data for each person 
walking in two (2) different styles - fast and normal walking. In this final set of 
experiments, we examined three different approaches. First, we applied LDA-MLP 
separately to (1) normal walking data, (2) the fast walking data and (3) combined the 
data corresponding to slow and fast walking information into a single dataset. This 
represents a challenging scenario with both dominant identity specific gait 
information (primary biometric) and non-dominant secondary/soft biometric 
information (walking style) modeled by LDA/MLP approach. 
 

Table 5. Result in fast walking and normal walking 

 
 

As can be seen in Table 5, while individually fast and slow walking style 
information modeled by LDA/MLP technique results in good identification accuracy, 
with 95.5% for normal walking, and 94.5% for fast walking, the modeling of weak 
soft biometric information (walking style) along with strong biometric information 
(identity of each subject) weakens the overall identification accuracy (82.5%). 
However, this depicts more real world scenario, and development of appropriate high 
performance subspace features and efficient classifier methods can result in better 
identification performance. It should be noted that the fusion of primary and 
soft/secondary biometric features is not reported in Table 5 due to lack of space, but 
some of our preliminary experiments show that fusion of primary and secondary/soft 
biometric information (walking style) can result in synergistic fusion. Also, use of 
motion based static and dynamic features is currently being investigated. 
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5 Conclusions and Further Plan 

In this paper we proposed a novel human-identification scheme from long range gait 
profiles in surveillance videos. We investigated the role of multi view gait images 
acquired from multiple cameras - infrared and normal visible images in ascertaining 
identity. We also examined the benefits achieved with multimodal fusion, the roles of 
efficient subspace features and classifier methods, and the importance of 
soft/secondary biometric (walking style) in enhancing the accuracy and robustness of 
gait based identification systems, Experimental evaluation of several subspace based 
gait feature extraction approaches (PCA/LDA) and classifier methods 
(NB/MLP/SVM/SMO) on different datasets from a publicly available CASIA gait 
database, showed a significant improvement in recognition accuracies with 
multimodal fusion of multiview gait images acquired from normal visible and infrared 
video surveillance scenarios. 
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