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Abstract. In R2 rigid transformations are topology-preserving opera-
tions. However, this property is generally no longer true when considering
digital images instead of continuous ones, due to digitization effects. In
this article, we investigate this issue by studying discrete rigid transfor-
mations (DRTs) on Z2. More precisely, we define conditions under which
digital images preserve their topological properties under any arbitrary
DRTs. Based on the recently introduced notion of DRT graph and the
classical notion of simple point, we first identify a family of local pat-
terns that authorize topological invariance under DRTs. These patterns
are then involved in a local analysis process that guarantees topological
invariance of whole digital images in linear time.

Keywords: 2D digital image, discrete rigid transformation, topology,
simple point, DRT graph, Eulerian model.

1 Introduction

In 2D, rigid transformations (i.e., rotations composed with translations) are
involved in numerous image processing/analysis tasks, e.g., registration [I] or
tracking [2]. In such applications, the images are generally digital, and can then
be considered as functions I : § — F from a finite subset S C Z? to a value
space F. While rigid transformations are topology-preserving operations in R2,
this property is generally lost in Z2, due to the discontinuities induced by the
mandatory digitization from R to Z. In particular, discrete rigid transformations
(DRTs) —that include discrete rotations [3I456]— are not guaranteed to preserve
the homotopy type of digital images, as exemplified in Fig. [l

In this article, we study this specific issue. More precisely, we investigate some
conditions under which digital images preserve their topological properties under
any arbitrary DRTS, by considering the Eulerian (i.e., backwards) transforma-
tion model. To reach this goal, we consider () the notion of DRT graph, recently
introduced by the authors in [7l8], that defines a combinatorial model of all the
rigid transformations of a digital image, and (i7) the classical notion of simple
point [9IT0], that provides sufficient conditions to guarantee the preservation of
homotopy type.
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Fig. 1. Left: a binary digital image and the grid modeling its discrete structure. Middle:
arigid transformation applied on this grid. Right: the resulting transformed image, with
a homotopy different from the initial one (the black pixels, in the 8-adjacency, have
been split).

By combining these two notions, we first propose a way to determine trans-
formed images which have the same homotopy type as the initial one, by scanning
the whole DRT graph associated to this image. Then, we show that this global
approach, which presents a polynomial complexity, can be simplified into a local
approach, based on a spatial decomposition of the image into covering samples.
In order to do so, we identify a family of local patterns that authorize topologi-
cal invariance under DRTs. These patterns can then be involved in a procedure
based on look-up tables (LUT) that guarantee topological invariance of a whole
digital image in linear time.

The article is organised as follows. Sec. [2 presents background notions related
to rigid transformations and digital topology. Sec. Bl describes the topological
issues induced by DRTs. Sec. ] explains how DRT graphs and simple points
can be combined to evaluate topological invariance under DRTS, leading to an
algorithm detailed in Sec. Bl Experiments are proposed in Sec. [6] while Sec. [7]
concludes the article.

2 Background Notions

2.1 (Discrete) Rigid Transformations

In R2, a rigid transformation (i.e., a transformation composed of a translation
and a rotation) is expressed as a bijection 7 : R? — R? defined, for any x =
(z,y) € R? by

T(x) = (COSQ _Sin9> (’3) + (Z) with a,b € R and 0 € [0,27] (1)

sin 6 cosf y

Such a transformation (also noted Tapg) is unambiguously modeled by the triplet
of parameters (a, b, 0). It is not possible to apply directly 7 on a digital image
I:S — F,since there is no guarantee that 7 (x) € Z2, for any © € S C Z2. The
handling of discrete rigid transformations (DRTSs) then requires the definition of
a function T : Z% — Z2, which is the “discrete analogue” of 7. Considering the
standard rounding function D : R? — Z2, this can be conveniently performed
by setting T'= D o T, as illustrated on the diagram below.
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The function T : Z% — Z? is then explicitly defined, for any p = (p, q) € Z?, by

_ _ ([pcos@ — gsinb + a]
T(p)=DoT(p) = <[psin9—|—qcos«9+b] (2)
In general, this function is not bijective. However, by setting T=' = Do 71 :
72 — 72, we can define the transformed digital image I o T~! : Z? — F with

respect to T. Note that T~ is not the inverse function of T in general.

2.2 Digital Topology

Several frameworks are available to model the topological structure of a digital
image. In Z2, most of these frameworks (see, e.g., [LTJI2]) can be conveniently
unified within the frequently used —and also simple— framework of digital topol-
ogy [A]. In this framework, the topological notions derive from a graph structure
induced by two adjacency relations, namely the 4- and 8-adjacencies, which are
defined for any two points p,q € Z? such that p and q are 4-adjacent (resp.
8-adjacent) if ||p — q|l1 < 1 (resp. if ||p — q|lec < 1). It is well known that, to
deal with topological paradoxes related to the digital version of the Jordan the-
orem, we generally use in one binary digital image a pair of different adjacency
relations, and denote as («, 8) where a and 8 are adjacency relations for fore-
ground (black) and background (white) pixels respectively. In 2D, we consider
in particular (o, 8) = (4,8) or (8,4).

In the graph-based framework of digital topology, the concept of simple point
[9/T0] (see Fig. 2) relies on the local notion of adjacency and on the induced
global notion of connectedness. The simple points provide a way to characterise
the preservation of topological properties in a (binary) image during its trans-
formation. Practically, a pixel € S of an image I : S — F is simple if its
binary value can be switched without modifying the topological properties of
I. In particular, the simplicity of a pixel can be tested, in constant time, by
only studying its 3 x 3 neighbourhood [9]. We will say that two images I and
I' are simple-equivalent [13] if I’ is obtained from I by iteratively modifying
(successive) simple points. Thus I and I’ present the same homotopy type.

3 Discrete Rigid Transformations: Topological Issues

A (continuous) rigid transformation 7 establishes a bijection from R? to itself.
By opposition, due to the digitisation process D (see Eq. [@))), a discrete rigid
transformation 7T is, most of the time, not a bijection from Z? to itself.

It is plain that for any three distinct pixels x1,x2, 23 € Z2, we have
max; je(1,2,31{|/®: — z;j||2} > V2. This leads to the following definition that
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Fig. 2. Examples of simple points («,y) and non-simple points (z,t). Modifying the
value of z would merge two black connected components, while modifying the value of
t would create a white connected component. In both cases, the homotopy type of the
image would be modified.

otototo a p
t + 3 p
o+0+4+0+0 o)

ol
o o o ) Q. / o (o}
M o]
ototodo [l

Fig. 3. Left: a digital image support and the grid modeling its discrete structure. Right:
examples of a null pixel (in green), a single pixel (in blue) and a double pixel (in red)
with respect to a discrete rigid transformation.

enables to characterise the status of a pixel; there are only three possibilities, as
illustrated in Fig. Bl

Definition 1. For a pizel € Z* and a given DRT T, let M (z) = {y € Z* |
T(y) = z}.

—If [M(x)| =0, we say that x is a null pizel.
—If |[M(x)| =1, we say that x is a single pizel.
- If |M(x)| = 2, we say that x is a double pizel.

Similar notions for the case of discrete rotations can be found in [516].

In particular, a discrete rigid transformation T behaves like a bijection for
single pixels. However the possible existence of null (resp. double) pixels may
forbid T to be a surjection (resp. an injection). Null and double pixels thus
raise topological issues in both Lagrangian and Eulerian transformation models
(see Sec. ). In addition to these “cardinality-based” issues, supplementary
topological problems are induced by the alteration of adjacency relations between

pixels (see Sec. B2)).

3.1 Transformation Models

Two standard transformation models can be considered: the Lagrangian (or for-
wards) and the Eulerian (or backwards) models. The Lagrangian model consists
of observing T (x) for every pixel x in the initial space, while the Eulerian model
consists of observing 7 ~!(y) for every pixel y in the transformed space. These
models are equivalent in R?, since 7 is bijective. In Z?2, they are however gener-
ally distinct, since T and 7! may not be inverse functions.
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Fig. 4. The interpretations of double pixels (left figures) and null pixels (right figures)
in the context of discrete rigid transformations for (a) the Lagrangian and (b) the
Eulerian models
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Fig.5. (a) A 2 x 2 pixel sample with values a,b,c,d. (b) Local pixel configurations
(up to rotations and symmetries) leading to the sample (a) when applying a discrete
rigid transformation. (c) Examples of transformations in which the sample preserves
the topology of local pixel configurations. (d) Examples of transformations in which
the sample provokes a topological alteration.

Depending on each model, null and double pixels lead to different interpreta-
tions. In the Lagrangian model (see Fig. ll(a)), a double pixel in the transformed
space may receive two different pixel values, and a null pixel receive no pixel
value. While this may be conveniently handled in the case of binary images
(which can be considered in a set-based paradigm), it can lead to correctness
and completeness issues in the case of multivalued images. In the Eulerian model
(see Fig. [@l(b)), a double pixel of the initial space may transfer its value to two
pixels of the transformed space, while the value of a null pixel will be lost.

In this preliminary work, we consider the Eulerian model which enables us
to focus on the topological issues raised by the alteration of adjacency relations
(see Sec.B.2), and as the Lagrangian model is fraught with additional difficulties
(see Sec. [1)). For the sake of readability, our study is carried out in the context
of binary images, but the introduced methodology remains valid in the case of
multivalued images (see Sec. [).
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3.2 Adjacency Alterations

In order to illustrate the topological issues raised by the alterations of adjacency
relations during discrete rigid transformations, let us consider a 2 x 2 pixel sample
of the transformed space (see Fig. Bla)). Such a sample is composed of pixels
of values a, b, ¢ and d, and all the possible local pixel configurations of the
initial space from which the sample is generated (see Fig. BIb)). Despite local
adjacency alterations between pixels, the global topology of the sample may
sometimes be preserved (see Fig.[Bl(c)). Unfortunately, such local alterations may
also lead to topological alterations in the sample (see Fig. [B(d)), and further in
the whole image possibly. In the next section, we propose an algorithm enabling
the detection of potential topological changes during a DRT. On the contrary,
this algorithm can be used to guarantee the topological invariance between an
image and all of its transformed ones. This algorithm is based on (%) the recently
introduced notion of DRT graph [7I8], and (i¢) the classical notion of simple
point [9T0]. The first notion provides a way to exhaustively explore the space of
transformed (sub)images while the second provides information on the possible
topological modifications when performing such an exploration.

4 Mathematical Tools for Topological Verification
of Images under Rigid Transformations

4.1 Discrete Rigid Transformation Graph

In opposition to rigid transformations in R?, discrete rigid transformations (DRTs)
are not continuously defined w.r.t. the parameters a,b and . In particular, the
parameter space (a,b, ) € R? is divided into 3D open cells, in each of which the
functions Typp are equal, while the 2D surfaces bounding these open cells represent
to discontinuities of the DRTSs, induced by the digitisation process (see Eq. (). In
fact, each 2D surface is corresponded to an elementary modification of one pixel.

From a theoretical point of view, each 3D open cell can be seen as the equiv-
alent class of the rigid transformations 7 that leads to a same DRT T'= Do T
whose boundaries are the 2D surfaces. By mapping any 3D cell onto a 0D point
and any 2D surface onto a 1D edge, the combinatorial structure of the parame-
ter space can be modeled in a dual way by a connected graph, as illustrated in
Fig. [6l In particular, each 0D point corresponds to a transformed image gener-
ated by the associated T and an 1D edge between two cells indicates that the
two associated images differ at exactly one pixel.

Definition 2 (DRT graph [7]). A DRT graph G = (V, E) is defined such that:
- any vertexr v € V models a 3D open cell and associates to a transformed
mage;
— any (labeled) edge e = (v, w, (p,p’)) € E models a 2D discontinuity surface
between the transformed images corresponding to the DRTs v and w which differ
at the single pizel p’, and p is the pizel corresponding to p’ in the original image.
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a

Fig. 6. A part of the parameter space subdivided by four 2D surfaces corresponding
to the discontinuities of DRTs (left), and the associated part of the DRT graph (right)

The label (p,p’) on each edge is —implicitly— associated to a function indicating
the value modification of the pixel p’ that differs between the transformed image
associated to DRTs v and w. More precisely, the value of p’ at the vertex v is
defined by I,(p’) = I(p) where I : S — F is the original image function. After
the elementary rigid motion at e, we then obtain a new image I, by simply
changing the pixel value at p’ as I,(p’) = I(p + &) where § = (£1,0) or
(0, £1). Note that d corresponds to an elementary motion, i.e., a smallest pixel
movement, that changes either - or y-coordinate by 1.

It was proved in [7] that the DRT graph associated to a digital image of
size N2 has a space complexity of O(N?) (and can be built with a similar time
complexity [7I8]). Note that the structure of the DRT graph depends only on the
support of the given images, but not on their pixel values. By construction, the
DRT graph provides all the transformed images of a given image I. In particular,
these transformed images can be generated by progressively and exhaustively
scanning the DRT graph.

Remark 3. Let I : S — F, and G = (V, E) be its DRT graph. For each edge
e = (v,w, (p,p’)) (i-e., each elementary modification of a pizel p’ € S), two
cases can occur:

(1) L,(p") = L,(p), ie., the images of I by the DRTs v and w are equal
(Iv = Iw);'

(i) I,(p") # Lu(p’), ie., Iy # L.
In the (considered) case of binary images, the value of p' may then be flipped
from white to black (or vice versa), and this may constitute the only modification
between the transformed images of I by the DRTs v and w.

4.2 Topological Analysis of Binary Images from DRT Graphs

From a DRT graph, one can generate exhaustively all the DRT images of an
image I. Moreover, from Rem. B we know that this can be done by modifying
(at most) one pixel value between two successive transformed images. In the
case of binary images, it is actually possible to check if such a local modification
involves a simple point.
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Algorithm 1. Construction of simple-equivalent DRT images
Input: A DRT graph G = (V, E); the vertex u € V associated to I.
Output: A connected partial subgraph G” = (V', E”) of vertices

simple-equivalent to u/I.

1V i+ {u}; B+ 0; S+ {u}; U + V;

2 while S # 0 do

3 Let v € §; S + S\ {v};

4 if v € U then

5 U+ U\{vk

6 foreach e = (v,w, (p,p’)) € E such that w € U do

7 if p’ is a simple point then V' + V' U{w}; E” + E" U{e};

S+ Su{w};

Practically, the edges of a DRT graph G = (V, E) can then be classified in
two categories: those that do not modify the topology of the transformed images
(i.e., the edges that correspond to case (i) in Rem. [3 as well as those that
correspond to case (i) for which p’ is a simple point); and those that modify
this topology (i.e., the edges that correspond to case (i) in Rem. Bl for which p’
is not simple).

The partial graph G’ = (V, E’) is obtained by maintaining only the edges E’ C
E of the first category. G’ is composed of connected components of vertices whose
associated transformed images are simple-equivalent (see Sec.[2:2)), and thus have
the same homotopy type. In particular, the connected component contains the
vertex u corresponding to the initial image I, as well as those corresponding
to transformed images obtained from I by elementary motion sequences which
are topology-preserving. This specific set of vertices can be straightforwardly
computed by using a standard spanning-tree algorithm, initialized from the seed
vertex u (see Alg. [)).

Remark 4. The connected component of G' that contains u may constitute only
a strict subset of the vertices/transformed images that are simple-equivalent to
u/I. Indeed, the edges of the DRT graph G only model the local modifications
associated to DRTs. In particular, there may exist other series of local modifica-
tions relying on simple points but not modeled in the DRT graph. In other words,
the analysis of the DRT graph provides sufficient (but not necessary) conditions
to guarantee homotopy-type preservation.

In the case where V' = V (see Alg. [I), i.e., when all the vertices of the DRT
can be reached from w by a sequence of edges involving only simple points,
the algorithm successfully detects —as a side effect— an image I that is actually
topologically invariant under any DRTs. The algorithmic cost of this algorithm
is directly linked to the size of the DRT graph, that is O(N?). This algorithmic
complexity is indeed reached in the worst cases. In the next section, we show that
this problem can however be decomposed spatially, thus leading to a practical,
lower complexity algorithm.
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5 Local Evaluation of Topological Invariance under DRTs

In the previous section, we have proposed to explore the whole DRT graph of an
image I in order to check its potential topological invariance under DRTs. For
each edge e = (v, w, (p,p’)) of the DRT graph, we verify that the pixel p’ whose
value is modified at this edge is actually a simple point for the transformed
images I, and I,,. This test is performed locally, more precisely in the 3 x 3
neighbourhood centered on p’ in the transformed space.

We now take advantage of the local nature of these tests to develop a spatial
decomposition strategy that will lead to a local version of the previously pro-
posed global method. To this end, we first need to introduce basic notions and
properties related to the influence of DRTs on pixel neighbourhoods.

5.1 Neighbourhoods and DRTs

Let p € Z? be a pixel. We define the neighbourhoods of p as follows: Ng(p) =
{g € 7% |||lg—pll2 < 2}; Nao(p) = {q € Z* | ||g — p|]2 < 2/2}. The first 3 x 3
neighbourhood is classically used in digital geometry and topology. The second
corresponds to a 5 x 5 square from which the 4 extremal corner pixels have been
removed. We provide the following property where we consider any arbitrary
DRT T : 72 — 7Z2.

Property 5. Let p € Z? and q € Ng(p). We then have T~1(q) € Nao(T~1(p)).

Proof. This property derives from the above definitions of the neighbourhoods,
and from the fact that a DRT T (due to the digitization induced by D, see
Eq. @) implies a possible (strict) majoration of /2 for the distance between
transformed points, w.r.t. its associated rigid transformation 7. ]

5.2 A Local Approach for Topological Analysis

As stated above, a DRT graph models all the rigid transformations of a given
digital image I. Despite the fact that the space of these transformations is ac-
tually infinite, the DRT graph is defined as a finite structure. This restriction
can be made without loss of correctness/completeness by considering translation
invariance. Indeed, a rigid transformation is defined as a composition of a rota-
tion and a translation (Eq. (). In particular, a rigid transformation 7 =t or,
composed of a rotation = around the origin and a translation £ € R2, can be also
expressed as T = tot’ L or’/ ot/ where t’ is the translation by a vector p € Z?2,
and 7’ is the rotation around p. Such a translation in Z? (that induces no topo-
logical modification, since the whole image is translated), allows any pixel p of
S of the image I to be considered as the origin of S.

Let come back to the DRT graph G = (V,E) considered until now, and
involved in the global process defined in the previous section. We now focus on
an edge e = (v, w, (p,p’)) of G. Obviously, the vertices v and w exist in G,
and also in the (equivalent) DRT graph where we consider p as origin. In the
later graph, any edge that does not involve in its label a pixel of Nog(p) has no
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influence on the topological modifications in Ng(p’) (see Prop.[Hl). Without loss of
correctness, such topological modifications at p’ in Ng(p’) (and thus of p’ in the
whole image) only depends on the part of the DRT graph that corresponds to the
restriction of I to Nao(p), denoted by I}y, (p). Based on these considerations, it
appears that if for any pixel q in the initial image I, the restriction I|y,,q) does
not lead to topological modifications under any DRTs, then the same conclusion
holds for the whole image I. In other words, every elementary topological change
occurring on the DRT graph G of I can be observed locally. Therefore, we need
only to verify the topological invariance for every pixel of I in its neighbourhood
Ny in the original binary image.

Proposition 6. Given a binary image I : S — F, for every p € S if I|ny(p)
18 a local binary configuration which is topologically invariant under any rigid
transformations, then the image I is topologically invariant.

We assume that the modified pixel p’ at each elementary rigid modification of
the DRT graph corresponds to the origin oz in the transformed image, and that
the corresponding pixel p is the origin o7 in the original image of size in its
Nag(01). Then, we simply need to construct the DRT graph with p’ € [-1,1]?,
p € [~2,1)% (i.e., the DRT graph of edges labels (p,p’) with this constraint),
denoted by Gp = (Vp, Ep). We use Alg. 1 proposed in Sec. 2 to verify in G, the
topological equivalence between two adjacent vertices v and w whose edge has
the label (01, 02). If every edge has topologically equivalent vertices, then the
center point 01 of such a configuration is topologically invariant under any rigid
transformations. This approach, in particular, leads to the following consider-
ation: if we study the topological invariance property for all the binary image
configurations of Nag(01), we can identify a family of elementary configurations
that authorise topological invariance under DRTs.

From Prop. [6, we propose a look-up-table-based algorithm for characteriz-
ing the topologically invariant property of any binary image. More precisely, we
generate a set Py (resp. Ps) which contains only topologically invariant configu-
rations in (4, 8)- (resp. (8,4)-) adjacent relations. Then we use P, and Py to verify
whether the given image is topologically invariant. The method for building Py
and Pg is given in Alg. 2. Let C' be the set of all binary image configurations
of size Nag, which is used to build Py and P, |C| < 22°. From Rem. [B] we have
I, # I, it I,(02) # I,(02), where I,(02) = I(01) and I,(02) = I(01 + §). We
thus need to consider the configurations of Ny whose the central pixel value
I(01) and that of its 4-neighbouring pixel I(oq + 9) are different, e.g., I(01) =1
and I(01+6) = 0. Here we set 6 = (0,1), i.e., 01+ (1,0) is the right pixel of 01.
In other words, the pixel values of 01 and its right pixel o1 + 48 are pre-set. Under
such conditions, |C| is reduced to 2'¥. Thanks to the reflection and rotational
symmetries, we can again reduce |C| to 124 260. Then, we use Alg. 1 proposed in
Sec. to study the topologically invariant property of configurations in C'. We
store in P, and Pg the subset of C containing only the topologically invariant
configurations w.r.t. the (4,8)- and (8,4)-adjacent relations. Using Alg. 2, we
obtain sets of 10 643 and 19 446 topologically invariant configurations in P, and
Ps respectively. Fig. [l shows some elements of Py and Pg.
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Based on Prop. [6land the sets Py and Pg, the algorithm for characterizing the
topologically invariant property of a given binary image I : S — F by a local
verification of pixels is given in Alg 3. The algorithm scans I and considers for
each pixel p € S its Nog(p) with either Py or Py depending on the binary value
of p. Note that I(p) =1 — I(p).

Algorithm 2. Generation of topologically invariant configuration set Py
(resp. Ps)

Input: The DRT graph Gp = (Vp, Ep) and the set C' of 124 260 binary local
configurations of size Nag.
Output: The set P (resp. Pg).
1 Py + 0; (resp. Ps < 0;)
2 foreach Ic € C' do

foreach e = (v,w, (p,p’)) € Ep such that w € U do S + S U {w};
if 3 e = (v,w, (01,02)) € Ep such that w € U and o2 is not a
simple point in its (4,8) (resp. (8,4))-adjacency relations then

B « FALSE;

3 B+ TRUE; U + Vp; S «+ {u} where u is the vertex associated to I¢ in
Gp;

4 while § # 0 and B=TRUFE do

5 Let v € S; S + S\ {v};

6 if v € U then

7 U+ U\{v}h

8

9

10 if B=TRUE then Py < P,U{lc}; (resp. Ps + PsU{Ic};)

Algorithm 3. Local verification of the topology invariance of a binary
image
Input: A binary image I : S — F and the sets P, and Ps.
Output: Yes if I is topologically invariant and No otherwise.
1 foreach p € S do
2 if I(p) =1 and I|nyy(p) € Pa then return No;

3 if I(p) =0 and I|n,,(p) € Ps then return No;

4 return Yes;

6 Experiments

In this section, we illustrate the relevance of our approach by presenting im-
ages which have been detected as topology-invariant (see Fig. B(a-c),(d-f)), or
topology-variant (see Fig. B(g,h), (i,j), (k,1)). Thanks to our LUT-based ap-
proach, such a detection can be carried out in linear time w.r.t. the image size.

As mentioned in Rem.[4] we only have a sufficient condition for homotopy-type
preservation, so far we do not have a proof for a necessary condition. Nonetheless
we have not found any example for which our algorithm fails to characterize its
topological invariance.
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Fig. 8. (a-f) Some examples of topology-invariant images. (g-i) Three examples of
topology-variant images (left) with their transformed images (right) exhibiting different
topologies from their respective original images.
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7 Conclusion

We have proposed an algorithmic process for determining the topological invari-
ance of digital images under any discrete rigid transformations. This work is
based on the recently introduced notion of DRT graph [7I8], which presents a
polynomial complexity that generally forbids its practical application on whole
images. Nevertheless, DRT graphs have been successfully involved in a prelimi-
nary local analysis that finally led to a low complexity methodology, relying on
image spatial decomposition.

Beyond its theoretical aspects, this work may contribute to the better under-
standing of the relationships that exist between geometry and topology in the
framework of digital imaging, where both notions are more strongly linked than
in continuous spaces.

This study was carried out in the context of binary images. However, it re-
mains relevant whenever a notion of simple point (or more generally a local
characterisation of topology preservation) is available. This is verified, for in-
stance, in the context of n-ary images [14]. On the other hand, only the Eulerian
(backwards) model has been considered in this study. In future work, we will
extend these results to the case of the Lagrangian (forwards) model. Note that
additional difficulties arise in the Lagrangian model, such as double pixels in
the transformed space that may receive two different values, and null pixels that
do not have any value. The Lagrangian model thus involves a value decision
problem for such pixels.
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