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Abstract. We study the reachability problem for communicating timed
processes, both in discrete and dense time. Our model comprises au-
tomata with local timing constraints communicating over unbounded
FIFO channels. Each automaton can only access its set of local clocks;
all clocks evolve at the same rate. Our main contribution is a complete
characterization of decidable and undecidable communication topologies,
for both discrete and dense time. We also obtain complexity results, by
showing that communicating timed processes are at least as hard as Petri
nets; in the discrete time, we also show equivalence with Petri nets. Our
results follow from mutual topology-preserving reductions between timed
automata and (untimed) counter automata. To account for urgency of re-
ceptions, we also investigate the case where processes can test emptiness
of channels.

1 Introduction

Communicating automata are a fundamental model for studying concurrent pro-
cesses exchanging messages over unbounded channels [23,12]. However, the model
is Turing-powerful, and even basic verification questions, like reachability, are
undecidable. To obtain decidability, various restrictions have been considered,
including making channels unreliable [3,14] or restricting to half-duplex com-
munication [13] (later generalized to mutex [18]). Decidability can also be ob-
tained when restricting to executions satisfying additional restrictions, such as
bounded context-switching [21], or bounded channels. Finally, and this is the
restriction that we consider here, decidability is obtained by constraining the
communication topology. For communicating finite-state machines (CFSMs), it
is well-known that reachability is decidable if, and only if, the topology is a poly-
forest [23,21]; in this case, considering channels of size one suffices for deciding
reachability.

On a parallel line of research, timed automata [9] have been extensively studied
as a finite-state model of timed behaviours. Recently, there have been several
works bringing time into infinite-state models, including timed Petri nets [10,4],
timed pushdown automata [2], and timed lossy channel systems [1]. In this paper,
we study communicating timed processes [20], where a finite number of timed
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automata synchronize over the elapsing of time and communicate by exchanging
messages over unbounded channels. Note that, when processes can synchronize,
runs cannot be re-ordered to have uniformly bounded channels (contrary to
polyforest CFSMs). For example, consider two communicating processes p and
q, where p can send to q unboundedly many messages in the first time unit,
and q can receive messages only after the first time unit has elapsed. Clearly, all
transmissions of p have to occur before any reception by q, which excludes the
possibility of re-ordering the run into another one with bounded channels.

We significantly extend the results of [20], by giving a complete characteriza-
tion of the decidability border of reachability properties w.r.t. the communication
topology. Quite surprisingly, we show that despite synchronization increases the
expressive power of CFSMs, the undecidability results of [20] are not due to just
synchronous time, but to an additional synchronization facility called urgency
(cf. below). Our study comprises both dense and discrete time.

Dense Time: Communicating Timed Automata. Our main result is a complete
characterization of the decidability frontier for communicating timed automata:
We show that reachability is decidable if, and only if, the communication topol-
ogy is a polyforest. Thus, adding time does not change the decidability frontier
w.r.t. CFSMs. However, the complexity worsens: From our results it follows that
communicating timed automata are at least as hard as Petri nets.1

Our decidability results generalize those of [20] over the standard semantics
for communicating automata. In the same work, undecidability results are also
presented. However, they rely on an alternative urgent semantics, where, if a
message can be received, then all internal actions are disabled: This provides an
extra means of synchronization, which makes already the very simple topology
p −→ q −→ r undecidable [20]. We show that, without urgency, this topology
remains decidable.

Here, we do not consider urgency directly, but we rather model it by introduc-
ing an additional emptiness test operation on channels on the side of the receiver.
This allows us to discuss topologies where emptiness tests (i.e., urgency) are re-
stricted to certain components. We show that, with emptiness tests, undecidable
topologies include not only the topology p −→ q −→ r (as shown in [20]), but also
p −→ q ←− r and p ←− q −→ r. Thus, we complete the undecidability picture for
dense time.

All our results for dense time follow from a mutual, topology-preserving re-
duction to a discrete-time model (discussed below). Over polyforest topologies,
we reduce from dense to discrete time when no channel can be tested for empti-
ness. Over arbitrary topologies, we reduce from discrete to dense time, even in
the presence of emptiness tests. While the latter is immediate, the former is
obtained via a Rescheduling Lemma for dense-time timed automata which is in-
teresting on its own, allowing us to schedule processes in fixed time-slots where
senders are always executed before receivers.

1 And probably exponentially worse, due to a blow-up when translating from dense
to discrete time.
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Discrete Time: Communicating Tick Automata. We provide a detailed analysis
of communication in the discrete-time model, where actions can only happen
at integer time points. As a model of discrete time, we consider communicating
tick automata, where the flow of time is represented by an explicit tick action:
A process evolves from one time unit to the next by performing a tick action,
forcing all the other processes to perform a tick as well; all the other actions are
asynchronous. This model of discrete-time is called tick automata in [17], which
is related to the fictitious-time model of [9].

We provide a complete characterization of decidable and undecidable topolo-
gies for communicating tick automata: We show that reachability is decidable
if, and only if, the topology is a polyforest (like for CFSMs), and, additionally,
each weakly-connected component can test at most one channel for emptiness.
Our results follow from topology-preserving mutual reductions between commu-
nicating tick automata and counter automata. As a consequence of the structure
of our reductions, we show that channels and counters are mutually expressible,
and similarly for emptiness tests and zero tests. This also allows us to obtain
complexity results for communicating tick automata: We show that reachability
in a system of communicating tick automata over a weakly-connected topology
without emptiness tests has the same complexity as reachability in Petri nets.2

Related Work. Apart from [20], communication in a dense-time scenario has
also been studied in [15,8,6]. In particular, [15] proposes timed message se-
quence charts as the semantics of communicating timed automata, and stud-
ies the scenario matching problem where timing constraints can be specified on
local processes, later extended to also include send/receive pairs [8]. Communi-
cating event-clock automata, a strict subclass of timed automata, are studied
in [6] where, instead of considering the decidability frontier w.r.t. the communi-
cation topology, it is shown, among other results, that reachability is decidable
for arbitrary topologies over existentially-bounded channels. A crucial difference
w.r.t. our work is that we do not put any restriction on the channels, and we
consider full timed automata. In a distributed setting, the model of global time
we have chosen is not the only possible. In particular, [7] studies decidability
of networks of (non-communicating) timed asynchronous automata in an alter-
native setting where each automaton has a local drift w.r.t. global time. In the
discrete-time setting, we mention the work [19], which generalizes communicat-
ing tick automata to a loosely synchronous setting, where local times, though
different, can differ at most by a given bound. While [19] shows decidability
for a restricted two-processes topology, we characterize decidability for arbitrary
topologies. We finally mention [16,5] that address reachability for parametrized
ad hoc networks in both discrete and dense time. They consider an infinite
number of processes and broadcast handshake communications over arbitrary
topologies while our models have a finite number of processes that exchange
messages over unbounded (unicast) channels.

2 The latter problem is known to be ExpSpace-hard [22], and finding an upper bound
is a long-standing open problem.
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Outline. In Sec. 2 we introduce general notation; in particular, we define com-
municating timed processes, which allow us to uniformly model communication
in both the discrete and dense time. In Sec. 3 we study the decidability and
complexity for communicating tick automata (discrete time), while in Sec. 4 we
deal with communicating timed automata (dense time). Finally, Sec. 5 ends the
paper with conclusions and future work.

2 Communicating Timed Processes

A labeled transition system (LTS for short) is a tuple A = 〈S, SI , SF , A,→〉
where S is a set of states with initial states SI ⊆ S and final states SF ⊆ S, A is
a set of actions, and→ ⊆ S×A×S is a labeled transition relation. For simplicity,
we write s

a−−→ s′ in place of (s, a, s′) ∈ →. A path in A is an alternating sequence

π = s0, a1, s1, . . . , an, sn of states si ∈ S and actions ai ∈ A such that si−1
ai−−→ si

for all i ∈ {1, . . . , n}. We abuse notation and shortly denote π by s0
a1···an−−−−−→ sn.

The word a1 · · ·an ∈ A∗ is called the trace of π. A run is a path starting in an
initial state (s0 ∈ SI) and ending in a final state (sn ∈ SF ).

We consider systems that are composed of several processes interacting with
each other in two ways. Firstly, they implicitly synchronize over the passing of
time. Secondly, they explicitly communicate through the asynchronous exchange
of messages. For the first point, we represent delays by actions in a given delay
domain D. Typically, the delay domain is a set of non-negative numbers when
time is modeled quantitatively, or a finite set of abstract delays when time is
modeled qualitatively. Formally, a timed process over D is a labeled transition
system A = 〈S, SI , SF , A,→〉 such that A ⊇ D. Actions in A are either syn-
chronous delay actions in D, or asynchronous actions in A \ D.

For the second point, we introduce FIFO channels between processes. For-
mally, a communication topology is a triple T = 〈P,C,E〉, where 〈P,C〉 is a
directed graph comprising a finite set P of processes and a set of communica-
tion channels C ⊆ P × P . Additionally, the set E ⊆ C specifies those chan-
nels that can be tested for emptiness. Thus, a channel c ∈ C is a pair (p, q),
with the intended meaning that process p can send messages to process q. For
a process p, let C[p] = C ∩ ({p} × P ) be its set of outgoing channels, and let
C−1[p] = C∩(P ×{p}) be its set of incoming channels. Processes may send mes-
sages to outgoing channels, receive messages from incoming channels, as well as
test emptiness of incoming channels (for testable channels). Formally, given a
finite set M of messages, the set of possible communication actions for process
p is Ap

com = {c!m | c ∈ C[p],m ∈ M} ∪ {c?m | c ∈ C−1[p],m ∈ M} ∪ {c == ε |
c ∈ E ∩ C−1[p]}. The set of all communication actions is Acom =

⋃
p∈P Ap

com.
While send actions (c!m) and receive actions (c?m) are customary, we introduce
the extra test action (c == ε) to model the urgent semantics of [20]. Actions not
in (D ∪ Acom) are called internal actions.

Definition 1. A system of communicating timed processes is a tuple S =
〈T ,M,D, (Ap)p∈P 〉 where T = 〈P,C,E〉 is a topology, M is a finite set of
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messages, D is a delay domain, and, for each p ∈ P , Ap = 〈Sp, Sp
I , S

p
F , A

p,→p〉
is a timed process over D such that Ap ∩ Acom = Ap

com.

States sp ∈ Sp are called local states of p, while a global state s = (sp)p∈P is
a tuple of local states in

∏
p∈P Sp. We give the semantics of a system of com-

municating timed processes in terms of a global labeled transition system. The
contents of each channel is represented as a finite word over the alphabet M .
Processes move asynchronously, except for delay actions that occur simultane-
ously. Formally, the semantics of a system of communicating timed processes
S = 〈T ,M,D, (Ap)p∈P 〉 is the labeled transition system �S� = 〈S, SI , SF , A,→〉
where S = (

∏
p∈P Sp)× (M∗)C , SI = (

∏
p∈P Sp

I )× {λc . ε}, SF = (
∏

p∈P Sp
F )×

{λc . ε}, A =
⋃

p∈P Ap, and there is a transition (s1, w1)
a−−→ (s2, w2) under the

following restrictions:

– if a ∈ D, then sp1
a−−→ sp2 for all p ∈ P ,

– if a �∈ D, then sp1
a−−→ sp2 for some p ∈ P , and sq1 = sq2 for all q ∈ P \ {p}

• if a = c!m, then w2(c) = w1(c) ·m and w2(d) = w1(d) for all d ∈ C \ {c},
• if a = c?m, then m ·w2(c) = w1(c) and w2(d) = w1(d) for all d ∈ C \{c},
• if a = (c == ε), then w1(c) = ε and w1 = w2, and
• if a �∈ Acom, then w1 = w2.

To avoid confusion, states of �S� will be called configurations in the remainder
of the paper. Given a path π in �S�, its projection to process p is the path π|p in
Ap obtained by projecting each transition of π to process p in the natural way.

The reachability problem asks, given a system of communicating timed pro-
cesses S, whether there exists a run in its semantics �S�. Note that we require all
channels to be empty at the end of a run, which simplifies our constructions later
by guaranteeing that every sent message is eventually received. (This is w.l.o.g.
since reachability and control-state reachability are easily inter-reducible.) Two
systems of communicating timed processes S and S ′ are said to be equivalent if
�S� has a run if and only if �S ′� has a run.

Definition 2. A system of communicating tick automata is a system of com-
municating timed processes S = 〈T ,M,D, (Ap)p∈P 〉 such that D = {τ} and each
Ap is a tick automaton, i.e., a timed process over D with finitely many states
and actions.

Thus, tick automata communicate with actions in Acom and, additionally, syn-
chronize over the tick action τ . This global synchronization makes communicat-
ing tick automata more expressive than CFSMs, in the sense that ticks can forbid
re-orderings of communication actions that are legitimate without ticks. Notice
that there is only one tick symbol in D. With two different ticks, reachability is
already undecidable for the one channel topology p→ q without emptiness test.

3 Decidability of Communicating Tick Automata

In this section, we study decidability and complexity of communicating tick au-
tomata. Our main technical tool consists of mutual reductions to/from counter
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automata, showing that, in the presence of tick actions, 1) each channel is equiv-
alent to a counter, and 2) each emptiness test on a channel is equivalent to a
zero test on the corresponding counter. This allows us to derive a complete char-
acterization of decidable topologies, and to also obtain complexity results. We
begin by defining communicating counter automata.

Communicating Counter Automata. A counter automaton is a classical Minsky
machine C = 〈L,LI , LF , A,X,Δ〉 with finitely many locations L, initial locations
LI ⊆ L, final locations LF ⊆ L, alphabet of actions A, finitely many non-
negative counters in X , and transition rules Δ ⊆ L × A × L. Operations on
a counter x ∈ X are x++ (increment), x-- (decrement) and x==0 (zero test).
Let Op(X) be the set of operations over counters in X . We require that A ⊇
Op(X). As usual, the semantics is given as a labelled transition system �C� =
〈S, SI , SF , A,→〉 where S = L×N

X , SI = LI ×{λx.0}, SF = LF ×{λx.0}, and
the transition relation → is defined as usual. Acceptance is with zero counters.

A system of communicating counter automata is a system of communicating
timed processes S = 〈T ,M,D, (�Cp�)p∈P 〉 such that D = ∅ and each Cp is a
counter automaton. By Definition 1, this entails that each counter automaton
performs communicating actions in Ap

com. Notice that, since the delay domain is
empty, no synchronization over delay action is possible.

From Tick Automata to Counter Automata. Let S be a system of communicating
tick automata over an arbitrary (i.e., possibly cyclic) weakly-connected3 topology.
We build an equivalent system of communicating counter automata S ′ over the
same topology. Intuitively, we implement synchronization on the delay action τ in
S by communication in S ′ (by definition, no synchronization on delay actions is
allowed in S ′). We introduce a new type of message, also called τ , which is sent
in broadcast by all processes in S ′ each time there is a synchronizing tick action
in S. Since communication is by its nature asynchronous, we allow the sender and
the receiver to be momentarily desynchronized during the computation. However,
we restrict the desynchronization to be asymmetric: The receiver is allowed to be
“ahead” of the sender (w.r.t. the number of ticks performed), but never the other
way around. This ensures causality between transmissions and receptions, by for-
bidding that a message is received before it is sent.

To keep track of the exact amount of desynchronization between sender and
receiver (as the difference in number of ticks), we introduce counters in S ′: We
endow each process p with a non-negative counter xpc for each channel c ∈ C−1[p]
from which p is allowed to receive. The value of counter xpc measures the difference
in number of ticks τ between p and the corresponding sender along c. Whenever
a process p performs a synchronizing tick action τ in S, in S ′ it sends a message
τ in broadcast onto all outgoing channels; at the same time, all its counters xpc
are incremented, recording that p, as a receiver process, is one more step ahead
of its corresponding senders. When one such τ -message is received by a process

3 A topology T is weakly-connected if, for every two processes, there is an undirected
path between them.
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q in S ′ along channel c, the corresponding counter xqc is decremented; similarly,
this records that the sender process along c is getting one step closer to the
receiver process q. The topology needs to be weakly-connected for the correct
propagation of τ ’s.

While proper ordering of receptions and transmissions is ensured by non-
negativeness of counters, testing emptiness of the channel is more difficult: In
fact, a receiver, which in general is ahead of the sender, might see the channel as
empty at one point (thus the test is positive), but then the sender might later
(i.e., after performing some tick) send some message, and the earlier test should
actually have failed (false positive). We avoid this difficulty by enforcing that
the receiver q is synchronized with the corresponding sender along channel c on
emptiness tests, by adding to the test action c == ε by q a zero test xqc==0.

Formally, let S = 〈T ,M,D, (Ap)p∈P 〉 with D = {τ} be a system of commu-
nicating tick automata over topology T = 〈P,C,E〉, where, for each p ∈ P ,
Ap = 〈Lp, Lp

I , L
p
F , A

p,→p〉 is a tick automaton, i.e., τ ∈ Ap. We define the
system of communicating counter automata S ′ = 〈T ,M ′,D′, (�Cp�)p∈P 〉, over
the same topology T as S, s.t. M ′ = M ∪ {τ}, D′ = ∅, and, for every pro-
cess p ∈ P , we have a counter automaton Cp, which is defined as follows:
Cp = 〈Lp, Lp

I , L
p
F , B

p, Xp, Δp〉, where control locations Lp, initial locations Lp
I ,

and final locations Lp
F are the same as in the corresponding tick automaton Ap,

and counters are those in Xp = {xpc | c ∈ C−1[p]}. For simplifying the definition
of transitions, we allow sequences of actions instead of just one action—these
can be clearly implemented by introducing more intermediate states. Transitions
in Δp for Cp are defined as follows:

– Let �
τ−→ �′ be a transition in Ap, and assume that outgoing channels of

p are those in C[p] = {c0, . . . , ch}, and that counters in Xp are those in

{x0, . . . , xk}. Then, �
c0!τ ;...;ch!τ ;x0++;...;xk++−−−−−−−−−−−−−−−−→ �′ is a transition in Cp.

– For every � ∈ Lp and input channel c ∈ C−1[p], there is a transition �
c?τ ;xpc--−−−−−→

� in Cp.
– If �

c == ε−−−→ �′ is a transition in Ap, then �
xpc==0;c == ε−−−−−−−→ �′ is a transition in Cp.

– Every other transition �
a−→ �′ in Ap is also a transition in Cp.

The action alphabet of Cp is thus Bp = (Ap\{τ})∪{c?τ | c ∈ C−1[p]}∪{c!τ | c ∈
C[p]}; in particular, τ is no longer an action, but a message that can be sent and
received. We show that S and S ′ are equivalent, obtaining the following result.

Proposition 1. Let T be a weakly-connected topology with α channels, of which
β can be tested for emptiness. For every system of communicating tick automata
S with topology T , we can produce, in linear time, an equivalent system of com-
municating counter automata S ′ with the same topology T , containing α coun-
ters, of which β can be tested for zero.

While the proposition above holds for arbitrary weakly-connected topologies,
it yields counter automata with channels, which are undecidable in general. To
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Fig. 1. Simulation of a counter automaton by a system of communicating tick au-
tomata: Tick automata for rj (left) and qi (right), Topology (middle)

avoid undecidability due to communication, we need to forbid cycles (either di-
rected or undirected) in the topology. It has been shown that, on polytrees4,
runs of communicating processes (even infinite-state) can be rescheduled as to
satisfy the so-called eagerness requirement, where each transmission is immedi-
ately followed by the matching reception [18]. Their argument holds also in the
presence of emptiness tests, since an eager run cannot disable c == ε transitions
(eager runs can only make the channels empty more often). Thus, by restricting
to eager runs, communication behaves just as a rendezvous synchronization, and
we obtain a global counter automaton by taking the product of all component
counter automata.

Theorem 1. For every polytree topology T with α channels, of which β can be
tested for emptiness, the reachability problem for systems of communicating tick
automata with topology T is reducible, in linear time, to the reachability problem
for products of (non-communicating) counter automata, with overall α counters,
of which β can be tested for zero.

From counter automata to tick automata. We reduce the reachability problem for
(non-communicating) counter automata to the reachability problem for systems
of communicating tick automata with star topology. Formally, a topology T =
〈P,C,E〉 is called a star topology if there exist two disjoint subsets Q,R of P and
a process p in P \(Q∪R) such that P = {p}∪Q∪R and C = (R×{p})∪({p}×Q).
The idea is to simulate each counter with a separate channel, thus the number
of counters fixes the number of channels in T . However, our reduction is uniform
in the sense that it works independently of the exact arrangement of channels
in T , which we take not to be under our control. W.l.o.g., we consider counter
automata where all actions are counter operations (i.e., Δ ⊆ L× Op(X)× L).

For the remainder of this section, we consider an arbitrary star topology T =
〈P,C,E〉 with set of processes P = {p, q1, . . . , qm, r1, . . . , rn}, where m,n ∈ N,
and set of channels C = {p} × {q1, . . . , qm} ∪ {r1, . . . , rn} × {p} and E = C.
This topology is depicted in Figure 1 (middle). Note that we allow the limit cases
m = 0 and n = 0. To simplify the presentation, we introduce shorter notations
for the channels of this topology: we define ci = (p, qi) and dj = (rj , p) for every
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

4 A polytree is a weakly-connected graph with neither directed, nor undirected cycles.
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Let C = 〈L,LI , LF , X ∪ Y,Δ〉 be a counter automaton with m+ n counters,
namely X = {x1, . . . , xm} and Y = {y1, . . . , yn}. The counters are split into X
and Y to reflect the star topology T , which is given a priori. We build, from C, an
equivalent system of communicating tick automata S with topology T . Basically,
the process p simulates the control-flow graph of the counter automaton, and the
counters xi and yj are simulated by the channels ci and dj , respectively. In order
to define S, we need to provide its message alphabet and its tick automata, one
for each process p in P . The message alphabet is M = {wait, test}. Actions
performed by processes in P are either communication actions or the delay
action τ . Processes rj ’s are assigned the tick automaton of Figure 1 (left), and
processes qi’s are assigned the tick automaton of Figure 1 (right). Intuitively,
communications on wait messages are loosely synchronized using the τ actions
in qi and rj , so that p can control the rate of their reception and transmission.

We now present the tick automaton Ap. As mentioned above, the control-flow
graph of C is preserved by Ap, so we only need to translate counter operations
of C by communication actions and τ actions. Each counter operation of C is
simulated by a finite sequence of actions in Σp. To simplify the presentation,
we directly label transitions of Ap by words in (Σp)∗. The encoding of counter
operations is given by the mapping η from Op(X∪Y ) to (Σp)∗ defined as follows:

η(xi++) = ci!wait η(xi--) = (ch!wait)1≤h≤m,h �=i · τ · (dk?wait)1≤k≤n

η(yj--) = dj?wait η(yj++) = (ch!wait)1≤h≤m · τ · (dk?wait)1≤k≤n,k �=j

η(xi==0) = ci!test η(yj==0) = (dj == ε) · (dj?test)

where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We obtain Ap from C by replacing each
counter operation by its encoding. Observe that these replacements require the
addition of a set S

p
� of fresh intermediate states to implement sequences of ac-

tions. Formally, Ap is the tick automaton Ap = 〈L∪Sp
� , LI , LF , Σ

p, {� η(op)−−−→ �′ |
(�, op, �′) ∈ Δ}〉. This completes the definition of the system of communicating
tick automata S = 〈T ,M, {τ}, (Ap)p∈P 〉.

Let us show that �C� has a run if and only if �S� has a run. We only explain
the main ideas behind this simulation of C by S. The number of wait messages
in channels ci and dj encodes the value of counters xi and yj , respectively. So,
incrementing xi amounts to sending wait in ci, and decrementing yj amounts
to receiving wait from dj . Both actions can be performed by p. Decrementing xi
is more involved, since p cannot receive from the channel ci. Instead, p performs
a τ action in order to force a τ action in qi, hence, a receive of wait by qi.
But all other processes also perform the τ action, so p compensates (see the
definition of η(xi--)) in order to preserve the number of wait messages in the
other channels. The simulation of yj++ by η(yj++) is similar. Let us now look
at zero test operations. When p simulates xi==0, it simply sends test in the
channel ci. This message is eventually received by qi since all channels must be
empty at the end of the simulation. The construction guarantees that the first
receive action of qi after the send action ci!test of p is the matching receive
ci?test. This means, in particular, that the channel is empty when p sends test
in ci. The same device is used to simulate a zero test of yj , except that the roles
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of p and its peer (here, rj) are reversed. Clearly, channels that need to be tested
for emptiness are those encoding counters that are tested for zero. We obtain
the following theorem.

Theorem 2. Let T be an a priori given star topology with α channels, of which
β can be tested for emptiness. The reachability problem for (non-communicating)
counter automata with α counters, of which β can be tested for zero, is reducible,
in linear time, to the reachability problem for systems of communicating tick
automata with topology T .

Decidability and Complexity Results for Communicating Tick Automata. Thanks
to the mutual reductions to/from counter automata developed previously, we
may now completely characterize which topologies (not necessarily weakly-
connected) have a decidable reachability problem, depending on exactly which
channels can be tested for emptiness. Intuitively, decidability holds even in the
presence of multiple emptiness tests, provided that each test appears in a differ-
ent weakly-connected component.

Theorem 3 (Decidability). Given a topology T , the reachability problem for
systems of communicating tick automata with topology T is decidable if and only
if T is a polyforest5 containing at most one testable channel in each weakly-
connected component.

Proof. For one direction, assume that the reachability problem for systems of
communicating tick automata with topology T is decidable. The topology T
is necessarily a polyforest, since the reachability problem is undecidable for
non-polyforest topologies even without ticks [23,21]. Suppose that T contains
a weakly-connected component with (at least) two channels that can be tested
for emptiness. By an immediate extension of Theorem 2 to account for the undi-
rected path between these two channels, we can reduce the reachability problem
for two-counter automata to the reachability problem for systems of commu-
nicating tick automata with topology T . Since the former is undecidable, each
weakly-connected component in T contains at most one testable channel.

For the other direction, assume that T is a polyforest with at most one testable
channel in each weakly-connected component, and let S be a system of com-
municating tick automata with topology T . Thus, S can be decomposed into
a disjoint union of independent systems S0,S1, . . . ,Sn, where each Sk has an
undirected tree topology containing exactly one testable channel. But we need
to ensure that the Sk’s perform the same number of ticks. By (the construction
leading to) Theorem 1, each Sk can be transformed into an equivalent counter
automaton Ck (by taking the product over all processes in Sk), where exactly
one counter, let us call it xk, can be tested for zero. We may suppose, w.l.o.g.,
that the counters of C0, . . . , Cn are disjoint. Moreover, Ck can maintain, in an
extra counter yk, the number of ticks performed by Sk. We compose the counter
machines C0, . . . , Cn sequentially, and check, at the end, that y0 = · · · = yn. Since

5 A topology T is a polyforest if it is a directed acyclic graph with no undirected cycle.
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all counters must be zero in final configurations, this check can be performed by
adding, on the final state, a loop decrementing all the yk’s simultaneously. The
construction guarantees that the resulting global counter machine C is equivalent
to S. However, C contains zero tests on many counters: x0, . . . , xn. Fortunately,
these counters are used one after the other, and they are zero at the beginning
and at the end. Therefore, we may reuse x0 in place of x1, . . . , xn. We only
need to check that x0 is zero when switching from Ck to Ck+1. Thus, we have
reduced the reachability problem for systems of communicating tick automata
with topology T to the reachability problem for counter automata where only
one counter can be tested for zero. As the latter is decidable [24,11], the former
is decidable, too.

When no test is allowed, we obtain a simple characterization of the complexity
for polyforest topologies. A topology T =〈P,C,E〉 is test-free if E=∅.

Corollary 1 (Complexity). The reachability problem for systems of commu-
nicating tick automata with test-free polyforest topologies has the same complexity
as the reachability problem for counter automata without zero tests (equivalently,
Petri nets).

Remark 1. Even though global synchronization makes communicating tick au-
tomata more expressive than CFSMs, our characterization shows that they are
decidable for exactly the same topologies (polyforest). However, while reacha-
bility for CFSMs is Pspace-complete, systems of communicating tick automata
are equivalent to Petri nets, for which reachability is ExpSpace-hard [22] (the
upper bound being a long-standing open problem).

4 Decidability of Communicating Timed Automata

In this section, we consider communicating timed automata, which are commu-
nicating timed processes synchronizing over the dense delay domain D = R≥0.
We extend the decidability results for tick automata of Section 3 to the case of
timed automata. To this end, we present mutual, topology-preserving reductions
between communicating tick automata and communicating timed automata. We
first introduce the latter model.

Communicating Timed Automata. A timed automaton B = 〈L,LI , LF , X,Σ,Δ〉
is defined by a finite set of locations L with initial locations LI ⊆ L and final
locations LF ⊆ L, a finite set of clocks X , a finite alphabet Σ and a finite set
Δ of transitions rules (�, σ, g, R, �′) where �, �′ ∈ L, σ ∈ Σ, the guard g is a
conjunction of constraints x#c for x ∈ X , # ∈ {<,≤,=,≥, >} and c ∈ N, and
R ⊆ X is a set of clocks to reset.

The semantics of B is given by the timed process �B� = 〈S, SI , SF , A,→〉,
where S = L × R

X
≥0, SI = LI × {λx. 0}, SF = LF × {λx. 0}, A = Σ ∪ R≥0

is the set of actions, and there is a transition (�, v)
d−→ (�, v′) if d ∈ R≥0

and v′(x) = v(x) + d for every clock x, and (�, v)
σ−→ (�′, v′) if there exists
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a rule (�, σ, g, R, �′) ∈ Δ such that g is satisfied by v (defined in the natu-
ral way) and v′(x) = 0 when x ∈ R, v′(x) = v(x) otherwise. We decorate a

path (�0, u0)
a0,t0−−−→ (�1, u1)

a1,t1−−−→ · · · (an, un) in �B� with additional timestamps
ti =

∑
{aj | j = 0, . . . , i − 1 and aj ∈ R≥0}. Note that we require clocks to

be zero in final configurations, as this simplifies the forthcoming construction
from tick automata to timed automata. It can be implemented by duplicating
final locations, and by resetting all clocks when entering the new final locations.
Without loss of generality, we do not consider location invariants as they can be
encoded in the guards. To ensure that the invariant of the last state in a run
is satisfied, we duplicate the final locations and we add an edge guarded by the
invariant, to the new accepting copy. Combining the two constructions, we get
that the invariant in the final configuration is satisfied as the clocks have value
zero in accepting configurations.

A system of communicating timed automata is a system of communicating
timed processes S = 〈T ,M,R≥0, (�Bp�)p∈P 〉 where each Bp is a timed automa-
ton. Note that each timed automaton has access only to its local clocks. By
Definition 1, each timed automaton performs communicating actions in Ap

com

and synchronizes with all the other processes over delay actions in R≥0.

(B, 0)
g ∧ (t = 0)

(B, 1)
g ∧ (0<t<1)

t = 0, τ

t = 1, τ, t := 0

0 1
a1a2 b1a3 b2

a0b0τ τb3a4τ

0 1
a1

a2
a3 b1

b2

Ip Iqa0b0τ τa4b3τ

Fig. 2. From timed to tick automata: instrumentation of a timed automaton B with
τ -transitions (left), addition of τ ’s along a run (middle) and rescheduling of a run
(right)

From Timed Automata to Tick Automata. On test-free acyclic topologies, we
show a topology-preserving reduction from communicating timed to communi-
cating tick automata. We insist on a reduction that only manipulates processes
locally, thus preserving the topology. The absence of emptiness tests on the
channels enables such a modular construction.

Näıvely, one would just apply the classical region construction to each process
[9]. However, while this preserves local reachability properties, it does not re-
spect the global synchronization between different processes. While quantitative
synchronization cannot be obtained by locally removing dense time, a qualitative
synchronization suffices in our setting. We require that all processes are either
at the same integer date k ∈ N, or in the same open interval (k, k + 1). This
suffices because, at integer dates (in fact, at any time-point), any interleaving
is allowed, and, in intervals (k, k + 1), we can reschedule all processes s.t., for
every channel c = (p, q), all actions of p occur before all actions of q (cf. the
Rescheduling Lemma below). The latter property ensures the causality between
transmissions and receptions.
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Qualitative synchronization is achieved by forcing each automaton Bp to per-
form a synchronizing tick action τ at each date k and at each interval (k, k+1).
See Figure 2 on the left, where Bp is split into two copies (Bp, 0) and (Bp, 1): Ac-
tions occurring on integer dates k are performed in (Bp, 0), and those in (k, k+1)
happen in (Bp, 1). This is ensured by adding a new clock t and τ -transitions
that switch from one mode to the other. Formally, the τ-instrumentation of
B = 〈L,LI , LF , X,Σ,Δ〉 is the timed automaton Instr(B, τ) = 〈L × {0, 1}, LI ×
{1}, F × {0, 1}, X ∪ {t}, Σ ∪ {τ}, Δ′〉, where t �∈ X and Δ′ is defined by:

(�, 0)
a,(g∧t=0),R−−−−−−−−→ (�′, 0) and (�, 1)

a,(g∧0<t<1),R−−−−−−−−−−→ (�′, 1) for all rules �
a,g,R−−−→ �′ in

Δ, and (�, 0)
τ,t=0,∅−−−−−→ (�, 1) and (�, 1)

τ,t=1,{t}−−−−−−→ (�, 0) for all locations � ∈ L.
Finally, we obtain an equivalent system of tick automata by applying the

exponential region construction to each instrumented process.

Theorem 4. Let T be a test-free acyclic topology. For every system of communi-
cating timed automata S = 〈T ,M,R≥0, (�Bp�)p∈P 〉 with topology T , we can pro-
duce, in exponential time, an equivalent system of communicating tick automata
S ′ = 〈T ,M, {τ}, (Ap)p∈P 〉 over the same topology T , where the tick automaton
Ap is obtained by applying the region graph construction to Instr(Bp, τ).

One direction of the equivalence between S and S ′ is immediate, since every
run in S induces a run in S ′ by just inserting τ actions in the right position.
For the other direction, let ρ′ be a run of S ′, and we show how to build a
corresponding run ρ of S. We have to schedule all the actions in ρ′ on timestamps
that are consistent with the guards in S and that preserve dependencies between
transmissions and receptions of messages. Consider a channel c = (p, q) without
emptiness test. If p and q are untimed processes, it is always possible to first
schedule transmissions of p, and then receptions of q. The Rescheduling Lemma
below ensures the same for timed processes. This is depicted in Figure 2 in the
middle (before rescheduling) and on the right (after rescheduling) where the a’s
are emissions of p and the b’s are receptions of q.

Lemma 1 (Rescheduling Lemma). Let B be a timed automaton, and I ⊆
(0, 1) an open interval. Then, every run of B (�0, v0)

a0,t0−−−→ · · · (�n, vn) can be
rescheduled such that integral timestamps ti ∈ N are kept the same, and non-
integral timestamps ti ∈ (k, k + 1) belong to k + I.

Intuitively, the lemma above allows us to restrict non-integer timestamps in
(k, k+1) to occur in a predefined sub-interval I+k. Let us first see how this helps
in constructing ρ′. To each process p, we associate an open interval Ip ⊆ (0, 1),
such that, for every channel (p, q), Ip and Iq are disjoint, and Ip comes before
Iq. This is always possible on acyclic topologies. Then, all actions of process p
in (k, k + 1) are rescheduled to occur in k + Ip (according to the Rescheduling
Lemma), which ensures causality between transmissions and receptions. Finally,
the τ actions added by instrumentation tell, for each action performed by process
p in ρ′, whether it should be scheduled at an integer date k, or in k + Ip.
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Remark 2. Our reduction is incorrect in the presence of emptiness tests. There
are essential difficulties in rescheduling senders and receivers in fixed intervals,
as emptiness tests introduce a sort of circular dependency and seem to require
unboundedly many intervals.

We now comment about the correctness of the Rescheduling Lemma. Resets and
guards in a timed automaton allow to enforce minimal and/or maximal delays
between timestamps on a path. Since clocks are compared to integers only, it
suffices to just distinguish between integral and non-integral dates. While for
closed guards like x ≤ 1 a non-integral time-point t ∈ (0, 1) would suffice to
represent all non-integral dates, to accommodate open guards like x < 1 we
need a dense interval I ⊆ (0, 1). The following characterization of decidable
test-free topologies follows from Theorems 3 and 4.

Theorem 5 (Decidability). Given a test-free topology T , the reachability prob-
lem for systems of communicating timed automata with topology T is decidable
if and only if T is a polyforest.

Remark 3. While the reachability problem is known to be decidable for a system
of two communicating timed automata with only one channel and emptiness
test [20], that proof does not preserve the topology and it looks hardly adaptable
to arbitrary polyforest topologies.

From tick automata to timed automata. Given a system of communicating tick
automata S, we produce an equivalent system of communicating timed automata
S ′, over the same topology. The synchronization on τ ’s is easily simulated using
clocks in S ′ by ensuring that all the processes elapse 1 time unit exactly when
they (synchronously) perform a τ in S. Thus, every run in S has a corresponding
run in S ′. For the converse to hold, we have to make sure that for every run of
S ′, all the processes perform the same number of τ ’s on the corresponding run
of S. This is ensured since we require clocks to be zero at the end of accepting
runs, thus preventing time from elapsing on final locations.

The simple topology p −→ q −→ r is known to be undecidable when both
channels can be tested for emptiness [20]. Thanks to Theorem 3, we obtain
generalized undecidability for every weakly-connected topology containing at
least two testable channels.

Theorem 6 (Undecidability). Given a weakly-connected topology T with two
testable channels, the reachability problem for systems of communicating timed
automata with topology T is undecidable.

5 Conclusions and Future Work

We have studied the decidability and complexity of communicating timed pro-
cesses. In discrete time, we give a complete characterization of decidable topolo-
gies with emptiness tests, as well as a tight connection with Petri nets in the test-
free case. In dense time, we prove decidability for polyforest test-free topologies,
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and we generalize the undecidability results of [20] to arbitrary weakly-connected
topologies containing two testable channels. We leave open whether one can ob-
tain, in the presence of emptiness tests, the same characterization as in discrete
time. We conjecture that this is possible, although the techniques used here do
not seem to easily extend to deal with emptiness tests. Finally, as another di-
rection for future work one can study richer models where processes are allowed
to send timestamps or clocks along channels, in the spirit of [1].
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