

Lecture Notes in Computer Science 7794
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Frank Pfenning (Ed.)

Foundations
of Software Science and
Computation Structures

16th International Conference, FOSSACS 2013
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013
Rome, Italy, March 16-24, 2013
Proceedings

13

Volume Editor

Frank Pfenning
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213-3891, USA
E-mail: fp@cs.cmu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37074-8 e-ISBN 978-3-642-37075-5
DOI 10.1007/978-3-642-37075-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013932563

CR Subject Classification (1998): F.4.1, F.4.3, F.3.1-3, D.3.1, D.2.4, F.1.1-3, I.2.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers in
the TACAS proceedings). Congratulations therefore to all the authors who made
it to the final programme! I hope that most of the other authors will still have
found a way to participate in this exciting event, and that you will all continue
to submit to ETAPS and contribute to making it the best conference on software
science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with

VI Foreword

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.

Foreword VII

My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only se-
quencing, conditionals, and while-loops over elementary instructions. Böhm trees
arose as a convenient data structure in Corrado’s milestone proof of the decid-
ability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.

VIII Foreword

Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the con-
solidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit as-
sociation founded under German law with the immediate purpose of supporting
the conference and the related activities. ETAPS e.V. was required for practical
reasons, e.g., the conference needed (to be represented by) a legal body to better
support authors, organisers and attendees by, e.g., signing contracts with service
providers such as publishers and professional meeting organisers. Our ambition
is however to make of ‘ETAPS the association’ more than just the organisers of
‘ETAPS the conference’. We are working towards finding a voice and developing
a range of activities to support our scientific community, in cooperation with the
relevant existing associations, learned societies and interest groups. The process
of defining the structure, scope and strategy of ETAPS e.V. is underway, as is its
first ever membership campaign. For the time being, ETAPS e.V. has started to
support community-driven initiatives such as open access publications (LMCS
and EPTCS) and conference management systems (Easychair), and to cooperate
with cognate associations (European Forum for ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed
deadlines in the first week of October. We published a confidentiality policy to

Foreword IX

set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and
participants, i.e., to look like one large, coherent, well-integrated conference

X Foreword

rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President

Preface

FoSSaCS is an annual conference presenting papers on foundational research
with a clear significance for software science. It covers research on theories and
methods to support the analysis, integration, synthesis, transformation, and ver-
ification of programs and software systems. This volume contains contributions
to FoSSaCS 2013, which took place March 18-20, 2013, as part of ETAPS 2013.

We received 109 submissions. Of these, 28 were selected for presentation at
the conference and inclusion in the proceedings. There were a number of addi-
tional strong submissions that we could not accept because of space constraints.
Also included in the proceedings is an abstract for the invited talk by Martin
Hofmann on “Ten Years of Amortized Resource Analysis.” I would like to thank
the Program Committee and the additional reviewers for their excellent work.
Throughout the submission, selection, and proceedings production process we
relied on EasyChair, and we are grateful we were able to use this again. I would
also like to thank the ETAPS 2013 General Chair, Daniele Gorla, and the Chair
of the ETAPS Steering Committee, Vladimiro Sassone, for their leadership and
guidance in the process.

January 2013 Frank Pfenning

Organization

Program Committee

Andreas Abel LMU Munich, Germany
Umut Acar MPI for Software Systems, Germany
Rajeev Alur University of Pennsylvania, USA
Eugene Asarin Université Paris Diderot, France
Nick Benton Microsoft Research Cambridge, UK
Krishnendu Chatterjee Institute of Science and Technology (IST), Austria
Swarat Chaudhuri Rice University, USA
Adam Chlipala MIT, USA
Ugo Dal Lago University of Bologna, Italy
Giorgio Delzanno University of Genova, Italy
Dan Ghica University of Birmingham, UK
Jean Goubault-Larrecq ENS Cachan, France
Bart Jacobs Radboud University Nijmegen, The Netherlands
Radha Jagadeesan DePaul University, USA
Patricia Johann University of Strathclyde, UK
Naoki Kobayashi University of Tokyo, Japan
Stephane Lengrand Ecole Polytechnique, France
Aart Middeldorp University of Innsbruck, Austria
Catuscia Palamidessi INRIA Saclay, France
Frank Pfenning Carnegie Mellon University, USA
Ashish Tiwari SRI International, USA
Pawel Urzyczyn University of Warsaw, Poland
Kwangkeun Yi Seoul National University, Korea

Additional Reviewers

Accattoli, Beniamino
Adams, Robin
Aehlig, Klaus
Allais, Guillaume
Ancona, Davide
Atig, Mohamed Faouzi
Atkey, Robert
Avanzini, Martin
Avni, Guy
Baelde, David

Baldan, Paolo
Barth, Stephan
Benes, Nikola
Benzmueller, Christoph
Berger, Martin
Bernadet, Alexis
Bertrand, Nathalie
Birkedal, Lars
Bjorklund, Henrik
Bloem, Roderick

XIV Organization

Blute, Richard
Boespflug, Mathieu
Boigelot, Bernard
Boker, Udi
Bollig, Benedikt
Bonchi, Filippo
Boreale, Michele
Bouissou, Olivier
Broadbent, Christopher
Brotherston, James
Bruyère, Véronique
Cacciagrano, Diletta Romana
Cerny, Pavol
Chang, Stephen
Cheval, Vincent
Chong, Stephen
Cimini, Matteo
Cirstea, Corina
Clairambault, Pierre
D’Antoni, Loris
Dagand, Pierre-Evariste
Danos, Vincent
de Carvalho, Daniel
Degorre, Aldric
Deng, Yuxin
Denielou, Pierre-Malo
Dezani-Ciancaglini, Mariangiola
Doyen, Laurent
Durand-Gasselin, Antoine
Duret-Lutz, Alexandre
Dziubiński, Marcin
Ehrig, Hartmut
Emmi, Michael
Esmaeilsabzali, Shahram
Faella, Marco
Faggian, Claudia
Felgenhauer, Bertram
Fernandez, Maribel
Figueira, Diego
Fijalkow, Nathanael
Fischer, Felix
Fitting, Melvin
Fokkink, Wan
Forejt, Vojtech
Francalanza, Adrian

Froeschle, Sibylle
Gabbay, Jamie
Gaboardi, Marco
Gadducci, Fabio
Galmiche, Didier
Ganty, Pierre
Gascon, Adria
Gimenez, Stéphane
Goubault, Eric
Gupta, Vineet
Haase, Christoph
Habermehl, Peter
Haddad, Axel
Haddad, Serge
Hansen, Helle Hvid
Harmer, Russ
Hasuo, Ichiro
Heijltjes, Willem
Hermanns, Holger
Hernich, André
Hildebrandt, Thomas
Hirschkoff, Daniel
Hirschowitz, Tom
Horn, Florian
Hur, Chung-Kil
Hüttel, Hans
Jacquemard, Florent
Jeż, Artur
Jonsson, Bengt
Kaliszyk, Cezary
Kennedy, Andrew
King, Tim
Klin, Bartek
König, Barbara
Komendantskaya, Katya
Komuravelli, Anvesh
Kong, Soonho
Krishnaswami, Neelakantan
Kupke, Clemens
Kurz, Alexander
Kwiatkowska, Marta
Křet́ınský, Jan
La Torre, Salvatore
Laird, Jim
Lasota, S�lawomir

Organization XV

Lazic, Ranko
Lee, Oukseh
Lee, Wonchan
Levy, Paul
Lin, Anthony Widjaja
Loader, Ralph
Loreti, Michele
Madhusudan, P.
Majumdar, Rupak
Malecha, Gregory
Markey, Nicolas
Mart́ı Oliet, Narciso
Mayr, Richard
McCusker, Guy
Melliès, Paul-André
Mendler, Michael
Meyer, Roland
Mezzina, Claudio Antares
Milius, Stefan
Millstein, Todd
Mimram, Samuel
Min, Zhang
Minamide, Yasuhiko
Mio, Matteo
Moggi, Eugenio
Monin, Jean-Francois
Moser, Georg
Muscholl, Anca
Müller-Olm, Markus
Niwiński, Damian
Norman, Gethin
Novotny, Petr
Oh, Hakjoo
Panangaden, Prakash
Pang, Jun
Paolini, Michela
Park, Daejun
Park, Sungwoo
Parrow, Joachim
Parys, Pawe�l
Perera, Roly
Phillips, Iain
Pientka, Brigitte
Pitcher, Corin
Platzer, André

Popescu, Andrei
Power, John
Prabhu, Vinayak
Praveen, M.
Puppis, Gabriele
Pérez, Jorge A.
Raskin, Jean-Francois
Rathke, Julian
Reddy, Uday
Regnier, Laurent
Reynier, Pierre-Alain
Rezine, Ahmed
Ridder, Bram
Riely, James
Rothenberg, Robert
Rubin, Sasha
Ryu, Sukyoung
Sacerdoti Coen, Claudio
Saha, Indranil
Samanta, Roopsha
Sangiorgi, Davide
Sangnier, Arnaud
Scerri, Guillaume
Schmidt, David
Schoepp, Ulrich
Schröder, Lutz
Schubert, Aleksy
Schöpp, Ulrich
Segala, Roberto
Senjak, Christoph-Simon
Serwe, Wendelin
Setzer, Anton
Sevegnani, Michele
Silva, Alexandra
Simpson, Alex
Skou, Arne
Sobocinski, Pawel
Sokolova, Ana
Sproston, Jeremy
Stampoulis, Antonis
Staton, Sam
Stenman, Jari
Sternagel, Christian
Strejcek, Jan
Suenaga, Kohei

XVI Organization

Tabareau, Nicolas
Thiemann, René
Thrane, Claus
Toninho, Bernardo
Tripakis, Stavros
Trivedi, Ashutosh
Troina, Angelo
Tsukada, Takeshi
Turon, Aaron
Turrini, Andrea
Tzevelekos, Nikos
Unno, Hiroshi
Vafeiadis, Viktor
Valencia, Frank

van Breugel, Franck
Van Den Bussche, Jan
Van Glabbeek, Rob
Vaux, Lionel
Velner, Yaron
Wachter, Björn
Walukiewicz, Igor
Wiedijk, Freek
Wies, Thomas
Winkler, Sarah
Zankl, Harald
Zdanowski, Konrad
Ziliani, Beta

Ten Years of Amortized Resource Analysis

(Invited Talk)

Martin Hofmann

www.ifi.lmu.de

Amortized resource analysis is a new method for deriving concrete bounds on
resource usage, i.e., heap space, stack space, worst-case execution time, of func-
tional and imperative programs that use recursion and complex data structures
(lists, trees, graphs) for intermediate results. Of course, it can also be used with
straight-line programs or programs without data structures, but in those cases
does not offer any benefits over alternative approaches.

Amortized resource analysis started in the early 2000s when we tried to de-
velop an automatic inference for a type system with explicit resource types [1,
2] that had arisen from implicit computational complexity, i.e., the attempt to
characterise complexity classes, e.g. polynomial time, by logical or type-theoretic
means. The link with classical amortized analysis as pioneered by Tarjan [3] was
then realized and exploited.

Amortized resource analyses were subsequently developed for first-order func-
tional programs [4], object-oriented programs [5], higher-order functional pro-
grams [6], and recently for lazy functional programming [7]. Initially, only lin-
ear resource bounds could be inferred, but recently we found ways for deriving
univariate [8] and multivariate [9] polynomial resource bounds. This allows in
particular for a fairly precise automatic analysis of various dynamic program-
ming algorithms. Most recently [10] we developed an automatic inference for the
object-oriented system from 2006. Amortized analysis has also been employed
in three larger application-oriented research projects: [11–13].

In a nutshell, amortized analysis works as follows. Data structures are as-
signed non-negative numbers, called potential, in an a priori arbitrary fashion.
If done cleverly, it then becomes possible to obtain constant bounds on the
“amortised cost” of an individual operation, that is, its actual resource usage
plus the difference in potential of the data structure before and after performing
the operation. This makes it possible to take into account the effect that an
operation might have on the resource usage of subsequent operations and also to
merely add up amortised costs without having to explicitly track size and shape
of intermediate data structures. In traditional amortised analysis [3] where the
emphasis lies on the manual analysis of algorithms, the potentials were ascribed
to particular data structures such as union-find trees or Fibonacci heaps by some
formula that must be manually provided. When amortised analysis is used for
automatic resource analysis one uses refined types to define the potentials —
typing rules then ensure that potential and actual resource usage is accounted
for correctly. Combined with type inference and numerical constraint solving, it
then allows for an automatic inference of the potential functions.

XVIII Organization

The talk will survey these works and some of the related approaches [14–18]
and discuss ongoing work and directions for future research.

References

1. Hofmann, M.: Linear types and non-size-increasing polynomial time computation.
In: LICS, pp. 464–473. IEEE Computer Society (1999)

2. Hofmann, M.: A type system for bounded space and functional in-place update.
Nord. J. Comput. 7(4), 258–289 (2000)

3. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

4. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pp. 185–197. ACM (2003)

5. Hofmann, M.O., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

6. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of Quan-
titative Resource Usage for Higher-Order Programs. In: 37th ACM Symposium
on Principles of Programming Languages (POPL 2010), pp. 223–236. ACM, New
York (2010)

7. Simões, H.R., Vasconcelos, P.B., Florido, M., Jost, S., Hammond, K.: Automatic
amortised analysis of dynamic memory allocation for lazy functional programs. In:
Thiemann, P., Findler, R.B. (eds.) ICFP, pp. 165–176. ACM (2012)

8. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

9. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

10. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: Gardner, P., Felleisen, M. (eds.) European Symposium on Program-
ming (ESOP). LNCS. Springer (2013)

11. Sannella, D., Hofmann, M., Aspinall, D., Gilmore, S., Stark, I., Beringer, L., Loidl,
H.W., MacKenzie, K., Momigliano, A., Shkaravska, O.: Mobile resource guarantees
(project evaluation paper). In: [19], pp. 211–226

12. Hammond, K., Dyckhoff, R., Ferdinand, C., Heckmann, R., Hofmann, M., Jost, S.,
Loidl, H.W., Michaelson, G., Pointon, R.F., Scaife, N., Sérot, J., Wallace, A.: The
embounded project (project start paper). In: [19], pp. 195–210

13. Barthe, G., Beringer, L., Crégut, P., Grégoire, B., Hofmann, M.O., Müller, P., Poll,
E., Puebla, G., Stark, I., Vétillard, E.: MOBIUS: Mobility, Ubiquity, Security. In:
Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp.
10–29. Springer, Heidelberg (2007)

14. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

15. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning (2010)

16. Chin, W.N., David, C., Gherghina, C.: A hip and sleek verification system. In:
Lopes, C.V., Fisher, K. (eds.) OOPSLA Companion, pp. 9–10. ACM (2011)

Organization XIX

17. Wilhelm, R., et al.: The Worst-Case Execution-Time Problem – Overview of Meth-
ods and Survey of Tools. ACM Trans. Embedded Comput. Syst. 7(3), 36:1–36:53
(2008)

18. Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems
Using Sized Types. In: 23rd ACM Symposium on Principles of Programming Lan-
guages (POPL 1996), pp. 410–423. ACM, New York (1996)

19. van Eekelen, M.C.J.D. (ed.): Revised Selected Papers from the Sixth Symposium
on Trends in Functional Programming, TFP 2005, Tallinn, Estonia, September
23-24 (2005); In: van Eekelen, M.C.J.D. (ed.) Trends in Functional Programming.
Trends in Functional Programming, vol. 6. Intellect (2007)

Table of Contents

Invited Talk

Ten Years of Amortized Resource Analysis (Invited Talk) XVII
Martin Hofmann

Models of Computation

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 1
Jonathan Hayman and Tobias Heindel

History-Register Automata . 17
Nikos Tzevelekos and Radu Grigore

Fatal Attractors in Parity Games . 34
Michael Huth, Jim Huan-Pu Kuo, and Nir Piterman

Reasoning about Processes

On Unique Decomposition of Processes in the Applied π-Calculus 50
Jannik Dreier, Cristian Ene, Pascal Lafourcade, and
Yassine Lakhnech

Bounded Context-Switching and Reentrant Locking 65
Rémi Bonnet and Rohit Chadha

Reachability of Communicating Timed Processes . 81
Lorenzo Clemente, Frédéric Herbreteau, Amelie Stainer, and
Grégoire Sutre

Bisimulation

Modular Bisimulation Theory for Computations and Values 97
Martin Churchill and Peter D. Mosses

Checking Bisimilarity for Attributed Graph Transformation 113
Fernando Orejas, Artur Boronat, Ulrike Golas, and Nikos Mylonakis

Comodels and Effects in Mathematical Operational Semantics 129
Faris Abou-Saleh and Dirk Pattinson

Preorders on Monads and Coalgebraic Simulations 145
Shin-ya Katsumata and Tetsuya Sato

XXII Table of Contents

Modal and Higher-Order Logics

A Proof System for Compositional Verification of Probabilistic
Concurrent Processes . 161

Matteo Mio and Alex Simpson

Partiality and Recursion in Higher-Order Logic . 177
�Lukasz Czajka

Some Sahlqvist Completeness Results for Coalgebraic Logics 193
Fredrik Dahlqvist and Dirk Pattinson

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 209
Lutz Straßburger

Reasoning about Programs

On Monadic Parametricity of Second-Order Functionals 225
Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev

Deconstructing General References via Game Semantics 241
Andrzej S. Murawski and Nikos Tzevelekos

Separation Logic for Non-local Control Flow and Block Scope
Variables . 257

Robbert Krebbers and Freek Wiedijk

Computational Complexity

The Parametric Ordinal-Recursive Complexity of Post Embedding
Problems . 273

Prateek Karandikar and Sylvain Schmitz

Deciding Definability by Deterministic Regular Expressions 289
Wojciech Czerwiński, Claire David, Katja Losemann, and
Wim Martens

Type-Based Complexity Analysis for Fork Processes 305
Emmanuel Hainry, Jean-Yves Marion, and Romain Péchoux

Pure Pointer Programs and Tree Isomorphism . 321
Martin Hofmann, Ramyaa Ramyaa, and Ulrich Schöpp

Quantitative Models

A Language for Differentiable Functions . 337
Pietro Di Gianantonio and Abbas Edalat

Table of Contents XXIII

Computing Quantiles in Markov Reward Models . 353
Michael Ummels and Christel Baier

Parameterized Weighted Containment . 369
Guy Avni and Orna Kupferman

Weighted Specifications over Nested Words . 385
Benedikt Bollig, Paul Gastin, and Benjamin Monmege

Categorical Models

An Algebraic Presentation of Predicate Logic . 401
Sam Staton

Strategies as Profunctors . 418
Glynn Winskel

Generalised Name Abstraction for Nominal Sets . 434
Ranald Clouston

Author Index . 451

Pattern Graphs and Rule-Based Models:
The Semantics of Kappa

Jonathan Hayman1,3,� and Tobias Heindel2,��

1 DIENS (INRIA/ÉNS/CNRS), Paris, France
2 CEA, LIST, Gif sur Yvette, France

3 Computer Laboratory, University of Cambridge, UK

Abstract. Domain-specific rule-based languages to represent the sys-
tems of reactions that occur inside cells, such as Kappa and BioNetGen,
have attracted significant recent interest. For these models, powerful sim-
ulation and static analysis techniques have been developed to understand
the behaviour of the systems that they represent, and these techniques
can be transferred to other fields. The languages can be understood intu-
itively as transforming graph-like structures, but due to their expressivity
these are difficult to model in ‘traditional’ graph rewriting frameworks.
In this paper, we introduce pattern graphs and closed morphisms as a
more abstract graph-like model and show how Kappa can be encoded
in them by connecting its single-pushout semantics to that for Kappa.
This level of abstraction elucidates the earlier single-pushout result for
Kappa, teasing apart the proof and guiding the way to richer languages,
for example the introduction of compartments within cells.

1 Introduction

Rule-based models such as Kappa [6] and BioNetGen [2] have attracted signif-
icant recent attention as languages for modelling the systems of reactions that
occur inside cells. Supported by powerful simulation and static analysis tools, the
rule-based approach to modelling in biochemistry offers powerful new techniques
for understanding these complex systems [1].

Many of the ideas emerging from rule-based modelling have the potential to
be applied much more widely. Towards this goal, in this paper we frame the
semantics of Kappa developed in [4] in a more general setting. In [4], an SPO
semantics [10] is described by showing that specific pushouts in categories of
partial maps between structures specifically defined for Kappa called Σ-graphs
correspond to rewriting as performed by Kappa. The richness of the Kappa
language means that this construction is highly subtle: it cannot be understood
in the more widely studied DPO approach to graph rewriting.

� JH gratefully acknowledges the support of the ANR AbstractCell Chair of Excellence
and the ERC Advanced Grant ECSYM.

�� TH is thankful for the financial support of the ANR project PANDA ANR-09-BLAN-
0169.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Hayman and T. Heindel

A B

C

b a

c

(a) Σ-graph

A B A

(b) Rule (domain of defi-
nition equal to the right-
hand side)

A B

C

b a

c

A B A

A

C

b

c

(c) Rule application

Fig. 1. Example Σ-graph, rule and rule application

In this paper, we study pushouts in categories of simpler, more general struc-
tures called pattern graphs. Via an encoding of Σ-graphs into pattern graphs,
we determine precisely when pushouts exist and what they are. The original
motivation for this work was to tease-apart and generalise the pushout con-
struction in [4]; the more abstract structures certainly provide new insight here
by revealing the subtlety of the previous categories, for example in their not ad-
mitting all pushouts. But additionally, the study of pattern graphs both exports
the fundamentals of Kappa rewriting to a more general setting and provides a
uniform target for encodings of other rule-based models. The intention is to use
this framework to obtain directly a categorical semantics for BioNetGen and for
the enhancement of Kappa with regions.

Overview: In Section 2, we give an overview of Kappa and implicit deletion
(called side-effects in [4]) using closed partial maps. In Section 3, we introduce
pattern graphs as an expressive form of graph into which the encoding of Kappa
proceeds in Section 4. In Section 5, we isolate the role of coherent graphs and
determine when they have pushouts. Finally, we show in Section 6 that pushouts
in the category of Σ-graphs and pushouts in the category of coherent pattern
graphs correspond: the pushout of the encoding is the encoding of the pushout.

2 Kappa and Implicit Deletion

We shall give a formal account of the semantics of Kappa in Section 4, but
essentially we wish to characterise Kappa rewriting as a pushout in a category
of special forms of graph called Σ-graphs. A rule α : L→ R can be applied to a
Σ-graph S if there is a matching of the pattern L in S and there is a pushout
as follows, generating a rule application β : S → T :

L
α

��

m
��

R

m′
��

S
β �� T

��

An example Σ-graph is drawn in Figure 1(a). Squares represent entities called
agents which have circles attached called sites. The signature Σ describes the
labels that can occur on agents and sites. Links can be drawn between sites, and

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 3

additionally, for use in patterns which will be used to describe transformation
rules, we allow anonymous links. The anonymous link drawn at the site c on
the A-agent, for example, will represent the existence of a link to some site on
a C-agent. Finally, sites can have internal properties attached to them; in this
case, the site a on the B-agent has an internal property p, perhaps to represent
that the site is phosphorylated.

Homomorphisms express how the structure of one Σ-graph embeds into that
of another. They are functions on the components of the graph sending agents
to agents, sites to sites and links to links, that preserve structure in the sense of
preserving the source and target of links and preserving the labels on agents and
sites. They allow anonymous links to be sent either to proper links that satisfy
any requirements on the target, such as that it is on a C-agent, or to other
anonymous links that are at least as specific in their description of the target,
for example allowing the link drawn to be sent to another anonymous link that
specifies a connection to a site with a particular label on an agent labelled C.

To allow rules to represent the deletion of structure, we consider pushouts of
partial maps. Partial maps generalise homomorphisms by allowing undefinedness.
Formally, we view a partial map f : L ⇀ R to be a span consisting of an inclusion
def(f) ↪→ L, where def(f) is the domain of definition of the partial map, and a
homomorphism f0 : def(f)→ R. The interpretation of partial maps as describing
transformations is that the rule can be applied if the pattern L is matched; if so,
the elements of L that are in the domain of definition indicate what is preserved
and the elements of L outside the domain of definition indicate what is to be
deleted. Anything in R outside the image of the domain of definition is created
by application of the rule.

An example rule is presented in Figure 1(b), showing the deletion of an agent
labelled B in the presence of an agent labelled A. Note that the rule does not
include any sites, so the state of the sites on agents matched by those in the
left-hand side does not determine whether the rule can be applied. This is an
instance of the “don’t care; don’t write” principle in Kappa. Consequently, the
rule can be applied to give the application drawn in Figure 1(c). Importantly
for capturing the semantics of Kappa, the fact that the B-agent cannot be in
the pushout forces the sites on B and the link to A also to be absent from the
pushout: the link cannot be in the domain of definition of the rule application
since, otherwise, the domain of definition and the produced Σ-graph would not
be well-formed. We say that the sites and links are implicitly deleted as a side-
effect of the deletion of B.

Rewriting is abstractly characterised as taking a pushout in the category Σ-
graphs with partial maps between them. In the construction of the pushout
described in [4], as in the pushout for containment structures in [8], there is a
close relationship to the construction in the category of sets and partial functions.
For example, in generating the pushout in Figure 1c, we cannot have the B-
labelled agent preserved by the rule application due to the morphism α being
undefined on the B-agent matching it. On top of this, however, we have implicit
deletion: as remarked, we are additionally forced to remove the link connecting

4 J. Hayman and T. Heindel

the A-agent and the site a on B since the domain of definition has to be a well-
formed Σ-graph. A natural abstraction that captures both the set-like features of
the pushout and implicit deletion is to encode the structures as labelled graphs,
the nodes of which are the agents, sites and links and internal properties in the
Σ-graph. In this way, we simplify the analysis by treating all elements of the
Σ-graph uniformly. We represent using links the dependencies of the Σ-graph:
sites depend on agents, links on the sites that they connect, and so on. Links are
labelled to indicate the role of the dependency, such as a site being the source
of a link. The construction is described more fully in Section 4.1.

Before proceeding into detail, we demonstrate in the simplest possible setting
how closed morphisms allow implicit deletion as described above to be captured.

Definition 1. Let Λ be a fixed set of labels. A basic graph is a tuple G = (V,E)
where V is the set of nodes (or vertices) and E ⊆ V ×Λ×V is the set of edges.

We adopt the convention of adding subscripts to indicate the components of a
structure. For example, we write VG for the vertices of a graph G.

Definition 2. A graph homomorphism f : G → H is a function on nodes
f : VG → VH such that if (v, λ, v′) ∈ EG then (f(v), λ, f(v′)) ∈ VH .

We write �� for the category of basic graphs with homomorphisms between
them. When considering partial maps, a critical feature will be the following
condition called closure, which ensures that any partial map will be defined on
any node reachable from any defined node. For example, if a partial map is
defined on a link of a Σ-graph, which will be encoded as a node, it will be
defined on both the sites and agents that the link connects since they shall be
reachable from the node representing the link.

Definition 3. A partial map f : G ⇀ H is a span G ←↩ def(f)
f0−→ H of

homomorphisms such that def(f) is a subgraph of G, i.e. Vdef(f) ⊆ VG and
Edef(f) ⊆ EG, and the following closure property holds:

if v ∈ Vdef(f) and (v, λ, v′) ∈ EG then v′ ∈ Vdef(f) and (v, λ, v′) ∈ Edef(f).

Write ��∗ for the category of basic graphs with partial maps between them.
Partial maps f : G ⇀ H and g : H ⇀ K compose as partial functions, with the
domain of definition of g ◦ f obtained as the inverse image of def(g) along f0. It
consists of vertices v of G such that f(v) is in the domain of definition of g and
edges to satisfy the closure condition, and can be shown to be a pullback of f0
against the inclusion def(g) ↪→ H in ��.

Using the category-theoretical account of existence of pushouts of partial maps
mentioned in the conclusion or directly, it can be shown that ��∗ has pushouts
of all spans of partial maps; we do not present the details here since they shall
be subsumed by those in the following section for pattern graphs. In Figure 2,
we give an example of a pushout in ��∗. The pushout shows in a simplified way
how pushing out against a partial map representing deletion of an agent (the
node w2) requires the implicit deletion of a link (the node
). The key is that,
following the argument for pushouts in the category of sets and partial functions,

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 5

w1
A w2

B

v1A v2 B v1A

w1
A

v1A

w1
A

id

id

m m'

Fig. 2. An example pushout in ��∗. Horizontal spans represent partial maps. Vertical
maps m,m′ are total and send vi to wi for i ∈ {1, 2}.

we cannot have the node w2 in the domain of definition of the lower partial map
and hence, by the closure condition, we therefore cannot have
 in the domain
of definition of the rule application represented by the lower span.

We wish to use the fact that the category ��∗ has pushouts of all spans to
consider, via the encoding described above and to be formalised in Section 4.1,
pushouts in the category of Σ-graphs. Before we can do so, there are two im-
portant details to consider.

The first is that we must ensure that maps between the encoded structures
correspond to maps in the category of Σ-graphs: that they send agents to agents,
sites to sites and links to links. The standard trick of encoding the types of
elements as labelled loops can deal with these aspects, but the presence in Kappa
of anonymous links that can be mapped either to proper links or to more specific
anonymous links will necessitate a richer structure than basic graphs. There are
alternatives, for example recording the type of nodes, but in this paper an elegant
treatment is provided by the use of pattern graphs.

The second detail is that we will wish the pushout in the category of pattern
graphs to correspond to the encoding of some Σ-graph. Certain aspects will
follow from the nature of the pushout, but it turns out that a pivotal issue will
be coherence. The graphs that we form as encodings will be coherent in the
sense that any node will have at most one edge with any given label from it.
For example, the encoding of a Kappa link will have at most one source and at
most one target; Kappa does not have hyper-edges. However, as we shall see, the
graphs that we form by taking pushouts in the category of pattern graphs might
fail to be coherent, so we desire an operation that forms a coherent pushout from
the non-coherent one. This operation can fail: it is not always possible to form a
pushout of an arbitrary span of morphisms in the category of coherent pattern
graphs with partial morphisms between them, and critically this will inform us
that there is no pushout of the given span in the category of Σ-graphs.

3 Pattern Graphs
Pattern graphs add to basic graphs the ability to express, via homomorphisms,
the existence of an labelled edge from a node to some node satisfying a specifi-
cation. Specifications are just prefix-closed sets of sequences of labels to indicate
paths that must exist from the specified node. Assuming a set of link labels Λ,
let Λ∗ denote the set of all finite sequences of elements of Λ. For sequences p

6 J. Hayman and T. Heindel

and q, write p ≤ q if p is a prefix of q. For a set of sequences φ ⊆ Λ∗, we write
↓ φ for the set of sequences p such that there exists q ∈ φ satisfying p ≤ q.

Definition 4. Let P≤(Λ∗) be the set of all prefix-closed finite sets of sequences
of elements of Λ. A tuple (V,E) is a pattern graph if V and E are disjoint finite
sets and E ⊆ V × Λ× (V ∪ P≤(Λ∗)), where V is disjoint from P≤(Λ∗).

The sets V and E represent the sets of vertices and edges of a pattern graph.
Edges can either be normal (i.e. between vertices) or be specifications, being of
the form (v, λ, φ): the intention is that specifications are used in patterns when
we wish to specify, via homomorphisms, the structure that some other perhaps
more refined graph possesses.

Definition 5. A vertex v ∈ V in a pattern graph G satisfies p ∈ Λ∗, written
v |=G p, if either p is empty or p = λ.p0 and either:

– there exists v′ such that (v, λ, v′) ∈ EG and v′ |=G p0, or
– there exists ψ ∈ P≤(Λ∗) such that (v, λ, ψ) ∈ EG and p0 ∈ ψ.

A vertex v ∈ VG satisfies φ ∈ P≤(Λ∗), written v |=G φ, if v |=G p for all p ∈ φ.
Homomorphisms embed the structure of one pattern graph into that of another:
they preserve the presence of normal links between vertices and, if a vertex has
a specification, the image of the vertex satisfies the specification. Importantly,
they do not record exactly how the specification is satisfied.

Definition 6. A homomorphism of pattern graphs f : G→ H is a function on
vertices f : VG → VH such that, for all v, v′ ∈ VG, λ ∈ Λ and φ ∈ P≤(Λ∗):

– if (v, λ, v′) ∈ EG then (f(v), λ, f(v′)) ∈ EH , and
– if (v, λ, φ) ∈ EG then there exists x ∈ VH ∪ P≤(Λ∗) such that (f(v), λ, x) ∈
EH and x |=G φ if x ∈ VH and φ ⊆ x if x ∈ P≤(Λ∗).

We write �� for the category of pattern graphs connected by homomorphisms.
For any pattern graph τ , denote by ��/τ the slice category above τ . The ob-
jects of ��/τ are pairs (G, γ) where G is a pattern graph and γ : G → τ is a
homomorphism, and a morphism h : (G, γ) → (G′, γ′) in ��/τ is a homomor-
phism such that γ = γ′ ◦ h. We can regard τ as representing the structure that
the pattern graphs being considered are allowed to possess. Where no ambiguity
arises, we shall simply write G for the pair (G, γ) and τG for γ.

Partial maps extend homomorphisms by allowing them to be undefined on
vertices and edges. Again, we require the closure condition of Section 2.

Definition 7. Let G and H be objects of ��/τ . A partial map f : G ⇀ H
consists of a pattern graph def(f) = (V0, E0) and a homomorphism f0 : def(f)→
H in ��/τ where:

– def(f) is a pattern graph satisfying V0 ⊆ VG and E0 ⊆ EG;
– τdef(f) : def(f)→ τ is the restriction of τG to def(f); and
– def(f) is closed: for all (v, λ, x) ∈ EG, if v ∈ V0 then (v, λ, x) ∈ E0 (and

hence x ∈ V0 if x ∈ VG).

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 7

We write (��/τ)∗ for the category of pattern graphs with partial maps between
them. As it was for basic graphs, composition is obtained using the inverse image
construction and can be shown to be a pullback in ��/τ .

The category (��/τ)∗ can be shown to have pushouts of all spans. However, as
we shall see in Section 5, the existence conditions for pushouts of coherent typed
pattern graphs will be much more subtle and involve considerable additional
work.

Theorem 1. The category (��/τ)∗ has pushouts.

The above result can be proved either by using the category-theoretical condi-
tions for existence of pushouts of partial maps mentioned in the conclusion or
directly by showing that the following construction yields a pushout of any span.

Given a span S Lg�� f �� R , we define a cospan S p �� T Rq��

that forms a pushout in (��/τ)∗. Let V = VL ∪ VR ∪ VS . We define ∼ to be
the least equivalence relation on V such that v0 ∼ f(v0) for all v0 ∈ Vdef(f) and
w0 ∼ g(w0) for all w0 ∈ Vdef(g). For any v ∈ V , we denote by [v] its ∼-equivalence
class; these equivalence classes will be used to form the vertices of the pushout
object T .

Write [v] λ−→ [v′] iff there exist v0 ∈ [v] and v′0 ∈ [v′] such that (v0, λ, v′0) ∈ EL∪
ER ∪ES . The unlabelled transitive closure of this relation, written [v1] −→∗ [vn],
relates [v1] to [vn] if there exist λ1, . . . , λn−1 such that [v1]

λ1−→ . . .
λn−1−−−→ [vn].

Now define del0([v]) iff there exists v0 ∈ [v] ∩ VL such that v0 �∈ Vdef(f) ∩ Vdef(g)
and define del([v]) iff there exists v′ ∈ V such that [v] −→∗ [v′] and del0([v

′]). The
vertices and edges of the pushout object are given as:

VT = {[v] | v ∈ V & ¬del([v])}
ET = {([v], λ, [v′]) | [v], [v′] ∈ VT & [v]

λ−→ [v′]}
∪ {([v], λ, φ) | [v] ∈ VT & ∃v0 ∈ [v].(v0, λ, φ) ∈ EL ∪ ER ∪ ES}

The domain of definition of the pushout morphism p is the closed subgraph of S
containing all vertices v ∈ VS such that ¬del([v]). Where defined, p sends vertices
of S to their ∼-equivalence classes. The partial map q is defined similarly. The
type map τT : T → τ sends an equivalence class [v] to τL(v) if v ∈ VL, to τR(v)
if v ∈ VR and τS(v) if v ∈ VS ; well-definedness of this follows from the maps f
and g being type-preserving.

4 Kappa and Σ-graphs

We begin this section by briefly describing the semantics given to Kappa in [4],
where a fuller explanation and examples can be found. The semantics of Kappa is
given over graphs with a given signature Σ, specifying the labels that can occur
on agents Σag, sites Σst and internal properties Σprop, and, for any agent label
A, the set of sites Σag−st(A) that are permitted to occur on an agent labelled A.

8 J. Hayman and T. Heindel

Definition 8. A signature is a 4-tuple Σ = (Σag, Σst, Σag−st, Σprop), where Σag

is a finite set of agent types, Σst is a finite set of site identifiers, Σag−st : Σag →
Pfin(Σst) is a site map, and Σprop is a finite set of internal property identifiers.

As described in Section 2, Σ-graphs consist of sites on agents; sites can have
internal properties indicated and be linked to each other. Sites can also have
anonymous links attached to them, typically used when the Σ-graph represents
a pattern, so the anonymous link represents that a link is required to exist at the
image of the site under a homomorphism. There are three types of anonymous
link; the first is represented by a dash ‘−’ and indicates that the link connects to
any site on any agent, the second by A for A ∈ Σag which indicates that the link
connects to some site on an agent of type A, and the final kind of anonymous link
is (A, i) which indicates that the link connects to site i on some agent labelled
A. These form the set Anon = {−} ∪Σag ∪ {(A, i) |A ∈ Σag & i ∈ Σag−st(A)}.

Definition 9. A Σ-graph comprises a finite set A of agents, an agent type
assignment type : A → Σag, a set S of link sites satisfying S ⊆ {(n, i) : n ∈
A & i ∈ Σag−st(type(n))}, a symmetric link relation L ⊆ (S ∪ Anon)2 \ Anon2,
and a property set P ⊆ {(n, i, k) | n ∈ A & i ∈ Σag−st(type(n)) & k ∈ Σprop}.

We shall conventionally assume that the sets described above are pairwise-
disjoint. A normal link is a pair of sites ((n, i), (m, j)) and an anonymous link is
of the form ((n, i), x) where (n, i) is a site and x ∈ Anon. We use x to range over
both sites and Anon. Note that (n, i, k) ∈ P does not imply (n, i) ∈ S: as ex-
plained in [4], this is to allow Σ-graphs to represent patterns where we represent
a property holding at some site but do not specify anything about its linkage.

Homomorphisms between Σ-graphs are structure-preserving functions from
the agents, sites, links and internal properties of one Σ-graph to those of another.
They preserve structure by preserving the presence of sites on agents, preserving
properties held on sites, preserving the source and target of links and ensuring
that the source and target of the image of any link is at least as high in the link
information order as those of the original link. Given a typing function type,
this order is the least reflexive, transitive relation ≤type s.t. for all A ∈ Σag and
i ∈ Σag−st(A) and n s.t. typeG(n) = A: − ≤type A ≤type (A, i) ≤type (n, i).

Definition 10. A homomorphism of Σ-graphs h : G→ H consists of a function
on agents hag : AG → AH , a function on sites hst : SG → SH , a function on
links hln : LG → LH and a function on internal properties hprop : PG → PH ,
satisfying:

– typeG(n) = typeH(hag(n)) for all n ∈ AG
– hst(n, i) = (hag(n), i) and hprop(n, i, k) = (hag(n), i, k)

– hln((n, i), x) = (hst(n, i), y) for some y such that ĥ(x) ≤typeH
y, where we take

ĥ(m, j) = hst(m, j) for any (m, j) ∈ SG and ĥ(x) = x for any x ∈ Anon.

We write Σ� for the category of Σ-graphs with homomorphisms between them.
Note that in [4], attention was restricted to graphs with only one link to or from
any site, allowing a less general form of homomorphism to be used.

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 9

Definition 11. A partial map f : G ⇀ H between Σ-graphs G and H is a span
G ←↩ def(f) f0−→ H where f0 is a homomorphism and def(f) is a Σ-graph that
is a subgraph of G, i.e.: Adef(f) ⊆ AG and Sdef(f) ⊆ SG and Ldef(f) ⊆ LG and
Pdef(f) ⊆ PG.

Partial maps between Σ-graphs form a category denoted Σ�∗, where partial
maps f : G ⇀ H and g : H ⇀ K compose in the usual way, with the domain
of definition of their composition def(g ◦ f) containing elements of def(f) such
that their image under f is in def(g). This corresponds to taking a pullback of
the homomorphism f0 : def(f)→ H against def(g) ↪→ H in Σ�.

4.1 Encoding Σ-graphs as Pattern Graphs

We now show how Σ-graphs can be interpreted as pattern graphs. As stated
before, the idea behind the encoding of a Σ-graph G is to build a pattern graph
�G� with vertices that are the agents, sites, links and properties of G. Labelled
edges in �G� indicate the dependencies between elements of the graph, so for
example that deletion of an agent causes the deletion of any edge connecting to
that agent. There will be edges from links to their source and target, labelled src
or tgt respectively, and edges labelled ag from sites to agents and internal proper-
ties to agents (not to sites since, as mentioned, we use the set of sites specifically
to represent link state). There will also be an edge labelled symm between ev-
ery link and its symmetric counterpart to ensure that morphisms preserve the
symmetry of the link relation. Specifications are used in the representation of
anonymous links.

The starting point is to define a pattern graph Σ̂ to represent the structure
of encodings, so that the encoding of a Σ-graph will be an object of (��/Σ̂)∗.

Definition 12. With respect to signature Σ, the pattern graph Σ̂ is

VΣ̂ = {link} ∪ Σag ∪ {(A, i) | A ∈ Σag & i ∈ Σag−st(A)}
∪ {(A, i, p) |A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}

EΣ̂ = {(link, symm, link)}
∪ {(link, src, (A, i)), (link, tgt, (A, i)) | A ∈ Σag & i ∈ Σag−st(A)}
∪ {((A, i), ag, A) | A ∈ Σag & i ∈ Σag−st(A)}
∪ {((A, i, p), ag, A) | A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}
∪ {((A, i, p), (i, p), (A, i, p)) | A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}
∪ {(A,A,A) |A ∈ Σag} ∪ {(A, i), i, (A, i) | A ∈ Σag & i ∈ Σag−st(A)}

Example 1. Given Σ as follows, the graph Σ̂ is:

Σag = {A,B}
Σst = {i, j}

Σprop = ∅
Σag−st = {A �→ {i, j}, B �→ {i}} A

jj

B

i

A

(A,j) (A,j) (B,i)

B

10 J. Hayman and T. Heindel

The loops on the vertices for agents and sites will be used in patterns for anony-
mous links. We now define a functor �·� : Σ�∗ → (��/Σ̂)∗ that embeds the
category of Σ-graphs into the category of pattern graphs over Σ̂.

Definition 13. For a Σ-graph G, the pattern graph �G� is:

V�G� = AG ∪ SG ∪ LG ∪ PG
E�G� = {(n, typeG(n), n) | n ∈ A} ∪ {((n, i), i, (n, i)) | (n, i) ∈ S}

∪ {((n, i, p), (i, p), (n, i, p)) | (n, i, p) ∈ PG}
∪ {((n, i), ag, n) | (n, i) ∈ SG} ∪ {((n, i, p), ag, n) | (n, i, p) ∈ PG}
∪ {(((n, i), x), src, (n, i)) | ((n, i), x) ∈ LG}
∪ {((x, (n, i)), tgt, (n, i)) | (x, (n, i)) ∈ LG}
∪ {((x, (n, i)), src, anon(x) | x ∈ Anon & (x, (n, i)) ∈ LG}
∪ {(((n, i), x), tgt, anon(x) | x ∈ Anon & ((n, i), x) ∈ LG}

where anon gives a specification for anonymous links:

anon(−) = ∅ anon(A) =↓ {ag.A} anon(A, i) =↓ {i.ag.A}

The function τ�G� : �G� → Σ̂ sends links to link, agents n to typeG(n), sites
(n, i) to (typeG(n), i) and properties (n, i, p) to (typeG(n), i, p).

The encoding �g� : �G� ⇀ �H� of a partial map g : G ⇀ H in Σ�∗ has domain
of definition �def(g)� and sends a vertex v ∈ V�def(g)� to gag(v) if v ∈ AG, or
gst(v) if v ∈ SG, or glnk(v) if v ∈ LG, or gprop(v) if v ∈ PG.

It is straightforward to check that the encoding defines a functor. The key is
that the partial map �f� satisfies the closure condition due to the domain of
definition of f being a well-formed Σ-graph.

Example 2. The encoding of the unique homomorphism from G to H as drawn
is the unique homomorphism from �G� to �H�. Specifications are drawn as kites.

j

A

A

B
j

A
j

B
i

G H

BB

i

B

j

A

f

Lemma 1. The encoding �·� is an embedding: it is a full and faithful functor
and is injective on objects.

As such, the image of �·� is a full subcategory of (��/Σ̂)∗ isomorphic to Σ�∗.

5 Coherence

The pushout in (��/Σ̂)∗ of the encoding of a span of morphisms in Σ�∗ can fail
to be an encoding of a Σ-graph. For example, in (��/Σ̂)∗ the pushout against
itself of the morphism �f� : �G� → �H� drawn in Example 2 is:

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 11

i

B

j

A

i

B

The encodings of Σ-graphs have links with at most one source and at most
one target: we say that they are coherent.

Definition 14. A pattern graph G is coherent if (v, λ, x1) ∈ EG and (v, λ, x2) ∈
EG implies x1 = x2 for all v ∈ VG, all λ ∈ Λ and all x1, x2 ∈ VG ∪ P≤(Λ∗).

Lemma 2. For any Σ-graph G, the encoding �G� is coherent.

We now characterise pushouts in the category (��/τ)�∗, the full subcategory of
(��/τ)∗ with coherent pattern graphs over τ as objects. By restricting ourselves
to coherent graphs, remarkably we lose the property that all spans of partial
(and even total) maps have pushouts. It is not hard, for example, to verify that
there is no pushout in (��/Σ̂)�∗ of the morphism �f� : �G� → �H� in Example 2
against itself. The significance of this is that exactly the same phenomenon occurs
in the category of Σ-graphs, which fails to have pushouts of all spans for the
same reason. For example, analogously there is no pushout of the morphism of
Σ-graphs f : G→ H drawn in Example 2 against itself in Σ�∗ (noting that the
form of homomorphism in this paper includes a component to give the target of
links, unlike in [4] where the less general form of homomorphism could be used).

We shall see in Section 6 that pushouts of encodings in (��/Σ̂)�∗ will corre-
spond to those in Σ�∗. We now study when pushouts in (��/τ)�∗ exist. We do
so by characterising the largest full subcategory C of (��/τ)∗ for which (��/τ)�∗
is a reflective subcategory of C. When the pushout in (��/τ)∗ lies in the cat-
egory C, the pushout in coherent graphs will be obtained by applying the left
adjoint of the reflection. Otherwise, if the pushout in (��/τ)∗ is outside C, there
is no pushout of the span in (��/τ)�∗.

The process for determining if a pattern graph G in (��/τ)∗ lies in C is some-
what intricate. We begin by removing from G vertices on which any partial map
to any coherent graph in (��/τ)∗ must be undefined due to the type constraint τ ;
we go through this in more detail below. We then successively merge joinable
edges, continuing until there is no joinable pair of edges. If the result is a coher-
ent graph, then G lies in C and the left adjoint applied to G is the constructed
graph; otherwise, G is not in C. It is convenient to begin the formalisation of
this with the merging operation.

Definition 15. Given a pattern graph G, a distinct pair of edges e1 = (v1, λ1, x1)
and e2 = (v2, λ2, x2) ∈ EG is engaged if v1 = v2 and λ1 = λ2.

Definition 16. Let e1 = (v, λ, x1) and e2 = (v, λ, x2) be an engaged pair of
edges in a graph G. The graph obtained by merging them, denoted G[e1 �� e2],
and homomorphism (e1 �� e2) : G→ G[e1 �� e2] is defined as follows:

12 J. Hayman and T. Heindel

– if x1 and x2 are vertices,

G[e1 �� e2] = (VG \ {x2}, EG[x2 �→ x1]) (e1 �� e2)(w) =

{
w if w �= x2
x1 if w = x2

where EG[x2 �→ x1] = {((e1 �� e2)w, λ′, (e1 �� e2)w′) | (w, λ′, w′) ∈ EG}
– if x1 is a specification and x2 is a vertex,

G[e1 �� e2] = (V,E\{e1}∪{(x2, λ1, {p1})|λ1.p1 ∈ x1}) (e1 �� e2)(w) = w

– if x2 is a specification and x1 is a vertex,

G[e1 �� e2] = (V,E\{e2}∪{(x1, λ2, {p2})|λ2.p2 ∈ x2}) (e1 �� e2)(w) = w

– if x1 and x2 are specifications,

G[e1 �� e2] = (VG, EG \ {e1, e2} ∪ {(v, λ, x1 ∪ x2)}) (e1 �� e2)(w) = w

The process of merging engaged pairs of edges is locally confluent up to isomor-
phism.

Lemma 3. Let G be a graph containing engaged pairs of edges e1, e2 and f1, f2.
Either G[e1 �� e2] ∼= G[f1 �� f2] or there exist engaged pairs of edges e′1, e′2 and
f ′1, f

′
2 such that G[e1 �� e2][f

′
1 �� f

′
2]
∼= G[f1 �� f2][e

′
1 �� e

′
2].

Repeatedly joining engaged nodes, we obtain (up to isomorphism) a coherent
graph denoted collapse(G) and a homomorphism collapseG : G→ collapse(G).

For a vertex v of G, let �v�G denote the pattern graph obtained by restricting
G to vertices and edges reachable from v.

Definition 17. Let e1 = (v1, λ1, x1) and e2 = (v2, λ2, x2) be an engaged pair
of edges. They are joinable if for all i, j ∈ {1, 2} such that i �= j, if xi is a
vertex then either xi −→∗ v or xj is a specification and collapse�xi�G(xi) |= xj in
collapse(�xi�G), where −→∗ denotes reachability in G.

We now return to the initial stage, deleting vertices on grounds of the ‘type’ τ .
As an example, let G = τ be the non-coherent graph with VG = {v, w1, w2} and
EG = {(v, a, w1), (v, a, w2), (w1, b, w1), (w2, c, w2)}. Let C be any coherent graph
with a homomorphism τC : C → τ and f : G → C be a morphism in (��/τ)∗.
We cannot have v ∈ def(f) since, if it were, by closure and coherence there
would have to exist a vertex f(w1) = f(w2) with outgoing edges labelled b and
c, contradicting the assumption of a homomomorphism from C to τ . The graph
remaining after removal of vertices that cannot be in the domain of definition of
any partial map to any coherent graph is defined as follows. Let τ�v�G : �v�G → τ
be the restriction of the homomorphism τG : G→ τ to �v�G.

Definition 18. For a pattern graph G and homomorphism τG : G → τ , define
the graph td(G, τG) = (V0, E0) to have vertices v ∈ VG such that there exists a
homomorphism τ ′ : collapse(�v�G) → τ such that τ�v�G = τ ′ ◦ collapse�v�G and
E0 = {(v, λ, x) ∈ EG | v ∈ V0}.

Write v �∈ td(G, τG) if v ∈ VG \ Vtd(G,τG); it is the predicate that determines if
the vertex v is deleted on grounds of type.

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 13

Note that for each v, the morphism τ ′, if it exists, must be the unique such
morphism since collapse�v�G is an epimorphism (it is surjective on vertices).

Lemma 4. Let G be a pattern graph and τG : G→ τ and td(G, τG) = (V0, E0).
Let τtd(G,τG) : td(G, τG) → τ be the restriction of τG to V0. The span tdG =

(G←↩ td(G, τG)
idtd(G,τG)−−−−−−→ td(G, τG)) is a partial map in (��/τ)∗. Furthermore,

for any coherent pattern graph C and morphism f : G→ C in (��/τ)∗, there is
a unique morphism f � : td(G, τG)→ C such that f = f � ◦ tdG.

The process for determining if a pattern graph lies in the category C begins
by forming the graph td(G, τG). We then repeatedly merge joinable pairs of
vertices. If the resulting graph is coherent, the graph is in C. Otherwise, if we
obtain a graph with no joinable pair of edges but some engaged pair of edges, the
graph cannot be in the category C. Importantly, as we merge vertices we never
re-introduce grounds for removal of other vertices due to type incompatibility.

Lemma 5. Let G be in (��/τ)∗ and there be no v ∈ VG such that v �∈ td(G, τG).
For any joinable pair of edges e, e′ in EG, there is a unique homomorphism
τG[e��e′] such that the following diagram commutes:

G

τG

��

e��e′ �� G[e �� e′]

τG[e��e′]
����

��
��

��
�

τ

Furthermore, there is no v ∈ VG[e��e′] such that v �∈ td(G[e �� e′], τG[e��e′]).

The following lemma represents one step of proving that the constructed graph
lies in the subcategory in reflection with coherent graphs.

Lemma 6. Let G in (��/τ)∗ contain no vertex v such that v �∈ td(G, τG). Let
e, e′ be any joinable pair of edges in G. For any C in (��/τ)∗ such that C is
coherent and morphism f : G → C in (��/τ)∗, there is a unique morphism
f ′ : G[e �� e′]→ C such that f = f ′ ◦ (e �� e′).

Conversely, the following lemma is used to show that if the process of merging
joinable nodes from td(G, τG) fails, leaving a non-coherent graph with no joinable
pair of edges, the graph G lies outside the category C.

Lemma 7. Let G in (��/τ)∗ contain no vertex v such that v �∈ td(G, τG) and
no pair of joinable edges. If G is not coherent, there is no P in (��/τ)∗ and
morphism φ : G → P in (��/τ)∗ such that P is coherent and any morphism
f : G→ C in (��/τ)∗ to a coherent graph C factors uniquely through φ.

For a sequence of pairs of edges E and pattern graph G, let G�e �� e′�E denote
G with all pairs up to but not including (e, e′) in E merged as in Definition 16
in sequence. Let G[E] denote G with all pairs in E merged in sequence.

14 J. Hayman and T. Heindel

Theorem 2. The largest full subcategory C of (��/τ)∗ for which there is a
reflection

(��/τ)�∗
� � ��� C

F

��

consists of pattern graphs G for which there exists a sequence of pairs of edges E
such that collapse(G0) = G0[E], where G0 = td(G, τG), and e and e′ are joinable
in G0�e �� e′�E for all (e, e′) ∈ E. The functor F sends G to collapse(G0).

It follows categorically that this is sufficient to show the key required character-
isation of pushouts:

Theorem 3. Let R f←− L
g−→ S be a span in (��/τ)�∗ and let the cospan R

g′−→
T

f ′
←− S be its pushout in (��/τ)∗.

– If T is not in C then the span R
f←− L

g−→ S has no pushout in (��/τ)�∗.

– If T is in C then the cospan R
collapseT0

◦tdT ◦g′
−−−−−−−−−−−→ collapse(T0)

collapseT0
◦tdT ◦f ′

←−−−−−−−−−−− S

is a pushout of the span R
f←− L

g−→ S in (��/τ)�∗, where T0 = td(T, τT).

6 Pushouts of Σ-graphs

In the previous section, we saw a necessary and sufficient condition for the ex-
istence of pushouts in the category (��/τ)�∗. We now tie the result back to the
category of Σ-graphs. The aim is that this should involve a minimal amount of
effort specific to Σ-graphs since similar analyses will be required when consider-
ing other models, for example Σ-graphs equipped with regions. In fact, the only
requirement that has to be proved specifically for Kappa is Lemma 10, which es-
tablishes that if there is a regular epi from the encoding of aΣ-graph to a coherent
pattern graph C then C is isomorphic to the encoding of some Σ-graph.

Lemma 8. Let C be a full subcategory of D and suppose that every morphism in
D is equal to a regular epi followed by a mono, C has finite coproducts preserved
by the inclusion and any regular epi e : C → D in D from some C in C implies
that D ∼= C′ for some C′ in C. For a span of morphisms in C, any pushout in D
is also a pushout in C and any pushout in C is also a pushout in D.

Following the remark after Lemma 1, we regard the category Σ�∗ as a full sub-
category of (��/Σ̂)�∗. Firstly, note that Σ�∗ has coproducts obtained by taking
the disjoint union of Σ-graphs and that these are preserved by the inclusion. For
any τ , the regular epis of (��/τ)�∗ are characterised as follows:

Lemma 9. A morphism f : G→ H in (��/τ)�∗ is a regular epi if, and only if:

– for all w ∈ VH there exists v ∈ VG such that f(v) = w,
– if (w, λ, w′) ∈ EH then there exist v, v′ ∈ VG such that (v, λ, v′) ∈ EG and
f(v) = w (and hence f(v′) = w′), and

– if (w, λ, φ) ∈ EH for φ ∈ P≤(Λ∗) then S = {ψ | (v, λ, ψ) ∈ EG & f(v) = w}
is non-empty and φ =

⋃
S.

Pattern Graphs and Rule-Based Models: The Semantics of Kappa 15

Monos in (��/τ)�∗ are total, injective functions on vertices. It is easy to see
that any morphism in (��/τ)�∗ factors as a regular epi followed by a mono. All
that remains before we can apply Lemma 8 to obtain the required result about
pushouts in Σ�∗ is the following straightforward result:

Lemma 10. For any Σ-graph S and regular epi e : �S� → G in (��/Σ̂)�∗, there
exists a Σ-graph T such that G ∼= �T �.
We conclude by applying Lemmas 8 and 10 to characterise pushouts in Σ�∗.

Theorem 4. If there is no pushout in Σ�∗ of a span S
g←− L

f−→ R then
there is no pushout in (��/Σ̂)�∗ of �S� �g�←−− �L� �f�−−→ �R�. If there is a pushout

L
f ��

g

��

R

g′
��

S
f ′

�� T
��

in Σ�∗ then there is a pushout �L�
�f� ��

�g�

��

�R�

�g′�
��

�S�
�f ′�

�� �T �

��

in (��/Σ̂)�∗.

In summary, we have the following chain of functors:

Σ�∗
�·� �� (��/Σ̂)�∗

� � ��� C
collapse

��
� � �� (��/Σ̂)∗

To determine the pushout of a span in Σ�∗, we take the pushout in (��/Σ̂)∗
of its encoding. If this is outside C as characterised in Theorem 2, there is no
pushout of the span in Σ�∗. Otherwise, the pushout is the cospan in Σ�∗ that is
isomorphic under the encoding to the collapse of the pushout taken in (��/Σ̂)∗.

7 Conclusion

This paper has begun the work of placing Kappa in a more general graph rewrit-
ing setting, abstracting away features of Σ-graphs that are tailored to the ef-
ficient representation of biochemical signalling pathways to arrive at rewriting
based on pattern graphs. The central features are the capture of implicit deletion
through the use of closed partial maps and the characterisation of pushouts for
categories of pattern graphs.

Alongside the work presented in this paper, we have studied categorical condi-
tions for the existence of pushouts in categories of partial maps, that for example
can show that (��/τ)∗ has pushouts. In this paper, we have focused on the en-
coding of Σ-graphs, showing how pushouts in Σ�∗ can be obtained in (��/Σ̂)∗.
At the core of this was the intricate consideration of pushouts in the subcategory
of coherent pattern graphs.

Though there has not been space to present it here, we expect that this work
applies without complications to a wide range of biochemical models. For ex-
ample, categories for Kappa with regions [8] can be encoded in pattern graphs,
resulting in a simpler characterisation of their pushouts. We also intend to give

16 J. Hayman and T. Heindel

the BioNetGen Language [2] its first categorical interpretation using the frame-
work developed. Another area for further research is to translate the work on
dynamic restriction by type in Kappa presented in [5] to the current setting.

On rewriting, there are areas where further generalisation would be of interest.
A more expressive logical formalism for patterns could be adopted, connected
to the work on application conditions for rules in graph transformation [7]. It
would also be interesting to consider the role of negative application conditions,
perhaps specified as open maps [9], in this setting; in [4], these were used to
constrain matchings. Finally, and more speculatively, by studying bi-pushouts
in bi-categories of spans, a new perspective on span-based rewriting approaches
(see, e.g. [11,3]) that allows duplication of entities might be obtained.

More abstractly, the restriction to finite structures in this paper can be lifted
fairly straightforwardly; we intend to present the details in a journal version of
this paper. However, for modelling biochemical pathways, the restriction to finite
structures is no limitation.

References

1. Bachman, J.A., Sorger, P.: New approaches to modeling complex biochemistry.
Nature Methods 8(2), 130–131 (2011)

2. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph Theory for Rule-Based
Modeling of Biochemical Networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B.,
Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS
(LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

3. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-Pushout Rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

4. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: Proc. FSTTCS 2012. LIPICs (2012)

5. Danos, V., Harmer, R., Winskel, G.: Constraining rule-based dynamics with types.
MSCS (2012)

6. Danos, V., Laneve, C.: Formal molecular biology. TCS 325 (2004)
7. Habel, A., Pennemann, K.-H.: Nested Constraints and Application Conditions for

High-Level Structures. In: Kreowski, H.-J., Montanari, U., Yu, Y., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 293–308. Springer, Heidelberg (2005)

8. Hayman, J., Thompson-Walsh, C., Winskel, G.: Simple containment structures in
rule-based modelling of biochemical systems. In: Proc. SASB (2011)

9. Heckel, R.: DPO Transformation with Open Maps. In: Ehrig, H., Engels, G., Kre-
owski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 203–217.
Springer, Heidelberg (2012)

10. Löwe, M.: Algebraic approach to single-pushout graph transformation. TCS 109
(1993)

11. Löwe, M.: Refined Graph Rewriting in Span-Categories. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 111–125.
Springer, Heidelberg (2012)

History-Register Automata

Nikos Tzevelekos and Radu Grigore

Queen Mary, University of London

Abstract. Programs with dynamic allocation are able to create and use an un-
bounded number of fresh resources, such as references, objects, files, etc. We
propose History-Register Automata (HRA), a new automata-theoretic formalism
for modelling and analysing such programs. HRAs extend the expressiveness of
previous approaches and bring us to the limits of decidability for reachability
checks. The distinctive feature of our machines is their use of unbounded mem-
ory sets (histories) where input symbols can be selectively stored and compared
with symbols to follow. In addition, stored symbols can be consumed or deleted
by reset. We show that the combination of consumption and reset capabilities ren-
ders the automata powerful enough to imitate counter machines (Petri nets with
reset arcs), and yields closure under all regular operations apart from comple-
mentation. We moreover examine weaker notions of HRAs which strike different
balances between expressiveness and effectiveness.

1 Introduction

Program analysis faces substantial challenges due to its aim to devise finitary methods
and machines which are required to operate on potentially infinite program computa-
tions. A specific such challenge stems from dynamic generative behaviours such as,
for example, object or thread creation in Java, or reference creation in ML. A program
engaging in such behaviours is expected to generate a possibly unbounded amount of
distinct resources, each of which is assigned a unique identifier, a name. Hence, any
machine designed for analysing such programs is expected to operate on an infinite al-
phabet of names. The latter need has brought about the introduction of automata over
infinite alphabets in program analysis, starting from prototypical machines for mobile
calculi [23] and variable programs [18], and recently developing towards automata for
verification tasks such as equivalence checks of ML programs [24,25], context-bounded
analysis of concurrent programs [7,3] and runtime program monitoring [14].

The literature on automata over infinite alphabets is rich in formalisms each based
on a different approach for tackling the infiniteness of the alphabet in a finitary manner
(see e.g. [31] for an overview). A particularly intuitive such model is that of Register
Automata (RA) [18,26], which are machines built around the concept of an ordinary
finite-state automaton attached with a fixed finite amount of registers. The automaton
can store in its registers names coming from the input, and make control decisions by
comparing new input names with those already stored. Thus, by talking about addresses
of its memory registers rather than actual names, a so finitely-described automaton can
tackle the infinite alphabet of names. Driven by program analysis considerations, regis-
ter automata have been recently extended with the feature of name-freshness recogni-
tion [33], that is, the capability of the automaton to accept specific inputs just if they

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 17–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 N. Tzevelekos and R. Grigore

are fresh – they have not appeared before during computation. Those automata, called
Fresh-Register Automata (FRA), can account for languages like the following,

L0 = {a1 · · · an ∈ N ∗ | ∀i �= j. ai �= aj}

which captures the output of a fresh-name generator (N is an infinite set of names).
FRAs are expressive enough to model, for example, finitary fragments of languages
like the π-calculus [33] or ML [24].

The freshness oracle of FRAs administers the automata with perhaps too restricted
an access to the full history of the computation: it allows them to detect name freshness,
but not non-freshness. Consider, for instance, the following simple language,

L′ = {w ∈ ({O,P} × N)∗ | each element of w appears exactly once in it

∧ each (O, a) in w is preceded by some (P, a) }

where the alphabet is made of pairs containing an element from the set {O,P} and a
name (O and P can be seen as different processes, or agents, exchanging names). The
language L′ represents a paradigmatic scenario of a name generator P coupled with
a name consumer O: each consumed name must have been created first, and no name
can be consumed twice. It can capture e.g. the interaction of a process which creates
new files with one that opens them, where no file can be opened twice. The inability of
FRAs to detect non-freshness, as well as the fact that names in their history cannot be
removed from it, do not allow them to expressL′. More generally, the notion of re-usage
or consumption of names is beyond the reach of those machines. Another limitation of
FRAs is the failure of closure under concatenation, interleaving and Kleene star.

Aiming at providing a stronger theoretical tool for analysing computation with
names, in this work we further capitalise on the use of histories by effectively upgrading
them to the status of registers. That is, in addition to registers, we equip our automata
with a fixed number of unbounded sets of names (histories) where input names can be
stored and compared with names to follow. As histories are internally unordered, the
kind of name comparison we allow for is name belonging (does the input name be-
long to the i-th history?). Moreover, names can be selected and removed from histories,
and individual histories can be emptied/reset. We call the resulting machines History-
Register Automata (HRA). For example, L′ is accepted by the HRA with 2 histories

q0 P

O

P

O
∅, 1

1, 2

The automaton starts at state q0 with empty history and non-
deterministically makes a transition to state P or Q, accept-
ing the respective symbol. From state P , it accepts any input
name a which does not appear in any of its histories (this is
what ∅ stands for), puts it in history number 1, and moves
back to q0. From state O, it accepts any input name a which
appears in history number 1, puts it in history number 2, and
moves back to q0.

Fig. 1. History-register automaton accepting L′

History-Register Automata 19

HRAunary HRA

non-reset HRA DA / CMA

FRA

RA

Fig. 2. Expressiveness of history-register automata compared to previous models (in italics). The
inclusion M −→ M′ means that for each A ∈ M we can effectively construct an A′ ∈ M′

accepting the same language as A. All inclusions are strict.

depicted in Figure 1, where by convention we model pairs of symbols by sequences of
two symbols.1

The strengthening of the role of histories substantially increases the expressive power
of our machines. More specifically, we identify three distinctive features of HRAs:
(1) the capability to reset histories; (2) the use of multiple histories; (3) the capability
to select and remove individual names from histories. Each feature allows us to express
one of the paradigmatic languages below, none of which are FRA-recognisable.

L1 = {a0w1 · · ·a0wn ∈ N ∗| ∀i. wi ∈ N ∗ ∧ a0wi ∈ L0} for given a0

L2 = {a1a′1 · · · ana′n ∈ N ∗| a1 · · ·an, a′1 · · · a′n ∈ L0}
L3 = {a1 · · · ana′1 · · ·a′n′ ∈ N ∗| a1 · · ·an, a′1 · · · a′n′ ∈ L0 ∧ ∀i.∃j. a′i = aj}

Apart from the gains in expressive power, the passage to HRAs yields a more well-
rounded automata-theoretic formalism for generative behaviours as these machines en-
joy closure under all regular operations apart from complementation. On the other hand,
the combination of features (1-3) above enable us to use histories as counters and sim-
ulate counter machines, and in particular Petri nets with reset arcs [2]. We therefore
obtain non-primitive recursive bounds for checking language emptiness. Given that lan-
guage containment and universality are undecidable already for register automata [26],
HRAs are fairly close to the decidability boundary for properties of languages over in-
finite alphabets. Nonetheless, starting from HRAs and weakening them in each of the
first two factors (1,2) we obtain automata models which are still highly expressive but
computationally more tractable. Overall, the expressiveness hierarchy of the machines
we examine is depicted in Figure 1 (weakening in (2) and (1) respectively occurs in the
second column of the figure).

Motivation and Related Work. The motivation for this work stems from semantics and
verification. In semantics, the use of names to model resource generation originates
in the work of Pitts and Stark on the ν-calculus [27] and Stark’s PhD [32]. Names
have subsequently been incorporated in the semantics literature (see e.g. [16,4,1,19]),
especially after the advent of Nominal Sets [13], which provided formal foundations
for doing mathematics with names. Moreover, recent work in game semantics has pro-
duced algorithmic representations of game models using extensions of fresh-register

1 Although, technically speaking, the machines we define below do not handle constants (as
e.g. O, P), the latter are encoded as names appearing in initial registers, in standard fashion.

20 N. Tzevelekos and R. Grigore

automata [24,25], thus achieving automated equivalence checks for fragments of ML.
In a parallel development, a research stream on automated analysis of dynamic con-
current programs has developed essentially the same formalisms, this time stemming
from basic operational semantics [7,3]. This confluence of different methodologies is
exciting and encourages the development of stronger automata for a wider range of
verification tasks, and just such an automaton we propose herein.

Although our work is driven by program analysis, the closest existing automata mod-
els to ours come from XML database theory and model checking. Research in the latter
area has made great strides in the last years on automata over infinite alphabets and
related logics (e.g. see [31] for an overview from 2006). As we show in this paper,
history-register automata fit very well inside the big picture of automata over infinite
alphabets (cf. Figure 1) and in fact can be seen as a variant of Data Automata (DA) [6]
or, equivalently, Class Memory Automata (CMA) [5]. This fit leaves space for transfer
of technologies and, more specifically, of the associated logics of data automata.

2 Definitions and First Properties

We start by fixing some notation. Let N be an infinite alphabet of names (or data
values, in terminology of [31]), which we range over by a, b, c, etc. For any pair of
natural numbers i ≤ j, we write [i, j] for the set {i, i+1, · · · , j}, and for each i we
let [i] be the set {1, · · · , i}. For any set S, we write |S| for the cardinality of S, P(S)
for the powerset of S, Pfn(S) for the set of finite subsets of S, and P
=∅(S) for the set
of non-empty subsets of S. We write id : S → S for the identity function on S, and
img(f) for the image of f : S → T .

We define automata which are equipped with a fixed number of registers and his-
tories where they can store names. Each register is a memory cell where one name
can be stored at a time; each history can hold an unbounded set of names. We use the
term place to refer to both histories and registers. Transitions are of two kinds: name-
accepting transitions and reset transitions. Those of the former kind have labels of the
form (X,X ′), for sets of places X and X ′; and those of the latter carry labels with
single sets of places X . A transition labelled (X,X ′) means:

– accept name a if it is contained precisely in places X , and
– update places in X and X ′ so that a be contained precisely in places X ′ after the

transition (without touching other names).

By a being contained precisely in places X we mean that it appears in every place in X ,
and in no other place. In particular, the label (∅, X ′) signifies accepting a fresh name
(one which does not appear in any place) and inserting it in placesX ′. On the other hand,
a transition labelled by X resets all the places in X , that is, it updates each of them to
the empty set. Reset transitions do not accept names; they are ε-transitions from the
outside. Note then that the label (X, ∅) has different semantics from the label X : the
former stipulates that a name appearing precisely in X be accepted and then removed
from X ; whereas the latter clears all the contents of places in X , without accepting
anything.

History-Register Automata 21

Formally, let us fix positive integersm and n which will stand for the default number
of histories and registers respectively in the machines we define below. The set Asn of
assignments and the set Lab of labels are:

Asn = {H : [m+n]→ Pfn(N) | ∀i > m. |H(i)| ≤ 1}
Lab = P([m+n])2 ∪ P([m+n])

For example, {(i, ∅) | i ∈ [m+n]} is the empty assignment. We range over elements of
Asn by H and variants, and over elements of Lab by
 and variants. Moreover, it will be
handy to introduce the following notation for assignments. For any assignment H and
any a ∈ N , S ⊆ N and X ⊆ [m+n]:

– We set H@X to be the set of names which appear precisely in places X in H , that
is, H@X =

⋂
i∈XH(i) \

⋃
i/∈XH(i).

In particular, H@ ∅ = N \
⋃
iH(i) is the set of names which do not appear in H .

– H [X �→ S] is the update H ′ of H so that all places in X are mapped to S, that is,
H ′={(i,H(i)) | i �∈ X}∪{(i, S) | i ∈ X}. E.g. H [X �→ ∅] resets all places in X .

– H [a inX] is the update of H which removes name a from all places and inserts it
back in X , that is, H [a inX] is the assignment:

{(i,H(i)∪{a}) | i ∈ X∩[m]} ∪ {(i, {a}) | i ∈ X\[m]}∪ {(i,H(i)\{a}) | i /∈ X}

Note above that operation H [a in X] acts differently in the case of histories (i ≤ m)
and registers (i > m) in X : in the former case, the name a is added to the history H(i),
while in the latter the register H(i) is set to {a} and its previous content is cleared.

We can now define our automata.

Definition 1. A history-register automaton (HRA) of type (m,n) is a tuple A =
〈Q, q0, H0, δ, F 〉 where:

– Q is a finite set of states, q0 is the initial state, F ⊆ Q are the final ones,
– H0 ∈ Asn is the initial assignment, and
– δ ⊆ Q× Lab×Q is the transition relation.

For brevity, we shall callA an (m,n)-HRA.

We write transitions in the forms q
X,X′
−→ q′ and q

X−→ q′, for each kind of transition
label. In diagrams, we may unify different transitions with common source and target,

for example q
X,X′
−→ q′ and q

Y,Y ′
−→ q′ may be written q

X,X′ / Y,Y ′
−−−−−−−→ q′; moreover, we

shall lighten notation and write i for the singleton {i}, and ij for {i, j}.
We already gave an overview of the semantics of HRAs. This is formally defined by

means of configurations representing the current computation state of the automaton. A
configuration of A is a pair (q,H) ∈ Q̂, where:

Q̂ = Q× Asn

From the transition relation δ we obtain the configuration graph of A as follows.

Definition 2. Let A be an (m,n)-HRA as above. Its configuration graph (Q̂,−→),
where −→ ⊆ Q̂×

(
N ∪ {ε}

)
× Q̂, is constructed by setting (q,H)

x−→ (q′, H ′) just
if one of the following conditions is satisfied.

22 N. Tzevelekos and R. Grigore

– x = a ∈ N and there is q
X,X′
−→ q′ ∈ δ such that a ∈ H@X and H ′ = H [a inX ′].

– x = ε and there is q
X−→ q′ ∈ δ such that H ′ = H [X �→ ∅].

The language accepted byA is L(A) = {w ∈ N ∗ | (q0, H0)
w−→−→ (q,H) and q ∈ F }

where−→−→ is the reflexive transitive closure of−→ (i.e. q̂
x1···xn−−−−→→ q̂′ if q̂

x1−→· · · xn−→ q̂′).

Note that we use ε both for the empty sequence and the empty transition so, in particular,
when writing sequences of the form x1 · · ·xn we may implicitly consume ε’s.

Example 3. The language L1 of the Introduction is recognised by the following (1, 1)-
HRA (leftmost below), with initial assignment {(1, ∅), (2, a0)}. The automaton starts
by accepting a0, leaving it in register 2, and moving to state q1. There, it loops accepting
fresh names (appearing in no place) which it stores in history 1. From q1 it goes back
to q1 by resetting its history.

q0 q1
2,2

1

∅,1

q0 q1

∅,1 / 2,12

∅,2 / 1,12

q0 q1
1,∅

∅,1 1,∅

We can also see that the other two HRAs, of type (2, 0) and (1, 0), accept the languages
L2 and L3 respectively. Both automata start with empty assignments.
Finally, the automaton we drew in Figure 1 is, in fact, a (2,2)-HRA where its two regis-
ters initially contain the namesO andP respectively. The transition labelO corresponds
to (3, 3), and P to (4, 4).

As mentioned in the introductory section, HRAs build upon (Fresh) Register Automata
[18,26,33]. The latter can be defined within the HRA framework as follows.2

Definition 4. A Register Automaton (RA) of n registers is a (0, n)-HRA with no reset
transitions. A Fresh-Register Automaton (FRA) of n registers is a (1, n)-HRA A =
〈Q, q0, H0, δ, F 〉 such that H0(1) =

⋃
iH0(i) and:

– for all (q,
, q′) ∈ δ, there are X,X ′ such that
 = (X,X ′) and 1 ∈ X ′;
– for all (q, {1}, X ′, q′) ∈ δ, there is also (q, ∅, X ′, q′) ∈ δ.

Thus, in an FRA all the initial names must appear in its history, and the same holds for
all the names the automaton accepts during computation (1 ∈ X ′). As, in addition, no
reset transitions are allowed, the history effectively contains all names of a run. On the
other hand, the automaton cannot recognise non-freshness: if a name appearing only
in the history is to be accepted at any point then a totally fresh name can be also be
accepted in the same way. Now, from [33] we have the following.3

Lemma 5. The languages L1,L2 and L3 are not FRA-recognisable.

Bisimulation Bisimulation equivalence, also called bisimilarity, is a useful tool for re-
lating automata, even from different paradigms. It implies language equivalence and is
generally easier to reason about than the latter. We will be using it avidly in the sequel.

2 The definitions given in [18,26,33] are slightly different but can routinely be shown equivalent.
3 L1 was explicitly examined in [33]. For L2 and L3 we use a similar argument as the one for

showing that L0 ∗ L0 is not FRA-recognisable [33].

History-Register Automata 23

Definition 6. Let Ai = 〈Qi, q0i, H0i, δi, Fi〉 be (m,n)-HRAs, for i = 1, 2. A relation
R ⊆ Q̂1 × Q̂2 is called a simulation onA1 andA2 if, for all (q̂1, q̂2) ∈ R,

– if q̂1
ε−→−→ q̂′1 and π1(q̂′1) ∈ F1 then q̂2

ε−→−→ q̂′2 for some π1(q̂′2) ∈ F2, where π1 is
the first projection function;

– if q̂1
ε−→−→· a−→ q̂′1 then q̂2

ε−→−→· a−→ q̂′2 for some (q̂′1, q̂
′
2) ∈ R.

R is called a bisimulation if bothR andR−1 are simulations. We say thatA1 andA2 are
bisimilar, written A1 ∼ A2, if ((q01, H01), (q02, H02))∈R for some bisimulation R.

The following is a standard result.

Lemma 7. If A1 ∼ A2 then L(A1) = L(A2).

As a first taste of HRA reasoning, we sketch a technique for simulating registers by
histories in HRAs. The idea is to represent a register by a history whose size is always
kept at most 1. To ensure that histories are effectively kept in size ≤ 1 they must be
cleared before inserting names, which in turn complicates deciding when a transition
can be taken as it may depend on the deleted names. To resolve this, we keep two copies
of each register so that, for each transition with label (X,X ′), we use one set of copies
for the name comparisons needed for the X part of the label, and the other set for the
assignments dictated by X ′. Resets are used so that one set of copies is always empty.

Proposition 8. Let A = 〈Q, q0, H0, δ, F 〉 be an (m,n)-HRA. There is an (m+2n, 0)-
HRA A′ such that A ∼ A′.

In Proposition 20 we show that registers can be simulated also without using resets.
Both that and the above reductions, though, come at the cost of an increased number of
histories and, more importantly, the simulation technique obscures the intuition of reg-
isters and produces automata which need close examination even for simple languages
like the one which contains all words a1 · · ·an such that ai �= ai+1 for all i (see Exam-
ple 21). As, in addition, it is not applicable to the weaker unary HRAs we examine in
Section 4, we preferred to explicitly include registers in HRAs. Another design choice
regards the use of sets of places in transitions instead e.g. of single places. Although the
latter description would lead to an equivalent and probably conciser formalism, it would
be inconvenient for combining HRAs e.g. in order to produce the intersection of their
accepted languages. In fact, our formulation follows M-automata [18], an equivalent
presentation of RAs susceptible to closure constructions.

Determinism. We close our presentation here by describing the deterministic class of
HRAs. We defined HRAs in such a way that, at any given configuration (q,H) and for
any input symbol a, there is at most one set of places X that can match a, i.e. such that
a ∈ H@X . As a result, the notion of determinism in HRAs can be ensured by purely

syntactic means. Below we write q
X−→−→ q′ ∈ δ if there is a sequence of transitions

q
X1−→ · · · Xn−→ q′ in δ such that X =

⋃n
i=1Xi. In particular, q

∅−→−→ q ∈ δ.

Definition 9. We say that an HRA A is deterministic if, for any reachable configura-
tion q̂ and any name a, if q̂

ε−→−→· a−→ q̂1 and q̂
ε−→−→· a−→ q̂2 then q̂1 = q̂2.

A is strongly deterministic if q
Y1−→−→· X\Y1,X1−−−−−−→ q1 ∈ δ and q

Y2−→−→· X\Y2,X2−−−−−−→ q2 ∈ δ
imply q1 = q2, Y1 = Y2 and X1 = X2.

24 N. Tzevelekos and R. Grigore

Lemma 10. If A is strongly deterministic then it is deterministic.

3 Closure Properties, Emptiness and Universality

History-register automata enjoy good closure properties with respect to regular lan-
guage operations. In particular, they are closed under union, intersection, concatenation
and Kleene star, but not closed under complementation.

In fact, the design of HRAs is such that the automata for union and intersection come
almost for free through a straightforward product construction which is essentially an or-
dinary product for finite-state automata, modulo reindexing of places to account for du-
plicate labels (cf. [18]). The constructions for Kleene star and concatenation are slightly
more involved as we make use of the following technical gadget. Given an (m,n)-HRA
A and a sequence w of k distinct names, we construct a bisimilar (m,n+k)-HRA, de-
noted A fixw, in which the names of w appear exclusively in the additional k registers,
which, moreover, remain unchanged during computation. The construction allows us,
for instance, to create loops such that after each loop transition the same initial configu-
ration occurs (in this case, w would enlist all initial names).

Proposition 11. Languages recognised by HRAs are closed under union, intersection,
concatenation and Kleene star.

As we shall next see, while universality is undecidable for HRAs, their emptiness prob-
lem can be decided by reduction to coverability for transfer-reset vector addition sys-
tems with states. In combination, these results imply that HRAs cannot be effectively
complemented. In fact, there are HRA-languages whose complements are not recognis-
able by HRAs. This can be shown via the following example, adapted from [22].

Lemma 12. HRAs are not closed under complementation.

Example 13. Consider L4 = {w ∈ N ∗ | not all names of w occur exactly twice in it },
which is accepted by the (2, 0)-HRA below, where “−” can be any of ∅, 1, 2.

q0 q1 q2 q3

∅,1 / 1,1

∅,2

∅,1 / 1,1

2,2

∅,1 / 1,1

2,2

−,−

The automaton non-deterministically selects an input name which either appears only
once in the input or at least three times.

We claim that L4, the language of all words whose names occur exactly twice in
them, is not HRA-recognisable. For suppose it were recognisable (wlog) by an (m, 0)-
HRA A with k states. Then, A would accept the word w = a1 · · ·ak a1 · · · ak where
all ai’s are distinct and do not appear in the initial assignment of A. Let p = p1p2 be
the path in A through which w is accepted, with each pi corresponding to one of the
two halves of w. Since all ais are fresh forA, the non-reset transitions of p1 must carry
labels of the form (∅, X), for some sets X . Let q be a state appearing twice in p1, say
p1 = p11(q)p12(q)p13. Consider now the path p′ = p′1p2 where p′1 is the extension
of p1 which repeats p12, that is, p′1 = p11(q)p12(q)p12(q)p13. We claim that p′ is an
accepting path in A. Indeed, by our previous observation on the labels of p1, the path

History-Register Automata 25

p′1 does not block, i.e. it cannot reach a transition q1
X,Y−−−→ q2, with X �= ∅, in some

configuration (q1, H1) such that H1@X = ∅. We need to show that p2 does not block
either (in p′). Let us denote (q,H1) and (q,H2) the configurations in each of the two
visits of q in the run of p on w; and let us write (q,H3) for the third visit in the run of
p′1, given that for the other two visits we assume the same configurations as in p. Now
observe that, for each non-empty X ⊆ [m], repeating p12 cannot reduce the number of
names appearing precisely in X , therefore |H2@X | ≤ |H3@X |. The latter implies that,
since p does not block, p′ does not block either. Now observe that any word accepted
by w′ is not in L4, as p′1 accepts more than k distinct names, a contradiction.

We now turn to the question of checking emptiness. The use of unbounded histories
effectively renders our machines into counter automata: where a counter automaton
would increase (or decrease) a counter, an HRA would add (remove) a name from one
of its histories, or set of histories. Nonetheless, HRAs cannot decide their histories for
emptiness, which leaves space for decidability.4 The capability for resetting histories,
on the other hand, leads us to consider Transfer-Reset Vector Addition Systems with
States [8,2] (i.e. Petri nets with reset and transfer arcs) as appropriate formalisms for
this question.

A Transfer-Reset Vector Addition System with States (TR-VASS) of m dimensions
is a tupleA = 〈Q, δ〉, withQ a set of states and δ ⊆ Q×({−1, 0, 1}m∪[m]2∪[m])×Q
a transition relation. Each dimension of A corresponds to an unbounded counter. Thus,
a transition ofA can either update its counters by addition of a vector �v ∈ {−1, 0, 1}m,
or transfer the value of one counter to another, or reset some counter.

Formally, a configuration of A is a pair (q, �v) ∈ Q × Nm consisting of a state and a
vector of values stored in the counters. The configuration graph of A is constructed by
including an edge (q, �v)→ (q′, �v′) if:

– there is some (q, �v′′, q′) ∈ δ such that �v′ = �v + �v′′, or
– there is (q, i, j, q′) ∈ δ such that �v′ = (�v[j �→ vi+vj])[i �→ 0],
– or there is some (q, i, q′) ∈ δ such that �v′ = �v[i �→ 0];

where we write vi for the ith dimension of �v, and �v[i �→ v′] for the update of �v where
the i-th counter is set to v′. An R-VASS is a TR-VASS without transfer transitions.

The control-state reachability problem for TR-VASSs is defined as follows. Given
a TR-VASS A of m dimensions, a configuration (q0, �v0) and a state q, is there some
�v ∈ Nm such that (q0, �v0)→→ (q, �v)? In such a case, we write (A, q0, �v0, q) ∈ Reach.

Fact 14 ([10,30,11]). Control-state reachability for TR-VASSs and R-VASSs is decid-
able and has non-primitive recursive complexity.

We next reduce HRA nonemptiness to TR-VASS control-state reachability. Starting
w.l.o.g. from an (m, 0)-HRA A, we construct a TR-VASSA′ with 2m dimensions: one
dimension X̃ for each X ⊆ [m]. The dimension ∅̃ is used for garbage collecting. We
assign to each state ofA a corresponding state inA′ (and also include a stock of dummy
states for intermediate transitions) and translate the transitions of A into transitions of
A′ as follows.

4 Recall that 2-counter machines with increase, decrease and check for zero are Turing complete.

26 N. Tzevelekos and R. Grigore

– Each transition with label (X,X ′) is mapped into a pair of transitions which first
decrease counter X̃ and then increase X̃ ′.

– Each reset transition with label X causes a series of transfers: for each counter Ỹ ,

we do a transfer from Ỹ to Ỹ \X .

Thus, during computation in each ofA′ andA, the value of counter X̃ matches the num-
ber of names which precisely appear in histories X . Since, for checking emptiness, the
specific names inside the histories of A are of no relevance, the above correspondence
extends to matching nonemptiness for A to (final) control-state reachability forA′.

Proposition 15. Emptiness is decidable for HRAs.

Doing the opposite reduction we can show that emptiness of even strongly deterministic
HRAs is non-primitive recursive. In this direction, each R-VASS A of m dimensions
is simulated by an (m, 0)-HRA A′ so that the value of each counter i of the former is
the same as the number of names appearing precisely in history i of the latter. Using
a non-trivial encoding of resets we can ensure that if A adheres to a particular kind
of determinacy conditions (which the machines used in [30] for proving non-primitive
recursive complexity do adhere to) then A′ is strongly deterministic.

Proposition 16. Emptiness for strongly deterministic HRAs is non-primitive recursive.

We finally consider universality and language containment. Note first that our machines
inherit undecidability of these properties from register automata [26]. However, these
properties are decidable in the deterministic case, as deterministic HRAs are closed un-
der complementation. In particular, given a deterministic HRA A, the automaton A′
accepting the languageN \ L(A) can be constructed in an analogous way as for deter-
ministic finite-state automata, namely by obfuscating the automaton with all “missing”
transitions and swapping final with non-final states (modulo ε-transitions). We add the
missing transitions as follows. For each state q and each set X such that there are no

transitions of the form q
Y−→−→· X\Y,X

′
−−−−−→ q′ in A, we add a transition q

X,∅−−→ qS to some
sink non-final state qS .

Proposition 17. Language containment and universality are undecidable for HRAs.
They are decidable for deterministic HRAs, with non-primitive recursive complexity.

4 Weakening HRAs

Since the complexity of HRAs is substantially high, e.g. for deciding emptiness, it is
useful to seek for restrictions thereof which allow us to express meaningful properties
and, at the same time, remain at feasible complexity. As the encountered complexity
stems from the fact that HRAs can simulate computations of R-VASSs, our strategy for
producing weakenings is to restrict the functionalities of the corresponding R-VASSs.
We follow two directions:

(a) We remove reset transitions. This corresponds to removing counter transfers and
resets and drops the complexity of control-state reachability to exponential space.

History-Register Automata 27

(b) We restrict the number of histories to just one. We thus obtain polynomial space
complexity as the corresponding counter machines are simply one-counter automata.
This kind of restriction is also a natural extension of FRAs with history resets.

Observe that each of the aspects of HRAs targeted above corresponds to features (1,2)
we identified in the Introduction, witnessed by the languages L1 and L2 respectively.
We shall see that each restriction leads to losing the corresponding language.

Our analysis on emptiness for general HRAs from Section 3 is not applicable to
these weaker machines as we now need to take registers into account: the simulation
of registers by histories is either not possible or not practical for deriving satisfactory
complexity bounds. Additionally, a direct analysis will allow us to reduce instances of
counter machine problems to our setting decreasing the complexity size by an expo-
nential, compared to our previous reduction. Solving emptiness for each of the weaker
versions of HRAs will involve reduction to a name-free counter machine. In both cases,
the reduction shall follow the same concept as in Section 3, namely of simulating com-
putations with names symbolically.

4.1 Non-reset HRAs

We first weaken our automata by disallowing resets. We show that the new machines
retain all their closure properties apart from Kleene-star closure. The latter is concretely
manifested in the fact that language L1 of the Introduction is lost. On the other hand,
the emptiness problem reduces in complexity to exponential space.

Definition 18. A non-reset HRA of type (m,n) is an (m,n)-HRAA= 〈Q, q0, H0, δ, F 〉
such that there is no q

X−→ q′ ∈ δ.

We call such a machine a non-reset (m,n)-HRA. In an analogous fashion, a VASS of
m dimensions (anm-VASS) is an R-VASS with no reset transitions. For these machines,
control-state reachability is significantly less complex.

Fact 19. Control-state reachability for VASSs is EXPSPACE-complete [21,28], and can
be decided in space O((M+ log |Q|) ·2κm logm), where Q the set of states of the exam-
ined instance, m the vector size, M the maximum initial value and κ a constant [29].

Closure Properties. Of the closure constructions of Section 3, those for union and
intersection readily apply to non-reset HRAs, while the construction for concatenation
needs some minor amendments. On the other hand, using an argument similar to that
of [5, Proposition 7.2], we can show that the languageL1 is not recognised by non-reset
HRAs and, hence, the latter are not closed under Kleene star. Finally, note that the HRA
constructed for the language L4 in Example 13 is a non-reset HRA, which implies that
non-reset HRAs are not closed under complementation.

Emptiness. We next reduce nonemptiness for non-reset HRAs to control-state reach-
ability for VASSs. Starting from a non-reset (m,n)-HRA A = 〈Q, q0, H0, δ, F 〉, the
reduction maps each non-empty subset of [m] which appears in δ to a VASS counter
(Y ⊆ [m] appears in δ if there is (q,X,X ′, q′) ∈ δ such that Y ∈ {X∩[m], X ′∩[m]}).
Thus, the resulting VASS A′ has m′ counters, where m′ ≤ 2|δ|. Although the num-
ber of states of A′ is exponential, as the status of the registers needs to be embedded

28 N. Tzevelekos and R. Grigore

in states, the dominating factor for state-reachability is m′, which is linear in the size
of A.

For the converse direction, we reduce reachability for a VASS of 2m−1 counters to
nonemptiness for an (m, 0)-automaton: we map each counter to a non-empty subset
of [m]. Note that such a (2m–1)-to-m reduction would not work for R-VASSs, hence
the different reduction in Proposition 16. This is because resets in HRAs cannot fully
capture the behaviour of resets in R-VASSs. In HRAs a reset of a set of histories {1, 2},
say, cannot occur without also resetting histories 1 and 2. In addition, resets necessarily
cause virtual transfers of names (e.g. resetting history 1 makes all names appearing
precisely in {1, 2} to appear precisely in history 2).

Proposition 20. Emptiness checking for non-reset HRAs is EXPSPACE-complete.

Non-reset HRAs without registers We now show that non-reset HRAs with only histo-
ries are as expressive as general non-reset HRAs. The equivalence we prove is weaker
than the one we proved for general HRAs: we obtain language equivalence rather than
bisimilarity. Our proof below is based on the colouring technique of [5]. Before we pro-
ceed with the actual result, let us first demonstrate the technique through an example.

Example 21. It is easy to see that the following language

L5 = {a1 · · · an ∈ N ∗ | ∀i. ai �= ai+1} q0 ∅,1

is recognised by the (0, 1)-HRA on its right. What is perhaps not as clear is that the
(2, 0)-HRA on the right below, call it A, accepts the same language.

q0 q1

∅,2 / 2,2

∅,1 / 1,1

∅,1 / 2,1 ∅,2 / 1,2
Note first that, by construction, it is not possible for A to
accept the same name in two successive transitions: if we
write (X,X ′) for the labels of incoming transitions to q0
and (Y, Y ′) for the outgoing, we cannot match anyX ′ with
some Y , and similarly for q1. This shows L(A) ⊆ L5. To
prove the other inclusion, we need to show that for every
word w = a1 · · · an ∈ L5 there is an accepting run in A. For this, it suffices to find
a sequence
1, · · · ,
n of labels from the set {(∅, 1), (∅, 2), (1, 1), (1, 2), (2, 1), (2, 2)},
say (
i = (Xi, X

′
i), satisfying:

1. For any i, X ′i �= Xi+1.
2. If ai = aj , i < j, and for no i < k < j do we have ai = ak then X ′i = Xj .
3. For any i, if ai �=aj for all j<i then Xi = ∅.

The first condition ensures that the sequence corresponds to a valid transition sequence
in A, and the other two that the sequence accepts the word w = a1 · · · an. Conditions
1 and 2 determine dependencies between the choices of left and right components in

is. Let us attach to w dependency pointers as follows: attach a pointer of type 1 (de-
pendency right-to-left) from each ai to its next occurrence in w, say aj; from each ai+1

attach a type 2 pointer (dependency left-to-right) to ai. Now note that, as there is no
cycle in w which alternates between type 1 and type 2 pointers, it is always possible to
produce a valid sequence
1, · · · ,
n.

We now state the general result. The proof follows the rationale described above,
and is omitted for space limitations. We assume automata with their registers initially

History-Register Automata 29

empty – the general case can be captured by first applying a construction like A fixw
of Section 3 (the construction introduces new registers where we would store the initial
names, but we can as well use new histories for the same purpose).

Proposition 22. For each (m,n)-non-reset HRA A with initially empty registers there
is an (m+3n, 0)-non-reset HRA A′ such that L(A) = L(A′).

4.2 Unary HRAs

Our second restriction concerns allowing resets but bounding the number of histories to
just one. Thus, these automata are closer to the spirit of FRAs and, in fact, extend them
by rounding up their history capabilities. We show that these automata require polyno-
mial space complexity for emptiness and retain all their closure properties apart from
intersection. The latter is witnessed by failing to recognise L2 from the Introduction.
Extending this example to multiple interleavings, one can show that intersection is in
general incompatible with bounding the number of histories.

Definition 23. A (1, n)-HRA is called a unary HRA of n registers.

In other words, unary HRAs are extensions of FRAs where names can be selectively
inserted or removed from the history and, additionally, the history can be reset. These
capabilities give us a strict extension.

Example 24. The automata used in Example 3 for L1 and L3 were unary HRAs. Note
that neither of those languages is FRA-recognisable. On the other hand, in order to
recognise L2, an HRA would need to use at least two histories: one history for the odd
positions of the input and another for the even ones. Following this intuition we can
show that L2 is not recognisable by unary HRAs.

Closure properties. The closure constructions of Section 3 readily apply to unary
HRAs, with one exception: intersection. For the latter, we can observe that L2 =

q0 q1
∅,1

∅,∅ / 1,1

q0 q1
∅,∅ / 1,1

∅,1

L(A1) ∩ L(A2), where L(A1) = {a1a′1 · · · ana′n ∈
N ∗ | a1 · · ·an ∈ L0} and L(A2) = {a1a′1 · · · ana′n ∈
N ∗ | a′1 · · · a′n ∈ L0}, andA1 andA2 are the unary (1, 0)-
HRAs on the side, with empty initial assignments. On the
other hand, unary HRAs are not closed under complemen-
tation as well, as one can construct unary HRAs accepting
L(A1) and L(A2), and then take their union to obtain a
unary HRA for L2.

Emptiness In the case of just one history, the results on TR-VASS reachability [30,11]
from Section 3 provide rather rough bounds. It is therefore useful to do a direct analysis.
We reduce nonemptiness for unary HRAs to control-state reachability for R-VASSs of
1 dimension. Although these machines can be seen as close relatives to several other
formalisms, like one-counter automata or pushdown automata on a one-letter alphabet,
to the best of our knowledge there has been no direct attack of state reachability for
them. Our analysis below, which follows standard techniques, yields square minimal-
path length, and hence a polynomial complexity for emptiness (N is the size of the
input).

30 N. Tzevelekos and R. Grigore

Lemma 25. Control-state reachability for R-VASSs of dimension 1 can be decided in
SPACE(log2N).

Proposition 26. Emptiness for unary HRAs can be decided in SPACE((N logN)2).

5 Connections with Existing Formalisms

We have already seen that HRAs strictly extend FRAs. In this section we shall draw
connections between HRAs and an automata model over infinite alphabets at the limits
of decidability, called Data Automata (DA), introduced in [6] in the context of XML
theory. DAs operate on data words, i.e. over finite sequences of elements from S × N ,
where S is a finite set of data tags and N is an infinite set of data values (but we shall
call them names). A DA operates in two stages which involve a transducer automaton
and a finite-state automaton respectively. Both automata operate on the tag projection
of the input, with the second automaton focussing on tags paired with the same name.

For the rest of our discussion we shall abuse data words and treat them simply as
strings of names, neglecting data tags. This is innocuous since there are straightfor-
ward translations between the two settings.5 An equivalent formulation of DAs which
is closer to our framework is the following [5].

Definition 27. A Class Memory Automaton (CMA) is a tuple A = 〈Q, q0, φ0, δ, F1,
F2〉 where Q is a finite set of states, q0 ∈ Q is initial, F1 ⊆ F2 ⊆ Q are sets of final
states and the transition relation is of type δ ⊆ Q× (Q∪{⊥})×Q. Moreover, φ0 is an
initial class memory function, that is, a function φ : N → Q ∪ {⊥} with finite domain
({a | φ(a) �= ⊥} is finite).

The semantics of a CMA A like the above is given as follows. Configurations of A are
pairs of the form (q, φ), where q ∈ Q and φ a class memory function. The configuration
graph of A is constructed by setting (q, φ)

a−→ (q′, φ′) just if there is (q, φ(a), q′) ∈ δ
and φ′ = φ[a �→ q′]. The initial configuration is (q0, φ0), while a configuration (q, φ) is
accepting just if q ∈ F1 and, for all a ∈ N , φ(a) ∈ F2 ∪ {⊥}.

Thus, CMAs resemble HRAs in that they store input names in “histories”, only that
histories are identified with states: for each state q there is a corresponding history q
(note notation overloading), and a transition which accepts a name a and leads to a state
q must store a in the history q. Moreover, each name appears in at most one history
(hence the type of φ) and, moreover, the finality conditions for configurations allow us
to impose that all names appear in specific histories, if they appear in any. For example,
here is a CMA (left below, with F1 = F2 = {q0}) which recognises L4 of Example 13.

q0 q1

⊥

q1
q1 ⊥

q0 q1

∅,1

1,2
1,2 ∅,1

5 A string of names is the same as a data word over a singleton set of data tags; while data tags
can be simulated by names in registers of the initial configuration which do not get moved nor
copied during the computation.

History-Register Automata 31

Each name is put in history q1 when seen for the first time, and to q0 when seen for the
second time. The automaton accepts if all its names are in q0. This latter condition is
what makes the essential difference to HRAs, namely the capability to check where the
names reside for acceptance. For example, the HRA on the right above would accept
the same language were we able to impose the condition that accepting configurations
(q,H) satisfy a ∈ H@{2} for all names a ∈

⋃
iH(i).

The above example proves that HRAs cannot express the same languages as CMAs.
Conversely, as shown in [5, Proposition 7.2], the fact that CMAs lack resets does not
allow them to express languages like, for example, L1. In the latter sections of [5]
several extensions of CMAs are considered, one of which does involve resets. However,
the resets considered there do not seem directly comparable to the reset capability of
HRAs.

On the other hand, a direct comparison can be made with non-reset HRAs. We al-
ready saw in Proposition 22 that, in the latter idiom, histories can be used for simulating
register behaviour. In the absence of registers, CMAs differ from non-reset HRAs solely
in their constraint of relating histories to states (and their termination behaviour, which
is more expressive). As the latter can be easily counterbalanced by obfuscating the set
of states, we obtain the following.

Proposition 28. For each non-reset HRAA there is a CMAA′ such that L(A) = L(A′).

6 Further Directions and Acknowledgements

Our goal is to apply automata with histories in static and runtime verification. While
FRAs have been successful in modelling programs which, at each point during com-
putation, can have access to a bounded memory fragment [33,24], HRAs allow us to
express access to unbounded memory, provided that memory locations can be grouped
in a bounded number of equivalence classes. Moreover, with HRAs we can express a
significantly wider range of properties, closed under complementation-free regular oper-
ations, and in particular we can write properties where the history is used in meaningful
ways (cf. the scenario of Figure 1). Although the complexity results derived in this pa-
per may seem discouraging at first, they are based on quite specific representations of
hard problems; in practice, we expect programs to yield automata of low complexities.
Experience with tools based on TR-VASS coverability, like e.g. BFC [17], positively
testify in that respect. On the other hand, an extension we envisage to consider is one
with restricted emptiness tests, in analogy to e.g. [12].

A connection we would like to investigate is that between our automata and register
automata which use alternation. Such machines with one register express behaviours re-
lated to HRAs [9] and enjoy some common properties, such as non-primitive recursive
complexity for emptiness. Another interesting connection is with Data Nets [20], a class
of machines which combine Petri nets with infinite alphabets but are not formalised
as language acceptors over them. In terms of complexity, data nets seem substantially
more involved than reset Petri nets and our machines. Finally, a problem left open in
this work is decidability and complexity of bisimilarity. Although it is known that bisim-
ilarity is undecidable for Petri nets [15], the version which seems of relevance towards
an undecidability argument for HRAs is that of visibly counter automata with labels,

32 N. Tzevelekos and R. Grigore

i.e. automata which accept labels at each transition, and the action of each transition is
determined by its label. The latter problem is not known to be decidable.

We would like to thank Dino Distefano, Petr Jancar, Ranko Lazic, Philippe Schnoe-
belen, Sylvain Schmitz and anonymous reviewers for fruitful discussions, suggestions
and explanations. This work was supported by EPSRC grant H011749 (Grigore) and a
Royal Academy of Engineering research fellowship (Tzevelekos).

References
1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nominal games

and full abstraction for the nu-calculus. In: LICS, pp. 150–159 (2004)
2. Araki, T., Kasami, T.: Some decision problems related to the reachability problem for Petri

nets. Theor. Comput. Sci. 3(1), 85–104 (1977)
3. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs

with dynamic creation of threads. Log. Meth. Comput. Sci. 7(4) (2011)
4. Benton, N., Leperchey, B.: Relational Reasoning in a Nominal Semantics for Storage. In:

Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)
5. Björklund, H., Schwentick, T.: On notions of regularity for data languages. TCS 411 (2010)
6. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on

words with data. In: LICS, pp. 7–16 (2006)
7. Bouajjani, A., Fratani, S., Qadeer, S.: Context-Bounded Analysis of Multithreaded Programs

with Dynamic Linked Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

8. Ciardo, G.: Petri Nets with Marking-Dependent Arc Cardinality. In: Valette, R. (ed.) ICATPN
1994. LNCS, vol. 815, pp. 179–198. Springer, Heidelberg (1994)

9. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. TOCL 10(3)
(2009)

10. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecid-
ability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
103–115. Springer, Heidelberg (1998)

11. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-
recursive bounds with Dickson’s lemma. In: LICS, pp. 269–278 (2011)

12. Finkel, A., Sangnier, A.: Mixing Coverability and Reachability to Analyze VASS with One
Zero-Test. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOF-
SEM 2010. LNCS, vol. 5901, pp. 394–406. Springer, Heidelberg (2010)

13. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal
Asp. Comput. 13(3-5), 341–363 (2002)

14. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification based on
register automata. In: TACAS (to appear 2013)

15. Jancar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theor.
Comput. Sci. 148(2), 281–301 (1995)

16. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: LICS (1999)
17. Kaiser, A., Kroening, D., Wahl, T.: Efficient Coverability Analysis by Proof Minimization. In:

Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 500–515. Springer,
Heidelberg (2012), http://www.cprover.org/bfc/

18. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2) (1994)
19. Laird, J.: A Fully Abstract Trace Semantics for General References. In: Arge, L., Cachin,

C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 667–679. Springer,
Heidelberg (2007)

http://www.cprover.org/bfc/

History-Register Automata 33

20. Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens which
carry data. Fundam. Inform. 88(3), 251–274 (2008)

21. Lipton, R.: The reachability problem requires exponential space. Tech. Rep. 62, Yale (1976)
22. Manuel, A., Ramanujam, R.: Class counting automata on datawords. Int. J. Found. Comput.

Sci. 22(4), 863–882 (2011)
23. Montanari, U., Pistore, M.: An introduction to History Dependent Automata. Electr. Notes

Theor. Comput. Sci. 10 (1997)
24. Murawski, A.S., Tzevelekos, N.: Algorithmic Nominal Game Semantics. In: Barthe, G. (ed.)

ESOP 2011. LNCS, vol. 6602, pp. 419–438. Springer, Heidelberg (2011)
25. Murawski, A.S., Tzevelekos, N.: Algorithmic Games for Full Ground References. In: Czu-

maj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS,
vol. 7392, pp. 312–324. Springer, Heidelberg (2012)

26. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Logic 5(3), 403–435 (2004)

27. Pitts, A.M., Stark, I.: Observable Properties of Higher Order Functions that Dynamically
Create Local Names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS
1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

28. Rackoff, C.: The covering and boundedness problems for vector addition systems. TCS
(1978)

29. Rosier, L.E., Yen, H.-C.: A multiparameter analysis of the boundedness problem for vector
addition systems. J. Comput. Syst. Sci. 32(1), 105–135 (1986)

30. Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset
Petri Nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628.
Springer, Heidelberg (2010)

31. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik,
Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

32. Stark, I.: Names and higher-order functions. PhD thesis, University of Cambridge (1994)
33. Tzevelekos, N.: Fresh-register automata. In: POPL, pp. 295–306 (2011)

Fatal Attractors in Parity Games

Michael Huth1, Jim Huan-Pu Kuo1, and Nir Piterman2

1 Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth,jimhkuo}@imperial.ac.uk

2 Department of Computer Science, University of Leicester
Leicester, LE1 7RH, United Kingdom

nir.piterman@leicester.ac.uk

Abstract. We study a new form of attractor in parity games and use
it to define solvers that run in PTIME and are partial in that they do
not solve all games completely. Technically, for color c this new attractor
determines whether player c%2 can reach a set of nodes X of color c
whilst avoiding any nodes of color less than c. Such an attractor is fatal
if player c%2 can attract all nodes in X back to X in this manner. Our
partial solvers detect fixed-points of nodes based on fatal attractors and
correctly classify such nodes as won by player c%2. Experimental results
show that our partial solvers completely solve benchmarks that were
constructed to challenge existing full solvers. Our partial solvers also
have encouraging run times in practice. For one partial solver we prove
that its runtime is in O(|V |3), that its output game is independent of
the order in which attractors are computed, and that it solves all Büchi
games.1

1 Introduction
Parity games are an important foundational structure in formal verification (see
e.g. [11]). Mathematically, they can be seen as a representation of the model
checking problem for the modal mu-calculus [4], and its exact computational
complexity has been an open problem for over twenty years now.

Parity games are infinite, 2-person, 0-sum, graph-based games that are hard
to solve. Their nodes, controlled by different players, are colored with natural
numbers and the winning condition of plays depends on the minimal color occur-
ring in cycles. The condition for winning a node, therefore, is an alternation of
existential and universal quantification. In practice, this means that the maximal
color of its coloring function is the only exponential source for the worst-case
complexity of most parity game solvers, e.g. for those in [11,8,10].

Research on solving parity games may be loosely grouped into the following
approaches: design of algorithms that solve all parity games by construction
and that so far all have exponential or sub-exponential worst-case complexity
1 A preliminary version of the results reported in this paper was presented at the

GAMES 2012 workshop in Naples, Italy, on 11 September 2012.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 34–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fatal Attractors in Parity Games 35

(e.g. [11,8,10,9]), restriction of parity games to classes for which polynomial-
time algorithms can be devised as complete solvers (e.g. [1,3]), and practical
improvements to solvers so that they perform well across benchmarks (e.g. [5]).

We here propose a new approach that relates to, and potentially impacts, all
of these aforementioned activities. We want to design and evaluate a new form
of “partial” parity game solver. These are solvers that are well defined for all
parity games but that may not solve all games completely, i.e. for some parity
games they may not decide the winning status of some nodes. For us, a partial
solver has an arbitrary parity game as input and returns two things: a sub-game
of the input game, and a classification of the winning status of all nodes of the
input game that are not in that sub-game. In particular, the returned sub-game
is empty if, and only if, the partial solver classified the winners for all input
nodes.

The input/output type of our partial solvers clearly relates them to so called
preprocessors that may decide the winner of nodes whose structure makes such
a decision an easy static criterion (e.g. in the elimination of self-loops or dead
ends [5]). But we here search for dynamic criteria that allow partial solvers to
completely solve a range of benchmarks of parity games. This ambition sets our
work apart from research on preprocessors but is consistent with it as one can
always run a partial solver as preprocessor.

The motivation for the study reported in this paper is that we want to investi-
gate what theoretical building blocks one may create and use for designing partial
solvers that run in polynomial time and work well on many games, whether par-
tial solvers can be components of more efficient complete solvers, and whether
there are interesting subclasses of parity games for which partial solvers com-
pletely solve all games. In particular, one may study the class of output games
of a PTIME partial solver in lieu of studying the aforementioned open problem
for all parity games.

We summarize the main contributions made in this paper:

– We present a new form of attractor that can be used in fixed-point compu-
tations to detect winning nodes for a given player in parity games.

– We propose several designs of partial solvers for parity games by using this
new attractor within fixed-point computations.

– We analyze these partial solvers and show, e.g., that they work in PTIME
and that one of them is independent of the order of attractor computation.

– And we evaluate these partial solvers against known benchmarks and report
that these experiments have very encouraging results.

Outline of paper. Section 2 contains needed formal background and fixes nota-
tion. Section 3 introduces the building block of our partial solvers, a new form of
attractor. Some partial solvers based on this attractor are presented in Section 4,
theoretical results about these partial solvers are proved in Section 5, and ex-
perimental results for these partial solvers run on benchmarks are reported and
discussed in Section 6. We summarize and conclude the paper in Section 7.

36 M. Huth, J.H. Kuo, and N. Piterman

2 Preliminaries
We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a tuple
(V, V0, V1, E, c), where V is a set of nodes partitioned into possibly empty node
sets V0 and V1, with an edge relation E ⊆ V × V (where for all v in V there is
a w in V with (v, w) in E), and a coloring function c : V → N. In figures, c(v)
is written within nodes v, nodes in V0 are depicted as circles and nodes in V1 as
squares. For v in V , we write v.E for node set {w ∈ V | (v, w) ∈ E} of successors
of v. By abuse of language, we call a subset U of V a sub-game of G if the game
graph (U, E ∩(U ×U)) is such that all nodes in U have some successor. We write
PG for the class of all finite parity games G, which includes the parity game
with empty node set for our convenience. We only consider games in PG.

Throughout, we write p for one of 0 or 1 and 1 − p for the other player. In a
parity game, player p owns the nodes in Vp. A play from some node v0 results in
an infinite play r = v0v1 . . . in (V, E) where the player who owns vi chooses the
successor vi+1 such that (vi, vi+1) is in E. Let Inf(r) be the set of colors that occur
in r infinitely often: Inf(r) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}.
Player 0 wins play r iff min Inf(P) is even; otherwise player 1 wins play r.

A strategy for player p is a total function τ : Vp → V such that (v, τ(v)) is
in E for all v ∈ Vp. A play r is consistent with τ if each node vi in r owned
by player p satisfies vi+1 = τ(vi). It is well known that each parity game is
determined: node set V is the disjoint union of two, possibly empty, sets W0 and
W1, the winning regions of players 0 and 1 (respectively). Moreover, strategies
σ : V0 → V and π : V1 → V can be computed such that

– all plays beginning in W0 and consistent with σ are won by player 0; and
– all plays beginning in W1 and consistent with π are won by player 1.
Solving a parity game means computing such data (W0, W1, σ, π).

Example 1. In the parity game G depicted in Figure 1, the winning regions are
W1 = {v3, v5, v7} and W0 = {v0, v1, v2, v4, v6, v8, v9, v10, v11}. Let σ move from
v2 to v4, from v6 to v8, from v9 to v8, and from v10 to v9. Then σ is a winning
strategy for player 0 on W0. And every strategy π is winning for player 1 on W1.

3 Fatal Attractors
In this section we define a special type of attractor that is used for our par-
tial solvers in the next section. We start by recalling the normal definition of
attractor, and that of a trap, and then generalize the former to our purposes.

Definition 1. Let X be a node set in parity game G. For player p in {0, 1}, set

cprep(X) = {v ∈ Vp | v.E ∩ X �= ∅} ∪ {v ∈ V1−p | v.E ⊆ X} (1)
Attrp[G, X] = μZ.(X ∪ cprep(Z)) (2)

where μZ.F (Z) denotes the least fixed point of a monotone function F : 2V → 2V .

The control predecessor of a node set X for p in (1) is the set of nodes from
which player p can force to get to X in exactly one move. The attractor for

Fatal Attractors in Parity Games 37

player p to a set X in (2) is computed via a least fixed-point as the set of nodes
from which player p can force the game in zero or more moves to get to the set
X . Dually, a trap for player p is a region from which player p cannot escape.

v0

9

v1

0

v2

14

v3

17

v4

6

v5

20

v6

15

v7

19

v8

4

v9

8

v10

11

v11

18

Fig. 1. A parity game: circles denote nodes in V0, squares denote nodes in V1

Definition 2. Node set X in parity game G is a trap for player p (p-trap) if for
all v ∈ Vp ∩ X we have v.E ⊆ X and for all v ∈ V1−p ∩ X we have v.E ∩ X �= ∅.

It is well known that the complement of an attractor for player p is a p-trap and
that it is a sub-game. We state this here formally as a reference:

Theorem 1. Given a node set X in a parity game G, the set V \ Attrp[G, X] is
a p-trap and a sub-game of G.

We now define a new type of attractor, which will be a crucial ingredient in the
definition of all our partial solvers.

Definition 3. Let A and X be node sets in parity game G, let p in {0, 1} be a
player, and c a color in G. We set

mprep(A, X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪ X) �= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪ X}

MAttrp(X, c) = μZ.mprep(Z, X, c) (3)

The monotone control predecessor mprep(A, X, c) of node set A for p with target
X is the set of nodes of color at least c from which player p can force to get
to either A or X in one move. The monotone attractor MAttrp(X, c) for p with
target X is the set of nodes from which player p can force the game in one or
more moves to X by only meeting nodes whose color is at least c. Notice that
the target set X is kept external to the attractor. Thus, if some node x in X is
included in MAttrp(X, c) it is so as it is attracted to X in at least one step.

Our control predecessor and attractor are different from the “normal” ones
in a few ways. First, ours take into account the color c as a formal parameter.
They add only nodes that have color at least c. Second, as discussed above, the
target set X itself is not included in the computation by default. For example,
MAttrp(X, c) includes states from X only if they can be attracted to X .

38 M. Huth, J.H. Kuo, and N. Piterman

We now show the main usage of this new operator by studying how specific
instantiations thereof can compute so called fatal attractors.

Definition 4. Let X be a set of nodes of color c, where p = c%2.

1. For such an X we denote p by p(X) and c by c(X). We denote MAttrp(X, c)
by MA(X). If X = {x} is a singleton, we denote MA(X) by MA(x).

2. We say that MA(X) is a fatal attractor if X ⊆ MA(X).

We note that fatal attractors MA(X) are node sets that are won by player p(X)
in G. The winning strategy is the attractor strategy corresponding to the least
fixed-point computation in MAttrp(X, c). First of all, player p(X) can force, from
all nodes in MA(X), to reach some node in X in at least one move. Then, player
p(X) can do this again from this node in X as X is a subset of MA(X). At
the same time, by definition of MAttrp(X, c) and mprep(A, X, c), the attraction
ensures that only colors of value at least c are encountered. So in plays starting in
MA(X) and consistent with that strategy, every visit to a node of parity 1−p(X)
is followed later by a visit to a node of color c(X). It follows that in an infinite
play consistent with this strategy and starting in MA(X), the minimal color to
be visited infinitely often is c – which is of p’s parity.

Theorem 2. Let MA(X) be fatal in parity game G. Then the attractor strategy
for player p(X) on MA(X) is winning for p(X) on MA(X) in G.

Let us consider the case when X is a singleton {k} and MA(k) is not fatal.
Suppose that there is an edge (k, w) in E with w in MA(k). We show that this
edge cannot be part of a winning strategy (of either player) in G. Since MA(k)
is not fatal, k must be in V1−p(k) and so is controlled by player 1 − p(k). But if
that player were to move from k to w in a memoryless strategy, player p(k) could
then attract the play from w back to k without visiting colors of parity 1 − p(k)
and smaller than c(k), since w is in MA(k). And, by the existence of memoryless
winning strategies [4], this would ensure that the play is won by player p(k) as
the minimal infinitely occurring color would have parity p(k). We summarize:

Lemma 1. Let MA(k) be not fatal for node k. Then we may remove edge (k, w)
in E if w is in MA(k), without changing winning regions of parity game G.

Example 2. For G in Figure 1, the only colors k for which MA(k) is fatal are 4
and 8: MA(4) equals {v2, v4, v6, v8, v9, v10, v11} and MA(8) equals {v9, v10, v11}.
In particular, MA(8) is contained in MA(4) and nodes v1 and v0 are attracted
to MA(4) in G by player 0. And v11 is in MA(11) (but the node of color 11, v10,
is not), so edge (v10, v11) may be removed.

4 Partial Solvers
We can use the above definitions and results to define partial solvers next. Their
soundness will be shown in Section 5.

Fatal Attractors in Parity Games 39

psol(G = (V , V0, V1,E, c)) {
for (k ∈ V in descending color ordering c(k)) {

if (k ∈ MA(k)) { return psol(G \ Attrp(k)[G, MA(k)]) }
if (∃ (k, w) ∈ E : w ∈ MA(k))
{ G = G \ {(k, w) ∈ E | w ∈ MA(k)} }

}
return G

}

Fig. 2. Partial solver psol based on detection of fatal attractors MA(k) and fatal moves

4.1 Partial Solver psol

Figure 2 shows the pseudocode of a partial solver, named psol, based on MA(X)
for singleton sets X . Solver psol explores the parity game G in descending color
ordering. For each node k, it constructs MA(k), and aims to do one of two things:

– If node k is in MA(k), then MA(k) is fatal for player 1 − p(k), thus node set
Attrp(k)[G, MA(k)] is a winning region of player p(k), and removed from G.

– If node k is not in MA(k), and there is a (k, w) in E where w is in MA(k),
all such edges (k, w) are removed from E and the iteration continues.

If for no k in V attractor MA(k) is fatal, game G is returned as is – empty if psol
solves G completely. The accumulation of winning regions and computation of
winning strategies are omitted from the pseudocode for improved readability.

Example 3. In a run of psol on G from Figure 1, there is no effect for colors
larger than 11. For c = 11, psol removes edge (v10, v11) as v11 is in MA(11).
The next effect is for c = 8, when the fatal attractor MA(8) = {v9, v10, v11}
is detected and removed from G (the previous edge removal did not cause the
attractor to be fatal). On the remaining game, the next effect occurs when c = 4,
and when the fatal attractor MA(4) is {v2, v4, v6, v8} in that remaining game.
As player 0 can attract v0 and v1 to this as well, all these nodes are removed
and the remaining game has node set {v3, v5, v7}. As there is no more effect of
psol on that remaining game, it is returned as the output of psol’s run.

4.2 Partial Solver psolB

Figure 3 shows the pseudocode of another partial solver, named psolB (the “B”
suggests a relationship to “Büchi”), based on MA(X), where X is a set of nodes
of the same color. This time, the operator MA(X) is used within a greatest
fixed-point in order to discover the largest set of nodes of a certain color that
can be (fatally) attracted to itself. Accordingly, the greatest fixed-point starts
from all the nodes of a certain color and gradually removes those that cannot
be attracted to the same color. When the fixed-point stabilizes, it includes the
set of nodes of the given color that can be (fatally) attracted to itself. This node
set can be removed (as a winning region for player d%2) and the residual game
analyzed recursively. As before, the colors are explored in descending order.

40 M. Huth, J.H. Kuo, and N. Piterman

psolB(G = (V , V0, V1,E, c)) {
for (colors d in descending ordering) {

X = { v in V | c(v) = d };
cache = {};
while (X �= {} && X �= cache) {

cache = X;
if (X ⊆ MA(X)) { return psolB(G \ Attrd%2[G, MA(X)])
} else { X = X ∩ MA(X); }

}
}
return G

}
Fig. 3. Partial solver psolB

We make two observations. First, if we were to replace the recursive calls
in psolB with the removal of the winning region from G and a continuation
of the iteration, we would get an implementation that discovers less fatal at-
tractors. Second, edge removal in psol relies on the set X being a singleton. A
similar removal could be achieved in psolB when the size of X is reduced by
one (in the operation X = X ∩ MA(X)). Indeed, in such a case the removed
node would not be removed and the current value of X be realized as fatal. We
have not tested this edge removal approach experimentally for this variant of
psolB.

Example 4. A run of psolB on G from Figure 1 has the same effect as the one
for psol, except that psolB does not remove edge (v10, v11) when c = 11.

A way of comparing partial solvers P1 and P2 is to say that P1 ≤ P2 if, and
only if, for all parity games G the set of nodes in the output sub-game P1(G) is
a subset of the set of nodes of the output sub-game P2(G). We note that psol
and psolB are incomparable for this intensional pre-order over partial solvers.

4.3 Partial Solver psolQ

It seems that psolB is more general than psol in that if there is a singleton X
with X ⊆ MA(X) then psolB will discover this as well. However, the requirement
to attract to a single node seems too strong. Solver psolB removes this restriction
and allows to attract to more than one node, albeit of the same color. Now we
design a partial solver psolQ that can attract to a set of nodes of more than
one color (the “Q” is our code name for this “Q”uantified layer of colors of
the same parity). Solver psolQ allows to combine attraction to multiple colors
by adding them gradually and taking care to “fix” visits to nodes of opposite
parity.

We extend the definition of mpre and MAttr to allow inclusion of more (safe)
nodes when collecting nodes in the attractor.

Fatal Attractors in Parity Games 41

layeredAttr(G,p,X) { // PRE-CONDITION: all nodes in X have parity p
A = {};
b = max{c(v) | v ∈ X};
for (d = p up to b in increments of 2) {

Y = {v ∈ X | c(v) ≤ d};
A = PMAttrp(A ∪ Y , d);

}
return A;

}

psolQ(G = (V , V0, V1,E, c)) {
for (colors b in ascending order) {

X = {v ∈ V | c(v) ≤ b ∧ c(v)%2 = b%2};
cache = {};
while (X �= {} && X �= cache) {

cache = X;
W = layeredAttr(G,b%2,X);
if (X ⊆ W) { return psolQ(G \ Attrb%2[G, W]);
} else { X = X ∩ W ; }

}
}
return G;

}
Fig. 4. Operator layeredAttr(G, p, X) and partial solver psolQ

Definition 5. Let A and X be node sets in parity game G, let p in {0, 1} be a
player, and c a color in G. We set

pmprep(A, X, c) = {v ∈ Vp | (c(v) ≥ c ∨ v ∈ X) ∧ v.E ∩ (A ∪ X) �= ∅} ∪
{v ∈ V1−p | (c(v) ≥ c ∨ v ∈ X) ∧ v.E ⊆ A ∪ X} (4)

PMAttrp(X, c) = μZ.pmprep(Z, X, c) (5)

The permissive monotone predecessor in (4) adds to the monotone predecessor
also nodes that are in X itself even if their color is lower than c, i.e., they
violate the monotonicity requirement. The permissive monotone attractor in (5)
then uses the permissive predecessor instead of the simpler predecessor. This is
used for two purposes. First, when the set X includes nodes of multiple colors –
some of them lower than c. Then, inclusion of nodes from X does not destroy the
properties of fatal attraction. Second, increasing the set X of target nodes allows
us to include the previous target and the attractor to it as set of “permissible”
nodes. This creates a layered structure of attractors.

We use the permissive attractor to define psolQ. Figure 4 presents the pseudo
code of operator layeredAttr(G, p, X). It is an attractor that combines attrac-
tion to nodes of multiple color. It takes a set X of colors of the same parity p. It
considers increasing subsets of X with more and more colors and tries to attract
fatally to them. It starts from a set Yp of nodes of parity p with color p and
computes MA(Yp). At this stage, the difference between pmpre and mpre does
not apply as Yp contains nodes of only one color and A is empty. Then, instead of

42 M. Huth, J.H. Kuo, and N. Piterman

stopping as before, it continues to accumulate more nodes. It creates the set Yp+2
of the nodes of parity p with color p or p + 2. Then, PMAttrp(A ∪ Yp+2, p + 2)
includes all the previous nodes in A (as all nodes in A are now permissible) and
all nodes that can be attracted to them or to Yp+2 through nodes of color at
least p + 2. This way, even if nodes of a color lower than p + 2 are included
they will be ensured to be either in the previous attractor or of the right parity.
Then Y is increased again to include some more nodes of p’s parity. This process
continues until it includes all nodes in X .

This layered attractor may also be fatal:

Definition 6. We say that layeredAttr(G, p, X) is fatal if X is a subset of
layeredAttr(G, p, X).

As before, fatal layered attractors are won by player p in G. The winning
strategy is more complicated as it has to take into account the number of it-
eration in the for loop in which a node was first discovered. Every node in
layeredAttr(G, p, X) belongs to a layer corresponding to a maximal color d.
From a node in layer d, player p can force to reach some node in Yd ⊆ X or
some node in a lower layer d′. As the number of layers is finite, eventually some
node in X is reached. When reaching X , player p can attract to X in the same
layered fashion again as X is a subset of layeredAttr(G, p, X). Along the way,
while attracting through layer d we are ensured that only colors at least d or of
a lower layer are encountered. So in plays starting in layeredAttr(G, p, X) and
consistent with that strategy, every visit to a node of parity 1 − p is followed
later by a visit to a node of parity p of lower color.

Theorem 3. Let layeredAttr(G, p, X) be fatal in parity game G. Then the
layered attractor strategy for player p on layeredAttr(G, p, X) is winning for p
on layeredAttr(G, p, X) in G.

Pseudo code of solver psolQ is also shown in Figure 4: psolQ prepares increasing
sets of nodes X of the same color and calls layeredAttr within a greatest fixed-
point. For a set X , the greatest fixed-point attempts to discover the largest set
of nodes within X that can be fatally attracted to itself (in a layered fashion).
Accordingly, the greatest fixed-point starts from all the nodes in X and gradually
removes those that cannot be attracted to X . When the fixed-point stabilizes, it
includes a set of nodes of the same parity that can be attracted to itself. These
are removed (along with the normal attractor to them) and the residual game
is analyzed recursively.

We note that the first two iterations of psolQ are equivalent to calling psolB
on colors 0 and 1. Then, every iteration of psolQ extends the number of colors
considered. In particular, in the last two iterations of psolQ the value of b is
the maximal possible value of the appropriate parity. It follows that the sets X
defined in these last two iterations include all nodes of the given parity. These
last two computations of greatest fixed-points are the most general and subsume
all previous greatest fixed-point computations. We discuss in Section 6 why we
increase the bound b gradually and do not consider these two iterations alone.

Fatal Attractors in Parity Games 43

Example 5. The run of psolQ on G from Figure 1 finds a fatal attractor for
bound b = 4, which removes all nodes except v3, v5, and v7. For b = 19, it
realizes that these nodes are won by player 1, and outputs the empty game.
That psolQ is a partial solver can be seen in Figure 5, which depicts a game
that is not modified at all by psolQ and so is returned as is.

v0

0

v1

1

v2

3

v3

3

v4

2

v5

1

v6

1

v7

0

Fig. 5. A 1-player parity game modified by neither psol, psolB nor psolQ

5 Properties of Our Partial Solvers
We now discuss the properties of our partial solvers, looking first at their sound-
ness and computational complexity.

5.1 Soundness and Computational Complexity

Theorem 4. 1. The partial solvers psol, psolB, and psolQ are sound.
2. The running time for psol and psolB is in O(|V |2 · |E |).
3. And psol and psolB can be implemented to run in time O(|V |3).
4. And psolQ runs in time O(|V |2·|E |·|c |) with |c | the number of colors in G.

If psolQ were to restrict attention to the last two iterations of the for loop, i.e.,
those that compute the greatest fixed-point with the maximal even color and the
maximal odd color, the run time of psolQ would be bounded by O(|V |2 · |E |).
For such a version of psolQ we also ran experiments on our benchmarks and do
not report these results, except to say that this version performs considerably
worse than psolQ in practice. We believe that this is so since psolQ more quickly
discovers small winning regions that “destabilize” the rest of the games.

5.2 Robustness of psolB

Our pseudo-code for psolB iterates through colors in descending order. A natural
question is whether the computed output game depends on the order in which
these colors are iterated. Below, we formally state that the outcome of psolB is
indeed independent of the iteration order. This suggests that these solvers are a
form of polynomial-time projection of parity games onto sub-games.

44 M. Huth, J.H. Kuo, and N. Piterman

Let us formalize this. Let π be some sequence of colors in G, that may omit
or repeat some colors from G. Let psolB(π) be a version of psolB that checks
for (and removes) fatal attractors according to the order in π (including any
color repetitions in π). We say that psolB(π) is stable if for every color c1, the
input/output behavior of psolB(π) and psolB(π · c1) are the same. That is, the
sequence π leads psolB to stabilization in the sense that every extension of the
version psolB(π) with one color does not change the input/output behavior.

Theorem 5. Let π1 and π2 be sequences of colors with psolB(π1) and psolB(π2)
stable. Then G1 equals G2 if Gi is the output of psolB(πi) on G, for 1 ≤ i ≤ 2.

Next, we formally define classes of parity games, those that psolB solves com-
pletely and those that psolB does not modify.

Definition 7. We define class S (for “Solved”) to consist of those parity games
G for which psolB(G) outputs the empty game. And we define K (for “Kernel”)
as the class of those parity games G for which psolB(G) outputs G again.

The meaning of psolB is therefore a total, idempotent function of type PG → K
that has S as inverse image of the empty parity game. By virtue of Theorem 5,
classes S and K are semantic in nature.

We now show that S contains the class of Büchi games, which we identify
with parity games G with color 0 and 1 and where nodes with color 0 are those
that player 0 wants to reach infinitely often.

Theorem 6. Let G be a parity game whose colors are only 0 and 1. Then G is
in S, i.e. psolB completely solves G.

We point out that S does not contain some game types for which polynomial-
time solvers are known. For example, not all 1-player parity games are in S (see
Figure 5). Class S is also not closed under sub-games.

6 Experimental Results
6.1 Experimental Setup

We wrote Scala implementations of psol, psolB, and psolQ, and of Zielonka’s
solver (zlka) that rely on the same data structures and do not compute win-
ning strategies – which has routine administrative overhead. The (parity) Game
object has a map of Nodes (objects) with node identifiers (integers) as the keys.
Apart from colors and owner type (0 or 1), each Node has two lists of iden-
tifiers, one for successors and one for predecessors in the game graph (V, E).
For attractor computation, the predecessor list is used to perform “backward”
attraction.

This uniform use of data types allows for a first informed comparison. We
chose zlka as a reference implementation since it seems to work well in practice
on many games [5]. We then compared the performance of these implementations
on all eight non-random, structured game types produced by the PGSolver tool
[6]. Here is a list of brief descriptions of these game types.

Fatal Attractors in Parity Games 45

– Clique: fully connected games with alternating colors and no self-loops.
– Ladder: layers of node pairs with connections between adjacent layers.
– Recursive Ladder: layers of 5-node blocks with loops.
– Strategy Impr: worst cases for strategy improvement solvers.
– Model Checker Ladder: layers of 4-node blocks.
– Tower Of Hanoi: captures well-known puzzle.
– Elevator Verification: a verification problem for an elevator model.
– Jurdzinski: worst cases for small progress measure solvers.

The first seven types take as game parameter a natural number n as input,
whereas Jurdzinski takes a pair of such numbers n, m as game parameter.

For regression testing, we verified for all tested games that the winning re-
gions of psol, psolB, psolQ and zlka are consistent with those computed by
PGSolver. Runs of these algorithms that took longer than 20 minutes (i.e. 1200K
milliseconds) or for which the machine exhausted the available memory during
solver computation are recorded as aborts (“abo”) – the most frequent reason
for abo was that the used machine ran out of memory. All experiments were
conducted on the same machine with an Intel R© CoreTM i5 (four cores) CPU at
3.20GHz and 8G of RAM, running on a Ubuntu 11.04 Linux operating system.

For most game types, we used unbounded binary search starting with 2 and
then iteratively doubling that value, in order to determine the abo boundary
value for parameter n within an accuracy of plus/minus 10. As the game type
Jurdzinski[n, m] has two parameters, we conducted three unbounded binary
searches here: one where n is fixed at 10, another where m is fixed at 10, and
a third one where n equals m. We used a larger parameter configuration (10 ×
power of two) for Jurdzinski games.

We report here only the last two powers of two for which one of the partial
solvers didn’t timeout, as well as the boundary values for each solver. For game
types whose boundary value was less than 10 (Tower Of Hanoi and Elevator
Verification), we didn’t use binary search but incremented n by 1. Finally,
if a partial solver didn’t solve its input game completely, we ran zlka on the
remaining game and added the observed running times for zlka to that of the
partial solver. (This occurred for Elevator Verification for psol and psolB.)

6.2 Experiments on Structured Games

Our experimental results are depicted in Figures 6 and 7, colored green (respec-
tively red) for the partial solver with best (respectively worst) result. Running
times are reported in milliseconds. The most important outcome is that partial
solvers psol and psolB solved seven of the eight game types completely for all
runs that did not time out, the exception being Elevator Verification; and
that psolQ solved all eight game types completely. This suggests that partial
solvers can actually be used as solvers on a range of structured game types.

We now compare the performance of these partial solvers and of zlka. There
were ten experiments, three for Jurdzinski and one for each of the remaining
seven game types. For seven out of these ten experiments, psolB had the largest
boundary value of the parameter and so seems to perform best overall. The solver

46 M. Huth, J.H. Kuo, and N. Piterman

Clique[n]

n psol psolB psolQ zlka

2**11 6016.68 48691.72 3281.57 12862.92
2**12 abo 164126.06 28122.96 76427.44
20min n = 3680 n = 5232 n = 4608 n = 5104

Ladder[n]

n psol psolB psolQ zlka

2**19 abo 22440.57 26759.85 24406.79
2**20 abo 47139.96 59238.77 75270.74
20min n = 14712 n = 1596624 n = 1415776 n = 1242376

Model Checker Ladder[n]

n psol psolB psolQ zlka

2**12 119291.99 90366.80 117006.17 79284.72
2**13 560002.68 457049.22 644225.37 398592.74
20min n = 11528 n = 12288 n = 10928 n = 13248

Recursive Ladder[n]

n psol psolB psolQ zlka

2**12 abo abo 138956.08 abo
2**13 abo abo 606868.31 abo

20min n = 1560 n = 2064 n = 11352 n = 32

Strategy Impr[n]

n psol psolB psolQ zlka

2**10 174913.85 134795.46 abo abo
2**11 909401.03 631963.68 abo abo

20min n = 2368 n = 2672 n = 40 n = 24

Tower Of Hanoi[n]

n psol psolB psolQ zlka

9 272095.32 54543.31 610264.18 56780.41
10 abo 397728.33 abo 390407.41

20min n = 9 n = 10 n = 9 n = 10

Elevator Verification[n]

n psol psolB psolQ zlka

1 171.63 120.59 147.32 125.41
2 646.18 248.56 385.56 237.51
3 2707.09 584.83 806.28 512.72
4 223829.69 1389.10 2882.14 1116.85
5 abo 11681.02 22532.75 3671.04
6 abo 168217.65 373568.85 41344.03
7 abo abo abo 458938.13

20min n = 4 n = 6 n = 6 n = 7

Fig. 6. First experimental results for partial solvers run over benchmarks

Fatal Attractors in Parity Games 47

Jurdzinski[10, m]

m psol psolB psolQ zlka

10*2**7 abo 179097.35 abo abo
10*2**8 abo 833509.48 abo abo

20min n = 560 n = 2890 n = 1120 n = 480

Jurdzinski[n, 10]

n psol psolB psolQ zlka

10*2**7 308033.94 106453.86 abo abo
10*2**8 abo 406621.65 abo abo

20min n = 2420 n = 4380 n = 1240 n = 140

Jurdzinski[n, n]

n psol psolB psolQ zlka

10*2**3 215118.70 23045.37 310665.53 abo
10*2**4 abo 403844.56 abo abo

20min n = 110 n = 200 n = 100 n = 50

Fig. 7. Second experimental results run over Jurdzinski benchmarks

zlka was best for Model Checker Ladder and Elevator Verification, and
about as good as psolB for Tower Of Hanoi. And psolQ was best for Recursive
Ladder. Thus psol appears to perform worst across these benchmarks.

Solvers psolB and zlka seem to do about equally well for game types Clique,
Ladder, Model Checker Ladder, and Tower Of Hanoi. But solver psolB ap-
pears to outperform zlka dramatically for game types Recursive Ladder, and
Strategy Impr and is considerably better than zlka for Jurdzinski.

We think these results are encouraging and corroborate that partial solvers
based on fatal attractors may be components of faster solvers for parity games.

6.3 Number of Detected Fatal Attractors

We also recorded the number of fatal attractors that were detected in runs of
our partial solvers. One reason for doing this is to see whether game types have
a typical number of dynamically detected fatal attractors that result in the
complete solving of these games.

We report these findings for psol and psolB first: for Clique, Ladder, and
Strategy Impr these games are solved by detecting two fatal attractors only;
Model Checker Ladder was solved by detecting one fatal attractor. For the
other game types psol and psolB behaved differently. For Recursive Ladder[n],
psolB requires n = 2k fatal attractors whereas psolQ needs only 2k−2 fatal
attractors. For Jurdzinski[n, m], psolB detects mn + 1 many fatal attractors,
and psol removes x edges where x is about nm/2 ≤ x ≤ nm, and detects
slightly more than these x fatal attractors. Finally, for Tower Of Hanoi[n], psol
requires the detection of 3n fatal attractors whereas psolB solves these games
with detecting two fatal attractors only.

We also counted the number of recursive calls for psolQ: it equals the num-
ber of fatal attractors detected by psolB for all game types except Recursive
Ladder, where it is 2k−1 when n equals 2k.

48 M. Huth, J.H. Kuo, and N. Piterman

6.4 Experiments on Variants of Partial Solvers

We performed additional experiments on variants of these partial solvers. Here,
we report results and insights on two such variants. The first variant is one that
modifies the definition of the monotone control predecessor to

mprep(A, X, c) = {v ∈ Vp | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ∩ (A ∪ X) �= ∅} ∪
{v ∈ V1−p | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ⊆ A ∪ X}

The change is that the constraint c(v) ≥ c is weakened to a disjunction (c(v)%2 =
p) ∨ (c(v) ≥ c) so that it suffices if the color at node v has parity p even though
it may be smaller than c. This implicitly changes the definition of the monotone
attractor and so of all partial solvers that make use of this attractor; and it also
impacts the computation of A within psolQ. Yet, this change did not have a
dramatic effect on our partial solvers. On our benchmarks, the change improved
things slightly for psol and made it slightly worse for psolB and psolQ.

A second variant we studied was a version of psol that removes at most one
edge in each iteration (as opposed to all edges as stated in Fig. 2). For games
of type Ladder, e.g., this variant did much worse. But for game types Model
Checker Ladder and Strategy Impr, this variant did much better. The partial
solvers based on such variants and their combination are such that psolB (as
defined in Figure 3) is still better across all benchmarks.

6.5 Experiments on Random Games

It is our belief that comparing the behavior of parity game solvers on random
games does not give an impression of how these solvers perform on parity games
in practice. However, evaluating our partial solvers over random games gives an
indication of how often partial solvers completely solve random games, and of
whether partial solvers can speed up complete solvers as preprocessors. So we
generated 130, 000 random games with the randomgame command of PGSolver.

Each game had between 10 and 500 nodes (average of 255). Each node v had
out-degree (i.e. the size of v.E) at least 1, and at most 2, 3, 4, or 5 – where this
number was determined at random. These games contained no self-loops and no
bound on the number of different colors. Then psolB solved 82% of these 130, 000
random games completely. The average run-time over these 130, 000 games was
319ms for psolB (which includes run-time of zlka on the residual game where
applicable), whereas the full solver zlka took 505ms on average. And only about
22, 000 of these games (less than 17%) were such that zlka solved them faster
than the variant of zlka that used psolB as preprocessor.

7 Conclusions
We proposed a new approach to studying the problem of solving parity games:
partial solvers as polynomial algorithms that correctly decide the winning status
of some nodes and return a sub-game of nodes for which such status cannot be
decided. We demonstrated the feasibility of this approach both in theory and

Fatal Attractors in Parity Games 49

in practice. Theoretically, we developed a new form of attractor that naturally
lends itself to the design of such partial solvers; and we proved results about
the computational complexity and semantic properties of these partial solvers.
Practically, we showed through extensive experiments that these partial solvers
can compete with extant solvers on benchmarks – both in terms of practical
running times and in terms of precision in that our partial solvers completely
solve such benchmark games.

In future work, we mean to study the descriptive complexity of the class of
output games of a partial solver, for example of psolQ. We also want to research
whether such output classes can be solved by algorithms that exploit invariants
satisfied by these output classes. Furthermore, we mean to investigate whether
classes of games characterized by structural properties of their game graphs can
be solved completely by partial solvers. Such insights may connect our work to
that of [3], where it is shown that certain classes of parity games that can be
solved in PTIME are closed under operations such as the join of game graphs.
Finally, we want to investigate whether and how partial solvers can be integrated
into solver design patterns such as the one proposed in [5].

A technical report [7] accompanies this paper and contains – amongst other
things – selected proofs, the pseudo-code of our version of Zielonka’s algorithm,
and further details on experimental results and their discussion.

References
1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games.

In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

2. Chatterjee, K., Henzinger, M.: An O(n2) time algorithm for alternating Büchi
games. In: SODA, pp. 1386–1399 (2012)

3. Dittmann, C., Kreutzer, S., Tomescu, A.I.: Graph operations on parity games and
polynomial-time algorithms. arXiv:1208.1640 (2012)

4. Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS,
pp. 368–377 (1991)

5. Friedmann, O., Lange, M.: Solving Parity Games in Practice. In: Liu, Z., Ravn,
A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

6. Friedmann, O., Lange, M.: The PGSolver Collection of Parity Game Solvers. Tech.
report, Institut für Informatik, LMU Munich, Version 3 (February 2010)

7. Huth, M., Kuo, J.H., Piterman, N.: Fatal attractors in parity games. Tech. report
no. 2013/1, Dep. of Computing, Imperial College London (January 2013)
http://www.doc.ic.ac.uk/research/technicalreports/2013/DTR13-1.pdf

8. Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

9. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: SODA, pp. 117–123. ACM/SIAM (2006)

10. Vöge, J., Jurdziński, M.: A Discrete Strategy Improvement Algorithm for Solving
Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

11. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

http://www.doc.ic.ac.uk/research/technicalreports/2013/DTR13-1.pdf

On Unique Decomposition of Processes

in the Applied π-Calculus

Jannik Dreier, Cristian Ene, Pascal Lafourcade, and Yassine Lakhnech

Université Grenoble 1, CNRS, Verimag, France
firstname.lastname@imag.fr

Abstract. Unique decomposition has been a subject of interest in pro-
cess algebra for a long time (for example in BPP [2] or CCS [11,13]), as it
provides a normal form with useful cancellation properties. We provide
two parallel decomposition results for subsets of the Applied π-Calculus:
we show that any closed normed (i.e. with a finite shortest complete
trace) process P can be decomposed uniquely into prime factors Pi with
respect to strong labeled bisimilarity, i.e. such that P ∼l P1| . . . |Pn. We
also prove that closed finite processes can be decomposed uniquely with
respect to weak labeled bisimilarity.

Keywords: Applied π-Calculus, Unique Decomposition, Normal Form,
Weak Bisimilarity, Strong Bisimilarity, Factorization, Cancellation.

1 Introduction

Process Algebras or Calculi allow one to formally model and analyze distributed
systems. Famous examples include the Calculus of Communicating Systems
(CCS) due to Milner [10], or Basic Parallel Processes (BPP) [2]. These cal-
culi contain basic operations such as emission and reception of messages as
well as parallel composition or interleaving. In an extension to CCS, Milner,
Parrow and Walker developed the π-Calculus [12], which also features channel
passing and scope extrusion. Abadi and Fournet [1] subsequently proposed the
Applied π-Calculus, a variant of the π-Calculus designed for the verification of
cryptographic protocols. It additionally features equational theories and active
substitutions.

In all of these process algebras the question of unique process decomposition
naturally arises. Can we rewrite a process P as P =1 P1|P2| . . . |Pn, where | is the
parallel composition operator, and each Pi is prime in the sense that it cannot
be rewritten as the parallel composition of two non-zero processes?

Such a decomposition provides a maximally parallelized version of a given
program P . Additionally, it is useful as it provides a normal form, and a can-
cellation result in the sense that P |Q = P |R implies Q = R. This is convenient
in proofs, for example when proving the equivalence of different security notions

1 Here = does not designate syntactical identity, but rather some behavioral equiva-
lence or bisimilarity relation.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 50–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Unique Decomposition of Processes in the Applied π-Calculus 51

in electronic voting [3]: one can show that coercion of one voter and coercion
of multiple voters are (under some realistic hypotheses) equivalent. This simpli-
fies the analysis of e-voting protocols, in particular some proofs of observational
equivalence. If there is an efficient procedure to transform a process into its nor-
mal form, such a decomposition can also be used to verify the equivalence of two
processes [5]: once the processes are in normal form, one only has to verify if the
factors on both sides are identical.

However, existing results [2,6,11,13] on the unique decomposition focus on
“pure” calculi such as CCS or BPP or variants thereof. The Applied π-Calculus,
as an “impure” variant of the π-Calculus designed for the verification of crypto-
graphic protocols, has a more complex structure and semantics. For example, it
features an equational theory to model cryptographic primitives, and active sub-
stitutions, i.e. substitutions that apply to all processes. This creates an element
that is not zero, but still exhibits no transitions.

Additionally, the Applied π-Calculus inherits the expressive power of the π-
Calculus including channel or link passing (sometimes also called mobility) and
scope extrusion. Consider three parallel processes P , Q and R, where P and Q
synchronize using an internal reduction τc, i.e. P |Q|R

τc−→ P ′|Q′|R (see Figure 1).
Channel passing allows a process P to send a channel y he shares with R to pro-
cess Q (Figure 1a). Scope extrusion arises for example when P sends a restricted
channel y he shares with R to Q, since the scope after the transition includes
Q′ (Figure 1b). This is of particular importance for unique decomposition since
two parallel processes sharing a restricted channel might not be decomposable
and hence a simple reduction might “fuse” two prime factors.

1.1 Our Contributions

We provide two decomposition results for subsets of the Applied π-Calculus. In
a first step, we prove that closed normed (i.e. with a finite shortest complete
trace) processes can be uniquely decomposed with respect to strong labeled
bisimilarity. In the second step we show that any closed finite (i.e. with a finite
longest complete trace) process can be uniquely decomposed with respect to
(weak) labeled bisimilarity, the standard bisimilarity notion in the Applied π-
Calculus. Note that although we require the processes to be finite or normed,
no further hypothesis is needed, i.e. they may use the full power of the calculus
including channel passing and scope extrusion. As a direct consequence of the
uniqueness of the decomposition, we also obtain cancellation results for both
cases.

1.2 Outline of the Paper

In the next section, we recall the Applied π-Calculus, and establish different
subclasses of processes. In Section 3 we provide our first unique decomposition
result with respect to strong bisimilarity. In the next Section we show the second
result w.r.t. weak bisimilarity. Then we discuss related work in Section 5 and
conclude in Section 6. The full proofs can be found in our technical report [4].

52 J. Dreier et al.

P Q

R

x

y τc−→

P ′ Q′

R

x

y

(a) Channel/Link Passing

P Q

R

x

y

scope of y

τc−→

P ′ Q′

R

x

y

scope of y

(b) Scope extrusion

Fig. 1. Features of the Applied π-Calculus

2 Preliminaries

In this section we recall briefly the Applied π-Calculus proposed by Abadi and
Fournet [1] as an extension of the π-Calculus [12].

2.1 Applied π-Calculus

The Applied π-Calculus is a formal language for describing concurrent processes.
The calculus consists of names (which typically correspond to data or chan-
nels), variables, and a signature Σ of function symbols which can be used to
build terms. Functions typically include encryption and decryption (for example
enc(message, key), dec(message, key)), hashing, signing etc. Terms are correct
combinations of names and functions, i.e. respecting arity and sorts. We distin-
guish the type “channel” from other base types. Equalities are modeled using an
equational theory E which defines a relation =E . A classical example, which de-
scribes the correctness of symmetric encryption, is dec(enc(message, key), key)
=E message.

Plain processes are constructed using the grammar depicted in Figure 2a. Ac-
tive or extended processes are plain processes or active substitutions as shown
in Figure 2b. Note that we do not include the “+”-operator which implements
a nondeterministic choice, yet we can implement something similar using a re-
stricted channel (see Example 4). For more details on encoding the operator with
respect to different semantics, see [14,15].

On Unique Decomposition of Processes in the Applied π-Calculus 53

P , Q := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional (M , N terms)
in(u, x).P message input
out(u,M).P message output

(a) Plain Processes

A, B, P , Q := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Active/Extended Processes

Fig. 2. Process Grammars

The substitution {M/x} replaces the variable x with a term M . Note that
we do not allow two active substitutions to define the same variable, as this
might lead to situations with unclear semantics. We denote by fv(A), bv(A),
fn(A), bn(A) the free variables, bound variables, free names or bound names
respectively.

As an additional notation we write νS.A for νs1.νs2 . . . νsn.A where s1, . . . sn
are the elements of a set of variables and names S. By abuse of notation we
sometimes leave out “.0” at the end of a process. We will also write Ak for
A| . . . |A (k times), in particular A0 = 0 as 0 is the neutral element of parallel
composition.

The frame Φ(A) of an active process A is obtained by replacing all plain
processes in A by 0. This frame can be seen as a representation of what is
statically known to the environment about a process. The domain dom(Φ) of a
frame Φ is the set of variables for which Φ defines a substitution. By abuse of
notation, we also write dom(A) to denote the domain of the frame Φ(A) of an
active process A. Note that dom(A) ⊆ fv(A), and that – as we cannot have
two active substitutions for the same variable – P = Q|R implies dom(P) =
dom(Q)∪dom(R) and dom(Q)∩dom(R) = ∅. A frame or process is closed if all
variables are bound or defined by an active substitution. An evaluation context
C[] denotes an active process with a hole for an active process that is not under
replication, a conditional, an input or an output.

54 J. Dreier et al.

The semantics of the calculus presupposes a notion of Structural Equivalence
(≡), which is defined as the smallest equivalence relation on extended processes
that is closed under application of evaluation contexts, α-conversion on bound
names and bound variables such that:

PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fv(A)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A {M/x}

Note the contagious nature of active substitutions: by rule SUBST they apply
to any parallel process.

Example 1. Consider the following running example, where x and y are variables,
and c, d, k, l, m and n are names:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We have dom(Pex) = {y}, fv(Pex) = {y}, bv(Pex) = {x}, fn(Pex) = {n, c},
bn(Pex) = {k, l,m, d} and

Φ(Pex) = νk.νl.νm.νd. ({l/y} |0|0|0) ≡ νk.νl.νm.νd. ({l/y})

Internal Reduction (
τ−→) is the smallest relation on extended processes closed by

structural equivalence and application of evaluation contexts such that:

COMM out(a, x).P | in(a, x).Q τc−→ P | Q
THEN if M = M then P else Q

τt−→ P

ELSE if M = N then P else Q
τe−→ Q

for any ground terms such that M �=E N

Note that in accordance with the original notations [1], we sometimes omit the

labels τc, τt and τe, and write P → P ′ for P
γ−→ P ′ with γ ∈ {τc, τt, τe}.

Interactions of extended processes are described using labeled operational
semantics (

α−→), where α can be an input or an output of a channel name or
variable of base type, e.g. out(a, u) where u is a variable or a name.

On Unique Decomposition of Processes in the Applied π-Calculus 55

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u �= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled external transitions are not closed under evaluation contexts. Note that
a termM (except for channel names and variables of base type) cannot be output
directly. Instead, we have to assign M to a variable, which can then be output.
This is to model that the output of enc(m, k) (message m encrypted with key
k) does not give the environment access to m.

Example 2. Consider our running example process Pex. Using an internal reduc-
tion, we can execute the following transition:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k)).0|out(d,m).0|in(d, x).out(c, x).0)
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x})|out(d,m)|

in(d, x).out(c, x)) by PAR-0, ALIAS
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x} |out(d,x)|

in(d, x).out(c, x))) by SUBST, NEW-PAR
τc−→ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|νx. ({m/x} |out(c, x)))
≡ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(c,m))

by SUBST, ALIAS, NEW-PAR, PAR-0

Similarly, we can also execute an external transition:

Pex ≡ νk.νl.νm.νd.({l/y} |νz. {enc(n,k)/z} |out(c, z)|out(d,m)|
in(d, x).out(c, x))

νz.out(c,z)−−−−−−−→ νk.νl.νm.νd. ({l/y} | {enc(n,k)/z} |out(m, d)|in(x, d).out(x, c))

The following two definitions allow us to reason about the messages exchanged
with the environment.

Definition 1 (Equivalence in a Frame [1]). Two terms M and N are equal
in the frame φ ≡ νñ.σ, written (M = N)φ, if and only if Mσ =E Nσ, and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅.
Note that any frame φ can be written as νñ.σ modulo structural equivalence,
i.e. using rule NEW-PAR.

Definition 2 (Static Equivalence (≈s) [1]). Two closed frames φ and ψ are
statically equivalent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for all

56 J. Dreier et al.

terms M and N we have (M = N)φ if and only if (M = N)ψ. Two extended
processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is that two processes are statically equiva-
lent if the messages exchanged previously with the environment cannot be dis-
tinguished, i.e. all operations on both sides gave the same results.

2.2 Depth and Norm of Processes

We prove unique decomposition for different subsets of processes, namely finite
and normed processes. This requires to formally define the length of process
traces. Let Int = {τc, τt, τe} denote the set of labels corresponding to internal
reductions or silent transitions, and Act = {in(a,M), out(a, u), νu.out(a, u)}
for any channel name n, termM and variable or name u, denote the set of labels
of possible external or visible transitions. By construction Act ∩ Int = ∅.

The visible depth is defined as the length of the longest complete trace of
visible actions, i.e. labeled transitions, excluding internal reductions. Note that
this may be infinite for processes including replication. We write P �→ if P cannot

execute any transition, and P
μ1μ2...μn−−−−−−→ P ′ for P

μ1−→ P1
μ2−→ P2

μ3−→ . . .
μn−−→ P ′.

Definition 3 (Visible Depth). Let lengthv : (Act ∪ Int)∗ �→ N be a function

where lengthv(ε) = 0 and lengthv(μw) =

{
1 + lengthv(w) if μ ∈ Act

lengthv(w) otherwise

Then the visible depth |P |v ∈ (N ∪ {∞}) of a closed process P is defined as
follows:

|P |v = sup
{
lengthv(w) : P

w−→ P ′ �→, w ∈ (Act ∪ Int)∗
}

The total depth is defined as the length of the longest complete trace of actions
(including internal reductions).

Definition 4 (Total Depth). Let lengtht : (Act ∪ Int)∗ �→ N be a function
where lengtht(ε) = 0 and lengtht(μw) = 1 + lengtht(w). The total depth |P |t ∈
(N ∪ {∞}) of a closed process P is defined as follows:

|P |t = sup
{
lengtht(w) : P

w−→ P ′ �→, w ∈ (Act ∪ Int)∗
}

The norm of a process is defined as the length of the shortest complete trace,
including internal reductions, where communications are counted as two. This is
necessary to ensure that the norm of P |Q is the sum of the norm of P and the
norm of Q.

Definition 5 (Norm of a Process). Let lengthn : (Act ∪ Int)∗ �→ N be a

function where lengthn(ε) = 0 and lengthn(μw) =

{
1 + lengthn(w) if μ �= τc

2 + lengthn(w) if μ = τc
The norm N (P) ∈ (N ∪ {∞}) of a closed process P is defined as follows:

N (P) = inf
{
lengthn(w) : P

w−→ P ′ �→, w ∈ (Act ∪ Int)∗
}

On Unique Decomposition of Processes in the Applied π-Calculus 57

Example 3. We have |Pex|v = 2, |Pex|t = 3 and N (Pex) = 4.

The above definitions admit some simple properties.

Property 1. For any closed extended processes P , Q and R we have

– P = Q|R implies |P |v = |Q|v + |R|v
– P = Q|R implies |P |t = |Q|t + |R|t
– P = Q|R implies N (P) = N (Q) +N (R)
– |P |v ≤ |P |t

Now we can define the two important subclass of processes: finite processes,
i.e. processes with a finite longest complete trace, and normed processes, i.e.
processes with a finite shortest complete trace.

Definition 6 (Finite and normed processes). A closed process P is called
finite, if |P |t is finite (which implies |P |v is finite). A closed process P is called
normed, if N (P) is finite.

It is easy to see that any finite process is normed, but not all normed processes
are finite, as the following example illustrates.

Example 4. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then we
have P → P ′ ∼l 0, hence P is normed. However we also have P → P ′′ ∼l!in(b, y),
which has infinite traces. Hence P is not finite.

It is also clear that not all processes are normed. Consider the following example.

Example 5. Consider P =!(νx.out(c, x)). It is easy to see that for no sequence

of transitions s we have P
s−→ P ′ �→, i.e. P has no finite traces.

3 Decomposition w.r.t. Strong Labeled Bisimilarity

We begin with the simpler case of strong labeled bisimilarity, defined as follows.

Definition 7 (Strong Labeled Bisimilarity (∼l)). Strong labeled bisimilar-
ity is the largest symmetric relation R on closed active processes, such that
A R B implies:

1. A ≈s B,
2. if A→ A′, then B → B′ and A′ R B′ for some B′,
3. if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B
α−→ B′ and

A′ R B′ for some B′.

Note that P ∼l Q implies |P |t = |Q|t andN (P) = N (Q) for any closed processes
P and Q. To ensure that labeled bisimilarity is a congruence w.r.t to parallel
composition (“|”) and closed under the application of contexts, we will require
that active substitutions are only defined on variables of base type [7].

We define strong parallel primeness as follows: A process is prime if it cannot
be decomposed into non-trivial subprocesses (w.r.t. strong labeled bisimilarity).
We require the processes to be closed, which is necessary as our bisimulation
relation is only defined on closed processes.

58 J. Dreier et al.

Definition 8 (Strongly Parallel Prime). A closed process P is strongly par-
allel prime, if

– P �∼l 0 and
– for any two closed processes Q and R such that P ∼l Q|R, we have Q ∼l 0

or R ∼l 0.

Example 6. Consider our running example:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We can decompose Pex as follows:

Pex ∼l (νl. {l/y})|(νk.out(c, enc(n, k)))|(νd.(νm.out(d,m)|in(d, x).out(c, x)))

The first factor S1 = νl. {l/y} is prime since we cannot have two substitu-
tions defining the same variable. It is easy to see that the second factor S2 =
νk.out(c, enc(n, k)) is prime, as it can only perform one external transition.
The third factor S3 = νd.(νm.out(d,m)|in(d, x).out(c, x)) is prime because its
two parts can synchronize using a shared restricted channel and then perform
a visible external transition. Since dom(S3) = ∅ and N (S3) = 2, the only pos-
sible decomposition would be into two factors of norm 1 each, i.e. such that
S3 ∼l S′3|S′′3 . This would however mean that both transitions of S′3|S′′3 can be
executed in any order, whereas in S3 we have to start with the internal reduction.
Hence no such decomposition exists.

With respect to applications in protocol analysis, this illustrates that shared
restricted names, for example private channels or shared keys, can prohibit de-
composition. This is unavoidable, since a decomposition should not change the
behavior of the processes (up to ∼l), yet it might appear to hinder the useful-
ness of the decomposition on first view. However, a decomposition that does
not preserve the behavioral equivalence is probably not useful either, and note
that – since our definition is solely based on the semantics and the bisimilarity
notion – it allows to decompose as far as possible without changing the observed
behavior, and thus any further decomposition will change the behavior. As a
side-effect, the decomposition will show where shared restricted names (model-
ing for example keys) are actually used in a noticeable (w.r.t. to ∼l) way, and
where they can be ignored and processes can be further decomposed.

Note also that within a prime factor we can recursively apply the decompo-
sition as our bisimilarity notion is closed under the application of contexts. For
example if we have a prime factor P = νa.P ′, we can bring P ′ into normal form,
i.e. P ′ ∼l P ′1|...|P ′n, and rewrite P = νa.P ′ as P ∼l νa.(P ′1|...|P ′n).

It is clear that not all processes can be written as a unique decomposition of
parallel primes according to our definition.

Example 7. Consider !P for a process P �∼l 0. By definition we have !P = P |!P ,
hence !P is not prime. At the same time any such decomposition contains again
!P , a non-prime factor, which needs to be decomposed again. Thus there is no
decomposition into prime factors.

On Unique Decomposition of Processes in the Applied π-Calculus 59

However we can show that any closed normed process has a unique decomposition
with respect to strong labeled bisimilarity. In a first step, we prove the existence
of a decomposition.

Theorem 1 (Existence of Factorization). Any closed normed process P can
be expressed as the parallel product of strong parallel primes, i.e. P ∼l P1| . . . |Pn
where for all 1 ≤ i ≤ n Pi is strongly parallel prime.
Proof. Sketch: The proof proceeds by induction on the norm of P , and inside
each case by induction on the size of the domain. The second induction is nec-
essary to deal with active substitutions, which cannot perform transitions. The
main idea is simple: If a process is not prime, by definition it can be decomposed
into two “smaller” processes, where we can apply the induction hypothesis. ��
To show the uniqueness of the decomposition, we need some preliminary lemmas
about transitions and the domain of processes. The first lemma captures the
fact that intuitively any process which cannot perform any transition and has
an empty domain, is bisimilar to 0 (the empty process).

Lemma 1. For any closed process A with dom(A) = ∅ and N (A) = 0, we have
A ∼l 0.

We also need to show that if a normed process can execute a transition, it can
also execute a norm-reducing transition.

Lemma 2. Let A be a closed normed process with A
μ−→ A′ where μ is an internal

reduction or visible transition. Then A
μ′
−→ A′′ with N (A′′) < N (A).

These lemmas allow us to show the uniqueness of the decomposition.

Theorem 2 (Uniqueness of Factorization). The strong parallel factoriza-
tion of a closed normed process P is unique (up to ∼l).
Proof. Sketch: In the proof we have to deal with numerous cases due to the com-
plex semantics of the calculus. Here we focus on the main differences compared
to existing proofs for simpler calculi (e.g. [13]).

The proof proceeds by induction on the norm of P , and inside each case by
induction on the size of the domain. By Lemma 1, each prime factor can either
perform a transition, or has a non-empty domain. A transition may not always
be norm-reducing since processes can be infinite, but in this case Lemma 2 gives
us that if a normed process can execute a transition, it can also execute a norm-
reducing one - which we can then consider. We suppose the existence of two
different factorizations, and show that this leads to a contradiction. Consider
the following four cases:

– If we have a process that cannot do any transition and has an empty domain,
by Lemma 1 we have the unique factorization 0.

– If the process cannot perform a transition but has a non-empty domain, we
can apply a restriction on part of the domain to hide all factors but one
(since we cannot have two substitutions defining the same variable). We can

60 J. Dreier et al.

then use the fact that labeled bisimilarity is closed under the application
of contexts to exploit the induction hypothesis, which eventually leads to a
contradiction to the primality of the factors.

– In the case of a process with empty domain, but that can perform a transi-
tion, we can execute a transition and then apply the induction hypothesis.
However, we have to be careful since in case of an internal reduction factors
could fuse using scope extrusion (see Figure 1b). Hence, whenever possible,
we choose a visible transition. If no such transition exists, processes cannot
fuse using an internal reduction either, since this would mean they synchro-
nized on a public channel, which implies the existence of visible transitions.
Thus we can safely execute the invisible transition.

– In the last case (non-empty domain and visible transitions) we have to com-
bine the above two techniques. ��

As a direct consequence, we have the following cancellation result.

Lemma 3 (Cancellation Lemma). For any closed normed processes A, B
and C, we have

A|C ∼l B|C ⇒ A ∼l B
Proof. Sketch: All processes have a unique factorization and can be rewritten
accordingly. As both sides are bisimilar, they have the same unique factorization,
hence A and B must be composed of the same factors, thus they are bisimilar.

��

4 Decomposition w.r.t. Weak Labeled Bisimilarity

In this part, we discuss unique decomposition with respect to (weak) labeled
bisimilarity. This is the standard bisimilarity notion in the Applied π-Calculus
as defined by Abadi and Fournet in their original paper [1].

Definition 9 ((Weak) Labeled Bisimilarity (≈l) [1]). (Weak) Labeled
Bisimilarity is the largest symmetric relation R on closed active processes, such
that A R B implies:

1. A ≈s B,
2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗ B′
and A′ R B′ for some B′.

The resulting bisimilarity notion is weak in the sense that only visible external
transitions have to be matched exactly, and there may be a number of silent
internal reductions in the background which are not taken into account. Note
that P ≈l Q implies |P |v = |Q|v for any closed processes P and Q.

Again we will assume that active substitutions can only be defined on vari-
ables of base type to ensure that labeled bisimilarity is a congruence w.r.t. to

On Unique Decomposition of Processes in the Applied π-Calculus 61

parallel composition (“|”) and closed under the application of contexts. Un-
der this condition, it also coincides with observational equivalence [7]. This was
claimed in the original paper [1] without requiring the additional condition, but
turned out to be untrue when a counterexample was found (see [7] for more
details).

To obtain our unique decomposition result for weak labeled bisimilarity, we
need to define parallel prime with respect to weak labeled bisimilarity.

Definition 10 (Weakly Parallel Prime). A closed extended process P is
weakly parallel prime, if

– P �≈l 0 and

– for any two closed processes Q and R such that P ≈l Q|R, we have Q ≈l 0
or R ≈l 0.

This definition is analogous to strongly parallel prime. However, as the following
example shows, in contrast to strong bisimilarity, not all normed processes have
a unique decomposition w.r.t. to weak bisimilarity.

Example 8. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then we
have P ≈l P |P , hence we have no unique decomposition. Note that this example
does not contradict our previous result, as we have P �∼l P |P , as P → P ′ ∼l 0,
but P |P → P ′′ ∼l P and P |P �→ P ′′′ for any P ′′′ ∼l 0. Hence, w.r.t. strong
labeled bisimilarity, P is prime.

If however we consider normed processes that contain neither restriction (“ν”)
nor conditionals, we have that any normed process is finite (and hence has a
unique decomposition, as we show below).

Lemma 4. For any process P that does not contain restriction (“ν”) or condi-
tionals (“if then else”), we have that P is finite if and only if P is normed.

Similarly any process that does not contain replication is finite.
In the following we show that all finite processes have a unique decomposi-

tion w.r.t. to (weak) labeled bisimilarity. Again, in a first step, we show that a
decomposition into prime factors exists.

Theorem 3 (Existence of Factorization). Any closed finite active process
P can be expressed as the parallel product of parallel primes, i.e. P ≈l P1| . . . |Pn
where for all 1 ≤ i ≤ n Pi is weakly parallel prime.

The proof is analogous to the proof of Theorem 1, but we have to proceed by
induction on the visible depth instead of the norm, as two weakly bisimilar
processes may have a different norm.

To prove uniqueness, we again need some preliminary lemmas about tran-
sitions and the domain of processes. This first lemma captures the fact that
intuitively any process that cannot perform any visible transition and has an
empty domain, is weakly bisimilar to 0 (the empty process).

62 J. Dreier et al.

Table 1. Summary of unique factorization results for the Applied π-Calculus

Type of Process Strong Bisimilarity (∼l) Weak Bisimilarity (≈l)

finite Theorem 1 Theorem 3
normed Theorem 1 Counterexample 4
general Counterexample 7 Counterexample 7

Lemma 5. If for a closed process A with dom(A) = ∅ there does not exist a

sequence of transitions A→∗ α−→ A′, then we have A ≈l 0.

Now we can show the uniqueness of the decomposition.

Theorem 4 (Uniqueness of Factorization). The parallel factorization of a
closed finite process P is unique (up to ≈l).
Proof. Sketch: In the proof we show the following statement: Any closed finite
processes P andQ with P ≈l Q have the same factorization (up to ≈l). The proof
proceeds by induction on the sum of the total depth of both factorizations, and
in each case on the size of the domain. We show that if we suppose the existence
of two different factorizations, this leads to a contradiction.

The proof follows the same structure as the one for strong bisimilarity. In the
case of processes with non-empty domain and no visible transition, we use the
same idea and apply restrictions to use the induction hypothesis. In the other
cases, when executing a transition to apply the induction hypothesis, we have
to be more careful since each transition can be simulated using additionally
several internal reductions. This can affect several factors, and prime factors
could fuse using an internal reduction and scope extrusion (see Figure 1b). We
can circumvent this problem by choosing transitions that decrease the visible
depth by exactly one (such a transition must always exist). A synchronization of
two factors in the other factorization would use at least two visible actions and
the resulting processes cannot be bisimilar any more, since bisimilar processes
have the same depth. Using Lemma 5 we know that each prime factor has either
a non-empty domain or can execute a visible transition, which allows us to
conclude. ��

Again we have a cancellation result using the same proof as above.

Lemma 6 (Cancellation Lemma). For any closed finite processes A, B and
C, we have

A|C ≈l B|C ⇒ A ≈l B

5 Related Work

Unique decomposition (or factorization) has been a field of interest in process
algebra for a long time. The first results for a subset of CCS were published by
Moller and Milner [11,13]. They showed that finite processes with interleaving
can be uniquely decomposed with respect to strong bisimilarity. The same is true

On Unique Decomposition of Processes in the Applied π-Calculus 63

for finite processes with parallel composition, where – in contrast to interleaving
– the parallel processes can synchronize. They also proved that finite processes
with parallel composition can be uniquely decomposed w.r.t. weak bisimilarity.
Compared to the Applied π-Calculus, BPP and CCS do not feature channel
passing, scope extrusion and active substitutions.

Later on Christensen [2] proved a unique decomposition result for normed
processes (i.e. processes with a finite shortest complete trace) in BPP with in-
terleaving or parallel composition w.r.t. strong bisimilarity.

Luttik and van Oostrom [9] provided a generalization of the unique decompo-
sition results for ordered monoids. They show that if the calculus satisfies certain
properties, the unique decomposition result follows directly. Recently Luttik also
extended this technique for weak bisimilarity [8]. Unfortunately this result can-
not be employed in the Applied π-Calculus as active substitutions are minimal
elements (with respect to the transition relation) different from 0.

6 Conclusion and Future Work

We presented two unique decomposition results for subsets of the Applied π-
Calculus. We showed that any closed finite process can be decomposed uniquely
with respect to weak labeled bisimilarity, and that any normed process can be
decomposed uniquely with respect to strong labeled bisimilarity. Table 1 sums
up our results.

As the concept of parallel prime decomposition has its inherent limitations
with respect to replication (“!”, see Example 7), a natural question is to find
an extension to provide a normal form even in cases with infinite behavior. A
first result in this direction has been obtained by Hirschkoff and Pous [6] for
a subset of CCS with top-level replication. They define the seed of a process
P as the process Q, Q bisimilar to P , of least size (in terms of prefixes) whose
number of replicated components is maximal (among the processes of least size),
and show that this representation is unique. They also provide a result for the
Restriction-Free-π-Calculus (i.e. no “ν”). It remains however open if a similar
result can be obtained for the full calculus.

Another interesting question is to find an efficient algorithm that converts a
process into its unique decomposition. It is unclear if such an algorithm exists
and can be efficient, as simply deciding if a process is finite can be non-trivial.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2001, pp. 104–115. ACM, New York (2001)

2. Christensen, S.: Decidability and Decompostion in Process Algebras. PhD thesis,
School of Computer Science, University of Edinburgh (1993)

3. Dreier, J., Lafourcade, P., Lakhnech, Y.: Defining Privacy for Weighted Votes,
Single and Multi-voter Coercion. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 451–468. Springer, Heidelberg (2012)

64 J. Dreier et al.

4. Dreier, J., Lafourcade, P., Lakhnech, Y.: On parallel factorization of processes in
the applied pi calculus. Technical Report TR-2012-3, Verimag Research Report
(March 2012), http://www-verimag.imag.fr/TR/TR-2012-3.pdf

5. Groote, J.F., Moller, F.: Verification of Parallel Systems via Decomposition. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 62–76. Springer, Hei-
delberg (1992)

6. Hirschkoff, D., Pous, D.: On Bisimilarity and Substitution in Presence of Replica-
tion. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis,
P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 454–465. Springer, Heidelberg (2010)

7. Liu, J.: A proof of coincidence of labeled bisimilarity and observational equivalence
in applied pi calculus. Technical Report ISCAS-SKLCS-11-05 (2011),
http://lcs.ios.ac.cn/~jliu/

8. Luttik, B.: Unique parallel decomposition in branching and weak bisimulation se-
mantics. Technical report (2012), http://arxiv.org/abs/1205.2117v1

9. Luttik, B., van Oostrom, V.: Decomposition orders – another generalisation of
the fundamental theorem of arithmetic. Theoretical Computer Science 335(2-3),
147–186 (2005)

10. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall (1989)

11. Milner, R., Moller, F.: Unique decomposition of processes. Theoretical Computer
Science 107(2), 357–363 (1993)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and
Computation 100(1), 1–40 (1992)

13. Moller, F.: Axioms for Concurrency. PhD thesis, School of Computer Science, Uni-
versity of Edinburgh (1989)

14. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Information and Compu-
tation 163(1), 1–59 (2000)

15. Palamidessi, C., Herescu, O.M.: A randomized encoding of the pi-calculus with
mixed choice. Theoretical Computer Science 335(23), 373–404 (2005)

http://www-verimag.imag.fr/TR/TR-2012-3.pdf
http://lcs.ios.ac.cn/~jliu/
http://arxiv.org/abs/1205.2117v1

Bounded Context-Switching and Reentrant

Locking

Rémi Bonnet1 and Rohit Chadha2

1 LSV, ENS Cachan & CNRS
2 University of Missouri

Abstract. Reentrant locking is a recursive locking mechanism which
allows a thread in a multi-threaded program to acquire the reentrant
lock multiple times. The thread must release this lock an equal number
of times before another thread can acquire this lock. We consider the
control state reachability problem for recursive multi-threaded programs
synchronizing via a finite number of reentrant locks. Such programs can
be abstracted as multi-pushdown systems with a finite number of coun-
ters. The pushdown stacks model the call stacks of the threads and the
counters model the reentrant locks. The control state reachability prob-
lem is already undecidable for non-reentrant locks. As a consequence,
for non-reentrant locks, under-approximation techniques which restrict
the search space have gained traction. One popular technique is to limit
the number of context switches. Our main result is that the problem of
checking whether a control state is reachable within a bounded number
of context switches is decidable for recursive multi-threaded programs
synchronizing via a finite number of reentrant locks if we restrict the
lock-usage to contextual locking: a release of an instance of reentrant
lock can only occur if the instance was acquired before in the same pro-
cedure and each instance of a reentrant lock acquired in a procedure
call must be released before the procedure returns. The decidability is
obtained by a reduction to the reachability problem of Vector Addition
Systems with States (VASS).

1 Introduction

A mutex lock is a synchronization primitive used in multi-threaded programs to
enable communication amongst threads and guide their computations. A lock is
either free or is held (owned) by a thread. If the lock is free then any thread can
acquire it and in that case the lock is said to be held (owned) by that thread.
The lock becomes free when the owning thread releases it. If the lock is held by
some thread then any attempt to acquire it by any thread (including the owning
thread) fails and the requesting thread blocks. However, some programming lan-
guages such as Java support non-blocking reentrant locks. In a reentrant locking
mechanism, if a thread attempts to acquire a reentrant lock it already holds
then the thread succeeds. The lock becomes free only when the owning thread
releases the lock as many times as it has acquired the lock.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 65–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 R. Bonnet and R. Chadha

Verification of multi-threaded programs is an important challenge as they of-
ten suffer from subtle programming errors. One approach to tackle this challenge
is static analysis, and this paper investigates this approach for multi-threaded re-
cursive programs using reentrant locks. In static analysis of sequential recursive
programs, a program is often abstracted into a pushdown system that captures
the control flow of the program and where the stack models recursion [19]. Sev-
eral static analysis questions are then formulated as reachability questions on the
abstracted pushdown system. In a similar fashion, multi-threaded programs can
be abstracted as multi-pushdown systems that synchronize using the synchro-
nization primitives supported by the programming language. Important safety
verification questions, such as data-race detection and non-interference, can then
be formulated as control state reachability problem: given a global state q of a
concurrent program, is q reachable?

The control state reachability problem for multi-pushdown systems is unde-
cidable. As a consequence, under-approximation techniques which restrict the
search space have become popular. One such restriction is to bound the num-
ber of context switches [18]: a context is a contiguous sequence of actions in a
computation belonging to the same thread. The bounded context-switching reach-
ability problem asks if given a global state q, is q reachable within a bounded
number of context switches. This was shown to be decidable for multi-threaded
programs [18]. Such analyses are used to detect errors in programs.

Our Contributions. In this paper, we study the bounded context-switching reach-
ability problem for multi-threaded recursive programs using a finite set of reen-
trant locks. Such programs can be abstracted by using standard abstraction
techniques as multi-pushdown systems with a finite number of counters. Each
counter corresponds to a lock and is used to model the number of times the
corresponding lock has been acquired by its owning thread. Acquisition of the
corresponding lock increments the counter and a release of the corresponding lock
decrements the counter. There is, however, no explicit zero-test on the counters:
when a thread P successfully acquires a lock l, it happens either because nobody
held l before or P itself held l before. A successful acquisition does not explicitly
distinguish these cases. An “explicit” zero-test can, however, be simulated by
communication amongst threads.

Furthermore, we restrict our attention to contextual reentrant locking: we
assume that a release of an instance of a reentrant lock can only occur if
this instance was acquired before in the same procedure and that each in-
stance of a reentrant lock acquired in a procedure call is released before the
procedure returns. Not only is this restriction natural, several higher-level pro-
gramming constructs automatically ensure contextual locking. For example, the
synchronized(o) { ...} statement in Java enforces contextual locking.1

Our main result is that the bounded context-switching reachability problem of
multi-threaded recursive programs using contextual reentrant locks is decidable.
The proof of this fact is carried out in two steps.

1 Please note that not all uses of reentrant locks in Java are contextual.

Bounded Context-Switching and Reentrant Locking 67

First, we associate to each computation a switching vector. Switching vectors
were introduced in [21,13] for multi-threaded programs. A switching vector is a
“snapshot” of the computation at the positions where context switches happen.
A switching vector is a sequence; if a computation has r context switches then
its switching vector has r+1 elements. The i-th element of the switching vector
records the global state at the beginning of the i-th context and the active thread
in the i-th context. For multi-threaded programs with reentrant locks, the i-th
element also records the lock ownership status, i.e., which locks are owned by each
thread at the start of the i-th context. Observe that the number of switching
vectors ≤ r + 1 is finite. Thus, in order to decide whether a global state q
is reachable within a bounded number of context switches, it suffices to check
whether given a switching vector sig, is there a computation whose switching
vector is sig and which leads to q. This check is done iteratively: for each prefix
sig′ of sig, we check if there is a computation whose switching vector is sig′.

The iterative step above is reduced to checking whether a control state of
a pushdown counter system is reachable by computations in which at most a
bounded number of zero-tests are performed. The status of the latter problem,
i.e., whether it is decidable or not is open. However, in our case, we exploit the
fact that the constructed pushdown counter system is also contextual : the values
of a counter in a procedure call is always greater than the value of the counter
before the procedure call and the value of the counter immediately before a
procedure return is the same as the value of the counter before the procedure call.
We show that the control state reachability problem on a contextual pushdown
counter system with bounded number of zero-tests is decidable. This is achieved
by first showing that we only need to consider stacks of bounded height and
thus the problem reduces to the problem of checking control-state reachability
on counter systems with bounded number of zero-tests. The latter problem is
easily seen to be equivalent to the (configuration) reachability problem of vector
addition systems (VASS)2. The latter is known to be decidable [12,17,15].

We then show that the problem of bounded context-switching reachability is
at least as hard as the configuration reachability problem of VASS even when
the context switch bound is taken to be 1. Since the configuration reachability
problem of VASS is EXPSPACE-hard [3], we conclude that the bounded context-
switching reachability problem for VASS is also EXPSPACE-hard.

The rest of the paper is organized as follows. We give our formal model in
Section 2. The result of deciding reachability in contextual pushdown counter
systems with a bounded number of zero-tests is given in Section 3 and our main
result in Section 4. We conclude and discuss future work in Section 5.

Related Work. For multi-threaded programs (without reentrant locks), bounded
context-switching reachability problem was first posed and shown to be decid-
able in [18]. Several different proofs of this fact have been discovered since then
(see, for example, [16,13,21]). The technique of switching vectors that we have

2 For our purposes, VASS are counter systems in which there are no zero-test transi-
tions.

68 R. Bonnet and R. Chadha

adapted to establish our result for the case of multi-threaded programs with reen-
trant locks was first introduced in [13,21]. (Please note that switching vectors
sometimes go by the name of interfaces).

For non-reentrant locks, it was shown in [10] that if we abstract away the data
and assume that threads follow nested locking then the control state reachability
(even with unbounded context-switching) is decidable. A thread is said to follow
nested locking [10] if locks are released in the reverse order in which they are
acquired. For contextual (non-reentrant) locking, we showed a similar result for
2-threaded programs in [4].

For reentrant locks, [11,14] observe that if threads follow both contextual and
nested locking, then the stack of a thread can be used to keep track of both
recursive calls as well as recursive lock acquisitions. Thus, the bounded context-
switching reachability problem in this case reduces to the case of bounded
context-switching reachability problem in multi-pushdown systems. The restric-
tion of both contextual and nested locking is naturally followed by many pro-
grams. In Java, for example, if only synchronized(o) { ...} blocks are used
for synchronization then locking is both contextual and nested. However, the
assumption of nested locking in presence of other synchronizing primitives, for
example, wait/notify{ ...} construct can break nested locking while preserv-
ing contextual locking.

A modular approach for verifying concurrent non-recursive Java programs
with reentrant locks is proposed in [2]. In this approach, first a “lock interface”
s guessed: a “lock interface” characterizes the sequence of lock operations that
can happen in an execution of the program. Then, they check if each thread
respects the lock interface. Since the number of possible lock interfaces is infinite,
termination is not guaranteed. Thus, they check programs against specific lock
interfaces and thus this approach is another way of restricting the search space.

The control state reachability problem for pushdown counter systems with
no zero-tests has long been an open problem. The only non-trivial cases that
we are aware of, for which decidability has been established, is when counters
are decremented only the stack contents are empty [20,9,5] (in which case it
is EXPSPACE-complete [6]), or when the stack is restricted to index-bounded
behaviors [1] (equivalent to VASS with hierarchical zero-tests, complexity un-
known), or when the number counter reversals are bounded [7,8] (in which case
it is NP-complete).

2 Model

The set of natural numbers shall be denoted by N. The set of functions from
a set A to B shall be denoted by BA. Given a function f ∈ BA, the function
f |a �→b shall be the unique function g defined as follows: g(a) = b and for all
a′ �= a, g(a′) = f(a′). If ā = (a1, . . . , an) ∈ A1 × · · · × An then πi(a) = ai for
each 1 ≤ i ≤ n.

Pushdown Systems. Recursive programs are usually modeled as pushdown sys-
tems for static analysis. We are modeling threads in concurrent recursive

Bounded Context-Switching and Reentrant Locking 69

programs that synchronize via reentrant locks. A single thread can be modeled
as follows:

Definition 1. Given a finite set Lcks, a pushdown system (PDS) P using (reen-
trant locks) Lcks is a tuple (Q,Γ, qs, δ) where

– Q is a finite set of control states.
– Γ is a finite stack alphabet.
– qs is the initial state.
– δ = δint ∪ δcll ∪ δrtn ∪ δacq ∪ δrel is a finite set of transitions where

• δint ⊆ Q×Q.
• δcll ⊆ Q× (Q× Γ).
• δrtn ⊆ (Q × Γ)×Q.
• δacq ⊆ Q× (Q× Lcks).
• δrel ⊆ (Q × Lcks)×Q.

A transition in δint is said to be a state transition, a transition in δcll is said
to be a push transition, a transition in δrtn is said to be a pop transition, a
transition in δacq is said to be an acquire transition and a transition in δrel
is said to be a release transition.

The semantics of a PDS P using Lcks is given as a transition system. The
set of configurations of P using Lcks is ConfP = Q × Γ ∗ × NLcks. Intuitively,
the elements of a configuration (q, w, hld) have the following meaning: q is the
“current” control state of P , w the contents of the pushdown stack and hld :
Lcks→ N is a function that tells the number of times each lock has been acquired
by P . The transition relation is not a relation between configurations of P , since
a thread executes in an environment, namely the set of free locks (i.e., locks
not being held by any thread). Thus, the transition relation can be seen as a
binary relation on 2Lcks×ConfP , i.e., a transition takes a pair (fr, c) (set of free
locks and the configuration) and gives the resulting pair (fr′, c′). In order to
emphasize that the set of free locks is an “environment”, we shall write fr : c
instead of the usual notation of (fr, c). In addition to the usual push, pop and
internal actions of a PDS; a thread can acquire or release a lock. The thread can
only acquire a lock if it is either free or was held by itself before. The thread can
only release a lock if it is held by itself. A lock held by a thread is freed only
after the thread releases all instances held by it. Formally,

Definition 2. A PDS P = (Q,Γ, qs, δ) using Lcks gives a labeled transition
relation −→P⊆ (2Lcks × (Q× Γ ∗ × NLcks))× Labels× (2Lcks × (Q× Γ ∗ × NLcks))
where Labels = {int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks} and −→P is defined as
follows.

– fr : (q, w, hld)
int−→P fr : (q′, w, hld) if (q, q′) ∈ δint.

– fr : (q, w, hld)
cll−→P fr : (q′, wa, hld) if (q, (q′, a)) ∈ δcll.

– fr : (q, wa, hld)
rtn−→P fr : (q′, w, hld) if ((q, a), q′) ∈ δrtn.

– fr : (q, w, hld)
acq(l)−→P fr \ {l} : (q′, w, hld|l �→hld(l)+1) if (q, (q′, l)) ∈ δacq and

either l ∈ fr or hld(l) > 0.

70 R. Bonnet and R. Chadha

– fr : (q, w, hld)
rel(l)−→P fr : (q′, w, hld|l �→hld(l)−1) if ((q, l), q′) ∈ δrel and hld(l) > 1.

– fr : (q, w, hld)
rel(l)−→P fr∪{l} : (q′, w, hld|l �→0) if ((q, l), q

′) ∈ δrel and hld(l) = 1.

2.1 Multi-pushdown Systems

Concurrent programs are usually modeled as multi-pushdown systems. For our
paper, we assume that threads in a concurrent program also synchronize through
reentrant locks which leads us to the following definition.

Definition 3. Given a finite set Lcks, a n-pushdown system (n-PDS) CP com-
municating via (reentrant locks) Lcks and shared state Q is a tuple (P1, . . . ,Pn)
where

– Q is a finite set of states.
– Each Pi is a PDS using Lcks.
– The set of control states of Pi is Q × Qi. Qi is said to be the set of local

states of thread i.
– There is a qs ∈ Q s.t. for each i the initial state of Pi is (qs, qsi) for some
qsi ∈ Qi. The state qs is said to be the initial shared state and qsi is said to
be the initial local state of Pi.

Given a n-PDS CP, we will assume that the set of local states and the stack
symbols of the threads are mutually disjoint.

Definition 4. The semantics of a n-PDS CP = (P1, . . . ,Pn) communicating via
Lcks and shared state Q is given as a labeled transition system T = (S, s0,−→)
where

– S, said to be the set of configurations of CP, is the set Q×(Q1×Γ ∗1 ×NLcks)×
· · · × (Qn×Γ ∗n ×NLcks) where Qi is the set of local states of Pi and Γi is the
stack alphabet of Pi.

– s0, said to be the initial configuration, is (qs, (qs1, ε, 0), · · · , (qsm, ε, 0)) where
qs is the initial shared state, qsi is the initial local state of Pi and 0 ∈ NLcks

is the function which takes the value 0 for each l ∈ Lcks.
– The set of labels on the transitions is Labels × {1, . . . , n} where Labels =

{int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks}. The labeled transition relation
(λ,i)−→

is defined as follows

(q, (q1, w1, hld1), · · · , (qn, wn, hldn))
(λ,i)−→ (q′, (q′1, w

′
1, hld

′
1), · · · , (q′n, w′n, hld′n))

iff for all j �= i, qj = q′j , wj = w′j and hldj = hld′j and

Lcks \ {l | ∪1≤r≤nhldr(l) > 0} : ((q, qi), wi, hldi)
λ−→Pi

Lcks \ {l | ∪1≤r≤nhld′r(l) > 0} : ((q′, q′i), w′i, hld′i).
Notation: A global state is (q, q1, . . . , qn) where q ∈ Q and qi ∈ Qi. Given a
configuration s = (q, (q1, w1, hld1), · · · , (qn, wn, hldn)) of a n-PDS CP, we say
that ShdSt(s) = q, GlblSt(s) = (q, q1, · · · , qn), LckHld(s) = (hld1, · · · , hldn),
LckOwnd(s) = (held1, · · · , heldn) and LckOwndi(s) = heldi where heldi = {l |
hldi(l) > 0}, Confi(s) = (qi, wi, hldi), CntrlSti(s) = qi, Stcki(s) = wi, StHti(s) =
|wi|, the length of wi and LckHldi(s) = hldi.

Bounded Context-Switching and Reentrant Locking 71

Computations. A computation of the n-PDS CP, is a sequence σ = s0
(λ1,i1)−→

s1 · · ·
(λm,im)−→ sm, such that s0 is the initial configuration of CP. The transition

sj
(cll,i)−→ sj+1 is said to be a procedure call by thread i. Similarly, we can define

procedure return, internal action, acquisition of lock l and release of lock l by

thread i. A procedure return sj
(rtn,i)−→ sj+1 is said to match a procedure call

sp
(cll,i)−→ sp+1 iff p < j, StHti(sp) = StHti(sj+1) and for all p + 1 ≤ t ≤ j,

StHti(sp+1) ≤ StHti(st). A release of a lock sj
(rel(l),i)−→ sj+1 is said to match an

acquisition sp
(acq(l),i)−→ sp+1 iff p < j, LckHldi(sp)(l) = LckHldi(sj+1)(l) and for

each p+ 1 ≤ t ≤ j, LckHldi(sp+1)(l) ≤ LckHldi(st)(l).

2.2 Contextual Locking

We recall the notion of contextual locking [4] and adapt the notion to the reen-
trant locking mechanism. Informally, contextual locking means that –

– each instance of a lock acquired by a thread in a procedure call must be
released before the corresponding return is executed, and

– the instances of locks held by a thread just before a procedure call is executed
are not released during the execution of the procedure.

Formally,

Definition 5. A thread i in a n-PDS CP = (P1, . . . ,Pn) is said to follow con-

textual locking if whenever s�
(cll,i)−→ s�+1 and sj

(rtn,i)−→ sj+1 are matching procedure

call and return along a computation s0
(λ1,i)−→ s1 · · ·

(λm,i)−→ sm, we have that

LckHldi(s�) = LckHldi(sj+1) and for all
 ≤ r ≤ j. LckHldi(s�) ≤ LckHldi(sr).

Example 1. Consider the 3-threaded program shown in Figure 1. Threads P0 and
P1 follow contextual locking, but thread P2 does not follow contextual locking.

2.3 Bounded Context-Switching

A context [18] is a contiguous sequence of actions in a computation belonging
to the same thread:

Definition 6. Given a computation σ = s0
(λ1,i1)−→ s1 · · ·

(λm,im)−→ sm of a n-PDS
CP, we say that a context switch happens at position j ∈ {1, · · · ,m} if ij �= ij+1.
The number of context switches in σ is the number of positions at which a context
switch happens.

The bounded context-switching reachability problem [18] is defined formally as:

72 R. Bonnet and R. Chadha

int a(){

acq l1;

acq l2;

if (..) then{

...

rel l2;

rel l1;

};

else{

...

rel l1

rel l2

};

return i;

};

public void P0() {

n=a();

}

int b(){

acq l1;

...

rel l1;

return j;

};

public void P1() {

l=a();

}

int c(){

rel l2;

acq l1;

...

return i;

};

public void P2(){

acq l2;

n=c();

rel l1;

}

Fig. 1. Threads P0 and P1 follow contextual locking. Thread P2 does not follow con-
textual locking.

Definition 7. For k ∈ N, the k-bounded context-switching reachability problem
asks that given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks and shared

state Q, and a global state q of CP, if there is a computation σ = s0
(λ1,i1)−→

s1 · · ·
(λm,im)−→ sm of CP such that i) GlblSt(sm) = q and ii) there are at most k

context switches in σ.

3 Contextual Pushdown Counter Systems

In order to establish our main result, we shall need an auxiliary result about
pushdown counter systems. A pushdown counter system is an automaton which
in addition to a pushdown stack also has counters. Formally, a k-counter push-
down system (k-counter PDS), M, is a tuple (Q,Γ, qs, δ) where Q is a finite
set of control states, Γ is a finite stack alphabet, qs is the initial state and δ,
the set of transitions ofM, is a tuple (δint, δcll, δrtn, {δinci , δdeci , δzi}1≤i≤k) where
δint ⊆ Q × Q is the set of state transitions, δcll ⊆ Q × (Q × Γ) is the set of
push transitions, δrtn ⊆ (Q × Γ) × Q is the set of pop transitions, and for each
1 ≤ i ≤ k, δinci ⊆ Q × Q is the set of increment transitions of the counter i,
δdeci ⊆ Q×Q is the set of decrement transitions of the counter i and δzi ⊆ Q×Q
is the set of zero-tests of the counter i.

The semantics of the k-counter PDSM is given in terms of a labeled transition
system →M. The definition of the semantics is as expected; we set out some
notations here. The set of configurations of the transition system is the set

Bounded Context-Switching and Reentrant Locking 73

Q×Γ ∗×Nk. In a configuration (q, w, j1, · · · , jk), q is the control state, w ∈ Γ ∗ is
the stack contents and ji ∈ N is the value of the i-th counter. The set of transition
labels are {int, cll, rtn} ∪ {inci, deci, zi | 1 ≤ i ≤ k}. The initial configuration
is s0 = (qs, ε, 0, · · · , 0). The definition of computations and the definition of
matching push and pop transitions along a computation are as expected.

Given a k-counter PDS M = (Q,Γ, qs, δ) and a computation C = s0
λ1−→M

s1 · · ·
λm−→M sm of M, the number of zero-tests along the computation is |{λj |

λj = zi for some 1 ≤ i ≤ n}|. We are interested in the problem of checking
whether a control state is reachable by computations in which the number of
zero-tests are bounded. However, we will be only interested in contextual counter
PDSs. Contextual counter PDSs are analogous to threads that follow contextual
locking; in any computation, a) there are an equal number of increments and
decrements in a procedure call and b) counter values during procedure call are
at least as large as the counter values before the procedure call. Formally,

Definition 8. The k-counter PDS M is said to be contextual if whenever

s�
cll−→M s�+1 and sj

rtn−→M sj+1 are matching push and pop transitions along

a computation s0
λ1−→M s1 · · ·

λm−→M sm then for each 1 ≤ i ≤ k, a) ci(s�) =
ci(sj+1) and b) for all each
 ≤ r ≤ j, ci(s�) ≤ ci(sr), where ci(s) is the value
of i-th counter in the configuration s.

In order to establish our result about contextual counter PDSs, we need one
auxiliary lemma. The stack in configuration s = (q, w, j1, · · · , jk) is said to be
strictly larger than the stack in configuration s′ = (q′, w′, j′1, · · · , j′k) if w = w′u
where u is a nonempty word over Γ.

Lemma 1. LetM = (Q,Γ, qs, δ) be a k-counter contextual PDS. Consider three
computations of M:

C1 : (q1, w, j1, . . . , jk)
cll−→M . . . (q1, ww

′, j′1, . . . , j
′
k)

C2 : (q1, ww
′, j′1, . . . , j

′
k)

cll−→M . . .
rtn−→M (q2, ww

′, j′1, . . . , j
′
k)

C3 : (q1, ww
′, j′1, . . . , j

′
k) . . .

rtn−→M (q2, w, j1, . . . , jk)

such that the stack stays strictly larger than w in the intermediate states of C1

and C3 and stays strictly larger than ww′ (with w′ non-empty) in the intermedi-
ate states of C2. Then, if {i | ji = 0} = {i | j′i = 0} then there is a computation
from (q1, w, j1, . . . , jk) leading to (q2, w, j1, . . . , jk) by using exactly the transi-
tions used in C2.

Proof. Consider the computation C2 = (q1, ww
′, j′1, . . . , j

′
k)

cll−→M s′0
λ1−→M

. . .
λp−→M s′p

rtn−→M (q2, ww
′, l′1, . . . , l

′
k). As the stack stays strictly larger than

ww′ during this computation, it means that the initial call matches the final
return. Therefore as M is contextual, the counter values in any intermediate
state of C2 are at least as large as (j′1, . . . , j′k); and by contextuality, (j′1, . . . , j′k)
is itself larger than (j1, . . . , jk).

74 R. Bonnet and R. Chadha

We establish the following invariant by induction on t: if (q2, ww
′, j′1, . . . , j

′
k)

cll−→M s′0 . . .
λt−→M (q3, ww

′σ, l′t,1, . . . , l
′
t,n) then (q1, w, j1, . . . , jk) . . .

λt−→M (q3,
wσ, lt,1, . . . , lt,n) with l

′
t,i = lt,i+(j′i− ji). The base case, t = 0, is immediate. In

the inductive step, we proceed by cases on the label λt. The case of push, pop
and internal state transitions is immediate because the w′ part of the stack is
never used in C2. A transition that increments a counter also fulfills this invariant
immediately. We now consider a transition that can decrement a counter i. Then,
because M is contextual, we have l′t+1,i ≥ j′i which means that l′t ≥ j′i + 1, and
thus lt,i = (l′t,i − j′i) + ji ≥ 1 and the decrement can be performed. For a zero-
test, we have that l′t,i = 0, which means by contextuality that j′i = ji = 0.
Thus, by induction hypothesis, lt,i = 0 and the zero-test can be performed. This
concludes the demonstration of the invariant and the statement of the lemma
follows directly. ��

We are ready to establish that the control state reachability problem for contex-
tual pushdown counter systems with a bounded number of zero tests is decidable.

Theorem 1. The following problem is decidable: Given a k-counter contextual
PDSM with initial configuration s0, a control state q ofM and a number r ∈ N,

check if there is a computation C = s0
λ1−→M s1 · · ·

λm−→M sm s.t.

– there are at most r zero-tests along C, and
– sm = (q, w, j1, · · · jk) for some w ∈ Γ ∗, j1, · · · , jk ∈ N.

Proof. We first turn the problem into one where the final state must have an
empty stack as follows.

We first encode in the control states of the PDS counter system the infor-
mation about whether the stack is empty as follows. When symbol a is to be
pushed on an empty stack, we push a marked symbol a∗ instead. Popping a
marked symbol indicates that the resulting stack is empty.

Now, if a stack symbol is pushed but never popped in a computation leading
to q; it means that this stack symbol is never subsequently accessed, and thus
can be ignored. Therefore, when the stack is empty and a symbol is ready to be
pushed, we allow a non-deterministic choice: either to push the symbol (guessing
that it would have been popped later) or to not push it (guessing that it would
have never been popped subsequently). In the latter case, we perform the same
change of control state. As the discarded symbols were at the bottom of the
stack, we don’t expose symbols that could be used in the computation.

The resulting system is still contextual (because any transition sequence be-
tween matching push and pop in the new system was already present in the old
one). Moreover, one can reach a state (q, ε, j1, . . . , jk) for some (j1, . . . , jk) in the
new system if and only if one could reach (q, w, j1, . . . , jk) for some (j1, . . . , jk)
and w in the old one.

For the case with a final empty stack, we show that if such a computation
exists, then there exists one such that the stack size in any intermediate state is
bounded by |Q|22k. Indeed, if we assume this is not the case, fix a computation
C whose length is minimal amongst computations ending in control state q

Bounded Context-Switching and Reentrant Locking 75

with empty stack. By assumption, there are at least |Q|22k + 1 nested pairs of
matching push and pop in C. But, if to each pair of matching push and pop

(q1, w, j1, . . . , jk)
cll−→M . . .

rtn−→M (q2, w, j1, . . . , jk) in C we associate the vector
(q1, q2, {i | ji = 0}), by the pigeonhole principle, there exist two nested pairs
such that:

(q1, w, j1, . . . , jk)
cll−→M . . . (q1, ww

′, j′1, . . . , j
′
k)

cll−→M . . .
rtn−→M (q2, ww

′, j′1, . . . , j
′
k)

. . .
rtn−→M (q2, w, j1, . . . , jk)

such that a) (due to the fact that we are consider matching pushes and pops)
the stack stays strictly larger than w in the intermediate states of the first and
third part and stays strictly larger than ww′ (with w′ non-empty) during the
second part, and b) {i | ji = 0} = {i | j′i = 0}. Thanks to Lemma 1, we get a
shorter computation, which contradicts the assumption of minimality of C.

Now, because the stack is bounded, it means we can just encode it in the
control state, which gives us a reachability problem in a counter system with
restricted zero-tests. We reduce it to reachability in Vector Addition Systems
[12,17,15]. As the number of possible zero-tests is known, we encode in the control
state the number of zero-tests remaining, and work on t copies of each counter,
where t is the number of zero-tests remaining. When a zero-test is performed, we
only change the control state, remembering the index of the counter on which
the zero-test is supposed to be performed, continue to work on t−1 copies of the
counters, leaving the remaining counters frozen. At the end of the computation,
we test whether all frozen counters which should have been zero when they were
frozen are indeed zero. ��

4 Bounded Context-Switching Reachability

We shall now establish the decidability of the bounded context-switching reach-
ability problem. A key technique we will use is the technique of switching vectors
developed for bounded context-switching reachability for multi-pushdown sys-
tems [21,13]. Intuitively, a switching vector is “snapshot” of a computation in a
multi-pushdown system: it is the sequence of active threads and the global states
at the beginning of a context in the computation. We extend this definition to
n-PDS communicating via reentrant locks by also taking into account which
locks are held by which thread at the positions where context-switches happen.

We start by fixing some definitions. Fix a n-PDS CP = (P1, . . . ,Pn) commu-
nicating via Lcks and shared state Q. Let Qi be the set of local states of Pi.
Recall that a global state is (q, q1, . . . , qn) where q ∈ Q and qi ∈ Qi; given a con-
figuration s = (q, (q1, w1, hld1), . . . , (qn, wn, hldn)), GlblSt(s) = (q, q1, · · · , qn),
LckOwnd(s) = (held1, · · · , heldn) and LckOwndi(s) = heldi where heldi =
{l |hldi(l) > 0}.We say that LckOwndi(s) is the set of locks owned by Pi and the
tuple LckOwnd(s) is the lock ownership status. We are ready to define switching
vectors formally.

76 R. Bonnet and R. Chadha

Definition 9. Let CP = (P1, . . . ,Pn) be a n-PDS communicating via Lcks and
shared state Q. For each 1 ≤ i ≤ n, let Qi be the set of local states of Pi. A
sequence (gs0, ls0, p0), · · · , (gsr, lsr, pr) is said to be a CP-switching vector if
the following holds for each 0 ≤ t ≤ r:

– pt is an element of the set {1, · · · , n} and for 0 ≤ t < r, pt �= pt+1.
– gst ∈ Q ×Q1 × · · · ×Qn. gs0 is the global state of the initial configuration,

and for all t > 0, If gst−1 = (q, q1, · · · , qn) and gst = (q′, q′1, . . . , q
′
n) then

qx = q′x for each x �= prt−1.
– lst ∈ (2Lcks)n, ls0 = (∅, . . . , ∅), and for all t > 0, if lst = (held′1, . . . , held

′
n)

then held′y ∩held′z = ∅ for each y �= z; and if lst−1 = (held1, . . . , heldn) then
heldx = held′x for each x �= prt−1.

Note that the last two conditions are consistency checks: an active thread can-
not affect the local states of other threads and the locks owned by them. The
following definition captures the intuitive meaning of a switching vector being
the “snapshot” of a computation.

Definition 10. Let CP = (P1, . . . ,Pn) be a n-PDS and let sig = (gs0, ls0, p0),
· · · , (gsr, lsr, pr) be a CP-switching vector. We say that a computation C =

s0
(λ1,i1)−→ s1 · · ·

(λm,im)−→ sm of CP is compatible with sig if

– C has r context switches.
– gs0 = GlblSt(s0), ls0 = (∅, · · · , ∅) and p0 = i1.
– If the context switches occur at positions j1, · · · , jr then for each 1 ≤ t ≤ r,

• gst = GlblSt(st).
• pt = ijt+1.
• If lst = (held1, . . . , heldn) then LckOwndi(sjt) ⊆ heldi for each 1 ≤ i ≤
n.

• Let jr+1 bem. If lst = (held1, . . . , heldn) then in the sequence sjt
(λjt+1

,pt)
−→

· · ·
(λjt+1

,pt)
−→ sjt+1 , the thread pt does not do any lock acquisitions and re-

leases of locks in the set ∪i
=ptheldi.
It is easy to see that that if q is reachable by a computation C at most r
bounded context-switches then C must be compatible with a switching vector
sig of length ≤ r + 1 (the compatible switching vector is the sequence of the
global state, the identifier of the active thread and lock ownership status at the
beginning of each context). Hence, we can decide the bounded context-switching
reachability problem if we can give an algorithm that given an a n-PDS CP
communicating via Lcks, a CP-switching vector sig and a global state q, checks
if there is a computation C compatible with sig leading to q. We establish this
result next.

Lemma 2. The following problem is decidable:

Given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks and shared state Q,
s.t. each thread is contextual, a CP-switching vector sig and a global state q
of CP, is there a computation that is a) compatible with sig and b) ends in
global state q?

Bounded Context-Switching and Reentrant Locking 77

Proof. We give an algorithm that decides the above problem. Note if r = 0, then
we can decide the problem by using Theorem 1. So, we only consider the case r >
0. Let numlocks be the cardinality of Lcks. Fix an enumeration l1, l2, · · · , lnumlocks

of the elements of Lcks. Let Pi = (Q×Qi, Γi, (qs, qsi), δi) where qsi is the initial
local state of Pi. Let sig = (gs0, ls0, p0), · · · , (gsr, lsr, pr). For each 1 ≤ t ≤ r, let
sigt be (gs0, ls0, p0), · · · , (gst, lst, pt). First note that if q = (q, q1, . . . , qn) and
gsr = (q′, q′1, . . . , q

′
n) then for each i �= pr, qi must be the same q′i (since pr is the

last active thread). Therefore the algorithm immediately outputs “NO” if there
is some i �= pr s.t. qi �= q′i.

Otherwise, the algorithm proceeds iteratively and will have at most r + 1
iterations. At the end of each iteration t ≤ r, the algorithm will either output
“NO” or move to the next iteration. If the algorithm outputs “NO” at the
end of iteration t < r, then it would mean that there is no computation of
CP compatible with sigt. If the algorithm moves to the next iteration then it
would mean that there is a computation of CP compatible with sigt ending in
a configuration s such that GlblSt(s) = gst+1 and LckOwndi(s) ⊆ πi(lst+1) for
each 1 ≤ i ≤ n.

In each iteration t, the algorithm constructs n pushdown counter systems
Mt

1, . . . ,Mt
n. Intuitively, the pushdown counter system Mt

i will “simulate” the
actions of the ith thread up-to the t-th context switch. Each Mt

i has numlocks

counters: the counter j keeps track of number of times lock lj has been acquired
by thread i. The algorithm proceeds as follows. For the sake of brevity, we only
illustrate the first iterative step. The other iterative steps are similar.

– (Iterative step 1.) For each 1 ≤ i ≤ n, we pick new states q†i , testi,1, . . . , testi,n
and let Qnew,i = {q†i , testi,1, . . . , testi,numlocks

}.
In the first iterative step, the active thread is supposed to be p0. For i �= p0,
letM1

i = (Q1
i , Γi, qs

1
i , δ

1
i) be the numlocks-counter PDS whereQ1

i = Qnew,i×
{1}, qs1i = (q†i , 1) and δ

1
i is ∅.

The numlocks-counter PDS M1
p0 = (Q1

p0 , Γi, qs
1
p0 , δ

1
p0) is constructed as fol-

lows. Intuitively, M1
p0 simulates the thread p0.

• Q1
p0 = ((Q×Qp0)∪Qnew,p0)×{1}. The initial state qs1p0 = ((qs, qsp0), 1).

• δ1p0 is constructed as follows. If (qp, qn) is a state transition of Pp0 then
((qp, 1), (qn, 1)) is a state transition ofM1

p0 . If (qp, (qn, a)) (((qp, a), qn)
respectively) is a stack push (stack pop respectively) transition of Pp0
then ((qp, 1), ((qn, 1), a)) ((((qp, 1), a), (qn, 1)) respectively) is a stack
push (stack pop respectively) transition ofM1

p0 . If (qp, (qn, lj)) ((qp, lj),
qn) respectively) is a lock acquisition (lock release respectively) transi-
tion of Pp0 then ((qp, 1), (qn, 1)) is an increment (decrement respectively)
transition of the jth counter.
In addition there are some zero-test transitions and one additional state
transition constructed as follows. These extra transitions are to ensure
that just before the first context switch happens, the set of the locks
owned by Pp0 is a subset of πp0(ls1). This is achieved as follows. Let
gs1 = (q, q1, . . . , qn). If πp0(ls1) = Lcks then we add a state transition
that takes (q, qp0 , 1) to (q†p0 , 1). Otherwise, let
1 < · · · <
m be the

78 R. Bonnet and R. Chadha

indices of the elements in Lcks \ π�0(ls1). We add a zero-test of the
counter
1 which takes the state ((q, qp0), 1) to the state (testp0,�1 , 1).
For each 1 ≤ x < m, we add a zero-test of the counter
x+1 which takes
the state (testp0,�x , 1) to (testp0,�x+1, 1). From the state (testp0,�m , 1) we
add a state transition to (q†p0 , 1).

It is easy to see that the PDSM1
p0 is a contextual PDS (since every thread of

CP is contextual) and the state (q†p0 , 1) is reachable iff it is reachable with ≤
numlocks zero-test. Thus, after constructingM1

p0 , we check whether (q†p0 , 1)
is reachable or not (thanks to Theorem 1). If it is not, the algorithm outputs
“NO.” If it is reachable then we can conclude that there is a computation
compatible with sig1. The next iteration begins.

The details of the other iterative steps are similar. The main difference is that in
the iterative step t, the thread pt−1 cannot manipulate counters that correspond
to the locks in the set ∪i
=theldi. Furthermore, in the last iterative step, we check
for reachability of q. ��

Hence, we can establish the main result of the paper.

Theorem 2. Given k ∈ N, the k-bounded context-switching reachability problem
is decidable for n-PDS in which each thread exhibits contextual locking. For any
fixed k > 0, the problem is at least as hard as the VASS configuration reachability
problem.

Proof. The decidability follows from Lemma 2. The VASS configuration reach-
ability problem is as follows:

Given a n-counter system M = (Q, qs, {δinci , δdeci}1≤i≤n) with no zero-test
transitions and a control state q ∈ Q, check if there is a computation starting
with (qs, 0̄) that leads to (q, 0̄).

Now, given a n-counter system M, we construct a 2-PDS CP = (P1,P2) that
synchronizes only using reentrant locks as follows:

1. The set of locks, Lcks has n+ 1 elements, l0, l1, . . . , ln.
2. P1 is non-recursive and simulates M. The initial state of P1 is qs. For each

i > 0, the value of the counter ci is maintained by the number of times li is
acquired by Pi. The sum of the counters c1 + · · ·+ cn is maintained by the
number of times l0 is acquired. The simulation is achieved as follows. When-
ever M makes an internal transition, so does P1. Whenever M increments
(decrements respectively) counter i, P1 acquires (releases respectively) locks
li and l0.

3. P2 is also non-recursive and has two states {qs2, qf2}. qs2 is the initial state
of P2. There is only one transition of P2 : P2 can acquire lock l0 and transit
to qf2 from qs2.

It is easy to see that there is a computation ofM starting with (qs, 0̄) that leads
to (q, 0̄) iff the state (q, qf2) is reachable in CP by a computation with at most
1 context switch. ��

Bounded Context-Switching and Reentrant Locking 79

Remark 1. Since the VASS configuration reachability problem is EXPSPACE-
hard [3], Theorem 2 implies that the bounded context-switching reachability
problem for n-PDS communicating via contextual reentrant locks is EXPSPACE-
hard.

5 Conclusions

We have investigated the bounded context-switching problem for multi-threaded
recursive programs synchronizing with contextual reentrant locks, showing it to
be decidable. The decidability result is established by proving a novel result on
pushdown counter systems: if the pushdown counter system is contextual then
the problem of deciding whether a control state is reachable with a bounded
number of zero tests is decidable. The result on pushdown counter systems is
obtained by a reduction to the configuration reachability problem of VASS (Vec-
tor Addition System with States) and may be of independent interest. We also
establish that the bounded context-switching reachability problem problem is at
least as hard as the configuration reachability problem for VASS.

There are a few open problems. The status of the bounded context-switching
reachability problem for the case when the locks are not contextual is open. This
appears to be a very difficult problem. Our techniques imply that this problem
is equivalent to the problem of checking configuration reachability in pushdown
counter systems with a bounded number of zero-tests. The latter has been a
longstanding open problem.

Another line of investigation is to explore other under-approximation tech-
niques such as bounded phases [16]. It would also be useful to account for other
synchronization primitives such as thread creation and barriers in addition to
reentrant locks.

Practical aspects of our decision algorithm is left to future investigation. Since
earlier static analysis techniques for analyzing programs with reentrant locks [11]
mainly consider locks to be both nested and contextual, our techniques should
be useful in analyzing a larger class of problems.

References

1. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: Foundations of Software Technology and Theoretical Computer Science.
LIPIcs, vol. 13, pp. 152–163. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2011)

2. Bultan, T., Yu, F., Betin-Can, A.: Modular verification of synchronization with
reentrant locks. In: MEMOCODE, pp. 59–68 (2010)

3. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups. In: Proceedings of the ACM Symposium
on Theory of Computing, pp. 50–54 (1976)

4. Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under Contextual
Locking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
437–450. Springer, Heidelberg (2012)

80 R. Bonnet and R. Chadha

5. Chadha, R., Viswanathan, M.: Decidability Results for Well-Structured Transition
Systems with Auxiliary Storage. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 136–150. Springer, Heidelberg (2007)

6. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM
Transactions on Programming Languages and Systems 34(1), 6 (2012)

7. Hague, M., Lin, A.W.: Model Checking Recursive Programs with Numeric Data
Types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
743–759. Springer, Heidelberg (2011)

8. Hague, M., Lin, A.W.: Synchronisation- and Reversal-Bounded Analysis of Multi-
threaded Programs with Counters. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 260–276. Springer, Heidelberg (2012)

9. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
Proceedings of the ACM Symposium on the Principles of Programming Languages,
pp. 339–350 (2007)

10. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning About Threads Communicating via
Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

11. Kidd, N., Lal, A., Reps, T.W.: Language strength reduction. In: Static Analysis,
pp. 283–298 (2008)

12. Rao Kosaraju, S.: Decidability of reachability in vector addition systems (prelimi-
nary version). In: Proceedings of the ACM Symposium on Theory of Computing,
pp. 267–281 (1982)

13. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

14. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Pushdown
Networks with Tree-Regular Constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)

15. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: Proceedings of the ACM Symposium on the Principles of Programming
Languages, pp. 307–316. ACM (2011)

16. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proceedings
of the ACM Symposium on the Principles of Programming Languages, pp. 283–294
(2011)

17. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings of the ACM Symposium on Theory of Computing, pp. 238–246 (1981)

18. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

19. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the ACM Symposium on the Principles of
Programming Languages, pp. 49–61 (1995)

20. Sen, K., Viswanathan, M.: Model Checking Multithreaded Programs with Asyn-
chronous Atomic Methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

21. La Torre, S., Madhusudan, P., Parlato, G.: The Language Theory of Bounded
Context-Switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

Reachability of Communicating Timed

Processes�

Lorenzo Clemente1, Frédéric Herbreteau1, Amelie Stainer2,
and Grégoire Sutre1

1 Univ. Bordeaux, CNRS, LaBRI, UMR 5800, Talence, France
2 University of Rennes 1, Rennes, France

Abstract. We study the reachability problem for communicating timed
processes, both in discrete and dense time. Our model comprises au-
tomata with local timing constraints communicating over unbounded
FIFO channels. Each automaton can only access its set of local clocks;
all clocks evolve at the same rate. Our main contribution is a complete
characterization of decidable and undecidable communication topologies,
for both discrete and dense time. We also obtain complexity results, by
showing that communicating timed processes are at least as hard as Petri
nets; in the discrete time, we also show equivalence with Petri nets. Our
results follow from mutual topology-preserving reductions between timed
automata and (untimed) counter automata. To account for urgency of re-
ceptions, we also investigate the case where processes can test emptiness
of channels.

1 Introduction

Communicating automata are a fundamental model for studying concurrent pro-
cesses exchanging messages over unbounded channels [23,12]. However, the model
is Turing-powerful, and even basic verification questions, like reachability, are
undecidable. To obtain decidability, various restrictions have been considered,
including making channels unreliable [3,14] or restricting to half-duplex com-
munication [13] (later generalized to mutex [18]). Decidability can also be ob-
tained when restricting to executions satisfying additional restrictions, such as
bounded context-switching [21], or bounded channels. Finally, and this is the
restriction that we consider here, decidability is obtained by constraining the
communication topology. For communicating finite-state machines (CFSMs), it
is well-known that reachability is decidable if, and only if, the topology is a poly-
forest [23,21]; in this case, considering channels of size one suffices for deciding
reachability.

On a parallel line of research, timed automata [9] have been extensively studied
as a finite-state model of timed behaviours. Recently, there have been several
works bringing time into infinite-state models, including timed Petri nets [10,4],
timed pushdown automata [2], and timed lossy channel systems [1]. In this paper,
we study communicating timed processes [20], where a finite number of timed

� This work was partially supported by the ANR project Vacsim (ANR-11-INSE-004).

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 L. Clemente et al.

automata synchronize over the elapsing of time and communicate by exchanging
messages over unbounded channels. Note that, when processes can synchronize,
runs cannot be re-ordered to have uniformly bounded channels (contrary to
polyforest CFSMs). For example, consider two communicating processes p and
q, where p can send to q unboundedly many messages in the first time unit,
and q can receive messages only after the first time unit has elapsed. Clearly, all
transmissions of p have to occur before any reception by q, which excludes the
possibility of re-ordering the run into another one with bounded channels.

We significantly extend the results of [20], by giving a complete characteriza-
tion of the decidability border of reachability properties w.r.t. the communication
topology. Quite surprisingly, we show that despite synchronization increases the
expressive power of CFSMs, the undecidability results of [20] are not due to just
synchronous time, but to an additional synchronization facility called urgency
(cf. below). Our study comprises both dense and discrete time.

Dense Time: Communicating Timed Automata. Our main result is a complete
characterization of the decidability frontier for communicating timed automata:
We show that reachability is decidable if, and only if, the communication topol-
ogy is a polyforest. Thus, adding time does not change the decidability frontier
w.r.t. CFSMs. However, the complexity worsens: From our results it follows that
communicating timed automata are at least as hard as Petri nets.1

Our decidability results generalize those of [20] over the standard semantics
for communicating automata. In the same work, undecidability results are also
presented. However, they rely on an alternative urgent semantics, where, if a
message can be received, then all internal actions are disabled: This provides an
extra means of synchronization, which makes already the very simple topology
p −→ q −→ r undecidable [20]. We show that, without urgency, this topology
remains decidable.

Here, we do not consider urgency directly, but we rather model it by introduc-
ing an additional emptiness test operation on channels on the side of the receiver.
This allows us to discuss topologies where emptiness tests (i.e., urgency) are re-
stricted to certain components. We show that, with emptiness tests, undecidable
topologies include not only the topology p −→ q −→ r (as shown in [20]), but also
p −→ q ←− r and p ←− q −→ r. Thus, we complete the undecidability picture for
dense time.

All our results for dense time follow from a mutual, topology-preserving re-
duction to a discrete-time model (discussed below). Over polyforest topologies,
we reduce from dense to discrete time when no channel can be tested for empti-
ness. Over arbitrary topologies, we reduce from discrete to dense time, even in
the presence of emptiness tests. While the latter is immediate, the former is
obtained via a Rescheduling Lemma for dense-time timed automata which is in-
teresting on its own, allowing us to schedule processes in fixed time-slots where
senders are always executed before receivers.

1 And probably exponentially worse, due to a blow-up when translating from dense
to discrete time.

Reachability of Communicating Timed Processes 83

Discrete Time: Communicating Tick Automata. We provide a detailed analysis
of communication in the discrete-time model, where actions can only happen
at integer time points. As a model of discrete time, we consider communicating
tick automata, where the flow of time is represented by an explicit tick action:
A process evolves from one time unit to the next by performing a tick action,
forcing all the other processes to perform a tick as well; all the other actions are
asynchronous. This model of discrete-time is called tick automata in [17], which
is related to the fictitious-time model of [9].

We provide a complete characterization of decidable and undecidable topolo-
gies for communicating tick automata: We show that reachability is decidable
if, and only if, the topology is a polyforest (like for CFSMs), and, additionally,
each weakly-connected component can test at most one channel for emptiness.
Our results follow from topology-preserving mutual reductions between commu-
nicating tick automata and counter automata. As a consequence of the structure
of our reductions, we show that channels and counters are mutually expressible,
and similarly for emptiness tests and zero tests. This also allows us to obtain
complexity results for communicating tick automata: We show that reachability
in a system of communicating tick automata over a weakly-connected topology
without emptiness tests has the same complexity as reachability in Petri nets.2

Related Work. Apart from [20], communication in a dense-time scenario has
also been studied in [15,8,6]. In particular, [15] proposes timed message se-
quence charts as the semantics of communicating timed automata, and stud-
ies the scenario matching problem where timing constraints can be specified on
local processes, later extended to also include send/receive pairs [8]. Communi-
cating event-clock automata, a strict subclass of timed automata, are studied
in [6] where, instead of considering the decidability frontier w.r.t. the communi-
cation topology, it is shown, among other results, that reachability is decidable
for arbitrary topologies over existentially-bounded channels. A crucial difference
w.r.t. our work is that we do not put any restriction on the channels, and we
consider full timed automata. In a distributed setting, the model of global time
we have chosen is not the only possible. In particular, [7] studies decidability
of networks of (non-communicating) timed asynchronous automata in an alter-
native setting where each automaton has a local drift w.r.t. global time. In the
discrete-time setting, we mention the work [19], which generalizes communicat-
ing tick automata to a loosely synchronous setting, where local times, though
different, can differ at most by a given bound. While [19] shows decidability
for a restricted two-processes topology, we characterize decidability for arbitrary
topologies. We finally mention [16,5] that address reachability for parametrized
ad hoc networks in both discrete and dense time. They consider an infinite
number of processes and broadcast handshake communications over arbitrary
topologies while our models have a finite number of processes that exchange
messages over unbounded (unicast) channels.

2 The latter problem is known to be ExpSpace-hard [22], and finding an upper bound
is a long-standing open problem.

84 L. Clemente et al.

Outline. In Sec. 2 we introduce general notation; in particular, we define com-
municating timed processes, which allow us to uniformly model communication
in both the discrete and dense time. In Sec. 3 we study the decidability and
complexity for communicating tick automata (discrete time), while in Sec. 4 we
deal with communicating timed automata (dense time). Finally, Sec. 5 ends the
paper with conclusions and future work.

2 Communicating Timed Processes

A labeled transition system (LTS for short) is a tuple A = 〈S, SI , SF , A,→〉
where S is a set of states with initial states SI ⊆ S and final states SF ⊆ S, A is
a set of actions, and→ ⊆ S×A×S is a labeled transition relation. For simplicity,
we write s

a−−→ s′ in place of (s, a, s′) ∈ →. A path in A is an alternating sequence

π = s0, a1, s1, . . . , an, sn of states si ∈ S and actions ai ∈ A such that si−1
ai−−→ si

for all i ∈ {1, . . . , n}. We abuse notation and shortly denote π by s0
a1···an−−−−−→ sn.

The word a1 · · ·an ∈ A∗ is called the trace of π. A run is a path starting in an
initial state (s0 ∈ SI) and ending in a final state (sn ∈ SF).

We consider systems that are composed of several processes interacting with
each other in two ways. Firstly, they implicitly synchronize over the passing of
time. Secondly, they explicitly communicate through the asynchronous exchange
of messages. For the first point, we represent delays by actions in a given delay
domain D. Typically, the delay domain is a set of non-negative numbers when
time is modeled quantitatively, or a finite set of abstract delays when time is
modeled qualitatively. Formally, a timed process over D is a labeled transition
system A = 〈S, SI , SF , A,→〉 such that A ⊇ D. Actions in A are either syn-
chronous delay actions in D, or asynchronous actions in A \ D.

For the second point, we introduce FIFO channels between processes. For-
mally, a communication topology is a triple T = 〈P,C,E〉, where 〈P,C〉 is a
directed graph comprising a finite set P of processes and a set of communica-
tion channels C ⊆ P × P . Additionally, the set E ⊆ C specifies those chan-
nels that can be tested for emptiness. Thus, a channel c ∈ C is a pair (p, q),
with the intended meaning that process p can send messages to process q. For
a process p, let C[p] = C ∩ ({p} × P) be its set of outgoing channels, and let
C−1[p] = C∩(P ×{p}) be its set of incoming channels. Processes may send mes-
sages to outgoing channels, receive messages from incoming channels, as well as
test emptiness of incoming channels (for testable channels). Formally, given a
finite set M of messages, the set of possible communication actions for process
p is Apcom = {c!m | c ∈ C[p],m ∈ M} ∪ {c?m | c ∈ C−1[p],m ∈ M} ∪ {c == ε |
c ∈ E ∩ C−1[p]}. The set of all communication actions is Acom =

⋃
p∈P A

p
com.

While send actions (c!m) and receive actions (c?m) are customary, we introduce
the extra test action (c == ε) to model the urgent semantics of [20]. Actions not
in (D ∪ Acom) are called internal actions.

Definition 1. A system of communicating timed processes is a tuple S =
〈T ,M,D, (Ap)p∈P 〉 where T = 〈P,C,E〉 is a topology, M is a finite set of

Reachability of Communicating Timed Processes 85

messages, D is a delay domain, and, for each p ∈ P , Ap = 〈Sp, SpI , S
p
F , A

p,→p〉
is a timed process over D such that Ap ∩ Acom = Apcom.

States sp ∈ Sp are called local states of p, while a global state s = (sp)p∈P is
a tuple of local states in

∏
p∈P S

p. We give the semantics of a system of com-
municating timed processes in terms of a global labeled transition system. The
contents of each channel is represented as a finite word over the alphabet M .
Processes move asynchronously, except for delay actions that occur simultane-
ously. Formally, the semantics of a system of communicating timed processes
S = 〈T ,M,D, (Ap)p∈P 〉 is the labeled transition system �S� = 〈S, SI , SF , A,→〉
where S = (

∏
p∈P S

p)× (M∗)C , SI = (
∏
p∈P S

p
I)× {λc . ε}, SF = (

∏
p∈P S

p
F)×

{λc . ε}, A =
⋃
p∈P A

p, and there is a transition (s1, w1)
a−−→ (s2, w2) under the

following restrictions:

– if a ∈ D, then sp1
a−−→ sp2 for all p ∈ P ,

– if a �∈ D, then sp1
a−−→ sp2 for some p ∈ P , and sq1 = sq2 for all q ∈ P \ {p}

• if a = c!m, then w2(c) = w1(c) ·m and w2(d) = w1(d) for all d ∈ C \ {c},
• if a = c?m, then m ·w2(c) = w1(c) and w2(d) = w1(d) for all d ∈ C \{c},
• if a = (c == ε), then w1(c) = ε and w1 = w2, and
• if a �∈ Acom, then w1 = w2.

To avoid confusion, states of �S� will be called configurations in the remainder
of the paper. Given a path π in �S�, its projection to process p is the path π|p in
Ap obtained by projecting each transition of π to process p in the natural way.

The reachability problem asks, given a system of communicating timed pro-
cesses S, whether there exists a run in its semantics �S�. Note that we require all
channels to be empty at the end of a run, which simplifies our constructions later
by guaranteeing that every sent message is eventually received. (This is w.l.o.g.
since reachability and control-state reachability are easily inter-reducible.) Two
systems of communicating timed processes S and S ′ are said to be equivalent if
�S� has a run if and only if �S ′� has a run.

Definition 2. A system of communicating tick automata is a system of com-
municating timed processes S = 〈T ,M,D, (Ap)p∈P 〉 such that D = {τ} and each
Ap is a tick automaton, i.e., a timed process over D with finitely many states
and actions.

Thus, tick automata communicate with actions in Acom and, additionally, syn-
chronize over the tick action τ . This global synchronization makes communicat-
ing tick automata more expressive than CFSMs, in the sense that ticks can forbid
re-orderings of communication actions that are legitimate without ticks. Notice
that there is only one tick symbol in D. With two different ticks, reachability is
already undecidable for the one channel topology p→ q without emptiness test.

3 Decidability of Communicating Tick Automata

In this section, we study decidability and complexity of communicating tick au-
tomata. Our main technical tool consists of mutual reductions to/from counter

86 L. Clemente et al.

automata, showing that, in the presence of tick actions, 1) each channel is equiv-
alent to a counter, and 2) each emptiness test on a channel is equivalent to a
zero test on the corresponding counter. This allows us to derive a complete char-
acterization of decidable topologies, and to also obtain complexity results. We
begin by defining communicating counter automata.

Communicating Counter Automata. A counter automaton is a classical Minsky
machine C = 〈L,LI , LF , A,X,Δ〉 with finitely many locations L, initial locations
LI ⊆ L, final locations LF ⊆ L, alphabet of actions A, finitely many non-
negative counters in X , and transition rules Δ ⊆ L × A × L. Operations on
a counter x ∈ X are x++ (increment), x-- (decrement) and x==0 (zero test).
Let Op(X) be the set of operations over counters in X . We require that A ⊇
Op(X). As usual, the semantics is given as a labelled transition system �C� =
〈S, SI , SF , A,→〉 where S = L×NX , SI = LI ×{λx.0}, SF = LF ×{λx.0}, and
the transition relation → is defined as usual. Acceptance is with zero counters.

A system of communicating counter automata is a system of communicating
timed processes S = 〈T ,M,D, (�Cp�)p∈P 〉 such that D = ∅ and each Cp is a
counter automaton. By Definition 1, this entails that each counter automaton
performs communicating actions in Apcom. Notice that, since the delay domain is
empty, no synchronization over delay action is possible.

From Tick Automata to Counter Automata. Let S be a system of communicating
tick automata over an arbitrary (i.e., possibly cyclic) weakly-connected3 topology.
We build an equivalent system of communicating counter automata S ′ over the
same topology. Intuitively, we implement synchronization on the delay action τ in
S by communication in S ′ (by definition, no synchronization on delay actions is
allowed in S ′). We introduce a new type of message, also called τ , which is sent
in broadcast by all processes in S ′ each time there is a synchronizing tick action
in S. Since communication is by its nature asynchronous, we allow the sender and
the receiver to be momentarily desynchronized during the computation. However,
we restrict the desynchronization to be asymmetric: The receiver is allowed to be
“ahead” of the sender (w.r.t. the number of ticks performed), but never the other
way around. This ensures causality between transmissions and receptions, by for-
bidding that a message is received before it is sent.

To keep track of the exact amount of desynchronization between sender and
receiver (as the difference in number of ticks), we introduce counters in S ′: We
endow each process p with a non-negative counter xpc for each channel c ∈ C−1[p]
from which p is allowed to receive. The value of counter xpc measures the difference
in number of ticks τ between p and the corresponding sender along c. Whenever
a process p performs a synchronizing tick action τ in S, in S ′ it sends a message
τ in broadcast onto all outgoing channels; at the same time, all its counters xpc
are incremented, recording that p, as a receiver process, is one more step ahead
of its corresponding senders. When one such τ -message is received by a process

3 A topology T is weakly-connected if, for every two processes, there is an undirected
path between them.

Reachability of Communicating Timed Processes 87

q in S ′ along channel c, the corresponding counter xqc is decremented; similarly,
this records that the sender process along c is getting one step closer to the
receiver process q. The topology needs to be weakly-connected for the correct
propagation of τ ’s.

While proper ordering of receptions and transmissions is ensured by non-
negativeness of counters, testing emptiness of the channel is more difficult: In
fact, a receiver, which in general is ahead of the sender, might see the channel as
empty at one point (thus the test is positive), but then the sender might later
(i.e., after performing some tick) send some message, and the earlier test should
actually have failed (false positive). We avoid this difficulty by enforcing that
the receiver q is synchronized with the corresponding sender along channel c on
emptiness tests, by adding to the test action c == ε by q a zero test xqc==0.

Formally, let S = 〈T ,M,D, (Ap)p∈P 〉 with D = {τ} be a system of commu-
nicating tick automata over topology T = 〈P,C,E〉, where, for each p ∈ P ,
Ap = 〈Lp, LpI , L

p
F , A

p,→p〉 is a tick automaton, i.e., τ ∈ Ap. We define the
system of communicating counter automata S ′ = 〈T ,M ′,D′, (�Cp�)p∈P 〉, over
the same topology T as S, s.t. M ′ = M ∪ {τ}, D′ = ∅, and, for every pro-
cess p ∈ P , we have a counter automaton Cp, which is defined as follows:
Cp = 〈Lp, LpI , L

p
F , B

p, Xp, Δp〉, where control locations Lp, initial locations LpI ,
and final locations LpF are the same as in the corresponding tick automaton Ap,
and counters are those in Xp = {xpc | c ∈ C−1[p]}. For simplifying the definition
of transitions, we allow sequences of actions instead of just one action—these
can be clearly implemented by introducing more intermediate states. Transitions
in Δp for Cp are defined as follows:

– Let

τ−→
′ be a transition in Ap, and assume that outgoing channels of

p are those in C[p] = {c0, . . . , ch}, and that counters in Xp are those in

{x0, . . . , xk}. Then,

c0!τ ;...;ch!τ ;x0++;...;xk++−−−−−−−−−−−−−−−−→
′ is a transition in Cp.

– For every
 ∈ Lp and input channel c ∈ C−1[p], there is a transition
 c?τ ;xpc--−−−−−→

 in Cp.

– If

c == ε−−−→
′ is a transition in Ap, then
 xpc==0;c == ε−−−−−−−→
′ is a transition in Cp.

– Every other transition

a−→
′ in Ap is also a transition in Cp.

The action alphabet of Cp is thus Bp = (Ap\{τ})∪{c?τ | c ∈ C−1[p]}∪{c!τ | c ∈
C[p]}; in particular, τ is no longer an action, but a message that can be sent and
received. We show that S and S ′ are equivalent, obtaining the following result.

Proposition 1. Let T be a weakly-connected topology with α channels, of which
β can be tested for emptiness. For every system of communicating tick automata
S with topology T , we can produce, in linear time, an equivalent system of com-
municating counter automata S ′ with the same topology T , containing α coun-
ters, of which β can be tested for zero.

While the proposition above holds for arbitrary weakly-connected topologies,
it yields counter automata with channels, which are undecidable in general. To

88 L. Clemente et al.

0 1dj !test

τ

dj !wait

p

q1

qm

r1

rn

c1

cm

d1

dn

102

ci?wait

τ

ci == ε

ci?test

Fig. 1. Simulation of a counter automaton by a system of communicating tick au-
tomata: Tick automata for rj (left) and qi (right), Topology (middle)

avoid undecidability due to communication, we need to forbid cycles (either di-
rected or undirected) in the topology. It has been shown that, on polytrees4,
runs of communicating processes (even infinite-state) can be rescheduled as to
satisfy the so-called eagerness requirement, where each transmission is immedi-
ately followed by the matching reception [18]. Their argument holds also in the
presence of emptiness tests, since an eager run cannot disable c == ε transitions
(eager runs can only make the channels empty more often). Thus, by restricting
to eager runs, communication behaves just as a rendezvous synchronization, and
we obtain a global counter automaton by taking the product of all component
counter automata.

Theorem 1. For every polytree topology T with α channels, of which β can be
tested for emptiness, the reachability problem for systems of communicating tick
automata with topology T is reducible, in linear time, to the reachability problem
for products of (non-communicating) counter automata, with overall α counters,
of which β can be tested for zero.

From counter automata to tick automata. We reduce the reachability problem for
(non-communicating) counter automata to the reachability problem for systems
of communicating tick automata with star topology. Formally, a topology T =
〈P,C,E〉 is called a star topology if there exist two disjoint subsets Q,R of P and
a process p in P \(Q∪R) such that P = {p}∪Q∪R and C = (R×{p})∪({p}×Q).
The idea is to simulate each counter with a separate channel, thus the number
of counters fixes the number of channels in T . However, our reduction is uniform
in the sense that it works independently of the exact arrangement of channels
in T , which we take not to be under our control. W.l.o.g., we consider counter
automata where all actions are counter operations (i.e., Δ ⊆ L× Op(X)× L).

For the remainder of this section, we consider an arbitrary star topology T =
〈P,C,E〉 with set of processes P = {p, q1, . . . , qm, r1, . . . , rn}, where m,n ∈ N,
and set of channels C = {p} × {q1, . . . , qm} ∪ {r1, . . . , rn} × {p} and E = C.
This topology is depicted in Figure 1 (middle). Note that we allow the limit cases
m = 0 and n = 0. To simplify the presentation, we introduce shorter notations
for the channels of this topology: we define ci = (p, qi) and dj = (rj , p) for every
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

4 A polytree is a weakly-connected graph with neither directed, nor undirected cycles.

Reachability of Communicating Timed Processes 89

Let C = 〈L,LI , LF , X ∪ Y,Δ〉 be a counter automaton with m+ n counters,
namely X = {x1, . . . , xm} and Y = {y1, . . . , yn}. The counters are split into X
and Y to reflect the star topology T , which is given a priori. We build, from C, an
equivalent system of communicating tick automata S with topology T . Basically,
the process p simulates the control-flow graph of the counter automaton, and the
counters xi and yj are simulated by the channels ci and dj , respectively. In order
to define S, we need to provide its message alphabet and its tick automata, one
for each process p in P . The message alphabet is M = {wait, test}. Actions
performed by processes in P are either communication actions or the delay
action τ . Processes rj ’s are assigned the tick automaton of Figure 1 (left), and
processes qi’s are assigned the tick automaton of Figure 1 (right). Intuitively,
communications on wait messages are loosely synchronized using the τ actions
in qi and rj , so that p can control the rate of their reception and transmission.

We now present the tick automaton Ap. As mentioned above, the control-flow
graph of C is preserved by Ap, so we only need to translate counter operations
of C by communication actions and τ actions. Each counter operation of C is
simulated by a finite sequence of actions in Σp. To simplify the presentation,
we directly label transitions of Ap by words in (Σp)∗. The encoding of counter
operations is given by the mapping η from Op(X∪Y) to (Σp)∗ defined as follows:

η(xi++) = ci!wait η(xi--) = (ch!wait)1≤h≤m,h
=i · τ · (dk?wait)1≤k≤n
η(yj--) = dj?wait η(yj++) = (ch!wait)1≤h≤m · τ · (dk?wait)1≤k≤n,k
=j
η(xi==0) = ci!test η(yj==0) = (dj == ε) · (dj?test)

where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We obtain Ap from C by replacing each
counter operation by its encoding. Observe that these replacements require the
addition of a set S

p
� of fresh intermediate states to implement sequences of ac-

tions. Formally, Ap is the tick automaton Ap = 〈L∪Sp
� , LI , LF , Σp, {
 η(op)−−−→
′ |

(
, op,
′) ∈ Δ}〉. This completes the definition of the system of communicating
tick automata S = 〈T ,M, {τ}, (Ap)p∈P 〉.

Let us show that �C� has a run if and only if �S� has a run. We only explain
the main ideas behind this simulation of C by S. The number of wait messages
in channels ci and dj encodes the value of counters xi and yj , respectively. So,
incrementing xi amounts to sending wait in ci, and decrementing yj amounts
to receiving wait from dj . Both actions can be performed by p. Decrementing xi
is more involved, since p cannot receive from the channel ci. Instead, p performs
a τ action in order to force a τ action in qi, hence, a receive of wait by qi.
But all other processes also perform the τ action, so p compensates (see the
definition of η(xi--)) in order to preserve the number of wait messages in the
other channels. The simulation of yj++ by η(yj++) is similar. Let us now look
at zero test operations. When p simulates xi==0, it simply sends test in the
channel ci. This message is eventually received by qi since all channels must be
empty at the end of the simulation. The construction guarantees that the first
receive action of qi after the send action ci!test of p is the matching receive
ci?test. This means, in particular, that the channel is empty when p sends test
in ci. The same device is used to simulate a zero test of yj , except that the roles

90 L. Clemente et al.

of p and its peer (here, rj) are reversed. Clearly, channels that need to be tested
for emptiness are those encoding counters that are tested for zero. We obtain
the following theorem.

Theorem 2. Let T be an a priori given star topology with α channels, of which
β can be tested for emptiness. The reachability problem for (non-communicating)
counter automata with α counters, of which β can be tested for zero, is reducible,
in linear time, to the reachability problem for systems of communicating tick
automata with topology T .

Decidability and Complexity Results for Communicating Tick Automata. Thanks
to the mutual reductions to/from counter automata developed previously, we
may now completely characterize which topologies (not necessarily weakly-
connected) have a decidable reachability problem, depending on exactly which
channels can be tested for emptiness. Intuitively, decidability holds even in the
presence of multiple emptiness tests, provided that each test appears in a differ-
ent weakly-connected component.

Theorem 3 (Decidability). Given a topology T , the reachability problem for
systems of communicating tick automata with topology T is decidable if and only
if T is a polyforest5 containing at most one testable channel in each weakly-
connected component.

Proof. For one direction, assume that the reachability problem for systems of
communicating tick automata with topology T is decidable. The topology T
is necessarily a polyforest, since the reachability problem is undecidable for
non-polyforest topologies even without ticks [23,21]. Suppose that T contains
a weakly-connected component with (at least) two channels that can be tested
for emptiness. By an immediate extension of Theorem 2 to account for the undi-
rected path between these two channels, we can reduce the reachability problem
for two-counter automata to the reachability problem for systems of commu-
nicating tick automata with topology T . Since the former is undecidable, each
weakly-connected component in T contains at most one testable channel.

For the other direction, assume that T is a polyforest with at most one testable
channel in each weakly-connected component, and let S be a system of com-
municating tick automata with topology T . Thus, S can be decomposed into
a disjoint union of independent systems S0,S1, . . . ,Sn, where each Sk has an
undirected tree topology containing exactly one testable channel. But we need
to ensure that the Sk’s perform the same number of ticks. By (the construction
leading to) Theorem 1, each Sk can be transformed into an equivalent counter
automaton Ck (by taking the product over all processes in Sk), where exactly
one counter, let us call it xk, can be tested for zero. We may suppose, w.l.o.g.,
that the counters of C0, . . . , Cn are disjoint. Moreover, Ck can maintain, in an
extra counter yk, the number of ticks performed by Sk. We compose the counter
machines C0, . . . , Cn sequentially, and check, at the end, that y0 = · · · = yn. Since

5 A topology T is a polyforest if it is a directed acyclic graph with no undirected cycle.

Reachability of Communicating Timed Processes 91

all counters must be zero in final configurations, this check can be performed by
adding, on the final state, a loop decrementing all the yk’s simultaneously. The
construction guarantees that the resulting global counter machine C is equivalent
to S. However, C contains zero tests on many counters: x0, . . . , xn. Fortunately,
these counters are used one after the other, and they are zero at the beginning
and at the end. Therefore, we may reuse x0 in place of x1, . . . , xn. We only
need to check that x0 is zero when switching from Ck to Ck+1. Thus, we have
reduced the reachability problem for systems of communicating tick automata
with topology T to the reachability problem for counter automata where only
one counter can be tested for zero. As the latter is decidable [24,11], the former
is decidable, too.

When no test is allowed, we obtain a simple characterization of the complexity
for polyforest topologies. A topology T =〈P,C,E〉 is test-free if E=∅.

Corollary 1 (Complexity). The reachability problem for systems of commu-
nicating tick automata with test-free polyforest topologies has the same complexity
as the reachability problem for counter automata without zero tests (equivalently,
Petri nets).

Remark 1. Even though global synchronization makes communicating tick au-
tomata more expressive than CFSMs, our characterization shows that they are
decidable for exactly the same topologies (polyforest). However, while reacha-
bility for CFSMs is Pspace-complete, systems of communicating tick automata
are equivalent to Petri nets, for which reachability is ExpSpace-hard [22] (the
upper bound being a long-standing open problem).

4 Decidability of Communicating Timed Automata

In this section, we consider communicating timed automata, which are commu-
nicating timed processes synchronizing over the dense delay domain D = R≥0.
We extend the decidability results for tick automata of Section 3 to the case of
timed automata. To this end, we present mutual, topology-preserving reductions
between communicating tick automata and communicating timed automata. We
first introduce the latter model.

Communicating Timed Automata. A timed automaton B = 〈L,LI , LF , X,Σ,Δ〉
is defined by a finite set of locations L with initial locations LI ⊆ L and final
locations LF ⊆ L, a finite set of clocks X , a finite alphabet Σ and a finite set
Δ of transitions rules (
, σ, g, R,
′) where
,
′ ∈ L, σ ∈ Σ, the guard g is a
conjunction of constraints x#c for x ∈ X , # ∈ {<,≤,=,≥, >} and c ∈ N, and
R ⊆ X is a set of clocks to reset.

The semantics of B is given by the timed process �B� = 〈S, SI , SF , A,→〉,
where S = L × RX≥0, SI = LI × {λx. 0}, SF = LF × {λx. 0}, A = Σ ∪ R≥0

is the set of actions, and there is a transition (
, v)
d−→ (
, v′) if d ∈ R≥0

and v′(x) = v(x) + d for every clock x, and (
, v)
σ−→ (
′, v′) if there exists

92 L. Clemente et al.

a rule (
, σ, g, R,
′) ∈ Δ such that g is satisfied by v (defined in the natu-
ral way) and v′(x) = 0 when x ∈ R, v′(x) = v(x) otherwise. We decorate a

path (
0, u0)
a0,t0−−−→ (
1, u1)

a1,t1−−−→ · · · (an, un) in �B� with additional timestamps
ti =

∑
{aj | j = 0, . . . , i − 1 and aj ∈ R≥0}. Note that we require clocks to

be zero in final configurations, as this simplifies the forthcoming construction
from tick automata to timed automata. It can be implemented by duplicating
final locations, and by resetting all clocks when entering the new final locations.
Without loss of generality, we do not consider location invariants as they can be
encoded in the guards. To ensure that the invariant of the last state in a run
is satisfied, we duplicate the final locations and we add an edge guarded by the
invariant, to the new accepting copy. Combining the two constructions, we get
that the invariant in the final configuration is satisfied as the clocks have value
zero in accepting configurations.

A system of communicating timed automata is a system of communicating
timed processes S = 〈T ,M,R≥0, (�Bp�)p∈P 〉 where each Bp is a timed automa-
ton. Note that each timed automaton has access only to its local clocks. By
Definition 1, each timed automaton performs communicating actions in Apcom
and synchronizes with all the other processes over delay actions in R≥0.

(B, 0)
g ∧ (t = 0)

(B, 1)
g ∧ (0<t<1)

t = 0, τ

t = 1, τ, t := 0

0 1
a1a2 b1a3 b2

a0b0τ τb3a4τ

0 1
a1
a2
a3 b1

b2

Ip Iqa0b0τ τa4b3τ

Fig. 2. From timed to tick automata: instrumentation of a timed automaton B with
τ -transitions (left), addition of τ ’s along a run (middle) and rescheduling of a run
(right)

From Timed Automata to Tick Automata. On test-free acyclic topologies, we
show a topology-preserving reduction from communicating timed to communi-
cating tick automata. We insist on a reduction that only manipulates processes
locally, thus preserving the topology. The absence of emptiness tests on the
channels enables such a modular construction.

Näıvely, one would just apply the classical region construction to each process
[9]. However, while this preserves local reachability properties, it does not re-
spect the global synchronization between different processes. While quantitative
synchronization cannot be obtained by locally removing dense time, a qualitative
synchronization suffices in our setting. We require that all processes are either
at the same integer date k ∈ N, or in the same open interval (k, k + 1). This
suffices because, at integer dates (in fact, at any time-point), any interleaving
is allowed, and, in intervals (k, k + 1), we can reschedule all processes s.t., for
every channel c = (p, q), all actions of p occur before all actions of q (cf. the
Rescheduling Lemma below). The latter property ensures the causality between
transmissions and receptions.

Reachability of Communicating Timed Processes 93

Qualitative synchronization is achieved by forcing each automaton Bp to per-
form a synchronizing tick action τ at each date k and at each interval (k, k+1).
See Figure 2 on the left, where Bp is split into two copies (Bp, 0) and (Bp, 1): Ac-
tions occurring on integer dates k are performed in (Bp, 0), and those in (k, k+1)
happen in (Bp, 1). This is ensured by adding a new clock t and τ -transitions
that switch from one mode to the other. Formally, the τ-instrumentation of
B = 〈L,LI , LF , X,Σ,Δ〉 is the timed automaton Instr(B, τ) = 〈L × {0, 1}, LI ×
{1}, F × {0, 1}, X ∪ {t}, Σ ∪ {τ}, Δ′〉, where t �∈ X and Δ′ is defined by:

(
, 0)
a,(g∧t=0),R−−−−−−−−→ (
′, 0) and (
, 1)

a,(g∧0<t<1),R−−−−−−−−−−→ (
′, 1) for all rules

a,g,R−−−→
′ in

Δ, and (
, 0)
τ,t=0,∅−−−−−→ (
, 1) and (
, 1)

τ,t=1,{t}−−−−−−→ (
, 0) for all locations
 ∈ L.
Finally, we obtain an equivalent system of tick automata by applying the

exponential region construction to each instrumented process.

Theorem 4. Let T be a test-free acyclic topology. For every system of communi-
cating timed automata S = 〈T ,M,R≥0, (�Bp�)p∈P 〉 with topology T , we can pro-
duce, in exponential time, an equivalent system of communicating tick automata
S ′ = 〈T ,M, {τ}, (Ap)p∈P 〉 over the same topology T , where the tick automaton
Ap is obtained by applying the region graph construction to Instr(Bp, τ).

One direction of the equivalence between S and S ′ is immediate, since every
run in S induces a run in S ′ by just inserting τ actions in the right position.
For the other direction, let ρ′ be a run of S ′, and we show how to build a
corresponding run ρ of S. We have to schedule all the actions in ρ′ on timestamps
that are consistent with the guards in S and that preserve dependencies between
transmissions and receptions of messages. Consider a channel c = (p, q) without
emptiness test. If p and q are untimed processes, it is always possible to first
schedule transmissions of p, and then receptions of q. The Rescheduling Lemma
below ensures the same for timed processes. This is depicted in Figure 2 in the
middle (before rescheduling) and on the right (after rescheduling) where the a’s
are emissions of p and the b’s are receptions of q.

Lemma 1 (Rescheduling Lemma). Let B be a timed automaton, and I ⊆
(0, 1) an open interval. Then, every run of B (
0, v0)

a0,t0−−−→ · · · (
n, vn) can be
rescheduled such that integral timestamps ti ∈ N are kept the same, and non-
integral timestamps ti ∈ (k, k + 1) belong to k + I.

Intuitively, the lemma above allows us to restrict non-integer timestamps in
(k, k+1) to occur in a predefined sub-interval I+k. Let us first see how this helps
in constructing ρ′. To each process p, we associate an open interval Ip ⊆ (0, 1),
such that, for every channel (p, q), Ip and Iq are disjoint, and Ip comes before
Iq. This is always possible on acyclic topologies. Then, all actions of process p
in (k, k + 1) are rescheduled to occur in k + Ip (according to the Rescheduling
Lemma), which ensures causality between transmissions and receptions. Finally,
the τ actions added by instrumentation tell, for each action performed by process
p in ρ′, whether it should be scheduled at an integer date k, or in k + Ip.

94 L. Clemente et al.

Remark 2. Our reduction is incorrect in the presence of emptiness tests. There
are essential difficulties in rescheduling senders and receivers in fixed intervals,
as emptiness tests introduce a sort of circular dependency and seem to require
unboundedly many intervals.

We now comment about the correctness of the Rescheduling Lemma. Resets and
guards in a timed automaton allow to enforce minimal and/or maximal delays
between timestamps on a path. Since clocks are compared to integers only, it
suffices to just distinguish between integral and non-integral dates. While for
closed guards like x ≤ 1 a non-integral time-point t ∈ (0, 1) would suffice to
represent all non-integral dates, to accommodate open guards like x < 1 we
need a dense interval I ⊆ (0, 1). The following characterization of decidable
test-free topologies follows from Theorems 3 and 4.

Theorem 5 (Decidability). Given a test-free topology T , the reachability prob-
lem for systems of communicating timed automata with topology T is decidable
if and only if T is a polyforest.

Remark 3. While the reachability problem is known to be decidable for a system
of two communicating timed automata with only one channel and emptiness
test [20], that proof does not preserve the topology and it looks hardly adaptable
to arbitrary polyforest topologies.

From tick automata to timed automata. Given a system of communicating tick
automata S, we produce an equivalent system of communicating timed automata
S ′, over the same topology. The synchronization on τ ’s is easily simulated using
clocks in S ′ by ensuring that all the processes elapse 1 time unit exactly when
they (synchronously) perform a τ in S. Thus, every run in S has a corresponding
run in S ′. For the converse to hold, we have to make sure that for every run of
S ′, all the processes perform the same number of τ ’s on the corresponding run
of S. This is ensured since we require clocks to be zero at the end of accepting
runs, thus preventing time from elapsing on final locations.

The simple topology p −→ q −→ r is known to be undecidable when both
channels can be tested for emptiness [20]. Thanks to Theorem 3, we obtain
generalized undecidability for every weakly-connected topology containing at
least two testable channels.

Theorem 6 (Undecidability). Given a weakly-connected topology T with two
testable channels, the reachability problem for systems of communicating timed
automata with topology T is undecidable.

5 Conclusions and Future Work

We have studied the decidability and complexity of communicating timed pro-
cesses. In discrete time, we give a complete characterization of decidable topolo-
gies with emptiness tests, as well as a tight connection with Petri nets in the test-
free case. In dense time, we prove decidability for polyforest test-free topologies,

Reachability of Communicating Timed Processes 95

and we generalize the undecidability results of [20] to arbitrary weakly-connected
topologies containing two testable channels. We leave open whether one can ob-
tain, in the presence of emptiness tests, the same characterization as in discrete
time. We conjecture that this is possible, although the techniques used here do
not seem to easily extend to deal with emptiness tests. Finally, as another di-
rection for future work one can study richer models where processes are allowed
to send timestamps or clocks along channels, in the spirit of [1].

Acknowledgements. The authors wish to thank Jérôme Leroux, Anca Muscholl,
and Igor Walukiewicz for helpful discussions. We also thank the anonymous ref-
erees for their useful comments and suggestions.

References

1. Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In:
FSTTCS. LIPIcs (2012)

2. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
LICS, pp. 35–44 (2012)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

4. Abdulla, P.A., Nylén, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

5. Abdulla, P.A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the Veri-
fication of Timed Ad Hoc Networks. In: Fahrenberg, U., Tripakis, S. (eds.) FOR-
MATS 2011. LNCS, vol. 6919, pp. 256–270. Springer, Heidelberg (2011)

6. Akshay, S., Bollig, B., Gastin, P.: Automata and Logics for Timed Message Se-
quence Charts. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855,
pp. 290–302. Springer, Heidelberg (2007)

7. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
Timed Automata with Independently Evolving Clocks. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Hei-
delberg (2008)

8. Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking time-
constrained scenario-based specifications. In: FSTTCS. LIPIcs, vol. 8, pp. 204–215
(2010)

9. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
10. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of Different

Semantics for Time Petri Nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11562948_/23

11. Bonnet, R.: The Reachability Problem for Vector Addition System with One Zero-
Test. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 145–
157. Springer, Heidelberg (2011)

12. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

13. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication.
Information and Computation 202(2), 166–190 (2005)

http://dx.doi.org/10.1007/11562948_/23

96 L. Clemente et al.

14. Chambart, P., Schnoebelen, P.: Mixing Lossy and Perfect Fifo Channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008)

15. Chandrasekaran, P., Mukund, M.: Matching Scenarios with Timing Constraints.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 98–112.
Springer, Heidelberg (2006)

16. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc
Networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

17. Gruber, H., Holzer, M., Kiehn, A., König, B.: On Timed Automata with Discrete
Time – Structural and Language Theoretical Characterization. In: De Felice, C.,
Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 272–283. Springer, Heidelberg
(2005)

18. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. Logical Methods in Comp. Sci. 8(3:23), 1–20 (2012)

19. Ibarra, O.H., Dang, Z., Pietro, P.S.: Verification in loosely synchronous queue-
connected discrete timed automata. Theor. Comput. Sci. 290(3), 1713–1735 (2003)

20. Krcal, P., Yi, W.: Communicating Timed Automata: The More Synchronous, the
More Difficult to Verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 249–262. Springer, Heidelberg (2006)

21. La Torre, S., Madhusudan, P., Parlato, G.: Context-Bounded Analysis of Con-
current Queue Systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

22. Lipton, R.J.: The Reachability Problem Requires Exponential Space. Department
of Computer Science, Yale University (1976)

23. Pachl, J.K.: Reachability problems for communicating finite state machines. Re-
search Report CS-82-12, University of Waterloo (May 1982)

24. Reinhardt, K.: Reachability in petri nets with inhibitor arcs. ENTCS 223, 239–264
(2008)

Modular Bisimulation Theory

for Computations and Values

Martin Churchill and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK
{m.d.churchill,p.d.mosses}@swansea.ac.uk

Abstract. For structural operational semantics (SOS) of process alge-
bras, various notions of bisimulation have been studied, together with
rule formats ensuring that bisimilarity is a congruence. For program-
ming languages, however, SOS generally involves auxiliary entities (e.g.
stores) and computed values, and the standard bisimulation and rule
formats are not directly applicable.

Here, we first introduce a notion of bisimulation based on the dis-
tinction between computations and values, with a corresponding liberal
congruence format. We then provide metatheory for a modular variant of
SOS (MSOS) which provides a systematic treatment of auxiliary entities.
This is based on a higher order form of bisimulation, and we formulate
an appropriate congruence format. Finally, we show how algebraic laws
can be proved sound for bisimulation with reference only to the (M)SOS
rules defining the programming constructs involved in them. Such laws
remain sound for languages that involve further constructs.

Keywords: structural operational semantics, programming languages,
congruence formats, Modular SOS, higher-order bisimulation.

1 Introduction

Background. Structural operational semantics (SOS) [16] is a well-established
framework for specifying computational behaviour, where the behaviour of pro-
grams is modelled by labelled transition systems, defined inductively by axioms
and inference rules. The metatheory of SOS provides various notions of bisim-
ulation [7,15] for proving behavioural equivalence. Bisimilarity is guaranteed to
be a congruence when the rules used to define transition relations are restricted
to particular formats, e.g. tyft/tyxt [3].

SOS is particularly suitable for specifying process calculi such as CCS: the
states of the transition system are simply (closed) process terms, and the labels
on transitions represent actions corresponding to steps of process execution.
For programming languages, however, transition relations often involve auxil-
iary entities as arguments, e.g. stores (recording the values of imperative vari-
ables before and after transitions) and environments (determining the bindings
of currently visible identifiers); they also use terminal states to represent com-
puted values. These extra features entail that rules do not conform to the usual
congruence formats.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 97–112, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 M. Churchill and P.D. Mosses

The need to specify auxiliary entities in SOS rules also undermines their
modularity, which can be a significant pragmatic problem for larger languages.
Modular SOS (MSOS) [8] is a simple variant of SOS where auxiliary entities
are incorporated in labels. The notation used for label terms in MSOS elimi-
nates references to stores and environments (etc.) in most rules. MSOS provides
foundations for the component-based approach to semantics [9] currently being
developed by the PLanCompS project (www.plancomps.org).

Contribution. In this paper, we introduce a notion of bisimulation for MSOS
and a corresponding congruence format supporting auxiliary entities and com-
putations (processes) which compute values. This work stands on the shoulders
of previous work on congruence formats used for the SOS of process calculi, but
develops it in a direction more suitable for use with programming languages.

Our notion of bisimulation is higher-order, and tailored for use with MSOS;
in particular, so-called writeable label components (e.g. the resulting store, or
a thrown exception) may vary up to the bisimulation relation in the ‘step’. We
provide an appropriate rule format – an enhancement of the well-studied tyft
format [3] – which ensures that bisimilarity is a congruence.

In our setting, there is a strict dichotomy between value terms (which may
be inspected) and more general computational terms (which may be run, and
their behaviour observed) following e.g. [6]. In particular, the treatment of values
is disciplined with fixed built-in rules, and our definition of bisimilarity ensures
that bisimilar values have bisimilar subterms. We use silent rewrites to deal with
operations on values. This mechanism also allows unit laws to hold for our notion
of bisimulation, avoiding the need for weak versions of bisimulation.

MSOS rules for a particular construct need only mention the auxiliary entities
relevant to that construct, allowing modular specifications. We describe a com-
plementary notion of modular bisimulation, allowing laws to be shown just with
respect to the rules relevant to the particular constructs mentioned in that law.
This notion of bisimulation identifies when a law is robust and cannot be broken
by the presence or absence of other constructs that might be in the language.
Thus, we can specify the operational semantics of programming languages incre-
mentally, proving laws which remain valid (and a congruence) as the language
is extended.

Related Work. There has been a variety of work on notions of bisimulation and
congruence formats, reviewed in [14]. No formats in this review, or any other we
are aware of, allow value terms as arguments in the source of the conclusion.

Our notion of higher-order bisimulation for MSOS generalises stateless bisim-
ulation from [13] (but we allow information flow between the data and process
components). Like the higher-order PANTH format of [12], labels may vary up
to bisimulation in the step. However, the distinction between readable and write-
able MSOS label components admits a much simpler rule format.

http://www.plancomps.org

Modular Bisimulation Theory for Computations and Values 99

We can also compare it to applicative bisimulation [4], in which bisimilar
abstractions must yield bisimilar outputs for bisimilar inputs. In our framework,
bindings and abstractions can be dealt with using an environment, which is ‘just
another auxiliary entity’ and treated as such. Our notion of bisimulation does
not explicitly require that bisimilar environments yield bisimilar computation
results, but in fact this is a consequence of our rule format.

Outline. The rest of this paper is arranged as follows: In Sect. 2, we introduce a
notion of bisimulation and congruence format focusing on the distinction between
values and computations. In Sects. 3 and 4, we lift our notion of bisimulation
to the higher-order setting of MSOS, and define a liberal congruence format for
bisimulation in MSOS. In Sect. 5, we discuss how we can formulate and prove
robust bisimulations, which continue to hold as additional constructs are added
to the language. In Sect. 6, we consider further directions. Full proofs of results
in this paper are available at http://www.plancomps.org/churchill2013a/.

2 Value-Computation Bisimulation

Structural operational semantics uses terms over a first-order algebraic signature
as the states and labels of a transition system. A key distinction at the heart
of our notions of equivalence is between computational terms and value terms.
Values consist of structure that can be interrogated, while computational terms
generally have behaviour. An appropriate slogan from [6] is that values are, while
computations do. Examples of values include Booleans, integers, and closed func-
tion abstractions. Computations model the potential behaviour of expressions,
statements, declarations, processes and entire programs. This distinction is im-
portant in programming languages, c.f. call-by-name vs. call-by-value in Algol
or Scala, corresponding to whether functions take computations or values as
parameters.

From the point of view of program (term) equivalence, the distinction is also
important. In particular, equivalences must be sound with respect to observa-
tional tests (contexts). Contexts, as with programs in general, must be able to
interrogate values – for example, true must be distinguishable from false. On the
other hand, it must not be possible for a program to be able to interrogate the
structure of a computational term such as ‘if true then C else D’, for then it
could distinguish it from C and equivalence would reduce to syntactic identity.
Thus, only values may be interrogated. But note that values may also contain
computational terms as subexpressions. For example, a function value may also
contain a body (a computational term) and a closing environment (a value term,
which may include computations as substructure).

In this section we formalise this distinction and the corresponding notion of
equivalence, and define a simple bisimulation congruence format.

http://www.plancomps.org/churchill2013a/

100 M. Churchill and P.D. Mosses

2.1 Value-Computation Transition Systems

The terms we consider are freely generated from an algebraic signature. Rather
than quotienting by an equational congruence, we equip our systems with a
rewriting relation ⇒. This represents internal silent functional transitions. Un-
like a transition under a distinguished silent label τ , ⇒ is context insensitive (a
precongruence). This can be used to avoid polluting traces with silent steps – a
goal shared by Plotkin in [16] – and it allows unit laws to hold up to strong bisim-
ulation. Rules can also be kept simple – for example, we can define sequencing

using s
l−→s′

seq(s,t)
l−→seq(s′,t)

and seq(skip, s) ⇒ s where skip represents successful ter-

mination of a command. The relation ⇒ is asymmetric, and we intend that the
RHS is simpler than the LHS – this keeps the search space small in bisimulation
proofs and animation.

Our notion of value is derived from that of a value constructor, as in [4].

Definition 1 (value-computation signature). A value-computation signa-
ture Σ consists of a set of constructors CΣ (function symbols – f ,g,. . .), each
with an arity arΣ : CΣ → N, and a set of value constructors VCΣ ⊆ CΣ . We
let TΣ denote the set of (closed) terms (s,t,. . .), and VΣ ⊆ TΣ the set of value
terms whose outermost constructor is in VCΣ.

A precongruence with respect to Σ is a reflexive transitive relation R such that
if f ∈ CΣ with ar(f) = n and si R ti for 1 ≤ i ≤ n then f(s1, . . . , sn) R
f(t1, . . . , tn). For symmetric relations, we may also call such an R a congruence.

Definition 2 (value-computation transition system).A value-computation
transition system is a tuple (Σ,L,→,⇒) where Σ is a value-computation signa-
ture, L a set of labels,→ ⊆ TΣ ×L×TΣ a transition relation and⇒ ⊆ TΣ ×TΣ
a rewriting relation such that:

– ⇒ is a precongruence

– s
l−→ s′ implies s /∈ VΣ (value terms have no computational behaviour)

– s ⇒ s′ with s = v(s1, . . . , sn) for v ∈ VCΣ implies s′ = v(s′1, . . . , s
′
n) with

si ⇒ s′i for 1 ≤ i ≤ n (rewriting preserves value constructors)

– If s⇒ s1, s1
l−→ s2 and s2 ⇒ s′ then s l−→ s′ (saturation).

A term made entirely out of value constructors is a ground value. Ground values
are just as they appear: pure syntactic values, which can be constructed and
inspected. The meaning of computational terms in TΣ − VΣ is determined by
the → and ⇒ relations, representing their behaviour. Non-ground values can be
deconstructed to yield computational terms, which may have behaviour.

A value-computation transition system will typically be specified by a set of
inductive rules. If Σ is a value-computation signature, let OTΣ denote the set
of open Σ-terms, constructed inductively from term variables (x, y, . . .), value
variables (v1, v2, . . .) and constructors in CΣ .

Modular Bisimulation Theory for Computations and Values 101

Definition 3 (value-computation specification). A value-computation
specification consists of a tuple (Σ,L,D) where Σ is a value-computation sig-

nature, L a label set, and D a set of rules over formulas f(s1, . . . , sn)
l−→ s′

or f(s1, . . . , sn) ⇒ s′ with si, s
′ ∈ OTΣ and f /∈ VC. These rules generate

a transition system over TΣ and L inductively, after being extended with rules
for reflexivity, precongruence, transitivity and saturation (below), where value
variables range over value terms.

x⇒ x
x1 ⇒ y1 · · · xn ⇒ yn

f ∈ CΣ , arΣ(f) = n
f(x1, . . . , yn)⇒ f(x1, . . . , yn)

x⇒ y y ⇒ z
x⇒ z

x⇒ x1 x1
l−→ y1 y1 ⇒ y

x
l−→ y

Each such specification generates a value-computation transition system.

Example 4. We consider a value-computation system of basic constructs. The
signature Σ contains binary sequencing seq; a ternary conditional cond; nullary
constants true, false and skip; operations printl for l ∈ {a, b}; and unary opera-
tions thunk for wrapping computations as values, and force for forcing evaluation
of a thunk. The value constructors are true, false, skip, and thunk. For labels,
L = {a, b}. The rules are given in Fig. 1.

x
l−→ x′

cond(x, y1, y2)
l−→ cond(x′, y1, y2)

(1)

cond(true, y1, y2)⇒ y1 (2)

cond(false, y1, y2)⇒ y2 (3)

printa
a−→ skip (4)

printb
b−→ skip (5)

x
l−→ x′

seq(x, y)
l−→ seq(x′, y)

(6)

seq(skip, y)⇒ y (7)

x
l−→ x′

force(x)
l−→ force(x′)

(8)

force(thunk(x))⇒ x (9)

Fig. 1. Operational rules for Example 4

We next introduce our notion of equivalence for value-computation transition
systems. This consists of extending the usual bisimulation step condition with
two further cases dealing with rewriting and values. For example, if two values are
bisimilar, the outermost value constructor must be the same (up to rewriting),
and the arguments pointwise bisimilar.

Definition 5 (value-computation bisimulation). A value-computation
bisimulation (or vc-bisimulation) over a given value-computation transition sys-
tem (Σ,L,→,⇒) is a symmetric relation R ⊆ TΣ × TΣ such that

102 M. Churchill and P.D. Mosses

1. If s R t and s
l−→ s′ then ∃t′ with s′ R t′ and t l−→ t′.

2. If s R t and s⇒ s′ then ∃t′ with s′ R t′ and t⇒ t′.
3. If v(s1, . . . , sn) R t with v ∈ VC, then t ⇒ v(t1, . . . , tn) with si R ti for

1 ≤ i ≤ n.

Two terms s and t are value-computation bisimilar, written s ≈vc t, if there
exists a value-computation bisimulation R with s R t.

In Example 4, for any terms s, t, r we have seq(seq(s, t), r) ≈vc seq(s, seq(t, r)),
and also thunk(seq(seq(s, t), r)) ≈vc thunk(seq(s, seq(t, r))). The use of rewrites
⇒ also allows us to prove unit laws up to bisimulation, which usually only hold
up to weak bisimulation: for example, seq(skip, s) ≈vc s.

2.2 Congruence Format

We next define a format guaranteeing that value-computation bisimilarity is a
congruence.

Definition 6 (pattern). A pattern is a term constructed inductively from vari-
ables and value constructors such that each variable appears at most once.

Definition 7 (value-added tyft). A rule is in the value-added tyft format if

it is of the following shape, where each �, �i may be ⇒ or
a−→ for some a.

{si �i ui : i ∈ I}
f(w1, . . . , wn)� t

Here, t, si range over arbitrary open terms; and ui, wj over patterns. Further,
each variable may occur in at most one of ui or wj. A value-computation speci-
fication is in the value-added tyft format if all of its rules are.

By inspecting Fig. 1, we see that Example 4 is in the value-added tyft for-
mat. The restriction of certain subterms to patterns ensures that only value
constructors may be inspected. To see that this is necessary for congruence,
consider any instance of seq(seq(printa, t), r) ≈vc seq(printa, seq(t, r)). Then wi
must be a pattern, as otherwise f defined by f(seq(seq(x, y), z))⇒ true provides
a distinguishing context. Each ui must be a pattern, as otherwise f defined by

x
l−→seq(seq(x,y),z)

f(x)
l−→true

provides a distinguishing context. We require uniqueness of vari-

ables as otherwise g(x, x) ⇒ true, f(x) ⇒ g(x, seq(seq(printa, t), r)) provides a
distinguishing context.

The above format is built on the tyft format of [3], generalised so that ui, wj
may range over patterns rather than just variables. In loc. cit., tyxt rules are also
allowed, where the source of the conclusion is just a variable. We have excluded
this here just to ensure that values do not perform computational steps; if this
is otherwise guaranteed then tyxt rules may be added with congruence intact.

Modular Bisimulation Theory for Computations and Values 103

We next show that the value-added tyft format ensures that bisimilarity is
a congruence. To show our congruence result, we assume that rules are well-
founded: that is, the premises of each rule can be ordered such that variables in
the conclusion of a premise appear in no earlier premise. This restriction was also
required for the tyft/tyxt congruence proof in [3]. It was later shown unnecessary
via a translation in [2]; such a translation should be possible for this result also.

If σ is a partial mapping from variables to terms, we write s[σ] for the substitu-
tion replacing each σ-defined variable x in s by σ(x). If s is an open term, we write
vars(s) for the variables occurring in s. The reflexive congruence closure of a re-
lation R is the least reflexive relation containing R such that s1 R t1, . . . , sn R tn
implies f(s1, . . . , sn) R f(t1, . . . , tn).

Lemma 8. Let r be a pattern and σ a substitution with dom(σ) = vars(r).
Let R′ denote the reflexive congruence closure of a vc-bisimulation R and let
r[σ] R′ t. Then exists τ with dom(τ) = vars(r) such that t ⇒ r[τ] and for each
x, σ(x) R′ τ(x).

Theorem 9. If all rules in a value-computation transition system are defined in
the value-added tyft format and well-founded, then vc-bisimilarity in that system
is a congruence.

Proof. Let R be a vc-bisimulation, and let R′ denote the reflexive congruence clo-
sure of R. We will show that R′ is also a vc-bisimulation, and since R′ contains
R we can conclude that vc-bisimilarity is a congruence. To show that R′ is a vc-
bisimulation, we show the three conditions in Definition 5. Conditions 1 and 2 are
shown simultaneously, showing that s � s′ and s R′ t implies there exists t′ with
t � t′ with s′ R′ t′ for any� of the form⇒ or

a−→. The proof proceeds by induc-
tion on the derivation of s� s′ making use of the known rule shape, together with
Lemma 8 for patterns in the targets of premises and source of conclusion. Condition
3 follows immediately from Lemma 8: If s = v(s1, . . . , sn) R

′ t then s = r[σ] where
r = v(x1, . . . , xn) and σ = {xi �→ si}. By the lemma, t⇒ r[τ] with τ = {xi �→ ti}
and si R

′ ti. Then t = v(t1, . . . , tn) as required. ��

3 Modular SOS

In this section, we first recall the differences between Modular SOS (MSOS) [8]
and the original SOS framework [16], explaining howMSOS incorporates auxiliary
entities in labels. We then enrich the MSOS specifications of [8] with the notion of
value, and illustrate our framework by specifying rules for various constructs.

3.1 MSOS Labels

In SOS (and in the value-computation specifications introduced in Sect. 2) the
set of labels can be chosen arbitrarily. In practice, however, when specifying
the semantics of concurrent or reactive processes, labels usually represent emit-
ted signals or events; and when specifying sequential programming languages,

104 M. Churchill and P.D. Mosses

they are often not used at all. Any auxiliary entities, such as environments (ρ)
and stores (σ), are incorporated as sub-terms of states, together with the usual
process terms. For example, a state might be a triple (s, ρ, σ).1

MSOS differs from SOS by incorporating auxiliary entities in labels, instead
of in states. Thus states are simply process terms (including computed values).
Moreover, the set of labels forms a category (with the labels as the morphisms)
and the labels on successive transitions have to be composable. The constraint
of composability is crucial: for instance, it ensures that the environment in the
label does not change between adjacent transitions, and that changes to the store
are single-threaded. There is also a notion of unobservable label, corresponding
to identity morphisms.

Since the various auxiliary entities are (in principle) independent, the label
category is obtained as a product of a component category for each auxiliary
entity. Following [8] we use indexed products, and write a label using ML-style
record value notation as ‘{i1 = t1, . . . , in = tn}’ (the order in which the compo-
nents are listed is insignificant).

Three simple kinds of label component category, identified in [8], are sufficient
to ensure that MSOS is at least as expressive as SOS:

– Read-only (RO): label components are composable only when identical, and
always unobservable.

– Write-only (WO): label components are always composable, and there is a
unique unobservable entity corresponding to an identity morphism.

– Read-write (RW): label components are pairs of entities, (x, x′) is composable
with (y, y′) iff x′ and y are identical, and (x, x′) is unobservable iff x and x′

are identical.

For notational convenience we write labels using an unprimed index for each
read-only component (e.g. env=ρ), a primed index for each write-only compo-
nent (e.g. output′=o), and both an unprimed and a primed index for the two
entities of each read-write component (e.g. store=σ0, store

′=σ1). Formally:

Definition 10 (MSOS labels). A label profile is a triple of disjoint sets L =
(LRO ,LRW ,LWO). The set reads(L) consists of the unprimed elements x ∈ LRO!
LRW . The set writes(L) consists of the primed elements {x′ : x ∈ LWO ! LRW }.
For any set T , the label set L(T) is the set of maps reads(L) ! writes(L) → T .
For a label L ∈ L(T), we write reads(L) and writes(L) for the restriction of L to
reads(L) and writes(L) respectively.
We intend to instantiate T with a set of terms – for example, we can represent
stores and environments as terms by using applicative lists. Accordingly, we will
use σ, ρ, . . . as additional term variables.

3.2 MSOS Specifications

An MSOS specification with respect to a label profile L and set of terms T gen-
erates a transition system specification with states in T and labels in L(T). Such
1 Transitions which do not change ρ are usually written ρ � (s, σ)→ (s′, σ′).

Modular Bisimulation Theory for Computations and Values 105

specifications typically only mention a relevant subset of the label components,
treating ellipses ‘. . .’ as variables ranging over the remaining components, which
may be propagated between premises and conclusion. A dash ‘−’ indicates that
the rest of the label L is unobservable: concretely, if x ∈ LRW then L(x′) = L(x)
and if x ∈ LWO then L(x′) = ιx where ιx is a distinguished nullary constant
associated to x.

Rules may combine labels using composition (◦). A pair of labels (L1, L2) is
composable if for x ∈ LRO , L1(x) = L2(x) and for x ∈ LRW , L1(x

′) = L2(x).
Given a composable pair (L1, L2) the composition L2 ◦ L1 is defined to be:

– For x ∈ LRO , (L2 ◦ L1)(x) = L1(x) = L2(x).
– For x ∈ LWO , (L2◦L1)(x

′) = "x(L1(x
′), L2(x

′)) where "x is a distinguished
binary constructor associated to x. Typically, ("x, ιx) will form a monoid
on a subset of the terms.

– For x ∈ LRW , (L2 ◦ L1)(x) = L1(x) and (L2 ◦ L1)(x
′) = L2(x

′).

In rules, we use label variables (l, ‘. . .’). In a given rule, each label must have
the same set of explicitly mentioned label components E. Labels in that rule
then consist of a map E → OTΣ denoted by a list of equations, followed by a
composition (sequence) of label variables (the empty sequence is denoted ‘−’,
representing an unobservable label).

Definition 11 (MSOS specification). An MSOS specification consists of a
tuple (L, Σ,D,M) where L is a label profile, Σ a value-computation signature,

and D is a set of rules over formulas f(s1, . . . , sn)
l−→ s′ or f(s1, . . . , sn) ⇒ s′

with si, s
′ ∈ OTΣ, f �∈ VCΣ with labels as immediately above. Finally, M spec-

ifies for each x ∈ LWO a nullary ιx ∈ CΣ and binary "x ∈ CΣ. There are
built-in rules for reflexivity, precongruence, transitivity and saturation, consist-
ing of those in Definition 3 in addition to:

x⇒ z y
{x=z,...}−−−−−−→ t′

y
{x=x,...}−−−−−−→ t′

y
{x′=x,...}−−−−−−→ t′ x⇒ z

y
{x′=z,...}−−−−−−→ t′

An MSOS specification generates a value-computation transition system over
L(TΣ) inductively after being extended with the built-in rules, where value vari-
ables range over value terms. Unobservability, composability and composition are
interpreted as described above.

Example 12. In Fig. 2, we give some example constructors and their MSOS rules.
The label profile includes read-only env, write-only exc and output, and read-
writeable store. We include all constructors and rules from Example 4, except
for print, which has been generalised.

We add value constructors for maps (ternary update, nullary empty), lists (bi-
nary cons, nullary nil) and function values (ternary abs). The value abs(x, s, ρ)
denotes a closed function, with formal parameter x, body s, and closing envi-
ronment ρ. We include a set of nullary values I = {x, y, . . .} for identifiers and
imperative variables.

106 M. Churchill and P.D. Mosses

bound(x)
{env=ρ,...}−−−−−−−→ lookup(ρ, x) (10)

y
{...}−−−→ y′

let(x, y, t)
{...}−−−→ let(x, y′, t)

(11)

y
{env=update(ρ,x,v),...}−−−−−−−−−−−−−−−→ y′

let(x, v, y)
{env=ρ,...}−−−−−−−→ let(x, v, y′)

(12)

let(x, v1, v2)⇒ v2 (13)

throw(x)
{exc′=cons(x,nil),−}−−−−−−−−−−−−−→ stuck (14)

x
{exc′=nil,...}−−−−−−−−→ x′

catch(x, z)
{exc′=nil,...}−−−−−−−−→ catch(x′, z)

(15)

x
{exc′=cons(y,nil),...}−−−−−−−−−−−−−→ x′

catch(x, z)
{exc′=nil,...}−−−−−−−−→ apply(z, y)

(16)

catch(v, z)⇒ v (17)

assign(x, v)

{ store = σ,
store′ = update(σ, x, v),−}

−−−−−−−−−−−−−−−−−−−−→ skip
(18)

y
{...}−−−→ y′

assign(x, y)
{...}−−−→ assign(x, y′)

(19)

deref(x)
{store=σ,−}−−−−−−−−→ lookup(σ, x) (20)

print(x)
{output′=cons(x,nil),−}−−−−−−−−−−−−−−−→ skip

(21)

x
{...}−−−→ x′

apply(x, y)
{...}−−−→ apply(x′, y)

(22)

y
{...}−−−→ y′

apply(v, y)
{...}−−−→ apply(v, y′)

(23)

y
{env=update(ρ,x,v),...}−−−−−−−−−−−−−−−→ y′

apply(abs(x, y, ρ), v)
{env=ρ1,...}−−−−−−−−→

apply(abs(x, y′, ρ), v)
(24)

apply(abs(x, v1, ρ), v2)⇒ v1 (25)

lambda(x, y)
{env=ρ,...}−−−−−−−→ abs(x, y, ρ)

(26)

x
l1−→ x′ atomic(x′)

l2−→ v

atomic(x)
l2◦l1−−−→ v

(27)

atomic(v)
{−}−−→ v (28)

append(cons(x, y), z)⇒
cons(x, append(y, z))

(29)

append(nil, x)⇒ x (30)

lookup(μ, j)⇒ v1
i 	= j ∈ I

lookup(update(μ, i, v), j)⇒ v1
(31)

i ∈ I
lookup(update(μ, i, v), i) ⇒ v

(32)

Fig. 2. Operational rules for Example 12

Modular Bisimulation Theory for Computations and Values 107

Additional computational constructors include static bindings (let and bound),
volatile store (assign and deref), functions (lambda and apply) and exceptions
(throw and catch). The term let(x, s, t) binds x to s in t.

We include binary operations lookup and append for maps and lists respec-
tively. Note that lookup(empty, x) is a stuck computational term – this is an
example of how undefinedness can be handled in our setting.

We also include an atomic constructor. The computation atomic(s) runs s and
combines the trace into a single transition. This can be used to block the context
interrupting the trace, e.g. by catching a thrown exception. Note that the first
rule for atomic only applies when (l1, l2) is a composable pair.

We set ιoutput = ιexc = nil and "output = "exc = append.

The notational burden of heavily loaded arrows can be avoided by writing the
MSOS rules using conventional SOS notation, following techniques in [11].

4 Bisimulation Metatheory for MSOS

We next revisit our goal of ensuring that bisimilarity is a congruence, this time in
the MSOS setting. Even though we still generate value-computation transition
systems, the value-added tyft format is of limited use, since it does not allow
information flow between labels and other computational terms in rules (this is
needed in Example 12 for e.g. Rule (12) for let). Note that we cannot allow such
flow arbitrarily: if s1 ≈ s2 is to imply let(x, s1, t) ≈ let(x, s2, t) then t can only
test the env label component up to pointwise bisimilarity.

4.1 Bisimulation in MSOS

We next generalise vc-bisimulation to a higher-order version for the MSOS
setting. In particular, in the step writeable label components may themselves
vary up to bisimulation. This is required, for example, so that s ≈ t implies
assign(x, s) ≈ assign(x, t). Given a relation R, for maps σ and τ we write σ R τ
just if dom(σ) = dom(τ) and for each x ∈ dom(σ), σ(x) R τ(x).

Definition 13 (MSOS bisimulation). Given a value-computation transition
system (Σ,L(TΣ),→,⇒) generated from an MSOS specification, an MSOS
bisimulation is a symmetric relation R ⊆ TΣ × TΣ such that:

1. If s R t and s
L−→ s′ then ∃t′, L′ with s′ R t′, t L′

−→ t′, reads(L′) = reads(L)
and writes(L) R writes(L′).

2. If s R t and s⇒ s′ then ∃t′ with s′ R t′ and t⇒ t′.
3. If v(s1, . . . , sn) R t with v ∈ VCΣ, then t ⇒ v(t1, . . . , tn) with si R ti for

1 ≤ i ≤ n.

Two terms s and t are MSOS bisimilar, written s ≈msos t, if there exists an
MSOS bisimulation R with s R t.

108 M. Churchill and P.D. Mosses

In MSOS rules, usually only a few label components are mentioned explicitly,
while in the above definition all label components are mentioned. However, in
any particular bisimulation proof, one can set L′(i) = L(i) for unmentioned i.

Since vc-bisimulations are also MSOS bisimulations, the associativity and unit
laws for seq hold up to MSOS bisimilarity in Example 12. We can also show
catch(print(v), x) ≈msos print(v), for example. We may seek to prove laws for
state such as seq(assign(x, v), deref(x)) ≈msos seq(assign(x, v), v). However, this
law is not sound with respect to arbitrary contexts. In particular, C[s] may run
one step of computation of s and then roll back the store before continuing.
Instead, we may prove a modified law which blocks interruption of the trace:

atomic(seq(assign(x, v), deref(x))) ≈msos atomic(seq(assign(x, v), v)).

4.2 Congruence Format

We now present a rule format which ensures that MSOS bisimilarity is a con-
gruence. We will need to consider the substructure of labels in rules.

Definition 14 (well-founded MSOS tyft). A rule is in the well-founded
MSOS tyft format if it has the following form:

{si �i ui : i ∈ I}
f(w1, . . . , wn)� t

where premises are ordered and:

– t, si range over arbitrary open terms and ui, wj over patterns.

– �i is either ⇒ or
Li−→ where Li consists of a sequence of equations {l = tl,i}

possibly followed by a label variable. Further, if l is primed then tl,i must be
a pattern.

– � is either ⇒ or
L−→, where L consists of a sequence of equations {l = tl}

possibly followed by a composition of label variables. Each such label variable
must occur in the premise. If label variable X is to the left of label variable
Y in the composition, Y must occur in an earlier premise than X. Further,
if l is unprimed then tl is a pattern.

– The set of variables must be disjoint for ui, wj, tl,i for primed l, tl for
unprimed l. Variables in ui or tl,i for primed l must not appear in an earlier
premise.

An MSOS specification is in the well-founded MSOS tyft format just if all its
rules are.

This follows a discipline of information flow from readable components in the
conclusion to readable components in the premise, to writeable components in
the premise to writeable components in the conclusion. Writeable components
(tl,i and tl for primed l) are treated like additional targets, and readable com-
ponents (tl,i and tl for unprimed l) like additional sources. To see why each tl

Modular Bisimulation Theory for Computations and Values 109

must be a pattern for unprimed l, consider g
{env=update(y,x,thunk(seq(z,w)))}−−−−−−−−−−−−−−−−−−−−−−→ true,

f(y) ⇒ let(x, thunk(y), g) and note that f provides a distinguishing context for
seq(skip, print(true)) ≈msos print(true). To see why each tl,i must be a pattern for

primed l, note that throw(x)
{exn′=cons(seq(z,w),nil),...}−−−−−−−−−−−−−−−−−−→y

f(x)
{exn′=nil,...}−−−−−−−−→true

provides a distinguishing

context for the same equation. The same examples given in Sect. 2.2 show why
the ui, wj must be patterns and why variables may not be shared.

Note that in this format composition expressions and unobservable labels
may only occur in the conclusion of a rule. The restriction on ordering of label
variables in the conclusion ensures that when composition is made explicit, the
pattern restrictions above are satisfied.

The distinction between readable and writeable label components is related
to label arguments in [1] and the notion of volatility from [12]. In each, certain
terms in the label are restricted to be a generalised notion of fresh variable and
replacement of bisimilar terms in this component will lead to bisimilar outputs.

By inspection of Figs. 1 and 2 we see that Example 12 is in MSOS tyft format
(we view the rules for lookup as a family of rules indexed over I). In the rest of
this section we will show that for systems with rules in the well-founded MSOS
tyft format, MSOS bisimilarity is a congruence.

Definition 15 (explicit MSOS tyft). An MSOS specification is in explicit
MSOS tyft format if it is in the well-founded MSOS tyft format and contains no
label variables.

Proposition 16. Each well-founded MSOS tyft system is equivalent to one in
the explicit MSOS tyft format.

Given anMSOS transition system T over label profile L we produce an equivalent
set of rules removing all uses of label variables, exhibiting all information flow
in labels explicitly following the definitions in Sect. 3. We only give an example.
The rules for the atomic constructor are translated as follows:

s
λ1−→ s′ atomic(s′) λ2−→ v

atomic(s)
λ−→ v

atomic(v)
μ−→ v

where

λ1 = {env = ρ, store = σ1, store
′ = σ2, output

′ = α1, exc
′ = η1}

λ2 = {env = ρ, store = σ2, store
′ = σ3, output

′ = α2, exc
′ = η2}

λ = {env = ρ, store = σ1, store
′ = σ3, output

′ = append(α1, α2),
exc′ = append(η1, η2)}

μ = {env = ρ, store = σ, store′ = σ, output′ = nil, exc′ = nil}

Proposition 17. Consider an MSOS specification in explicit MSOS tyft format.
Let R be an MSOS bisimulation over the generated transition system and let R′

denote the reflexive transitive congruence closure of R. Suppose s R′ t. Then:

110 M. Churchill and P.D. Mosses

1. If s = r[σ] with dom(σ) = vars(r) and r is a pattern then there exists τ with
dom(τ) = vars(r) such that t⇒ r[τ] with σ(x) R′ τ(x) for each x ∈ vars(r).

2. If s⇒ s′ and s R′ t then there exists t′ with t⇒ t′ and s′ R′ t′.
3. If s

L−→ s′ and reads(L) R′ trs then there exists t′, tws such that s′ R′ t′,

writes(L) R′ tws and t
L′
−→ t′ for reads(L′) = trs and writes(L′) = tws.

Proof. The proof proceeds by simultaneous induction on R′. Condition 1 corre-
sponds to Lemma 8 but must be proved simultaneously due to the fact that we
also close our relation up to transitivity. For Conditions 2 and 3, we perform an
inner induction on the proof of the transition, exploiting the rule format. ��

Theorem 18. Consider an MSOS specification T in the well-founded MSOS tyft
format. Let R be an MSOS bisimulation and R′ denote the reflexive transitive
congruence closure of R. Then R′ is an MSOS bisimulation.

Proof. We first convert T into an equivalent system in explicit MSOS tyft format
following Proposition 16. We then show that R′ is an MSOS bisimulation by
considering the three conditions in turn, each of which follows straightforwardly
from Proposition 17. ��

Corollary 19. MSOS-bisimilarity is a congruence for specifications in the well-
founded MSOS tyft format.

Proposition 17 claim 3 ensures that if s ≈msos t then each composable trace
from s can be matched by a corresponding composable trace from t, up to
bisimilarity in the subsequent steps and labels. In the case of Example 12, it also
has the following consequence: for any term, (pointwise) bisimilar environments
yield bisimilar outputs. The fact that bisimilarity is a congruence ensures that
bisimilar abstractions yield bisimilar outputs when applied. This is part of the
definition of bisimilar abstractions in applicative bisimulation [4].

5 Modular Bisimulations

Bisimulation examples in this paper were given explicitly with respect to our ex-
ample systems. But in fact the proofs did not make use of the particular closed
set of constructors. For example, for seq(skip, s) ≈ s, presence of constructors
other than seq and skip had no influence whatsoever on the proof of bisimula-
tion. The proof would work just as well in any system with those rules for the
constructors in question; the law and proof are modular in nature. On the other
hand, if a bisimulation proof performs explicit case analysis on all terms or label
components, this is not possible. How can we formalise this distinction?

Given a constructor f , an f -defining rule is a rule where the source of the
conclusion has f as its outermost symbol. A disjoint extension of an MSOS
system (Σ,L, D) is an MSOS system (Σ′,L′, D′) with Σ′ ⊇ Σ, L′ ⊇ L and such
that each rule in D′ −D is f -defining for some f in Σ′ −Σ.

Let S be a subset of the constructors of Example 12. We define Ŝ to be the least
set containing S such that for all f in Ŝ, any constructor appearing in an f -defining

Modular Bisimulation Theory for Computations and Values 111

rule also appears in Ŝ. We define ES to be the subsystem of Example 12 restricted
to the constructors in Ŝ and rules that are f -defining for some f ∈ Ŝ. Given a
candidate algebraic law forMSOS, we advocate proving this lawwith respect to all
disjoint extensions of ES, where S is the set of constructors appearing in that law.
We isolate the particular subsystem that makes the law hold, and are guaranteed
that any system containing this will validate the law. For associativity of seq, we
show: seq(seq(s, t), r) ≈msos seq(s, seq(t, r)) in any disjoint extension of E{seq}.

We call such statements modular bisimulations. Since the quantification over
extensions is external to the particular notion of bisimulation, meta-results such
as congruence can be used directly. All examples of bisimulations in this paper
can indeed be formulated and proved as modular bisimulations.

If we wish to internalise this notion, we are led to fh-bisimulation [10]. In this
setting, the step conditions must hold in the presence of arbitrary hypotheses,
of the form x

a−→ y for variables x, y. More specifically, it is provable ruloids
that must step – a provable ruloid of Γ

s
a−→s′

is a proof of s
a−→ s′ which may

have open leaves found in Γ . In [10], it was shown that fh-bisimilarity is pre-
served under disjoint extensions which preserve the label set for the positive
GSOS format. (We have subsequently generalised this result to arbitrary pos-
itive source-dependent rules.) In future, we hope to adapt these results to our
MSOS bisimulation format.

6 Further Directions

We intend to use our framework to give formal semantics, and prove laws about,
real-world programming languages. One reason this has been lacking in the lit-
erature is due to the scalability of the usual techniques, and our use of MSOS
and modular bisimulations help to address these issues. As a start, we are cur-
rently providing dynamic semantics for Caml Light [5] by translating it into
the kind of basic constructors found in Example 12, called funcons2 [9]. This
includes higher-order functions, pattern matching, records and variants, mutu-
ally recursive declarations, exceptions and reference cells. Crucially, all rules for
constructors used are in the MSOS tyft format. Thus, if program fragments P
and Q have funcon translations P ′ and Q′ respectively, and P ′ and Q′ have
been proved equivalent using our techniques, we can conclude that P and Q are
equivalent and soundly interchangeable in Caml Light programs.

A possible useful extension of this work would be treatment of multisorted
algebras. In particular, the right unit law for seq only holds if the only value that
left operand could compute to is skip, i.e. it has type unit, or is a command. We
could also consider parametrising bisimulations by the current label components
cf. state-based bisimilarity [13], which would increase the number of equivalences
one could prove. This could be particularly interesting in the MSOS setting,
where labels are both open and higher-order.

Another further direction is to consider rules with negative premises, which we
have avoided here by matching on values. We have also avoided special treatment

2 See http://www.plancomps.org/churchill2013a/

http://www.plancomps.org/churchill2013a/

112 M. Churchill and P.D. Mosses

for variable binders/names, which are handled by the environment. Fresh name
generation is possible using read-write label components.

Acknowledgements. Many thanks to Mohammad Mousavi, Cristian
Prisacariu, Paolo Torrini and the anonymous referees for their useful comments.
This work was supported by an EPSRC grant (EP/I032495/1) to Swansea Uni-
versity in connection with the PLanCompS project (www.plancomps.org).

References

1. Bernstein, K.L.: A congruence theorem for structured operational semantics of
higher-order languages. In: 13th Annual IEEE Symposium on Logic in Computer
Science, pp. 153–164. IEEE (1998)

2. Fokkink,W.:TheTyft/Tyxt Format Reduces to Tree Rules. In:Hagiya,M.,Mitchell,
J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 440–453. Springer, Heidelberg (1994)

3. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation
as a congruence. Inf. and Comput. 100(2), 202–260 (1992)

4. Howe, D.J.: Equality in lazy computation systems. In: Fourth Annual IEEE Sym-
posium on Logic in Computer Science, pp. 198–203. IEEE (1989)

5. Leroy, X.: The Caml Light system, documentation and user’s guide (1997),
http://caml.inria.fr/pub/docs/manual-caml-light/

6. Levy, P.B.: Call-by-Push-Value: A Subsuming Paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999)

7. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

8. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Pro-
gram. 60-61, 195–228 (2004)

9. Mosses, P.D.: Component-based semantics. In: Huisman, M. (ed.) Eighth Intl.
Workshop on Specification and Verification of Component-Based Systems, pp. 3–
10. ACM, New York (2009)

10. Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under oper-
ational extensions. In: Fröschle, S., Valencia, F.D. (eds.) 17th International Work-
shop on Expressiveness in Concurrency. EPTCS, arXiv, vol. 41, pp. 106–120 (2010)

11. Mosses, P.D., New, M.J.: Implicit propagation in structural operational seman-
tics. In: Hennessy, M., Klin, B. (eds.) Fifth Workshop on Structural Operational
Semantics. Electr. Notes Theor. Comput. Sci., vol. 229(4), pp. 49–66. Elsevier,
Amsterdam (2009)

12. Mousavi, M.R., Gabbay, M., Reniers, M.: SOS for Higher Order Processes. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 308–322.
Springer, Heidelberg (2005)

13. Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congru-
ence formats for SOS with data. Inf. and Comput. 200(1), 107–147 (2005)

14. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238–272 (2007)

15. Park, D.: Concurrency and Automata on Infinite Sequences. In: Proc. 5th GI-
Conference on Theoretical Computer Science, pp. 167–183. Springer, London
(1981)

16. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004); Originally Tech. Rep. DAIMI FN-19, Dept. of
Computer Science, Univ. Aarhus (1981)

http://www.plancomps.org
http://caml.inria.fr/pub/docs/manual-caml-light/

Checking Bisimilarity for Attributed Graph
Transformation

Fernando Orejas1,�, Artur Boronat1,2,��, Ulrike Golas3, and Nikos Mylonakis1

1 Universitat Politècnica de Catalunya, Spain
{orejas,nicos}@lsi.upc.edu

2 University of Leicester, UK
aboronat@mcs.le.ac.uk

3 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany
golas@zib.de

Abstract. Borrowed context graph transformation is a technique developed by
Ehrig and Koenig to define bisimilarity congruences from reduction semantics
defined by graph transformation. This means that, for instance, this technique
can be used for defining bisimilarity congruences for process calculi whose op-
erational semantics can be defined by graph transformation. Moreover, given a
set of graph transformation rules, the technique can be used for checking bisim-
ilarity of two given graphs. Unfortunately, we can not use this ideas to check if
attributed graphs are bisimilar, i.e. graphs whose nodes or edges are labelled with
values from some given data algebra and where graph transformation involves
computation on that algebra. The problem is that, in the case of attributed graphs,
borrowed context transformation may be infinitely branching. In this paper, based
on borrowed context transformation of what we call symbolic graphs, we present
a sound and relatively complete inference system for checking bisimilarity of at-
tributed graphs. In particular, this means that, if using our inference system we
are able to prove that two graphs are bisimilar then they are indeed bisimilar.
Conversely, two graphs are not bisimilar if and only if we can find a proof saying
so, provided that we are able to prove some formulas over the given data algebra.
Moreover, since the proof system is complex to use, we also present a tableau
method based on the inference system that is also sound and relatively complete.

Keywords: Attributed graph transformation, symbolic graph transformation,
borrowed contexts, bisimilarity.

1 Introduction

Bisimilarity [18] is a core concept in Computer Science and, thus, it has been studied
in very different contexts, especially in the framework of process calculi. However, the
case where processes include data has received relatively little attention. We think that
there are two main reasons for this. On the one hand, abstracting from data allows us to

� This work has been partially supported by the CICYT project (ref. TIN2007-66523) and by
the AGAUR grant to the research group ALBCOM (ref. 00516).

�� Supported by a Study Leave from University of Leicester.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 113–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 F. Orejas et al.

concentrate better on the study of communication and interaction. On the other hand,
in general, bisimilarity is already undecidable. Hence, adding values and computation
will not only add another source of undecidability, but also of incompleteness, if the
data domain is rich enough.

Borrowed context (BC) graph transformation [6] is a technique developed by Ehrig
and Koenig to define bisimilarity congruences from reduction semantics defined by
graph transformation. This means that, for instance, this technique can be used for
defining bisimilarity congruences for process calculi whose operational semantics can
be defined by graph transformation (as e.g. CCS [1], the π-calculus [7], or the ambient
calculus [2]). As usual in the area of graph transformation [4], the results in [6] apply
to all kinds of graphs that form a category that is M-adhesive [13,5], i.e. most classes of
graphical structures. In [6] they also show how this technique can be used for checking
bisimilarity of two given graphs. Unfortunately, even if attributed graphs (i.e. graphs
whose nodes or edges are labelled with values from some given data algebra and where
graph transformation involves computation on that algebra) are an M-adhesive cate-
gory, their techniques can not be used for checking bisimilarity of this kind of graphs,
because BC transformation may be infinitely branching.

In this paper, using BC transformation, but applied to a class of symbolic graphs, we
present an inference system for checking bisimilarity of attributed graphs. The key issue
is that, using symbolic graphs, we can decouple the proof of properties about the graph
structure of the given graphs from the proof of properties of data and computations, in a
similar way that constraint logic programming [12] decouples computation or constraint
solving from deduction. The paper builds on [15], where we showed that bisimilarity
of attributed graphs is in a way equivalent to a relation, which we call s-bisimilarity,
of symbolic graphs. However, in [15] it was unclear how we could use those results to
check bisimilarity, since the notion of s-bisimilarity is somewhat involved.

Our inference system is shown to be sound and refutationally complete. This means
that, if using our inference system we are able to prove that two graphs are bisimilar,
then they are indeed bisimilar. Conversely, two graphs are not bisimilar if and only if
we can find a proof saying so, provided that we are able to prove some formulas over
the given data algebra. In this sense, it could be better said that our inference system is
relatively complete. In addition, since it may be not obvious how to use this inference
system, we also present a related tableau method that is also sound and complete.

The paper is organized as follows. In Sections 2 and 3, we introduce borrowed con-
text transformation and attributed and symbolic graphs. In Section 4, we recall the
main results from [15]. Sections 5 and 6 are devoted to present the inference system
and the tableau method. Finally, in Section 7 we review related work and draw some
conclusions.

2 Graph Transformation with Borrowed Contexts

Graph transformation is a powerful approach to describe local computations on systems
whose states can be described by graphs. In our context, transformations are specified

by rules p : L
l← K

r→ R, which are spans of graph inclusions (or, in general, of some
kind of monomorphisms).

Checking Bisimilarity for Attributed Graph Transformation 115

L

(1)m
��

K

(2)

�� ��

��

R

��

G D�� �� H

A rule p can be applied to a graph G if there is a match
monomorphism m : L → G such that pushout (1) on the
right exists. The result is the transformation G =⇒p,m H (or
just G =⇒ H if p and m are implicit), where H is defined
by the diagram on the right and (2) is also a pushout.

Intuitively, the pushout complement D is obtained by deleting from G the images
through m of all the elements (nodes and edges) in L which are not in K, and H is
obtained by adding to D all the elements in R that are not in K.

Graph transformation with borrowed contexts [6] is a technique that allows us to
study the behavior of systems described by graph transformation. In particular, it allows
us to analyze how a graph can evolve when embedded in different contexts for a given
set of transformation rules.

J

(PO)

��

��

C

��

J′��

��
G �� C[G]

The first idea behind this technique is that we have to
specify explicitly what is the open (or visible) part of the
given graph G, i.e. what part of G can be extended by
a context. This is called the interface of the graph and
it may be any arbitrary subgraph of G. This means that
a graph with interface is an inclusion or, in general, a monomorphism J → G. Then,
a context should be a graph with two interfaces J →C ← J′, so that, when we embed
J→G in the context J→C← J′, the result is a graph J′ →C[G], where C[G] is obtained
gluing G and C by a pushout, as shown on the diagram on the right.

Then, we can model the behavior of a graph G by extending it with minimal contexts
allowing the application of the given rules. This means that, to apply a rule p : L←K→
R, we look for a partial match of L in G and add to G the missing part of L, so that we
can apply a standard transformation via p. As this context is the part of L that has not
been matched with G, we say that G borrows this context from the rule. We consider
these transformations as transitions labelled by the context borrowed. However, some
BC transformations are not useful for studying the behavior of a graph. This is the case
of independent transformations, where the partial match is included in the part of the
interface that remains invariant after the transformation [6].

Definition 1. Given a graph with interface J → G and a graph transformation rule
p : L ← K → R, we say that there is a transition from J → G to I → H with label

J → F ← I, denoted (J → G)
J→F←I−−−−→p,m (I → H) (or just (J → G)

J→F←I−−−−→ (I → H),
if the partial match m and the rule p can remain implicit) if there are graphs C,G+,D
and additional morphisms such that all the squares in the diagram below are pushouts
(PO) or pullbacks (PB) and all the morphisms are injective:

C

(PO)

i1 ��

m
��

L

(PO)
��

K

(PO)

l��

��

�� R

��
G

(PO)

�� G+

(PB)

D�� �� H

J ��

i2

		

F

		

I

		

��

116 F. Orejas et al.

A BC transformation is independent if there are morphisms j1 : C→K and j2 :C→ J
such that i1 = l ◦ j1 and m = i2 ◦ j2.

The intuition is that C is the subgraph of L that completely matches G; J→ F ← I is the
context borrowed to extend G; G+ is the graph G enriched with the borrowed context,
and H is the result of the transformation. More precisely, F , defined as the pushout
complement (if it exists) of the left lower square, extends J with all the elements in G+

which are not in G. For instance, given the rule below on the left, and the graph with
interface J → G below on the right

��
����

��
��

��

��
��

��
��

��
��

��
��

the diagram below depicts a BC transformation of J → G using that rule.

��
��

��

����
��

��
��

��
��

��
��

��

��
��

��
��

��

��
��

�� ��
����

��
�� ����

��
�� ��

��
��

Bisimilarity is the largest symmetric relation between states that is compatible with
their observational behaviour. This means that if two states s1 and s2 are bisimilar then
for every transition from s1 labelled with
 there should be a transition from s2 with the
same label such that the resulting states should again be bisimilar. In our case, states are
graphs with interface and transitions are borrowed context transformations.

Definition 2. Given a set T of transformation rules, bisimilarity, denoted by ∼, is the
largest symmetric relation on graphs with interface satisfying that if (J → G1)∼ (J →
G2), for every label
 = J → F ← I and every transition (J → G1)

−→ (I → H1) there

exists a transition (J →G2)

−→ (I → H2) such that (I → H1)∼ (I → H2).

Ehrig and König [6] proved that bisimilarity is a congruence, providing a relatively
simple technique for deriving bisimulation congruences out of a (graph transformation)
reduction semantics. They also proved some properties that are useful for checking
bisimilarity, for instance, that it is possible to use up to context techniques [20] or that
the condition to show bisimilarity can be restricted to dependent transformations.

3 Attributed Graphs and Symbolic Graphs

There are different approaches in the literature to work with attributed graphs. We con-
sider two of them: attributed graphs as studied in [4] and symbolic graphs [16]. They

Checking Bisimilarity for Attributed Graph Transformation 117

are both defined as a special kind of labeled graphs called E-graphs (e.g., see [4]). An
attributed graph G, in the sense of [4], consists of two parts: an algebra A, and an E-
graph EG, where the labels of EG are the values of A. Similarly, an attributed graph
morphism h : 〈EG,A〉 → 〈EG′,A′〉 consists of two parts: an algebra homomorphism
halg and an E-graph morphism hgr, such that they are compatible, meaning that, for ev-
ery value v in A, halg(v) = hgr(v). Attributed graphs and morphisms form the category
AttGraphs, which is M-adhesive [4].

Attributed graph transformation rules are usually defined as spans p : L← K → R,
where L,K and R are attributed graphs over a term algebra TΣ(X). A match morphism
m : L→ G, where G is an attributed graph over a Σ-algebraA must bind each term t in
TΣ(X) (and, in particular, each variable in X) to some element in A. The fact that malg

must be a homomorphism ensures that m(t) must be the result of the evaluation of t,
after replacing every variable x in t by m(x).

We also work with symbolic graphs because we use
them as a tool for checking bisimilarity of attributed
graphs. Intuitively, a symbolic graph may be seen as a
graph that specifies a class of attributed graphs sharing
the same data algebra. In particular, a symbolic graph SG
over the algebraA is an E-graph G, whose labels are vari-
ables from a given set X , together with a condition (i.e., a first-order formula) Φ over
these variables and over the elements in A. For instance, the graph on the right speci-
fies a class of attributed graphs, including distances in the edges, that satisfy the well-
known triangle inequality. The intuition is that each substitution σ : X →A, such that
A |= σ(Φ), defines an attributed graph in the semantics of SG, obtained replacing each
variable x in G by the corresponding data value σ(x). Formally, the semantics of SG is
defined:

Sem(SG) = {〈σ(G),A〉 | A |= σ(Φ)}

To enhance readability, we refer to the attributed graphs in the semantics of SG just as
σ(SG), leaving the algebraA implicit. Moreover, for (technical) simplicity, we assume
that in our symbolic graphs no variable is bound to two different elements of the graph.
It should be clear that this is not a limitation since it is enough to replace each repeated
occurrence of a variable x by a fresh variable y, and to include the equality x = y in the
associated formula.

Every attributed graph may be seen as a symbolic graph by just replacing all its
values by variables, and by including, for each value v in the graph, an equation xv = v,
in the corresponding condition Φ, where xv is the variable that has replaced the value v.
We call this kind of symbolic graphs grounded symbolic graphs. In particular, GSG(G)
denotes the grounded symbolic graph defined by G.

A morphism h : 〈G1,Φ1〉 → 〈G2,Φ2〉 is a graph morphism h : G1 → G2 such that
A |= Φ2 ⇒ h(Φ1), where h(Φ1) is the formula obtained when replacing in Φ1 every
variable x1 in the set of labels of G1 by h(x1). Symbolic graphs and morphisms over a
given data algebraA form the category SymbGraphA, which is M-adhesive [16].

In this paper, a symbolic graph transformation rule is a pair 〈L←↩ K ↪→ R,Φ〉, where
L,K and R are graphs over a set of variables X and Φ is a condition over X and over

118 F. Orejas et al.

the elements in A. We consider that a rule is a span of symbolic graph inclusions
〈L, true〉 ←↩ 〈K, true〉 ↪→ 〈R,Φ〉. Intuitively, Φ defines applicability conditions and re-
lates the attributes in the left and right-hand side of the rule. As usual, we can define the
application of a graph transformation rule 〈L←↩ K ↪→ R,Φ〉 by a double pushout in the
category of symbolic graphs [17].

Definition 3. Given a transformation rule p = 〈L←↩ K ↪→ R,Φ〉 over a data algebraA
and a morphism m : L→G, 〈G,Φ′〉=⇒r,m 〈H,Φ′ ∧m′(Φ)〉 if (1) and (2) are pushouts
and Φ′ ∧m′(Φ) is satisfiable in A.

L

(1)m
��

K

(2)

� ��� � � ��

��

R

m′

��
G D� ��� � � �� H

If Φ′ ∧m′(Φ) are unsatisfiable, the resulting graph 〈H,Φ′ ∧m′(Φ)〉 has an empty
semantics. This is avoided by requiring Φ′ ∧m′(Φ) satisfiable. The above construction
defines a double pushout in SymbGraphA [17].

A symbolic graph transformation rule can be seen as a specification of a class of
attributed graph transformation rules. More precisely, we may consider that the rule
p = 〈L←↩ K ↪→ R,Φ〉 denotes the class of all rules σ(L)←↩ σ(K) ↪→ σ(R), where σ is
a substitution such that A |= σ(Φ), i.e.:

Sem(p) = {σ(L)←↩ σ(K) ↪→ σ(R) | A |= σ(Φ)}
It is not difficult to see [16] that given a rule p and a symbolic graph SG, SG =⇒p SG′ if
for every graph G ∈ Sem(SG), G =⇒p′ G′, with G′ ∈ Sem(SG′) and p′ ∈ Sem(p). Vice
versa for every G′ ∈ Sem(SG′), there is a graph G ∈ Sem(SG) and a rule p′ ∈ Sem(p)
such that G =⇒p′ G′.

4 Bisimilarity of Attributed Graphs and S-bisimilarity

Checking bisimilarity of attributed graphs, using directly the notions presented in Sec-
tion 2, faces a main problem: given an attributed graph with interface J→G and a finite
set of transformation rules, there may exist an infinite number of different transitions

(J → G)

−→ (I → H). For instance, in the example in Section 6, the borrowed context

application of any of the given rules to any of the given graphs would require the assign-
ment of a value to the variable x. Hence we would have an infinite number of possible
matches, each of them corresponding to each different value.

We may think that we may avoid this infinite branching by using symbolic graph
transformation, where we are not forced to substitute every variable in the interface. So
that for deciding if two attributed graphs are bisimilar we could check if their associated
grounded graphs are bisimilar in the category of symbolic graphs. Unfortunately, in [15]
we proved that two attributed graphs may be bisimilar as attributed graphs, while their
associated grounded symbolic graphs are not bisimilar as symbolic graphs.

However, in [15] we also proved that the following notion of S-bisimilarity over
symbolic graphs could be used for proving bisimilarity of attributed graphs.

Checking Bisimilarity for Attributed Graph Transformation 119

Definition 4. S-bisimilarity, ∼S, is the largest symmetric relation on symbolic graphs
with interface satisfying that if (J→ SG1)∼S (J→ SG2) then for every dependent tran-

sition (J→ SG1)

−→ (I → SG′1), with SG′1 = 〈G′1,Φ′1〉 there exists a family of conditions

{Ψi}i∈I and a family of transitions {(J → SG2)

−→ (I → SHi)}i∈I , with SHi = 〈Hi,Πi〉

such that:

1. For every substitution σ′1 such that A |= σ′1(Φ′1), there is an index i and a substitu-
tion σi such thatA |= σi(Ψi∧Πi) and σ′1|I = σi|I , where σ|I denotes the restriction
of σ to the variables in I.

2. For every i, (I → 〈G′1,Φ′1∧Ψi〉) ∼S (I → 〈Hi,Πi∧Ψi〉).

Moreover, given a label
, we write (J → SG1)∼

S (J → SG2) if for every dependent

transition (J → SG1)

−→ (I → SG′1) there exists a family of conditions {Ψi}i∈I and

a family of transitions {(J → SG2)

−→ (I → SHi)}i∈I , with SHi = 〈Hi,Πi〉 such that

conditions 1 and 2 above hold.

The definition of S-bisimilarity is easy to understand if we think that every symbolic

transition tr = (J → SG1)

−→ (I → SG′1) denotes a family of attributed transitions. In

particular, every substitution σ′1 of the variables in SG′1 such that A |= σ(Φ′1) denotes

an attributed transition σ′1(tr) = σ′1(J → G1)
σ′1(
)−−−→ σ′1(I → SG′1). Then, each condition

Ψi should characterize which attributed transitions denoted by tr are simulated by an

attributed transition denoted by tr′i = (J → SG2)

−→ (I → SHi). In this context, condi-

tions 1 and 2 just state that each σ′1(tr) must be simulated by some attributed transition
denoted by tr′i, for some i. Then, as said above, we have:

Theorem 1. [15] Given transformation rules T , (J →G1)∼ (J →G2) with respect to
Sem(T) if and only if GSG(J →G1)∼S GSG(J→ G2) with respect to T .

In [15] we also proved that S-bisimilarity is a congruence and that up-to-context tech-
niques can also be applied in this setting.

5 An Inference System for Proving Bisimilarity

The results in [15], and in particular Theorem 1, provide a convenient characterization
of the bisimilarity relation for attributed graphs that avoids the infinite branching prob-
lem associated to the direct application of the results in [6]. However, it is not obvious
how this characterization can be actually used for checking bisimilarity. In particular,
the main problem is to find the conditions Ψi that are needed, according to Def. 4,
to play the bisimulation game. Below, we present seven inference rules that describe
implicitly how we can compute these conditions.

The judgements that we use in our rules are constrained sequents of the form Γ %
(J → SG1)∼S (J → SG2)[Ψ+,Ψ−] or Γ % (J → SG1)∼

S (J → SG2)[Ψ+,Ψ−], where:

– The antecedent Γ is the context, i.e. a set of facts (I → SG)∼S (I → SG′) that we
assume to hold. Contexts are used for up-to inference steps.

120 F. Orejas et al.

– The only common variables of SG1 and SG2 are the variables in J.
– The succedent (J → SG1)R(J → SG2)[Ψ+,Ψ−], where R is either ∼S or ∼

S and
where Ψ+ and Ψ− are formulas including the variables in SG1 and SG2, is a state-
ment whose intended meaning is:
• Ψ+ is a formula where all its variables not in SG1 or in SG2 are (implicitly)

quantified universally, such that if it holds then (J → SG1∧Ψ+)R(J → SG2∧
Ψ+) must hold.

• If Ψ− is satisfiable then (J → SG1)R(J → SG2) does not hold.
where, if SG = 〈G,Φ〉, SG∧Ψ denotes the symbolic graph 〈G,Φ∧Ψ〉.

As a consequence, if we want to check if two attributed graphs, J → G and J → G′ are
bisimilar, and if Φ and Φ′ are the conditions of GSG(G) and GSG(G′), respectively, we
will try to infer judgements of the form /0 % GSG(J → G) ∼S GSG(J → G′)[Ψ+,Ψ−],
where /0 is the empty context. If Φ and Φ′ imply Ψ+ then we would conclude that J→G
and J→G′ are bisimilar. The reason is that if Φ and Φ′ imply Ψ+, then GSG(J→G) =
(GSG(J)→ GSG(G)∧Ψ+) ∼S (GSG(J)→ GSG(G′)∧Ψ+) = GSG(J → G′) and, by
Thm. 1, (J →G)∼ (J →G′). However, if Ψ− is satisfiable, also by Thm. 1, we would
conclude that J →G and J →G′ are not bisimilar.

The first rule is just a consequence of how the relation ∼

S is defined. In particular

the rule says that if for each label
, (J → SG1)∼

S (J → SG2) under the condition Ψ+

 ,
then (J → SG1) ∼S (J → SG2) under the conjunction of all the Ψ+

 . Conversely, if for
each label
, (J → SG1) �

S (J → SG2) under the condition Ψ−

 , then (J → SG1) �S

(J → SG2) under the disjunction of all the Ψ−

 .

1. Labels
Γ % (J → SG1)∼
1

S (J → SG2)[Ψ+

1
,Ψ−

1
]

. . .

Γ % (J → SG1)∼
n
S (J → SG2)[Ψ+

n
,Ψ−

n
]

Γ % (J → SG1)∼S (J → SG2)[
n∧

i=1

Ψ+

i
,

n∨
i=1

Ψ−

i
]

If {
1, . . . ,
n} is the set of all labels
 such that there is a dependent transformation

(J → SG1)

−→ (I → SG′1) or (J → SG2)

−→ (I → SG′2).

If two graphs are equal then they are obviously bisimilar. However, if their underly-
ing E-graphs are equal, but their conditions are different, the rule below tells us that the
two graphs are bisimilar under the conjunction of their associated conditions.

2. Equality
Γ % (J → 〈G,Φ〉)∼S (J → 〈G,Φ′〉)[Φ∧Φ′, false]

A trivial rule that is needed for technical reasons in the completeness proof:

3. Trivial
Γ % (I → SG)∼

S (I → SG′)[false, false]

Checking Bisimilarity for Attributed Graph Transformation 121

The fourth rule is also quite simple. Let us assume that Cond(SG,
) is the condition
that covers all possible transitions of SG with label
, i.e.

Cond(SG,
) =
∨

p,m Φp,m,

such that (J → SG)

−→p,m (I → 〈G′,Φp,m〉). Then, if ¬Cond(SG,
) holds, no tran-

sition of SG with label
 is possible. Therefore, if ¬Cond(SG1,
) ∧¬Cond(SG2,
)
holds no transition with label
 is possible of neither SG1 nor SG2. Thus, under
that condition they are
-bisimilar. Conversely, when (Cond(SG1,
)\Cond(SG2,
))∨
(Cond(SG2,
)\Cond(SG1,
)) holds, either there is a transition with label
 from SG1,
but not from SG2, or vice versa, meaning that they are not
-bisimilar.

4. Complement
Γ % (J → SG1)∼

S (J → SG2)[Ψ+,Ψ−]

where

Ψ+ =¬Cond(SG1,
)∧¬Cond(SG2,
)

Ψ− =(Cond(SG1,
)\Cond(SG2,
))∨
(Cond(SG2,
)\Cond(SG1,
))

The next rule states that if (J → SG1) and (J → SG2) are bisimilar when Ψ+
1 holds

and, also, when Ψ+
2 holds, then they are bisimilar when either of them hold. Conversely,

if (J→ SG1) and (J→ SG2) are not bisimilar when Ψ−
1 is satisfiable and also when Ψ−

2
is satisfiable, then if any of them are satisfiable the two graphs are not bisimilar.

5. Disjunction

Γ % (J → SG1)∼

S (J → SG2)[Ψ+

1 ,Ψ
−
1] Γ % (J → SG1)∼

S (J → SG2)[Ψ+
2 ,Ψ

−
2]

Γ % (J → SG1)∼

S (J → SG2)[Ψ+

1 ∨Ψ+
2 ,Ψ

−
1 ∨Ψ−

2]

The following rule is a bit more involved. It essentially follows from the definition

of ∼

S. If (J → SG)

−→(p,m) (I → SH(p,m)), the disjunction of all the conditions associ-

ated with the transformations (J → SG′)

−→(p′,m′) (I → SH ′

(p′,m′)) that are bisimilar to

(I → SH(p,m)) should cover Φ(p,m). But, in general, we cannot ensure this. We can only
ensure that, under the condition Ψ+

(p,m) =
∨

(p′,m′) Ψ+
(p,m),(p′,m′), the attributed transitions

denoted by

−→(p,m) are simulated by transitions denoted by

−→(p′,m′). This means that

under the condition Φ(p,m) ∧Ψ+
(p,m) the transition (J → SG)

−→(p,m) (I → SH(p,m)) is

simulated by transitions from (J → SG′). On the other hand, it may happen that on the

condition Φ(p,m) \Ψ+
(p,m) the transition (J→ SG)

−→(p,m) (I→ SH(p,m)) is not simulated

by any transition from (J → SG′). Hence, if Φ(p,m) \Ψ+
(p,m) holds, we cannot ensure

that (J → SG) ∼

S (J → SG′). Since this is true for each (p,m), all
- transitions from

(J → SG) are simulated by
′- transitions from (J → SG′) when any of the conditions
Φ(p,m)∧Ψ+

(p,m)
holds, unless any of the conditions Φ(p,m) \Ψ+

(p,m)
holds, and vice versa

122 F. Orejas et al.

for the
- transitions from (J → SG′). Altogether, this means that we can ensure that
(J → SG)∼

S (J → SG′) on the condition Ψ+ as defined in the rule.

Conversely, if Ψ−
(p,m),(p′,m′) is satisfied then (J → SG)

−→(p,m) (I → SH(p,m)) is not

simulated by (J → SG′)

−→(p′,m′) (I → SH ′

(p′,m′)). So, if the conjunction of conditions

Ψ−
(p,m)

=
∧

(p′,m′) Ψ−
(p,m),(p′,m′) is satisfied then (J → SG)

−→(p,m) (I → SH(p,m)) is not

simulated by any
-transition from (J → SG′). But this means that if any of the condi-
tions Ψ−

(p,m) is satisfied then no transition from (J → SG) can be simulated, and some-

thing similar happens with respect to (J→ SG′). In short, this means that we can ensure
that if Ψ−, as defined in the rule, is satisfied then (J → SG)�

S (J → SG′).
Finally, the rule also states that, when proving (I → SH(p,m)) ∼S (I → SH ′

(p′,m′)) we

may assume that (J → SG) ∼S (J → SG′) already holds, so that we can use up-to-
context techniques that have been shown valid for S-bisimilarity [15].

6. Bisimulation

Γ∪{(J → SG)∼S (J → SG′)} %∧
(p,m),(p′,m′)

(I → SH(p,m))∼S (I → SH ′
(p′,m′))[Ψ

+
(p,m),(p′,m′),Ψ

−
(p,m),(p′,m′)]

Γ % (J → SG)∼

S (J → SG′)[Ψ+,Ψ−]

For all rules p, p′ and partial matches m,m′ such that (J→ SG)

−→(p,m) (I → SH(p,m))

and (J → SG′)

−→(p′,m′) (I → SH ′

(p′,m′)), and where, if SH(p,m) = 〈H(p,m),Φ(p,m)〉 and

SH ′
(p′,m′) = 〈H

′
(p′,m′),Φ

′
(p′,m′)〉, then Ψ+,Ψ− are defined:

Ψ+ =
(∨

(Φ(p,m)∧Ψ+
(p,m))\

∨
(Φ(p,m) \Ψ+

(p,m))
)
∧(∨

(Φ(p′,m′)∧Ψ+
(p′,m′))\

∨
(Φ(p′,m′) \Ψ+

(p′,m′))
)

Ψ− =(
∨

(Ψ−
(p,m)

∧Φ(p,m))∨
∨

(Ψ−
(p′,m′)∧Φ(p′,m′))

and where

Ψ+
(p,m) =

∨
(p′,m′)

Ψ+
(p,m),(p′,m′) Ψ+

(p′,m′) =
∨
(p,m)

Ψ+
(p,m),(p′,m′)

Ψ−
(p,m) =

∧
(p′,m′)

Ψ−
(p,m),(p′,m′) Ψ−

(p′,m′) =
∧
(p,m)

Ψ−
(p,m),(p′,m′)

The last rule is based on the result from [15] that shows that the up to con-
text technique is sound for proving S-bisimilarity. This means that, when trying to
prove (J → SG) ∼S (J → SG′), we may assume that for all contexts J → F ← I:
(I → F [SG1]) ∼S (I → F [SG2]). That is that if (J → SG) ∼S (J → SG′) is part of the
context, then we could infer (I → F [SG1]) ∼S (I → F [SG2])[true, false]. But this can
be generalized to the case where the judgement to infer does not exactly include F [SG1]
and F[SG2], but (F [SG1]∧Φ) and (F [SG2]∧Φ′) as the rule shows:

Checking Bisimilarity for Attributed Graph Transformation 123

7. Up-to-context

Γ∪{(J→ SG)∼S (J → SG′)} % (I → SH)∼S (I → SH ′)[¬Φ1∧¬Φ′1, false]

where, SH = 〈H,Φ∨Φ1〉 and SH ′ = 〈H ′,Φ′ ∨Φ′1〉, and 〈H,Φ〉 and 〈H ′,Φ′〉 are the
result of embedding SG and SG′, respectively, in a context J → F ← I.

We can prove that the above rules are sound and complete. More precisely:

Theorem 2 (Soundness of the inference rules). Given attributed graphs J → G1 and
J → G2, then:

– If we can infer /0 % (J → GSG(G1))∼S (J → GSG(G2))[Ψ+,Ψ−], and ΦGSG(G1)∧
ΦGSG(G2) implies Ψ+ in A then J →G1 ∼ J →G2.

– If we can infer /0 % (J →GSG(G1))∼S (J → GSG(G2))[Ψ+,Ψ−] and Ψ− is satis-
fiable in A then J →G1 � J → G2.

The proof essentially follows the intuitions of the rules that are given above.

Theorem 3 (Completeness of the inference rules). Given attributed graphs J → G1

and J → G2, if (J → G1) � (J → G2) then, using the above rules, we can infer
/0 % (J → GSG(G1))∼S (J →GSG(G2))[Ψ+,Ψ−], where /0 is the empty context and
Ψ− is a satisfiable condition.

The proof is done by induction, using the standard definition of stratified bisimilarity
[10]. This is sound, since for each J → G and each
 there is a finite number of transi-

tions (J → SG)

−→ (I → SH).

6 A Tableau Method for Checking Bisimilarity

In the previous section we have presented a set of rules for proving or disproving bisim-
ilarity of attributed graphs. The problem with these rules is that it may not be obvious
how to use them to check whether two given graphs J→G1 and J→G2 are bisimilar. In
this section, we describe a method with this purpose, based on the construction of a kind
of constrained tableau [8], i.e. a tableau whose nodes include constraints, following the
inference rules from the previous section.

More precisely, our tableaux are trees whose nodes are labelled by formulas (J →
SG1)∼S (J→ SG2) or (J→ SG1)∼

S (J→ SG2) and by constraints Ψ+ and Ψ−, as our
judgements in the proof rules. To construct a tableau for J → G1 and J → G2, to check
if they are bisimilar, we start creating the root, labelling it with GSG((J → G1)) ∼S

GSG((J → G2))[false, false]. Then, we start with an iteration where, at each step, we
choose a node in the tableau and we apply to it either an expansion step enlarging
the tree (just when the node is a leaf), or a constraint computation step changing the
constraints of the node. We stop when the tableau is closed, i.e. either when ΦGSG(G1)

and ΦGSG(G2) imply Ψ+ or when Ψ− is satisfiable in A, where Ψ+ and Ψ− are the
constraints in the root. In the former case we would conclude that J → G1 and J → G2

are bisimilar, and in the latter case we would conclude that they are not.

124 F. Orejas et al.

As said above, the steps for the construction of the tableau can be either expansion
steps or constraint computation steps. There are two kinds of expansion steps:

1. Label Expansion If a leaf n is labelled with the formula (J → SG1) ∼S (J → SG2),
we create a child of n and we label it with (J → SG1) ∼

S (J → SG2)[false, false], for
each
 such that there is a dependent transition labelled with
 from (J → SG1) or from
(J → SG2).

2. Bisimulation Expansion If a leaf n is labelled with the formula (J → SG1)∼

S (J →

SG2), for each pair of transitions (J→ SG1)

−→ (I→ SG′1) and (J→ SG2)

−→ (I→ SG′2),
we create a child of n and we label it with (I → SG′1)∼S (I → SG′2)[false, false].

There are five kinds of constraint computation steps:

3. Labels Computation If a node n is labelled with (J→ SG1)∼S (J→ SG2)[Π+,Π−],
we can compute new constraints Ψ+ = Π+∨∧n

i=1 Ψ+
i and Ψ− = Π−∨∨n

i=1 Ψ−
i , where

Ψ+
1 ,Ψ

−
1 . . . ,Ψ

+
n ,Ψ−

n are the constraints of the descendants of that node.

4. Complement Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ+

1 ,Ψ
−
1] then we can compute new constraints Ψ+ and Ψ− for n as follows:

Ψ+ = Ψ+
1 ∨ (¬Cond(SG1,
)∧¬Cond(SG2,
))

Ψ− = Ψ−
1 ∨ (Cond(SG1,
)\Cond(SG2,
))∨ (Cond(SG2,
)\Cond(SG1,
))

5. Equality Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ+

1 ,Ψ
−
1], then we can compute a new constraint Ψ+ = Ψ+

1 ∨ (Φ1 ∧Φ′1) for n,
leaving the negative constraint Ψ−

1 unchanged.

6. Bisimulation Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ+

1 ,Ψ
−
1] then we can compute new constraints Ψ+ and Ψ− for n as follows:

Ψ+ = Ψ+
1 ∨

(∨
(Φ(p,m)∧Ψ+

(p,m)
)\

∨
(Φ(p,m) \Ψ+

(p,m)
)
)
∧(∨

(Φ(p′,m′)∧Ψ+
(p′,m′))\

∨
(Φ(p′,m′) \Ψ+

(p′,m′))
)

Ψ− = Ψ−
1 ∨(

∨
(Ψ−

(p,m)∧Φ(p,m))∨
∨

(Ψ−
(p′,m′)∧Φ(p′,m′))

where the conditions Φ(p,m), Ψ+
(p,m), Ψ−

(p,m), Φ(p′,m′), Ψ+
(p′,m′), and Ψ−

(p′,m′) are as in the
Bisimulation inference rule.

7. Up-to-Context Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ+

1 ,Ψ
−
1], if there is an ancestor of n labelled with the formula (I→ SG2)∼S (I →

SG′2), and if there is a context I → F ← J, where F [SG2] = 〈G1,Π1〉 and F[SG′2] =
〈G′1,Π′1〉 then we can compute a new constraint Ψ+ = Ψ+

1 ∨ (¬(Φ1 \Π1)∧¬(Φ′1 \Π′1))
for n, leaving unchanged the negative constraint Ψ−

1 .
Then, we have:

Theorem 4 (Soundness). If we can construct a closed tableau for graphs J →G1 and
J → G2 whose root is labelled by the constraints Ψ+ and Ψ−, then:

– If ΦGSG(G1)∧ΦGSG(G2) implies Ψ+ in A then J →G1 ∼ J → G2.
– If Ψ− is satisfiable in A then J → G1 � J →G2.

The proof is a direct consequence of the soundness of the inference rules presented in
the previous section.

Checking Bisimilarity for Attributed Graph Transformation 125

Theorem 5 (Completeness). If (J → G1) � (J → G2), we can construct a closed
tableau for J → G1 and J → G2 whose negative constraint at the root Ψ− is satisfi-
able in A.

The proof is very similar to the completeness proof of the inference rules.

��

��
��

��

SG1 SG2

��
��

����
��

JLet us now see an example of the construction
of a tableau. Suppose that we want to check if the
graphs (J → SG1) and (J → SG2) on the right are
bisimilar with respect to the rules depicted below (for simplicity, the rules are presented
including only the left and right-hand sides, leaving the intermediate part implicit). Part
of the tableau that we would use for this proof is shown in Fig. 1. The interfaces of the
graphs are not depicted because, in the transformations considered, J (with the obvious
inclusions) would be the interface of all the graphs in the tableau.

�� ��

��

x �� ��
		

x>0

		

���� x

�� ��

�� x

x �� ��

��
x<0

��

��

�� x
��

��

 x ��

��

��

��

��

��

��

x ��
		

�� x
=0

		

���� x

��

��

��

��
		

�� x��

 x ��
		

��

(1)

(2)

(3)

(4)

(5)

with x �= 0 with x < 0

[Ψ+
1 ,Ψ

−
1]

[Ψ+
2 ,Ψ

−
2]

[Ψ+
3 ,Ψ

−
3] [Ψ+

4 ,Ψ
−
4]

[Ψ+
5 ,Ψ

−
5]

[Ψ+
6 ,Ψ

−
6]

with x > 0 with x �= 0

with x �= 0with x < 0

∼

∼ ∼

∼

����
��

��
x �� ��

		
��

��

x

		
�� ��

��

��
��

��

��

��
		

���� x
��
�� x		

����
��

��

��
��

��

��

��
		

���� x
��

��
		

���� x

with x < 0 with x �= 0

��
�� x		

��

��
		

���� x

∼�1

∼�2

Fig. 1. (Part of a) Tableau

126 F. Orejas et al.

The construction of the tableau starts with the creation of the root and the application
of a label expansion step. Due to lack of space, we suppose that we can only transform
SG1 using rules (1) and (2) and SG2 using rule (4), and using a borrowed context con-
sisting of the square node, together with the attribute x and an edge to the leftmost round
node. Actually, there are other transformations with other borrowed contexts that we
will not consider. This means that this step would create just one node, corresponding
to that borrowed context. We call
1 this context (and label), which is depicted below.

Then, we proceed with bisimulation expansion corresponding to the BC transformations
mentioned above. This step creates two nodes. We can see that the graphs in the node on
the left are equal (except for the condition), so we can apply an equality computation
step, yielding [Ψ+

3 ,Ψ
−
3] = [x > 0, false]. Now, we apply label expansion followed by

bisimulation expansion to the node on the right. Again, we consider that the only possi-
ble BC transformations of these graphs correspond to the application of rules (3) and (5)
without adding any context (i.e. the label would be J → J ← J). Now, we can apply up
to context computation to the bottom right node of the tableau, with respect to the node
on the root and the context
1, yielding [Ψ+

6 ,Ψ
−
6] = [x < 0∧ x �= 0, false]. Then, going

bottom up, using twice labels and bisimulation computation, we can compute the con-
straints [Ψ+

5 ,Ψ
−
5] = [x< 0∧x �= 0, false], [Ψ+

4 ,Ψ
−
4] = [x< 0∧x �= 0, false], [Ψ+

2 ,Ψ
−
2] =

[x > 0∨ (x < 0∧x �= 0), false], and [Ψ+
1 ,Ψ

−
1] = [x > 0∨ (x < 0∧x �= 0), false]. Finally,

since we supposed that there are no other BC-transformations of the root, applying com-
plement computation to it, we have [Ψ+

1 ,Ψ
−
1] = [x > 0∨ (x < 0∧x �= 0)∨x = 0, false].

To end, since (x > 0∨ (x < 0∧x �= 0)∨x = 0)≡ true, we would conclude that the two
graphs are bisimilar.

7 Related Work and Conclusion

As said in the introduction, bisimilarity has been studied in many different contexts,
but the case where processes include data has received relatively little attention. An
exception is [9], where the authors define a symbolic bisimilarity relation for value-
passing CCS and present a proof system that is complete for finite symbolic transition
systems. Our approach shares with [9] that we both avoid infinite branching in the as-
sociated state-transition diagrams by using (free) variables abstracting from concrete
values. In their paper, states are process expressions and labels are guarded actions both
including variables. In our case, states are symbolic graphs and labels are contexts. The
essential difference comes from the fact that they concentrate on value-passing CCS,
which means that labels only depend on the given process expression and not on the
possible contexts of that process. Then, given a transition m

a−→ n, the variables in the
action a are assumed to be a subset of the variables in m. However, in our case, given a

transition (J → SG)

−→ (I → SH), we have that
 may include free variables which are

Checking Bisimilarity for Attributed Graph Transformation 127

not in SG, representing values from the context needed for the transition. For example,
in their case, if p is a ground process expression, its state-transition graph would not
include any free variable either. This is not the case in our paper. In particular, the
conditions Ψi in the definition of S-bisimilarity are needed because of the existence of
these context variables. Hence, the inclusion of the constraints Ψ+ and Ψ− in our proof
rules and in our tableau method, which are needed to compute the conditions Ψi, are
also a consequence of these context variables.

In our framework, name-passing processes, like the processes in the π-calculus [14],
can be seen as a special case of value-passing processes1. In that context, open bisim-
ilarity [21] could correspond to bisimilarity of attributed graphs, as defined directly in
terms of BC transformations on that category, and its symbolic version would be some-
what related to S-bisimilarity.

With respect to BC graph transformation, in [19] an algorithm for checking bisim-
ilarity of graphs is presented, but this algorithm would not be applicable to the case
of attributed graphs. Moreover, no correctness proof is included. On the other hand, in
[11], the authors extend BC-transformation to the case of conditional transformation
systems. Even if their results mainly apply to the case of non-attributed graphs, their
notion of context transition is, in a way, related to our symbolic transitions and so they
are the corresponding notions of bisimilarity. The reason is that we both deal with con-
ditional rules and transitions defined by borrowed context transformations. This causes
that, in the bisimulation game, a transition on one graph with condition A needs not
to be simulated by a single transition on the other graph, but by a set of transitions
with associated conditions Ai, such that these conditions cover A. The main difference,
which is a substantial one, is based on the different nature of conditions. In [11], con-
ditions are related to the structure of the graphs that we are transforming. In our case,
conditions refer to properties of the attributes. Actually, both papers are orthogonal. On
the one hand, dealing with application conditions would be an interesting extension of
our paper. On the other hand, if the graphs considered in [11] were attributed graphs, in
general, their associated state-transition diagrams would be infinitely branching, which
is the problem that we address in our paper.

Finally, our tableau method for proving bisimilarity can be seen as an extension of
the method presented in [3]. However, in that paper, processes do not include data,
which means that their tableaux are considerably simpler. In particular they are basic
unconstrained tableaux.

In this paper, we have presented a proof system and a related tableau method for
checking bisimilarity of attributed graphs, using the notion of S-bisimilarity presented
in [15], proving their soundness and refutational completeness. We think that the main
advantages of our approach are, first, its generality, since it could be used to check
bisimilarity of any kind of formalism whose semantics is expressed in terms of graph
transformation; and, second, the way in which our approach decouples the proofs on
the graph structure from the proofs on the given data algebra.

1 Obviously, the π-calculus is not a special case of value-passing CCS. However, if we repre-
sented the π-calculus in terms of attributed or symbolic graphs (e.g. similarly to [7]), we would
consider names as elements of an algebra whose signature includes only the equality predicate.

128 F. Orejas et al.

References

1. Bonchi, F., Gadducci, F., König, B.: Synthesising CCS bisimulation using graph rewriting.
Inf. Comput. 207(1), 14–40 (2009)

2. Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambients (as syn-
thesized via a graphical encoding). Electr. Notes Theor. Comput. Sci. 242(1), 73–98 (2009)

3. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation Equivalence is Decidable for Basic
Parallel Processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer,
Heidelberg (1993)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. In: EATCS Monographs of Theoretical Comp. Sc. Springer (2006)

5. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transformation systems
with nested application conditions. part 1. Math. Struct. in Com. Sc. (2012) (to appear)

6. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting with borrowed contexts. Math. Struct. in Com. Sc. 16(6), 1133–1163 (2006)

7. Gadducci, F.: Graph rewriting for the pi-calculus. Math. Struct. in Com. Sc. 17(3), 407–437
(2007)

8. Giese, M., Hähnle, R.: Tableaux + constraints. In: TABLEAUX 2003 position paper (2003)
9. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)

10. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

11. Hülsbusch, M., König, B.: Deriving Bisimulation Congruences for Conditional Reactive
Systems. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 361–375. Springer,
Heidelberg (2012)

12. Jaffar, J., Maher, M., Marriot, K., Stuckey, P.: The semantics of constraint logic programs.
The Journal of Logic Programming 37, 1–46 (1998)

13. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theor. Inf. App. 39, 511–
545 (2005)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf. Com-
put. 100(1), 1–77 (1992)

15. Orejas, F., Boronat, A., Mylonakis, N.: Borrowed Contexts for Attributed Graphs. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
126–140. Springer, Heidelberg (2012)

16. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transformation.
ECEASST 30 (2010)

17. Orejas, F., Lambers, L.: Lazy graph transformation. Fund. Inf. 118, 65–96 (2012)
18. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS

1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
19. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach with bor-

rowed contexts. ECEASST 6 (2007)
20. Sangiorgi, D.: On the Proof Method for Bisimulation. In: Hájek, P., Wiedermann, J. (eds.)

MFCS 1995. LNCS, vol. 969, pp. 479–488. Springer, Heidelberg (1995)
21. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33(1), 69–97 (1996)

Comodels and Effects in Mathematical Operational
Semantics

Faris Abou-Saleh1 and Dirk Pattinson2

1 Department of Computing, Imperial College London
2 Research School of Computer Science, Australian National University

Abstract. In the mid-nineties, Turi and Plotkin gave an elegant categorical treat-
ment of denotational and operational semantics for process algebra-like
languages, proving compositionality and adequacy by defining operational se-
mantics as a distributive law of syntax over behaviour. However, its applications
to stateful or effectful languages, incorporating (co)models of a countable Law-
vere theory, have been elusive so far. We make some progress towards a coalge-
braic treatment of such languages, proposing a congruence format related to the
evaluation-in-context paradigm. We formalise the denotational semantics in suit-
able Kleisli categories, and prove adequacy and compositionality of the semantic
theory under this congruence format.

1 Introduction

Operational models of programming languages and process algebras are often described
by a transition system, with transitions given by elementary, atomic evolution steps.
For stateful languages, this involves an explicit notion of state, such as the values of
program variables at each step of the execution. More abstractly, this state is described
by a comodel [19]; computational effects characterise the dependency on state, and
other phenomena, in terms of computational branches [5]. We may then understand the
denotation of a program as an accumulation of state transformations mapping initial to
final states, or an effect-tree describing every possible branch of the computation.

This gives us a powerful tool for reasoning about programs: two programs can be
substituted for one another as long as they have the same behaviour, i.e. represent the
same mapping from initial to final states, or effect-tree. This reasoning is aided by
two key properties: the denotational semantics should be adequate, i.e. behaviourally
equivalent programs should receive the same denotation, and compositional, i.e. the
denotation of a program can be expressed in terms of the denotations of its components.
These properties must often be proved on a case-by-case basis for different languages.
To simplify this task, one often shows these properties are satisfied if the languages are
given by operational rules in a particular congruence format.

Turi and Plotkin applied this approach in an abstract categorical setting [24], and
obtained an elegant proof of adequacy and compositionality for a variety of process al-
gebras. They represented program syntax as an initial algebra, and the semantic domain
of denotations as a final coalgebra. Behavioural equivalence was given by coalgebraic
bisimilarity, and the congruence format was expressed by a distributive law of syntax

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 129–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

130 F. Abou-Saleh and D. Pattinson

over behaviour. In concrete instances, this leads to generalisations of the well-known
GSOS rule format for a large class of process algebras [9].

However, so far the applications have centered around process algebra; applications
of the theory to effectful [15] and comodel-based [14] languages has only been hinted
at in the literature. The main stumbling block in applying the theory to these languages
is that the final coalgebra is a very fine-grained semantic domain, recording the entire
sequence of comodel manipulations or effects, rather than their accumulation.

To solve this problem, we may break the symmetry of the original approach, with
syntax as an initial-algebra as before, but expressing behaviour, and the semantic do-
main of the final coalgebra, in a Kleisli category for a suitable monad. This approach
gives a more appropriate characterisation of program behaviour, accumulating state
manipulations and/or effects. However, it requires a new treatment of syntactic rule
formats, and requires a different approach to proving adequacy and compositionality.

In our previous paper [1], we outlined how the existence of a semantic domain in the
Kleisli category requires an enrichment with respect to the category Cpo! of ω-complete
partial orders with strict, continuous maps. We gave a method for extending operational
specifications with effects, and by restricting to a rule format related to evaluation-in-
context, we sketched a proof of adequacy and compositionality in terms of syntactic
effect trees. However, without a categorical proof, we could not account for effects with
equations, or complete the analysis for languages with comodels.

In this paper, we formalise and extend the analysis of our previous paper to incor-
porate both effects and comodels. We begin by defining transition systems to describe
operational models incorporating comodels, effects, or both. We propose congruence
formats related to the concept of evaluation-in-context [7], and after characterising be-
havioural and denotational equivalence in Kleisli categories, we prove adequacy and
compositionality of the resulting denotational semantics.

Related Work. Mathematical operational semantics is described in [22,24] and ap-
plied to process algebras in [23]. Effects and monads in the semantics of languages are
introduced by Moggi in [12] and subsequently by Plotkin, Power et al in [15,16]. Co-
models for global state are discussed in [14,19]. Operational rules and adequacy proofs
for a purely-effectful, functional language are given in [15]; the conclusion contains
the words “one would wish to reconcile this work with the co-algebraic treatment of
operational semantics in [33]”.

2 Syntax and Behaviour for Stateful and Effectful Languages

This section introduces three kinds of transition systems to represent effectful and/or
stateful programming languages, before a formal coalgebraic treatment. We employ
two languages as running examples, called While and NDWhile.

Definition 1. (ND)While Syntax. We define syntax for a language While as follows,
in three sorts – numeric and boolean expressions, and commands.

N ::= x | n | N +N | +n(N) E ::= b | N==N | ==n(N) | ¬E | E ∧ E
P ::= x=N | skip | P ;P | while (E) do {P} | if (E) then {P} else {P}

Comodels and Effects in Mathematical Operational Semantics 131

Here, x is a global variable drawn from locations L, n is a numeral in N, and b is
a boolean in B = {true, false}. The auxiliary operators +n(·) and ==n (·) can be
read as “add n to ·” and “n equals ·”. The language NDWhile adds binary choose(·, ·)
operators at each type, representing a non-deterministic choice of either expression.

Although this syntax is multi-sorted, for theoretical simplicity we work in a single-
sorted setting (N=E=P); badly-typed terms will produce an error return value.

2.1 Transition Systems for Stateful and Effectful Languages

We introduce three kinds of transition system to represent operational models with ef-
fects and/or persistent state, to be given by a comodel.

The first kind of transition system consists of pairs 〈p, s〉 of a program p and a state
s (drawn from a collection S). This is typified by While, where the states S = NL

are assignments to global variables x ∈ L (‘locations’) of natural numbers N. Program
execution is represented by changes in the program and state 〈p, s〉 → 〈p′, s′〉, and
it may eventually return a final state s′ and a value v drawn from some collection V :
〈p, s〉 → 〈v, s′〉. Typical transitions are 〈x, s〉 → 〈s(x), s〉 – looking up and returning
the value of a variable x in the store – and variable updates, 〈x = 5, s〉 → 〈∗, s[x �→ 5]〉.
(We write ∗ for the ‘void’ return value.) In general, a notion of state S may be derived
canonically from a comodel (Definition 2); with this in mind, we will refer to such a
stateful transition system as a comodel-based transition system, or CTS.

The second kind of operational model, an effectful transition system or ETS, records
the paths a program execution may take, in terms of syntactic effects or their semantic
equivalence classes (see [7]). For instance, given a global variable x, the first step of
evaluating an expression like 3+x depends on the value of x. If x is 0, the first step will
be 3 + 0; and so on for other values of x. We may record this information syntactically
by a ‘read’ effect, as follows: rdx(3+0, 3+1, . . .). Similarly, the first step of evaluating
x = 1;x = 2 involves setting x to 1, leaving us to evaluate x = 2. We record the request
to update x by a ‘write’ effect: wrx,1(x = 2). A further evaluation step involves another
update, giving the result wrx,1(wrx,2(∗)) (where ∗ is again the ‘void’ return value).
Here is an example execution combining both effects:

x=y → rdy(x=0, x=1, x=2, . . .)→ rdy(wrx,0(∗),wrx,1(∗),wrx,2(∗), . . .).

Thus, instead of tracking the state s as in a CTS, one could evaluate While expressions
in terms of ‘read’ and ‘write’ effects. One must also have a means of identifying syntax
trees which we would not want to distinguish semantically, such as wrx,1(wrx,2(∗))
and wrx,2(∗). This amounts to an equational theory for the effects [16].

Another example is given by non-determinism. Given a non-deterministic ‘zero or
one’ function zo := choose(0, 1), evaluating zo+5 gives either 0+5 or 1+5, and we
represent this situation using a binary effect operator: or(0 + 5, 1 + 5). Another step
produces the final result: or(5, 6). Evaluating zo+ zo gives multiple nested or’s.

Again, one does not want to distinguish some effect-trees; such equivalences can
be enforced by three equations: idempotence or(x, x) = x, symmetry or(x, y) =
or(y, x), and associativity or(x,or(y, z)) = or(or(x, y), z).

132 F. Abou-Saleh and D. Pattinson

Note that some execution paths may terminate while others do not: for instance, a
‘maybe stop’ program could behave as follows: ms → or(∗,ms). Thus, we express
the general form of ETS transitions with notation p → δ((bi)i∈I) where δ is an effect-
syntax term with I-indexed arguments bi which may be either terminal values vi or
programs p′i. For convenience, we sometimes use vector notation: p → δ(b̃). We will
call such a transition system a syntactic ETS if we see effects purely as syntax, ignoring
the semantic equations on the effects; if we instead quotient the syntactic effect-trees δ
by these equations, obtaining transitions involving equivalence classes of effect-trees,
we call the resulting transition system a semantic ETS. For instance, in a syntactic ETS

we would distinguish transitions p→ p′ and p→ or(p′, p′), but not a semantic ETS.
The final kind of transition system combines state S with effects, as needed for lan-

guages like NDWhile. Here, keeping track of global variables again require a store; but
non-deterministic execution means we must track multiple possible stores and program
states, as illustrated by this example execution (again using the ‘zero or one’ function):

〈x=zo, s〉 → or(〈x=0, s〉, 〈x=1, s〉)→ or(〈∗, s[x �→ 0]〉, 〈∗, s[x �→ 1]〉)

Generally, such transitions are of form 〈p, s〉 → δ(〈bi, si〉i∈I), where each bi is either
a terminal value or a program term (like an ETS). We call such a transition system a
syntactic comodel and effect-based transition system (CETS), and again, if we choose
to identify semantically equivalent effect-trees, we call the result a semantic CETS.

2.2 Transition Systems, Categorically

Now we give an overview of the categorical structure we will use to build a semantic
theory for the transition systems described above. The main three constructions are
(1) program syntax; (2) effect syntax, or semantic equivalence classes as given by a
Lawvere theory; and (3) a semantic domain for programs. Syntax can be constructed by
initial algebras for suitable polynomial functors. Effect structure will be described by
models of a countable Lawvere theory (Definition 2); we may build effect-trees, as given
by free models of the theory, if the category is locally countably presentable (l.c.p.) [17].
Moreover, to manipulate effect-trees (Definition 7), we need monadic strength which
we will obtain using (⊗-)monoidal-closure of the category, and assume ⊗ distributes
over coproducts +: i.e. that [inl⊗ id, inr ⊗ id] is a natural isomorphismA⊗C+B⊗C →
(A+B)⊗C, with an inverse we call distA,B,C . Finally, the least-fixpoint construction
of a semantic domain requires the category to be order-enriched [8], with left and right-
strict composition; we assume Cpo!-enrichment (see below), so that denotations may be
canonically assigned to programs by a final coalgebra morphism in a Kleisli category
(Proposition 4).

The structure we need is exemplified by the category Cpo! of ω-complete pointed
partial-orders, with strict ω-continuous maps. It is l.c.p. as it is essentially algebraic
(see [3] p.163). Its closed monoidal structure⊗ is the smash productA⊗B, with strict
function space A→⊥ B as exponential BA; the cartesian product A × B is pointwise
ordered, and coproducts are coalesced sums A + B. Lastly, it is enriched over itself,
with strict composition. Most of the other requirements are met because we are assured
the existence of initial algebras and final coalgebras for locally continuous functors

Comodels and Effects in Mathematical Operational Semantics 133

F .1 These include polynomial functors incorporating constants, + and ×, and what we
call ‘⊗-polynomial’ functors, where⊗ replaces ×.

Syntax. We may represent syntax constructors for a programming language in terms
of a ⊗-polynomial functor Σ. The functor mapping X �→ X ⊗ · · · ⊗ X constructs a
collection of n-tuples over X ; coproducts of such functors combine these collections.
For convenience, given a set S, we write S · A for the S-fold coproduct of A.

Example 1. To represent the syntax of the first line of Definition 1, we would take
ΣX = L⊥ +N⊥ +X ⊗X +N ·X +B⊥ +X ⊗X . Its elements comprise: constants
x and n drawn from the flat cpos L⊥ and N⊥; pairs (x1, x2) in X ⊗ X representing
x1 + x2; elements (n, x1) of N ·X representing +n(x1); and so on.

For a syntax functor Σ, we write TX for the free Σ-algebra over X (equivalently, the
initial (X +Σ)-algebra), with structure ψX : ΣTX → TX . Assuming the category C
is suitably concrete, we may consider the ‘elements’ of TX as individual syntax terms,
as we did in Section 2.1. Above, the use of a ⊗-polynomial functor Σ is motivated
by the fact that it constructs finite syntax terms in Cpo!; ordinary polynomial functors
generate countably-deep syntax.

The closed program terms of the language are given by T 0 where 0 is the initial
object. We recall that the free Σ-algebra functor T is in fact a monad [22].

Effects and Comodels. An equational theory of effects may be encapsulated by a
countable Lawvere theory L [17], in which the objects n represent n-tuples and n-ary
effects become arrows e : n→ 1; composing and tupling these gives arrows n→ m.

Definition 2. Let ℵ1 be a skeleton of the category of countable sets. (See [5] Defini-
tion 1). A (countable) Lawvere theory is a category L with countable products and a
countable strictly product-preserving, identity-on-objects functor F : ℵop1 → L. If C
has countable products, the category of models Mod(L,C) of L in C has as objects all
countable product-preserving functors L → C, and as arrows all natural transforma-
tions between them. The category of comodels has as objects the countable coproduct-
preserving functors Lop → C, with arrows given by natural transformations.

A model of a theory is a functor G : L → C with carrier G1; an n-ary effect e induces

a corresponding function (G1)n ∼= Gn
G(e)→ G1, where the isomorphism is by product-

preservation. (Following [5], our ‘models’ are up to such isomorphisms.) Similarly,
comodelsC : Lop → C have carrierC1, but the effect e now corresponds to a comodel-

transition function C1
C(eop)→ Cn ∼= n · (C1) which, given a state in C1, ‘chooses’ a

branch {1, . . . , n} of the effect, and returns a new state.

Example 2. The standard notion of state for While programs, NL, is the carrier C1 of
a comodel (in fact, the final comodel) for global store; see [19] for details.

Given a set E of ‘effects’, arrows e : n → 1, one may define a corresponding polyno-
mial syntax functor Δ. Then the countably-deep syntactic effect-trees over X – which

1 This is because it is algebraically ω-compact, being cocomplete (by local presentability) and
Cpo!-enriched [2].

134 F. Abou-Saleh and D. Pattinson

we have notated δ((xi)i∈I) or δ(x̃) – are generated by the free-Δ-algebra monad, which
we will call Te.

However, one often wishes to impose equations on this effect syntax TeX , obtaining
equivalence classes. This amounts to seeking the free model of the Lawvere theory over
X , which we denote NeX . It is given by UFX , where F is left adjoint to the forgetful
functor U : Mod(L, C)→ C. The left adjoint exists as C is l.c.p. [17].

By giving NeX a natural Δ-algebra structure (via F), we obtain a Δ-algebra mor-
phism quotX : TeX → NeX which performs this quotienting. We may prove:

Proposition 1. The maps quotX :TeX→NeX define a monad morphism.

To ensure existence of our semantic domain for programs (Proposition 4), we must
ensure the monads Te, Ne are Cpo!-monads. This rules out nullary effects e : 0 → 1
like exceptions, and indirectly enforces effect equations e(⊥, . . . ,⊥) = ⊥ . We may
prove directly that Te is a Cpo!-monad, as effect-syntax Δ now cannot have constants
(−) + A. To show Ne is a Cpo!-monad, one may consider the enriched [5] or discrete
[6] Cpo!-Lawvere theories freely generated by L, and use the results in [6] as follows.
By assumption, C is l.c.p., so by Theorems 14 and 15 of [6], for either freely generated
theory the forgetful Cpo!-functor Mod(L′, C) → C has a left adjoint which induces a
Cpo!-monad N ′e whose underlying, ordinary monad coincides with Ne.

Cpo!-enrichment also equips a monad M with a monadic strength with respect to
the monoidal structure ⊗ – a natural transformation stX,Y : X ⊗MY → M(X ⊗ Y)
satisfying certain coherence conditions (see [12] Definition 3.2 and Remark 3.3).

Transition Systems. The transition systems of Section 2.1 are equivalent to coalgebras
for suitable endofunctors. First, we define a primitive transition functor,BX = V +X ,
describing atomic transition steps x→ x′ or termination x→ v.

Given a comodel state-space C1 and values V , we may consider a comodel-based
transition system (CTS) as a function (P ⊗C1)→ ((V +P)⊗C1). By ⊗-closedness,
this is equivalent to a function P → (BP ⊗ C1)C1, where BP = V + P . By defining
a monad NcX = (X ⊗ C1)C1 (essentially the side-effect monad), the CTS becomes a
function P → NcBP , i.e. an NcB-coalgebra.

Using B, given a set of effects E from a Lawvere theory L, we may also express
a syntactic effect-based transition system (ETS) as a TeB-coalgebra, and a semantic
ETS as an NeB-coalgebra. We may quotient a syntactic ETS into a semantic ETS by
post-composing with the monad morphism quot.

Finally, we may represent a syntactic or semantic CETS by an arrow (P ⊗ C1) →
M((V + P) ⊗ C1) where M = Te or Ne respectively. One may consider a CETS as
combining effects from two Lawvere theories via their tensor L1 ⊗ L2 [6], where the
effects E come from L1, and the comodel C1 is for L2.Either way, defining monads
TceX := (Te(X ⊗ C1))C1 and NceX := (Ne(X ⊗ C1))C1, we may express a CETS

as a TceB or NceB-coalgebra.

3 Three Evaluation-in-Context Rule Formats

Having described operational models as coalgebraic transition systems, we give con-
crete presentations of rule formats for specifying these operational models, which will

Comodels and Effects in Mathematical Operational Semantics 135

give rise to compositional and adequate semantics.2 The formats are based on the
Evaluation-In-Context paradigm for sequential languages (c.f. [7]).

Here are some of the (standard) operational rules for While, considered as a CTS.

〈p, s〉 → 〈p′, s′〉
〈p ; q, s〉→〈p′ ; q, s′〉

〈p, s〉 → 〈∗, s′〉
〈p ; q, s〉→〈q, s′〉

〈u, s〉 → 〈u′, s′〉
〈x=u, s〉→〈x=u′, s′〉

〈u, s〉 → 〈n, s′〉
〈x=u, s〉→〈∗, s′[x �→n]〉

〈while (e) do {p}, s〉 → 〈if (e) then {p;while (e) do {p}} else {skip}, s〉

These rules divide the syntax constructors into what we call context and redex terms.
Examples of the former are addition operators +,+n, if statements, sequential com-
position ; and assignments x=u (see below). To evaluate them, we must evaluate a
distinguished argument; when it terminates with some value, we may have to evaluate
another term, or produce another terminal value.

By contrast, a redex term evaluates independently of how its arguments behave. This
includes: elementary terms n ∈ N, b ∈ B, skip which terminate as n, b, and ∗; variable
lookups x ∈ L, returning the value s(x) of the store at x; and while statements. This
generalises to our first rule-format for specifying operational models as CTS’s.

Definition 3. Given a countable set of syntax variables P , the first kind of Evaluation-
In-Context specification (EIC1) for values V and comodel C consists of the following,
where for each rule below we assume x̃ = (xi)i∈I and ỹ• = (yj)j∈J• are such that
{xi : i∈I} ⊆ P are pairwise distinct and disjoint from {x, x′} ⊆ P ; and t•(ỹ•) stands
for a terminal value v or a syntax term, where {yj : j ∈ J•} ⊆ {xi : i ∈ I}.
− For every context-term constructor σ, the left-hand rule (CTXL) below, and an in-
stance of the right-hand rule (CTXR) for every v ∈ V and comodel state c ∈ C1, with
corresponding terminal value or term tv,c(ỹv,c) and new comodel state c′v,c;

〈x, s〉 → 〈x′, s′〉
〈σ(x, x̃), s〉 → 〈σ(x′, x̃), s′〉

(CTXL)
〈x, s〉 → 〈v, c〉

〈σ(x, x̃), s〉 → 〈tv,c(ỹv,c), c′v,c〉
(CTXR)

− For redex constructors ρ, a rule 〈ρ(x̃), c〉 → 〈tc(ỹc), c′c〉 (REDX) for each comodel
state c, with terminal value or term tc(ỹc) and new comodel state c′c.

Example 3. Consider the four operational rules for While given earlier (with syntax
variables P = {p, q, u, e}). The first rule for sequential composition σ(x, x̃) = p ; q is
merely (CTXL) and the other is an instance of (CTXR) where v = ∗ and tv,c(x̃v,c) = q.
The first rule for variable update x=u is again (CTXL), and the second is (CTXR)
where v is n, tv,c(xj∈J) is ∗ and c′ = c[x �→ n] for every n ∈ N.

This approach also permits us to specify languages combining effects and comodels.
Below are the rules for branching choose and assignments x=u in NDWhile, where

2 For simplicity, order-theoretic details are omitted; the important point is that divergence p →
⊥ is not treated as an ordinary terminal value, but rather propagated in the natural manner.

136 F. Abou-Saleh and D. Pattinson

δ(. . .) stands for an arbitrary or-tree of pairs 〈bk, ck〉 in which bk is either a terminal
value v or a program state u′, and ck a comodel-state; the general format follows.

〈choose(x,y),s〉→or(〈x,s〉,〈y,s〉)

〈u, s〉→δ(〈bk, ck〉k∈K)

〈x=u, s〉→δ

({
〈x=u′, ck〉 if bk=u

′

〈∗, ck[x �→ n]〉 if bk=n

}
k∈K

)

Definition 4. Analogously to Definition 3, an Evaluation-In-Context 2 (EIC2) Specifi-
cation for values V , comodel C, and a collection E of syntactic effects, consists of:

− For redex constructors ρ, rules 〈ρ(x̃), c〉 → εc(〈tl(ỹl), c′l〉l∈Lc
) (REDX) for all co-

model states c, with syntactic effect-trees εc whose Lc-indexed leaves 〈tl(ỹl), c′l〉 are
pairs of a terminal value or term, and a new comodel state.
− For every context-term constructor σ, a rule (CTXB) for every effect-tree δ with
leaves {〈bk, ck〉 : k ∈ K} given by pairs 〈bk, ck〉 of either a syntax variable xk or a
terminal value vk, and a comodel-state ck. We assume these xk are all distinct, and do
not include x or xi for i ∈ I . Each rule is given by a V ⊗ C1-indexed collection of
effect-trees εv,c with Lv,c-indexed leaves 〈tl(ỹl), c′l〉 as above.

〈x, s〉 → δ(〈bk, ck〉k∈K)

〈σ(x, x̃), s〉 → δ

({ 〈σ(xk, x̃), ck〉 if bk = xk
εv,ck(〈tl(ỹl), c′l〉l∈Lv,ck

) if bk = v

}
k∈K

) (CTXB)

Finally, by removing all mention of comodels from the above format, we gain a rule
format for specifying ETS’s. We could specify an ETS for While with rules such as the
following; the general rule format is given below.

x→ rdx(0, 1, 2, . . .)

u→ δ((bk)k∈K)

x=u→ δ

({
x=u′ if bk = u′

wrx,n(∗) if bk = n

}
k∈K

)

Definition 5. Evaluation-In-Context 3 (EIC3) is analogous to EIC2, but with rules

ρ(x̃)→ ε((tl(ỹl))l∈L)

x→ δ(bk∈K)

σ(x, x̃)→ δ

({
σ(xk, x̃) if bk = xk
εv((tl(ỹl))l∈Lv) if bk = v

}
k∈K

)
These three kinds of EIC rule format allows us to specify operational models as CTS’s
or syntactic (C)ETS’s. As formalised below, structural recursion then defines transition
behaviour for program terms TX over syntax variables X , once we have specified
transition behaviour for the variables X – the ‘base cases’ of the recursion.

3.1 From EIC Specifications to Operational Models

We now formalise the specifications of the previous section as natural transformations,
and show how they induce coalgebraic operational models by structural recursion.

Comodels and Effects in Mathematical Operational Semantics 137

There are various ways of expressing operational specifications as distributive laws
of syntax over behaviour [11]. For our purposes, the ‘abstract GSOS’ specifications of
[24] suffice: natural transformations ε : Σ(Id × B) ⇒ BT , where Σ is the program
syntax functor, T the free Σ-algebra monad, and B a coalgebraic behaviour functor.
These specifications induce operational models T 0→ BT 0 by structural recursion:

Proposition 2. [24] Given an arrow h : Σ(TX × Y)→ Y and an arrow s : X → Y ,
there is a unique arrow ! : TX → Y making the below diagram commute.

ΣTX

ψX ��

Σ〈id,!〉 �� Σ(TX × Y)

h��
TX

! �� Y

X

ηTX

��
s

�������������������

Given an operational specification ε : Σ(Id × B) ⇒ BT and a transition structure
γ : X → BX , we can derive a transition structure T ε(γ) : TX → BTX for terms
TX over generators X as follows. Defining ε′ := BμT ◦ εT : Σ(T × BT) ⇒ BT
[24], we apply the result with Y = BTX , s = BηT ◦ γ : X → BTX , and h = ε′X .
The resulting map ! : TX → BTX is the required transition structure on terms TX . In
particular, taking X = 0 and the unique arrow γ : 0 → B0, we obtain an operational
model for closed program terms, an arrow T 0→ BT 0 which we call T ε(0).

The operational models considered in this paper are MB-coalgebras for various
monads M , where BX = V + X . Replacing B above with MB, operational spec-
ifications ε of type Σ(X × MBX) → MBTX induce operational models of form
T ε(0) : T 0→MBT 0.

It remains to encode EIC specifications as natural transformations ε. Example 9 will
demonstrate that non-EIC specifications ε may result in semantics which are not ade-
quate or compositional; however, EIC-specified languages will be shown to have these
properties. First, we express redex term constructors by a syntax functorR, and context
terms by X ⊗HX , with active argument X and context HX .

Definition 6. In a symmetric ⊗-monoidal category C with coproducts, an endofunctor
Σ is said to be Redex-Context (R-C) if ΣX = RX+X⊗HX for some functors R,H .

Formalising the data of EIC specifications, we represent redex-terms ρ(x̃) over X by
RX , context terms σ(x, x̃) by X ⊗HX , and arbitrary terms by TX . A ‘terminal value
or term t(x̃)’ is a basic transition over terms inBTX . Syntactic effect-trees δ(x̃) overX
are given by the free Δ-algebra monad: TeX . For EIC 1.0 (i.e. CTS), the rules (REDX)
combine into a natural transformation αX : (RX ⊗ C1)→ (BTX ⊗ C1), indicating,
for each redex RX and initial comodel-state C1, the transition behaviour BTX and
new comodel-state C1. Similarly, (CTXR) gives a natural transformation βX : (V ⊗
HX ⊗ C1)→ (BTX ⊗ C1).

Example 4. Consider the fragment of While given by variable lookups l in L (soRX =
L⊥) and updates l = x (context terms l = (−) with context-data HX given by a loca-
tion, so that HX = L⊥). These commands are specified by αX : (l, s) �→ (inl(s(l)), s)

138 F. Abou-Saleh and D. Pattinson

and βX : (n, l, s) �→ (inl(∗), s[l �→ n]) where we underline the ‘terminal values’, left
components of the coproductBTX = V + TX .

For EIC 2.0 (i.e. CETS), the rules (REDX) give a natural transformation αX : (RX ⊗
C1)→ Te(BTX ⊗C1) – where the codomain describes syntactic effect-trees of tran-
sition behaviours. Similarly, (CTXR) gives βX : (V ⊗HX⊗C1)→ Te(BTX⊗C1).

Example 5. Variable lookups and updates in NDWhile are specified using the unit ηTe

of the effect-syntax monad Te (i.e. ‘no non-determinism’): we define αX : (l, s) �→
ηTe(s(l), s) and βX : (n, l, s) �→ ηTe(∗, s[l �→ n]). The choice operator choose(x, y)
(RX = X ⊗X) is given by αX : ((x, y), s) �→ or((inr(x), s), (inr(y), s)) where the
inr are ‘new program terms’, right-components of the coproductBTX = V + TX .

Finally, for EIC 3.0, the rules (REDX) give a natural transformation αX : RX →
TeBTX and (CTXR) gives βX : (V ⊗HX)→ TeBTX .

Example 6. Considering While as a syntactic ETS, variable lookups would be specified
by αX : l �→ rdl(inl(0), inl(1), . . .) and updates by βX : (n, l) �→ wrl,n(inl(∗)).
We may now use the ⊗-monoidal closed structure to show that in all cases (REDX)
corresponds to natural transformations rX : RX → MBTX where M = Nc, Te and
Tce respectively. Similarly, (CTXR) corresponds to eX : X ⊗HX → MBTX . This
data induces an operational specification εX :Σ(X ×MBX)→MBTX as follows:

Definition 7. Let Σ be an R-C syntax functor, M a ⊗-strong monad with costrength
cost, and B a behaviour functor BX = V + X . For given natural transformations
rX : RX →MBTX and eX : V ⊗HX →MBTX , the corresponding abstract EIC
specification εX : Σ(TX ×MBTX)→MBTX is given by

εX : R(TX ×MBTX) + (H ⊗ Id)(TX ×MBTX)
[aosrX ,aoscX]−−−−−−−−→MBTX

where aosr and aosc are defined below (we have abbreviated costBTX,HTX).

aosrX : R(TX ×MBTX)
Rπ1−→ RTX

rTX−→MBTTX
MBμX−→ MBTX

aoscX : (Id×H)(TX ×MBTX)
π2 ⊗Hπ1−→ MBTX ⊗HTX

cost−→M(BTX ⊗HTX)
MdwcX−→ M2BTX

μBTX−−−−→MBTX

Here, dwc (‘deal with contexts’) is defined as follows, with sub-cases handled by dwc(v)

(‘values’) and dwc(b) (‘non-terminal behaviour’). We abbreviate distV,TX,HTX . Recall
that ψX : ΣTX → TX is the Σ-algebra structure of TX , the free Σ-algebra over X .

dwcX : (V +TX)⊗HTX dist−→V ⊗HTX+TX⊗HTX [dwc(v)X ,dwc
(b)

X]−−−−−−−−−−−→MBTX

dwc(v)X : V ⊗HTX
eX−→MBTTX

MBμX−→ MBTX

dwc(b)X : TX ⊗HTX
inr−→ ΣTX

ψX−→ TX inr−→ BTX
ηBTX−→ MBTX

The rule (REDX) is described by aosr. For context terms TX ⊗ HTX , given the be-
haviourMBTX of the active term TX (isolated by the first line of aosc), the costrength
attaches the context HTX to each computation branch. The map dwc decides what to
do for each computation branch; if a branch terminates, it is handled by dwc(v) which
corresponds to (CTXR); otherwise, it is handled by dwc(b), corresponding to (CTXL).

Comodels and Effects in Mathematical Operational Semantics 139

4 Behavioural Equivalence in a Kleisli Category

Following Turi and Plotkin’s method, we would take the semantic domain to be the final
MB-coalgebra, where BX = V + X and M is the monad for the transition systems
under consideration; however, this distinguishes comodel-manipulations and effects at
every execution step. For instance, the (CTS or ETS) While programs x=0 ;x=1 and
x=2 ;x=1 would be considered to have different behaviour.

A natural solution to this problem is to move to a Kleisli category for the monad
M , and construe transition systems as B-coalgebras, where B is a lifting of B [1]. In
fact, MB-coalgebras X → MBX coincide with B-coalgebras X → BX ; but B-
coalgebra morphisms, and the final B-coalgebra, which we write 〈D, s : D → BD〉,
are generally different. For any (B or) MB-coalgebra γ : X → MBX , there is a
unique B-coalgebra morphism β : X → D, of underlying type X →MD.

Thus, if a lifting B and the final B-coalgebra D exist, we obtain a map into MD,
which we will see gives a more appropriate characterisation of program behaviour. The
first point is easily addressed: liftingsB ofB are in 1-1 correspondence with distributive
laws λ : BM ⇒MB (see e.g. [20,4]).

Remark 1. For the functorBX = V +X and any monadM , the natural transformation
λX := [ηM ◦ inl,M inr] : V +MX →M(V +X) is a distributive law of B over M .

As for existence of the final B-coalgebra, we draw on the following result (quoted and
proved in [4] as Proposition 3.9):

Proposition 3. Let D be a Cpo!-enriched category with left-strict composition, and G
a locally-continuous endofunctor on D. An initial G-algebra θ : GD ∼= D, if it exists,
yields a final G-coalgebra θ−1 : D ∼= GD. Given a G-coalgebra γ : X → GX , the
corresponding unique G-coalgebra morphism β : X → D is the least fixpoint of the

operator Φ : (X
f→ D) �→ (X

γ→ GX
Gf→ GD θ→ D) – i.e. β is the join of the

approximants β(n) := Φn(⊥X,D) for n < ω.

We apply this result to the Kleisli categoryD = Kl(M) and G = B, a lifting of B; this
will give the required final B-coalgebra D. The Cpo!-enrichedness of Kl(M) follows
from that of the underlying category C; if B is locally continuous, it is easy to show
B must also be. If B has an an initial algebra α : BD → D, we may show D is also
an initial algebra for B, with structure ηM ◦ α ([4] Proposition 3.2). Finally, if M is a
Cpo!-monad, one may show M⊥A,B = ⊥MA,MB; if composition in C is both left and
right-strict, this implies left-strictness of Kleisli-composition. In summary:

Proposition 4. Let C be a Cpo!-enriched category with strict composition, on which
M is a Cpo!-enriched monad, and B a locally continuous functor with a lifting B to
Kl(M). If B has an initial algebra α : BD ∼= D, the final B-coalgebra is given by
ηM ◦ α−1 : D → BD.

Example 7. We illustrate how the fixpoint construction of Proposition 4 assigns denota-
tions to While programs. TakingBX = V +X , the initialB-algebraD has carrierN·V ,
whose elements (n, v) characterise individual computation branches by their length n
and return-value v. Its algebra-structure α : BD → D is defined by α(inl(v)) = (1, v)

140 F. Abou-Saleh and D. Pattinson

and α(inr(n, v)) = (n + 1, v). The functor B has a lifting B given by the distributive
law λ : BM ⇒MB of Remark 1.

If we work in Cpo! and takeM to be a Cpo!-monad, then Proposition 4 applies. Thus,
D is also the carrier of the final B-coalgebra. For any operational model T ε(0) : T 0→
MBT 0 (construed as aB-coalgebra), there will be aB-coalgebra morphism β from T 0
into the semantic domain D, of underlying type T 0 → MD. It is given by the join of
the approximants β(n) which may be defined as follows: β(0) = ⊥T0,MD : T 0→MD

(i.e. the bottom arrow T 0→ D in Kl(M)); and then

β(n+1) : T 0
T ε(0)−→ MBT 0

MBβ(n)

−→ MBMD Mλ−→M2BD
μ−→MBD Mα−→MD

We now instantiate these results for While as a CTS, taking M = Nc with the comodel
of Example 2. This gives a semantic domain of MD = ((N · V) ⊗ C1)C1: each pro-
gram p is assigned a function which, given an initial comodel state s, tells us about
the execution of the program p with initial comodel-state s: a pair (n, v) of the number
of steps-to-termination n and the return-value v, as well as the final comodel state s′.
(Non-terminating pairs (p, s) receive the value ⊥.)

Suppose we have obtained an (un-curried) operational model T ε(0) : T 0→ (BT 0⊗
C1)C1 for While as a CTS, as in Section 3.1 (see Example 4). We illustrate the action
of the approximants β(n) on the programs pn := (x = n) and q := (x = 5;x = 8).
(We abbreviate the series of maps (Bβ(0))† = μNc ◦ Ncλ ◦ NcBβ

(0), which have no
effect on the terminated value inl(∗).)

β(1) : x = n
T ε(0)�−→ λs.(inl(∗), s[x �→ n])

(Bβ(0))†�−→ λs.(inl(∗), s[x �→ n])
Ncα�−→ λs.((1, ∗), s[x �→ n])

This yields the desired denotation of the assignment x = n. Note that higher approxi-
mants β(n) will assign the same value. We may now show that β(2) assigns the desired
denotation to the program x = 5;x = 8:

β(2) : (x = 5;x = 8)
T ε(0)�−→ λs.(inr(x = 8), s[x �→ 5])

NcBβ
(1)

�−→ λs.(inr(λs′.((1, ∗), s′[x �→ 8])), s[x �→ 5])
Ncλ�−→ λs.((λs′.(inr(1, ∗), s′[x �→ 8])), s[x �→ 5])
μNc

�−→ λs.(inr(1, ∗), s[x �→ 8])
Ncα�−→ λs.((2, ∗), s[x �→ 8])

This illustrates that in a CTS, the map β identifies two programs p, q if and only if: for
every initial comodel-state s, 〈p, s〉 and 〈q, s〉 both: (a) terminate with the same final
comodel-state s′ and terminal value v in the same number of steps n; or (b) do not ter-
minate. One may check that in a syntactic ETS, the map β identifies two programs p, q if
their executions produce the same effect-tree δ((ni, vi)i∈I) of terminal values vi paired
with the number of steps ni they took to appear; and the situation for CETS’s com-
bines features of both CTS’s and ETS’s. On this basis, we may take the final coalgebra
maps β as a characterisation of behavioural equivalence. However, the EIC specifica-
tions induce syntactic ETS’s and CETS’s; the corresponding maps β : T 0 → TeD,
β : T 0 → TceD distinguish semantically-equivalent effect-trees. An appropriate be-
havioural equivalence must quotient by the equations on the effects:

Comodels and Effects in Mathematical Operational Semantics 141

Definition 8. [Kleisli Behavioural Equivalence] Under the assumptions of Proposition
3, two states p, q of a CTS satisfy p ∼=c q if they are identified by the final B-coalgebra
morphism β into the final B-coalgebra D in Kl(Nc). For the appropriate final coalge-
bra maps β in Kl(Te) or Kl(Tce), states p, q of a syntactic ETS satisfy p ∼=N

e q, if they
are identified by quotD ◦ β : T 0 → NeD; and states p, q of a syntactic CETS satisfy
p ∼=N

ce q if they are identified by (quotD⊗C1)
C1 ◦ β : T 0→ NceD.

Example 8. Suppose we construe While as a CTS, and NDWhile as a CETS. Define

p1 :=(x=0 ;x=1), p2 :=(x=1 ;x=1), p3 :=(x=1), and p4 :=choose(p3, p3).

For While as a CTS, we have β(p1) = β(p2) = λc.((2, ∗), c[x �→ 1]) and β(p3) =
λc.((1, ∗), c[x �→ 1]); hence p1 ∼=c p2 �∼=c p3. As programs of NDWhile, we will have
p2 �∼=T

ce p4, due to the appearance of a syntactic or-effect when we evaluate p4; however,
the semantic equation or(x, x) = x will imply that p2 ∼=N

ce p4.

Example 9. Relaxing the EIC rule formats may give non-compositional syntax con-
structors. Considering While as a CTS, the ‘one-step timeout’ p � q executes the first
step of p, and continues with q; the interleaver p | q alternates steps of p and q.

〈p, s〉 → 〈p′, s′〉

〈p � q, s〉 → 〈q, s′〉

〈p, s〉 → 〈v, s′〉

〈p � q, s〉 → 〈q, s′〉

〈p, s〉 → 〈p′, s′〉

〈p | q, s〉 → 〈q | p′, s′〉

〈p, s〉 → 〈v, s′〉

〈p | q, s〉 → 〈q, s′〉

Letting p1 := (x=0 ;x=2), p2 := (x=1 ;x=2), and p3 := (y=x), we have p1 ∼=c p2,
but (p1 � p3) �∼=c (p2 � p3) and (p1 | p3) �∼=c (p2 | p3). Syntax constructors sensitive to
individual execution steps can take ‘behaviourally equivalent’ arguments with different
results, breaking compositionality. This cannot occur in EIC specifications.

5 Compositionality and Adequacy

We have defined operational equivalence in terms of mappings T 0→MD into seman-
tic domains MD for various monads M . We now define a corresponding denotational
model, and prove adequacy and compositionality of the resulting denotational seman-
tics. We do this first for CTS’s, and then for syntactic (C)ETS’s.

In order to treat the semantic domain MD as a denotational model, we must define
interpretations [[σ]] of syntax constructors σ on denotations. First, we assign transition
behaviour to denotations, by giving the semantic domain a naturalMB-coalgebra struc-
ture: ηM ◦Mα−1 :MD→MBD →MBMD.

We now take denotations di as base-cases for structural recursion (Proposition 2),
yielding an MB- (i.e. B-)coalgebra transition structure for program terms over deno-
tations TMD, like σ((di)i∈I). As a result, we obtain a B-coalgebra morphism ζ, of
underlying type TMD → MD, characterising the behaviour of such terms by map-
ping back into the semantic domain MD (by finality). This gives a Σ-algebra structure
χ to the semantic domain MD, interpreting the syntax constructors [[σ]] on denota-
tions, via the following composition (where ψX is the free Σ-algebra structure of TX):

ΣMD
ΣηT−−−→ ΣTMD

ψMD−−−→ TMD
ζ−→MD.

142 F. Abou-Saleh and D. Pattinson

By repeated application of the functions [[σ]] (with base-cases given by nullary sym-
bols), one inductively constructs denotations [[t]] of arbitrary terms t. Formally, this
assignment [[−]] : T 0 → MD is given by the initial Σ-algebra morphism from T 0
into MD, equipped with the above structure χ. This gives a suitable denotational se-
mantics for CTS’s, where we take M = Nc. That it is a Σ-algebra morphism implies
compositionality of the denotational semantics; i.e. that the denotation [[σ((ti)i∈I)]] of a
term σ((ti)i∈I) can be constructed from the denotations [[ti]] of its parts: [[σ((ti)i∈I)]] =
[[σ]]([[ti]]i∈I). This makes it a congruence with respect to the syntax constructors of the
language: [[si]] = [[ti]] for all i implies [[σ((si)i∈I)]] = [[σ((ti)i∈I)]].

However, it remains to show adequacy, i.e. that denotational equivalence implies
operational equivalence for CTS’s. A convenient method is to show that the denotational
map [[−]] coincides with the map β characterising behavioural equivalence for CTS’s
(Definition 8), by showing that the latter is also a Σ-algebra morphism; by initiality,
there can be only one such map. This is achieved through the following theorem.

Theorem 1. Given an abstract EIC specification ε (Definition 7) inducing an opera-
tional model T ε(0) : T 0 → MBT 0, the underlying arrow β : T 0 → MD of the
B-coalgebra morphism into the final B-coalgebra D is a Σ-algebra morphism.

The broad strategy is to factor the ‘coarse-grained’ denotational map β through its ‘fine-
grained’ analogue, the final MB-coalgebraD. The proof involves manipulating colimit
diagrams and limit-colimit coincidences in the Kleisli category, and a detailed inspec-
tion of the mechanics of the EIC specifications.

Now we consider denotational semantics for ETS’s (CETS’s are exactly analogous).
Recall that we characterised behavioural equivalence not by the semantic domain TeD,
consisting of syntactic effect-trees, but by the equivalence classes NeD generated by
applying the quotienting map quotD : TeD → NeD. To treat the domain NeD as a
denotational model, we must give it a Σ-algebra structure.

We may follow an analogous method to the one outlined above, by moving from
syntactic ETS’s (TeB-coalgebras) to semantic ETS’s (NeB-coalgebras) and considering
rule-formats and structural recursion directly in terms of equivalence-classes of effect-
trees. This amounts to seeking an abstract EIC specification (Definition 7) in terms of
the monad Ne rather than Te. Note that a syntactic EIC specification in terms of Te –
given by natural transformations r : RX ⇒ TeBT and e : V ⊗HX ⇒ TeBT – trans-
lates into a specification in terms of Ne, by postcomposing with quotBT : TeBT ⇒
NeBT . Formally, structural recursion induces an operational model T 0 → NBT 0 di-
rectly in terms of equivalence-classes. The semantic analysis of Section 4 may also be

transplanted from Kl(Te) to Kl(Ne): again, there is a lifting B
Ne of B given by Remark

1, and Proposition 4 guarantees the existence of a finalB
Ne coalgebra in Kl(Ne), whose

carrier is the initialB-algebraD. There is a uniqueB
Ne-coalgebra morphism βNe from

the operational model into D, now of underlying type T 0→ NeD.
As above, structural recursion over the semantic domain MD, where M is now

Ne, induces a Σ-algebra structure χNe on NeD; initiality gives a unique Σ-algebra
morphism [[−]] : T 0 → NeD, i.e. a denotational semantics which is automatically
compositional. Theorem 1 implies that βNe is a Σ-algebra morphism, and so βNe =
[[−]]. To prove adequacy of this denotational semantics for ETS’s, we may show that the

Comodels and Effects in Mathematical Operational Semantics 143

denotational map [[−]] coincides with the map quotD ◦ β : T 0 → NeD characterising
behavioural equivalence. The following result will imply that quotD ◦ β = βNe , and
hence quotD ◦ β = [[−]] as required, by taking the monad morphism m = quot.

Proposition 5. Let M,N be strong monads on C, m : M ⇒ N a strong monad mor-

phism, and B the endofunctor BX = V + X with liftings B
M

and B
N

to Kl(M)
and Kl(N), with final coalgebras of carrier D and underlying structure ηM ◦ α−1 and
ηN ◦ α−1 for some arrow α−1 : D → BD. Given an abstract EIC specification ε in
terms of monad M , and its translation via m into a specification in terms of monad N ,
the corresponding final coalgebra maps βM , βN from the induced operational models
T 0→ MBT 0, T 0→ NBT 0 into MD and ND satisfy βN = m ◦ βM , provided the
distributive laws λM , λN lifting B satisfy this equation (†): λNX ◦BmX = mBX ◦λMX .

Note that if M and N are Cpo!-monads, then the monad morphism m is strong if it
is a Cpo!-natural transformation (see Remark 1.4 of [10]). As the functor Cpo!(I,−) :
Cpo! → Set is faithful, Cpo!-naturality is essentially equivalent to ordinary naturality
([8] Section 1.3); thus the monad morphism quot may be assumed to be strong. In
addition, the condition (†) is easily verified for the liftings B we used in Remark 1.

One may give compositional and adequate denotational semantics to CETS’s by ex-
actly the same method, where M = Tce, N = Nce, and the monad morphism is given
by (quotD⊗C1)

C1 : Tce ⇒ Nce. This gives us the main result of our paper:

Corollary 1. For a language induced by an EIC specification – a (syntactic) CTS, ETS

or CETS transition system – the above assignments of denotations [[−]] to programs are
adequate and compositional with respect to the behavioural equivalences∼=c,∼=N

e ,
∼=N

ce.
That is, two programs have the same denotation iff they are operationally equivalent;
and the assignment of denotations is a congruence.

6 Conclusion

In this paper, we have given operational and denotational semantics, and syntactic rule
formats, for a class of sequential imperative languages with notions of state and/or
effects. We have given proofs that under these rule formats, the induced semantics are
adequate and compositional. We anticipate applications with various combinations of
user input/output, probabilistic non-determinism, and perhaps local state [18,21].

However, there are some limitations on the effect-theories permitted, due to theCpo!-
enrichment ensuring existence of a final Kleisli-coalgebra. Exceptions are inexpressible
in Cpo!, and the semantics of user I/O is unsatisfactory: divergent programs are identi-
fied even if their I/O behaviour is clearly different. In addition, the coalgebraic seman-
tics may still be too fine-grained, in that it records the number of execution steps of
computations. One way around these limitations might be to move towards a weakly-
final semantics in non-strict Cpo, again taking the semantic domain to be MD where
D is the initial B-algebra, MD, but where the semantic map is now a least fixpoint.

For commutative effect monads M , another way of extending Turi and Plotkin’s
framework may be to lift both syntax and behaviour functors into the Kleisli category
Kl(M) and use it as the base category (rather than splitting the approach as we have
done). An application might be trace semantics for CCS-like languages, as in [13].

144 F. Abou-Saleh and D. Pattinson

References

1. Abou-Saleh, F., Pattinson, D.: Towards effects in mathematical operational semantics. Electr.
Notes Theor. Comput. Sci. 276, 81–104 (2011)

2. Adamek, J.: Recursive data types in algebraically w-complete categories. Information and
Computation 118(2), 181–190 (1995)

3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge Univer-
sity Press (1994)

4. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Meth-
ods in Computer Science 3(4) (2007)

5. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor. Comput.
Sci. 357, 70–99 (2006)

6. Hyland, M., Power, J.: Discrete lawvere theories and computational effects. Theor. Comput.
Sci. 366(1-2), 144–162 (2006)

7. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for algebraic ef-
fects. In: Proc. LICS 2010, pp. 209–218. IEEE Computer Society (2010)

8. Kelly, G.M.: Basic concepts of enriched category theory. Reprints in Theory and Applica-
tions of Categories (10), 1–136 (2005)

9. Klin, B.: Bialgebraic methods in structural operational semantics. Electron. Notes Theor.
Comput. Sci. 175(1), 33–43 (2007)

10. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23 (1972)
11. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics. Theor. Com-

put. Sci. 327(1-2), 135–154 (2004)
12. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
13. Monteiro, L.: A Coalgebraic Characterization of Behaviours in the Linear Time – Branching

Time Spectrum. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp.
251–265. Springer, Heidelberg (2009)

14. Plotkin, G., Power, J.: Tensors of comodels and models for operational semantics. Electron.
Notes Theor. Comput. Sci. 218, 295–311 (2008)

15. Plotkin, G.D., Power, J.: Adequacy for Algebraic Effects. In: Honsell, F., Miculan, M. (eds.)
FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)

16. Plotkin, G., Power, J.: Notions of Computation Determine Monads. In: Nielsen, M., Engberg,
U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)

17. Power, J.: Countable lawvere theories and computational effects. Electr. Notes Theor. Com-
put. Sci. 161, 59–71 (2006)

18. Power, J.: Semantics for local computational effects. Electr. Notes Theor. Comput. Sci. 158,
355–371 (2006)

19. Power, J., Shkaravska, O.: From comodels to coalgebras: State and arrays. Electron. Notes
Theor. Comput. Sci. 106 (2004)

20. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Category Theory
and Computer Science. Elsevier (1999)

21. Staton, S.: Completeness for Algebraic Theories of Local State. In: Ong, L. (ed.) FOSSACS
2010. LNCS, vol. 6014, pp. 48–63. Springer, Heidelberg (2010)

22. Turi, D.: Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free Uni-
versity, Amsterdam (June 1996)

23. Turi, D.: Categorical modelling of structural operational rules: Case studies. In: Category
Theory and Computer Science, pp. 127–146 (1997)

24. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS, pp. 280–
291 (1997)

Preorders on Monads and Coalgebraic Simulations

Shin-ya Katsumata and Tetsuya Sato

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
{sinya,satoutet}@kurims.kyoto-u.ac.jp

Abstract. We study the construction of preorders on Set-monads by the semantic
��-lifting. We show the universal property of this construction, and characterise
the class of preorders on a monad as a limit of a Cardop-chain. We apply these
theoretical results to identifying preorders on some concrete monads, including
the powerset monad, maybe monad, and their composite monad. We also relate
the construction of preorders and coalgebraic formulation of simulations.

1 Introduction

In the coalgebraic treatment of labelled transition systems and process calculi, several
coalgebraic formulations of bisimulations are proposed [1,12,18], and their relation-
ships are well-studied [25]. On the other hand, to express the asymmetry of simulations
between coalgebras, we need to generalise the framework of bisimulations. One of the
earliest works in this direction is [13], where Hesselink and Thijs introduced a class of
relational liftings of Set-functors called relational extensions, with which simulations
can be coalgebraically captured. Hughes and Jacobs took preordered functors as a basis
for constructing relational extensions of endofunctors. This approach was further de-
veloped in the subsequent studies on coalgebraic trace semantics [10] and forward and
backward simulations of coalgebras [9]. The key assumption in the last two works is
that an order enrichment is given to the Kleisli category of a monad.

One natural problem arising in this line of research is how to systematically con-
struct preordered functors. In fact, many coalgebra functors of transition systems con-
tain the functor part of monads to describe branching types of transition systems, and
they are the focal point when considering relational liftings and preorders on endo-
functors. Upon this observation, we address the problem of constructing preorders on
monads, and study its relationship to the coalgebraic formulation of simulations.

The main technical vehicle to tackle the problem is semantic ��-lifting [16], which
originates from the proof of the strong normalisation of Moggi’s computational meta-
language by reducibility candidates [21,22]. We apply the semantic ��-lifting to con-
struct preorders on monads, and show that this construction satisfies a universal prop-
erty. We also characterise the class of preorders on a monad as the limit of a large chain
of certain preorders. We then apply these theoretical results to identifying preorders on
some concrete monads, including the semiring-valued multiset monad, powerset monad
and maybe monad. We finally show that the semantic ��-lifting satisfies a couple of
properties that are relevant to the coalgebraic formulation of simulations.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 145–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 S. Katsumata and T. Sato

Preliminaries

Throughout this paper we assume the axiom of choice. We write Pre (resp. Pos) for
the cartesian monoidal category of preorders (resp. posets) and monotone functions
between them. For sets I, J, by I ⇒ J we mean the set of functions from I to J. Each
preorder ≤ on a set J extends to the pointwise preorder on a function space I ⇒ J,
which we denote by ≤̇. In this paper the metavariable T (and its variants) is reserved
for monads over Set. Its components are written by (T, η, μ). For a function f : I → T J,
by f # we mean the Kleisli lifting of f , that is, the function μJ ◦ T f . A preordered
functor [13,15] consists of an endofunctor F : Set → Set and an assignment I �→ 	I of
a preorder on FI such that for any function f : I → J, F f is a monotone function from
(FI,	I) to (FJ,	J).

2 Preorders on Monads

Definition 1. Let I be a set. We call a binary relation S ⊆ T I × T I substitutive if for
each function f : I → T I and (x, y) ∈ S , (f #(x), f #(y)) ∈ S .

Especially, a preorder≤ on T I is substitutive if and only if for each function f : I → T I,
f # is a monotone function of type (T I,≤) → (T I,≤).

Definition 2. Let I be a set. We call a preorder ≤ on T I congruent if for each set J and
functions f , g : J → T I, f ≤̇ g implies f # ≤̇ g#.

Under the correspondence between monads and algebraic theories, T I may be viewed
as the set of I-many variable polynomials in the algebraic theory corresponding to T .
Then a binary relation S ⊆ T I × T I is substitutive if for each polynomial pair (t, u) ∈ S
and a simultaneous substitution [i := vi]i∈I of polynomials, we have (t[i := vi]i∈I , u[i :=
vi]i∈I) ∈ S . The congruence of a preorder ≤ on T I means that for each polynomial
v ∈ T J and two simultaneous substitutions [j := t j] j∈J and [j := u j] j∈J such that
t j ≤ u j, we have v[j := t j] j∈J ≤ v[j := u j] j∈J.

We introduce the main subject of this paper, preorders on monads.

Definition 3. A preorder 	 on T is an assignment of a preorder 	I on T I to each set I
such that

1. each preorder 	I is congruent, and
2. for each function f : I → T J, f # is a monotone function from (T I,	I) to (T J,	J)

(we also call this property substitutivity).

From this definition, 	I is substitutive for each set I, and (T,) is a preordered functor.
We write Pre(T) for the class of preorders on T . We define a pointwise partial order
� on Pre(T) by: 	 � 	′ if 	I ⊆ 	′I holds for each set I. The class Pre(T) admits
intersections of arbitrary size: for a subcollection � of Pre(T), its intersection is the
preorder

⋂
� on T defined by: a (

⋂
�)I b if a 	I b holds for each preorder 	 ∈ �.

Example 1. We write Tp for the powerset monad. For each set I, TpI has a natural
preorder given by the set inclusion. This is a preorder on Tp.

Preorders on Monads and Coalgebraic Simulations 147

Example 2. We write Tl for the monad whose functor part is given by TlI = I+ {∗}; this
is known as the maybe monad in Haskell. We assign to each set I the flat partial order
on TlI that makes ι2(∗) the least element. This is a preorder on Tl.

Example 3. We write Tm for the free monoid monad. For each set I, we define a pre-
order 	I on TmI by: x 	I y if the length of x is equal or shorter than y. This is not a
preorder on Tm because it is not substitutive.

Suppose that the Kleisli category SetT of a monadT is Pre-enriched, and moreover the
enrichment is pointwise, that is, (∀x ∈ SetT (1, I) . f # ◦ x 	1,J g# ◦ x) implies f 	I,J g
for all f , g ∈ SetT (I, J). Then the assignment I �→ 	1,I gives a preorder on T under the
identification SetT (1, I) � T I. Conversely, given a preorder 	 on T , the assignment of
the preorder 	̇J to SetT (I, J) gives a pointwise Pre-enrichment. This correspondence
between pointwise Pre-enrichments on SetT and preorders on T is bijective.

3 Relational Liftings and Preorders on Monads

After reviewing a coalgebraic formulation of (bi)simulations in the category BRel of
binary relations and relation-respecting functions, we introduce a relational lifting of
monads, called preorder ��-lifting, and show that it gives rise to preorders on monads.

3.1 The Category BRel of Binary Relations

We define the category BRel (which is the same as Rel in [15]) by the following data.
An object in BRel is a triple (X, I1, I2) such that X ⊆ I1× I2. A morphism from (X, I1, I2)
to (Y, J1, J2) is a pair (f1, f2) of functions f1 : I1 → J1 and f2 : I2 → J2 such that for
each (i1, i2) ∈ X, (f1(i1), f2(i2)) ∈ Y. We use bold letters X,Y,Z to range over objects in
BRel, and refer to each component of X ∈ BRel by (X0,X1,X2). We write iX : X0 →
X1 × X2 for the inclusion function. We say that X ∈ BRel is above (I1, I2) ∈ Set2 if
X1 = I1 and X2 = I2. Objects above the same Set2-object are ordered by the inclusion
of their relation part. We denote this order by ⊆. For each object X,Y in BRel and
morphism (f1, f2) : (X1,X2) → (Y1,Y2) in Set2, we abbreviate (f1, f2) ∈ BRel(X,Y) to
(f1, f2) : X →̇Y. We call a pair (X,Y) of objects in BRel composable if X2 = Y1. Their
composition X ∗Y is given by the relational composition of X0 and Y0:

X ∗Y = ({(x1, y2) | ∃z ∈ X2 . (x1, z) ∈ X0, (z, y2) ∈ Y0},X1,Y2).

A preorder ≤ on a set I determines a BRel-object (≤, I, I), which we also denote by ≤.
We write EqI for the BRel-object of the identity relation on I.

The category BRel arises as the vertex of the pullback of the subobject fibration
p : Sub(Set) → Set (see [14, Chapter 0]) along the product functor D : Set2 → Set:

BRel ��

π

��

Sub(Set)

p

��
Set2

D
�� Set

where π is

{
π(X) = (X1,X2),
π(f1, f2) = (f1, f2)

148 S. Katsumata and T. Sato

The leg π : BRel → Set2 of the pullback is a partial order fibration [14]. For an object
X in BRel and a morphism (f1, f2) : (I1, I2) → (X1,X2) in Set2, we define the inverse
image object (f1, f2)∗X by

(f1, f2)∗X = ({(x1, x2) | (f1(x1), f2(x2)) ∈ X}, I1, I2).

The category BRel has a bi-cartesian closed structure that is strictly preserved by π. The
object part of this structure is given as follows:

˙∏
i∈IXi =

(
{(x, y) | ∀i ∈ I . (πi(x), πi(y)) ∈ (Xi)0},

∏
i∈I (Xi)1,

∏
i∈I (Xi)2

)

˙∐
i∈IXi =

(⋃
i∈I {(ιi(x), ιi(y)) | (x, y) ∈ (Xi)0},

∐
i∈I(Xi)1,

∐
i∈I(Xi)2

)

X ⇒̇ Y = ({(f , g) | ∀(x, y) ∈ X0 . (f (x), g(y)) ∈ Y0},X1 ⇒ Y1,X2 ⇒ Y2).

This structure captures the essence of logical relations for product, coproduct and arrow
types interpreted in type hierarchies [23]. We note that the equality functor Eq : Set →
BRel also preserves the bi-CC structure (identity extension).

3.2 Relational Liftings and Coalgebraic Simulations

Definition 4. A relational lifting of an endofunctor F : Set → Set is an assignment
Ḟ : |BRel| → |BRel| such that for each morphism (f , g) : X →̇ Y, we have (F f , Fg) :
ḞX →̇ ḞY. We say that Ḟ is

– reflexive if EqFI ⊆ ḞEqI ,
– lax compositional if ḞX ∗ ḞY ⊆ Ḟ(X ∗ Y),
– compositional if ḞX ∗ ḞY = Ḟ(X ∗ Y), and
– a relational extension [13] if it is reflexive and compositional.

A relational lifting bijectively corresponds to an endofunctor Ḟ : BRel → BRel such
that π ◦ Ḟ = F2 ◦ π. We later see that the lax compositionality guarantees the compos-
ability of simulations between coalgebras.

Example 4. The bi-cartesian closed structure on BRel gives canonical relational exten-
sions of functors consisting of Id,CA (the constant functor for a set A), + and ×. For
instance, the canonical lifting of FX = CA + X × X is ḞX = EqA +̇ X ×̇ X.

Example 5. The following relational lifting F is known to capture the concept of bisim-
ulation between F-coalgebras in many cases (see e.g. [12]):

FX = (Im, FX1, FX2),

where Im is the image of 〈Fπ1, Fπ2〉 ◦ FiX : FX0 → FX1 × FX2. It is always reflexive,
and also compositional if and only if F preserves weak pullbacks [3].

Example 6. In [13, Section 4.1] Hesselink and Thijs give the following construction of
a relational lifting F+()(X) from a preordered functor (F,):

F+()(X) = 	X1 ∗ FX ∗ 	X2 .

They show that every relational extension Ḟ of a Set-functor F gives rise to a preordered
functor (F, Ḟ(Eq−)), and Ḟ can be recovered as Ḟ = F+(Ḟ(Eq−)). In [20], it is shown that
the preordered functor (F,) is stable (Definition 10, [20]) if and only if F+() is a
relational extension such that (F+(), F2) is an endomorphism over π.

Preorders on Monads and Coalgebraic Simulations 149

A natural generalisation of the coalgebraic formulation of (bi)simulations in [12,15]
is to make it parametrised by relational liftings of coalgebra functors.

Definition 5. Let Ḟ be a relational lifting of an endofunctor F : Set → Set. An Ḟ-
simulation from an F-coalgebra (I1, f1) to another F-coalgebra (I2, f2) is an object
X ∈ BRel above (I1, I2) such that (f1, f2) : X →̇ ḞX.

Example 7. Hermida and Jacobs formulated bisimulations between F-coalgebras as F-
simulations [12]. Later, Hughes and Jacobs employed F+()-simulations to capture the
concept of simulations between F-coalgebras [15].

Here are some properties of Ḟ-simulations. I) Ḟ-simulations are closed under the union
of arbitrary family. II) If Ḟ is reflexive, Ḟ-simulations are F-simulations. III) If Ḟ is lax
compositional, Ḟ-simulations are closed under the relational composition ∗.

We extend the concept of relational liftings of endofunctors to monads.

Definition 6. A relational lifting of T is an assignment Ṫ : |BRel| → |BRel| such that

– For each object X in BRel, we have (ηX1 , ηX2) : X →̇ ṪX, and
– for each morphism (f1, f2) : X →̇ ṪY, we have (f #

1 , f #
2) : ṪX →̇ ṪY.

A relational lifting of T bijectively corresponds to a monad Ṫ = (Ṫ , η̇, μ̇) over BRel
such that

π(ṪX) = (TX1, TX2), π(Ṫ (f1, f2)) = (T f1, T f2), η̇X = (ηX1 , ηX2), μ̇X = (μX1 , μX2).

We note that every relational lifting Ṫ ofT is a strong monad over BRel, and its strength
θ̇ satisfies π(θ̇X,Y) = (θX1,Y1 , θX2,Y2), where θ is the canonical strength of T .

The relational lifting in Example 5 extends to monads:

Proposition 1. For each monad T , T is a relational lifting of T .

Larrecq, Lasota and Nowak further generalised this fact using subscones and mono
factorisation systems [8]. Hesselink and Thijs’s construction in Example 6 also yields
relational liftings of monads, when preorders on monads are supplied:

Proposition 2. For each monad T and preorder 	 on T , T+() is a lifting of T .

3.3 Preorder ��-Lifting

Inspired from [22,21,24], in [16] the first author introduced semantic ��-lifting, a
method to lift strong monads on the base category B of a certain partial order fibration
p : E → B to its total category E. This method takes a pair (R, S) such that pS = TR
as a parameter of the lifting, and by varying this parameter we can derive various lift-
ings of T . In this paper, we apply the semantic ��-lifting to the strong monad T 2 over
Set2 and the fibration π : BRel → Set2, and we supply congruent (and substitutive)
preorders to the semantic ��-lifting as parameters.

Definition 7. A preorder parameter for T is a pair (R,≤) of a set R and a congruent
preorder ≤ on TR.

150 S. Katsumata and T. Sato

The following is a special case of the semantic ��-lifting [16, Definition 3.2], where a
preorder parameter is supplied.

Definition 8. Let (R,≤) be a preorder parameter for T . We write σI for the function
λxk . k#(x) : T I → (I ⇒ TR) ⇒ TR.1 We define the assignment T��(R,≤) : |BRel| →
|BRel| by:

T��(R,≤)X = (σX1 , σX2)∗((X⇒̇ ≤)⇒̇ ≤). (1)

Below we call T��(R,≤) preorder ��-lifting to distinguish it from the general semantic
��-lifting. When the preorder parameter is obvious from context, we simply write T��

instead of T��(R,≤). An equivalent definition of T��X using an auxiliary object X� is:

X� = X ⇒̇ ≤ = ({(f1, f2) | ∀(x1, x2) ∈ X0 . f1(x1) ≤ f2(x2)},X1 ⇒ TR,X2 ⇒ TR),

T��X = (({(x1, x2) | ∀(f1, f2) ∈ (X�)0 . f #
1 (x1) ≤ f #

2 (x2)}, TX1, TX2).

Theorem 1 ([16]). The preorder ��-lifting T�� is a relational lifting of T .

Example 8 (Example 3.6, [16]). We regard Tp1 = {∅, 1} as the congruent preorder ∅ ≤
1. The preorder ��-lifting of Tp with this preorder parameter is

T��
p X = ({(P1, P2) | ∀x1 ∈ P1 . ∃x2 ∈ P2 . (x1, x2) ∈ X0}, TpX1, TpX2).

Every preorder ��-lifting of a monad T yields a preorder on T .

Theorem 2. Let (R,≤) be a preorder parameter for T .

1. For each set I, we have T��EqI = ({(x, y) | ∀ f : I → TR . f #(x) ≤ f #(y)}, T I, T I).
2. The assignment I �→ T��EqI is a preorder on T (which we denote by [≤]R).

Proof. We note that (T��EqI)0 = {(x, y) | ∀ f , g : I → TR . f ≤̇ g =⇒ f #(x) ≤ g#(y)}.

1. (⊇) Immediate. (⊆) Let x, y ∈ T I and assume ∀h : I → TR . h#(x) ≤ h#(y). For
functions f , g : I → TR such that f ≤̇ g, we have f #(x) ≤ g#(x) as ≤ is congruent,
and g#(x) ≤ g#(y) from the assumption. Therefore f #(x) ≤ g#(y) holds by the
transitivity of ≤.

2. (Transitivity) Let (x, y), (y, z) ∈ T��EqI . From 1, for any function f : I → TR, we
have f #(x) ≤ f #(y) and f #(y) ≤ f #(z), hence f #(x) ≤ f #(z). (Reflexivity) Reflexivity
is immediate from the congruence of ≤. (Congruence) The Kleisli lifting of (f , g) :
EqI →̇ T��EqJ satisfies (f #, g#) : T��EqI →̇ ṪEqJ. From the reflexivity of T��EqI ,
we have (f #, g#) : EqT I ⊆ T��EqI →̇ T��EqI . (Substitutivity) Let f : I → T J be a
function and x, y ∈ T I such that (x, y) ∈ T��EqI . For each function g : J → TR, we
have

g#(f #(x)) = (g# ◦ f)#(x) ≤ (g# ◦ f)#(y) = g#(f #(y)),

implying (f #(x), f #(x)) ∈ T��EqJ.

Below we write CSPre(T , I) for the set of congruent and substitutive preorders on T I,
ordered by inclusion. The mapping (−)I : 	 �→ 	I is a monotone function of type
Pre(T) → CSPre(T , I). We characterise the assignment ≤ �→ [≤]R as the right adjoint
[−]I : CSPre(T , I) → Pre(T) to (−)I .

1 This is called the unit of the continuation monad transformer [4].

Preorders on Monads and Coalgebraic Simulations 151

Theorem 3. For each set I, we have the following adjunction (−)I � [−]I such that
[−]I

I = id.

(CSPre(T , I),⊆) �
[−]I

��
(Pre(T),�).

(−)I

�� (2)

Proof. Monotonicity of [−]I is easy. We show 	 � [I]I . Let J be a set and suppose
x 	J y. Then from the substitutivity of 	, for each function f : J → T I, we have
f #(x) 	I f #(y), that is, x [I]I

J y. Next, we show [≤]I
I = ≤. We first calculate [≤]I

I :

[≤]I
I = {(x, y) | ∀ f : I → T I . f #(x) ≤ f #(y)}

Then ≤ ⊆ [≤]I
I is equivalent to the substitutivity of ≤, which is already assumed. To

show [≤]I
I ⊆ ≤, use the unit ηI : I → T I of T .

Example 9. 1. We define a congruent preorder ≤ on Tm2 = 2∗ by: x ≤ y if x is a
subsequence of y. Then we have x [≤]2

I y if and only if x is a subsequence of y.
2. For x ∈ TmI and i ∈ I, by o(x, i) we mean the number of occurrences of i in

x. For each congruent preorder ≤ on Tm1 � N, we have x [≤]1
I y if and only if

∀i ∈ I . o(x, i) ≤ o(y, i).

4 Characterising Pre(T) as the Limit of a Large Chain

Using the family of adjunctions (2), for sets I, J we define the monotone function ϕI,J :
CSPre(T , I) → CSPre(T , J) by ϕI,J(≤) = [≤]I

J. Theorem 3 asserts ϕI,I = id.

Lemma 1. For each 	 ∈ Pre(T) and sets I, J such that card(I) ≤ card(J), we have
	I = [J]J

I .

Proof. From 	 � [J]J, we have 	I ⊆ [J]J
I . We show the converse. We take an

injection i : I � J and a surjection s : J � I such that s ◦ i = id. Suppose x[J]J
I y.

Then for the function η ◦ i : I → T J, the following holds:

Ti(x) = (η ◦ i)#(x) 	J (η ◦ i)#(y) = Ti(y).

From the substitutivity of 	, we obtain x 	I y, because

x = T s ◦ Ti(x) = (η ◦ s)#(Ti(x)) 	I (η ◦ s)#(Ti(y)) = T s ◦ Ti(y) = y.

Lemma 2. For sets I, J,K such that card(I) ≤ card(J), we have ϕJ,I ◦ ϕK,J = ϕK,I .

Proof. We have ϕK,I(≤) = [≤]K
I

∗
= [[≤]K

J]J
I = ϕJ,I ◦ ϕK,J(≤); here,

∗
= is by Lemma 1.

This implies that when card(I) ≤ card(J), we have ϕJ,I ◦ ϕI,J = id, hence ϕI,J is a split
monomorphism in Pos.

Lemma 3. For each 	 ∈ Pre(T) and sets I, J such that card(I) ≤ card(J), we have
[I]I � [J]J.

152 S. Katsumata and T. Sato

Proof. We have [J]J � [[J]J
I]I = [I]I ; the last step is by Lemma 1.

Thus each 	 ∈ Pre(T) determines a descending chain of preorders on T indexed by
cardinals: [0]0 � [1]1 � · · · , and 	 is a lower bound by Theorem 3. In fact, 	 is the
greatest lower bound:

Theorem 4. For each 	 ∈ Pre(T), we have 	 =
⋂
α∈Card [α]α.

Proof. It is sufficient to show
⋂
α∈Card [α]α � 	. Let I be a set, x, y ∈ T I and suppose

that x [α]αI y holds for any cardinal α; so this especially holds at card(I). Taking a
bijection h : I → card(I), we obtain Th(x) 	card(I) Th(y). As 	 is substitutive, we have
x = Th−1 ◦ Th(x) 	I Th−1 ◦ Th(y) = y.

Let us write Card for the linear order of cardinals (recall that we assume the axiom of
choice). To clarify the relationship between Pre(T) and CSPre(T ,−), we extend the
assignment α ∈ Card �→ CSPre(T , α) to a functor CSPre(T ,−) : Cardop → Pre; the
morphism part is given by ϕ. We thus obtain a large chain:

CSPre(T , 0) CSPre(T , 1)
ϕ1,0�� · · ·

ϕ2,1�� CSPre(T ,ℵ0)�� · · ·
ϕℵ0 ,ℵ1��

We characterise Pre(T) as a limit of this large chain.

Theorem 5. The family (−)α : Pre(T) → CSPre(T , α) is a limiting cone.

Proof. We first show that (−)α : Pre(T) → CSPre(T , α) is a cone over CSPre(T ,−).
Let 	 ∈ Pre(T) and α, β be cardinals such that α ≤ β. Then ϕβ,α(β) = [β]βα = 	α by
Lemma 1.

Next, let V be a class and p : V → CSPre(T ,−) be a cone. We construct the unique
mediating mapping m : V → Pre(T) such that (−)α ◦ m = pα. For this, we first prove
the following lemma:

Lemma 4. For each class V, cone p : V → CSPre(T ,−) and cardinals α, β such that
α ≤ β, we have [pα(v)]α � [pβ(v)]β.

Proof. As p is a cone, for any cardinal α ≤ β, we have ϕβ,α(pβ(v)) = [pβ(v)]βα = pα(v).
Then [pα(v)]α = [[pβ(v)]βα]α � [pβ(v)]β; the last step is by Lemma 3.

Therefore every v ∈ V determines a decreasing sequence of preorders on T : [p0(v)]0 �
[p1(v)]1 � · · · . We then define a mapping m : V → Pre(T) by

m(v) =
⋂

α∈Card

[pα(v)]α.

This mapping satisfies m(v)α = pα(v) because

m(v)α =
⋂

β∈Card

[pβ(v)]βα =
⋂

β∈Card,α≤β
[pβ(v)]βα =

⋂

β∈Card,α≤β
pα(v) = pα(v).

When another mapping m′ : V → Pre(T) satisfies m′(v)α = pα(v), then m′(v) = m(v)
because

m′(v) =
⋂

α∈Card

[m′(v)α]α =
⋂

α∈Card

[pα(v)]α = m(v).

Preorders on Monads and Coalgebraic Simulations 153

Corollary 1. We have an isomorphism CSPre(T , α) � Pre(T) if ϕβ,α is an isomor-
phism for each cardinal β ≥ α.

Finding such a cardinal α is not obvious and depends on T . Below we present a conve-
nient condition for finding such α; see Example 11 for a concrete case.

Definition 9. We say that a cardinal α is large enough for preorder axioms on T if for
each cardinal β ≥ α and x, y ∈ Tβ, there exists functions g : β → Tα and f : α → Tβ
(depending on x, y) such that f # ◦ g#(x) = x and f # ◦ g#(y) = y.

Theorem 6. If α is large enough for preorder axioms on T , then CSPre(T , α) �
Pre(T).

Proof. We show that ϕα,β is surjective as a function for any cardinal β ≥ α. When this is
shown, ϕα,β becomes the inverse of ϕβ,α in Pos because ϕα,β is a split monomorphism.

Let β be a cardinal such that β ≥ α, and suppose that it is witnessed by an injection
w : α� β. For each congruent and substitutive preorder ≤ ∈ CSPre(T, β), we define a
binary relation ≤′⊆ Tα × Tα by

a ≤′ b ⇐⇒ there exists an injection m : α� β such that Tm(a) ≤ Tm(b).

Lemma 5. ≤′ ∈ CSPre(T , α).

We omit the proof of this lemma. We next show that ≤ is the image of ≤′ by ϕα,β.

Lemma 6. ϕα,β(≤′) =≤.

Proof. Let x, y ∈ Tβ such that x ≤ y. For each function f : β→ Tα, we obtain

Tw ◦ f #(x) = (Tw ◦ f)#(x) ≤ (Tw ◦ f)#(y) = Tw ◦ f #(y)

from the substitutivity of ≤, thus f #(x) ≤′ f #(y). Therefore we obtain x [≤′]αβ y.
Conversely, suppose x [≤′]αβ y. From the assumption, we have g : β → Tα and

f : α → Tβ such that f # ◦ g#(x) = x and f # ◦ g#(y) = y. We thus have g#(x) ≤′ g#(y),
hence there is an injection m : α � β such that Tm ◦ g#(x) ≤ Tm ◦ g#(y). Now take a
surjection s : β � α such that s ◦ m = idα. Then we have a function f ◦ s : β → Tβ,
and as the preorder ≤ is substitutive, we have

x = (f ◦ s)# ◦ Tm ◦ g#(x) ≤ (f ◦ s)# ◦ Tm ◦ g#(y) = y.

Theorem 7. The rank of a monad T , if it exists, is large enough for preorder axioms
on T .

Proof. We write α for the rank ofT . Let β be a cardinal such that β ≥ α and x1, x2 ∈ Tβ.
There exists a cardinal 0 < γ < α (witnessed by an injection i′ : γ� α), m1,m2 ∈ Tγ
and an injection i : γ � β such that T (i)(mi) = xi (i = 1, 2). We then take surjections
s : β � γ and s′ : α � γ that are left inverses to i and i′, respectively. Then f =
η ◦ i′ ◦ s : β→ Tα and g = η ◦ i ◦ s′ : α→ Tβ satisfy g# ◦ f #(xi) = xi because

g# ◦ f #(xi) = Ti ◦ T s′ ◦ Ti′ ◦ T s ◦ Ti(mi) = Ti(mi) = xi (i = 1, 2).

154 S. Katsumata and T. Sato

5 Enumerating and Identifying Preorders on Monads

The understanding of the categorical status of Pre(T) allows us to identify its contents
in several ways. Below we illustrate some methods with concrete monads.

5.1 Showing the Adjunction (2) being an Isomorphism

Let M be a semiring. We write T M
c for the M-valued finite multiset monad, whose

functor part is given by T M
c I = { f : I → M | supp(f) is finite}; here, supp(f) = {i ∈

I | f (i) � 0}. Below we show that the adjunction (2) becomes an isomorphism for I = 1.
The following is the key lemma, which states that each preorder on T M

c is pointwise:

Lemma 7. Each preorder 	 on T M
c satisfies: d 	I d′ ⇐⇒ ∀i ∈ I . d(i) 	1 d′(i).

This implies [1]1 � 	. Therefore from Theorem 3, we obtain:

Theorem 8. We have CSPre(T M
c , 1) � Pre(T M

c).

By letting M be the two-point boolean algebra and removing the finiteness restriction,
T M

c becomes the powerset monad Tp. A similar argument then identifies Pre(Tp):

Theorem 9. We have 4 � CSPre(Tp, 1) � Pre(Tp). The preorders on Tp are: I) the
discrete order, II) the inclusion order, III) the opposite of II and IV) the trivial preorder
(that is, 	I = TpI × TpI).

5.2 Collecting Preorders of the Form [≤]R

From Theorem 4, every preorder 	 on T is the intersection of preorders of the form
[≤]R. Therefore if the collection {[≤]R | R ∈ Set, ≤ ∈ CSPre(T ,R)} is closed under
intersections of arbitrary size, then it is equal to Pre(T). Below we identify Pre(Tl)
using this fact. We note that Levy identified Pre(Tl) using a different method called
boolean precongruences [19]; see Section 7.

Example 10. Let (R,≤) be a preorder parameter forTl. Then [≤]R is either I) the discrete
order, II) the flat order with ι2(∗) being the least element, III) the opposite of II, or
IV) the trivial order. For proving this statement, we consider the combinations of two
subcases: A) whether ι2(∗) is the least element in (R,≤) or not, and B) whether ι2(∗)
is the greatest element in (R,≤) or not. From this, we conclude that I—IV are the only
preorders on Tl.

5.3 Computing CSPre(T , α) with a Large Enough α for Preorder Axioms

In the previous method, we have managed to find a good case analysis of preorder pa-
rameters. However, when the monad T becomes more complex, we immediately have
no idea what kind of case analysis on preorder parameters is sufficient for classifying
all the preorders on the monad. The second method presented in this section circum-
vents this problem by exploiting Theorem 6. We find a finite cardinal α that is large
enough for preorder axioms on T , then compute CSPre(T , α). Below we examine the

Preorders on Monads and Coalgebraic Simulations 155

case where this computation is feasible. First, we assume that Tα is finite. We introduce
the following preorder � on Tα × Tα:

(x1, y1) � (x2, y2) ⇐⇒ ∃ f : α→ Tα . (f # x1, f #y1) = (x2, y2)

and the following congruent closure operator C:

C(B) = {(f #(w), g#(w)) | X ∈ Set,w ∈ TX, (f , g) : EqX →̇ (B, Tα, Tα)}.

For a finite set D, a subset A ⊆ D and a monotone increasing function f over TpD, the
following function lfp computes the least fixpoint of f including A:

lfp(A, f){
if(A = f (A)) { return A; } else { return lfp(f (A), f); }

}

If f is computable then lfp terminates in finite steps.
We construct the following algorithm Naive to compute CSPre(T , α):

CTU(A) { return lfp(A, C ◦ T ◦ U); }
f1(L) { return L ∪ { CTU(B ∪ {(x, y)}) | B ∈ L, (x, y) ∈ Tα × Tα \ B }; }

Naive() { return lfp({EqTα}, f1); }

where, U is the upward closure operator on (Tα × Tα,�) and T is the transitive closure
operator; they are both computable. The function CTU thus computes the congruent
transitive upward closure of a given binary relation over Tα. When C is computable, the
above algorithm is also computable.

Proposition 3. Naive() = CSPre(T , α).

We explain how the algorithm Naive runs with the following example.

Example 11. First, the cardinal 3 is large enough for preorder axioms on the nonempty
powerset monad Tp+ , because for each pair (x, y) ∈ Tp+X × Tp+X, the following two
functions f : X → Tp+3 and g : 3 → Tp+X satisfy g# ◦ f # x = x and g# ◦ f #y = y:

f (a) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{0} a ∈ x\y
{1} a ∈ y\x

{2} otherwise

, g(b) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y b = 1

x ∩ y b = 2 and x ∩ y � ∅
x otherwise

Since Tp+3 is finite and the multiplication of Tp+ is the set union operation, R is congru-
ent if and only if R satisfies (x1, y1), (x2, y2) ∈ R =⇒ (x1 ∪ x2, y1 ∪ y2) ∈ R. Therefore,
the following algorithm computes C:

C(A){ return lfp(A, f2); } where f2(B){ return B ∪ {x ∪ y | x, y ∈ B}; }

We have CSPre(T , α) � 4. The orders on Tp+ remains the same as the one for Tp.

156 S. Katsumata and T. Sato

Table 1. All Preorders on Tpl (we omit opposite ones)

Type of preorders The definition of x 	I y
Trivial preorder true
Equivalence relations x = y, (x = y) ∨ (⊥ ∈ x ∧ ⊥ ∈ y),

x\{⊥} = y\{⊥}
Partial orders x ⊆ y, x = y ∨ x = y\{⊥},

x = y ∨ (x ⊆ y ∧ ⊥ ∈ x), x = y ∨ (x ⊆ y ∧ ⊥ ∈ y),
(x = y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

Proper preorders x = y ∨ ⊥ ∈ x, x ⊆ y ∨ ⊥ ∈ y,
(x ⊆ y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

We rewrite the naive algorithm to an efficient one. The basic idea to improve the
efficiency is to work on the poset (Tα×Tα/∼, [�]) rather than the preorder (Tα×Tα,�),
where ∼ is the equivalence relation � ∩ � and [�] is the extension of � to the partial
order on ∼-equivalence classes.

Since Tα is finite, the set of all ∼-equivalence classes and the order [�] between
them are computable. We then rewrite the naive algorithms CTU and Naive to,

CTU(A) { return lfp(A, C′ ◦ T′ ◦ U′); }
f3(L) { return L ∪ { CTU(B ∪ {d}) | B ∈ L, d ∈ (Tα × Tα/∼) \ B}; }

Modified() { return lfp({{[(x, y)] | (x, y) ∈ EqTα}}, f3); }

respectively. Here, U′ is the upward closure operator on (Tα × Tα/∼, [�]), C′(B) =
{[(x, y)] | (x, y) ∈ C(

⋃
B)}, and T′(B) = {[(x, y)] | (x, y) ∈ T(

⋃
B)}. Since an upward

closed subset B of (Tα × Tα,�) is the union
⋃

B′ of an upward closed subset B′ of
(Tα × Tα/∼, [�]), we have {

⋃
B | B ∈ Modified()} = CSPre(T , α).

Algorithm Modified is faster than Naive because the upward closure operator U’
and the set comprehension in f3 works on the smaller poset (Tα × Tα/ ∼, [�]) than
(Tα × Tα,�). Function f1 also has a redundant computation: it computes CTU(B ∪
{(x, y)}) for each pair (x, y) ∈ Tα × Tα \ B, but the results of this computation are the
same when ∼-equivalent pairs are supplied. The function f3 avoids such duplicated
computation by working on ∼-equivalence classes.

We demonstrate an execution of Modified. Below, we write Tpl for the composite
monad Tp ◦ Tl using the canonical distributive law between Tp and Tl.

Example 12. The cardinal 2 = {a, b} is large enough for preorder axioms on Tpl.
First we calculate all ∼-equivalence classes and the partial order [�]. We have Tpl2 ×
Tpl2/∼ = {p1, p2, · · · , p28} where,

p1 = [({a}, {b})] p8 = [({a,⊥}, {b})] p15 = [({a}, {b,⊥})] p22 = [({a,⊥}, {b,⊥})]
p2 = [({a, b}, {b})] p9 = [({a, b,⊥}, {b})] p16 = [({a, b}, {b,⊥})] p23 = [({a, b,⊥}, {b,⊥})]
p3 = [({a}, {a, b})] p10 = [({a,⊥}, {a, b})] p17 = [({a}, {a, b,⊥})] p24 = [({a,⊥}, {a, b,⊥})]
p4 = [({a}, {a})] p11 = [({a,⊥}, {a})] p18 = [({a}, {a,⊥})] p25 = [({a,⊥}, {a,⊥})]
p5 = [({a}, ∅)] p12 = [({a,⊥}, ∅)] p19 = [({a}, {⊥})] p26 = [({a,⊥}, {⊥})]
p6 = [(∅, {a})] p13 = [({⊥}, {a})] p20 = [(∅, {a,⊥})] p27 = [({⊥}, {a,⊥})]
p7 = [(∅, ∅)] p14 = [({⊥}, ∅)] p21 = [(∅, {⊥})] p28 = [({⊥}, {⊥})]

Preorders on Monads and Coalgebraic Simulations 157

We draw the following Hasse diagram of the poset (Tpl2 × Tpl2/∼, [�]).

p1

p2p3

p4

p5p6

p7

p8

p10
p9

p11

p13

p12

p14

p15

p17

p16

p18p20

p19

p21

p22

p23p24

p25

p26p27

p28

�����������
�����������

����������������

																

������

��������������
��

����

		������������

��

��

�������

���������������������
�������

���������������������

������ ���������

�� ��������

��������

��
��������

������

����������������

�������
��

������
��

���������

������
������

����������
 ����

���������������

								

!!

""

##!!!!!
$$

%%"""""""

&&####
''

���������
��$$$$$$$

������

 ������������

������

�� &&####������

Next, we demonstrate the execution of Modified(). It computes the least fixpoint of
f3 containing {{p4, p7, p25, p28}}. We now see the first loop of lfp in the execution
of Modified() in detail. The function f3 picks up an equivalence class other than
{p4, p7, p25, p28}, say p6, then pass {p4, p7, p25, p28, p6} to CTU . The function CTU pro-
cesses its argument by the closure operators U’, T’, C’ repeatedly until it gets stationary.
The following is the first pass of this process:

– U′({p4, p7, p25, p28, p6}) = {p4, p6, p7, p20, p21, p25, p28}
– T′({p4, p6, p7, p20, p21, p25, p28}) = {p4, p6, p7, p20, p21, p25, p28}
– C′({p4, p6, p7, p20, p21, p25, p28}) = {p3, p4, p6, p7, p17, p18, p20, p21, p24, p25, p27,

p28}

The result of the last calculation by C′, which we call H below, is already closed under
U′, T′ and C′. Therefore, CTU({p4, p7, p25, p28, p6}) = H. The function f3 similarly cal-
culates CTU({p4, p7, p25, p28, p}) for each equivalence class p other than p4, p7, p25, p28,
p6, and returns the union of the results of the calculations of CTUs and f3’s argument
L. This finishes the first call of f3. The function lfp in Modified repeats calling f3
until we obtain the least fixpoint of f3. The algorithm Modified() yields 20 sets of
equivalence classes, hence CSPre(Tpl, 2) � 20 (see also Section 7 for Levy’s result).

After this computation, we manually extract the definitions of preorders on Tpl from
each set of equivalence classes. The 20 preorders are listed in Table 1. For this extrac-
tion, we first identify the meaning of the binary relation

⋃
B over Tpl2 for each set

B ∈ Modified() of equivalence classes, then manually characterise [
⋃

B]2
I for each set

I. For instance,
⋃

H = ⊆2, and from this we obtain [⊆2]2
I =⊆I .

Another method to enumerate congruent substitutive preorders on Tα is to reduce the
problem to finding the valuations ρ that satisfy the following boolean formula:

∧

(Q1 ,Q2)∈V

(
∧

p∈Q1

Pp =⇒
∧

p∈Q2

Pq) (3)

Here, Pp is the propositional variable assigned to each p ∈ Tα× Tα/∼, and V is the set
of the following pairs:

– ({p}, {q}) for all p, q ∈ Tα × Tα/∼ such that p � q
– (∅, [(x, x)]) for all x ∈ Tα

158 S. Katsumata and T. Sato

– ({[(x, y)], [(y, z)]}, {[(x, z)]}) for all x, y, z ∈ Tα
– (Q, C′(Q)) for all Q ⊆ Tα × Tα/∼ such that C′(Q) � Q.

The set V encodes the conditions of congruent substitutive preorder. If Tα is finite and
C is computable, the boolean formula (3) is finite and can be generated by an algorithm.

The satisfying assignments of the boolean formula (3) bijectively correspond to pre-
orders in CSPre(T , α). The number of CSPre(T , α) is the solution of the problem
of counting the number of satisfying assignments of the formula, and this problem is
known as #SAT problem [5].

6 Some Properties on Preorder ��-Lifting

We show that preorder��-liftings satisfy a couple of properties that are relevant to the
coalgebraic simulations discussed in Section 3.2. The first property relates oplax coal-
gebra morphisms and simulations. We restrict our attention to T F-coalgebras, where
T is the functor part of a monad and F consists of Id,CA,+,× only. Below for each
function g : I → J, we define Gr(g) to be the BRel-object ({(i, g(i)) | i ∈ I}, I, J) of the
graph of g. We note Ḟ(Grg) = Gr(Fg).

Theorem 10. Let (R,≤) be a preorder parameter, and (Ii, fi) be T F-coalgebras (i =
1, 2). For each function g : I1 → I2, Gr(g) is a T��Ḟ-simulation from (I1, f1) to (I2, f2)
if and only if g is an oplax morphism of coalgebras with respect to [≤]R, that is, T Fg ◦
f1 ˙[≤]

R
FI2

f2 ◦ g.

In general, preorder ��-liftings may not be lax compositional. We here present a con-
dition to guarantee the lax compositionality.

Theorem 11. Let (R,≤) be a congruent preorder such that ≤ satisfies the following
condition for all subsets X, Y ⊆ TR:

(∀x ∈ X, y ∈ Y . x ≤ y) =⇒ ∃z ∈ TR.∀x ∈ X, y ∈ Y . x ≤ z ∧ z ≤ y. (4)

Then T�� is lax compositional.

For instance, (4) is satisfied when the preorder parameter (R,≤) is a complete lattice.

7 Conclusion and Related Work

We showed that preorder��-liftings construct preorders on monads, and this construc-
tion enjoys a universal property. We gave a characterisation of the collection Pre(T) of
preorders on T as the limit of the large diagram CSPre(T ,−) : Cardop → Set. We then
applied these theoretical results to identifying preorders on some concrete monads. We
also showed the properties of the preorder��-lifting that are relevant to the coalgebraic
formulation of simulations.

Besides [13,11,15], we briefly mention some recent works on (bi)simulations and
relational liftings. Cı̂rstea studies modular constructions of relational extensions and
modal logics characterising simulations using the categorical structures on BRel [7].

Preorders on Monads and Coalgebraic Simulations 159

Klin studies the least fibred lifting of Set-functors across the fibration ERel → Set,
where ERel is the category of equivalence relations [17]. His lifting works for mono-
preserving functors, and when they preserve weak pullbacks, his lifting coincides with
the one in Example 5. Balan and Kurz give liftings and extensions of finitary Set-
functors to endofunctors over Pre and Pos [2]. Their method uses the fact that every
finitary Set-functor T is presented as LanI(T ◦ I), where I : Finord → Set is the in-
clusion functor. Bilkova et al. derive a natural definition of relations between preorders
using Sierpinski-space enriched categories, and give relational liftings of endofunctors
over Pre in this context [6]. Levy extends the characterisation of bisimilarity by final
coalgebras to similarity [20].

The novelty of our approach is that we exploit the structure of monad to relationally
lift functors. The principle of the semantic ��-lifting seems fundamentally different
from the lifting methods employed in the above works. One distinguishing feature of
the semantic ��-lifting is its flexibility. By changing the preorder parameter, we can
uniformly derive various relational liftings and preorders on monads. The source of this
flexibility lies at continuation monads, which are a special case of enriched right Kan
extensions.

Levy introduces the concept called deterministic / nondeterministic boolean precon-
gruences (DBP and NDBP for short) in [19]. They are defined in our language by:

DBPE = CSPre(T E
e , 2), NDBPE = CSPre(Tp+ ◦ T E

e , 2);

here, T E
e is the error monad, whose functor part is given by T E

e I = I + E. He shows
CSPre(T , 2) � Pre(T) for T = T E

e and T = Tp+ ◦ T E
e , and enumerates the following

boolean precongruences together with their definitions:

DBP0 � 2, DBP1 � 4, DBP2 � 13, NDBP0 � 4, NDBP1 � 20.

He also gives modal logics that have Hennesy-Milner property with respect to the con-
cept of simulations derived from boolean precongruences. His results are derived by the
method that is specialised to these monads.

Acknowledgement. We are grateful to Naohiko Hoshino, Norihiro Tsumagari and Ha-
suo Ichiro for valuable discussions. This work was supported by JSPS KAKENHI Grant
Number 24700012.

References

1. Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H.,
Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389,
pp. 357–365. Springer, Heidelberg (1989)

2. Balan, A., Kurz, A.: Finitary Functors: From Set to Preord and Poset. In: Corradini, A.,
Klin, B., Cı̂rstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg
(2011)

3. Barr, M.: Relational Algebras. In: MacLane, S., Applegate, H., Barr, M., Day, B., Dubuc,
E., Phreilambud, Pultr, A., Street, R., Tierney, M., Swierczkowski, S. (eds.) Reports of the
Midwest Category Seminar IV. LNM, vol. 137, pp. 39–55. Springer, Heidelberg (1970)

160 S. Katsumata and T. Sato

4. Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L.,
Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

6. Bı́lková, M., Kurz, A., Petrisan, D., Velebil, J.: Relation liftings on preorders and posets.
CoRR, abs/1210.1433 (2012)

7. Cı̂rstea, C.: A modular approach to defining and characterising notions of simulation. Infor-
mation and Computation 204(4), 469–502 (2006)

8. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical Relations for Monadic Types. In: Brad-
field, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 553–568. Springer, Hei-
delberg (2002)

9. Hasuo, I.: Generic Forward and Backward Simulations. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)

10. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. Electr. Notes Theor. Comput.
Sci. 164(1), 47–65 (2006)

11. Hermida, C., Jacobs, B.: An Algebraic View of Structural Induction. In: Pacholski, L.,
Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 412–426. Springer, Heidelberg (1995)

12. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf.
Comput. 145(2), 107–152 (1998)

13. Hesselink, W.H., Thijs, A.: Fixpoint semantics and simulation. Theor. Comput. Sci. 238(1-2),
275–311 (2000)

14. Jacobs, B.: Categorical Logic and Type Theory. Elsevier (1999)
15. Jacobs, B., Hughes, J.: Simulations in coalgebra. Electr. Notes Theor. Comput. Sci. 82(1),

128–149 (2003)
16. Katsumata, S.: A Semantic Formulation of ��-Lifting and Logical Predicates for Computa-

tional Metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer,
Heidelberg (2005)

17. Klin, B.: The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic. In:
Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS,
vol. 3629, pp. 247–262. Springer, Heidelberg (2005)

18. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-
Maximilians-Universität, Munchen (2000)

19. Levy, P.: Boolean precongruences. Manuscript (2009)
20. Levy, P.: Similarity Quotients as Final Coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011.

LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)
21. Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, University of Edinburgh (2004)
22. Lindley, S., Stark, I.: Reducibility and ��-Lifting for Computation Types. In: Urzyczyn, P.

(ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)
23. Mitchell, J.: Foundations for Programming Languages. MIT Press (1996)
24. Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in

Computer Science 10(3), 321–359 (2000)
25. Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods in Computer Sci-

ence 7(1) (2011)

A Proof System for Compositional Verification

of Probabilistic Concurrent Processes

Matteo Mio1,� and Alex Simpson2

1 INRIA and LIX, Ecole Polytechnique, France
2 LFCS, School of Informatics, University of Edinburgh, Scotland

Abstract. We present a formal proof system for compositional verifica-
tion of probabilistic concurrent processes. Processes are specified using
an SOS-style process algebra with probabilistic operators. Properties are
expressed using a probabilistic modal μ-calculus. And the proof system
is formulated as a sequent calculus in which sequents are given a quan-
titative interpretation. A key feature is that the probabilistic scenario is
handled by introducing the notion of Markov proof, according to which
proof trees contain probabilistic branches and are required to satisfy a
condition formulated by interpreting them as Markov Decision Processes.
We present simple but illustrative examples demonstrating the applica-
bility of the approach to the compositional verification of infinite state
processes. Our main result is the soundness of the proof system, which is
proved by applying the coupling method from probability theory to the
game semantics of the probabilistic modal μ-calculus.

1 Introduction

In recent years, model checking has established itself as a powerful and widely
applicable method for verifying properties of systems, with its techniques adapt-
able to systems embodying, for example, concurrency, real-time behaviour and
probabilistic choice, see [1] for a detailed overview. However, model checking has
its limitations. In particular, its applicability is typically restricted to finite-state
systems, or to carefully crafted classes of infinite-state systems. Moreover, even
in the finite-state case, the applicability of model checking is limited by the state
explosion problem: the state space of a concurrent system grows exponentially
in the number of parallel components.

Many phenomena in computer science give rise to infinite-state systems when
modelled at a natural level of abstraction. So it is important to have verifica-
tion methods that can cope with such systems. Since infinite-state systems are

� This research was partially supported by PhD studentships from LFCS and the IGS
at the School of Informatics, University of Edinburgh; by EPSRC research grant
EP-F042043-1; by project ANR-09-BLAN-0169-01 PANDA; and by project ANR-
11-IS02-0002 LOCALI. It was completed during the tenure of an ERCIM “Alain
Bensoussan” Fellowship, supported by the Marie Curie Co-funding of Regional,
National and International Programmes (COFUND) of the European Commission.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 161–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

162 M. Mio and A. Simpson

defined using finite descriptions (given using a programming language, process
calculus or similar language for system specification), one seeks verification meth-
ods that relate descriptions of systems to their properties. Such methods cannot,
in general, be fully automatic since, for most interesting cases, the problem of
ascertaining whether a description satisfies a property is undecidable.

One general methodology for obtaining such broader verification methods is
to develop formal proof systems tailored to the goal of establishing that (de-
scriptions of) systems satisfy properties. The verification task then becomes
one amenable to the technology of computer-assisted reasoning. An important
desideratum for a proof system for verification is that it should support com-
positional reasoning methods, by which the the task of establishing a property
of a complex system is broken down into suitable verification goals for the com-
ponents of the system. As has been extensively discussed in the literature, see,
e.g., [9], such compositional methods support methodologies for the modular
development and verification of systems. Compositional methods also provide
a route to taming the state explosion problem, since the size of a compound
system is usually much larger than that of its components.

The purpose of this paper is to present one interesting instantiation of the
above general approach to verification. We develop a formal proof system for
compositional reasoning about (possibly infinite state) concurrent probabilistic
systems. The systems we deal with are ones described by a simple algebra for con-
current probabilistic processes, with SOS-style operational semantics (Section 2).
While, in this paper itself, we consider only a few basic process operators, a key
feature of our approach is that it is applicable to a wide class of operators (any
that can be described in the probabilistic GSOS framework of [2]).

Properties are specified using the probabilistic (a.k.a. quantitative) modal μ-
calculus (pLμ) introduced independently in [10,12] (Section 3). Our reason for
not using a standard logic for stating properties of probabilistic systems, such
as PCTL [1, §10.2], is that fixed-point logics such as pLμ appear to be better
adapted to compositional reasoning. One reason for this is that formulas express
properties of states rather than properties of objects of higher complexity, such
as paths or Markov chains. Also, powerful proof methods for reasoning about
fixed points are available. Nevertheless, as the first author has shown [13], the
full expressivity of PCTL (and beyond) can be recovered by extending pLμ with
a few additional operators. This makes it plausible that the proof system of
the present paper might be similarly extended to provide a system capable of
reasoning about arbitrary PCTL-properties.

The main contributions of the paper are the proof system itself and its (non-
trivial) soundness theorem (Section 4). Adapting a general methodology for com-
positional verification, expounded in [19], the proof system is a sequent calculus
with sequents of assertions of the form p : F . In our quantitative setting, the
semantics of p : F is a real number in [0, 1], which roughly (see Section 3 for
clarification) expresses the probability that property F holds of process p. The
right-hand side of a sequent is a multiset of such assertions, itself given a quan-
titative meaning as the �Lukasiewicz disjunction (see, e.g., [8] and [10]) of the

A Proof System for Probabilistic Reasoning 163

individual assertions. The use of this disjunction from fuzzy logic underpins sev-
eral features of our proof system, most importantly the soundness of certain
crucial proof rules which allow probabilistic choices within different processes to
be coupled in the reasoning.

To enable the proof system to handle the fixed points in the logic, we allow
cyclic derivations and require a combinatorial condition to hold in order for
a proof to count as valid. This approach is familiar from proof systems for the
ordinary (non-probabilistic) modal μ-calculus [15,21] and other fixed-point logics
[3]. However, there is a twist in our probabilistic setting. One of the proof rules
in our system introduces probabilistic branching into the proof tree itself. This is
addressed by interpreting the proof tree as specifying a Markov Decision Process
(MDP), in which the participant, Refuter, is trying to refute the correctness of
the proof. Refuter’s goal is to try to find an infinite branch through the proof
along which all sequences of fixed-point unfoldings illegitimately unfold a least-
fixed-point infinitely often. The proof tree is declared valid just in case Refuter
almost surely fails in his endeavour; that is when the value of the MDP is zero.
Due to the critical role played by the probabilistic rule, we call such a valid
proof tree a Markov proof. An important fact, crucial for the applicability of the
approach, is that the property of being a Markov proof is decidable. This follows
from known decidability results for one-player stochastic parity games [5].

In Section 5, we present two examples of Markov proofs, illustrating the sort of
compositional reasoning possible within our system and establishing nontrivial
properties of infinite state systems.

Related Work: Several approaches to compositional verification methods for con-
current probabilistic systems have received attention in the recent literature. In
Cardelli et. al. [4], new ‘spatial’ operators are added to a probabilistic modal
logic to support compositional reasoning about labelled Markov processes [16]
enriched with an algebraic structure defining composition of systems, and a com-
pleteness result is obtained for a Hilbert-style axiomatization. However, the logic
is limited to expressing local properties of systems (that is, it cannot state prop-
erties of infinite runs). In Kwiatkowska et. al. [11,7], assume-guarantee tech-
niques for compositional verification of (parallel composition of) probabilistic
automata [18] are developed. Their approach does handle some global proper-
ties of systems, namely safety and liveness properties expressed using automata.
However, being based on fully automatizable model-checking techniques, it is
restricted to finite models. Similarly, Larsen et. al. [6] introduce compositional
methodologies for design and verification of finite probabilistic concurrent sys-
tems. These are based on Abstract Probabilistic Automata which are structures
capable of modelling both specifications and implementations, and closed under
natural logical operations such as composition and refinement.

Distinguishing features of our approach are: we have a clear separation be-
tween the process language and a purely behavioural endogenous [17] logic;
the nested fixed-points of the logic allow the specification of complex global
behaviour; and we are able to establish nontrivial properties of infinite state
systems.

164 M. Mio and A. Simpson

2 Probabilistic Concurrent Processes

Ordinary Labeled Transition Systems (LTS) allow the description of processes
exhibiting nondeterministic behavior. In his PhD thesis, R. Segala introduced a
new class of models, nowadays known as Probabilistic Labeled Transition Systems
(PLTS), for modelling processes exhibiting both nondeterministic and probabilis-
tic behaviours. Since their introduction, PLTS’s have been successfully adopted
as models for formal languages describing concurrent probabilistic systems, such
as the class of PGSOS languages of [2] among others.

Definition 1 (PLTS [18]). Given a countable set L of labels, a Probabilistic

Labeled Transition System (PLTS) is a pair L= 〈P, { a−→}a∈L〉, where P is a

set of states and
a−→ ⊆ P ×D(P), for every a ∈ L, where D(P) denotes the set

of discrete probability distributions over P .

The intended interpretation of a PLTS L= 〈P, { a−→}a∈L〉 is the following: the
process states p ∈ P represent the possible configurations of the system. At a
process state p, the system can react to an a-action, for a ∈ L, by changing
its state to a process q in accordance with some nondeterministically chosen
probability distribution d ∈ D(P) such that p

a−→ d.

prefix
a.x

a−→ δ(x)

x
a−→ α | left

x|y a−→ {α� z}δ(z|y)
y

a−→ α | right
x|y a−→ {α� z}δ(x|z)

x
a−→ α

!
!x

a−→ {α� z}δ(z|!x)
x

a−→ α
!
1
2

!
1
2 x

a−→ α+ 1
2
{α� y}δ(y|! 12 x)

Fig. 1. SOS Rules. The letter a ranges over a fixed set L of labels.

In this paper, we consider PLTS’s described by a few very simple process
operators chosen to present the examples in Section 5. Our approach, however,
adapts straightforwardly to handle arbitrary process algebras described by means
of well-behaved operational rules (such as, e.g., the PGSOS format of [2]). The
term constructors we consider are the constant 0 denoting the inactive process,
the prefix operation (a.) of arity 1, the non-communicating asynchronous paral-
lel composition (|) of arity 2, the bang operator (!) and a probabilistic variant

of it (!
1
2), both of arity 1. Their semantics, specified by the SOS operational

rules of Figure 1, allows the derivation of statements of the form p
a−→ d where

p is a process term, the letter a is a label and d is a process distribution term.
Process distribution terms, denoting probability distributions over processes, are
specified by the syntax: d, e ::= α | δ(p) | d+λ e | {d� x}e , where α is a process
distribution variable and λ ∈ [0, 1]. The term δ(p) denotes the (Dirac) probabil-
ity distribution that proceeds deterministically onward to p, and d+λ e denotes
the probabilistic choice that chooses d with probability λ and e with probability

A Proof System for Probabilistic Reasoning 165

1 − λ. The distribution term {d � x}e, first, randomly chooses a process p in
accordance with probability distribution d, and then proceeds as e[p/x].

A SOS-model, or just a model, is a PLTS equipped with sound interpretations
for all process constructors under consideration (see, e.g., [19] and [2] for gen-

eral definitions). In the case of prefix, for example, the PLTS 〈P, { a−→}a∈L〉 is
required to come with a function fa. : P → P for which fa. (p)

b−→ d holds if
and only if a=b and d is the Dirac distribution with mass at p, for every p∈P .
In what follows we reserve the letter M to range over models.

Definition 2 (Interpretations). Given a model M=〈P, { a−→}a∈L〉, an inter-
pretation of the variables is a function γ mapping process-variables x to states
p∈P and process distribution-variables α to probability distributions d∈D(P).
The map γ extends uniquely to a function from process-terms to P and to process
distribution terms to D(P), defined as expected. In particular

γ
(
{d� x}e

)
(p)

def
=

∑
q∈P

(
γ
(
d
)
(q) · γ[q/x]

(
e
)
(p)

)
where γ[q/x](x)=q and γ[q/x](y)=γ(y) for all variables x �= y.

3 Probabilistic Modal μ-Calculus (pLμ)

The probabilistic (or quantitative) modal μ-calculus (pLμ) [14,12] is a fixed-point
logic designed for expressing properties of PLTS’s. The syntax of pLμ formulas
is the same of the standard modal μ-calculus (Lμ) [20].

Definition 3. Given a countable set of propositional variables Var ranged over
by the letters X,Y, Z and a set of labels L ranged over by the letters a, b, c, the
formulas of the logic pLμ (in positive form) are defined by the following grammar:

F,G ::= X | 〈a〉F | [a]F | F ∨G | F ∧G | μX.F | νX.F

As usual the operators νX.F and μX.F bind the variable X in F .

Definition 4 (Denotational Semantics [12]). Given L=〈P, { a−→}a∈L}, the
denotational semantics of the pLμ formula F under the interpretation ρ :Var→
(P → [0, 1]), is the map �F �ρ :P→ [0, 1] defined by structural induction on F as:

�X �ρ(p) = ρ(X)(p)
�G ∨H �ρ(p) = �G �ρ(p) � �H �ρ(p) �G ∧H �ρ(p) = �G �ρ(p) � �H �ρ(p)
� 〈a〉G �ρ(p) =

⊔{�G �ρ(d) | p a−→ d
} � [a]G �ρ(p) =

�{�G �ρ(d) | p a−→ d
}

�μX.G �ρ(p) = lfp
(
λf.(�G �ρ[f/X])

)
(p) � νX.G �ρ(p) = gfp

(
λf.(�G �ρ[f/X])

)
(p)

where �, �, lfp and gfp denote the join, meet, least and greatest fixed point
operations of the complete lattice [0, 1] with its standard order, and �F �ρ(d) is
defined as �F �ρ(d)=∑

p∈P d(p) · �F �ρ(p).

166 M. Mio and A. Simpson

It is easy to verify that the interpretation assigned to every pLμ operator is
monotone. Thus, the existence of the least and greatest fixed points is guaran-
teed by the Knaster-Tarski theorem. Although it is convenient to consider open
formulas when defining the semantics of pLμ, logical specifications are generally
formulated as closed formulas. For this reason, and for simplifying the presen-
tation of the proof system in Section 4, we shall only consider closed formulas
in the rest of this paper. Thus we omit the interpretation ρ from �F �ρ and just
write �F �. Given a formula F we denote with ¬F its De Morgan dual obtained
by replacing every connective appearing in F with its dual. Note that F =¬¬F .
As customary, we denote with * the pLμ formula νX.X and define ⊥ = ¬*.
Proposition 5. For every PLTS L= 〈P, { a−→}a∈L〉, the equalities �* �(p)= 1,
�⊥ �(p)=0 and �¬F �(p) = 1− �F �(p) hold, for all p∈P .

It is often suggestive to think of the value of �F �(p) as representing the prob-
ability that a property asserted by F holds for p. Technically, this is justified
by an alternative semantics for pLμ, which interprets a formula as the value of
a two-player stochastic parity game [12]. The game in question is obtained by
running the usual two-player game for the modal μ-calculus formula over the
PLTS. As with ordinary modal μ-calculus games, game configurations p : 〈a〉F
and p : [a]F are under the control of different players (here called Maximizer
and Minimizer respectively) whose move is to choose an a transition out of p. In
the case of pLμ, the destination of this transition is a probability distribution,
and Nature intercepts in the game to make the probabilistic choice. The winning
condition for Maximizer is the usual one that a greatest fixed-point gets unfolded
infinitely often. One can then think of the value of the game as the (upper limit)
probability with which Maximizer is able to verify the property expressed by the
ordinary μ-calculus formula F .

It is a nontrivial fact that the game interpretation of a pLμ formula coincides
with the denotational one of Definition 4. This was originally shown just for
finite PLTS’s in [12], and only recently for general PLTS’s in [14].

4 Proof System

We introduce in this section our proof system designed to reason about pLμ-
calculus properties of processes given in our process algebra. The system is a
sequent calculus, in which sequents have the form Σ % Δ, where Σ and Δ are
multisets of (different kinds of) assertions. We use the letter J to range over
operational assertions in Σ which are either of the form d + e, where d and e
are process distribution terms, or of the form p

a−→ d, where p is a process term,
a is an action-label and d is a process distribution term. We use the letters φ and
ψ to range over logical assertions in Δ, which are of the form p :F or d :F , where
F is a closed pLμ formula, p a process term and d a distribution term. Given an
assertion φ of the form t :F , with t∈{p, d}, we write ¬φ for the assertion t :¬F .

Definition 6 (Semantics of assertions). Given a model M and an interpre-
tation of the variables γ, the meaning � �Mγ of the assertions is defined as:

A Proof System for Probabilistic Reasoning 167

1. �d + e�Mγ = 1 if γ(d) = γ(e) and �d + e�Mγ = 0 otherwise.

2. �p a−→ d�Mγ = 1 if γ(p)
a−→M γ(d) and �p a−→ d�Mγ = 0 otherwise.

3. �t :F �Mγ def
= �F �(γ(t)), for any process or distribution term t.

We write (M,γ) |= J if the equality �J�Mγ =1 holds. We write (M,γ) |= Σ, for
Σ = J1, . . . , Jm, if for all i∈{1, . . . ,m} it holds that (M,γ) |= Ji.

Note that the value �J�Mγ of a logical assertion is either 1 or 0, whereas �t :F �Mγ
lies anywhere in [0, 1], representing, using the informal reading of pLμ discussed
in Section 3, the probability of the property expressed by F holding at γ(t). In
order to extend the semantics from assertions to sequents, we first recall basic
notions from �Lukasiewicz logic [8].

Definition 7 ([8]). The operations ⊕ : [0, 1]2 → [0, 1] and ¬ : [0, 1] → [0, 1]
defined as x ⊕ y = min{x + y, 1} and ¬x = 1 − x, are known as �Lukasiewicz
disjunction and negation. The induced conjuction (-) and implication (⇒) op-
erations are defined as x - y = ¬(¬x ⊕ ¬y) and x ⇒ y = ¬x ⊕ y. Note that
((x- y)⇒z) = (x⇒(¬y ⊕ z)) and (x⇒ y)=1 if and only if x ≤ y.

Definition 8 (Semantics of Sequents). Let Σ % Δ be a sequent with Σ =
J1, . . . , Jn and Δ=φ1, ..., φm. Given a model M and an interpretation γ of the
variables, we define the semantics �Σ % Δ�Mγ ∈ [0, 1] of the sequent as:

�Σ % Δ�Mγ def
=

(�J1�Mγ - . . .- �Jn�Mγ)
⇒

(�φ1�Mγ ⊕ . . .⊕ �φm�Mγ)
Note that, since each �Ji�Mγ is in {0, 1}, so is the value of the antecedent. We

write (M,γ) |= Σ % Δ if �Σ % Δ�Mγ =1. A sequent is valid, written |= Σ % Δ, if
(M,γ) |= Σ % Δ for every pair (M,γ).

The choice of considering a quantitative semantics of sequents is naturally moti-
vated by the [0, 1]-valued semantics of the logic pLμ. Among the many possible
choices (several are studied in fuzzy logic [8]) for interpreting commas in se-
quents, �Lukasiewicz logic enjoys pleasant properties. Its operators coincide with
the ordinary boolean ones when arguments have values in {0, 1}. Furthermore �L-
negation coincides with pLμ negation (see Proposition 5) and interacts well with
�L-disjunction (as in Definition 7). This allows our one-sided (in the set of logical
assertions) formulation of sequents. Lastly, and most importantly, �L-disjuction
validates a sound probabilistic interpretation of some key rules of the proof sys-
tem (see Proposition 15 below). The validity of a sequent Σ % Δ expresses a form
of implication: for every model (M,γ) satisfying all the operational assertions
in Σ, the sum of the values of the (interpreted) assertions in Δ is at least 1.
Valid sequents express nontrivial relations between the probabilities associated
to the logical assertions in Δ. For example, the validity of a sequent of the form
Σ % ¬φ1,¬φ2, φ can be understood as follows: in every model (M,γ) satisfying
the operational assertions in Σ, the value of the assertion φ is bounded below by
a function (-) of the values of φ1 and φ2. We now briefly discuss a few illustrative
examples of valid sequents showing how the chosen quantitative interpretation
allows the expression of interesting properties.

168 M. Mio and A. Simpson

Example 9. Define F
def
= μX. [a]X . The following sequents are valid:

Seq1
def
= x

a−→ α % x :〈a〉* Seq3
def
= ∅ % x :¬F, y :¬F, x|y :F

Seq2
def
= ∅ % x|y :¬F, x :F Seq4

def
= ∅ %! 12 (a.0):F

The first example expresses a trivial property: if a process x can perform an
a-labeled transition then it satisfies the pLμ formula 〈a〉* with probability 1.
The meaning of the pLμ formula F above can be understood as expressing
a termination goal (i.e., the impossibility of producing an infinite sequence of
a’s) under an adversary environment. Thus the sequent Seq2 expresses a simple
property: the parallel (non-communicating) system x|y with two components
has termination probability less than or equal to that of its components. The
third sequent Seq3 expresses a slightly less obvious property, providing a lower
bound on the termination probability for x|y. Lastly, the fourth sequent Seq4
expresses the fact that the process !

1
2 (a.0) terminates with probability 1, i.e.,

almost surely. All the sequents above can be proven valid by our proof system.
In Section 5 we present proofs for Seq3 and Seq4.

Before introducing the derivation rules of our system, we introduce an auxil-
iary kind of judgement useful for expressing entailments between operational
assertions. We shall consider operational judgments of the form Σ � {Σi}0≤i≤n.

Definition 10. Given an operational judgment Σ � {Σi}0≤i≤n, we write
(M,γ) |= Σ � {Σi}0≤i≤n when the following implication holds: if (M,γ) |= Σ
then there is some i ∈ {0, . . . , n} such that (M,γi) |= Σi, for some interpreta-
tion γi that agrees with γ on all (process and distribution) variables appearing
in Σ. We say that Σ � {Σi}0≤i≤n is valid, written |= Σ � {Σi}0≤i≤n, if for
every pair (M,γ) it holds that (M,γ) |= Σ � {Σi}0≤i≤n. Note that |= Σ � {∅}
holds, |= Σ % ∅ holds iff Σ is not satisfiable and ∅ � {Σ} holds iff (M,γ) |= Σ
for all (M,γ). In order to improve readability, we just write Σ % J instead of
Σ % {{J}}.

Example 11. The following are examples of valid operational judgments:

1. 0
a−→ α� ∅ 2. ∅ � {{a.x a−→ α, α � δ(x)}} 3. a.x

b−→ α � ∅, if b 	=a
4. x|y a−→ α� {ΣL, ΣR} 5. !x

a−→ α �
{{

x
a−→ β, α � {β � y}δ(y|!x)

}}
5. ∅� α � {α� x}δ(x) 6. ∅ � α+ 1

4
β � (α+ 1

2
β) + 1

2
β

where ΣL=x
a−→ β, α � {β � x′}δ(x′|y) and ΣR=y

a−→ β, α � {β � y′}δ(x|y′).

The derivation rules for our main proof system for quantitative sequents are pre-
sented in Figure 2. The rule Σ-Rule supports reasoning about the operational
semantics by means of case analysis, using a side-condition exploiting the seman-
tic validity of operational judgements (Definition 10). In practice, this semantic
side-condition can be replaced with a formal proof system for proving validity
of operational judgements, which can be constructed following established ap-
proaches (see, e.g., “action assertions rules” in [19, p. 18]). For lack of space, we
do not go into further details about this, focussing instead on our main proof
system for quantitative sequents, whose design is significantly more intricate.

A Proof System for Probabilistic Reasoning 169

{Σi � Δ}i∈I
Σ-Rule

(
proviso: Σ � {Σi}i∈I

)
Σ � Δ

Σ � Γ, ψ Σ � Δ,¬ψ
Cut

Σ � Γ,Δ

Σ � Δ
P-Sub

Σ[q/x] � Δ[q/x]
Σ � Δ

D-Sub
Σ[d/α] � Δ[d/α]

Σ[e/α] � Δ[e/α]
Σ-Sub

(
proviso: Σ � d � e

)
Σ[d/α] � Δ[d/α]

Σ � p :Fi, Δ ∨i i ∈ {1, 2}
Σ � p :F1 ∨ F2,Δ

Σ � p :F,Δ Σ � p :G,Δ ∧
Σ � p :F ∧G,Δ

Σ � d :F,Δ
〈a〉

(
proviso: Σ � p

a−→ d
)

Σ � p :〈a〉F,Δ
Σ, p

a−→ α � α :F,Δ
[a] α fresh

Σ � p : [a]F,Δ
Σ � p :F [μX.F/X], Δ

μ
Σ � p :μX.F,Δ

Σ � p :F [νX.F/X],Δ
ν

Σ � p :νX.F,Δ

Σ � Δ, p :F
δ

Σ � Δ, δ(p) :F

Σ � Δ, d1 :F1, . . . , dn :Fn Σ � Δ, e1 :F1, . . . , en :Fn
+λ λ∈(0, 1)

Σ � Δ, d1 +λ e1 :F1, . . . , dn +λ en :Fn

Σ � Δ, e1[y/x1] :F1, . . . , en[y/xn] :Fn {�} y fresh.
Σ � Δ, {d� x1}e1 :F1, . . . , {d� xn}en :Fn

Fig. 2. Derivation rules

A typical usage of the Σ-Rule is better explained by means of a simple ex-

ample. Consider the valid sequent x|y a−→ α % x : 〈a〉*, y : 〈a〉* asserting
that in every model such that x|y can make an a-transition then either x or
y or both can make an a-transition (this qualitative interpretation holds since
� 〈a〉* �(p) ∈ {0, 1} in every model). The crucial step in proving its validity is:

ΣL � x :〈a〉�, y :〈a〉� ΣR � x :〈a〉�, y :〈a〉�
Σ-Rule: x|y a−→ α � {ΣL, ΣR}

x|y a−→ α � x :〈a〉�, y :〈a〉�

where ΣL and ΣR are as in Example 11. This step performs the required case
analysis, based on the operational semantics of the (non-communicating) parallel
operator, required to distinguish the two relevant cases. Both premises above are
easily seen to be valid (see also Seq1 in Example 9). Note that the only axiom
rule (i.e., rule without premises) in the proof system is the instance of the Σ-
Rule when the proviso is of the form Σ � ∅, i.e., when Σ is unsatisfiable. We
refer to this particular use of this rule as Σ-Axiom. For example, the sequent
∅ % 0: [a]⊥ can be proved as follows,

Σ-Rule
(
0

a−→ α� ∅
)

0
a−→ α � α :⊥ [a]
∅ � 0: [a]⊥

where the axiom is used to reveal the inconsistency in the assumption that the
null process 0 could make an a-transition.

170 M. Mio and A. Simpson

Definition 12. Let R be a derivation rule. We say that R is sound if, whenever
the sequent Σ % Δ is derived using R from the premises {Σi % Δi}i∈I (for some
finite index set I) which are all valid, then also Σ % Δ is valid. We also say that
R is strongly sound if, for every (M,γ), the following inequality holds

�Σ % Δ�Mγ ≥ min
{�Σi % Δi�Mγ′

}
i∈I

for all interpretations γ′ that agree with γ on all variables appearing in Σ % Δ.

The notion of strong soundness clearly implies the ordinary one. The proposition
bellow explains the reason for omitting the contraction rule.

Proposition 13. The contraction rule
Σ � Δ,φ, φ

Σ � Δ,φ
is not sound.

Proposition 14. The CUT rule is sound but not strongly sound. All other
derivation rules of Figure 2 are strongly sound.

Proof. Most cases are trivial to verify. The strong soundness of the rules +λ and
{�} follows from Proposition 15 below. ��

Remark 1. Strong soundness of derivation rules is a technical requirement needed
in the proof of our main theorem (see remarks after Theorem 17 below). As stated
in Proposition 14, the CUT rule is not strongly sound. This fact requires restric-
tions to be placed on applications of CUT in proofs (see Definition 16 below).
These restrictions are needed for our soundness proof to go through.

The rules {P-Sub,D-Sub, Σ-Sub} are called substitution rules and support para-
metric reasoning [19]. In particular note how using the rule Σ-Sub one can sub-
stitute some of the occurrences of a compound distribution term with another
equivalent (in all models satisfying Σ) compound distribution term. For exam-
ple, the term d+ 1

3
e can be rewritten to (d+ 2

3
e)+ 1

2
e. Such equational reasoning

on distribution terms can be very useful (see, e.g., Remark 2 below). The rules
{∨1,∨2,∧, 〈a〉, [a] , μ, ν} are called logical rules. The rules ∨1, ∨2, ∧, μ, ν are
standard and also the rules 〈a〉, [a] for reasoning about modalities are natural
counterparts to the analogous rules adopted in proof systems for modal (fixed
point) logics appeared in the literature (see, e.g., [19], [21] and [15]). The rules
{δ,+λ, {�}} are called distribution rules and constitute a crucial aspect of the
system. Together with the rule Σ-Sub, these are the only rules that operate on
logical assertions containing distribution terms. All distribution rules can be un-
derstood probabilistically as (partially) evaluating the probability distribution
terms of the active logical assertions. The simplest rule δ just evaluates a Dirac
distribution to the corresponding process. In the rule +λ, each active logical
assertions (of the form di +λ ei :Fi for a fixed λ∈ [0, 1]) is evaluated to the left
(resp. right) sub-term in the left (resp. right) premise of the rule with probability
λ (resp. 1−λ). Note that the evaluation steps of each active probability distribu-
tion are not independent of each other. To the contrary, useful dependencies can
be established by applications of the rule +λ. The rule {�} can be understood,
by similar arguments, as a symbolic variant of the rule +λ.

A Proof System for Probabilistic Reasoning 171

Remark 2. Note that the distribution rules [+λ] and [{�}] may only be appli-
cable once the distribution terms have been rewritten. Consider for example the
sequent Σ % (d+ 1

3
e) : F, (d′+ 1

2
e) : G. The distribution rule {+λ} is not directly

applicable since the two distribution terms have a different outermost connec-
tive. However, by application of the rule Σ-Sub, the distribution term d + 1

3
e

can be rewritten as (d+ 2
3
e) + 1

2
e. This could be used as follows

Σ % (d+ 2
3
e) : F, d′ : G Σ % e : F, e : G

+ 1
2

Σ %
(
(d+ 2

3
e) + 1

2
e
)
: F, (d′ + 1

2
e) : G

Σ-Sub
Σ % (d+ 1

3
e) : F, (d′ + 1

2
e) : G

to reduce the original problem to the verification of the two new subgoals.

Proposition 15. Let Σ % Δ be derived by application of the rule +λ from the
two premises Σ % Δ1 and Σ % Δ2. Then, for every (M,γ) it holds that

�Σ % Δ�Mγ ≥ λ · �Σ % Δ1�Mγ + (1− λ) · �Σ % Δ2�Mγ .

Similarly, let Σ % Δ be derived by application of the rule {�} and let Σ % Σ1 be
its only premise, as depicted in Figure 2. Then, for every (M,γ), it holds that

�Σ % Δ�Mγ ≥
∑
m∈M

γ(d)(m) · �Σ % Δ1�Mγ[m/y]
where γ[m/y] updates γ by assigning to the fresh variable y the process m∈M .

Proof. Both points follow easily from the following arithmetical inequality (and
variants thereof): ⊕i∈I{xi +λ yi} ≥ (⊕{xi}i∈I) +λ (⊕{yi}i∈I) which is valid for
every index set I, reals xi, yi ∈ [0, 1], where x+λ y = λ · x+ (1 − λ) · y. ��

4.1 Markov Proofs

As anticipated in the introduction, to enable the proof system to handle the fixed
points in the logic pLμ, we allow cyclic proof trees (cf. [15,21,3]) in which some
leaves of the tree are identified with sequents internal to the tree, with the proof
looping back to that point. Technically, it is convenient to view such cyclic trees
as the infinite trees they unfold to, and to work with general infinite trees, with
the finite cyclic ones corresponding exactly to the regular trees (those with only
finitely many subtrees). We call a (possibly infinite) tree of rule applications, in
which all leaves are instances of the axiom rule Σ-Axiom, a preproof. A preproof
is cut-free if it does not contain occurrences of the CUT rule. Since they may
have infinite branches, preproofs are not guaranteed to have valid endsequents
even though every rule is (strongly) sound.

In the literature on infinitary proof systems for fixed-point logics (see, e.g.,
[15,21,3]), valid proofs are defined as those preproofs whose infinite branches
all contain at least one legitimate sequence (called a valid trace) of fixed-point
unfoldings, along which a greatest fixed-point is unfolded infinitely often. This
can equivalently be reformulated in terms of a single player game. The aim of

172 M. Mio and A. Simpson

the single player, Refuter, is to find an infinite branch along which all traces are
invalid. The preproof is then considered a valid proof just in case Refuter cannot
win his game.

For the proof system in this paper, we adopt a similar approach, except that
we now interpret Refuter’s game as a single-player stochastic game G(T) (i.e.,
a Markov Decision Process) over the preproof T , and we also need to constrain
applications of the CUT rule (see Remark 1 and those following Theorem 17).
Once again, in the game G(T), Refuter is trying to find an infinite branch in
T along which all traces are invalid. This time, however, instances of the rule
+λ in T are interpreted as probabilistic nodes under the choice of Nature, who
extends the branch thus far with the left (resp. right) premise with probability
λ (resp. 1− λ). At all other rules, Refuter has the choice of premise. A preproof
satisfies the game condition just in case Refuter almost surely fails in his goal;
that is, no matter what strategy Refuter adopts, the probability of him finding an
infinite branch with all traces invalid is 0. We now specify the collection of valid
derivations, which we call Markov proofs, by the following inductive definition.

Definition 16. A Markov proof is a preproof T satisfying the game condition
and such that, for that every occurrence of the CUT rule in T ,

T1
Σ % Δ,φ

T2
Σ % Γ,¬φ

CUT
Σ % Δ,Γ

either the sub-preproof T1 or T2 (or both) is a Markov proof.

Note that a Markov proof can contain infinite branches on which Refuter wins
as long as the set of such branches has probability 0 for every Refuter strategy
in G(T). We shall see an example of this kind of Markov proof in Section 5. We
remark also that the inductive definition could be replaced with a combinatorial
condition. A Markof proof could equivalently be defined as a preproof T satis-
fying the game condition, for which there exists an assignment of a privileged
premise (a ‘switching’) to every CUT rule such that no infinite path in the proof
runs through infinitely many privileged (‘switched’) CUT premises.

The set of rules of Figure 2 has been kept as small as possible to simplify the
proof of Theorem 17 below. Other expected rules are admissible, such as:

Ax(�)
Σ � Δ, x :� Ax(¬)

Σ � Δ,x :F, x :¬F
Σ � Δ

Weak
Σ,Σ′ � Δ, Γ

The following result is the main technical contribution of this paper.

Theorem 17 (Soundness). The endsequent of every Markov proof is valid.

Proof Sketch. Our proof technique is based on the game semantics of pLμ and,
therefore, crucially exploits the equivalence result of [14]. The result is first
proved for cut-free Markov proofs and then extended to general Markov proofs.
The structure of a Markov proof Π with endsequent Σ % {φi}i∈I is seen as
providing strategies σi1 for player Maximizer in the two-player stochastic games

A Proof System for Probabilistic Reasoning 173

associated with the assertions φi. On the other hand, a Markov play (i.e., a
Markov chain) PΠ in G(Π), resolving the choices corresponding to the occur-
rences of rules {∧, Σ-Rule} in Π , is seen as providing strategies σi2 for Minimizer
as well as information about a counter-model M . This allows us to consider PΠ
as a coupling of Markov chains, i.e., as a non-independent product of the prob-
abilistic pLμ plays P i

σi
1,σ

i
2
associated with φi, whose probabilistic dependencies

have been introduced by the rules [+λ, {�}] in Π . Our proof is by reductio ad
absurdum. One assumes that M and σi2’s constitute a counterexample to the
validity of the endsequent of Π , i.e., that the expected probability of victory
for Maximizer in the Markov plays P i

σi
1,σ

i
2
sum up to a value λ < 1. We show

that this implies that PΠ must assign at least probability 1 − λ (i.e., positive
measure) to the set of branches in Π corresponding to plays losing for Maximizer
in the pLμ game associated with φi, for all i∈ I. These are precisely branches
without valid traces. From these assumption it follows that Refuter can win in
the game G(Π) with positive probability. Thus Π cannot be a Markov proof, a
contradiction. ��
The following theorem shows that regular (cyclic) Markov proofs do indeed form
an effective proof system. This is essential for the potential applicability of the
approach. It is proved along the lines of similar results for non-probabilistic
cyclic proofs (see, e.g., [15], [21] and [3]), using decidability results for one-player
stochastic parity games established in [5].

Theorem 18. It is decidable if a regular preproof T is a Markov proof.

5 Examples of Markov Proofs

In this section we provide Markov proofs of the sequents Seq3 and Seq4 dis-
cussed in Example 9. Despite the simplicity of the process algebra considered in
this paper, these small examples illustrate nontrivial instances of compositional
reasoning and verification of infinite state systems. However, due to the space
limits, some important features of our proof system, such as the possibility of
recombining distribution terms (see Remark 2) and the capability of handling
more realistic process algebras (such as those including, e.g, a communicating
parallel operator), are not illustrated in this paper.

The validity of Seq3 is proved by the (cut-free) Markov proof Π3 depicted in
Figure 3 (top), where the proviso of Σ-Rule, expressing a case analysis, is as in
Example 11. The left sub-Markov proof ΠL, itself containing Π3 as sub-Markov
proof, is depicted as in Figure 3, and ΠR is the similar Markov proof of the
sequent y

a−→ β, α � {β � y′}δ(x|y′) � α : F, x : ¬F , y : ¬F . Each infinite play (i.e.,
branch in Π3 since there are no probabilistic vertices in G(Π3), see Section 4),
has a valid trace because the greatest fixed point operators are unfolded infinitely
many times. Thus Π3 is a Markov proof as desired.

Compositional reasoning is supported in our system by the CUT rule (cf.
[19]). For instance, as we have established the validity of Seq3, we can reduce
the problem of verifying the validity of the sequent ∅ % p|q :F (i.e., prove that

174 M. Mio and A. Simpson

ΠL ΠR
Σ-Rule: x|y a−→ α � {ΣL, ΣR}

x|y a−→ α � α : F, x : ¬F , y : ¬F
[a]

∅ � x|y : [a]F, x : ¬F , y : ¬F
μ

∅ � x|y : μZ. [a]Z, x : νX.〈a〉X, y : νY.〈a〉Y

Π3

∅ � x|y : F, x : ¬F , y : ¬F
P-SUB: [x/x′]

∅ � x′|y : F, x′ : ¬F , y : ¬F
δ, δ

∅ � δ(x′|y) : F, δ(x′) : ¬F , y : ¬F
{�}

∅ � {β � x′}δ(x′|y) : F, {β � x′}δ(x′) : ¬F , y : ¬F
Σ-Sub∅ � {β � x′}δ(x′|y) : F, β : ¬F , y : ¬F

〈a〉: x a−→ β � x
a−→ β

x
a−→ β � {β � x′}δ(x′|y) : F, x : 〈a〉¬F, y : ¬F

ν
x

a−→ β � {β � x′}δ(x′|y) : F, x : ¬F , y : ¬F
Σ-Sub

x
a−→ β, α � {β � x′}δ(x′|y) � α : F, x : ¬F , y : ¬F

Π3

∅ � x :¬F, y :¬F, x|y :F
P-SUB∅ � p :¬F, q :¬F, p|q :F ∅ � p :F

CUT∅ � p :¬F, p|q :F ∅ � q :F
CUT∅ � p|q :F

Π3

∅ � x′|z : ¬F, x′ :¬F, z :¬F
P-SUB [(x|y)/x′]

∅ � (x|y)|z :F,x|y :¬F, z :¬F
Π3

∅ � x|y : F, x : ¬F, y : ¬F
CUT∅ � (x|y)|z :F,x :¬F, y :¬F, z :¬F

ΠA

p
a−→ β � β :F

Π4

∅ �! 12 p :F
ΠB

p
a−→ β � {β � y}δ(y|! 12 p) :F, ! 12 p :¬F

CUT
p

a−→ β � {β � y}δ(y| 12 p} :F
+ 1

2

p
a−→ β � β + 1

2
{β � y}δ(y|! 12 p} :F

Σ-Sub
p

a−→ β, α � β + 1
2
{β � y}δ(y|! 12 p} � α :F

Σ-Rule: P
!
1
2 p

a−→ α � α :F
[a]

∅ �! 12 p : [a]F
μ

∅ �! 12 p :μX. [a]X

Fig. 3. Examples of Markov proofs

the compound system p|q almost surely terminates) to the verification of the
two smaller goals ∅ % p :F and ∅ % q :F by means of the Markov proof depicted
in Figure 3. Furthermore, other useful results can be proved, without searching
for direct proofs, by using already proved lemmas. For example, the validity of
the sequent ∅ % (x|y)|z :F, x :¬F, y :¬F, z :¬F can be proved as in Figure 3.

A Proof System for Probabilistic Reasoning 175

Πp

∅ � p :F

p
a−→ β � β : F, β : ¬F

ν, 〈a〉
p

a−→ β � β :F, p :¬F
CUT

p
a−→ β � β :F

Π3

� y|x :F,x :¬F, y :¬F
P-SUB [!

1
2 p/x]

� y|! 12 p :F, ! 12 p :¬F, y :¬F
{�}, δ

� {β � y}δ(y|! 12 p) :F, ! 12 p :¬F, {β � y}δ(y) :¬F
ν, 〈a〉

p
a−→ β � {β � y}δ(y|! 12 p) :F, ! 12 p :¬F, p :¬F

Πp

∅ � p :F
CUT

p
a−→ β � {β � y}δ(y|! 12 p) :F, ! 12 p :¬F

Fig. 4. Sub-Markov proofs ΠA and ΠB of Π4

Compositional reasoning is the key to the verification of infinite state systems.
Consider, for example, a process p that almost surely terminates, i.e., such that
the validity of Sp = ∅ % p : F has been proven by a Markov proof Πp. It is

simple to verify that !
1
2 p is an infinite state system, even when p is a finite state

process such as a.0. Nevertheless, it is possible to prove that !
1
2 p almost surely

terminates. This is expressed (for p=a.0) by the sequent Seq4 whose validity is
witnessed by the regular Markov proof Π4 depicted in Figure 3 (bottom) where

the operational judgment P
def
= !

1
2 p

a−→ α�
{
{p a−→ β, α � β+ 1

2
{β � y}δ(y|! 12 p)}

}
used in the rule Σ-Rule is defined is valid, and the Markov proofs ΠA and
ΠB can be depicted as in Figure 4. Note how the use of the CUT rule in ΠB

allows us to make use of the result already proved by the Markov proof Π3. This
time Π4 contains probabilistic vertices: at occurrences of the rule + 1

2
the game

probabilistically branches. The only infinite branch in Π4 without valid traces is
the one never joining one of the the two sub-Markov proofs ΠA or ΠB . However,
the probability that this branch is the outcome of the game G(Π4) is easily seen
to be an event of probability 0. Thus Π4 satisfies the proof condition and is a
Markov proof, as desired.

6 Further Directions

There are numerous directions for improvement to the approach of this paper.
One is relax the restrictions on applications of CUT. Is it possible to reconfigure
the proof system and soundness proof so that an unrestricted CUT rule is avail-
able? Another is to address completeness issues, which we have ignored entirely.
Are completeness results available for restricted classes of processes (e.g., finite
state)? Yet another is to attempt to extend the proof system to deal with ex-
tensions of the probabilistic μ-calculus with other operators, for example those
considered in [13], allowing the full expressivity of PCTL to be captured.

It is unclear to us whether or not the approach of this paper is able to scale
up to establish useful properties of real-world systems. Nevertheless, we see the
main value of our paper as contributing novel techniques towards the challenging

176 M. Mio and A. Simpson

problem of compositional verification for concurrent probabilistic systems. In
particular, we believe that the use of proofs containing probabilistic branching
will generalise to other proof systems for other probabilistic logics.

Acknowledgements. We thank the anonymous referees for helpful
suggestions.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
2. Bartels, F.: GSOS for probabilistic transition systems. Electronic Notes in Theo-

retical Computer Science 65(1) (2002)
3. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent.

Journal of Logic and Computation 21(6), 1177–1216 (2011)
4. Cardelli, L., Larsen, K.G., Mardare, R.: Modular Markovian Logic. In: Aceto, L.,

Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 380–391.
Springer, Heidelberg (2011)

5. Chatterjee, K.: Stochastic ω-Regular Games. PhD thesis, University of California,
Berkeley (2007)

6. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
W ↪asowski, A.: Abstract Probabilistic Automata. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

7. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative Multi-
objective Verification for Probabilistic Systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

8. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Springer (2001)
9. Henzinger, T.A., Sifakis, J.: The Embedded Systems Design Challenge. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

10. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proc.
of 12th LICS (1997)

11. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verifica-
tion for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

12. McIver, A., Morgan, C.: Results on the quantitative μ-calculus qMμ. ACM Trans-
actions on Computational Logic 8(1) (2007)

13. Mio, M.: Game Semantics for Probabilistic μ-Calculi. PhD thesis, School of Infor-
matics, University of Edinburgh (2012)

14. Mio, M.: On the equivalence of denotational and game semantics for the proba-
bilistic μ-calculus. Logical Methods in Computer Science 8(2) (2012)

15. Niwinski, D., Walukiewicz, I.: Games for the μ-calculus. Theoretical Computer
Science 163, 99–116 (1997)

16. Panangaden, P.: Labelled Markov processes. Imperial College Press (2009)
17. Pnueli, A.: The temporal logic of programs. In: Proc. of 19th FOCS (1977)
18. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Laboratory for Computer Science, M.I.T (1995)
19. Simpson, A.: Sequent calculi for process verification: Hennessy-Milner logic for an

arbitrary GSOS. Journal of Logic and Algebraic Programming 60-61, 287 (2004)
20. Stirling, C.: Modal and temporal logics for processes. Springer (2001)
21. Studer, T.: On the proof theory of the modal mu-calculus. Studia Logica 89(3)

(2007)

Partiality and Recursion in Higher-Order Logic

Łukasz Czajka

Institute of Informatics, University of Warsaw
Banacha 2, 02-097 Warszawa, Poland

lukaszcz@mimuw.edu.pl

Abstract. We present an illative system Is of classical higher-order
logic with subtyping and basic inductive types. The system Is allows for
direct definitions of partial and general recursive functions, and provides
means for handling functions whose termination has not been proven.
We give examples of how properties of some recursive functions may be
established in our system. In a technical appendix to the paper we prove
consistency of Is. The proof is by model construction. We then use this
construction to show conservativity of Is over classical first-order logic.
Conservativity over higher-order logic is conjectured, but not proven.

1 Introduction

We present an illative λ-calculus system Is of classical higher-order logic with
subtyping and basic inductive types. Being illative means that the system is a
combination of higher-order logic with the untyped λ-calculus. It therefore allows
for unrestricted recursive definitions directly, including definitions of possibly
non-terminating partial functions. We believe that this feature of Is makes it
potentially interesting as a logic for an interactive theorem prover intended to
be used for program verification.
In order to ensure consistency, most popular proof assistants allow only total

functions, and totality must be ensured by the user, either by very precise spec-
ifications of function domains, restricting recursion in a way that guarantees
termination, explicit well-foundedness proofs, or other means. There are vari-
ous indirect ways of dealing with general recursion in popular theorem provers
based on total logics. There are also many non-standard logics allowing partial
functions directly. We briefly survey some related work in Sect. 5.
In Sect. 2 we introduce the system Is. Our approach builds on the old tradition

of illative combinatory logic [1,2,3]. This tradition dates back to early inconsis-
tent systems of Shönfinkel, Church and Curry proposed in the 1920s and the
1930s [2]. However, after the discovery of paradoxes most logicians abandoned
this approach. A notable exception was Haskell Curry and his school, but not
much progress was made in establishing consistency of illative systems strong
enough to interpret traditional logic. Only in the 1990s some first-order illative
system were shown consistent and complete for traditional first-order logic [1,4].
The system Is, in terms of the features it provides, may be considered an ex-
tension of the illative system Iω from [3]. We briefly discuss the relationship
between Is and Iω in Sect. 5.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 177–192, 2013.
© Springer-Verlag Berlin Heidelberg 2013

178 Ł. Czajka

Because Is is based on the untyped λ-calculus, its consistency is obviously
open to doubt. In an appendix we give a proof by model construction of con-
sistency of Is. Unfortunately, the proof is too long to fit within the page limits
of a conference paper. In Sect. 3 we give a general overview of the proof. The
model construction is similar to the one from [3] for the traditional illative sys-
tem Iω . It is extended and adapted to account for additional features of Is. To
our knowlege Is is the first higher-order illative system featuring subtypes and
some form of induction, for which there is a consistency proof.
In Sect. 4 we provide examples of proofs in Is indicating possible applications

of our approach to the problem of dealing with partiality, non-termination and
general recursion in higher-order logic. We are mainly interested in partiality
arising from non-termination of non-well-founded recursive definitions.
For lack of space we omit proofs of the lemmas and theorems we state. The

proofs of non-trivial results are in technical appendices to this paper. The ap-
pendices may be found in [5].

2 The Illative System

In this section we present the system Is of illative classical higher-order logic
with subtyping and derive some of its basic properties.

Definition 1. The system Is consists of the following.
– A countably infinite set of variables Vs = {x, y, z, . . .} and a set of con-
stants Σs.
– The set of sorts S = {Type,Prop}.
– The set of basic inductive types TI is defined inductively by the rule: if
ι1,1, . . . , ι1,n1 , . . . , ιm,1, . . . , ιm,nm ∈ TI ∪ {�} then

μ(〈ι1,1, . . . , ι1,n1〉, . . . , 〈ιm,1, . . . , ιm,nm〉) ∈ TI
where m ∈ N+ and n1, . . . , nm ∈ N.
– We define the sets of constructors C, destructors D, and tests O as follows.
For each ι ∈ TI of the form

ι = μ(〈ι1,1, . . . , ι1,n1〉, . . . , 〈ιm,1, . . . , ιm,nm〉) ∈ TI
where ιi,j ∈ TI ∪{�}, the set C contains m distinct constants cι1, . . . , cιm. The
number ni is called the arity of cιi, and 〈ιi,1, . . . , ιi,ni〉 is its signature. With
each cιi ∈ C of arity ni we associate ni distinct destructors dιi,1, . . . , dιi,ni

∈ D
and one test oιi ∈ O. When we use the symbols cιi, oιi and dιi,j we implicitly
assume that they denote the constructors, tests and destructors associated
with ι. When it is clear from the context which type ι is meant, we use the
notation ι∗i,j for ιi,j if ιi,j �= �, or for ι if ιi,j = �.
– The set of Is-terms T is defined by the following grammar.

T ::= Vs | Σs | S | C | D | O | TI | λVs .T | (TT) | Is | Subtype | Fun |
∀ | ∨ | ⊥ | ε | Eq | Cond

We assume application associates to the left and omit spurious brackets.

Partiality and Recursion in Higher-Order Logic 179

– We identify α-equivalent terms, i.e. terms differing only in the names of
bound variables are considered identical. We use the symbol ≡ for identity
of terms up to α-equivalence. We also assume that all bound variables in a
term are distinct from the free variables, unless indicated otherwise.1

– In what follows we use the abbreviations:

t1 : t2 ≡ Is t1 t2

{x : α | ϕ} ≡ Subtypeα (λx . ϕ)

α→ β ≡ Funαβ

∀x : α . ϕ ≡ ∀α (λx . ϕ)

∀x1, . . . , xn : α . ϕ ≡ ∀x1 : α ∀xn : α . ϕ

ϕ ⊃ ψ ≡ ∀x : {y : Prop | ϕ} . ψ where x, y /∈ FV (ϕ, ψ)

¬ϕ ≡ ϕ ⊃ ⊥
* ≡ ⊥ ⊃ ⊥

ϕ ∨ ψ ≡ ∨ϕψ
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

∃x : α . ϕ ≡ ¬∀x : α .¬ϕ

We assume that ¬ has the highest precedence.
– The system Is is given by the following rules and axioms, where Γ is a finite
set of terms, t, ϕ, ψ, α, β, etc. are arbitrary terms. The notation Γ, ϕ is a
shorthand for Γ ∪ {ϕ}. We use Greek letters ϕ, ψ, etc. to highlight that a
term is to be intuitively interpreted as a proposition, and we use α, β, etc.
when it is to be interpreted as a type, but there is no a priori syntactic
distinction. All judgements have the form Γ % t where Γ is a set of terms
and t a term. In particular, Γ % t : α is a shorthand for Γ % Is t α.

Axioms
1: Γ, ϕ % ϕ
2: Γ % Eq t t
3: Γ % Prop : Type
4: Γ % ι : Type for ι ∈ TI
5: Γ % oιi(cιit1 . . . tni) if c

ι
i ∈ C has arity ni

6: Γ % ¬(oιi(cιjt1 . . . tnj)) if i �= j and cιj ∈ C has arity nj
7: Γ % Eq (dιi,k(c

ι
it1 . . . tni)) tk for k = 1, . . . , ni, if cιi ∈ C has arity ni

⊥t: Γ % ⊥ : Prop
c: Γ % ∀p : Prop . p ∨ ¬p
β: Γ % Eq ((λx . t1)t2) (t1[x/t2])

Rules

∀i :
Γ % α : Type Γ, x : α % ϕ x /∈ FV (Γ, α)

Γ % ∀x : α . ϕ

1 So e.g. in the axiom β the free variables of t2 do not become bound in t1[x/t2].

180 Ł. Czajka

∀e :
Γ % ∀x : α . ϕ Γ % t : α

Γ % ϕ[x/t]

∀t :
Γ % α : Type Γ, x : α % ϕ : Prop x /∈ FV (Γ, α)

Γ % (∀x : α . ϕ) : Prop

∃i :
Γ % α : Type Γ % t : α Γ % ϕ[x/t]

Γ % ∃x : α . ϕ

∃e :
Γ % ∃x : α . ϕ Γ, x : α, ϕ % ψ x /∈ FV (Γ, ψ, α)

Γ % ψ

∨i1 :
Γ % ϕ

Γ % ϕ ∨ ψ
∨i2 :

Γ % ψ
Γ % ϕ ∨ ψ

∨e :
Γ % ϕ1 ∨ ϕ2 Γ, ϕ1 % ψ Γ, ϕ2 % ψ

Γ % ψ

∨t :
Γ % ϕ : Prop Γ % ψ : Prop

Γ % (ϕ ∨ ψ) : Prop

∧e1 :
Γ % ϕ ∧ ψ
Γ % ϕ

∧e2 :
Γ % ϕ ∧ ψ
Γ % ψ

⊃t2:
Γ % (ϕ ⊃ ψ) : Prop

Γ % ϕ : Prop
⊥e :

Γ % ⊥
Γ % ϕ

→i:
Γ % α : Type Γ, x : α % t : β x /∈ FV (Γ, α, β)

Γ % (λx . t) : α→ β

→e:
Γ % t1 : α→ β Γ % t2 : α

Γ % t1t2 : β
→t:

Γ % α : Type Γ % β : Type

Γ % (α→ β) : Type

si :
Γ % {x : α | ϕ} : Type Γ % t : α Γ % (λx . ϕ)t x /∈ FV (α)

Γ % t : {x : α | ϕ}

se :
Γ % t : {x : α | ϕ}

Γ % ϕ[x/t]
set :

Γ % t : {x : α | ϕ}
Γ % t : α

st :
Γ % α : Type Γ, x : α % ϕ : Prop x /∈ FV (α)

Γ % {x : α | ϕ} : Type

εi :
Γ % ∃x : α .*
Γ % (εα) : α

pi :
Γ % ϕ

Γ % ϕ : Prop

c1 :
Γ % ϕ

Γ % Eq (Condϕ t1 t2) t1
c2 :

Γ % ¬ϕ
Γ % Eq (Condϕ t1 t2) t2

c3 :
Γ, ϕ % Eq t1 t

′
1 Γ % ϕ : Prop

Γ % Eq (Condϕ t1 t2) (Condϕ t
′
1 t2)

c4 :
Γ,¬ϕ % Eq t2 t

′
2 Γ % ϕ : Prop

Γ % Eq (Condϕ t1 t2) (Condϕ t1 t
′
2)

c5 :
Γ % ϕ : Prop

Γ % Eq (Condϕ t t) t

Partiality and Recursion in Higher-Order Logic 181

eq :
Γ % ϕ Γ % Eqϕϕ′

Γ % ϕ′
eq-sym :

Γ % Eq t1 t2

Γ % Eq t2 t1

eq-trans :
Γ % Eq t1 t2 Γ % Eq t2 t3

Γ % Eq t1 t3

eq-cong-app :
Γ % Eq t1 t

′
1 Γ % Eq t2 t

′
2

Γ % Eq (t1t2) (t
′
1t
′
2)

eq-λ-ξ :
Γ % Eq t t′ x /∈ FV (Γ)

Γ % Eq (λx . t) (λx . t′)

iιi :

Γ, x1 : ι∗i,1, . . . , xni : ι
∗
i,ni

, txji,1 , . . . , txji,ki % t(c
ι
ix1 . . . xni)

for i = 1, . . . ,m

Γ % ∀x : ι . tx

where x, x1, . . . , xni /∈ FV (Γ, t), cι1, . . . , c
ι
m ∈ C are all constructors associ-

ated with ι ∈ TI , and ji,1, . . . , ji,ki is an increasing sequence of all indices
1 ≤ j ≤ ni such that ιi,j = �

iι,kt :
Γ % tj : ι∗k,j for j = 1, . . . , nk

Γ % (cιkt1 . . . tnk
) : ι

For an arbitrary set of terms Γ , we write Γ %Is ϕ if there exists a finite subset
Γ ′ ⊆ Γ such that Γ ′ % ϕ is derivable in the system Is. We drop the subscript
when irrelevant or obvious from the context.

Lemma 1. If Γ % ϕ then Γ, ψ % ϕ.

Lemma 2. If Γ % ϕ then Γ [x/t] % ϕ[x/t], where Γ [x/t] = {ψ[x/t] | ψ ∈ Γ}.

2.1 Representing Logic

The inference rules of Is may be intuitively justified by appealing to an infor-
mal many-valued semantics. A term t may be true, false, or something entirely
different (“undefined”, a program, a natural number, a type, . . .). By way of an
example, we explain an informal meaning of some terms:

– t : Prop is true iff t is true or false,
– α : Type is true iff α is a type,
– t : α is true iff t has type α, assuming α is a type,
– ∀x : α.ϕ is true iff α is a type and for all t of type α, ϕ[x/t] is true,
– ∀x : α.ϕ is false iff α is a type and there exists t of type α such that ϕ[x/t]
is false,
– t1 ∨ t2 is true iff t1 is true or t2 is true,
– t1 ∨ t2 is false iff t1 is false and t2 is false,

182 Ł. Czajka

– t1 ⊃ t2 is true iff t1 is false or both t1 and t2 are true,
– t1 ⊃ t2 is false iff t1 is true and t2 is false,
– ¬t is true iff t is false,
– ¬t is false iff t is true.
Obviously, Γ % t is then (informally) interpreted as: for all possible substitution
instances Γ ∗, t∗ of Γ, t, 2 if all terms in Γ ∗ are true, then the term t∗ is also true.
Note that the logical connectives are “lazy”, e.g. for t1∨t2 to be true it suffices

that t1 is true, but t2 need not have a truth value at all – it may be something
else: a program, a type, “undefined”, etc. This laziness allows us to omit many
restrictions which would otherwise be needed in inference rules, and would thus
make the system less similar to ordinary logic.
The following rules may be derived in Is.

⊃i:
Γ % ϕ : Prop Γ, ϕ % ψ

Γ % ϕ ⊃ ψ
⊃e:

Γ, ϕ % ψ Γ % ϕ
Γ % ψ

⊃t:
Γ % ϕ : Prop Γ, ϕ % ψ : Prop

Γ % (ϕ ⊃ ψ) : Prop
∧i :

Γ % ϕ Γ % ψ
Γ % ϕ ∧ ψ

Note that in general the elimination rules for ∧ and the rules for ∃ cannot be
derived from the rules for ∨ and ∀, because we would not be able to prove the
premise ϕ : Prop when trying to apply the rule ⊃i. It is instructive to try to
derive these rules and see where the proof breaks down.
In Is the only non-standard restriction in the usual inference rules for logical

connectives is the additional premise Γ % ϕ : Prop in the rule ⊃i. It is cer-
tainly unavoidable, as otherwise Curry’s paradox may be derived (see e.g. [1,2]).
However, we have standard classical higher-order logic if we restrict to terms of
type Prop, in the sense that the natural deduction rules then become identical
to the rules of ordinary logic. This is made more precise in Sect. 3 where a sound
translation from a traditional system of higher-order logic into Is is described.
Note that we have the law of excluded middle only in the form ∀p : Prop . p∨¬p.

Adding Γ % ϕ ∨ ¬ϕ as an axiom for an arbitrary term ϕ gives an inconsistent
system.3

It is well-known (see e.g. [6, Chapter 11]) that in higher-order logic all logical
connectives may be defined from ∀ and ⊃. One may therefore wonder why we
take ∨ and ⊥ as primitive. The answer is that if we defined the connectives
from ∀ and ⊃, then the inference rules that could be derived for them would
need to contain additional restrictions.

2.2 Equality, Recursive Definitions and Extensionality

It is well-known (see e.g. [7, Chapters 2, 6]) that since untyped λ-terms are
available together with the axiom β and usual rules for equality, any set of
2 To be more precise, for every possible substitution of terms for the free variables
of Γ, t we perform this substitution on Γ, t, denoting the result by Γ ∗, t∗.

3 By defining (see the next subsection) ϕ = ¬ϕ one could then easily derive ⊥ using
the rule ∨e applied to ϕ ∨ ¬ϕ.

Partiality and Recursion in Higher-Order Logic 183

equations of the form {zix1 . . . xm = Φi(z1, . . . , zn, x1, . . . , xm) | i = 1, . . . , n}
has a solution for z1, . . . , zn, where Φi(z1, . . . , zn, x1, . . . , xm) are arbitrary terms
with the free variables listed. In other words, there exist terms t1, . . . , tn such that
for any terms s1, . . . , sm we have % Eq (tis1 . . . sm) (Φi(t1, . . . , tn, s1, . . . , sm))
for each i = 1, . . . , n.
We will often define terms by such equations. In what follows we freely use

the notation t1 = t2 for % Eq t1 t2 , or for Γ % Eq t1 t2 when it is clear which Γ
is meant. We use t1 = t2 = . . . = tn to indicate that Eq ti ti+1 may be derived
for i = 1, . . . , n− 1. We also write a term of the form Eq t1 t2 as t1 = t2.
In Is there is no rule for typing the equality Eq. One consequence is that

% ¬(Eq t1 t2) cannot be derived for any terms t1, t2.4 For this reason Eq is more
like a meta-level notion of equality.

Definition 2. Leibniz equality Eql is defined as:

Eql ≡ λαλxλy.∀p : α→ Prop . px ⊃ py

As with =, we often write t1 =α t2 to denote % Eqlα t1 t2 or Γ % Eqlα t1 t2 , or
write t1 =α t2 instead of Eqlα t1 t2 .

Lemma 3. If Γ % α : Type then

– Γ % ∀x, y : α . (x =α y) : Prop,
– Γ % ∀x : α . (x =α x),
– Γ % ∀x, y : α . (x =α y) ⊃ (y =α x),
– Γ % ∀x, y, z : α . (x =α y) ∧ (y =α z) ⊃ (x =α z).

The system Is, as it is stated, is intensional with respect to Leibniz equality. We
could add the rules

ef :
Γ % α : Type Γ % β : Type

∀f1, f2 : α→ β . (∀x : α . f1x =β f2x) ⊃ (f1 =α→β f2)

eb :
Γ % ϕ1 ⊃ ϕ2 Γ % ϕ2 ⊃ ϕ1

Γ % ϕ1 = ϕ2

to obtain an extensional variant eIs of Is. The system eIs is still consistent –
the model we construct for Is validates the above rules.

Lemma 4. %eIs ∀x, y : Prop . (x =Prop y) ⊃ (x = y)

2.3 Induction and Natural Numbers

The system Is incorporates basic inductive types. In accordance with the termi-
nology from [8], an inductive type is basic if its constructors have no functional
arguments. This class of inductive types includes most simple commonly used
inductive types, e.g. natural numbers, lists, finite trees.

4 We mean this in a precise sense. This follows from our model construction.

184 Ł. Czajka

Lemma 5. If cιi ∈ C of arity ni has signature 〈ι1, . . . , ιni〉 then %Is cιi : ι∗1 →
. . .→ ι∗ni

→ ι.

Lemma 6. %Is oιi : ι→ Prop and %Is ∀x : ι . oιix ⊃ (dιi,jx : ι∗i,j)

Lemma 7. If ι ∈ TI then %Is ∀x, y : ι . x =ι y ⊃ x = y.

We may define the type of natural numbers by Nat ≡ μ(〈〉, 〈�〉). We use the
abbreviations: 0 ≡ cNat

1 (zero), 0 ≡ oNat
1 (test for zero), s ≡ cNat

2 (successor) and
p ≡ λx .Cond (0x) 0 (dNat

2,1 x) (predecessor). The rules i
Nat
i and iNat,k

t become:

ni :
Γ % t0 Γ, x : Nat, tx % t(sx) x /∈ FV (Γ, t)

Γ % ∀x : Nat . tx

n1
t : Γ % 0 : Nat

n2
t :

Γ % t : Nat
Γ % (st) : Nat

To simplify the exposition, we discuss some properties of our formulation of
inductive types using the example of natural numbers. Much of what we say
applies to other basic inductive types, with appropriate modifications.
The rule ni is an induction principle for natural numbers. An important prop-

erty of this induction principle is that it places no restrictions on t. This allows
us to prove by induction on natural numbers properties of terms about which
nothing is known beforehand. In particular, we do not need to know whether t
has a β-normal form in order to apply the rule ni to it. In contrast, an induction
principle of the form e.g.

n′i : ∀f : Nat→ Prop . ((f0 ∧ (∀x : Nat . fx ⊃ f(sx))) ⊃ ∀x : Nat . fx)

would be much less useful, because to apply it to a term t we would have to prove
t : Nat→ Prop beforehand. Examples of the use of the rule ni for reasoning about
possibly nonterminating general recursive programs are given in Sect. 4.
The operations +, −, ·, < and ≤, usually used in infix notation, may be

defined by recursive equations. It is possible to derive all Peano axioms.

Lemma 8. The following terms are derivable in Is:

– ∀x, y : Nat . (x+ y) : Nat, ∀x, y : Nat . (x− y) : Nat, ∀x, y : Nat . (x · y) : Nat,
– ∀x, y : Nat . (x ≤ y) : Prop, ∀x, y : Nat . (x < y) : Prop.

The next theorem shows that any function for which there exists a measure on
its arguments, which may be shown to decrease with every recursive call in each
of a finite number of exhaustive cases, is typable in our system.

Theorem 1. Suppose Γ % ∀x1 : α1 . . . ∀xn : αn . ϕ1∨. . .∨ϕm, Γ % αj : Type for
j = 1, . . . , n, and for i = 1, . . . ,m: Γ % ∀x1 : α1 . . . ∀xn : αn . ti : β → . . . → β
where β occurs ki+1 times, Γ % ∀x1 : α1 . . . ∀xn : αn . ti,j,k : αk for j = 1, . . . , ki,
k = 1, . . . , n, x1, . . . , xn /∈ FV (f, α1, . . . , αn, β) and

Partiality and Recursion in Higher-Order Logic 185

Γ % ∀x1 : α1 . . . ∀xn : αn . ϕi ⊃ (fx1 . . . xn =

ti(fti,1,1 . . . ti,1,n) . . . (fti,ki,1 . . . ti,ki,n)).

If there is a term g such that Γ % g : α1 → . . .→ αn → Nat and for i = 1, . . . ,m

Γ % ∀x1 : α1 . . . ∀xn : αn . ϕi ⊃ (((fx1 . . . xn) : β) ∨
((gti,1,1 . . . ti,1,n) < (gx1 . . . xn) ∧ . . . ∧
(gti,ki,1 . . . ti,ki,n) < (gx1 . . . xn)))

where x1, . . . , xn /∈ FV (g), then Γ % f : α1 → . . .→ αn → β.

3 Conservativity and Consistency

In this section we show a sound embedding of ordinary classical higher-order
logic into Is, which we also conjecture to be complete. We have a completeness
proof only for a restriction of this embedding to first-order logic. We also give a
brief overview of the model construction used to establish consistency of Is.
First, let us define the system CPREDω of classical higher-order logic.

– The types of CPREDω are given by T ::= o | B | T → T where B is a
specific finite set of base types. The type o is the type of propositions.
– The set of terms of CPREDω of type τ , denoted Tτ , is defined as follows:

• Vτ , Στ ⊆ Tτ ,
• if t1 ∈ Tσ→τ and t2 ∈ Tσ then t1t2 ∈ Tτ ,
• if x ∈ Vτ1 and t ∈ Tτ2 then λx : τ1 . t ∈ Tτ1→τ2 ,
• if ϕ, ψ ∈ To then ϕ ⊃ ψ ∈ To,
• if x ∈ Vτ and ϕ ∈ To then ∀x : τ . ϕ ∈ To,
where for each τ ∈ T the set Vτ is a set of variables and Στ is a set of
constants. We assume that the sets Vτ and Σσ are all pairwise disjoint. We
write xτ for a variable xτ ∈ Vτ . Terms of type o are formulas.
– The system CPREDω is given by the following rules and axioms, where Δ
is a finite set of formulas, ϕ, ψ are formulas.

Axioms
• Δ,ϕ % ϕ
• Δ % ∀p : o . ((p ⊃ ⊥) ⊃ ⊥) ⊃ p where ⊥ ≡ ∀p : o . p
Rules

⊃Pi :
Δ,ϕ % ψ
Δ % ϕ ⊃ ψ

⊃Pe :
Δ % ϕ ⊃ ψ Δ % ϕ

Δ % ψ

∀Pi :
Δ % ϕ

Δ % ∀xτ .ϕ
xτ /∈ FV (Δ) ∀Pe :

Δ % ∀xτ .ϕ
Δ % ϕ[xτ/t]

t ∈ Tτ

convP :
Δ % ϕ ϕ =β ψ

Δ % ψ

186 Ł. Czajka

In CPREDω, we define Leibniz equality in type τ ∈ T by

t1 =τ t2 ≡ ∀p : τ → o . pt1 ⊃ pt2.

The system CPREDω is intensional. An extensional variant E-CPREDω may be
obtained by adding the following axioms for all τ, σ ∈ T :

ePf : ∀f1, f2 : τ → σ . (∀x : τ . f1x =σ f2x) ⊃ (f1 =τ→σ f2)

ePb : ∀ϕ1, ϕ2 : o . ((ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1)) ⊃ (ϕ1 =o ϕ2)

For an arbitrary set of formulas Δ we write Δ %S ϕ if ϕ is derivable from a
subset of Δ in system S.
We now define a mapping �−� from types and terms of CPREDω to terms

of Is, and a mapping Γ (−) from sets of terms of CPREDω to sets of terms of Is.
We assume B ⊆ Σs, Στ ⊆ Σs and Vτ ⊆ Vs for τ ∈ T .

– �τ� = τ for τ ∈ B,
– �o� = Prop,
– �τ1 → τ2� = �τ1� → �τ2� for τ1, τ2 ∈ T ,
– �c� = c if c ∈ Στ for some τ ∈ T ,
– �x� = x if x ∈ Vτ for some τ ∈ T ,
– �t1t2� = �t1��t2�,
– �λx : τ . t� = λx . �t�,
– �ϕ ⊃ ψ� = �ϕ� ⊃ �ψ�,
– �∀x : τ . ϕ� = ∀x : �τ� . �ϕ�.

By �Δ� we denote the image of �−� on Δ. The set Γ (Δ) is defined to contain:

– x : �τ� for all τ ∈ T and all x ∈ FV (Δ) such that x ∈ Vτ ,
– c : �τ� for all τ ∈ T and all c ∈ Στ ,
– τ : Type for all τ ∈ B,
– y : τ for all τ ∈ B and some y ∈ Vτ such that y /∈ FV (Δ).

Theorem 2. If Δ %CPREDω ϕ then Γ (Δ,ϕ), �Δ� %Is �ϕ�. The same holds if we
change CPREDω to E-CPREDω and Is to eIs.

The above theorem shows that Is may be considered an extension of ordinary
higher-order logic, obtained by relaxing typing requirements on allowable λ-
terms. Type-checking is obviously undecidable in Is, but the purpose of types
in illative systems is not to have a decidable method for syntactic correctness
checks, but to provide general means for classifying terms into various categories.

Conjecture 1. If Γ (Δ,ϕ), �Δ� %Is �ϕ� then Δ %CPREDω ϕ. The same holds if we
change CPREDω to E-CPREDω and Is to eIs.

We prove this conjecture only for first-order logic. The system of classical first-
order logic (FOL) is obtained by restricting CPREDω in obvious ways.

Theorem 3. If I = Is or I = eIs then: Δ %FOL ϕ iff Γ (Δ,ϕ), �Δ� %I �ϕ�.

Partiality and Recursion in Higher-Order Logic 187

Theorem 4. The systems Is and eIs are consistent, i.e. �%Is ⊥ and �%eIs ⊥.

We now give an informal overview of the model construction. To simplify the
exposition we pretend Is allows only function types. Other types add some
technicalities, but the general idea of the construction remains the same.
An Is-model is defined as a λ-model (see e.g. [7, Chapter 5]) with designated

elements interpreting the constants of Is, satisfying certain conditions. By �t�M
we denote the interpretation of the Is-term t in a modelM, and · is the appli-
cation operation in the model. The conditions imposed on an Is-model express
the meaning of each rule of Is according to the intuitive semantics. For instance,
we have the condition:

(∀�) for a ∈ M, if �Is�M · a · �Type�M = �*�M and for all c ∈ M such that
�Is�M · c · a = �*�M we have b · c = �*�M then �∀�M · a · b = �*�M.

We show that the semantics based on Is-models is sound for Is. Then it suffices
to construct a non-trivial Is-model to establish consistency of Is. The model
will in fact satisfy additional conditions corresponding to the rules ef and eb, so
we obtain consistency of eIs as well.
The model is constructed as the set of equivalence classes of a certain rela-

tion ∗⇔ on the set of so called semantic terms. A semantic term is a well-founded
tree whose leaves are labelled with variables or constants, and whose internal
nodes are labelled with ·, λx or Aτ . For semantic terms with the roots labelled
with · and λx we use the notation t1t2 and λx.t. A node labelled with Aτ ,
where τ is a set of constants, “represents” the statement: for all c ∈ τ , tc is
true. Such a node has one child for each c ∈ τ . The relation ∗⇔ is defined as the
equivalence relation generated by a certain reduction relation ⇒ on semantic
terms. The relation ⇒ will satisfy5: (λx.t1)t2 ⇒ t1[x/t2], ∨*t⇒ *, ∨⊥⊥ ⇒ ⊥,
etc. The question is how to define ⇒ for ∀t1t2 so that the resulting structure
satisfies (∀�). One could try closing⇒ under the rule: if Is t1 Type ∗⇒ * and for
all t such that Is t t1

∗⇒ * we have t2t ∗⇒ *, then ∀t1t2 ⇒ *. However, there is
a negative reference to ⇒ here, so the definition would not be monotone, and
we would not necessarily reach a fixpoint. This is a major problem. We need to
know the range of all quantifiers beforehand. However, the range (i.e. the set of
all semantic terms t such that t1t

∗⇒ *) depends on the definition of ⇒, so it is
not at all clear how to achieve this.
Fortunately, it is not so difficult to analyze a priori the form of types of Is.

Informally, if t : Type is true, then t corresponds to a set in T , where T is defined
as follows, ignoring subtypes and inductive types.

– Bool ∈ T where Bool = {*,⊥}.
– If τ1, τ2 ∈ T then ττ12 ∈ T , where ττ12 is the set of all set-theoretic functions
from τ1 to τ2.

We take the elements of T and
⋃
T \Bool as fresh constants, i.e. they may occur

as constants in semantic terms. The elements of
⋃
T are canonical constants. If

5 Substitution is defined for semantic terms in an obvious way, avoiding variable
capture.

188 Ł. Czajka

c ∈ ττ12 and c1 ∈ τ1 then we write F(c)(c1) instead of c(c1) to avoid confusion
with the semantic term cc1. We then define a relation 0 satisfying:

– c 0 c for a canonical constant c,
– if c ∈ ττ12 and for all c1 ∈ τ1 there exists a semantic term t′ such that
tc1

∗⇒ t′ 0 F(c)(c1), then t 0 c.

Intuitively, t 0 c ∈ τ holds if c “simulates” t in type τ , i.e. t behaves exactly
like c in every context where a term of type τ is “expected”.
The relation⇒ is then defined by transfinite induction in a monotone way. It

will satisfy e.g.:

– if t 0 c ∈ τ ∈ T then Is t τ ⇒ *,
– if t 0 c1 ∈ τ1 and c ∈ ττ12 then ct⇒ F(c)(c1),
– Fun τ1 τ2 ⇒ ττ12 ,
– ∀τt⇒ t′ where the label at the root of t′ is Aτ , and for each c ∈ τ , t′ has a
child tc,
– t ⇒ * if the label of the root of t is Aτ , and all children of t are labelled
with *,
– if tc

∗⇒ t′c for all c ∈ τ ∈ T , the label of the root of t is Aτ , and {tc | c ∈ τ}
is the set of children of t, then t⇒ t′, where the label of the root of t′ is Aτ
and {t′c | c ∈ τ} is the set of children of t′.

We removed negative references to⇒, but it is not easy to show that the resulting
model satisfies the required conditions. Two key properties established in the
correctness proof are: 1.⇒ has the Church-Rosser property, and 2. if t2 0 c and
t1c

∗⇒ d ∈ {*,⊥} then t1t2 ∗⇒ d. The second property shows that quantifying
over only canonical constants of type τ is in a sense equivalent to quantifying
over all terms of type τ . This is essential for establishing e.g. the condition (∀�).
Both properties have intricate proofs. Essentially, the proofs show certain com-

mutation and postponement properties for ⇒, 0 and other auxiliary relations.
The proofs proceed by induction on lexicographic products of various ordinals
and other parameters associated with the relations and terms involved.

4 Partiality and General Recursion

In this section we give some examples of proofs in Is of properties of functions
defined by recursion. For lack of space, we give only informal indications of how
formal proofs may be obtained, assuming certain basic properties of operations
on natural numbers. The transformation of the given informal arguments into
formal proofs in Is is not difficult. Mostly complete formal proofs may be found
in a technical appendix.

Example 1. Consider a term subp satisfying the following recursive equation:

subp = λij .Cond (i =Nat j) 0 ((subp i (j + 1)) + 1) .

Partiality and Recursion in Higher-Order Logic 189

If i ≥ j then subp i j = i − j. If i < j then subp i j does not terminate. An
appropriate specification for subp is ∀i, j : Nat . (i ≥ j) ⊃ (subp x = i− j).
Let ϕ(y) = ∀i : Nat . ∀j : Nat . (i ≥ j ⊃ y =Nat i− j ⊃ subp i j = i− j). We

show by induction on y that ∀y : Nat . ϕ(y).
First note that under the assumptions y : Nat, i : Nat, j : Nat it follows

from Lemma 8 that (i ≥ j) : Prop and (y =Nat i − j) : Prop. Hence, whenever
y : Nat, to show i ≥ j ⊃ y =Nat i − j ⊃ subp i j = i − j it suffices to derive
subp i j = i− j under the assumptions i ≥ j and y =Nat i− j. By Lemma 7 the
assumption y =Nat i− j may be weakened to y = i− j.
In the base step it thus suffices to show subp i j = i−j under the assumptions

i : Nat, j : Nat, i ≥ j, i − j = 0. From i − j = 0 we obtain 0(i − j), so j ≥ i.
From i ≥ j and i ≤ j we derive i =Nat j. Then subp i j = i − j follows by
simple computation (i.e. by applying rules for Eq and appropriate rules for the
conditional).
In the inductive step we have ϕ(y) for y : Nat and we need to obtain ϕ(sy). It

suffices to show subp i j = i− j under the assumptions i : Nat, j : Nat and sy =
i− j. Because sy �=Nat 0 we have i �=Nat j, hence subp i j = s(subp i (sj)) follows
by computation. Using the inductive hypothesis we now conclude subp i (sj) =
i − (sj), and thus subp i (sj) =Nat i − (sj) by reflexivity of =Nat on natu-
ral numbers. Then it follows by properties of operations on natural numbers
that s(subp i (sj)) =Nat i− j. By Lemma 7 we obtain the thesis.
We have thus completed an inductive proof of ∀y : Nat . ϕ(y). Now we use

this formula to derive subp i j = i − j under the assumptions i : Nat, j : Nat,
i ≥ j. Then it remains to apply ⊃i and ∀i twice.
In the logic of PVS [9] one may define subp by specifying its domain precisely

using predicate subtypes and dependent types, somewhat similarly to what is
done here. However, an important distinction is that we do not require a do-
main specification to be a part of the definition. Because of this, we may easily
derive ϕ ≡ ∀i, j : Nat . ((subp i j = i− j) ∨ (subp j i = j − i)). This is not pos-
sible in PVS because the formula ϕ translated to PVS generates false proof
obligations [9].

Example 2. The next example is a well-known “challenge” posed by McCarthy:

f(n) = Cond (n > 100) (n− 10) (f(f(n+ 11)))

For n ≤ 101we have f(n) = 91, which fact may be proven by induction on 101−n.
This function is interesting because of its use of nested recursion. Termination
behavior of a nested recursive function may depend on its functional behavior,
which makes reasoning about termination and function value interdependent.
Below we give an indication of how a formal proof of ∀n : Nat . n ≤ 101 ⊃
f(n) = 91 may be derived in Is. Lemma 8 is used implicitly with implication
introduction.
Let ϕ(y) ≡ ∀n : Nat . n ≤ 101 ⊃ 101 − n ≤ y ⊃ f(n) = 91. We prove ∀y :

Nat . ϕ(y) by induction on y. In the base step we need to prove f(n) = 91 under
the assumptions n : Nat, n ≤ 101 and 101 − n ≤ y = 0. We have n =Nat 101,
hence n = 101, and the thesis follows by simple computation.

190 Ł. Czajka

In the inductive step we distinguish three cases: 1. n+11 > 101 and n < 101,
2. n + 11 > 101 and n ≥ 101, 3. n + 11 ≤ 101. We need to prove f(n) = 91
under the assumptions of the inductive hypothesis y : Nat, ∀m : Nat .m ≤ 101 ⊃
101−m ≤ y ⊃ f(m) = 91, and of n : Nat, n ≤ 101 and 101− n ≤ (sy).
We treat only the third case, other cases being similar. From 101− n ≤ s(y)

we infer 101 − (n + 11) ≤ y. Since n + 11 ≤ 101 we conclude by the inductive
hypothesis that f(n + 11) = 91. Because n + 11 ≤ 101, so n ≤ 100, and by
definition we infer f(n) = f(f(n+11)) = f(91). Now we simply compute f(91) =
f(f(102)) = f(92) = f(f(103)) = . . . = f(100) = f(f(111)) = f(101) = 91 (i.e.
we apply rules for Eq and Cond an appropriate number of times).
This concludes the inductive proof of ∀y : Nat . ∀n : Nat . n ≤ 101 ⊃ 101−n ≤

y ⊃ f(n) = 91. Having this it is easy to show ∀n : Nat . n ≤ 101 ⊃ f(n) = 91.
Note that the computation of f(91) in the inductive step relies on the fact that

in our logic values of functions may always be computed for specific arguments,
regardless of what we know about the function.

5 Related Work

In this section we discuss the relationship between Is and the traditional illative
system Iω . We also briefly survey some approaches to dealing with partiality
and general recursion in proof assistants. A general overview of the literature
relevant to this problem may be found in [10].

5.1 Relationship with Systems of Illative Combinatory Logic

In terms of the features provided, the system Is may be considered an extension
of Iω from [3], which is a direct extension of IΞ from [1] to higher-order logic.
The ideas behind Iω date back to [11], or even earlier as far as the general form
of inference rules is concerned.
However, there are some technical differences between Is and traditional illa-

tive systems. For one thing, traditional systems strive to use as few constants and
rules as possible. For instance, Iω has only two primitive constants, disregarding
constants representing base types. Because of this in Iω e.g. Is = λxy . yx and
Prop = λx .Type(λy.x), using the notation of the present paper. Moreover, the
names of the constants and the notations employed are not in common use to-
day. We will not explain these technicalities in any more detail. The reader may
consult [2,1,3] for more information on illative combinatory logic.
Below we briefly describe a system I ′ω which is a variant of Iω adapted to

our notation. It differs somewhat from Iω , mostly by taking more constants as
primitive. The terms of I ′ω are those of Is, except that we do not allow subtypes,
inductive types, Eq, Cond, ∨, ⊥ and ε. There are also additional constants: ω
(the type of all terms), ε (the empty type) and ⊃. The axioms are: Γ, ϕ % ϕ,
Γ % Prop : Type, Γ % ε : Type, Γ % ω : Type, Γ % t : ω. The rules are: ∀i, ∀e,
∀t, ⊃i, ⊃e, ⊃t, →i, →e, →t, pi, and the rules:

Partiality and Recursion in Higher-Order Logic 191

conv :
Γ % ϕ ϕ =β ψ

Γ % ψ
ε⊥ :

Γ % t : ε
Γ % ⊥

→p:
Γ % α : Type Γ, x : α % ((tx) : β) : Prop x /∈ FV (Γ, t)

Γ % (t : α→ β) : Prop

5.2 Partiality and Recursion in Proof Assistants

Perhaps the most common way of dealing with recursion in interactive theorem
provers is to impose certain syntactic restrictions on the form of recursive def-
initions so as to guarantee well-foundedness. Well-foundedness of definitions is
then checked by a built-in automatic syntactic termination checker. Some sys-
tems, e.g. ACL2 or PVS, pass the task of proving termination to the user. Such
systems require that a well-founded relation or a measure be given with each
recursive function definition. Then the system generates so called proof obliga-
tions, to be shown by the user, which state that the recursive calls are made on
smaller arguments.
The method of restricting possible forms of recursive definitions obviously

works only for total functions. If a function does not in fact terminate on some
elements of its specified domain, then it cannot be introduced by a well-founded
definition. One solution is to use a rich type system, e.g. dependent types com-
bined with predicate subtyping, to precisely specify function domains so as to
rule out the arguments on which the function does not terminate. This approach
is adopted by PVS [9].
A different approach to dealing with partiality and general recursion is to

use a special logic which allows partial functions directly. Systems adopting this
approach are often based on variants of the logic of partial terms of Beeson [12,13].
For instance, the IMPS interactive theorem prover [14] uses Farmer’s logic PF of
partial functions [15], which is essentially a variant of the logic of partial terms
adapted to higher-order logic.
The above gives only a very brief overview. There are many approaches to

the problem of partiality and general recursion in proof assistants, most of which
we didn’t mention. We do not attempt here to provide a detailed comparison
with a multitude of existing approaches or give in-depth arguments in favor of
our system. For such arguments to be entirely convincing, they would need to be
backed up by extensive experimentation in proving properties of sizable programs
using our logic. No such experimentation has been undertaken. In contrast, our
interest is theoretical.

6 Conclusion

We have presented a system Is of classical higher-order illative λ-calculus with
subtyping and basic inductive types. A distinguishing characteristic of Is is that
it is based on the untyped λ-calculus. Therefore, it allows recursive definitions
of potentially non-terminating functions directly. The inference rules of Is are
formulated in a way that makes it possible to apply them even when some of

192 Ł. Czajka

the terms used in the premises have not been proven to belong to any type.
Additionally, our system may be considered an extension of ordinary higher-
order logic, obtained by relaxing the typing restrictions on allowable λ-terms.
We believe these facts alone make it relevant to the problem of partiality and
recursion in proof assistants, and the system at least deserves some attention.

References

1. Barendregt, H., Bunder, M.W., Dekkers, W.: Systems of illative combinatory logic
complete for first-order propositional and predicate calculus. Journal of Symbolic
Logic 58(3), 769–788 (1993)

2. Seldin, J.P.: The logic of Church and Curry. In: Gabbay, D.M., Woods, J. (eds.)
Logic from Russell to Church. Handbook of the History of Logic, vol. 5, pp. 819–873.
North-Holland (2009)

3. Czajka, Ł.: Higher-order illative combinatory logic. Journal of Symbolic Logic
(2013), http://arxiv.org/abs/1202.3672 (accepted)

4. Dekkers, W., Bunder, M.W., Barendregt, H.: Completeness of the propositions-as-
types interpretation of intuitionistic logic into illative combinatory logic. Journal
of Symbolic Logic 63(3), 869–890 (1998)

5. Czajka, Ł.: Partiality and recursion in higher-order logic. Technical report, Univer-
sity of Warsaw (2013), http://arxiv.org/abs/1210.2039

6. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. Studies
in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam (2006)

7. Barendregt, H.P.: The lambda calculus: Its syntax and semantics. Revised edn.
North Holland (1984)

8. Blanqui, F., Jouannaud, J., Okada, M.: Inductive-data-type systems. Theoretical
Computer Science 272(1), 41–68 (2002)

9. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping
in PVS. IEEE Transactions on Software Engineering 24(9) (1998)

10. Bove, A., Krauss, A., Sozeau, M.: Partiality and recursion in interactive theorem
provers: An overview. Mathematical Structures in Computer Science (2012) (to
appear)

11. Bunder, M.W.: Predicate calculus of arbitrarily high finite order. Archive for Math-
ematical Logic 23(1), 1–10 (1983)

12. Feferman, S.: Definedness. Erkenntnis 43, 295–320 (1995)
13. Beeson, M.J.: Proving programs and programming proofs. In: Marcus, R.B., Dorn,
G., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science VII, pp.
51–82. North-Holland (1986)

14. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: An interactive mathematical
proof system. Journal of Automated Reasoning 11(2), 213–248 (1993)

15. Farmer, W.M.: A partial functions version of Church’s simple theory of types.
Journal of Symbolic Logic 55(3), 1269–1291 (1990)

http://arxiv.org/abs/1202.3672
http://arxiv.org/abs/1210.2039

Some Sahlqvist Completeness Results

for Coalgebraic Logics

Fredrik Dahlqvist and Dirk Pattinson

Dept. of Computing, Imperial College London
{f.dahlqvist09,d.pattinson}@imperial.ac.uk

Abstract. This paper presents a first step towards completeness-via-
canonicity results for coalgebraic modal logics. Specifically, we consider
the relationship between classes of coalgebras for ω-accessible endofunc-
tors and logics defined by Sahlqvist-like frame conditions. Our strategy
is based on conjoining two well-known approaches: we represent acces-
sible functors as (equational) quotients of polynomial functors and then
use canonicity results for boolean algebras with operators to transport
completeness to the coalgebraic setting.

Keywords: Modal logic, coalgebraic modal logic, canonicity, complete-
ness, Sahlqvist formula.

1 Introduction

Coalgebras have gained popularity as an elegant and general framework to study
and represent a wide variety of dynamical systems in computer science (see [12])
and even in physics (see [1]). In parallel to this area of research, the field of
coalgebraic logic has emerged as a unifying framework for the many types of
(modal) logics used to reason about dynamical systems (see [8] for an overview).
One of the great insights into the relationship between coalgebras and coalge-
braic logics, is that the class of all T -coalgebras for a functor T can always be
characterised logically by its one-step behaviour, i.e. axioms and rules with nest-
ing depth of modal operators uniformly equal to 1 (see [13]). However, once the
transition type (i.e. the functor T) has been described logically in such a way,
one may be interested in subclasses of T -coalgebras which are characterised by
more complex axioms (such as transitivity for example) which we will refer to as
frame conditions. The problem of logically characterising subclasses of the class
of all T -coalgebras for an arbitrary functor T is by and large still open ([11] offers
a solution for some of the standard frame conditions of classical modal logic).

This paper aims to isolate a large class of frame conditions which can be
used to logically characterise proper subclasses of coalgebras, i.e. axioms giving
a sound and complete description of certain classes of coalgebras. Our strategy is
based on the following observations. Firstly, it is well known that accessible Set
functors can be represented as (equational) quotients of polynomial functors.
Secondly, the coalgebraic logics for polynomial Set functors turns out to be very
closely related to Boolean Algebras with Operators (BAOs). Thirdly, there is a

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 193–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 F. Dahlqvist and D. Pattinson

well developed theory of Sahlqvist formulae for general BAOs (see [6,5,14]). The
first step will therefore be to show how Sahlqvist formulae can be imported into
the coalgebraic logics of polynomial functors, the second step will be to show how
they can then be transported to logics of general functors via the presentation.

The paper in organized as follows: in Section 2 we will present the basic facts
about BAOs and coalgebraic logics that are needed for the rest of the paper.
This will be very succinct and the reader is referred to [7,6,5,14,9,8] for further
details. The ∇-style of coalgebraic logic requires some notational discipline, and
the notation of [9] is presented in detail. The section concludes with our first
Sahlqvist-like completeness result for polynomial functors. Section 3 will first
address the idea of presenting a functor T with a polynomial functor S (again
we will present the bare minimum and the reader is referred to [2] for all the
details), and then explore what this means for coalgebraic logics. In Section 4 we
present the main technical result of the paper, the Translation Theorem, which
relates the derivability in the logic associated to a functor T to that in the logic
of the functor S presenting it. Finally, in Section 5 we gather all our results
together and present a Sahlqvist completeness theorem for coalgebraic logics.

2 BAOs and Coalgebraic Logics

We start with some notation, basic definitions and facts about BAOs and coal-
gebraic modal logics. Readers familiar with this material can safely move to
Example 1 which should offer a first glimpse at what this paper aims to achieve.

Boolean Algebras with Operators (BAOs). We roughly follow the terminology of
[6] which itself is based on the seminal paper [7]. A Boolean Algebra with
Operator (BAO) is a Boolean Algebra (BA) A together with functions fσ :
Aar(σ) → A where A is the set underlying A and σ is an element of a signature
(Σ, ar) with arity map ar : Σ → N. The maps fσ are required to preserve joins in
each of their arguments, in which case they are known as operators. The BAOs
with a given signature Σ, together with the BA-morphism preserving operators
in the obvious way, form a category which we will call BAO(Σ). As shown in
[7], every BA A can be embedded in a unique Complete Atomic Boolean Algebra
(CABA) Aε called its canonical extension and which has the property that
(1) every atom of Aε is a meet of elements of A and (2) every subset in A (the
set underlying A) whose join in Aε is *, has a finite subset whose join in A is
also *. This result can be extended to include operators (in fact any monotone
map), viz. any BAO A can be embedded in a BAO Aε - its canonical extension
- whose underlying BA is the canonical extension of that of A. This result is of
fundamental importance because the category of CABAs is dual to the category
Set in which models live.

Sahlqvist Formulae in a BAO. Let us fix a BAO A = (A, {fσ | σ ∈ Σ}). We
define a Σ-term to be an element of the algebra freely generated by the elements
of A and the operators fσ, σ ∈ Σ. Following [6] and [5], we define a Sahlqvist
term to be a Σ-term of the form:

Sahlqvist Completeness for Coalgebraic Logics 195

u[v1, . . . , vn,¬w1, . . . ,¬wm] (1)

where (i) u is a strictly positive m+ n-ary term, i.e. contains no negations, (ii)
the vi’s are terms of the shape vi = σd1(. . . (σ

d
k(x)) . . .) where each σdi = ¬σi¬

is the dual of a unary operator σi ∈ Σ, and (iii) the wk’s (1 ≤ k ≤ m) are
positive terms, i.e. all variables in wk must occur in the scope of an even number
of complementation symbols. A Sahlqvist equation is an equation of the type
s = 0 where s is a Sahlqvist term. A Sahlqvist inequality (or Sahlqvist formula
in the context of algebras of terms) is an inequality of the type s ≤ t where t is
positive. As shown in [6], all Sahlqvist identities are canonical, i.e. if s = 0 holds
in A, then it holds in its canonical extension Aε.

Coalgebraic Logics. Coalgebraic logics come in two flavours which we now intro-
duce very succinctly. In both cases V denotes a set of propositional variables.

We start with the predicate lifting style of coalgebraic logic. A coalgebraic
language LT has a syntax given by

a ::= p | ⊥ | ¬a | a ∧ b | σ(a1, . . . , an)

where p ∈ V and σ ∈ Σ are modal operators belonging to a signature (Σ, ar).
Note that we’re using the notational convention of [9] where the lower case
Roman letters a, b, c stand for formulae. Such a language is interpreted in terms
of coalgebras and predicate liftings. Given a standard Set-endofunctor T (we
will assume throughout the paper that all functors are standard), a coalgebra
is a pair (W,γ) where W is a set (of worlds) and γ : W → TW is a transition
map (T defines the ‘transition type’). Each modal operator σ is interpreted by
a predicate lifting, i.e. a natural transformation �σ� : Qn → QT where Q is
the contravariant powerset functor. Intuitively, predicate liftings ‘lift’ n-tuples of
predicates (i.e. subsets, hence the powerset functor) to a predicate on transitions
(hence QT). A coalgebraic model - or T -model - is a triple M = (W,γ, π)
where π : W → P(V) is a valuation. The notion of truth of a formula a at
a point w ∈ W is defined inductively in the usual manner for propositional
variables and boolean operators, and by

M, w |= σ(a1, . . . , an) iff γ(w) ∈ �σ�W (�a1�, . . . , �an�)
for modal operators, where �ai� is the interpretation of ai in W . A formula a is
satisfiable in M if there exists w ∈ W such that M, w |= a. A coalgebraic
frame - or T -frame - is just a T -coalgebra (W,γ) and a formula a is valid on
the frame if for any valuation π, a is true at every point in the model (W,γ, π).
The ∇-style of coalgebraic logic (also known as Moss style, or coalgebraic logic
for the cover modality) has a very different flavour. We recall the basic definitions
and results, and refer to [9] for a very good and very thorough overview of the
topic. Since the language involves objects of many types, our notation follows
the conventions of [9] very closely to avoid confusion. We start by fixing a weak-
pullback preserving functor T and we define Tω =

⋃
{TY | Y ⊆ X finite}, the

finitary version of T . The coalgebraic language LT induced by T is given by:

196 F. Dahlqvist and D. Pattinson

a ::= p | ¬a |
∧

φ |
∨

φ | ∇α

where p ∈ V , φ ∈ PωLT and α ∈ TωLT .
∨
∅ defines ⊥. For any α ∈ TωLT

we define the base of α by BaseT (α) =
⋂
{U ⊆ LT | α ∈ TU}, i.e. the set

of immediate subformulae of ∇α. Given a T -model M = (W,γ, π), the truth
relation |=⊆W×LT is inductively defined for any world w ∈ W and formula a ∈
LT by the usual clauses for atomic propositions and propositional connectives
and

M, w |= ∇α iff γ(w)T̄ (|=)α

where T̄ (|=) ⊆ TW×TLT is the relation lifting of the truth-relation |=⊆W×LT
(see [9] for an extensive discussion of relation liftings).

Coalgebraic Logic is weakly complete (see [9]) with respect to the 2-dimensional
Hilbert system which we call KKV(T) and is given by the axioms and rules:

a ≤ a
a ≤ c c ≤ b

(Cut)
a ≤ b

{a ≤ b | a ∈ φ}
(
∨
L) ∨

φ ≤ b

a ≤ b
(
∨
R) b ∈ φ

a ≤
∨
φ

a ≤ b
(
∧
L) a ∈ φ∧

φ ≤ b

{a ≤ b | b ∈ φ}
(
∧
R)

a ≤
∧
φ∧

{φ ∪ {¬a}} ≤
∨
ψ

(¬E) ∧
φ ≤

∨
{ψ ∪ {a}}

∧
{φ ∪ {a}} ≤

∨
ψ

(¬I) ∧
φ ≤

∨
{ψ ∪ {¬a}}

(Distributivity) ∧
{
∨
φ | φ ∈ X} ≤

∨
{
∧
rng(γ) | γ ∈ Choice(X)}

{a ≤ b | (a, b) ∈ R}
(∇1) (α, β) ∈ T̄R∇α ≤ ∇β

{∇(T
∧
)(Φ) ≤ b | Φ ∈ SRD(A)}

(∇2) ∧
{∇α | α ∈ A} ≤ b

{∇α ≤ b | α T̄∈Φ}
(∇3) ∇(T

∨
)(Φ) ≤ b

where a, b ∈ LT , φ, ψ ∈ PωLT , X ∈ PωPωLT , α, β ∈ TωLT , Φ ∈ TωPωLT ,
A ∈ PωTωLT . The set Choice(X) is the set of choice functions on X , i.e. the
maps γ : X → LT such that γ(φ) ∈ φ, and rng denotes the range of the function.
R ⊆ LT × LT is any relation and T̄R is its lifting. Finally SRD(A) is the set
of so-called ‘slim redistributions’ of A. This last concept is important, and we
therefore define it in extenso. A redistribution of A ∈ PωTωLT is an element Φ
of TωPωLT which ‘contains’ all the elements of A as lifted members, i.e. α T̄∈Φ
for all α ∈ A. It is called slim if it is build from the direct subformulae of the
elements of A, i.e. if Φ ∈ TωPω(

⋃
α∈A Base(α)).

Sahlqvist Completeness for Coalgebraic Logics 197

To help the reader digest this rather heavy load of definitions, let us look at
an example which will cover both BAOs and coalgebraic logics.

Example 1. Given a signature (Σ, ar), we define a functor SΣ : Set→ Set by

SΣX =
∐
n∈ω

Σn ×Xn

where Σn is the set regrouping all operation symbols σ ∈ Σ of arity n. Any
functor of this shape is called a polynomial functor. We write U : BA→ Set
for the forgetful functor, and F : Set → BA for its left adjoint (the associated
free construction). This allows us to lift set-functors T : Set → Set to the
category of boolean algebras by putting T = FTU : BA → BA. In particular,
every signature Σ induces the functor SΣ : BA→ BA defined by

SΣA = FSΣUA = F

(∐
σ∈Σ

Aar(σ)

)

where A = UA. From now on we will drop the Σ subscript if there is no risk
of confusion. It is easy to see by the freeness of the construction of S that the
category Alg(S) of S-algebras in BA is isomorphic to the category of boolean
algebras A with maps fσ : An → A where n is the arity of σ. But this is almost
the category BAO(Σ) defined above! The only difference is that the maps do
not have to be operators, but we will return to this in an instant.

If we now turn our attention to coalgebraic logic, we can use the signature Σ
to define a coalgebraic language LS in the predicate lifting style defined above.
It is relatively straightforward to see that the Lindenbaum-Tarski algebra of LS ,
which we will denote AS , is the initial object in Alg(S), or equivalently, the
free BAO of Σ-terms as defined above but with the preservation of joins not
being enforced. We would like to interpret LS in S-models by reading M, w |=
σ(a1, . . . , an) as ‘w has a σ-tuple successor and ai holds at the i

th component of
this successor’. The predicate liftings are then defined by:

�σ�W : (PW)n → PSW, (U1, . . . , Un) �→ {σ(x1, . . . , xn) | xi ∈ Ui, 1 ≤ i ≤ n}

The obvious question now is: what axioms will give a sound and complete axiom-
atization of CoAlg(S), the class of all S-coalgebras? It is not too difficult to find
this list of axioms from scratch and then use a canonical model construction to
prove completeness, however, the fact that we’re using Σ in our syntax and our
semantics suggests turning our attention to the ∇-flavour of coalgebraic logic.

There is an obvious one-to-one correspondence between the language LS de-
fined above and the ∇-style language LS induced by S. Since S = Sω and since
σ(a1 . . . , an) can be seen as an element of SLS, we can recursively add ∇ in
front of every modal operator σ in order to get a ∇-style formula. Conversely,
by recursively removing every ∇ from a formula in LS we get a formula in LS
(see [10] for a detailed discussion of translations between the two flavours of
coalgebraic logic). We now have rules that provide us with a sound and (weakly)
complete axiomatization of CoAlg(S), namely:

198 F. Dahlqvist and D. Pattinson

(∇1)S
{ai ≤ bi | 1 ≤ i ≤ n}

∇σ(a1, . . . , an) ≤ ∇σ(b1, . . . , bn)
(∇2)S

∧
{∇σ(a1, . . . , an) | σ(a1, . . . , an) ∈ A} = ∇σ(

∧
π1[A], . . . ,

∧
πn[A])

(∇3)S ∇σ(
∨
φ1, . . . ,

∨
φn) =

∨
{∇σ(a1, . . . , an) | ai ∈ φi}

where = means both ≤ and ≥, ai ∈ LS , A ∈ PωSLS , φi ∈ PωLS . Let us dis-
cuss these rules and axioms briefly. The (∇1)S axiom takes this simplified form
because relation lifting by polynomial functors is very simple: if R ⊆ X × X ,
then (α, β) ∈ S̄R only if α, β lie in the same part of the co-product SX and
each component of the tuple α is R-related to the corresponding component
of β. For (∇2)S , it is easy to see from the definition of slim redistribution
that SRD(A) is empty if A contains elements lying in different parts of the
co-products, hence the presence of σ-terms only. Moreover, it is not too hard
to check that if Φ, Ψ ∈ SRD(A) and (Ψ, Φ) ∈ S̄ ⊆, then ∇S

∧
Φ ≤ ∇S

∧
Ψ ,

and since σ(π1[A], . . . , πn[A]) is a lifted subset of all other elements of SRD(A),
∇σ(

∧
π1[A], . . . ,

∧
πn[A]) ≤ b implies ∇S

∧
Φ ≤ b for all other Φ ∈ SRD(A).

Finally, and most importantly for our purpose, (∇3)S is just another way of
saying that ∇ preserves joins in each of its arguments. Of course the number
of arguments of ∇ can vary, but by trivially translating into LS we get that σ
- which has a fixed number of arguments - preserves joins in each of its argu-
ments. To see this for the first argument for example, just take φ1 = {a1, b1}
and φi = {ai} for 1 < i ≤ n, and note that the premise of the (∇3) rule is a
finite set for which we can take the join1.

Let us denote by KS the predicate-lifting style logic defined by the trivial
translations of the axioms (∇1)S−(∇3)S from LS to LS and any axiomatization
of propositional logic. It is easy to see that the semantics of LS is essentially the
same as the semantics we defined for LS and since we know that KKV(S) is sound
and complete w.r.t. the class of all S-coalgebras and that KKV(S) and KS are
in bijective correspondence, we can conclude that KS is also sound and weakly
complete w.r.t. the class of all S-coalgebras. The conclusion of this example is
therefore that if we look at the logic KS , rather than at the language LS , then
the Lindenbaum-Tarski algebra AS of KS is a bona fide BAO since preservation
of joins has been enforced by the (∇3)S axiom.

The previous example suggests our first Sahlqvist completeness theorem. But
let us first define a notion of Sahlqvist formula for the coalgebraic logic of a
polynomial functor.

Definition 2. Let a be a formula in KKV(S) for a polynomial functor S, and
let aS be its trivial translation into the predicate-lifting-style logic KS . Then a
(and aS) will be called a polynomial Sahlqvist formula if (the equivalence
class of) aS in the Lindenbaum-Tarski algebra AS of KS is a Sahlqvist formula
as defined above (following [6]).

1 We refer the reader to [9] to see that the converse of (∇2) and (∇3) (i.e. with the
inequalities going in the opposite direction) are derivable using (∇1) and the fact
that S preserves weak-pullbacks.

Sahlqvist Completeness for Coalgebraic Logics 199

Our first Sahlqvist completeness theorem is shown by following the well-trodden
path of completeness-via-canonicity proofs (for more details on this technique
we refer the reader to Chapter 4 and 5 of the classic [4]). Assume that Σ is a
signature defining a polynomial functor S and that C is a set of frame conditions,
then we want to endow the set of ultrafilters of the Lindenbaum-Tarski algebra
AS(C) of KS +C (i.e. the BAO of formulae LS quotiented by equivalence under
KS+C) with the structure of an S-coalgebra. The natural transition map to use
is γc : Uf(AS(C))→ SUf(AS(C)) defined by

γc(φ) = σ(ψ1, . . . , ψn) (2)

where ai ∈ ψi, 1 ≤ i ≤ n if σ(a1, . . . , an) ∈ φ. However, when Σ is infinite some
care must be taken due to the following fact. Consider the set

ζ = {¬σ(*, . . . ,*) | σ ∈ Σ}
The set ζ is KS-consistent but γc is undefined on any ultrafilter containing it.
In particular, any set of frame conditions containing ζ will lead to a situation
where γc cannot be defined anywhere. The set ζ characterises precisely the set of
ultrafilters for which γc is well-defined. Note that if Σ is finite, this problem does
not arise, moreover ζ cannot be a subset of any finite set of frame conditions.
But as we shall see later, infinite signatures and infinite sets of frame conditions
will be very useful. This justifies the following definition.

Definition 3. We recursively define the collection Z of deadlocking sets of
formulae as follows: ζ ∈ Z and if ζ′ ∈ Z, then for any operator σ ∈ Σ, ar(σ) = n
and map χ : n→ {1, 2} s.th. 1 ∈ rng(χ)

{σ(πχ(0)(z,*), . . . , πχ(n)(z,*) | z ∈ ζ′} ∈ Z
where π1, π2 are the obvious projections. Intuitively, ζ characterises a deadlock
ultrafilter whereas Z characterises all the ultrafilters from which a deadlock
state can be reached in finitely many transitions. We then define an acceptable
set of frame conditions as a set of LS-formulae which are KS-consistent and do
not contain any deadlocking set of formulae. This definition is extended via the
trivial translation to KKV(S)-frame conditions.

Note that ζ characterizes ultrafilters from which no transition is possible at all,
even trivial transitions defined by nullary terms in the signature - which also
encodes a notion of ‘deadlock’ - are forbidden.

Theorem 4 (Sahlqvist Completeness for Polynomial Functors). Let S
be a polynomial functor, LS be the ∇-language it defines and let C ⊆ LS be an
acceptable set of Sahlqvist frame conditions, then KKV(S)+C is complete w.r.t.
the class of S-coalgebras validating C.

Proof (Sketch). We start with a KKV(S) + C-consistent formula a and we will
show that we can find a model in the class of S-coalgebras which validate C, in
which a is satisfied. Let Σ be the signature defining S.

Finite Signatures: The map γc defined by Eq. (2) is well-defined because we
can derive * ≤

∨
σ∈Σ σ(*, . . . ,*) in KS , i.e. ultrafilters always have a successor.

200 F. Dahlqvist and D. Pattinson

Moreover, by the (∇2)S axioms we cannot have tuples prefixed with different
operator symbols in an ultrafilter φ since we cannot have ⊥ ∈ φ. This guarantees
that γc(φ) lands in a unique component of the coproduct defining S. It is not too
difficult to check that γc(φ) is indeed an ultrafilter. The canonical valuation is
given as expected by πc : Uf(AS(C))→ P(V), φ �→ V ∩ φ. Since we have a total
function γc, rather than a relation like in the traditional Kripke setting, we do
not need an Existence Lemma and we can move straight to the Truth Lemma
which is easily proven: if we define Mc = (Uf(AS(C)), γc, πc), then

(Mc, φ) |= a iff a ∈ φ

We can now build a model in which a is satisfied: take any ultrafilter φ containing
a and we have (Mc, φ) |= a. Now, all we need to do is to show that our canonical
model is based on a coalgebra which validates the frame conditions of C. To do
this, we need to consider the complex algebra associated with (Uf(A(C)), γc).
Specifically, we put a Σ-BAO structure on P(Uf(AS(C))) by defining

σε(X1, . . . , Xn) = {φ ∈ Uf(AS(C)) | γc(φ)i ∈ Xi, 1 ≤ i ≤ n}

for all σ ∈ Σ. The reason for the notation σε, is that the BAO we’ve just defined
is nothing but AS(C)ε, the canonical extension of AS(C). Now, since all the
formulae in C are Sahlqvist, then they must be canonical (see [6]), i.e. they
must all hold in AS(C)ε. It is then easy to check that if a formula of C holds in
AS(C)ε = P(Uf(AS(C))), it must be valid on the S-frame (Uf(A(C)), γc).

Infinite Signatures: To account for the possibility of deadlock states we start
by building a slightly different canonical model. The carrier set is given by

Wc = {φ ∈ Uf(A(C)) | for all ζ′ ∈ Z, ζ′ �⊆ φ}

The map γc : Wc → SWc is then defined as above and is well-defined by con-
struction and by the comments made in the finite signature case. The Truth
lemma holds just as in the finite signature case. So to build a model for a we
just need to find an ultrafilter φ ∈ Wc containing a. It is quite straightforward
to check that this is indeed possible (in fact it is possible for any finite set of
formulae). The complex algebra associated with Wc is defined as in the finite
signature case and is a subalgebra of the canonical extension (A(C))ε of A(C).
Since C is a set of Sahlqvist formulae, they are canonical and thus (A(C))ε

belongs to the variety they define. By Birkhoff’s theorem this variety is closed
under taking subalgebras and so P(Wc) is an algebra satisfying the equations of
C. The fact that (Wc, γc) validates the formulae in C follows.

Remark 5. As was hinted in the proof above, if the polynomial functor S is
defined by a signature with only finitely many operation symbols, then the result
above can be strengthened to a strong completeness result, i.e. any consistent
set of formulae is satisfiable. In the case of infinite signatures, only finite sets
of consistent formulae are guaranteed to be satisfiable. However, acceptable sets
of formulae in the sense of Definition (3) are also satisfiable, providing a result
which is somewhere between weak and strong completeness.

Sahlqvist Completeness for Coalgebraic Logics 201

3 Presentations and Translations

We will make crucial use of the fact that every accessible functor arises as the
quotient of a polynomial functor. By a λ-ary presentation of a set-endofunctor T
we understand a λ-ary signature (Σ, ar) (i.e. arities are bounded by λ) together
with an epi natural transformation q : SΣ � T . It is well known that every
λ-accessible endofunctor has a λ-ary presentation and we refer the reader to [2]
for a detailed overview of presentations in the context of coalgebras.

A natural question to ask in this context is: given a natural transformation
q : S → T , what can we say about the relationship between the coalgebraic logics
associated with S and T ? Is there a syntactic relationship? And what happens
at the semantic level? These questions seem natural but, as far as we know, have
not really been studied systematically in the literature. Let us first look at what
happens at the syntactic level.

Definition 6. Let S, T be two weak-pullback preserving standard functors on
Set and let q : S → T be a natural transformation. We define the translation
map (·)q : LS → LT recursively by

(∇α)q = ∇(qLT ◦ S(·)q)(α)

We call (·)q the translation along q and will use the following notational
conventions for maps associated with (·)q : LS → LT

– 〈.〉q : SLS → TLT will be shorthand for the map qLT ◦ S(·)q
– [·]q : PωSLS → PωTLT will be shorthand for the map Pω〈.〉q
– {·}q : SPωLS → TPωLT will be shorthand for the map qPωLT ◦ SPω(·)q

Note that with this notation we have (∇α)q = ∇(〈α〉q).

At the level of the semantics, note that a natural transformation q : S → T
induces a functor Q : CoAlg(S)→ CoAlg(T) on the corresponding categories
of coaglebras, given by Q(W,γ) = (W, qW ◦ γ). In particular Q turns models
for LS-formulae into models for LT -formulae and we will now show that the
translation along q agrees with the functor Q in the sense that truth is preserved
by applying both simultaneously. Formally:

Proposition 7. Suppose that q : S → T is a natural transformation and that
a ∈ LS . Suppose also that we have a model M = (W,γ, π) such that

M, w |= a

for some w ∈ W . If we then define Q(M) = (W, qW ◦ γ, π) we have

Q(M), w |= (a)q

The following lemma shows how the functors BaseS and BaseT are related by an
epi natural transformation q : S � T . This lemma will be very useful to relate
concepts for S and T which depend on the bases.

202 F. Dahlqvist and D. Pattinson

Proposition 8. Let S, T be Set functors and q : S � T an epi natural trans-
formation between them, let T weakly preserve pullbacks and let LS and LT be
the ∇-languages induced by S and T respectively, then the following diagram
commutes:

SLS BaseS ��

〈·〉q
��

PLS
P(·)q
��

TLT BaseT �� PLT
We conclude this section with an example.

Example 9. A functor of particular interest for applications is the so-called
bag functor which we denote B. Coalgebras for the bag functor are models for
Graded Modal Logic which is essentially the modal logic version of cardinality
restrictions in Description Logics. The bag functor can be defined by

BX = {f : X → N | supp(f) is finite }

Alternatively and equivalently, an element of BX can be defined as a ‘multiset’,
i.e. a set of pairs (denoted with ‘:’) {(xi : ni) | i ∈ I} where the elements xi ,
i ∈ I are distinct elements of X and the ni, i ∈ I are integers thought of as the
multiplicities of the elements xi. B has a simple presentation in terms of the list
functor ListX =

∐
n∈ωX

n. The presentation is given by:

qX : ListX → BX, (a1, . . . , an) �→ {(ap(1), . . . , ap(n)) | p ∈ Perm(n)}

where Perm(n) is the group of permutations of n elements. In other words q
identifies all permutations of a given tuple, and thus an element of BX can be
represented as a multiset (a1 : k1, . . . , an : kn) where ai : ki means ai appears
ki times in the (equivalence class of) tuple. In this context the translation (·)q
works as follows: a LList-formula of the form ∇n(a1, . . . , an) gets translated into
an LB-formula of the shape ∇n(k1 : (a′1)q, . . . , km : (a′m)q) where the a′i are the
distinct elements of the set {a1, . . . , an} and ki their multiplicity (and m ≤ n).

4 The Translation Theorem

We have so far established the following: (1) we have a logic for coalgebras
based on polynomial functors which is suitable for defining Sahlqvist formulae
and (2) every accessible functor T can be presented from a polynomial functor
S and this presentation allows us to move from the language and the coalgebras
based on S to those based on T in a sensible way. This section is they key
technical contribution of this paper and shows how we can connect the facts
that we have established in the two previous sections. The idea will be to show
that the translation map (·)q acts not just on the language LS but also on the
logic KKV(S). Crucially, we will show how derivability in KKV(S) is related
to derivabilty in KKV(T). This section is rather technical and we must start
with a few lemmata. The intended meaning of our first lemma is that (·)q sends
substitution instances of axioms to substitution instances of axioms.

Sahlqvist Completeness for Coalgebraic Logics 203

Definition 10. A substitution is a map π̂ : LT → LT defined inductively from
a map π : V → LT by: π̂(p) = π(p) for all p ∈ V , π̂(φ ∧ ψ) = π̂(φ) ∧ π̂(ψ) ,
π̂(¬φ) = ¬π̂(φ) and π̂(∇α) = ∇(T π̂(α)).

Lemma 11. Let S, T be two weak-pullback preserving functors on Set, let q :
S � T be a epi natural transformation and let LS and LT be the ∇-languages
induced by S and T respectively. Let π : V → LS define a substitution π̂ : LS →
LS and and let ρ be the map ρ = (·)q ◦ π : V → LT , then for all a ∈ LS

(·)q ◦ π̂(a) = ρ̂ ◦ (·)q(a)

There are two important constructions in the KKV axiomatization: the notion
of slim redistribution and that of lifted member (used for the (∇2) and (∇3)
axiom). The following two lemmata show how these notions interact with the
translation map. They are generalisation of Lemmata 5.44 and 5.45 in [10] where
a special class of presentations (called ‘well-based’ presentations) is considered,
here we consider arbitrary epi natural transformations between weak-pullback
preserving functors.

Lemma 12. Let S, T be two weak-pullback preserving functors on Set, let q :
S � T be an epi natural transformation, and let LS and LT be the ∇-languages
induced by S and T respectively. For any A ∈ PωSLS and Φ ∈ TPωLT , the
following two conditions are equivalent:

(1) Φ ∈ SRD([A]q)
(2) there exist Φ′ ∈ SPωLS such that {Φ′}q = Φ and for all α ∈ A there exist

α′ such that α′ S̄∈Φ′ and 〈α′〉q = 〈α〉q

Lemma 13. Let S, T be two weak-pullback preserving functors on Set, let q :
S � T be an epi natural transformation, and let LS and LT be the ∇-languages
induced by S and T respectively. For any α ∈ TLT and Φ ∈ TPωLT the following
two conditions are equivalent:

(1) α T̄∈Φ for Φ ∈ TPωLT
(2) there exist Φ′ ∈ TPωLS such that {Φ′}q = Φ and α′ ∈ SLS such that

〈α′〉q = α and α′ S̄∈Φ′

We are now ready to move to our key technical result. Our main motivation is to
get a completeness result for KKV(T)+C where C is a set of ‘Sahlqvist formulae’
- we will define what this means precisely in the next section. Following the usual
method we’ll start with a KKV(T) + C-consistent formula a and try to build a
model for it. By Theorem 4, we know how to do this for KKV(S) + D, when
S � T is a presentation of T and D is a set of Sahlqvist formulae. So what
seems to be required is a result linking KKV(T)+C-consistency to KKV(S)+D-
consistency for the right D. More specifically, we want a result relating ¬a ≤ ⊥
not being derivable in KKV(T) +C to a similar statement in KKV(T) +D for a
certain D. As it turns out, the trick is to look at all the pre-images of a and of
C, and, using the contrapositive, the result we are looking for is therefore:

204 F. Dahlqvist and D. Pattinson

Theorem 14 (Translation Theorem). Let T be a weak-pullback preserving
Set functor, let q : S � T be a presentation of T and let LS and LT be the
∇-languages defined by S and T . Assume we have a set C of KKV(T)-consistent
formulae (the frame conditions) and let us define the set C′ ⊆ LS by:

C′ = {c′ ∈ LS | (c′)q ∈ C and c′ is KKV(S)− consistent}

Then
KKV(S) + C′ % {a′ ≤ ⊥ | (a′)q = a}

implies
KKV(T) + C % a ≤ ⊥

Proof (Sketch).We proceed by induction on the depth n of the shortestKKV(S)+
C′-proof of a′ ≤ ⊥ amongst all a′ such that (a′)q = a. The base case is if n = 0,
i.e. if there there exist an inequality a′ ≤ ⊥ which is either an axiom of the propo-
sitional fragment of the logic or a substitution instance of an axiom in C′. By
Lemma 11 and the definition of C′, it is clear that if a′ is a substitution instance
of a formula c′ ∈ C′, then its translation (a′)q = a is a substitution instance of
a formula in c ∈ C, and we can thus conclude that KKV(T) + C % a ≤ ⊥. The
inductive hypothesis is the following: if we have KKV(S)+C′ proofs that all the
pre-images under (·)q of a formula a are false and if the smallest of these proofs
has depth n, then we have a proof that a is false in KKV(T)+C. So let’s assume
that we have proofs

KKV(S) + C′ % {a′ ≤ ⊥ | (a′)q = a}

and that the depth of the shortest proof if n + 1. We then show that we can
always find a set of KKV(S) + C′-proofs of minimal depth n whose conclusion
are the pre-images of a premise in KKV(T) + C whose conclusion is a ≤ ⊥. In
other words, we build the last step of a T -proof by using the last steps of existing
S-proofs and the inductive hypothesis. This is done by examining, in turn, each
of the possible outermost connectives of a, and thus of a′, i.e. ∇ or a boolean
connective. Each of these possible outermost connectives of a′ specifies a small
number of rules which could have been the last rule applied to reach (a′ ≤ ⊥).
The proof then consists in examining each of these possibilities and show that
they all lead to a situation where the induction hypothesis can be applied and
lead to a T -rule with conclusion a ≤ ⊥.

5 Sahlqvist Formulae for Coalgebraic Logics

We now have all we need to formulate our Sahlqvist completeness result for
coalgebraic modal logic. We start by defining a notion of Sahlqvist formula for
a general (i.e. not necessarily polynomial) functor.

Sahlqvist Completeness for Coalgebraic Logics 205

Definition 15. Let T be a weak-pullback preserving functor, let q : S � T be
a presentation of T and let LT and LS be the ∇-languages induced by S and
T respectively, then a ∈ LT will be called a coalgebraic Sahlqvist formula
if every pre-image of a under the translation map (·)q : LS → LT is Sahlqvist
in the sense of Definition 2. A set C ⊆ LT will be called an acceptable set
of frame conditions if its inverse image under (·)q is acceptable in the sense of
Definition 3.

Theorem 16 (Sahlqvist Completeness Theorem). Let T be a weak-pullback
preserving Set functor, let q : S � T be a presentation of T and let LT and LS
be the ∇-language induced by S and T respectively. Assume that C ⊆ LT is an
acceptable set of coalgebraic Sahlqvist formulae, then KKV(T) + C is complete
w.r.t. the class of T -coalgebra validating C.

Proof. As is customary, we start with a formula a ∈ LT which is KKV(T) + C-
consistent, and we will build a model for a in the class of T -coalgebras validating
the coalgebraic frame conditions in C. The proof is in four steps.

Firstly, by using the contrapositive of Theorem 14, we know that since a is
KKV(T) + C-consistent, then there must exist a pre-image a′ of a under (·)q
which is KKV(S) + C′-consistent.

Secondly, since C is a set of coalgebraic Sahlqvist formulae we can apply
Theorem 4 and conclude that there exists a modelMS based on an S-coalgebra
(W,γ) which belongs to the class of coalgebraic frames validating the axioms
of C′ and such that a′ is satisfied in MS , i.e. there exist w ∈ W such that
MS , w |= a′.

Thirdly, by Proposition 7 if we defineMT = Q(MS) then we have that since
MS , w |= a′ and (a′)q = a, MT , w |= a.

Finally, we need to check that MT is a coalgebraic frame validating the for-
mulae in C. Assume that it is not, then there must exist c ∈ C and w ∈ W
such that MT , w �|= c. By the contrapositive of Proposition 7 this means that
MS , w �|= c′ for all c′ in the pre-image of c under (·)q. But by Definition 15 and
the second step of the proof we know that we must have MS , w |= c′ for any
such c′ and we therefore have a contradiction.

Example 17. We return to the bag functor B of Example 9 to illustrate what
is, as far as we know, the first Sahlqvist completeness result for Graded Modal
Logic (GML). An LB-formula of the shape ∇n(a1 : k1, . . . , am : km) is true at a
point w if w has n successors, of which ki satisfy ai, for 1 ≤ i ≤ m. Note that
by construction (B is presented by List) our B-coalgebras are finitely branching.
For this example we will place ourselves in the predicate lifting style logic ob-
tained by the trivial translation removing ∇ operators (see Example 1), and
we rewrite ∇n(a1 : k1, . . . , am : km) as 〈n〉(a1 : k1, . . . , am : km). For clarity’s
sake we define the following derived modal operators which are closer to the
traditional operators of GML:

206 F. Dahlqvist and D. Pattinson

♦np =

n∨
i=1

〈n〉(p : i,* : (n− i))

♦≤np =

n∨
i=1

♦np

Thus ♦np holds at w if w has n successors and p is true at (at least) one of them,
whereas ♦≤np holds at w if w has at most n successors and p is true at (at least)
one of them, i.e. p is true at at least one and at most n successors. Using these
operators we can define graded versions of the most popular Sahlqvist frame
conditions, for example ‘transitivity for at most n successors’:

(4n) : ♦≤n♦≤np→ ♦≤np

To see that (4n) is Sahlqvist, note first that all the pre-images of 〈n〉(p : i,* :
(n− i)) under the translation map (·)q introduced in Example 9 are of the shape
(in the predicate-lifting style):

n(π(p, . . . , p︸ ︷︷ ︸
i times

, *, . . . ,*︸ ︷︷ ︸
(n− i) times

)) (3)

for some π ∈ Perm(n). i.e. just an operator applied to some variables. So a
pre-image of ♦np is just a join of n formulae of the shape (3) for a choice of n
permutations πi ∈ Perm(n), 1 ≤ i ≤ n (or combinations of elements of this shape
using meets and joins). In turn, the pre-images of ♦≤np are joins of n choices
of pre-images of ♦ip, 1 ≤ i ≤ n (or combinations of elements of this shape using
meets and joins). Thus the pre-images of the consequent of (4n) are (strictly)
positive. Similarly, the antecedent of (4n) can be seen to be strictly positive and
thus (4n) is a Sahlqvist formula in the sense of Eq. (1) for any n.

Note that the cardinality restriction leads to a slightly counter-intuitive mean-
ing for the axiom (4n). Indeed, assume a point w has two successors, that one of
these successors has three successors, one of which is the only state to satisfy p,
then (42) holds, but transitivity doesn’t. So (4n) is transitivity for frames with
branching degree at most n. To recover the usual notion of transitivity we need
to consider the collection of Sahlqvist formulae (4) = {(4n) | n ∈ N}. It is clear
that (4) is acceptable in the sense of Definition 3 and the basic GML + (4) is
thus weakly complete w.r.t. finitely branching transitive frames.

Remark 18. We must make two important remarks about the previous exam-
ple. First, the fact that LB-formulas count the total number of successors points
to an important difference with the traditional language for Graded Modal Logic
LGML where a formula ♦kφ is traditionally interpreted as ‘φ holds at k distinct
successors’, leaving the total number of successors unspecified. Clearly we cannot
express this in a finitary way in LB, so our Sahlqvist formulae are expressed in
a fragment of LGML. But there is a translation tr from LB to LGML defined by

Sahlqvist Completeness for Coalgebraic Logics 207

tr(∇n(a1 : k1, . . . , am : km)) = ♦n* ∧�n+1⊥ ∧
m∧
i=1

♦kiai

where ♦n* ∧ �n+1⊥ just says that there are exactly n successors. Our second
remark is that the ♦k modalities are algebraically ill-behaved as they do not
distribute over joins, so there is no way of applying the theory of Sahlqvist
formulae in BAOs to GML in the usual setting which may explain why we were
unable to find any Sahlqvist completeness result for this logic in the literature.

Example 19. Our next example, is intended to show the relationship between
our notion of Sahlqvist formula and the traditional one from relational modal
logic. Here we will look at the finite powerset functor Pω which has a very simple
presentation q : List� Pω given by

qX : ListX � PωX, (a1, . . . , an) �→ {a1, . . . , an}

The empty list is sent to the empty set. Thus, the pre-images of a LPω -formula of
the type ∇{a1, . . . , ak} are all the LList-formula of the type ∇n(a′1, . . . , a′n), n ≥ k
where (a′1, . . . , a

′
n) is any list containing all the elements of {a1, . . . , ak}. Here we

are in a slightly better position than in the graded case as there are semantic-
preserving translations of the usual modal language LML in terms of ♦ and
� into LPω and vice-versa (see [9]), in particular ♦p is translated by ∇{p,*}
and �p by ∇∅ ∨∇{p}. We can check that the traditional Sahlqvist formulae as
defined for example in [4] are also Sahlqvist formulae in the sense of this paper.
Notice first that the pre-images under (·)q of ♦p, or equivalently of ∇{p,*}, are
of the shape ∇α for an α ∈ List{p,*}, or, in the predicate-lifting style, 〈n〉α
with α ∈ ({p,*})n for some n ∈ N. It is then quite straightforward to check
that positive formulae in LML are translated into positive formulae in LPω whose
inverse images under (·)q are also positive. This takes care of the consequent of
Sahlqvist formulae. Now for the antecedent. As defined in [4], the antecedent
must be built from ⊥,*, boxed atoms and negative formulae using ∧,∨ and
♦. Clearly, ⊥ and * pose no problem. Negative LML-formulae get mapped to
negative LPω -formulae whose inverse image under (·)q are also negative. The
only potentially problematic building block are the boxed atoms. The formula
�p is translated to∇∅∨∇{p} whose inverse images under (·)q are of the shape (in
the predicate lifting style) 〈0〉∨ 〈n〉(p, . . . , p), i.e. strictly positive terms. Clearly,
the nesting of more boxes doesn’t change this and so all inverse images of boxed
atoms are strictly positive and we can therefore view them as part of the strictly
positive term in Eq. (1) defining Sahlqvist antecedents.

6 Outlook

As illustrated by Example 17, there are instances of logics in the predicate-lifting
style which can make statements that cannot be translated in the ∇-style (see
[10]). We would like to extend our result to such logics, possibly by enriching the

208 F. Dahlqvist and D. Pattinson

polynomial logics with operators that carry an infinitary meaning but remain
algebraically well-behaved. We would also like to extend our result to richer
coalgebraic logics such as coalgebraic μ-calculus (see [3] for recent advances in
defining Sahlqvist formulae for the μ-calculus) and hybrid coalgebraic modal
logic. Finally we would like to find examples and applications of our results to
more logics such as probabilistic or coalition logics.

Acknowledgement. We are grateful to Clemens Kupke for his help on some
of the finer points of ∇-style logics and to Alexander Kurz for hinting at some
parts of [10] which were very useful. We would also like to thank the anonymous
referees for their insightful and useful comments.

References

1. Abramsky, S.: Coalgebras, Chu Spaces, and Representations of Physical Systems.
CoRR, abs/0910.3959 (2009)

2. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: A coalgebraic
perspective. J. Log. Comput. 20(5), 991–1015 (2010)

3. Bezhanishvili, N., Hodkinson, I.: Sahlqvist theorem for modal fixed point logic.
Theoretical Computer Science 424, 1–19 (2012)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Scie., vol. 53. Cambridge University Press (2001)

5. de Rijke, M., Venema, Y.: Sahlqvist’s Theorem For Boolean Algebras With Oper-
ators With An Application To Cylindric Algebras. Studia Logica (1995)

6. Jónsson, B.: On the canonicity of Sahlqvist identities. Studia Logica 53(4), 473–492
(1994)

7. Jónsson, B., Tarski, A.: Boolean algebras with operators. part 1. Amer. J. Math. 33,
891–937 (1951)

8. Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview.
Theoretical Computer Science 412(38), 5070–5094 (2011); Special issue CMCS 2010

9. Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality.
Logical Methods in Computer Science 8(3) (2012)

10. Kurz, A., Leal, R.: Modalities in the Stone age: A comparison of coalgebraic logics.
In: MFPS XXV, Oxford (2009)

11. Pattinson, D., Schröder, L.: Beyond Rank 1: Algebraic Semantics and Finite Models
for Coalgebraic Logics. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp.
66–80. Springer, Heidelberg (2008)

12. Rutten, J.J.M.M.: Rutten. Universal coalgebra: a theory of systems. Theor. Com-
put. Sci. 249(1), 3–80 (2000)

13. Schröder, L.: A Finite Model Construction for Coalgebraic Modal Logic. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 157–171. Springer,
Heidelberg (2006)

14. Venema, Y.: Algebras and coalgebras. In: van Benthem, J., Blackburn, P., Wolter,
F. (eds.) Handbook of Modal Logic. Elsevier (2006)

Cut Elimination in Nested Sequents

for Intuitionistic Modal Logics

Lutz Straßburger

INRIA Saclay–Île-de-France — Équipe-projet Parsifal
École Polytechnique — LIX — Rue de Saclay — 91128 Palaiseau Cedex — France

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/

Abstract. We present cut-free deductive systems without labels for the
intuitionistic variants of the modal logics obtained by extending IK with
a subset of the axioms d, t, b, 4, and 5. For this, we use the formalism
of nested sequents, which allows us to give a uniform cut elimination
argument for all 15 logic in the intuitionistic S5 cube.

1 Introduction

Intuitionistic modal logics are intuitionistic propositional logic extended with the
modalities � and ♦, obeying some variants of the k-axiom. Unlike for classical
modal logic, there is no canonical choice, and many different versions of intuition-
istic modal logics have been considered, e.g., [8,23,24,21,25,2,20]. For a survey
see [25]. In this paper we consider the variant proposed in [24,21] and studied
in detail by Simpson [25], namely, we add the following axioms to intuitionistic
propositional logic:

k1 : �(A⊃B)⊃ (�A⊃�B)
k2 : �(A⊃B)⊃ (♦A⊃ ♦B)
k3 : ♦(A ∨B)⊃ (♦A ∨ ♦B)
k4 : (♦A⊃�B)⊃�(A⊃ B)
k5 : ¬♦⊥

(1)

In a classical setting the axioms k2–k5 would follow from k1 and the De Morgan
laws. Recently, researchers have also studied the variant which allows only k1
and k2, and which is sometimes called constructive modal logic (e.g., [1,18]). Since
this leads to a different proof theory, it will not be discussed here. Independently
from the chosen variant for the intuitionistic modal logic K, denoted by IK, one
can add an arbitrary subset of the axioms d, t, b, 4, and 5, shown in Figure 1.
As in the classical setting, this yields 15 different modal logics. In [25], Simpson
presents labeled natural deduction and labeled sequent calculus systems for all
of them. In [11], Galmiche and Salhi present label-free natural deduction systems
for the ones not using the d-axiom. In this paper we present label-free sequent
calculus systems for all 15 logics in the “intuitionistic modal cube” (shown in
Figure 2), together with a uniform syntactic cut-elimination proof. For this we
use nested sequents [14,3,22] (in a variant already used in [11]).

The motivation for this work is twofold. First, sequent calculus is much better
suited for automated proof search than natural deduction, and second, label-free

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 209–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/

210 L. Straßburger

d : �A⊃ ♦A ∀w. ∃v. wRv (serial)

t : (A⊃ ♦A) ∧ (�A⊃ A) ∀w. wRw (reflexive)

b : (A⊃�♦A) ∧ (♦�A⊃ A) ∀w. ∀v. wRv ⊃ vRw (symmetric)

4 : (♦♦A⊃ ♦A) ∧ (�A⊃��A) ∀w. ∀v. ∀u. wRv ∧ vRu⊃ wRu (transitive)

5 : (♦A⊃�♦A) ∧ (♦�A⊃�A) ∀w. ∀v. ∀u. wRv ∧ wRu⊃ vRu (euclidean)

Fig. 1. Intuitionistic modal axioms d, t, b, 4, 5, with corresponding frame conditions

systems make it easier to study the theory of proof search and proof normal-
ization. In fact, the sequent systems together with the cut-reduction procedure
presented in this paper are the basis for ongoing research on the following two
questions: (i) Is it possible to design a focussed system [16,5,17] yielding new
normal forms for cut-free proofs and providing proof search mechanisms based
on forward-chaining (program-directed search) and backward-chaining (goal-
directed search) for intuitionistic modal logics? (ii) Can we give a term calculus
(based on the λ-calculus in the style of [19]) for proofs, in order to provide a
Curry-Howard-correspondence for intuitionistic modal logics (and not just the
constructive modal logics mentioned above)?

There is a close relationship between the labeled and the label-free natu-
ral deduction systems of [25] and [11]. In fact, modulo the correspondence be-
tween (tree-)labeled systems and nested sequents [10], the basic systems for IK
of [25] and [11] are identical. A similar correspondence can be observed be-
tween the labeled sequent systems of [25] and our systems, when restricted to
the logic IK. However, the rules dealing with the axioms d, t, b, 4, and 5 are
very different from [25]. The shape of these rules is crucial for the internal cut-
elimination proof.

Furthermore, note that our treatment of the “intuitionistic” in nested sequents
is different from the one in [9] (which is two-sided inside each nesting and does
not treat modalities), and the one in [13], (which focuses on variants of bi-
intuitionistic tense logics, and does not cover all 15 logics in the IS5-cube).

2 Preliminaries

The formulas of intuitionistic modal logic (IML) are generated by:

M ::= A | ⊥ | M∧M | M∨M | M⊃M | �M | ♦M (2)

where A = {a, b, c, . . .} is a countable set of propositional variables (or atoms).
We use A,B,C, . . . to denote formulas. Negation of formulas is defined as ¬A =
A ⊃ ⊥. The theorems of the intuitionistic modal logic IK are exactly those for-
mulas that are derivable from the axioms of intuitionistic propositional logic and
the axioms k1–k5 shown in (1) via the rules mp and nec shown below:

A A⊃B
mp −−−−−−−−−−−−

B

A
nec −−−−
�A

(3)

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 211

In the following, we recall the birelational models [21,7] for IML, which are a
combination of the Kripke semantics for propositional intuitionistic logic and
the one for classical modal logic. A frame 〈W,≤, R〉 is a non-empty set W of
worlds together with two binary relations ≤, R ⊆W ×W , where ≤ is a pre-order
(i.e., reflexive and transitive), such that the following two conditions hold
(F1) For all worlds w, v, v′, if wRv and v ≤ v′, then there is a w′ such that

w ≤ w′ and w′Rv′.
(F2) For all worlds w′, w, v, if w ≤ w′ and wRv, then there is a v′ such that

w′Rv′ and v ≤ v′.
These two conditions can be visualized as follows:

w′ · · · R· · · · · · v′

≤
......

∣∣∣∣ ≤
w R v

and

w′ · · · R· · · · · · v′

≤
∣∣∣∣

≤

w R v

A model M is a quadruple 〈W,≤, R, V 〉, where 〈W,≤, R〉 is a frame, and V ,
called the valuation, is a monotone function 〈W,≤〉 → 〈2A,⊆〉 from the set of
worlds to the set of subsets of propositional variables, mapping a world w to the
set of propositional variables which are true in w. We write w � a if a ∈ V (w).
The relation � is extended to all formulas as follows:

w � A ∧B iff w � A and w � B
w � A ∨B iff w � A or w � B
w � A⊃B iff for all w′ ≥ w : w′ � A implies w′ � B
w � �A iff for all w′, v′ ∈ W : if w′ ≥ w and w′Rv′ then v′ � A
w � ♦A iff there is a v ∈W such that wRv and v � A

(4)

We write w �� A if w � A does not hold. In particular, note that w �� ⊥ for all
worlds, and that we do not have that w � ¬A iff w �� A. However, we get the
monotonicity property:

Lemma 2.1 (Monotonicity). If w ≤ w′ and w � A then w′ � A.

Proof. By induction on A, using (4), (F1), and the monotonicity of V . ��

We say that a formula A is valid in a model M = 〈W,≤, R, V 〉, denoted by M �
A, if for all w ∈ W we have w � A. A formula A is valid in a frame 〈W,≤, R〉,
denoted by 〈W,≤, R〉 � A, if for all valuations V , we have 〈W,≤, R, V 〉 � A.
Finally, we say a formula is valid, if it is valid in all frames. As for classical modal
logics, we can consider the axioms {d, t, b, 4, 5}, whose intuitionistic versions are
shown in Figure 1, and that we can add to the logic IK. For X ⊆ {d, t, b, 4, 5}
a frame is called an X-frame if the relation R obeys the corresponding frame
conditions, which are also shown in Figure 1. For example, a {b, 4}-frame is one
in which R is symmetric and transitive. The following theorem is well-known:

Theorem 2.2. A formula is derivable from IK+X iff it is valid in all X-frames.

212 L. Straßburger

◦IS4 ◦IS5

◦IT ◦ITB

◦ID4 ◦
ID45

◦
ID5

◦ID ◦IDB

◦IK4 ◦
IK45

◦
IKB5

◦
IK5

◦
IK

◦
IKB

Fig. 2. The intuitionistic “modal cube”

Remark 2.3. Note that we do not have a true correspondence as for classical
modal logics. For example, if t is valid in a frame 〈W,≤, R〉 then R does not
need to be reflexive (see [25,21] for more details).

We will say a formula is X-valid iff it is valid in all X-frames. As in classical modal
logic, we can, a priori, define 32 modal logics with the 5 axioms in Figure 1.
But many of them coincide, for example, IK + {t, b, 4} and IK+ {t, 5} yield the
same logic, called IS5. There are, in fact, 15 different logics, which are shown in
Figure 2, the intuitionistic version of the “modal cube” [12].

3 Nested Sequents for Intuitionistic Modal Logics

Let us now turn to nested sequents for IML. The data structure of a nested
sequent for intuitionistic modal logics that we employ here has already been
used in [11] and is almost the same as for classical modal logics [3,4]: it is a
tree whose nodes are multisets of formulas. The only difference is that in the
intuitionistic case exactly one formula occurrence in the whole tree is special. We
will mark it with a white circle ◦, while all other formulas are marked with a black
circle •. One can see this marking as a polarity assignment: • for input polarity,
and ◦ for output polarity.1 Formally, nested sequents for IML are generated by
the grammar (where n and k can both be zero):

Γ ::= Λ,Π Λ ::= A•1, . . . , A
•
n, [Λ1], . . . , [Λk] Π ::= A◦ | [Γ] (5)

Thus, a nested sequent consists of two parts: an LHS-sequent (denoted by Λ),
in which all formulas have input polarity, and an RHS-sequent (denoted by Π),
which is either a formula with output polarity or a bracketed sequent. A se-
quent of the shape as Γ in (5) is called a full sequent. The letters Δ and Σ

1 We avoid the use of the “positive/negative” terminology because it is overloaded.
For a thorough investigation into polarities as they are used here, see [15].

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 213

can stand for full sequents as well as LHS-sequents, depending on the con-
text. Note that any RHS-sequent is also a full sequent, but not the other way
around. As usual, we allow sequents to be empty, and we consider sequents to
be equal modulo associativity and commutativity of the comma. Sometimes we
write ∅ to denote the empty multiset, allowing us to write [∅], which is a well-
formed LHS-sequent. If we forget the polarities, a nested sequent is of the shape
Γ = A1, . . . , Ak, [Γ1], . . . , [Γn].

The corresponding formula of a nested sequent is defined as follows:

fm(Λ,Π) = fm(Λ)⊃ fm(Π)

fm(A•1, . . . , A
•
n, [Λ1], . . . , [Λk]) = A1 ∧ · · · ∧ An ∧ ♦fm(Λ1) ∧ · · · ∧ ♦fm(Λk)

fm(A◦) = A

fm([Γ]) = �fm(Γ)

We say a sequent is X-valid if its corresponding formula is.
As in the case of classical modal logics, we need the notion of context which

is a nested sequent with a hole { }, taking the place of a formula. Since we
have two polarities, input and output, there are also two kinds of contexts: input
contexts, whose holes have to be filled with an input formula for obtaining a
full sequent, and output contexts, whose holes have to be filled with an output
formula for obtaining a full sequent. We also allow the holes in a context to be
filled with sequents and not just formulas.

We define the depth of a context inductively as follows:

depth({ }) = 0

depth(Δ,Γ{ }) = depth(Γ{ })
depth([Γ{ }]) = 1 + depth(Γ{ })

Example 3.1. Let Γ1{ } = C•, [{ }, [B•, C•]] and Δ1 = A•, [B◦] and
Γ2{ } = C•, [{ }, [B•, C◦]] and Δ2 = A•, [B•]. Then depth(Γ1{ }) =
depth(Γ2{ }) = 1. Furthermore, Γ1{Δ2} and Γ2{Δ1} are not well-formed full
sequents, because the former would contain no output formula, and the latter
would contain two. However, we can form Γ1{Δ1} = C•, [A•, [B◦], [B•, C•]]
and Γ2{Δ2} = C•, [A•, [B•], [B•, C◦]]. Their corresponding formulas are
fm(Γ1{Δ1}) = C ⊃ �(A ∧ ♦(B ∧ C) ⊃ �B) and fm(Γ2{Δ2}) = C ⊃ �(A ∧
♦B ⊃�(B ⊃ C)), respectively.

Observation 3.2. Note that every output context Γ{ } is of the shape

Λ1, [Λ2, [. . . , [Λn, { }] . . .]] (6)

for some n ≥ 0, where all Λi are LHS-sequents. Filling the hole of an output
context with a full sequent yields a full sequent, and filling it with an LHS-sequent
yields an LHS-sequent. Every input context Γ{ } is of the shape Γ ′{Λ{ }, Π}
where Γ ′{ } and Λ{ } are output contexts (i.e., are of the shape (6) above) and
Π is a RHS-sequent. Furthermore, Γ ′{ } and Λ{ } and Π are uniquely defined
by the position of the hole { } in Γ{ }.

214 L. Straßburger

⊥• −−−−−−−−
Γ{⊥•}

id −−−−−−−−−−−−
Γ{a•, a◦}

Γ{A•, B•}
∧• −−−−−−−−−−−−−−

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧◦ −−−−−−−−−−−−−−−−−−−−−−−
Γ{A ∧B◦}

Γ{A•} Γ{B•}
∨• −−−−−−−−−−−−−−−−−−−−−−−

Γ{A ∨B•}
Γ{A◦}

∨◦ −−−−−−−−−−−−−−
Γ{A ∨B◦}

Γ{B◦}
∨◦ −−−−−−−−−−−−−−

Γ{A ∨B◦}

Γ ↓{A⊃B•, A◦} Γ{B•}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A⊃B•}
Γ{A•, B◦}

⊃◦ −−−−−−−−−−−−−−
Γ{A⊃B◦}

Γ{�A•, [A•,Δ]}
�• −−−−−−−−−−−−−−−−−−−−−

Γ{�A•, [Δ]}
Γ{[A◦]}

�◦ −−−−−−−−−−
Γ{�A◦}

Γ{[A•]}
♦• −−−−−−−−−−

Γ{♦A•}
Γ{[A◦,Δ]}

♦◦ −−−−−−−−−−−−−−−−
Γ{♦A◦, [Δ]}

Fig. 3. System NIK

We can chose to fill the hole of a context Γ{ } with nothing, which means
we simply remove the { }. This is denoted by Γ{∅}. In Example 3.1 above,
Γ1{∅} = C•, [[B•, C•]] is an LHS-sequent and Γ2{∅} = C•, [[B•, C◦]] is a
full sequent. More generally, whenever Γ{∅} is a full sequent, then Γ{ } is an
input context. Sometimes we also need a context with many holes, denoted by
Γ{ } · · · { }.

Definition 3.3. For every input context Γ{ } (resp. full sequent Δ), we define
its output pruning Γ ↓{ } (resp. Δ↓) to be the same context (resp. sequent) with
the unique output formula removed. Thus, Γ ↓{ } is an output context (resp. Δ↓

is an LHS-sequent). If Γ{ } is already an output context (resp. if Δ is already
an LHS-sequent), then Γ ↓{ } = Γ{ } (resp. Δ↓ = Δ).

We are now ready to see the inference rules. Figure 3 shows system NIK, a
nested sequent system for intuitionistic modal logic IK. There are more rules
than in the classical version [3] because for each connective we need two rules,
one for the input polarity, and one for the output polarity. Note how the ⊃•-rule
makes use of the output pruning. This is necessary because we allow only one
output formula in the sequent. Without this restriction, we would collapse into
the classical case.

In the course of this paper we will make use of the additional structural rules

Γ
nec[] −−−−

[Γ]

Γ{∅}
w −−−−−−
Γ{Λ}

Γ{A•, A•}
c −−−−−−−−−−−−−

Γ{A•}
Γ{[Δ1], [Δ2]}

m[] −−−−−−−−−−−−−−−−−−
Γ{[Δ1,Δ2]}

Γ ↓{A◦} Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}
(7)

called necessitation, weakening, contraction, box-medial, and cut, respectively.
These rules are not part of the system, but we will see later that they are all
admissible. Note that in the weakening rule Λ has to be an LHS-sequent, and
the contraction rule can only be applied to input formulas. For the m[]-rule it
is not relevant where in Γ{[Δ1, Δ2]} the output formula is located. The cut-
rule makes use of the output pruning, in the same way as the ⊃•-rule. Explicit

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 215

Γ{[A◦]}
d
◦ −−−−−−−−−−
Γ{♦A◦}

Γ{A◦}
t
◦ −−−−−−−−−−
Γ{♦A◦}

Γ{[Δ], A◦}
b
◦ −−−−−−−−−−−−−−−−
Γ{[Δ,♦A◦]}

Γ{�A•, [A•]}
d
• −−−−−−−−−−−−−−−−−

Γ{�A•}
Γ{�A•, A•}

t
• −−−−−−−−−−−−−−−

Γ{�A•}
Γ{[Δ,�A•], A•}

b
• −−−−−−−−−−−−−−−−−−−−−

Γ{[Δ,�A•]}

Γ{[♦A◦, Δ]}
4
◦ −−−−−−−−−−−−−−−−
Γ{♦A◦, [Δ]}

Γ{∅}{♦A◦}
5
◦ −−−−−−−−−−−−−− depth(Γ{ }{∅}) > 0
Γ{♦A◦}{∅}

Γ{�A•, [�A•, Δ]}
4
• −−−−−−−−−−−−−−−−−−−−−−−

Γ{�A•, [Δ]}
Γ{�A•}{�A•}

5
• −−−−−−−−−−−−−−−−−−− depth(Γ{ }{∅}) > 0

Γ{�A•}{∅}

Fig. 4. Intuitionistic ♦◦- and �•-rules for the axioms d, t, b, 4, and 5

contraction is not needed in NIK because contraction is implicitly present in the
⊃•- and �•-rules [6]. Note that the id-rule applies only to atomic formulas. But
as usual with sequent style system, the general form is derivable:

Proposition 3.4. The rule id −−−−−−−−−−−−
Γ{A•, A◦}

is derivable in NIK.

Figure 4 shows the intuitionistic versions for the rules for the axioms d, t, b,
4, and 5. They are almost the same as the corresponding rules in the classical
case [3]. The only difference is that here we need two rules for each axiom: a
♦◦-rule and a �•-rule. Note that contraction is implicitly present in the �•-rules
but not in the ♦◦-rules. For a subset X ⊆ {d, t, b, 4, 5}, we denote by X• and X◦

the corresponding sets of �•-rules and ♦◦-rules, respectively.

4 Soundness

In this section we will show that all rules presented in Figures 3 and 4 are indeed
sound. More precisely, we prove the following theorem:

Theorem 4.1. Let X ⊆ {d, t, b, 4, 5}, and let
Γ1 . . . Γn

r −−−−−−−−−−−−−−−
Γ

(for n ∈ {0, 1, 2})
be an instance of a rule in NIK+ X• + X◦ . Then:

(i) the formula fm(Γ1) ∧ · · · ∧ fm(Γn)⊃ fm(Γ) is X-valid, and
(ii) whenever a sequent Γ is provable in NIK+ X• + X◦ , then Γ is X-valid.

Clearly, (ii) follows almost immediately from (i). But for proving (i), we need a
series of lemmas. We begin by showing that the deep inference principle used in
all rules is sound.

Lemma 4.2. Let X ⊆ {d, t, b, 4, 5}, and let A, B, and C be formulas.
(i) If A⊃B is X-valid, then so is (C ⊃A)⊃ (C ⊃ B).
(ii) If A⊃B is X-valid, then so is �A⊃�B.
(iii) If A⊃B is X-valid, then so is (C ∧ A)⊃ (C ∧B).
(iv) If A⊃B is X-valid, then so is ♦A⊃ ♦B.
(v) If A⊃B is X-valid, then so is (B ⊃ C)⊃ (A⊃ C).

Proof. This follows immediately from (4) and Lemma 2.1. ��

216 L. Straßburger

Lemma 4.3. Let X ⊆ {d, t, b, 4, 5}, let Δ and Σ be full sequents, and let Γ{ } be
an output context. If fm(Δ)⊃fm(Σ) is X-valid, then so is fm(Γ{Δ})⊃fm(Γ{Σ}).

Proof. Induction on Γ{ } (see Obs. 3.2), using Lemma 4.2.(i) and (ii). ��

Lemma 4.4. Let X ⊆ {d, t, b, 4, 5}, let Δ and Σ be LHS-sequents, and Γ{ } an
input context. If fm(Σ)⊃ fm(Δ) is X-valid, then so is fm(Γ{Δ})⊃ fm(Γ{Σ}).

Proof. By Observation 3.2, we have that Γ{ } = Γ ′{Λ{ }, Π} for some Γ ′{ }
and Λ{ } and Π . By induction on Λ{ }, using Lemma 4.2.(iii) and (iv), we get
that fm(Λ{Σ})⊃ fm(Λ{Δ}) is X-valid. From Lemma 4.2.(v) it then follows that
(fm(Λ{Δ})⊃ fm(Π))⊃ (fm(Λ{Σ})⊃ fm(Π)), i.e., fm(Λ{Δ}, Π)⊃ fm(Λ{Σ}, Π)
is X-valid. Now the statement follows from Lemma 4.3. ��

Lemma 4.5. Let X ⊆ {d, t, b, 4, 5}. Then any full sequent of the shape Γ{a•, a◦}
or Γ{⊥•} is X-valid.

Proof. If a formula A is X-valid, then so are �A and C ⊃ A for an arbitrary
formula C. Since a ⊃ a is trivially X-valid, the validity of Γ{a•, a◦} follows by
induction on Γ{ } (which is of shape (6)). For Γ{⊥•}, note that this sequent
is of shape Γ ′{Λ{⊥•}, Π} (by Observation 3.2). By an easy induction on Λ{ },
we can can show that fm(Λ{⊥•})⊃⊥ is X-valid. Since ⊥⊃A is X-valid for any
formula A, we can conclude that fm(Λ{⊥•}) ⊃ fm(Π) is X-valid, and therefore
fm(Λ{⊥•}, Π). Now, X-validity of Γ{⊥•} follows by induction on Γ ′{ }. ��

Lemma 4.6. Let X ⊆ {d, t, b, 4, 5}, and let
Γ1

r −−
Γ2

be an instance of w, c, m[], ∨◦,

�◦, ♦◦, ⊃◦, ∧•, ♦•, or �•. Then fm(Γ1)⊃ fm(Γ2) is X-valid.

Proof. For the rules ∨◦, �◦, ♦◦, ⊃◦ this follows immediately from Lemma 4.3,
where for ♦◦ we need the k2-axiom. For the rules ∧•, ♦•, w, and c, the lemma
follows immediately from Lemma 4.4. The �•-rule can be decomposed into c

and the rule
Γ{[A•,Δ]}

�̃• −−−−−−−−−−−−−−−−
Γ{�A•, [Δ]}

, for which we need a case distinction: If the output

formula occurs inside Δ, then we use the validity of axiom k1 and Lemma 4.3. If
the output formula occurs inside Γ{ }, then we need the validity of the formula
(�A ∧ ♦B) ⊃ ♦(A ∧ B) for all A and B. This can easily be shown using the
definition of �. Then the lemma follows from Lemma 4.4. Finally, for the m[]-
rule we also make a case distinction: If the output formula is inside Γ{ }, we
need the validity of the formula ♦(A∧B)⊃♦A∧♦B for all A and B, which can
easily be shown using the definition of �. Then the the statement of the lemma
follows from Lemma 4.4. If the output formula occurs inside Δ1 or Δ2, then we
use the validity of axiom k4 and Lemma 4.3. ��

Consider now the rules in Fig. 5, which are special cases of the rules 5
◦
and 5

•
.

Proposition 4.7. The rule 5
◦
is derivable in {5◦1 , 5

◦
2 , 5
◦
3}, and the rule 5

•
is

derivable in {5•1 , 5
•
2 , 5
•
3 , c}.

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 217

Γ{[Δ],♦A◦}
5
◦
1

−−−−−−−−−−−−−−−−
Γ{[Δ,♦A◦]}

Γ{[Δ], [♦A◦, Σ]}
5
◦
2

−−−−−−−−−−−−−−−−−−−−−−
Γ{[Δ,♦A◦], [Σ]}

Γ{[Δ, [♦A◦, Σ]]}
5
◦
3

−−−−−−−−−−−−−−−−−−−−−−
Γ{[Δ,♦A◦, [Σ]]}

Γ{[Δ],�A•}
5
•
1

−−−−−−−−−−−−−−−−
Γ{[Δ,�A•]}

Γ{[Δ], [�A•, Σ]}
5
•
2

−−−−−−−−−−−−−−−−−−−−−−
Γ{[Δ,�A•], [Σ]}

Γ{[Δ, [�A•, Σ]]}
5
•
3

−−−−−−−−−−−−−−−−−−−−−−
Γ{[Δ,�A•, [Σ]]}

Fig. 5. Variants of the rules for the 5-axiom

Proof. The rule 5◦ allows to move an output ♦◦-formula from anywhere in the
sequent tree, except the root, to any other place in the sequent tree. The same
can be achieved with the rules 5

◦
1 , 5
◦
2 , 5
◦
3 , and similarly for 5• . ��

Lemma 4.8. Let X ⊆ {d, t, b, 4, 5}, let x ∈ X, and let
Γ1

r −−
Γ2

be an instance of x◦

or x•. Then fm(Γ1)⊃ fm(Γ2) is X-valid.

Proof. For the rules d◦ , t◦ , b◦ , and 4◦ this follows immediately from Lemma 4.3
and the validity of the corresponding axioms, shown in Fig. 1 (note that b◦

can be decomposed into m[] and
Γ{A◦}

b̃
◦ −−−−−−−−−−−−
Γ{[♦A◦]}

, and 4◦ into ♦◦ and Γ{♦♦A◦}
4̃
◦ −−−−−−−−−−−−

Γ{♦A◦}
).

For 5◦ we use Proposition 4.7, where soundness of 5
◦
1 , 5
◦
2 , and 5

◦
3 is shown as for

b◦ and 4◦ (using that axiom 5 implies ♦ · · ·♦A⊃�♦A). For the rules d• , t• , b• ,
4• , and 5• we proceed similarly, using soundness of the c-rule and Lemma 4.4
instead of Lemma 4.3. ��

Let us now turn to showing the soundness of the branching rules ∧◦, ∨•, ⊃•,
and cut. For this, we start with the binary versions of Lemmas 4.2, 4.3, and 4.4.

Lemma 4.9. Let X ⊆ {d, t, b, 4, 5}, and let A, B, C, and D be formulas.
(i) If A ∧B ⊃ C is X-valid, then so is (D ⊃A) ∧ (D ⊃B)⊃ (D ⊃ C).
(ii) If A ∧B ⊃ C is X-valid, then so is �A ∧�B ⊃�C.
(iii) If C ⊃A ∨B is X-valid, then so is (D ∧ C)⊃ (D ∧ A) ∨ (D ∧B).
(iv) If C ⊃A ∨B is X-valid, then so is ♦C ⊃ ♦A ∨ ♦B.
(v) If C ⊃A ∨B is X-valid, then so is (A⊃D) ∧ (B ⊃D)⊃ (C ⊃D).

Proof. As Lemma 4.2, this follows immediately from (4) and Lemma 2.1. ��

Lemma 4.10. Let X ⊆ {d, t, b, 4, 5}, let Δ1, Δ2, and Σ be full sequents, and let
Γ{ } be an output context. If fm(Δ1) ∧ fm(Δ2) ⊃ fm(Σ) is X-valid, then so is
fm(Γ{Δ1}) ∧ fm(Γ{Δ2})⊃ fm(Γ{Σ}).

Proof. Induction on Γ{ }, using Lemma 4.9.(i) and (ii). ��

Lemma 4.11. Let X ⊆ {d, t, b, 4, 5}, let Δ1, Δ2, and Σ be LHS-sequents, and
let Γ{ } be an input context. If fm(Σ)⊃ fm(Δ1)∨ fm(Δ2) is X-valid, then so is
fm(Γ{Δ1}) ∧ fm(Γ{Δ2})⊃ fm(Γ{Σ}).

Proof. By Observation 3.2, we have that Γ{ } = Γ ′{Λ{ }, Π} for some Γ ′{ }
and Λ{ } and Π . By induction on Λ{ }, using Lemma 4.9.(iii) and (iv), we get
that fm(Λ{Σ}) ⊃ fm(Λ{Δ1}) ∨ fm(Λ{Δ2}) is X-valid. From Lemma 4.9.(v) it
then follows that fm(Λ{Δ1}, Π)∧ fm(Λ{Δ2, Π})⊃ fm(Λ{Σ}, Π) is X-valid. Now
the statement follows from Lemma 4.10. ��

218 L. Straßburger

Lemma 4.12. Let X ⊆ {d, t, b, 4, 5}, and let
Γ1 Γ2

r −−−−−−−−
Γ3

be an instance of ∧◦, ∨•,

⊃•, or cut. Then fm(Γ1) ∧ fm(Γ2)⊃ fm(Γ3) is X-valid.

Proof. For the ∧◦- and ∨•-rules, this follows immediately from Lemmas 4.10
and 4.11. For ⊃• and cut, it suffices to show the statement for the rule

Γ ↓{A◦} Γ{B•}
⊃̃• −−−−−−−−−−−−−−−−−−−−−−−

Γ{A⊃B•}
(8)

By Observation 3.2 and Definition 3.3, this rule is of shape

Γ ′{Λ{A◦}, [Π{∅}]} Γ ′{Λ{B•}, [Π{C◦}]}
⊃̃• −−

Γ ′{Λ{A⊃B•}, [Π{C◦}]}

where Γ ′{ }, Λ{ }, and Π{ } are output contexts. In particular, let Λ{ } =
Λ0, [Λ1, [. . . , [Λn, { }] . . .]] and Π{ } = Π1, [Π2, [. . . , [Πm, { }] . . .]]. Now let
Li = fm(Λi) for i = 0 . . . n and Pj = fm(Πj) for j = 1 . . .m, and let

LX = fm(Λ{A◦}) = L0 ⊃�(L1 ⊃�(L2 ⊃�(· · · ⊃�(Ln ⊃A) · · ·)))
LY = fm(Λ{B•}) = L0 ∧ ♦(L1 ∧ ♦(L2 ∧ ♦(· · · ∧ ♦(Ln ∧B) · · ·)))
LZ = fm(Λ{A⊃B•}) = L0 ∧ ♦(L1 ∧ ♦(L2 ∧ ♦(· · · ∧ ♦(Ln ∧ (A⊃B)) · · ·)))
P∅ = fm([Π{∅}]) = ♦(P1 ∧ ♦(P2 ∧ ♦(· · · ∧ ♦(Pm−1 ∧ ♦Pm) · · ·)))
PC = fm([Π{C◦}]) = �(P1 ⊃�(P2 ⊃�(· · · ⊃ �(Pm−1 ⊃�(Pm ⊃ C)) · · ·)))

We are first going to show that (LX ∧ (LY ⊃ PC)) ⊃ (LZ ⊃ PC) is X-valid.
For this, it suffices to show that for every world w0 of an arbitrary X-frame, if
w0 � LX and w0 � LY ⊃PC then w0 � LZ ⊃PC . So, assume that w0 � LX and
w0 � LY ⊃ PC . By definition, w0 � LX means that

for all worlds w′0, w
′′
0 , w1, w

′
1, w

′′
1 , . . . , wn, w

′
n, if w′′jRwj+1 and

wi ≤ w′i ≤ w′′i and w′i � Li then w′n � A,
(9)

and w0 � LY ⊃ PC means that

for all worlds ŵ0 with w0 ≤ ŵ0, if there are worlds ŵ1, . . . , ŵn with
ŵiRŵi+1 and ŵi � Li and ŵn � B then ŵ0 � PC . (10)

We want to show w0 � LZ ⊃ PC , which means that

for all worlds w̃0 with w0 ≤ w̃0, if there are worlds w̃1, . . . , w̃n with
w̃iRw̃i+1 and w̃i � Li and w̃n � A⊃B then w̃0 � PC .

(11)

So, let us assume we have a chain w̃0Rw̃1R . . . Rw̃n with w̃i � Li and w̃n � A⊃B.
By (9), (F1), and monotonicity (Lemma 2.1), we can conclude that w̃n � A.
Therefore, we also get w̃n � B. Thus, by (10), we get w̃0 � PC , as desired. In a
similar way, one can show that (P∅ ⊃ PC)⊃ PC is X-valid. Now note that(

(P∅ ⊃ PC)⊃ PC
)
∧
(
LX ∧ (LY ⊃ PC)⊃ (LZ ⊃ PC)

)
⊃(

(P∅ ⊃ LX) ∧ (LY ⊃ PC)⊃ (LZ ⊃ PC)
)

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 219

id −−
�(A⊃ B)•,�A•, [A⊃ B•, A◦, A•]

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•,�A•, [B•, A•, B◦]⊃• −−−

�(A⊃B)•,�A•, [A⊃ B•, A•, B◦]
�• −−

�(A⊃ B)•,�A•, [A•, B◦]
�• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(A⊃ B)•,�A•, [B◦]
�◦ −−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•,�A•,�B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•,�A⊃�B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃B) ⊃ (�A⊃ �B)◦

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•, [A⊃ B•, A◦, A•]

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•, [B•, A•, B◦]⊃• −−

�(A⊃B)•, [A⊃B•, A•, B◦]
�• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(A⊃ B)•, [A•, B◦]
♦◦ −−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•, [A•],♦B◦

♦• −−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)•,♦A•,♦B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃B)•,♦A⊃ ♦B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(A⊃ B)⊃ (♦A⊃ ♦B)◦

⊥• −−−−−−−−−−
[⊥•],⊥◦

♦• −−−−−−−−−−
♦⊥•,⊥◦

⊃◦ −−−−−−−−−−
♦⊥⊃⊥◦

id −−−−−−−−−
[A•, A◦]

♦◦ −−−−−−−−−−−
[A•],♦A◦

∨◦ −−−−−−−−−−−−−−−−−−
[A•],♦A ∨ ♦B◦

id −−−−−−−−−−
[B•, B◦]

♦◦ −−−−−−−−−−−
[B•],♦B◦

∨◦ −−−−−−−−−−−−−−−−−−
[B•],♦A ∨ ♦B◦

∨• −−−
[A ∨B•],♦A ∨ ♦B◦

♦• −−−−−−−−−−−−−−−−−−−−−−−−−
♦(A ∨ B)•,♦A ∨ ♦B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−
♦(A ∨ B)⊃ (♦A ∨ ♦B)◦

id −−−−−−−−−−−−−−−−−−−−−−−
♦A⊃ �B•, [A◦, A•]

♦◦ −−−−−−−−−−−−−−−−−−−−−−−−−
♦A⊃ �B•,♦A◦, [A•]

id −−−−−−−−−−−−−−−−−−−−−
�B•, [B•, A•, B◦]

�• −−−−−−−−−−−−−−−−−−−−−
�B•, [A•, B◦]⊃• −−−

♦A⊃�B•, [A•, B◦]⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−
♦A⊃ �B•, [A⊃ B◦]

�◦ −−−−−−−−−−−−−−−−−−−−−−−−−−
♦A⊃�B•,�(A⊃ B)◦⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(♦A⊃ �B)⊃ �(A⊃ B)◦

Fig. 6. Proofs of k1, . . . , k5 in NIK

is a valid intuitionistic formula (for arbitrary P∅, PC , LX , LY , LZ). Thus, we can
conclude that (P∅ ⊃LX)∧ (LY ⊃PC)⊃ (LZ ⊃PC) is X-valid, and we can apply
Lemma 4.10. ��

Now we can put everything together to prove Theorem 4.1.

Proof (of Theorem 4.1). Point (i) is just Lemmas 4.5, 4.6, 4.12, and 4.8. Point (ii)
follows immediately from (i) using induction on the size of the derivation. ��

5 Completeness

For simplifying the presentation, we show completeness with respect to the
Hilbert system.

Theorem 5.1. Let X ⊆ {d, t, b, 4, 5}. Then every theorem of the logic IK+X is
provable in NIK+ X• + X◦ + cut.

Proof. Clearly, all axioms of propositional intuitionistic logic are provable in NIK.
The axioms k1, . . . , k5 are provable in NIK, as shown in Figure 6. Furthermore,

220 L. Straßburger

each axiom x ∈ X is provable in NIK+ x• + x◦ . This is left to the reader, as these
proofs are very similar to the classical setting [3]. Finally, the rules mp and nec,
shown in (3), can be simulated by the rules cut and nec[], shown in (7). Then,
the nec[]-rule is admissible, which can be seen by a straightforward induction on
the size of the proof. ��

In the next section we show cut elimination for NIK + X• + X◦ , yielding com-
pleteness for the cut-free system. However, it turns out that this system is not
for every X complete. As observed by Brünnler, in the classical case X needs to
be 45-closed [3]. In the intuitionistic case, X needs to be t45-closed:

Definition 5.2. Let X ⊆ {d, t, b, 4, 5}.We say that X is 45-closed if the following
two conditions are fulfilled:
• if 4 is derivable in IK+ X then 4 ∈ X, and
• if 5 is derivable in IK+ X then 5 ∈ X.

We say that X is t45-closed if additionally the following condition holds:
• if t is derivable in IK+ X then t ∈ X.

This is needed, because, for example, the formula �A⊃��A holds in any {t, 5}-
frame, but for proving it without cut, one would need the rules 4• and 4◦ . The
cut elimination result of the next section will entail the following theorem:

Theorem 5.3 (Completeness). Let X ⊆ {d, t, b, 4, 5} be t45-closed. Then ev-
ery theorem of the logic IK + X is provable in NIK+ X• + X◦ .

6 Cut Elimination

We define the depth of a formula A, denoted by depth(A), inductively as follows:

depth(a) = depth(⊥) = 1

depth(�A) = depth(♦A) = depth(A) + 1

depth(A ∧B) = depth(A ∨B) = depth(A⊃B) = max(depth(A), depth(B)) + 1

Definition 6.1. Given an instance of cut (as shown in (7)), its cut formula is
A, and its cut rank is depth(A). The cut rank of a derivation D, denoted by
rank(D), is the maximum of the cut ranks of the cut instances of D. Thus, a
derivation with cut rank 0 is cut-free. For r > 0, we define the rule cutr as cut
whose cut rank is ≤ r. As usual, the height of a derivation D, denoted by |D|, is
defined to be the length of the maximal branch in the derivation tree.

Definition 6.2. We say that a rule r with one premise is height (respectively
cut rank) preserving admissible in a system S, if for each derivation D in S of
r’s premise there is a derivation D′ of r’s conclusion in S, such that |D′| ≤ |D|
(respectively rank(D′) ≤ rank(D)). Similarly, a rule r is height (respectively cut
rank) preserving invertible in a system S, if for every derivation of the conclusion
of r there are derivations for each of r’s premises with at most the same height
(respectively at most the same rank).

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 221

Γ{[∅]}
d[] −−−−−−−−

Γ{∅}
Γ{[Δ]}

t[] −−−−−−−−−
Γ{Δ}

Γ{[Σ, [Δ]]}
b[] −−−−−−−−−−−−−−−

Γ{[Σ],Δ}
Γ{[Δ], [Σ]}

4[] −−−−−−−−−−−−−−−
Γ{[[Δ], Σ]}

Γ{[Δ]}{∅}
5[] −−−−−−−−−−−−−−

Γ{∅}{[Δ]}
(where depth(Γ{ }{∅}) > 0)

Fig. 7. Structural rules for the axioms d, t, b, 4, and 5

Figure 7 shows for each axiom in {d, t, b, 4, 5} a corresponding structural rule.
They will occur during the cut elimination process. Note that these rules are
exactly the same as in the classical case [4]. These rules are admissible for the
corresponding system, provided it is t45-closed. This lemma is the only place
in the cut elimination proof, where this property is needed. As in the classical
case [3], the d[]-rule needs special treatment.

Lemma 6.3. (i) Let X ⊆ {t, b, 4, 5} be 45-closed, and let r ∈ X[]. Then the
rule r is cut-rank preserving admissible for NIK ∪ X• ∪ X◦ ∪ {cut} as well as for
NIK ∪ X• ∪ X◦ ∪ {cut, d[]}.
(ii) Let X ⊆ {d, t, b, 4, 5} be t45-closed with d ∈ X. Then the rule d[] is admissible
for NIK ∪ X• ∪ X◦ .

Proof. The proof for (i) is similar to the one in [3]. But in the case analysis every
case appears twice, once for the x• and once for the x◦ rule. For (ii), the proof
is also almost the same as in [3], except that the rule t◦ can be introduced when
{d, b, 4} ⊆ X, because there is no contraction available for output formulas. ��

Lemma 6.4. Let X ⊆ {d, t, b, 4, 5} and either Z = NIK + X• + X◦ + cut or
Z = NIK+ X• + X◦ + d[] + cut.

(i) The rules nec[], w, c, m[] are height and cut rank preserving admissible
for Z.

(ii) All rules r• (except ⊥• and ⊃•) in Z are height and cut rank preserving
invertible.

Proof. For m, we can proceed by a straightforward induction on the height of
the derivation. For all other rules, this proof is exactly the same as in [3]. ��

When we eliminate the cut rule from a proof, we will at some point rely on
local transformations that reduce the cut rank. However when the cut meets the
rules 4• , 4◦ or 5• , 5◦ while moving upwards, its rank does not decrease. For this
reason, we use the Y-cut-rules [3], defined below for Y ⊆ {4, 5}:

Γ ↓{∅}{♦A◦} Γ{♦A•}{∅}
♦Y-cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}{∅}
Γ ↓{�A◦}{∅}n Γ{�A•}{�A•}n

�Y-cut −−
Γ{∅}{∅}n

where for ♦Y-cut there must be a derivation from Γ ↓{∅}{♦A◦} to Γ ↓{♦A◦}{∅}
in Y◦ , and for �Y-cut there must be a derivation from Γ{�A•}{�A•}n to
Γ{�A•}{∅}n in Y• . Here, we use the notation {Δ}n as abbreviation for n holes
that are all filled with the same Δ. For r ≥ 0, the rules ♦Y-cutr and �Y-cutr
are defined analogous to cutr.

222 L. Straßburger

Observation 6.5. If Y = ∅ then Γ{ }{ } = Γ ′{{ }, { }}, for some input con-
text Γ ′{ }, and both ♦Y-cut and �Y-cut are just ordinary cuts. If Y = {4} then
in ♦Y-cut we have Γ{ }{ } = Γ ′{{ }, Γ ′′{ }} for some input contexts Γ ′{ } and
Γ ′′{ }, and in �Y-cut we have Γ{ }{ }n = Γ ′{{ }, Γ ′′{ }n}. If Y = {5} then
the first hole must be “inside a box”, i.e., in ♦Y-cut we have depth(Γ{ }{∅}) > 0
and in �Y-cut we have depth(Γ{ }{∅}n) > 0. If Y = {4, 5} then there is no re-
striction on the context.

Lemma 6.6. Let X ⊆ {t, b, 4, 5} be 45-closed, let Y ⊆ {4, 5} ∩ X, let either
Z = NIK+ X• + X◦ or Z = NIK+ X• + X◦ + d[], and let r, n ≥ 0.

(i) If there is a proof of shape

%%
%%

%&&&&&D1

Γ ↓{A◦}
%%

%%
%&&&&&D2

Γ{A•}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

with D1 and D2 in Z+ cutr, then there is a proof of Γ{∅} in Z+ cutr.
(ii) If there is a proof of shape

%%
%%

%&&&&&D1

Γ ↓{∅}{♦A◦}
%%

%%
%&&&&&D2

Γ{♦A•}{∅}
♦Y-cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}{∅}

with D1 and D2 in Z+ cutr, then there is a proof of Γ{∅}{∅} in Z+ cutr.
(iii) If there is a proof of shape

%%
%%

%&&&&&D1

Γ ↓{�A◦}{∅}n
%%

%%
%&&&&&D2

Γ{�A•}{�A•}n
�Y-cutr+1 −−

Γ{∅}{∅}n

with D1 and D2 in Z+ cutr, then there is a proof of Γ{∅}{∅}n in Z+ cutr.

Proof (Sketch). This is proved for all three points simultaneously by induction
on |D1| + |D2|. If one of D1 or D2 is an axiom, the cut disappears. One case is
shown below

%%
%%

%&&&&&D1

Γ ↓{⊥◦} ⊥• −−−−−−−
Γ{⊥•}

cut1 −−−−−−−−−−−−−−−−−−−−−−−−−
Γ{∅}

� %%
%%

%&&&&&D
′
1

Γ{∅}

where D′1 is obtained from D1 by removing the ⊥◦ in every line and keeping
the output formula of Γ{∅} instead. This is possible because there is no rule
for ⊥◦. The other axiomatic cases are more standard. If in one of D1 or D2

the bottommost rule does not work on the cut formula, we have one of the
commutative cases, which are very similar to the standard sequent calculus and
make crucial use of the invertability of the r• -rules. Finally, we have the so called
key cases. We show the case involving �Y-cut and b• , in which the derivation

Cut Elimination in Nested Sequents for Intuitionistic Modal Logics 223

%%
%%

%&&&&&D1

Γ ↓{[A◦]}{∅}n−1{[Δ↓]}
�◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ↓{�A◦}{∅}n−1{[Δ↓]}

%%
%%

%&&&&&D2

Γ{�A•}n{A•, [�A•,Δ]}
b• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{�A•}n{[�A•,Δ]}
�Y-cutr+1 −−

Γ{∅}n{[Δ]}

is replaced by

%%
%%

%&&&&&D1

Γ ↓{[A◦]}{∅}n−1{[Δ↓]}
Y[] −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ↓{∅}n{[[A◦], Δ↓]}
b[] −−−−−−−−−−−−−−−−−−−−−−−

Γ ↓{∅}n{A◦, [Δ↓]}

%%
%%

%&&&&&D1

Γ ↓{[A◦]}{∅}n−1{[Δ↓]}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓{[A◦]}{∅}n−1{A•, [Δ↓]}

�◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓{�A◦}{∅}n−1{A•, [Δ↓]}

%%
%%

%&&&&&D2

Γ{�A•}n{A•, [�A•, Δ]}
�Y-cutr+1 −−−

Γ{∅}n{A•, [Δ]}
cutr −−

Γ{∅}n{[Δ]}

where Y[] stands for a derivation consisting of 4[] and 5[], depending on the
chosen Y. Then, on the left branch, we use cut rank preserving admissibility
of the b[]-, 4[]-, and 5[]-rules. On the right branch, we use cut rank and height
preserving admissibility of weakening together with the induction hypothesis.
The other cases are similar. ��

Theorem 6.7. Let X ⊆ {d, t, b, 4, 5} be t45-closed. If a sequent Γ is provable in
NIK+ X• + X◦ + cut then it is also provable in NIK+ X• + X◦ .

Proof. If d /∈ X the result follows from Lemma 6.6 by a straightforward induction
on the cut rank of the derivation. If d ∈ X, we first replace all instances of d•

by �• and d[], and all instances of d◦ by ♦◦ and d[]. Then we proceed as before,
and finally we apply Lemma 6.3.(ii) to remove d[]. ��

Finally, we can drop the t45-closed condition and obtain full modularity by also
allowing the structural rules of Figure 7 in the system:

Theorem 6.8. Let X ⊆ {d, t, b, 4, 5}. If a sequent Γ is provable in NIK + X• +
X◦ + cut then it is also provable in NIK+ X• + X◦ + X[].

Proof (Sketch). We first transform a proof in NIK + X• + X◦ + cut into one in
NIK + Y• + Y◦ by Theorem 6.7, where Y is the t45-closure of X. Trivially, this
is also a proof in NIK+ Y• + Y◦ + X[]. This is then transformed into a proof in
NIK+ X• + X◦ + X[] by showing admissibility of the superfluous rules. ��

References

1. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke Seman-
tics for Constructive S4 Modal Logic. In: Fribourg, L. (ed.) CSL 2001 and EACSL
2001. LNCS, vol. 2142, pp. 292–307. Springer, Heidelberg (2001)

2. Bierman, G.M., de Paiva, V.: On an intuitionistic modal logic. Studia Logica 65(3),
383–416 (2000)

224 L. Straßburger

3. Brünnler, K.: Deep sequent systems for modal logic. Archive for Mathematical
Logic 48(6), 551–577 (2009)

4. Brünnler, K., Straßburger, L.: Modular Sequent Systems for Modal Logic. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 152–166. Springer,
Heidelberg (2009)

5. Chaudhuri, K., Guenot, N., Straßburger, L.: The focused calculus of structures.
In: Bezem, M. (ed.) CSL 2011. LIPIcs, vol. 12, pp. 159–173. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik (2011)

6. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb.
Log. 57(3), 795–807 (1992)

7. Ewald, W.B.: Intuitionistic tense and modal logic. J. Symb. Log. 51 (1986)
8. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Portugaliae Mathemat-

ica 7(2), 113–118 (1948)
9. Fitting, M.: Nested sequents for intuitionistic logic (2011) (preprint)

10. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure and Applied
Logic 163, 291–313 (2012)

11. Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic
and classical modal logics. Journal of Applied Non-Classical Logics 20(4), 373–421
(2010)

12. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy. Stanford University (2008)

13. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for bi-
intuitionistic tense logic. In: Shehtman, V., Beklemishev, L., Goranko, V. (eds.)
Advances in Modal Logic, pp. 156–177. College Publications (2010)

14. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53(1),
119–136 (1994)

15. Lamarche, F.: On the algebra of structural contexts. Accepted at Mathematical
Structures in Computer Science (2001)

16. Liang, C., Miller, D.: Focusing and Polarization in Intuitionistic Logic. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465. Springer,
Heidelberg (2007)

17. McLaughlin, S., Pfenning, F.: The focused constraint inverse method for intuition-
istic modal logics. Draft manuscript (2010)

18. Mendler, M., Scheele, S.: Cut-free gentzen calculus for multimodal ck. Inf. Com-
put. 209(12), 1465–1490 (2011)

19. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3) (2008)

20. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science 11(4), 511–540 (2001)

21. Plotkin, G.D., Stirling, C.P.: A framework for intuitionistic modal logic. In:
Halpern, J.Y. (ed.) Theoretical Aspects of Reasoning About Knowledge (1986)

22. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In:
Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philoso-
phy. Trends in Logic, vol. 28, pp. 31–51. Springer (2009)

23. Prawitz, D.: Natural Deduction, A Proof-Theoretical. Almquist and Wiksell (1965)
24. Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rend. Sem.

Mat. Univers. Politecn. Torino 42(3), 179–194 (1984)
25. Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD

thesis, University of Edinburgh (1994)

On Monadic Parametricity of Second-Order

Functionals

Andrej Bauer1, Martin Hofmann2, and Aleksandr Karbyshev3

1 University of Ljubljana
andrej.bauer@andrej.com

2 Universität München
hofmann@ifi.lmu.de

3 Technische Universität München
aleksandr.karbyshev@in.tum.de

Abstract. How can one rigorously specify that a given ML functional
f : (int → int) → int is pure, i.e., f produces no computational ef-
fects except those produced by evaluation of its functional argument? In
this paper, we introduce a semantic notion of monadic parametricity for
second-order functionals which is a form of purity. We show that every
monadically parametric f admits a question-answer strategy tree repre-
sentation. We discuss possible applications of this notion, e.g., to the
verification of generic fixpoint algorithms. The results are presented in
two settings: a total set-theoretic setting and a partial domain-theoretic
one. All proofs are formalized by means of the proof assistant Coq.

1 Introduction

The problem under consideration is: how do we rigorously specify that a given
ML functional f : (int → int) → int is pure, i.e., f only produces computa-
tional effects (changes store, raises an exceptions, produces output, consumes
input, etc.) through calls of its functional argument? Second-order functionals
of this type may appear as inputs in various third-order algorithms, such as
generic fixpoint solvers [4, 5] and algorithms for exact integration [15, 20]. The
algorithms often apply a presumably pure input f to an effectful argument in
order to observe the intentional behaviour of f , and to control the computation
process.

In a previous paper [8] we addressed the question with regard to function-
als that were polymorphic in the state monad and had the type ∀S.(A →
StateSB)→ StateSC. The motivation there was rigorous verification of a generic
fixpoint algorithm RLD [7] that used state. As it turns out [8], we could not use
the standard notion of relational parametricity [17,18] because it is too weak to
exclude the snapback functional fsnap : ∀S.(A → StateSB) → StateSB, defined
by

fsnap S k s = let (b,) = k a0 s in (b, s) .

The functional invokes its argument k to compute a result b but then discards the
new state and restores the initial one instead. We can show that every functional

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 225–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

226 A. Bauer, M. Hofmann, and A. Karbyshev

which is pure in the sense of [8] is represented by a question-answer strategy tree
that computes the result by calling its function argument and letting through
any effects generated by the calls. The functional fsnap is not pure in that sense.

The strategy tree reflects only the “skeleton” of a computation and is not
specific to the kind of effects that may be raised. Obviously, we should look for
a more general representation theorem that applies to other kinds of effectful
computations. Indeed, in this paper we remove the limitation of [8] to state
and prove a corresponding theorem for the class of second-order functionals
polymorphic with respect to monads from an arbitrary fixed collection Monad ,
i.e., those of type

Func =
∏

T∈Monad

(A→ TB)→ TC ,

so long as continuation monads ContR are included, for all R. We may think of
Monad as the class of monads present in a programming language. Every monad
can be expressed in terms of continuation and state [6], but we do not use this
fact and do not require State ∈ Monad . Thus our representation result and that
of Filinski [6] are different and do not imply each other directly. An interesting
corollary is that a functional F which is pure for the state monads in the sense
of [8] has an equivalent implementation which makes no use of state, and is
moreover polymorphic in all monads from the given collection Monad . Such an
implementation is defined by a strategy tree for F .

One possible application of the representation result is formal verification of
the above mentioned algorithms. For example, when trying to prove correctness
of the local fixpoint solver RLD we assumed without loss of generality that the
input constraint system is given in the form of strategy trees. That allowed us
to formulate sufficient pre- and post-conditions for the algorithm and complete
the proof by induction. The fundamental lemma then allows us to argue that
the functional input is indeed pure if it can be defined in some restricted pro-
gramming language (with recursion) which is often the case in real-life program
analysis.

The outline of the paper is as follows. After a preliminary Section 2, we define
purity in Section 3 as a semantical notion of monadic parametricity. We also for-
mulate a fundamental lemma for the call-by-value lambda calculus with monadic
semantics. In section 4, we define a notion of a strategy tree and show they rep-
resent pure functionals of type Func in the total setting. Section 5 provides a
similar result in the partial setting. In section 6, we discuss generalizations of
purity to other types. In section 7, we discuss some application of purity.

All the proofs have been formalized by means of Coq theorem prover [21]
and are available for download at [11]. We used the development of constructive
ω-cpos and inverse-limit construction for solution of recursive domain equations
by Benton et al. [3]. Our contribution takes around 1500 lines of Coq code.

On Monadic Parametricity of Second-Order Functionals 227

2 Preliminaries

We study purity in both the total and the partial setting. For the former we
interprets types as sets and the latter as continuous posets (cpos), and thus use
the notations a : X and a ∈ X interchangeably. We write X × Y and X → Y
for Cartesian product and exponential, respectively. We denote pairs by (x, y),
and projections by fst and snd . We use λ, ◦ and juxtaposition for function
abstraction, composition and applications, correspondingly. For a family of sets
or cpos (Xi)i∈I we write

∏
i∈I Xi for its Cartesian product.

Definition 1. A monad is a triple (T, valT , bindT) where T is the monad con-
structor assigning to a type X the type TX of computations over X , and

valAT : A→ TA

bindA,BT : TA→ (A→ TB)→ TB

are the monadic operators, satisfying for all a, f , g and t of suitable types

bindA,BT (valAT a)(f) = f a

bindA,AT (t)(valAT) = t

bindB,CT (bindA,BT (t)(f))(g) = bindA,CT (t)(λx. bindB,CT (f x)(g)) .

For the partial case, we require that TX is a pointed cpo (cppo) and that T is
strict,

bindA,BT ⊥TA f = ⊥TB .

We omit the indices A,B,C when they can be deduced from the context.

The continuation monad ContR with result type R is defined by ContRX =
(X → R)→ R and

valContR x = λc.c x
bindContR t f = λc.t(λx.f x c) .

The state monad StateS with the type of states S is defined by StateSX = S →
X × S and

valStateS
x = λs.(x, s)

bindStateS t f = λs.let (x1, s1)← t s in fx1s1 .

In the following, we assume that A,B,C,Ai, Bi are sets or cpos, as appropriate.
Let Monad be a fixed collection of monads such that ContR ∈ Monad , for all R,
and denote

Func =
∏

T∈Monad

(A→ TB)→ TC .

3 Purity

To define purity in our sense we first introduce several notions and notations.
We then provide a relational interpretation of types and terms of call-by-value λ-
calculus with monadic semantics, and establish a fundamental lemma of logical
relations stating that every well-typed program respects any monadic relation,
similar to [8].

228 A. Bauer, M. Hofmann, and A. Karbyshev

Definition 2. If X,X ′ are types then Rel(X,X ′) denotes the type of binary
relations between X and X ′. Furthermore:

– if X is a type then ΔX ∈ Rel(X,X) denotes the equality on X ;
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R → S ∈ Rel(X → Y,X ′ → Y ′)

is given by

f (R→ S) f ′ iff ∀xx′. xRx′ =⇒ (f x)S (f ′ x′) ;

– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R×S ∈ Rel(X×Y,X ′×Y ′) is
given by

p (R× S) p′ iff fst(p)R fst(p′) ∧ snd(p)S snd(p′) .

Definition 3. For cpos X,X ′ and R ∈ Rel(X,X ′), R is admissible if for any
chains {ci}i∈N, {c′i}i∈N such that ciRc

′
i, for all i, (

⊔
ci)R (

⊔
c′i) holds.

Definition 4. Fix T, T ′ ∈ Monad . For every X,X ′ and Q ∈ Rel(X,X ′) fix
a relation T rel(Q) ∈ Rel(TX, T ′X ′). We say that the mapping (X,X ′, Q) �→
T rel(Q) is an acceptable monadic relation if

– for all X,X ′, Q ∈ Rel(X,X ′), x ∈ X , x′ ∈ X ′,

xQx′ =⇒ (valT x)T rel(Q) (valT ′ x′) ;

– for all X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′), t ∈ TX , t′ ∈ T ′X ′,
f : X → TY , f ′ : X ′ → T ′Y ′,

t T rel(Q) t′ ∧ f(Q→ T rel(R))f ′ =⇒ (bindT t f)T rel(R) (bindT ′ t′ f ′) .

In the domain-theoretic setting, we additionally assume that the monadic rela-
tion T rel is

– admissible, i.e., T rel(Q) is admissible for every admissible Q ∈ Rel(X,X ′),
– strict, i.e., (⊥TX ,⊥T ′X′) ∈ T rel(Q).

Definition 5. A functional F ∈ Func is pure (monadically parametric) for the
collection Monad of monads iff

(FT , FT ′) ∈ (ΔA → T rel(ΔB))→ T rel(ΔC)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

Define simple types over a set of base types, ranged over by o, by the grammar

τ ::= o | τ1 × τ2 | τ1 → τ2 .

Fix an assignment of a set or a cpo, as the case may be, �o�T for each base type
o and monad T ∈ Monad . We extend �−�T to all types by putting

�τ1 × τ2�T = �τ1�T × �τ2�T , �τ1 → τ2�T = �τ1�T → T �τ2�T .

On Monadic Parametricity of Second-Order Functionals 229

Given a set of constants ranged over by c, with corresponding types τc, and
variables ranged over by x, we define the λ-terms by

e ::= x | c | λx.e | e1 e2 | e.1 | e.2 | 〈e1, e2〉 |
let x← e1 in e2 | let rec f(x) = e

with the last rule for recursive definitions in the partial case only. A typing
context Γ is a finite map from variables to types. The typing judgement Γ % e : τ
is defined by the usual rules:

x ∈ dom(Γ)

Γ % x : Γ (x) Γ % c : τc

Γ, x : τ1 % e : τ2
Γ % λx.e : τ1 → τ2

Γ % e1 : τ1 → τ2 Γ % e2 : τ1

Γ % e1 e2 : τ2

Γ % e1 : τ1 Γ % e2 : τ2

Γ % 〈e1, e2〉 : τ1 × τ2

Γ % e : τ1 × τ2

Γ % e.1 : τ1

Γ % e : τ1 × τ2

Γ % e.2 : τ2

Γ % e1 : τ1 Γ, x : τ1 % e2 : τ2

Γ % let x← e1 in e2 : τ2

Γ, f : τ1 → τ2, x : τ1 % e : τ2
Γ % let rec f(x) = e : τ1 → τ2

The term e : τ is closed if ∅ % e : τ .
For each T ∈ Monad and constant c fix an interpretation �c�T ∈ �τc�T . An

environment for a context Γ and T ∈ Monad is a mapping η such that x ∈
dom(Γ) implies η(x) ∈ �Γ (x)�T . If Γ % e : τ and η is such an environment then
we define �e�T (η) ∈ T �τ�T by the following clauses:

�x�T (η) = valT (η(x))�c�T (η) = valT (�c�T)�λx.e�T (η) = valT (λv.�e�T (η[x�→v]))
�e1 e2�T (η) = bindT (�e1�T (η)) (bindT (�e2�T (η)))�e.i�T (η) = bindT (�e�T (η)) (valT ◦πi), i = 1, 2
�〈e1, e2〉�T (η) = bindT (�e1�T (η))(bindT (�e2�T (η)) ◦ curry(valT))�let x← e1 in e2�T (η) = bindT (�e1�T (η))(λv.�e2�T (η[x�→v])))
�let rec f(x) = e�T (η) = valT (fixp(λh.λv.�e�T (η[f �→h][x�→v])))

where fixp : ∀D.(D → D) → D is the least fixpoint operator for cppos, and
curry is the currying function.

Definition 6. Fix monads T, T ′ ∈ Monad and an acceptable monadic relation
T rel for T, T ′. Given a binary relation �o�rel ∈ Rel(�o�T , �o�T ′) for each base type
o, we can associate a relation �τ�relT rel ∈ Rel(�τ�T , �τ�T ′) with each type τ by the
following clauses:

�o�relT rel = �o�rel , �τ1 × τ2�relT rel = �τ1�relT rel × �τ2�relT rel ,�τ1 → τ2�relT rel = �τ1�relT rel → T rel(�τ2�relT rel) .

230 A. Bauer, M. Hofmann, and A. Karbyshev

The following parametricity theorem is immediate from the definition of accept-
able monadic relation and the previous one.

Theorem 7. Fix T, T ′ ∈ Monad, and an acceptable monadic relation T rel for
T, T ′. Suppose that �c�T �τc�relT rel �c�T ′ holds for all constants c. If ∅ % e : τ then

�e�T T rel(�τ�relT rel) �e�T ′ .

Proof. One proves the following stronger statement by induction on typing
derivations. Given Γ % e : τ and environments η for Γ and T and η′ for Γ
and T ′ then

∀x. η(x) �Γ (x)�relT rel η
′(x) implies �e�T (η)T rel(�τ�relT rel) �e�T ′(η′) .

The assertion of the theorem follows. ��

Every well-typed program ∅ % e : τ defines a truly polymorphic function of type
∀T.�τ�T by taking a product over Monad . From theorem 7, we obtain

Corollary 8. Every truly polymorphic F ∈ Func implemented in the calculus is
monadically parametric. ��
We remark that we could incorporate Theorem 7 into the definition of Func
after the definition 1, which would provide “higher-kinded type polymorphism”
at that level. The theorem would then turn into a well-definedness assertions
to go with the interpretation of type formers. We find the chosen presentation
more convenient because it allows for a priori impure functionals whose purity
can then be established a posteriori.

4 The Total Case

We first consider the set-theoretic semantics in which all functions are total and
there is no general recursion, but we can use structural recursion on inductively
defined sets.

Let the set of strategy trees Tree be inductively generated by the constructors
Ans : C → Tree and Que : A → (B → Tree) → Tree. Thus, a strategy tree
is either an answer leaf Ans c with an answer value c : C, or a question node
Que a f with a query a : A and a branching (continuation) function f : B → Tree
that returns a tree for every possible answer of type B.

For a given monad T ∈ Monad , every strategy tree defines a functional. The
conversion from trees to functionals is performed by the function tree2funT :
Tree → (A→ TB)→ TC defined by structural recursion as

tree2funT (Ans c) = λk. valT c

tree2funT (Que a f) = λk. bindT (k a)(λb. tree2funT (f b) k).

The functional queries and answers its argument k according to the strategy
tree, and passes through any effects produces by k. The definition is paramet-
ric in the monad T , so we can define the polymorphic version tree2fun t =
ΛT : Monad . tree2funT t whose type is Tree → Func.

On Monadic Parametricity of Second-Order Functionals 231

Example 9. For A = B = C = N and the tree t = Que 0 (λx.Ans 42) we have

tree2funT t = tree2funT (Que 0 (λx.Ans 42)) =

= λk. bindT (k 0) (λb. tree2funT (Ans 42) k)

= λk. bindT (k 0) (λb. valT 42).

Thus, the tree t = Que 0 (λx.Ans 42) corresponds to a second-order function
that queries its argument k at 0 and returns 42. Any effect produced by k is
propagated, and no other effects are produced.

The following lemma states that every t ∈ Tree defines a monadically parametric
computation.

Lemma 10. For any t ∈ Tree, tree2fun t is pure.

Proof. By induction on t, see Appendix. ��

It may be a bit surprising that tree2fun has an inverse fun2tree which is defined
with the help of the continuation monad simply as

fun2tree F = FContTree Que Ans.

Let us show that fun2tree and tree2fun are inverses of each other. As is to be
expected, one direction is easier than the other, so we first dispose of the easy
one:

Lemma 11. For any t ∈ Tree, fun2tree(tree2fun t) = t.

Proof. We proceed by structural induction on t. The case t = Ans c is easy:

fun2tree(tree2fun(Ans c)) =

fun2tree(ΛT.λk. valT c) = (λk. valContTree c)QueAns = Ans c.

To check the case t = Que a f , assume the induction hypothesis, for all b ∈ B
fun2tree(tree2fun(f b)) = f b, and compute:

fun2tree(tree2fun(Que a f)) =

= fun2tree(ΛT.λk. bindT (k a)(λb. tree2funT (f b) k))

= (λk. bindContTree (k a)(λb. tree2funContTree(f b) k))QueAns

= (bindContTree(Que a)(λb. tree2funContTree(f b)Que))Ans

= (Que a)(λb. tree2funContTree(f b)QueAns)

= (Que a)(λb. fun2tree(tree2fun(f b)))

= Que a f.

We used the induction hypothesis in the last step. ��

Of course, for the other inverse we have to use purity of functionals:

232 A. Bauer, M. Hofmann, and A. Karbyshev

Theorem 12. For a pure F ∈ Func and T ∈ Monad,

tree2funT (fun2tree F) = FT .

We first verify the theorem for the continuation monad.

Lemma 13. Given a pure F ∈ Func, tree2funContS (fun2tree F) = FContS holds
for all S.

Proof. Given S and functions q : A→ (B → S)→ S and a : C → S, we define
the conversion function convq,a : Tree → S by convq,a = λt. tree2funContS t q a.
We have:

tree2funContS (fun2tree F) = FContS

⇐⇒ ∀q, a.(FContTree (Que)(Ans), FContS q a) ∈ Gconvq,a

where Gf is a graph of f , i.e., (x, y) ∈ Gf iff y = f x. We prove the last proposition
by constructing an appropriate monadic relation for ContTree and ContS and
utilizing purity of F . Fix some q and a. For X,X ′ and R ∈ Rel(X,X ′), we define
T rel
1 (R) ∈ Rel(ContTreeX,ContSX

′) by

(H,H ′) ∈ T rel
1 (R) iff ∀h, h′.(h, h′) ∈ R→ Gconvq,a

=⇒ (Hh,H ′h′) ∈ Gconvq,a

It is straightforward to show T rel
1 is an acceptable monadic relation. Since F is

pure, (FContTree , FContS) ∈ (ΔA → T rel
1 (ΔB)) → T rel

1 (ΔC). Thus, it suffices to
check that (Que, q) ∈ ΔA → T rel

1 (ΔB) and (Ans, a) ∈ ΔC → Gconvq,a . The latter
is obvious. For the former, take a1 ∈ A and f : B → Tree, f ′ : B → S such that
(f, f ′) ∈ ΔB → Gconvq,a

. Then

convq,a(Que a1 f) = tree2funContS (Que a1 f) q a

= bindContS(q a1)(λb. tree2funContS (f b) q) a

= (q a1)(λb. tree2funContS (f b) q a)

= (q a1)(λb.convq,a(f b))

= q a1 f
′

and the former holds. ��

Now by the lemma tree2funContTC
(FContTree QueAns) = FContTC

. Let

ϕ1 = bindB,CT : TB → ContTCB,

ϕ2 = λg.g (valCT) : ContTCC → TC

and define ΦT : ((A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC as

ΦTF = λh.ϕ2(F (ϕ1 ◦ h)) = λh.F (bindB,CT ◦h)(valCT) .

Lemma 14. For any pure F ∈ Func and with ΦT as above, ΦT (FContTC
) = FT .

On Monadic Parametricity of Second-Order Functionals 233

Proof. The idea is to construct a suitable acceptable monadic relation and exploit
the purity of F . For X,X ′, R ∈ Rel(X,X ′), we define T rel

2 (R) as an element of
Rel(ContTCX,TX

′) by letting (H,H ′) ∈ T rel
2 (R) iff

∀h, h′.(h, h′) ∈ R→ ΔTC =⇒ (Hh)ΔTC (bindT H
′ h′) .

It is straightforward to show that T rel
2 is an acceptable monadic relation, so we

omit the proof. Since F is pure, we have (FContTC
, FT) ∈ (ΔA → T rel

2 (ΔB)) →
T rel
2 (ΔC). Note that for any g : A→ TB,

ΦT (FContTC) g = FContTC (bind
B,C
T ◦g)(valCT) and

FT g = bindC,CT (FT g)(val
C
T) .

First, we show that (bindB,CT ◦g, g) ∈ ΔA → T rel
2 (ΔB). Indeed, for any a ∈

A and h, h′ such that (h, h′) ∈ ΔB → ΔTC (and thus, h = h′) we have

(bindB,CT ◦g) a h = bindB,CT (g a)h′. Therefore, we conclude

(FContTC
(bindB,CT ◦g), bindC,CT (FT g)) ∈ T rel

2 (ΔC) .

Since (valCT , val
C
T) ∈ ΔC → ΔTC , the lemma is proved. ��

Proof (of Theorem 12). With the help of lemmas we see that

FT = ΦT (FContTC
) (by lemma 14)

= ΦT (tree2funContTC
(fun2tree F)) (by lemma 13)

= tree2funT (fun2tree F) (by lemmas 10, 14)

and the other inverse is established. ��

We link the present result with that of [8]:

Corollary 15. Any functional

F : ∀S.(A→ StateSB)→ StateSC

which is pure in the sense of [8] may be implemented generically without using
state, i.e., there exists a monadically parametric functional G ∈ Func such that
FS = GStateS for all S.

Proof. Take G = tree2fun tF where tF is the tree representation of F .

5 The Partial Case

In this section, we generalize the characterisation of monadically parametric
second-order functionals for the partial case in the domain-theoretic setting. In
what follows, we will use the term acceptable monadic relation to refer to ac-
ceptable monadic relations which are strict and admissible as formulated in
Definition 4.

234 A. Bauer, M. Hofmann, and A. Karbyshev

5.1 Domain of Strategy Trees

We construct a cppo of “strategy trees” as a solution of a recursive domain
equation X + F(X) with a locally continuous functor F : C → C for a suitable
category C of domains.

Let ηX : X → X⊥ and kleisliX : (X → X⊥)→ (X⊥ → X⊥) be defined by

ηX x = x kleisliX f x =

{
⊥ if x = ⊥
f x otherwise .

Define the lift monad T⊥ over Cpo (category of cpos with continuous functions)
by

T⊥X = X⊥, valXT⊥ = ηX , bindX,YT⊥ t f = kleisliX f t .

Let F(X) = C + B × (A → X⊥) be such a functor for the Kleisli category for
T⊥ over Cpo. Let Tree be a cpo such that Tree + F(Tree), together with two
(continuous) isomorphism functions

fold : C +B × (A→ Tree⊥)→ Tree⊥ and
unfold : Tree → (C +B × (A→ Tree⊥))⊥ ,

i.e., kleisli(fold) ◦ unfold = ηTree and kleisli(unfold) ◦ fold = ηF(Tree) hold. For all
isomorphisms in the Kleisli category for T⊥, say, f : X → Y⊥ and g : Y → X⊥
that kleisli(f)◦g = η and kleisli(g)◦f = η, f and g are total functions. Therefore,
we can define total

roll : C +B × (A→ Tree⊥)→ Tree and
unroll : Tree → C +B × (A→ Tree⊥)

using their “partial” counterparts fold and unfold. Moreover, the minimal invari-
ance property takes place

fixp δ = η

for δ : (Tree → Tree⊥) → (Tree → Tree⊥) defined by δ e = fold ◦F (e) ◦ unfold.
For details on a Coq development of the reverse-limit construction and a formal
proof of the minimal invariance, refer to [3].

It is well known that the morphism fold forms an initial F -algebra in the
Kleisli category, i.e., for any other F -algebra ϕ : F (D) → D there exists the
unique homomorphism h : Tree → D⊥ such that the ϕ ◦ F (h) = h ◦ fold.

Definition 16. We call elements of Tree⊥ strategy trees. Define continuous “con-
structor” functions Ans : C → Tree⊥ and Que : A → (B → Tree⊥) → Tree⊥
by

Ans = fold ◦ inl and Que = fold ◦ inr .

As in the total case, a strategy tree can be extracted by means of the continuation
monad ContTree⊥ . We define the extracting function fun2tree : Func → Tree⊥
by

fun2tree F = FContTree⊥QueAns .

On Monadic Parametricity of Second-Order Functionals 235

The definition is correct since ContTree⊥ is a strict monad. The function fun2tree
is strict and continuous.

The reverse translation mapping Tree⊥ into FuncT is defined by means of
the fixpoint operator fixp : ∀D.(D → D) → D for cppos as follows. Given
T ∈ Monad , we construct

tree2funT : Tree⊥ → FuncT = fixpGT

where

GT : (Tree⊥ → FuncT)→ Tree⊥ → FuncT = λf. kleisli([φT , ψ
f
T] ◦ unroll)

φT : C → FuncT = λc.λh. valT c

ψfT : A× (B → Tree⊥)→ FuncT = λp.λh. bindT (h(π1 p))(λb.(f ◦ π2 p) b h) .

For every pointed T ∈ Monad , tree2funT is correctly defined (since FuncT is
pointed) and is continuous and strict. The parametric version is defined by
tree2fun t = ΛT. tree2funT t. The following result is proved in Appendix.

Lemma 17. For any t ∈ Tree⊥, tree2fun t is pure. ��

5.2 Representation Theorem

Lemma 18. For any t ∈ Tree⊥, fun2tree(tree2fun t) = t.

Proof. We note that fun2tree ◦ tree2fun is a homomorphism for Tree. Thus, the
statement follows from initiality of fold. We give a direct formal proof using the
minimal invariance property. ��

Proofs of the following results are similar to the proofs in the total case.

Theorem 19. For a pure F ∈ Func,

tree2funT (fun2tree F) = FT

holds (extensionally) for any T ∈ Monad.

We first prove that the statement holds for an arbitrary continuation monad
with a pointed result domain. See Appendix for the proof.

Lemma 20. Given pure F , tree2funContS (fun2tree F) = FContS holds for any
cppo S. ��
As in the total case, for T ∈ Monad we define

ΦT : ((A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC

and prove

Lemma 21. For a pure F ∈ Func and T ∈ Monad, ΦT (FContTC
) = FT .

Proof. The proof repeats the one of lemma 14. We only have to check that T rel
2

defined as in lemma 14 is a strict, admissible and acceptable monadic relation,
which does hold. ��

236 A. Bauer, M. Hofmann, and A. Karbyshev

6 Generalizations

In this section, we argue that it is possible to extend the notion of purity to
an arbitrary second-order type. Consider a general type n-Func of second-order
functionals with n functional arguments

n-Func = ∀T.(A1 → TB1)→ · · · → (An → TBn)→ TC .

Definition 22. A functional F ∈ n-Func is pure (monadically parametric) iff

(FT , FT ′) ∈ (ΔA1 → T rel(ΔB1))→ · · · → (ΔAn → T rel(ΔBn))→ T rel(ΔC)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

By theorem 7, any well-typed program of type n-Func is pure in this sense.

Definition 23. The set of strategy trees n-Tree is a minimal set generated by
constructors

– Ans : C → n-Tree
– Quei : Ai → (Bi → n-Tree)→ n-Tree, i = 1, . . . , n

Similar to the case of one functional argument, one defines functions

tree2fun : n-Tree → n-Func and fun2tree : n-Func→ n-Tree .

Now, the result of Theorem 12 can be generalized for n-Func.

Theorem 24. Given a pure F ∈ n-Func, tree2funT (fun2tree F) = FT holds
(extensionally) for any T ∈ Monad. ��

The formal Coq proof of the theorem is provided in the total setting and uses
dependent types.

Characterization for the type n-Func with a parameter type D (equivalently,
with finitely many parameter types D1, . . . , Dk)

n-FuncD = ∀T.D→ (A1 → TB1)→ · · · → (An → TBn)→ TC

is similar, with parameterized strategies of type

n-TreeD = D → n-Tree .

For types of order higher than two it is not that clear yet what corresponding
strategies should be let alone how one could characterise their existence by para-
metricity. It could be, however, that strategies in the sense of game semantics,
like in [1, 2, 9], are the right generalization. The another possible approach is in
using of Kripke relations of varying arity as in [10]. This might be an interesting
question for further investigation.

On Monadic Parametricity of Second-Order Functionals 237

let rec solve (n:int) x s : Maybe S =
match n with
| 0 → None
| →

if is stable x s then
Some s

else
let s0 = add stable x s in
do p ← F (eval (n−1) x) s0;
let (d, s1) = p in
let cur = getval s1 x in
if d � cur then
Some s1

else
let s2 = setval x (cur � d) s1 in
let (w, s3) = extract work s2 in
solve all (n−1) w s3

and solve all (n:int) w s : Maybe S =
match n with
| 0 → None
| →
match w with
| [] → Some s
| x :: xs →
(solve (n−1) x s) >>=
solve all (n−1) xs

and eval n x y : StateTS Maybe D =
match n with
| 0 → fun s → None
| → fun s →

let s0 = add infl y x s in
do s1 ← solve (n−1) y s0;
Some (getval s1 y, s1)

Fig. 1. The pure functional implementation of totalized RLD

7 Applications

Modulus of Continuity. Recall that a functional F : B→ N defined on the Baire
space B = N → N is continuous at f ∈ B if F f depends only on finitely many
elements of f . A modulus for F at f is a number n such that F f depends
only on the first n terms of f . Suppose F is pure functional, i.e., it is given by
means of a monadically parametric function F :

∏
T .(N → TN) → TN such

that F = F Id , where Id is the identity monad. Then we can effectively extract
a modulus for F at f by means of the functional

Mod F f = max (snd (F Statelist N
(instr f) []))

where instr f : N → StatelistN = λa.λl.(f a, l++[a]) instruments f by means of
recording of a list of visited indices. That Mod computes what it is supposed to
is shown by the following proposition.

Proposition 25. Let F : B → N be pure, f : B and m = ModF f . Then for
every g : B if f i = g i holds for all i ≤ m, then F f = F g. ��

Proof (sketch). Given lf = snd (F Statelist N
(instr f) []), one can use lf to traverse

the strategy tree for F using values from lf as corresponding answers at Que-
nodes. We show that by so using lf one reaches a leaf Ansn with n = F f . By
assumption, for all the questions queried when traversing with lf , f and g must
deliver identical answers. We conclude, lf = lg, and hence F f = F g. ��

Verified Fixpoint Algorithms. The provided characterization of pure function-
als of type Func can be used for verification of generic off-the-shelf fixpoint

238 A. Bauer, M. Hofmann, and A. Karbyshev

algorithms which are used to compute a (local) solution of a constraint system
x 4 Fx, x ∈ V , defined over a bounded join-semilattice D of abstract values
and a set of variables V . The local solver RLD, which relies on self-observation,
applies F to a special stateful function to discover variable dependencies and
perform demand-driven evaluations [7]. In order to reason about the algorithm
formally, we implement RLD in purely functional manner and model side-effects
by means of the state monad. Thus, the pure right-hand side F is assumed to
be of type

F : ∀S.V → (V → StateSD)→ StateSD .

Assuming that all right-hand sides F are pure and hence representable by strat-
egy trees, one can formulate sufficient pre- and post-conditions to verify partial
correctness of the algorithm.

Notice that RLD may diverge since we pose no extra restrictions on D (e.g.,
ascending chain condition) in general. However, we can define a totalized version
of RLD by passing an extra natural parameter to every main function of the
algorithm which limits a maximum depth of recursion. Once the limit is reached,
the solver terminates with None. Figure 1 gives a pure functional implementation
of the totalized version of RLD. Since F is pure, by Corollary 15, a corresponding
strategy tree provides a monadically parametric implementation, which can be
used as

F : V → (V → StateTSMaybe D)→ StateTSMaybe D

where Maybe is an option monad, StateT is a state monad transformer, and S is
a state structure managed by the solver. The total version can be implemented
and proven correct in Coq with the certified code extracted in ML.

The characterization of 2-Func can be applied to verification of local fixpoint
algorithms for side-effecting constraint systems [19] used for interprocedural anal-
ysis and analysis of multithreaded code. The main idea here is that in each
constraint x 4 Fx the right-hand side Fx is a pure function representable by a
strategy tree with two kind of question nodes: QueR for which values of variables
are queried using a stateful function get and QueW which, when accessed, up-
date current values of some variables by means of a stateful function set. Thus,
the strategy tree specifies a sequence of reading and writing accesses to some
constraint variables. One version of such a solver although not verified presently
is implemented in the program analyzer Goblint [23].

8 Conclusion

We have provided two equivalent characterisations of pure second-order function-
als in the presence of nontermination; an extensional one based on preservation
of relations and an intensional one based on strategy trees. All verifications have
been formalized in Coq.

Our results can be applied to the verification of algorithms that take pure
second-order functionals as input. Among these are generic fixpoint algorithms
and algorithms for exact real arithmetic. It is generally easier to verify the cor-
rectness of such an algorithm assuming the intensional characterisation of purity

On Monadic Parametricity of Second-Order Functionals 239

for its input. On the other hand, for a concretely given input, e.g. in the form
of a program in some restricted language it will be easier to establish the exten-
sional characterisation. The techniques developed in this paper were extended to
impure higher-order functions enabling modular reasoning about monadic mixin
components [13].

We note that a closely related characterisation albeit in a rather different
guise has already been given in O’Hearn and Reynolds landmark paper [16].
Our strategy trees appear there as an intensional characterisation of first-order
Algol procedures which due to the call-by-name policy are in fact second-order
functionals. New aspects of the present work are in particular the monadic for-
mulation, the generalisation of the extensional characterisation to monads other
than the state monad, and the complete formalisation in Coq.

Interestingly, our acceptable monadic relations in the total case (Definition 4),
also appear in [22] where they are used to derive free theorems in the sense of
Wadler [24] for Haskell programs in monadic style. However, the application to
the characterisation of pure second-order functionals and the subsequent char-
acterisation with strategy trees do not appear in loc.cit. It is, however, fair to
say that the method of [22], being essentially the same as ours, could be used to
derive our main result (Representation Theorems), assuming that one adapts it
to the partial case which was left open in loc.cit.

As pointed out by an anonymous reviewer, a proof of our results can be given
using Katsumata’s **-lifting construction [12] if one considers stategy trees as
free monads. This approach would require Tree ∈ Monad for all possible result
sets C. However, from the practical point of view, we would prefer that F is
defined for continuation monads rather than for syntactical monads Tree.

A natural question, albeit of mostly academic interest, is the extension of
this work to higher than second order. Given that the strategy trees resemble
winning strategies in game semantics it would seem natural to attempt to find
extensional characterisations of the existence of a winning strategy. Care would
have to be taken so as to sidestep the undecidability of lambda definability [14],
thus the extensional property would have to be undecidable even if basic types
receive a finite interpretation.

Acknowledgements. We thank Alex Simpson, University of Edinburgh, for
raising an interesting question and fruitful discussions on the topic. We thank
Helmut Seidl and anonymous reviewers for valuable comments on the paper. The
third author was supported by GRK 1480.

References

1. Abramsky, S., Malacaria, P., Jagadeesan, R.: Full Abstraction for PCF. In: Hagiya,
M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 1–15. Springer, Heidelberg
(1994)

2. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3 (1996)

240 A. Bauer, M. Hofmann, and A. Karbyshev

3. Benton, N., Kennedy, A., Varming, C.: Formalizing domains, ultrametric spaces
and semantics of programming languages. Submitted to Math. Struct. in Comp.
Science (2010)

4. Charlier, B.L., Hentenryck, P.V.: A universal top-down fixpoint algorithm. Techni-
cal Report CS-92-25, Brown University, Providence, RI 02912 (1992)

5. Fecht, C., Seidl, H.: A faster solver for general systems of equations. Sci. Comput.
Program. 35(2), 137–161 (1999)

6. Filinski, A.: Representing monads. In: Boehm, H.-J., Lang, B., Yellin, D.M. (eds.)
POPL, pp. 446–457. ACM Press (1994)

7. Hofmann, M., Karbyshev, A., Seidl, H.: Verifying a Local Generic Solver in Coq. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 340–355. Springer,
Heidelberg (2010)

8. Hofmann, M., Karbyshev, A., Seidl, H.: What Is a Pure Functional? In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 199–210. Springer, Heidelberg (2010)

9. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, ii, and iii. Inf. Com-
put. 163(2), 285–408 (2000)

10. Jung, A., Tiuryn, J.: A New Characterization of Lambda Definability. In: Bezem,
M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Hei-
delberg (1993)

11. Karbyshev, A.: The accompanying Coq implementation (2013),
https://github.com/karbyshev/purity/

12. Katsumata, S.-Y.: A Semantic Formulation of ��-Lifting and Logical Predicates
for Computational Metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634,
pp. 87–102. Springer, Heidelberg (2005)

13. Keuchel, S., Schrijvers, T.: Modular monadic reasoning, a (co-)routine. IFL 2012,
pre-proceedings, RR-12-06 (August 2012)

14. Loader, R.: The undecidability of lambda-definability
15. Longley, J.: When is a functional program not a functional program? In: ICFP, pp.

1–7 (1999)
16. O’Hearn, P.W., Reynolds, J.C.: From algol to polymorphic linear lambda-calculus.

J. ACM 47(1), 167–223 (2000)
17. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP

Congress, pp. 513–523 (1983)
18. Reynolds, J.C., Plotkin, G.D.: On functors expressible in the polymorphic typed

lambda calculus. Inf. Comput. 105(1), 1–29 (1993)
19. Seidl, H., Vene, V., Müller-Olm, M.: Global invariants for analyzing multithreaded

applications. Proc. of the Estonian Academy of Sciences: Phys. Math. 52(4), 413–
436 (2003)

20. Simpson, A.K.: Lazy Functional Algorithms for Exact Real Functionals. In: Brim,
L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 456–464.
Springer, Heidelberg (1998)

21. The Coq Development Team. The Coq proof assistant reference manual. TypiCal
Project (formerly LogiCal), Version 8.4 (2012)

22. Voigtländer, J.: Free theorems involving type constructor classes: functional pearl.
In: Hutton, G., Tolmach, A.P. (eds.) ICFP, pp. 173–184. ACM (2009)

23. Vojdani, V., Vene, V.: Goblint: Path-sensitive data race analysis. In: Annales Univ.
Sci. Budapest. Sect. Comp., vol. 30, pp. 141–155 (2009)

24. Wadler, P.: Theorems for free! In: FPCA, pp. 347–359 (1989)

https://github.com/karbyshev/purity/

Deconstructing General References via Game Semantics

Andrzej S. Murawski1 and Nikos Tzevelekos2,�

1 University of Warwick
2 Queen Mary, University of London

Abstract. We investigate the game semantics of general references through the
fully abstract game model of Abramsky, Honda and McCusker (AHM), which
demonstrated that the visibility condition in games corresponds to the extra ex-
pressivity afforded by higher-order references with respect to integer references.

First, we prove a stronger version of the visible factorisation result from AHM,
by decomposing any strategy into a visible one and a single strategy correspond-
ing to a reference cell of type unit → unit (AHM accounted only for finite
strategies and its result involved unboundedly many cells).

We show that the strengthened version of the theorem implies universality of
the model and, consequently, we can rely upon it to provide semantic proofs of
program transformation results. In particular, one can prove that any program
with general references is equivalent to a purely functional program augmented
with a single unit→ unit reference cell and a single integer cell. We also propose
a syntactic method of achieving such a transformation.

Finally, we provide a type-theoretic characterisation of terms in which the use
of general references can be simulated with an integer reference cell or through
purely functional computation, without any changes to the underlying types.

1 Introduction

In computer science, references are a programming idiom that allows the programmer
to manipulate objects in computer memory. The referenced content can be accessed
(dereferenced) or overwritten (updated). The most common sort of reference is that to a
ground-type value, such as an integer. However, most modern programming languages
allow more complicated values to be referenced. For example, the language ML features
general references, where memory locations can contain values of any type, in partic-
ular of function type. Higher-order references are a very expressive construct. Among
others, they can be used to simulate recursion, objects [5] and aspects [10]. In this pa-
per we investigate higher-order references taking inspiration from their game-semantic
model [1]. In particular, we shall provide both semantic and syntactic accounts of how
they can be decomposed, which highlight the fact that their full expressive power is al-
ready present in their simplest instance, references of type ref(unit→ unit). Although
in general the inclusion of higher-order references strictly increases expressivity, we
also consider the question whether there are circumstances, delineated by types, where
there is no such increase. Finally, we shall also answer the question when references

� Supported by a Royal Academy of Engineering research fellowship.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 241–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

242 A.S. Murawski and N. Tzevelekos

in general, integer-valued and higher-order ones, can be replaced altogether by purely
functional computation over the same types.

Game semantics [2,7] is a semantic theory that interprets computation as an exchange
of moves between two players: O (environment) and P (program). In the Hyland-Ong
style of playing [7], moves are equipped with pointers to moves made earlier in the
game, giving rise to plays like the one shown below.

o1 p1 o2 p2 o3 p4

Existing literature on modelling integer [3] and higher-order references [1] showed that
the expressive gap between the two paradigms can be captured by a property called
visibility, which restricts the range of targets (earlier moves) for pointers: moves by
P can only point at moves from a restricted fragment of the history, called the view.
For example, the last move in the play above violates visibility, because before it is
played, the view is o1 p1 o3. Intuitively, the visibility constraint captures the intuition
that, without higher-order references, the set of values available to a program is limited
to the lexical environment (as captured by the notion of view). In particular, function
values that are available at one point, cannot be taken for granted later during the course
of computation. In contrast, in presence of higher-order references, such values can be
recorded and reused at will. Hence, the visibility condition needs to be relaxed for
modelling higher-order references.

A fully abstract game model of an ML-like language with references was presented
in [1] and founded on plays that need not obey the visibility condition. As part of the full
abstraction argument, the authors showed how to decompose every finite strategy into
a finite strategy satisfying visibility and several strategies corresponding to reference
cells of type unit→ unit (Proposition 5 in [1]).

As our first contribution, we sharpen the result to arbitrary strategies as well as show-
ing that one strategy corresponding to a (unit→ unit)-valued memory cell is sufficient
(Theorem 13). This brings two benefits. On the theoretical side, one can show univer-
sality: any recursively presentable strategy corresponds to a program with higher-order
references. On a more practical note, the refined factorisation result can be applied to de-
notations of arbitrary programs to yield a powerful expressivity result: any program with
higher-order references is equivalent to one of the shape letu = ref(λxunit.Ωunit) inM ,
where the ref-constructor in M is restricted to integers (Theorem 17).

Our first proof of the result is purely semantic and relies on recursion theory. Conse-
quently, it does not offer much insight into how to transform the use of higher-order ref-
erences into uses of a (unit→ unit)-reference cell. Motivated by this, we try to identify
semantics-preserving program transformations that will allow us to reprove the same
result through syntactic means. The key element of our approach is the bad-variable
constructor mkvar, which enables one to create terms of reference types with non-
standard behaviour. Although the translation introduces extra occurrences of mkvar,
we show how to eliminate them under certain conditions, namely, when the types as-
sociated with its free variables and the type of the term do not contain reference types.
Note that this allows for arbitrarily complex private uses of general references inside
terms as long as the references are not communicated through the program’s type in-
terface. From this perspective, mkvar emerges as a useful intermediate construct for

Deconstructing General References via Game Semantics 243

Γ � () : unit
i ∈ Z

Γ � i : int
(x : θ) ∈ Γ
Γ � x : θ

Γ �M1 : int Γ �M2 : int
Γ �M1 ⊕M2 : int

Γ �M : int Γ � N0 : θ Γ � N1 : θ
Γ � ifM thenN1 elseN0 : θ

Γ �M : θ
Γ � ref(M) : ref(θ)

Γ �M : ref(θ)
Γ � !M : θ

Γ �M : ref(θ) Γ � N : θ
Γ �M :=N : unit

Γ �M : unit→ θ Γ � N : θ → unit
Γ � mkvar(M,N) : ref(θ)

Γ, x : θ �M : θ′

Γ � λxθ.M : θ → θ′
Γ �M : θ → θ′ Γ � N : θ

Γ �MN : θ′
Γ �M : (θ → θ′)→ (θ → θ′)

Γ � Y(M) : θ → θ′

Fig. 1. Typing judgments of L

program transformation. Altogether our transformations yield an alternative syntactic
proof of Theorem 17.

In the remainder of the paper, we give a type-theoretic characterization of terms in
which the use of arbitrary references can be faithfully simulated using integer storage
alone. Here is a representative selection of types in typing judgments that turn out to
guarantee this property.

· · · , int→ · · · → int, · · · %M : int,
· · · , (int→ · · · → int)→ int, · · · %M : int→ · · · → int

By highlighting the shape of types in the context, we mean to say that all free identi-
fiers should have types of that form or simpler ones. These are the typing judgments
over which there is no distinction in expressive power between integer and higher-order
references.

Finally, we show that, as long as terms of the form

· · · , x : Θ1, · · · %M : β

are considered, where β ::= unit | int and Θ1 ::= β | ref(β) | β → Θ1, the use of
higher-order references can be replaced with purely functional computation. That is to
say, references do not contribute any expressive power. The last two results are obtained
in a semantic way, by referring to game models and associated compositionality and
universality results.

2 Syntax of the Language

We shall rely on the programming languageLwith general references introduced in [1].
Its types θ are generated from unit and int using the → and ref type constructors, as
shown below.

θ ::= unit | int | ref(θ) | θ → θ

244 A.S. Murawski and N. Tzevelekos

The typing rules are reproduced in Figure 1, where ⊕ is meant to cover standard arith-
metic operations. The operational semantics of the language relies on a countable set L
of typed locations. The values of the language are then the locations themselves, (), i,
λ-abstractions and mkvar(V1, V2), where V1, V2 must be values. The big-step reduction
judgments have the form s,M ⇓ s′, V , where s, s′ are stores (partial functions from L
to the set of values) and V is a value. Most reduction rules take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn
M ⇓ V

which is meant to abbreviate

s1,M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn
s1,M1 ⇓ sn+1, V

.

In particular, this means that the ordering of the hypotheses is significant.

V is a value
s, V ⇓ s, V

M ⇓ 0 N0 ⇓ V
ifM thenN1 elseN0 ⇓ V

i �= 0 M ⇓ i N1 ⇓ V
ifM thenN1 elseN0 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s,M ⇓ s′,
 s′(
) = V
s, !M ⇓ s′, V

s,M ⇓ s′,
 s′, N ⇓ s′′, V
s,M :=N ⇓ s′′(
 �→ V), ()

M ⇓ mkvar(V1, V2) V1() ⇓ V
!M ⇓ V

M ⇓ mkvar(V1, V2) N ⇓ V V2 V ⇓ ()
M :=N ⇓ ()

M ⇓ V1 N ⇓ V2
mkvar(M,N) ⇓ mkvar(V1, V2)

s,M ⇓ s′, V
 �∈ dom(s′)
s, ref(M) ⇓ s′ ∪ (
 �→ V),

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

M ⇓ V
fix(M) ⇓ λxθ.(V (fix(V)))x

Given a closed term %M : θ we write M ⇓ if there exist s′, V such that ∅,M ⇓ s′, V .

Definition 1. We shall say that two terms Γ %M1 : θ and Γ %M2 : θ are contextually
equivalent (written Γ % M1

∼= M2) if, for any context C[−] such that C[M1], C[M2]
are closed, we have C[M1] ⇓ if and only if C[M2] ⇓.

Remark 2. L features the “bad-reference”constructormkvar in the style of Reynolds [9].
This makes it possible to construct objects of reference types from arbitrary read and
write methods. In general this strengthens the discriminating power of contexts, as terms
of ref-type can exhibit non-standard behaviour. However, it can be shown that when
there are no ref-types in Γ or θ, this extension is inconsequential. At the technical level,
this is due to the fact that the corresponding definability argument [1] need not rely on
ref then.

Remark 3. L does not feature reference-equality testing as a primitive, as in general it
would not make sense in a setting with bad references. Still, it is possible to construct

Deconstructing General References via Game Semantics 245

a term that can tell two different locations apart by writing different values to them and
testing their content. This is of course conditional on the existence of such values and
our ability to distinguish them. In our setting, this method will be applicable to all types
ref(θ) except when θ ≡ unit.

Remark 4. In earlier work, we considered a language called RefML [8] with general
references and equality testing for locations, in which bad references could not be cre-
ated. The above comments imply that the respective notions of contextual equivalence
induced by L and RefML coincide on mkvar-free L-terms Γ % M : θ such that there
are no ref-types in Γ or θ. Similarly, one can also say that they converge for RefML-
terms Γ % M : θ such that Γ, θ do not contain ref-types and M does not use equality
testing for references of type ref(unit).

We will now define a number of auxiliary terms that will turn out useful in subsequent
arguments. As usual, letx = M inN stands for (λx.N)M . If x does not occur in N ,
we may also write M ;N . We also rely on abbreviated notation for nested let’s, e.g.
letx, y = Mx,My inN stands for letx = Mx in let y = My inN . We shall write
Ωθ for the divergent term Y(λfunit→θ.f) (). Also, for any type θ, we define a term
% newθ : ref(θ), which creates a suitably initialised reference cell.

newunit ≡ ref(()) newref(θ) ≡ ref(mkvar(λxunit. Ωθ, λx
θ. Ωunit))

newint ≡ ref(0) newθ→θ′ ≡ ref(λxθ.Ωθ′)

3 Game Model

The following arguments are couched in the game model of general references due to
Abramsky, Honda and McCusker [1]. We use a more direct, yet equivalent, presentation
due to Honda and Yoshida [6].

Definition 5. An arena A = (MA, IA,%A, λA) is given by

– a set MA of moves, and a subset IA ⊆MA of initial moves,
– a justification relation %A⊆MA × (MA \ IA), and
– a labelling function λA :MA → {O,P} × {Q,A}

such that λA(IA) = {PA}. Additionally, whenever m′ %A m, we have (π1λA)(m) �=
(π1λA)(m

′), and (π2λA)(m
′) = A implies (π2λA)(m) = Q.

The role of λA is to label moves as Opponent or Proponent moves and as Questions or
Answers. We typically write them as m,n, . . . , or o, p, q, a, qP , qO, . . . when we want
to be specific about their kind. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat” arenas
are 1 andZ, defined byM1 = I1 = {�},MZ = IZ = Z. The two standard constructions
on arenas are presented below, where ĪA stands forMA \IA, the domain restriction of a
function is denoted by �, the OP -complement of λA is written as λ̄A, and iA, iB range
over initial moves in the respective arenas.

– MA⇒B = {�}!IA!IA!MB , IA⇒B = {�}, λA⇒B = [(�, PA), (iA, OQ), λ̄A �
IA, λB], %A⇒B= {(�, iA), (iA, iB)} ∪ %A ∪ %B.

246 A.S. Murawski and N. Tzevelekos

– MA⊗B = (IA×IB)!IA!IB , IA⊗B = IA×IB , λA⊗B = [((iA, iB), PA), λA �
IA, λB � IB], %A⊗B= {((iA, iB),m) | iA %A m ∨ iB %B m} ∪ (%A� IA

2
) ∪

(%B� IB
2
).

Types of L can now be interpreted with arenas in the following way.

�unit� = 1 �ref(θ)� = (1⇒ �θ�) ⊗ (�θ� ⇒ 1)
�int� = Z �θ1 → θ2� = �θ1�⇒ �θ2�

Example 6. �ref(int)� and �ref(unit→ unit)� have the following respective shapes.

◦
'' (((

read write(i)

i ok

◦
��))

read write
)))

)

� ok qw

qr aw

ar

Although arenas model types, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves must be
O-questions. Given arenas A and B, we can construct the prearena A → B by set-
ting: MA→B = MA !MB , IA→B = IA , λA→B = [(iA, OQ) ∪ (λ̄A � IA) , λB]
and %A→B= {(iA, iB)}∪ %A ∪ %B . A justified sequence in a prearena A is a finite
sequence s of moves of A satisfying the following condition: the first move must be
initial, but all other moves m must be equipped with a pointer to an earlier occurrence
of a movem′ such thatm′ %A m. We then say thatm′ justifiesm. Ifm is an answer, we
also say that m answers m′. Given a justified sequence, the last unanswered question
will be called pending.

Definition 7. A play in A is a justified sequence satisfying alternation (players take
turns) and well-bracketing (whenever a player plays an answer, it must answer the
current pending question). A strategy in a prearena A is a subset σ of even-length
plays in A that is closed under the operation of taking even-length prefixes and satisfies
determinacy: if sp1, sp2 ∈ σ then sp1 = sp2.

Example 8. cellint : 1 → �ref(int)� answers the initial question with ◦. Whenever O
plays write(i), it responds with ok. After O plays read, it responds with an integer value
present in the latest write(i) move by O or, if none has been played, with 0. This strategy
will model % ref(0) : ref(int).

cellunit→unit : 1 → �ref(unit→ unit)� answers the initial question with ◦, responds
to write and read with ok and ∗ respectively. If O plays qr justified by an occurrence of
�, P plays qw justified by the last occurrence of ok that precedes the relevant occurrence
of �. If none such exists, P has no response. Similarly, if O plays aw, P will respond
with ar. This strategy will interpret % ref(λxunit.Ωunit) : ref(unit→ unit).

Deconstructing General References via Game Semantics 247

Strategies compose [6], yielding a category of games where objects are arenas and mor-
phisms between objects A and B are strategies in A→ B. Let Γ = {x1 : θ1, · · · , xn :
θn}. We shall write �Γ % θ� for the prearena �θ1�⊗· · ·⊗ �θn� → �θ� (if n = 0 we take
the left-hand side to be 1). The game model proposed in [1] interprets a term Γ %M : θ
by a strategy in �Γ % θ�.

We now introduce another condition on plays, known to characterize denotations of
terms with ground-type storage only.

Definition 9 (Visibility). The view of a play is inductively defined by:

view (ε) = ε view (m) = m view (s1ms2 n) = view (s1)m n .

A play s satisfies the visibility condition if, for all even-length prefixes s′m of s, the
justifier of m occurs in view (s′). A strategy is called visible if it contains only visible
plays.

It can be shown that in plays the above condition is never violated by answers, because
the pending question is always present in the view.

Proposition 10 ([3]). Let Γ % M : θ be a term in which applications of the ref(−)-
constructor are restricted to terms of type unit and int. Then �Γ % M : θ� satisfies the
visibility condition.

4 Factorisation

We shall next write !A for the strategy in A→ 1 that responds to the initial move on the
left with the unique move on the right. Given strategies σi : 1 → Ai that all respond
to the initial question, we write 〈σ1, · · · , σn 〉 for the strategy in 1 →

⊗n
i=1 Ai that

responds to the initial move with the tuple containing the individual responses of the n
strategies and otherwise behaves like σi, depending on the component Ai in which O
chooses to play.

Let us recall the factorisation result from [1].

Theorem 11 ([1]). Let σ : A1 → A2 be a finite strategy and A = �ref(unit→ unit)�.
There exists a natural number n and a visible strategy σ : (

⊗n
i=1A)⊗ A1 → A2 such

that 〈 τ, · · · , τ, idA1 〉;σ = σ, where τ =!A1 ; cellunit→unit.

Note that in the result above n may depend on σ. In fact, the proof shows that n can be
taken to be (roughly) the length of the longest play in σ.

Remark 12. Violations of visibility describe computational scenarios in which a pro-
gram attempts to refer to a value that was previously encountered during computation,
yet which is not in current scope. The argument from [1] proposes to repair such vi-
olations by using free (higher-order) reference variables. Intuitively, they provide an
opportunity to record the values currently available to the program. A later attempt to
access the reference makes it possible to use the required value. In contrast, our argu-
ment will take advantage of a single reference cell. We shall also record the scope at
each step, but before doing so we will embed the previous value into the current scope,
thus allowing backtracking. In this way, the sought value can be found by backtracking
to the desired computational step.

248 A.S. Murawski and N. Tzevelekos

Theorem 13 (Visible Factorisation). Let σ : A1 → A2 be a strategy and A =
�ref(unit→ unit)�. There exists a visible strategy σ : A ⊗ A1 → A2 such that
〈 τ, idA1 〉;σ = σ, where τ =!A1 ; cellunit→unit. If σ is recursively presentable, so is σ.

Proof. We shall define σ to be the least strategy containing the plays from {s | s ∈ σ},
where s will be defined below by induction on the length of a play. Roughly, s will
consist of s augmented with moves from A.

– In particular, immediately after each O-move of s we shall insert the sequence
read � write ok and, if the move is an answer, it will be followed by a sequence consist-
ing of answers aw, ar. Intuitively, each sequence read � write ok corresponds to reading
the current value of the reference (the one modelled in A) and updating it with a new
value.

– For P-questions, we shall insert read � followed by a sequence consisting of ques-
tions qr, qw in front of the P-question. The last qw will point at the value stored in
the reference immediately after the justifier of q was played. P-answers will simply be
copied without any extra moves.
We give a precise definition below. The targets of pointers from read, �, write, ok are
obvious so, when discussing pointers, we shall focus on those from qr, qw, ar, aw.

– s qO = s qO read � write ok (if |s| > 0); and qO = qO write ok
– s qP = s read � qr (qw qr)

k qw qP

We take k to be the number of O-moves occurring after the justifier o of qP in
s. Let us list them (in order of occurrence) as ok, · · · , o1. Then the ith qw and qr
in (qw qr)

k are meant to be justified by respectively write and � from the read �
write ok segment introduced immediately after oi. The last qw is justified by write
from the read � write ok segment added after o.
Note that the resultant sequence will satisfy P-visibility, even if qP may not have.
Additionally, the extra O-moves �, ok, qw are consistent with the behaviour of the
cellunit→unit strategy.

· · · o r � wok · · · ok r �w ok · · · o1 r �w ok r � qr qw qr · · · qw qr qw qP
– s aO = s aO read � write ok (aw ar)

k+1

Suppose aO answers qP in s. Then we take k to be the same as in the clause for
qP , i.e. k is the number of O-moves separating qP ’s justifier and qP . The sequence
(aw ar)

k+1 simply answers all the questions qw, qr that were introduced for qP .
Because the pending question of s stays the same as that in s, this will yield a valid
play. Note also that the O-moves ar (in response to aw) are consistent with the
cellunit→unit strategy.

· · · r � qr (qw qr)k qw qP · · · aO (aw ar)
k+1

Deconstructing General References via Game Semantics 249

– s aP = s aP
As we have already mentioned, the construction of s from s preserves the pending
question. Hence, the above clause leads to a play.

Consequently, σ is visible and, because the inserted moves are consistent with
cellunit→unit, we have 〈 !A1 ; cellunit→unit, idA1 〉;σ = σ. That σ is recursively presentable
follows from our description above. ��

In order to apply the Theorem we need two more results. The first of them is classic and
concerns decomposing visible strategies into innocent ones. Innocence [7] is a condition
even stricter than visibility: responses of innocent strategies are uniquely determined by
views.

Theorem 14 (Innocent Factorisation [4]). Let σ : A1 → A2 be a visible strategy
and A = �ref(int)�. There exists an innocent strategy σ̂ : A ⊗ A1 → A2 such that
〈 !A1 ; cellint, idA1 〉; σ̂ = σ.

Note that this result already applies to arbitrary strategies rather than just finite ones.
Also, the construction of σ̂ is effective and shows that σ̂ is recursively presentable if
σ is.

Finally, we prove a universality result for recursively presentable innocent strategies.
Universality results were not necessary in research on full abstraction, because their
weaker variants phrased for finite (or finitely generated) strategies sufficed to capture
possible separating contexts. Hence, after the initial ones for PCF [2,7], they all but
disappeared from subsequent papers. For program transformations, though, we need to
be able to express arbitrary recursive strategies, hence the need for universality. Note
that there is a huge difference between finite and recursive strategies. For instance, the
strategy corresponding to λxint.x is not finite.

Theorem 15 (Innocent Universality). Let σ : �Γ % θ� be a recursively presentable
innocent strategy. There exists a ref-free term Γ %M : θ such that �Γ %M : θ� = σ. If
Γ and θ do not contain occurrences of ref-types, thenM can be taken to be mkvar-free.

By appealing to Theorems 13, 14 and 15 one can deduce Universality.

Theorem 16 (Universality). Let σ : �Γ % θ� be a recursively presentable strategy.
Then there exists Γ %M : θ such that �Γ %M : θ� = σ.

In fact, in the above statement M can be taken to be of the form

let f, x = newunit→unit, newint inM
′,

where M ′ is ref-free. Because the game semantics of a term is recursively presentable,
we can conclude the following result.

Theorem 17 (Transformation). Let Γ % M : θ. There exists a term Γ, f :
ref(unit→ unit), x : ref(int) %M ′ : θ satisfying the following conditions.

– Γ %M ∼= let f, x = newunit→unit, newint inM
′.

– M ′ is ref-free.
– If there are no occurrences of ref in Γ, θ, then M ′ is mkvar-free.

250 A.S. Murawski and N. Tzevelekos

Thus, general references in L can be simulated by two memory cells that store values
of type unit→ unit and int respectively. Our proof was semantic, but the passage from
M to M ′ can be made effective. However, due to reliance on the universality result, we
would need to pass through enumerations of partial recursive functions. This is hardly
a reasonable way of transforming programs! Next we shall identify several syntactic
decomposition principles for general references, which will yield an alternative proof
of the Theorem.

5 Syntactic Transformation

Note that ref(M) is equivalent to letx = newθ in (x :=M ;x) for a suitable θ. Conse-
quently, w.l.o.g. we can assume that the only occurrences of ref(· · ·) inside terms are
those associated with newθ . Similarly, we assume that terms do not contain fixed-point
subterms, as these can be simulated using higher-order reference cells [1].

Next we show newθ can be decomposed using instances of new at simpler types.
Ultimately, this will allow us to replace any occurrences of ref(M) with newunit→unit

and newint. The mkvar constructor is central to the transformations.

Lemma 18 (Decomposition of ref(θ1 → θ2)). For all θ1, θ2, % newθ1→θ2 ∼=
let f, x1, x2 = newunit→unit, newθ1 , newθ2 inmkvar(Mr,Mw), where

Mr ≡ λyunit.leth =!f inλzθ1. (x1 := z; h(); !x2),
Mw ≡ λgθ1→θ2. f := (λzunit. x2 := g(!x1)).

We can show the equivalence formally by comparing strategies corresponding to each
term. Intuitively, the equivalence is valid because on assignment Mw indirectly records
the assigned value g in f . On dereferencing, Mr ensures that the latest value of f
is accessed and the corresponding value g applied to the right argument through the
internal references x1 and x2.

Lemma 19 (Decomposition of ref(ref(θ))). For any θ, % newref(θ)
∼= let r, w =

newunit→θ, newθ→unit inmkvar(Mr,Mw) for all θ, where

Mr ≡ λzunit.mkvar(!r, !w),
Mw ≡ λgref(θ). (r := (λzunit. !g); w := (λzθ. g := z)).

Here, instead of storing a reference of type θ, we store the associated read and write
methods, of types unit → θ and θ → unit respectively, which is what references r and
w are used for.

Lemma 20. % newunit
∼= mkvar(λxunit. (), λxunit. ()).

The Lemma is easy to verify by reference to the game model. It illustrates the rather
strange status of type ref(unit) in L, in particular the fact that it is not possible to
compare reference names (of type ref(unit)) in the language.

The last three Lemmas imply the following corollary.

Deconstructing General References via Game Semantics 251

Corollary 21. For any Γ %M : θ there exists Γ %M ′′ : θ such that Γ %M ∼=M ′′ : θ
and occurrences of the ref constructor in M ′′ are restricted to terms of the form
newunit→unit or newint.

In the result above, newunit→unit and newint are allowed to occur multiple times. In what
follows we shall show that one occurrence of each suffices.

Lemma 22. There exist ref-free terms M,N such that

� λxunit. newunit→unit
∼= let f, x = newint→unit, newint inM : unit→ ref(unit→ unit),

� λxunit. newint
∼= let x = newint inN : unit→ ref(int).

Proof. We can encode an unbounded number of references of type ref(unit→ unit)
with a reference f of type ref(int→ unit) by giving to each (unit → unit)-valued ref-
erence a unique integer identifier i, and encoding the value of the ith such reference
as λvunit. (!f)i. We use the internal variable x to count the number of generated refer-
ences, so as to assign them unique identifiers. Thus,M can be taken to be λzunit.let i =
!x in (x := !x + 1);mkvar(Mr,Mw), where Mr ≡ λuunit.leth =!f inλvunit. h i and
Mw ≡ λgunit→unit. let g′ =!f in f := (λyint. if y = i then g() else g′y).

For the second part, assume a standard encoding G(−) : Z∗ → Z of lists of integers
into integers such that G(ε) = 0. Clearly, one can construct closed PCF terms len :
int→ int, add : int→ int→ int, proj : int→ int→ int and upd : int→ int→ int→
int such that, for all s ∈ Z∗ and i, j ∈ Z:

len G(s) ⇓ |s| , addG(s) i ⇓ G(si) , proj G(s) j ⇓ sj , updG(s) j i ⇓ G(s[j �→ i]) ,

where |s| is the length of s, sj is the jth element of s, and s[j �→ i] is the list s with its
jth element changed to i. We can then keep track of an unbounded number of integer-
valued references by taking N to be

λzunit. x := add (!x) 0; let j=len(!x) inmkvar(λzunit. proj (!x) j, λiint. x := upd (!x) j i).

��

Now we are ready to give a new proof of Theorem 17. For a start, we tackle the first
two claims therein.

Proof. Given Γ % M : θ, from Corollary 21 we can obtain an equivalent term
M ′′, in which occurrences of ref are restricted to newunit→unit and newint. Ob-
serve that M ′′ is thus equivalent to leth = λxunit.newunit→unit inM1, where M1 ≡
M ′′[h()/newunit→unit] and the only occurrences of ref in M1 are those of newint. Ap-
plying Lemmata 22, 20 and 18, M ′′ is further equivalent to let f = newunit→unit inM2,
where the only occurrences of ref in M2 are those of newint. Finally, noting that
M2 is equivalent to leth′ = λxunit.newint inM3, where M3 is ref-free, and invoking
Lemma 18 we can conclude that M2 is equivalent to letx = newint inM4, where
M4 is ref-free. Now we can take M ′ (from the statement of the Theorem) to be
let f, x = newunit→unit, newint inM4. ��

Note that the decompositions presented in this Section relied on the availability of
mkvar and the term M ′ from the above proof will in general contain many occurrences

252 A.S. Murawski and N. Tzevelekos

of mkvar. We devote the remainder of this Section to showing that when Γ and θ are
ref-free, all the occurrences of mkvar can actually be eliminated. To that end, we shall
rely on a notion of canonical form, defined below.

C ::= () | xint | mkvar(λuunit.C, λvθ.C) | λxθ.C | if C thenC elseC |
let y = i inC | let y = C⊕ C inC | let y =!x inC | let y = (x :=C) inC |
let y = xC inC | let y = ref(C) inC

The canonical forms enjoy the following property.

Lemma 23. For any Γ %M : θ without fixed points, there exists a term CM in canon-
ical form such that Γ % M ∼= CM : θ. Moreover, CM can be effectively found and the
conversion does not add any occurrences of ref .

It turns out that canonical subterms of canonical terms have types drawn from a rather
restricted set. We make this statement precise below.

Definition 24. Given a type θ, the sets PST(θ) (of positive subtypes of θ) and NST(θ)
(of negative subtypes of θ) are defined respectively as follows. Let us write ST(θ) for
PST(θ) ∪ NST(θ).

PST(unit) = {unit} PST(ref(θ)) = ST(θ) ∪ {ref(θ)}
PST(int) = {int} PST(θ1 → θ2) = NST(θ1) ∪ PST(θ2) ∪ {θ1 → θ2}

NST(unit) = ∅ NST(ref(θ)) = ST(θ)
NST(int) = ∅ NST(θ1 → θ2) = PST(θ1) ∪ NST(θ2)

Given a canonical form C such that Γ % C : θ, let RT(C) stand for the set of types θ′

such that C contains an occurrence of ref(C′), where C′ of type θ′. It turns out that the
types in RT(C) together with types present in the original typing judgment determine
types of canonical subterms, as made precise below.

Lemma 25. Suppose Γ % C : θ. Let

L = (
⋃

(x:θx)∈Γ PST(θx)) ∪ NST(θ) ∪ (
⋃
θr∈RT(C) ST(ref(θr))) ∪ {unit, int},

R = (
⋃

(x:θx)∈Γ NST(θx)) ∪ PST(θ) ∪ (
⋃
θr∈RT(C) ST(θr)) ∪ {unit, int}.

Then, for any subterm C′ of C which is also in canonical form, we have Γ ′ % C′ : θ′,
where cod(Γ ′) ⊆ L and θ′ ∈ R.

Corollary 26. Suppose Γ % C : θ, RT(C) = {int, unit → unit} and Γ, θ are ref-free.
Then C does not contain any occurrences of mkvar.

Proof. Because RT(C) = {int, unit→ unit}, by Lemma 25, C can only contain mkvar
if (

⋃
(x:θx)∈Γ NST(θx)) ∪ PST(θ) contains a ref-type. Since Γ and θ are ref-free this

cannot be the case. ��
This completes a syntactic proof of Theorem 17.

Remark 27. Note that Lemma 22 may reintroduce fixed points into the language, be-
cause it relies on numerical operations defined in PCF. We can still reduce terms con-
taining such definitions to canonical form by assuming that the required operations are
primitive (represented by⊕). If this is not desirable then, after the elimination of mkvar
under the above assumption, we can put back the PCF definitions without jeopardizing
the result (mkvar is not available in PCF).

Deconstructing General References via Game Semantics 253

6 When Integer References Suffice

Next we shall examine the conditions under which references of type unit → unit
can also be eliminated, i.e. all uses of general references can be replaced with a sin-
gle integer-valued memory cell. In technical terms, this requires us to characterize the
arenas where plays are guaranteed to satisfy visibility.

Definition 28. Let A be an arena and m1,m2 ∈ MA. We shall say that m1 and m2

are equireachable if there are paths ms1m1 and ms2m2 in the graph (MA,%A) such
that m is initial and, if s1 and s2 both start with an answer, say a1 and a2 respectively,
then a1 = a2.

Remark 29. For arenas which are denotations of types, as is the case in Lemma 32, the
notion of equireachability trivialises somewhat. In particular, any non-initial O-moves
m1 and m2 are equireachable. We introduced a more general definition above so as to
be able to state Lemma 31.

Definition 30. An arena A is called visible if there are no equireachable non-initial
moves m,m′ ∈MA such that m is an O-question and m′ enables a P-question.

Lemma 31. Let A be an arena such that each question enables an answer. All plays of
A satisfy the visibility condition if and only if A is visible.

Proof. Let s be a play of A that violates the visibility condition. Suppose further that s
ends in the P-move p2, which breaks visibility for the first time and let o1 be its justifier.
Then, since s breaks visibility at p2, it must look like:

m · · · p1 · · · o1 · · · o2 · · · p2

for some initial move m, where o2 appears in the view right before p2 and where p2
is a question. Observe also that, since p2 violates visibility, its justifier o1 cannot be
initial. If o2 is a question we are done: A is not visible because of (m,m′) = (o2, o1).
So, suppose that o2 is an answer. Then, p1 is a question and the move o′2 immediately
following it in s is also a question (otherwise it would answer p1). Moreover o′2 is not
initial. Consequently, A is not visible due to (m,m′) = (o′2, o1).

Conversely, suppose that A is not visible and let the latter be witnessed by paths
ms1p1o2 and ms2o1p2 in (MA,%A). We form a play s as follows.

– If s2 does not start with an answer, we set

s = ms1 p1 o2 s2 o1 p2 o2 p2 .

– If s1p1, s2 both start with an answer, say s1p1 = as′1 and s2 = as′2, we set

s = mas′1 s
′
2 o1 p2 o2 p2

where the leftmost pointer points to the last move of s′1.

254 A.S. Murawski and N. Tzevelekos

– If s2 starts with an answer but s1 does not, we set

s = ms1 p1 s
′
1 s2 o1 p2 o2 p2

where s′1 is a sequence of moves answering all open questions of s1p1.
Now observe that, in each case, the play s breaks visibility at move p2. ��

As a next step we would like to understand what typing judgments give rise to visi-
ble arenas. Our answer will be phrased in terms of syntactic shape. For simplicity, we
shall now restrict our discussion to types generated from unit (Remark 33 explores the
consequences of the results for the full type system). The following two lemmas cap-
ture scenarios relevant to verifying visibility for arenas. We write Θ1 for the collection
of first-order types, generated by the grammar Θ1 ::= unit | unit → Θ1. Similarly,
Θ1 → unit stands for {θ1 → unit | θ1 ∈ Θ1}.

Lemma 32. Let A = �θ1, · · · , θk % θ�, where θ1, · · · , θk, θ are generated from unit.

– All O-questions in A are initial iff θi ∈ Θ1 for all 1 ≤ i ≤ k and θ = unit.
– A does not contain a P-question enabled by a non-initial O-move iff θi ∈ {unit} ∪
(Θ1 → unit) for 1 ≤ i ≤ k and θ ∈ Θ1.

Consequently, A is visible if and only if one of the conditions above is satisfied.

Remark 33. To see whether any occurrences of ref-types generate visible arenas, recall
that �ref(θ)� = �θ → unit� × �unit → θ�. Consequently, for the purpose of deter-
mining visiblity ref(unit) can be viewed as unit → unit. Thus, ref(unit) can be used
whenever unit → unit is allowed. Note also that it is immaterial whether we con-
sider unit or int. The observations yield the following typing constraints for visible
arenas: (θi ::= β | ref(β) |Θ1 → β and θ ::= Θ1) or (θi ::= Θ1 and θ ::= β), where
β ::= unit | int and Θ1 ::= β | ref(β) |β → Θ1. Analogously, ref(β → β) should be
viewed as a combination of (β → β) → β and β → β → β. The results above do not
give us much room for using this type: it cannot occur on the right but, if θ ≡ β we can
have θi ≡ ref(β → β).

Thanks to Theorems 14 and 15 we can derive:

Theorem 34. Let Γ % θ be such that �Γ % θ� is visible. For any Γ % M : θ, there
exists Γ, y : ref(int) %M ′ : θ such that the following conditions are satisfied.

– Γ %M ∼= let y = ref(0) inM ′.
– M ′ is ref-free.
– If Γ % θ does not contain occurrences of ref , then M ′ is mkvar-free.

Next we give several examples of terms in which uses of ref(unit→ unit) are defi-
nitely not eliminable. This is because the terms generate plays that violate the visibility
condition, to be contrasted with Proposition 10.

Example 35. The first example is simply % newunit→unit : ref(unit→ unit). Its seman-
tics contains the play

� ◦ write ok read � qr qw .

Deconstructing General References via Game Semantics 255

Other examples are obtained by extending the shape of types from Lemma 32 in various
ways.

% letx, y = newunit→unit, newint in
λfunit→unit. (if (!y=0) then (y := 1;x := f) else ()); (!x)() : (unit→ unit)→unit

g : ((unit→ unit)→ unit)→ unit % letx, y = newunit→unit, newint in
g(λfunit→unit. (if (!y = 0) then (y := 1;x := f) else ()); (!x)()) :unit

g : unit→ unit→ unit % letx, y = newunit→unit, newint in
λuunit.(if (!y = 0) then (y := 1;x := g()) else ()); (!x)() :unit→unit

g : (unit→ unit)→ unit→ unit %
letx = newunit→unit in (x := g(λzunit.(!x)())); (!x)() :unit

7 When All References Are Dispensible

Finally, at some types memory allocation turns out dispensible, i.e. there exist purely
functional terms with equivalent observable behaviour. In game-semantic terms, these
are types where all strategies are necessarily innocent [7].

Definition 36. Let A be an arena such that any question enables an answer1. A is
called innocent if all O-questions are initial.

Remark 37. Let us observe that �θ1, · · · , θk % θ� is an innocent arena if and only if
θi ::= Θ1 and θ ::= β.

Lemma 38. Let A be an arena such that any question enables an answer. Every strat-
egy σ : A is innocent if and only if A is innocent.

Proof. Suppose A is not innocent, i.e. there exists a non-initial O-question qO. Let s be
the chain of enablers leading from some initial move to qO and let aP be an answer to
qO. Then the strategy on A consisting of prefixes of saP is not innocent, because it will
not contain saP qOaP . Thus, not all strategies in A are innocent.

Now assume that A is innocent. Consequently, all non-initial O-moves are an-
swers. Thus, each odd-length play s in A must have the shape q(qa)∗. Consequently,
view (s) = s and each strategy on A is thus innocent. ��

The following result then follows from Theorem 15.

Theorem 39. Suppose Γ % M : θ is such that �Γ % M : θ� is innocent. Then there
exists Γ %M ′ : θ satisfying all the conditions below.

– Γ %M ∼= M ′.
– M ′ is ref-free.
– If there are no occurrences of ref-types in Γ % θ, then M ′ is mkvar-free.

1 All arenas corresponding to types are of this kind.

256 A.S. Murawski and N. Tzevelekos

Example 40. Here are two examples of terms not covered by Theorem 39, i.e. terms
that do not have purely functional counterparts, because the corresponding strategies
are not innocent.

% let y = newint inλz
unit.if (!y = 0) then y := 1 elseΩ : unit→ unit

g : (unit→ unit)→ unit % let y = newint in
g(λzunit.if (!y = 0) then y := 1 elseΩ) : unit

8 Conclusion

We showed that general references in L can be simulated with two reference cells, of
types ref(unit→ unit) and ref(int) respectively. This was first demonstrated through
a game-semantic argument and subsequently complemented by a syntactic recipe for
program transformation. The latter was facilitated by the presence of the mkvar con-
structor. However, the results apply equally well to the mkvar-free framework, provided
no reference types occur in the type of the term or those of its free identifiers (arbitrary
internal uses are still allowed). Then the auxiliary occurrences of mkvar can actually be
eliminated, so, in this context, mkvar can be viewed as a useful temporary addition to
the language.

In the future, we would like to conduct a similar study using the nominal game model
of [8]. In the nominal setting, decomposition results such as Lemmata 18 and 19 cannot
be expected to hold. Another surprising challenge is that the obvious adaptation of the
visibility condition fails to be preserved by composition.

References

1. Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general refer-
ences. In: Proceedings of LICS, pp. 334–344. Computer Society Press (1998)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Com-
putation 163, 409–470 (2000)

3. Abramsky, S., McCusker, G.: Call-by-Value Games. In: Nielsen, M. (ed.) CSL 1997. LNCS,
vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

4. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for
Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-Like
Languages, pp. 297–329. Birkhäuser (1997)

5. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. Inf. Comput. 155(1-2),
108–133 (1999)

6. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. Theoretical
Computer Science 221(1–2), 393–456 (1999)

7. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observables and the
full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation 163(2), 285–408 (2000)

8. Murawski, A.S., Tzevelekos, N.: Game semantics for good general references. In: Proceed-
ings of LICS, pp. 75–84. IEEE Computer Society Press (2011)

9. Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J.C. (eds.) Algorithmic
Languages, pp. 345–372. North Holland (1981)

10. Sanjabi, S.B., Ong, C.-H.L.: Fully abstract semantics of additive aspects by translation. In:
Proceedings of AOSD, pp. 135–148. ACM (2007)

Separation Logic for Non-local Control Flow

and Block Scope Variables

Robbert Krebbers and Freek Wiedijk

ICIS, Radboud University Nijmegen, The Netherlands

Abstract. We present an approach for handling non-local control flow
(goto and return statements) in the presence of allocation and dealloca-
tion of block scope variables in imperative programming languages.

We define a small step operational semantics and an axiomatic se-
mantics (in the form of a separation logic) for a small C-like language
that combines these two features, and which also supports pointers to
block scope variables. Our operational semantics represents the program
state through a generalization of Huet’s zipper data structure.

We prove soundness of our axiomatic semantics with respect to our
operational semantics. This proof has been fully formalized in Coq.

1 Introduction

There is a gap between programming language features that can be described
well by a formal semantics, and those that are available in widely used program-
ming languages. This gap needs to be bridged in order for formal methods to
become mainstream. However, interaction between the more ‘dirty’ features of
widely used programming languages tends to make an accurate formal semantics
even more difficult. An example of such interaction is the goto statement in the
presence of block scope variables in the C programming language.

C allows unrestricted gotos which (unlike break and continue) may not only
jump out of blocks, but can also jump into blocks. Orthogonal to this, blocks
may contain local variables, which can be “taken out of their block” by keeping
a pointer to them. This makes non-local control in C (including break and con-
tinue) even more unrestricted, as leaving a block results in the memory of these
variables being freed, and thus making pointers to them invalid. Consider:

int *p = NULL;

l: if (p) { return (*p); }

else { int j = 10; p = &j; goto l; }

Here, when the label l is passed for the first time, the variable p is NULL. Hence,
execution continues in the block containing j where p is assigned a pointer to
j. However, after the goto l statement, the block containing j is left, and the
memory of j is freed. After this, dereferencing p is no longer legal, making the
program exhibit undefined behavior.

If a program exhibits undefined behavior, the ISO C standard [8] allows it
to do literally anything. This is to avoid compilers having to insert (possibly

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 257–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 R. Krebbers and F. Wiedijk

expensive) dynamic checks to handle corner cases. In particular, in the case of
non-local control flow this means that an implementation can ignore allocation
issues when jumping, but a semantics cannot. Not describing certain undefined
behaviors would therefore mean that some programs can be proven correct with
respect to the formal semantic whereas they may crash or behave unexpectedly
when compiled with an actual C compiler.

It is well known that a small step semantics is more flexible than a big step
semantics for modeling more intricate programming language features. In a small
step semantics, it is nonetheless intuitive to treat uses of goto as big steps, as
executing them makes the program jump to a totally different place in one
step. For functional languages, there has been a lot of research on modeling
control (call/cc and variants thereof) in a purely small step manner (see [6] for
example). This indicates that the intuition that uses of non-local control should
be treated as big steps is not correct.

We show that a purely small step semantics is also better suited to handle the
interaction between gotos and block scope variables in imperative programming
languages. Our semantics lets the goto statement traverse in small steps through
the program to search for its corresponding label. The required allocations and
deallocations are calculated incrementally during this traversal.

Our choice of considering goto at all may seem surprising. Since the revolution
of structured programming in the seventies, many people have considered goto as
bad programming practice [4]. However, some have disagreed [9], and gotos are
still widely used in practice. For example, the current Linux kernel contains about
a hundred thousand uses of goto. Goto statements are particularly useful for
breaking from multiple nested loops, and for systematically cleaning up resources
after an error occurred. Also, gotos can be used to increase performance.

Approach. We define a small step operational semantics for a small C-like lan-
guage that supports both non-local control flow and block scope variables. To
obtain more confidence in this semantics, and to support reasoning about pro-
grams in this language, we define an axiomatic semantics for the same fragment,
and prove its soundness with respect to the operational semantics.

Our operational semantics uses a zipper -like data structure [7] to store both
the location of the substatement that is being executed and the program stack.
Because we allow pointers to local variables, the stack contains references to the
value of each variable instead of the value itself. Execution of the program occurs
by traversal through the zipper in one of the following directions: down ↘, up ↗,
jump �, or top ↑↑. When a goto l statement is executed, the direction is changed
to � l, and the semantics performs a small step traversal through the zipper until
the label l has been reached.

Related Work. Goto statements (and other forms of non-local control) are often
modeled using continuations. Appel and Blazy provide a small step continuation
semantics for Cminor [2] that supports return statements. CompCert extends
their approach to support goto statements in Cmedium [12]. Ellison and Rosu [5]
also use continuations to model gotos in their C11 semantics, but whereas the

Separation Logic for Non-local Control Flow and Block Scope Variables 259

CompCert semantics does not support block scope variables, they do. We further
discuss the differences between continuations and our approach in Section 3.

Tews [18] defines a denotational semantics for a C-like language that supports
goto and unstructured switch statements. His state includes variants for non-
local control corresponding to our directions � and ↑↑.

The most closely related work to our axiomatic semantics is Appel and Blazy’s
separation logic for Cminor in Coq [2]. Their separation logic supports return
statements, but does not support gotos, nor block scope variables. Von Ohe-
imb [15] defines an operational and axiomatic semantics for a Java-like language
in Isabelle. His language supports both local variables and mutually recursive
function calls. Although his work is fairly different from ours, our approach to
mutual recursion is heavily inspired by his. Furthermore, Chlipala [3] gives a
separation logic for a low-level language in Coq that supports gotos. His ap-
proach to automation is impressive, but he does not give an explicit operational
semantics and does not consider block scope variables.

Contribution. Our contribution is threefold:

– We define a small step operational semantics using a novel zipper based data
structure to handle the interaction between gotos and block scope variables
in a correct way (Section 2 and 3).

– We give an axiomatic semantics that allows reasoning about programs with
gotos, pointers to local variables, and mutually recursive function calls. We
demonstrate it by verifying Euclid’s algorithm (Section 4).

– We prove the soundness of our axiomatic semantics (Section 5). This proof
has been fully formalized in the Coq proof assistant (Section 6).

2 The Language

Our memory is a finite partial function from natural numbers to values, where a
value is either an unbounded integer, a pointer represented by a natural number
corresponding to the index of a memory cell, or the NULL-pointer.

Definition 2.1. A partial function from A to B is a (total) function from A to
Bopt, where Aopt is the option type, defined as containing either ⊥ or x for some
x ∈ A. A partial function is called finite if its domain is finite. The operation
f [x := y] stores the value y at index x, and f [x := ⊥] deletes the value at index
x. Disjointness, notation f1 ⊥ f2, is defined as ∀x . f1 x = ⊥ ∨ f2 x = ⊥. Given
f1 and f2 with f1 ⊥ f2, the operation f1 ∪ f2 yields their union. Moreover, the
inclusion f1 ⊆ f2 is defined as ∀x y . f1 x = y → f2 x = y.

Definition 2.2. Values are defined as:

v ::= int n | ptr b | NULL

Memories (typically named m) are finite partial functions from natural numbers
to values. A value v is true, notation istrue v, if it is of the shape int n with
n �= 0, or ptr b. It is false, notation isfalse v, otherwise.

260 R. Krebbers and F. Wiedijk

Expressions are side-effect free and will be given a deterministic semantics by
an evaluation function. The variables used in expressions are De Bruijn indexes,
i.e. the variable xi refers to the ith value on the stack. De Bruijn indexes avoid
us from having to deal with shadowing due to block scope variables. Especially
in the axiomatic semantics this is useful, as we do not want to lose information
by a local variable shadowing an already existing one.

Definition 2.3. Expressions are defined as:

	 ::= == | ≤ | + | ∗ | / | %

e ::= xi | v | load e | e1 	 e2

Stacks (typically named ρ) are lists of memory indexes rather than lists of values.
This allows us to treat pointers to both local and allocated storage in a uniform
way. Evaluation of a variable thus consists of looking up its address in the stack,
and returning a pointer to that address.

Definition 2.4. Evaluation [[e]]ρ,m of an expression e in a stack ρ and memory
m is defined by the following partial function:

[[xi]]ρ,m := ptr a if ρ i = a

[[v]]ρ,m := v

[[load e]]ρ,m := ma if [[e]]ρ,m = ptr a

[[e1 	 e2]]ρ,m := [[e1]]ρ,m	[[e2]]ρ,m

Lemma 2.5. If m1 ⊆ m2 and [[e]]ρ,m1 = v, then [[e]]ρ,m2 = v.

Definition 2.6. Statements are defined as:

s ::= block s | el := er | f(�e) | skip | goto l
| l : s | s1 ; s2 | if (e) s1 else s2 | return

The construct block s opens a new scope with one variable. Since we use De
Bruijn indexes for variables, it does not contain the name of the variable. For
presentation’s sake, we have omitted functions that return values (these are
however included in our Coq formalization). In the semantics presented here, an
additional function parameter with a pointer for the return value can be used
instead. Given a statement s, the function labels s collects the labels of labeled
statements in s, and the function gotos s collects the labels of gotos in s.

3 Operational Semantics

We define the semantics of statements by a small step operational semantics.
That means, computation is defined by the reflexive transitive closure of a re-
duction relation � on program states. This reduction relation traverses through

Separation Logic for Non-local Control Flow and Block Scope Variables 261

the program in small steps by moving the focus on the substatement that is be-
ing executed. Uses of non-local control (goto and return) are performed in small
steps rather than in big steps as well.

In order to model the concept of focusing on the substatement that is being
executed, we need a data structure to capture the location in the program. For
this we define program contexts as an extension of Huet’s zipper data struc-
ture [7]. Program contexts extend the zipper data structure by annotating each
block scope variable with its associated memory index, and furthermore contain
the full call stack of the program. Program contexts can also be seen as a gen-
eralization of continuations (as for example being used in CompCert [2,11,12]).
However, there are some notable differences.

– Program contexts implicitly contain the stack, whereas a continuation se-
mantics typically stores the stack separately.

– Program contexts also contain the part of the program that has been exe-
cuted, whereas continuations only contain the part that remains to be done.

– Since the complete program is preserved, looping constructs like the while
statement do not have to duplicate code (see the Coq formalization).

The fact that program contexts do not throw away the parts of the statement
that have been executed is essential for our treatment of goto. Upon an invo-
cation of a goto, the semantics traverses through the program context until the
corresponding label has been found. During this traversal it passes all block scope
variables that went out of scope, allowing it to perform required allocations and
deallocations in a natural way. Hence, the point of this traversal is not so much
to search for the label, but much more to incrementally calculate the required
allocations and deallocations.

In a continuation semantics, upon the use of a goto, one typically computes,
or looks up, the statement and continuation corresponding to the target label.
However, it is not very natural to reconstruct the required allocations and deal-
locations from the current and target continuations.

Definition 3.1. Singular statement contexts are defined as:

ES ::= � ; s2 | s1 ;� | if (e) � else s2 | if (e) s1 else � | l :�

Given a singular statement context ES and a statement s, substitution of s for
the hole in ES , notation ES [s], is defined in the ordinary way.

A pair (�ES , s) consisting of a list of singular statement contexts �ES and a
statement s forms a zipper for statements without block scope variables. That
means, �ES is a statement turned inside-out that represents a path from the
focused substatement s to the top of the whole statement.

Definition 3.2. Singular program contexts are defined as:

E ::= ES | blockb � | call f �e | params �b

Program contexts (typically named k) are lists of singular program contexts.

262 R. Krebbers and F. Wiedijk

The previously introduced contexts will be used as follows.

– When entering a block, block s, the context blockb � is appended to the
head of the program context. It associates the block scope variable with its
corresponding memory index b.

– Upon a function call, f(�e), the context call f �e is appended to the head of
the program context. It contains the location of the caller so that it can be
restored when the called function f returns.

– When a function body is entered, the context params �b is appended to the
head of the program context. It contains a list of memory indexes of the
function parameters.

As program contexts implicitly contain the stack, we define a function to extract
it from them.

Definition 3.3. The corresponding stack getstack k of k is defined as:

getstack (ES :: k) := getstack k

getstack (blockb � :: k) := b :: getstack k

getstack (call f �e :: k) := []

getstack (params �b :: k) := �b ++ getstack k

We will treat getstack as an implicit coercion and will omit it everywhere.

We define getstack (call f �e :: k) as [] instead of getstack k, as otherwise it would
be possible to refer to the local variables of the calling function.

Definition 3.4. Directions, focuses and program states are defined as:

d ::= ↘ | ↗ | � l | ↑↑

φ ::= (d, s) | call f �v | return
S ::= S(k, φ, m)

A program state S(k, φ, m) consists of a program context k, the part of the
program that is focused φ, and the memory m. Like Leroy’s semantics for Cmi-
nor [11], we consider three kinds of states: (a) execution of statements (b) calling
a function (c) returning from a function. The CompCert Cmedium semantics [12]
also includes a state for execution of expressions and a stuck state for undefined
behavior. Since our expressions are side-effect free, we do not need an additional
expression state. Furthermore, since expressions are deterministic, we can easily
capture undefined behavior by letting the reduction get stuck.

Definition 3.5. The relation allocparams m1
�b �v m2 (non-deterministically)

allocates fresh blocks �b for function parameters �v. It is inductively defined as:

allocparamsm [] [] m

allocparamsm1
�b �v m2 m2 b = ⊥

allocparamsm1 (b :: �b) (v :: �v) m2[b := v]

Separation Logic for Non-local Control Flow and Block Scope Variables 263

Definition 3.6. Given a function δ assigning statements to function names, the
small step reduction relation S1 � S2 is defined as:

1. For simple statements:

(a) S(k, (↘, e1 := e2), m) � S(k, (↗, e1 := e2), m[a := v])
for any a and v such that [[e1]]k,m = ptr a, [[e2]]k,m = v and ma 	= ⊥.

(b) S(k, (↘, f(�e)), m) � S(call f �e :: k, call f �v, m)
for any �v such that [[ei]]k,m = vi for each i.

(c) S(k, (↘, skip), m) � S(k, (↗, skip), m)

(d) S(k, (↘, goto l), m) � S(k, (� l, goto l), m)

(e) S(k, (↘, return), m) � S(k, (↑↑, return), m)

2. For compound statements:

(a) S(k, (↘, block s), m) � S((blockb �) :: k, (↘, s), m[b := v])
for any b and v such that mb = ⊥.

(b) S(k, (↘, s1 ; s2), m) � S((� ; s2) :: k, (↘, s1), m)

(c) S(k, (↘, if (e) s1 else s2), m) � S((if (e) � else s2) :: k, (↘, s1), m)
for any v such that [[e]]k,m = v and istrue v.

(d) S(k, (↘, if (e) s1 else s2), m) � S((if (e) s1 else �) :: k, (↘, s2), m)
for any v such that [[e]]k,m = v and isfalse v.

(e) S(k, (↘, l : s), m) � S((l :�) :: k, (↘, s), m)

(f) S((blockb �) :: k, (↗, s), m) � S(k, (↗, block s), m[b := ⊥])

(g) S((� ; s2) :: k, (↗, s1), m) � S((s1 ;�) :: k, (↘, s2), m)

(h) S((s1 ;�) :: k, (↗, s2), m) � S(k, (↗, s1 ; s2), m)

(i) S((if (e) � else s2) :: k, (↗, s1), m) � S(k, (↗, if (e) s1 else s2), m)

(j) S((if (e) s1 else �) :: k, (↗, s2), m) � S(k, (↗, if (e) s1 else s2), m)

(k) S((l :�) :: k, (↗, s), m) � S(k, (↗, l : s), m)

3. For function calls:

(a) S(k, call f �v, m1) � S(params �b :: k, (↘, s), m2)

for any s, �b and m2 such that δ f = s and allocparams m1
�b �v m2.

(b) S(params �b :: k, (↗, s), m) � S(k, return, m[�b := �⊥])

(c) S(params �b :: k, (↑↑, s), m) � S(k, return, m[�b := �⊥])

(d) S(call f �e :: k, return, m) � S(k, (↗, f(�e)), m)

4. For non-local control flow:

(a) S((blockb �) :: k, (↑↑, s), m) � S(k, (↑↑, block s), m[b := ⊥])

(b) S(ES :: k, (↑↑, s), m) � S(k, (↑↑, ES [s]), m)

(c) S(k, (� l, block s), m) � S((blockb �) :: k, (� l, s), m[b := v])
for any b and v such that mb = ⊥, and provided that l ∈ labels s.

(d) S(k, (� l, l : s), m) � S((l :�) :: k, (↘, s), m)

(e) S(k, (� l, ES [s]), m) � S(ES :: k, (� l, s), m) provided that l ∈ labels s.

(f) S(blockb � :: k, (� l, s), m) � S(k, (� l, block s), m[b := ⊥])
provided that l /∈ labels s.

(g) S(ES :: k, (� l, s), m) � S(k, (� l, ES [s]), m) provided that l /∈ labels s.

264 R. Krebbers and F. Wiedijk

Note that the rules 4d and 4e overlap, and that the splitting into ES and s in
rule 4e is non-deterministic. We let �∗ denote the reflexive-transitive closure,
and �n paths of ≤ n steps.

Execution of a statement S(k, (d, s), m) is performed by traversing through
the program context k and statement s in direction d. The direction down ↘

(respectively up ↗) is used to traverse downwards (respectively upwards) to the
next substatement to be executed. Consider the example from the introduction
(with the return expression omitted).

int *p = NULL;

l: if (p) { return; }

else { int j = 10; p = &j; goto l; }

Figure 1 below displays some states corresponding to execution of this program
starting at p = &j in downwards direction.

Execution of a function call S(k, (↘, f(�e)), m) consists of two reductions. The
reduction to S(call f �e :: k, call f �v, m) evaluates the function parameters �e to
values �v, and stores the location of the calling function on the program context.
The subsequent reduction to S(params �b :: call f �e :: k, (↘, s), m′) looks up
the called function’s body s, allocates storage for the parameters �v, and then
performs a transition to execute the called function’s body.

We consider two directions for non-local control flow: jump � l and top ↑↑.
After a goto l the direction � l is used to traverse to the substatement labeled
l. Although this search is non-deterministic, there are some side conditions on
it so as to ensure it not going back and forth between the same locations. This
is required as it otherwise may impose non-terminating behavior on terminating
programs. The non-determinism could be removed entirely by adding additional
side conditions. However we omitted doing so in order to ease formalization.

The direction ↑↑ is used to traverse to the top of the statement after a
return. When it reaches the top, there will be two reductions to leave the
called function. The first reduction, from S(params �b :: call f �e :: k, (↑↑, s), m) to

S(call f �e :: k, return, m[�b := �⊥]), deallocates the function parameters, and the
second, to S(k, (↗, f(�e)), m), reinstates the calling function.

k1 = � ; goto l
:: x0 := int 10 ;�
:: blockbj �
:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ1 = (↘, x1 := x0)

m1 = {bp �→ NULL, bj �→ 10}
S1 = S(k1, φ1, m1)

k2 = � ; goto l
:: x0 := int 10 ;�
:: blockbj �
:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ2 = (↗, x1 := x0)

m2 = {bp �→ ptr bj , bj �→ 10}
S2 = S(k2, φ2, m2)

k3 = x1 := x0 ;�
:: x0 := int 10 ;�
:: blockbj �
:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ3 = (↘, goto l)

m3 = {bp �→ ptr bj , bj �→ 10}
S3 = S(k3, φ3, m3)

Fig. 1. An example reduction path S1 � S2 � S3

Separation Logic for Non-local Control Flow and Block Scope Variables 265

When we relate our operational and axiomatic semantics in Section 5, we will
have to restrict the traversal through the program to remain below a certain
context.

Definition 3.7. The k-restricted reduction S1 �k S2 is defined as S1 � S2

provided that k is a suffix of the program context of S2. We let �∗k denote the
reflexive-transitive closure, and �n

k paths of ≤ n steps.

Lemma 3.8. If S(k, (d, s), m) �∗k S(k, (d′, s′), m′), then s = s′.

The previous lemma shows that the small step semantics indeed behaves as
traversing through a zipper. Its proof is not entirely trivial due to the presence
of function calls, as these add the statement of the called function to the state.

4 Axiomatic Semantics

Judgments of Hoare logic are triples {P} s {Q}, where s is a statement, and P
and Q are assertions called the pre- and postcondition. The intuitive reading
of such a triple is: if P holds for the state before executing s, and execution of
s terminates, then Q holds afterwards. To deal with non-local control flow and
function calls, our judgments become sextuples Δ; J ; R % {P} s {Q}, where:

– Δ is a finite function from function names to their pre- and postconditions.
This environment is used to cope with (mutually) recursive functions.

– J is a function that gives the jumping condition for each goto. When exe-
cuting a goto l, the assertion J l has to hold.

– R is the assertion that has to hold when executing a return.

The assertions P , Q, J and R correspond to the four directions ↘, ↗, � and
↑↑ in which traversal through a statement can be performed. We therefore often
treat the sextuple as a triple Δ; P̄ % s, where P̄ is a function from directions to
assertions such that P̄ ↘ = P , P̄ ↗ = Q, P̄ (� l) = J l and P̄ ↑↑ = R.

We use a shallow embedding for the representation of assertions. This treat-
ment is similar to that of Appel and Blazy [2] and Von Oheimb [15].

Definition 4.1. Assertions are predicates over the the stack and the memory.
We define the following connectives on assertions.

P → Q := λρm .P ρm→ Qρm

P ∧ Q := λρm .P ρm ∧Qρm

P ∨ Q := λρm .P ρm ∨Qρm

¬P := λρm .¬P ρm

∀x . P x := λρm . ∀x . P x ρm

∃x . P x := λρm . ∃x . P x ρm

P := λρm .P

e ⇓ v := λρm . [[e]]ρ,m = v

e ⇓ – := ∃v . e ⇓ v
e ⇓ * := ∃v . istrue v ∧ e ⇓ v
e ⇓ ⊥ := ∃v . isfalse v ∧ e ⇓ v

P [a := v] := λρm .P ρm[a := v]

We treat as an implicit coercion, for example, we write True instead of
True . Also, we often lift the above connectives to functions to assertions, for

example, we write P ∧ Q instead of λv . P v ∧ Qv.

266 R. Krebbers and F. Wiedijk

Definition 4.2. An assertion P is stack independent if P ρ1m → P ρ2m for
each memory m and stacks ρ1 and ρ2, and similarly is memory independent if
P ρm1 → P ρm2 for each stack ρ and memories m1 and m2.

Next, we define the assertions of separation logic [14]. The assertion emp asserts
that the memory is empty. The separating conjunction P ∗ Q asserts that the
memory can be split into two disjoint parts such that P holds in the one part,
and Q in the other. Finally, e1 �→ e2 asserts that the memory consists of exactly
one cell at address e1 with contents e2, and e1 ↪→ e2 asserts that the memory
contains at least a cell at address e1 with contents e2.

Definition 4.3. The connectives of separation logic are defined as follows.

emp := λρm .m = ∅
P ∗ Q := λρm . ∃m1m2 .m = m1 ∪ m2 ∧m1 ⊥ m2 ∧ P ρm1 ∧Qρm2

e1 �→ e2 := λρm . ∃b v . [[e1]]ρ,m = ptr b ∧ [[e2]]ρ,m = v ∧m = {(b, v)}
e1 �→ – := ∃e2 . e1 �→ e2

e1 ↪→ e2 := λρm . ∃b v . [[e1]]ρ,m = ptr b ∧ [[e2]]ρ,m = v ∧mb = v

e1 ↪→ – := ∃e2 . e1 ↪→ e2

To deal with block scope variables we need to lift an assertion such that the
De Bruijn indexes of its variables are increased. We define the lifting P ↑ of an
assertion P semantically, and prove that it indeed behaves as expected.

Definition 4.4. The assertion P ↑ is defined as λρm .P (tail ρ)m.

Lemma 4.5. We have (e ⇓ v) ↑ = (e↑) ⇓ v and (e1 �→ e2) ↑ = (e1 ↑) �→ (e2 ↑),
where the operation e↑ replaces each variable xi in e by xi+1. Furthermore, () ↑
distributes over the connectives →, ∧, ∨, ¬, ∀, ∃, and ∗.

In order to relate the pre- and postcondition of a function, we allow universal
quantification over arbitrary logical variables �y. The specification of a function
with parameters �v consists therefore of a precondition P �y �v and postcondition
Q�y �v. These should be stack independent because local variables will have a
different meaning at the calling function than in the called function’s body. We
will write such a specification as ∀�y ∀�v . {P �y �v} {Q�y�v}.

Definition 4.6. Given a function δ assigning statements to function names, the
rules of the axiomatic semantics are defined as:

Δ; J ; R � {P} s {Q}
Δ; A ∗ J ; A ∗ R � {A ∗ P} s {A ∗ Q}

∀x.(Δ; J ; R � {P x} s {Q})
Δ; J ; R � {∃x . P x} s {Q}

(frame & exists)

(∀l ∈ labels s . J ′l→ Jl) (∀l /∈ labels s . Jl → J ′l) R→ R′

P ′ → P Δ; J ; R � {P} s {Q} Q→ Q′

Δ; J ′; R′ � {P ′} s {Q′}
(weaken)

Δ; J ; R � {P} skip {P} Δ; J ; R � {R} return {Q} (skip & return)

Separation Logic for Non-local Control Flow and Block Scope Variables 267

Δ; J ; R � {∃a v . e1 ⇓ a ∧ e2 ⇓ v ∧ ptr a ↪→ – ∧ P [a := v]} e1 := e2 {P} (assign)

Δ; J ; R � {J l} s {Q}
Δ; J ; R � {J l} l : s {Q} Δ; J ; R � {J l} goto l {Q}

(label & goto)

Δ; x0 �→ – ∗ J ↑; x0 �→ – ∗ R ↑ � {x0 �→ – ∗ P ↑} s {x0 �→ – ∗ Q ↑}
Δ; J ; R � {P} block s {Q}

(block)

Δ; J ; R � {P} s1 {P ′} Δ; J ; R � {P ′} s2 {Q}
Δ; J ; R � {P} s1 ; s2 {Q}

(comp)

Δ; J ; R � {e ⇓ � ∧ P} s1 {Q} Δ; J ; R � {e ⇓ ⊥ ∧ P} s2 {Q}
Δ; J ; R � {e ⇓ – ∧ P} if (e) s1 else s2 {Q}

(cond)

Δf = {P} {Q} �e ⇓ �v ∧ P �y �v → A A memory independent

Δ; J ; R � {�e ⇓ �v ∧ P �y �v} f(�e) {A ∧ Q�y �v}
(call)

∀f P ′ Q′ .Δ′f = (∀�z ∀�w . {P �z �w} {Q�z �w}) → ∀�y �v .
(Δ′ ∪Δ; λl.False;Π∗[xi �→ –] ∗ Q′�y �v � {Π∗[xi �→ vi] ∗ P ′�y �v} δ f {Π∗[xi �→ –] ∗ Q′�y �v})

Δ′ ∪Δ; J ; R � {P} s {Q} dom Δ′ ⊆ dom δ

Δ; J ; R � {P} s {Q}
(add funs)

The traditional frame rule of separation logic [14] includes the side-condition
vars s ∩ varsA = ∅ on the free variables in the statement s and assertion A.
However, as our local variables are just (immutable) references into the memory,
we do not need this side-condition. Also, the (frame) and (block) rule are uniform
in all assertions, allowing us to write:

Δ; P̄ % s
Δ; A ∗ P̄ % s

Δ; P̄ % block s

Δ; x0 �→ – ∗ P̄ ↑ % s
Since the return and goto statements leave the normal control flow, the post-
conditions of the (goto) and (return) rules are arbitrary.

Our rules for function calls are similar to those by Von Oheimb [15]. The
(call) rule is to call a function that is already in Δ. It is important to notice that
its postcondition is not �e ⇓ �v ∧ Q�y �v, as after calling f evaluation of �e may be
different after all. However, in case �e contains no load expressions, we have that
�e ⇓ �v is memory independent, and we can simply take A to be �e ⇓ �v.

The (add funs) rule can be used to add an arbitrary family Δ′ of specifications
of (possibly mutually recursive) functions to Δ. For each function f in Δ′ with
precondition P ′ and postconditionQ′, it has to be verified that the function body
δ f is correct for all instantiations of the logical variables �y and input values �v.
The precondition Π∗[xi �→ vi] ∗ P ′�y �v, where Π∗[xi �→ vi] denotes the assertion
xi �→ vi ∗ . . . xn �→ vn, states that the function parameters �x are allocated with
values �v for which the precondition P ′ of the function holds. The post- and
returning condition Π∗[xi �→ –] ∗ Q′�y �v ensure that the parameters have not
been deallocated while executing the function body and that the postcondition
P ′ of the function holds on a return. The jumping condition λl.False ensures
that all gotos jump to a label that occurs in the function body.

268 R. Krebbers and F. Wiedijk

Euclid’s algorithm in C:

void swap(int *p, int *q) {
int z = *p; *p = *q; *q = z;

}

int gcd(int y, int z) {
l: if (z) {
y = y % z; swap(&y, &z); goto l;

}
return y;

}

Verification of the body of swap:

{x0 �→ p ∗ x1 �→ q ∗ p �→ y ∗ q �→ z}
block (

{x0 �→ – ∗ x1 �→ p ∗ x2 �→ q ∗ p �→ y ∗ q �→ z}
x0 := load (load x1) ;

{x0 �→ y ∗ x1 �→ p ∗ x2 �→ q ∗ p �→ y ∗ q �→ z}
load x1 := load (load x2) ;

{x0 �→ y ∗ x1 �→ p ∗ x2 �→ q ∗ p �→ z ∗ q �→ z}
load x2 := load x0

{x0 �→ y ∗ x1 �→ p ∗ x2 �→ q ∗ p �→ z ∗ q �→ y}
)

{x0 �→ p ∗ x1 �→ q ∗ p �→ z ∗ q �→ y}

Verification of the body of gcd:

{x0 �→ int y ∗ x1 �→ int z}
l :

{J l}
if (load x1) (

{load x1 ⇓ � ∧ J l}
{x0 �→ int y′ ∗ x1 �→ int z′ ∧
z′
= 0 ∧ gcd y z = gcd y′ z′}

x0 := load x0 % load x1 ;

{x0 �→ int (y
′
% z

′
) ∗ x1 �→ int z

′ ∗
(z′
= 0 ∧ gcd y z = gcd y′ z′ ∧ emp)}

swap(x0, x1) ;

{x0 �→ int z′ ∗ x1 �→ int (y′ % z′) ∗
(z

′
= 0 ∧ gcd y z = gcd y
′
z
′ ∧ emp)}

{J l}
goto l

{x0 �→ int (gcd y z) ∗ x1 �→ int 0}
) else

{load x1 ⇓ ⊥ ∧ J l}
{x0 �→ int y′ ∗ x1 �→ int 0 ∧ gcd y z = gcd y′ 0}

skip

{x0 �→ int (gcd y z) ∗ x1 �→ int 0}

Fig. 2. Verification of Euclid’s algorithm

As an example we verify Euclid’s algorithm for computing the greatest com-
mon divisor. We first verify the swap function, which takes two pointers p and q
and swaps their contents. Its specification is as follows:

∀y z ∀p q . {p �→ y ∗ q �→ z} {p �→ z ∗ q �→ y}

Here, universal quantification over the logical variables y and z is used to relate
the contents of the pointers p and q in the pre- and postcondition. In order to
add this function to the context Δ of verified functions using the (add funs) rule,
we have to prove that the body satisfies the above specification. An outline of
this proof (with implicit uses of weakening) is displayed in Figure 2.

To verify the body of the gcd function, we use a jumping environment J that
assigns ∃y′z′ . x0 �→ int y′ ∗ x1 �→ int z′ ∧ gcd y z = gcd y′ z′ to the label l. For
the function call to swap, we use the (frame) rule with the framing condition
z′ �= 0 ∧ gcd y z = gcd y′ z′ ∧ emp as displayed in Figure 2. We refer to the Coq
formalization for the full details of these proofs.

5 Soundness of the Axiomatic Semantics

We define Δ; J ; R
 {P} s {Q} for Hoare sextuples in terms of our operational
semantics. Proving soundness of the axiomatic semantics then consists of show-
ing that Δ; J ; R % {P} s {Q} implies that Δ; J ; R
 {P} s {Q}.

Separation Logic for Non-local Control Flow and Block Scope Variables 269

We want Δ; J ; R
 {P} s {Q} to ensure partial program correctness. In-
tuitively, that means: if P km and S(k, (s, ↘), m) �∗ S(k, (s, ↗), m′), then
Qkm′. However, due to the additional features, this is too simple.

1. We also have to account for reductions starting in ↑↑ or � direction. Hence,
we take the four assertions J , R, P and Q together as one function P̄ and
write Δ; J ; R
 {P} s {Q} as Δ; P̄
 s. The intuitive meaning of Δ; P̄
 s
is: if P̄ d k m and S(k, (s, d), m) �∗ S(k, (s, d′), m′), then P̄ d′ km′.

2. We have to enforce the reduction S(k, (s, d), m) �∗ S(k, (s, d′), m′) to
remain below k as it could otherwise take too many items off the context.

3. Our language has various kinds of undefined behavior (e.g. invalid pointer
dereferences). We therefore also want Δ; P̄
 s to guarantee that s does not
exhibit such undefined behaviors. Hence, Δ; P̄
 s should at least guarantee
that if P̄ d km and S(k, (s, d), m) �∗k S, then S is either:
– reducible (no undefined behavior has occurred); or:
– of the shape S(k, (s, d′), m′) with P̄ d′ km′ (execution is finished).

4. The program should satisfy a form of memory safety so as the make the frame
rule derivable. Hence, if before execution the memory can be extended with
a disjoint part, that part should not be modified during the execution.

5. We take a step indexed approach in order to relate the assertions of functions
in Δ to the statement s.

Together this leads to the following definitions:

Definition 5.1. Given a predicate P̄ over stacks, focuses and memories, spec-
ifying valid ending states, the relation P̄
n Ŝ(k, φ, m ∪ �) is defined as: for
each reduction S(k, φ, m ∪ mf) �n

k S(k′, φ′, m′), we have that m′ is of the
shape m′ = m′′ ∪ mf for some memory m′′, and either:

1. there is a state S such that S(k′, φ′, m′) �k S; or:
2. k′ = k and P̄ k′ φ′m′′.

Definition 5.2. Validity of the environment Δ, notation
n Δ is defined as: if
Δf = (∀�y . ∀�v . {P �y �v} {Q�y�v}) and P �y �v km, then Q′
n Ŝ(k, call f �v, m ∪ �),
where Q′ := λρ φ m′ . (φ = return) ∧Q�y �v ρ m′.

Definition 5.3. Validity of a statement s, notation Δ; P̄
 s is defined as: if

n Δ, down d s, and P̄ d k m, then Q′
n Ŝ(k, (d, s), m ∪ �), where

Q′ := λρφm′ . ∃d′ s′ . φ = (d′, s′) ∧ ¬down d′ s′ ∧ P̄ d′ ρ m′

The predicate down holds if down ↘ s′ or down (� l) s′ with l ∈ labels s′.

Proposition 5.4 (Soundness). Δ; P̄ % s implies Δ; P̄
 s.
This proposition is proven by induction on the derivation of Δ; P̄ % s. Thus, for
each rule of the axiomatic semantics, we have to show that it holds in the model.
The rules for the skip, return, assignment, goto and function calls are proven by
chasing all possible reduction paths. In the case of the assignment statement, we
need weakening of expression evaluation (Lemma 2.5).

All structural rules are proven by induction on the length of the reduction.
These proofs involve chasing all possible reduction paths. We refer to the Coq
formalization for the proofs of these rules.

270 R. Krebbers and F. Wiedijk

6 Formalization in Coq

All proofs in this paper have been fully formalized using the Coq proof assistant.
Formalization has been of great help in order to develop and debug the semantics.
We used Coq’s notation mechanism combined with unicode symbols and type
classes for overloading to let the Coq development correspond as well as possible
to the definitions in this paper.

There are some small differences between the Coq development and this pa-
per. Firstly, we omitted while statements and functions with return values here,
whereas they are included in the Coq development. Secondly, in this paper, we
presented the axiomatic semantics as an inference system, and then showed that
it has a model. Since we did not consider completeness, in Coq we directly proved
all rules to be derivable with respect to the model.

We used type classes to provide abstract interfaces for commonly used struc-
tures like finite sets and finite functions, so we were able to prove theory and
implement automation in an abstract way. Our approach is greatly inspired by
the unbundled approach of Spitters and van der Weegen [17]. However, whereas
their work heavily relies on setoids (types equipped with an equivalence rela-
tion), we tried to avoid that, and used Leibniz equality wherever possible. In
particular, our interface for finite functions requires extensionality with respect
to Leibniz equality. That means m1 = m2 ↔ ∀x .m1 x = m2 x.

Intensional type theories like Coq do not satisfy extensionality. However, fi-
nite functions indexed by a countable type can still be implemented in a way
that extensionality holds. For the memory we used finite functions indexed by
binary natural numbers implemented as radix-2 search trees. This implementa-
tion is based on the implementation in CompCert [12]. But whereas CompCert’s
implementation does not satisfy canonicity, and thus allows different trees for
the same finite function, we have equipped our trees with a proof of canonicity.
This way, equality on these finite functions as trees becomes extensional.

Extensional equality on finite functions is particularly useful for dealing with
assertions, which are defined as predicates on the stack and memory (Defini-
tion 4.1). Due to extensionality, we did not have to equip assertions with a proof
of well-definedness with respect to extensional equality on memories.

Although the semantics described in this paper is not extremely big, it is still
quite cumbersome to be treated without automation in a proof assistant. In par-
ticular, the operational semantics is defined as an inductive type consisting of
32 constructors. To this end, we have automated many steps of the proofs. For
example, we implemented the tactic do_cstep to automatically perform reduc-
tion steps and to solve the required side-conditions, and the tactic inv_cstep

to perform case analyzes on reductions and to automatically discharge impos-
sible cases. Ongoing experiments show that this approach is successful, as the
semantics can be extended easily without having to redo many proofs.

Our Coq code, available at http://robbertkrebbers.nl/research/ch2o/,
is about 3500 lines of code including comments and white space. Apart from
that, the library on general purpose theory (finite sets, finite functions, lists,
etc.) is about 7000 lines, and the gcd example is about 250 lines.

http://robbertkrebbers.nl/research/ch2o/

Separation Logic for Non-local Control Flow and Block Scope Variables 271

7 Conclusions and Further Research

The further reaching goal of this work is to develop an operational semantics
for a large part of the C11 programming language [8] as part of the Formalin
project [10]. In order to get there, support for non-local control flow is a necessary
step. The operational semantics in this paper extends easily to most other forms
of non-local control in C: the break and continue statement, and non-structured
switch statements (e.g. Duff’s device). To support these, we just have to add an
additional direction and its corresponding reduction rules.

In this paper we have also defined an axiomatic semantics. The purpose of
this axiomatic semantics is twofold. Firstly, it gives us more confidence in the
correctness and usability of our operational semantics. Secondly, in order to
reason about actual C programs, non-local control flow and pointers to block
scope variables have to be supported by the axiomatic semantics.

Unfortunately, the current version of our axiomatic semantics is a bit cumber-
some to be used for actual program verification. The foremost reason is that our
way of handling local variables introduces some overhead. In traditional separation
logic [14], there is a strict separation between local variables and allocated storage:
the values of local variables are stored directly on the stack, whereas the memory
is only used for allocated storage. To that end, the separating conjunction does not
dealwith local variables, andmany assertions can bewritten down in a shorterway.
For example, even though we do not use pointers to the local variables of the swap
function (Figure 2), we still have to deal with two levels of indirection.

It seems not too hard to make allocation of local variables in the memory
optional, so that it can be used only for variables that actually have pointers
to them. Ordinary variables then correspond nicely to those with the register
keyword in C. Alternatively, the work of Parkinson et al. [16] on variables as
resources may be useful.

Another requirement to conveniently use an axiomatic semantics for program
verification is strong automation. Specific to the Coq proof assistant there has
been work on this by for example Appel [1] and Chlipala [3]. As our main pur-
pose is to develop an operational semantics for a large part of C11, we consider
automation a problem for future work.

In order to get closer to a semantics for C11 we are currently investigating
the following additional features of the C11 standard.

– Expressions with side effects and sequence points.
– The C type system including structs, unions, arrays and integer types.
– The non-aliasing restrictions (effective types in particular).

We intend to support these features in both our operational and axiomatic se-
mantics. Ongoing work shows that our current operational semantics can easily
be extended with non-deterministic expressions using a similar approach as Nor-
rish [13] and Leroy [12]. As non-determinism in expressions is closely related to
concurrency, we use separation logic for a Hoare logic for expressions.

In this paper we have not considered completeness of the axiomatic semantics
as it is not essential for program verification. Also, our future extension for
non-deterministic expressions with side-effects will likely be incomplete.

272 R. Krebbers and F. Wiedijk

Another direction for future research is to relate our semantics to the Comp-
Cert semantics [12] (by eliminating block scope variables). That way we can link
it to actual non-local jumps in assembly.

Acknowledgments. We thank Erik Poll for bringing up the idea of an ax-
iomatic semantics for gotos, and thank Herman Geuvers and the anonymous
referees for providing several helpful suggestions. This work is financed by the
Netherlands Organisation for Scientific Research (NWO).

References

1. Appel, A.W.: Tactics for Separation Logic (2006),
http://www.cs.princeton.edu/~appel/papers/septacs.pdf

2. Appel, A.W., Blazy, S.: Separation Logic for Small-Step Cminor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

3. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI, pp. 234–245. ACM (2011)

4. Dijkstra, E.W.: Go To statement considered harmful. Communications of the
ACM 11(3), 147–148 (1968); Letter to the Editor

5. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
POPL, pp. 533–544 (2012)

6. Felleisen, M., Hieb, R.: The Revised Report on the Syntactic Theories of Sequential
Control and State. Theoretical Computer Science 103(2), 235–271 (1992)

7. Huet, G.P.: The Zipper. Journal of Functional Programming 7(5), 549–554 (1997)
8. International Organization for Standardization. ISO/IEC 9899-2011: Programming

languages – C. ISO Working Group 14 (2012)
9. Knuth, D.: Structured programming with go to statements. In: Classics in software

engineering, pp. 257–321. Yourdon Press (1979)
10. Krebbers, R.,Wiedijk, F.: A Formalization of the C99 Standard in HOL, Isabelle and

Coq. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and
Calculemus 2011. LNCS (LNAI), vol. 6824, pp. 301–303. Springer, Heidelberg (2011)

11. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

12. Leroy, X.: The CompCert verified compiler, software and commented proof (2012),
http://compcert.inria.fr/

13. Norrish, M.: C formalised in HOL. PhD thesis, University of Cambridge (1998)
14. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local Reasoning about Programs that

Alter Data Structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

15. von Oheimb, D.: Hoare Logic for Mutual Recursion and Local Variables. In: Pandu
Rangan, C., Raman, V., Sarukkai, S. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp.
168–180. Springer, Heidelberg (1999)

16. Parkinson, M.J., Bornat, R., Calcagno, C.: Variables as Resource in Hoare Logics.
In: LICS, pp. 137–146 (2006)

17. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Science 21(4), 795–825 (2011)

18. Tews, H.: Verifying Duff’s device: A simple compositional denotational semantics
for Goto and computed jumps (2004)

http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://compcert.inria.fr/

The Parametric Ordinal-Recursive Complexity

of Post Embedding Problems�

Prateek Karandikar1,2 and Sylvain Schmitz2

1 CMI, Chennai, India
2 LSV, ENS Cachan & CNRS, Cachan, France

Abstract. Post Embedding Problems are a family of decision prob-
lems based on the interaction of a rational relation with the sub-
word embedding ordering, and are used in the literature to prove non
multiply-recursive complexity lower bounds. We refine the construction
of Chambart and Schnoebelen (LICS 2008) and prove parametric lower
bounds depending on the size of the alphabet.

1 Introduction

Ordinal Recursive functions and subrecursive hierarchies [24, 12] are employed
in computability theory, proof theory, Ramsey theory, rewriting theory, etc. as
tools for bounding derivation sizes and other objects of very high combinatory
complexity. A standard example is the ordinal-indexed extended Grzegorczyk hi-
erarchy Fα [21], which characterizes classical classes of functions: for instance,
F2 is the class of elementary functions,

⋃
k<ω Fk of primitive-recursive ones,

and
⋃
k<ω Fωk of multiply-recursive ones. Similar tools are required for the clas-

sification of decision problems arising with verification algorithms and logics,
prompting the investigation of “natural” decision problems complete for fast-
growing complexity classes Fα [14, 27].

Post Embedding Problems. (PEPs) have been introduced by Chambart and Sch-
noebelen [7] as a tool to prove the decidability of safety and termination prob-
lems in unreliable channel systems. The most classical instance of a PEP is called
“regular” by Chambart and Schnoebelen [7], but we will follow Barceló et al. [4]
and rather call it rational in this paper:

Rational Embedding Problem (EP[Rat])

Input. A rational relation R in Σ∗ ×Σ∗.
Question. Is the relation R ∩: empty?

Here, the : relation denotes the subword embedding ordering, which relates two
words w and w′ if w = c1 · · · cn and w′ = w0c1w1 · · ·wncnwn+1 for some symbols

� Research partially funded by the ANR ReacHard project (ANR 11 BS02 001 01). The
first author is partially funded by Tata Consultancy Services. Part of this research
was conducted while the second author was visiting the Department of Computer
Science at Oxford University thanks to a grant from the ESF Games for Design and
Verification activity.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 273–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 P. Karandikar and S. Schmitz

Space Fωk (k + 2)-LR[1-bld]

(k + 2)-EP[Rat]

(k + 3)-EP[Sync]

(k + 2)-LCS

(k + 2)-LT[1-bld]

Prop. 2

Prop. 4

Prop. 5

Prop. 6

Prop. 7

Fig. 1. Relationships between PEPs and similar decision problems

ci inΣ and words wi inΣ
∗; in other words, w can be obtained fromw′ by “losing”

some symbol occurrences (maybe none).
Although PEPs appear naturally in relation with channel systems [7, 8, 16]

and queries on graph databases [4], their main interest lies in their use in lower
bound proofs for other, sometimes seemingly distantly related problems [23, 19,
3]: in spite of their simple formulation, they are known to be of non multiply-
recursive complexity in general. In fact, this motivation has been present from
their inception in [7]: find a “master” decision problem complete for Fωω , the
class of hyper-Ackermannian problems, solvable with non multiply-recursive
complexity, but no less—much like SAT is often taken as the canonicalNPTime-
complete problem, or the Post Correspondence Problem for Σ0

1 . This has also
prompted a wealth of research into variants and related questions [10, 4, 18].

In this paper, we revisit and simplify the original proof of Chambart and
Schnoebelen [9] that established the hardness of PEPs, and prove tight parame-
terized lower bounds when the size of the alphabet Σ is fixed. More precisely, we
show that the (k+2)-rational embedding problem, i.e. the restriction of EP[Rat]
to alphabets Σ of size at most k+2, is hard for Fωk the class of k-Ackermannian
problems if k ≥ 2. As the problem can be shown to be in Fωk+1+1 [26, 18], we
argue this to be a rather tight bound. The hyper-Ackermannian lower bound
of Fωω first proven by Chambart and Schnoebelen then arises when |Σ| is not
fixed but depends on the instance.

Our main tool to this end is another problem that involves a rational relation
together with the subword embedding:

Lossy Rewriting (LR[Rat])

Input. A rational relation R in Σ∗ ×Σ∗ and two words w and w′ in Σ∗.
Question. Does (w,w′) belong to the reflexive transitive closure R�

�?

Here R� denotes the “lossy version” of the relation R, defined formally as the
composition 4 �R �4. We prove our lower bounds on this variant of EP[Rat] and
then use them to prove lower bounds for EP[Rat] and other embedding problems;
Fig. 1 summarizes the lower bounds presented in this paper. In a sense, LR is
our own champion for the title of “master” problem for Fωω . Besides its rather
simple statement, note that the related question of whether (w,w′) belongs to
R� is undecidable by an easy reduction from the acceptance problem for Turing
machines.

Parametric Complexity of PEPs 275

Overview. Technically, our results rely on an implementation of the computa-

tions for the Hardy functions Hωωk

and their inverses by successive applications
of a relation with a fixed bounded length discrepancy. The main difficulty here is
that this implementation should be robust for the symbol losses associated with
the embedding relation. It requires in particular a robust encoding of ordinals

below ωω
k

as sequences over an alphabet of k+2 symbols, for which we adapt the
constructions of [9, 15]; see Sec. 3. Compared with previous work, we make the
most of the rational relations framework, leading to simpler and more detailed
proofs of robustness.

This allows us to show in Sec. 4 that for k ≥ 2, (k+2)-LR[1-bld], i.e. a version
of LR[Rat] over an alphabet of size |Σ| = k + 2 and with a relation R with
bounded length discrepancy of 1, is Fωk -hard. We also show that this lower
bound is quite tight, as (k + 2)-LR[Rat] is in Fωk+1 .

We then show in Sec. 5 that LR[1-bld] can easily be reduced to EP[Rat] and
other (parameterized) embedding problems—including EP[Sync], a restriction
of EP[Rat] introduced by Barceló et al. [4] where the relation R is synchronous
(aka regular), and which required a complex lower bound proof.

Let us now turn to the necessary formal background on PEPs in Sec. 2. Due
to space constraints, some proof details will be found in the full version of this
paper, available as arXiv:1211.5259 [cs.LO].

2 Post Embedding Problems

Rational Relations [11] play an important role in the following, as they provide
a notion of finitely presentable relations over strings more powerful than string
rewrite systems, and come with a large body of theory and results [see e.g. 25,
Chap. IV]. Let us quickly skim over the notations and definitions that will be
needed in this paper.

We assume the reader to be familiar with the basic characterizations of ratio-
nal relations R between two finite alphabets Σ and Δ by

closure of the finite relations inΣ∗×Δ∗ under union, concatenation, and Kleene
star,1

finite transductions defined by normalized transducers T = 〈Q,Σ,Δ, δ, I, F 〉
where Q is a finite set of states, δ ⊆ Q × ((Σ × {ε}) ∪ ({ε} × Δ)) × Q is
a transition relation—where ε denotes the empty word, of length |ε| = 0—,
initial set of states I ⊆ Q, and final set of states F ⊆ Q,

decomposition into a regular language L over some finite alphabet Γ and two
morphisms u:Γ ∗ → Σ∗ and v:Γ ∗ → Δ∗ s.t. R = u−1 � IdL � v, where IdL is
the identity function over the restricted domain L.

1 We use different symbols “∗” and “+” for Kleene star and Kleene plus, i.e. iteration
of concatenation “·” on the one hand, and “�” and “⊕” for reflexive transitive closure
and transitive closure, i.e. iteration of composition “�” on the other hand. Rational
relations and length-preserving relations are closed under Kleene star, but none of
the classes of relations we consider is closed under reflexive transitive closure.

http://arxiv.org/abs/1211.5259

276 P. Karandikar and S. Schmitz

This last characterization is known as Nivat’s Theorem, and shows that
EP[Rat] can be stated alternatively as taking as input a regular language L in
Γ ∗ and two morphisms u and v from Γ ∗ to Σ∗ and asking whether there exists
some word x in L s.t. u(x) : v(x) [7]. This justifies the name of “Post Embed-
ding Problem”, as the well-known, undecidable Post Correspondence Problem
asks instead given u and v whether there exists x in Γ+ s.t. u(x) = v(x).

Synchronous Relations are a restricted class of rational relations, and are closed
under intersection and complement, in addition to e.g. the closure under com-
position and inverse that all rational relations enjoy. A rational relation has
b-bounded length discrepancy if the absolute value of |u| − |v| is at most b for all
(u, v) in R, and has bounded length discrepancy (bld) if there exists such a finite b.
In particular, it is length-preserving if |u| = |v|, i.e. if it has bld 0. A synchronous
relation is a finite union of relations of form {(u, vw) | (u, v) ∈ R ∧ w ∈ L} and
{(uw, v) | (u, v) ∈ R∧w ∈ L} where R ranges over length-preserving rational re-
lations and L over regular languages. In terms of classes of relations in Σ∗×Δ∗,
we have the strict inclusions [25]:

lp = 0-bld � · · · � b-bld � (b + 1)-bld � · · · � bld � Sync � Rat . (1)

Post Embedding Problems, as we have seen in the introduction, are concerned
with the interplay of a rational relation R in Σ∗ × Σ∗ with the subword em-
bedding ordering :. The latter is a particular case of a (deterministic) rational
relation that is not synchronous. Both EP[Rat] and LR[Rat] are particular in-
stances of more general, undecidable problems: the emptiness of intersection of
two rational relations for EP[Rat], and the word problem in the reflexive tran-
sitive closure of a rational relation for LR[Rat]. We can add another natural
problem to the set of PEPs:

Lossy Termination (LT[Rat])

Input. A rational relation R over Σ and a word w in Σ∗.
Question. Does R�

� terminate from w, i.e. is every sequence w = w0 R�w1 R�
· · ·R� wi R� · · · with w0, w1, . . . , wi, . . . in Σ

∗ finite?

Again, this is a variant of the termination problem, which is in general undecid-
able when the relation is not lossy.

Restrictions. We parameterize PEPs with the subclass of rational relations under
consideration for R and the cardinal of the alphabet Σ; for instance, (k + 2)-
EP[Sync] is the variant of EP[Rat] where the relation is synchronous and |Σ| =
k + 2. We are interested in this paper in providing Fωk lower bounds with the
smallest possible class of relations and smallest possible alphabet size, but we
should also mention that some (rather strong) restrictions become tractable:

– Barceló et al. [4] show that EP[Rec]—where a recognizable relation is a finite
union of products L×L′ where L and L′ range over regular languages—is in
NLogSpace, because the intersection R ∩: is rational, and can effectively
be constructed and tested for emptiness on the fly,

Parametric Complexity of PEPs 277

– Chambart and Schnoebelen [7] show that EP[2Morph]—where a 2-morphic
relation [20] is the composition R = (u−1 � v) \ {(ε, ε)} of two morphisms
u and v from Γ ∗ to Σ∗—is in LogSpace, because it reduces to checking
whether there exists a in Γ s.t. u(a) : v(a),

– the case EP[Rewr] of rewrite relations is similarly in LogSpace: a rewrite
relation R is defined from a semi-Thue system, i.e. a finite set Υ of rules
(u, v) in Σ∗ × Σ∗, as →Υ = {(wuw′, wvw′) | w,w′ ∈ Σ∗ ∧ (u, v) ∈ Υ}, and
EP[Rewr] reduces to checking whether u : v for some rule (u, v) of Υ ,

– the unary alphabet case of 1-EP[Rat] is in NLogSpace: this can be seen
using Parikh images and Presburger arithmetic:

Proposition 1. The problem 1-EP[Rat] is in NLogSpace.

3 Hardy Computations

We use the Hardy hierarchy as our main subrecursive hierarchy [21, 24, 12].
Although we will only use the lower levels of this hierarchy, its general definition
is worth knowing, as it is archetypal of ordinal-indexed subrecursive hierarchies;
see [27] for a self-contained presentation.

3.1 The Hardy Hierarchy

Ordinal Terms. Let ε0 be the smallest solution of the equation ωx = x. It is
well-known that any ordinal α < ε0 can be written uniquely in Cantor Normal
Form (CNF) as a sum

α = ωβ1 +̇ · · · +̇ ωβn (2)

where βn ≤ · · · ≤ β1 < α and each βi is itself in CNF. This ordinal α is 0 if
n = 0 in (2), a successor ordinal if βn is 0, and a limit ordinal otherwise. In the
following, we write α +̇ β to denote a direct sum α+ β where α > β or α = 0.

Subrecursive hierarchies are defined through assignments of fundamental se-
quences (λn)n<ω for limit ordinals λ < ε0, satisfying λn < λ for all n and
λ = supn λn. A standard assignment on terms in CNF is defined by:(

γ +̇ ωα+̇1
)
n

def
= γ +̇ ωα · n,

(
γ +̇ ωλ

)
n

def
= γ +̇ ωλn , (3)

thus verifying ωn = n. Let Ω
def
= ωω

ω

; this yields for instance Ωk = ωω
k

and, if

k > 0, (Ωk)n = ωω
k−1·n.

Hardy Hierarchy. The Hardy hierarchy (Hα)α<ε0 is an ordinal-indexed hierarchy
of functions Hα:N→ N defined by

H0(n)
def
= n Hα+̇1(n)

def
= Hα(n+ 1) Hλ(n)

def
= Hλn(n) . (4)

278 P. Karandikar and S. Schmitz

Observe that H1 is simply the successor function, and more generally Hα is
the αth iterate of the successor function, using diagonalisation to treat limit
ordinals. A related hierarchy is the fast growing hierarchy (Fα)α<ε0 , which can

be defined by Fα
def
= Hωα

, resulting in F0(n) = H1(n) = n+1, F1(n) = Hω(n) =

Hn(n) = 2n, F2(n) = Hω2

(n) = 2nn being exponential, F3 = Hω3

being non-
elementary, Fω = Hωω

= HΩ1 being an Ackermannian function, Fωk = HΩk a
k-Ackermannian function, and Fωω = HΩ an hyper-Ackermannian function.

Fast-Growing Complexity Classes. Our intention is to establish the “Fωk hard-
ness” of Post embedding problems. In order to make this statement more precise,
we define the class Fωk of k-Ackermannian problems as a specific instance of the
fast-growing complexity classes defined for α ≥ 3 by

Fα
def
=

⋃
p∈⋃β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃
c<ω

FDTime(F cα(n)) , (5)

where Fα defined above is the αth level of the extended Grzegorczyk hierarchy
[21] when α ≥ 2. The classes Fα are naturally equipped with

⋃
β<α Fβ as class

of reductions. For instance, because
⋃
k<ω Fωk is exactly the set of multiply-

recursive functions, Fωω captures the intuitive notion of hyper-Ackermannian
problems closed under multiply-recursive reductions.2

Hardy Computations. The fast-growing and Hardy hierarchies have been used
in several publications to establish Ackermannian and higher complexity bounds
[9, 26, 15, 27]. The principle in their use for lower bounds is to view (4), read left-
to-right, as a rewrite system over ε0×N, and later implement it in the targeted
formalism. Formally, a (forward) Hardy computation is a sequence

α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→ α�, n� (6)

of evaluation steps implementing the equations in (4) seen as left-to-right rewrite
rules over Hardy configurations α, n. It guarantees α0 > α1 > α2 > · · · and keeps
Hαi(ni) invariant. We say it is complete when α� = 0 and then n� = Hα0(n0)
(we also consider incomplete computations). A backward Hardy computation is
obtained by using (4) as right-to-left rules. For instance,

ωω
k

, n→ ωω
k−1·n, n→ ωω

k−1·(n−1)+̇ωk−2·n, n (7)

constitute the first three steps of the forward Hardy computation starting from
Ωk, n if k > 1 and n > 0.

2 Note that, at such high complexities, the usual distinctions between deterministic vs.
nondeterministic, or time-bounded vs. space-bounded computations become irrele-
vant. In particular, F2 is the set of elementary functions, and F3 the class of problems
with a tower of exponentials of height bounded by some elementary function of the
input as an upper bound.

Parametric Complexity of PEPs 279

Termination of Hardy Computations. Because α0 > α1 > · · · > α� in a forward
Hardy computation like (6), it necessarily terminates. For inverse computations,
this is less immediate, and we introduce for this a norm ‖α‖ of an ordinal α
in ε0 as its count of “ω” symbols when written as an ordinal term: formally,
‖.‖: ε0 → N is defined by

‖0‖ def
= 0 ‖ωα‖ def

= 1 + ‖α‖ ‖α +̇ α′‖ def
= ‖α‖+ ‖α′‖ . (8)

We can check that, for any limit ordinal λ, ‖λn‖ > ‖λ‖ whenever n > 1. There-
fore, in a backward Hardy computation, the pair (n, ‖α‖) decreases for the lexi-
cographic ordering over N2. As this is a well-founded ordering, we see that back-
ward computations terminate if n remains larger than 1—which is a reasonable
hypothesis for the following.

3.2 Encoding Hardy Configurations

Our purpose is now to encode Hardy computations as relations over Σ∗. This
entails in particular (1) encoding configurations α, n in Ωk ×N of a Hardy com-
putation as finite sequences using cumulative ordinal descriptions or “codes”,
which we do in this subsection, and (2) later in Sec. 3.3 designing a 1-bld rela-
tion that implements Hardy computation steps over codes. A constraint on codes
is that they should be robust against losses, i.e. if π(x) and π(x′) are the ordinals
associated to the codes x and x′ and π(x) : π(x′), then Hπ(x)(n) ≤ Hπ(x′)(n)—
pending some hygienic conditions on x and x′, see Lem. 2.

Finite Ordinals below k can be represented as single symbols a0, . . . , ak−1 of an
alphabet Σk along with a bijection

ϕ(ai)
def
= i . (9)

Small Ordinals below ωk are then easily encoded as finite words over Σk: given
a word w = b1 · · · bn over Σk, we define its associated ordinal in ωk as

β(w)
def
= ωϕ(b1) + · · ·+ ωϕ(bn) . (10)

Note that β is surjective but not injective: for instance, β(a0a1) = β(a1) = ω. By
restricting ourselves to pure words over Σk, i.e. words satisfying ϕ(bj) ≥ ϕ(bj+1)
for all 1 ≤ j < n, we obtain a bijection between ωk and p(Σ∗k) the set of pure
finite words in Σ∗k , because then (10) is the CNF of β(w).

Large Ordinals below Ωk are denoted by codes [9, 15], which are #-separated

words over the extended alphabet Σk#
def
= Σk ! {#}. A code x can be seen as

a concatenation w1#w2# · · ·#wp#wp+1 where each wi is a word over Σk. Its
associated ordinal π(x) in Ωk is then defined as

π(x)
def
= ωβ(w1w2···wp) +̇ · · · +̇ ωβ(w1w2) +̇ ωβ(w1) , (11)

280 P. Karandikar and S. Schmitz

or inductively by

π(w)
def
= 0, π(w#x)

def
= ωβ(w) · π(x) +̇ ωβ(w) (12)

for w a word inΣ∗k and x a code. For instance, π(a1a0#) = ωω+̇1=π(a0a1a0#a3),
or, closer to our concerns, the initial ordinal in our computations is π(ank−1#) =
(Ωk)n when k > 0.

Observe that π is surjective, but not injective. We can mend this by defining
a pure code x = w1# · · ·#wp#wp+1 as one where wp+1 = ε and every word
wi for 1 ≤ i ≤ p is pure—note that it does not force the concatenation of two
successive words wiwi+1 of x to be pure. This is intended, as this is the very
mechanism that allows π to be a bijection between Ωk and p(Σ∗k#)

Lemma 1. The function π is a bijection from p(Σ∗k#) to Ωk.

We also define p(x) to be the unique pure code x′ verifying π(x) = π(x′); then
p(x) : x, and x : x′ implies p(x) : p(x′).

Hardy Configurations α, n are finally encoded as sequences c = π−1(α) � #n

using a separator “�”, i.e. as sequences in the language Confs
def
= p(Σ∗k#)·{�}·{#}∗.

This is a regular language over Σk#!{�}, but the most important fact about this
encoding is that it is robust against symbol losses as far as the corresponding
computed Hardy values are concerned. Robustness is a critical part of hardness
proofs based on Hardy functions. The main difficulty rises from the fact that
the Hardy functions are not monotone in their ordinal parameter: for instance,
Hω(n) = Hn(n) = 2n is less than Hn+̇1(n) = 2n + 1. Code robustness is
addressed in [9, Prop. 4.3]. Robustness is the limiting factor that prevents us
from reducing languages in Fα for α > Ω into PEPs.

Lemma 2 (Robustness). Let c = x � #n and c′ = x′ � #n′
be two sequences

in Confs. If c : c′, then Hπ(x)(n) ≤ Hπ(x′)(n′).

3.3 Encoding Hardy Computations

It remains to present a 1-bld relation that implements Hardy computations over
Hardy configurations encoded as sequences in Confs. We translate the equations
from (4) into a relation RH = (R0 ∪ R1 ∪ R2) ∩ (Confs × Confs), which can be
reversed for backward computations:

R0
def
= {(#x � #n, x � #n+1) | n ≥ 0, x ∈ Σ∗k#} (13)

R1
def
= {(wa0#x � #n, w#np(a0x) � #

n) | n > 1, w ∈ Σ∗k , x ∈ Σ∗k#} (14)

R2
def
= {(wai#x � #n, wani−1#p(aix) � #

n) | n > 1, i > 0, w ∈ Σ∗k , x ∈ Σ∗k#} (15)

The relation R0 implements the successor case, while R1 and R2 implement the
limit case of (3) for ordinals of form γ +̇ ωα+̇1 and γ +̇ ωλ respectively. The
restriction to n > 1 in R1 and R2 enforces termination for backward computa-
tions; it is not required for correctness. Because RH is a direct translation of (4)
over Confs:

Parametric Complexity of PEPs 281

Lemma 3 (Correctness). For all α, α′ in Ωk and n, n′ > 1, (π−1(α) � #n)
(RH ∪R−1H)�(π−1(α′) � #n′

) iff Hα(n) = Hα′
(n′).

Unfortunately, although R0 is a length-preserving rational relation, R1 and R2

are not 1-bld, nor even rational. However, they can easily be broken into smaller
steps, which are rational—as we are applying a reflexive transitive closure, this
is at no expense in generality. This requires more complex encodings of Hardy
configurations, with some “finite state control” and a working space in order
to keep track of where we are in our small steps. Because we do not want to
spend new symbols in this encoding, given some finite set Q of states, we work
on sequences in

Seqs
def
= {a0, a1}�log |Q|� · {�} · p(Σ∗k) · {#}∗ · {�} · p(Σ∗k#) · {�} · {#, a0, a1}∗ . (16)

with four segments separated by “�”: a state, a working segment, an ordinal
encoding, and a counter. Given a state q in Q, we use implicitly its binary
encoding as a sequence of fixed length over {a0, a1}.

We define two relations Fw and Bw with domain and range Seqs that imple-
ment forward and backward computations with RH . A typical case is that of
computations with R1, which can be implemented as the closure of the union:

qFw �� wa0#x � #n+2 Fw1 qFw1
� w# � p(a0x) � #

n+1a0 (17)

qFw1
� w#m � x � #n+1ap+1

0 Fw1 qFw1
� w#m+1 � x � #nap+2

0 (18)

qFw1
� w#m+1 � x � an+2

0 Fw1 qFw1
�� w#m+1x � #n+2 (19)

for m,n, p in N, w in p(Σ∗k), and x in p(Σ∗k#). Note that p(a0x) returns a0x if x
begins with # or a0, and x otherwise. The corresponding backward computation
for R1 inverses the relations in (17–19) and substitutes qBw and qBw1

for qFw and
qFw1

. The reader should be able to convince herself that this is indeed feasible in
a rational 1-bld fashion; for instance, (18) can be written as a rational expression[

qFw1
�

qFw1
�

]
· IdΣ∗

k
·
[
#
#

]∗
·
[
ε
#

]
·
[
�

�

]
· IdΣ∗

k#
·
[
�

�

]
·
[
#
#

]∗
·
[
#
ε

]
·
[
a0
a0

]+
·
[
ε
a0

]
. (20)

Observe that separators “�” are reliable, and that losses cannot pass unnoticed in
the constant-sized state segment of a sequence in Seqs; thus we can use lemmas 2
and 3 to prove that Fw�

� and Bw�
� are “weak” implementations of Hα and its

inverse when α is in Ωk. Not any reformulation of RH as the closure of a rational
relation would work here: our relation also needs to be robust to losses; see the
full paper for details.

Lemma 4 (Weak Implementation). The relations Fw and Bw are 1-bld and
terminating. Furthermore, if k ≥ 1, m,n > 1 and α ∈ Ωk,

(qFw �� π−1(α) � #n) Fw�
� (qFw ��� #m) implies m ≤ Hα(n)

(qBw ��� #m) Bw�
� (qBw �� π−1(α) � #n) implies m ≥ Hα(n)

and there exists rewrites verifying m = Hα(n) in both of the above cases.

282 P. Karandikar and S. Schmitz

4 The Parametric Complexity of LR[1-bld]

Now equipped with suitable encodings for Hardy computations, we can turn
to the main result of the paper: Prop. 2 below shows the Fωk -hardness of
(k + 2)-LR[1-bld]. As we obtain almost matching upper bounds in Sec. 4.2, we
deem this to be rather tight.

4.1 Lower Bound

Thanks to the relations over Σk# ! {�} defined in Sec. 3, we know that we can
weakly compute with Fw a “budget space” as a unary counter of size Fωk(n),
and later check that this budget has been maintained by running through Bw.
We are going to insert the simulation of an Fωk -hard problem between these
two phases of budget construction and budget verification, thereby constructing
Fωk -hard instances of (k + 2)-LR[1-bld].

Proposition 2. Let k ≥ 2. Then (k + 2)-LR[1-bld] is Fωk -hard.

Bounded Semi-Thue Reachability. The problem we reduce from is a space-
bounded variant of the semi-Thue reachability problem (aka semi-Thue word
problem): as already mentioned in Sec. 2, a semi-Thue system Υ over an alpha-
bet is a finite set of rules (u, v) in Σ∗×Σ∗, defining a rewrite relation →Υ . The
semi-Thue reachability problem, or R[Rewr], is a reliable version of the lossy
reachability problem. This problem is in general undecidable, as one can express
the “next configuration” relation of a Turing machine as a semi-Thue system.
Its Fωk -bounded version for some k ≥ 1 takes as input an instance 〈Υ, y, y′〉 of
size n where, if y →�

Υ x, then |x| ≤ Fωk(n). This is easily seen to be hard for
Fωk , even for a binary alphabet Σ.

Reduction. Let 〈Υ, y, y′〉 be an instance of size n > 1 of Fωk -bounded R[Rewr]
over the two-letters alphabet {a0, a1}. We build a (k + 2)-LR[1-bld] instance in
which the rewrite relation R performs the following sequence:

1. Weakly compute a budget of size Fωk(n), using Fw described in Sec. 3.
2. In this allocated space, simulate the rewrite steps of Υ starting from y.
3. Upon reaching y′, perform a reverse Hardy computation using Bw and check

that we obtain back the initial Hardy configuration. This check ensures that
the lossy rewrites were in fact reliable (i.e., no symbols were lost).

For Phase 2, we define a #-padded version Sim of →Υ that works over Seqs:

Sim
def
= {(qSim ��� u#p, qSim ��� v#q) | u→Υ v, |u|+ p = |v|+ q} . (21)

This is a length-preserving rational relation.We define two more length-preserving
rational relations Init and Fin that initialize the simulation with y on the budget
space, and launch the verification phase if y′ appears there, allowing to move
from Phase 1 to Phase 2 and from Phase 2 to Phase 3, respectively:

Init
def
= {(qFw ��� #�+|y|, qSim ��� y#�) |
 ≥ 0} , (22)

Fin
def
= {(qSim ��� y′#�, qBw ��� #�+|y′|) |
 ≥ 0} . (23)

Parametric Complexity of PEPs 283

Finally, because Fωk(n) = H(Ωk)n(n), we define our source and target by

w
def
= qFw �� ank−1# � #n , w′ def

= qBw �� ank−1# � #n , (24)

and we let R be the 1-bld rational relation Fw ∪ Init ∪ Sim ∪ Fin ∪ Bw.

Claim. The given R[Rewr] instance is positive if and only if 〈R,w,w′〉 is a pos-
itive instance of the (k + 2)-LR[1-bld] problem.

Proof. Suppose w R�
� w

′. It is easy to see that the separator symbol “�” and the
encodings of states from Q are reliable. Because of the way the relations treat
the states, we in fact get

w Fw�
� (qFw ��� #�1) Init� (qSim ��� z1) Sim

�
� (qSim ��� z2) Fin� (qSim ��� #�2) Bw�

� w′

for some strings z1, z2 and naturals
1,
2 ∈ N. By Lem. 4, we have
1 ≤ Fωk(n)
and
2 ≥ Fωk(n). Since Init, Sim, and Fin are length-preserving, we get

Fωk(n) ≥
1 ≥ |z1| ≥ |z2| ≥
2 ≥ Fωk(n) (25)

Thus equality holds throughout, and therefore the lossy steps of Sim� in Phase 2
were actually reliable, i.e. were steps of Sim. This allows us to conclude that the
original R[Rewr] instance was positive.

Suppose conversely that the R[Rewr] instance is positive. We can translate
this into a witnessing run for w R�

� w′, in particular, for w Fw� � Init � Sim� �
Fin � Bw� w′, because any successful run from the R[Rewr] instance can be
plugged into the Sim� phase; Lem. 4 and the fact that the configurations of Υ
are bounded by Fωk(n) together ensure that this can be done.

4.2 Upper Bound

Well-Structured Transition Systems. As a preliminary, let us show that the lossy
rewriting problem is decidable. Indeed, the relation R� can be viewed as the
transition relation of an infinite transition system over the state space Σ∗. Fur-
thermore, by Higman’s Lemma, the subword embedding ordering : is a well
quasi ordering (wqo) over Σ∗, and the relation R� is compatible with it: if
uR� v and u : u′ for some u, v, u′ in Σ∗, then there exists v′ in Σ∗ s.t. u′R� v′:
here it suffices to use v′ = v by transitivity of 4.

A transition system S = 〈S,→,≤〉 with a wqo (S,≤) as state space and a
compatible transition relation → is called a well-structured transition system
(WSTS), and several problems are decidable on such systems under very light
effectiveness assumptions [1, 13], among which the coverability problem, which
asks given a WSTS S and two states s and s′ in S whether there exists s′′ ≥ s′

s.t. s →� s′′. The lossy rewrite problem when w �4 w′ can be restated as a
coverability problem for the WSTS 〈Σ∗, R�,:〉 and w and w′, since if there
exists w′′ 4 w′ with w R�

� w
′′, then w R�

� w
′ also holds by transitivity of 4.

284 P. Karandikar and S. Schmitz

Parameterized Upper Bound. In many cases, a combinatory algorithm can be
employed instead of the classical backward coverability algorithm for WSTS: we
can find a particular coverability witness w′ = w0 : �R−1 w1 · · ·w�−1 : �R−1
w� : w of length
 bounded by a function akin to Fωk−1 using the Length
Function Theorem of [26]. This is a generic technique for coverability explained
in [27], and the reader will find it instantiated for (k + 2)-LR[Rat] in the long
version of this paper:

Proposition 3 (Upper Bound). The problem (k + 2)-LR[Rat] is in Fωk+̇1 .

The small gap of complexity we witness here with Prop. 2 stems from the encod-
ing apparatus, which charges us with one extra symbol. We have not been able
to close this gap; for instance, the encoding breaks if we try to work without our
separator symbol “�”.

5 Applications

We apply in this section the proof of Prop. 2 to prove parametric complexity
lower bounds for several problems. In three cases (propositions 4, 5, and 7 below),
we proceed by a reduction from the LR problem, but take advantage of the
specifics of the instances constructed in the proof Prop. 2 to obtain tighter
parameterized bounds. The hardness proof for the LT problem in Prop. 6 requires
more machinery, which needs to be incorporated to the construction of Sec. 4.1
in order to obtain a reduction.

Rational Embedding. We first deal with the classical embedding problem: We
reduce from a (k + 2)-LR[Rat] instance and use Prop. 2. The issue is to some-
how convert an iterated composition into an iterated concatenation—the idea is
similar to the one typically used for proving the undecidability of PCP.

Proposition 4. Let k ≥ 2. Then (k + 2)-EP[Rat] is Fωk-hard.

Proof. Assume without loss of generality that w �= w′ in a (k + 2)-LR[Rat]
instance 〈R,w,w′〉. We consider sequences of consecutive configurations of 4 �
(R �4)⊕ of form

w = v0 4 u0 R v1 4 u1 R v2 4 · · ·R vn 4 un = w′ (26)

that prove the LR instance to be positive. Let $ be a fresh symbol; we construct
a new relation R′ that attempts to read the ui’s on its first component and the
vi’s on the second, using the $’s for synchronization:

R′ def
=

[
$w′$
$

]
·
(
R ·

[
$
$

])+

·
[
ε
w$

]
(27)

Observe that in any pair of words (u, v) of R′, one finds the same number of
occurrences of the separator $ in u and v, i.e. we can write u = un · · · $u0$ and

Parametric Complexity of PEPs 285

v = vn · · · $v0$ with n > 0, verifying v0 = w, un = w′, and ui R vi+1 for all
i. Assume u : v: the embedding ordering is restricted by the $ symbols to the
factors ui : vi. We can therefore exhibit a sequence of form (26). Conversely,
given a sequence of form (26), the corresponding pair (u, v) belongs to R′ ∩ :.

In order to conclude, observe that we can set $
def
=� in the proof of Prop. 2

and adapt the previous arguments accordingly, since “�” is preserved by R and
appears in both w and w′ in the particular instances we build.

Synchronous Embedding. Turning now to the case of synchronous relations, we
proceed as in the previous proof, but employ an extra padding symbol ⊥ to
construct a length-preserving version of the relation R in an instance of (k+2)-
LR[Sync], allowing us to apply the Kleene star operator while remaining regular.

Proposition 5. Let k ≥ 2. Then (k + 3)-EP[Sync] is Fωk-hard.

Proof. Let 〈R,w,w′〉 be an instance of (k + 2)-LR[Sync] with w �= w′ and let $
and ⊥ be two fresh symbols. Because R · {($, $)} is a synchronous relation, we
can construct a padded length-preserving relation

R⊥
def
= {(u$⊥m, v$⊥p) | m, p ≥ 0 ∧ (u, v) ∈ R ∧ |u$⊥m| = |v$⊥p|} (28)

and define a relation similar to (27):

R′⊥
def
=

[
$w′$
$

]
·R+
⊥ ·

[
ε
w$

]
·
[
ε
⊥

]∗
. (29)

Let us show that R′⊥ is regular: {($w′$, $)} and {(ε, w$)} are relations with
bounded length discrepancy and R∗⊥ is length preserving, thus their concate-
nation has bounded length discrepancy, and can be effectively computed by
resynchronization [25]. Suffixing {(ε,⊥)}∗ thus yields a synchronous relation.

As in the proof of Prop. 4, R′⊥ preserves the $ separators, thus if (u, v) belongs
to R′⊥, then we can write

u = $ un $ ⊥mn un−1 $ ⊥mn−1 · · · $ ⊥m1 u0 $ ⊥m0 ,
v = $ vn $ ⊥pn vn−1 $ ⊥pn−1 · · · $ ⊥p1 v0 $ ⊥p0 . (30)

with n > 0 andmn = 0. Furthermore, v0 = w, un = w′, and (ui$⊥mi, vi+1$⊥pi+1)
belongs to R⊥, thus uiRvi+1 for all i. If the EP instance is positive, i.e. if u : v,
then ui : vi and mi ≤ pi for all i, and we can build a sequence of form (26)
proving the LR instance to be positive. Conversely, if the LR instance is positive,
there exists a sequence of form (26), and we can construct a pair (u, v) as in (30)
above by guessing a sufficient padding amount p0 that will allow to carry the

entire rewriting. Finally, as in the proof of Prop. 4, we can set $
def
=�.

Lossy Termination. In contrast with the previous cases, our hardness proof for
the LT problem does not reduce from LR but directly from a semi-Thue word
problem, by adapting the proof of Prop. 2 in such a way that R�

� is guaranteed to

286 P. Karandikar and S. Schmitz

terminate. The main difference is that we reduce from a semi-Thue system where
the length of derivations is bounded, rather than the length of configurations—
this is still Fωk -hard since the distinction between time and space complexities
is insignificant at such high complexities. The simulation of such a system then
builds two copies of the initial budget in Phase 1: a space budget, where the
derivation simulation takes place, and a time budget, which gets decremented
with each new rewrite of Phase 2, and enforces its termination even in case of
losses. See the full paper for details.

Proposition 6. Let k ≥ 2. Then (k + 2)-LT[1-bld] is Fωk-hard.

Lossy Channel Systems. By over-approximating the behaviours of a channel
system by allowing uncontrolled, arbitrary message losses, Abdulla, Cécé, et al.
[6, 2] obtain decidability results on an otherwise Turing-complete model. Many
variants of this model have been studied in the literature [7, 8, 16], but our
interest here is that LCSs were originally used as the formal model for the Fωω

lower bound proof of Chambart and Schnoebelen [9], rather than a PEP.
Formally, a lossy channel system (LCS) is a finite labeled transition system

〈Q,Σ, δ〉 where transitions in δ ⊆ Q × {?, !} × Σ × Q read and write on an
unbounded channel. An channel system defines an infinite transition system
over its set of configurations Q × Σ∗—holding the current state and channel
content—, with transition relation q, x→ q′, x′ if either δ holds a read (q, ?m, q′)
and x = mx′, or if it holds a write (q, !m, q′) and xm = x′. The operational
semantics of an LCS then use the lossy version →� of this transition relation.
In the following, we consider a slightly extended model, where transitions carry
sequences of instructions instead, i.e. δ is a finite set included in Q × ({?, !} ×
Σ)∗×Q. The natural decision problem associated with a LCS is its reachability
problem:

Lossy Channel System Reachability (LCS)

Input. A LCS C and two configurations (q, x) and (q′, x′) of C.
Question. Is (q′, x′) reachable from (q, x) in C, i.e. does q, x→�

� q
′, x′?

The lossy rewriting problem easily reduces to a reachability problem in a LCS:
the LCS cycles through the channel contents thanks to a distinguished symbol,
and applies the rational relation at each cycle; see the full version for details.

Proposition 7. Let k ≥ 2. Then (k + 2)-LCS is Fωk-hard.

6 Concluding Remarks

Post embedding problems provide a high-level packaging of hyper-Ackermannian
decision problems—and thanks to our parametric bounds, for k-Ackermannian
problems—, compared to e.g. reachability in lossy channel systems (as used
in [9]). The lossy rewriting problem is a prominent example: because it is stated
in terms of a rational relation instead of a machine definition, it benefits auto-
matically from the theoretical toolkit and multiple characterizations associated

Parametric Complexity of PEPs 287

with rational relations. For a simple example, the increasing rewriting problem,

which employs R�
def
= :�R�: instead of R�, is immediately seen to be equivalent

to LR, by substituting R−1 for R and exchanging w and w′.
Interestingly, this inversion trick allows to show the equivalence of the lossy

and increasing variants of all our problems, except for lossy termination:

Increasing Termination (IT[Rat])

Input. A rational relation R over Σ and a word w in Σ∗.
Question. Does R�

� terminate from w?

A related problem, termination of increasing channel systems with emptiness
tests, is known to be in F3 [5] instead of Fωω for LCS termination, but IT[Rat]
is more involved. Like LR[Rat] or EP[Rat], it provides a high-level description,
this time of fair termination problems in increasing channel systems, which are
known to be equivalent to satisfiability of safety metric temporal logic [23, 22, 17].
The exact complexity of IT[Rat] is open, with a gigantic gap between the Fωω

upper bound provided by WSTS theory, and an F4 lower bound by Jenkins [17].

Acknowledgements. The authors thank Philippe Schnoebelen and the anony-
mous reviewers for their insightful comments.

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. and Comput. 160, 109–127 (2000)

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inform.
and Comput. 127(2), 91–101 (1996)

3. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL 2010, pp. 7–18. ACM (2010)

4. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the
generalized intersection problem. In: LICS 2012, pp. 115–124. IEEE Press (2012)

5. Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination
and invariance for faulty channel machines. Form. Asp. Comput. 24(4), 595–607
(2012)

6. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to
verify than perfect channels. Inform. and Comput. 124(1), 20–31 (1996)

7. Chambart, P., Schnoebelen, P.: Post Embedding Problem Is Not Primitive Re-
cursive, with Applications to Channel Systems. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)

8. Chambart, P., Schnoebelen, P.: Mixing Lossy and Perfect Fifo Channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008)

9. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: LICS 2008, pp. 205–216. IEEE Press (2008)

10. Chambart, P., Schnoebelen, P.: Pumping and Counting on the Regular Post Em-
bedding Problem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 64–75. Springer,
Heidelberg (2010)

288 P. Karandikar and S. Schmitz

11. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal of Research and Development 9(1), 47–68 (1965)

12. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Hand-
book of Proof Theory, ch. III, pp. 149–207. Elsevier (1998)

13. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

14. Friedman, H.M.: Some decision problems of enormous complexity. In: LICS 1999,
pp. 2–13. IEEE Press (1999)

15. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–
364. IEEE Press (2012)

16. Jančar, P., Karandikar, P., Schnoebelen, P.: Unidirectional Channel Systems Can
Be Tested. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 149–163. Springer, Heidelberg (2012)

17. Jenkins, M.: Synthesis and Alternating Automata over Real Time. Ph.D. thesis,
Oxford University (2012)

18. Karandikar, P., Schnoebelen, P.: Cutting through Regular Post Embedding Prob-
lems. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012.
LNCS, vol. 7353, pp. 229–240. Springer, Heidelberg (2012)

19. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput.
Logic 9(2), 10 (2008)

20. Latteux, M., Leguy, J.: On the Composition of Morphisms and Inverse Morphisms.
In: Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 420–432. Springer, Heidelberg
(1983)

21. Löb, M., Wainer, S.: Hierarchies of number theoretic functions, I. Arch. Math.
Logic 13, 39–51 (1970)

22. Ouaknine, J., Worrell, J.B.: Safety Metric Temporal Logic Is Fully Decidable. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425.
Springer, Heidelberg (2006)

23. Ouaknine, J.O., Worrell, J.B.: On the decidability and complexity of Metric Tem-
poral Logic over finite words. Logic. Meth. in Comput. Sci. 3(1), 8 (2007)

24. Rose, H.E.: Subrecursion: Functions and Hierarchies, Oxford Logic Guides, vol. 9.
Clarendon Press (1984)

25. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
26. Schmitz, S., Schnoebelen, P.: Multiply-Recursive Upper Bounds with Higman’s

Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

27. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory. Lecture Notes
(2012), http://cel.archives-ouvertes.fr/cel-00727025

http://cel.archives-ouvertes.fr/cel-00727025

Deciding Definability

by Deterministic Regular Expressions�

Wojciech Czerwiński1, Claire David2, Katja Losemann1, and Wim Martens1

1 Universität Bayreuth
2 Université Paris-Est Marne-la-Vallée

Abstract. We investigate the complexity of deciding whether a given
regular language can be defined with a deterministic regular expression.
Our main technical result shows that the problem is PSPACE-complete
if the input language is represented as a regular expression or nondeter-
ministic finite automaton. The problem becomes EXPSPACE-complete
if the language is represented as a regular expression with counters.

1 Introduction

Schema information is highly advantageous when managing and exchanging
XML data. Primarily, schema information is crucial for automatic error detec-
tion in the data itself (which is called validation, see, e.g., [5,26,2,20]) or in the
procedures that transform the data [24,23,22]. Furthermore, schemas provide
information for optimization of XML querying and processing [25,28], they are
inevitable when integrating data through schema matching [1], and they provide
users with a high-level overview of the structure of the data. From a software
development point of view, schemas are very useful to precisely specify pre- and
post-conditions of software routines that process XML data.

In their core, XML schemas specify the structure of well-formed XML docu-
ments through a set of constraints which are very similar to extended context-free
grammar productions. Such schema are usually abstracted as a set of rules of
the form

Type→ Content,

where Content is a regular expression that defines the allowed content inside the
element type specified in the left-hand side. As such, regular expressions are a
central component of schema languages for XML.

The two most prevalent schema languages for XML data, Document Type
Definition (DTD) [5] and XML Schema Definition (XSD) [10], both developed
by the World Wide Web Consortium, do not allow arbitrary regular expressions
to define Content. Instead, they require these expressions to be deterministic. We
refer to such deterministic regular expressions as DREs. In order to get a good
understanding of schema languages for XML, it is thus important to develop a

� This work was supported by grant number MA 4938/2-1 of the Deutsche Forschungs-
gemeinschaft (Emmy Noether Nachwuchsgruppe).

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 289–304, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

290 W. Czerwiński et al.

good understanding on DREs. Furthermore, since the concept of determinism in
regular expressions is a rather foundational, we believe our results to be relevant
in a larger scope as well.

Intuitively, a regular expression is deterministic if, when reading a word from
left to right without looking ahead, it is always clear where in the expression
the next symbol can be matched. For example, the expression (a + b)∗b(a + b)
is not deterministic, because if we read a word that starts with b, it is not clear
whether this b should be matched in the expression if we do not know what the
remainder of the word will be. As such, determinism in regular expressions is
very similar to determinism in finite automata: When we consider each alphabet
symbol in an expression as a state and consider transitions between positions in
the expression that can be matched by successive symbols, then the expression
is deterministic if and only if the thus obtained automaton (which is known as
the Glushkov automaton of the expression) is deterministic.

Deterministic regular expressions or DREs have therefore been a subject of re-
search since their foundations were laid in a seminal paper by Brüggemann-Klein
and Wood [6,7]. The most important contribution of this paper is a characteri-
zation of languages definable by DREs in terms of structural properties on the
minimal DFA. In particular, this characterization showed that some regular lan-
guages cannot be defined with a DRE. One such language is defined by the
expression (a+ b)∗b(a+ b). Furthermore, Brüggemann-Klein and Wood showed
that it is decidable whether a given regular language is definable by a DRE.
Since then, DREs have been studied in the context of language approximations
[3], learning [4], descriptional complexity [13,21] and static analysis [8,9]. Re-
cently, it was shown that testing if a regular expression is deterministic can be
done in linear time [14].

Determinism has also been studied for a more general class of regular expres-
sions which allows a counting operator [19,11,16]. This operator allows to write
the expression a10,100 defining the language that contains strings of length 10 to
100 and labeled with only a’s. The motivation for the counting operator again
comes from schema languages, because the operator can be used to define ex-
pressions in XML Schema. Determinism for expressions with counters seems to
pose more challenges than without the counting operator. For example, already
testing whether an expression with counters is deterministic is non-trivial [18].

In this paper we study the following problem:

Given a regular expression, can it be determinized?

This problem seems to be very foundational and has first been studied around
20 years ago [6] but the precise complexity was still open, despite the rich body
of research discussed above. The best known upper bound is from Brüggeman-
Klein and Wood, who showed that the problem is in EXPTIME (by exhibiting
an algorithm that works in polynomial time on the minimal DFA [7]) and the
best known lower bound is PSPACE-hardness [3]. The main result of this paper
settles this question and proves that this problem is PSPACE-complete. Our
proof is rather technical and provides deeper insights in the decision algorithm
of Brüggemann-Klein and Wood. A central insight, which is a cornerstone of our

Deciding Definability by Deterministic Regular Expressions 291

proof, is that the recursion depth of the algorithm is only polynomial in the size
of the smallest NFA for the given regular language.

Since regular expressions with counters are important in the context of W3C
XML Schema, we also study the complexity of deciding if a given expres-
sions with counters can be written as a DRE. This problem turns out to be
EXPSPACE-complete. We complement these completeness results by proving
that it is NLOGSPACE-hard to decide if a given DFA can be written as a DRE.
At the moment, it is not clear to us whether this lower bound can be improved.
The problem is known to be in polynomial time by [7].

Organisation: We give the basic definitions in Section 2. In Section 3 we present
the algorithm of Brüggeman-Klein and Wood and prove preliminary results.
Complexity results are presented in Section 4. Due to space limits, some proofs
are not presented or only sketched.

2 Definitions

For a finite set S, we denote its cardinality by |S|. By Σ we always denote an
alphabet, i.e., a finite set of symbols. A (Σ-)word w over alphabet Σ is a finite
sequence of symbols a1 · · · an, where ai ∈ Σ for each i = 1, . . . , n. The set of
all Σ-words is denoted by Σ∗. The length of a word w = a1 · · · an is n and is
denoted by |w|. The empty word is denoted by ε. A language is a set of words.

A (nondeterministic) finite automaton (or NFA) N is a tuple (Q,Σ, δ, q0, F),
where Q is a finite set of states, δ : Q×Σ → 2Q is the transition function, q0 is
the initial state, and F ⊆ Q is the set of accepting states. We sometimes denote
that q2 ∈ δ(q1, a) as q1

a−→ q2 ∈ δ to emphasize that, when N is in state q1, it
can go to state q2 when reading an a. A run of N on word w = a1 · · · an is a
sequence q0 · · · qn where, for each i = 1, . . . , n, we have qi−1

ai−→ qi ∈ δ. Word w
is accepted by N if there is such a run which is accepting, i.e., if qn ∈ F . The
language of N , also denoted L(N), is the set of words accepted by N . By δ∗ we
denote the extension of δ to words, i.e., δ∗(q, w) is the set of states which can
be reached from q by reading w. The size |N | of an NFA is the total number of
transitions, i.e.,

∑
q,a |δ(q, a)|. An NFA is deterministic, or a DFA, when every

δ(q, a) has at most one element. Throughout the paper, we will use the notation
PN for the power set automaton of N and [N] for the minimal DFA for L(N). It
is well-known that [N] is unique for N and that it can be obtained by merging
states of PN [15]. In this paper we assume that all states of automata are useful
unless mentioned otherwise, that is, every state can appear in some accepting
run. This implies that every state can be reached from the initial state and that,
from each state in an automaton, an accepting state can be reached. This also
implies that we use minimal DFAs without sink state and that PN by default
only contains the useful subsets of states of N . We sometimes abuse notation
and also denote by ∅ the minimal DFA with no states.

Furthermore, we will often see an NFA as a graph, which is obtained by
considering its states as nodes and its transitions as (labeled) directed edges.
Then, we also refer to a connected sequence of transitions in N as a path.

292 W. Czerwiński et al.

The regular expressions (RE) over Σ are defined as follows: ε and every
Σ-symbol is a regular expression; and whenever r and s are regular expres-
sions then so are (r · s), (r + s), and (s)∗. In addition, we allow ∅ as a regular
expression, but we do not allow ∅ to occur in any other regular expression. For
readability, we usually omit concatenation operators and parentheses in exam-
ples. The language defined by an RE r, denoted by L(r), is defined as usual.
Whenever we say that expressions or automata are equivalent, we mean that
they define the same language. The size |r| of r is defined to be the total num-
ber of occurrences of alphabet symbols, epsilons, and operators, i.e., the number
of nodes in its parse tree.

2.1 Variations of Regular Expressions

The regular expressions with counters (RE(#)) extend the REs with a count-
ing operator. That is, each RE-expression is an RE(#)-expression. Furthermore,
when r and s are RE(#)-expressions then so are (r · s), (r + s), and rk,� for
k ∈ N and
 ∈ N+ ∪ {∞} with k ≤
. Here, N+ denotes N \ {0}. For a lan-

guage L, define Lk,� as
⋃�
i=k L

i. Then, L(rk,�) =
⋃�
i=k L(r)

i. Notice that r∗ is
equivalent to r0,∞. The size of an expression in RE(#) is the number of nodes in
its parse tree, plus the sizes of the counters, where a counter k ∈ N has size log k.

Deterministic regular expressions (DREs) put a restriction on the class of REs.
Let r̄ stand for the RE obtained from r by replacing, for every i and a, the i-th
occurrence of alphabet symbol a in r (counting from left to right) by ai. For
example, for r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b

∗
2a2)

∗. A regular expression r is
deterministic (or one-unambiguous [7] or a DRE) if there are no words waiv
and wajv

′ in L(r̄) such that i �= j. The expression (a+ b)∗a is not deterministic
since both strings a2 and a1a2 are in L((a1 + b1)

∗a2). The equivalent expression
b∗a(b∗a)∗ is deterministic. Brüggemann-Klein and Wood showed that not every
regular expression is equivalent to a deterministic one [7]. We call a regular
language DRE-definable if there exists a DRE that defines it. The canonical
example for a language that is not DRE-definable is (a + b)∗b(a + b) [7]. We
therefore have that the set of DREs forms a strict subset of the REs, which in
turn are a strict subset of the RE(#)s.

2.2 Problems of Interest

In this paper, we investigate variants of the following problem.

DRE-Definability: Given a regular language L, is L DRE-definable?

We consider this problem for various representations of regular languages: reg-
ular expressions, regular expressions with counters, NFAs, and DFAs. When-
ever we consider such a variation, we put the respective representation between
braces. For example, DRE-Definability(RE) is the problem: Given a regular
expression r, is L(r) DRE-definable?

Deciding Definability by Deterministic Regular Expressions 293

3 The BKW Algorithm

DRE-Definability was first studied by Brüggemann-Klein and Wood who
showed that the problem can be solved in polynomial time in the size of the
minimal DFA of a language [7]. Their algorithm (henceforth referred to as the
Bkw-Algorithm) is not at all trivial and gives good insight in DRE-definable
regular languages. We recall the Bkw-Algorithm together with some definitions
and known results and then we prove deeper properties of the Bkw-Algorithm
which will be the basis of further results in the paper.

Orbits and Gates: For a state q in an NFA N , the orbit of q, denoted O(q), is
the maximal strongly connected component of N that contains q. We call q a
gate of O(q) if q is accepting or q has an outgoing transition that leaves O(q).
If an orbit consists only of one state q and q has no self-loops, we say that it
is a trivial orbit. We say that a transition q1

a−→ q2 is an inter-orbit transition
if q1 and q2 belong to different orbits. The orbit automaton of state q is the
sub-automaton of N consisting of O(q) in which the initial state is q and the
accepting states are the gates of O(q). We denote the orbit automaton of q by
Nq. The orbit language of q is L(Nq). The orbit languages of N are the orbit
languages of states of N .

Orbit Property: An NFA N has the orbit property if, for every pair of gates
q1, q2 in the same orbit in N , the following properties hold:

1. q1 is accepting if and only if q2 is accepting; and,
2. for all states q outside the orbit of q1 and q2, there is a transition q1

a−→ q if
and only if there is a transition q2

a−→ q.

Consistent Symbols: A symbol a ∈ Σ is N -consistent if there is a state f(a),

such that every accepting state q of N has a transition q
a−→ f(a). We refer

to the corresponding transitions as consistent transitions of N . A set S ⊆ Σ
is N -consistent if every symbol in S is N -consistent. Whenever we consider
N -consistent sets S in the remainder of the paper we assume that they are
maximal, i.e., there does not exist an a ∈ Σ that is not in S and is N -consistent.
Henceforth, we will therefore refer to the N -consistent set. For the set S of
N -consistent symbols, the S-cut of N , denoted NS, is obtained by removing all
consistent transitions fromN . Using these notions, Brüggemann-Klein andWood
give the following characterization of the class of DRE-definable languages.

Theorem 1 (Brüggemann-Klein and Wood [7]). Let D be a minimal DFA
and S be the set of D-consistent symbols. Then the following are equivalent:

1. L(D) is DRE-definable;
2. D has the orbit property and all orbit languages of D are DRE-definable;
3. DS has the orbit property and all orbit languages of DS are DRE-definable.

Furthermore, if D consists of a single, nontrivial orbit and L(D) is DRE-
definable, then there is at least one D-consistent symbol.

294 W. Czerwiński et al.

Algorithm 1. The Bkw-Algorithm [7].

Algorithm Bkw

2: Input: Minimal DFA D = (Q,Σ, δ, q0, F)
Output: true if L(D) is DRE-definable, else false

4: S ← the maximal set of D-consistent symbols
if D has only one trivial orbit then return true

6: if D has precisely one orbit and S = ∅ then return false

compute the orbits of DS

8: if DS does not have the orbit property then return false

for each orbit O in DS do
10: choose a state q in O

if not Bkw((DS)q) then return false

12: return true

They also show this result about the orbit property and the orbit languages.

Lemma 2 (Brüggemann-Klein and Wood [7]). Let D be a minimal DFA
and S be the set of D-consistent symbols.

1. If DS has the orbit property, then (DS)q is minimal for each state q in D.
2. If p and q are states in the same orbit of DS, then L((DS)p) is DRE-definable

if and only if L((DS)q) is DRE-definable.

Point 1 of the above lemma is immediate from combining Lemmas 5.9 and 5.10
from [7]. Point 2 is immediate from the fact that DRE-definable regular lan-
guages are closed under derivatives [7]. Notice that, in general, DS does not
have to be a minimal DFA. In particular, it can have states that are not reach-
able from the initial state. These results lead to a recursive test that decides
whether the language of a minimal DFA is DRE-definable. We present this test
in Algorithm 1. Notice that Lemma 2 ensures that we never have to minimize
the DFA that we give to the recursive call in line 11 of the algorithm.

In the remainder of this article, D always denotes a minimal DFA. In the
following we investigate the recursion depth of Algorithm 1. Therefore, we ex-
amine how, for a state q of D, the orbit of q evolves during the recursion. In one
iteration of Algorithm 1 we always delete two kinds of transitions, if they are
present: the consistent transitions (which we delete to obtain DS from D) and
the inter-orbit transitions in DS (which we delete to obtain (DS)q).

Level Automata: For a state q of a minimal DFA D and k ∈ N we inductively
define the level k automaton of D for the state q, denoted levk(D, q), as follows:

– lev0(D, q) = D.
– Let S be the maximal set of consistent symbols in D. Then

lev1(D, q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(DS)q if D has more than one orbit and DS has the orbit

property;

(DS)q if S �= ∅ and DS has the orbit property;

∅ otherwise.

Deciding Definability by Deterministic Regular Expressions 295

q0

q1

q2

q3q5

q4

f

f f

d

d

e

b

b
a

a

a

b

d

(a) The automaton D, i.e., lev0(D, q0), S = ∅.

q0

q1

q2

q3

q4

d

d

e

b

b a

a

a

b

d

(b) lev1(D, q0), S1 = {a}.

q0

q1

q2

q3
d

d

e

b

bd

(c) The S1-cut of lev1(D, q0).

q0

q1

q2

d

d

e

d

(d) lev2(D, q0), S2 = ∅.

Fig. 1. An example of level automata for a minimal DFA D

– Let k > 1 and Sk−1 be the maximal set of consistent symbols in B :=
levk−1(D, q). Then

levk(D, q) =

{
(BSk−1

)q if Sk−1 �= ∅ and BSk−1
fulfills the orbit property

∅ otherwise.

The above definition actually precisely follows the construction in Algorithm 1
if state q is chosen every time in line 10. The definition makes clear that the
top level recursion of the Bkw-Algorithm (in which we construct lev1(D, q))
is slightly different from the others: the input DFA D of the top level can have
multiple orbits, whereas this is not the case for deeper recursive levels. According
to Lemma 2, levk(D, q) is always minimal.

Example 3. Figure 1 provides an example to illustrate the notion of level au-
tomata. Consider the minimal DFA D from Figure 1(a) and its state q0. By
definition, lev0(D, q0) is the automaton D itself. In order to build lev1(D, q0)
(see Figure 1(b)), observe that D has two orbits and its set of consistent sym-
bols S is empty since no transitions leave state q5. Furthermore,DS , which equals
D, fulfills the orbit property since all transitions that leave O(q0) go to state
q5. As such, lev1(D, q0) equals (D∅)q0 , the orbit automaton of q0 in D. We now
explain how to obtain lev2(D, q0) (see Figure 1(d)). First notice that S1 = {a}
is the maximal set of consistent symbols in lev1(D, q0). Furthermore, the S1-cut

296 W. Czerwiński et al.

of lev1(D, q0) (illustrated in Figure 1(c) without unreachable states) fulfills the
orbit property. The automaton lev2(D, q0) is the orbit automaton of q0 in the
S1-cut of lev1(D, q0) (that is, lev2(D, q0) = (lev1(D, q0)S1)q0). Finally, observe
that lev2(D, q0) has only one orbit and no consistent symbols which implies that
lev3(D, q0) = ∅. Also, in accordance with the Bkw-Algorithm, this means that
L(D) is not DRE-definable.

The following lemma summarizes the link between DRE-definability and level
automata.

Lemma 4. Let D be a minimal DFA. Then the following are equivalent:

1. L(D) is DRE-definable;
2. for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable;

3. for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable and
levk(D, q)Sk

has the orbit-property.

3.1 The Recursion Depth of BKW

First we observe that, once a state becomes a gate in the Bkw-Algorithm, its
outgoing transitions will disappear in deeper recursion levels.

Lemma 5. Let D be a minimal DFA and q be a gate in levk(D, q) for some
k > 0. Then either levk+1(D, q) = ∅ or q has strictly less outgoing transitions in
levk+1(D, q). In the latter case, q is also a gate in levk+1(D, q).

From Lemma 5, we can infer how long it takes for a state p to become a gate.

Lemma 6. Let D be a minimal DFA and p be a state of levk(D, p) for some
k ∈ N. Let
 be the length of the shortest path from p to a gate in levk(D, p).
Then either levk+|Σ|·�+1(D, p) = ∅ or p is a gate in levk+|Σ|·�+1(D, p).

Next, we want to combine Lemma 6 with an observation about NFAs versus
their minimal DFAs, namely that paths to accepting states are short.

Lemma 7. Let N be an NFA with size n. Then for every state of [N] there is
a path leading to some accepting state of length at most n− 1.

Combining Lemma 6 and 7 tells us how long states can be present in the recursion
of the Bkw-Algorithm, compared to the size of an NFA for the language.

Lemma 8. Let N be an NFA with size n. Then it holds that levn·|Σ|+2([N],
p) = ∅ for every state p of [N].

Summarized, we know that the recursion depth of the Bkw-Algorithm is poly-
nomial in the size of the minimal NFA for a language.

Theorem 9. Let N be an NFA with size n. The recursion depth of Algorithm 1
on [N] is at most n · |Σ|+ 2.

Deciding Definability by Deterministic Regular Expressions 297

3.2 Consistency Violations

In the following, we analyze the possible causes of failure for the Bkw-Algorithm.
We identify three properties such that the Bkw-Algorithm fails if and only if
one of them holds for some orbit automaton at some level k. This will be a tool
for our PSPACE algorithm that will search for one of these violations.

From the Bkw-Algorithm, we can immediately see that there are two sit-
uations in which it can reject: (in line 6) at some point in the recursion, the
automaton consists only of one orbit which has no consistent symbols or (in
line 8) at some point in the recursion, the S-cut of the automaton does not
have the orbit property. The latter means that there exist two gates of the same
orbit in the S-cut, such that either they do not have the same transitions to the
outside or one of them is accepting while the other one is not. We now formalize
these different types of violations and we then prove that the Bkw-Algorithm
fails if and only if one of these violations is found at some point in the recursion.
Let D be a minimal DFA and S be its set of consistent symbols. Then D has

– an Out-Consistency Violation, if there exist gates q1 and q2 in the
same orbit O of DS and there exists a state q outside O such that there is
a transition q1

a−→ q and no transition q2
a−→ q;

– an Acceptance Consistency Violation, if there exist gates q1 and q2
in the same orbit of DS such that q1 is accepting and q2 is not; and

– an Orbit Consistency Violation, if there exists an accepting state q1
such that, for every symbol a, there exists another accepting state q2 in O(q1)
in D, such that for every state q, at most one of the transitions q1

a−→ q and
q2

a−→ q exists.1

Notice that the first two violations focus on DS and the last one on D, as in
the Bkw-Algorithm. In summary, we will also say that a DFA D has a violation
if and only if it has at least one of the above violations. We show that these
violations are a valid characterization of DRE-definable languages.

Theorem 10. Let D be a minimal DFA. Then it holds that L(D) is not DRE-
definable if and only if there exist a state q of D and k ∈ N such that levk(D, q)
has a violation.

4 The Definability Problem

We are now ready to prove results about the complexity of DRE-Definability

for different formalisms. We first show that the problem is PSPACE-complete for
NFAs and REs. Then we look at RE(#)s which are natural extensions in the con-
text of W3C XML Schema. In that setting, the problem becomes EXPSPACE-
complete. Finally, we look at the class of DFAs.

1 Notice that δ(q1, a) may be empty if D only has useful states.

298 W. Czerwiński et al.

4.1 Definability for REs and NFAs

Our PSPACE algorithm for DRE-definability for REs and NFAs exploits The-
orem 10 in the following way. Given an NFA N , we search for a level k and a
state p of [N] such that levk([N], p) has a violation. As PSPACE is closed under
complement, the result follows.

Notice that, in general [N] can be exponentially larger than N and therefore
we cannot simply compute [N] in space polynomial in |N |. To overcome this
difficulty, we use the following two ideas:

1. Use the fact that the maximal recursion depth of Algorithm 1 on [N] is
polynomial in the size of the NFA N (Theorem 9);

2. Adapt Algorithm 1 using Theorem 10 and apply it on the minimal DFA by
only partially constructing it on-the-fly from the NFA.

In the following we explain how we can detect if there occurs a violation in
the minimal DFA for some NFA on the fly, i.e., without constructing the DFA
explicitly. To this end, we fix the following notations for the remainder of the
section. By N = (QN , Σ, δN , q

0
N , FN) we always denote an NFA. So, in particu-

lar, we always denote by QN the state set of N . For a set of states q ⊆ QN , we
denote by [q] the corresponding state in the minimal DFA [N]. More formally,
[q] is the set of words {w | ∃t ∈ q s.t. δ∗N (t, w)∩FN �= ∅}, i.e., the Myhill-Nerode
class of q. Also, whenever we talk about levk([N], [q])Sk

, the set Sk is the set of
consistent symbols in levk([N], [q]). The key result (Lemma 17) is to show that
we can detect if a violation occurs in a level k for [N] in space polynomial in k
and |N |. Here are the precise problems we consider. For each of them the input
is an NFA N and k ∈ N:

Out-Cons-Violation: Given N and k, is there a q ⊆ QN such that
levk([N], [q])Sk

has an out-consistency violation?
Acc-Cons-Violation: Given N and k, is there a q ⊆ QN such that

levk([N], [q])Sk
has an acceptance consistency

violation?
Orbit-Cons-Violation: Given N and k, is there a q ⊆ QN such that

levk([N], [q]) has an orbit consistency violation?

We first study the complexity of the following subproblems which will be used
in the proof of Lemma 17. The input is always a subset of an NFA N , sets
p, q ⊆ QN , a ∈ Σ, k ∈ N that is relevant to the problem.

Edge: Given (N, p, q, a, k), is [p]
a−→ [q] a transition in levk([N], [p])?

Reachability: Given (N, p, q, k), is [q] reachable from [p] in levk([N], [p])?
SameOrbit: Given (N, p, q, k), are [p] and [q] in the same orbit of

levk([N], [p])?

InterOrbit: Given (N, p, k), is there an inter-orbit transition [p]
a−→ [q]

for some label a and q in levk([N], [p])?
Acceptance: Given (N, p, k), is [p] accepting in levk([N], [p])?
IsGate: Given (N, p, k), is [p] a gate in levk([N], [p])?

Deciding Definability by Deterministic Regular Expressions 299

Notice that SameOrbit and InterOrbit are only non-trivial if k = 0. Further-
more, for some of the above problems X we consider a variation called X-Cut

in which, with the same input, we want to decide if the problem X is true for
automaton levk([N], [p])Sk

(instead of levk([N], [p])).
We will heavily use the following result:

Theorem 11 (Corollary to Savitch’s Theorem). Let f(n) ≥ logn be a
non-decreasing polynomial function. Then NSPACE(f(n)) ⊆ SPACE(f2(n)).

Our proof is a careful mutual induction on the above defined problems. First we
show that Edge, Edge-Cut, and Acceptance can be computed in polynomial
space on level 0 and then we prove a set of implications of the sort if we can solve
X on level k, then we can solve Y on level k (or level k + 1). All the lemmas
have to be carefully put together in the right order.

Lemma 12. Given N and p, q ⊆ QN , we can test whether [p] = [q] in space
O(|N |2).
Proof (Sketch). A non-deterministic Turing Machine can test in non-
deterministic space O(|N |) whether [p] �= [q]. The lemma then follows from
Theorem 11 and the fact that deterministic complexity classes are closed under
complement. �
In the following, whenever we say that we solve a problem for N at level k, we
mean that we solve it for the NFA N and arbitrary sets of states p, q ⊆ QN ,
a ∈ Σ, and k. The basis of our entire mutual induction is being able to test if a
certain transition is present in the minimal DFA equivalent to N , if it is present
in its S-cut, or if some state is accepting.

Lemma 13. Edge, Acceptance and Edge-Cut for N at level 0 can be solved
in space O(|N |2).
Proof. We first show how to check, for a given set p ⊆ QN , whether [p] is a
state in [N], i.e., whether it is useful. As N only has useful states, there exists a
path from [p] to some accepting state in [N]. Thus it is enough to check whether
there is a path from [{q0N}] to [p]. This clearly can be done by a nondeterministic
algorithmworking in spaceO(|N |). This algorithm would guess a word symbol by
symbol, simulate PN on the fly, starting from {q0N} and test at each step whether
the reached state q is equivalent to p, i.e., if [p] = [q] (proof of Lemma 12). Thus,
by Theorem 11, it can also be done by a deterministic algorithm working in
space O(|N |2).

We now turn our attention to Edge. Let (N, p, q, a, 0) be the input for Edge.

We must decide if [p]
a−→ [q] is a transition in [N]. Since [N] does not have useless

states, this means that we should test two things:

– both [p] and [q] are states in [N];
– [δPN (p, a)] = [q], where PN is the power set automaton of N .

The former can be solved in O(|N |2), as we mentioned before. It remains to
prove the latter. Given p and a, we can easily compute δPN (p, a) in space O(|N |).
According to Lemma 12, we can then decide if [δPN (p, a)] = [q] in space O(|N |2).

We omit the proof how to solve Acceptance and Edge-Cut. �

300 W. Czerwiński et al.

When we can solve Edge or Edge-Cut at a certain level, we can use it to make
more complex tests.

Lemma 14. Assume that we can solve Edge for N at level k in space f(k, |N |).
Then we can solve

– Reachability for N at level k in space f(k, |N |) +O(|N |2).
– SameOrbit for N at level k in space f(k, |N |) +O(|N |2).
– InterOrbit for N at level k in space f(k, |N |) +O(|N |2).

Analogously, if we can solve Edge-Cut for N at level k in space f(k, |N |), then
we can solve Reachability-Cut, SameOrbit-Cut, and InterOrbit-Cut

for N at level k in space f(k, |N |) +O(|N |2).
The next lemma allows us to do a single induction step that allows us to compute
the structure of an automaton at level k + 1 if we can compute the automaton
at level k.

Lemma 15. Assume that we can solve Edge and Acceptance for N at level
k in space f(k, |N |). Furthermore, assume that levk([N], [p]) has no violation.
Then we can solve Edge and Acceptance for N at level k + 1 in space
f(k, |N |) +O(|N |2).
The following lemma shows that we can compute properties of the level k au-
tomaton if we can decide some properties for all smaller levels. For technical
reasons, we need the assumption that all lower level automata levi([N], [p]) have
no violation. This is because, otherwise, the level k automaton would be empty.
The proof is basically a careful induction that puts together the previous lemmas.

Lemma 16. Assume that for 0 ≤ i ≤ k − 1 all automata levi([N], [p])
have no violation. Then all problems Edge, Reachability, SameOrbit, In-
terOrbit, Acceptance and Edge-Cut, Reachability-Cut, SameOrbit-
Cut, InterOrbit-Cut, and IsGate-Cut for N at level k are in space
O((k + 1)|N |2).

Lemma 16 states that we can decide on-the-fly which transitions are present and
which states are accepting in level k automata (if no violations occur in more
shallow levels). Since these properties give the entire structure of the level k
automata, we can now also test for violations on level k.

Lemma 17. Assume that all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have
no violation. We can solve Out-Cons-Violation, Acc-Cons-Violation and
Orbit-Cons-Violation for N at level k in space O((k + 1)|N |2).

Proof. Let the input for Out-Cons-Violation be N and k. Then, an out-
consistency violation occurs at level k of N if and only if there exist p, q ⊆ QN
such that all of the following hold:

– all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation;
– both [p] and [q] are gates in levk([N], [p])Sk

;
– both [p] and [q] are in the same orbit of levk([N], [p])Sk

;

Deciding Definability by Deterministic Regular Expressions 301

– there exist a symbol a ∈ Σ and [q′] outside the orbit of [p] in levk([N], [p])Sk

such that the transition [p]
a−→ [q′] exists in levk([N], [p])Sk

, but [q]
a
� [q′]

does not.

By the lemma statement we know that all automata levi([N], [p]) for 0 ≤ i ≤ k−1
have no violation. According to Lemma 16 we can solve IsGate-Cut and Same-

Orbit-Cut for N at level k in space O((k+1)|N |2). We solve the last point by
enumerating all a ∈ Σ and states q′ ⊆ QN and testing whether

– a transition [p]
a−→ [q′] exists and [q]

a−→ [q′] does not exist;
– [p] and [q′] are in different orbits.

Again by Lemma 16 Edge-Cut and SameOrbit-Cut for N at level k may
be done in space O((k + 1)|N |2). This concludes the proof for Out-Cons-

Violation.

The proofs for Acc-Cons-Violation and Orbit-Cons-Violation are
similar. �

We now have all the elements to prove our main result.

Theorem 18. DRE-Definability(NFA) and DRE-Definability(RE) are
PSPACE-complete.

Proof. DRE-Definability(RE) is known to be PSPACE-hard [3]. Since an RE
can be translated in polynomial time into an equivalent NFA, the lower bound
also holds for NFAs.

Furthermore, the upper bound for REs follows from the upper bound for
NFAs. We therefore show that DRE-Definability for an NFA N is in space
O(|N |4), which proves the theorem. We assume w.l.o.g. that |Σ| ≤ |N |. Accord-
ing to Theorem 10, a language L(N) is not DRE-definable if and only if one of
Out-Cons-Violation, Acc-Cons-Violation and Orbit-Cons-Violation

occurs at some level k for N . Due to Theorem 9 we need to check this only for
levels up to |N |2 + 2, since the recursion depth of Algorithm 1 is never bigger
than this.

We test whether there exists a violation at some level k for N , starting from
level 0 and moving into higher and higher levels, up to level |N |2+2. For every sin-
gle level k the test can be done in space O((k+1)|N |2), according to Lemma 17.
Note that during the application of the above lemma we know that the smaller
levels do not contain any violation, since it was checked before, thus the as-
sumptions in the lemma statements are fulfilled. Therefore the space needed
for solving DRE-Definability(NFA) for N is bounded by O((k + 1)|N |2) for
k = |N |2 + 2, i.e., bounded by O(|N |4), which finalises the proof for NFAs. �

4.2 Definability for RE(#)s

Next we show that testing DRE-Definability is EXPSPACE-complete when
the input is given as a regular expression with counters. The upper bound is

302 W. Czerwiński et al.

immediate from Theorem 18 and the fact that we can translate an RE(#) into
an RE of exponential size by unfolding the counters.

For the lower bound, we reduce from the exponential corridor tiling prob-
lem, which is defined as follows. An exponential tiling instance is a tuple I =
(T,H, V, x⊥, x�, n) where T is a finite set of tiles, H,V ⊆ T × T are the
horizontal and vertical constraints, x⊥, x� ∈ T , and n is a natural number
in unary notation. A correct exponential corridor tiling for I is a mapping
λ : {1, . . . ,m} × {1, . . . , 2n} → T for some m ∈ N, such that every of the
following constraints is satisfied:

– the first tile of the first row is x⊥: λ(1, 1) = x⊥;
– the first tile of the m-th row is x�: λ(m, 1) = x�;
– all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
– all horizontal constraints are satisfied: ∀i≤m,∀j<2n,(λ(i, j), λ(i, j+1)) ∈ H .

Then, the EXP-Tiling problem asks, given an exponential tiling instance,
whether there exists a correct exponential corridor tiling. The latter problem
is known to be EXPSPACE-complete [27].

The full proof of the lower bound combines elements from the proof that DRE-
definability for REs is PSPACE-complete [3] and that language universality for
RE(#)s is EXPSPACE-complete [12].

Theorem 19. Given a regular expression with counters r, the problem of de-
ciding whether L(r) is DRE-definable is EXPSPACE-complete.

4.3 Definability for DFAs

As explained before, the DRE-definability problem is in polynomial time if the
input is a minimal DFA [7]. As a final, minor result, we give an NLOGSPACE
lower bound in this case.

Theorem 20. DRE-Definability(minDFA) is NLOGSPACE-hard.

Proof (sketch). The reduction for the lower bound is from the reachability prob-
lem in directed acyclic graphs. This problem asks, given a DAG G = (V,E),
a source node s, and a target node t, whether t is reachable from s by a di-
rected path. The DAG reachability problem is well-known to be NLOGSPACE-
complete [17].

In this proof, we will use the fact that finite languages are always DRE-
definable. (This can be checked through the Bkw-Algorithm which discovers
immediately that all orbits are trivial.) For the reduction, let G = (V,E), and
nodes s, t ∈ V be an instance of DAG reachability. We construct a minimal DFA
D such that L(D) is DRE-definable if and only if vertex t is reachable from
vertex s in graph G.

We build D = (Q,Σ, δ, q0, {qf}) from G as follows. The set Q of states is the
disjoint union of the vertices V of G, plus two distinguished states q0 (which
is D’s initial state) and qf (which is D’s only accepting state). The alphabet

Deciding Definability by Deterministic Regular Expressions 303

Σ is defined as (V ! {q0, qf})2. The transitions of D are defined as follows. Let
V = {v1, . . . , vn} be the vertices of G.

– For each directed edge (vi, vj) ∈ E, the automaton D has the transition
δ(vi, (vi, vj)) = vj ;

– for each vertex vi, the automaton D has the transitions δ(q0, (q0, vi)) = vi
and δ(vi, (vi, qf)) = qf ; and

– δ(t, (t, s)) = s is a transition of the automaton D.

As such, every transition has its unique label. This concludes the reduction. The
reduction can be conducted in logarithmic space. �

5 Conclusions

We have pinned down the exact complexity of testing whether a regular expres-
sion can be determinized and considered additional variants of this problem. Our
proof provides additional insights on such DRE-definable languages and on the
decision algorithm of Brüggemann-Klein and Wood. An important open ques-
tion is about the possible blow-up in the determinization process: Given a regular
expression, what is the worst-case (unavoidable) blow-up when converting it to
an equivalent deterministic one? At the moment, we know that an exponential
blow-up cannot be avoided [21] but the best known upper bound is double ex-
ponential. While our proofs seem to give some insight in how to improve this
upper bound, testing if a language is DRE-definable and actually constructing a
minimal equivalent DRE are quite different matters. It is not yet clear to us how
our techniques can be leveraged to obtain better upper bounds for this question.

Acknowledgement. We thank Wouter Gelade for bringing this problem to our
attention.

References

1. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Book (to appear, 2013)

2. Balmin, A., Papakonstantinou, Y., Vianu, V.: Incremental validation of XML doc-
uments. ACM Trans. on Datab. Syst. 29(4), 710–751 (2004)

3. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless
handling of nondeterministic regular expressions. In: ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 731–744 (2009)

4. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. In: World Wide Web
Conference (WWW), pp. 825–834 (2008)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language XML 1.0, 5th edn. W3C Recommendation (November 2008)

6. Brüggemann-Klein, A., Wood, D.: Deterministic Regular Languages. In: Finkel, A.,
Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 173–184. Springer, Heidelberg
(1992)

304 W. Czerwiński et al.

7. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. and
Comput. 142(2), 182–206 (1998)

8. Chen, H., Chen, L.: Inclusion Test Algorithms for One-Unambiguous Regular Ex-
pressions. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 96–110. Springer, Heidelberg (2008)

9. Colazzo, D., Ghelli, G., Sartiani, C.: Efficient inclusion for a class of XML types
with interleaving and counting. Inform. Syst. 34(7), 643–656 (2009)

10. Fallside, D., Walmsley, P.: XML Schema Part 0: Primer, 2nd edn. World Wide
Web Consortium (October 2004)

11. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

12. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Nu-
merical constraints and interleaving. SIAM J. Comput. 38(5), 2021–2043 (2009)

13. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. ACM Trans. on Comput. Logic 4, 1–19 (2012)

14. Groz, B., Maneth, S., Staworko, S.: Deterministic regular expressions in linear time.
In: ACM Symposium on Principles of Database Systems (PODS), pp. 49–60 (2012)

15. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley (2007)

16. Hovland, D.: Regular Expressions with Numerical Constraints and Automata with
Counters. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp.
231–245. Springer, Heidelberg (2009)

17. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. Syst. Sci. 11(1), 68–85 (1975)

18. Kilpeläinen, P.: Checking determinism of XML Schema content models in optimal
time. Inform. Syst. 36(3), 596–617 (2011)

19. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with nu-
meric occurrence indicators. Inform. and Comput. 205(6), 890–916 (2007)

20. Konrad, C., Magniez, F.: Validating XML documents in the streaming model with
external memory. In: International Conference on Database Theory (ICDT), pp.
34–45 (2012)

21. Losemann, K., Martens, W., Niewerth, M.: Descriptional Complexity of Determin-
istic Regular Expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS
2012. LNCS, vol. 7464, pp. 643–654. Springer, Heidelberg (2012)

22. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree
transducers. In: ACM Symposium on Principles of Database Systems (PODS), pp.
283–294 (2005)

23. Martens, W., Neven, F.: On the complexity of typechecking top-down XML trans-
formations. Theor. Comp. Sc. 336(1), 153–180 (2005)

24. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput.
Syst. Sci. 66(1), 66–97 (2003)

25. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Log. Meth. in Comp. Sc. 2(3) (2006)

26. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: ACM Sympo-
sium on Principles of Database Systems (PODS), pp. 53–64 (2002)

27. van Emde Boas, P.: The convenience of tilings. In: Complexity, Logic and Recursion
Theory, pp. 331–363. Marcel Dekker Inc. (1997)

28. Wood, P.T.: Containment for XPath Fragments under DTD Constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
297–311. Springer, Heidelberg (2002)

Type-Based Complexity Analysis

for Fork Processes

Emmanuel Hainry, Jean-Yves Marion, and Romain Péchoux

Université de Lorraine and LORIA
{emmanuel.hainry,jean-yves.marion,romain.pechoux}@loria.fr

Abstract. We introduce a type system for concurrent programs de-
scribed as a parallel imperative language using while-loops and fork/wait
instructions, in which processes do not share a global memory, in or-
der to analyze computational complexity. The type system provides an
analysis of the data-flow based both on a data ramification principle
related to tiering discipline and on secure typed languages. The main
result states that well-typed processes characterize exactly the set of
functions computable in polynomial space under termination, confluence
and lock-freedom assumptions. More precisely, each process computes in
polynomial time so that the evaluation of a process may be performed
in polynomial time on a parallel model of computation. Type inference
of the presented analysis is decidable in linear time provided that basic
operator semantics is known.

Keywords: Implicit Computational Complexity, Tiering, Secure Infor-
mation Flow, Concurrent Programming, PSpace.

1 Introduction

We propose a type system for an imperative language with while loops and forks
calls, which provides an upper bound on the complexity of a process by con-
trolling its data flow. Threads are created dynamically and they do not share a
global memory. Each fork call creates a new child process with a distinct iden-
tifier (id) and duplicates the execution context including the program counter.
The parent process keeps the ids of its children (but not the converse). Com-
munications between children and their parent are performed through the use
of a wait instruction that allows a returning child to pass a value to its parent
process. The domain of computation is, in essence, the set of strings, on which
various admissible operators can be defined. Thus, we are able to use arrays of
strings with respect to the typing limitation as in Example 1.

We demonstrate that each subprocess generated by a well-typed process (un-
der some restrictions) runs in polynomial time (Proposition 2) and that the
number of process offsprings is bounded by a polynomial (Proposition 3). As
a result, the amount of interactions between two processes is also bounded
by a polynomial. Thanks to Savitch’s Theorem [21], we show that a program
runs in polynomial space on a sequential machine (Theorem 2), and conversely

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 305–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

306 E. Hainry, J.-Y. Marion, and R. Péchoux

(Theorem 3). This result is expressed in the central Theorem 1. As far as we
know, it is the first characterization of FPSpace based on a typed system for an
imperative language. The type inference procedure is computable in linear time
in the program size (Proposition 1). As a result, applications about the com-
plexity measure of process calculi may be considered. We refer to the conclusion
for a discussion about practical issues.

That said, one of our main motivation is to understand the relationship be-
tween data flow control and computational complexity. In [17], a type system
was introduced for a sequential imperative programming language, characteriz-
ing the set of polynomial time computable functions. The idea behind such a
typing system is to control the information flow in an execution by enforcing
a data tiering discipline. The idea is that data are ramified into tiers in such a
way that data at a given tier may only produce information at the same tier
or at a lower tier. Thus, the type system prevents the alteration of upper tier
data by lower tier data, following the principle of an integrity policy [3]. From
this observation, there is only a small step to do in order to devise a type sys-
tem based on works on type-based information flow analysis. We refer to the
survey [20] for further explanations. The type system assigns tiers (which are
similar to security levels) to variables. As in [23,22], the type system prevents
information to flow from lower tier variables to higher tier variables by direct or
indirect assignments. From a complexity point of view, the main novelty here is
that we have to control the information that flows between processes so that the
termination of a father process does not depend on the return values of its chil-
dren. For this, we suggest a three-tier lattice, {−1,0,1}, where tier 1 variables
control the while loops, tier 0 variables are working data, and tier −1 variables
are output values. Consequently, we prevent an unsafe declassification due to
the termination of a process through the wait/return mechanism. Lastly, it is
worth noticing that we establish a non-interference property (Proposition 2),
which expresses the relationship between information flow and complexity.

There are several works, which are directly related to our results. On function
algebra, a characterization of Pspace has been provided by ramified recursion
with parameter substitutions [14] and by ramified recurrence over functions [15].
On functional languages, several characterizations of Pspace have been pro-
vided in [8] consisting in restrictions on data manipulation and on recursion
schemes. Moreover, a typed lambda calculus based on Soft Linear Logic [11],
which identifies exactly Pspace, is introduced in [7]. The completeness proofs
of the aforementioned works simulate alternating polynomial time Turing ma-
chines [5]. Another approach is the one of Pola [6] which relates complexity and
category theory. On imperative languages, an approach consists in analyzing the
growth of the data flow by means of a matrix calculus propagating constraints
between variables [19,9,18]. Thus, Niggl and Wunderlich gave a characterization
of Pspace [19]. On the complexity of message passing languages based on im-
plicit computational complexity, Amadio and Dabrowski show how to obtain an
upper bound on instants for synchronous languages by using quasi-interpretation
based tools [1,2]. More recently, Dal Lago et al proposed to polynomially bound

Type-Based Complexity Analysis for Fork Processes 307

process interactions by type systems based on Light Linear Logic [13,12]. Notice
that the fragment of the process calculi is too weak to establish a completeness
result. Lastly, the recent work of Madet [16] proposes a multithreaded program
with side effects also based on light linear logic which are polynomial.

2 Imperative Language with Forks

2.1 Syntax of Processes

Expressions, instructions, commands and processes are defined by the following
grammar, where V is the set of variables and O is the set of operators. The size
of an expression is |X | = 1 and |op(E1, . . . ,En)| =

∑n
i=1 |Ei|+1. We note V(K),

K ∈ Exp ∪ Proc the set of variables occurring in K.

E ,E1, . . . ,En ∈ Exp ::= X | op(E1, . . . ,En) X ∈ V , op ∈ O

I ∈ Inst ::= fork() | wait(E)
C ,C ′ ∈ Cmd ::= X :=E | C ; C ′ | while E do C |

skip | X :=I | if E then C else C ′

P ∈ Proc ::= return X | C ; P

2.2 Informal Semantics

The semantics is similar to the one of C programs and Unix processes. Each
process has an id (a pid). When a fork command is executed, a new child pro-
cess is created, that will run concurrently with its parent process with its own
duplicated memory. The parent process knows the child id, whereas a child has
no knowledge of its parent process id. A process P is evaluated inside a configu-
ration, a triple (P, μ)ρ consisting of a process, a store μ mapping each variable
to a value of the computational domain and a set of ids ρ. In a configuration,
the process can be viewed as the code that remains to be executed, and ρ stores
the children process id’s. At the creation of a child process, the store μ and
the program counter are duplicated, and ρ is ∅. The main process id is always
1. When a new child is created by a fork its id is automatically set to a new
integer and it is recorded in the set ρ of the father’s configuration. All the con-
figurations corresponding to the main process and its subprocesses are stored
inside an environment E , a partial function mapping the process id to a con-
figuration. Processes do not share a global memory. Consequently, the only way
for a process to communicate with its children is through the use of a wait(E)
instruction, which provides a one-way communication. The following program
illustrates how to define distinct code that will be executed by the child but not
the parent process and conversely. For the parent, X contains the pid of its child,
for the child, X contains 0.

P: X := fork () ; // X contains the child pid
i f X > 0 then { // father’s code (X>0)

Y := wait (X) ;
Y := ” fa th e r ”

308 E. Hainry, J.-Y. Marion, and R. Péchoux

} else { // child’s code (X=0)
Y := ” ch i l d ”

}
return Y // The father returns ”father” and the child returns ”child”

2.3 Semantics of Expressions, Configurations and Environments

Domain. Let W be the set of words over a finite alphabet Σ including two
symbols tt and ff that denote truth values true and false. Let ε be the empty
word. The length of a word d is denoted |d |. As usual, we set |ε| = 0. Define
� as the sub-word relation over W, by v � w , iff there are u and u ′ of W s.t.
w = u.v .u ′, where ‘.’ is the concatenation. We write n to mean the binary word
encoding the natural number n.

Store. A store μ is a total function from process variables in V to words in W.
Let μ{X1 ← d1, . . . ,Xn ← dn}, with Xi pairwise distinct, denote the store μ
where the value stored by Xi is updated to di, for each i ∈ {1, . . . , n}. The size
of a store μ, denoted |μ| is defined by |μ| =

∑
X∈V |μ(X)|.

Configuration. Given a store μ and a process P, the triplet c = (P, μ)ρ, where
ρ is an element of P(N), is called a configuration. Let ⊥ be a special erased
configuration that will be used to replace the content of a configuration once it
has terminated: it no longer uses space. The size of a configuration is defined by
|⊥| = 0 and |(P, μ)ρ| = |μ|+ -ρ, where -ρ is the cardinality of ρ.

Expressions and Configurations. Each operator of arity n is interpreted by
a total function �op� : Wn �→W. The expression evaluation relation

e→ and the

sequential command evaluation relation
c→ are described in Figure 1.

(X , μ)
e→ μ(X) (Variable)

(op(E1, . . . ,En), μ)
e→ �op�(d1, . . . , dn), if ∀i, (Ei, μ)

e→ di (Operator)

(skip; P, μ)ρ
c→ (P, μ)ρ (Skip)

(X :=E ; P, μ)ρ
c→ (P, μ{X ← d})ρ if (E , μ)

e→ d (Assign)

(if E then Ctt else Cff; P, μ)ρ
c→ (Ctt; P, μ)ρ if (E , μ)

e→ tt (Iftt)

(if E then Ctt else Cff; P, μ)ρ
c→ (Cff; P, μ)ρ if (E , μ)

e→ ff (Ifff)

(while E do C ; P, μ)ρ
c→ (P, μ)ρ if (E , μ)

e→ ff (Whileff)

(while E do C ; P, μ)ρ
c→ (C ; while E do C ; P, μ)ρ if (E , μ)

e→ tt (Whilett)

Fig. 1. Small step semantics of expressions and configurations

Type-Based Complexity Analysis for Fork Processes 309

Environments. An environment E is a partial function from N to configura-
tions. The domain of E is denoted dom(E) and we denote -E its cardinal when
it is finite. We abbreviate E (n) by En. The size of a finite environment ‖E ‖ is
defined by ‖E ‖ =

∑
i∈dom(E) |Ei|. The notation E [i := c] is the environment

E ′ defined by E ′(j) = E (j) for all j �= i ∈ dom(E) and E ′(i) = c. As usual
E [i1 := c1, . . . , ik := ck] is a shortcut for E [i1 := c1] . . . [ik := ck]. The initial
environment is noted Einit[P, μ] and consists in the main process with no child.
That is Einit[P, μ](1) = (P, μ)∅ and dom(Einit[P, μ]) = {1}. An environment E
is terminal if the root process satisfies E1 = (return X , μ)ρ.

Semantics. The transition → for process evaluation is provided in Figure 2.
The (Fork) rule creates a new configuration, a new process, say of id n, with a
new store, and adds it to the environment. The parent process records its child
id n into the variable X on which the fork instruction has been called and the
child id set of the parent is updated to ρ ∪ {n}. Note also that X is assigned
to 0 in the child configuration. The (Wait) commands Z:=wait(E) evaluates
the expression E to some binary numeral n. If the process n is a terminating
configuration En with n ∈ ρ, then the output value μ′(Y) is transmitted and
stored in the variable Z. Finally, the returning process n is killed by erasing it
through the following operation E [n := ⊥]. Note that the side condition n ∈ ρ
prevents locks.

E [i := c] → E [i := c′] if c
c→ c′ (Conf)

E [i := (X :=fork(); P, μ)ρ] → E [i := (P, μ{X ← n})ρ∪{n}, n := (P, μ{X ← 0})∅] (Fork)
with n = �E + 1

E [i := (X :=wait(E); P, μ)ρ] → E [i := (P, μ{X ← μ′(Y)})ρ , n := ⊥] (Wait)

if (E , μ)
e→ n, n ∈ ρ and En = (return Y , μ′)

Fig. 2. Semantics of Environments

2.4 Strong Normalization, Lock-Freedom and Confluence

Throughout the paper, given a relation �→, let �→∗ be the reflexive and transitive
closure of �→ and let �→k denote the k-fold self composition of �→. A process P
is strongly normalizing if there is no infinite reduction starting from the initial
environment Einit[P, μ] through the relation→, for any store μ. Given an initial
environment Einit[P, μ], for some strongly normalizing process P and some store
μ, if Einit[P, μ]→∗ E ′, for some environment E ′ such that there is no environment
E ′′, E ′ → E ′′, then either E ′ is terminal, i.e. E ′1 = (returnX , μ′)ρ (themain pro-
cess is returning) or E ′1 = (X :=wait(E); C ′, μ′)ρ(we say that the environment
E ′ is locked). A process P = C ; return X is lock-free if for any initial environ-

ment Einit[P, μ], there is no locked environment E ′ such that Einit[P, μ]
*→ E ′.

310 E. Hainry, J.-Y. Marion, and R. Péchoux

A process P is confluent if for each initial environment Einit[P, μ] and any re-
ductions Einit[P, μ] →∗ E ′ and Einit[P, μ] →∗ E ′′ there exists an environment
E 3 such that E ′ →∗ E 3 and E ′′ →∗ E 3. A strongly normalizing, lock free and
confluent process P computes a total function f : Wn →W defined:

∀d1, . . . , dn ∈W, f(d1, . . . , dn) = w

if Einit[P, μ[Xi ← di]] →∗ E , for some terminal environment E with E1 =
(return X , μ′)ρ and μ′(X) = w .

3 Type System

3.1 Tiers and Typing Environments

Tiers are elements of the lattice ({−1,0,1},∨,∧) where ∨ and ∧ are the least
upper bound operator and the greatest lower bound operator, respectively. The
induced order, denoted <, is such that −1 < 0 < 1. In what follows, let α, β, . . .
denote tiers in {−1,0,1}. Tiers will be used to type both expressions and com-
mands. Operator types τ are defined by τ ::= α | α −→ τ . As usual, we will use
right associativity for −→. A variable typing environment Γ maps each variable
in V to a tier. An operator typing environment Δ maps each operator op to a set
of operator types Δ(op), where the operator types corresponding to an operator
of arity n are of the shape τ = α1 −→ . . . −→ αn −→ α.

Intuitively, each tier variable has a specific role to play:

– tier 1 variables will be used as guards of while loops. They should not be
allowed to take more than a polynomial number of distinct values;

– tier 0 variables may increase and cannot be used as while loop guards;
– tier −1 variables will store values returned by child processes and cannot

increase. Intuitively, they play the role of an output tape.

3.2 Well-Typed Processes

Typing Rules. Figure 3 provides the typing rules for expressions, commands
and processes. Typing rules consist in judgments of the shape Γ,Δ % K : α,
K ∈ Exp∪Cmd, meaning that K has type α under variable and operator typing
environments Γ and Δ, respectively.

There are some important points to explain in this type system. First, the
typing discipline precludes values from flowing from tier α to tier β, whenever
α < β and α �= β. Consequently, the guards of while loops are enforced to be
of tier 1 in rule (CW). Moreover, in a (CB) rule, we enforce the tier of the
guard to be equal to the tier of both branches. Also note that the subtyping rule
(CSub) is restricted to commands in order not to break this preclusion. On the
opposite, information may flow from tier 1 to tier 0 then to tier −1. This point
is underlined by the side condition of the (CA) rule. The (F) rule enforces the
tier of the variable storing the process id to be of tier 0 since the value stored

Type-Based Complexity Analysis for Fork Processes 311

Γ (X) = α
(EV)

Γ,Δ � X : α

Γ,Δ � Ei : αi α1 −→ . . . −→ αn −→ α ∈ Δ(op)
(EO)

Γ,Δ � op(E1, . . . ,En) : α

Γ,Δ � X : 0
(F)

Γ,Δ � X :=fork() : 0

Γ,Δ � E : 0 Γ,Δ � X : −1
(W)

Γ,Δ � X :=wait(E) : −1

Γ,Δ � X : α Γ,Δ � E : α′ E ∈ Exp
α " α′ (CA)

Γ,Δ � X :=E : α

Γ,Δ � C : α Γ,Δ � C ′ : α′
(CC)

Γ,Δ � C ; C ′ : α ∨ α′

Γ,Δ � E : 1 Γ,Δ � C : α
(CW)

Γ,Δ � while(E)do{C} : 1

Γ,Δ � E : α Γ,Δ � C : α Γ,Δ � C ′ : α
(CB)

Γ,Δ � if E then C else C ′ : α
(CS)

Γ,Δ � skip : α

Γ,Δ � C : α
α " β (CSub)

Γ,Δ � C : β

Γ,Δ � X : β
(R)

Γ,Δ � return X : β

Fig. 3. Type system for expressions, instructions, commands and processes

will increase dynamically during the process execution. Finally, the tier of the
variable storing the result returned by a child process (rule (W)) has to be of
tier −1, which means that no information may flow from a variable of a child
process to tier 0 and tier 1 variables of its parent process.

Notations. In practice, we write C : α to say that C is of type α, and Eα to
says that E is of type α under the considered environments.

Example 1. The following example illustrates how we can program a reduce
operation used in parallel prefix sum [10]. The problem consists in computing the
greatest element among n integers in an array-like structure (A[0], . . . , A[n−1]).

max reduce (n1 , A0) : :=
r0 := 0 : 0 ;
f−1 := A[r] 0 : −1 ;
f l a g 0 := t t : 0 ;
while (n1 	= 1)1 do {

i f f l a g 0 then { // not finished
p id l 0 := fork () : 0
i f (p id l >0)0 then { // father process

r0 := 2∗ r+2: 0 ;
p id r0 := fork () : 0}
else { r0 := 2∗ r+1: 0 } // left son

i f (p id r==0)0 or (p id l==0)0 then { f−1 := A[r] 0 : 0 ; }
else {

f l a g 0 := f f : 0 ; // father
x l−1 := wait (p id l) : 0 ;
xr−1 := wait (p id r) : 0 ;

312 E. Hainry, J.-Y. Marion, and R. Péchoux

f−1 := max(f−1 , max(xl , xr)) : 0 ; } }
n1 := h a l f (n)1 : 1 } // end of while

return f :−1

The notation A[r] simply denotes the access to cell r of the array A.
The program queries the first element of the array A[0] then will spawn

two children subprocesses, each one exploring one half of the array (the left
son will compute the max of {A[i]; 2k − 1 ≤ i ≤ 2k + 2k−1 − 2, k ≥ 1} =
{A[1], A[3], A[4], A[7], . . .}, the right son computing the max of {A[i]; 2k+2k−1−
1 ≤ i ≤ 2k+1 − 2, k ≥ 1} = {A[2], A[5], A[6], A[11], . . .}). When labelling the
nodes of the subprocesses tree with the character each process checks by itself,
it is such that the array is a breadth first search of it.

Notice that the typing of commands uses the subtyping rule CSub.
We find convenient to describe now the nature of operators used, that will be

presented in the next section (Definitions 1 and 2). The get operation on arrays,
expressed above by the assignment f := A[r], is a neutral operation of type
0 −→ 0 −→ 0 and it can be in Ntr because of its type. The length n and the
index r are identified by their binary notations. So the operators 2 ∗ r + 2 and
2∗r+1 increase the length by 1 and are positive operators of type 0,0 −→ 0, and
so are in Pos. Similarly, the operator half(n) divides the length n by two, that is
it deletes a letter. So, it is a neutral operator of type 1 −→ 1 and is in Ntr. The
predicates or, �= are typical neutral operators of types resp. 0 −→ 0 −→ 0 and
1 −→ 1 −→ 1. However the typing implies that or ∈ Ntr ∪ Pos, and �=∈ Ntr.
Lastly, max is a max operator of type −1 −→ −1 −→ −1 and is in Max.

4 Safe Processes, Type Inference and Complexity

4.1 Neutral, Max, and Positive Operators

The type system guarantees that information flow goes from tier 1 to tier −1,
and prevents any flow in the other way from a lower tier to higher tier. But this
is not sufficient to bound process resources. We need to fix the class of operator
interpretations based on their typing. For that we define neutral operators (that
make the variables decrease and preserve tier), max operators (that do not make
variables grow and preserve lower tiers but not tier 1), and positive operators
(that can only produce a result of tier 0 as they can create something bigger
than their arguments).

Definition 1.

1. An operator op is neutral if:

(a) either op computes a binary predicate (i.e. the codomain of op is {tt, ff}).
(b) or ∀d1, . . . , dn, ∃i ∈ {1, . . . , n}, �op�(d1, . . . , dn)� di.

2. An operator op is max if ∀(di)1,n |�op�(d1, . . . , dn)| ≤ maxi∈[1,n] |di|.
3. An operator op is positive if ∀(di)1,n, |�op�(d1, . . . , dn)| ≤ maxi∈[1,n] |di|+c,

for a constant c ≥ 0.

Type-Based Complexity Analysis for Fork Processes 313

Say that a type α1 −→ . . .−→ αn −→ α is decreasing if α < ∧i=1,nαi. We now
give a partition of operators into three classes which depend both on their types
and on their growth rates.

Definition 2 (Safe operator typing environment). An operator typing en-
vironment Δ is safe if each type given by Δ is decreasing and there exist three
disjoint classes of operators Ntr,Max and Pos such that for any operator op and
∀α1 −→ . . . −→ αn −→ α ∈ Δ(op), the following conditions hold:

– If op ∈ Ntr then op is a neutral operator.
– If op ∈ Max then op is a max operator and α �= 1.
– If op ∈ Pos then op is a positive operator and α = 0.

Intuitively, expressions in while guards are of tier 1 and so the iteration length
just depends on the number of possible tier 1 configurations. Inside a while loop,
we can perform operations on variables of other tiers. The tier −1 values are
return values and processes are confined in the sense that the information flow
of a process does not depend on a return value.

4.2 Main Result

Proposition 1 (Type inference). Given a safe operator typing environment
Δ, deciding if there exists a variable typing environment Γ such that the typing
rules are satisfied can be done in time linear in the size of the program.

Proof. We encode the tier of each variable X by 3 boolean variables x1, x0
and x−1. We enforce that variable X is of exactly one tier will be encoded by
(¬x0∨¬x1)∧(¬x0∨¬x−1)∧(¬x1∨¬x−1). Each command gives some constraints.
Thus, in the case of an assignment X := op(Y), we need to encode Γ (Y) ≥
Γ (X), which can be represented as (¬y−1 ∨ x−1)∧ (¬y0 ∨¬x1)∧ (¬x1 ∨ y1). As
a result, the type inference problem is reduced to 2-SAT.

Definition 3 (Safe process). Given Γ a variable typing environment and Δ
an operator typing environment, we say that a process P is a safe process if:

– P is well-typed with respect to Γ and Δ, i.e. Γ,Δ % P : β;
– Δ is safe.

The main result below is a consequence of the soundness Theorem 2 and the
completeness Theorem 3

Theorem 1. The set of polynomial space computable functions is exactly the
set of functions computed by strongly normalizing, lock-free, confluent and safe
processes, where a unit-cost is taken as the cost of an operator computation.

Therefore, the process in example 1 can run within a polynomial space. It is
worth noticing that the demonstration below says more about process interaction
and runtime, which are, in fact, polynomially bounded as we shall see.

314 E. Hainry, J.-Y. Marion, and R. Péchoux

5 Complexity Soundness

5.1 Process Runtime

We establish that each process runs in polynomial time if the time measure is
the number of reductions. We follow the line of the soundness proof of [23] to
demonstrate a non-interference property. We first prove two lemmas 1 and 2 in
order to express that an expression of tier 1 just depends on tier 1 variables, and
not on lower tier variables. As a result, there is only a polynomial number of tier 1
configurations, because of neutral operator growth rate. From the security point
of view, this means that a variable of tier (level) 1 can be updated by information
of the same tier of integrity. Proposition 2 corresponds to the non-interference
property. Intuitively, it says that the complexity of a process depends only on
tier 1 variables, and so it is not modified if values of lower tiers are updated and
so the process runtime does not interfere with lower tier values.

Lemma 1 (Simple security). Given a safe process P wrt typing environments
Γ and Δ, if Γ,Δ % E : 1, for an expression E in P, then for each X ∈ V(E),
Γ (X) = 1 and all operators in E are neutral.

Proof. By induction on E .

Given a typing environment Γ say that |μ|i =
∑
Γ (X)=i |μ(X)|. We will first prove

that that the values taken by each tier 1 expression are at most in polynomial
number.

Lemma 2. Given a safe process P wrt typing environments Γ and Δ, for each
expression E in P such that Γ,Δ % E : 1, the number of distinct values taken by
E during the evaluation of the initial environment Einit[P, μ] is bounded polyno-
mially in |μ|1.
Proof. A store can be updated either (i) by using a fork instruction, (ii) by
using a wait instruction or (iii) by assigning the result of an expression. The
typing discipline prevents variables assigned to in (i) and (ii) to be of tier 1. For
(iii), we have E = op(E1, . . . ,En), for some neutral operator op, by Lemma 1.
Consequently, the result of the computation is either tt or ff or a subword
of the initial values. The number of sub-words being quadratic in the size, the
number of distinct values of tier 1 variables is at most quadratic in |μ|1.
The relations ⇒i are defined to express the computation of the process of id i.

Definition 4 (⇒i). Given two environments E and E ′ such that E → E ′, we
write E →i E ′ if the transition → corresponds to the evaluation of the process
in the configuration Ei of E . In the same way define the transition E →
=i E ′ if
there exists k �= i such that E →k E ′. Now define ⇒i by E ⇒i E ′ if there are
environments E 1, E 2 such that E →∗
=i E 1 →i E 2 →∗
=i E ′.

The proposition below expresses that the number of instructions performed by a
single process is bounded by a polynomial in the tier 1 initial values. Intuitively,
this means that each process runs in polynomial time, in the tier 1 initial values,
if we do not count the waiting time due to forks.

Type-Based Complexity Analysis for Fork Processes 315

Proposition 2 (Non-interference wrt time). Given a strongly normalizing
and safe process P, there is a polynomial Q such that, for each initial environ-
ment Einit[P, μ], ∀i ∈ N, if Einit[P, μ]⇒k

i E then k ≤ Q(|μ|1).

Proof. The typing discipline enforces all the expressions in while-loop guards of
a safe process to be of tier 1. The evaluation of tier 1 values does not depend on
lower tier values. By Lemma 2, the number of values taken by tier 1 variables
during the evaluation is bounded by Q(|μ|1) for some polynomial Q. If a process
enters twice in the same configuration with the same tier 1 values, then the
computation loops forever. Consequently, if P is strongly normalizing then all
the while loops are executed at most Q(|μ|1) times.

5.2 Process Spawning

Now, we demonstrate that given a strongly normalizing and safe process the
number of children of a process (Lemma 3), the number of process generations
(Lemma 4) and the size of a configuration (Lemma 5) are polynomially bounded.

Definition 5. Given a finite environment E , the process tree T (E) is defined:

– the nodes are the configurations {E1, . . . ,E�E } and the root is E1;
– for each l ∈ [1, -E], there is an edge from El = (P, μ)ρ to Ek, if k ∈ ρ.

The degree d(T) corresponds to the number of children generated by fork in-
structions of a given process. The height h(T) is the number of nested processes.

Lemma 3. Given a strongly normalizing and safe process P, there exists a poly-
nomial Q such that, for each initial environment Einit[P, μ], if Einit[P, μ] →∗ E
then d(T (E)) ≤ Q(|μ|1). In other words, for each Ei = (Pi, μi)ρi , i ≤ -E , the
number of subprocesses is bounded by Q(|μ|1), i.e. -ρi ≤ Q(|μ|1).

Proof. By Proposition 2, there is a polynomial Q such that the transition →i

is taken at most Q(|μ|1) times, which bounds the number of executed fork

instructions.

Lemma 4. Given a strongly normalizing and safe process P, there exists a poly-
nomial Q such that, for each initial environment Einit[P, μ], if Einit[P, μ] →∗ E
then h(T (E)) ≤ Q(|μ|1).

Proof. By Proposition 2, there is a polynomial Q which bounds the number of
executed instructions and which just depends on the size of tier 1 initial values.
Now, when X := fork() is performed, the parent process store is duplicated in
the child process store, except for the value of X . But X is of tier 0 and so has no
impact on the computational time of both processes. Next, a fork command has
been executed in the parent process. So, the runtime of the child generated is
strictly less than the runtime of its father. Therefore, we deduce that Q bounds
the height of the process tree.

316 E. Hainry, J.-Y. Marion, and R. Péchoux

We end by showing that subprocess stores are polynomially bounded in the size
of the initial store, which is a consequence of the non-interference property, as
stated in Proposition 2.

Lemma 5. Given a strongly normalizing and safe process P, there exists a poly-
nomial S such that, for each initial environment Einit[P, μ], if Einit[P, μ] →∗ E
then ∀i ≤ -E , if Ei = (Pi, μi)ρi then |μi| ≤ S(|μ|1) + |μ|0 + |μ|−1.

Proof. There are three cases to consider. First, a variable of tier 1 is updated by
an expression of tier 1. By Lemma 1, a tier 1 expression just consists in neutral
operators and tier 1 variables. So, tier 1 variables are always sub-words of tier
1 initial values. Thus, the size of a variable of tier 1 is always bounded by |μ|1.
Second, take a tier 0 variable X , which is either updated inside a process by a
composition of operators or updated by a pid return of a fork. By combining
Proposition 2 and lemmas 3 and 4, we obtain a polynomial R which depends on
operators and on the program such that the size of X is bounded by R(Q(|μ|1))+
|μ|0 in each process computation. Third, take a tier −1 variable Y . Suppose that
the variable Y is assigned to max operators and variables of any tier. Observe
that the case when Y := wait(E ′) is a particular case of an assignment if we see
globally all processes together. Hence Y is bounded by R(Q(|μ|1)+ |μ|0+ |μ|−1.

5.3 PSpace Abiding Evaluation Strategy

We define a deterministic evaluation strategy � starting from the initial envi-
ronment and evaluating it until it reaches a wait instruction for a process n.
Then, the strategy runs the process n until it returns a value. Formally, define a
state s = (E , l) to be a pair of an environment E and a stack l of ids representing
the queued processes. The initial state is (Einit[P, μ], [1]). We denote :: the stack
constructor.

1. If E →h E ′ for some rule (R) of Figure 2, R �= Wait, then (E , h :: q) �
(E ′, h :: q)

2. If Eh = (X := wait(E); P, μ)ρ and (E , μ)
e→ n then (E , h :: q) � (E , n ::

h :: q)

3. If En = (return X , μ)ρ and Eh = (Y :=wait(E); P, μ′)ρ′ then (E , n :: h ::
q) � (E ′, h :: q) where E →h E ′ for the (Wait) rule of Figure 2.

Notice that the rule (2) implies that (E , μ′) e→ n in rule (3).

Lemma 6 (Correction Lemma). Given a strongly normalizing and conflu-
ent process P and an initial environment Einit[P, μ], if there exists E such that
Einit[P, μ]→∗ E [1 := (return X , μ′)ρ] then there exists E ′ s.t.(Einit[P, μ], [1]) �∗
(E ′[1 := (return X , μ′′)ρ′], [1]) and μ′′(X) = μ′(X), where [1] is the stack con-
taining the single process 1.

The size of a stack |l| is the number of elements in it (e.g. |[1]| = 1).

Type-Based Complexity Analysis for Fork Processes 317

Lemma 7. Given a strongly normalizing and safe process P, there is a poly-
nomial Q such that for each initial environment Einit[P, μ] and each stack l, if
(Einit[P, μ], [1]) �∗ (E , l) then (i) |l| ≤ Q(|μ|) and (ii) ‖E ‖ ≤ Q(|μ|).

Proof. The � strategy explores the process tree using a stack. The height of
the stack corresponds to the number of nested processes. The first inequality
follows Lemma 4. Next, by combining Lemmata 3 and 5, we obtain the second
inequality.

Theorem 2 (Soundness). A strongly normalizing, confluent and safe process
P can be evaluated in polynomially bounded space using strategy �, where a
unit-cost is taken as the cost of an operator computation.

6 Completeness

Let us show that each polynomial space computable function can be computed
by a strongly normalizing and safe process.

Theorem 3. Every polynomial space function is computable by a strongly nor-
malizing, lock-free and safe process P.

Proof. We present how to compute the value of a quantified boolean formula
(QBF). The program below may be seen as a skeleton from which we may sim-
ulate, for example, an alternating Turing machine running in polynomial time.
Consequently, the computation of a polynomial space function necessitates to
compute its output bit by bit, which may be uniformly performed by generating
each address and querying the output bit. The program below generates 2n forks
where n is the number of variables. We suppose that the concrete syntax of a
QBF is implemented as a string phi of tier 1. Two neutral operators kind and
variable of type 1 −→ 1 return the quantifier kind and the variable bound
at the root of phi. The neutral operator next of type 1 −→ 1 erases the root
quantifier and moves to the next one. The positive operator evaluate of type
1,0 −→ 0 computes a boolean formula with respect to an evaluation encoded as
an array of booleans, which is an NC1 complete problem [4]. As in example 1,
arrays are words of type 0, whose length is bounded by phi. The set array oper-
ator, that we conveniently note vartab[x] := tt, is a positive operator of type
0,0 −→ 0. We consider the array to be pre-allocated using a calloc operator
that can be implemented using a positive operator in a loop.

This program has two big while loops: the first one generates 2n subprocesses,
one for each possible variable configuration, for each variable, the father will
assign tt and the son will assign ff; the second one gathers the results of the
children, making a disjonction with the parent if they correspond to a ∃, a
conjonction for a ∀.
qbf (phi) ::=

p s i 1 := phi1 : 1 ;
q1 := kind (phi1) : 1 ;

318 E. Hainry, J.-Y. Marion, and R. Péchoux

x1 := va r i ab l e (phi1) : 1 ;
i 0 := 00 : 0 ; // son number of a process
pidtab 0 := c a l l o c (phi1 , phi1) : 0;
vartab0 := c a l l o c (phi1 , t t) : 0;
while (q1 == ’∃ ’) or (q1 == ’∀ ’) do {

phi1 := next (phi1) : 1 ;
p id0 := fork () : 0 ;
i f pid0>0 then { // father process

pidtab [i] := (pid , q) : 0 ;
vartab [x] := t t : 0 ;
i 0 := i + 10 : 0

} else { // son process
vartab [x] := f f : 0 ;
i 0 := 00 : 0} // end of else

q1 := kind (phi1) : 1 ;
x1 := va r i ab l e (phi1) : 1 ;} // end of while

r e s−1 := eva luat e (phi1 , vartab)0 : 0 ;
while (s t a t e (p s i 1) == ’∃ ’) or (s t a t e (p s i 1) == ’∀ ’) do {

p s i 1 := next (p s i 1) : 1 ;
i f (i >0) then {// for each son

i 0 := i − 10 : 0 ;
(p id0 , op0) := pidtab [i] : 0 ;
r e s s on−1 := wait (pid0)−1 : −1
i f op0 == ’∃ ’ then

r e s−1 := or (res , r e s s on)−1 : 0 ;
else

r e s−1 := and (res , r e s s on)−1 : 0 ; } }
return r e s−1

7 Conclusion

We established that a typed process will generate only a polynomial number of
offspring processes and that each process runs within polynomial time bounds.
This work may have practical applications to determine whether or not a process
runs within certain limited computing resources. Indeed, it may be a tool to
control the spawning mechanism, and so to prevent, for example, denial of service
attacks.

Let us come back to Example 1 describing a max-reduce algorithm. The run-
time is O(log2(n)). The reason of this apparent shortcoming is that we can not
allow a break instruction inside a while-loop. In this case, a return instruction
would ”disrupt” the information flow and would interfere with tier 1 values. As
a result, the runtime would not be anymore bounded. However, if the goal is to
analyze program complexity, then we can devise a program transformation Θ,
which, approximately, moves break instructions outside while loops, whenever
it is possible. Such program transformation may be efficiently performed by a
tree transducer. Moreover, there is no reason to preserve the program semantics
because we are just interested in resource bounds. So, we may omit implemen-
tation details, which may increase drastically the expressivity of the considered

Type-Based Complexity Analysis for Fork Processes 319

programs. Therefore, we may think of this overall scenario: A system receives
a process P to run. First, it computes an abstraction of P using a program
transformation Θ. Second, it checks that the abstraction is well-typed. As a re-
sult, and even if the system does not know precisely an upper-bound on the
complexity, it gets efficiently some confidence on the resource usage of P .

The program solving QBF gives another limitation because we are not al-
lowed to make a loop bounded by the number of subprocesses, which is a tier
0 value. However, we know that this number is bounded by a tier 1 value. To
solve this, Hofmann suggested to manage the garbage collector thanks to a type
system. We may think to allow iterations on controlled unsafe values by a kind
of declassification rule.

The above questions suggest the need to delve deeper into the question of de-
termining the amount of information, which can be declassified while guarantying
complexity. In regards to future research, the relationship between information,
information flow control and complexity should be better understood.

References

1. Amadio, R.M., Dabrowski, F.: Feasible reactivity for synchronous cooperative
threads. Electron. Notes Theor. Comput. Sci. 154(3), 33–43 (2006)

2. Amadio, R.M., Dabrowski, F.: Feasible reactivity in a synchronous pi-calculus. In:
Proceedings of the 9th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP 2007, pp. 221–230. ACM, New York
(2007)

3. Biba, K.: Integrity considerations for secure computer systems. Technical report,
Mitre corp Rep. (1977)

4. Buss, S.R.: The boolean formula value problem is in ALOGTIME. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987,
pp. 123–131. ACM, New York (1987)

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1), 114–133
(1981)

6. Cockett, R., Redmond, B.: A categorical setting for lower complexity. Electron.
Notes Theor. Comput. Sci. 265, 277–300 (2010)

7. Gaboardi, M., Marion, J.-Y., Ronchi Della Rocca, S.: A logical account of PSPACE.
In: POPL 2008, pp. 121–131. ACM (2008)

8. Jones, N.D.: The expressive power of higher-order types or, life without cons. J.
Funct. Program. 11(1), 5–94 (2001)

9. Jones, N.D., Kristiansen, L.: A flow calculus of wp-bounds for complexity analysis.
ACM Trans. Comput. Log. 10(4) (2009)

10. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980)

11. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2),
163–180 (2004)

12. Dal Lago, U., Di Giamberardino, P.: Soft session types. In: EXPRESS 2011.
EPTCS, vol. 64, pp. 59–73 (2011)

13. Dal Lago, U., Martini, S., Sangiorgi, D.: Light logics and higher-order processes.
In: EXPRESS 2010. EPTCS, vol. 41, pp. 46–60 (2010)

320 E. Hainry, J.-Y. Marion, and R. Péchoux

14. Leivant, D., Marion, J.-Y.: Ramified Recurrence and Computational Complexity
II: Substitution and Poly-Space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995)

15. Leivant, D., Marion, J.-Y.: Predicative Functional Recurrence and Poly-Space. In:
Bidoit, M., Dauchet, M. (eds.) TAPSOFT 1997. LNCS, vol. 1214, pp. 369–380.
Springer, Heidelberg (1997)

16. Madet, A.: A polynomial time lambda-calculus with multithreading and side ef-
fects. In: PPDP (2012)

17. Marion, J.-Y.: A type system for complexity flow analysis. In: LICS, pp. 123–132
(2011)

18. Moyen, J.-Y.: Resource control graphs. ACM Trans. Comput. Logic 10(4), 29:1–
29:44 (2009)

19. Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Se-
lected Areas in Communications 21(1), 5–19 (2003)

21. Savitch, W.J.: Relationship between nondeterministic and deterministic tape
classes. JCSS 4, 177–192 (1970)

22. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: POPL, pp. 355–364. ACM (1998)

23. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of Computer Security 4(2/3), 167–188 (1996)

Pure Pointer Programs and Tree Isomorphism�

Martin Hofmann, Ramyaa Ramyaa, and Ulrich Schöpp

Ludwig-Maximilians Universität München
Oettingenstraße 67, 80538 Munich, Germany

{mhofmann,ramyaa,schoepp}@tcs.ifi.lmu.de

Abstract. In a previous work, Hofmann and Schöpp have introduced the pro-
gramming language PURPLE to formalise the common intuition of LOGSPACE-
algorithms as pure pointer programs that take as input some structured data (e.g.
a graph) and store in memory only a constant number of pointers to the input (e.g.
to the graph nodes). It was shown that PURPLE is strictly contained in LOGSPACE,
being unable to decide st-connectivity in undirected graphs.

In this paper we study the options of strengthening PURPLE as a manageable
idealisation of computation with logarithmic space that may be used to give some
evidence that PTIME-problems such as Horn satisfiability cannot be solved in
logarithmic space.

We show that with counting, PURPLE captures all of LOGSPACE on locally or-
dered graphs. Our main result is that without a local ordering, even with counting
and nondeterminism, PURPLE cannot solve tree isomorphism. This generalises
the same result for Transitive Closure Logic with counting, to a formalism that
can iterate over the input structure, furnishing a new proof as a by-product.

1 Introduction

In a previous work we have introduced the Pure Pointer Language PURPLE [9], which
captures the intuitive idea of accessing read only graph-like input data via pointers as
an abstract datatype. In addition to the usual control structures PURPLE provides a way
of iterating over all nodes of the input graph in an unspecified order. PURPLE programs
can be evaluated in LOGSPACE, but are strictly weaker, for example because counting
cannot be defined [9]. One can thus hope to prove strict separations between PURPLE

and PTIME, which could then be seen as additional evidence for the assumed inequality
LOGSPACE �= PTIME. We have already shown that PURPLE strictly subsumes determin-
istic transitive closure (DTC) logic with local ordering and that it cannot in general
decide connectivity of undirected (locally ordered) graphs [8]. As a consequence, the
same follows for DTC with local ordering, which was open until then. This trivially
shows that PURPLE programs cannot solve PTIME-complete problems, such as Horn
satisfiability, because reachability is an instance thereof.

Unfortunately, such a result cannot be seen as evidence for LOGSPACE �= PTIME be-
cause reachability in undirected graphs is in LOGSPACE by Reingold’s theorem. Thus,
the way forward would consist of strengthening PURPLE so as to still remain within
LOGSPACE or at least POLY-LOGSPACE, yet in such a way that reachability does become

� This work was supported by Deutsche Forschungsgemeinschaft (DFG) under grant PURPLE.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 321–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

322 M. Hofmann, R. Ramyaa, and U. Schöpp

definable, whereas Horn satisfiability demonstrably is not. While we are not yet in a po-
sition to offer such an extension, we report in this paper considerable progress with pin-
ning down its possible form. A reasonable attempt borrowed from finite model theory
consists of adding arithmetic variables ranging over the size of the input (“counting”).
We show, however, that with a local-ordering (edges of input graph navigable bidirec-
tionally) such an extension captures all of LOGSPACE. If the edges of the input graph
can be followed only in one direction (an analogue of “1LO” in finite model theory)
then counting, even in the presence of nondeterminism, does not capture LOGSPACE,
because the tree isomorphism problem, which is in LOGSPACE, cannot be solved. This
constitutes the main technical result of this paper. It implies a similar result for TC logic,
which was known, but proved in a completely different fashion. Our method is based
on bisimulation, while the proof for TC logic uses Ehrenfeucht-Fraı̈ssé (EF) games [5].

The iteration construct of PURPLE subsumes first-order quantification but seems to
be stronger. Despite some effort on our side it was not possible to extend the EF-method
to PURPLE. The method of bisimulation, on the other hand, did do the trick.

While we believe that PURPLE with nondeterminism and counting is strictly stronger
than TC logic with counting, it is difficult to come up with an explicit example, for this
would have to be between LOGSPACE and TC logic with counting, but tree isomorphism
is the only known such example.

We can, however, notice that PURPLE is able to traverse the nodes of a tree in some
(non reproducible) breadth-first ordering whereas TC apparently can not. Whether this
results in a clean separation we do not presently know, but we may note that, if we
replace breadth-first with depth-first then, being able to traverse is strictly stronger than
being able to quantify which means that PURPLE-style traversal is not a mere reformu-
lation of quantification: If we assume that we can traverse the nodes of a tree in depth
first order for some (not necessarily reproducible order between siblings) then we can
implement Lindell’s algorithm and thus solve tree isomorphism, and this is in fact what
happens in [7]. On the other hand, TC logic is able to, for example, count the number
of nodes that lie between two given nodes in any depth-first ordering.

Related Work. The first attempt at a “relativised separation” by permitting access
to input data only via an abstract interface are Cook & Rackoff’s results on jump-
ing automata on graphs (JAGs) [3], which show that no finite automaton being able
to place pebbles on a graph and moving these along edges can solve undirected st-
connectivity. At that time this problem was probably believed to be not in LOGSPACE

unless NLOGSPACE = LOGSPACE, so that such result might have been seen as evidence
for NLOGSPACE �= LOGSPACE. Reingold’s LOGSPACE algorithm [15] for undirected
st-connectivity has changed this picture and consequently it has been shown that it suf-
fices to extend JAGs with counting in order to encode this algorithm [14]. In our own
work on PURPLE we extended Cook & Rackoff’s result by allowing such JAGs to visit
every node of the input albeit in an unspecified order [9]. We [8] were able to show that
st-connectivity remains unsolvable in such a framework thus solving an open question
about the strength of transitive closure logic on locally ordered structures [6]. The latter
is an alternative to the automata-theoretic approach to restricting the access to the in-
put. There, and more generally in finite model theory [4,10], “programs” are formulas
of some logic to be evaluated over the input represented as a logical structure.

Pure Pointer Programs and Tree Isomorphism 323

When it comes to relativisation many people first think of oracles; however just as
in the case of P vs. NP also the oracle-relativised versions of LOGSPACE vs. PTIME

can go either way depending on the choice of oracle [12], which, as usual, shows that
techniques such as diagonalization that work in the presence of oracles cannot possibly
lead to a full separation of LOGSPACE and PTIME. Incidentally, we may remark here
that the proof techniques we use for PURPLE, namely Cook and Rackoff’s [3] radius
bounds that we generalized in [8] and bisimulation as in this paper do not “relativize”
in the classical sense. But, of course, we nevertheless do not claim that we achieve a full
separation with them! Another approach from general complexity theory that should be
mentioned is [2], which shows that the existence of P -complete sparse sets implies
LOGSPACE = PTIME.

Finite model theory has a related but slightly different goal to ours. One also seeks to
access the input, e.g. a graph, in an abstract fashion; yet the ultimate goal is to capture
complexity classes, i.e. to define a logic in which despite the limited access all and only
the properties decidable in a given complexity class are definable. In general, this is
possible if a total ordering on the elements (nodes) of the input is available or definable.

Once a complexity class is “captured” by a formalism it becomes next to useless for
relativised separation, for then the relativised separation is as hard as full unrelativised
separation. This also applies to several alternative characterisations of LOGSPACE by
programming language methods, such as [1,11]. As far as we know PURPLE is the first
programming formalism for a proper, yet nontrivial subset of LOGSPACE which can
therefore be used as a vehicle for relativised separation.

More specific to the technical contribution of this paper as opposed to PURPLE as a
whole, we mention that the addition of arithmetical variables ranging over the size of
the input structure called “counting” is a popular device for strengthening such logics
and it came as a surprise that despite the obvious power to simulate log-sized work-
tapes, counting still does not render (deterministic) transitive closure logic equivalent to
(N)LOGSPACE. This is because despite Lindell’s intriguing LOGSPACE algorithm [13],
isomorphism of unordered trees has been shown not to be definable in transitive closure
logic with counting [5]. Recently, this has led to the introduction of a new recursion
principle allowing the implementation of Lindell’s algorithm in logic [7].

2 PURPLE and Extensions

PURPLE programs are parameterised by a finite set L of labels and a finite set S of
predicate symbols. Each predicate symbol p is assumed to have a finite arity ar(p) ∈ N.

The input of a program is a pointer structure, which interprets the labels and predi-
cates: A pointer structure on L and S ((L, S)-model, for short) specifies a finite set U
as a universe, a function [[l]] : U → U for each label l ∈ L and a set [[p]] ⊆ U ar(p) for
each predicate symbol p.

Relational structures, such as graphs, are special cases of such pointer structures. For
graphs one would use an empty set of labels and a single binary predicate edge(x, y).
In some cases, pointer structures are arguably more natural than relational structures,
however. For example bounded degree graphs with a one-way local ordering (1LO), in
which the edges emanating from each node are ordered, are represented naturally using

324 M. Hofmann, R. Ramyaa, and U. Schöpp

one sort V and labels succi, where i ranges from 1 to the degree of the graph. For a
two-way local ordering (2LO), which also orders the incoming edges at each node, one
may in addition use labels of the form predi.

A program with labels L and predicate symbols S can access its input structure
through the following terms for pointers to elements of the universe and for booleans.

tU ::= xU | tU .l for any label l ∈ L
tbool ::= xbool | ¬tbool | tbool1 ∧ tbool2 | tU1 = tU2 | p(xU1 , . . . , xUar(p)) for any p ∈ S

We call xU pointer variables. The intention is that tU .l is interpreted by [[l]](tU).
The programs themselves are given by the grammar.

Prg ::= skip | Prg1;Prg2 | xU := tU | xbool := tbool

| if tbool then Prg1 else Prg2 | forall xU do Prg

We do not include a while-loop, as it can be defined from the forall-loop, see [9].
We write if tbool then Prg for if tbool then Prg else skip.

A configuration 〈ρ, q〉 consists of a pebbling ρ and a state q. The pebbling ρ maps
pointer variables (which we also call pebbles) to elements of the universeU . The state q
is a function from boolean variables to booleans. Given a configuration I , we define an
interpretation of the terms [[tbool]]I ∈ {true, false} and [[tU]]I ∈ U in the usual way.

A big-step reduction relation Prg %M I −→ O between configurations I and O
on some (L, S)-model M and a program Prg is defined inductively by the following
clauses:

– skip %M I −→ I .
– Prg1;Prg2 %M I −→ O if Prg1 %M I −→ R and Prg2 %M R −→ O for

some R.
– xU := tU %M 〈ρ, q〉 −→ 〈ρ[x �→ [[t]]〈ρ,q〉], q〉.
– xbool := tbool %M 〈ρ, q〉 −→ 〈ρ, q[x �→ [[t]]〈ρ,q〉]〉.
– if t then Prg1 else Prg2 %M I −→ O if [[t]]I = true and Prg1 %M I −→ O.
– if t then Prg1 else Prg2 %M I −→ O if [[t]]I = false and Prg2 %M I −→ O.
– forall xU do Prg1 %M I −→ O if there exists an enumeration u1, u2, . . . , un

of [[U]] and configurations I = 〈ρ1, q1〉, 〈ρ2, q2〉, . . . , 〈ρn+1, qn+1〉 = O, such that
Prg1 %M 〈ρk[x �→ uk], qk〉 −→ 〈ρk+1, qk+1〉 holds for all k ∈ {1, . . . , n}.

When the model M is clear from the context we may omit the subscript.
In order for a PURPLE program to accept (resp. reject) an input, it must do so no

matter what enumerations are chosen for its forall-loops. This is defined formally in
the next definition, in which we use a boolean variable result to indicate acceptance.

Definition 1. A program Prg accepts (resp. rejects) an (L, S)-model M if Prg %M
〈ρ, q〉 −→ 〈ρ′, q′〉 implies q′(result) = true (resp. q′(result) = false) for all ρ, ρ′, q
and q′.

A program Prg recognises a set X of (L, S)-models if it accepts any model in X and
rejects all others. Note that a program may neither accept nor reject its input, namely if
for some runs it returns true and for others it returns false. To put it simply, a PURPLE

Pure Pointer Programs and Tree Isomorphism 325

program for some problem X should give the correct answer, be it true or false for
any given input and independent of the run, i.e. the traversal sequences chosen.

We also note that predicate symbols, which were not part of the original definition of
PURPLE [9], are there just for notational convenience and do not add expressive power.
Unary predicates can be modelled with an extra pointer that points to designated nodes
for “true” and “false”. A binary relation can be modelled by introducing an extra node
for each pair of related nodes with pointers fst and snd pointing to the latter two nodes.
One uses a unary predicate to differentiate between actual nodes and these helper nodes.

2.1 Counting

PURPLE cannot solve counting problems, as shown in [9]. So, one obvious addition to
PURPLE is counting. Here we extend PURPLE by counting variables (“counters”), each
of which can hold a number from 0 to the size of the input structure’s universe, and we
extend the terms with arithmetic operations:

tbool ::= · · · | iszero(tcount) tcount ::= xcount | max | pred(tcount)

We extend the operational semantics such that the state q now not only maps boolean
variables to booleans, but also counting variables to numbers.

PURPLE with counters (PURPLEc) can do arithmetic: the complement of a counter
can be computed using max and repeated decrement; the increment can be implemented
using double complementation and decrement; The rest of the operations follow by re-
peated applications of these. PURPLEc can count the number of tuples of nodes satis-
fying any PURPLE-definable property, and so can simulate counting quantifiers used in
(D)TC logics.

Lemma 1. PURPLEc captures LOGSPACE on graphs with a two-way local ordering,
represented as pointer structures as described above.

Proof (Outline). PURPLE captures all of LOGSPACE on ordered graphs. So, it suffices
to show that a total ordering can be defined on any input graph.

To this end we note that given any graph node n, PURPLEc can define a total ordering
of the weakly connected component containing n. We use Reingold’s algorithm for
undirected st-connectivity, which checks for connectivity by enumerating all nodes in
the weakly connected component of s and checking if t appears therein. This algorithm
can be implemented by RAMJAGs [14], and so, by an easy translation, also in PURPLEc.
In this way, PURPLEc can order the nodes of the weakly connected component according
to their order of their first appearance in the enumeration.

In their proof that TC-logic with counting captures NLOGSPACE on graphs with a
two-way local ordering [5], Etessami and Immerman have shown how a total ordering
can be defined using counting from such orderings of the weakly connected compo-
nents. This argument can be adapted to PURPLEc to complete the proof.

2.2 Nondeterminism

Another way to extend the power of PURPLE is to add nondeterminism. This gives
PURPLE the power to decide st-connectivity (reachability) even for directed graphs and

326 M. Hofmann, R. Ramyaa, and U. Schöpp

in the presence of counting also the power of deciding non-reachability by Immerman-
Szelepcsenyi. PURPLE-programs with non-determinism can be evaluated in NLOGSPACE

but (probably) not LOGSPACE.
Adding nondeterminism is not completely straightforward, as we must separate non-

deterministic choices from the choices made in the evaluation of forall-loops. We
would like to allow programs to make nondeterministic choices, while still maintain-
ing that their acceptance behaviour is independent of the enumerations chosen in the
forall-loops.

PURPLE with nondeterminism (PURPLEnd) has a command for nondeterministic
choice:

Prg ::= . . . | choose Prg1 or Prg2

To define the semantics of PURPLE with nondeterminism, we amend the notion of con-
figuration so that it now consists of a triple 〈ρ, q, σ〉, where ρ and q are a pebbling and
a state as before and σ is an infinite list enumerations of the universe U . This new com-
ponent σ specifies the runs of all future forall loops. Therefore, in the definition of
(forall xU doPrg) % 〈ρ, q, σ〉 −→ 〈ρ′, q′, σ′〉we do not use an arbitrary enumeration
of U , but we take the first enumeration u1, . . . , un from σ. The subsequent computa-
tion uses the list tail(σ) of the remaining enumerations from σ. That is, we require
there to be configurations 〈ρ, q, tail(σ)〉 = 〈ρ1 , q1 , σ1 〉, . . . , 〈ρn+1 , qn+1 , σn+1 〉 =
〈ρ′, q ′, σ′〉 such that Prg % 〈ρk[x �→ uk], qk, σk〉 −→ 〈ρk+1, qk+1, σk+1〉 holds for all
k ∈ {1, . . . , n}. For the semantics of the new term, we stipulate choosePrg1 orPrg2 %
I −→ O if Prg1 % I −→ O or Prg2 % I −→ O. In all other cases, σ is merely passed
on. E.g. x := t % 〈ρ, q, σ〉 −→ 〈ρ[x �→ [[t]]I], q, σ〉.

With these provisos, we can make the role of the two kinds of choices precise and
define when a nondeterministic program accepts an input:

Definition 2. A nondeterministic program Prg accepts an (L, S)-model M if for all I
there exists O with Prg %M I −→ O and O(result) = true. It rejects M if for all I
and for all O with Prg %M I −→ O one has O(result) = false.

Thus, in the positive case, M must find, for all traversals of the forall-loops, appro-
priate nondeterministic choices leading to result true. In the negative case, however,
the program must yield result false no matter how the nondeterministic choices are
made and how the forall-loops are being traversed.

Note that for programs without choose, this definition agrees with the one for PUR-
PLE above. For programs without forall-loop it agrees with the standard definition of
nondeterminism.

In [9] we have shown that PURPLE can evaluate the formulae of DTC-logic. One
may expect that with nondeterminism, this result generalises to TC-logic. Indeed, the
TC-operator itself can be evaluated by nondeterministic PURPLE much like the DTC-
operator by deterministic PURPLE. However, with nondeterminism it becomes harder
to evaluate negations of TC-formulae. To be able to do so, we add counting as well,
so that we can implement Immerman-Szelepcsenyi’s algorithm for complementation
in NL. We refer to PURPLE with counting and nondeterminism by PURPLEc,nd.

We obtain the following proposition. Recall that any relational structure M can be
understood as a pointer structure.

Pure Pointer Programs and Tree Isomorphism 327

Lemma 2. For each closed TC-formula ϕ on a relational signature Σ, there exists a
program Pϕ in PURPLEc,nd such that, for any Σ-structure of Σ, M |= ϕ holds if and
only if Pϕ recognises M .

3 Preliminaries

We first define AB-trees, a family of leaf-coloured trees. (These are modified versions
of the trees presented in [5]). AB-trees are defined without any ordering, in particular
there is no ordering on the children of any node. For each k, there are exactly two AB-
trees A2k and B2k of height 2k, and exactly three AB-trees C2k+1, D2k+1 and E2k+1

of height 2k + 1. We define these trees by induction on k.

– The tree A0 is a leaf with colour A and B0 is a leaf with colour B.
– For any k, the tree C2k+1 (resp. E2k+1) has six immediate subtrees: four of A2k

(resp. B2k) and two of B2k (resp. A2k).
– For any k, the tree D2k+1 has six immediate subtrees: three each of A2k and B2k.
– For k > 0, the tree A2k has eight immediate subtrees: three each of E2k−1 and
C2k−1, and two of D2k−1.

– For k > 0, the tree B2k has eight immediate subtrees: two each of E2k−1 and
C2k−1, and four of D2k−1.

While an AB-tree only comes with a colouring of its leaves, we can consider it as a
coloured graph in which each node is assigned a colour from the set {A,B,C,D,E}.
Write ht(n) for the height of a node n, measured from leaf nodes, which have height 0.
A node n has colour A, B, C, D or E respectively if the subtree rooted at this node is
Aht(n), Bht(n), Cht(n), Dht(n) or Eht(n) respectively. With this definition, each node n
in an AB-tree has a uniquely defined colour; we denote it by colour (n).

A structural isomorphism between two AB-trees is a bijection between the nodes
of the two trees that preserves the tree structure, but that need not preserve colours.
In contrast, a colour isomorphism must preserve both structure and colours. For any
X,Y ∈ {A,B,C,D,E} and any k the trees Xk and Yk are structurally isomorphic.
They are (colour) isomorphic iff X = Y . AB-trees have many isomorphic subtrees, and
in particular, have the following properties.

Lemma 3. For all nodes n, m with children n1, . . . , nt and m1, . . . ,mt:
1. For any i, j, k : {1, . . . , t} with i �= j there is a bijection f : {1, . . . , t} → {1, . . . , t}
with f(i) = k and colour (nj) = colour (mf (j)).
2. For any i, j : {1, . . . , t}, there is a bijection f : {1, . . . , t} → {1, . . . , t} with
colour(ni) = colour (mf (i)) and colour(nj) = colour (mf (j)).
3. If n, m are of even height (i.e., of colour A or B), there is a colour preserving
bijection from the grandchildren of n to the grandchildren of m.

An AB-tree T is presented to a PURPLE programs as a pointer structure over the set of
nodes of T with the label parent (which maps root(T) to itself and other nodes to their
parents), and the predicate A0 (true only for leaf nodes with colour A). The colours
of internal nodes are not available to PURPLE programs. PURPLE can solve isomor-
phism of AB-trees if and only if there is a program that can determine, for inputs of any

328 M. Hofmann, R. Ramyaa, and U. Schöpp

height, the colour of the root. The following example shows that PURPLE can determine
the colour of internal nodes up to fixed height. W.l.o.g., the initial configuration of any
program places its pebbles on the root of its input, and initializes all boolean variables
to false.

Example: The following PURPLE program accepts tree C1 but rejects D1 and E1. It
uses boolean variables seen1 , seen2 , seen3 and result and pointers rt and chld.

forall chld do
if (chld .parent = rt) ∧ A0 (chld) then

if seen3 then result := true;
if seen2 then seen3 := true;
if ¬seen1 then seen1 := true else seen2 := true

Using this repeatedly, for any height h, there is a PURPLE program Prgh that deter-
mines the colour of nodes of height up to h. However, the number of variables in Prgh
increases with h. Our main result asserts that no program can do this for all heights.

Definition 3. A PURPLE (PURPLEc,nd) program Prg is simple if it does not have any
Boolean variables and only contains compositions of the form Prg1;Prg2 where Prg1
does not contain loops, and in every forall p do Prg1, Prg1 does not modify the
variable p. Output is represented by the equality of dedicated pointers res1 and res2.

Lemma 4. For every PURPLE (PURPLEc,nd) program Prg , there is a simple PURPLE

(PURPLEc,nd) program Prg ′ such that an input with more than two nodes is accepted
(resp. rejected) by Prg ′ iff it is accepted (resp. rejected) by Prg .

A pebbling I fixes a node n, if I places a pebble p on a node of the subtree rooted at n.
Fixed nodes must be treated like pebbled ones, as PURPLE programs can navigate the
path from pebbled nodes to the root.

Pebblings I , J with pebbles P distance-match (I ∼ J) if the relative placement
of pebbles is the same, i.e. ∀p, q ∈ P . ht(I (p)) = ht(J (p)) and dist(I (p), I (q)) =
dist(J (p), J (q)), where, dist(n,m) = 〈h−ht(n), h−ht(m)〉where h is the height of
the closest common ancestor of n and m. If I ∼ J we define match(I,J) as a function
from nodes fixed by I to nodes fixed by J such that ∀p ∈ P. match(I,J)(I(p)) =
J(p) and ∀n. (match(I,J)(n) = m) → (match(I,J)(parent(n)) = parent(m)).
The pebblings I , J colour-match till h, written I ∼h J , if I ∼ J and colour(n) =
colour(match(I ,J)(n)) for any node n with ht(n) ≤ h. Given pebblings I1 and I2
with pebbles P , we write I1I2 for their disjoint combination, defined to be the pebbling
with pebbles {1, 2} × P , such that I1I2(〈i, p〉) = Ii(p) for any 〈i, p〉 ∈ {1, 2} × P .

Lemma 5. Given pebblings I1, I2, J1, and J2 with pebbles P , I1I2 ∼h J1J2 iff I1 ∼h
J1 and I2 ∼h J2 and ∀p, q ∈ P. dist(I1(p), I2(q)) = dist(J1(p), J2(q)).

A structural isomorphism F witnesses I ∼ J if J(r) = F (I(r)) for every pebble r. We
say that J is induced by F and I . Note that for any node n fixed by I , match(I ,J)(n) =
F (n). Given a node n of a tree T , pebblings I , J and a structural isomorphism F ,
we denote by T |n the subtree rooted at the node n; we denote by I|n and F |n the

Pure Pointer Programs and Tree Isomorphism 329

restrictions of I and F to T |n respectively. Likewise, given a height h, we write I|h
and F |h for the restrictions of I and F to nodes above h respectively. Finally, given a
height h, we write F‖h to mean that for any node n with height ≤ h and colour (n) =
colour(F (n)), F |n is a colour isomorphism; analogously, we write I‖hJ if for any
nodes n, m with height ≤ h and match(I ,J)(n) = m, and colour(m) = colour(n),
we have I|n ∼h J |m.

Lemma 6. For all pebblings I , J with I ∼h J , there is a structural isomorphism F
with F‖h that witnesses it.

4 Main Result

In this section we state and prove our main result – the impossibility of distinguishing
between different tree colours at all heights. For simplicity and space reasons, we only
give the proof for plain PURPLE as defined in Sec. 2; the extension with nondetermin-
ism and counting is not given for space reasons; its structure and main invariants are
identical to the proof presented in the main part.

Configurations of simple PURPLE program are just pebblings. We show that every
simple PURPLE program that halts on input AH in some pebbling OA, will halt on
input BH (for some traversal) in some pebbling OB such that OA(res1) = OA(res2)
iff OB(res1) = OB(res2).

Theorem 1. For any simple PURPLE program Prg there exists a height h with the fol-
lowing property: Whenever h′ ≥ h and H ≥ h′ (both h′ and H even), then for any
pebbling I1, there exists a pebbling O1 with Prg %AH I1 −→ O1 such that whenever
I1 ∼h′ I2 for some I2, then we have

– INV1(h) : there is a pebbling O2 with I1O1 ∼ I2O2 and Prg %BH I2 −→ O2;
– INV2(h) : for any pebblingO2 with I1O1 ∼h′ I2O2 we have Prg %BH I2 −→ O2.

We take the properties INV1(h) and INV2(h) as defined by the statement of the theorem
and denote their conjunction by INV (h). The proof of the theorem is by induction on
Prg and broken down into lemmas, one for each constructor, the most interesting being
of course the forall loop. Before doing so, we note that this (together with Lemma 4)
implies that PURPLE cannot solve tree isomorphism.

Corollary 1. No PURPLE program can recognize the set {A2n | n ∈ N}.

Proof. Assume, for a contradiction, that Prg recognizes {A2n | n ∈ N}. By Theorem 1
there exists an h such that Prg satisfies INV(h). Choose even h′ ≥ h and H > h′ and
choose I1 and I2 to be the configurations on AH and BH respectively that place all
pebbles of Prg on the roots. Clearly, we have I1 ∼h′ I2. Theorem 1 gives us O1 with
Prg %AH I1 −→ O1. Since Prg accepts AH , configuration O1 must be accepting.
Property INV1(h) then furnishes O2 with I1O1 ∼ I2O2 and Prg %BH I2 −→ O2. By
I1O1 ∼ I2O2, configuration O2 must also be accepting. Hence, Prg does not reject
BH in the sense of Def. 1. Therefore it cannot recognize {A2n | n ∈ N}.

We now come to the inductive cases.

330 M. Hofmann, R. Ramyaa, and U. Schöpp

Lemma 7. Let Prg be skip or an assignment. Then Prg satisfies INV (0).

Lemma 8. Let Prg be if c then Prg1 else Prg2 where Prgi satisfies INV (hi) for
i = 1, 2. Then Prg satisfies INV (max(h1, h2)).

Proof. On pebblings I and J with I ∼h J (h ≥ 0), c evaluates identically since atomic
conditions do. As this involves no pebble movements, the result follows.

Lemma 9. Let Prg be Prg1;Prg2 where Prg1 contains no loops and Prg2 satisfies
INV (h). Then Prg satisfies INV (h).

Proof. On pebblings I1, I2 with I1 ∼h′ I2 (h′ ≥ h), conditions evaluate identically
(as in Lemma 8). Since Prg1 can only move pebbles to already pebbled nodes, it halts
with final pebblings J1 and J2 with J1 ∼h′ J2. The result follows since Prg2 satisfies
INV (h).

Let Prg be forall r do Prg1. Let X = X1, . . . , X|AH | be the list of pebblings gener-
ated at the beginning of each iteration of Prg . Thus, Xi(r) = E[i] for some enumera-
tion E of AH . Then, ∀i < |AH |. Prg1 % Xi −→ Xi+1[r �→ E[i]] and Prg % X1 −→
X|AH |+1 where Prg1 % X|AH | −→ X|AH |+1. Consider a list Y = Y1, . . . , Y|BH |+1

of pebblings of BH such that ∀i < |AH |, XiXi+1 ∼h YiYi+1. Then, assuming INV 2
for Prg1, ∀i < |AH |+ 1. Prg1 % Yi −→ Yi+1. Further, if Yi(r) gives an enumeration
of BH , then Prg % Y1 −→ Y|BH |+1. So, to prove the invariant for Prg , we need to
construct such a list Y for some list X as above.

We first construct this matching list for a list X in which X [i](r) is not necessarily
an enumeration of the tree. The construction appears in Lemma 11 below. Its proof
(not given for space reasons) relies on the following lemma, which shows that to colour
match up to some height, it suffices to match what we call single children.

Definition 4. A (non-root) node n is a single child at pebbling I , written in short as
singlechild (n, I), if I fixes n, but does not fix any of the siblings of n.

Lemma 10. For all pebblings I andJ of trees of heightHwith pebblesP , if (I‖H−|P |J)
and∀n.singlechild(n, I)→ colour(n) = colour(match(I ,J)(n)), then (I ∼H−|P | J).

Proof. Towards a contradiction, assume I fixes a node n of height h ≤ H − |P | and
colour(n) �= colour (matchI ,J (n)). Since (I‖H−|P |J), for every ancestor m of n,
colour(m) �= colour (matchI ,J (m)). So, I fixes some sibling of every ancestor of n
(including n) i.e., I pebbles more than |P | pairwise disjoint trees. ��
The following lemma states that given a list of pebblings of AH , it is possible to con-
struct a list of pebblings over BH such that successive pebbling pairs will colour match
till desired height. The required list of pebblings is constructed recursively to colour
match single children.

Lemma 11. Let X = X0, . . . , Xk be a list of pebblings of AH with pebbles P , and
Y0 and Yk be pebblings of BH with X0Xk ∼h Y0Yk witnessed by F . There exists a
list of pebblings Y1, . . . , Yk−1 such that for 0 ≤ i < k, XiXi+1 ∼h−|P | YiYi+1, and
Yi|h = F ◦Xi|h and Yi|n = F ◦Xi|n for every node n at height h with colour(n) =
colour(F (n)).

Pure Pointer Programs and Tree Isomorphism 331

To use these results for a programPrg defined asforallr doPrg1, we need to extend
the proof for a list of pebblingsX where the list of nodes X [i](r) is some enumeration
of the AH and construct a list Y where the list of nodes Y [i](r) is some enumeration of
the BH . Since PURPLE programs behave the same for any enumeration, we choose for
X [i](r) an enumeration ofAH called “special run” (SR) such that there is an enumeration
“match run” (MR) of BH with ht(SR[i]) = ht(MR[i]) and dist(SR[i], SR[i+ 1]) =
dist(MR[i],MR[i+ 1]) and colour(SR[i]) = colour(MR[i]) if ht(SR[i]) ≤ h (de-
termined by Prg1).

We define the enumeration of the tree AH called the special run SRH,h parame-
terized by an even height h. We fix a function gc that maps the nodes of AH to an
enumeration of their grandchildren. Int is a list of sets of nodes of AH such that

Int[0] = {m | ht(m) ≥ h− 1},
Int[k] = {m | m ∈ AH |gc(n)[k] for some n with ht(n) = h} for 1 ≤ k ≤ 48.

Define interval boundary IBH,h(j) =
∑j−1
i=0 |Int[i]| for 0 ≤ j ≤ 49. Then, for 0 ≤

i ≤ 48 the sublist of SRH,h from IBH,h(i) + 1 till IBH,h(i + 1) is called the ith

interval of SRH,h and is defined to be an arbitrary enumeration of Int[i].

Lemma 12. For all even heights H and h, the jth interval of SRH,h (1 ≤ j < 49)
contains, for every node n with ht(n) = h, the subtree rooted at exactly one grandchild
of n; the 0th interval contains nodes with height ≥ h− 1.

Given a structural isomorphism F : AH → BH , we define the enumeration match run
MRH,h,F of BH . For each n of AH of even height, we fix some colour preserving
bijection fn from the grandchildren of n to the grandchildren of F (n) and let GCn be
the union of some colour isomorphisms from AH |n′ to BH |fn(n′) for each grandchild
n′ of n. (GCn may not preserve distances.) With these we define the enumeration match
run MRH,h,F of BH by: if ht(SRH,h[i]) ≥ h− 1, then MRH,h,F [i] = F (SRH,h[i]);
otherwise let n be the ancestor of SRH,h[i] at height h. If colour(n) = colour(F (n)),
then, MRH,h,F [i] = F (SRH,h[i]); else MRH,h,F [i] = GCn(SRH,h[i]).

Lemma 13. Let H and h be even heights, and F : AH → BH be a structural isomor-
phism with F‖h. Let IB, SR and MR be IBH,h, SRH,h and MRH,h,F respectively.

1. for all i < |AH |, we have ht(SR[i]) = ht(MR[i]) and ht(SR[i]) ≤ h − 2 →
colour(SR[i]) = colour(MR[i]);

2. if 0 ≤ j ≤ 49 and IB[j] ≤ i < IB[j + 1], then dist(SR[i], SR[i + 1]) =
dist(MR[i],MR[i+ 1]);

3. if n is the ancestor of SR[IB[j]] at height h and colour(n) = colour(F (n)), then
we have dist(SR[IB[j] − 1], SR[IB[j]]) = dist(MR[IB[j] − 1],MR[IB[j]])
for 0 < j ≤ 49.

Since GCn may not preserve distances, we needed the extra conditions at the inter-
val boundaries to ensure MR is defined using F . Lemma 11 shows that given a list
X of pebblings and an initial structural isomorphism F , we can construct a list Y
whose corresponding elements colour-match with X , such that under some condi-
tions, Y [i](r) = F ◦ X [i](r). When we add the constraint that X [i] = SR(i), if we

332 M. Hofmann, R. Ramyaa, and U. Schöpp

have F (SRH,h(i)) = MRH,h,G(i) for some G, and the conditions required to ensure
Y [i](r) = F ◦ X [i](r), the result follows. However, no structural (let alone colour)
isomorphism satisfies Y [i](r) = F ◦X [i](r). So, we divide X into 49 sublists, one for
each interval of SRH,h, such that there are 49 structural isomorphisms with the prop-
erty that successive ones agree on the nodes fixed at the boundaries of the intervals, and
MRH,h,F0 [i] = Fj(SR[i]) for if i is the in jth interval of SR.

Lemma 14. Let H , h be even heights, P be a set of pebbles, h′ = h − 50|P |, IB =
IBH,h′ , SR = SRH,h′ , |AH | = N . Let X = X1, . . . , XN be a list of pebblings with
Xi(r) = SR[i]. Let Y1, YN be pebblings of BH with X1XAH ∼h Y1YN . Then, there
are structural isomorphisms Fj (0 ≤ j ≤ 48) with

1. MRH,h′,F0 [i] = Fj(SR[i]) for IB[j] ≤ i ≤ IB[j + 1];
2. F0(n) = Fj(n) on all nodes n fixed by XIB[j] and XIB[j+1];
3. for all i, either ht(SR[i]) > h′ − 2 or the ancestor n of SR[i] at height h′ − 2

satisfies colour(n) = colour(Fj(n)) where IB[j] ≤ i ≤ IB[j + 1].

Proof. We first want to define an F0 such that F0‖h′ and colour(n) = colour(F0(n))
for any node n at height h′ fixed by XIB[j] for some j (0 ≤ j ≤ 48). Define F0 as
follows: Let S = {IB[i] | 0 ≤ i ≤ 49}, and R1, R′, RN be pebbling with pebbles
S × P , defined as R1(〈i, p〉) = X1(p), RN (〈i, p〉) = XN(p)and R′(〈i, p〉) = Xi(p)
for each i ∈ S, p ∈ P . Using Lemma 11 applied to the list R1 : R′ : R2, Y1 and YN
with any structural isomorphism witnessing X1XAH ∼h Y1YBH we can construct a Y ′

with R0R
′ ∼h′ Y0Y

′. Then, there is a structural isomorphism F0 witnessing this with
the required properties.

Define Fj as follows: Take Fj |h
′
= F0|h

′
, and Fj |n = F0|n for any node n of

height h′, with colour(n) = colour(F0(n)) (this satisfies (1) for nodes below such n;
Since F0 is such that all nodes fixed by XIB[j] for 0 ≤ j ≤ 48, (2) is satisfied). To
satisfy (1) below any node n with height h′ and colour(n) �= colour(F0(n)), define
Fj |n as follows: By Lemma 12, there is at most one grandchild of n in jth interval of
IB[j], . . . , IB[j + 1] of SR - say n′. So the only nodes that (1) enforces are in AH |n′ .
Set Fj(n′′) = MR[l′′] for each n′′ ∈ AH |n′ (including n′)) where SR[l′′] = n′′. To
preserve distances, set Fj(parent(n′)) = parent(Fj(n

′)). Elsewhere in AH |n, Fj is
any structural isomorphism. Thus, MR[i] = Fj(Xi(r)) for IB[j] < i ≤ IB[j+1]. (3)
follows from the construction. ��

The following lemma shows that given a list of pebblings of AH , with pebble i enu-
merating it, these structural isomorphisms can be used to construct a list of pebblings
BH such that the successive pairs of pebblings colour match to the desired heights, and
pebble i enumerates BH .

Lemma 15. Let H , h be even heights, P be a set of pebbles, h′ = h − 51|P |, IB =
IBH,h′ , SR = SRH,h′ , |AH | = N . Let X = X1, . . . , XN be a list of pebblings with
Xi(r) = SR[i]. Let Y1, YN be pebblings of BH such that X1XN ∼h Y1YN . Then
there is a list of pebblings Y = Y1, . . . , YN such that Yi ∼h′−|P |−2 Xi and a structural
isomorphism F0 such that Yi(r) =MRH,h′,F0 [i].

Pure Pointer Programs and Tree Isomorphism 333

Proof. By Lemma 14, for all 0 ≤ j ≤ 48 there exists Fj with properties 1, 2 and 3
as in Lemma 14. Define YIB[j] = F0 ◦ XIB[j] for 0 ≤ j ≤ 49. By Lemma 14(2),
Fj agrees with F0 on nodes fixed by pebblings XIB[j] and XIB[j+1], i.e., Fj wit-
nesses XIB[j]XIB[j+1] ∼h′ YIB[j]YIB[j+1]. In order to make use of Lemma 14(3),
we weaken this to XIB[j]XIB[j+1] ∼h′−2 YIB[j]YIB[j+1]. By Lemma 11, applied to
XIB[j], . . . , XIB[j+1], YIB[j] and YIB[j+1] with Fj witnessing XIB[j]XIB[j+1] ∼h′−2
YIB[j]YIB[j+1], construct YIB[j]+1, . . . , YIB[j+1]−1 such that for (a) IB[j] ≤ i ≤
IB[j + 1], XiXi+1 ∼h′−2−|P | YiYi+1 and (b) Yi|h

′
= Fj ◦ Xi|h

′
and (c) Yi|n =

Fj ◦ Xi|n for every node n at height h with colour (n) = colour (Fj (n)). By (b),
(c) and 14 (3), Yi(r) = Fj ◦ Xi(r) since Xi(r) = SR[i]. By Lemma 14 (1) we have
Yi(r) = MRH,h′,F0 [i]. ��

Using this, the INV for the forall loop can be proved directly.

Lemma 16. If Prg = forall r do Prg1 and Prg1 satisfies INV (h1) then Prg satis-
fies INV (h) where h = h1 + 52|P |+ 2 and P is set of pointers in Prg .

Proof. Consider an even height h′ > h. Let gph = h′ − 51|P |, gch = gph − 2,
h′1 = gch−|P |, andH ≥ h′ be even, IB = IBH,gph, SR = SRH,gph, and |AH | = N .

INV1: Let pebblings I1 ofAH and I2 ofBH satisfy I1 ∼h′ I2. LetX = X1, . . . , XN

be a list of pebblings with Xi(r) = SR[i], X1 = I1[r �→ SR[1]], and for all 1 ≤
i < N , Prg1 % Xi −→ Xi+1[r �→ SR[i]] such that for any pebblings J1 and J2
with XiXi+1[r �→ SR[i]] ∼h′

1
J1J2 we have Prg1 % J1 −→ J2. (Since Prg1 does

not modify r, by IH (INV 2), such an X exists). By Lemma 15 with Y1 = I2 and
YN = F ◦ (XN) for some F that witnesses I1 ∼h′ I2, we have a list Y with Prg1 %
Yi −→ Yi+1[r �→MR[i]] for all i ≤ N . Applying IH again to get Prg1 % XN −→ O1

and Prg1 % YN −→ O2, the result follows.
INV2: Let pebblings I1, O1 of AH and I2, O2 of BH satisfy I1O1 ∼h′ I2O2. Let X

be as above. By Lemma 11 applied to I1 : XN : O1 and I2 and O2, construct YN .
By Lemma 15 construct list Y with Prg1 % Yi −→ Yi+1[r �→MR[i]] for all i ≤ N .

So the result follows. ��

The proof of Theorem 1 is now a straightforward induction on program structure.
The key to generalizing our main result for nondeterminism and counting lies in

the correct formulation of the invariants, in particular the quantification for runs and
nondeterministic choices:

Theorem 2. For any simple PURPLEc,nd program Prg there exists a height h with the
following property: Whenever h′ ≥ h and H ≥ h′ (both h′ and H even), then for any
pebblings ρi1 ∼h′ ρi2 and any state q, there exists σ1 (pre-selected traversal sequences)
such that Prg %AH 〈ρi1, q, σ1〉 −→ 〈ρo1, q′, σ′1〉 implies

– INV1(h) : there is a pebbling ρo2 with ρi1ρo1 ∼ ρi2ρo2 and σ2 and σ′2 such that
Prg %BH 〈ρi2, q, σ2〉 −→ 〈ρo2, q′, σ′2〉;

– INV2(h) : for any pebbling ρo2 with ρi1ρo1 ∼h′ ρi2ρo2 there exist σ2 and σ′2 with
Prg %BH 〈ρi2, q, σ2〉 −→ 〈ρo2, q′, σ′2〉.

The proof follows the proof for PURPLE almost verbatim.

334 M. Hofmann, R. Ramyaa, and U. Schöpp

Corollary 2. No PURPLEc,nd program can recognize the set {A2n | n ∈ N}.

Proof. Assume, for a contradiction, that Prg recognizes {A2n | n ∈ N}. Choose h such
that Prg satisfies INV(h). LetH > h be even and choose ρi1 and ρi2 to be the pebblings
on AH andBH respectively that place all pebbles of Prg on the roots. Let q be the state
that maps all counters to 0. Clearly, we have ρi1 ∼h′ ρi2. Let σ1 be the pre-selected
traversal sequences, as provided by Theorem 2. Since Prg accepts AH , we must have
Prg %AH 〈ρi1, q, σ1〉 −→ 〈ρo1, q′, σ′1〉 for some accepting configuration 〈ρo1, q′, σ′1〉.
INV1(h) : then furnishes ρo2 and σ2 and σ′2 with ρi1ρo1 ∼ ρi2ρo2 and Prg %BH

〈ρi2, q, σ2〉 −→ 〈ρo2, q′, σ′2〉. As 〈ρo2, q′, σ′2〉 must be accepting by ρi1ρo1 ∼ ρi2ρo2,
program Prg does not reject BH . Therefore Prg cannot recognize {A2n | n ∈ N}.

5 Horn Satisfiability

For any AB-tree T , PURPLE can construct a Horn satisfiability problem ST that is un-
satisfiable iff T is AH or CH : The problem ST has one variable Xn for each node n
in T . The goal clause is ¬Xroot(T). For each node n with A0(n) there is a clause Xn

making Xn a fact. Finally, for each node n with 8 (resp. 6) children and any choice
of t = 3 (resp. t = 4) pairwise distinct children n1, . . . , nt of n, there is a clause
Xn,¬Xn1 , . . . ,¬Xnt . As a result, ST is satisfiable iff T is an B, D or an E tree. So,
PURPLE cannot solve Horn satisfiability problems presented as sets of clauses.

6 Conclusion and Future Work

We have introduced an extension of PURPLE (imperative language with statically al-
located pointers and iteration) with non-determinism and counting. Our main result
shows that even in this extension isomorphism of unordered trees cannot be decided
even though this problem is in LOGSPACE. This generalises an analogous result for
transitive closure logic with counting [5]. A completely new proof method based on
bisimulation was necessary to prove this result. This then furnishes a new proof of the
result in [5], but more importantly sheds new light on the strength and weakness of
extensions to PURPLE.

This whole line of work is motivated by the quest for a meaningful rigorization of the
intuition that a constant number of pointers cannot be sufficient to check satisfiability
of a set of Horn clauses. It seems so obvious that a non-constant number of “already
proven” facts must be kept in memory no matter which algorithm is used. On the other
hand, since Horn satisfiability is complete for PTIME and only a “constant number of
pointers” can be done in LOGSPACE a comprehensive proof of such a statement would
separate LOGSPACE from PTIME. Thus, until the techniques become strong enough to
prove such a result we seek meaningful relativisations of such a separation. To this end
we introduced the programming language PURPLE that provides the ability to iterate
over all input elements in an unspecified order. We now seek extensions of this for-
malism that while remaining within LOGSPACE enhance the power so as to get more
expressive relativised separations.

Pure Pointer Programs and Tree Isomorphism 335

The work reported here narrows down the design space for such an extension con-
siderably. We have proved that PURPLE extended with nondeterminism and counting
cannot decide isomorphism of trees where the children of a node are unordered.

For the above research programme this has the important implication that an encod-
ing of Horn satisfiability where clauses and variables are unordered, i.e., we merely
have a relation that tells whether a variable appears as a premise or conclusion of a
Horn clause, is not appropriate for a meaningful relativised separation because tree iso-
morphism can be—within PURPLE—reduced to this version of Horn satisfiability. So,
Horn satisfiability cannot be decided in PURPLE augmented with nondeterminism and
counting either, but for the very reason that a particular LOGSPACE problem, namely
tree isomorphism cannot.

This narrowing of the design space leaves the following two options to be investi-
gated: Further extend PURPLE, for instance with the LREC-recursor by Grohe et al. [7]
and try to prove that unordered Horn satisfiability cannot be decided in that system.
While this would be a very interesting result, we feel that this path does not really get
to the essence of the issue because it is too dependent on the precise presentation of the
input structure. Our preferred solution is to remove counting, but merely provide non-
determinism and possible restricted patterns of recursion. In view of Prop. 1 this would
then allow us to present instances of Horn satisfiability with as much local ordering as
desired. E.g. by ordering the premises of any clause and giving for each variable a list
of clauses which conclude with that variable. Unordered tree isomorphism can then no
longer be encoded as Horn satisfiability.

Thus, in summary, the results of this paper give us robust evidence that in order to
stay clear of full LOGSPACE while at the same time not being trivially weak one should
stick to a constant number of variables be they pointer or boolean variables.

References

1. Bonfante, G.: Some Programming Languages for LOGSPACE and PTIME. In: Johnson, M.,
Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 66–80. Springer, Heidelberg (2006)

2. Cai, J.-Y., Sivakumar, D.: Sparse hard sets for P: Resolution of a conjecture of Hartmanis. J.
Comput. Syst. Sci. 58(2), 280–296 (1999)

3. Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted machines.
SIAM J. Comput. 9(3), 636–652 (1980)

4. Ebbinghaus, H.-D., Flum, J.: Finite model theory. Springer (1995)
5. Etessami, K., Immerman, N.: Tree canonization and transitive closure. In: IEEE Symp. Logic

in Comput. Sci., pp. 331–341 (1995)
6. Grädel, E., McColm, G.L.: On the power of deterministic transitive closures. Inf. Com-

put. 119(1), 129–135 (1995)
7. Grohe, M., Grußien, B., Hernich, A., Laubner, B.: L-recursion and a new logic for logarith-

mic space. In: CSL, pp. 277–291 (2011)
8. Hofmann, M., Schöpp, U.: Pointer programs and undirected reachability. In: LICS, pp. 133–

142 (2009)
9. Hofmann, M., Schöpp, U.: Pure pointer programs with iteration. ACM Trans. Comput.

Log. 11(4) (2010)
10. Immerman, N.: Progress in descriptive complexity. In: Curr. Trends in Th. Comp. Sci., pp.

71–82 (2001)

336 M. Hofmann, R. Ramyaa, and U. Schöpp

11. Jones, N.D.: LOGSPACE and PTIME characterized by programming languages. Theor.
Comput. Sci. 228(1-2), 151–174 (1999)

12. Richard, E.: Ladner and Nancy A. Lynch. Relativization of questions about log space com-
putability. Mathematical Systems Theory 10, 19–32 (1976)

13. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: STOC 1992,
pp. 400–404. ACM, New York (1992)

14. Lu, P., Zhang, J., Poon, C.K., Cai, J.-Y.: Simulating Undirected st-Connectivity Algo-
rithms on Uniform JAGs and NNJAGs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS,
vol. 3827, pp. 767–776. Springer, Heidelberg (2005)

15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)

A Language for Differentiable Functions

Pietro Di Gianantonio1 and Abbas Edalat2

1 Dip. di Matematica e Informatica
Università di Udine, 33100 Udine, Italy

pietro.digianatonio@uniud.it
2 Department of Computing, Imperial College London

ae@ic.ac.uk

Abstract. We introduce a typed lambda calculus in which real num-
bers, real functions, and in particular continuously differentiable and
more generally Lipschitz functions can be defined. Given an expression
representing a real-valued function of a real variable in this calculus, we
are able to evaluate the expression on an argument but also evaluate
the L-derivative of the expression on an argument. The language is an
extension of PCF with a real number data-type but is equipped with
primitives for min and weighted average to capture computable contin-
uously differentiable or Lipschitz functions on real numbers. We present
an operational semantics and a denotational semantics based on contin-
uous Scott domains and several logical relations on these domains. We
then prove an adequacy result for the two semantics. The denotational
semantics also provides denotational semantics for Automatic Differen-
tiation. We derive a definability result showing that for any computable
Lipschitz function there is a closed term in the language whose evalu-
ation on any real number coincides with the value of the function and
whose derivative expression also evaluates on the argument to the value
of the L-derivative of the function.

1 Introduction

Real-valued locally Lipschitz maps on finite dimensional Euclidean spaces enjoy
a number of fundamental properties which make them the appropriate choice
of functions in many different areas of applied mathematics and computation.
They contain the class of continuously differentiable functions, are closed un-
der composition and the absolute value, min and max operations, and contain
the important class of piecewise polynomial functions, which are widely used in
geometric modelling, approximation and interpolation and are supported in Mat-
Lab [4]. Lipschitz maps with uniformly bounded Lipschitz constants are closed
under convergence with respect to the sup norm. Another fundamental property
of these maps is that a Lipschitz vector field in Rn has a unique solution in the
initial value problem [3].

In the past thirty years, motivated by applications in control theory and op-
timisation and using an infinitary double limit superior operation, the notion

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 337–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

338 P. Di Gianantonio and A. Edalat

of Clarke gradient has been developed as a convex and compact set-valued gen-
eralised derivative for real-valued locally Lipschitz maps [2]. For example, the
absolute value function, which is not classically differentiable at zero, is a Lips-
chitz map which has Clarke gradient [−1, 1] at zero. The Clarke gradient extends
the classical derivative for continuously differentiable functions.

Independently, a domain-theoretic Scott continuous Lipschitz derivative, later
called the L-derivative, was introduced in [8] for interval-valued functions of an
interval variable and was used to construct a domain for locally Lipschitz maps;
these results were then extended to higher dimensions [9]. It was later shown that
on finite dimensional Euclidean spaces the L-derivative actually coincides with
the Clarke gradient [6]. In finite dimensions, therefore, the L-derivative provides
a simple and finitary representation for the Clarke gradient.

Since the mid 1990’s, a number of typed lambda calculi, namely extensions
of PCF with a real number data type, have been constructed, including Real
PCF, RL and LPR [11,5,19], which are essentially equivalent and in which com-
putable continuous functions can be defined. Moreover, IC-Reals, a variant of
LPR with seven digits, has been implemented with reasonable efficiency in C
and Haskell [15].

It was relatively straightforward in [7] to equip Real PCF with the integral
operator, which is in fact a continuous functional. However, adding a derivative
operator to the language has proved to be non-trivial since classic differentia-
tion may not be defined on continuous functions and even when defined it may
not result in a continuous function. The development of the Scott continuous
L-derivative, defined in a finitary manner, has therefore been essential for con-
struction of a language with a derivative operator.

The aim of this work is to take the current extensions of PCF with a real
number data type into a new category and define a typed lambda calculus, in
which real numbers, real functions and in particular continuously differentiable
and Lipschitz functions are definable objects. Given an expression e representing
a function from real numbers to real numbers in this language, we would be able
to evaluate both e and its L-derivative on an argument. In this paper we will
only be concerned with the theoretical feasibility of such a language and not
with questions of efficiency.

To develop such a language, we need to find a suitable replacement for the
test for positiveness ((0<)), which is used in the current extensions of PCF
with real numbers to define functions by cases. In fact, a function defined using
the conditional with this constructor will not be differentiable at zero even if
the two outputs of the conditional are both differentiable: Suppose we have
two real computable functions f and g whose derivatives Df and D g are also
computable, and consider l = λx. if (0<) x then f x else g x. The function l
is computable and there is an effective way to obtain approximations of the
value of l(x) including at 0. However, there is no effective way to generate any
approximation for the derivative of l, i.e., D l, at the point 0. In fact, it is correct
to generate an approximation of Dl on 0 only if f(0) = g(0), but this equality

A Language for Differentiable Functions 339

is undecidable, i.e., it cannot be established by observing the computation of f
and g at 0 for any finite time.

In this paper, instead of the test (0<) , we will use the functions minimum,
negation and weighted average when defining continuously differentiable or Lip-
schitz maps. These primitives are of course definable in Real PCF, RL and LPR,
but the definitions are based on the test (0<) , which means that the information
about the derivative is lost.

By a simple transfer of the origin and a rescaling of coordinates we can take
the interval [−1, 1] as the domain of definition of Lipschitz maps. Furthermore,
by a rescaling of the values of Lipschitz maps (i.e., multiplying them with the
reciprocal of their Lipschitz constant) we can convert them to non-expansive
maps, i.e., we can take their Lipschitz constant to be one. Concretely, we take
digits similar to those in Real PCF as constructors and develop an operational
semantics and a denotational semantics based on three logical relations, and
prove an adequacy result. The denotational semantics for first order types is
closely related but different from the domain constructed in [8] in that we capture
approximations to the function part and to the derivative part regarded as a
sublinear map on the tangent space. Finally, we prove a definability result and
show that every computable Lipschitz map is definable in the language as the
limit of a sequence of piecewise linear maps with the convergence of their L-
derivatives.

We note that all our proofs can be found in the extended version of the present
paper [13].

1.1 Related Work

Given a program to evaluate the values of a function defined in terms of a
number of basic primitives, Automatic Differentiation (also called Algorithmic
Differentiation) seeks to use the chain rule to compute the derivative of the
function [14]. AD is distinct from symbolic differentiation and from numerical
differentiation. Our work can be regarded as providing denotational semantics for
forward Automatic Differentiation and can be used to extend AD to computation
of the generalised derivative of Lipschitz functions.

In [10], the differential λ-calculus, and in [17], the perturbative λ-calculus that
integrates the latter with AD, have been introduced which syntactically model
the derivative operation on power series in a typed λ-calculus or a full linear
logic. Although apparently similar, our calculus and these two λ-calculi differ in
almost every aspect: motivation, syntax, semantics, and the class of definable
real functions. (i) These λ-calculi have been presented to analyse linear substi-
tution and formal differentiation, (ii) the syntax is quite structured and contains
constructors that have no correspondence in our setting, (iii) the semantics is
based on differential categories and not on domain theory, and (iv) the definable
real functions are limited to analytical maps which have power series expansion.

On the other hand, Computable Analysis [20,21] and Constructive Analy-
sis [1] are not directly concerned with computation of the derivative and both

340 P. Di Gianantonio and A. Edalat

only deal with continuously differentiable functions. In fact, a computable real-
valued function with a continuous derivative has a computable derivative if
and only if the derivative has a recursive modulus of uniform continuity [16,
p. 191], [20, p. 53], which is precisely the definition of a differentiable function
in constructive mathematics [1, p. 44].

2 Syntax

We denote the new language with PCDF (Programming language for Com-
putable and Differentiable Functions).

The types of PCDF are the types of a slightly modified version of PCF where
natural numbers are replaced by integers, together with a new type ι, an ex-
pression e of type ι denotes a real number in the interval [−1, 1] or a partial
approximation of a real number, represented by a closed intervals contained in
[−1, 1]. The set T of type expressions is defined by the grammar:

σ ::= o | ν | ι | σ → σ

where o is the type of booleans and ν is the type of integer numbers.
The expressions of PCDF are the expressions of PCF together with a new set

of constants for dealing with real numbers. This set of constants is composed by
the following elements:

(i) A constructor for real numbers given by: dig : ν → ν → ν → ι → ι. It is
used to build affine transformations, and real numbers are obtained by a
limiting process. The expression dig l mn represents the affine transforma-
tion λx.(l+m ·x)/n, if 0 ≤ m < n and |l| ≤ n−m, or the constant function
λx.0 otherwise. The above condition on l,m, n implies that dig l mn repre-
sents a rational affine transformation mapping the interval [−1, 1] strictly
into itself with a non-negative slope or derivative 0 ≤ m/n < 1.
In this way we use three integers to encode a rational affine transformation;
of course it is possible to devise other encodings where just natural numbers
or a single natural number is used, however these alternative encodings will
be more complex.
The affine transformations definable by dig are also called generalised dig-
its. Since there is no constant having type ι, an expression e having type ι
can never normalise and its evaluation proceeds by producing expressions
in the form dig l mn e′. These expressions give partial information about
the value represented by e, namely they state that e represents a real num-
ber contained in the interval [(l +m)/n, (l−m)/n], which is the range of
the function λx.(l+m ·x)/n. During the reduction process, this interval is
repeatedly refined and the exact result, a completely defined real number,
can be obtained as the limit of this sequence.

(ii) The opposite sign function (negation) opp : ι→ ι.
(iii) add : ν → ν → ι → ι, representing the function λ p q x . min((p/q + x), 1),

if 0 < p < 2 · q, and the constant function λx. 0 otherwise.

A Language for Differentiable Functions 341

We define sub p q x as syntactic sugar for the expression opp (add p q (oppx)),
which returns the value max((x − (p/q),−1)).

(iv) A weighted average function av : ν → ν → ι → ι → ι. The expression
av p q represents the function λx y . (p/q) · x + (1 − p/q) · y, if 0 < p < q,
and the constant function λx y . 0 otherwise.

(v) The minimum function

min : ι→ ι→ ι

with the obvious action on pairs of real numbers. We define max x y as
syntactic sugar for the expression opp (min (oppx)(opp y)).

(vi) A test function (0<) : ι → o , which returns true if the argument is
strictly greater than zero, and false if the argument is strictly smaller that
zero. The test function can be used for constructing functions that are not
differentiable, an example being the function λx. if (0<) (x) then 1 else 0; as
a consequence we impose some restriction in its use.

(vii) The if-then-else constructor on reals, ifι : o → ι → ι → ι, and the parallel
if-then-else constructor pifι : o→ ι→ ι→ ι.

The main use for the parallel if operator is to evaluate, without loss of in-
formation, derivative of expressions containing the min operator. However,
the parallel if operator can be completely avoided in defining non-expansive
functions on real numbers. In fact in the constructive proof of our defin-
ability result, the parallel if operator is never used.

(viii) A new binding operator D. The operator D can bind only variables of type
ι and can be applied only to expressions of type ι. In our language, Dx.e
represents the derivative of the real function λx.e.

The differential operator D can be applied only to expressions that contain
neither the constant (0<) nor the differential operator D itself.

We note that, with the exception of the test functions (0<) , all the new constants
represent functions on reals that are non-expansive; the if-then-else constructors
are also non-expansive if the distance between true (tt) and false (ff) is defined
to be equal to two, while the test function (0<) cannot be non-expansive, what-
ever metric is defined on the Boolean values. The expressions containing neither
the constant (0<) nor the differential operator D are called non-expansive since
they denote functions on real numbers that are non-expansive. This fact, intu-
itively true, is formally proved by Proposition 2. The possibility to syntactically
characterise a sufficiently rich set of expressions representing non-expansive func-
tions is a key ingredient in our approach that allows us to obtain information
about the derivative of a function expression without completely evaluating it.
For example, from the fact that e : ι is a non-expansive expression, one can
establish that the derivative of λx.e, at any point, is contained in the interval
[−1, 1] and that the derivative of λx.dig l mn e is contained in the smaller interval
[−m/n,m/n].

342 P. Di Gianantonio and A. Edalat

3 Operational Semantics

The operational semantics is given by a small step reduction relation, → , which
is obtained by adding to the PCF reduction rules the following set of extra rules
for the new constants.

The operational semantics of add and min operators uses an extra constant
aff : ν → ν → ν → ι → ι. The expression aff l mn is intended to represent
general affine transformations (including expansive ones) with a non-negative
derivative, i.e., the affine transformation λx.(l +mx)/n with m ≥ 0, n > 0. A
property preserved (i.e., invariant) by the reduction rules is that the constant
aff appears only as the head of one of the arguments of min or as the head of
the fourth argument of aff . It follows that in any expression e′ in the reduction
chain of a standard expression e (without the extra constants aff), the constant
aff can appear only in the above positions.

The generalised digit dig l mn is a special case of an affine transformation.
Therefore, in applying the reduction rules, we use the convention that any re-
duction rule containing, on the left hand side, a general affine transformation aff
can be applied also to terms where the affine transformation aff is substituted
by the constructor dig .

On affine transformations we will use the following notations:

– (aff l1m1 n1) ◦ (aff l2m2 n2) stands for aff (l1 ·n2+m1 · l2) (m1 ·m2) (n1 ·n2),
i.e., the composition of affine transformations.

– If m �= 0, (aff l mn)−1 stands for (aff (−l)nm), i.e., the inverse affine trans-
formation; if m = 0, the expression (aff l mn)−1 is undefined.

– The symbols l,m, n, p, q stand for values of integer type.

The reduction rules are the PCF reduction rules together the following set of
extra rules. First we have three simple reductions:

– dig l mn e → dig 0 0 1 e if m < 0 or n ≤ 0 or |l| > n−m.
– add p q e → dig 0 0 1 e if p ≤ 0 or q ≤ p.
– av p q e1 e2 → dig 0 0 1 e1 if p ≤ 0 or q ≤ p.

The above rules deal with those instances of dig , add , av with integer arguments
that reduce to the constant zero digit. An implicit condition on the following set
of rules is that they apply only if none of the above three rules can be applied.

1. dig l1m1 n1(dig l2m2 n2 e) → ((dig l1m1 n1) ◦ (dig l2m2 n2)) e
2. opp (dig l mn e) → dig (−l)mn (opp e)
3. add p q e → min (aff p q q e)(dig 1 0 1 e)

note that (aff p q q) and (dig 1 0 1) represent the functions λx.p/q + x and
λx.1 respectively.

4. av p q (dig l mn e1) e2 → dig l′m′ n′(av p′ q′ e1 e2)
where l′ = l · p, m′ = q′ = m · p+ n · q − n · p, n′ = n · q and p′ = m · p.
By a straightforward calculation, one can check that the left and the right
parts of the reduction rules represent the same affine transformation on the
arguments e1, e2.

A Language for Differentiable Functions 343

5. av p q e1 (dig l mn e2) → dig l′m′ n′(av p′ q′ e1 e2)
where l′ = l(q − p), m′ = q′ = np+mq −mp, n′ = nq and p′ = np.

6. min (dig l1m1 n1 e1)(aff l2m2 n2 e2) → dig l1m1 n1 e1
if (l1 +m1)/n1 ≤ (l2 −m2)/n2.
The above condition states that every point in the image of (dig l1m1 n1)
is smaller, in the usual Euclidean order, than every point in the image of
(aff l2m2 n2), i.e., the first argument of min is certainly smaller that the
second.

7. min (aff l1m1 n1 e1)(dig l2m2 n2 e2) → dig l2m2 n2 e2
if (l2 +m2)/n2 ≤ (l1 −m1)/n1

The symmetric version of the previous rule.
8. min (dig l mn e1) e2 → dig l′m′ n′

(min ((dig l′m′ n′)−1 ◦ (dig l mn) e1) ((dig l
′m′ n′)−1 e2))

if l +m < n and l′ = l +m− n, m′ = l+m+ n �= 0, n′ = 2 · n.
The above equations imply that if (dig l mn) has image [a, b] then (dig l′m′ n′)
has image [−1, b]. The rule is justified by the fact if the first argument of min
are smaller than b then the value ofmin is also smaller than b.

9. min e1 (dig l mn e2) → dig l′m′ n′

(min ((dig l′m′ n′)−1 e1) ((dig l′m′ n′)−1 ◦ (dig l mn) e2))
if l +m < n and l′ = l +m− n, m′ = l+m+ n �= 0, n′ = 2 ◦ n.
The symmetric version of the previous rule.

10. min (aff l1m1 n1 e1)(aff l2m2 n2 e2) → dig l′m′ n′

(min ((dig l′m′ n′)−1 ◦ (aff l1m1 n1) e1)((dig l
′m′ n′)−1 ◦ (aff l2m2 n2) e2))

if −1 < (l1+m1)/n1 ≤ (l2−m2)/n2 and l
′ = l1−m1+n1,m

′ = m1−l1+m1,
n′ = 2 · n1.
The above equation implies that if (dig l1m1 n1) has image [a, b] then (dig l′

m′ n′) has image [a, 1]. The rule is justified by the fact if both arguments of
min are greater that a then the value of min is also greater than a.

11. min (aff l1m1 n1 e1)(aff l2m2 n2 e2) → dig l′m′ n′

(min ((dig l′m′ n′)−1 ◦ (aff l1m1 n1) e1)((dig l
′m′ n′)−1 ◦ (aff l2m2 n2) e2))

if −1 < (l2−m2)/n2 < (l1+m1)/n1, and l
′ = l2−m2+n2,m

′ = m2−l2+m2,
n′ = 2 · n2.
The symmetric version of the previous rule.

12. aff l1m1 n1(aff l2m2 n2 e) → ((aff l1m1 n1) ◦ (aff l2m2 n2)) e
13. aff l mn e → dig l mn e

if −1 ≤ (l −m)/n, (l +m)/n ≤ 1 and e is not in the form aff a′b′e.
14. (0<) (dig l mn e) → tt if (l −m)/n > 0
15. (0<) (dig l mn e) → ff if (l −m)/n < 0
16. pifι e then dig l1m1 n1 e1 else dig l2m2 n2 e2 →

dig l′m′ n′(pif e then (dig l′m′ n′)−1 ◦ (dig l1m1 n1) e1
else (dig l′m′ n′)−1 ◦ (dig l2m2 n2) e2)

where n′ = 2 · n1 · n2,
m′ = max((l1 +m1) · n2, (l2 +m2) · n1)−min((l1 −m1) · n2, (l2 −m2) · n1),
l′ = 2 ·min((l1 −m1) · n2, (l2 −m2) +m′.
Here the values l′,m′, n′ are defined in such a way that if (dig l1m1 n1)
has image [a1, b1] and (dig l2m2 n2) has image [a2, b2], then (dig l′m′ n′) has
image the convex closure of the set [a1, b1] ∪ [a2, b2].

344 P. Di Gianantonio and A. Edalat

The remaining rules for pif, if are included in the reduction rules for PCF
and therefore are omitted from the present list.

17. N → N ′
MN → MN ′

if M is a constant different from the combinator Y or is an

expression in the form minn1, minn1 n2, minn1 n2 n3, minn1 n2 n3M
′, av n1,

avn1 n2, avn1 n2M
′, addn1, addn1 n2, pifι M

′ then, pifι M ′ then M ′′ else,
where n1, n2, n3 are values.

The reduction rules for the derivative operator are:

1. Dx. x → λy. dig 0 0 1 y
2. Dx. dig l mn e → λy. dig 0mn (Dx. e)y
3. Dx. opp e → λy. opp (Dx. e)y
4. Dx. add p e q → λy. pifι (0<) (add (q−p) q (opp e)) then (Dx. e)y else dig 0 0 1 y
5. Dx. av p q e1 e2 → λy. av p q ((Dx. e1)y) ((Dx. e2)y)
6. Dx.min e1e2 →

λy. pif (λx. (0<) (av 1 2 (opp e1)e2))y then (Dx. e1)y else (Dx. e2)y
7. Dx. pifι e1 then e2 else e3 → λy. pifι (λx. e1)y then (Dx. e1)y else (Dx. e2)y
8. Dx. if e1 then e2 else e3 → λy. if (λx. e1)y then (Dx. e1)y else (Dx. e2)y
9. Dx. Y e → Dx. e(Y e)
10. Dx. (λy. e)e1 . . . en → Dx. e[e1/y]e2 . . . en

Note that the rules for the derivative operator are a direct derivation of the usual
rules for the symbolic computation of the derivative of a function.

3.1 Examples

We will give some examples for defining non-analytic functions in later sections;
in particular we will show in the proof of definability how easily piecewise linear
maps with rational coefficients are defined in the language. A useful technique
to define analytic functions and real constants is to consider their Taylor series
expansions and reduce the Taylor series to a sequence of applications of affine
transformations. For example the value e − 2, where e is the Euler constant, is
given by the Taylor series 1/2!+1/3!+1/4! Denoting the affine transformation
λx.(1 + x)/n as f , the above series can be expressed as f(2)(f(3)(f(4)(. . .) . . .).
It follows that in PCDF e− 2 can be expressed as

(Y λf : ν → ι. λn : ν. f n. dig 1 1n (f(n+ 1))) 2.

Given an expression to represent product in PCDF, it is possible to use the above
technique to express analytic functions. For example, suppose hp defines the half-
product function λxy. x·y/2. Then, one can express the function λx. ex/2−1−x/2
by the PCDF.

λx : ι. hpx ((Y λf : ν → ι→ ι. λn : ν. λx : ι. hpx (dig 1 1n (f(n+ 1)))) 2 x)

The half product hp is definable in PCDF by reducing product to a series of
applications of the average and minimum function. The actual definition of the

A Language for Differentiable Functions 345

function hp is lengthy and we will not present it here. As a simpler example of
the technique involved, we present the definition of the function λx.x2/2.

Consider the following mutual recursive definition of the terms g, h : ν → ι→ ι
g 0 x = maxx (oppx)
hnx = add 1 (2n+1) (g n (add 1 (2n+1)x))
g (n+ 1)x = min (hnx)(hn (oppx))
By standard techniques, one can derive a PCDF expression g satisfying the

above recursive definition. The careful reader can check that the term:
λx. (sub 1 2 (av 1 2 (g 0 x)(av 1 2 (g 1 x)(av 1 2 (g 2 x) . . . (av 1 2 (g n x) (dig 101x). . .)
represents the step-wise linear interpolation of the function λx.x2/2 on the points
of the set {i/2n|i ∈ Z,−2n ≤ i ≤ 2n}. It follows that the function λx.x2/2 is
defined by the term:
λx. (sub 1 2((Y λf : ν → ι→ ι. λn : ν. λx : ι. (av 1 2 (g n x) (f (n+ 1)x))) 0 x).

4 Denotational Semantics

The denotational semantics for PCDF is given in the standard way as a family of
continuous Scott domains, UD := {Dσ | σ ∈ T }. The basic types are interpreted
using the standard flat domains of integers and booleans. The domain associated
to real numbers is the product domain Dι = I × I, where I is the continuous
Scott domain consisting of the non-empty compact subintervals of the interval
I = [−1, 1] partially ordered with reverse inclusion. Elements of I can represent
either a real number x, i.e., the degenerated interval [x, x], or some partial in-
formation about a real number x, i.e., an interval [a, b], with x ∈ [a, b]. On the
elements of I, we consider both the set-theoretic operation of intersection (∩),
the pointwise extensions of the arithmetic operations, and the lattice operations
on the domain information order (�,�), [11]. Function types have the usual
interpretation of call-by-name programming languages: Dσ→τ = Dσ → Dτ .

A hand waiving explanation for the definition of the domain Dι = I × I, is
that the first component is used to define the value part of the function while the
second component is used to define the derivative part. More precisely, a (non-
expansive) function f from I to I, is described, in the domain, by the product
of two functions 〈f1, f2〉 : (I × I) → (I × I): the function f1 : (I × I) → I
represents the value part of f , in particular f1(i, j) is the image of the interval
i under f for all intervals j, i.e., f1 depends only on the first argument. The
second function f2 : (I × I) → I represents the derivative part. If Df denotes
the derivative of f , then f2(i, j) is the image of the intervals i and j under
the function λx, y.D f (x) · y. Thus, f2 is linear in its second component and
f2({x}, {1}) is the derivative of f at the point x.

Note that with respect to the above interpretation, composition behaves cor-
rectly, that is if the pair 〈f1, f2〉 : (I × I) → (I × I) describes the value part
and the derivative part of a function f : I → I and 〈g1, g2〉 : (I × I)→ (I × I)
describes a function g : I → I then 〈h1, h2〉 describes, by the chain rule, the func-
tion f ◦ g with h1(i, j) = f1(g1(i, j), g2(i, j)) and h2(i, j) = f2(g1(i, j), g2(i, j)).

346 P. Di Gianantonio and A. Edalat

The L-derivative of the non-expansive map f : I → I is the Scott continuous
function L(f) : I → I defined by [6]:

L(f)(x) =
⋂
{b ∈ I : ∃ open interval O ⊂ I, x ∈ O with

f(u)−f(v)
u−v ∈ b for all u, v ∈ O, u �= v}.

Consider now the case of functions in two arguments. Given a function g : I →
I → I, its domain description will be an element in (I×I)→ (I×I)→ (I×I),
which is isomorphic to ((I × I) × (I × I)) → (I × I). Thus again, the domain
description of g consists of a pair of functions 〈g1, g2〉, with g1 describing the
value part. If D g (x1, x2) is the linear transformation representing the derivative
of g at (x1, x2), then the function g2 is a domain extension of the real function
λx1, y1, x2, y2.D g (x1, x2) · (y1, y2).

This approach for describing functions on reals is also used in (forward mode)
Automatic Differentiation [14]. While Automatic Differentiation is different from
our method in that it does not consider the domain of real numbers and the
notion of partial reals, it is similar to our approach in that it uses two real
numbers as input and a pair of functions to describe the derivative of functions
on reals. Automatic differentiation is also used in [17], while the idea of using
two separated components to describe the value part and the derivative part in
the domain-theoretic setting can be found also in [8].

The semantic interpretation function E is defined, by structural induction, in
the standard way:

E�c�ρ = B�c�
E�x�ρ = ρ(x)
E�e1e2�ρ = E�e1�ρ(E�e2�ρ)
E�λxσ .e�ρ = λd ∈ Dσ.E�e�(ρ[d/x])

The semantic interpretation of any PCF constant is the usual one, while the
semantic interpretation of the new constants on reals is given by:

B�dig �(l,m, n, 〈i, j〉)=
⎧⎨⎩
⊥ if l = ⊥ ∨ m = ⊥ ∨ n = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 ≤ m < n ∧ |l| ≤ n−m)
〈l/n+m/n · i, m/n · j〉 otherwise

B�opp �(〈i, j〉) = 〈−i, −j〉

B�add �(p, q, 〈i, j〉) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⊥ if p = ⊥ ∨ q = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 < 2 · p < q)
〈i + p/q, j〉 if i+ p/q < 1
〈[1, 1], [0, 0]〉 if i+ p/q > 1
〈i + p/q ∩ [−1, 1], j � [0, 0]〉 otherwise

B�av �(p, q, 〈i1, j1〉, 〈i2, j2〉)
=

⎧⎨⎩
⊥ if p = ⊥ ∨ q = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 < p < q)
〈p/q · i1 + (1 − p/q) · i2, p/q · j1 + (1− p/q) · j2〉 otherwise

A Language for Differentiable Functions 347

B�min �(〈i1, j1〉, 〈i2, j2〉) =
⎧⎨⎩
〈i1, j1〉 if i1 < i2
〈i2, j2〉 if i1 > i2
〈i1min i2, j1 � j2〉 otherwise

B�(0<) �(〈i, j〉) =
⎧⎨⎩
tt if i > 0
ff if i < 0
⊥ otherwise

The interpretation of the derivative operator is given by:

E�Dx.e�ρ = λd ∈ I × I . 〈π2(E�e�ρ[〈π1d, 1〉/x]),⊥〉
Note that the function B�(0<) � loses the information given by the derivative
part, while the function E�Dx.e�ρ, is a sort of translation of the function E�λx.e�ρ:
The value of E�Dx.e�ρ is obtained from the derivative part of E�λx.e�ρ, while
the derivative part of E�Dx.e�ρ is set to ⊥.

Consider some examples. The absolute value function can be implemented
through the term Ab = λx.max (oppx)x with the following semantic interpreta-
tion:

E�Ab�ρ(〈i, j〉) =
⎧⎨⎩
〈i, j〉 if i > 0
〈−i,−j〉 if i < 0
〈[k−, k+], [−1, 1]j〉 otherwise,

where k− = max(i−,−i+), k+ = max(i+,−i−) with i = [i−, i+].
When the absolute value function is evaluated at 0, where it is not differen-

tiable, the derivative part of the semantic interpretation returns a partial value:
π2(E�Ab�ρ({0}, {1}) = [−1, 1]. This partial value coincides with the Clarke gra-
dient, equivalently the L-derivative, of the absolute value function.

The function |x−y|2 , is represented by the expression

Ab-dif = λx.y.max (xav 1/2(opp y))((oppx)av 1/2y)

whose semantics is the function:

E�Ab-dif�ρ(〈i1, j1〉, 〈i2, j2〉) =⎧⎪⎨⎪⎩
〈 i1−i22 , j1−j22 〉 if i1 > i2

〈 i2−i12 , j2−j12 〉 if i1 < j1

〈[k−, k+], [−1/2, 1/2](j1 − j2)〉 otherwise,

,

where k− = max(i−1 − i+2 , i
−
2 − i+1) and k

+ = max(i+1 − i−2 , i
+
2 − i−1).

From �Ab-dif� it is possible to evaluate the partial derivative of the function
|x−y|

2 , not only along the axes x and y, but along any direction. Considering the
Euclidean distance, the derivative of the function at (0, 0) in the direction of the
unit vector (u/

√
u2 + v2, v/

√
u2 + v2) is given by

E�Ab-dif�ρ(〈{0}, {u/√u2 + v2}〉, 〈{0}, {v/
√
u2 + v2}〉), that is the the interval

[−1/2, 1/2] u−v√
u2+v2

. Again this value coincides with the value of the Clarke gra-

dient of the function |x−y|2 at (0, 0) in the direction (u/
√
u2 + v2, v/

√
u2 + v2).

348 P. Di Gianantonio and A. Edalat

4.1 Logical Relations Characterisation

In the present approach we choose to define the semantic domains in the simplest
possible way. As a consequence, our domains contain also points that are not
consistent with the intended meaning, for example, the domainDι→ι = (I×I)→
(I × I) contains also the product of two functions 〈f1, f2〉 where the derivative
part f2 is not necessarily linear in its second argument and is not necessarily
consistent with the value part, i.e., the function f1; moreover the value part f1
can be a function depending also on its second argument.

However the semantic interpretation of (non-expansive) PCDF expressions
will not have this pathological behaviour. A proof of this fact and a more precise
characterisation of the semantic interpretation of expressions can be obtained
through the technique of logical relations [18]. In particular we define a set of
logical relations on the semantic domains and prove that, for any non-expansive
PCDF expression e, the semantic interpretation of e satisfies these relations.
Using this method, we can establish a list of properties for the semantic inter-
pretation of PCDF expressions.

Definition 1. The following list of relations are defined on the domain Dι.

– Independence: A binary relation Riι consisting of the pairs of the form
(〈i, j1〉, 〈i, j2〉). The relation Riι is used to establish that, for a given function,
the value part of the result is independent from the derivative part of the
argument: f1(i, j1) = f1(i, j2).

– Sub-linearity: A family of relations Rl,rι indexed by a rational number
r ∈ [−1, 1]. The family Rl,rι consists of pairs of the form (〈i, j1〉, 〈i, j2〉)
where j1 : r · j2. These relations are used to establish the sublinearity of the
derivative part: f2(i, r · j) : r · f2(i, j).

– Consistency: A family of ternary relation Rd,rι indexed by a rational number
r ∈ (0, 2], consisting of triples of the form (〈i1, j1〉, 〈i2, j2〉, 〈i3, j3〉) with i3 :
i1 � i2 and (r · j3) consistent with (i1 − i2), that is the intervals (r · j3) and
(i1− i2) have a non-empty intersection. This relation is used to establish the
consistency of the derivative part of a function with respect to the value part.

The above relations are defined on the other ground domains Do and Dν as the
diagonal relations in two or three arguments, e.g., Rd,rν (l,m, n) iff l = m =
n. The relations are extended inductively to higher order domains by the usual
definition on logical relations: Riσ→τ (f, g) iff for every d1, d2 ∈ Dσ, Riσ(d1, d2)
implies Riτ (f(d1), g(d2)), and similarly for the other relations.

Proposition 1. For any closed expression e : σ, for any rational number r ∈
[−1, 1], the semantic interpretation E�e�ρ of e, is self-related by Riσ, R

l,r
σ , i.e.

Riσ(E�e�ρ, E�e�ρ), and similarly for Rl,rσ . Moreover, if the expression e : σ is
non-expansive, the semantic interpretation E�e�ρ, is self-related by Rd,rσ .

We now show how the three relations ensure the three properties of indepen-
dence, sublinearity and consistency. To any element f = 〈f1, f2〉 in the domain
Dι→ι = (I × I)→ (I × I) we associate a partial function fv : I → I with

A Language for Differentiable Functions 349

fv(x) =

{
y if f1(〈{x},⊥〉) = {y}
undefined if f1(〈{x},⊥〉) is a proper interval

and a total function

fd : I → I = λx.f2(〈{x}, {1}〉))

The preservation of the relations Riι, R
l,r
ι has the following straightforward con-

sequences:

Proposition 2. (i) For any function f = 〈f1, f2〉 in Dι→ι self-related by
Riι→ι, for every i, j1, j2, f1(〈i, j1〉) = f1(〈i, j2〉), the return value part is
independent from the derivative argument.

(ii) For any function f = 〈f1, f2〉 in Dι→ι self-related by Rl,rι→ι for every i, j,
and for every rational r ∈ [−1, 1], f2(〈i, r · j〉) : r · f2(〈i, j〉). It follows
that:

– (f2(〈i, {r}〉))/r : f2(〈i, {1}〉), i.e., the most precise approximation of
the L-derivative is obtained by evaluating the function with 1 as its
second argument,

– for every i, j, f2(〈i,−j〉) = −f2(〈i, j〉), i.e., the derivative part is an
odd function.

The preservation of the relation Rd,rι induces the following properties (see [13]
for the proof):

Proposition 3. For any function f in Dι→ι self-related by Rd,rι→ι:

(i) the function fv is non-expansive;
(ii) on the open sets where the functions fv is defined, the function fd is an

approximation to the L-derivative of the function fv;
(iii) if f is a maximal element of Dι→ι then fv is a total function and fd is the

associated L-derivative.

4.2 Subdomains

By definition, the logical relations are closed under directed lubs, and as a con-
sequence the sets of elements self-related by them are also closed under directed
lubs.

For any ground type σ the relations Riσ, R
l,r
σ , Rd,rσ are closed under arbitrary

meets, meaning that if ∀j ∈ J . Riσ(dj , ej) then Riσ(
	
j∈J dj ,

	
j∈J ej) and simi-

larly for the other relations Rl,rσ , Rd,rσ . The proof is immediate for σ = o, ν, and
is a simple check for σ = ι. The following result shows that this closure property
holds also for σ = ι→ ι.

Proposition 4. The set of elements in Dι→ι self-related by any of the three
relations Riι→ι, R

l,r
ι→ι, and R

d,r
ι→ι is closed under arbitrary meets.

350 P. Di Gianantonio and A. Edalat

Proof. For the independence relation Riι→ι, the closure property is trivial to
check. For the consistency relation Rd,rι→ι, the closure under non-empty meets
follows immediately from the fact that this relation is downward closed. The
closure property for the sublinearity relation Rl,rι→ι is given in [13].

We now employ the following result whose proof can be found in [13].

Proposition 5. In a continuous Scott domain, a non-empty subset closed under
lubs of directed subsets and closed under non-empty meets is a continuous Scott
subdomain.

Corollary 1. If σ is a ground type or first order type, then the set of elements
in Dσ self-related by the three logical relations is a continuous Scott subdomain
of Dσ.

As we do not deal with second or higher order real types in this extended ab-
stract, we will not discuss the corresponding subdomains here.

4.3 Adequacy

As usual once an operational and denotational semantics are defined, it is nec-
essary to present an adequacy theorem stating that the two semantics agree.

Let us denote by [a, b] ? Eval(e) the fact that there exits three integers
l,m, n such that e →� dig l mn e′ and [(l−m)/n, (l+m)/n] ⊂ (a, b). The proof
of the following theorem is presented in [13].

Theorem 1 (Adequacy). For every closed term e with type ι, interval [a, b]
and environment ρ, we have:

[a, b]? Eval(e) iff [a, b]? π1(E�e�ρ)
In the operational semantics that we have proposed, the calculus of the derivative
is performed through a sort of symbolic computation: the rewriting rules specify
how to evaluate the derivative of the primitive functions and the application of
the derivative rules essentially transforms a function expression into the function
expression representing the derivative. The denotational semantics provides an
alternative approach to the computation of the derivative, which almost exactly
coincides with the computation performed by Automatic Differentiation. We can
interpret our adequacy result as a proof that symbolic computation of the deriva-
tive and the computation of the derivative through Automatic Differentiation
coincide. We remark in passing that, inspired by the denotational semantics, it
is possible to define an alternative operational semantics that will perform the
computation of the derivative in the same way that is performed by Automatic
Differentiation.

4.4 Function Definability

We will show in the following theorem that any computable Lipschitz function
can be obtained in our framework as the limit, in the sup norm, of a sequence

A Language for Differentiable Functions 351

of piecewise linear maps definable in PCDF such that every piecewise linear
map in the sequence gives lower and upper bounds for the function and the L-
derivative of the function is contained in the L-derivatives of the piecewise linear
maps, which converge to the classical derivative of the function wherever it is
continuously differentiable.

Theorem 2. For any maximal computable function f in Dι→ι preserving the
logical relations Riι→ι, R

l,r
ι→ι, R

d,r
ι→ι, there exists a closed PCDF expression f such

that:
∀x ∈ I. fv(x) = (E�f�ρ)v(x) ∧ fd(x) = (E�f�ρ)d(x)

The above definability result states that if we consider only the behaviour of
the domain functions on the total elements of Dι (i.e. the elements representing
completely defined real numbers) then PCDF is sufficiently rich to represent the
computable elements of Dι→ι.

We do not consider the problem of defining PCDF expressions whose seman-
tics coincides with domain functions also on partial elements. The reason for this
choice is that this later problem is technically more difficult and less interesting
from a practical point of view.

The proof of the above result is quite lengthy: we define a general methodology
to transform the information that can be extracted from a domain function into
a PCDF expression. The extended version of the present paper, [13], contains a
description of the construction.

5 Conclusion

We have integrated, in a single language, exact real number computation with
the evaluation of the derivatives of function expressions.

The language has been designed using a minimal set of primitives sufficient
to define any computable (and differentiable) function. It can be seen as a the-
oretical basis for the implementation of exact real number computation in a
programming language. In a practical implementation, however, one needs both
to extend the set of primitive functions and to carefully redesign the reduc-
tion strategy to increase both the usability of the language and the efficiency
of the computation. In this respect, the approach used in [12] to define analytic
functions can provide useful ideas.

The main result presented here is an adequate denotational semantics for dif-
ferentiable functions, which has required original ideas in developing the seman-
tics domains, and a definability result showing the expressivity of the language.

The present research can be extended in several directions. Some possible
future works are the following.

– An obvious problem to consider is whether the definability result presented
in the paper can be extended to a larger class of function domains. We claim
that the techniques presented here can be easily adapted to functions with

352 P. Di Gianantonio and A. Edalat

several arguments. This is not however the case when considering higher
order functions, whose definability is an open problem.

– A second direction for possible further research is the treatment of the second
derivative and more generally derivative of arbitrary order.

References

1. Bishop, E., Bridges, D.: Constructive Analysis. Springer (1985)
2. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley (1983)
3. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Mc-

Graw Hill (1955)
4. Davis, T.A., Sigmon, K.: MATLAB Primer, 7th edn. CRC Press (2005)
5. Di Gianantonio, P.: An abstract data type for real numbers. Theoretical Computer

Science 221, 295–326 (1999)
6. Edalat, A.: A continuous derivative for real-valued functions. In: New Computa-

tional Paradigms, Changing Conceptions of What is Computable, pp. 493–519.
Springer (2008)

7. Edalat, A., Escardó, M.: Integration in real PCF. Information and Computa-
tion 160, 128–166 (2000)

8. Edalat, A., Lieutier, A.: Domain theory and differential calculus (functions of one
variable). Mathematical Structures in Computer Science 14(6), 771–802 (2004)

9. Edalat, A., Lieutier, A., Pattinson, D.: A computational model for multi-variable
differential calculus. Information and Computation 224, 22–45 (2013)

10. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer
Science 309 (2003)

11. Escardó, M.: PCF extended with real numbers. Theoretical Computer Sci-
ence 162(1), 79–115 (1996)

12. Escardó, M., Simpson, A.: A universal characterization of the closed Euclidean
interval. In: LICS, pp. 115–125. IEEE Computer Society (2001)

13. Di Gianantonio, P., Edalat, A.: A language for differentiable functions (extended
version), http://www.dimi.uniud.it/pietro/papers/pcdf.pdf

14. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, 2nd edn. SIAM (2008)

15. http://www.doc.ic.ac.uk/exact-computation/

16. Ko, K.: Complexity Theory of Real Numbers. Birkhäuser (1991)
17. Manzyuk, O.: A simply typed -calculus of forward automatic differentiation. Electr.

Notes Theor. Comput. Sci. 286, 257–272 (2012)
18. Mitchell, J.C.: Foundations of Programming Languages. MIT Press (1996)
19. Potts, P., Edalat, A., Escardó, M.: Semantics of exact real arithmetic. In: LICS,

pp. 248–257 (1997)
20. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer

(1988)
21. Weihrauch, K.: Computable Analysis (An Introduction). Springer (2000)

http://www.dimi.uniud.it/pietro/papers/pcdf.pdf
http://www.doc.ic.ac.uk/exact-computation/

Computing Quantiles
in Markov Reward Models�

Michael Ummels1 and Christel Baier2

1 Institute of Transportation Systems, German Aerospace Center
michael.ummels@dlr.de

2 Technische Universität Dresden
baier@tcs.inf.tu-dresden.de

Abstract. Probabilistic model checking mainly concentrates on tech-
niques for reasoning about the probabilities of certain path properties or
expected values of certain random variables. For the quantitative system
analysis, however, there is also another type of interesting performance
measure, namely quantiles. A typical quantile query takes as input a
lower probability bound p ∈]0, 1] and a reachability property. The task
is then to compute the minimal reward bound r such that with prob-
ability at least p the target set will be reached before the accumulated
reward exceeds r. Quantiles are well-known from mathematical statis-
tics, but to the best of our knowledge they have not been addressed by
the model checking community so far.

In this paper, we study the complexity of quantile queries for un-
til properties in discrete-time finite-state Markov decision processes with
nonnegative rewards on states. We show that qualitative quantile queries
can be evaluated in polynomial time and present an exponential algo-
rithm for the evaluation of quantitative quantile queries. For the special
case of Markov chains, we show that quantitative quantile queries can
be evaluated in pseudo-polynomial time.

1 Introduction

Markov models with reward (or cost) functions are widely used for the quan-
titative system analysis. We focus here on the discrete-time or time-abstract
case. Discrete-time Markov decision processes, MDPs for short, can be used,
for instance, as an operational model for randomised distributed algorithms and
rewards might serve to reason, e.g., about the size of the buffer of a communi-
cation channel or about the number of rounds that a leader election protocol
might take until a leader has been elected.

Several authors considered variants of probabilistic computation tree logic
(PCTL) [12,4] for specifying quantitative constraints on the behaviour of Markov
� This work was supported by the DFG project QuaOS and the collaborative research

centre HAEC (SFB 912) funded by the DFG. This work was partly supported by the
European Union Seventh Framework Programme under grant agreement no. 295261
(MEALS), the DFG/NWO project ROCKS and the cluster of excellence cfAED.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 353–368, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

354 M. Ummels and C. Baier

models with reward functions. Such extensions, briefly called PRCTL here, per-
mit to specify constraints on the probabilities of reward-bounded reachability
conditions, on the expected accumulated rewards until a certain set of target
states is reached or expected instantaneous rewards after some fixed number of
steps [7,6,9,1,15], or on long-run averages [8]. An example for a typical PRCTL
formula with PCTL’s probability operator and the reward-bounded until oper-
ator is the formula P>p(a U≤r b) where p is a lower probability bound in [0, 1[
and r is an upper bound for the accumulated reward earned by path fragments
that lead via states where a holds to a b-state. From a practical point of view,
more important than checking whether a given PRCTL formula ϕ holds for (the
initial state of) a Markov model M are PRCTL queries of the form P=? ψ where
the task is to calculate the (minimum or maximum) probability for the path for-
mula ψ. Indeed, the standard PRCTL model checking algorithm checks whether
a given formula P��p ψ holds in M by evaluating the PRCTL query P=? ψ and
comparing the computed value q with the given probability bound p according to
the comparison predicate ��. The standard procedure for dealing with PRCTL
formulas that refer to expected (instantaneous or accumulated) rewards relies
on an analogous scheme; see e.g. [10]. An exception can be made for qualitative
PRCTL properties P��p ψ where the probability bound p is either 0 or 1, and the
path formula ψ is a plain until formula without reward bound (or any ω-regular
path property without reward constraints): in this case, a graph analysis suffices
to check whether P��p ψ holds for M [16,5].

In a common project with the operating system group of our department, we
learned that a natural question for the systems community is to swap the given
and unknown parameters in PRCTL queries and to ask for the computation of
a quantile (see [2]). For instance, if M models a mutual exclusion protocol for
competing processes P1, . . . , Pn and rewards are used to represent the time spent
by process Pi in its waiting location, then the quantile query P>0.9(waitiU≤?criti)
asks for the minimal time bound r such that in all scenarios (i.e., under all
schedulers) with probability greater than 0.9 process Pi will wait no longer than
r time units before entering its critical section. For another example, suppose
M models the management system of a service execution platform. Then the
query P>0.98(true U≤? tasks_completed) might ask for the minimal initial energy
budget r that is required to ensure that even in the worst-case there is more than
98% chance to reach a state where all tasks have been completed successfully.

To the best of our knowledge, quantile queries have not yet been addressed
directly in the model checking community. What is known from the literature
is that for finite Markov chains with nonnegative rewards the task of checking
whether a PRCTL formula P>p(a U≤r b) or P≥p(a U≤r b) holds for some given
state is NP-hard [14] when p and r are represented in binary. Since such a formula
holds in state s if and only if the value of the corresponding quantile query at s
is ≤ r, this implies that evaluating quantile queries is also NP-hard.

The purpose of this paper is to study quantile queries for Markov decision
processes with nonnegative rewards in more details. We consider quantile queries
for reward-bounded until formulas in combination with the standard PRCTL

Computing Quantiles in Markov Reward Models 355

quantifier P��p (in this paper denoted by ∀P��p), where universal quantification
over all schedulers is inherent in the semantics, and its dual ∃P��p that asks
for the existence of some scheduler enjoying a certain property. By duality, our
results carry over to reward-bounded release properties.

Contributions. First, we address qualitative quantile queries, i.e. quantile
queries where the probability bound is either 0 or 1, and we show that such
queries can be evaluated in strongly polynomial time. Our algorithm is sur-
prisingly simple and does not rely on value iteration or linear programming
techniques (as it is e.g. the case for extremal expected reachability times and
stochastic shortest-paths problems in MDPs [9]). Instead, our algorithm relies on
the greedy method and borrows ideas from Dĳkstra’s shortest-path algorithm.
In particular, our algorithm can be used for checking PRCTL formulas of the
form ∀P��p(a U≤r b) or ∃P��p(a U≤r b) with p ∈ {0, 1} in polynomial time. Previ-
ously, a polynomial-time algorithm was known only for the special case of MDPs
where every loop contains a state with nonzero reward [13].

Second, we consider quantitative quantile queries. The standard way to com-
pute the maximal or minimal probabilities for reward-bounded until properties,
say a U≤r b, relies on the iterative computation of the extremal probabilities
a U≤i b for increasing reward bound i. We use here a reformulation of this com-
putation scheme as a linear program whose size is polynomial in the number of
states of M and the given reward bound r. The crux to derive from this linear
program an algorithm for the evaluation of quantile queries is to provide a bound
for the sought value, which is our second contribution. This bound then permits
to perform a sequential search for the quantile, which yields an exponentially
time-bounded algorithm for evaluating quantitative quantile queries. Finally, in
the special case of Markov chains with integer rewards, we show that this algo-
rithm can be improved to run in time polynomial in the size of the query, the
size of the chain, and the largest reward, i.e. in pseudo-polynomial time.

Outline. The structure of the paper is as follows. Section 2 summarises the rel-
evant concepts of Markov decision processes and briefly recalls the logic PRCTL.
Quantile queries are introduced in Sect. 3. Our polynomial-time algorithms for
qualitative quantile queries is presented in Sect. 4, whereas the quantitative case
is addressed in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 Preliminaries

In the following, we assume a countably infinite set AP of atomic propositions.
A Markov decision process (MDP) M = (S, Act, γ, λ, rew, δ) with nonnegative
rewards consists of a finite set S of states, a finite set Act of actions, a function
γ : S → 2Act \ {∅} describing the set of enabled actions in each state, a labelling
function λ : S → 2AP, a reward function rew : S → R≥0, and a transition function
δ : S × Act × S → [0, 1] such that

∑
t∈S δ(s, α, t) = 1 for all s ∈ S and α ∈ Act.

If the set Act of actions is just a singleton, we call M a Markov chain.

356 M. Ummels and C. Baier

Given an MDP M, we say that a state s of M is absorbing if δ(s, α, s) = 1 for
all α ∈ γ(s). Moreover, for a ∈ AP we denote by λ−1(a) the set of states s such
that a ∈ λ(s), and for x = s0s1 . . . sk ∈ S∗ we denote by rew(x) the accumulated
reward after x, i.e. rew(x) =

∑k
i=0 rew(si). Finally, we denote by |δ| the number

of nontrivial transitions in M, i.e. |δ| = |{(s, α, t) : α ∈ γ(s) and δ(s, α, t) > 0}|.
Schedulers are used to resolve the nondeterminism that arises from the pos-

sibility that more than one action might be enabled in a given state. Formally,
a scheduler for M is a mapping σ : S+ → Act such that σ(xs) ∈ γ(s) for all
x ∈ S∗ and s ∈ S. Such a scheduler σ is memoryless if σ(xs) = σ(s) for all
x ∈ S∗ and s ∈ S. Given a scheduler σ and an initial state s = s0, there
is a unique probability measure Prσ

s on the Borel σ-algebra over Sω such that
Prσ

s (s0s1 . . . sk · Sω) =
∏k−1

i=0 δ(si, σ(s0 . . . si), si+1); see [3].
Several logics have been introduced in order to reason about the probabil-

ity measures Prσ
s . In particular, the logics PCTL and PCTL∗ replace the path

quantifiers of CTL and CTL∗ by a single probabilistic quantifier P��p, where
�� ∈ {<, ≤, ≥, >} and p ∈ [0, 1]. In these logics, the formula ϕ = P��p ψ holds in
state s (written s |= ϕ) if under all schedulers σ the probability Prσ

s (ψ) of the
path property ψ compares positively with p wrt. the comparison operator ��, i.e.
if Prσ

s (ψ) �� ψ. A dual existential quantifier ∃P��p that asks for the existence of
a scheduler can be introduced using the equivalence ∃P��p ψ ≡ ¬P��p ψ, where
�� denotes the dual inequality. Since many properties of MDPs can be expressed
more naturally using the ∃P quantifier, we consider this quantifier an equal citi-
zen of the logic, and we denote the universal quantifier P by ∀P in order to stress
its universal semantics.

In order to be able to reason about accumulated rewards, we amend the until
operator U by a reward constraint of the form ∼ r, where ∼ is a comparison
operator and r ∈ R ∪ {±∞}. Since we adopt the convention that a reward is
earned upon leaving a state, a path π = s0s1 . . . fulfils the formula ψ1 U∼r ψ2 if
there exists a point k ∈ N such that 1. sksk+1 . . . |= ψ2, 2. sisi+1 . . . |= ψ1 for
all i < k, and 3. rew(s0 . . . sk−1) ∼ r. Even though our logic is only a subset of
the logics PRCTL and PRCTL∗ defined in [1], we use the same names for the
extension of PCTL and PCTL∗ with the amended until operator. The following
proposition states that extremal probabilities for PRCTL∗ are attainable. This
follows, for instance, from the fact that PRCTL∗ can only describe ω-regular
path properties.

Proposition 1. Let M be an MDP and ψ a PRCTL∗ path formula. Then there
exist schedulers σ∗ and τ∗ such that Prσ∗

s (ψ) = supσ Prσ
s (ψ) and Prτ ∗

s (ψ) =
infτ Prσ

s (ψ) for all states s of M.

3 Quantile Queries

A quantile query is of the form ϕ = ∀P��p(a U≤? b) or ϕ = ∃P��p(a U≤? b), where
a, b ∈ AP, p ∈ [0, 1] and �� ∈ {<, ≤, ≥, >}. We call queries of the former type
universal and queries of the latter type existential. If r ∈ R ∪ {±∞}, we write
ϕ[r] for the PRCTL formula that is obtained from ϕ by replacing ? with r.

Computing Quantiles in Markov Reward Models 357

Given an MDP M with rewards, evaluating ϕ on M amounts to computing,
for each state s of M, the least or the largest r ∈ R such that s |= ϕ[r].
Formally, if ϕ = ∀P��p(a U≤? b) or ϕ = ∃P��p(a U≤? b) then the value of a state s

of M with respect to ϕ is valMϕ (s) := opt{r ∈ R : s |= ϕ[r]}, where opt = inf
if �� ∈ {≥, >} and opt = sup otherwise.1 Depending on whether valMϕ (s) is
defined as an infimum or a supremum, we call ϕ a minimising or a maximising
query, respectively. In the following, we will omit the superscript M when the
underlying MDP is clear from the context.

Given a query ϕ, we define the dual query to be the unique quantile query ϕ
such that ϕ[r] ≡ ¬ϕ[r] for all r ∈ R ∪ {±∞}. Hence, to form the dual of a
query, one only needs to replace the quantifier ∀P��p by ∃P��p and vice versa.
For instance, the dual of ∀P<p(a U≤? b) is ∃P≥p(a U≤? b). Note that the dual of a
universal or minimising query is an existential or maximising query, respectively,
and vice versa.
Proposition 2. Let M be an MDP and ϕ a quantile query. Then valϕ(s) =
valϕ(s) for all states s of M.
Proof. Without loss of generality, assume that ϕ is a minimising query. Let s ∈ S,
v = valϕ(s) and v′ = valϕ(s). On the one hand, for all r < v we have s �|= ϕ[r],
i.e. s |= ϕ[r], and therefore v′ ≥ v. On the other hand, since ϕ[r] implies ϕ[r′] for
r′ ≥ r, for all r > v we have s |= ϕ[r], i.e. s �|= ϕ[r], and therefore also v′ ≤ v. ��
Assume that we have computed the value valϕ(s) of a state s with respect to a
quantile query ϕ. Then, for any r ∈ R, to decide whether s |= ϕ[r], we just need
to compare r to valϕ(s).
Proposition 3. Let M be an MDP, s a state of M, ϕ a minimising or max-
imising quantile query, and r ∈ R. Then s |= ϕ[r] if and only if valϕ(s) ≤ r or
valϕ(s) > r, respectively.
Proof. First assume that ϕ = Q(a U≤? b) is a minimizing query. Clearly, if
s |= ϕ[r], then valϕ(s) ≤ r. On the other hand, assume that valϕ(s) ≤ r and
denote by R the set of numbers x ∈ R of the form x =

∑k
i=0 rew(si) for a finite

sequence s0s1 . . . sk of states. Since the set {x ∈ R : x ≤ n} is finite for all n ∈ N,
we can fix some ε > 0 such that r + δ /∈ R for all 0 < δ ≤ ε. Hence, the set of
paths that fulfil a U≤r b agrees with the set of paths that fulfil a U≤r+ε b. Since
valϕ(s) < r + ε and ϕ is a minimising query, we know that s |= ϕ[r + ε]. Since
replacing r +ε by r does not affect the path property, this implies that s |= ϕ[r].
Finally, if ϕ is a maximising query, then ϕ is a minimising query, and s |= ϕ[r]
if and only if valϕ(s) = valϕ(s) ≤ r, i.e. s |= ϕ[r] if and only if valϕ(s) > r. ��
Proposition 3 does not hold when we allow r to take an infinite value. In fact, if
ϕ is a minimizing query and s �|= ϕ[∞], then valϕ(s) = ∞. Analagously, if ϕ is
a maximising query and s �|= ϕ[−∞], then valϕ(s) = −∞.

To conclude this section, let us remark that queries using the reward-bounded
release operator R can easily be accommodated in our framework. For instance,
the query ∀P≥p(a R≤? b) is equivalent to the query ∀P≤1−p(¬a U≤? ¬b).
1 As usual, we assume that inf ∅ = ∞ and sup ∅ = −∞.

358 M. Ummels and C. Baier

Algorithm 1. Solving qualitative queries of the form Q(a U≤? b)
Input: MDP M = (S, Act, γ, λ, rew, δ), ϕ = Q(a U≤? b)
for each s ∈ S do

if s |= b then v(s) ← 0 else v(s) ← ∞
X ← {s ∈ S : v(s) = 0}; R ← {0}
Z ← {s ∈ S : s |= a ∧ ¬b and rew(s) = 0}
while R �= ∅ do

r ← min R ; Y ← {s ∈ X : v(s) ≤ r} \ Z
for each s ∈ S \ X with s |= a ∧ Q X(Z U Y) do

v(s) ← r + rew(s)
X ← X ∪ {s}; R ← R ∪ {v(s)}

R ← R \ {r}
return v

4 Evaluating Qualitative Queries

In this section, we give a strongly polynomial-time algorithm for evaluating
qualitative queries, i.e. queries where the probability bound p is either 0 or 1.
Throughout this section, let M = (S, Act, γ, λ, rew, δ) be an MDP with non-
negative rewards. By Proposition 2, we can restrict to queries using one of the
quantifiers ∀P>0, ∃P>0, ∀P=1 and ∃P=1. The following lemma allows to give a
unified treatment of all cases. (X denotes the next-step operator).

Lemma 4. The equivalence Q X(a U (¬a ∧ ψ)) ≡ Q X(a U (¬a ∧ Q ψ)) holds in
PRCTL∗ for all Q ∈ {∀P>0, ∃P>0, ∀P=1, ∃P=1}, a ∈ AP, and all path formu-
las ψ.

Algorithm 1 is our algorithm for computing the values of a quantile query where we
look for an upper bound on the accumulated reward. The algorithm maintains a set
X of states, a set R of real numbers, and a table v mapping states to non-negative
real numbers or infinity. The algorithm works by discovering states with finite value
repeatedly until only the states with infinite value remain. Whenever a new state is
discovered, it is put into X and its value is put into R. In the initialisation phase, the
algorithm discovers all states labelled with b, which have value 0. In every iteration
of the main loop, new states are discovered by picking the least value r that has not
been fully processed (i.e. the least element of R) and checking which undiscovered
a-labelled states fulfil the PCTL∗ formula Q X(Z UY), where Y is the set of already
discovered states whose value is at most r and Z is the set of states labelled with a
but not with b and having reward 0. Any such newly discovered state s must have
value r + rew(s), and r can be deleted from R at the end of the current iteration.
The termination of the algorithm follows from the fact that in every iteration of
the main loop either the set X increases or it remains constant and one element is
removed from R.

Lemma 5. Let M be an MDP, ϕ = Q(a U≤? b) a qualitative query, and let v
be the result of Algorithm 1 on M and ϕ. Then v(s) = valϕ(s) for all states s.

Computing Quantiles in Markov Reward Models 359

Proof. We first prove that s |= ϕ[v(s)] for all states s with v(s) < ∞. Hence,
v is an upper bound on valϕ. We prove this by induction on the number of
iterations the while loop has performed before assigning a finite value to v(s).
Note that this is the same iteration when s is put into X and that v(s) never
changes afterwards. If s is put into X before the first iteration, then s |= b and
therefore also s |= ϕ[0] = ϕ[v(s)]. Now assume that the while loop has already
completed i iterations and is about to add s to X in the current iteration; let
X , r and Y be as at the beginning of this iteration (after r and Y have been
assigned, but before any new state is added to X). By the induction hypothesis,
t |= ϕ[r] for all t ∈ Y . Since s is added to X , we have that s |= a ∧ Q X(Z U Y).
Using Lemma 4 and some basic PRCTL∗ laws, we can conclude that s |= ϕ[v(s)]
as follows:

s |= a ∧ Q X(Z U Y)
=⇒ s |= a ∧ Q X(Z U (¬Z ∧ Q(a U≤r b)))
=⇒ s |= a ∧ Q X(Z U (¬Z ∧ (a U≤r b)))
=⇒ s |= a ∧ Q X(a U≤r b)
=⇒ s |= Q(a U≤r+rew(s) b)
=⇒ s |= ϕ[v(s)]

To complete the proof, we need to show that v is also a lower bound on valϕ. We
define a strict partial order ≺ on states by setting s ≺ t if one of the following
conditions holds:
1. s |= b and t �|= b,
2. valϕ(s) < valϕ(t), or
3. valϕ(s) = valϕ(t) and rew(s) > rew(t).

Towards a contradiction, assume that the set C of states s with valϕ(s) < v(s)
is non-empty, and pick a state s ∈ C that is minimal with respect to ≺ (in
particular, valϕ(s) < ∞). Since s |= ϕ[∞] and the algorithm correctly sets v(s)
to 0 if s |= b, we know that s |= a ∧ ¬b and valϕ(s) ≥ rew(s). Moreover, by
Proposition 3, s |= ϕ[valϕ(s)]. Let T be the set of all states t ∈ S \ Z such that
valϕ(t)+rew(s) ≤ valϕ(s), i.e. t |= ϕ[valϕ(s)−rew(s)]. Note that T �= ∅ (because
every state labelled with b is in T) and that t ≺ s for all t ∈ T . Since s is a minimal
counter-example, we know that v(t) ≤ valϕ(t) < ∞ for all t ∈ T . Consequently,
after some number of iterations of the while loop all elements of T have been
added to X and the numbers v(t) have been added to R. Since R is empty upon
termination, in a following iteration we have that r = max{v(t) : t ∈ T } and
that T ⊆ Y . Let x := valϕ(s)− rew(s). Using Lemma 4 and some basic PRCTL∗

laws, we can conclude that s |= Q X(Z U Y) as follows:

s |= ¬b ∧ ϕ[valϕ(s)]
=⇒ s |= Q(¬b ∧ (a U≤x+rew(s) b))
=⇒ s |= Q X(a U≤x b)
=⇒ s |= Q X(Z U (¬Z ∧ (a U≤x b)))
=⇒ s |= Q X(Z U (¬Z ∧ Q(a U≤x b)))

360 M. Ummels and C. Baier

=⇒ s |= Q X(Z U T)
=⇒ s |= Q X(Z U Y)

Since also s |= a, this means that s is added to X no later than in the current
iteration. Hence, v(s) ≤ r + rew(s) ≤ valϕ(s), which contradicts our assumption
that s ∈ C. ��

Theorem 6. Qualitative queries of the form Q(a U≤? b) can be evaluated in
strongly polynomial time.

Proof. By Lemma 5, Algorithm 1 can be used to compute the values of Q(aU≤? b).
During the execution of the algorithm, the running time of one iteration of the
while loop is dominated by computing the set of states that fulfil the PCTL∗ for-
mula Q X(Z U Y), which can be done in time O(|δ|) for Q ∈ {∀P>0, ∃P>0, ∀P=1}
and in time O(|S| · |δ|) for Q = ∃P=1 (see [3, Chapter 10]). In each iteration of the
while loop, one element of R is removed, and the number of elements that are put
into R in total is bounded by the number of states in the given MDP. Hence, the
number of iterations is also bounded by the number of states, and the algorithm
runs in time O(|S| · |δ|) or O(|S|2 · |δ|), depending on Q. Finally, since the only
arithmetic operation used by the algorithm is addition, the algorithm is strongly
polynomial. ��

Of course, queries of the form ∃P>0(a U≤? b) can actually be evaluated in time
O(|S|2 + |δ|) using Dĳkstra’s algorithm since the value of a state with respect to
such a query is just the weight of a shortest path from s via a-labeled states to
a b-labelled state.

Algorithm 1 also gives us a useful upper bound on the value of a state with
respect to a qualitative query.

Proposition 7. Let M be an MDP, ϕ = Q(a U≤? b) a qualitative quantile
query, n = |λ−1(a)|, and c = max{rew(s) : s ∈ λ−1(a)}. Then valϕ(s) ≤ nc for
all states s with valϕ(s) < ∞.

Proof. By induction on the number of iterations Algorithm 1 performs before
assigning a finite number to v(s). ��

Finally, let us remark that our algorithm can be extended to handle queries of
the form Q(a U>? b), where a lower bound on the accumulated reward is sought.
To this end, the initialisation step has to be extended to identify states with
value −∞ and the rule for discovering new states has to be modified slightly.
We invite the reader to make the necessary modifications and to verify the
correctness of the resulting algorithm. This proves that the fragment of PRCTL
with probability thresholds 0 and 1 and without reward constraints of the form
= r can be model-checked in polynomial time. Previously, a polynomial-time
algorithm was only known for the special case where the models are restricted
to MDPs in which every loop contains a state with nonzero reward [13].

Computing Quantiles in Markov Reward Models 361

5 Evaluating Quantitative Queries

In the following, we assume that all state rewards are natural numbers. This
does not limit the applicability of our results since any MDP M with non-
negative rational numbers as state rewards can be converted efficiently to an
MDP M′ with natural rewards by multiplying all state rewards with the least
common multiple K of all denominators occurring in state rewards. It follows
that valM

′
ϕ (s) = K · valMϕ (s) for any quantile query ϕ and any state s of M,

so in order to evaluate a quantile query on M we can evaluate it on M′

and divide by K. Throughout this section, we also assume that any transi-
tion probability and any probability threshold p occurring in a quantile query
is rational. Finally, we define the size of an MDP M = (S, Act, γ, λ, rew, δ) to
be |M | :=

∑
s∈S‖rew(s)‖ +

∑
(s,α,t)∈δ,α∈γ(s)‖δ(s, α, t)‖, where ‖x‖ denotes the

length of the binary representation of x.

5.1 Existential Queries

In order to solve queries of the form ∃P≥p(a U≤? b) or ∃P>p(a U≤? b), we first
show how to compute the maximal probabilities for fulfilling the path formula
a U≤r b when we are given the reward bound r. Given an MDP M, a, b ∈ AP
and r ∈ N, consider the following linear program over the variables xs,i for s ∈ S
and i ∈ {0, 1, . . . , r}:

Minimise
∑

xs,i subject to
xs,i ≥ 0 for all s ∈ S and i ≤ r,
xs,i = 1 for all s ∈ λ−1(b) and i ≤ r,
xs,i ≥ ∑

t∈S δ(s, α, t) · xt,i−rew(s)

for all s ∈ λ−1(a), α ∈ Act and rew(s) ≤ i ≤ r.

This linear program is of size r · |M|, and it can be shown that setting xi,s

to maxσ Prσ
s (a U≤i b) yields the optimal solution. Hence, we can compute the

numbers maxσ Prσ
s (a U≤i b) in time poly(r · |M|).

Our algorithm for computing the value of a state s wrt. a query of the form
∃P>p(a U≤? b) just computes the numbers maxσ Prσ

s (a U≤i b) for increasing i and
stops as soon as this probability exceeds p. However, in order to make this algo-
rithm work and to show that it does not take too much time, we need a bound on
the value of s provided this value is not infinite. Such a bound can be derived from
the following lemma, which resembles a result by Hansen et al., who gave a bound on
the convergence rate of value iteration in concurrent reachability games [11]. Our
proof is technically more involved though, since we have to deal with paths that
from some point onwards do not earn any more rewards.

Lemma 8. Let M be an MDP where the denominator of each transition prob-
ability is at most m, and let n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)} and
r = kncm−n for some k ∈ N+. Then maxσ Prσ

s (aUb) < maxσ Prσ
s (aU≤r b)+e−k

for all s ∈ S.

362 M. Ummels and C. Baier

Proof. Without loss of generality, assume that all b-labelled states are absorbing.
Let us call a state s of M dead if s |= ∀P=0(a U b), and denote by D the set of
dead states. Note that s ∈ D for all states s with s |= ¬a ∧ ¬b. Finally, let τ be
a memoryless scheduler such that Prτ

s (a U b) = maxσ Prσ
s (a U b) for all states s,

and denote by Z the set of all states s with s |= a ∧ ¬b and rew(s) = 0. By
the definition of D and Z, we have that Prτ

s(a U≤r (D ∨ GZ) ∧ a U b) = 0 for all
s ∈ S. Moreover, if s is not dead, then there must be a simple path from s to a
b-labelled state via a-labelled states in the Markov chain induced by τ . Since any
a-labelled state has reward at most c, this implies that Prτ

s (a U≤nc b) ≥ m−n for
all non-dead states s. Now let ψ be the path formula b ∨ D ∨ GZ. We claim that
Prτ

s(¬(a U≤r ψ)) < e−k for all states s. To prove this, let s ∈ S. We first show
that Prτ

s (aU≤i+nc ψ | ¬(aU≤i ψ)) ≥ m−n for all i ∈ N with Prτ
s(aU≤i ψ) < 1. Let

X be the set of sequences xt ∈ S∗ · S such that xt ∈ {s ∈ S \ D : s |= a ∧ ¬b}∗,
rew(x) ≤ i and rew(xt) > i. It is easy to see that the set {xt · Sω : xt ∈ X} is a
partition of the set of infinite sequences over S that violate a U≤i ψ. Using the
fact that τ is memoryless, we can conclude that

Prτ
s(a U≤i+nc ψ | ¬(a U≤i ψ))

≥ Prτ
s(a U≤i+nc b | ¬(a U≤i ψ))

= Prτ
s(a U≤i+nc b ∩ X · Sω)/ Prτ

s(X · Sω)

=
∑

xt∈X

Prτ
s(a U≤i+nc b ∩ xt · Sω)/ Prτ

s (X · Sω)

=
∑

xt∈X

Prτ
t (a U≤i−rew(x)+nc b) · Prτ

s(xt · Sω)/ Prτ
s(X · Sω)

≥
∑

xt∈X

Prτ
t (a U≤nc b) · Prτ

s (xt · Sω)/ Prτ
s(X · Sω)

≥
∑

xt∈X

m−n · Prτ
s(xt · Sω)/ Prτ

s (X · Sω)

= m−n .

Now, applying this inequality successively, we get that Prτ
s(¬(a U≤r ψ))

≤ (1 − m−n) r
nc = (1 − m−n)kmn

< e−k. Finally,

Prτ
s (a U b) = Prτ

s (a U b ∧ ¬(a U≤r (D ∨ GZ)))
≤ Prτ

s (¬(a U≤r (D ∨ GZ)))
≤ Prτ

s (¬(a U≤r ψ) ∨ (a U≤r b))
≤ Prτ

s (¬(a U≤r ψ)) + Prτ
s (a U≤r b)

< e−k + maxσ Prσ
s (a U≤r b)

for all s ∈ S. Since Prτ
s (a U b) = maxσ Prσ

s (a U b), this inequality proves the
lemma. ��
Given an MDP M and a, b ∈ AP, we denote by M̃ the MDP that arises from M
by performing the following transformation:

Computing Quantiles in Markov Reward Models 363

1. In each state s, remove all actions α with
∑

t∈S δ(s, α, t) · maxσ Prσ
t (a U b) <

maxσ Prσ
s (a U b) from the set γ(s) of enabled actions.

2. Label all states s such that s |= P=0(a U b) with b.

The following lemma, whose proof is rather technical, allows us to reduce the
query ∃P≥p(a U≤? b) to the qualitative query ∃P=1(a U≤? b) in the special case
that p equals the optimal probability of fulfilling a U b.

Lemma 9. Let M be an MDP, ϕ = ∃P≥p(a U≤? b) and ϕ̃ = ∃P=1(a U≤? b).
Then valMϕ (s) = valM̃ϕ̃ (s) for all states s of M with p = maxσ Prσ

s (a U b).

With the help of Lemmas 8 and 9, we can devise an upper bound for the value
of any query whose value is finite.

Lemma 10. Let M be an MDP where the denominator of each transition prob-
ability is at most m, ϕ = ∃P�p(a U≤? b) for � ∈ {≥, >}, n = |λ−1(a)|,
c = max{rew(s) : s ∈ λ−1(a)}, s ∈ S, and q = maxσ Prσ

s (a U b). Then at
least one of the following statements holds:

1. p ≥ q and valϕ(s) = ∞.
2. p = q, � = ≥ and valϕ(s) ≤ nc.
3. p < q and valϕ(s) ≤ kncmn, where k = max{−�ln(q − p)�, 1}.

Proof. Clearly, if either � = > and p ≥ q or � = ≥ and p > q, then valϕ(s) = ∞,
and 1. holds. Now assume that p = q and � = ≥. By Lemma 9, we have
that valMϕ (s) = valM̃ϕ̃ (s). Hence, if valM̃ϕ̃ (s) = ∞, then 1. holds. On the other
hand, if valM̃ϕ̃ (s) < ∞, then Proposition 7 gives us that valM̃ϕ̃ (s) ≤ nc, and
2. holds. Finally, if p < q, then let r := kncmn. By Lemma 8, we have that
maxσ Prs(a U≤r b) > q − e−k ≥ q − e	ln(q−p)
 ≥ q − (q − p) = p, i.e. s |=
∃P�p(a U≤r b). Hence, valϕ(s) ≤ r, and 3. holds. ��

It follows from Lemma 10 that we can compute the value of a state s wrt.
a query ϕ of the form ∃P>p(a U≤? b) as follows: First compute the maximal
probability q of fulfilling a U b from s, which can be done in polynomial time. If
p ≥ q, we know that the value of s wrt. ϕ must be infinite. Otherwise, valϕ(s) ≤
r := kncmn, where k = max{−�ln(q − p)�, 1}, and we can find the least i
such that maxσ Prσ

s (a U≤i b) > p by computing maxσ Prσ
s (a U≤i b) for all i ∈

{0, 1, . . . , r}, which can be done in time poly(r · |M|). Since r is exponential in
the number of states of the given MDP M, the running time of this algorithm
is exponential in the size of M. If ϕ is of the form ∃P≥p(a U≤? b), the algorithm
is similar, but in the case that p = q, we compute maxσ Prσ

s (a U≤i b) for all
i ∈ {0, 1, . . . , nc} in order to determine whether the value is infinite or one of
these numbers i.

Theorem 11. Queries of the form ∃P≥p(a U≤? b) or ∃P>p(a U≤? b) can be eval-
uated in exponential time.

364 M. Ummels and C. Baier

5.2 Universal Queries

In order to solve queries of the form ∀P>p(aU≤? b), we first show how to compute
the minimal probabilities for fulfilling the path formula a U≤r b when we are
given the reward bound r. Given an MDP M, a, b ∈ AP and r ∈ N, consider the
following linear program over the variables xs,i for s ∈ S and i ∈ {0, 1, . . . , r}:

Maximise
∑

xs,i subject to
xs,i ≤ 1 for all s ∈ S and i ≤ r,
xs,i = 0 for all s ∈ S with s �|= ∀P>0(a U≤i b) and i ≤ r,
xs,i ≤ ∑

t∈S δ(s, α, t) · xt,i−rew(s)

for all s ∈ S \ λ−1(b), α ∈ Act and rew(s) ≤ i ≤ r.

This program is of size r · |M|, and it can be shown that setting xi,s to minσ

Prσ
s (a U≤i b) yields the optimal solution. Since the set of states s with s |=

∀P>0(a U≤i b) can be computed in polynomial time (Theorem 6), this means
that we can compute the numbers minσ Prσ

s (a U≤i b) in time poly(r · |M|). The
following lemma is the analogue of Lemma 8 for minimal probabilities.

Lemma 12. Let M be an MDP where the denominator of each transition prob-
ability is at most m, and let n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)} and
r = kncm−n for some k ∈ N+. Then minσ Prσ

s (a U b) < minσ Prσ
s (a U≤r b) + e−k

for all s ∈ S.

Proof. Without loss of generality, assume that all b-labelled states are absorbing.
Let us call a state s of M dull if s |= ∃P=0(aUb), and denote by D the set of dull
states. Note that s ∈ D for all states s with s |= ¬a∧¬b. If s is not dull, then it is
easy to see that, for any scheduler σ, the probability of reaching a b-labelled state
from s in at most n steps (while seeing only a-labelled states before reaching a
b-labelled state) is at least m−n. Since any a-labelled state has reward at most c,
we get that Prσ

s (aU≤nc b) ≥ m−n for all non-dull states s and all schedulers σ. In
the following, denote by Z the set {s ∈ S : s |= a ∧ ¬b and rew(s) = 0}, and let
ψ be the path formula b ∨ D ∨ GZ. In the same way as in the proof of Lemma 8,
we can infer that Prσ

s (¬(aU≤r ψ)) < e−k for all states s and all schedulers σ. Now
fix a scheduler τ that minimises Prτ

s(aU≤r b) for all s ∈ S and a scheduler σ such
that Prσ

s (a U b) = 0 for all s ∈ D. From τ and σ, we devise another scheduler τ∗

by setting

τ∗(x) =

{
τ(x) if x ∈ (S \ D)∗,
σ(x2) if x = x1 · x2 where x1 ∈ (S \ D)∗ and x2 ∈ D · S∗.

Note that Prτ ∗
s (a U≤r (D ∨ GZ) ∧ a U b) = 0 and Prτ ∗

s (a U≤r (D ∨ GZ)) =
Prτ

s(a U≤r (D ∨ GZ)) for all s ∈ S. Hence,

Computing Quantiles in Markov Reward Models 365

Prτ ∗
s (a U b) = Prτ ∗

s (a U b ∧ ¬(a U≤r (D ∨ GZ)))

≤ Prτ ∗
s (¬(a U≤r (D ∨ GZ)))

= Prτ
s (¬(a U≤r (D ∨ GZ)))

≤ Prτ
s (¬(a U≤r ψ) ∨ (a U≤r b))

≤ Prτ
s (¬(a U≤r ψ)) + Prτ

s (a U≤r b)
< e−k + Prτ

s (a U≤r b)
= e−k + minσ Prσ

s (a U≤r b)

for all s ∈ S. Since minσ Prσ
s (a U b) ≤ Prτ ∗

s (a U b), this inequality proves the
lemma. ��
With the help of Lemma 12, we can devise an upper bound for the value of a
query of the form ∀P>p(a U≤? b) in case this value is finite.

Lemma 13. Let M be an MDP where the denominator of each transition prob-
ability is ≤ m, ϕ = ∀P>p(a U≤? b), n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)},
s ∈ S, and q = minσ Prσ

s (a U b). Then one of the following statements holds:

1. p ≥ q and valϕ(s) = ∞.
2. p < q and valϕ(s) ≤ kncmn, where k = max{−�ln(q − p)�, 1}.

Proof. Clearly, if p ≥ q, then valϕ(s) = ∞, and 1. holds. On the other hand, if
p < q, then let r := kncmn. By Lemma 12, we have that minσ Prs(a U≤r b) >
q − e−k ≥ q − e	ln(q−p)
 ≥ q − (q − p) = p, i.e. s |= ∀P>p(a U≤r b). Hence,
valϕ(s) ≤ r, and 3. holds. ��
As in the last section, Lemma 13 can be used to derive an exponential algorithm
for computing the value of a state wrt. a query of the form ∀P>p(a U≤? b).

Theorem 14. Queries of the form ∀P>p(aU≤?b) can be evaluated in exponential
time.

Regarding queries of the form ∀P≥p(a U≤? b), we can compute the value of a
state s whenever the probability minσ Prσ

s (a U b) differs from p using the same
algorithm. However, in the case that p = minσ Prσ

s (a U b) it is not clear how
to bound the value of s. As the following example shows, the analogous bound
of nc for existential queries from Lemma 10 does not apply in this case.

Example 15. Consider the MDP depicted in Fig. 1, where Act = {�, �} and q ∈
[0, 1[is an arbitrary probability. A state’s reward is depicted in its bottom half,
and a transition from s to t labelled with α, p indicates that δ(s, α, t) = p. Only
transitions from non-absorbing states with nonzero probability and correspond-
ing to enabled actions are shown. Assuming that every state is labelled with a
but only s3 and s5 are labelled with b, it is easy to see that minσ Prσ

s0 (aUb) = 1
2 .

Moreover, a quick calculation reveals that the value of state s0 with respect to
the query ∀P≥1/2(a U≤? b) equals −�1/ log2 q�. Since q can be chosen arbitrarily
close to 1, this value can be made arbitrarily high.

366 M. Ummels and C. Baier

s0
0

s1
0

s2
0

s3
0

s4
1

s5
0

�, 1 �, 1

�, 1
2

�, 1
2

�, q

�, 1 − q

Fig. 1. An MDP with nonnegative rewards

5.3 A Pseudo-polynomial Algorithm for Markov Chains

In this section, we give a pseudo-polynomial algorithm for evaluating quantile
queries of the form P�p(a U≤? b) on Markov chains. (Note that the quantifiers
∃P and ∀P coincide for Markov chains.) More precisely, our algorithm runs in
time poly(c · |M| · ‖p‖) if c is the largest reward in M. As an important special
case, our algorithm runs in polynomial time on Markov chains where each state
has reward 0 or 1.

Our polynomial-time algorithm relies on the following equations for comput-
ing the probability of the event a U=i b in a Markov chain with rewards 0 and 1.
Given such a Markov chain M and a ∈ AP, we denote by Z the set of states s
such that rew(s) = 0 and s |= a ∧ ¬b. Then the following equations hold for all
s ∈ S, a, b ∈ AP and r ∈ N:

– Prs(a U=0 b) = Prs(Z U b),
– Prs(a U=2r b) =

∑
t∈S\Z Prs(a U=r {t}) · Prt(a U=r b),

– Prs(a U=2r+1 b) =
∑

t∈λ−1(a)\Z

∑
u∈S Prs(a U=r {t}) · δ(t, u) · Pru(a U=r b),

Using these equations, we can compute the numbers Prs(aU=rb) along the binary
representation of r in time O(poly(|M|) · log r) for Markov chains with rewards
0 and 1 (see also [12]). Since any Markov chain M with rewards 0, 1, . . . , c can
easily be transformed into an equivalent Markov chain of size c·|M| with rewards
0 and 1, the same numbers can be computed in time O(poly(c · |M|) · log r) for
general Markov chains. Finally, we can compute the numbers Prs(aU≤r b) in the
same time by first applying the following operations to each b-labelled state s:
Make s absorbing, add a to λ(s), and set rew(s) = 1; in the resulting Markov
chain each state s fulfils Prs(a U≤r b) = Prs(a U=r b).

Now let ϕ = P�p(a U≤? b). Our algorithm for evaluating ϕ at state s of a
Markov chain M is essentially the same algorithm as for MDPs. Hence, we first
compute the probability q := Prs(a U b). If either p > q or p = q and � = >,
then valϕ(s) = ∞, by Lemma 10. If p < q, then the same lemma entails that
valϕ(s) ≤ r := kncmn, where n = |λ−1(a)|, m is the least denominator of any
transition probability, and k = max{−�ln(q − p)�, 1} ≤ poly(M) + ‖p‖. Hence,
we can determine valϕ(s) using an ordinary binary search in time
O(poly(c · |M|) · log2 r) = O(poly(c · |M| · ‖p‖)). Finally, the same method can be
applied if p = q and� = ≥ since Lemma 10 tells us that valϕ(s) ≤ nc in this case.

Theorem 16. Queries of the form P≥p(aU≤?b) or P>p(aU≤?b) can be evaluated
in pseudo-polynomial time on Markov chains.

Computing Quantiles in Markov Reward Models 367

6 Conclusions

Although many researchers presented algorithms and several sophisticated tech-
niques for the PCTL model checking problem and to solve PCTL and PRCTL
queries, the class of quantile-based queries has not yet been addressed in the
model checking community. In this paper, we presented algorithms for qualita-
tive and quantitative quantile queries of the form P��p(a U≤? b) and their duals
∃P��p(a U≤? b). We established a polynomial algorithms for the qualitative case
and exponential algorithms for all but one of the quantitative cases. Although
the algorithms for the quantitative cases rely on a simple search algorithm for
the quantile, the crucial feature is the bound we presented in Lemmas 8 and 12.
These bounds might be interesting also for other purposes. There are several
open problems to be studied in future work. First, the precise complexity of
quantitative quantile queries is unknown and more efficient algorithms might
exist, despite the NP-hardness shown in [14]. Second, we concentrated here on
reward-bounded until properties, and by duality our results also apply to reward-
bounded release properties. But quantile queries can also be derived from other
PCTL-like formulas, such as formulas reasoning about expected rewards, e.g. in
combination with step bounds.

Acknowledgments. We would like to thank Manuela Berg, Joachim Klein,
Sascha Klüppelholz and Dominik Wojtczak for helpful discussions and the anony-
mous reviewers for their valuable remarks and suggestions.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-Time Rewards Model-Checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

2. Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker,
S., Tews, H., Völp, M.: Waiting for Locks: How Long Does It Usually Take? In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 47–62. Springer,
Heidelberg (2012)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
4. Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic

Systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

5. Courcoubetis, C.A., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

6. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

7. de Alfaro, L.: Temporal Logics for the Specification of Performance and Reliability.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176.
Springer, Heidelberg (1997)

8. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: Proceedings of the 13th Annual IEEE Symposium on Logic in
Computer Science, LICS, pp. 454–465. IEEE Press (1998)

368 M. Ummels and C. Baier

9. de Alfaro, L.: Computing Minimum and Maximum Reachability Times in Prob-
abilistic Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 66–81. Springer, Heidelberg (1999)

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

11. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The Complexity of Solving Reach-
ability Games Using Value and Strategy Iteration. In: Kulikov, A., Vereshchagin,
N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 77–90. Springer, Heidelberg (2011)

12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

13. Jurdziński, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed
automata with one or two clocks. Logical Methods in Computer Science 4(3) (2008)

14. Laroussinie, F., Sproston, J.: Model Checking Durational Probabilistic Systems.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer,
Heidelberg (2005)

15. Pekergin, N., Younès, S.: Stochastic Model Checking with Stochastic Compari-
son. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-FM 2005. LNCS,
vol. 3670, pp. 109–123. Springer, Heidelberg (2005)

16. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science,
FOCS, pp. 327–338. IEEE Press (1985)

Parameterized Weighted Containment

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. Partially-specified systems and specifications are used in formal meth-
ods such as stepwise design and query checking. Existing methods consider a
setting in which the systems and their correctness are Boolean. In recent years
there has been growing interest and need for quantitative formal methods, where
systems may be weighted and specifications may be multi valued. Weighted au-
tomata, which map input words to a numerical value, play a key role in quan-
titative reasoning. Technically, every transition in a weighted automaton A has
a cost, and the value A assigns to a finite word w is the sum of the costs on the
transitions participating in the most expensive accepting run ofA on w. We study
parameterized weighted containment: given three weighted automata A, B, and
C, with B being partial, the goal is to find an assignment to the missing costs in
B so that we end up with B′ for which A ≤ B′ ≤ C, where ≤ is the weighted
counterpart of containment. We also consider a one-sided version of the problem,
where only A or only C are given in addition to B, and the goal is to find a mini-
mal assignment with which A ≤ B′ or, respectively, a maximal one with which
B′ ≤ C. We argue that both problems are useful in stepwise design of weighted
systems as well as approximated minimization of weighted automata.

We show that when the automata are deterministic, we can solve the problems
in polynomial time. Our solution is based on the observation that the set of legal
assignments to k missing costs forms a k-dimensional polytope. The technical
challenge is to find an assignment in polynomial time even though the polytope is
defined by means of exponentially many inequalities. We do so by using a power-
ful mathematical tool that enables us to develop a divide-and-conquer algorithm
based on a separation oracle for polytopes. For nondeterministic automata, the
weighted setting is much more complex, and in fact even non-parameterized con-
tainment is undecidable. We are still able to study variants of the problems, where
containment is replaced by simulation.

1 Introduction

The automata-theoretic approach uses the theory of automata as a unifying paradigm for
system specification and verification [24,26]. By viewing computations as words (over
the alphabet of possible assignments to variables of the system), we can view both the
system and its specification as languages. Questions like satisfiability of specifications
or their satisfaction can then be reduced to questions about automata and their languages.

The automata-theoretic approach has proven useful also in reasoning about partially-
specified systems and specifications, where some components are not known or hidden.
Partially-specified systems are used mainly in stepwise design: One starts with a system
with “holes” and iteratively completes them in a way that satisfies some specification

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 369–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

370 G. Avni and O. Kupferman

[9,10]. Reasoning about partially-specified systems is useful also in automatic partial
synthesis [23] and program repair [15]. From the other direction, partially-specified
specifications are used for system exploration. In particular, in query checking [5], the
specification contains variables, and the goal is to find an assignment to the variables
with which the explored system satisfies the specification. For example, solutions to the
query ALWAYS(X1 → EVENTUALLYgrant) assign to X1 events that trigger a genera-
tion of a grant in the system. Missing information in the system or the specification can
be easily encoded in an automaton that models it, and indeed algorithms for the above
problems are based on partially specified automata (c.f., [4]).

Traditional automata accept or reject their input, and are therefore Boolean. In recent
years, there is growing need and interest in quantitative reasoning. Weighted finite au-
tomaton (WFA, for short) map words to numerical values. Technically, every transition
in a weighted automaton A has a cost, and the value that A assigns to a finite word w,
denoted val(A, w), is the sum of the costs of the transitions participating in the most
expensive accepting run ofA onw. 1 Applications of weighted automata include formal
verification, where they are used for the verification of quantitative properties [6], as well
as text, speech, and image processing, where the weights of the automaton are used in
order to account for the variability of the data and to rank alternative hypotheses [8,20].

In the Boolean setting, formal verification amounts to checking containment of the
language of the system by the language of the specification. This makes the language-
containment problem of great theoretical and practical interest. In the weighted set-
ting, the analogous problem gets as input two weighted automata A and B, and de-
cides whether all the words w that are accepted by A are also accepted by B and
val(A, w) ≤ val(B, w). We denote this by A ⊆ B. Weighted automata are much
more complicated than Boolean ones. The source of the difficulty is the infinite domain
of values that the automata may assign to words. In particular, the problem of weighted
containment is in general undecidable [1,18]. Given the importance of the problem,
researchers have studied decidable fragments and approximations of weighted contain-
ment. We know, for example, that weighted containment is decidable, in fact polyno-
mial, for deterministic WFAs (DWFAs, for short). For general WFA, researchers have
suggested a weighted variant of the simulation relation, which approximates weighted
containment and is decidable [3,7].

In this paper, we introduce and study parameterized weighted containment: given
three weighted automataA, B, and C, with B being partial, the goal is to find an assign-
ment to the missing costs in B so that we end up with B′ for which A ⊆ B′ ⊆ C. We
also consider a one-bounded version of the problem, where only A or only C are given
in addition to B, and the goal is to find a minimal assignment with which A ⊆ B′ or,
respectively, a maximal one with which B′ ⊆ C.2

1 In general, weighted automata may be defined with respect to all semirings. For our applica-
tion here, we consider WFAs over Q, with the sum of the semi-ring being + and its product
being max.

2 An orthogonal research direction is that of parametric real-time reasoning [2]. There, the
quantitative nature of the automata origins from real-time constraints, the semantics is very
different, and the goal is to find restrictions on the behavior of the clocks such that the automata
satisfy certain properties.

Parameterized Weighted Containment 371

Before we describe the technical details of the problems and their solutions, let us
argue for their usefulness with two applications.

Example 1. Stepwise design Assume we have a weighted specification C. Refining the
specification to an implementation involves a refinement of its Boolean behavior, pos-
sibly extending its alphabet, and an assignment of values to the refined computations.
When the values in C exhibit upper bounds on costs, we want the implementation B
to satisfy B ⊆ C. It is relatively easy to refine the Boolean behavior of C and get an
automaton whose language, when restricted to the joint alphabet, is contained in the
language of C. It is much harder to design the weighted behavior of B. For this, we
apply one-bound parameterized weighted containment: C is the specification, B is its
Boolean refinement, we label its costs by variables, and we are looking for a maximal
assignment for the variables with which B is contained in C.

For a specific example, consider the problem of ranking contributors to user-
generated sites (e.g., Wikipedia). A big challenge for these sites is to develop trust
in users. We seek a WFA that distinguishes between good and bad edits. After a user
performs an edit on the site, the WFA gives it a score, and decisions on blocking and
promotion of users are based on these scores.

We assume that an edit is a sequence of words – these added by the user. We also
assume we have a tool, which we refer to as the mapper, that, intuitively, performs a
pre-processing that abstracts the edit the user performed. More formally, the mapper
maps words to some fixed alphabet, which is the alphabet of the WFA. For example, a
mapper might map the sentence “The dog bent uver.” to the word “the · noun · verb ·
misspelledword.”

The WFA combines heuristics, each of which either identifies a positive linguistic
feature of a sentence or a negative one. An example of a positive heuristic is: “a sen-
tence in which the multiplicity of the subject matches that of the verb should get a
score greater than 1/4”. An example of a negative heuristic is: “a sentence in which the
appears before a verb should not get a score above 1/2”.

Devising a WFA that takes care of a single heuristic is simple. However, since the au-
tomata are weighted, combining them is complicated. Some variants of parameterized
weighted containment are useful here: when we want to combine two positive heuris-
tics, modeled by WFAs A1 and A2, we seek a minimal WFA B such that bothA1 ⊆ B
andA2 ⊆ B. This variant of the one-bound problem is useful also when both heuristics
are negative. Combining a negative heuristic A and a positive one C then corresponds
to the problem of finding a WFA B such that A ⊆ B ⊆ C.

Example 2. DWFA approximated minimization Minimization of Boolean determinis-
tic automata is a well-studied problem. For DWFAs, Mohri described a (complicated
yet polynomial) minimization algorithm [19]. We argue that two-bound parameterized
weighted containment can be used in order to simplify Mohri’s algorithm and, which
we find more exciting, enables also approximated minimization. There, given a DWFA
A and a factor t ∈ Q, we would like to construct a minimal automaton B that has the
same language as A and assigns values within a factor of t from A. Given A, we first

372 G. Avni and O. Kupferman

construct the DWFAs reduce(A, t) and increase(A, t), for whatever definitions of re-
duce and increase we are after; for example, we can take −t and +t as additive factors
to the value, or we can take 1

t and t as multiplicative ones. We then use parameterized
weighted containment in order to find B such that reduce(A, t) ⊆ B ⊆ increase(A, t).

In both examples above, we left all the components of the generated WFA B un-
specified. When the user has an idea about B’s Boolean behavior, as is typically the
case in step-wise refinement, this Boolean behavior is a natural starting point. In Sec-
tion 3.2, we study the case only A and C are given, and we seek a minimal B such that
A ⊆ B ⊆ C. We show that the problem is NP-complete for DWFAs, and suggest a
heuristic for finding B that is based on viewing the Boolean product of A and C as a
partially specified WFA.

Let us now return to parameterized weighted containment where a partial WFA B is
given. Our solution to the problem is based on strong mathematical tools. We explain
here briefly the general idea for the two-bound problem for DWFAs. Consider an input
A, B, and C to the problem. Assume that transitions in B are parameterized by variables
from a set X of size k. Recall that we are looking for a legal assignment f : X → Q;
that is, one with which A ⊆ Bf ⊆ C, where Bf is the DWFA obtained by replacing
each variableX ∈ X by f(X). We first show that the productsA×B and B×C can be
used in order to generate a set of inequalities that the variables have to satisfy. For that,
we characterize critical paths in the products – it is necessary and sufficient to restrict
the assignment of the variables in transitions along these paths in order to guarantee that
f is legal. Each critical path induces an inequality and together the inequalities induces
a convex polytope P ⊆ IRk that includes exactly all the legal assignments. Khachiyan’s
Ellipsoid’s method [17] then enables us to find a point in this polytope or conclude that
no legal assignment exists.

This is, however, not the end of the story. Unfortunately, the number of critical paths
we have to consider is exponential, making a naive search for the solution exponential
too. Examining Khachiyan’s method one can see that it is not necessary to have an im-
plicit list of inequalities that define the polytope P . Indeed, it was shown in [12,16,21]
that it is sufficient to have a separation oracle for the polytope. That is, instead of a list
of inequalities that define P , the input to the problem is an oracle that, given a point
p ∈ Qk, either says that p ∈ P or returns a half-space H ⊆ Qk such that p /∈ H and
P ⊆ H . We show that we can use the productsA×B and B×C in order to define such
a separation oracle, leading to polynomial-time a solution to the problem.

For the one-bound variant, we show that the induced polytope is pointed, and that
the solution we are after is a vertex of it, leading to an actually simpler algorithm. For
the case the automata are nondeterministic, we argue that the one-bound problem is not
interesting, as a minimal/maximal solution need not exist. For the two bound problem,
we approximate containment by simulation, and show that the problem is NP-hard.
Also, a polynomial algorithm for deciding weighted simulation would imply that it is
NP-complete. 3 Given the computational difficulty of handling nondeterministic WFAs
in general, we view these results as good news: parameterized language containment
can be solved in polynomial time for the deterministic setting, and its approximation by
simulation is decidable in the nondeterministic one.

3 The best algorithm currently known for weighted simulation is in NP ∩ co-NP [3].

Parameterized Weighted Containment 373

Due to the lack of space, some of the proofs and examples are omitted in this version
and can be found in the full version, in the authors’ homepages.

2 Preliminaries

2.1 Weighted Automata

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,Δ,Q0, F, τ〉, where Σ is an alphabet,Q is a set of states, Δ ⊆ Q×Σ×Q
is a transition relation, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting
states, and τ : Δ→ Q is a function that maps each transition to a rational value, which
is the cost of traversing this transition. We assume that there are no redundant states
in A. That is, all states are not empty (an accepting state is reachable from them) and
accessible (reachable from an initial state).

A run of A on a word w = w1, . . . , wn ∈ Σ∗ is a sequence of states r = r0,
r1, . . . , rn such that r0 ∈ Q0 and for every 0 ≤ i < n we have Δ(ri, wi+1, ri+1). The
run r is accepting iff rn ∈ F . The value of the run, denoted val(r, w), is the sum of
costs of transitions it traverses. That is, val(r, w) =

∑
0≤i<n τ(〈ri, wi+1, ri+1〉). Sim-

ilarly, for a path π, which is a sequence of transitions, we define val(π) =
∑

e∈π τ(e).
Since A is non-deterministic, there can be more than one run on a word. We de-
fine the value that A assigns to w ∈ Σ∗, denoted val(A, w), as the value of the
maximal-valued accepting run of A on w. That is, val(A, w) = max{val(r, w) :
r is an accepting run of A on w}. As in NFAs, the language of A, denoted L(A), is
the set of words in Σ∗ that A accepts.

We say that A is deterministic if |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, there is
at most one state q′ ∈ Q such that Δ(q, σ, q′). Note that a deterministic WFA (DWFA,
for short) has at most one run on every word in Σ∗.

Weighted Containment. For two WFAs A and B, we say that A is contained in B,
denoted A ⊆ B, iff L(A) ⊆ L(B) and for every word w ∈ L(A) we have that
val(A, w) ≤ val(B, w). It is shown in [1,18] that deciding containment for WFAs
is undecidable.

Negativeness. We say that a WFA A is negative if val(A, w) ≤ 0 for every word
w ∈ L(A). We say that a path π in A is a critical path iff it is either a simple path from
an initial state to an accepting state or a simple cycle. Keeping in mind that all states in
A are not empty and reachable from an initial state, it is not hard to prove the following
characterization of negative DWFAs.

Proposition 1. A DWFA A is negative iff val(π) ≤ 0 for every critical path π in A.

Let A = 〈Σ,QA, ΔA, q0A , FA〉 and B = 〈Σ,QB, ΔB, q0B , FB〉 be two DWFAs. Con-
sider the product SA,B = 〈Σ,QB × QA, ΔA,B, 〈q0A , q0B〉, FA × FB, τA,B〉, where
ΔA,B is such that t = 〈〈u, v〉, σ, 〈u′, v′〉〉 ∈ ΔA,B iff tA = 〈u, σ, u′〉 ∈ ΔA and
tB = 〈v, σ, v′〉 ∈ ΔB. We refer to the transitions tA and tB as the transitions that are
mapped to t. Then, for every t ∈ ΔA,B , we define τA,B(t) = τB(tB) − τA(tA), where
tA and tB are mapped to t.

374 G. Avni and O. Kupferman

Assume that L(A) ⊆ L(B) and consider a word w ∈ Σ∗. Let r = 〈rA0 , rB0 〉, . . . ,
〈rA|w|, rB|w|〉 be the run of SA,B on w. It is easy to see that rA0 , . . . , r

A
|w| is the run ofA on

w and rB0 , . . . , r
B
|w| is the run of B on w. Thus, by the definition of the weight function

of SA,B, it follows that val(SA,B, w) = val(A, w) − val(B, w). Hence, we have the
following proposition:

Proposition 2. Let A and B be two DWFAs such that L(A) ⊆ L(B). Then, A ⊆ B iff
SA,B is not negative.

2.2 Parameterized Weighted Containment

Consider a set of variables X = {X1, . . . , Xk}. An X -parameterized WFA is a WFA
in which some of the costs are replaced by variables from X . Thus, the weight function
is of the form τ : Δ→ Q ∪ X . Given an X -parameterized WFA A and an assignment
f : X → Q to the variables in X , we obtain the WFA Af by replacing every variable
X ∈ X with the value f(X). Formally, the components of the WFA Af agree with
these of A except for the weight function τf , which agrees with τ on all transitions
t ∈ Δ with τ(t) ∈ Q, and is such that τf (t) = f(X) for all t ∈ Δ with τ(t) = X ,
for some X ∈ X . Note that a variable X ∈ X may appear in more than one transition
of A.

Definition 1. We consider the following three variants of parameterized weighted con-
tainment (PWC, for short).

– Two bound PWC: Given WFAsA and C, and an X -parameterized WFA B, find an
assignment f : X → Q such that A ⊆ Bf ⊆ C.

– Least upper bound PWC: Given a WFA A and an X -parameterized WFA B, find
a minimal assignment f : X → Q such that A ⊆ Bf .

– Greatest lower bound PWC: Given a WFA C and an X -parameterized WFA B,
find a maximal assignment f : X → Q such that Bf ⊆ C.

The least-upper and greatest-lower bound variants are dual and we refer to them as one-
bound PWC. Their definition uses the terms minimal and maximal, with the expected
interpretation: an assignment f is minimal if decreasing the value it assigns to a variable
results in a violation of the requirement thatA ⊆ Bf . Formally, f is minimal if for every
variable X ∈ X and every ε > 0, the assignment f ′ that agrees with f on all variables
X �= X ′ ∈ X and f ′(X) = f(X) − ε is such that A �⊆ Bf ′

. Note that without the
minimality requirement, the upper-bound variant is trivial: for every variable X ∈ X
we set f(X) to be a very high value, for example, the maximal cost appearing in A
times the size of |A| · |B|. The definition of a maximal assignment is dual.

Solving parameterized weighted containment is clearly harder than solving weighted
containment, and is therefore undecidable in general. We study two restrictions of the
problem. In Section 3, we study the PWC problem where the automata are determin-
istic. As hinted in Proposition 2, containment is decidable for DWFAs. In Section 4
we study the PWC problem where the automata are nondeterministic, but we replace
the containment relation with its approximating relation of simulation [3], which is
decidable.

Parameterized Weighted Containment 375

2.3 Geometry in IRk

We briefly review some definitions on polytopes. For more details and intuition, see
[22].

Polytopes. A convex polytope is a set in IRk that is the intersection of a finite number
of half-spaces. Thus, it can be defined as the set of points p ∈ IRk that are solutions
to a system of linear inequalities Ax ≤ b, where A ∈ Qm,k is an m × k matrix of
rationals, b ∈ Qm, and m ∈ IN is the number of inequalities. For example, the system
of inequalities 2x1 + 3x2 ≤ 7, 5x1 ≤ 3, and 4x2 ≤ 0 corresponds to the following
representation: ⎛⎝2 3

5 0
0 4

⎞⎠(
x1
x2

)
≤

⎛⎝7
3
0

⎞⎠
Dimension. We say that the points p1, . . . , pm ∈ IRn are affinely independent iff the
vectors p2 − p1, p3 − p1, . . . , pm − p1 are independent. The dimension of a convex
polytope P ⊆ IRk, denoted dim(P), is defined to be l ≤ k iff the maximal number of
affinely independent points in P is l+ 1.

For example, consider the line in Figure 1, which is a convex polytope in IR2. We
claim that the dimension of the polytope is 1. Indeed, points a and b in the polytope are
affinely independent, as the single vector b − a is linearly independent. On the other
hand, points a, b, and c are not affinely independent, as b − a and c − a are linearly
dependent.

We say that a polytope P ⊆ IRk is full-dimensional if its dimension is k. When P is
not full-dimensional, it is contained in a hyper-plane of dimension less than k.

Vertices. In 2-dimensions, a vertex is the meeting point of two edges. In k-dimensions,
a vertex is the meeting point of k faces, which are the k-dimensional generalization of
edges. We say that a polytopeP is pointed if it has a vertex. In the full version we define
these notions formally.

Geometrical Objects. A k-dimensional ball is a generalization of the 2-dimensional
circle. For c ∈ IRk (the center) and r ∈ IR (the radius) we define the ball B(c, r) =
{p ∈ IRk :

∑
1≤i≤k(pi − ci)

2 ≤ r2}. Consider a polytope P = {x ∈ IRk : Ax ≤ b}.
We say that P is bounded iff there is a ball with a finite radius that contains it.

Consider an invertible linear transformation L : IRk → IRk. For example, rotation
is invertible but the transformation L(p) = 0, for every p ∈ IRk, is not. An ellipsoid
with center 0 ∈ IRk, is the implication of L on the unit ball B(0, 1). That is, it is the
set L(B(0, 1)) = {L(p) ∈ IRk : p ∈ B(0, 1)}. An ellipsoid centered at c ∈ IRk, is the
translation of the set L(B(0, 1)) by c. That is, Ell(c, L) = c+ L(B(0, 1))4.

4 In [22], an ellipsoid is defined as follows: Ell(z,D) = {p ∈ IRk : (p− z)T ·D−1 · (p− z) ≤
1}, where D is a positive definite matrix and z ∈ IRk . The definition we use is equivalent to
this definition.

376 G. Avni and O. Kupferman

Volume. Consider a set S ⊆ IRk. We define the volume of S, denoted vol(S), us-
ing the Lebesgue measure. The volume of a k-dimensional box B = {p ∈ IRk :
a1 ≤ p1 ≤ b1, . . . , ak ≤ pk ≤ bk} is vol(B) =

∏
1≤i≤k(bi − ai). Consider a col-

lection of countably many boxes C such that S ⊆
⋃
B∈C B. We define vol(S) =

infC{
∑
B∈C vol(B)}. An important observation is that the volume of a polytope that

is not full-dimensional is 0. Generally, there are sets that are not Lebesque measurable.
In this work, however, we only use convex sets, which are measurable.

Size of Representation. Consider a number p/q ∈ Q. The size of p/q is, intuitively, the
number of bits that are needed to represent it. Thus, we define the size of p/q, denoted
size(p/q), to be 1+ �log(|p|+1)�+ �log(|q|+1)�. We define the size of an inequality∑

1≤i≤k ai ·Xi ≤ b to be 1 +
∑

1≤i≤k size(ai) + size(b).

The Ellipsoid Method. In 1979, Khachiyan [17] introduced the first polynomial time
algorithm for feasibility of linear programming. In this problem we get as input a poly-
tope P = {x ∈ IRk : Ax ≤ b}, where A ∈ Qm×k and b ∈ Qm. Our goal is to find a
point p ∈ P or determine that P is empty. Let ϕ be the size of the maximal inequality
that defines P , and let ν = 4k2ϕ. Also, let R = 2ν . We sketch the algorithm referred
to as the ellipsoid method for bounded full-dimensional polytopes. We find a sequence
of ellipsoids E0, E1, . . . , EN of decreasing volumes, such that for every 1 ≤ i ≤ N the
ellipsoid E i satisfies P ⊆ E i.

The initial ellipsoid E0 is the ball with center 0 ∈ IRk and radius R ∈ IN. Using
the radius R ensures that indeed P ⊆ E0. Assume that we found the ellipsoid E i =
Ell(zi, Li). We describe the (i + 1)-th iteration of the algorithm. We test if zi ∈ P . If
it is, we are done. Otherwise, we find an inequality that zi violates. Let H ⊆ IRk be the
half-space that corresponds to the inequality we find. Next, using the half-spaceH , and
the ellipsoid E i, we generate the ellipsoid E i+1 with the following properties: E i∩H ⊆
E i+1 and E i+1 has a minimal volume. Moreover, we have that vol(E i+1)/vol(E i) ≤
1/e. For a 2-dimensional example, consider Figure 2. Finally, it is guaranteed that if
all the equations generated by the separation oracle are over Q, so are all the points
generated by the algorithm.

a
b

c

Fig. 1. A 1-dimensional
polytope in IR2

P

E0
E1

z0

Fig. 2. An illustration of generating the ellipsoid E1, given that
the center z0 of the ellipsoid E0 violates an inequality. Note
that the polytope P is contained in E0 and in E1. Also note
that E1 contains the intersection between E0 and the half-space
corresponding to the inequality.

Parameterized Weighted Containment 377

The termination criterion also depends on ϕ as above. If P is not empty, then since it
is full-dimensional, its volume is at least 2−ν , where ν is polynomial in the representa-
tion size of ϕ. Since the volumes of the ellipsoids decrease exponentially, by selecting
N = poly(k, ν), we have that vol(EN) < 2−ν . Thus, if zN /∈ P , we can conclude that
P is empty, and we terminate.

In order to drop the assumption that the polytope is bounded, we use the following
property. If the polytope P is not empty, there is a point p ∈ P with size(p) ≤ 2ν .
Thus, we can use the polytope that is the intersection of P with the box {p ∈ IRk :
∀1 ≤ i ≤ k, 2ν ≤ pi ≤ 2ν}, which is clearly bounded.

Symbolic Ellipsoid Method. Examining Khachiyan’s method one can see that it is not
necessary to have the implicit list of inequalities that define the given polytope P . In-
deed, it was shown in [12,16,21] that it is sufficient to have a separation oracle for P
when P is full-dimensional. That is, instead of a full list of inequalities that define P ,
the input to the problem is an oracle that, given a point p ∈ IRk, either says that p ∈ P
or returns a half-space H ⊆ IRk such that p /∈ H and P ⊆ H . Assuming we found the
ellipsoid E i = Ell(zi, Li), we use the oracle to check if zi is in P . If it is, we are done,
and otherwise, we get a half-space with which we construct the ellipsoid E i+1. Since we
construct only polynomially many ellipsoids, we perform only polynomial many calls
to the oracle. The runtime is thus polynomial in the runtime of the separation oracle, in
k, and in the maximal representation size (aka ϕ) of the inequalities that define P . In
the full version we explain how we can work with a separation oracle even when the
polytope is not full-dimensional. To conclude, we have the following.

Theorem 1. [22] Consider a polytope P ⊆ IRk, defined by linear inequalities over Q
of size at most ϕ. Given a separation oracle SEP for P , it is possible to find a point in
P ∩Qk in time that is polynomial in k, ϕ, and the running time of SEP.

3 The PWC Problem for Deterministic WFAs

In this section we show that both the two- and one-bound PWC problems can be solved
in polynomial time when the input WFAs are deterministic.

3.1 The Two-Bound PWC Problem for Deterministic Automata

Recall that the input to the two-bound PWC problem are DWFAs A and C and an X -
parametrized DWFA B. Our goal is to find a legal assignment for the variables in X .
That is, an assignment f such that A ⊆ Bf ⊆ C.

From Parameterized Containment to a Convex Polytope. Consider an input A,
B, and C to the two-bound problem. When the automata are deterministic, checking
whether L(A) ⊆ L(B) ⊆ L(C) can be done in polynomial time. If Boolean contain-
ment does not hold, there is clearly no assignment as required. Thus, we assume that
L(A) ⊆ L(B) ⊆ L(C).

378 G. Avni and O. Kupferman

Consider an assignment f : X → Q. By Proposition 2, we have that f is legal iff
SA,Bf and SBf ,C are negative. Moreover, by Proposition 1, the latter holds iff all the
critical paths in SA,Bf and SBf ,C have a non-positive value. Thus, the set of critical
paths in SA,B and SB,C induce necessary and sufficient restrictions on the possible val-
ues the variables can get in a legal assignment. Each critical path induces an inequality
over the variables in X , and together all critical paths induce a convex polytope that
includes exactly all the legal assignments.

The above observation is the key to our algorithm, and we describe its details below
for the product SA,B. The construction of inequalities induced by SB,C is similar. Con-
sider a critical path π in SA,B. We generate an inequality from π that corresponds to a
restriction on legal assignment to the variables. Inequalities for SB,C are generated in
a similar manner. Recall that the path π is a sequence of transitions in a DWFA that is
the product of two DWFAs. For every e = 〈eA, eB〉 ∈ π, let ce = τA(eA) − τB(eB).
Recall that τB(eB) can either be a number, in which case ce is a number too, or a vari-
able X ∈ X , in which case ce is of the form c − X with c = τA(eA) ∈ Q. We
define the inequality (

∑
e∈π ce) ≤ 0. Clearly, it is possible to rewrite the inequality as∑

1≤i≤k −li ·Xi + c ≤ 0, where li ∈ IN is the number of times that Xi ∈ X appears
in π and c ∈ Q.

Remark 1. Let n = max{|QA| · |QB|, |QB| · |QC|} andM = max{|τA(eA)−τB(eB)|,
|τB(eB)|, |τB(eB) − τC(eC)| : eA ∈ ΔA, eB ∈ ΔB, eC ∈ ΔC , τ(eB) ∈ Q}. Since π is
either acyclic or a simple cycle, its length is at most n. Since for every 1 ≤ i ≤ k, we
have that li is the number of timesXi ∈ X appears in π, then 0 ≤ li ≤ n. Clearly, |c| ≤
Mn. Thus, the size of every inequality we generate is at most 1 +

∑
1≤i≤k size(n) +

size(Mn) = O(log(nM)).

Let |X | = k. By the above, we think of an assignment to the variables as a point in
IRk, think of the inequalities as half-spaces in IRk, and think of the set of legal assign-
ments as a convex polytope in IRk, namely the intersection of all the half-spaces that
are generated from the critical paths in SA,B and SB,C . We denote this polytope by
P ⊆ IRk.

Efficient Reasoning About the Convex Polytope. A naive way to solve the two-bound
problem is to generate all the inequalities from SA,B and SB,C and solve the system of
inequalities. Since, however, there can be exponentially many critical paths, the running
time of such an algorithm would be at least exponential. In order to overcome this
difficulty, we do not construct the induced polytope P implicitly. Instead, we devise a
separation oracle for P . By Theorem 1, this would enable us to find a point in P ∩Qk

(or decide that P is empty) with only polynomial many calls to the oracle.
Recall that a separation oracle for P is an algorithm that, given a point p ∈ IRk,

either returns that p ∈ P or returns a half-space H ⊆ IRk, represented by an inequality,
that separates p from P . That is, P ⊆ H and p /∈ H .

We describe the separation oracle for P . Given a point p ∈ IRk, we check if A ⊆
Bp ⊆ C. If the latter holds, we conclude that p is a legal assignment, and we are done.
Otherwise, there is a word w ∈ Σ∗ such that w ∈ L(A) and val(A, w) > val(Bp, w),
or w ∈ L(B) and val(Bp, w) > val(C, w). Using w, we find a critical path that p

Parameterized Weighted Containment 379

violates and we return the inequality induced by this path. Note that the run on w may
not be a critical path: we know it is a path form an initial state to an accepting state, but
this path may not be simple. We describe how to detect a critical path from w. Assume
that w is such that val(A, w) > val(Bp, w). The other case is similar. Since A and B
are deterministic there is a single accepting run r of SA,Bp on w. If r is acyclic, then it
is a critical path. Otherwise, we remove every non-positive cycle from r. Let r′ be the
obtained path in SA,Bp . Clearly, val(r′) ≥ val(r). If r′ is acyclic, we found a critical
path. Otherwise, since val(r′) ≥ val(r) > 0, there must be a positive valued cycle in
r′. This cycle is a critical path, and we are done.

We can now use Theorem 1 and conclude with the following.

Theorem 2. The two-bound PWC problem for DWFAs can be solved in polynomial
time.

Remark 2 (Speeding up the Separation Oracle). Reasoning about critical paths involves
a calculation of distances in the graphs corresponding to the product automata and is
done by solving the All-Pairs Shortest Path problem. As we update the ellipsoids, we
also update costs in the product automata. There is much research in the field of dynamic
graph algorithms (specifically, [25] suggests a fully-dynamic data-structure to solve the
All-Pairs Shortest Path problem) that we can use here in order to speed up the running
time of the separation oracle so that the time required for solving a distance query is
proportional to the updates rather than to the automata.

3.2 When B Is Not Given

An interesting variant of the two-bound PWC problem is one in which we are not given
B and we seek a DWFA of a minimal size such that A ⊆ B ⊆ C. One may start the
search for B with a non-weighted version of the problem. That is, seek a minimal DFA
B such that L(A) ⊆ L(B) ⊆ L(C). We can then turn B into a candidate DWFA by
labeling all its transitions by variables. The corresponding decision problem, which we
refer to as the Boolean sandwich problem, gets as input two DFAs A and C and index
k ∈ IN and decides whether there is a DFA B with k states such that L(A) ⊆ L(B) ⊆
L(C). It is easy to see that the weighted sandwich problem is at least as hard as the
Boolean one. Indeed, by defining all costs to be 0, we get an easy reduction between
the two. In order to neutralize the difficulty of the Boolean aspect of the language, we
define a pure-weighted sandwich problem, where A and C are such that L(A) = L(C),
and we are looking for a minimal B such that A ⊆ B ⊆ C. Note that such a WFA B
exists iff A ⊆ C. As we show now, all sandwich problems are difficult.

Theorem 3. The Boolean, weighted, and pure-weighted sandwich problems are NP-
complete.

Proof: Since the automata are deterministic, checking whether a given k-state automa-
ton satisfies the Boolean or weighted sandwich requirements can be done in polynomial
time. Thus, membership in NP in easy.

For the lower bound, we start with the Boolean case and show a reduction from the
vertex coloring problem (VC, for short). Recall that the input to the VC problem is

380 G. Avni and O. Kupferman

〈G, k〉, where G is a graph and k ∈ IN is an index. We say that 〈G, k〉 ∈ VC iff there is
a coloring of G’s vertices in k colors such that two adjacent vertices are not colored in
the same color.

Consider an input 〈G, k〉 to the VC problem. We construct an input 〈A, C, k + 2〉 to
the Boolean-sandwich problem. The idea is thatA has a state representing every vertex
in G. In order to construct B one must, intuitively, merge different states of A. The
automaton C enforces that merging two states can only be done if the corresponding
vertices do not share a common edge, and thus the states of B correspond to a legal
coloring of the vertices of G. For the details of the proof, see the full version.

As noted above, hardness in the Boolean setting implies hardness in the weighted
variant. For the pure-weighted variant, we go through the t-approximation problem for
DWFAs, defined as follows: given a DWFAA, a factor t ∈ Q such that t > 1, and an in-
dex k ∈ IN, we ask whether there is a DWFA A′ with k states such that L(A) = L(A′)
and for every word w ∈ L(A), we have 1/t · val(A, w) ≤ val(A′, w) ≤ t · val(A, w).
We say that A′ t-approximates A. As detailed in Section 1, t-approximation can be
easily reduced to the pure-weighted sandwich problem. We prove that t-approximation
is NP-hard by a reduction from VC. Given an input 〈G, k〉 to the VC problem, we
construct a DWFA A with a state corresponding to every vertex in G. Constructing an
approximating automaton for A is done by merging states. We construct A so that by
merging two states whose corresponding vertices share an edge, there is a word in L(A)
that violates the t-approximation requirement. Thus, an approximating automaton for
A corresponds to a legal coloring of G. For the details of the proof, see the full version.

��

We suggest a heuristic to cope with the complexity of the pure-weighted sandwich
problem. Consider DWFAs A and C such that L(A) = L(C) and A ⊆ C. We start
the search for B with a DFA D that has the state space QA × QC . Note that since
L(A) = L(C) and the automata are deterministic, we have that (FA × QC) ∪ (QA ×
FC) = FA×FC , which we define as the set ofD’s accepting states. We try to minimize
D by iteratively searching for states that can be merged. Clearly, we cannot hope to
obtain an automaton with fewer states than the one required for L(B), thus candidates
for merging are states that are merged in the standard DFA minimization algorithm.
Consider two such states q, q′ ∈ QD. Let D′ be the DFW obtained by merging q and
q′. We label each transition of D′ with a different variable and use parametric weighted
containment in order to find a DWFA B on the structure ofD′ that satisfiesA ⊆ B ⊆ C.
If we find, we continue with further mergings inD′. Otherwise, we un-merge the states,
and look for new candidates.

3.3 The One-Bound PWC Problem for Deterministic Automata

Recall that the input to the one-bound PWC problem is a DWFA A and an X -
parameterized automaton B, which we want to complete to a DWFW that either up-
per boundsA in a minimal way or lower boundsA in a maximal way. We focus here on
the case we seek a least upper bound. The second case is similar. As in the two-bound
case, we say that an assignment f is legal if it satisfies A ⊆ Bf .

Parameterized Weighted Containment 381

As detailed below, it is technically simpler to assume that all the states in the DWFAs
are accepting. Thus, in this model, the language of a DWFA is Σ∗. We can, however,
use weights and encode rejecting states. For example, we can add to the alphabet a
letter # that leaves all states to some state with either a bottom value, when we do not
want the origin state to be considered accepting, or with value 0 when we want it to be
accepting. We then restrict attention to prefixes of words that end after the first #.

As in the two-bound problem, we view assignments as points in IRk and use inequali-
ties induced by critical paths in order to define a polytopeP ⊆ IRk of legal assignments.
We show that the polytope generated in this case is in full-dimensional. Intuitively, it
follows from the fact that increasing a point by ε results in a point that is still in P .

Lemma 1. If P �= ∅, then P is full-dimensional.

Unlike the two-bound case, here we are not looking for an arbitrary point in P , but
one that is a minimal assignment. We show that a vertex of P is such an assignment.
Intuitively, it follows from the fact that points on a face F ofP are minimal assignments
with respect to the variables participating in the inequality corresponding to F . A vertex
is the intersection of k faces, and thus, it corresponds to an assignment that is minimal
with respect to all faces and hence also with respect to all variables.

Lemma 2. A vertex in P is a minimal assignment.

Recall that some of the inequalities that define P are induced by critical paths that are
simple paths from the initial vertex to an accepting state. Since we assume that all states
are accepting, prefixes of such critical paths are also critical. From the geometrical point
of view, this implies the following.

Lemma 3. If P �= ∅, then P is pointed.

For full-dimensional pointed polytopes, Schrijver shows a strengthening of Theorem 1
that enables us to find vertices:

Theorem 4. [22] Consider a full-dimensional pointed polytope P ⊆ IRk, defined by
linear inequalities over Q of size at most ϕ. Given a separation oracle SEP for P , it is
possible to find a vertex of P in Qk, in time that is polynomial in k, ϕ, and the running
time of SEP.

By the lemmas above, Theorem 4 is applicable in the one-bound PWC problem and we
conclude with the following.

Theorem 5. The one-bounded problem can be solved in polynomial time.

Remark 3. In [11], the authors define functional weighted automata, which are non-
deterministic weighted automata in which all the accepting runs on a word have the
same value. The authors show that in this model, containment is decidable: given two
functional weighted automata A and B, we check if L(A) ⊆ L(B), and then we check
if for every word w ∈ Σ∗, we have val(A, w) ≤ val(B, w) by reasoning on the au-
tomaton SA,B . It is easy to extend the technique presented in this section to functional
automata. Essentially, as in the case of deterministic automata, the construction of the
separation oracle can be based on SA,B . Accordingly, the computational bottleneck is

382 G. Avni and O. Kupferman

the Boolean L(A) ⊆ L(B) check, making the PWC problem for functional automata
PSPACE-complete.

4 The PWC Problem for WFAs

In this section we study the one- and two-bound problems for WFAs. Recall that con-
tainment for WFAs is undecidable, making the decidability of the PWC hopeless. Con-
sequently, we replace the containment order for WFAs by weighted simulation [3,7].
Simulation has been extensively used in order to approximate containment in the
Boolean setting, and was recently used as a decidable approximation of containment
in the weighted setting.

Let us explain the idea behind weighted simulation. Given two WFAs A and B,
deciding whetherA ⊆ B can be thought of as a two-player game of one round: Player 1,
the Player whose goal it is to show that there is no containment, chooses a word w and
a run r1 ofA on w. Player 2 then replies by choosing a run r2 of B on w. Player 1 wins
if r1 is accepting and r2 is not or if val(r1, w) > val(r2, w). While this game clearly
captures containment, it does not lead to interesting insights or algorithmic ideas about
checking containment. A useful way to view simulation is as a “step-wise” version
of the above game in which in each round the players proceed according to a single
transition of the WFAs. More formally, B simulatesA, denotedA ≤ B, if Player 2 has
a strategy that wins against all strategies of Player 1: no matter how Player 1 proceeds
in the WFA A, Player 2 can respond in a transition so that whenever the run generated
so far inA by Player 1 is accepting, so is the run generated by Player 2 in B. Moreover,
the cost of the run in A is smaller than the one in B. For full details, see [3].

So, in the nondeterministic setting, we replace containment with simulation and seek,
in the two-bound case, a valuation f such thatA ≤ Bf ≤ C, and in the one bound cases
minimal and maximal assignments so thatA ≤ Bf or Bf ≤ C, respectively.

4.1 The One-Bound PWC Problem for Nondeterministic Automata

We argue that this version of the PWC problem is not very interesting; in fact it is
not well defined as is, as there are cases in which we do not have even a minimal (or
maximal) assignment.

Consider for example the WFAs in Figure 4.1. The candidates for minimal assign-
ments for the variables in B are the ones that assign the value 0 to X1 or X2. However,
an assignment f with f(X1) = 0 can assign to X2 an arbitrarily low value, and, sym-
metrically, an assignment with f(X2) = 0 can assign an arbitrarily low value to X1.
Hence, there is no minimal assignment for the variables in B.

Thus, the nondeterministic setting calls for a different definition of the one-bound
PWC problem – one that considers alternative sets of variables whose values should be
minimized. We do not find such definitions well motivated.5

5 Having said that, the setting does suggest some very interesting theoretical problems, like
deciding when a solution exists, and the relation between the observation above and the fact
WFAs cannot always be determined.

Parameterized Weighted Containment 383

A
a0 a1

a, 0 B
b1 b0 b2

a,X1 a,X2

Fig. 3. An example in which there is no minimal assignment

4.2 The Two-Bound PWC Problem for Nondeterministic Automata

We now turn to study the two-bound problem. As we shall show, here the set of legal as-
signments corresponds to a vertex polytope, so it is either empty or not and the problem is
well defined. On the other hand, the complexity of the problem depends on the complex-
ity of deciding weighted simulation, and is NP-complete even if one finds a polynomial
algorithm for deciding weighted simulation (the best known algorithm for weighted sim-
ulation positions it in NP ∩ co-NP). We first show that the problem is NP-hard.

Theorem 6. The two-bound PWC problem for WFAs is NP-hard.

Proof: We prove that finding a satisfying assignment to a 3-SAT formula is easier than
solving the two-bound PWC problem for WFAs. Consider an input formula ψ to the 3-
SAT problem. The intuition behind the construction is as follows. For every variable in
ψ there are two variables in X . We construct B and C, so that the simulation game cor-
responding to them guarantees that only one of the two variables in X that correspond
to a variable in ψ can get a value greater than or equal to 1. Thus, an assignment to the
variables in X corresponds to an assignment to the variables in ψ. The idea of the game
that corresponds toA and B is to force the assignment to variables in ψ to be satisfying.
That is, Player 1 challenges Player 2 with a clause. Player 2 in his turn chooses a literal
that is satisfied in this clause. For the full proof see the full version. ��

For the upper bound, we first need the following result by Schrijver, relating the size of
the inequalities that define a polytope P and the size of its vertices.

Theorem 7. [22] Let P ⊆ IRk be a polytope that is defined by inequalities of size at
most ϕ. Then, the size of each of its vertices is at most 4k2ϕ.

We now rely on the fact that when Player 2 wins the weighted simulation game, he has
a memoryless winning strategy [3]. Consequently, we can trim the two arenas and, as in
the deterministic case, represent the set of assignments that are legal for these specific
strategies by a k-dimensional polytope. Thus, we use Theorem 7 to show that if there
is a legal assignment, then there is one of polynomial size. Now, if we assume that
deciding weighted simulation can be done in polynomial time, we can conclude with
the following. For the full proof see the full version.

Theorem 8. A polynomial algorithm for solving simulation games implies that solving
the two-bound nondeterministic PWC is in NP.

Acknowledgments. We thank Nati Linial for the helpful discussions and pointers.

References
1. Almagor, S., Boker, U., Kupferman, O.: What’s Decidable about Weighted Automata? In:

Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Hei-
delberg (2011)

384 G. Avni and O. Kupferman

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc. 25th STOC,
pp. 592–601 (1993)

3. Avni, G., Kupferman, O.: Making Weighted Containment Feasible: A Heuristic Based on
Simulation and Abstraction. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 84–99. Springer, Heidelberg (2012)

4. Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proc. 16th LICS, pp. 409–420
(2001)

5. Chan, W.: Temporal-logic Queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

6. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative Languages. In: Kaminski, M., Martini,
S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-
titative languages. LMCS 6(3) (2010)

8. Culik, K., Kari, J.: Digital images and formal languages. In: Handbook of Formal Languages:
Beyond words, vol. 3, pp. 599–616 (1997)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
10. Fix, L., Francez, N., Grumberg, O.: Program Composition and Modular Verification. In:

Leach Albert, J., Monien, B., Rodrı́guez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 93–114. Springer, Heidelberg (1991)

11. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative Languages Defined by Functional Au-
tomata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 132–146.
Springer, Heidelberg (2012)

12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1(2), 169–197 (1981)

13. Grötschel, M., Lovász, L., Schrijver, A.: Corrigendum to our paper “the ellipsoid method
and its consequences in combinatorial optimization”. Combinatorica 4(4) (1984)

14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization. Springer (1988)

15. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)

16. Karp, R., Papadimitriou, C.: On linear characterizations of combinatorial optimization prob-
lems. In: Proc. 21st FOCS, pp. 1–9 (1980)

17. Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady Akademii Nauk
SSSR 244, 1093–1096 (1979)

18. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. International Journal of Algebra and Computation 4(3), 405–425 (1994)

19. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23(2), 269–311 (1997)

20. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted finite-state transducers in speech recognition.
Computer Speech and Language 16(1), 69–88 (2002)

21. Padberg, M.W., Rao, M.R.: The Russian Method and Integer Programming. Working paper
series. Salomon Brothers Center for the Study of Financial Institutions (1980)

22. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete
mathematics and optimization. Wiley (1999)

23. Solar-Lezama, A., Rabbah, R.M., Bodı́k, R., Ebcioglu, K.: Programming by sketching for
bit-streaming programs. In: PLDI, pp. 281–294 (2005)

24. Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer Science, 133–
191 (1990)

25. Thorup, M.: Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 384–396. Springer,
Heidelberg (2004)

26. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I& C 115(1), 1–37 (1994)

Weighted Specifications over Nested Words�

Benedikt Bollig, Paul Gastin, and Benjamin Monmege

LSV, ENS Cachan, CNRS & Inria, France
firstname.lastname@lsv.ens-cachan.fr

Abstract. This paper studies several formalisms to specify quantitative
properties of finite nested words (or equivalently finite unranked trees).
These can be used for XML documents or recursive programs: for in-
stance, counting how often a given entry occurs in an XML document,
or computing the memory required for a recursive program execution.
Our main interest is to translate these properties, as efficiently as possi-
ble, into an automaton, and to use this computational device to decide
problems related to the properties (e.g., emptiness, model checking, sim-
ulation) or to compute the value of a quantitative specification over a
given nested word. The specification formalisms are weighted regular ex-
pressions (with forward and backward moves following linear edges or
call-return edges), weighted first-order logic, and weighted temporal log-
ics. We introduce weighted automata walking in nested words, possibly
dropping/lifting (reusable) pebbles during the traversal. We prove that
the evaluation problem for such automata can be done very efficiently if
the number of pebble names is small, and we also consider the emptiness
problem.

1 Introduction

In this paper, we develop a denotational formalism to express quantitative prop-
erties of nested words. Nested words, introduced in [1], are strings equipped with
a binary nesting relation. Just like trees, they have been used as a model of XML
documents or recursive programs. Though nested words can indeed be encoded
in trees (and vice versa), they are often more convenient to work with, e.g., in
streaming applications, as they come with a linear order that is naturally given
by an XML document [2]. Moreover, nested words better reflect system runs
of recursive programs where the nesting relation matches a procedure call with
its corresponding return. There is indeed a wide range of works that address
logics and automata over nested words to process XML documents or to model
recursive programs e.g., [2,3,4].

Most previous approaches to nested words (or unranked trees) consider Bool-
ean properties: logical formulae are evaluated to either true or false, or to a set
of word positions if the formula at hand represents a unary query. Now, given an
XML document in terms of a nested word, one can imagine a number of quanti-
tative properties that one would like to compute: What is the number of books

� This work was partially supported by LIA INFORMEL.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 385–400, 2013.
© Springer-Verlag Berlin Heidelberg 2013

386 B. Bollig, P. Gastin, and B. Monmege

of a certain author? Are there more fiction than non-fiction books? What is the
total number of entries? So, we would like to have flexible and versatile languages
allowing us to evaluate arithmetic expressions, possibly guarded by logical con-
ditions written in a standard language (e.g., first-order logic or XPath). To this
aim, we introduce (1) weighted regular expressions, which can indeed be seen
as a quantitative extension of XPath, (2) weighted first-order logic as already
studied in [5] over words, and (3) weighted nested word temporal logic in the
flavor of [3]. Their application is not restricted to XML documents, though. For
instance, when nested words model recursive function calls, these specification
languages can be used to quantify the call-depth of a given system run, i.e., the
maximal number of open calls.

Thus, when one considers expressiveness and algorithmic issues, a natural
question arises: Is there a robust automata model able to compile specifications
written in these languages? Our answer will be positive: we actually obtain a
Kleene-Schützenberger correspondence, stating the equivalence of weighted reg-
ular expressions with a model of automata. Not only do we obtain this corre-
spondence, but we also give similar complexity results concerning the size of the
automaton derived from a regular expression, and the time and space used to
construct it. We also prove that we can evaluate these automata efficiently and
that emptiness problem is decidable (in case the underlying weight structure has
no zero divisors). Towards a suitable automata device, we consider navigational
automata with pebbles, for two reasons. First, weighted automata, the classical
quantitative extensions of finite automata [6], are not expressive enough to en-
code powerful quantitative expressions, neither for words [7] nor for nested words
or trees [8,9]. Second, we are looking for a model that conforms with common
query languages for nested words or trees, such as XPath or equivalent variants
of first-order logic, aiming at a quantitative version of the latter and a suit-
able algorithmic framework. Indeed, tree-walking automata are an appropriate
machine model for compiling XPath queries [10].

Contribution. In Section 3, we introduce weighted expressions with pebbles over
nested words, mixing navigational constructs and rational arithmetic expres-
sions. As an operational counterpart of weighted expressions, we then introduce
weighted automata with pebbles in Section 4, which can traverse a nested word
along nesting edges and direct successors in both directions, and occasionally
place reusable pebbles. In a sense, these are extensions of the tree-walking au-
tomata with invisible pebbles, introduced in [11], to the weighted setting and to
nested words. We extend results over words stated in [12], namely a Kleene-
Schützenberger theorem showing correspondence between weighted expressions
with pebbles and layered weighted automata with pebbles (i.e., those that can
only use a bounded number of pebbles). We also show how to efficiently compute
the value associated to a given nested word in a weighted automaton with peb-
bles, and prove decidability (not surprinsingly, with non-elementary complexity)
of the emptiness problem in case the underlying weight structure has no zero
divisor.

Weighted Specifications over Nested Words 387

In order to allow more flexibility, we also discuss, in Section 5, more logical
quantitative formalisms like first-order logic and temporal logics, and show how
to compile them efficiently into weighted automata with pebbles.

For lack of space, proof details are given in the full version [13].

2 Preliminaries

Nested Words.We fix a finite alphabet A. For n ∈ N, we let [n] = {0, 1, . . . , n−
1}. A nested word over A is a pair W = (w,�) where w = a0 · · ·an−1 ∈ A+

is a nonempty string and � ⊆ ([n] × [n]) ∩ < is a nesting relation: for all
(i, j), (i′, j′) ∈ �, we have (1) i = i′ iff. j = j′, and (2) i < i′ implies (j < i′ or
j > j′). We will more often denote (i, j) ∈� as i� j. Moreover, the inverse of
relation � will be denoted as 	, so that i� j iff. j	 i. For uniformity reasons,
we denote as i→ j the fact that j is the successor of i, i.e., j = i+ 1. In case we
want to stress that i is the predecessor of j, we rather denote it j← i. The length
n of W is denoted |W |, and pos(W) = [n] is the set of positions of W . In order
to ease some definitions of the paper, a virtual position n can be added to the
positions: we will then denote pos(W) = [n]∪ {n} the extended set of positions.

Let T = {first, last, call, ret, int}. Each position i ∈ pos(W) in a nested word
W = (w,�) has a type τ(i) ⊆ T : first ∈ τ(i) iff. i = 0; last ∈ τ(i) iff. i = |W |;
call ∈ τ(i) iff. there exists j such that i� j; dually, ret ∈ τ(i) iff. there exists j
such that j� i; finally, int ∈ τ(i) iff. i < |W | and τ(i) ∩ {call, ret} = ∅.

a a b a a a a b a a b a b b

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. A nested word

It is convenient to represent the pairs of the relation � pictorially by curved
lines which do not cross. Fig. 1 shows a nested wordW = (w,�) over A = {a, b}
of length |W | = 14. We have w = aabaaaabaababb and the nesting relation de-
fined by 1� 3, 5� 11, 6� 8 and 12� 13. Moreover, τ(0) = {first, int}, τ(13) =
{ret} and τ(14) = {last}. In the examples of this paper, we will consider the
call-depth c-d(j) of a position j ∈ pos(W), i.e., the number of contexts in which
position j lies. Formally, c-d(j) = |{(i, k) | i� k ∧ i < j < k}|. For example,
position 7 has call-depth 2, whereas position 6 has call-depth 1. The call-depth
of a nested word is the maximal call-depth among the positions: the call-depth
of W is here 2.

Weights. A semiring is a set S equipped with two binary internal operations
denoted + and ×, and two neutral elements 0 and 1 such that (S,+, 0) is a
commutative monoid, (S,×, 1) is a monoid, × distributes over + and 0 × s =
s × 0 = 0 for every s ∈ S. If the monoid (S,×, 1) is commutative, the semiring

388 B. Bollig, P. Gastin, and B. Monmege

itself is called commutative. In this paper, we only consider continuous semirings:
intuitively, these are semirings in which sums of infinite families are always well-
defined, and such that these sums can be approximated by finite partial sums.
This allows us to define in particular a star operation: for every s ∈ S, the element
s∗ =

∑
i∈N s

i exists (where si is defined inductively by s0 = 1 and si+1 = si×s).
See [14] for more discussions about semirings, especially continuous ones. In
all the rest, S will denote a continuous semiring. Here are some examples of
continuous semirings.

– The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite dis-
junction.

– (R≥0 ∪ {∞},+,×, 0, 1) with
∑

defined as usual for positive (not necessarily
convergent) series: in particular, s∗ = ∞ if s ≥ 1 and s∗ = 1/(1 − s) if
0 ≤ s < 1.

– (N ∪ {∞},+,×, 0, 1) as a continuous subsemiring of the previous one.
– (R∪ {−∞},min,+,−∞, 0) with

∑
= inf and (R ∪ {∞},max,+,∞, 0) with∑

= sup.
– Complete lattices such as ([0, 1],min,max, 0, 1).
– The semiring of languages over an alphabet A: (2A

∗
,∪, ·, ∅, {ε}) with

∑
defined as (infinite) union.

3 Weighted Regular Expressions with Pebbles

In this section, we introduce weighted regular expressions with pebbles. Like
classical regular expressions, their syntax employs operations + and · , as well as
a Kleene star. However, unlike in the Boolean setting, + and · will be interpreted
as sum and Cauchy product, respectively.

We introduce first these weighted regular expressions with an example. We
consider a nested word over the alphabet {a, b}. The classical regular expression
(a + b)∗b(a + b)∗ checks that the given nested word contains an occurrence of
letter b. We will rather use the shortcut → to denote the non-guarded move to
the right encoded by the choice (a + b), and use a weighted semantics in the
semiring (N ∪ {∞},+,×, 0, 1): hence, expression →∗b→∗ counts the number of
occurrences of letter b in the nested word. We now turn to the more complex
task of counting the total number of occurrences of the letter b inside a context
with a call position labelled a: more formally we want to sum over all possible
call positions labelled a, the number of occurrences of b that appear strictly in-
between this position and the matching return. For the nested word of Fig. 1,
we must count 4 (in particular, position 7 must count for both call positions 5
and 6). In our formalism, we will achieve this task using expression:

E =→∗(a? ∧ call?)x!
[
→∗x?� (¬x?←)+ b?→∗

]
→∗ .

First, we search for a call position labelled with a: there we use the test a? to
check the label without moving. Then, we mark the call position of the interest-
ing context with a pebble named x: this permits us to compute independently the

Weighted Specifications over Nested Words 389

subexpression between brackets on the nested word, restarting from the first posi-
tion. The latter subexpression first searches for the pebble, follows the call-return
edge and then moves backward inside the context to pick non-deterministically
a position carrying letter b.

We turn to the formal syntax of our expressions. We let Peb = {x, y, . . .}
be an infinite set of pebble names. Weighted expressions are built upon simple
Boolean tests from a set Test. The syntax of these basic tests is given as follows:

α ::= a? | τ? | x? | ¬α | α ∧ α | α ∨ α

where a ∈ A, τ ∈ T and x ∈ Peb. Thus, a test is a Boolean combination of
atomic checks allowing one to verify whether a given position in a nested word
has label a; whether it is the first or last position (which is useful since we deal
with 2-way expressions); whether it is a call, a return or an internal action; or
whether it carries a pebble with name x, respectively. Given a nested wordW , a
position i ∈ pos(W) and an assignment of free pebble names given by a partial
mapping σ : Peb → pos(W), we denote W, i, σ |= α if test α is verified over the
given model: this semantics is defined as expected. Next, we present weighted
regular expressions.

Definition 1. The set pebWE of weighted expressions with pebbles is given
by the following grammar:

E ::= s | α | → | ← |� |	 | x!E | E + E | E ·E | E+

where s ∈ S, α ∈ Test, and x ∈ Peb.

We get the classical Kleene star as an abbreviation: E∗ def
= 1 + E+. It is also

convenient to introduce macros for “check-and-move”: a
def
= a?·→. This allows us

to use common syntax such as (ab)+abc, or to write→∗abba←+first?→∗baab→∗
to identify words having both abba and baab as subwords.

A pebWE is interpreted over a nested wordW with a marked initial position i
and a marked final position j (as is the case in rational expressions or path
expressions from XPath) and an assignment of free pebbles (as is the case in
logics with free variables), given as a partial mapping σ : Peb → pos(W). The
atomic expressions →, ←, �, 	 have their natural interpretation as a binary
relation R and are evaluated 1 or 0 depending on whether or not (i, j) ∈ R.
On the contrary, formulae s, α, x!E are non-progressing and require i = j. In
particular, x!E evaluates E in W with the current position marked with pebble
x. The formal semantics of pebWE is given in Table 1. By default, i and j are
the first and the last position of W , i.e., 0 and |W |, so that we use [[E]](W,σ)
as a shortcut for [[E]](W,σ, 0, |W |). In the following, we call pebble-depth of an
expression in pebWE its maximal number of nested x!E operators.

Example 2. Over (N ∪ {−∞},max,+,−∞, 0), consider the pebWE

E =
(
(1 call?→¬ret?) + (int?→¬ret?) +�+ (ret?→¬ret?)

)∗
x?→∗ .

390 B. Bollig, P. Gastin, and B. Monmege

Table 1. Semantics of pebWE

[[s]](W, σ, i, j) =

{
s if j = i

0 otherwise
[[α]](W, σ, i, j) =

{
1 if j = i ∧W,σ, i |= α

0 otherwise

[[d]](W, σ, i, j) =

{
1 if i d j

0 otherwise
(with d ∈ {←,→,�,	})

[[x!E]](W,σ, i, j) =

{
[[E]](W, σ[x �→ i], 0, |W |) if j = i < |W |
0 otherwise

[[E · F]](W,σ, i, j) =
∑

k∈pos(W)

[[E]](W, σ, i, k)× [[F]](W,σ, k, j)

[[E + F]] = [[E]] + [[F]] [[E+]] =
∑
n>0

[[En]]

Notice the use of 1 ∈ N which is not the unit of the semiring. Moreover, oper-
ations + are resolved by the max operator, whereas concatenation implies the
use of addition in N ∪ {−∞}. For every nested word W , and every position
i ∈ pos(W), [[E]](W, [x �→ i]) computes the call-depth of position i: indeed the
first Kleene star is unambiguous, meaning that only one path starting from po-
sition 0 will lead to x in this iteration; along this path – the shortest one – we
only count the number of times we enter inside the context of a call position.
Hence, the call-depth of W can be computed with expression E′ =→∗(x!E)→∗.

4 Weighted Automata with Pebbles

We define an automaton that walks in a nested word W . Whether a transition
is applicable depends on the current control state and the current position i
in W , i.e., its letter and type τ(i). A transition then either moves to a succes-
sor/predecessor position (following the linear order or the nesting relation), or
drops/lifts a pebble whose name is taken from Peb. The effect of a transition is
described by a move from the set Move = {→,←,�,	, ↑} ∪ {↓x | x ∈ Peb}.

Definition 3. A pebble weighted automaton (or shortly pebWA) is a tuple
A = (Q,A, I, δ, T) where Q is a finite set of states, A is the input alphabet,
I ∈ SQ is the vector of initial weights, T ∈ SQ is the vector of final weights, and
δ : Q× Test×Move×Q→ S is a transition function with finite support1.

Informally, I assigns to any state q ∈ Q the weight Iq of entering a run in q.
Similarly, T determines the exit weight Tq at q. Finally, δ(p, α,m, q), determines
the weight of going from state p to state q depending on the move m ∈ Move
and on the outcome of a test α ∈ Test. The set of pebbles names of A is defined
to be the set of pebble names that appear either in drop transitions ↓x or in
tests x? of A.
1 The support of δ is the set of tuples (q, α,m, q′) such that δ(q, α,m, q′) 	= 0.

Weighted Specifications over Nested Words 391

Let us turn to the formal semantics of a pebWA A = (Q,A, I, δ, T). A run
is described as a sequence of configurations of A. A configuration is a tuple
(W,σ, q, i, π). Here, W is the nested word at hand, σ : Peb → pos(W) is a val-
uation, q ∈ Q indicates the current state, i ∈ pos(W) the current position, and
π ∈ (Peb × pos(W))∗. The valuation σ indicates the position of free pebbles x,
which may be tested successfully using x? even before being dropped with ↓x. It
can be omitted when there are no free pebbles. The string π may be interpreted
as the contents of a stack (its top being the rightmost symbol of π) that keeps
track of the positions where pebbles have been dropped, and in which order.
Pebbles are reusable (or invisible as introduced in [11]): this means that we have
an unbounded supply of pebbles each marked by a pebble name in Peb. More
than one pebble with name x can be placed at the same time, but only the last
dropped is visible in the configuration. However, when the latter will be lifted,
the previous occurrence of pebble x will become visible again. Formally, this
means that a pebble name can occur at several places in π, but only its topmost
occurrence is visible. Having this in mind, we define, given σ and π, a new val-
uation σπ : Peb → pos(W) by σε = σ and σπ(x,i)(x) = i, σπ(x,i)(y) = σπ(y) if
y �= x.

Any two configurations with fixed W and σ give rise to a concrete transition
(W,σ, p, i, π)� (W,σ, q, j, π′). Its weight is defined by∑

d∈{→,←,�,�}|i d j
α∈Test|W,σπ ,i|=α

δ(p, α, d, q) if π′ = π

∑
α∈Test|W,σπ ,i|=α

δ(p, α, ↓x, q) if j = 0, i < |W | and π′ = π(x, i)

∑
α∈Test|W,σπ,i|=α

δ(p, α, ↑, q) if π = π′(y, j) for some y ∈ Peb

and 0, otherwise. In particular, this implies that a pebble cannot be dropped on
position |W | in agreement with the convention adopted for weighted expressions.

A run of A is a sequence of consecutive transitions. Its weight is the product
of transition weights, multiplied from left to right. We are interested in runs that
start at some position i, in state p, and end in some configuration with position
j and state q. So, let [[Ap,q]](W,σ, i, j) be defined as the sum of the weights
of all runs from (W,σ, p, i, ε) to (W,σ, q, j, ε). Since the semiring is continuous,
[[Ap,q]](W,σ, i, j) is well defined.

The semantics of A wrt. the nested word W and the initial assignment σ
includes the initial and terminal weights, and we let

[[A]](W,σ) =
∑
p,q∈Q

Ip × [[Ap,q]](W,σ, 0, |W |)× Tq .

In order to evaluate automata, or prove some expressiveness results, we con-
sider the natural subclass of pebWA that cannot drop an unbounded number
of pebbles. We will hence identify K-layered automata, for K ≥ 0, where a

392 B. Bollig, P. Gastin, and B. Monmege

Layer 2:

Layer 1:

Layer 0:

→

←

�

	

→

←

�

←

→

←

→

	

→

	

→

←

�

←

↑ ↓x ↓y↑

↑ ↓x ↓z↑

�,→, 0

�, ↓x, 0
int?,→, 0
call?,→, 1

�,�, 0

�,→, 0

¬ret? ∧ x?,→, 0

x?,→, 0

�,→, 0

last?, ↑, 0

�,→, 0

(a) (b)

Fig. 2. (a) A 2-layered pebWA, (b) A pebWA computing the call-depth

state contains information about the number n ∈ {0, . . . ,K} of currently avail-
able pebbles. Formally, a pebWA A = (Q,A, I,M, T) is K-layered if there is
a mapping
 : Q → {0, . . . ,K} satisfying, for all p, q ∈ Q, (i) if Iq �= 0 or
Tq �= 0 then
(q) = K; (ii) if there is α ∈ Test and d ∈ {←,→,�,	} such
that δ(p, α, d, q) �= 0 then
(q) =
(p); (iii) if there is α ∈ Test such that
δ(p, α, ↑, q) �= 0 then
(q) =
(p) + 1; and (iv) if there is α ∈ Test and x ∈ Peb
such that δ(p, α, ↓x, q) �= 0 then
(q) =
(p)−1. Fig. 2(a) schematizes a 2-layered
pebWA.

Example 4. We depict in Fig. 2(b) a pebWA which computes the call-depth of
a nested word: it has the same semantics as expression E′ of Example 2. Notice
that this automaton is 1-layered.

We now extend the Kleene theorem to our setting. In order to express the com-
plexity of the construction, we define the literal-length

(E) of an expression as
the number of occurrences of moves in {→,←,�,	} plus twice the number of
occurrences of ! (in x!−).

Theorem 5. For each pebWE E, we can construct a layered pebWA A(E)
equivalent to E, i.e., for all nested words W and for all assignments σ we
have: [[A(E)]](W,σ) = [[E]](W,σ). Moreover, the number of layers in A(E) is
the pebble-depth of E, and its number of states is 1+

(E). Conversely, for each
layered pebWA we can construct an equivalent pebWE.

Such extensions of Kleene’s theorem have been proved for various weighted mod-
els. In [15], Sakarovitch gives a survey about different constructions establish-
ing Schützenberger’s theorem, namely Kleene’s theorem for weighted one-way
automata over finite words. An efficient algorithm constructing an automaton
from an expression uses standard automata (which has as variants Berry-Sethi
algorithm, or Glushkov algorithm). In [12], we extended this algorithm to deal
with pebbles and two-way navigation in (non-nested) words. It is not difficult
– and not surprising – to see that this extension holds in the context of nested
words too. For the converse translation, weighted versions of the state elimination

Weighted Specifications over Nested Words 393

method of Brzozowski-McCluskey, or the procedure of McNaughton-Yamada can
easily be applied to our two-way/pebble setting as previously stated in [12] over
(non-nested) words.

We now study the evaluation problem of a K-layered pebWA A: given a
nested word W over A and a valuation σ : Peb → pos(W), compute [[A]](W,σ).
The problem is non-trivial since, even if the nested word is fixed, the number of
accepting runs may be infinite.

Our evaluation algorithm requires the computation of the matrix N∗ given
a square matrix N ∈ Sn×n. By definition, N∗ is defined as the infinite sum∑

k≥0N
k, which is well defined since the semiring is continuous, but may seem

difficult to compute. However, using Conway’s decomposition of the star of a
matrix (see [16] for more details), we can compute N∗ with O(n) scalar star
operations and O(n3) scalar sum and product operations.

Theorem 6. Given a layered pebWA with ρ pebble names and a nested wordW ,
we can compute with O((ρ+1)|Q|3|W |ρ+1) scalar operations (sum, product, star)
the values [[Ap,q]](W,σ) for all states p, q ∈ Q and valuations σ : Peb→ pos(W).

Proof (Sketch). In the whole proof, we fix a nested wordW = (w,�). We follow
the same basic idea used to evaluate weighted automata over words, namely
computing matrices of weights for partial runs [12]. The 2-way navigation is
resolved by computing simultaneously matrices of weights of the back and forth
loops, whereas we deal with layers inductively. Finally, we deal with call-return
edges by using a hierarchical order based on the call-depth to compute the
different matrices. Hence, for every position i ∈ pos(W) we consider the pair
(start(i), end(i)) of start and end positions as follows:

start(i) = min{j ∈ pos(W) | j ≤ i ∧ ∀k j ≤ k ≤ i =⇒ c-d(k) ≥ c-d(i)}
end(i) = max{j ∈ pos(W) | i ≤ j ∧ ∀k i ≤ k ≤ j =⇒ c-d(k) ≥ c-d(i)}

For positions of call-depth 0, the start position is 0 whereas the end position is
|W |. For positions of call-depth at least 1 (see Fig. 3), the start position is the
linear successor of the closest call in the past such that its matched return is
after position i, whereas its end position is the linear predecessor of this return
position.

Let A = (Q,A, I,M, T) be a K-layered pebWA. For k ≤ K, we let Q(k) =

−1(k) be the set of states in layer k. For every layer k ∈ {0, . . . ,K} and all states

p, q ∈ Q(k) we denote by B
(k)
σ,p,q the sum of weights of the runs from configuration

(W,σ, p, 0, ε) to configuration (W,σ, q, |W |, ε): observe that the stack of pebbles
is empty at the beginning of these runs, hence they stay in layers k, k− 1, . . . , 0.

Notice that B
(k)
σ,p,q = [[Ap,q]](W,σ). In the following, these coefficients (and others

that will be defined later) will be grouped into matrices: for example, we denote

by B
(k)
σ the (Q(k) ×Q(k))-matrix containing all coefficients (B

(k)
σ,p,q)p,q∈Q(k) .

Fix a layer k ∈ {0, . . . ,K} of the automaton. Suppose by induction that we

have already computed matrices B
(k−1)
σ for every valuation σ : Peb→ pos(W).

For a valuation σ : Peb → pos(W), the matrix B
(k)
σ will be obtained by the

394 B. Bollig, P. Gastin, and B. Monmege

istart(i) end(i)

Bi→
σ

p

q

Bi

�

σ

p

q

istart(i) end(i)

B←i
σ

p

q

B �i
σ

p

q

Fig. 3. Representation of the four types of matrices

computation of four types of matrices for every position (see Fig. 3). For exam-
ple, Bi→σ,p,q (resp. Bi

�

σ,p,q) is the sum of weights of the runs from configuration
(W,σ, p, i, ε) to (W,σ, q, end(i), ε) (resp. (W,σ, q, i, ε)) with intermediary config-
urations of the form (W,σ, r, j, π) with π �= ε or i ≤ j ≤ end(i). These runs are
those which stay between their starting position and the corresponding end posi-
tion (except when they drop pebbles, allowing the automaton to scan the whole
nested word) stopping at the corresponding end position (resp. their starting

position). Note that B
(k)
σ = B0→

σ .
We compute these four types of matrices for every position i by decreasing

value of call-depth. Suppose this has been done for every position of call-depth
greater than c. We describe how to compute matrices Bi→σ and Bi

�

σ for every
position i of call-depth c, by decreasing values of i. Similarly, matrices B←iσ and
B �i
σ can be computed by increasing values of positions i having call-depth c.
We let Md

σ,i be the matrix with p, q-coefficient
∑

α∈Test|W,σ,i|=α δ(p, α, d, q) for
d ∈ {←,→,�,	}: this coefficient denotes the weight of taking a transition
with move d from state p to state q on position i with current valuation σ. We

similarly define matrices for drop, denoted M
↓x
σ,i, and lift moves: without loss of

generality, we assume that lift moves only occur on position |W |, so that it may
be denoted as M↑ since it does not depend on the valuation σ.

We only explain how to compute matrices Bi→σ and Bi

�

σ when i < end(i) and
i is not a call. Other cases may be found in the long version [13]. A loop on
the right of i either starts by dropping a pebble over i, or starts with a right
move, followed by a loop on the right of i + 1 and a left move. All of this may
be iterated using a star operation:

Bi

�

σ =
(∑
x∈Peb

M
↓x
σ,i ×B

(k−1)
σ[x �→i] ×M↑ +M→σ,i ×Bi+1

�

σ ×M←σ,i+1

)∗
.

Moving to the right of position i, until end(i), can be decomposed as a loop
on the right of i, followed by a right move (from that point, we will not reach
position i anymore) and a run from i+ 1 to end(i+ 1) = end(i):

Bi→σ = Bi

�

σ ×M→σ,i ×Bi+1→
σ . ��

Notice that if the nested word is in fact a word, our algorithm only needs to
compute the two sets of matrices Bi→σ and Bi

�

σ with a backward visit of the

Weighted Specifications over Nested Words 395

Table 2. Semantics of wFO

[[s]](W, σ) = s [[ϕ]](W, σ) =

{
1 if W,σ |= ϕ

0 otherwise

[[Φ+ Ψ]] = [[Φ]] + [[Ψ]]
[[∑

xΦ
]]
(W,σ) =

∑
u∈pos(W)

[[Φ]](W, σ[x �→ u])

[[Φ× Ψ]] = [[Φ]] × [[Ψ]]
[[∏

xΦ
]]
(W,σ) =

∏
u∈pos(W)

[[Φ]](W, σ[x �→ u])

positions of the word. This is indeed a different algorithm than the one presented
in [12] where the positions are visited in a forward manner.

Classical decision problems over finite state automata have natural counter-
parts in the weighted setting. For example, the emptiness problem takes as in-
put a pebWA A, and asks whether there exists a nested word W such that
[[A]](W) �= 0.

Theorem 7. The emptiness problem is decidable, with non-elementary complex-
ity, for layered pebWA over a continuous semiring S with no zero divisor, i.e.,
such that s× s′ = 0 implies s = 0 or s′ = 0.

5 Weighted Logical Specifications over Nested Words

5.1 Weighted First-Order Logic

We fix an infinite supply of first-order variables V = {x, y, . . .}. We suppose
known the fragment of (Boolean) first-order formulae, denoted as FO, over nested
words, defined by the grammar

ϕ ::= * | Pa(x) | x ≤ y | x� y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ

where a ∈ A and x, y ∈ V .
The weighted extension is based on sums and products as for FO with counting

(see [17], e.g.). The class of weighted first-order formulae, denoted as wFO, is
defined by:

Φ ::= s | ϕ | Φ+ Φ | Φ× Φ |
∑

xΦ |
∏
xΦ

where s ∈ S, ϕ ∈ FO, and x ∈ V .
The semantics of a wFO formula is a map from nested words to the semiring.

For the inductive definition, we need to consider formulae with free variables.
So let Φ ∈ wFO. Then, [[Φ]] maps to a value in S each pair (W,σ) where W is a
nested word and σ : V → pos(W) is a valuation of a subset V ⊆ V containing the
free variables of Φ. The inductive definition is given in Table 2. It is possible to

define a quantitative implication: given ϕ ∈ FO and Φ ∈ wFO, we let ϕ
+
=⇒ Φ

be a macro for the formula ¬ϕ + ϕ× Φ. Then, its semantics coincides with the
semantics of Φ if ϕ holds, and its semantics is 1 (the unit of the semiring) if ϕ
does not hold.

396 B. Bollig, P. Gastin, and B. Monmege

s · →

→

AΦ AΨ
last?

←

first?

Fig. 4. Automata for Ξ = s and Ξ = Φ× Ψ

Example 8. In the semiring of natural numbers, the formula
∑

y(x ≤ y ∧Pa(y))
computes the number of a’s after the position of variable x in the nested word.

In a probabilistic setting, the formula Φ(x) =
∏
y

(
y ≤ x

+
=⇒ 1/2

)
maps a

position i to (1/2)i+1, hence defining a geometric probability distribution over
the positions of the nested word. We can then compute the expectation of a
formula Ψ(x) by the formula

∑
x Φ(x) × Ψ(x).

Finally, the formula
∑

x

∏
y

[(
∃z (y� z ∧ y < x < z)

) +
=⇒ 1

]
computes

the call-depth of a nested word, as it was already presented for expressions and
automata in Examples 2 and 4. Notice again that here, sum stands for max,
product for +, and the unit of the semiring is 0.

Theorem 9. Let Φ ∈ wFO be a formula and V ⊆ V be a finite set con-
taining the variables occurring in Φ (free or bound). We can effectively con-
struct an equivalent layered pebWA AΦ with O(|Φ|) states and set V of peb-
ble names: [[AΦ]](W,σ) = [[Φ]](W,σ) for every nested word W and valuation
σ : V → pos(W).

Proof. This is achieved by structural induction on the formula. We deal with
Boolean formulae below. For Ξ = s ∈ S, the automaton is given on the left of
Fig. 4. For the sum Ξ = Φ+ Ψ , we use a non-deterministic choice as usual. For
the product Ξ = Φ × Ψ , the construction is described on the right of Fig. 4.
Constructions for Ξ =

∑
xΦ and Ξ =

∏
xΦ are schematized in Fig. 5.

AΦ

→ →

↓x last?↑

AΦ

↓x last?↑

→

Fig. 5. Automata for
∑

xΦ and
∏

xΦ

We explain now the construction of pebWA for Boolean formulae. The values
computed by such automata should be in {0, 1} so we cannot freely use non-
determinism. Also, to achieve the complexity stated in the theorem, we cannot
use classical constructions yielding deterministic automata. Instead, we build

Weighted Specifications over Nested Words 397

ι

ok

ko

→
→

→

x? ∧ a? · →

x? ∧ ¬a? · →
ι

ok

ko

→
→

→

x? ·�

x? ∧ ¬call? · →

y? · →

¬y? · →

Fig. 6. Automata for Pa(x) and x� y

unambiguous automata. Hence, for every ϕ ∈ FO and V ⊆ V containing the
free variables of ϕ, we construct a pebWA Bϕ having one initial state ι and
two (final) states ok and ko such that for all nested words W and valuations
σ : V → pos(W) we have:

[[Bϕι,ok]](W,σ) =
{
1 if W,σ |= ϕ

0 otherwise,
[[Bϕι,ko]](W,σ) =

{
0 if W,σ |= ϕ

1 otherwise.

We obtain automatonAϕ by considering Bϕ with ι (resp. ok) having initial (resp.
final) weight 1. To get an automaton for the negation of a formula, we simply
exchange states ok and ko. Automata for atoms Pa(x) and x�y are given in
Fig. 6 and the automaton for x ≤ y is left to the reader.

Bϕ
okϕ

koϕ
Bψ

okψ

koψ
last?

←

first?
okξ

koξ

last?

last?

last?

The construction for disjunction ξ = ϕ ∨ ψ is described above. It is similar
to the one used for the product: we start computing ϕ and stop if it is verified,
otherwise, we reset to the beginning of the nested word and check formula ψ.
The construction for conjunction is obtained dually.

Bϕ

okϕ

koϕ↓x

last?↑

→

okξ

koξ

last?↑
→

last?

Finally, the construction for existential quantification ξ = ∃x ϕ is described
above. Again, the construction for universal quantification is dual. ��

398 B. Bollig, P. Gastin, and B. Monmege

5.2 Weighted Temporal Logics

A temporal logic is usually based on modalities such as next and until where
the until modality is a simple fixed point based on the next modality. When the
structures (the models) are not linear, one may follow different paths which are
in general based on elementary steps. For instance, in unranked trees, one may
move vertically down to a child or up to the father, or horizontally to the right or
left brother. Similarly, for nested words, several types of paths were introduced
in [3] yielding various until modalities, some of them will be discussed below.

Here, we adopt a generic definition of temporal logics where until modalities
are based on various elementary steps. Formally, an elementary step η is an
unambiguous regular expression following the syntax:

η ::= α | → | ← |� |	 | η + η | η · η | η+

α ::= a? | τ? | ¬α | α ∧ α | α ∨ α (1)

with a ∈ A and τ ∈ T . By unambiguous we mean that the quantitative semantics
[[η]] as defined in Section 3 coincides with the Boolean semantics: [[η]](W, i, j) ∈
{0, 1} for all nested words W and positions i, j ∈ pos(W).

For instance, the (classical) linear until is based on the linear step η = →.
The summary-up until is based on the summary-up step σu defined as σu =
�+ ¬call? · → which may move directly from a call to the matching return, or
go to the successor, but cannot “enter” a call. The summary-down until is based
on the summary-down step defined as σd = � +→ · ¬ret?. Notice that σd is
unambiguous, even though a call position may have two successors.

The syntax of the weighted temporal logic wTL over nested words is defined
by

Φ ::= s | α | Φ+ Φ | Φ× Φ | Φ SUη Φ

with s ∈ S, α simple tests as defined in (1), and η elementary steps. Since a
(weighted) temporal logic formula has an implicit free variable, the quantitative
semantics [[Φ]](W, i) ∈ S maps a nested word W and a position i ∈ pos(W) to a
value in the semiring. It is defined in Table 3. Given a nested word W , we say
that two positions i, j ∈ pos(W) form an η-step if [[η]](W, i, j) = 1. Moreover, an
η-path is a sequence i0, . . . , in ∈ pos(W) such that (ik, ik+1) is an η-step for all
0 ≤ k < n.

As usual, we may use derived modalities such as the non strict until defined
by ϕUηψ

def
= ψ+ϕ× (ϕSUηψ) and η-next defined by Xη ϕ

def
= ⊥SUηϕ. As special

cases, we get the linear next ⊥ SU→ ϕ and the jumping next X� ϕ = ⊥ SU� ϕ.
We also get eventually with Fϕ = * U→ ϕ, but notice that * SU� ϕ = X� ϕ
since two consecutive �-steps are not possible.

As a concrete example, the call-depth of a nested word can be computed with

the formula (1 × ¬ret?× X←(call?) + X←(¬call?) + ret? + first?) Uσ
d *.

Notice that the sum in (2) may be infinite for some step expressions such as
η = ←+→. On the other hand, if a step expression only moves forward (resp.
backward) then it defines a future (resp. past) modality and the sum in (2) is
finite. The following theorem shows that wTL formulae can be translated into
equivalent layered pebWA.

Weighted Specifications over Nested Words 399

Table 3. Semantics of wTL

[[s]](W, i) = s [[α]](W, i) =

{
1 if W, i |= α

0 otherwise

[[Φ+ Ψ]] = [[Φ]] + [[Ψ]] [[Φ× Ψ]] = [[Φ]] × [[Ψ]]

[[Φ SUη Ψ]](W, i) =
∑

i=i0,i1,...,inη-path

(∏
0<k<n

[[Φ]](W, ik)

)
× [[Ψ]](W, in) . (2)

Cη

AΦ AΨ

→ →

x?

↓x

last?↑

↓x

last?↑

Fig. 7. Automaton for Ξ = Φ SUη Ψ

Theorem 10. For each wTL formula Φ we can effectively construct an equiv-
alent layered pebWA AΦ with a single pebble name and O(|Φ|) states: for all
nested words W and positions i ∈ pos(W) we have [[AΦ]](W,x �→ i) = [[Φ]](W, i).

Proof (Sketch). We explain the construction for SUη where η is a step expres-
sion. Using Theorem 5, from the pebWE η we obtain an equivalent pebWA Cη:
[[Cη]](W, i, j) = [[η]](W, i, j) for all nested words W and positions i, j ∈ pos(W).

Consider the wTL formula Ξ = Φ SUη Ψ and assume we have already con-
structed the pebWA AΦ and AΨ . The pebWA AΞ is given in Fig. 7. Observe
that we have added one layer and a constant number of states. ��

Notice that we can extend the wTL in several ways. First, instead of simple
(pebble-free) tests α we may allow arbitrary Boolean formula ϕ(x) ∈ FO having
a single free variable. Second, we may allow weighted regular expressions for
steps, in which case we have to include the weights of η-steps in the semantics
of the weighted until in (2).

6 Conclusion and Perspectives

We have presented a general framework to specify quantitative properties of
nested words, and compile them into automata.

Several improvements can be considered. First, concerning our procedure for
evaluation, [12] also presented an improved algorithm in the strongly layered
case, namely when at every layer, only one pebble name can be dropped. We
did not consider this case in this paper for lack of space, but we believe it can

400 B. Bollig, P. Gastin, and B. Monmege

be adapted in the nested word case, and leave it for future work. Second, we
would like to extend the decidability of emptiness in the general case, where the
semiring may have zero divisors.

Finally, notice that, contrary to [3], wFO is strictly less expressive than our
temporal logics. This is due to the power of η steps, which gives to wTL a flavor
of weighted transitive closure (see [5]). As other directions of research, we would
like to study this transitive closure operator in order to find a logical fragment
expressively equivalent to pebWA and pebWE.

We thank the anonymous referees for their valuable comments.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 16:1–
16:43 (2009)

2. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Inf. Process.
Lett. 109(1), 13–17 (2008)

3. Alur, R., Arenas, M., Barceló, E.K., Immerman, N., Libkin, L.: First-order and
temporal logics for nested words. LMCS 4(4) (2008)

4. Madhusudan, P., Viswanathan, M.: Query Automata for Nested Words. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573.
Springer, Heidelberg (2009)

5. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble Weighted Automata and
Transitive Closure Logics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 587–598.
Springer, Heidelberg (2010)

6. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4, 245–270 (1961)

7. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Handbook of
Weighted Automata, pp. 175–211. Springer (2009)

8. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science 6(1) (2010)

9. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Com-
put. Syst. 48(1), 23–47 (2011)

10. Bojańczyk, M.: Tree-Walking Automata. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 1–2. Springer, Heidelberg (2008)

11. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: Proceedings of PODS 2007, pp. 63–72 (2007)

12. Gastin, P., Monmege, B.: Adding Pebbles to Weighted Automata. In: Moreira,
N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 28–51. Springer, Heidelberg
(2012)

13. Bollig, B., Gastin, P., Monmege, B.: Weighted specifications over nested words.
Technical report (2013),
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/newrapports

14. Droste, M., Kuich, W.: Semirings and formal power series. In: Handbook of
Weighted Automata, pp. 3–27. Springer (2009)

15. Sakarovitch, J.: Automata and expressions. In: AutoMathA Handbook (2012) (to
appear)

16. Conway, J.: Regular Algebra and Finite Machines. Chapman & Hall (1971)
17. Libkin, L.: Elements of Finite Model Theory. In: EATCS. Springer (2004)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/newrapports

An Algebraic Presentation of Predicate Logic

(Extended Abstract)

Sam StatonÆ

Computer Laboratory, University of Cambridge

Abstract. We present an algebraic theory for a fragment of predicate
logic. The fragment has disjunction, existential quantification and equal-
ity. It is not an algebraic theory in the classical sense, but rather within
a new framework that we call ‘parameterized algebraic theories’.

We demonstrate the relevance of this algebraic presentation to com-
puter science by identifying a programming language in which every type
carries a model of the algebraic theory. The result is a simple functional
logic programming language.

We provide a syntax-free representation theorem which places terms
in bijection with sieves, a concept from category theory.

We study presentation-invariance for general parameterized algebraic
theories by providing a theory of clones. We show that parameterized
algebraic theories characterize a class of enriched monads.

1 Introduction

This paper is about the following fragment of predicate logic:

P,Q ::� � � P �Q � �t � u� � P � �a. P �a� � x	t1, . . . , tn

where t, u range over the domain of discourse and x is an n-ary predicate symbol.
We provide an algebraic presentation of logical equivalence using a new algebraic
framework that we call ‘parameterized algebraic theories’. This syntactic frame-
work comes with a straightforward deduction system.

Having introduced the new algebraic framework and presented the theory of
predicate logic, we make three further contributions.

1. We consider a programming language in which every type is equipped with
the structure of a model of the theory. This yields a simple functional logic
programming language (in the sense of [7]). In doing this, we add weight to the
slogan of Plotkin and Power [35]: ‘algebraic theories determine computational
effects’. We demonstrate our language by providing a simple implementation1.

2. We give a representation theorem for terms in our algebraic theory. There
is nothing canonical about a presentation of an algebraic theory: which function

Æ Research partially supported by a grant from the Isaac Newton Trust and ERC
Project ECSYM.

1 The implementation is available at http://www.cl.cam.ac.uk/users/ss368/flp.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 401–417, 2013.
© Springer-Verlag Berlin Heidelberg 2013

402 S. Staton

symbols should be used? which assortment of equations? We show that our
algebraic presentation of predicate logic is correct by representing terms up-to
equivalence as mathematical objects. More precisely, we show that terms up-to
equivalence can be understood as sieves, a kind of generalized subset.

3. The idea of presentation-invariance of theories is an important one, and so
we introduce a general notion of ‘clone’ for parameterized algebraic theories. Via
enriched category theory we obtain a semantic status for the syntactic framework
of parameterized algebraic theories. In particular, we show that the parameter-
ized algebraic theories can be understood as a class of enriched monads.

This work thus provides a principled foundation for program equations, with
anticipated consequences for program verification and compiler design (see [24]).

In many ways our algebraic presentation of predicate logic is an elaboration
of the algebraic theory of semilattices. Recall that the theory of semilattices has
a constant � and a binary function symbol �, and the following equations

�x� y� � z � x� �y � z� x� y � y � x x� x � x �� x � x. (1)

Predicate logic combines these equations with others, such as the equation
x	b
 � �a. x	a
 � �a. x	a
. We introduce the article by considering the three con-
tributions from the simpler perspective of semilattices.

Extending the Theory to a Programming Language (§3). To extend the theory of
semilattices to a functional language, we add a constant � and a binary operation
� at each type. The result is a language that is declarative in two ways: first as
a functional language, and second in that the semilattice structure provides a
kind of non-determinism.

The additional constructs of predicate logic provide further techniques for
declarative programming: �t � u� � P can be understood as unification and
�a. P �a� can be understood as introducing a new logic variable. Thus the func-
tional language gains an abstract type param, representing the domain of dis-
course. If the domain of discourse is the Peano natural numbers, we have ex-
pressions z:param and s:param�param. Consider the following recursive program
add of type param�param�param�unit:

add a b c
def
�
�
�a � z���b � c����

�
�
�
�a�. �b�. �a � s�a�����c � s�c����add a� b c�

�

The program returns if a�b � c, and fails if not. Thus functions into unit are like
predicates. To experiment in more depth we provide a simple implementation in
Standard ML.

Representation Theorem (§4). Any presentation of an algebraic theory is some-
what arbitrary. We could have presented semilattices (1) using a ternary disjunc-
tion, or by replacing associativitywithmediality (�v�x���y�z� � �v�y���x�z�).
What really matters about the theory of semilattices is that to give

An Algebraic Presentation of Predicate Logic 403

a term is to give the set of variables that appear in it. For instance, �x� z�� v and
v � ��z � x� � �� both use the same variables, and they are provably equal.

When we move to the algebraic theory of disjunctive predicate logic, a rep-
resentation result is even more desirable, since the axiomatization is more com-
plicated. We no longer have a characterization in terms of sets of variables.
Rather, we generalize that analysis by understanding a set of variables as a kind
of weakening principle: in any algebraic theory, any term involving those vari-
ables can also be considered as a term involving more variables. In the setting of
parameterized algebraic theories, the notions of substitution and weakening are
more sophisticated. Nonetheless our representation theorem characterizes terms
of disjunctive predicate logic as classes of substitutions that satisfy a closure
condition. We set this up using category theory, by defining a category whose
objects are contexts and whose morphisms are substitutions, so that a class of
substitutions is a ‘sieve’.

This representation theorem shows that our algebraic theory of disjunctive
predicate logic is not just an ad-hoc syntactic gadget: it is mathematically nat-
ural. This corroborates the following general hypothesis: algebraic theories for
computational effects should have elegant characterizations of terms and free
models [35,30].

Clones (§5). In our third contribution we stay with the theme of presentation in-
variance, but we study it for parameterized algebraic theories in general. In clas-
sical universal algebra, presentation-invariance is studied via clones: closed sets
of operations. Recall that an abstract clone is given by a set T �n� for each nat-
ural number n, a tuple ηn T �n�

n for each number n, and a family of functions
��m,n : Tm��Tn�m � Tn�m,n, all satisfying some conditions (e.g. [14, Ch. III]).

The terms in the theory of semilattices form a clone: T �n� is the set of terms
in n variables, η picks out the terms that are merely variables; and � describes
simultaneous substitution. Similarly the subsets form a clone: T �n� is the set of
subsets of n, η picks out the singleton subsets, and � is a union construction.
These two clones are isomorphic.

Abstract clones can be equivalently described as monoids in a suitable mon-
oidal category, and moreover equivalently described as finitary monads on the
category of sets. This provides the connection between Moggi’s work on compu-
tational monads [32] and the assertion of Plotkin and Power [35] that computa-
tional effects determine algebraic theories.

In Section 5, we revisit this situation in the context of parameterized algebraic
theories. We provide a general notion of enriched clone. Specialized to enrich-
ment in a presheaf category, this provides a presentation-invariant description
of parameterized algebraic theories. For general reasons, enriched clones can be
equivalently described as sifted-colimit-preserving enriched monads on a presheaf
category. Thus our syntactic framework of parameterized algebraic theories is
given a canonical semantic status and a connection with Moggi’s work [32].

404 S. Staton

2 Presentations of Parameterized Algebraic Theories

We will present disjunctive predicate logic as an algebraic theory within a new
framework of parameterized algebraic theories. It is an algebraic theory that
takes parameters from another algebraic theory. When we write

��a � a� � x� � x (2)

this is a judgement of equality between predicates, and while x is a variable
standing for a predicate, a is not: it stands for a term (e.g. a natural number).
This phenomenon is common across mathematics. For example, in linear algebra,
when we write a�x� y� � ax� ay the variables x and y have a different status
to the scalar parameter a.

Parameterized algebraic theories are not merely 2-sorted theories. In equa-
tion (2), the variable x stands for a predicate which might itself have parameters.
For example, we can describe the substitutive nature of equality like this:

�a � b� � x	a
 � �a � b� � x	b
. (3)

The substitution of predicates for variables is now quite elaborate. One instance
of equation (3) is �a � b� � �a � a� � y � �a � b� � �b � a� � y, under the
assignment x	c
 �� �c � a� � y.

Quantifiers bind parameters, requiring equations like this:

x	b
 � �a. x	a
 � �a. x	a
 (4)

in which the parameter b is free while the parameter a is bound. We work up-to
α-equivalence (�a. x	a
 � �b. x	b
) and substitution must avoid variable capture:
we must change bound variables before substituting x	c
 �� �c � a� � y in (4).

In this section we give a technical account of what constitutes a signature of
parameters (§2.1) and an algebraic theory parameterized in that signature (§2.2).
In the example of predicate logic, terms of the signature of parameters describe
the domain of discourse. Terms of the parameterized theory are predicates over
the domain of discourse, or alternatively simple logic programs over the domain
of discourse.

The general framework is essentially a single-sorted version of the ‘effect theo-
ries’ developed in joint work with Møgelberg [31], based on proposals by Plotkin
and Pretnar [34,37].

2.1 Signatures of Parameters

Recall the notion of signature used in universal algebra. A signature is given
by a set of function symbols, f, g, . . . , each equipped with an arity, which is a
natural number specifying how many arguments it takes. From a signature we
can build terms-in-context:

(i � ��a�)
�a � ai

�a � t1 . . . �a � tn
(f has arity n)

�a � f�t1, . . . , tn�

An Algebraic Presentation of Predicate Logic 405

(We write �a for a list of variables a1, a2, . . . and ��a� for the length of the list.)

Here are some simple examples of signatures:

� The empty signature has no function symbols.

� The signature of natural numbers has a constant symbol z (i.e. a function
symbol with arity 0) and a unary function symbol s.

� The domain of a database can be described by a signature with a constant
symbol for each element of the domain.

2.2 Parameterized Algebraic Theories

Let S be a signature as in Sect. 2.1. A signature T parameterized by S is given by a
set of function symbols F,G, . . . each equipped with an arity, written F : �p � �n�,
where p is a natural number and �n a list of natural numbers. We distinguish
between parameters and arguments. The number p determines how many pa-
rameters (from S) the function symbol takes. The length of the list �n determines
how many arguments (from T) the function symbol takes, and each component of
the list determines the valence or binding depth of that argument. For instance,
the arity of binary join is � : �0 � 	0, 0
�, since it takes two arguments with no
variable binding; the arity of the equality predicate �a � b� � x is �2 � 	0
� as it
takes two parameters (a and b) and one argument (x); the arity of the quantifier
is � : �0 � 	1
� since it takes one argument with a bound variable.

From a parameterized signature we can build parameterized terms in context.
A context Γ � Δ for a parameterized term has two parts, comprising two kinds of
variable. The first part Γ is a finite set of variables ranging over parameters. The
second part Δ is a finite set of variables ranging over terms, each equipped with
a natural number, which specifies how many parameters the variable takes. As
usual, we write a set of variables as a list with the convention that all variables
are different. The terms-in-context are built from variables, function symbols
and terms from the signature of parameters, using the following two rules.

Γ � t1 . . . Γ � tni

Γ � x1 : n1 . . . xk : nk � xi	t1 . . . tni

Γ � t1 . . . Γ � tp Γ, a1,1 . . . a1,n1 � Δ � u1 . . . Γ, ak,1 . . . ak,nk
� Δ � uk

Γ � Δ � F�t1, . . . , tp,�a1. u1, . . . ,�ak. uk�

(5)

where F : �p � 	n1 . . . nk
�. We work up-to α-renaming the binders �a. Notice our
distinction between judgements of parameters (Γ � t) and of terms (Γ � Δ � t).

Definition 1. A presentation of a parameterized algebraic theory is a parame-
terized signature together with a collection of equations, where an equation is a
pair of two terms in the same context.

We define substitution for the two kinds of variable in a standard way, so as to
give the following derived rules.

Γ � t Γ, a � Δ � u

Γ � Δ � u	t�a

Γ, a1 . . . an � Δ � t Γ � Δ,x : n � u

Γ � Δ � u	a1...an.t�x

(6)

406 S. Staton

Recall that all variables in a context are distinct. Thus substitution is capture-
avoiding unless the capture is explicit.

We form a deductive system from a presentation by combining all substitution-
instances of the equations with the usual laws of reflexivity, symmetry, transi-
tivity, and the following congruence rule:

Γ � t1 . . . Γ � tp Γ,�a1 � Δ � u1 � u�1 . . . Γ,�ak � Δ � uk � u�k

Γ � Δ � F�t1, . . . , tp,�a1. u1, . . . ,�ak. uk� � F�t1, . . . , tp,�a1. u
�
1, . . . ,�ak. u

�
k�

(7)

2.3 Presentation of Predicate Logic

We now describe disjunctive predicate logic as a parameterized algebraic theory.
Predicates range over a domain of discourse, which is a signature of parameters.
In this paper we only consider two signatures of parameters: (1) the empty one;
(2) the signature of natural numbers; but other signatures can be accommodated
straightforwardly.

The parameterized algebraic theory is given in Figure 1. It has a constant
symbol � and a binary function symbol �. There is a unary function symbol ��:��
which takes two parameters, and a function symbol � which binds a parameter.
We use an infix notation for � and �:�. Term formation (5) yields

Γ �Δ � �

Γ �Δ � t Γ �Δ � u

Γ �Δ � t� u

Γ � t1 Γ � t2 Γ �Δ � u

Γ �Δ � �t1 �:� t2�u

Γ, a � Δ � u

Γ � Δ � �a. u

The string �a �:� b�x	
 can be thought of as the predicate �a � b� � x	
, or as
the logic program ‘unify a and b, and then continue as x’. Note that we do
not have arbitrary conjunctions in our algebraic theory. However, if we under-
stand predicate variables as continuation variables, then substitution behaves
like conjunction: e.g. given �a � x : 0 � t and �a � � � u, the expression t	u�x

can be understood as t� u. We return to the idea of ‘conjunction as sequential
composition’ in Section 3.

Laws 1–4 are the laws of semilattices. Laws 5–7 are basic axioms for equality.
If we write ‘t � u’ for ‘t�u � u’, then Laws 8, 9, 10 can be written �a. x	
 � x	
,
x	b
 � �a. x	a
, �a �:� b�x	
 � x	
. Laws 11 and 12 say that � commutes over �:�
and �. In fact, all the operations commute over each other. For instance,

a, b � � � �a �:� b��
4
� �� �a �:� b��

2
� �a �:� b�� � �

10
� �.

Laws 13 and 14 are axioms of Peano arithmetic. Law 15 is ‘occurs check’.
We can derive a, b � y : 0 � �a �:� b�y	
 � �b �:� a�y	
. First, notice that

a, b � y : 0 � �a �:� b��a �:� a�y	
 � �a �:� b��b �:� a�y	
 is an instance of Law 6, un-
der the substitution 	c.��c�:�a�y����x
. Now,

a, b � y : 0 � �a �:� b�y
5
� �a �:� b��a �:� a�y	

6
� �a �:� b��b �:� a�y	

7
� �b �:� a��a �:� b�y	

6
� �b �:� a��b �:� b�y	

5
� �b �:� a�y	
.

An Algebraic Presentation of Predicate Logic 407

Signature: � : �0 � ��� 	 : �0 � �0, 0�� �
:
� : �2 � �0�� � : �0 � �1��

Equations: 1. � � x, y, z : 0 �x�� 	 y��� 	 z�� � x�� 	 �y�� 	 z���

2. � � x, y : 0 x�� 	 y�� � y�� 	 x��

3. � � x : 0 x�� 	 x�� � x��

4. � � x : 0 �	 x�� � x��

5. a � x : 0 �a
:
 a�x�� � x��

6. a, b � x : 1 �a
:
 b�x�a� � �a
:
 b�x�b�

7. a, b, c, d � x : 0 �a
:
 b��c
:
 d�x � �c
:
 d��a
:
 b�x

8. � � x : 0 ��a. x��� 	 x�� � x��

9. b � x : 1 x�b� 	 �a. x�a� � �a. x�a�

10. a, b � x : 0 ��a
:
 b�x��� 	 x�� � x��

11. a, b � x, y : 0 �a
:
 b��x�� 	 y��� � ��a
:
 b�x��� 	 ��a
:
 b�y���

12. � � x, y : 1 �a. �x�a� 	 y�a�� � �a. x�a� 	 �a. y�a�

Additional equation schemes when the signature of parameters is natural numbers:

13. a � x : 0 �z
:
 s�a��x�� � �

14. a, b � x : 0 �s�a�
:
 s�b��x�� � �a
:
 b�x��

15. a � x : 0 �a
:
 sn�a��x�� � � �n � 0, where s2�a� 	 s�s�a��, etc.

Fig. 1. A presentation of the parameterized theory of disjunctive predicate logic

A subtle point is that the context cannot be omitted. When the signature of
parameters is empty, the equation � � x : 0 � �a. x	
 � x	
 is not derivable, al-

though we do have a � x : 0 � �a. x	

9
� x	
 � �a. x	

2
� ��a. x	
� � x	

8
� x	
. (To

instantiate law 9 we applied the substitution 	a.x���x
.)

2.4 Other Examples of Parameterized Algebraic Theories

Any classical algebraic theory can be understood as a parameterized one in which
the function symbols take no parameters and all the valences are 0. A slightly
more elaborate example is the 2-sorted theory of modules over an unspecified
ring, which is an algebraic theory parameterized in the signature of rings.

For any signature we have the following theory of computations over a memory
cell. There are two function symbols in the parameterized algebraic theory: w :
�1 � 	0
� and r : �0 � 	1
�. The intuition is that w�a, x	
� writes a to memory and
continues as x, while r�a. x	a
� reads from memory, binds the result to a, and
continues as x. The presentation has three equations (c.f. [35]):

x	
 � r�a.w�a, x	
�� w�a,w�b, x	
�� � w�b, x	
� w�a, r�b. x	b
�� � w�a, x	a
�

The first equation says that if you read a, then write a, then continue as x,
then you may as well just run x. The second equation says that if you write to
memory twice then it is the second write that counts. The third equation says
that if you read b after a write a, then b will be a and the read is unnecessary.

408 S. Staton

If the parameterizing signature is the signature of natural numbers then there
is an expression r�a.w�s�a�, x��, which increments the memory and continues
as x.

2.5 Set-Theoretic Models

We briefly discuss models of parameterized algebraic theories. As we will see,
the set-theoretic notion of model is not a complete way to understand theories,
but it is sound and so we are able to use it to verify consistency.

A set-theoretic structure for a parameterized algebraic theory is given by
two sets: a set π of parameters, and a set M which is the carrier. For each n-
ary function symbol f in the signature of parameters, a function f : πn � π
must be given. For each function symbol F : �p � �n� in the theory, a function

F : πp �
�
$n

j	1M

�πnj � �M must be given. Here M �πnj � is the set of functions
from �πnj � to M . It is routine to extend this to all terms, interpreting a term-

in-context �a � �x : �n � t as a function �t� : π
$a
 ��
$n

j	1M

�πnj � �M . We say that
a structure is a model when for each equation Γ � Δ � t � u in the theory the
corresponding functions are equal: �t� � �u�. This interpretation is sound:

Proposition 1. If �a � �x : �n � t � u is derivable in a parameterized algebraic
theory, then �t� � �u� in all models.

Consider the theory of disjunctive predicate logic over the signature for natural
numbers. We can let π be the set N of natural numbers, and then we must provide
a set M together with an element � and three functions: � : M �M � M ,
��:�� : N�N�M �M , and � :MN �M . In fact, this forms a model if and only
if M is a countable semilattice, with � and � supplying the finite joins and �
supplying the countably infinite joins. By the soundness result, the consistency
of our theory is witnessed by giving a non-trivial countable-join-semilattice.

There are two things that are unsatisfactory about set-theoretic models of
disjunctive predicate logic. First, it is often best not to think of � as a countable
join: in logic programming it is better to think of � as introducing a free logic
variable. Second, the interpretation of ��:�� is necessarily fixed, as we now explain.

2.6 Incompleteness of Set-Theoretic Models

Classical universal algebra is complete for set-theoretic models: if an equation is
true in all algebras, then it is derivable. However, set-theoretic models are not
complete for parameterized algebraic theories: some equations are true in all set-
theoretic models but not derivable. In any set-theoretic structure for disjunctive
predicate logic, the three equations

�a �:� a�x	
 � x	
 �a �:� b�� � � �a �:� b�x	a
 � �a �:� b�x	b
 (8)

An Algebraic Presentation of Predicate Logic 409

entirely determine ��:��. This is because two elements a, b of π are either equal
or not equal. In any structure satisfying the three equations we must have
�a �:� b��x� � x when a � b and �a �:� b��x� � � when a � b. The first case,
when a � b, is the first equation in (8). To establish the second case, when a � b,

we define a function δax : π �M by setting δax�c�
def
� x if c � a and δax�c�

def
� �

if c � a, so that �a �:� b��x� � �a �:� b�δax�a� � �a �:� b�δax�b� � �a �:� b�� � �.
Thus any set-theoretic structure satisfying the laws in (8) will also satisfy law 7

in Figure 1: �a �:� b��c �:� d�x	
 � �c �:� d��a �:� b�x	
. But that is not derivable
from (8). To resolve this incompleteness we must move to a constructive set
theory in which equality is not two-valued, which is the essence of Section 5.

2.7 Other Equational Approaches to Logic

The syntax for parameterized algebraic theories is reminiscent of logical frame-
works such as Type Framework [4] although it is much simpler.

Our syntax is also similar to Aczel’s syntax [1] which forms the basis of the
second-order algebraic theories of Fiore et al. [18,19]. The key difference is that
we do not allow second-order variables to take second-order terms as param-
eters, e.g. x	y	
 � z	

. This restriction allows us to make a connection with
programming languages (§3) and a simple categorical model theory (§5).

By far the most studied equational approach to logic is Tarski’s cylindric
algebra. Cylindric algebra encodes the binding structures of predicate logic into
classical universal algebra. Although cylindric algebra can provide a foundation
for concurrent constraint programming [39], it does not extend easily to higher
typed programming languages. Our parameterized algebraic theory does (§3).

There have been several proposals for ‘nominal algebra’ [13,20]. Gabbay and
Matthijssen used this to describe first-order logic [20] and the author has earlier
developed a nominal-style presentation of semilattices and equality [41, §6]. How-
ever, it is unclear how to combine a theory of nominal algebra with programming
language primitives in a canonical way. Although the free model construction [13]
yields a monad on the category of nominal sets, it does not yield a strength for
the monad, and so Moggi’s framework [32] does not apply to nominal algebraic
theories. Moggi’s framework does apply to parameterized algebraic theories (§5).

Kurz and Petrişan [28] have shown how to understand cylindric algebra and
nominal algebra within the framework of presheaf categories. In Section 5 we
will demonstrate that parameterized algebraic theories can be understood as
algebraic theories enriched in a presheaf category.

Bronsard and Reddy [12] axiomatized a theory of disjunction, conjunction,
existentials and if-then-else, and they gave a completeness result for domain
theoretic models, providing a more axiomatic account than earlier domain the-
oretic models of logic programming (e.g. [21,33,38]). Our work strengthens that
early development by moving away from concrete models, which are not a com-
plete way to study algebraic theories with binding (see §2.6). This allows us to
give a canonical status to our algebraic theory (Theorem 1).

410 S. Staton

3 Extending the Algebraic Theory to a Programming
Language

Plotkin and Power have proposed that algebraic theories determine notions of
computational effect [35]. One can build a higher-order functional programming
language in which each type is a model of the algebraic theory, so that the
algebraic structure provides the impurities in the functional programming lan-
guage. We demonstrate this by picking out a fragment of Standard ML, elic-
iting the algebraic structure of each type by identifying suitable generic ef-
fects [36]. For instance, the generic effect for disjunction, �, is an impure function
choose: unit � bool, to be thought of as returning an undetermined boolean.
Our implementation is thus a structure for the following ML signature.

infix 3
:

sig

(* SIGNATURE OF PARAMETERS *)

(* param is the domain

of discourse *)

type param

val succ : param � param

val zero : param

(* MAIN SIGNATURE *)

(* Presented using

generic effects *)

val choose : unit � bool

val fail : unit � 'a
val
:
 : param * param � unit

val free : unit � param end

The algebraic operations at each type can be recovered from the generic effects:

t� u
def
� if choose() then t else u �

def
� fail()

�a �:� b��t�
def
� a
:
b ; t �a. t

def
� let val a=free() in t end

In this ML signature, there are two ways to define addition, firstly as a function:

- fun add(a,b) = if choose () then a
:
 zero ; b

else let val a' = free()

in a
:
 succ a' ; add(a',succ(b)) end

val add = fn : param * param � param

and secondly as a predicate:

- fun add'(a,b,c) = if choose () then a
:
 zero ; b
:
 c

else let val a' = free() val c' = free() in

a
:
 succ a' ; c
:
 succ c' ; add'(a',b,c') end

val add' = fn : param * param * param � unit

This demonstrates a type isomorphism:

- fun iso f a = let val b = free() in (b,f(a,b)) end

val iso = fn : ('a * param � 'c) � ('a � param * 'c)
- fun inverse g a = let val (b',c) = g(a) in b
:
 b' ; c end

val inverse = fn : ('a � param * 'c) � ('a * param � 'c)

Notice that sequencing (semicolon) is like conjunction.
Our implementation of the ML signature (see online appendix) uses references

and callcc. One way to view the laws in Figure 1 is as an axiomatic account
of which optimizations are allowed [24]. Our implementation certainly doesn’t
implement Law 2 (commutativity), which would need parallel execution. Does

An Algebraic Presentation of Predicate Logic 411

our implementation capture the other laws? A proper answer to this question
would need a theory of observational equivalence for this fragment of ML, for
instance extending [22] to parameterized algebraic theories, which we leave for
future work.

Our lightweight approach to implementation is partly inspired by Eff [9], a new
language for algebraic effects. A related approach is to use monads in Haskell,
following [11,40], since in our language the type construction unit � (-) is
equipped with the structure of a monad.

4 Representation of Terms

In Figure 1 we have presented an algebraic theory of disjunctive predicate logic.
In Section 3 we have seen that the theory provides a reasonable account of the
basic phenomena in logic programming. However, the choice of the presentation,
which operations and which equations, is somewhat arbitrary. We now justify the
theory by giving a canonical representation of the terms modulo the equations.

As a first step, we consider the theory of semilattices, the fragment of dis-
junctive predicate logic restricted to � and �. A term built from � and � is
determined by the variables that appear in the term. For instance, the terms
� � v, x, y, z : 0 � �x	
 � z	
� � v	
 and � � v, x, y, z : 0 � v	
 � ��z	
 � x	
� � ��
both contain the same variables �v, x, z�, and they are equal. We are able to get
a similar result for full disjunctive predicate logic, but it is more complicated.
For instance, consider the following term.

� � x : 2 � �a. x	a, a
 (9)

To understand this term as a ‘subset’ of �x�, we make the following observa-
tion. The subset �v, x, z� of �v, x, y, z� provides a weakening principle: for any
algebraic theory, any term in context �v, x, z� can also be understood as a term
in context �v, x, y, z�. The term (9) also describes a weakening principle: in any
parameterized algebraic theory, a term in context �x : 1� can be understood as
a term in context �x : 2�, by substituting every occurrence of x	t
 by x	t, t
.

This motivates us to define a category whose objects are contexts and whose
morphisms are substitutions. We investigate sieves, which are sets of substi-
tutions subject to a closure condition. Our representation theorem provides a
correspondence between terms of disjunctive predicate logic and sieves.

Subsets and Sieves. The concept of ‘subset’ is not a priori a category-theoretic
notion because it is defined in terms of elements of sets rather than morphisms.
One category-theoretic notion of ‘subset’ is the notion of sieve.

Definition 2. Let C be a category, and let X be an object in C. A sieve S on X
is a class of morphisms with codomain X which is closed under precomposition:
f S �� fg S. Every morphism f : Y � X generates a sieve on X as
follows: 	f

def
� �g : Z � X � �h : Z � Y. g � fh�. A sieve S on X is singleton-

generated if it is of this form.

412 S. Staton

For two morphisms f : Y � X and f � : Y � � X, the following are equivalent:
(i) they generate the same sieve (f
 � 	f �
); (ii) f 	f �
 and f � 	f
; (iii) there
are morphisms g : Y � Y � and g� : Y � � Y such that f � f �g and f � � fg�.

Singleton generated sieves can be understood as a category-theoretic version
of subset. For instance, in the category of sets, a function f : X � Y generates
the same sieve of Y as its image f�X�� Y (assuming choice). More generally, a
singleton-generated sieve on an object X of a category C is a subobject of X in
the regularization of C [23, A1.3.10(d)]. The importance of sieves and presheaves
to logic programming has been observed earlier [16,26,27].

A Category of Contexts. We will describe a correspondence between terms of
disjunctive predicate logic and sieves in a category whose objects are contexts
and whose morphisms are substitutions.

In a parameterized algebraic theory, the context has two components �Γ �Δ�:
variables in Γ ranging over parameters and variables in Δ ranging over terms.
The objects of our category focus on the second component Δ. Since the names
of variables are irrelevant, we represent a context by a list of numbers.

The morphisms of our category are simultaneous substitutions. To motivate,
consider the following derived typing rule for substituting variables for variables.

�a � t1 . . . �a � tn � � �x : �m, y : ��a� � u

� � �x : �m, z : n � u	$a.z�t1,...,tn��y

(10)

Definition 3. Let S be a signature (of parameters, as in §2.1). The objects of
the category Ctx�S� are lists of natural numbers. A morphism �m� �n comprises
a function f : ��m� � ��n� together with, for 1 � i � ��m� and 1 � j � nf�i�,
a term a1, . . . ami � ti,j in the signature of parameters. Morphisms compose by
composing functions and substituting terms for variables. The identity morphism
is built from variables.

The category theorist will recognize Ctx�S� as the free finite coproduct com-
pletion of the Lawvere theory for the signature S. Lawvere theories are widely
regarded as important to the foundations of logic programming (e.g. [8,26,6,27]).

For any term � � �x : �m � u in any parameterized algebraic theory, and any
morphism �f,�t� : �m � �n in Ctx�S�, notice that we can build a term by substi-
tution, following (10),

� � �y : �n � �f,�t� � u
def
� u	a1...am1 .yf�1��$t1��x1
 . . . 	

a1...am�
m�
.yf��
m���$t�
m���x�
m�

so that substitution respects composition: �g, �v� � ��f, �u� � t� � ��g, �v� � �f, �u�� � t.

Representation Theorem. We now state our representation theorem for the the-
ory of disjunctive predicate logic. We focus on terms with no free parameters,
returning to this point later.

Given a morphism �f, �b1, . . . , bmi � ti,j�i�
$m
,j�nf�i�
� : �m� �n in Ctx�S� we

define the following term:

f,�t� def
� � � �x : �n �

�
$m

i	1 �b1. . . . �bmi . xf�i�	ti,1 . . . ti,nf�i�

 (11)

An Algebraic Presentation of Predicate Logic 413

Theorem 1. Let S be either the empty signature or the signature for natural
numbers. Let �n be a list of numbers. The construction
 � � induces a bijective
correspondence between:

� terms in context, � � �x : �n � t, modulo the equivalence relation in Figure 1;

� singleton-generated sieves on �n in the category Ctx�S�.

(The Theorem can be established for a different signature of parameters by
finding appropriate analogues of Laws 13–15.)

Outline Proof of Theorem 1. To prove the representation theorem, we first char-
acterize morphisms into �n as terms modulo a fragment of the theory. We then
show that two morphisms generate the same sieve if and only if the corresponding
terms are equal in the full theory.

For the first step, we show that the construction
 � � determines a bijec-
tive correspondence between morphisms into �n and terms-in-context modulo a
fragment of the theory in Figure 1. The fragment is given by laws 1, 4, 5, 6, 7,
11 and 12 from Figure 1, and schemes 13–15 where relevant, together with the
following five laws, which are derivable from laws 2, 3 and 8–10 in Figure 1 but
not from the other laws.

� � x : 0 � �� x � x a, b � � � �a �:� b�� � �

� � � � �a.� � � b, c � x : 1 � �b �:� c��a. x	a
 � �a. �b �:� c�x	a

b � x : 1� n � �c1. . . . �cn. x	b,�c
 � �a. �c1. . . . �cn. �a �:� b�x	a,�c

The first four laws are commutativity conditions; the last one is roughly intro-
duction and elimination for �.

Note that every term can be rewritten to the form in (11) using the laws in
this fragment of the theory. We first pull the disjunctions to the front, then the
existentials, and then we use the remaining axioms to rearrange and eliminate
the equality tests. We thus have a bijective correspondence between terms in
context �n modulo this fragment of the theory, and morphisms into �n in Ctx�S�.

The second step is to show that that two morphisms in Ctx�S� determine the
same sieve if and only if the corresponding terms (11) can be proven equal using
the laws in Figure 1. We show that 	f,�t
 � 	g, �u
 if and only if
f,�t� �
g, �u�.
Terms with Free Parameters. Let T ��p��n� be the set of terms in the context
�a1, . . . , ap��x : �n�, modulo the equivalence relation. If we write Sieves1��n� for the
set of singleton-generated sieves on �n in Ctx�S�, then Theorem 1 provides a
natural bijection T ��0��n� � Sieves1��n�.

We now briefly consider the situation where the parameter context p is non-
empty, by exhibiting a bijection T ��p�	n1, . . . , nk
� � T ��0�	p� n1, . . . , p� nk
�.

To go from left to right we substitute �a,�b � xi : p� ni � xi	b1 . . . bp, a1 . . . ani

for each variable xi	a1 . . . ani
 (i � k), and then existentially quantify all the free

variables �b. From right to left we substitute

414 S. Staton

a1 . . ani . . ap�ni�n, b1 . . bp � xi : mi � �ani�1 �:� b1� . . . �ani�p �:� bp�xi	a1 . . . ani

for each variable xi, yielding a term with free variables �b (c.f. iso in §3).

5 Enriched Clones

We conclude by giving our general syntactic framework of parameterized alge-
braic theories a canonical status by reference to enriched category theory. The
importance of enriched monads for programming language semantics has long
been recognized [32]. We show that parameterized algebraic theories characterize
a class of enriched monads.

In the previous section we described a bijection between the set of terms
of disjunctive predicate logic and the set of sieves in a category of contexts.
However, the set of terms is not a mere set: it also has a substitution structure.
We characterize this abstractly by introducing enriched clones.

Definition 4. Let �V ,�, I� be a symmetric monoidal category. Let C be a V-
enriched category, and J : A � C be a full sub-V-category. An enriched clone is
given by
1. For each A A, an object TA in C;
2. A morphism ηA : I � C�JA, TA� in V for all A A;
3. A morphism �A,B : C�JA, TB� � C�TA, TB� in V for all A,B A
such that the following diagrams commute:

I � C�JA, TB� η�� ��

λ ((************
C�JA, TA� � C�TA, TB�

composition��
C�JA, TB�

I
ηA ��

idTA))��
���

��� C�JA, TA�
���

C�TA, TA�

C�JA, TB� � C�JB, TC� � ��

��� ��

C�JA, TB� � C�TB, TC�comp�� C�JA, TC�
���

C�TA, TB� � C�TB, TC�
composition

�� C�TA, TC�

The original notion of abstract clone (e.g. [14, Ch. III]) appears when V � C � Set
and A comprises natural numbers considered as sets. When V � Set then en-
riched clones have been called ‘Kleisli structures’ (e.g. [15, §7]) and ‘relative
monads’ [5].

We now turn to parameterized algebraic theories. The signature of parame-
ters induces a Lawvere theory S which is a category whose objects are natural
numbers and where a morphism m � n is a family of n terms over m parame-
ter variables. We are interested in the category Ŝ of presheaves on the Lawvere
theory S, that is, the category of contravariant functors Sop � Set and natural
transformations between them. As we will see shortly, a presheaf can be under-
stood as a set with substitution structure (see also [26,17]). Notice that Ctx�S�

(Def. 3) can be understood as a full subcategory of Ŝ once we understand a

An Algebraic Presentation of Predicate Logic 415

context 	n1, . . . , nk
 as the presheaf
�k
i	1 S��, ni�. We let J : Ctx�S� � Ŝ be

the embedding. To put it another way, Ctx�S� is the completion of S under

coproducts, and Ŝ is the completion under all colimits. We consider Ŝ as a carte-
sian closed category, i.e. self-enriched. The function space Ŝ�J�n, F � is given by

context extension: Ŝ�J�n, F ��p� �
�
$n

i	1 F �p� ni�.

Every presentation of a parameterized algebraic theory gives rise to an en-
riched clone for V � C � Ŝ and A � Ctx�S�.

1. The data T ��n� assigns a presheaf to each context �n. The set �T ��n���p� is the
set of terms in context �p��n� modulo the equations. The functorial action of
T ��n� corresponds to the left-hand substitution structure in (6).

2. The data η$n provides an element of the set Ŝ��n, P ��0�, which identifies the
variables among the terms.

3. The right-hand substitution structure in (6) gives natural transformations

T �m� Ŝ�J �m, T�n� � T�n. By currying, this supplies the data �$m,$n.

The three commuting diagrams are easy substitution lemmas.

Theorem 2. Every enriched clone for V � C � Ŝ and A � Ctx�S� arises from
a presentation of a parameterized algebraic theory.

In general, when J is dense, enriched clones can be understood as monoids in
the multicategory whose objects are V-functors A � C, and where an n-ary
morphism F1, . . . , Fn � G between V-functors is an extra-natural family of
morphisms C�JA0, F1A1� � � � � � C�JAn�1, FnAn� � C�JA0, GAn� in V . When
this multicategory has tensors then we arrive at the situation considered by Kelly
and Power [25, §5]. They focus on the situation where A comprises the finitely
presentable objects of C, but it seems reasonable to replace ‘finitely presentable’
with another well-behaved notion of finiteness [29,2,10,42]. We consider sifted
colimits [2,3,29], i.e. colimits that commute with products in the category of
sets, which leads us to the notions of strongly finitely presentable object and
strongly accessible category [2] (aka generalized variety [3]).

Proposition 2 (c.f. [25], §5). LetV be strongly finitely accessible as a closed cat-
egory. Let J : A�V comprise the strongly finitely presentable objects. Let T : A�V
be a V-functor. To equip T with the structure of an enriched clone is to equip the left
Kan extension of T along J with the structure of an enriched monad.

Parameterized algebraic theories fit the premises of this proposition. The presheaf
category Ŝ is strongly finitely accessible as a closed category, and Ctx�S� com-
prises the strongly finitely presentable objects (up to splitting idempotents).

Corollary 1. To give a parameterized algebraic theory is to give a sifted-colimit-
preserving enriched monad on Ŝ.

Summary. We have shown that our framework for parameterized algebraic
theories (§2) is a syntactic formalism for enriched clones (§5). For our theory of
disjunctive predicate logic, which has applications to logic programming (§3),
the clones can be represented abstractly as sieves (§4).

416 S. Staton

Acknowledgements. Thanks to reviewers for helpful feedback, and to M Fiore,
M Hyland, O Kammar, A Kurz, P Levy, P-A Melliès, R Møgelberg, G Plotkin,
J Power and T Uustalu for discussions.

References

1. Aczel, P.: A general Church-Rosser theorem (1978)
2. Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible cate-

gories. J. Pure Appl. Algebra 175(1-3), 7–30 (2002)
3. Adámek, J., Rosický, J.: On sifted colimits and generalized varieties. Theory Appl.

Categ. 8(3), 33–53 (2001)
4. Adams, R.: Lambda-free logical frameworks. Ann. Pure Appl. Logic (to appear)
5. Altenkirch, T., Chapman, J., Uustalu, T.: Monads Need Not Be Endofunctors. In:

Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 297–311. Springer, Heidelberg
(2010)

6. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative pro-
gramming languages. Theor. Comput. Sci. 410(46), 4626–4671 (2009)

7. Antoy, S., Hanus, M.: Functional logic programming. C. ACM 53(4), 74–85 (2010)
8. Asperti, A., Martini, S.: Projections instead of variables: A category theoretic

interpretation of logic programs. In: Proc. ICLP 1989 (1989)
9. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers.

arXiv:1203.1539v1
10. Berger, C., Melliès, P.-A., Weber, M.: Monads with arities and their associated

theories. J. Pure Appl. Algebra 216(8-9), 2029–2048 (2012)
11. Braßel, B., Fischer, S., Hanus, M., Reck, F.: Transforming Functional Logic Pro-

grams into Monadic Functional Programs. In: Mariño, J. (ed.) WFLP 2010. LNCS,
vol. 6559, pp. 30–47. Springer, Heidelberg (2011)

12. Bronsard, F., Reddy, U.S.: Axiomatization of a Functional Logic Language. In:
Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463, pp. 101–116. Springer,
Heidelberg (1990)

13. Clouston, R.A., Pitts, A.M.: Nominal equational logic. In: Computation, Meaning,
and Logic. Elsevier (2007)

14. Cohn, P.M.: Universal algebra, 2nd edn. D Reidel (1981)
15. Curien, P.-L.: Operads, clones and distributive laws. In: Operads and Universal

Algebra. World Scientific (2012)
16. Finkelstein, S.E., Freyd, P.J., Lipton, J.: Logic Programming in Tau Categories. In:

Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 249–263. Springer,
Heidelberg (1995)

17. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In:
Proc. LICS 1999 (1999)

18. Fiore, M., Hur, C.-K.: Second-Order Equational Logic (Extended Abstract). In:
Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 320–335. Springer,
Heidelberg (2010)

19. Fiore, M., Mahmoud, O.: Second-Order Algebraic Theories. In: Hliněný, P.,
Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidel-
berg (2010)

20. Gabbay, M.J., Mathijssen, A.: One and a halfth order logic. J. Logic Comput. 18
(2008)

An Algebraic Presentation of Predicate Logic 417

21. Jagadeesan, R., Panangaden, P., Pingali, K.: A fully abstract semantics for a func-
tional language with logic variables. In: LICS 1989 (1989)

22. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for
algebraic effects. In: LICS 2010 (2010)

23. Johnstone, P.T.: Sketches of an Elephant. OUP (2002)
24. Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent optimisa-

tions. In: Proc. POPL 2012 (2012)
25. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalisers. J. Pure Appl.

Algebra 89, 163–179 (1993)
26. Kinoshita, Y., Power, A.J.: A fibrational Semantics for Logic Programs. In: Herre,

H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050, pp.
177–191. Springer, Heidelberg (1996)

27. Komendantskaya, E., Power, J.: Coalgebraic Semantics for Derivations in Logic
Programming. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 268–282. Springer, Heidelberg (2011)

28. Kurz, A., Petrişan, D.: Presenting functors on many-sorted varieties and applica-
tions. Inform. Comput. 208(12), 1421–1446 (2010)

29. Lack, S., Rosický, J.: Notions of Lawvere theory. Appl. Categ. Structures 19(1)
(2011)

30. Melliès, P.-A.: Segal condition meets computational effects. In: Proc. LICS 2010
(2010)

31. Møgelberg, R.E., Staton, S.: Linearly-Used State in Models of Call-by-Value. In:
Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp.
298–313. Springer, Heidelberg (2011)

32. Moggi, E.: Notions of computation and monads. Inform. Comput. 93(1) (1991)
33. Moreno-Navarro, J.J., Rodŕıguez-Artalejo, M.: Logic programming with functions

and predicates. J. Log. Program 12(3&4), 191–223 (1992)
34. Plotkin, G.: Some Varieties of Equational Logic. In: Futatsugi, K., Jouannaud, J.-

P., Meseguer, J. (eds.) Goguen Festschrift. LNCS, vol. 4060, pp. 150–156. Springer,
Heidelberg (2006)

35. Plotkin, G., Power, J.: Notions of Computation Determine Monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

36. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ.
Structures 11(1), 69–94 (2003)

37. Plotkin, G., Pretnar, M.: Handlers of Algebraic Effects. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)

38. Reddy, U.S.: Functional Logic Languages, Part I. In: Fasel, J.H., Keller, R.M. (eds.)
Graph Reduction 1986. LNCS, vol. 279, pp. 401–425. Springer, Heidelberg (1987)

39. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Proc. POPL 1991, pp. 333–352 (1991)

40. Schrijvers, T., Stuckey, P.J., Wadler, P.: Monadic constraint programming. J.
Funct. Program. 19(6) (2009)

41. Staton, S.: Relating Coalgebraic Notions of Bisimulation. In: Kurz, A., Lenisa,
M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 191–205. Springer,
Heidelberg (2009)

42. Velebil, J., Kurz, A.: Equational presentations of functors and monads. Math.
Struct. in Comp. Science 21 (2011)

Strategies as Profunctors

Glynn Winskel

University of Cambridge Computer Laboratory, England

Abstract. A new characterization of nondeterministic concurrent
strategies exhibits strategies as certain discrete fibrations—or equiva-
lently presheaves—over configurations of the game. This leads to a lax
functor from the bicategory of strategies to the bicategory of profunctors.
The lax functor expresses how composition of strategies is obtained from
that of profunctors by restricting to ‘reachable’ elements, which gives
an alternative formulation of the composition of strategies. It provides
a fundamental connection—and helps explain the mismatches—between
two generalizations of domain theory to forms of intensional domain
theories, one based on games and strategies, and the other on presheaf
categories and profunctors. In particular cases, on the sub-bicategory of
rigid strategies which includes ‘simple games’ (underlying AJM and HO
games), and stable spans (specializing to Berry’s stable functions, in the
deterministic case), the lax functor becomes a pseudo functor. More gen-
erally, the laxness of the functor suggests what structure is missing from
categories and profunctors in order that they can be made to support
the operations of games and strategies. By equipping categories with the
structure of a ‘rooted’ factorization system and ensuring all elements of
profunctors are ‘reachable,’ we obtain a pseudo functor embedding the
bicategory of strategies in the bicategory of reachable profunctors. This
shift illuminates early work on bistructures and bidomains, where the
Scott order and Berry’s stable order are part of a factorization system,
giving a sense in which bidomains are games.

1 Introduction

A very general definition of nondeterministic concurrent strategy between games
represented by event structures, has recently been given—see [1] for further
background and examples. Building on this work and a new characterization
of strategies (Lemma 1) we exhibit a strategy in a game as a presheaf, and
a strategy between games as a profunctor. This exposes a lax functor from a
bicategory of games and strategies to the bicategory of profunctors. In several
well-known sub-bicategories of games the lax functor becomes a pseudo functor.

This somewhat technical result is significant because both strategies and pro-
functors have been central to generalizations of domain theory to forms of in-
tensional domain theories.1 Game semantics has been strikingly successful in

1 A discussion of the limits of traditional domain theory, and the form generalizations
should take can be found in [2,3].

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 418–433, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Strategies as Profunctors 419

providing denotational semantics in close agreement with operational semantics,
following on from seminal work on game semantics and PCF [4,5]. However,
being rooted in sequential games, traditional game semantics does not integrate
smoothly with concurrent computation. Profunctors themselves provide a rich
framework in which to generalize domain theory in a way that is arguably closer
to that initiated by Dana Scott than game semantics; we refer the reader to
Hyland’s case for such a generalization [2] and to the relevance of presheaf cat-
egories and profunctors to concurrent computation [6]. But the mathematical
abstraction comes at a price: it can be hard to give an operational reading to
denotations as profunctors. The lax functor from strategies to profunctors pro-
vides a fundamental connection between the two approaches. Indeed it exhibits
composition of strategies as essentially composition of profunctors but restricted
to those elements which are ‘reachable’; roughly, they are ‘reachable’ in the sense
of satisfying the causal-dependency constraints of both components of the com-
position, whereas profunctor composition allows elements merely when input
matches output. The lax functor helps explain the mismatches between the two
approaches and how we might marry them to obtain the benefits of both.

Arguably the concept of strategy is potentially as fundamental as that of
relation. But for this potential to be seen and realized the concept needs to be
developed in sufficient generality. This is one motivation for grounding strategies
in a general model for concurrent computation. Doing so has exposed unexpected
characteristics of strategies, which carry the concept of strategy into new terrain.

A surprise in developing this work has been the central role taken by the
reversal, or undoing, of (compound) moves of Opponent. The idea first appears
rather formally in Lemma 1 where, in a strategy, reversals of Opponent moves
satisfy the same property as moves of Player. It then takes on a key role in char-
acterizing a concurrent strategy in a game as a discrete fibration which preserves
Player moves and reversals of Opponent moves (Theorem 1). Pushing the idea to
completion we are led to a view of games as factorization systems in which ‘left’
maps stand for the reversal of compound Opponent moves while ‘right’ maps
stand for compound Player moves. Section 9 gives a sketch of how concurrent
games and strategies essentially form a sub-bicategory within a bicategory of
strategies between games as rooted factorization systems.

2 Event Structures and Stable Families

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con �⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X �⇒ X ∪ {e} ∈ Con.

420 G. Winskel

The configurations,C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x �⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the set of finite configurations.

We say that events e, e′ are concurrent, and write e co e′ if {e, e′} ∈ Con & e /≤
e′ & e′ /≤ e. In games the relation of immediate dependency e � e′, meaning e
and e′ are distinct with e ≤ e′ and no event in between, will play a very important
role. For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of
X ; note if X ∈ Con, then [X] ∈ Con.

Operations such as synchronized parallel composition are awkward to define
directly on the simple event structures above. It is useful to broaden event struc-
tures to stable families, where operations are often carried out more easily, and
then turned into event structures by the operation Pr below.

A stable family comprises F , a nonempty family of finite subsets, called con-
figurations, which satisfy:
Completeness: ∀Z ⊆ F . Z ↑ �⇒ ⋃Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Stability: ∀x, y ∈ F . x ↑ y �⇒ x ∩ y ∈ F .
Above, Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z in
F ; we use x ↑ y for {x, y}↑. We call elements of ⋃F events of F .

Proposition 1. Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y �⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x = ⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e
′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 2. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

Strategies as Profunctors 421

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) �⇒ e1 = e2) .

Maps of event structures are maps of their stable families of configurations. Maps
compose as functions. We say a map is total when it is total as a function.

Pr is the right adjoint of the “inclusion” functor, taking an event structure
E to the stable family C(E). The unit of the adjunction E → Pr(C(E)) takes
an event e to the prime configuration [e] =def {e

′ ∈ E ∣ e′ ≤ e}. The counit max ∶
C(Pr(F)) → F takes prime configuration [e]x to its maximum event e; the image
of a configuration x ∈ C(Pr(F)) under the map max is ⋃x ∈ F .

Definition 1. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊊ y in F with nothing in between, and x
e

−�⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e

−�⊂ , expressing that event

e is enabled at configuration x, when x
e

−�⊂ y for some y. W.r.t. x ∈ F , write

[e)x =def {e
′ ∈ E ∣ e′ ≤x e & e′ /= e}, so, for example, [e)x

e
−�⊂[e]x. The relation

of immediate dependence of event structures generalizes: with respect to x ∈ F ,
the relation e �x e

′ means e ≤x e
′ with e /= e′ and no event in between.

3 Process Operations

Products. Let A and B be stable families with events A and B, respectively.
Their product, the stable family A × B, has events comprising pairs in A ×∗
B =def {(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of
sets with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations x ∈ A × B iff

x is a finite subset of A ×∗ B s.t. π1x ∈ A & π2x ∈ B,

∀e, e′ ∈ x. π1(e) = π1(e
′) or π2(e) = π2(e

′) ⇒ e = e′ ,&

∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A ×B =def Pr(C(A) × C(B))

and its projections as Π1 =def π1max and Π2 =def π2max .

Restriction. The restriction of F to a subset of events R is the stable family
F ↾R =def {x ∈ F ∣ x ⊆ R} . Defining E ↾R, the restriction of an event structure
E to a subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal
dependency and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾max−1R .

422 G. Winskel

Synchronized Compositions. Synchronized parallel compositions are ob-
tained as restrictions of products to those events which are allowed to synchronize
or occur asynchronously according to the specific synchronized composition. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 3, we
can equivalently form a synchronized composition of event structures by forming
the synchronized composition of their stable families of configurations, and then
obtaining the resulting event structure—this has the advantage of eliminating
superfluous events earlier.

Projection. Event structures support a simple form of hiding. Let (E,≤,Con)
be an event structure. Let V ⊆ E be a subset of ‘visible’ events. Define the
projection of E on V , to be E↓V =def (V,≤V ,ConV), where v ≤V v′ iff v ≤
v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

4 Event Structures with Polarities

Both a game and a strategy in a game are to be represented by an event structure
with polarity, which comprises (E,pol) where E is an event structure with a
polarity function pol ∶ E → {+,−} ascribing a polarity + (Player) or − (Opponent)
to its events. The events correspond to (occurrences of) moves. Maps of event
structures with polarity are maps of event structures which preserve polarity.

Dual and Parallel Composition of Games. The dual, E⊥, of an event
structure with polarity E comprises a copy of the event structure E but with a
reversal of polarities. We write e ∈ E⊥ for the event complementary to e ∈ E and
vice versa. The operation A∥B—a simple parallel composition of games—simply
forms the disjoint juxtaposition of A,B, two event structures with polarity; a
finite subset of events is consistent if its intersection with each component is
consistent.

5 Pre-strategies

Let A be an event structure with polarity, thought of as a game. A pre-strategy
in A represents a nondeterministic play of the game and is defined to be a total
map σ ∶ S → A from an event structure with polarity S. Two pre-strategies
σ ∶ S → A and τ ∶ T → A in A will be essentially the same when they are
isomorphic, i.e. there is an isomorphism θ ∶ S ≅ T such that σ = τθ; then we
write σ ≅ τ .

Let A and B be event structures with polarity. Following Joyal [7], a pre-
strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

A⊥ S
σ1�� σ2 �� B ,

Strategies as Profunctors 423

of event structures with polarity where σ1, σ2 are partial maps and for all s ∈ S
either, but not both, σ1(s) or σ2(s) is defined. We write σ ∶ A +

��B to express
that σ is a pre-strategy from A to B. Note a pre-strategy σ in a game A coincides
with a pre-strategy from the empty game σ ∶ ∅ +

��A.

5.1 Composing Pre-strategies

Consider two pre-strategies σ ∶ A +
��B and τ ∶ B +

��C as spans:

A⊥ S
σ1�� σ2 �� B B⊥ T

τ1�� τ2 �� C .

Their composition τ⊙σ ∶ A +
��C is defined as a synchronized composition, fol-

lowed by projection to hide internal synchronization events. It is convenient to
build the synchronized composition from the product of stable families C(S) ×
C(T), with projections π1 and π2, as

C(T)⊙C(T) =def C(S) × C(T) ↾R , where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined} ∪ {(∗, t) ∣ t ∈ T & τ2(t) is defined} ∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined} .

Define T⊙S =def Pr(C(T)⊙C(S)) ↓ V , where

V = {p ∈ Pr(C(T)⊙C(S)) ∣ ∃s ∈ S. max(p) = (s,∗)} ∪

{p ∈ Pr(C(T)⊙C(S)) ∣ ∃t ∈ T. max(p) = (∗, t)} .

The span τ⊙σ comprises maps υ1 ∶ T⊙S → A⊥ and υ2 ∶ T⊙S → C, which on
events p of T⊙S act so υ1(p) = σ1(s) when max(p) = (s,∗) and υ2(p) = τ2(t)
when max(p) = (∗, t), and are undefined elsewhere.

5.2 Concurrent Copy-cat

Let A be an event structure with polarity. The copy-cat strategy from A to A is
an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A, based on the idea
that Player moves, of +ve polarity, always copy previous corresponding moves of
Opponent, of −ve polarity. For c ∈ A⊥∥A we use c to mean the corresponding copy
of c, of opposite polarity, in the alternative component. Define CCA to comprise
the event structure with polarity A⊥∥A together with extra causal dependencies
c ≤CCA

c for all events c with polA⊥∥A(c) = +.

Proposition 4. Let A be an event structure with polarity. Then CCA is an event
structure with polarity. Moreover,
x ∈ C(CCA) iff x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + �⇒ c ∈ x .

The copy-cat pre-strategy γA ∶ A +
��A is defined to be the map γA ∶ CCA → A⊥∥A

where γA is the identity on the common set of events.

424 G. Winskel

6 Strategies

The main result of [1] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible
moves of Opponent. A pre-strategy σ is receptive iff

σx
a

−�⊂ & polA(a) = − implies ∃!s ∈ S. x
s

−�⊂ & σ(s) = a .

Innocence restricts the behaviour of Player; Player may only introduce new re-
lations of immediate causality of the form ⊖� ⊕ beyond those imposed by the
game. A pre-strategy σ is innocent when

s � s′ and pol(s) = + or pol(s′) = − implies σ(s)� σ(s′).

Copy-cat behaves as identity w.r.t. composition, i.e. σ○γA ≅ σ and γB○σ ≅ σ, for
a pre-strategy σ ∶ A +

��B, iff σ is receptive and innocent; copy-cat pre-stategies
γA ∶ A +

��A are receptive and innocent [1].
This result motivates the definition of a strategy as a pre-strategy which is

receptive and innocent. We obtain a bicategory, Strat, in which the objects are
event structures with polarity—the games, the arrows from A to B are strategies
σ ∶ A +

��B and the 2-cells are maps of spans. The vertical composition of 2-cells
is the usual composition of maps of spans. Horizontal composition is given by
the composition of strategies ⊙ (which extends to a functor on 2-cells via the
functoriality of synchronized composition).

6.1 A New Characterization of Concurrent Strategies

Let x and x′ be configurations of an event structure with polarity. Write x ⊆− x′

to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {−}, i.e. the configuration x′ extends the
configuration x solely by events of −ve polarity. Similarly, write x ⊆+ x′ to mean
x ⊆ x′ and pol(x′∖x) ⊆ {+}. With this notation in place we can give an attractive
characterization of concurrent strategies, key to this paper.

Lemma 1. A strategy in a game A comprises σ ∶ S → A, a total map of event
structures with polarity, such that
(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′�

σ

��

⊆ x�

σ

��
y ⊆

+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈C(S) so that x ⊆ x′ & σx′ = y ,
i.e.

x�

σ

��

⊆ x′�

σ

��
σx ⊆

− y .

Strategies as Profunctors 425

7 Strategies as Discrete Fibrations

Condition (i) of Lemma 1, concerning the order ⊆+, is familiar from discrete
fibrations (cf. Definition 2 below) while condition (ii), concerning ⊆−, is dual—
the order ⊆− simply points in the wrong direction. This suggests building a new
relation ⊑ associated with an event structure with polarity out of compositions of
⊆+ with the reversed order ⊇−. In fact ⊑, the relation so obtained, is a partial order
and instances of ⊑ always factor uniquely as an instance of ⊇−, associated with
the reversal or undoing of Opponent moves, followed by ⊆+, the performance of
Player moves (Section 7.1). We call the order ⊑ the Scott order because increasing
w.r.t. ⊑ is associated with more +ve events (think more output) and less −ve
events (think less input)—reminiscent of the pointwise order on functions in
domain theory.

The seemingly formal Scott order will be the key to a new understanding of
strategies as discrete fibrations (Theorem 1). Discrete fibrations are a reformula-
tion of presheaves so reveal strategies σ ∶ S → A in a game A as certain presheaves
over (C(A),⊑A) (Section 7.2). Through the fortuitous way in which the Scott or-
der interacts with the dual and parallel operations on games a strategy between
games σ ∶ A +

��B turns into a presheaf over (C(A),⊑A)
op × (C(B),⊑B), i.e. a

profunctor from (C(A),⊑A) to (C(B),⊑B) (Section 7.3).

7.1 The Scott Order in Games

Let A be an event structure with polarity. The ⊆-order on its configurations
decomposes into two more fundamental orders ⊆− and ⊆+. Define the Scott order,
between configurations x, y ∈ C(A), by

x ⊑A y ⇐⇒ x ⊇− x ∩ y ⊆+ y .

We use ⊇− as the converse order to ⊆−. The properties of the Scott order are
summarised in the next proposition. In particular,

x ⊑A y iff x ⊇− ⋅ ⊆+ ⋅ ⊇− ⋯ ⊇− ⋅ ⊆+ y .

Proposition 5. Let A be an event structure with polarity.

(i) If x ⊆+ w ⊇− y in C(A), then x ⊇− x ∩ y ⊆+ y in C(A).
(ii) The relation ⊑A is the transitive closure of the relation ⊇− ∪ ⊆+.
(iii) (C(A),⊑A) is a partial order for which whenever x ⊑A y there is a unique
z, viz.. x ∩ y, for which x ⊇− z ⊆+ y.

Proof. (i) Assume x ⊆+ w ⊇− y in C(A). Clearly x ⊇ x ∩ y. Suppose a ∈ x and
polA(a) = +. Then a ∈ w, and because only −ve events are lost from w in w ⊇− y
we obtain a ∈ y, so a ∈ x ∩ y. It follows that x ⊇− x ∩ y, as required. Similarly,
x ∩ y ⊆+ y. (ii) Directly from (i). (iii) Clearly ⊑ is reflexive. Supposing x ⊑ y, i.e.
x ⊇− x∩y ⊆+ y in C(A) we see that the +ve events of x are included in y, and the
−ve events of y are included in x. Hence if x ⊑ y and y ⊑ x in C(A) then x and
y have the same +ve and −ve events and so are equal. Transitivity follows by
(ii). Unique-factorization follows from the fact that when x ⊇− z ⊆+ y necessarily
z = x ∩ y, as is easy to show. ◻

426 G. Winskel

7.2 Strategies in Games as Presheaves

Let A be an event structure with polarity. We shall show how strategies in A
correspond to cerain fibrations, so presheaves, over the order (C(A),⊑A). We
concentrate on discrete fibrations over partial orders.

Definition 2. A discrete fibration over a partial order (Y,⊑Y) is a partial order
(X,⊑X) and an order-preserving function f ∶ X → Y such that

∀x ∈X,y′ ∈ Y. y′ ⊑Y f(x) �⇒ ∃!x′ ⊑X x. f(x′) = y′ .

Via the Scott order we can recast strategies σ ∶ S → A as those discrete fibrations
F ∶ (C(S),⊑S) → (C(A),⊑A) which preserve ∅, ⊇− and ⊆+ in the sense that
F (∅) = ∅ while x ⊇− y implies F (x) ⊇− F (y), and x ⊆+ y implies F (x) ⊆+ F (y),
for x, y ∈ C(S):

Theorem 1. (i) Let σ ∶ S → A be a strategy in game A. The map σ“ taking a
finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from (C(S),⊑S)
to (C(A),⊑A) which preserves ∅, ⊇− and ⊆+.
(ii) Suppose F ∶ (C(S),⊑S) → (C(A),⊑A) is a discrete fibration which preserves
∅, ⊇− and ⊆+. There is a unique strategy σ ∶ S → A such that F = σ“.

Proof. (i) That σ“ forms a discrete fibration is a direct corollary of Lemma 1. As
a map of event structures with polarity, σ“ automatically preserves ∅, ⊇− and
⊆+. (ii) Assume F is a discrete fibration preserving ∅, ⊇− and ⊆+. First observe a
consequence, that if x ⊆+ x′ in C(S) and F (x) ⊆+ y′′ ⊆ F (x′) in C(A), then there
is a unique x′′ ∈ C(S) such that x ⊆+ x′′ ⊆ x′ and F (x′′) = y′′. (An analogous

observation holds with + replaced by −.) Suppose now x
+

−�⊂x′ in C(S)—where

we write x
+

−�⊂x′ to abbreviate x
s

−�⊂x′ for some +ve s ∈ S. As F preserves

⊆+, F (x) ⊆+ F (x′). The observation implies F (x)
+

−�⊂F (x′) in C(A). Similarly,

x
−

−�⊂x′ implies F (x)
−

−�⊂F (x′).
Define the relation ≈ between prime intervals [x,x′], where x−⊂x′, as the least

equivalence relation such that [x,x′] ≈ [y, y′] if x−⊂y and x′−⊂y′ with y ≠ x′. For

configurations of an event structure, [x,x′] ≈ [y, y′] iff x
e

−�⊂x′ and y
e

−�⊂ y′ for
some common event e. As F preserves coverings it preserves ≈. Consequently we

obtain a well-defined function σ ∶ S → A by taking s to a if an instance x
s

−�⊂x′

is sent to F (x)
a
−�⊂F (x′). Clearly σ preserves polarities.

By induction on the length of covering chains∅
s1
−�⊂x1

s2
−�⊂⋯

sn
−�⊂xn = x and the

fact that F preserves ∅ and coverings, ∅ = F (∅)
σ(s1)
−�⊂ F (x1)

σ(s2)
−�⊂ ⋯

σ(sn)
−�⊂ F (xn) =

F (x) with σx = F (x) ∈ C(A). Moreover we cannot have σ(si) = σ(sj) for distinct
i, j without contradicting F preserving coverings. This establishes σ ∶ S → A as a
total map of event structures with polarity. The assumed properties of F directly
ensure that σ satisfies the two conditions of Lemma 1 required of strategy. ◻

As discrete fibrations correspond to presheaves, Theorem 1 entails that strategies
σ ∶ S → A correspond to (certain) presheaves over (C(A),⊑A)—the presheaf for
σ is a functor (C(A),⊑A)

op → Set sending y to the fibre {x ∈ C(S) ∣ σx = y}.

Strategies as Profunctors 427

7.3 Strategies between Games as Profunctors

A strategy σ ∶ A +
��B determines a discrete fibration σ“ over (C(A⊥∥B),⊑A⊥∥B).

But

(C(A⊥∥B),⊑A⊥∥B) ≅ (C(A
⊥),⊑A⊥) × (C(B),⊑B) (1)

≅ (C(A),⊑A)
op × (C(B),⊑B) . (2)

The first step (1) relies on the correspondence between a configuration of A⊥∥B
and a pair, with left component a configuration of A⊥ and right component a
configuration of B. In the last step (2) we are using the correspondence between
configurations of A⊥ and A induced by the correspondence a↔ a between their
events: a configuration x of A⊥ corresponds to a configuration x =def {a ∣ a ∈ x}
of A. Because A⊥ reverses the roles of + and − in A, the order x ⊑A⊥ y, i.e.
x ⊇− x ∩ y ⊆+ y in C(A⊥) , corresponds to the order y ⊑A x, i.e. y ⊇− x ∩ y ⊆+

x in C(A) , so x ⊑opA y.
It follows that a strategy σ ∶ S → A⊥∥B determines a discrete fibration

σ“ ∶ (C(S),⊑S) → (C(A),⊑A)
op × (C(B),⊑B)

where σ“(x) = (σ1x, σ2x), for x ∈ C(S). One way to define a profunctor from
(C(A),⊑A) to (C(B),⊑B) is as a discrete fibration over (C(A),⊑A)

op × (C(B),⊑B).
Hence the strategy σ determines a profunctor2 σ“ ∶ (C(A),⊑A) +

�� (C(B),⊑B).

8 A Lax Functor from Strategies to Profunctors

We now study how the operation from strategies σ to profunctors σ“ preserves
identities and composition.

8.1 Identity

The operation (−)“ preserves identities:

Lemma 2. Let A be an event structure with polarity. For x ∈ C(A⊥∥A),

x ∈ C(CCA) iff x2 ⊑A x1 ,

where x1 ∈ C(A
⊥) and x2 ∈ C(A) are the projections of x to its components.

Proof. From Proposition 4, we deduce: x ∈ C(CCA) iff (i) x
+

1 ⊇ x
+

2 and (ii) x−1 ⊆
x−2 , where z

+ = {a ∈ z ∣ polA(a) = +} and z− = {a ∈ z ∣ polA(a) = −} for z ∈ C(A).
It remains to argue that (i) and (ii) iff x2 ⊇

− x1 ∩ x2 ⊆
+ x1. ◻

Corollary 1. Let A be an event structure with polarity. The profunctor γA“ of
the copy-cat strategy γA is an identity profunctor on (C(A),⊑A).

Proof. The profunctor γA“ ∶ (C(A),⊑A) +
�� (C(A),⊑A) sends x ∈ C(CCA) to

(x1, x2) ∈ (C(A),⊑A)
op × (C(A),⊑A) precisely when x2 ⊑A x1. It is thus an

identity on (C(A),⊑A). ◻

2 Most often a profunctor from (C(A),⊑A) to (C(B),⊑B) is defined as a functor
(C(A),⊑A) × (C(B),⊑B)

op → Set, i.e., as a presheaf over (C(A),⊑A)
op × (C(B),⊑B),

and as such corresponds to a discrete fibration.

428 G. Winskel

8.2 Composition

We need to relate the composition of strategies to the standard composition of
profunctors. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies, so σ ∶ A +

��B
and τ ∶ B +

��C. Abbreviating, for instance, (C(A),⊑A) to C(A), strategies σ
and τ give rise to profunctors σ“ ∶ C(A) +

��C(B) and τ“ ∶ C(B) +
��C(C). Their

composition is the profunctor τ“○σ“ ∶ C(A) +
��C(C) built, as now described, as

a discrete fibration from the discrete fibrations σ“ ∶ C(S) → C(A)op × C(B) and
τ“ ∶ C(T) → C(B)op × C(C).

First, we define the set of matching pairs,

M =def {(x, y) ∈ C(S) × C(T) ∣ σ2x = τ1y} ,

on which we define ∼ as the least equivalence relation for which

(x, y) ∼ (x′, y′) if x ⊑S x
′ & y′ ⊑T y & σ1x = σ1x

′ & τ2y
′ = τ2y .

Define an order on equivalence classes M/ ∼ by:

m ⊑m′ iff m = {(x, y)}
∼
& m′ = {(x′, y′)}

∼
& x ⊑S x

′ & y ⊑T y
′ &

σ2x = σ2x
′ & τ1y = τ1y

′ ,

for some matching pairs (x, y), (x′, y′)—so then σ2x = σ2x
′ = τ1y = τ1y′. The

relation ⊑ above is easily seen to be a partial order on M/ ∼. The profunctor
composition τ“ ○ σ“ is given as

τ“ ○ σ“ ∶ M/ ∼ → C(A)op × C(C) , acting so {(x, y)}
∼
↦ (σ1x, τ2y)

—it inherits from σ“ and τ“ the property of being a discrete fibration.
It is not the case that (τ⊙σ)“ and τ“ ○ σ“ coincide up to isomorphism. The

profunctor composition τ“ ○ σ“ will generally contain extra equivalence classes
{(x, y)}

∼
for matching pairs (x, y) which are “unreachable.” Although σ2x = τ1y,

equals z say, automatically for a matching pair (x, y), the configurations x and
y may impose incompatible causal dependencies on their ‘interface’ z so never
be realized as a configuration in the synchronized composition C(T)⊙C(S) used
in building the composition of strategies τ⊙σ.

Example 1. Let A and C both be the empty event structure ∅. Let B be the
event structure consisting of the two concurrent events b1, assumed −ve, and b2,
assumed +ve in B. Let the strategy σ ∶ ∅ +

��B comprise the event structure
s1 � s2 with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B

⊥ the polarities
are reversed so there is a strategy τ ∶ B +

��∅ comprising the event structure
t2 � t1 with t2 −ve and t1 +ve yet with τ(t1) = b1 and τ(t2) = b2. The equivalence
class {(x, y)}∼, where x = {s1, s2} and y = {t1, t2}, would be present in the
profunctor composition τ“ ○ σ“, in addition to {(∅,∅)}∼, whereas τ⊙σ would
be the empty strategy and accordingly the profunctor (τ⊙σ)“ only has a single
element, ∅. ◻

Strategies as Profunctors 429

8.3 Laxness

This section establishes the exact relation between the two compositions (τ⊙σ)“
and τ“ ○ σ“. The proofs use that the equivalence relation ∼ between matching
pairs is generated by a single-step relation:

Lemma 3. On matching pairs, define

(x, y) ↝1 (x
′, y′) iff ∃s ∈ S, t ∈ T. x

s
−�⊂x′ & y

t
−�⊂ y′ & σ2(s) = τ1(t) .

The smallest equivalence relation including ↝1 coincides with the relation ∼.

Now we make precise what it means for a matching pair to be reachable.

Definition 3. For (x, y) a matching pair, define

x ⋅ y =def{(s,∗) ∣ s ∈ x & σ1(s) is defined} ∪ {(∗, t) ∣ t ∈ y & τ2(t) is defined}∪

{(s, t) ∣ s ∈ x & t ∈ y & σ2(s) = τ1(t)} .

Say (x, y) is reachable if x ⋅ y ∈ C(T)⊙C(S), and unreachable otherwise.
For z ∈ C(T)⊙C(S) say a visible prime of z is a prime of the form [(s,∗)]z ,

for (s,∗) ∈ z, or [(∗, t)]z , for (∗, t) ∈ z.

We can specify when a matching pair is reachable without invoking the compo-
sition of strategies, important for the generalization in Section 9:

Proposition 6. A matching pair (x, y) is reachable iff there is a sequence of
matching pairs (∅,∅) = (x0, y0),⋯, (xi, yi), (xi+1, yi+1),⋯, (xn, yn) = (x, y) such
that for all i, either (xi, yi) ↝1 (xi+1, yi+1)

or ∃s ∈ S. xi
s

−�⊂xi+1 & yi = yi+1 & σ1(s) is defined

or ∃t ∈ T. yi
t

−�⊂ yi+1 & xi = xi+1 & τ2(t) is defined.
(The relation ↝1 is that introduced in Lemma 3.)

Theorem 2 below provides the precise relation between (τ⊙σ)“ and τ“ ○ σ“.
Its proof requires that reachable matching pairs are ∼-equivalent iff they are
associated with the same configuration in T⊙S, the import of (ii) in the next
lemma.

Lemma 4. (i) If (x, y) is a reachable matching pair and (x, y) ∼ (x′, y′), then
(x′, y′) is a reachable matching pair. (ii) Whenever (x, y), (x′, y′) are reachable
matching pairs, (x, y) ∼ (x′, y′) iff x ⋅ y and x′ ⋅ y′ have the same visible primes.

Proof. We use Lemma 3 characterizing ∼ in terms of ↝1.
(i) Suppose (x, y) ↝1 (x

′, y′) or (x′, y′) ↝1 (x, y). By inspection of the construc-
tion of the product of stable families in Section 3, if x ⋅ y ∈ C(T)⊙C(S) then
x′ ⋅ y′ ∈ C(T)⊙C(S).

430 G. Winskel

(ii) “If”: Suppose x ⋅ y and x′ ⋅ y′ have the same visible primes, forming the
set Q. Then z =def ⋃Q ∈ C(T)⊙C(S), being the union of a compatible set of
configurations in C(T)⊙C(S). Moreover, z ⊆ x ⋅ y, x′ ⋅ y′. Take a covering chain

z
e1
−�⊂⋯zi

ei
−�⊂ zi+1⋯

en
−�⊂ x ⋅ y

in C(T)⊙C(S). Each (π1zi, π2zi) is a matching pair. Necessarily, ei = (si, ti) for

some si ∈ S, ti ∈ T , with σ2(si) = τ1(ti), again by the definition of C(T)⊙C(S).
Thus

(π1zi, π2zi) ↝1 (π1zi+1, π2zi+1) .

Hence (π1z, π2z) ∼ (x, y), and similarly (π1z, π2z) ∼ (x
′, y′), so (x, y) ∼ (x′, y′).

“Only if”: It suffices to observe that if (x, y) ↝1 (x
′, y′), then x ⋅y and x′ ⋅y′ have

the same visible primes. But if (x, y) ↝1 (x
′, y′) then x ⋅ y

(s,t)
−�⊂ x′ ⋅ y′, for some

s ∈ S, t ∈ T , and no visible prime of x′ ⋅ y′ contains (s, t). ◻

Theorem 2. Let σ ∶ A +
��B and τ ∶ B +

��C be strategies. Defining

ϕσ,τ ∶ C(T⊙S) →M/ ∼ by ϕσ,τ (z) = {(Π1z,Π2z)}∼ ,

where Π1z = π1⋃ z and Π2z = π2⋃ z, yields an injective, order-preserving func-
tion from (C(T⊙S),⊑T⊙S) to (M/ ∼,⊑)—its range is precisely the equivalence
classes {(x, y)}

∼
for reachable matching pairs (x, y). The diagram

(C(T⊙S),⊑T⊙S)

(τ⊙σ)“

��

ϕσ,τ �� (M/ ∼, ⊑)

τ“○σ“**++++++++++++++

(C(A),⊑A)
op × (C(C),⊑C)

commutes.

Proof. For z ∈ C(T⊙S), we obtain that ϕσ,τ(z) = (Π1z,Π2z) = (π1⋃ z, π2⋃ z)
is a matching pair, from the definition of C(T)⊙C(S); it is clearly reachable as
π1⋃z ⋅ π2⋃ z = ⋃z ∈ C(T)⊙C(S). For any reachable matching pair (x, y) let z
be the set of visible primes of x ⋅ y. Then, z ∈ C(T⊙S) and, by Lemma 4(ii),
(Π1z,Π2z) ∼ (x, y) so ϕσ,τ(z) = {(x, y)}∼. Injectivity of ϕσ,τ follows directly
from Lemma 4(ii).

To show that ϕσ,τ is order-preserving it suffices to show if z−⊏z′ in (C(T⊙S),⊑)
then ϕσ,τ (z) ⊑ ϕσ,τ(z

′) in (M/ ∼,⊑). (The covering relation −⊏ is w.r.t. ⊑.) If

z−⊏z′ then either z
p
−�⊂ z′, with p +ve, or z′

p
−�⊂ z, with p −ve, for p a visible prime

of C(T)⊙C(S), i.e. with max(p) of the form (s,∗) or (∗, t). We concentrate on
the case where p is +ve (the proof when p is −ve is similar). In the case where
p is +ve,

Π1z ⋅Π2z = ⋃ z ⊆ ⋃ z′ =Π1z
′ ⋅Π2z

′

in C(T)⊙C(S) and there is a covering chain

⋃ z = w0

(s1,t1
−�⊂ w1⋯

(sn,tn)
−�⊂ wn

max(p)
−�⊂ ⋃ z′

Strategies as Profunctors 431

in C(T)⊙C(S). Each wi, for 0 ≤ i ≤ m, is associated with a reachable matching
pair (π1wi, π2wi) where π1wi ⋅π2wi = wi. Also (π1wi, π2wi) ↝1 (π1wi+1, π2wi+1),
for 0 ≤ i <m. Hence (Π1z,Π2z) ∼ (π1wn, π2wn), by Lemma 3. If max(p) = (s,∗)

then π1wn
s

−�⊂Π1z
′, with s +ve, and π2wn = Π2z

′. If max(p) = (∗, t) then

π1wn = Π1z
′ and π2wn

t
−�⊂Π2z

′, with t +ve. In either case π1wn ⊑S Π1z
′ and

π2wn ⊑T Π2z
′ with σ2π1wn = σ2Π1z

′ and τ1π2wn = τ1Π2z
′. Hence, from the

definition of ⊑ on M/ ∼,

ϕσ,τ(z) = {(Π1z,Π2z)}∼ = {(π1wn, π2wn)}∼ ⊑ {(Π1z
′,Π2z

′)}
∼
= ϕσ,τ (z

′) .

It remains to show commutativity of the diagram. Let z ∈ C(T⊙S). Then,

(τ“ ○ σ“)(ϕσ,τ(z)) = (τ“ ○ σ“)({(Π1z,Π2z)}∼) = (σ1Π1z, τ2Π2z) = (τ⊙σ)“(z) ,

via the definition of τ⊙σ—as required. ◻

Because (−)“ does not preserve composition up to isomorphism but only up to
the transformation ϕ of Theorem 2:

Corollary 2. The operation (−)“ forms a lax functor from Strat, the bicategory
of strategies, to Prof , that of profunctors; identities are preserved up to the
isomorphism of Corollary 1 while composition is preserved up to ϕ of Theorem 2.

Despite laxness, the relation between strategy composition and profunctor com-
position is surprisingly straightforward: the composition of strategies, viewed as
a profunctor, is given by restricting the composition of profunctors to reachable
matching pairs.

In special cases composition is preserved up to isomorphism because all the
relevant matching pairs are reachable. Say a strategy σ is rigid when the com-
ponents σ1, σ2 preserve causal dependency when defined. In fact, rigid strategies
form a sub-bicategory of Strat. For composable rigid strategies σ and τ we do
have (τ⊙σ)“ ≅ τ“ ○ σ“. Stable spans (including Berry’s stable functions), those
strategies between games where all moves are +ve [1], and simple games [8,9] lie
within the bicategory of rigid strategies.

9 Games as Factorization Systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system [10]; the ‘left’ maps are given by ⊇− and the ‘right’ maps
by ⊆+. More specifically they form an instance of a rooted factorization system
(X,→L,→R,0) where maps f ∶ x →L x′ are the ‘left’ maps and g ∶ x →R x′ the
‘right’ maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps:

0←L ⋅ →R ⋯ ←L ⋅ →R x ;

and two ‘confluence’ conditions hold:

x1 →R x & x2 →R x �⇒ ∃x0. x0 →R x1 & x0 →R x2 , and its dual

x→L x1 & x→L x2 �⇒ ∃x0. x1 →L x0 & x2 →R x0 .

432 G. Winskel

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.

The characterization of strategy, Lemma 1, exhibits a strategy as a discrete
fibration w.r.t. ⊑ whose functor preserves ∅, ⊇− and ⊆+. This generalizes. Define
a strategy in a rooted factorization system to be a functor from another rooted
factorization system preserving 0, L-maps, R-maps and forming a discrete fibra-
tion. To obtain strategies between rooted factorization systems we again follow
the methodology of Joyal [7], and take a strategy from X to Y to be a strat-
egy in the dual of X in parallel composition with Y. Now the dual operation
becomes the opposite construction on a factorization system, reversing the roles
and directions of the ‘left’ and ‘right’ maps. The parallel composition of fac-
torization systems is given by their product. Composition of strategies is given
essentially as that of profunctors, but restricting to reachable elements—the
definition of reachable element is a direct generalization of Proposition 6. The
bicategory of concurrent strategies is equivalent to the sub-bicategory in which
the objects and strategies are on rooted factorization systems of the form of
((C(A),⊑A),⊇

−,⊆+,∅) for an event structure with polarityA.
One pay-off of the increased generality is that bistructures, a way to present

Berry’s bidomains as factorization systems [11], inherit a reading as games. The
new view also allows us to formalize strategies in some games based on moves
as vectors, as in some games of chase, in which moves of Player (as hunter) and
Opponent (as prey) may be translations in space or changes in velocity. Details
will appear elsewhere.

Acknowledgments. Thanks to Pierre Clairambault, Marcelo Fiore, Julian
Gutierrez, Thomas Hildebrandt, Martin Hyland, Alex Katovsky, Samuel Mim-
ram, Gordon Plotkin, Silvain Rideau and Sam Staton for helpful remarks. The
support of Advanced Grant ECSYM of the ERC is acknowledged with gratitude.

References

1. Rideau, S., Winskel, G.: Concurrent strategies. In: LICS 2011. IEEE Computer
Society (2011)

2. Hyland, M.: Some reasons for generalising domain theory. Mathematical Structures
in Computer Science 20(2), 239–265 (2010)

3. Winskel, G.: Events, causality and symmetry. Comput. J. 54(1), 42–57 (2011)
4. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-

put. 163(2), 409–470 (2000)
5. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf. Com-

put. 163(2), 285–408 (2000)
6. Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation. Mathemat-

ical Structures in Computer Science 15(3), 553–614 (2005)
7. Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gazette des sciences

mathématiques du Québec 1(4) (1997)

Strategies as Profunctors 433

8. Hyland, M.: Game semantics. In: Pitts, A., Dybjer, P. (eds.) Semantics and Logics
of Computation. Publications of the Newton Institute (1997)

9. Harmer, R., Hyland, M., Melliès, P.A.: Categorical combinatorics for innocent
strategies. In: LICS 2007. IEEE Computer Society (2007)

10. Joyal, A.: Factorization systems. Joyal’s CatLab (2012),
http://ncatlab.org/joyalscatlab/

11. Curien, P.L., Plotkin, G.D., Winskel, G.: Bistructures, bidomains, and linear logic.
In: Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 21–54.
MIT Press (2000)

http://ncatlab.org/joyalscatlab/

Generalised Name Abstraction for Nominal Sets

Ranald Clouston�

Logic and Computation Group, Research School of Computer Science,
The Australian National University, Canberra, ACT 0200, Australia

ranald.clouston@anu.edu.au

Abstract. The Gabbay-Pitts nominal sets model provides a framework
for reasoning with names in abstract syntax. It has appealing semantics
for name binding, via a functor mapping each nominal set to the ‘atom-
abstractions’ of its elements. We wish to generalise this construction
for applications where sets, lists, or other patterns of names are bound
simultaneously. The atom-abstraction functor has left and right adjoint
functors that can themselves be generalised, and their generalisations
remain adjoints, but the atom-abstraction functor in the middle comes
apart to leave us with two notions of generalised abstraction for nominal
sets. We give new descriptions of both notions of abstraction that are
simpler than those previously published. We discuss applications of the
two notions, and give conditions for when they coincide.

Keywords: name binding, nominal sets, adjoint functors.

1 Introduction

Programming languages and formal calculi frequently feature syntactic con-
structs called names, or object-level variables. When combined with binding con-
structs, rendering names anonymous within their scope, technical and conceptual
issues arise that have attracted much research in recent years. Some such con-
structs bind not just a single name at a time, but a set, list, or pattern of names;
as yet there is no convincing general theory for such binders [1].

One of the most prominent approaches to names and binding is the nominal
sets model [10,16]. Nominal sets provide a mathematical model in which names
exist as first-class citizens, manipulated by permutations. This model supports
reasoning techniques that closely match pen-and-paper practice, in which we
often explicitly manipulate bound names. Nominal sets have inspired a literature
too extensive to summarise here, with nominal variants offered of everything from
equational logic [4], to interactive theorem proving [24], to game semantics [23].

Binding in nominal sets is elegantly captured by a construction called atom-
abstraction; for each nominal set X we define a new nominal set, written [A]X ,
which can be thought of in two ways: as a set of pairs of names and X-elements

� The author gratefully acknowledges his discussions with Andrew Pitts, Michael Nor-
rish, and Barry Jay, and the comments of the anonymous reviewers.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 434–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generalised Name Abstraction for Nominal Sets 435

quotiented by legal renamings, and as a function mapping free names to X-
elements. For example, [A]A (names abstracted over names) contains pairs such
as (a, a), equivalent to (b, b) but not equivalent to (b, a), or alternatively contains
functions such as λx.x and λx.a.

It is worth dwelling on this dual description of [A]X as (quotiented) product
and (partial) function space. We can use the language of category theory to cap-
ture this intuition more firmly. The map X �→ [A]X extends to an endofunctor
[A]- on the category of nominal sets with both left and right adjoints:

-⊗ A @ [A]- @ -[A] . (1)

Attention was first drawn to this chain of adjunctions by [15]. It immediately tells
us that atom-abstraction has nice properties, preserving all limits and colimits.
More intriguingly, the leftmost functor comes via a sort of product, and the
rightmost functor via a sort of function space. This can be compared to the
cartesian closure adjunction -×X @ X → -, which gives the standard relationship
between products and function spaces. Hence [A]X is somehow amphibious, both
a product and a function space. As [6] puts it, atom-abstractions are “constructed
like a pair... but destructed like a partial function”.

Atom-abstraction nominal sets as a semantics for binding one name at a time
are now well established; what of applications involving more complex binding?
Such applications, such as the functional programming operator letrec that binds
lists of names simultaneously, are known to be imperfectly modelled by one-at-
a-time binding - see [1,21,24] for varied discussions on this point. This paper
explores and critiques the fundamental mathematics that could provide a nomi-
nal sets semantics for such general binding. Concretely, we will try to generalise
the atoms-abstraction construction [A]Y by replacing the set of names A with
other nominal sets X , such as the nominal set of lists of names.

The adjunctions of (1) offer one approach to this generalisation, as the func-
tors -⊗A and -[A] easily generalise to functors -⊗X and -[X]. These generalisations
remain left and right adjoints respectively, but an interesting thing happens: the
right adjoint of - ⊗ X and left adjoint of -[X] do not in general coincide. Thus
we have two notions of generalised abstraction, one of which is constructed like
a pair, and the other of which is destructed like a partial function. Summarising
our situation, we have

-⊗X @ X−∗ - and [X]- @ -[X] (2)

where X−∗ - and [X]- coincide in the case that X = A, but not in general.
The left hand adjunction of (2) is known to exist for general category the-

oretic reasons, because ⊗, called here the separated product, is related to the
‘Day convolutions’ of [5]. We call its closure the separating function space, and
use the ‘magic wand’ notation from the logic of Bunched Implications (BI) [18].
However this category theoretic view does not yield an accessible nominal set
theoretic construction, and such concrete constructions have been key to the
succesful applications of nominal techniques. The closest we have to such a con-
struction is [19, Sec. 3.3], which involves a tricky quotient on partial functions

436 R. Clouston

and selection of canonical members from each equivalence class. In Sec. 3 we will
give a considerably simpler and more intuitively appealing construction.

Conversely, the construction [X]- was established in [9, Sec. 6] and imple-
mented in the language FreshML [22]. It has been given the name generalised
abstraction and notation matching that name; we will harmonise with the lit-
erature on this, at the risk of implying it is the only generalisation of atom-
abstraction worth considering. To our knowledge, the right hand adjunction of
(2) was first explicitly observed in the unpublished [17], although it is a corollary
of the earlier [19, Prop. 3.3.32]; in Sec. 4 we will sketch this adjunction, along
with a novel treatment of generalised abstractions as equalisers.

Sec. 5 will give necessary and sufficient conditions under which these notions
of abstraction coincide, as they do for A. The ‘sufficient’ direction is due to [19,
Sec. 10.3]; here we restate that proof in terms of our simple notion of separating
functions, and give the ‘necessary’ direction also. Finally, Sec. 6 will look at
applications and limitations of these mathematical developments.

2 Nominal Sets

This section gives us a brief overview of nominal sets; [16] or [3, Cha. 2] provide
more leisurely introductions to the area.

Definition 2.1. Fix a countably infinite set A of atoms. The set Perm of (finite)
permutations consists of all bijections π : A→ A whose non-trivial domain

supp(π) {a | π(a) �= a} (3)

is finite.
Perm is a group, with multiplication as permutation composition, π′π(a) =

π′(π(a)), and identity as the permutation ι leaving all atoms unchanged.

Example 2.2. The transpositions (a b) map a �→ b, b �→ a and leave all other
atoms unchanged. Now let

A(n) {(a1, . . . , an) ∈ An | ai �= aj for 1 ≤ i < j ≤ n} . (4)

All the tuples of atoms we use in this paper will be so disjoint. Take �a =
(a1, . . . , an),�a

′ = (a′1, . . . , a
′
n) ∈ A(n) with mutually disjoint underlying sets.

Then their generalised transposition is

(�a �a′) (a1 a
′
1) · · · (an a′n) .

Definition 2.3. A Perm-set is a set X equipped with a function, or Perm-action,
(π, x) �→ π · x from Perm×X to X such that ι · x = x and π · (π′ · x) = ππ′ · x.

Given such a Perm-set X we say that a set of atoms a ⊆ A supports x ∈ X
if for all π ∈ Perm, supp(π) ∩ a = ∅ implies that π · x = x.

Generalised Name Abstraction for Nominal Sets 437

Definition 2.4. A nominal set is a Perm-set X with the finite support property:
for each x ∈ X there exists some finite a ⊆ A supporting x.

If an element x is finitely supported then there is a unique least such support
set [10, Prop. 3.4], which we write supp(x) and call the support of x.

Given nominal set elements x ∈ X, y ∈ Y , if supp(x) ∩ supp(y) = ∅ then we
write x # y, and say that x is fresh for y, or equivalently that y is fresh for x.

Remark 2.5. The atoms A can be seen as a set of names, and the support of a
nominal set element as its set of free names. The finite support condition reflects
that for most notions of syntax, terms may have only finitely many free names.
It is a useful condition because it allows us to uniquely define the support of
an element, and hence always find names that are fresh for, or not free in, that
element.

Example 2.6. (i) Any set is a nominal set under the trivial Perm-action π·x = x;
then supp(x) = ∅.

(ii) A is a nominal set given π · a = π(a); supp(a) = {a}.
(iii) Perm is a nominal set given the conjugation action π ·π′ = ππ′π−1; support

is as (3).
(iv) Pfin(A), the set of finite sets of atoms, is nominal given the element-wise

Perm-action; supp(a) = a.
(v) Given nominal sets X,Y , the usual product X × Y is nominal given the

element-wise Perm-action; supp((x, y)) = supp(x) ∪ supp(y). We write the
n-fold product of X as Xn.

(vi) Define a subset of X × Y by

X ⊗ Y {(x, y) ∈ X × Y | x # y} .

This is nominal with the same element-wise action and supports as X ×
Y , and is called the separated product of X and Y . The n-fold separated
product of X is written X(n), as with (4).

(vii) The usual disjoint union X + Y , with typical members (x, 1) or (y, 2), is
nominal given the Perm-actions and supports inherited from X,Y . Where
there is no confusion we will omit the indices.

Definition 2.7. We can define a Perm-action on the functions f : X → Y by
applying the evident action to their graphs, i.e.

(π · f)(x) π · (f(π−1 · x)) . (5)

Functions between nominal sets are not necessarily finitely supported under this
action; we call the functions that are so the finitely supported functions.

A function that has empty support under this action is called an equivariant
function; this property has the equivalent formulation

π · (f(x)) = f(π · x) .

The category of nominal sets, written Nom, has as objects, nominal sets, and
as arrows, equivariant functions between them.

438 R. Clouston

Example 2.8. (i) The permutations of Perm are all finitely supported functions
A→ A: compare Ex. 2.6(iii) and (5).

(ii) For each nominal set X , the map x �→ supp(x) is an equivariant function
X → Pfin(A).

(iii) If X is a subset of the nominal set Y , and X is closed under Y ’s Perm-
action, then we call X a nominal subset of Y ; the inclusion function is
obviously equivariant. For example, X ⊗ Y is a nominal subset of X × Y .

Remark 2.9. Nom has much categorial structure; it is a Grothendiek topos. We
in particular note, without proof, that it has initial object ∅ and terminal object
1 = {•} under the trivial Perm-actions (Ex. 2.6(i)), that Ex. 2.6(v) and (vii)
define its binary product and coproducts, and that its exponential from X to Y
is the nominal set of functions X → Y finitely supported under (5).

Lemma 2.10. The following are useful basic facts about nominal sets. We will
use them often in this paper, usually without specific reference:

(i) Given an atom a ∈ A, a # x if and only if for some atom a′ # (a, x),
we have (a a′) · x = x, if and only if for any atom a′ # (a, x), we have
(a a′) · x = x

(ii) If f is equivariant then supp(f(x)) ⊆ supp(x).
(iii) If the permutations π, π′ coincide on their restrictions to supp(x), then π ·

x = π′ · x.

We now present the standard atom-abstraction construction, which gives seman-
tics for name binding operations such as λ-abstraction:

Definition 2.11. Given a nominal set X we define a relation on A×X by

(a, x) ∼ (a′, x′) ⇔ (a b) · x = (a′ b) · x′

for some atom b # (a, a′, x, x′). This defines an equivalence relation; write the
class containing (a, x) as 〈a〉x and call such a class the atom-abstraction of a
on x. This relation is equivariant, i.e. (a, x) ∼ (a′, x′) implies (π(a), π · x) ∼
(π(a′), π · x′).

The set of atom-abstractions of a on x as a ranges over A and x over X
hence forms a nominal set under the action π · 〈a〉x 〈π(a)〉(π · x). Write this
nominal set [A]X, and call its members the atom-abstractions on X.

This construction extends to a functor [A]- : Nom → Nom by, given equiv-
ariant f : X → Y and atom-abstraction 〈a〉x ∈ [A]X, the map ([A]f)(〈a〉x) =
〈a〉(f(x)).

Definition 2.12. The separated product construction X ⊗ Y of Ex. 2.6(vi) ex-
tends to a monoidal operation on Nom under the evident action on equivariant
functions. This gives rise to a functor -⊗X : Nom → Nom for any X.

Definition 2.13. For any nominal sets X,Y define the nominal set of fresh-
ening functions from X to Y by

Y[X] {f : X → Y | f is finitely supported, and ∀x ∈ X. x # f(x)} .

Generalised Name Abstraction for Nominal Sets 439

Equivalently, Y[X] is the set of functions whose graphs draw elements from X⊗Y .
This extends to a functor -[X] : Nom → Nom in the evident manner: given

equivariant g : Y → Z and freshening function f ∈ Y[X], we have g[X](f) = g◦f .

Theorem 2.14. We have the adjunctions

-⊗ A @ [A]- @ -[A]

Proof. By Thms. 3.6, 4.5, and 5.5 below. We note here only that the co-unit
of the left hand adjunction, with components εX : [A]X ⊗ A → X , is called
concretion, and is defined by

εX(〈a〉x, b) = (a b) · x .

It is in this sense that atom-abstraction is destructed like a function space.

3 Separating Functions

In this section we will define the closure of the separated product ⊗: a binary
connective −∗ with the adjoint property - ⊗ X @ X−∗ - for any nominal set
X . Such a closure condition can be compared to the standard cartesian closure
relating products and function spaces. As ⊗ is a sort of product, we will not be
surprised to find that −∗ forms a sort of function space.

Definition 3.1. Given sets X,Y , the partial functions f : X ⇀ Y are the
functions f : dom(f) → Y for dom(f) ⊆ X. We say f(x) ↓, and that f(x)
converges, if x ∈ dom(f). We say f(x) ↑, and that f(x) diverges, if x ∈ X −
dom(f).

Given nominal sets X,Y and a partial function f : X ⇀ Y , we can define a
Perm-action on f by the Perm-action on its graph, i.e.

(π · f)(x) =
{
π · f(π−1 · x) if f(π−1 · x) ↓
↑ if f(π−1 · x) ↑

(6)

The nominal set X ⇀fs Y is the set of partial functions X ⇀ Y finitely sup-
ported under (6).

Definition 3.2. Given nominal sets X,Y a separating function f from X to Y
is a finitely supported partial function satisfying

(i) f(x) ↓ if and only if f # x;
(ii) supp(f) =

⋃
x∈dom(f) supp(f(x)) − supp(x);

This defines a nominal subset of X ⇀fs Y , which we write X−∗Y and call the
separating function space from X to Y .

440 R. Clouston

Lemma 3.3. For any finitely supported partial function f : X ⇀ Y , Def. 3.2(ii)
is equivalent to

supp(f) ⊆
⋃

x∈dom(f)

supp(f(x))− supp(x) . (7)

Proof. The converse holds for any finitely supported f : Say a ∈ supp(f(x)) −
supp(x) for some x ∈ dom(f). Take a′ # (a, x, f), so (a a′) · f(x) �= f(x). To see
that a ∈ supp(f) we will show that f, (a a′) · f disagree on x.
a, a′ # x implies that (a a′) · x = x, so f(x) ↓ implies that ((a a′) · f)(x)

converges to (a a′) · f(x) by (6). This is not equal to f(x), as required.

Remark 3.4. How is Def. 3.2 motivated? The proposed adjunction requires that
we evaluate f(x) only in the case that (f, x) ∈ (X−∗Y)⊗X ; that is, where f # x.
It therefore must be that f is partial and that its domain be entirely determined
by its support; otherwise we would not have total evaluation, or would have non-
identical functions that evaluate identically. This restriction (here, Def. 3.2(i))
is also found in [19, Sec. 3.3].

A counter-example helps to motivate Def. 3.2(ii). Following the ‘sharing in-
terpretation’ of the logic BI [18, Cha. 9], if we interpret names as resources, and
supports as the resources claimed by each element, then ⊗ is a ‘non-sharing’
product, and we would expect its closure to consist of functions that cannot ac-
cess their arguments’ supports. But consider the partial function ↑a: A⇀ 1 that
diverges on a and converges elsewhere. This obeys Def. 3.2(i), as supp(↑a) = {a},
yet it needs to access its argument’s support to determine divergence. However
the right hand side of (7) is empty, so ↑a /∈ A−∗1, so Def. 3.2(ii) fails.

Example 3.5. (i) If all elements of Y have empty support, then X−∗Y contains

exactly the equivariant total functions X → Y . In particular, X−∗1 ∼= 1.

(ii) The separating functions A−∗A are the identity and, for each a ∈ A, the
partial functions fa defined by fa(b) = a if a �= b, and diverging on a.

(iii) The separating functions (1 + A)−∗ A are defined, for each a ∈ A, by
mapping • �→ a and then (1) as the identity on A except diverging on a, (2)
sending all atoms to a except diverging on a, or (3) for any b �= a, sending
all atoms to b except diverging on {a, b}.

Theorem 3.6. The definition of separating function spaces extends to a functor
X−∗ - : Nom → Nom for any nominal set X, with the adjoint property

-⊗X @ X−∗ -

Proof. The bijection Nom(Z⊗X,Y) ∼= Nom(Z,X−∗Y) is given via the co-unit,

whose components εY : (X−∗Y)⊗X → Y are the usual evaluation functions:

εY (f, x) = f(x)

Generalised Name Abstraction for Nominal Sets 441

Each εY is straightforwardly total and equivariant. We must show that for any
f : Z ⊗X → Y there is a unique f̂ : Z → (X−∗Y) such that

Z

f̂
��

Z ⊗X

f̂⊗X
��

f

��(
((

((
((

((
((

X−∗Y (X−∗Y)⊗X εY
�� Y

(8)

commutes. For each z ∈ Z let

az
⋃

(x∈X)#z

supp(f(z, x))− supp(x) . (9)

The map z �→ az is straightforwardly equivariant, so az ⊆ supp(z) by Lem.

2.10(ii). Now let f̂ : Z → (X−∗Y) be

f̂(z)(x)
{
f((�a �a′) · z, x) if az # x

↑ otherwise.
(10)

where �a is an ordering of supp(z) ∩ supp(x) and �a′ is a tuple of the same size

fresh for (z, x). Then where f̂(z)(x) ↓ we may picture the elements’ supports as

z

az

x

�a �a′

Evidently (�a �a′) · z # x, so f((�a �a′) · z, x) is well-defined. To see that f̂ is well-
defined we must check that it does not depend on our choice of fresh �a′. To do
this we first prove

�a # f(z, (�a �a′) · x) . (11)

Suppose b is in the support of both sides of (11). Now (b, z) # (�a �a′) ·x, so b ∈ az
by (9). But az # x and b ∈ supp(x) by definition, so by contradiction (11) holds.
Because f is equivariant we can then apply (�a �a′) to both sides of (11) to get
�a′ # f((�a �a′) · z, x), which is sufficient to conclude that our choice of fresh �a′ is
arbitrary. f̂ is hence a function; equivariance is straightforward.

The diagram (8) commutes because if we start at (z, x) ∈ Z⊗X then az # x,

and �a in (10) is empty, so f̂(z)(x) converges to f(z, x).

We next confirm that f̂(z) is a separating function. f̂(z)(x) ↓ iff az # x

by (10), so Def. 3.2(i) holds if supp(f̂(z)) = az. Def. 3.2(ii) asks further that

supp(f̂(z)) equals ⋃
x∈dom(f̂(z))

supp(f̂(z)(x)) − supp(x) . (12)

442 R. Clouston

We start by showing that az equals (12). Taking a ∈ az, there exists x ∈ X

such that x # z and a ∈ supp(f(z, x)) − supp(x). Then f̂(z)(x) = f(z, x),

so a is in (12). Conversely, take a in (12). There exists x ∈ dom(f̂(z)) such

that a ∈ supp(f̂(z)(x)) − supp(x). Now f̂(z)(x) = f((�a �a′) · z, x), and a # x
implies a # �a, and f is equivariant, so we can apply (�a �a′) to both sides of

a ∈ supp(f̂(z)(x))− supp(x) to yield a ∈ supp(f(z, (�a �a′) · x))− supp((�a �a′) · x).
But (�a �a′) · x # z, so a ∈ az by (9).

By Lem 3.3 we need only now show (by contrapositive) that supp(f̂(z)) ⊆ az .

The equivariance of f̂ and Lem. 2.10(ii) tell us that a # z implies a # f̂(z), so
we need only consider a ∈ supp(z)− az. We will show that, given fresh atom a′,

f̂(z) = (a a′) · f̂(z) .

First, convergence: for any x ∈ X , f̂(z)(x) ↓ iff az # x by (10), iff az # (a a′) ·x
because a, a′ # az, iff f̂(z)((a a′) · x) ↓, iff ((a a′) · f̂(z))(x) ↓ by (6).

Now, taking any x on which they converge, we will show that f̂(z)(x) =

((a a′) · f̂(z))(x). By f̂ ’s equivariance and (10), this asks that

f((�a �a′) · z, x) = f((�b �b′)(a a′) · z, x) (13)

where �a orders supp(z) ∩ supp(x), �b orders supp((a a′) · z) ∩ supp(x), and �a′,�b′

are chosen fresh. If a ∈ supp(z) ∩ supp(x) then (�a �a′) and (�b �b′)(a a′) coincide
(given an appropriate choice of fresh variables), so (13) holds. Otherwise, say

a # x, in which case �a = �b. Now because a /∈ az and x ∈ dom(f̂(z)), we have
a /∈ supp(f((�a �a′) · z, x)) − supp(x) by (9), and so a # f((�a �a′) · z, x). Hence
f((�a �a′) · z, x) = (a a′) · f((�a �a′) · z, x) = f((a a′)(�a �a′) · z, (a a′) · x). This is the
right hand side of (13) because a # (x,�a).

Finally, confirmation that f̂ is uniquely determined is routine.

Corollary 3.7. X−∗ - extends to a bifunctor -−∗ - : Nomop ×Nom → Nom.

Proof. Given equivariant g : X ′ → X,h : Y → Y ′, apply the adjunction to

(X−∗Y)⊗X ′
id⊗g

�� (X−∗Y)⊗X
εY �� Y

h �� Y ′

Theorem 3.8. X−∗ - has no right adjoint in general.

Proof. It suffices to find some nominal setX , and some colimit inNom , such that
this colimit is not preserved by X−∗ -. Now A2−∗1 ∼= 1, so (A2−∗1) + (A2−∗1)
has two elements. A2−∗ (1 + 1), on the other hand, contains four elements: the
maps (a, b) �→ (•, i) for i = 1 or 2, the map

(a, b) �→
{
(•, 1) if a = b

(•, 2) otherwise

and its converse.

Generalised Name Abstraction for Nominal Sets 443

4 Generalised Abstraction

Lemma 4.1. Given nominal sets X,Y , we can define an equivalence relation
∼ on X × Y by setting, for all permutations π # (supp(y)− supp(x)),

(x, y) ∼ π · (x, y)

recalling that π · (x, y) = (π · x, π · y).

Proof. For reflexivity, set π = ι. For symmetry, (π ·x, π ·y) ∼ π−1 · (π ·x, π ·y) by
the equivariance of supp and set minus. Transitivity is similarly straightforward.

Definition 4.2. Write X × Y modulo ∼ as [X]Y . Call its members the X-
abstractions on Y . Write the equivalence class containing (x, y) as 〈x〉y. Call
the construction, as X ranges across all nominal sets, generalised abstraction.

Lemma 4.3. [X]Y is a nominal set under the action π · 〈x〉y = 〈π · x〉(π · y),
and

supp(〈x〉y) = supp(y)− supp(x)

Proof. Standard nominal techniques.

Example 4.4. (i) [A]X is the familiar notion of atom-abstraction from Def. 2.11.
For example, [A]A contains the emptily supported element 〈a〉a = 〈b〉b =
· · · and, for each atom a, the element 〈b〉a = 〈c〉a = · · · for b, c, . . . �= a,
supported by {a}. Compare with Ex. 3.5(ii).

(ii) [A+ 1]A contains all the elements of [A]A plus, for each a ∈ A, the element
〈•〉a supported by {a}. Contrast with Ex. 3.5(iii), which had no emptily
supported element.

Theorem 4.5. Generalised abstraction extends to a functor [X]- : Nom →
Nom for any nominal set X, with the adjoint property

[X]- @ -[X]

where -[X] is the freshening function functor of Def. 2.13

Proof. In the case X = A, the proof is [8, Thm. 9.6.6], although the language of
adjunctions is not explicitly used there. The general situation [17] holds similarly:
the bijection Nom(Y, Z[X]) ∼= Nom([X]Y,X) is defined by mapping equivariant
f : Y → Z[X] to g : [X]Y → Z, where g(〈x〉y) = f(y)(x). The unit of the
adjunction has components ηY : Y → ([X]Y)[X] defined by ηY (y)(x) = 〈x〉y.

Theorem 4.6. [X]− has no left adjoint in general.

Proof. It suffices to find some limit in Nom not preserved by [X]- for some X .
[A2]1 has two distinct objects:

(i) 〈(a, a)〉•;
(ii) 〈(a, b)〉• (where a �= b).

444 R. Clouston

They are not equal because there is no permutation π such that π · ((a, a), •) =
((a, b), •). [A2]1 is therefore not terminal.

The next theorem gives a novel description of generalised abstractions as (iso-
morphic to) certain nominal subsets of finite atom-set abstractions.

Theorem 4.7. Given nominal sets X,Y , [X]Y is the equaliser of functions *, f
from [Pfin(A)](X × Y) to 2 = {*,⊥}, defined as:

(i) The constant function *;

(ii) f(〈a〉(x, y)) =
{
* if supp(x) = a

⊥ otherwise.

Proof. The forgetful functor Nom → Set reflects equalisers, so we need only
observe that [X]Y is isomorphic to the usual equaliser via the bijective map
〈x〉y �→ 〈supp(x)〉(x, y).

5 When Do Separating Functions and Generalised
Abstraction Coincide?

From Exs. 3.5(iii) and 4.4(ii) and Thms. 3.8 and 4.6, we see that X−∗ Y and
[X]Y are not always isomorphic. Thm. 5.5 will specify when they do coincide.

Definition 5.1. A nominal set X is transitive if for all x, y ∈ X, there exists
π ∈ Perm such that π · x = y.
X is strong1 if, for all π ∈ Perm, π · x = x implies π # x.

Example 5.2. (i) A is transitive and strong.
(ii) P2(A), the nominal set of unordered pairs of atoms with the element-wise

Perm-action, is transitive but not strong: (a b) · {a, b} = {a, b}, but it is not
the case that (a b) # {a, b}.

(iii) A2 is strong but not transitive: (a, a) and (a, b), where a �= b, occupy
different orbits.

(iv) Pfin(A) is neither transitive nor strong.

Lemma 5.3. Say X−∗Y ∼= [X]Y for all Y . Then

(i) X is non-empty;
(ii) X is transitive;
(iii) X is strong.

Proof. (i) ∅−∗Y contains the empty function, while [∅]Y is empty always.
(ii) Say we have x, x′ ∈ X with no permutation between them. 〈x〉• and 〈x′〉•

are therefore distinct elements of [X]1, which then differs from X−∗1 ∼= 1.

1 This property was introduced by [19] and called essentially simple; we use the more
widely used strong from [23].

Generalised Name Abstraction for Nominal Sets 445

(iii) Say X is not strong, so we have π · x = x with supp(π) ∩ supp(x) �= ∅.
Say supp(x)− supp(π) has n elements, and suppose for contradiction that there
existed a total equivariant function f : X → A(n+1). supp(f(x)) ⊆ supp(x)
by Lem. 2.10(ii), and because supp(f(x)) has n + 1 elements it is too big to
contain just supp(x) − supp(π); it must contain some a ∈ supp(x) ∩ supp(π).
Now π · f(x) = f(π · x) = f(x), but this Perm-action is just the element-wise
action on lists, so π(a) = a. This contradicts a ∈ supp(π), so there are no
equivariant functions X → A(n+1). But the total equivariant functions are the
only emptily supported elements of separating function spaces, so X−∗ A(n+1)

has no emptily supported elements.
Conversely, let �a be an ordering of (supp(x) − supp(π)) ∪ {a}, where a ∈

supp(π) ∩ supp(x). Then 〈x〉�a is an emptily supported element of [X](A(n+1))
by Lem. 4.3.

Lemma 5.4. Say X is transitive and strong. Then we can define an equivariant
function, called generalised concretion, [X]Y ⊗X → Y sending (〈x〉y, π · x) �→
π · y, where π # 〈x〉y.

Proof. We first check that for any (〈x〉y, x′) ∈ [X]Y ⊗ X there exists such a
permutation π. Because X is transitive there exists a permutation π′ such that
π′ · x = x′. Let �a order supp(π′) ∩ supp(〈x〉y), so �a # (x, x′), and let �a′ be a
fresh copy. Then (�a �a′)π′(�a �a′) · x = (�a �a′)π′ · x = (�a �a′) · x′ = x′. For any
a ∈ supp(〈x〉y) either a # π′ or a ∈ supp(�a); either way a # (�a �a′)π′(�a �a′).

Concretion does not depend on choice of permutation: say (π, π′) # 〈x〉y and
π · x = π′ · x. Then π−1π′ · x = x, and so, because X is strong, π−1π′ # x. But
supp(π−1π′) ⊆ supp(π, π′), and this is fresh for 〈x〉y, so π−1π′ # y, so π·y = π′·y.
Concretion also does not depend on choice of representative: say (x, y) ∼ π·(x, y),
and (〈x〉y, π′·x) �→ π′·y. Applying π to both sides of π−1π′ # 〈x〉y yields π′π−1 #
π · 〈x〉y, and so concretion maps (π · 〈x〉y, π′π−1 · (π ·x)) �→ π′π−1 · (π ·y) = π′ ·y.
Concretion is then well-defined; equivariance is straightforward.

Theorem 5.5. X−∗Y ∼= [X]Y iff X is non-empty, transitive and strong.

Proof. The left-to-right direction is Lem. 5.3. Conversely, the map g : [X]Y →
(X−∗ Y) is got by applying the adjunction of Thm. 3.6 to the generalised con-
cretion of Lem. 5.4. Unpacking the adjunction, a〈x〉y = supp(〈x〉y), and so

g(〈x〉y)(π · x) =
{
π · y if π · x # 〈x〉y
↑ otherwise.

(14)

The converse map h : (X−∗Y)→ [X]Y is h(f) 〈x〉(f(x)) for x # f . Such an
x exists because X is non-empty. Equivariance of h is easy, but we must confirm
that h does not depend on our choice of x: given x, x′ # f there exists π such
that π # f and π ·x = x′. Then 〈x′〉(f(x′)) = π · 〈x〉(f(x)), which equals 〈x〉f(x)
because π # f implies π # supp(f(x)) − supp(x) by Lem. 3.3.
h ◦ g(〈x〉y) = 〈π · x〉(g(〈x〉y)(π · x)) for π · x # 〈x〉y and, without loss of

generality, π # 〈x〉y. This yields π · (〈x〉y) = 〈x〉y. Conversely,

446 R. Clouston

(g ◦ h(f))(x) = g(〈π · x〉f(π · x))(x) for π · x # f . Say x # f ; then by Def. 3.2,
x # supp(f(π·x))−supp(π·x), so x # 〈π·x〉f(π·x). Hence by (14), (g◦h(f))(x) =
π−1 · f(π · x). But without loss of generality π # f , so π−1 · f(π · x) = f(x). If
x is not fresh for f then (g ◦ h(f))(x) ↑ as required.

Remark 5.6. The proof given under Thm. 5.5 is presented in more abstract form
by [19, Prop. 10.3.7], which shows that non-empty, transitive, strong nominal sets
- called there name-like objects - produce a ‘category with binding structure’.
The converse (here, Lem. 5.3) is, however, new to this paper. We also note that
[19, Lem. 10.3.6] gives a succinct description of name-like objects in Nom : a
nominal set is non-empty, transitive and strong iff it is isomorphic to A(n) for
n ≥ 0. This gives an easy criterion for which our generalisations of name binding
coincide, so that they may be constructed like a pair and destructed like a partial
function.

6 Applications and Further Work

The logic of Bunched Implications (BI). The categorial structure specified
in Sec. 2, and by Thm. 3.6, makes Nom a bi-cartesian doubly closed category,
and hence a model of BI [18]. BI is a logic where additive intuitionistic logic sits
alongside multiplicative (substructural) intuitionistic logic. The additive logic is
interpreted by cartesian closure and finite coproducts, while the multiplicative
logic is interpreted by ⊗, −∗, and ⊗’s identity. Now ⊗ has as identity the terminal
object 1, which makes Nom a model of affine BI, where we have weakening via
canonical ‘projection’ functions X ← X ⊗ Y → Y , but do not have contraction,
as for example there is no equivariant function A→ A⊗ A.

We have thus described an appealingly concrete model for (affine) BI. It is, in
fact, very close to the functor category SetI discussed in [18, Sec. 9.3], where I
is the category of finite sets (without loss of generality, finite sets of atoms), and
injections between them. We can think of such a functor as mapping each finite
a ⊆ A to the subset of elements it supports. Nom is known to be equivalent
to the category of pullback-preserving functors I → Set , called the Schanuel
topos. Pullback preservation means that elements’ supports are closed under
intersection, necessary for the definition of freshness. The inclusion functor cell :
I → Set of [18, Sec. 9.3] then corresponds to the nominal set of atoms A. We
hope that the concrete constructions of this paper will facilitate the application
of BI to reasoning about names as resources, continuing the work of [20].

Nom-enriched Categories. Nom has two monoidal products ×,⊗ with which
it might make sense to explore enriched category theory [14]. For example, it is
⊗ that is used in [7, Sec. 5] to define their ‘freshness environments’. As both
these monoidal products are closed, we have two different notions of internal
hom induced, for which we now have two concrete descriptions.

Nominal Isabelle. The Nominal Isabelle package for interactive theorem prov-
ing over abstract syntax now supports various notions of generalised binding
[24]. Perhaps surprisingly, this work is not explicitly based on the established

Generalised Name Abstraction for Nominal Sets 447

notion of generalised abstraction. Nonetheless it is clear that [24]’s set-binding
and list-binding are the abstractions of Pfin(A), and the nominal set A∗ of fi-
nite lists of atoms, respectively. It is hoped this paper will bring the concept
of generalised abstraction back into view, and that our new Thm. 4.7 will help
unify this notion. Nominal Isabelle’s notion of ‘set+-binding’ goes further than
Pfin(A)-abstraction by ignoring ‘vacuous binders’, so for example 〈{a}〉b ≈α 〈∅〉b
for a �= b. This is a quotient of the Pfin(A)-abstraction.
The Pure Pattern Calculus and Other Pattern Binding. [12] presents a
formal calculus for pattern matching2, with term syntax

t ::= a | t t | t→a t

where a ∈ A and a ∈ Pfin(A). We call a term p→a t a case, linking the pattern
p to the body t via the binding variables a. Free atoms are defined by

fa(a) a, fa(t u) fa(t) ∪ fa(u), fa(p→a t) (fa(p) ∪ fa(t))− a .
(15)

α-conversion is the congruence generated by

p→a t ≈α {a← b}p→{a←b}a {a← b}t

where b /∈ fa(p) ∪ fa(t) ∪ a and where {a ← b} is the substitution of b for a.
As b is chosen fresh we can use permutations (a b) instead of substitutions, and
hence prove that the nominal set of pure pattern calculus terms quotiented by
α-equivalence is the initial algebra for this endofunctor on Nom :

F A+ (-× -) + [Pfin(A)](- × -) .

Other inductive definitions in [12], such as the free atom function (15) above,
are also F -algebras, with their actions on terms defined in the usual way as the
unique homomorphism from the initial algebra. The final coalgebra for F gives,
as we would expect, a sensible notion of infinitary terms (following e.g. [11]).

This calculus also offers a convenient piece of syntactic sugar:

p→ t p→fa(p) t .

We could ask what would happen if we took this sort of construction as basic,
rather than sugar, as is quite common - see for example the ρ-calculus [2]. As [1]
says, “binding all of the distinct names of a term in another term seems to be
a common enough case to deserve special attention and notation”. Generalised
abstraction provides exactly this notion. However induction over this construc-
tion becomes problematic. We would like to have a functor that acts on nominal
sets by

GX = [X]X .

2 A more recent formulation of pattern calculus [13] makes a distinction between
variables and matchables which adds complexity we do not attempt to discuss here.

448 R. Clouston

However it is not clear to us that such a bifunctor [-]- can be defined on the
arrows of Nom ; we therefore do not have a generalised abstraction variant of
Cor. 3.7. The naive definition Gf(〈x〉x′) = 〈f(x)〉f(x′) fails because equivariant
functions can shrink supports of the abstracted elements. For example, given
•+id : A+A→ 1+A, we would haveG(•+id) mapping 〈(a, 1)〉(a, 2) �→ 〈•〉a, and
this sends an emptily supported element to an non-emptily supported element,
violating Lem. 2.10(ii). Hence even though standard category theory gives us a
notion of induction on Pfin(A)(Tm×Tm), where Tm is the set of terms modulo
α-equivalence, we do not yet have such a notion for its nominal subset [Tm]Tm.
Finding a robust induction principle for such constructions is a topic for future
research.

References

1. Cheney, J.: Towards a general theory of names, binding and scope. In: MERLIN,
pp. 33–40. ACM (2005)

2. Cirstea, H., Kirchner, C.: The rewriting calculus - part I. Log. J. IGPL 9(3), 339–
375 (2001)

3. Clouston, R.: Equational Logic for Names and Binders. Ph.D. thesis, University of
Cambridge (2009)

4. Clouston, R., Pitts, A.M.: Nominal equational logic. ENTCS 172, 223–257 (2007)
5. Day, B.: On closed categories of functors. Lecture Notes in Math. 137, 1–38 (1970)
6. Dowek, G., Gabbay, M.J.: From nominal sets binding to functions and λ-

abstraction: connecting the logic of permutation models with the logic of functions,
arXiv (2011)

7. Fiore, M., Hur, C.K.: Term equational systems and logics. In: MFPS. ENTCS,
vol. 218, pp. 171–192 (2008)

8. Gabbay, M.J.: A Theory of Inductive Definitions with Alpha-Equivalence. Ph.D.
thesis, Cambridge University (2001)

9. Gabbay, M.J.: FM-HOL, a higher-order theory of names. In: 35 Years of Automath
(2002)

10. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13, 341–363 (2002)

11. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. BEATCS 62,
222–259 (1997)

12. Jay, B., Kesner, D.: Pure Pattern Calculus. In: Sestoft, P. (ed.) ESOP 2006. LNCS,
vol. 3924, pp. 100–114. Springer, Heidelberg (2006)

13. Jay, B., Kesner, D.: First-class patterns. J. Funct. Program. 19, 191–225 (2009)
14. Kelly, G.M.: Basic concepts of enriched category theory, LMS Lecture Note Series,

vol. 64. Cambridge University Press (1982)
15. Menni, M.: About N-quantifiers. Appl. Categor. Struct. 11(5), 421–445 (2003)
16. Pitts, A.M.: Nominal Logic: A First Order Theory of Names and Binding. In:

Kobayashi, N., Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242.
Springer, Heidelberg (2001)

17. Pitts, A.M.: Nominal sets, the metamathematics of names (2011) (unpublished
manuscript)

18. Pym, D.J.: The Semantics and Proof Theory of the Logic of Buunched Implications.
Applied Logic Series, vol. 26. Kluwer Academic Publishers (2002)

Generalised Name Abstraction for Nominal Sets 449

19. Schöpp, U.: Names and Binding in Type Theory. Ph.D. thesis, University of Edin-
burgh (2006)

20. Schöpp, U., Stark, I.: A Dependent Type Theory with Names and Binding. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 235–249.
Springer, Heidelberg (2004)

21. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(1),
71–122 (2010)

22. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders
made simple. In: ICFP. SIGPLAN Notices, vol. 38, pp. 263–274 (2003)

23. Tzevelekos, N.: Nominal Game Semantics. Ph.D. thesis, University of Oxford
(2008)

24. Urban, C., Kaliszyk, C.: General Bindings and Alpha-Equivalence in Nominal Is-
abelle. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 480–500. Springer,
Heidelberg (2011)

Author Index

Abou-Saleh, Faris 129
Avni, Guy 369

Baier, Christel 353
Bauer, Andrej 225
Bollig, Benedikt 385
Bonnet, Rémi 65
Boronat, Artur 113

Chadha, Rohit 65
Churchill, Martin 97
Clemente, Lorenzo 81
Clouston, Ranald 434
Czajka, �Lukasz 177
Czerwiński, Wojciech 289

Dahlqvist, Fredrik 193
David, Claire 289
Di Gianantonio, Pietro 337
Dreier, Jannik 50

Edalat, Abbas 337
Ene, Cristian 50

Gastin, Paul 385
Golas, Ulrike 113
Grigore, Radu 17

Hainry, Emmanuel 305
Hayman, Jonathan 1
Heindel, Tobias 1
Herbreteau, Frédéric 81
Hofmann, Martin 225, 321
Huth, Michael 34

Karandikar, Prateek 273
Karbyshev, Aleksandr 225
Katsumata, Shin-ya 145
Krebbers, Robbert 257

Kuo, Jim Huan-Pu 34
Kupferman, Orna 369

Lafourcade, Pascal 50
Lakhnech, Yassine 50
Losemann, Katja 289

Marion, Jean-Yves 305
Martens, Wim 289
Mio, Matteo 161
Monmege, Benjamin 385
Mosses, Peter D. 97
Murawski, Andrzej S. 241
Mylonakis, Nikos 113

Orejas, Fernando 113

Pattinson, Dirk 129, 193
Péchoux, Romain 305
Piterman, Nir 34

Ramyaa, Ramyaa 321

Sato, Tetsuya 145
Schmitz, Sylvain 273
Schöpp, Ulrich 321
Simpson, Alex 161
Stainer, Amelie 81
Staton, Sam 401
Straßburger, Lutz 209
Sutre, Grégoire 81

Tzevelekos, Nikos 17, 241

Ummels, Michael 353

Wiedijk, Freek 257
Winskel, Glynn 418

	Title
	Foreword
	Preface
	Organization
	Ten Years of Amortized Resource Analysis
	References

	Table of Contents
	Models of Computation
	Pattern Graphs and Rule-Based Models:The Semantics of Kappa
	Introduction
	Kappa and Implicit Deletion
	Pattern Graphs
	Kappa and -graphs
	Encoding -graphs as Pattern Graphs

	Coherence
	Pushouts of -graphs
	Conclusion
	References

	History-Register Automata
	Introduction
	Definitions and First Properties
	Closure Properties, Emptiness and Universality
	Weakening HRAs
	Non-reset HRAs
	Unary HRAs

	Connections with Existing Formalisms
	Further Directions and Acknowledgements
	References

	Fatal Attractors in Parity Games
	Introduction
	Preliminaries
	Fatal Attractors
	Partial Solvers
	Partial Solver psol
	Partial Solver psolB
	Partial Solver psolQ

	Properties of Our Partial Solvers
	Soundness and Computational Complexity
	Robustness of psolB

	Experimental Results
	Experimental Setup
	Experiments on Structured Games
	Number of Detected Fatal Attractors
	Experiments on Variants of Partial Solvers
	Experiments on Random Games

	Conclusions
	References

	Reasoning about Processes
	On Unique Decomposition of Processesin the Applied π-Calculus
	Introduction
	Our Contributions
	Outline of the Paper

	Preliminaries
	Applied -Calculus
	Depth and Norm of Processes

	Decomposition w.r.t. Strong Labeled Bisimilarity
	Decomposition w.r.t. Weak Labeled Bisimilarity
	Related Work
	Conclusion and Future Work
	References

	Bounded Context-Switching and ReentrantLocking
	Introduction
	Model
	Multi-pushdown Systems
	Contextual Locking
	Bounded Context-Switching

	Contextual Pushdown Counter Systems
	Bounded Context-Switching Reachability
	Conclusions
	References

	Reachability of Communicating TimedProcesses
	Introduction
	Communicating Timed Processes
	Decidability of Communicating Tick Automata
	Decidability of Communicating Timed Automata
	Conclusions and Future Work
	References

	Bisimulation
	Modular Bisimulation Theoryfor Computations and Values
	Introduction
	Value-Computation Bisimulation
	Value-Computation Transition Systems
	Congruence Format

	Modular SOS
	MSOS Labels
	MSOS Specifications

	Bisimulation Metatheory for MSOS
	Bisimulation in MSOS
	Congruence Format

	Modular Bisimulations
	Further Directions
	References

	Checking Bisimilarity for Attributed GraphTransformation
	Introduction
	Graph Transformation with Borrowed Contexts
	Attributed Graphs and Symbolic Graphs
	Bisimilarity of Attributed Graphs and S-bisimilarity
	An Inference System for Proving Bisimilarity
	A Tableau Method for Checking Bisimilarity
	Related Work and Conclusion
	References

	Comodels and Effects in Mathematical OperationalSemantics
	Introduction
	Syntax and Behaviour for Stateful and Effectful Languages
	Transition Systems for Stateful and Effectful Languages
	Transition Systems, Categorically

	Three Evaluation-in-Context Rule Formats
	From EIC Specifications to Operational Models

	Behavioural Equivalence in a Kleisli Category
	Compositionality and Adequacy
	Conclusion
	References

	Preorders on Monads and Coalgebraic Simulations
	Introduction
	Preorders on Monads
	Relational Liftings and Preorders on Monads
	The Category BRel of Binary Relations
	Relational Liftings and Coalgebraic Simulations
	Preorder -Lifting

	Characterising Pre(T) as the Limit of a Large Chain
	Enumerating and Identifying Preorders on Monads
	Showing the Adjunction (2) being an Isomorphism
	Collecting Preorders of the Form []R
	 Computing CSPre(T,) with a Large Enough for Preorder Axioms

	Some Properties on Preorder -Lifting
	Conclusion and Related Work
	References

	Modal and Higher-Order Logics
	A Proof System for Compositional Verificationof Probabilistic Concurrent Processes
	Introduction
	Probabilistic Concurrent Processes
	Probabilistic Modal -Calculus (pL)
	Proof System
	Markov Proofs

	Examples of Markov Proofs
	Further Directions
	References

	Partiality and Recursion in Higher-Order Logic
	Introduction
	The Illative System
	Representing Logic
	Equality, Recursive Definitions and Extensionality
	Induction and Natural Numbers

	Conservativity and Consistency
	Partiality and General Recursion
	Related Work
	Relationship with Systems of Illative Combinatory Logic
	Partiality and Recursion in Proof Assistants

	Conclusion
	References

	Some Sahlqvist Completeness Resultsfor Coalgebraic Logics
	Introduction
	BAOs and Coalgebraic Logics
	Presentations and Translations
	The Translation Theorem
	Sahlqvist Formulae for Coalgebraic Logics
	Outlook
	References

	Cut Elimination in Nested Sequentsfor Intuitionistic Modal Logics
	Introduction
	Preliminaries
	Nested Sequents for Intuitionistic Modal Logics
	Soundness
	Completeness
	Cut Elimination
	References

	Reasoning about Programs
	On Monadic Parametricity of Second-OrderFunctionals
	Introduction
	Preliminaries
	Purity
	The Total Case
	The Partial Case
	Domain of Strategy Trees
	Representation Theorem

	Generalizations
	Applications
	Conclusion
	References

	Deconstructing General References via Game Semantics
	Introduction
	Syntax of the Language
	Game Model
	Factorisation
	Syntactic Transformation
	When Integer References Suffice
	When All References Are Dispensible
	Conclusion
	References

	Separation Logic for Non-local Control Flowand Block Scope Variables
	Introduction
	The Language
	Operational Semantics
	Axiomatic Semantics
	Soundness of the Axiomatic Semantics
	Formalization in Coq
	Conclusions and Further Research
	References

	Computational Complexity
	The Parametric Ordinal-Recursive Complexityof Post Embedding Problems
	Introduction
	Post Embedding Problems
	Hardy Computations
	The Hardy Hierarchy
	Encoding Hardy Configurations
	Encoding Hardy Computations

	The Parametric Complexity of LR[1-bld]
	Lower Bound
	Upper Bound

	Applications
	Concluding Remarks
	References

	Deciding Definabilityby Deterministic Regular Expressions
	Introduction
	Definitions
	Variations of Regular Expressions
	Problems of Interest

	The BKW Algorithm
	The Recursion Depth of BKW
	Consistency Violations

	The Definability Problem
	Definability for REs and NFAs
	Definability for RE(#)s
	Definability for DFAs

	Conclusions
	References

	Type-Based Complexity Analysisfor Fork Processes
	Introduction
	Imperative Language with Forks
	Syntax of Processes
	Informal Semantics
	Semantics of Expressions, Configurations and Environments
	Strong Normalization, Lock-Freedom and Confluence

	Type System
	Tiers and Typing Environments
	Well-Typed Processes

	Safe Processes, Type Inference and Complexity
	Neutral, Max, and Positive Operators
	Main Result

	Complexity Soundness
	Process Runtime
	Process Spawning
	PSpace Abiding Evaluation Strategy

	Completeness
	Conclusion
	References

	Pure Pointer Programs and Tree Isomorphism
	Introduction
	PURPLE and Extensions
	Counting
	Nondeterminism

	Preliminaries
	Main Result
	Horn Satisfiability
	Conclusion and Future Work
	References

	Quantitative Models
	A Language for Differentiable Functions
	Introduction
	Related Work

	Syntax
	Operational Semantics
	Examples

	Denotational Semantics
	Logical Relations Characterisation
	Subdomains
	Adequacy
	Function Definability

	Conclusion
	References

	Computing Quantilesin Markov Reward Models
	Introduction
	Preliminaries
	Quantile Queries
	Evaluating Qualitative Queries
	Evaluating Quantitative Queries
	Existential Queries
	Universal Queries
	A Pseudo-polynomial Algorithm for Markov Chains

	Conclusions
	References

	ParameterizedWeighted Containment
	Introduction
	Preliminaries
	Weighted Automata
	Parameterized Weighted Containment
	Geometry in IRk

	The PWC Problem for Deterministic WFAs
	The Two-Bound PWC Problem for Deterministic Automata
	When B Is Not Given
	The One-Bound PWC Problem for Deterministic Automata

	The PWC Problem for WFAs
	The One-Bound PWC Problem for Nondeterministic Automata
	The Two-Bound PWC Problem for Nondeterministic Automata

	References

	Weighted Specifications over Nested Words
	Introduction
	Preliminaries
	Weighted Regular Expressions with Pebbles
	Weighted Automata with Pebbles
	Weighted Logical Specifications over Nested Words
	Weighted First-Order Logic
	Weighted Temporal Logics

	Conclusion and Perspectives
	References

	Categorical Models
	An Algebraic Presentation of Predicate Logic
	Introduction
	Presentations of Parameterized Algebraic Theories
	Signatures of Parameters
	Parameterized Algebraic Theories
	Presentation of Predicate Logic
	Other Examples of Parameterized Algebraic Theories
	Set-Theoretic Models
	Incompleteness of Set-Theoretic Models
	Other Equational Approaches to Logic

	Extending the Algebraic Theory to a Programming Language
	Representation of Terms
	Enriched Clones
	References

	Strategies as Profunctors
	Introduction
	Event Structures and Stable Families
	Process Operations
	Event Structures with Polarities
	Pre-strategies
	Composing Pre-strategies
	Concurrent Copy-cat

	Strategies
	A New Characterization of Concurrent Strategies

	Strategies as Discrete Fibrations
	The Scott Order in Games
	Strategies in Games as Presheaves
	Strategies between Games as Profunctors

	A Lax Functor from Strategies to Profunctors
	Identity
	Composition
	Laxness

	Games as Factorization Systems
	References

	Generalised Name Abstraction for Nominal Sets
	Introduction
	Nominal Sets
	Separating Functions
	Generalised Abstraction
	When Do Separating Functions and Generalised Abstraction Coincide?
	Applications and Further Work
	References

	Author Index

