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Preface

The organization of the 17thInternational Conference on Discrete Geometry for
Computer Imagery (DGCI 2013) has been a rewarding experience for our An-
dalusian research group, Combinatorial Image Analysis (CIMAgroup). As or-
ganizers, we are pleased with the participation of many researchers from all
around the world, taking into account the financial difficulties of our times. In-
deed, submissions from 26 different countries confirm the international status of
the conference.

This collection documents the contributions presented at DGCI 2013, which
focus on geometric transforms, discrete and combinatorial tools for image
segmentation and analysis, discrete and combinatorial topology, discrete shape
representation, recognition and analysis, models for discrete geometry, morpho-
logical analysis, and discrete tomography.

Following a peer-reviewing process by at least two qualified reviewers, 34 pa-
pers were accepted, out of 56 submissions. Altogether, 22 papers were scheduled
for oral presentation in single-track sessions, and 12 papers were presented as
posters.

It has been a great honor for us to count on the participation of three interna-
tionally well-known researchers as invited speakers: Herbert Edelsbrunner (Pro-
fessor at the Institute of Science and Technology, Vienna University, Austria),
Francisco Escolano (Associate Professor at the University of Alicante, Spain),
and Konrad Polthier (MATHEON-Professor and Director of the Mathematical
Geometry Processing group at Freie Universität Berlin, Germany).

We would like to express our gratitude to the Reviewing and Program Com-
mittee members for their valuable comments, which enabled the authors to im-
prove the quality of their contributions. We are also grateful to the Steering
Committee for giving us the chance to organize this event and especially to
David Coeurjolly for his support and helpful advice.

DGCI 2013 has been supported by the International Association of Pattern
Recognition (IAPR). DGCI conferences are the main events associated with the
Technical Committee on Discrete Geometry IAPR-TC18. This conference could
not have been organized without our sponsoring institutions: University of Seville
(Vice-rectorate for Research, Vice-rectorate of Internationalization, the Mathe-
matics Institute IMUS, the Research and Teaching Foundation FIDETIA, Ap-
plied Math-I Department), Spanish Ministry of Economy and Competitiveness
(Project MTM2012-32706), and European Science Foundation (ACAT program).
We are also grateful to the School of Computer Engineering at the University of
Seville, for hosting this event and providing all the necessary facilities.
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Finally, our special thanks go to the local Organizing Committee for their
valuable work and to all the participants attending the conference, who made
this event a success.

March 2013 Rocio Gonzalez-Diaz
Maria-Jose Jimenez

Belen Medrano
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The Complexity of Discrete Objects

Francisco Escolano

University of Alicante, Spain
sco@dccia.ua.es

Abstract. In this paper we explore how to quantify the complexity of
discrete objects (images, meshes, networks) which can be encoded in
terms of graphs, digraphs or hypergraphs. Herein we present our Heat
Flow-Thermodynamic Depth approach which combines ingredients of
spectral graph theory, information theory and information projection.
We illustrate the approach with several applications: image exploration
(image complexity), mesh regularization and selection of optimal map
functions in Extended Reeb Graphs (graph and digraph complexity) and
structural categorization (hypergraph complexity).

1 Randomness vs. Statistical Complexity

Given a discrete mathematical object (image, mesh, network) which can be en-
coded by a graph, digraph or hypergraph, the quantification of its intrinsic
complexity plays a key role in understanding the underpinning structural princi-
ples shaping it. Such principles include: the information content of the encoding,
the set of constraints over the information flowing through it, and the combi-
natorial exploration of the hypothesis that best explain its genesis. Information
content may be posed in terms of estimating a given entropy. Information flow
constraints may be discovered by probing the structure through heat kernels
and wave equations. Generative hypothesis may rely on depth-based represen-
tations like logical depth or thermodynamic depth, hierarchical representations
like grammars and compositional models, or dynamic rules like preferential at-
tachment. The weight of each of the latter principles in the characterization
of the encoding defines a computable complexity measure for it. For instance,
strategies considering information content through Shannon or cross entropy are
referred to as randomness complexity measures for they quantify the degree of
disorganization (see a recent survey on graph entropy measures in [1]) . On the
other hand, methods relying on spectral measures, like the von Neumann en-
tropy [2], or on Dirichlet sums, like Estrada’s heterogeneity index are [3] more
focused on quantifying the degree of regularity of the structure. These are good
examples of the so called statistical complexity measures that vanished both for
completely regular and completely random structures. Thermodynamic depth
(TD) is a physics based approach [4] also belonging to the latter category. When
dealing with graphs, termodynamic depth aims to quantify how hard is to build
a given graph (the macroscopic state) from scracth (microscopic states): if there
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is a little uncertainty about the process and all the possible causal trajectories
have a narrow variability, then the graph is narrow (simple); otherwise, when
historical uncertainty arises and many causal trajectories have been excluded for
reaching a given structural design, then the graph is deep (complex). Therefore,
TD is purely based on the genesis principle. In this talk we present an statisti-
cal complexity measure which is focused on the connection between the second
principle (information constraints) and the third one by exploring the connec-
tion between heat diffusion and TD. The underlying idea is that structure may
impose constraints on heat diffusion. For instance, a complete graph must have
zero complexity since there are no diffusion constraints. On the other hand, a
linear graph imposes hard constraints. This occurs for both undirected and di-
rected graphs. The combination of heat flow and TD breaks isospectrallity. In [5]
we present the main ingredients of the theory, embed both the von Neumann
entropy and the Estrada’s heterogeneity index in TD and show that the embed-
ding of heat flow in TD outperforms the latter embeddings in terms of predicting
the phylogeny of Protein-Protein Interaction (PPI) networks of several phyla of
bacteria. In [6] we extended the so called Heat Flow-TD complexity to digraphs
and compute the surface complexity of many European languages. In the fol-
lowing section we summarize some of the applications appealing to the DGCI
community which are explored in the talk.

2 Applications of Structural Complexity

2.1 The Complexity of Images

We commence by motivating the need of measuring graph complexity beyond
regularization or the minimization of description length. In [7] we propose an
information-theoretic approach to understand eye-movement patterns, in rela-
tion to the task performed and image complexity. We analyze the distributions
and amplitudes of eye-movement saccades, performed across two different image-
viewing tasks: free viewing and visual search. Our working hypothesis is that the
complexity of image information and task demands should interact. This should
be reflected in the Markovian pattern of short and long saccades. We compute
high-order Markovian models of performing a large saccade after many short
ones and also propose a novel method for quantifying image complexity. The
analysis of the interaction between high-order Markovianity, task and image
complexity supports our hypothesis. Image complexity is measured in terms of
computing the stationary distribution of a random walk in a grid-like structure
whose nodes are image regions characterized by the responses of several filters.
The edges in the grid are attributed by the mutual information between adja-
cent nodes. Given the stationary distribution we compute its Shannon entropy.
Therefore, in this application we exploit a randomness complexity measure. To
the best of our knowledge this is the first scientific connection between complex-
ity quantification, perceptual tasks and image structure.
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Fig. 1. SHREC complexities. TD complexity for each object in each class. For each class
the dashed horizontal line and the number indicates the median TD complexity. Typical
shapes (in classes with low complexity) and complex shapes (in classes with peaks).

2.2 The Complexity of Reeb Graphs

It is well known that the basic idea of Reeb graphs is to obtain information
concerning the topology of a manifold M from information related to the crit-
ical points of a real function f . The Reeb graph produces a structure whose
nodes are associated with the critical points of f . Here we follow the computa-
tional approach in [8], where a discrete counterpart of Reeb graphs, referred to
as the Extended Reeb Graph (ERG), is defined for triangle meshes representing
surfaces in R3. The basic idea underpinning ERG is to provide a region-based
characterization of surfaces, rather than a point-oriented characterization. This
is done by replacing the notion and role of critical points with that of critical
areas, and the analysis of the behaviour of the level sets with the analysis of the
behaviour of surface stripes, defined by partitioning the co-domain of f into a
finite set of intervals. We consider in more detail a finite number of level sets of
f , which divide the surface into a set of regions. Each region is classified as a
regular or a critical area according to the number and the value of f along its
boundary components. Critical areas are classified as maximum, minimum and
saddle areas. A node in the graph is associated with each critical area. Then
arcs between nodes are detected through an expansion process of the critical
areas, by tracking the evolution of the level sets. A fundamental property of
ERGs is their parametric nature with respect to the mapping function f : differ-
ent choices of f produce different graphs. Also, the graphs inherit the invariance
properties, if any, of the underlying mapping function. The mapping function
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has to be selected according to the invariance and shape properties required for
the task at hand. For instance, the analysis of the SHREC database from the
point of view of barycenter Reeb graphs is summarized in Fig. 1. In this figure
we represent the thermodynamic depth complexities of the 300 models and their
variation among classes (median). Some classes are more heterogeneous than oth-
ers. Therefore, thermodynamic depth of graphs seems to be a MDL(Minimum
Description Length)-like measure of the mapping functions used for extracting
Reeb graphs from 3D shapes. We will analyze several mapping functions and
classify them in terms of intraclass variability (stability) . This analysis concerns
both undirected and directed graphs and both attributed and non-attributed
ones. The spectral graph theory machinery developed for capturing the infor-
mation flowing through Reeb graphs relies on the analysis of the combinatorial
Laplacian and the evolution of heat kernels and quantum walks. Such elements
are combined with the computation of node histories (TD) and also with Breg-
man divergences and information projection in order to quantify complexity.

2.3 The Complexity of Hypergraphs

Initial experiments with PPI networks show that complexity can be very helpful
for structural classification purposes [9]. Recently, depth-based representations
have been extended to characterize hypergraphs resulting in a high performance
structural classifiers. Hypergraphs also allow us to mix several mapping functions
for Reeb graphs which will be very helpful in their classification.

Acknowledgements. F. Escolano was funded by project TIN2012-32839 of the
Spanish Government.
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Stable Length Estimates of Tube-Like Shapes�

Herbert Edelsbrunner1 and Florian Pausinger2
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria,

and Geomagic, Research Triangle Park, North Carolina

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria

Abstract. Mathematical objects can be measured unambiguously, but
not so objects from our physical world. Even the total length of tube-
like shapes has its difficulties. We introduce a combination of geometric,
probabilistic, and topological methods to design a stable length estimate
for tube-like shapes; that is: one that is insensitive to small shape changes.

1 Introduction

The length of a curve in Euclidean space is an elementary geometric concept,
and it is well defined provided the curve is not wild. We consider the problem
of computing the length of curve- or tube-like shapes, such as root systems of
plants. Branching is allowed, but the real difficulty lies in the small but positive
thickness, which renders length an undefined concept, at least in the mathemat-
ical sense. One may want to construct a 1-dimensional skeleton and take the
length of that, but this construction is instable; see [1, 5]. Instead of stabilizing
the skeleton, we aim at estimating the length of a hypothetical skeleton, which
we leave unspecified. The difficulty in the related case of a coast line, studied
famously by Mandelbrot [12], is the dependence on the resolution to which the
curve is being measured. The length diverges as the resolution increases, sug-
gesting the dimension of the coast line be larger than 1.

Noticing the abundance of tube-like shapes in nature and therefore in the
sciences, we aim at producing a length estimate that is stable under perturba-
tions of the shape. We believe that this will be useful in the study of geographic
structures, including river and road networks, as well as biological and medi-
cal structures, including root systems of plants, blood vessels, nerve cells, and
more. Our length estimation algorithm combines intuitive geometric ideas with
topological methods:

� This research is partially supported by the National Science Foundation (NSF)
under grant DBI-0820624, the European Science Foundation (ESF) under the Re-
search Network Programme, and the Russian Government under the Mega Project
11.G34.31.0053.
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1. using the formula of Weyl [8, 14, 15], it expresses the length of a tube-like
shape by an integral geometric representation of the second Quermassinte-
gral;

2. applying a recent version of the Koksma-Hlawka Theorem [9–11], it approx-
imates the resulting integral with explicit bounds on the integration error;

3. exploiting insights into the persistence diagram of a height function [2, 3, 7],
it gives a length estimate that is stable under perturbations.

We implement the algorithm and analyze its performance. Our experiments give
clear evidence for the effectivity of the topological method and the stability of
the length estimate provided by our algorithm.

2 Tubes and Integral Geometry

We study and extend special cases of the tube formula of Weyl [8, 13, 15]. This
formula holds for general smooth submanifolds of a finite-dimensional Euclidean
space. The main result of this section is a simple relationship between the geo-
metric properties of a curve and its thickened version in R

3. Letting r0 be the
thickening radius, we denote the thickened curve by M. We have

L = Q2/π; (1)
L = [Q2 − k(2π − 4)r0 − 4πr0] /π, (2)

where L is the length of the curve, which is closed in (1), and has k ≥ 0 right-
angle forks and k +2 tips in (2). For k = 0, we have a curve with two endpoints.
To define Q2, we introduce

Qi(M) = ci ·
∫

P

χ(M ∩ P ) dP, (3)

called the i-th Quermassintegral over the set of i-dimensional planes, P , in which
ci is a constant independent of M. For i = 2, we have ci = 1, and Q2 = Q2(M)
is the total mean curvature of the bounding surface.

3 Quasi Randomness

In order to evaluate the second Quermassintegral, we apply a version of the
Koksma-Hlawka Theorem recently proved by Harman [9]. This theorem bounds
the integration error,

Err(N, X) =

∣∣∣∣∣∣
1
N

N∑
j=1

F (xj) −
∫

F (x) dx

∣∣∣∣∣∣ , (4)

in which X = {x1, x2, . . . , xN} denotes a finite point set. It separates the con-
tributions of the variation of the function and the distribution properties of the
points at which the function is evaluated.
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4 Persistence and Stability

We modify the straight length estimation formulas to get stable estimates for
tube-like shapes. The tool for this purpose is persistent homology; see e.g. [6].
The main result is an expression of stability for the damped persistence moments
of a function:

1 (Damped Stability Theorem for Tubes) Let M be a tube of radius r0 in
R

3, let f, g : M → R, and set C = 4 + δ. Then for every dimension 0 ≤ p ≤ 2,
every direction u ∈ S

2, and every δ > 0, we have

|XC
p (f) − XC

p (g)| ≤ const · L1+δ

r1+δ
0

· ‖f − g‖∞. (5)

Here XC
p (f) is related to the persistence moments, as we now explain. First,

introduce

Bk
p (f) =

∑
A∈Upp(f)

pers(A)k +
∑

A∈Dnp+1(f)

pers(A)k, (6)

in which the two sums are over the points in the persistence diagrams of the
function. Specifically, Upp(f) consists of all points in the p-dimensional diagram
whose birth-coordinates are smaller than the death-coordinates, and Dnp+1(f)
consists of all points in the (p+1)-dimensional diagram whose birth-coordinates
are larger than the death-coordinates. We call Bk

p (f) the k-th p-dimensional
persistence moment. For k = 1, its significance lies in the relationship to the
second Quermassintegral:

Q2(M) =
1
2

∫
u∈S2

(
2∑

p=0

(−1)pB1
p(fu)

)
du, (7)

where fu is the height function on M in the direction u. We split Bk
p (f) =

Bk
p (f, r−0 ) + Bk

p (f, r+
0 ) by collecting the values for pers(A) < r0 in the first term

and values for pers(A) ≥ r0 in the second term. For C = 4 + δ, we set

XC
p (f) = B1

p(f, r+
0 ) +

1
rC−1
0

· BC
p (f, r−0 ), (8)

Q̄2(M) =
1
2

∫
u∈S2

(
2∑

p=0

(−1)pXC
p (fu)

)
du, (9)

calling Q̄2 = Q̄2(M) the stabilized mean curvature of M at scale r0. The Damped
Stability Theorem now implies a similar expression of stability for the stabilized
mean curvature.
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5 Computational Experiments

We describe experimental results for the algorithms implementing the mathe-
matical formulas developed in the preceding sections. We test accuracy as well
as stability on small datasets, for which the answers are known, and investigate
speed of convergence on root system data. We use three different algorithms to
compute or approximate the total mean curvature of the boundary of a polytope
M in R

3, and to estimate the length of M:

– Discrete Mean Curvature (DMC): we compute the total mean curvature as
half the sum over all boundary edges of the length times the angle between
the two adjacent face normals; see e.g. [4].

– Plane Sampling (PS): we approximate the total mean curvature by sum-
ming up the Euler characteristics of the intersections between M and planes
sampled in R

3.
– Direction Sampling (DS): we approximate the total mean curvature by sum-

ming up the alternating persistence moments of height functions defined by
sampled directions on the 2-sphere.

The result of the DMC Algorithm is the total mean curvature of M up to machine
precision, which we use as the baseline for comparisons. The result of the PS
Algorithm converges to the total mean curvature, and we get an impression of
the speed of convergence from a comparison with the precise measurement. The
basic version of the DS Algorithm is a reformulation of the PS Algorithm, but it
offers the opportunity to filter out low-persistence contributions, thus stabilizing
the length estimate; see the Damped Stability Theorem of the previous section.
Indeed, the design of the algorithm implementing (9) is the main achievement
of this paper. Experimental results comparing the performance of this algorithm
with others can be found in the full version of this paper.
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Abstract. The relation between a straight line and its digitization as a
digital straight line is often expressed using a notion of proximity. In this
contribution, we consider the covering of the straight line by a set of balls
centered on the digital straight line pixels. We prove that the optimal
radius of the balls is strictly less than one, and can be expressed as a
function of the slope of the straight line. This property is used to define
discrete convexity in concordance with previous works on convexity.

1 Introduction

From the seminal work of Sklansky [12], discrete convexity has been the subject
of many studies with a common objective: transcribe the Euclidean definition in
the digital space.

In the eighties, a previous work introduced ε-convexity using covering of con-
nected sets by balls [1]. In the case of convex shapes, it was shown in [1] that
the value ε can be written as p

p+1 (lower than 1) where p is a parameter com-
puted from the edges of the convex hull of the shape. However, the value of this
parameter p was given algorithmically but not analytically. In this paper, using
the arithmetical definition of a digital straight line [9,3], we prove that ε can be
expressed exactly as a function of the characteristics of the digital straight line
supporting the edges of the convex hull of the shape.

After classical definitions of digital straight line and its characteristics, we
establish the property of covering a straight line by balls centered exclusively
on digital straight line pixels. The following section applies that property to the
case of discrete convexity and we present the algorithm for discrete convex hull
computation working only on digital space.

2 Preliminary Definitions

Let L be an Euclidian straight line in R2 given by the equation ax− by+μ = 0,
with a, b, μ in Z, and gcd(a, b) = 1. In the following, we also assume without loss
of generality that 0 ≤ a ≤ b. All other cases are symmetrical. Such a straight
line may be considered as supporting a linear contour of a shape, such that all
the points of the shape are on the same side of the straight line.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J.-M. Chassery and I. Sivignon

D

Fig. 1. A straight line L of equation 3x− 8y+ μ = 0 and its OBQ digitization analyt-
ically given by the digital straight line of equation 0 ≤ 3x− 8y + μ < 8

Let us now consider the Object Boundary Quantization of L on the isothetic
regular grid. It is given by the set of pixels (x, y) such that x ∈ Z and y =
�−ax−μ

b � (see Figure 1).
It is well known that this set of digital points denoted by L is a simple 8-

connected digital straight line (DSL) that can be defined by the diophantine
equation [9,3] 0 ≤ ax− by + μ < max (|a|, |b|) = b.

The slope of L is a
b , μ is the shift at origin. The remainder of L for a given

digital point (x, y) is the value ax− by + μ.
Two particular straight lines are associated to this DSL L:

– the upper leaning line given by equation ax− by + μ = 0 and,

– the lower leaning line given by equation ax− by + μ = b− 1.

The digital points lying on these lines are similarly called leaning points (see
Figure 2). Upper leaning points have remainder value 0 while lower leaning
points have remainder value b− 1 (see [2] for more details).

Since a, b, μ are integers and L is digitized with OBQ, L is identified as the
upper leaning line of L.

U1

U2 L2

L1

Fig. 2. Digital straight line of equation 0 ≤ 3x−8y+μ < 8 with upper (lower) leaning
points Ui (Li)
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3 Optimal Covering of a Straight Line

3.1 Setting the Problem

The objective is to cover the straight line L with closed balls centered on the
points of the DSL L. Moreover, the union of these balls shall not contain any
other digital point. These balls are defined according to the L∞ metric such that
the ball of radius ε is defined by B(P, ε) = {q|d∞(P, q) ≤ ε}. In our framework,
we assume that the radius ε is the same for all the points of L (see Figure 3).

In the general case, setting ε to 1
2 is not sufficient to cover the straight line

L except for the special cases of horizontal, vertical and diagonal lines. We can
notice the following elementary property:

Property 1. The band delimitated by the 2 leaning lines (upper and lower) has
a vertical thickness of b−1

b .

The proof is straightforward from the equations of the leaning lines. Figure 3
illustrates the covering of a straight line of slope a

b by balls of radius b−1
b . We

remark that this radius is not sufficient since parts of the straight line remain
uncovered.

To analyze this covering, we proceed by successive couples of adjacent pixels.
It is easy to verify that the vertical distance between a pixel of remainder r of
the DSL and the line L is equal to r/b, with r varying from 0 to b− 1. The value
b−1
b is obtained for a lower leaning point. Let us consider two successive pixels of

L such that the first one is a lower leaning point. Then we notice that the union
of the balls of radius b−1

b centered on these points leaves a part of L uncovered
(see Figure 3). So the minimum ε for the line L to be covered is greater than
b−1
b .

U2 L2

L1b−1
b

Fig. 3. Balls of radius ε = b−1
b

centered on the DSL points do not cover L: uncovered
regions are indicated by arrows
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In the following, we denote by P0, P1, . . . , Pn the ordered sequence (increas-
ing abscissae) of pixels of the DSL L. For each pixel Pi we can define as
proj(Pi) the vertical projection of Pi on the straight line L. Consequently,
the Euclidean straight line L may be partitionned as the union of subsegments
[proj(Pi), proj(Pi+1)].

Property 2. If for every pair of successive pixels Pi and Pi+1, B(Pi, ε)∪B(Pi+1, ε)
covers the straight segment [proj(Pi), proj(Pi+1)] then the straight line L is
covered by the union of the balls B(Pi, ε) .

As said before, ε must be greater than b−1
b , and it is easy to see that it must

also be strictly lower than 1, otherwise new digital points are included in the
union of balls.

3.2 Optimal Covering

The following theorem defines the optimal value of ε as a function of the straight
line parameters a and b.

Theorem 1. Let L a straight line of equation ax−by+μ = 0 and L its digitiza-
tion with the OBQ scheme. In the context of the previous definitions, the union of

balls B(Pi, ε) centered on pixels of the DSL L with radius ε = max (12 ,
|a|+|b|−1
|a|+|b| )

covers the straight line L. This set doesn’t contain any other digital pixels ex-
cepted those of the DSL.

Proof. We suppose that 0 ≤ a ≤ b. First of all, if the parameters of L are (0, 1, μ)
(horizontal straight line) or (1, 1, μ) (diagonal straight line), the optimal value
of ε is trivially equal to 1

2 . Otherwise, b is greater than or equal to 2.
The distance between a point Pi and its projection proj(Pi) (see above) is

equal to r
b if the remainder of Pi is equal to r.

In the case “Pi and Pi+1 4-connected”, if r is the remainder of Pi then r +
a is the remainder of Pi+1. Consequently, the distance between Pi+1 and its
projection proj(Pi+1) is equal to

r+a
b . We have the following inequalities:

• b−1
b > r

b (Pi belongs to L),

• b−1
b ≥ r+a

b (Pi+1 belongs to L),

• 2 b−1
b ≥ 1 (since b ≥ 2).

With the first two inequalities, we deduce that proj(Pi) and proj(Pi+1) are cov-
ered by B(Pi,

b−1
b )∪B(Pi+1,

b−1
b ). The third inequality ensures that B(Pi,

b−1
b )

and B(Pi+1,
b−1
b ) overlap. We can conclude that the union of the two balls

B(Pi,
b−1
b ) ∪ B(Pi+1,

b−1
b ) covers the segment [proj(Pi), proj(Pi+1)] (see

Figure 4).
In the case “Pi and Pi+1 8-connected”, according to the Figure 5(b), we

introduce the point Q belonging to the straight line L situed at equal distance
(L∞ norm) from Pi and Pi+1. The point Q is on L and shall belong to the
two balls B(Pi, ε) and B(Pi+1, ε). If r is the remainder of Pi, we denote by ε(r)
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r
b

r+a
b

Pi Pi+1

proj(Pi)

proj(Pi+1)

B(Pi+1,
b−1
b )B(Pi,

b−1
b )

Fig. 4. When Pi and Pi+1 are 4-connected, B(Pi,
b−1
b

) ∪ B(Pi+1,
b−1
b

) covers the seg-
ment [proj(Pi), proj(Pi+1)]

r
b

Pi

Pi+1

B(Pi,
r
b)

B(Pi+1,
r
b)

b−r
b

b−r
b

L

(a)

ρ(r)

b−r
b

b−r
b

L

ρ(r)

Q
a(b−r)

b2

(b)

Fig. 5. Illustration of the proof when Pi and Pi+1 are 8-connected. r is the remainder
of Pi. (b) is a close up of the region circled in (a).

the minimum radius such that B(Pi, ε(r)) ∪ B(Pi+1, ε(r)) covers the segment
[proj(Pi), proj(Pi+1)]. We can write ε(r) as the sum r

b +ρ(r), with ρ(r) ≥ 0 (see
Figure 5). Using Thalès theorem, we have

ρ(r)
a(b−r)

b2

=
b−r
b − ρ(r)

b−r
b

We obtain

ρ(r) =
a(b− r)

b(a+ b)

Then ε(r) = ρ(r) + r
b = a+r

a+b .

ε(r) is increasing and is maximum for r = b− 1, corresponding to ε = a+b−1
a+b .
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This proof was developed in the case 0 ≤ a ≤ b. It can be easily extended

in the general case to obtain ε = max(12 ,
|a|+|b|−1
|a|+|b| ). Since ε < 1, Pi is the only

digital point in the ball B(Pi, ε) for all i, which ends the proof.

4 Discrete Convexity

4.1 Definitions

An important literature has been developed for digital convexity [12,7,5,6,1]. A
large number of these definitions are considered to be equivalent in case of simply
connected sets [10,4].The following definition is issued from the transcription of
convexity definition in Euclidean space to discrete space. In Euclidean geometry,
a regionR is convex if and only if for every pair of points p, q belonging to R, the
straight line segment [p, q] is included in R. The following definition of discrete
convexity replaces inclusion by covering with balls [1].

Definition 1 (ε-convexity). A connected component S is ε-convex, with ε be-
longing to interval [ 12 , 1[ if:

– for every pair of pixels P and Q of S,
– for every real value α belonging to ]0, 1[,

there exists a pixel R belonging to S such that the point (αP + (1 − α)Q) of the
straight line supported by the two points PQ belongs to the balls B(R, ε), centered
on R with radius ε.

Definition 2 (Discrete convexity). A connected component S is discrete con-
vex if there exists a real ε ∈ [ 12 , 1[ such that S is ε-convex.

4.2 Algorithmic Approach

The computation of the convex hull Conv(S) is done in two steps :

1. first, the x− y convex shape issued from S is computed;
2. then the convex hull is computed from the x− y convex shape.

The x− y convex shape of a connected component is defined as the convex shape
along horizontal and vertical directions: for any points P andQ of the x−y convex
shape, if P and Q are on the same line or column of the grid, then all the points
between P and Q (on this line or column) also belong to the x− y convex shape.
It is evident that the x− y convex shape is included in the convex hull.

Algorithm 1 describes how to compute the x− y convex shape. Suppose that
the shape S is included in a binary image of size m× n. The initialization step
consists in:

1. compute the indices if and il of the upper and lower lines containing points
of S respectively;

2. for each line i between if and il, compute min(i) and max(i) as the minimum
and maximmum indices of points of S on line i.
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This initilization step is done inO(nm). Afterwards, the three loops of Algorithm
1 are performed to compute the maximal and minimal abscissas for each line of
the x− y convex shape of S.

Algorithm 1. x−y convex shape computation of a set S of discrete points

1 for i from if to il do
min↓(i) = min(min(i),min↓(i− 1)) ; // min↓(i) is initially set to m
;
max↓(i)=max(max(i),max↓(i− 1)) ; // max↓(i) is initially set to 0
;

2 for i from il to if do
min↑(i) = min(min(i),min↑(i+ 1)) ; // min↑(i) is initially set to m
;
max↑(i)=max(max(i),max↑(i+ 1)) ; // max↑(i) is initially set to 0
;

3 for i from if to il do
min(i) = max(min↓(i),min↑(i));
max(i) = min(max↓(i),max↑(i));
jf = min(jf ,min(i)) ; // jf is initially set to n
;
jl = max(jl,max(i)) ; // jl is initially set to 0
;

Figure 6(b) illustrates the first two loops of the algorithm (lines 1 and 2).
Figure 6(c) illustrates the third loop (line 3).

At the end of Algorithm 1, the variables min(i) and max(i) contain the indices
of the minimum and maximum points of the x−y convex shape for the line i. This
algorithm also computes the coordinates if , il, jf , jl of the bounding rectangle
of S.

Finally, the convex hull of S is computed as follows. To do so, we define the
extremal point of the bounding rectangle as the points of S belonging to this
rectangle and such that at least one of its two neighbours on the rectangle does
not belong to S. These eight points are depicted on Figure 6(d).

Finally, the convex hull is computed from these extremal points using a tech-
nique similar to the algorithm of Sklansky [13][8](Chap. 13) on the polygon
defined by the variables min(.) and max(.). Note that this polygon is simple
and completely visible from the outside, such that the algorithm works in this
case. This algorithm works in O(max(m,n)) time, which leads to a global com-
plexity of O(nm) to compute the convex hull of S. The result on the example
of Figure 6 is given in Figure 7.
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(a)

min↓min↑ max↓max↑

(b)

(c)

UL UR

LU

LD

RU

RD

DRDL

(d)

Fig. 6. (a) A discrete shape S. (b) Illustration of the variables min↓, min↑,max↓, max↑
used in Algorithm 1. (c) Illustration of the variables min(.) and max(.) at the end of
Algorithm 1. (d) Extremal points of S.

4.3 Optimal Convering and Discrete Convexity

Let us denote by {Pi, i = 0..n} the ordered set of vertices of the convex hull
Conv(S). To each edge [Pi, Pi + 1] we associate the slope parameters (ai, bi)
such that gcd(ai, bi) = 1. From Property 1, this edge is covered by balls centered

on the pixels of its OBQ digitization with radius max(12 ,
|ai|+|bi|−1
|ai|+|bi| ).

It is easy to prove that the connected set Conv(S) of discrete points included

in Conv(S) is ε-convex with ε = maxi∈0...n max(12 ,
|ai|+|bi|−1
|ai|+|bi| ). S is discrete

convex if and only if it is equal to Conv(S).
Moreover such definition is fully compatible with the continuous one as it is

proved by the theorem [1]:

Theorem 2. Let S be a connected component in space R2.
If, for every sampling step, the discrete connected component S attached to S is
discrete convex, then S is convex in space R2.

Using S and Conv(S) a lot of features can be extracted to estimate a measure of
convexity of S (number of missing pixels, distribution of concavities)[11]. These
features are used to measure the degree of convexity of a shape in presence of
many concavities.
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(a)

Fig. 7. Convex hull of the discrete shape S: the point marked by a square is added
during the application of Sklansky’s algorithm. The discrete points belonging to the
polygonal line are the vertices of Conv(S). Conv(S) is defined as the discrete points
inside Conv(S).

5 Conclusion

The transcription of continuous concept like convexity into digital space needs
specific attention for its definition as well as for its properties. In case of convexity
we use the definition of digital straight line and we replace the notion of inclusion
by the notion of covering. The main result obtained in this paper is issued from
parametric representation of digital straight line to characterize the optimal
radius for covering balls centered on digital straight line pixels.
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Abstract. Let (W,d) be a metric space and S = {s1 . . . sk} an ordered
list of subsets of W . The distance between p ∈ W and si ∈ S is d(p, si) =
min{ d(p, q) : q ∈ si }. S is a resolving set forW if d(x, si) = d(y, si) for all
si implies x = y. A metric basis is a resolving set of minimal cardinality,
named the metric dimension of (W,d). The metric dimension has been
extensively studied in the literature when W is a graph and S is a subset
of points (classical case) or when S is a partition of W ; the latter is
known as the partition dimension problem. We have recently studied
the case where W is the discrete space Zn for a subset of points; in this
paper, we tackle the partition dimension problem for classical Minkowski
distances as well as polyhedral gauges and chamfer norms in Zn.

Keywords: dimension partition, metric dimension, distance geometry,
discrete distance, norm.

1 Introduction

The partition dimension of a set is a combinatorial problem which generalizes
the metric dimension of a set. These notions are classically studied in graph
theory, and more generally in the field of distance geometry. Distance geometry
is the characterization and study of sets of points based on the distance values
between member pairs. Most of the notions of this field can be studied in the
discrete space Zn, which adds digital and/or Euclidean geometry properties, as
well as properties depending on the chosen distance. In this paper, we propose
to tackle the partition dimension problem in Zn for some classical norms.

Let W be a (finite or infinite) set endowed with a metric d. We first consider
the metric dimension and recall some results. Let S = (v1, v2, . . . , vk) an ordered
subset of points in W . The representation of p ∈ W with respect to S is the
k-tuple r(p|S) = {d(p, v1), d(p, v2), . . . , d(p, vk)}, also called the coordinates of
p. The set S is a resolving set for W if every two elements of W have distinct
representation. A resolving set having minimal cardinality is called a metric basis
for W ; its cardinality is the metric dimension dim(W ) of W .

Harary and Melter gave in [7] the intrinsic metric dimension of any path,
complete graph, cycle, wheel and complete bipartite graph. They also proposed

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 11–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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an algorithm for finding a metric basis of a tree T , which gives an explicit formula
for the dimension of T . Khuller et al. showed in [10] that all graphs having
dimension 1 are paths and that there are non-planar graphs having dimension 2.
The intrinsic metric dimension of trees can be efficiently solved in linear time, but
finding the metric dimension of an arbitrary graph is NP-hard. The dimension of
an arbitrary graph with n nodes can be approximated within a factor O(logn)
in polynomial time. Collections of bounds or exact values of metric dimensions
are presented in [4][9]. For other results on graphs, see [1][2].

A number of results in digital geometry have also been established. Melter and
Tomescu showed in [11] that when W is the digital plane, the metric bases are
sets of three non-collinear points for the Euclidean distance d2, whereas there are
no finite metric bases for the city block distance d1 and the chessboard distance
d∞. The d1 metric dimension of a n-dimensional axes-parallel rectangle is n [10],
and the d∞ metric dimension of a square is 3. If non axes-parallel rectangles are
considered, there exists for both distances a rectangle in the digital plane such
that its dimension is n, for any given n � 3. In [12], we have shown that the metric
dimension in Rn is infinite for any polyhedral (or partially polyhedral) central
symmetric gauge; the metric dimension in Zn is also infinite for any chamfer
norms. However, the metric dimension is finite in axes-parallel rectangles for
both kind of spaces and distances.

The notion of partition dimension has been proposed in [5][6]. We recall the
definition in a more general manner: let S = {s1 . . . sk} be an ordered list of sub-
sets of W . The distance between p ∈ W and si ∈ S is d(p, si) = min{ d(p, q) : q ∈
si }. The representation of p with respect to S is r(p|S) = {d(p, s1), . . . , d(p, sk)}.
As previously, S is a resolving set for W if every two elements of W have distinct
representation.

When S is a set of points, we turn back again to the metric dimension problem.
If S is a partition of W , we obtain new objects: a partition (metric) base is a
resolving set of minimal cardinality, called the partition dimension pd(W ). For
any nontrivial connected graph G we have pd(G) � dim(G) + 1 [5]. It should
be noted that the partition dimension may be much smaller than the metric
dimension [13]. In particular, the partition dimension of the digital plane with
respect to d1 and d∞ is 3 and 4, respectively. For other relationships between
metric and partition dimension and graph diameter, as well as results on coloring
and chromatic number, see [3].

The paper is organized as follows. In section 2, we define partition classes and
study the combinatorics of the partition dimension problem. Then, in section
3, we present algorithms allowing to decide if a partition is resolving, and we
evaluate their complexities. Next in section 4, we present specific properties
of partition dimensions for gauges in Euclidean and digital spaces. We finally
conclude in section 5.
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2 Preliminaries

In this part, we reformulate the problem of partition dimension to understand
the relationship between the latter and the metric basis problem. Moreover, we
express their differences in combinatorics.

We first introduce a simple example, in which W is the set of elements
(e1, e2, e3, e4, e5). Each partition can be expressed in several manners. For in-
stance, the partition {{e2}, {e3, e1, e5}, {e4}}, is equivalent to the partition
{{e1, e3, e5}, {e2}, {e4}}. To avoid ambiguity, we write each of them using the
canonical notation defined as follows: in each part, the elements are sorted by
their index; the parts are sorted by decreasing cardinal; parts having same car-
dinal are sorted in lexicographic order.

2.1 Partition Class

Given a partition we define its partition class as the vector of cardinalities of its
parts. In our example, the partition {{e1, e3, e5}, {e2}, {e4}} belongs to the class
[3, 1, 1].

The set of partition classes corresponds to the integer partition. The num-
ber of partitions of an integer n is given by the function p(n) [8]. The
function p(n) grows extremely fast: as the first values for n = 1 . . . 9 are
1, 2, 3, 5, 7, 11, 15, 22, 30, we have p(100) = 190 569 292.

Given a metric basis M = {m1, . . . ,mn}, we can obtain a partition basis
P =

{
W \M, {m1}, . . . , {mn}

}
written in canonical form. The partition classes

for metric basis problem are those which have at most one class with more
than one element (i.e. [x, 1, . . . , 1], x � 1). It only exists one class of partition
representing a metric basis for each dimension of partition. This means that for
a set of 100 points, there are only 100 classes of metric basis among the 190
millions available classes.

Definition 1. The distance between two classes of partition is the sum of the
difference between the coordinates of their vectors:

d(C1, C2) =
∑
i

∣∣∣C1[i]− C2[i]
∣∣∣ .

If both vectors do not have the same number of part, the smallest one is com-
pleted by parts of size zero. The coordinate vectors are completed by zeros if
needed. The distance between classes of partitions is a �1 distance between vec-
tor coordinates. We remark that two partition classes with a distance of 1 do
not exist for a given number of points. Indeed, the only way to have a distance
of 1 between two classes is to have only one part where the number of points is
different, so the total number of points is not the same.

Two classes are called adjacent if their distance is 2, which means that there
are only two parts whose cardinals differ, one gaining a point and one missing a
point.
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We define a distance between two partitions as follows:

Definition 2. The distance between two partitions is given by the Hamming
distance of their coordinate vectors.

Once again, if partitions do not have the same size, the smallest one is padded
by empty parts (Hamming distance is defined for two vectors of the same size).
Two partitions will be named adjacent if one of the properties is fulfilled:

i) their partition distance is 1;
ii) the partition class distance is 0 and the partition distance is 2.

2.2 Counting

The number of partitions of n labeled objects into k non-empty unlabeled subsets
is given by the Stirling number of the second kind

{
n
k

}
(see sequence A008277 in

OEIS): {
n

k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn .

This number is important to evaluate the difficulty to find a resolving partition
of n points for a given dimension k. If we look only at metric basis classes, the
number of partitions is reduced to the binomial coefficient

(
n
k

)
.

Now in the case where we need to enumerate all of the possible partitions (up
to size n), the cardinal will be the sum

Bn =

n∑
k=0

{
n

k

}
,

known as the Bell number Bn (see sequence A000110 in OEIS).
The first 10 numbers of Bell are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147; we have

B(20) = 5 832 742 205 057, and B(100) is given by a 116 digital number. The
number of possible metric basis is given by the sum of the binomial coefficient∑n

i=0

(
n
i

)
= 2n. As a comparison, 220 = 1 048 576 is much smaller than B(20).

An other interesting comparison can be made between classes of the same
dimension. The number of partition in each classes can be computed by this
recursive function:

#[ pi, pi+1, . . . , pk ] =
1

Ai

(∑k
j=i pj
pi

)
#[ pi+1, . . . , pk ] ,

where Ai is the number of parts in [ pi, pi+1, . . . , pk ] which value equals pi.
The number of classes of dimension n is highly unevenly distributed; the

cardinal of the metric bases class is minimal and is far smallest than the cardinal
of the other classes.

3 Algorithm

In this section we describe some methods to determine if a given partition is
resolving. We consider W = (e1, e2, . . . , ek) and we denote D[ei][ej ] its distance
matrix between each pair of points.

http://oeis.org/A008277
http://oeis.org/A000110
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The notation {p1, p2, . . . , pk} formalizes a representation of a partition where
ei belongs to the part pi. The dimension of the partition is by definition given
by dim = maxi (pi).

Algorithm 1: MinimumResolvingPartition

Input: D[ ][ ] : a distance matrix of n points
Output: Partition : a resolving partition

1 for dim← 2 to m do
2 Partition← FirstPartitionOfSize(dim)
3 if IsResolvingPartition(Partition) then
4 return Partition

5 while Partition← NextPartitionOfSize(dim) do
6 if IsResolvingPartition(Partition) then
7 return Partition

The first algorithm that we give is simple and natural. Then we show several
properties, helping to give an improved version with lower complexity.

3.1 Natural Method

Our aim is to determine if for a given partition, all points of W have different
coordinates. We first compute all of the coordinates with the following algorithm:

Algorithm 2: GetCoordList computes the list of coordinate vectors

Output: Coord[ ][ ] : the list of coordinate vectors
Input: D[ ][ ] : the distance matrix ; Partition = {p1, p2, . . . , pm} : the

partition

1 Initialization.
2 Coord[ ][ ]←∞
3 Computing the coordinate vectors.
4 foreach point A ∈W do
5 foreach point B ∈W do
6 part B← Partition[point B]
7 if Coord[point A][part B] > D[point A][point B] then
8 Coord[point A][part B]← D[point A][point B]

9 return Coord

Each coordinate of a point q is given by the minimum distance from q to
points of the corresponding part. Every points belong to a part, so we need to
compute the distance between each couple of points. The complexity is O(n2),
where n is the number of points.
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Now we need to know if all points are distinguished by coordinates. The
answer is given by using a sorting algorithm that stops and returns false if two
vectors are identical, but returns true if it ends sorting. Logically, the complexity
of this step is in O(dim ∗ n log2(n)) comparisons of n vectors of size dim.

Finally this method requires O(n2 + dim ∗ n ∗ log2(n)) to determine if the
partition is resolving.

3.2 Computing Coordinate Vectors in Efficient Time

Lemma 1. Only two coordinates may change for each point from a partition to
an adjacent one.

Proof. Coordinates are given by a distance to a part (a set of points), so if this
part does not change, the coordinate remains. Adjacent partitions are either
in the same class with a distance of 2, which means that two points exchanged
their part number, or partitions are in different classes with a distance 1, meaning
that a single point has changed its part number. In both cases, two parts have
changed, so two coordinates may change for any given point. �

Lemma 2. Computing coordinate vectors for a given partition, knowing the co-
ordinate vectors of an adjacent partition, can be made in O(n log2(n)) time.

In order to prove this lemma, we explain the algorithm and show its complexity.
We use a data structure to maintain up-to-date some information for a partition.
Each point needs to know an ordered list by distance to each point of each part.
The more convenient structure is an indexed binary heap.

A heap is a classical data structure in computer science. This structure is
based on the heap property for a binary tree: if the node A is a parent of the
node B then we have key(A) < key(B).

A binary heap has also the property to be always compact, i.e. all the leafs
of the tree have their depths different by at most 1. In an n elements heap, the
depth is log2 n.

Operations like FindMin, in constant time O(1), DeleteMin and Insert,
in log2 n time, are classically defined for min-heap. We need to define two new
operations: DeleteRandom and ChangeKey.

The first one is provided by an index for points in a heap. We can directly
find the location of a key in a heap in constant time O(1). Without the index,
finding a random key in a heap may take O(n) operations.

ChangeKey can be decomposed in two operations: IncreaseKey or De-
creaseKey. Decreasing a key in a min-heap is done by switching a node by its
father while the father’s key is greater than the node’s one. IncreaseKey is
the reverse operation: it consists in exchanging the node by its smaller son until
the son’s key is greater or equal to its own key.

DeleteRandom, which removes a random node r, can be easily defined
knowing ChangeKey, in two steps. First, we switch the node r with the last
node l of the heap, knowing that the last node is always removable. Second, we
consider that the kept node l has just changed its key.
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These two operations are made in the worst case in O(log2(n)) time.
For each point of W , we keep up-to-date dim min-heaps, one for each parts

of Partition. The coordinate vectors are given through a series of FindMin.
There exist two kinds of adjacent partitions. The first one is two partitions

of the same class with distance of 2, i.e. two points from the first partition
switch their parts number to become the second partition. The second kind is
constituted by partitions having distance of 1, i.e. going from the first one to the
second one is simply made by picking a point from a part and moving it to an
other part.

Considering adjacent partitions of the first kind, the operation can be as-
similated to changing a key of a point. Indeed, removing a point from a heap,
then directly adding an other point is equivalent to consider that the key of the
leaving point is changed by the key of the incoming point.

This operation requires two calls of ChangeKey for each point, so its com-
plexity can be approximated by O(n log2(n)) operations. This is an upper bound
because the number of points contained in two heaps is always smaller than n
since each point belongs to one and only one heap.

Considering now the second kind of adjacent partitions, the update operations
are made by a call of DeleteRandom on the heap containing the leaving node,
and a call of Insert into an other part.

The complexity of this update is in O(n log2(n)), which is an upper bound
for the same reasons explained just before.

3.3 Comparing Coordinate Vectors in Efficient Time

We now show how to improve the step of determining if two coordinate vectors
are identical.

Lemma 3. Two points of distinct parts of a partition are always distinguished.

Proof. Every points of a part are at zero distance from it, while outer points
have positive distance from it. Thus coordinates are different. �

Thanks to the lemma 3, we could improve the second part of the sorting algo-
rithm, described in section 3.1. Indeed, the sorting step can be split into dim
independent subproblems.

Lemma 4. Comparing coordinate vectors for a given partition knowing the coor-
dinate vectors can be made in optimal time O(n∗dim) (the size of the coordinate
vectors).

All of the coordinates are bounded by [0, dmax], where dmax is the diameter
of W . Since we restrict to discrete distances, which have integer values, the
maximum number of distinct distances is dmax. This number is lower than n for
rectangles in Zk, due to the fact that Zk is a module (a discrete vector space)
and the maximum number of distinct vectors (up to a symmetry) is bounded
by the number of vectors from a corner. This is also true in general case (not
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a rectangle) for distances d1 and d∞, for which dmax is exactly the number of
different possible distance values.

Considering this, we can use a specific data structure: a trie. A trie (or prefix
tree) is an ordered tree data structure commonly used to store strings. In this
specific structure, unlike in a binary tree, a node is not associated to a specific
key but the position of the node in the trie determines a specific prefix of the
key.

In our case, we define a node as a structure containing two fields: a table of
size dmax pointers of nodes, and an integer which indicates the current number
of nodes contained in the table. This allows us to create a table containing all the
coordinate vectors where the depth i in the trie corresponds to the coordinate
i in a vector. Each leaf of the created trie will have a depth of dim, considering
that the coordinates are given by the parts of a partition.

This data structure provides InsertKey, DeleteKey and FindKey in
O(m) where m is the size of the key. Finally, we can search in optimal time
for identical coordinate vectors, because we only consider once each vector and
each of its coordinates.

3.4 Complexity

We just described structures and procedures to improve the research of a resolv-
ing partition using properties of local changes; we now study the complexity in
time and space.

We have previously seen that each point needs a min-heap indexed structure
of size 2n for each of the dim part, and finally a trie composed by nodes of size
n. A larger upper bound of the number of nodes is given by the number of points
n multiplied by the depth dim in the trie and the size of a node. We consider
sizeof (node) ≈ n because we are interested in discrete geometry problems and
then we can use an index table for distances in order to use less memory as
possible by compacting the table pointer of each node.

So the complexity in space is O(n ∗ dim+ n2 ∗ dim).
Analyzing the complexity in time is done in two steps: analyze the initializa-

tion, then analyze the looping steps (given by the described procedures).
For recall, a looping step is composed in two stages: updating structures in

order to change the coordinate vectors from a partition to an adjacent one; then
updating the trie in order to search undistinguished points. For each of the n
points, 2 min-heap with combined size less than n will be updated. Updating
the trie is in the worst case: changing every of the n key of size dim, by removing
a key and adding a new one.

So the complexity in time for local changes is O(n log2 n + n ∗ dim).
Time complexity for the initialization is bigger because it is not a local change,

indeed every point will be attributed to a part and all parts will change.
In the worst case every points are added to the same part, so for each point,

we will create a min-heap of size n by successively pushing each point. This is
done in O(n log2 n). Once made, the coordinate vectors are added to the trie, so
time complexity for initialization is O(n2 log2 n+ n ∗ dim).
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4 Dimension for Gauges

We have seen in previous section that searching partition dimension by enu-
meration is actually time consuming. Enumerating is not mandatory for simple
cases; we establish in this section the resolving partitions for common distances
in rectangles and convex shapes.

We briefly recall the definition of a gauge. Given a convex C containing
the origin O in its interior, a gauge for C is the function γC(x) defined by
the minimum positive scale factor λ, necessary for having x ∈ λC. Formally,
γC(x) = inf

{
λ ∈R+ : x∈ λC

}
. When C is a polyhedron, γC is called a polyhe-

dral gauge. By definition, all norms are gauges for their unit ball. Conversely, a
gauge for C is a norm, denoted nC , iff C is central-symmetric. We call distance
gauge, denoted dC , the metric induced by a central-symmetric gauge γC . We only
consider central-symmetric gauges in the paper.

4.1 Dimension in Rectangles

Lemma 5. The partition dimension of gauges in a rectangle is 3 or 4.

We have shown in [12] that the metric dimension for gauges is always 2 in a
rectangle except for the polyhedral gauges which have a vertical or horizontal
facet in their ball. Hence, the partition dimension is at most 2+1 for that kind of
gauges. For the others gauges we can provide a simple pattern which always gives
a resolving 4-partition (see figure 1): the first part is the bottom-left corner of
the considered rectangle; the second part is the remaining points of the bottom
line; the third part is the remaining points of the first column; the fourth part
is constituted by all other points.

Note that the coordinates given by the fourth part are useless for the resolving
problem, but are necessary to get an actual partition of the rectangle.

The lemma is still valid for non-gauge distances whose balls are all convex.

B

A

C

A

C

B

D

Fig. 1. Illustration of the lemma 5. On the left a resolving 3-partition of the rectangle
for gauges which do not contain vertical nor horizontal facet built using metric basis
pattern (see [12]). On the right, the pattern used to prove that any convex distance
has at least a resolving 4-partition in a rectangle.
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4.2 Dimension in Convex Sets

Tomescu studied partition dimension in space Z2 for d1 and d∞. Here we extend
that study to every gauges, and to another unusual family of distances: the
non-homogeneous distances whose every balls are convex.

Lemma 6. In the digital plane Z2, the partition dimension for any gauge which
has no vertical nor horizontal facet is 3.

A proof of this lemma is given using the same pattern proposed by Tomescu:
a perpendicular split of the plane in three areas, as follows. A is composed by
points verifying (y < 0); B is the set of points corresponding to (y � 0 andx < 0);
finally C is the set of the remaining points (y � 0 andx � 0). Using lemma 3 we
need to prove that the points inside an area are distinguished (see figure 2).

– Points in B are distinguished: considering the line y = −1 as a centre of
a distance ball which gives the coordinate distance from the part A to the
part B, the frontier of the ball consists in a vertical line moving through
B. Distance from the C area are given by an horizontal line parallel to the
intersection between B and C. Intersection of both of the balls line results
in a single point, so each point in B has unique coordinates.

– Points in C are distinguished: for the exact same reasons explained for the
B area (B and C play symmetric roles), every point in C has unique coor-
dinates.

– Points in A are distinguished: in order to prove this, we look at the upper
part of A where points are closer to the C area. In this part, the front line
of the C ball consists in a vertical line, but the front line of the B ball is
a strictly monotonic curve which does not have any vertical not horizontal
part because we use gauges with these properties, and so intersection between
both of this front line results in a single point. The same result happens in
the lower part of A by symmetries of the B and C part. �

Lemma 7. In the digital plane Z2, the partition dimension for any convex dis-
tance is lower than 4.

To prove that we also use the same pattern that Tomescu used to prove the
dimension of d∞ in Z2. It is nearly the same pattern used for demonstrating
the previous lemma using an additional area D which takes off the A area of its
lower points (y < −1), see figure 2.
It is clear that in this configuration, points in the areas C and D have unique
coordinates for the same reasons explained to prove uniqueness properties in the
area B and C in the previous lemma.

Both of the previous lemma 6 and 7 remain valid in the continuous space R2,
but a stronger property exists: indeed we have

Lemma 8. In the continuous space R2, the partition dimension for d∞ is 3.

Proof. Applying a 45◦ rotation to the perpendicular pattern, we get the exact
same case presented for dim(d1,Z2) (up to the rotation). �
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B

C

A B

C

A

D

Fig. 2. On the left, illustration of the pattern used to prove the lemma 6. This always
gives a resolving 3-partition of the space Z2 for gauges which do not contain vertical
nor horizontal facet. On the right, the pattern used to prove the lemma 7. That pattern
gives a resolving 4-partition for any convex distance in Z2.

Then it is clear that

Corollary 1. For any distance d, dim(d,Z2) � dim(d,R2) .

Considering lemma 8, we finally conjecture that

Conjecture 1. For any convex distance d, we have dim(d,R2) = 3 .

5 Conclusion

In this paper, we have studied the partition dimension problem in the Euclidean
and discrete spaces, for usual distance functions used in digital geometry. We
have established combinatorial results for the problem, then we have proposed
algorithms verifying the resolving property of a partition and stated their com-
plexity. We have finally presented resolving partitions and bounds for geometrical
cases.

The procedures presented in the algorithmic section are applied for computing
an enumeration algorithm. They could also be applied for a randomized local
search algorithm, because the adjacency notion is exactly the notion of locality
required by that kind of algorithm.

Unlike for the metric basis, the partition dimension seems to be only related
to the distance, while being independent from the considered convex W . The
combinatorics of the number of possible partitions explodes with the size of W ;
notwithstanding, the partition dimension is bounded by a low number, which
makes the enumeration achievable.
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Abstract. Given a Digital Straight Line (DSL) of known characteris-
tics (a, b, μ), we address the problem of computing the characteristics of
any of its subsegments. We propose a new algorithm as a smart walk
in the so called Farey Fan. We take profit of the fact that the Farey
Fan of order n represents in a certain way all the digital segments of
length n. The computation of the characteristics of a DSL subsegment
is then equivalent to the localization of a point in the Farey Fan. Using
fine arithmetical properties of the fan, we design a fast algorithm of the-
oretical complexity O(log(n)) where n is the length of the subsegment.
Experiments show that our algorithm is faster than the one previously
proposed by Said and Lachaud in [15,14] for “short” segments.

Keywords: Digital geometry, Digital straight segment recognition,
Farey fan.

1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been
known for many years to be interesting tools for digital curve and shape analysis.
The applications range from simple coding to complex multiresolution analysis
and geometric estimators. All these applications require to solve the so-called
DSS recognition problem. Many algorithms, using arithmetics, combinatorics or
dual-space have been proposed to solve this problem, reaching a computational
complexity of O(n) for a DSS of length n. A DSS belongs to infinitely many DSL
of different characteristics, only one DSL enables to define the minimal charac-
teristics of a DSS. In [14], the authors introduce the following problem: given a
DSL of known characteristics and a subsegment of this DSL, compute the mini-
mal characteristics of the DSS. The authors originally encountered this problem
for implementing a fast algorithm to compute a multiresolution representation of
a contour. This problem also arises for the digitization of a segment given by its
two floating-point endpoints: indeed, the slope computed from the endpoints may
be quite far from the minimal characteristics of the digitized segment, especially
if the segment is short. Two algorithms (SmartDSS and ReversedSmartDSS) are
presented in [14,15]: both use the decomposition into continuous fractions of the
DSL slope and reach a logarithmic complexity.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 23–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This problem is however not so new since in [12], the author presents a quick
sketch of a method that solves it using the Farey Fan. The announced complexity
of the method is O(log2 n) for a segment of length n. In this paper, we investigate
further in this direction to provide a thoroughly defined algorithm. Moreover,
we show how its complexity can be lowered to O(log(n)) with an astute use of
arithmetical properties of the Farey Fan. Finally, we compare the performance of
our algorithm with the ones proposed in [14] and [15] and show that it behaves
particularly well for “short” segments.

2 Setting the Problem

2.1 Digital line, Segment and Minimal Characteristics

A Digital Straight Line (DSL for short) of integer characteristics (a, b, μ) is the
infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+μ < max(|a|, |b|)
(gcd(a, b) = 1)[5]. These DSL are 8-connected and often called naive. The slope
of the DSL is the fraction a

b and μ
b is the shift at the origin. In the following,

without loss of generality, we assume that 0 ≤ a ≤ b. The remainder of a DSL
of characteristics (a, b, μ) for a given digital point (x, y) is the value ax− by+μ.
The upper (resp. lower) leaning line of a DSL is the straight line ax− by+μ = 0
(resp. ax − by + μ = b − 1). Upper (resp. lower) leaning points are the digital
points of the DSL lying on the upper (resp. lower) leaning lines.

A Digital Straight Segment (DSS) is a finite 8-connected part of a DSL. It
can be uniquely defined by the characteristics of a DSL containing it and two
endpoints P and Q. However, a DSS belongs to an infinite number of DSLs.
In this context, the minimal characteristics of a DSS are the characteristics of
the DSL containing it with minimal b [16]. Note that the notions of leaning
points and lines are similarly defined for DSSs. DSS recognition algorithms aim
at computing the minimal characteristics of a DSS, taking profit of the following
fact: (a, b, μ) are the minimal characteristics of a DSS if and only if the DSS
contains at least three leaning points [5]. In this case, the minimal characteristics
are the characteristics of the DSS upper leaning line.

The set of DSLs containing a DSS is usually called the preimage of the DSS.
Given a DSS S, it is defined as P(S) = {(α, β), |α| ≤ 1 | ∀(x, y) ∈ S, 0 ≤
αx− y + β < 1}. The preimage can be represented in the (α, β) space, where α
represents the slope and β the shift at the origin of a straight line.

The preimage of a DSS is a polygon with a well-defined structure that is
directly related to the leaning points and lines defined by its minimal character-
istics [12,6]. Figure 1 below (from [4]) illustrates this point.

Proposition 1 ([4]). Let P(S) be the preimage of S. Let ABCD be the polygon
defined by this preimage, where A is the upper left most vertex, and the vertices
are named counterclockwise. Following the notations of Figure 1 we have:

– The vertex B maps to the upper leaning line UU ′;
– The vertex D maps to the lower leaning line LL′ translated by the vector

(0, 1) in the digital space;
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Fig. 1. (a) DSS of minimal characteristics (1, 3, 1) with its leaning points U,U ′, L, L′.
(c) Representation of P(S) is the (α, β) space.(b) Each vertex of the preimage maps
to a straight line in the digital space. The vertex B( 1

3
, 1
3
) maps to the upper leaning

line, the characteristics of which are the minimal characteristics of the DSS.

– The vertex A maps to the straight line U ′L+, where L+ = L+ (0, 1);
– The vertex C maps to the straight line UL′+, where L′+ = L′ + (0, 1).

The minimal characteristics of S are (a, b, μ) if and only if B = (ab ,
μ
b ) (p and

q relatively prime). B is called the characteristic point of P(S). Edges [AB]
and [BC] are called lower edges.

2.2 Farey Fan

Definition 1 (Ray). Let x and y be two nonnegative integers. The ray defined
by x and y is defined and denoted as follows:

R(x, y) = {(α, β)|β = −xα + y}

The slope of the ray is x.

Note that x is not the geometrical slope of the ray but its absolute value. In
the following, the order on the slopes is to be understood as the order on the
absolute values of the geometrical slopes.

Definition 2 (Farey Fan). The Farey Fan of order n, denoted by Fn is defined
in the (α, β) space as the arrangement of all the rays R(x, y) such that 0 ≤ y ≤
x ≤ n, and such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

A facet of Fn is a cell of dimension 2 of this arrangement. In the following, a
point of Fn stands for any point v of the (α, β) space (0 ≤ α ≤ 1 and 0 ≤ β ≤ 1)
belonging to a ray, and such that the abscissa of v is a fraction of denominator
smaller than or equal to n.

For any n, it is well known that there is a bijection between the facets of Fn

and the set of DSSs of length n (composed of n+ 1 pixels) [12].
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Fig. 2. (a) Farey Fan of order 6. (b) Illustration of Properties 1 to 4 from Section 3.

Definition 3. Let S be a DSS of length n. Facet(S) is the facet equal to P(S)
in the Farey fan of order n.

Moreover, from Proposition 1, a one-to-one correspondence can be defined be-
tween a facet and the characteristic point of the facet.

Definition 4. Let f be a facet of the Farey fan of order n. We denote by
CPoint(f) the point v of f such that, if v = (pq ,

r
q ), then (p, q, r) are the minimal

characteristics of the DSS Facet−1(CPoint−1(v)).

The Farey Fan of order 6 is depicted in Figure 2(a). The characteristic points of
a few facets are depicted. Note that three types of facets can be identified:

– quadrilateral facets (in orange in Figure 2(a));
– upper triangular facets (in green in Figure 2(a));
– lower triangular facets (in blue in Figure 2(a)).

Consider now the following problem:

Problem 1. Given a DSL L of characteristics (a′, b′, μ′) and two points P (xP , yP )
and Q(xQ, yQ) of this DSL, compute the minimal characteristics (a, b, μ) of the
DSS S = {(x, y) ∈ L | xP ≤ x ≤ xQ}.
After a translation of the characteristics of L such that P is set to the origin
(μ← μ + axP − byP ), this problem is equivalent to the following one:

Problem 2. Given a point Λ(ab ,
μ
b ) and a point Q(xQ, yQ), find the point v of

the Farey fan of order n = xQ such that Λ ∈ CPoint−1(v).

In other words, the problem is to find the characteristic point of the facet of Fn

containing Λ.
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All in all solving Problem 2 is equivalent to performing a point location in an
arrangement of lines. However, the number of facets in the Farey fan of order
n (which is equal to the number of DSS of length n) is in O(n3) [9,10,2], and
point location algorithms in such a structure are expensive in term of both time
and space complexity [13]. This brute force approach is then less efficient than
classical DSS recognition algorithms [5,17,11,7].

In the following sections, we revisit the approach proposed by [12] and present
an algorithm to solve Problem 2 in time complexity O(log n), without explicitly
computing the Farey fan. In the next section, we recall several structural and
arithmetical properties of the Farey fan, and derive some very useful corollaries.
These properties are the core of the algorithm detailed in section 4.

3 Properties of the Farey Fan

The Farey series of order n is the set of irreducible fractions in [0, 1] of denom-
inator lower than or equal to n [8]. All the properties below are illustrated in
Figure 2(b) in the Farey fan of order 6. The first three properties are from [12]
and the reader is invited to consult this reference for the proofs, that are fairly
simple.

Property 1 ([12]). The abscissas of intersections of a ray R(x, y) of Fn with other
rays are consecutive terms of a Farey series of order max(x, n− x).

In Figure 2(b), the abscissas of the intersections between the rayR(2, 1), depicted
in red, and the other rays of F6 are consecutive terms of the Farey series of order
4 = max(2, 6− 2).

Property 2 ([12]). Let fi and fi+1 be two consecutive fractions of the Farey
series of order n. In the interval fi < α < fi+1, there is no intersection of rays.
Thus, in this interval the Farey fan is a simple ladder of rungs.

In Figure 2(b), two ladders are depicted in blue for fi =
1
3 and fi =

2
3 .

Property 3 ([12]). Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x0, y0)

be the ray of minimum slope passing through v. The other rays passing through
v have a slope equal to x0 + kq with k ∈ Z and x0 + kq ≤ n.

In Figure 2(b), three rays go through the point (12 ,
1
2 ) (in orange). The slopes of

these rays are equal to x0 = 1, 3 and 5. From this property, we can derive the
following corollary.

Corollary 1. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x, y) be a

ray passing through p. R is the ray of smallest slope passing through v if and
only if x− q < 0. It is the ray of greatest slope passing through v if and only if
x+ q > n.

Property 4. Let p
q be a fraction of the Farey series of order n. The intersection

between the line α = p
q and Fn is exactly the set of points (pq ,

r
q ) where r takes

all the integer values between 0 and q.
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Proof. We study the intersection between R(x, y) defined by the equation β =
−αx + y and α = p

q . We get β = −px+qy
q . For 0 ≤ y ≤ x ≤ q ≤ n, the quantity

−px+qy takes all the integral values in the interval [|0, q|], which ends the proof.

In Figure 2(b), the intersection between α = 4
5 (depicted in green) and Fn is

the set of points (45 ,
r
5 ) with r ∈ Z, 0 ≤ r ≤ 5. Using Properties 2 and 4, we can

prove the following result to compute the ray of smallest slope in a given point.

Corollary 2. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let

p′
q′ be the fraction

following p
q in the Farey Series of order n. The ray of smallest slope passing

through v is defined by the point v and the point of coordinates v′(p
′

q′ ,
	 rq′

q 

q′ ).

Proof. From Property 2, Fn is a ladder in the interval [pq ,
p′

q′ ], which means there
is no intersection of rays in this interval. From Property 4, we know that there is
at least one ray passing through the point v. Again from Property 4, all the rays

passing through v cut the line of equation α = p′

q′ in a point v′(p
′

q′ ,
r′
q′ ), r′ ∈ Z,

0 ≤ r′ ≤ q′. Among all these rays, the ray of smallest slope is the one that

passes through the point vmax(
p′

q′ ,
rmax

q′ ) where rmax is the maximal value of r′

such that r′
q′ ≤

r
q . rmax is given by � rq

′
q � which ends the proof.

4 Fast Walk in the Farey Fan

Following Problem 2, we look for the characteristic point of the facet of F(n)
containing a given point Λ(ab ,

r
b ). From Proposition 1, Section 2.2 and Property

4 we have the following characterization of the characteristic point.

Property 5. A point v(pv

qv
, rv
qv
) is the characteristic point of a facet if and only if:

1. either v is the intersection of the two lower edges:
(a) the ray supporting the right lower edge is the one of smallest slope in v;
(b) the ray supporting the left lower edge is the one of greatest slope in v;

2. or v is on the unique lower edge and more than one ray passes through the
point (pv

qv
, rv+1

qv
)

As in [12], the algorithm consists of three steps that are detailed in the following
sections:

1. Find the ladder to which Λ belongs;
2. Locate the highest ray that lies on or below Λ: this ray supports a lower

edge of the facet (Section 4.2, Algorithm 1);
3. Walk along the ray(s) to determine the characteristic point (Section 4.3,

Algorithm 2).

Particular cases where Λ is a point of Fn (either on a ray, or a vertex) are eluded,
so that the focus is done on the general case. However, these particular cases are
not complicated to handle.
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4.1 Find the Ladder

Given a point Λ(ab ,
μ
b ), finding the ladder to which Λ belongs in Fn is equivalent

to finding the two fractions with a denominator smaller than n closest to a
b

(greater and lower). We look for two fractions f = p
q and g = p′

q′ such that

q ≤ n, q′ ≤ n, f ≤ a
b ≤ g, and there is no fraction of denominator smaller or

equal to n neither between f and a
b nor between a

b and g.
This problem is closely related to the computation of the best rational approx-

imation of a number, for which solutions using the decomposition into continuous
fractions exist [8]. However, we do not need only the best approximation, which
is either the closest lower or closest greater fraction, but also the other one.
To solve this problem, we use the algorithm of Charrier and Buzer [3]. This
algorithm aims at computing the approximation of any real number by rational
numbers of bounded denominator and straightforwardly solves our problem in
O(log(n)). Moreover the algorithm is simple to implement and does not require
continuous fractions computations.

4.2 Locate a Lower Edge

At this point, we work in a ladder defined by two fractions f = p
q and g = p′

q′
of Fn. This step consists in localising Λ in the ladder by computing the highest
ray under Λ in Fn. In [12], this step is performed as a binary search among the
rays of the ladder. However, each stage of the binary search requires to solve a
diophantine equation with the extended Euclidean algorithm, reaching a total
complexity of O(log2 n).

Our algorithm, presented in Algorithm 1 and illustrated in Figure 3, also
performs a dichotomy (line 4), but only on the rays of smallest slope passing
through the points of abscissa p

q (in red in Figure 3).
Thanks to Property 4, this set of points can be defined as on line 1, and the

rays of smallest slope are computed in time O(1) in the ladder using Corollary 2
(line 2). On line 4, the ray of greatest slope is computed from the ray of smallest

Algorithm 1. Search in the ladder

1 Let vi = ( p
q
, i
q
), i ∈ Z, 0 ≤ i ≤ q ;

2 Let Ri(xi, yi) be the ray of smallest slope passing through vi ;
3 Perform a dichotomy on the Ri to compute j ∈ [|0, q − 1|] such that Λ is

above Rj and below Rj+1;
4 if Λ is under the ray of greatest slope through vj+1 then Return Rj ;

else
5 Compute the slope x of the line passing through vj+1 and Λ;
6 Compute [x] as the value xj+1 + kq nearest to and lower than x, k ∈ Z;

7 Return R([x], (j+1)+p.[x]
q

);
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slope thanks to Property 3. On line 5, the value x is not an integer value, but
the closest lower ray can be easily computed using Property 3.

In Figure 3, on the left, the point Λ is located under the ray of greatest slope
passing through vj+1 (in green, line 4 in Algorithm 1), Rj is returned. On the
right, the point Λ is in between the rays passing through vj+1 : the slope of the
line passing through vj+1 and Λ is computed (in blue, line 5 in Algorithm 1),
and is rounded to find the nearest lower ray.

Λ
vj

vj+1

1
4

2
7

Λ

vj+1

vj

2
7

1
4

Fig. 3. Illustration of Algorithm 1: the dichotomy is performed on the red rays only

4.3 Find the Characteristic Point

Let us denote by M and N the two points defined as the intersection between the
ray R(x, y) returned by Algorithm 1 and the vertical lines defining the ladder,

i.e. α = p
q and α′ = p′

q′ as defined in Section 4.1. The segment [MN ] is part of a
lower edge of the facet of Fn containing Λ in Fn.

The first step of the algorithm detailed in Algorithm 2 is to compute the
extremities of the lower edge containing [MN ]. To do so, the key point is to use
Property 1 to characterize the points of intersection between a ray and other
rays. Given a ray R(x, y) of the Farey Fan Fn and a point v(pq ,

r
q ) on this ray, v

is the crossing point of several rays if and only if q ≤ max(x, n − x). Thus, the
abscissa of the left (resp. right) extremity of the lower edge is given by the term
of the Farey series of order max(x, n − x) lower than (resp. greater than) and

closest to p
q (resp. p′

q′ ) (line 1 of Algorithm 2). Given a fraction, computing the
next term in a Farey series of given order cannot be solved in constant time but
requires a call to the extended Euclidean algorithm. From these two fractions

p

q

and p
q we compute the two points O of R with abscissa equal to

p

q and O of R

with abscissa equal to p
q (line 2).
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At this point, [OO] is a lower edge of the facet containing Λ. Then, the three
cases illustrated in Figure 4 can occur: either O or O is the characteristic point
(case (a) and (b)), or not (case (c)). We use Property 5 to distinguish between
these cases:

– if R is the ray of smallest slope in O, then O is the characteristic point: the
condition line 3 refers to Corollary 1;

– if R is the ray of greatest slope in O, then O is the characteristic point: the
condition line 4 refers to Corollary 1;

– otherwise, the facet is lower triangular, and the abscissa of the characteristic
point is given by the mediant of the abscissae of the lower edge extremities,
i.e. O and O (direct consequence of Property 1): on line 5, the mediant is
computed, and the point of R with this abscissa is the characteristic point.

Algorithm 2. Find the characteristic point

Let R(x, y) be the ray output by Algorithm 1;

Let M( p
q
, r
q
) and N( p

′
q′ ,

r′
q′ ) belonging to R;

1 Let
p

q
and p

q
be the fractions before p

q
and after p′

q′ in the Farey Series of order

max(x, n− x).
2 Let O (resp. O) be the intersection point between α =

p

q
(resp. p

q
) and R;

3 if x− q < 0 then Return O else

4 if x+ q > n then Return O else

5 Let p̃
q̃
=

p+p

q+q
. Return the intersection point between α = p̃

q̃
and R;

4.4 Complexity

Lemma 1. The complexity of the algorithm described in Section 4 is inO(log(n)),
where n is the length of the DSS.

Proof. We assume a computing model where standard arithmetic operations are
done in constant time. Finding the ladder is done using the algorithm of Charrier
and Buzer [3] that has a complexity of O(log(n)).

The localization of a lower edge is done with Algorithm 1: the computation
of the Ri (line 2) is done in constant time thanks to Corollary 2, such that the
global complexity of lines 2 and 3 is O(log(q)) with q ≤ n. The operations done
in lines 4 to 7 are done in constant time, and the complexity of Algorithm 1 is
in O(log(q)).

Algorithm 2 performs the last step of the algorithm. On line 1, two calls
to the extended Euclidean algorithm are necessary to compute the lower edge
extremities, which takes O(log(n)). All the other operations of this algorithm
take O(1), which ends the proof.
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Fig. 4. Three cases for the lower edge [OO]: (a) all the rays passing through O (in
blue) have a slope greater than x and O is the characteristic point; (b) all the rays
passing through O (in blue) have a slope smaller than x and O is the characteristic
point; (c) neither O nor O is the solution, and the characteristic point is found with a
mediant computation

Algorithm 2 can actually be optimized so that the call to the extended Eu-
clidean algorithm (line 1) is not always necessary. These optimizations consist in
the study of particular cases that are not presented here to keep the algorithm
as clear as possible. All in all they do not change the theoretical complexity but
lower the constant term, and slightly improve the practical efficiency.

This algorithm solves Problem 2 in O(log(n)) where n is the order of the
Farey fan. From the equivalence of Problems 1 and 2, this algorithm also solves
Problem 1 in logarithmic time where n is the length of the DSS.

5 Experimentation

We have implemented the presented algorithm using the open-source library
DGtal [1]1. The algorithm is very easy to implement and does not require contin-
uous fractions implementation as in [14,15]. The algorithms of Said and Lachaud
[14,15] being implemented in this library, comparing the algorithms was then an
easy task. We also conducted the experimentation along the same protocol as
the one they proposed as a test file in DGtal. Basically, the idea is to randomly
choose a maximal value N for the parameter b of the DSL (a is smaller than
b), then fix a maximal value for the length n of the DSS, and finally randomly
choose a shift μ and the abscissa of the DSS first point. Each experiment is
conducted for 10000 randomly chosen parameters.

The algorithms are executed to compute the characteristics of the DSS con-
tained in the DSL. For each algorithm, the total running time is measured and
divided by the total number of trials.

Figure 5 represents the results obtained for N = 106 in (a) , N = 109 in (b)
and n taking all the value of the form 10.2k in the interval [10, N ]. The graph
represents the execution time in ms versus the maximal length n of the DSS.

1 The C++ code of this algorithm is freely available on the webpage
http://www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon

http://www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon
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The first observation is that SmartDSS is clearly slower than the other two
algorithms. The second observation concerns the behaviour of the curves: the
execution time increases with n for our algorithm while it decreases for Re-
versedSmartDSS. This is consistent with the complexities of the algorithms. The
complexity of our algorithm is logarithmic in the length of the DSS while the
complexity of ReversedSmartDSS depends on the difference of depth of the slope
of the DSL and the slope of the DSS. Consequently, our algorithm is more effi-
cient for short DSSs, while for ReversedSmartDSS, the greater is n, the smaller
is the difference of slopes, and the more efficient is the algorithm.

It is thus interesting to study the value of n for which the two curves cross
each other. We see in Figure 5 that this value is 104 for N = 106 and 106 for
N = 109. Other experiments show that this value is 103 for N = 104 and that the
threshold ratio n

N below which our algorithm is faster tends to decrease with N .
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Fig. 5. Runtime comparison of our algorithm and the algorithms of [14,15]

6 Conclusion

We have proposed an algorithm to compute the characteristics of a DSS which
is a subsegment of a DSL of known characteristics. We use the Farey fan and
its numerous arithmetical properties to design a very efficient both theoretically
and practically, and easy to implement algorithm to solve this problem.

We prensented the algorithm in the case where the DSL parameters are ra-
tional fractions. However, it can be straightforwardly extended to deal with
irrational parameters.

The exprimental section has shown that our algorithm is faster than the Re-
versedSmartDSS algorithm when the length of the DSS is sufficiently smaller
than the DSL period. This suggests that the ReversedSmartDSS algorithm should
be prefered when the DSL parameters are issued from the recognition of a DSS
on an image, and that our algorithm would perform better to draw a DSS given
by floating-point vertices on an image. It would however be interesting to deepen
this comparison.
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Abstract. We study patterns that appear in discrete circles with integer
center and radius. As the radius goes to infinity, the patterns get closer
to digital straight segments: the notion of tangent words (described in
Monteil DGCI 2011) allows to grasp their shape. Unexpectedly, some
tangent convex words do not appear infinitely often due to deep arith-
metical reasons related to an underlying Pell-Fermat equation. The aim
of this paper is to provide a complete characterization of the patterns
that appear in integer discrete circles for infinitely many radii.

Keywords: discrete circle, asymptotics, digital straight segment, tan-
gent word, Pell-Fermat equation.

1 Introduction

Freeman digitization schemes allow to associate a set of pixels to a planar object
and a sequence of adjacent pixels to a planar curve in very natural ways ; the
Freeman code associates a finite word to a sequence of adjacent pixels [6]. The
case of straight segments is well understood, and the associated words are known
to be the balanced words [8], [11]. We are interested here in the words appearing
in the Freeman code of another classical geometrical object: the discrete circles
[3], [1], [7], [5].

In 1979, Zenon Kulpa [7] noticed that some “spikes” appear on the diagonal
for arbitrary big radii in the Grid Intersect Quantization digitization of integer
circles. For big radii, such spikes look unnatural since, as the curvature of circles
of big radii goes to zero, we expect the digitization of the big circle to look
locally like digital straight segments. Unfortunately, Kulpa could not go further
since his remark is based on a visual description about the angle between three
consecutive pixels.

In this paper, we shall use another digitization scheme, namely the Square Box
Quantization (SBQ) described in [6] (see also Section 2.1). As we shall see, the
same phenomenon appears in this case (Fig. 1). It turns out that many finite
patterns not corresponding to digital straight segments do appear in integer
circles for arbitrary large radii. For example, the patterns of Fig. 2 could be
considered as the “next spikes”, (b) is obtained by stretching (a), (c) is obtained
by shearing (a).
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(a) r = 28 (b) r = 29

Fig. 1. The spike coded by 0011 appears in the digitization of big integer circles

(a) 0011 (b) 001011 (c) 000101

Fig. 2. The most elementary spikes

A word is said to be persistent if it appears in the Freeman code of integer
discrete circles for infinitely many radii. Their complete description is the aim
of this paper.

As we can consider the dual point of view where the circle radius does not
grow but the grid mesh vanishes, we know that persistent words are tangent
convex words, which were introduced in [9]. Experimentations lead us to the
observation of an unexpected behaviour: while most tangent convex words seem
to be persistent, some of them are not (Fig. 3).

As we shall see, the difference between both examples of Fig. 3 relies on a deep
arithmetical reason. We can define a rational slope p/q for non-balanced tangent
convex words, and say that it is Pythagorean if p2 + q2 is a square. Knowing
whether a tangent convex word is persistent or not is related to a system of Pell-
Fermat inequalities whose main parameter depends on the slope of the word.
For example, the word (b) is not persistent since its slope 3/4 is Pythagorean
(32 + 42 = 52). We will prove the following

Theorem 1. A word is persistent if, and only if, it is tangent convex with a
non-Pythagorean slope. In particular, balanced words are persistent.
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(a) slope 3/5 (b) slope 3/4

Fig. 3. Two tangent convex words: (a) is persistent, (b) is not

2 Preliminaries and Tools

2.1 Framework

Discrete geometry introduces various schemes to associate a set of pixels to a
plane continuous object. When the object is a curve, the pixels are ordered and
the Freeman code associates to such a sequence a word over the alphabet Z/4Z
or Z/8Z depending on whether two consecutive pixels have to share an edge or
only a vertex. For example, the Freeman codes of digital straight segments are
known to be precisely the balanced words using two consecutive letters (see e.g.
[8], [11]), no matter the code or the digitization scheme. The case of discrete
circles is wilder, there are various ways to define a discrete circle: the set of
pixels can be described in an algorithmic way like in [3] or [13], it can also be
described as the set of solutions of some analytic equation like in [1] or [5].

The model we are considering is the Square Box Quantization (SBQ) of integer
circles [6]. The SBQ of a curve is the set of pixels that it intersects. An integer
circle is a circle with integer radius r and centered at (0, 0). It is denoted by
C(r).

Note that an integer circle cannot meet any pixel vertex since such points have
coordinates of the form (p+ 1/2, q + 1/2) for some (p, q) ∈ Z2 and (p+ 1/2)2 +
(q + 1/2)2 cannot be an integer. In such a non-ambiguous case, the Square Box
Quantization is also known as the supercover [4] or the standard model [2].

3

0

1

2

The Freeman code associated to the Square Box Quantization
of a curve γ also corresponds to what dynamicists call the cutting
sequence c(γ): it is obtained by reading the letters associated to
the edges (see figure on the right) of the pixels that γ intersects
along the time. Such a word defines a pattern, that is, a finite set
of pixels defined up to an integer translation.

Hence, to see if a word u belongs to the cutting sequence of an integer cir-
cle of radius r, we have to ensure that, for some integer translation, each edge
of the associated translated pattern corresponding to each letter is crossed by the
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(a) 0101001 (b) 10130101

Fig. 4. Examples of cutting sequences, and their associated pattern (in gray)

circle. This is done by checking that, for each such edge, the distance from the
center to one of the vertices of the edge is less than r, and the distance from the
center to the other vertex is greater than r. Those vertices play a central role
and are called control points (see Fig. 9).

Since the center of an integer circle is also the center of a pixel, the global sym-
metries allow us to restrict our study to the seventh octant, where the Freeman
code only uses the letters 0 and 1, and the slope is between 0 and 1.

2.2 Tangent Convex Words

Tangent convex words were described in [9] Section 4.5. We recall their structure
in a self-contained way and explain the geometric conditions that ensure their
existence as a persistent word.

Let C+ denote the set of convex curves, that is, the set of smooth regular
curves with positive curvature. When γ belongs to C+, we denote by T (γ) the
set of words that appear in the coding of γ with grids of arbitrary small meshes:

T (γ) =
⋂
ε>0

⋃
mesh(G)�ε

F (γ,G) (1)

where F (γ,G) denotes the set of factors appearing in the Freeman code of γ by
the grid G. A word u is tangent to a curve γ if u ∈ T (γ). The tangent convex
words are all the words which are tangent to some convex curve: T (C+) =⋃

γ∈C+ T (γ). A non-balanced tangent convex word is called a spike.
The relationship with integer circles is the following: up to renormalization,

we can consider that we code a single unit circle centered at (0, 0) with grids
of meshes 1/n (n ∈ N∗). Since the unit circle (parametrized counterclockwise)
belongs to C+, we deduce that the persistent words of integer circles form a
subset of the set of tangent convex words T (C+). This allow us to restrict our
search among this set, which is well structured and has small complexity: the
number of elements of T (C+) of length n is equivalent to n3/6 [10].

Let γ = (γx, γy) : [0, 1] → R2 be a convex curve. With almost no loss of
generality and since it corresponds to the seventh octant assumption done in
Subsection 2.1, we assume that γ is going in the North and East direction, that
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γ

Fig. 5. u = 00001000100100101001

is, ∀t ∈ [0, 1], γ′
x(t) > 0 and γ′

y(t) > 0. The coding of such curves only uses
the letters 0 and 1 (Fig. 5). For any t ∈ [0, 1], we denote the slope of γ at t by

ρ(γ′(t)) =
γ′
y(t)

γ′
x(t)

.

Let u be a tangent word of γ: there exists a sequence (Gn) of grids whose
meshes go to 0 and such that ∀n ∈ N, u ∈ F (γ,Gn). In particular, for any
integer n, there exist two sequences (t1n), (t

2
n) in [0, 1] such that u is the Freeman

code of γ|]t1n,t2n[ with respect to the grid Gn. Up to taking a subsequence (the
segment [0, 1] is compact), we can assume that (t1n) and (t2n) both converge to
some t ∈ [0, 1]: we say that ρ(γ′(t)) is a slope of u (it may not be unique since
u can be tangent to various curves).

Slope Different from 1: Desubstitution. Assume that ρ(γ′(t)) < 1. This
implies that the word 11 is not a factor of u. We can use this information to
construct a word δ0(u) from u such that |δ0(u)| < |u| and δ0(u) ∈ T (δ0(γ)),
where δ0(γ) is another convex curve and T is defined by equation 1. For each n,
we add diagonal edges to the grid Gn which we label by the letter 5. Hence, we
can associate a new cutting sequence u′ by inserting the letter 5 between any
two consecutive 0 (Fig. 6).

Then, we remove the vertical lines of the grid, and associate the corresponding
word u′′ obtained from u′ by removing the letter 0 (Fig. 7).

We then renormalize the parallelogram grid back to Gn by applying the shear
matrix

M0 =

(
1 −1
0 1

)
=

(
1 1
0 1

)−1

.

The word obtained by replacing the letter 5 by 0 in u′′ is denoted by δ0(u) and is
a factor of F (δ0(γ), Gn), where δ0(γ) = M0 ◦γ is the curve obtained by applying
the matrix M0 to γ (Fig. 8).

The matrix M0 corresponds to a linear bijective bi-uniformly continuous map,
it therefore preserves the regularity of the curve. Moreover, since it has positive
determinant, the sign of the curvature of the curve is preserved: δ0(γ) belongs
to C+. All the operations are reversible, hence u is in T (γ) if, and only if, δ0(u)
is in T (δ0(γ)).
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γ

Fig. 6. u′ = 0505050105050105010501010501

γ

Fig. 7. u′′ = 55515515151151

γ̃

Fig. 8. δ0(u) = 00010010101101

In the same way, if ρ(γ′(t)) > 1 then 00 is not a factor of u, we insert a 5
between two consecutive 1, and renormalize to obtain a word δ1(u), and the
matrix used for the renormalization is

M1 =

(
1 0
−1 1

)
=

(
1 0
1 1

)−1

.

Slope Equal to 1: Diagonal Words. If ρ(γ′(t)) = 1, we say that the word
u is diagonal. For large n, the curve γ cannot intersect more than one integer
diagonal (a line of slope 1 passing through a corner of Gn). As explained in
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Fig. 9. A diagonal word and its principal (black) and secondary (white) control points

[9], the diagonal word can oscillate a lot for smooth curves, but in the case of
a convex curve, the oscillation is very limited: for n large enough, the curve γ
intersects the integer diagonal at most twice between t1n and t2n (Fig. 9).

When the number of such intersections is less than 2, we get a balanced word.
When this number is 2, the first intersection corresponds to an occurrence of 00
in u, and the second corresponds to an occurrence of 11 (in particular the slope
of u is unique and must be equal to 1). The remaining of the diagonal word u of
T (C+) is made by an alternation of 0 and 1, hence it is completely determined
by the three lengths: before 00, between 00 and 11, after 11.

The grid points on the integer diagonal surrounding the two intersections are
called principal control points because they contain all the information concern-
ing the localization of the convex curve coded by u for n large enough. The other
control points are said to be secondary (the satisfaction of those control points
— that is, the satisfaction of the equations derived from those control points —
is guaranteed by the fact that the curve is convex or by the fact that, when n is
large enough, the curve becomes very close to the integer diagonal).

The minimal non-balanced diagonal words of T (C+) are of the form u =
00(10)�11 for some integer � which is called the width of the spike u. Any non-
balanced diagonal word of T (C+) can be extended in a single way to the left
and to the right, by adding alternately a 0 or a 1. Diagonal words of T (C+) are
the words recognized by the non-deterministic automaton depicted in Fig. 10,
where all states are considered as initial and final.

The two transitions without return correspond to the two possible intersec-
tions with the integer diagonal, i.e. to the occurrences of 00 and 11. Both tran-
sitions are used in recognizing u if, and only if, u is not balanced. The width �
corresponds to the number of central loops made during the recognition of u.

Iteration. Those considerations allow us to recognize the words of T (C+): given
a word u, we apply δ0 (resp. δ1) to u as long as 11 (resp. 00) does not appear in
u. The length of the considered words is strictly decreasing, hence after finitely
many steps, we reach one of the following two cases:
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0

1

0
1

0

1
0

1

Fig. 10. Automaton recognizing diagonal words of T (C+)

1. the word is empty. Hence, the initial word u is balanced [8], therefore it
belongs to T (C+).

2. 00 and 11 both appear in the word: it suffices to check that it is recognized
by the automaton of Fig. 10 to conclude that the initial word u is in T (C+).

This provides a desubstitution algorithm which recognizes the words of T (C+).
Note that when a word u ∈ T (C+) is not balanced, then the iterated desub-

stitution leads to a diagonal word where both 00 and 11 appear: the slope of u
is then unique, and independent of any supporting curve γ, time t or sequence
of grids (Gn). It can be computed using the continued fraction associated to the
alternation of δ0 and δ1 leading to the diagonal word whose slope equals 1. For
balanced words however, the set of possible slopes is an interval of nonempty
interior.

Conversely, we can generate the words of T (C+) by going backward in the
algorithm: we construct a diagonal word by describing a path in the automaton
of Fig. 10. Then we apply one of the following operations, as much as we want:

1. add a 0 to the right of each 1,
2. add a 0 to the left of each 1,
3. add a 1 to the right of each 0,
4. add a 1 to the left of each 0.

The words of T (C+) are the factors of the words we obtain that way. It is
important to notice that the primary control points can be followed during this
construction by applying to the initial primary control points the matrix M−1

0

in the first two cases and the matrix M−1
1 in the last two cases. Hence, we know

how to localize a curve around a word of T (C+) of any slope.

2.3 Generalized Pell-Fermat Equations

A generalized Pell-Fermat equation is a Diophantine equation of the form x2 −
Dy2 = K, where D is a positive integer parameter, K is an integer parameter,
and x and y are the integer unknowns. When D is not a square, and when the
equation admits at least one solution, then it admits infinitely many solutions
[12]. The set of solutions is a finite union of geometric progressions.

3 Main Result

Theorem 1. A word is persistent if, and only if, it is tangent convex with a
non-Pythagorean slope. In particular, balanced words are persistent.
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We shall first deal with the spikes, which are somehow more rigid (they have
a single slope and can be studied through a few principal control points), and
then we will extend the obtained results to balanced words.

3.1 Spikes Crossing the Octants: Slopes 0 and 1

Due to the lack of space, the description of persistent spikes for the extremal
slopes 0 (no spike of the form 0k30�10m is persistent) and 1 (all spikes of the
form (01)k00(10)�11(01)m are persistent) is postponed, we will concentrate on
the general case of slopes in the open interval (0, 1) which contains all the ideas.
We can still notice that the behaviour of those two particular cases is coherent
with this general description, since 0/1 is Pythagorean and 1/1 is not.

3.2 Spikes with Pythagorean Slopes in (0, 1)

Lemma 1. A spike with a Pythagorean slope in (0, 1) is not persistent.

Proof. Let u be a spike of slope p/q, such that 0 < p/q < 1 and p2 + q2 =
s2 for some integer s. We want to prove that u is not persistent. Assume by
contradiction that for an increasing sequence (rn) of positive integers, u appears
in the cutting sequence of the circle Cn = C(rn).

The position of the principal control points an, bn, cn, dn of u relative to Cn

is depicted in Fig. 11 (it is obtained from Fig. 9 by applying shear matrices).
Since Cn crosses both segments [an, bn] and [cn, dn], the line of equation y =

−(q/p)x crosses the segment [an, dn], so we have a rough localization of the
pattern associated to u. On this line, the points of the form (pi,−qi) where i is

an integer are at distance
√

p2 + q2 from each other. Hence, for each n, there
is a point of coordinate (pin,−qin) in the rectangle whose base is [an, dn] and

whose height has length
√

p2 + q2 (depicted in gray on the figure).

Cn

an

bn

cn

dn

y = −(q/p)x

(pin,−qin)

(p(in + 1),−q(in + 1))

(p(in − 1),−q(in − 1))

√
p2 + q2

q

p

q

p

�p

�q

Fig. 11. Situation around the pattern associated to u for Cn
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Let (xn, yn) be the vector from (pin,−qin) to the point an. Since (pin,−qin)
has integer coordinates and stays in a bounded rectangle around the pattern
associated to u, the vector (xn, yn) takes only finitely many values. Up to taking
a subsequence, we can assume that it is constant. Since (pin,−qin) is the center
of a pixel and an is a corner of a pixel, there exists integers X and Y such that,
for any n, (xn, yn) = (X + 1/2, Y + 1/2).

Since the point an is outside the circle Cn, we have

r2n ≤ (pin +X + 1/2)2 + (−qin + Y + 1/2)2

which can be rewritten as R2
n− I2n ≤ Ka, where Rn = 2srn, In = 2s2in +(2X +

1)p− (2Y +1)q and Ka = ((2X + 1)p− (2Y +1)q)2 + (X +1/2)2 + (Y + 1/2)2.
The same argument with the point bn inside the circle Cn leads to an inequal-

ity of the form Kb ≤ R2
n − I2n, where Kb is another constant (Rn and In are the

same thanks to a nice cancellation).
Now, both sequences (Rn) and (In) are nonnegative integer sequences tending

to infinity. Since the difference between their squares is bounded, it eventually
equals zero. Hence, for n large enough, Rn = In. Since (p, q, s) is a primitive
Pythagorean triple, exactly one of p or q is odd, hence In is odd. Unfortunately,
Rn is even, a contradiction.

3.3 Spikes with non-Pythagorean Slopes in (0, 1)

Lemma 2. A spike with a non-Pythagorean slope in (0, 1) is persistent.

Proof. Let u be a spike of slope p/q, such that 0 < p/q < 1 and p2 + q2 is not a
square. Let � be its width. We want to prove that u is persistent.

We start by finding an integer circle C which is well located with respect to
the principal control points of u, that is, we require that C crosses both segments
[a, b] and [c, d] (we do not care about the secondary control points, hence u need
not be a factor of the cutting sequence of C but this will become true for larger
circles).

Let c1 denote the center of the pixel located down-left of the control point b
(see Fig. 12), and let C1 denote the circle centered at c1 with radius 1. For any
positive integer i, let ci denote the integer point c1+(i− 1, 0), and let Ci denote
the circle with center ci and radius i.

By construction, each Ci is an integer circle that crosses the segment [a, b].
There is another intersection between Ci and the line defined by (a, d): from i to
i+1, this intersection goes forward in the direction from a to d and the distance
between two intersections is a positive constant strictly less than 2. Since the
length of the segment [c, d] is

√
p2 + q2 >

√
5 > 2, there is an integer i such that

Ci crosses [c, d]. Let c = ci and C = Ci. The integer circle C satisfies the control
points of u.

Now, for any integer radius r, we try to find a solution by locating the pattern
associated to u in such a way that the point c coincides with some (pi,−qi) where
i is an integer. Similarly to the case of Pythagorean slope, the fact that the circle
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c1 c2 c3 c4 c5 c6 c7 c8

a

b

c

d

2

<2

Fig. 12. Construction of an integer circle satisfying the principal control points of u

of radius r is well located with respect to the control points is equivalent to the
existence of some integer i such that

max(Kb,Kc) ≤ 4(p2 + q2)r2 − I2 ≤ min(Ka,Kd)

where I = 2(p2 + q2)i + (2X + 1)p − (2Y + 1)q and Ka, Kb, Kc, Kd are some
constants.

Hence, the radii for which the circles are well located with respect to the prin-
cipal control points of u and such that the point c corresponds to some (pi,−qi)
satisfy a Pell-Fermat inequation, whose set of solutions is the union of the solu-
tions of the family of generalized Pell-Fermat equations: 4(p2 + q2)r2 − I2 = K
for K in the set [max(Kb,Kc),min(Ka,Kd)] ∩ Z.

By construction of C, the pair (r0, 0) is a particular solution of one of those
equations. Hence, since D = 4(p2 + q2) is not a square, Subsection 2.3 ensures
that that equation has infinitely many solutions: there are infinitely many radii
r such that the circle C(r) is well located with respect to the principal control
points of u. When such an r is large enough, the secondary control points become
automatically satisfied as well, hence u appears in the cutting sequence of C(r).

Therefore, u is persistent.

3.4 Balanced Persistent Words

Lemma 3. Every balanced word is persistent.

Proof. Let u be a balanced word. As already noticed, the set of slopes associated
to u contains a open interval I, hence, by density, there exists a non-Pythagorean
rational number p/q in I (it suffice to ensure that p and q are odd). Then, the
word u can be extended to a spike of slope p/q, which is persistent. Hence, u is
persistent, since it is the factor of a persistent word.

Proof of Theorem 1. Since persistent words are tangent convex, since the tangent
convex words are either spikes or balanced, we just proved the Theorem 1.
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Decision algorithm. As explained in [9], deciding whether a word belongs to
T (C+) can be done in linear time. The computation of the slope can be done
along the process described in Section 2.2, “Iteration”, hence deciding whether
a given word is persistent can be done in linear time.
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Abstract. 3D representation of real objects surfaces can be used in ap-
plications of computer graphics, medicine, geoinformatics, etc. We con-
sider a problem of measure introducing for comparing of point clouds
acquired by different scanning acts and types of scanners and designing
of computationally efficient algorithms for their computing. The solu-
tion supposes estimation of disparity measure for the fixed position and
search of such position that the measure is minimal by solving optimiza-
tion problem of surface matching. The algorithm for efficient localization
of mesh nodes in a Delaunay triangulation is proposed. As the applica-
tions several problems of 3D face model analysis were considered.

Keywords: Discrete surface model, Delaunay triangulation, Euclidean
minimum spanning tree, computational geometry, 3D face image.

1 Introduction

Information obtained from a 3D scanner after scanning of an objects’s surface is
usually presented as a discrete set of nodes with three-dimensional coordinates
and represents a discrete model of a surface. The concepts of connectivity, topol-
ogy, or continuous surface are not specified explicitly for such set. On basis of
this set one can receive triangulated polygonal surface model [1], which will be
a continuous model of a surface.

A literature review of existing techniques for single-valued surface modelling
showed that there are two basic approaches to represent such surfaces: definition
at the nodes of the regular or irregular meshes. A two-dimensional (plane) mesh
is a set of mutually connected geometric elements (nodes, edges, and cells). The
mesh nodes represent a finite set of points on the plane. Both approaches have
their advantages and disadvantages. Method using an irregular mesh allows to
adapt to the required accuracy of the surface description and does not contribute
redundancy, which increases computing resources, to the source data.

Often during comparison of two surfaces it is assumed that for each node
of one surface point there is the corresponding node of the second surface. This
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assumption implies definition of surfaces at the same discrete set of nodes. Initial
surface objects acquired by three-dimensional scanning, have irregular structure.
During the transforming stage from the original irregular data to regular mesh
one face the challenge of choosing the optimal size for size of mesh cell, which
leads to inefficiency of the approach.

The majority of the existing measures for comparing surfaces can be calculated
directly if both surfaces are defined at the nodes of some common mesh. However,
such measures do not allow extension to the case of surfaces defined on different
meshes without the stage of transition to regular meshes. There are measures
that can easily be generalized to the case of two different meshes, but their
calculation in this case has a quadratic complexity.

The existing methods for mapping the surfaces can be divided into two classes:
a. Surface adjustment based on calculation of distances between points in the

three-dimensional space, which has a large computer complexity.
b. Recalculation of the original data in a regular two-dimensional mesh, which

leads to description redundancy and also to significant increase in computational
complexity.

It follows that the problem of developing of new computationally efficient
algorithms for comparison of surfaces represented as point clouds, preserving
the original irregular meshes remains actual at present.

The paper is organized as follows. A literature review of the problem for com-
parison of point clouds is given in section 2. The proposed approach for surface
comparison is given in section 3. The proposed method of mesh localization in
Delaunay triangulation presented in Section 4. Section 5 presents some applied
problems for 3D face image analysis considered by the author. Conclusion is
given in section 6.

2 Related Work

As it was stated above, many existing approaches for point cloud comparison use
the transformation of initial irregular meshes to the common regular mesh [2], [3],
[4] (see Fig. 1). After such transformation the approaches of surface comparison
and matching for regular sets of nodes [5] can be applied.

During the transformation we face the problem of choosing the optimal step
for a regular mesh, which leads to a significant amount of calculations to achieve
an acceptable accuracy of the approximation surface and inefficiency. In this
paper we propose a method for comparing surfaces with preservation of the
original irregularity of meshes.

The most of existing methods is assumed that for each single node of the first
surface there is the corresponding node on the second surface [6], [7]. There are
methods based on a comparison of feature descriptions [8].

One of the basic algorithms for surface matching is the algorithm of iterative
closest points — ICP, proposed in [6], [9], [7]. The algorithm uses an iterative
procedure to minimize the average distance between two point clouds. This re-
quires an initial rough estimate of converting one cloud to another, which is



Comparison of Point Clouds Acquired by 3D Scanner 49

Fig. 1. Transformation of the irregular mesh to the regular one (adoption of illustration
from [4])

gradually refined in the process of minimization. For two given point clouds S1

and S2 the algorithm finds the transformation from S1 into S2.
The ICP algorithm can be used to align the images of the same object ob-

tained from different angles, which has common areas — regions of overlap. This
assumes that there are pairs of closest points such that distances between them
are less than a threshold in the regions of overlap. If some ”wrong” pairs which
do not belong to the region of overlap are included in a list of pairs of closest
point, it will negatively affect to the results of the algorithm.

Let {(s1i , s2i )}Ni=1 be a set of pairs of closest points for S1 and S2. During the
algorithm procedure the average distance between the point clouds S1 and S2 is
minimized:

E =
1

N

N∑
i=1

d(s1i , s
2
i )→ min, (1)

where d(·, ·) is the Euclidean distance between two points.
To calculate the distance between the point s1 ∈ S1 and the cloud of points S2

in the original version of the algorithm [6] the ”point-to-point” distance was used:

ρ(s1, S2) = min
s2∈S2

d(s2, s1). (2)

Metric (2) uses discrete surface models.
In [9] ”point-to-plane” distance was proposed, the use of which implies that

at each point of S1 and S2 normal to the surfaces specified by point clouds S1

and S2, respectively, is known. Such information may be given initially, or cal-
culated by averaging the normals of the adjacent triangles using triangulates
polygonal approximation of the surface. In this case it the sum of squared dis-
tances between s1i and plane P 2

i , perpendicular to S2 at s2i over all pairs of
nearest points (s1i , s

2
i ) will be minimized:

E =

N∑
i=1

H2(s1i , P
2
i )→ min, (3)

where H(s, P ) — Euclidean distance between s and plane P .
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General iterative scheme of the algorithm is the following:

1. Search of pairs of points (s1i , s
2
i ), i = 1, N for the current mutual position

of S1 and S2.
2. Search of the transformation (parameters of translations and rotations) of

point cloud S1, reduces error E (1) and (3) using the least squares method.
If the change of the error E is below a certain threshold, the algorithm
terminates.

3. Application of the transformation found at the previous step to convert point
cloud S1. Transition to Stage 1.

Stages 1 — 3 are repeated while the reduction of the error exceeds a certain
threshold value. The result is the final position of point cloud S1.

Influence of ”wrong” pairs of closest points is smaller for ”point-to-plane”
distance. But the disadvantage of the ”point-to-plane” distance is that it is
highly dependent on the initial relative position of S1 and S2 [10].

The main advantage of the ICP algorithm is its simple implementation, the
disadvantage is a strong dependence on the initial approximation of objects, the
computational complexity associated with search of all pairs of closest points
of {(s1i , s2i )}Ni=1.

Let N1, N2 be the numbers of points in initial point cloud S1, S2, respectively.
Then using a simple implementation the estimation of computational complexity
of such search is O(N1N2), i.e. is quadratic if N1 ≈ N2. Using more complex
data structures — for example, k-d trees [11] — the search can be carried out
in a time O(N1 logN2) . Thus, the total number of operations required to find
pairs of closest points in m iterations is O(mN1 logN2).

Large number of papers is devoted to various improvements of the algorithm:
— Modification of methods for selecting the region of overlap and pairs of

closest points (for example, by introducing limitations to the class of motions
that take one point to another [12], using the theory of random quantities [13],
k-d trees [11], [7], genetic algorithms [14]);

— Introducing weights for pairs of closest points [15];
— Modification of the equation for the distance between two points [16], [17];
— Modification of the equation for the error to be minimized [18] and mini-

mization procedure [17].
The drawback of the such improvements is their complexity, tuning to a spe-

cific experimental data, which reduces the robustness of the algorithms.
In [19] the problem of comparison of the surfaces for one and the same object,

defined on different sets of points was considered. The distance from a point of
one surface to the other surface was calculated along the normal to the second
surface splines. Such measure is interesting because it does not require a reduc-
tion of the source data to common mesh. But the complexity of this approach
is quadratic.

Such measures as, e.g., the average distance between the heights that can
be directly calculated by recalculation of two surfaces at the nodes of common
mesh, do not allow extensions to the case of their definition at two different
meshes without the stage of transformation to regular meshes.
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In [20] a surface matching algorithm based on minimizing the similarity mea-
sure between them was proposed. The compared surface S1 and S2 are con-
sidered as objects of linear space, and the similarity measure ρ(S1, S2) is the
norm ‖S1 − S2‖ in this space. Let surface X be represented by triangulated
piecewise linear model of N triangles, ci — centroid of i-th triangle, ni” — nor-
mal vector to i - th triangle, the length of which is equal to the area of the
triangle. The norm of surface X is introduced as

‖X‖ =
N∑
i=1

N∑
j=1

(ni, nj)e
−|ci−cj|2/σ2

. (4)

Let the initial surfaces S1, S2 be represented by triangulated piecewise linear
model of N1, N2 triangles, respectively; c1i (c

2
i ) — centroid of i-th triangle of

surface S1(S2), n
1
i (n

2
i ) — normal vector to i-th triangle of surface S1(S2), whose

length is equal to the area of the triangle. The similarity measure proposed
in [20], is defined as follows:

ρ(S1, S2) =

N1∑
i=1

N1∑
j=1

(n1
i , n

1
j)e

−|c1i−c1j |
2/σ2

+

N2∑
i=1

N2∑
j=1

(n2
i , n

2
j)e

−|c2i−c2j |
2/σ2

−

− 2

N1∑
i=1

N2∑
j=1

(n1
i , n

2
j)e

−|c1i−c2j |2/σ2

= ‖S1 − S2‖.
(5)

Further, the value of the measure (5) is minimized by quickest descent method.
The disadvantage of this approach is the quadratic complexity of similarity mea-
sure calculating.

3 Approach to Comparison of Point Clouds

The general formulation of the problem is the following: there exist two surfaces
determined by the height functions at two finite sets of points; it is necessary to
calculate some measure of similarity (or difference) between them.

Let T1, T2, and T be the Delaunay triangulations [21] constructed on the
sets of nodes of the meshes g1 and g2 and the common mesh g = g1 ∪ g2,
respectively. Then T is a common, or united, Delaunay triangulation. Let us
denote by Conv(g) the convex hull of mesh g. It is assumed that the initial
meshes consist of non-intersecting sets of nodes.

3.1 Proposed Measures

A measure for comparing surfaces determined by single-valued functions at the
nodes of different non-regular triangulation meshes was proposed in [22]. The
sum of volumes of the difference between the functions over all triangles of T
was calculated in order to determine the measure. In this case, the values of
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the initial functions f1 and f2 represented the surfaces were interpolated at the
points of the opposite mesh using the localization of the triangulations T1 and
T2 in each other. As a result of interpolation, we obtain the continuous functions
f̂1 and f̂2 determined on the set Conv(g) for which f̂1 = f1, f̂2 = f2 at the nodes
of g1, g2, respectively. Let μ(x, y) ≥ 0 be the function determining the weight
of the difference of the surfaces at the point (x, y). It is assumed that μ(x, y) is
defined and finite at all points of Conv(g) and is equal to zero beyond Conv(g).

Let us introduce the weighted volume of the difference between the surfaces
in the triangular region,

Vμ(A,B,C, f1, f2) =

∫∫
�ABC

∣∣f̂1(x, y)− f̂2(x, y)
∣∣μ(x, y) dxdy. (6)

For μ = 1, the volume Vμ is the metric L1 for the interpolated initial functions
f1 and f2 on � ABC. Let us denote by SConv(g) the area of the convex hull of
set g, which is equal to the sum of areas of all triangles of the triangulation of
set g. The following measure was proposed for comparison of surfaces:

ρVμ(f1, f2) =
∑

�ABC∈T

Vμ(A,B,C, f1, f2)/SConv(g), (7)

Summing in (7) takes place over all triangles in T .
The proposed measure can be adapted for each particular application by in-

troducing the function μ.
In [23] special measure ρdV for case when two initial surface models have

different level of detalization was proposed.

3.2 Surface Comparison Algorithm

An approach proposed for surface comparison and calculating measured is as
follows: Delaunay triangulations are constructed on both meshes, then each of
the functions is interpolated with respect to the other mesh, which is followed
by the construction of the common triangulation for the two meshes. Then at
each point of the merged meshes the values of the two functions are known,
and operations can be performed on individual faces (triangles) of the common
triangulation analyzing the mutual arrangement of the spatial triangles defined
by the functions. Therefore, the developed algorithm is based on the idea of
supplementing the values of each function in the nodes of the other mesh by
constructing the Delaunay triangulation and their localization in each other.

Let us present main stages of the algorithm Aρ for calculating measure ρ:

1. Construction of Delaunay triangulations T1, T2;
2. Construction of minimal spanning trees of Delaunay triangulations;
3. Localization of each of meshes g1, g2 in the triangulation constructed on the

other mesh;
4. Interpolation of each of two functions f1, f2 on the mesh that the other

function defined on;
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5. Construction of the common triangulation T (see the linear merging method
proposed in [24]);

6. Comparison of the functions on the separate cells of triangulation T (calcu-
lating measure ρ).

3.3 Computational Complexity

The numerical complexity of algorithm Aρ is O(n logn), where n is the total
number of points of mesh g. It was proved that in case of Delaunay triangula-
tions T1 and T2 are constructed at the preprocessing stage, the expected time to
compute measure ρVμ is O(n). At the same time in the mentioned conditions the
numerical complexity of calculating measure ρdV is O(n) in the worst case (see
the proof in [23]). The key stage of the algorithm that influenced on running
time is the stage of mesh localization. The problem of computational complexity
of stage 3 will be considered in Section 4.

3.4 Surface Matching

The numerical complexity of one calculation of the measure is important be-
cause in applications it is required to calculate the measure several times during
iteration process of surface matching. Influence of non-efficient calculation of the
measure will increase on each iteration step.

The matching problem, or the problem of spatial alignment of surfaces, con-
sists in transition of several images of the considered object to one global coor-
dinate system (see Fig. 2). Such transition consists in transformation of images
using translations along and rotations about the coordinate axes. If we consider
transformation parameters that do not derive Delaunay triangulations of the
initial meshes from the class of triangulations, the proposed approach allows to
implement surface matching in time O(mn) using m iterations. In this case we
need O(n log n) time for preprocessing stage to construct Delaunay triangula-
tions.

4 Mesh Localization in Delaunay Triangulation

The well-known geometric search problem of point location in a Delaunay tri-
angulation is formulated as follows: given a point Q and a Delaunay triangula-
tion T , it is required to declare the triangle of T containing Q. One of the most
fast methods to solve this problem (in general case) has O(logN) computational
complexity and O(N) memory usage, where N is the number of nodes in T [25].

Let g be a plane mesh of N1 nodes and T2 be a Delaunay triangulation con-
structed on N2 nodes. In the problem of mesh nodes localization in a Delau-
nay triangulation it is required to solve point location problem for each node
of g. Then the unstructured mass query of N1 nodes can be processed by
time O(N1 logN2).
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Fig. 2. Matching of facial models

We show how the Delaunay triangulation constructed on the nodes of g can be
used for acquisition of more efficient solution. The proposed method is based on
Euclidean minimum spanning trees (MST) of given Delaunay triangulation [21]
which can be constructed in linear time. There is approach for point location
problem that uses ”walk along a line” strategy [26]. The idea of the approach
consists in gradual transition from some initial point M of known location to
source point Q along the straight line (MQ). During each transition step chang-
ing on adjacent (neighboring by edge) triangle is implemented. After such stage
is finished, a location path consisting of adjacent triangulation triangles is con-
structed. Case of belonging of a certain node of T2 to segment [MQ] is a case of
a special interest.

In the proposed method for mesh localization, locations paths pass along the
edges of the MST. As a spanning tree does not contain cycles and passes through
all points of the mesh g, the algorithm will work correctly: it does not loop and
performs location of all mesh nodes.

In this work we prove that in case of uniform distribution for nodes of tri-
angulation T2 and mesh g the average case complexity of the method is linear
by max(N1, N2). Using the results of Kostuk for average edge length in Delaunay
triangulation [27] and of Bose and Devroye for average number of intersections
between MST and line segment [28], we show that

Lemma 1. Suppose g1, g2 are plane meshes with the numbers of nodes N1, N2,
respectively, N1/N2 ≤ c = const, and the sets of nodes of the both meshes
uniformly distributed uniformly in a rectangular area. Then, the average number
of intersections between the MST for nodes of g1 and edges of the Delaunay
triangulation constructed on g2 is linear by N2.

Theorem 1. Under the conditions of lemma 1, the algorithm for localization of
mesh g1 in the Delaunay triangulation constructed on the set of nodes of g2, on
basis of the MST of g1 has the average case complexity O

(
max(N1, N2)

)
.

The proof of lemma 1 and theorem 1 is omitted.
The assumption of uniform distribution of mesh nodes is appropriate for the

majority of practical applications.
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In the worst case the mesh localization is not linear. We consider method for
construction of simulated example shows that the worst case complexity of the
proposed method is quadratic.

In [24] the problem of merging of unseparated Delaunay triangulations were
studied: given two Delaunay triangulations T1 and T2 constructed on sets g1
and g2, respectively, with intersected convex hulls, it is required to construct the
united Delaunay triangulation T . We say that a triangle of T is an interface
triangle if it joins nodes from the both sets g1, g2.

By N denote the total number of nodes in the sets g1, g2. We consider the
problem of identifying of all interface triangles of T . Using the idea proposed
by Mestetskiy and Tsarik for merging of overlapping Delaunay triangulations
in [24], we propose the solution of this problem and show that

Theorem 2. All interface triangles of T can be extracted in linear time by N .

The theorem 2 allows to receive the following result:

Theorem 3. Localization of nodes from g1 in a Delaunay triangulation con-
structed on g2 on basis of the list of all interface triangles can be performed
in O(N) in the worst case.

The theorems 1 and 3 were theoretically proved and experimentally verified. Ex-
periments for estimation of computational complexity were performed on model
(see Fig. 3) and real data.

Fig. 3. Graph N/t — N , where N ≈ N1 ≈ N2 — the number of nodes in initial meshes,
t — time for mutual localization of nodes of two Delaunay triangulations

5 Applied Problems of 3D Face Image Analysis

As the applications of the proposed methods several problems of 3D face analysis
were considered:



56 N. Dyshkant

– quantitative estimation of facial asymmetry based on comparison of the facial
model and the reflected one [29];

– 3D model segmentation on static and dynamic regions by 3D model video
sequence on example of chewing process [31]. The idea of estimating the mo-
tion parameters of the lower jaw consists in the conditional subdivision of
each model of the video sequence into the upper (static) and lower (dynamic)
parts and construction for each of the parts of special local coordinate sys-
tems of its own.The transformation of the lower system of coordinates into
the upper one for every frame of the video sequence describes the dynamics of
the lower jaw motion. The formal description of the motion is represented in
the form of matrices of the lower coordinates transformation into the upper
ones;

– construction of combined spatial model of face and jaws for orthodontics
using reference object, i.e. object that allows to define geometric relationship
of other objects connected with it [32];

– accuracy estimation of 3D model reconstruction methods [33];
– comparison of facial models acquired by scanners of different accuracy [23];
– quantitative estimation of facial skin condition for research in cosmetol-

ogy [30].

The initial data for mentioned applications were acquired by 3D scanner Broad-
way designed by Artec Group Company (see [34]). Each face model was nor-
malized in the coordinate system in a special way (transition to a standard
coordinate system of a model). Facial models were considered as single-valued
surfaces.

The experiments performed on facial model database confirmed the correct-
ness and computational efficiency of the proposed methods.

6 Conclusions

Measures for comparing discrete models of surfaces determined at the nodes of
different triangulation meshes and the approach for their calculation have been
proposed. Several problems of face model analysis were considered as applica-
tions of the proposed methods. The proposed approach was theoretically justified
and confirmed by multiple computational experiments on 3D face data.
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Abstract. By using exclusively the customary adjacency relations on Z3,
we generalize the notion of a simple surface point given by Morgenthaler
in the 80s. A new definition of simple surface arises, and we show that
simple surfaces coincide with the strong separating family of a certain
class of digital surfaces defined by means of continuous analogues that,
in turn, contains several families of discrete surfaces in the literature.

1 Introduction

It is commonly accepted that the first notion of a discrete surface, as a “thin”
subset of voxels of the grid Z3, is due to Morgenthaler and Rosenfeld [8]. They
define S ⊆ Z3 to be a simple closed surface if all voxels in S are simple surface
points, where such points are determined by three properties which are exclu-
sively given in terms of the usual adjacency relations between voxels and subsets
of voxels of Z3. Moreover, the notion of a simple surface point is local since it
depends only on the 26-neighbourhood of each voxel σ ∈ S.

Nevertheless, this definition of surface is widely considered to be too restric-
tive, especially for the (26, 6)-adjacency, since only 13 different configurations,
up to rotations and symmetries, may appear in the 26-neighbourhood of a voxel.
In fact, relevant classes of discrete surfaces extending the class of Morgenthaler-
Rosenfeld surfaces have appeared in the literature since then; as instances, recall
the strong surfaces [2] and the simplicity surfaces [6]. Furthermore, these classes
are strictly contained in the family of the so-called (k, k)-surfaces introduced in
[3] (for any adjacency pair (k, k) �= (6, 6), k, k ∈ {6, 18, 26}) via a plate-based
definition. It worth pointing out that (26, 6)-surfaces admit up to 10,580 different
configurations in the 26-neighbourhood of a voxel for the (26, 6)-adjacency.

Besides the usual adjacency pairs, any of the classes of discrete surfaces above
is defined by a local or global additional notion or property (the definition of a
new graph, homotopic properties,. . . ). Our aim in this paper is to give a gener-
alized notion of a simple surface point, based solely on the adjacency relations
between voxels and sets of voxels, for which the (k, k)-surfaces given in [3], in
particular the strong and simplicity surfaces, are characterized as sets of sim-
ple surface points. This will be achieved as an application of the framework for
� This work has been partially supported by the project MTM2010-20445 MICINN

Spain.
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digital topology in [1]. More precisely, we will use crucially the fact that the
(k, k)-surfaces in [3] are exactly the strong separating surfaces of certain univer-
sal digital space in the sense of [1]; see [5].

2 Simple Surface Points

In this section we introduce a new notion of simple surface point that extends
the original definition of Morgenthaler [8], and find some properties of subsets
consisting entirely of voxels of this class. For this we start by recalling some basic
definitions of the graph–theoretical approach to the digital topology of Z3.

Two voxels σ = (xσ
1 , x

σ
2 , x

σ
3 ), τ = (xτ

1 , x
τ
2 , x

τ
3) ∈ Z3 are said to be 6-, 18- or 26-

adjacent if max{|xσ
i − xτ

i |; 1 ≤ i ≤ 3} ≤ 1 and they differ in, at most, one, two or
three of their coordinates, respectively. The k-neighbourhood of σ ∈ Z3 is the set
Nk(σ) of all voxels k-adjacent to σ. Moreover, we say that two n-adjacent voxels
σ, τ are strictly n-adjacent if they are not m-adjacent for any m < n, where
n,m ∈ {6, 18, 26}. Two voxels σ, τ ∈ X are said to be purely n-adjacent in X
(nX-adjacent, for short) if they are strictly n-adjacent and no other voxel ρ ∈ X
is m-adjacent to both σ and τ for m < n. Finally, two distinct subsets X and Y
are said to be k-adjacent if some voxel of X is k-adjacent to some voxel of Y .

For k ∈ {6, 18, 26} the transitive closure of the k-adjacency relation defines
an equivalence relation on each subset X ⊆ Z3, whose classes are called the k-
components of X . Subsets with only one k-component are termed k-connected.
The set X is said to be k-separating if its complement X = Z3 − X consists
of two k-components, and it is a strong k-separating set if each voxel σ ∈ X is
k-adjacent to both of them. Finally, X is said to be k-thin at a voxel σ ∈ X if
Xσ = N26(σ) −X has exactly two k-components, Aσ and Bσ, k-adjacent to σ,
and it is simply called a k-thin set if this property holds at each of its voxels.

A unit cube of Z3 is any subset of eight mutually 26-adjacent voxels. Similarly,
a unit square of Z3 is any subset of four mutually 18-adjacent voxels arising from
the intersection of two aligned unit cubes.

Given S ⊆ Z3 and an adjacency pair (k, k), k, k ∈ {6, 18, 26}, Morgenthaler’s
definition [8] states that σ ∈ S is a (simple) surface point if the following condi-
tions hold: (a) exactly one k-component of N26(σ) ∩ S − {σ} is k-adjacent to σ;
(b) S is k-thin at σ; and, (c) every voxel τ ∈ S k-adjacent to σ is k-adjacent to
the k-components Aσ and Bσ of Sσ. In fact, Kong and Roscoe [7] showed that
property (a) is redundant for all sets consisting entirely of surface points.

As announced in the introduction we aim at weakening the original definition
of Morgenthaler and Rosenfeld to characterize the remarkably large class of
(k, k)-surfaces in [3]. Since it seems quite reasonable to keep property (b) to
guarantee suitable separation properties, our goal will be attained by finding a
less restrictive version of property (c). For this, notice that if S ⊆ Z3 is k-thin
and σ ∈ S is a surface point then, for each voxel τ ∈ S k-adjacent to σ, property
(c) implies that Aσ ∩ (Aτ ∪ Bτ ) �= ∅ �= Bσ ∩ (Aτ ∪ Bτ ). This fact suggests the
following preliminary definition.
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Definition 1. Let O ⊆ Z3 be k-thin at two 26-adjacent voxels σ, τ ∈ O. We
say that σ is k6-linked to τ in O if the k-components Aσ and Bσ of Oσ meet
Aτ ∪Bτ . A sequence σ′ = ρ0, ρ1, . . . , ρn = τ ′ of voxels such that ρi−1 is k6-linked
to ρi in O, for 1 ≤ i ≤ n, will be termed a k6-path from σ′ to τ ′ in O.

Remark 2. If O ⊆ Z3 is both k-thin and strong k-separating then, for each voxel
σ ∈ O, the k-componentes Aσ and Bσ of Oσ are representing the k-componentes,
A and B, of Z3−O. Therefore, if σ is k6-linked to τ then Aσ∩Bτ = ∅ = Bσ∩Aτ

and, thus, Aσ ∩ Aτ �= ∅ �= Bσ ∩ Bτ . Moreover, if (σi)
n
i=0 is a k6-path in O then

∪n
i=1Aσi ⊆ A and ∪n

i=1Bσi ⊆ B are k-connected.

Lemma 3. If σ ∈ O is k6-linked to τ then Oσ ∩ Oτ contains voxels of Aσ and
Bσ and thus it is not k-connected. In particular, σ and τ are not k6-linked if
they are k

O
-adjacent for k ∈ {18, 26}.

Any surface point σ ∈ O in the sense of Morgenthaler is trivially k6-linked to
each of its k-neighbours provided O is also k-thin at them. Next result is a partial
converse for k ∈ {18, 26}.

Proposition 4. Assume O is k-thin at two 26-adjacent voxels σ, τ ∈ O, k ∈
{18, 26}. Then σ is k6-linked to τ if and only if τ is k-adjacent to Aσ and Bσ.

Proof. Assume the k6-linking of σ and τ , and take ρ ∈ Aσ∩(Aτ ∪Bτ ). The result
is obvious if ρ is k-adjacent to τ , in particular for k = 26 since Aτ ∪Bτ ⊆ N26(τ).
So, assume k = 18 and ρ is strictly 26-adjacent to τ , and let Kρτ the only
unit cube of Z3 containing {ρ, τ}. Since ρ ∈ Aτ , there exists another voxel
ρ′ ∈ Kρτ − (O∪{ρ}) which is 18-adjacent to both ρ and τ ; in particular Kρτ −O
is 18-connected. On the other hand, σ also belongs to Kρτ since it is 26-adjacent
to τ and ρ. Moreover, ρ is necessarily 18-adjacent to σ and the result follows
since ρ′ ∈ Kρτ − O ⊆ Aσ. The converse is obvious since any voxel ρ ∈ Aσ k-
adjacent to τ is necessarily in Aτ ∪Bτ . ��

Example 5. Although weaker than property (c) of Morgenthaler’s surface points,
the k6-linking requirement in Def. 1 is still too restrictive for adjacency pairs
(k, k) with k ∈ {18, 26}. For example, let us consider the subsets O1, O2, O3 ⊆ Z3

shown in Fig. 1, which are pieces of a simplicity 26-surface S1, a (26, 6)-surface
S2 in the sense of [3] (but no simplicity 26-surface contains O2) and a pinched
torus S3, respectively. Notice that, in all of them, the 26-adjacent voxels σ and τ
are not k6-linked to each other for (k, k) = (26, 6), while the sequences (σ, ρ, τ)
and (σ, ρ2, ρ1, τ) are k6-paths in O1 and O2; that is, according to the following
definition, σ and τ are k18-linked in O1 and k26-linked in O2. In contrast with
S1 and S2, despite there exist k6-paths from σ to τ in the pinched torus S3, they
can not be found within the two unit cubes containing them, and so they are
not k26-linked in O3.

Definition 6. A voxel σ ∈ O is k18-linked to τ in O if there exists a unit cube
K ⊆ Z3 containing a k6-path from σ to τ in O; while σ is k26-linked to τ in O if
such a k6-path is found in the union of two unit cubes that meet in a unit square.
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Fig. 1. See Example 5

Pc
3 Pb

4 Pe
4 Pf

4 Pb
5 Pc

6

Pc
2 Pc

5 Pb
6 P7 P8

Fig. 2. Some of the patterns that may appear in any digital object O ⊆ Z3. Each
picture represents a unit cube K ⊆ Z3, and the black dots are the set of voxels in
O ∩ K. The patterns in the lower row cannot appear in O if it consists entirely of
simple (26, 6)-surface points.

Definition 7. A voxel σ ∈ S is a simple (k, k)-surface point if the two following
conditions are satisfied:

1. S is k-thin at σ, and also at each voxel τ ∈ S k-adjacent to σ.
2. For every voxel τ ∈ Nk(σ) ∩ S, σ is kt-linked to τ in O whenever σ and τ

are strictly t-adjacent, where t ∈ {6, 18, 26} and t ≤ k.

This new notion of simple surface point leads to the following definition.

Definition 8. A simple closed (k, k)-surface is a subset S ⊆ Z3 consisting en-
tirely of simple (k, k)-surface points such that if K −S is not k-connected, for a
given unit cube K, then it meets Aσ and Bσ for each voxel σ ∈ K ∩ S.

As a preparatory work for the main result of the paper (Th. 19), we next prove
that some of the 22 non-empty patterns that, up to rotations and symmetries,
may appear in the intersection K∩O of a unit cube K and an arbitrary subset O
are not allowed in objects consisting entirely of simple (k, k)-surface points (see
Fig. 2). The proof of the next proposition requires a tedious analysis of cases
that we skip in order to keep the length of the paper within the required size.

Proposition 9. Let O ⊆ Z3 be a k-thin set such that any pair of 6-adjacent
voxels σ, τ ∈ O are k6-linked to each other. Then K ∩ O /∈ FCk for each unit
cube K of Z3, where FC6 = {Pc

5,P
b
6,P7,P8}, FC18 = {P7,P8} and FC26 = {P8}.
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Proposition 10. Let σ, τ ∈ O be two 26O-adjacent voxels. Then σ and τ are
not k26-linked for any k ∈ {6, 18, 26}.

Proof. Let K ⊆ Z3 the only unit cube containing {σ, τ}. Notice that K ∩ O =
{σ, τ} and thus K − O is 6-connected. Therefore these voxels are not k6-linked
by Lemma 3. And the result follows since σ and τ are consecutive elements in
any 26-path contained in (K ∪K ′)∩O, where K ′ is another unit cube of Z3. ��

3 Universal (k, k)-Spaces and Digital Surfaces

This section collects the terminology and main results from [5] needed in this
paper. They are established within the framework for Digital Topology intro-
duced in [1], where we refer to for the precise definitions in a general setting.
The reader should be aware that some of the material referred to [5] and [1] has
been restated here in terms of the notation introduced in Section 2.

In this paper we will only deal with the polyhedral complex R3 determined by
the collection of unit cubical cells in the Euclidean space R3 centred at points of
integer coordinates. More precisely, let Z = {z+ 1

2 ; z ∈ Z} and L = {[l, l+1] ; l ∈
Z}, then a (cubical) d-cell δ ∈ R3, 0 ≤ d ≤ 3, is the cartesian product of d
elements of L and 3− d elements of Z. As usual, if δ ∈ R3 is a d-cell we say that
d is the dimension of δ and write dim δ = d. Given two cells α, β ∈ R3 we write
α ≤ β if α is a face of β (i.e., if α ⊆ β), and α < β if in addition α �= β.

Notice that each d-cell δ ∈ R3 can be associated to its centre c(δ) which, in
particular, belongs to Z3 whenever dim δ = 3. This way, the complex R3 can be
regarded as a dual representation of the discrete space provided by Z3, in which
each 3-cell represents a voxel, and so any subset of Z3 is identified with a subset of
the set cell3(R3) of 3-cells in R3. This identification, that will be used henceforth
without further comment, gives us a one–to–one correspondence between 0-cells
(1-cells) and discrete unit cubes (squares, respectively) of Z3. Namely, for each
0-cell (1-cell) α ∈ R3 the set of voxels Kα = {σ ∈ cell3(R

3) ; α ≤ σ} is the
unit cube (square, respectively) centred at c(α). Moreover, if dimα = 2 then
Kα = {σ, τ}, where σ and τ are 6-adjacent and α = σ ∩ τ , while Kα = {α} if
dimα = 3. In any case, we will refer to α as the centre of Kα.

According to [1] a digital space based on R3 is a pair (R3, f) where f is a light-
ing function: a certain map of the form f : P(cell3(R3))×R3 → {0, 1} satisfying
five axioms, where P(cell3(R3)) stands for the family of all subsets of cell3(R3).
Here we simply recall that lighting functions are devised as procedures for asso-
ciating a continuous analogue to a digital object. More precisely, given a lighting
function f as above, the continuous analogue of an object O ⊆ cell3(R

3) is the
polyhedron |Af

O | ⊆ R3 triangulated by the simplicial complex 1 Af
O consisting

of all simplexes 〈c(σ0), c(σ1), . . . , c(σn)〉 whose vertices are centres c(σi) of cells
σ0 < σ1 < · · · < σn ∈ R3 such that f(O, σi) = 1 (that is, f “lights” σi in O).

1 We will drop the “f ” from the notation and write AO instead Af
O whenever the light-

ing function involved is clear from the context. Also we write AR3 instead Acell3(R3).
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Regarding continuous analogues as “continuous interpretations” of digital im-
ages, we introduce digital notions in terms of the corresponding continuous
ones. In particular, an object S ⊆ cell3(R

3) is a digital surface in (R3, f) if
its continuous analogue |AS | is a combinatorial surface; that is, if the link
lk(v;AS) = {A ∈ AS ; v,A < B ∈ AS and v /∈ A} is a 1-sphere for each vertex
v ∈ AS . The scope of this paper is restricted to surfaces in digital spaces for
which the connectedness of the continuous analogues is coherent with the con-
nectedness induced by an adjacency pair (k, k) on the grid Z3. More precisely,
(R3, f) is said to be a (k, k)-space if the two following conditions hold for any
subset O ⊆ Z3: (a) O is k-connected if and only if |AO | is a connected polyhe-
dron; and (b) the complement Z3−O is k-connected if and only if |AR3 |− |AO |
is connected. As a consequence of the well-known Jordan-Brouwer theorem one
gets the following separation result; see [5].

Theorem 11 (Th. 2 in [5]). Let (R3, f) be a (k, k)-space such that |AR3 | =
R3. Then, each k-connected digital surface S in (R3, f) is a k-separating set.

Several different examples of (k, k)-spaces for each adjacency pair can be found
in [3] and its references. Nevertheless, one particular among them, the so-called
universal (k, k)-space, (R3, fkk), captures the essence of all digital surfaces for
the pair (k, k). More precisely, the main result in [5] states that any digital
surface in a (k, k)-space is also a digital surface in (R3, fkk). Next we recall the
definition of the lighting functions fkk and some immediate properties.

Definition 12. For (k, k) �= (6, 6), k, k ∈ {6, 18, 26}, the lighting functions fkk
are defined as follows. Given O ⊆ cell3(R

3) and a cell δ ∈ R3, fkk(O, δ) = 1 if
either Kδ ⊆ O or one of the following conditions holds:

1. dim δ = 0 and Kδ ∩O corresponds (up to rotations and symmetries) to some
pattern in the set Pk ∪ FPkk, where P6 = {Pc

3,P
b
4,P

e
4,P

f
4 ,P

b
5,P

c
6}, P18 =

{Pc
6}, P26 = ∅ and FP26,6 = {Pc

2,P
c
5,P

b
6,P8}, FP26,k = {Pc

2,P8} if k �= 6,
FP18,6 = {Pc

5,P
b
6,P8}, and FPkk = {P8} otherwise; see Fig. 2

2. dim δ = 1, Kδ ∩O = {σ, τ} consists of two 18O-adjacent voxels, and one of
the next further conditions also holds: (a) for k = 6, and k �= 6, fk,6(O,α1) =
fk,6(O,α2), where α1, α2 are the two vertices of the 1-cell δ; or (b) σ and τ
belong to distinct 6-components of (Kα1 ∪Kα2) ∩O, for k, k ∈ {18, 26}.

Remark 13. The non-empty difference K − O of a unit cube K and O ⊆ Z3

is trivially 26−connected. Moreover, it is 18−connected if and only if K ∩ O
does not correspond to the pattern Pc

6, and it is 6−connected if and only if
K ∩ O /∈ P6 ∪ {Pc

5,P
b
6}. Moreover, it is easily checked that K − O has two

6-components whenever K ∩O ∈ P6 − {Pf
4}.

Lemma 14. If σ ∈ O and τ /∈ O are k-adjacent for a given set O ⊆ cell3(R
3),

then fkk(O, σ ∩ τ) = 0.

For the universal (k, k)-spaces, the Jordan-Brouwer theorem also yields the next
characterization of the two k-components of cell3(R3) − S in terms of the dif-
ference of polyhedra Dδ = |st(c(δ),AR3 ) | − |st(c(δ),AS) |, where δ ∈ R3 is any
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cell for which fkk(S, δ) = 1 and st(c(δ),AX) = {A ∈ AX ; c(δ), A < B ∈ AX} is
the star of c(δ) in the complex AX ; see [1, Appendix A] for details. This result
will be crucial in showing that strong k-separation is equivalent to k-thinness for
digital surfaces in (R3, fkk).

Theorem 15. Let S be a k-connected digital surface in (R3, fkk) and let δ ∈ R3

be a cell for which fkk(S, δ) = 1. Moreover, assume the voxels σ1, σ2 /∈ S have a
face αi < σi such that c(αi) ∈ Dδ, i = 1, 2. Then σ1 and σ2 belong to the same
k-component of cell3(R3)− S if and only if c(α1) and c(α2) are in a connected
component of Dδ. In particular, Dδ have two connected components.

Lemma 16. Let σ ∈ O. If fkk(O, δ) = 0 for a face δ < σ then Kδ −O �= ∅ and
it is contained in a k-component of Oσ = N26(σ) −O.

Proof. Firstly notice that δ ≤ σ ∩ τ for any voxel τ ∈ Kδ, so that σ and τ are
26-adjacent, and, moreover, Kδ �⊆ O by Def. 12. Then, if dim δ = 2, Kδ = {σ, τ}
and Kδ − O = {τ} is trivially k-connected. In case dim δ = 0 the result follows
from Remark 13 since Kδ ∩ O /∈ Pk ∪ FPkk by Def. 12. Finally, for dim δ = 1

the result is obvious if k ∈ {18, 26} since Kδ is a unit square. So, assume k = 6
and, moreover, Kδ − O is not 6-connected or, equivalently Kδ ∩ O = {σ, τ}
consists of two 18O-adjacent voxels. Given that fk6(O, δ) = 0, Def. 12 yields
that fk6(O,α) = 0 for some vertex α < δ, and then Kδ − O ⊆ Kα − O which
has already been proved to be k-connected. ��

Proposition 17. Let σ ∈ O be a voxel in an arbitrary set. Then, the set
∪c(δ)∈XKδ − O is contained in a k-component of Oσ for each component X
of Dσ = |st(c(σ),AR3 ) | − |st(c(σ),AO) |.

Proof. Given c(δ) ∈ X we have fkk(O, δ) = 0; hence Kδ − O is contained in a
k-component, Aδ, of Oσ by Lemma 16. It will suffice to check that Aδ = Aδ′ for
any two cells δ, δ′ ∈ R3 such that c(δ), c(δ′) ∈ X .

Indeed, there exists a sequence (δi)
n
i=0 of faces of σ whose centres connect

c(δ) and c(δ′) in X ; that is, δ0 = δ, δn = δ′ and either δi < δi+1 or δi > δi+1

for each 1 ≤ i ≤ n. By using an inductive argument we will show that Bi =
∪i
j=0Kδj − O ⊆ Aδ for 0 ≤ i ≤ n, and the result follows since Kδ′ − O ⊆ Bn.

For i = 0 the result is obvious. Then, assume Bi ⊆ Aδ for some index i < n. If
δi < δi+1 then Kδi+1 ⊆ Kδi and, henceforth, Bi+1 = Bi. On the other hand, if
δi+1 < δi then ∅ �= Kδi − O ⊆ Bi ∩ (Kδi+1 − O). Therefore Bi, Kδi+1 − O and
their union Bi+1 are contained in Aδ. ��

Theorem 18. A k-connected digital surface S in (R3, fkk) is strong k-separating
if and only if it is a k-thin object.

Proof. Assume τ1, τ2 /∈ S are voxels k-adjacent to a given voxel σ ∈ S, and let
αi = τi ∩ σ, i = 1, 2. By Lemma 14 and Th. 15 we know that τ1 and τ2 are in
the same k-component of cell3(R3)− S if and only if {c(α1), c(α2)} is contained
in a component of Dσ and, by Prop. 17, this occurs if and only if τ1 and τ2 are
also in a k-component of Sσ. ��
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4 Main Theorem

In this section we state and prove our main result (Th. 19 below). Doing that
we gain a third equivalent approach to the class Skk of strong separating digital
surfaces in the universal space (R3, fkk). From each approach distinct facets of
the family Skk are revealed. Namely, the original definition, based on continuous
analogues, allows to show that, among others, S26,6 strictly contains the classes
of strong 26-surfaces and simplicity 26-surfaces [1,4]. The equivalent plate-based
definition of a (k, k)-surface introduced in [3] provides a geometrical interpreta-
tion of the elements of Skk as well as a tool to compute the number of different
configurations that they may contain in the 26-neighbourhood of a voxel: up to
10,580 for S26,6. Nevertheless being the latter a local definition, with plates re-
sembling patches of the surface within unit cubes, it requires an auxiliary graph
for describing how these plates are glued to each other. As an advantage, the
new equivalence proved in Th. 19 in terms of simple (k, k)-surfaces relies solely
on the adjacency relations between voxels and subsets of voxels.

Theorem 19. For (k, k) �= (6, 6), k, k ∈ {6, 18, 26}, a subset S ⊆ Z3 is a
k-connected simple (k, k)-surface if and only if it is a strong k-separating k-
connected digital surface in (R3, fkk).

Since the proofs of the two parts of Th. 19 use techniques quite different from
each other and they are, in addition, rather long, we have divided this section
into two subsections, one for each part of the proof.

4.1 Proof of the “if” Part of Theorem 19

Recall that if S is a k-connected strong k-separating digital surface in the uni-
versal (k, k)-space (R3, fkk), (k, k) �= (6, 6) and k, k ∈ {6, 18, 26}, then it is a
k-thin object by Th. 18. Moreover, given a voxel σ ∈ S, Th. 15 yields that
Dσ = |st(c(δ),AR3) | − |st(c(δ),AS) | has two connected components, CA, CB ,
that determine the two k-components of Sσ = N26(σ)− S which are k-adjacent
to σ. More precisely, from Th. 18 and Prop. 17 one gets ∪c(δ)∈CX

Kδ − S ⊆ Xσ,
X ∈ {A,B}. After these observations we are ready to prove the next proposition.

Proposition 20. Let Kα ⊆ Z3 be a unit cube. Then, for each voxel σ ∈ Kα∩S,
Kα − S meets Aσ and Bσ whenever it is not k-connected.

Proof. If Kα − S �= ∅ is not k-connected then fkk(S, α) = 1, and k = 6, 18, by
Remark 13 and Def. 12. Then, Th. 15 yields that Dα has two connected compo-
nents, X1, X2, and the sets Ci = ∪c(δ)∈Xi

Kδ−S are in distinct k-components of
Z3−S. Hence, for each voxel σ ∈ Kα∩S, C1 and C2 are in distinct k-components
of Oσ. And the result follows from the observations above since an immediate
checking shows that there exists a voxel σi ∈ Ci having a face δi ≤ σ ∩ σi such
that fkk(S, δi) = 0. i = 1, 2. ��

After this result we will be done if we show that each voxel in S is a simple
(k, k)-surface point. For this it will be enough to prove the following.
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Proposition 21. Let σ, τ ∈ S be two k-adjacent voxels which are strictly t-
adjacent, where t ≤ k and t ∈ {6, 18, 26}. Then σ is kt-linked to τ .

Proof. Let δ = σ∩τ . If σ and τ are 6-adjacent, then dim δ = 2 and fkk(S, δ) = 1
by Def. 12. Since any cell α < δ is also a face of σ and τ we have that Dδ ⊆
Dσ∩Dτ . Therefore, the observations above yield that ∪c(α)∈CX

Kα−S ⊆ Xσ∩Xτ ,
X ∈ {A,B}, where CA and CB are the two components of Dδ. Hence σ and τ
are k6-linked.

Assume k = 18, 26 and σ, τ are strictly 18-adjacent voxels. It is obvious that
they are k18-linked if we find a third voxel ρ ∈ S 6-adjacent to both, since we
have already proved that each pair of 6-adjacent voxels in S are k6-linked. So,
assume σ, τ are 18S-adjacent and let {σ′, τ ′} = Kδ−S. If k = 6 and fk6(S, δ) = 1
then it is readily checked that {c(σ′)} and {c(τ ′)} are the two components of Dδ.
Therefore, σ and τ are k6-linked since the observations above yield σ′ ∈ Aσ ∩Aτ

and τ ′ ∈ Bσ ∩ Bτ . On the other hand, if fk6(S, δ) = 0 then fk6(S, α) = 1 for
exactly one of the two vertices α < δ. Then it is not difficult to find a k6-path
in Kα ∩ S, which actually corresponds to pattern Pf

4 , from σ to τ . Finally, if
k = 18, 26, fkk(S, αi) = 0 for the two vertices αi of δ. Hence fkk(S, δ) = 0 and
Def. 12 yields a 6-path, from σ to τ in (Kα1 ∪Kα2)∩S. Notice that fkk(S, δ) = 1
is ruled out, since then lk(c(δ),AS) = {c(σ), c(τ)} is not a 1-sphere.

Finally, if k = 26 and σ, τ are strictly 26-adjacent then there exists at least
one more voxel in Kδ∩S and the result follows by the previous cases. Notice that
Kδ ∩ S = Pc

2 can not occur since, otherwise f26,k(S, δ) = 1 and lk(c(δ),AS) =
{c(σ), c(τ)} is not a 1-sphere and so S is not a digital surface. ��

4.2 Proof of the “only if” Part of Theorem 19

From now on, S will stand for a simple (k, k)-surface which in particular, is
a k-thin set. Therefore, by Th. 18, it will suffice to prove that its continuous
analogue |AS | is a combinatorial surface; that is, lk(c(δ),AS) is a 1-sphere for
each cell δ ∈ R3 such that fkk(S, δ) = 1. For this notice that lk(c(δ),AS) is the
full subcomplex of AR3 determined by the centres c(γ) of all cells γ < δ or γ > δ
with fkk(S, γ) = 1. The proof will consist in an analysis of cases according to
the dimension of the cell δ. This analysis benefits from the work already done in
Prop. 9 and uses the sets of patterns Pk involved in the definition of the function
fkk (Def. 12). Recall that if K ∩ S ∈ Pk for a given unit cube K ⊆ Z3 then
K−S is not k-connected and, by the definition of simple (k, k)-surface, for each
σ ∈ K ∩ S, it contains voxels of the k-components, Aσ, Bσ, of Sσ which are
k-adjacent to σ; see Remark 13 and Def. 8.

Proposition 22. Let β ∈ R3 be a 1-cell with fkk(S, β) = 1, and let Kβ be the
unit square centred at β. Then, one of the two following properties holds, and in
both cases lk(c(β),AS) is a 1-sphere.

1. Kβ ⊆ S and fkk(S, α1) = 0 = fkk(S, α2) for the two vertices α1, α2 < β.
2. Kβ ∩ S = {σ, τ}, k = 6 and fkk(S, α1) = 1 = fkk(S, α2).
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Proof. It is immediate to check that if Kβ ⊆ S then Kαi ∩ S /∈ Pk, where Kαi

is the unit cube of Z3 centred at αi, i = 1, 2. Then, property (1) follows from
Prop. 9 and Def. 12. For (2) we know, by Lemma 3, that the 18S-adjacent voxels
σ, τ are not k6-linked if k = 18, 26 and, moreover, any k6-path between them is
actually a 6-path. Then, if fkk(S, β) = 1 and Kβ �⊆ S necessarily Kβ∩S = {σ, τ},
k = 6 and fkk(S, α1) = fkk(S, α2) by Def. 12. If fkk(S, αi) = 0 then Kαi∩S /∈ P6

and, besides σ and τ , it contains at most a third voxel which is 6-adjacent to one
of them by Prop. 9. Therefore, Kαi − S is 6-connected by Remark 13 and it is
easily checked that it does not contain a k6-path from σ to τ . Hence, σ, τ are not
k6-linked, since Oσ ∩Oτ = (Kαi ∪Kαi) ∩ S is 6-connected, nor k18-linked. ��

Proposition 23. Let α ∈ R3 be a 0-cell with fkk(S, α) = 1, and let Kα be the
unit square centred at α. Then, one of the following properties holds, and in all
these cases lk(c(α),AS) is readily checked to be a 1-sphere.

1. k ∈ {6, 18} and Kα ∩ S corresponds to pattern Pc
6.

2. k = 6 and Kα ∩ S corresponds to a pattern in the set P6 − {Pf
4 ,P

c
6}; then

fk6(S, σ ∩ τ) = 1 for each pair of 18S-adjacent voxels σ, τ ∈ Kα ∩ S.
3. k = 6 and Kα ∩ S = {σ0, σ1, σ2, σ3} corresponds to the pattern Pf

4 ; then
fk6(S, σi∩σi+1mod 4) = 1, 0 ≤ i ≤ 3, while fk6(S, σj ∩σj+2) = 0 for j = 0, 1.

Proof. By Prop. 9 and Def. 12 we know that Kα ∩ S ∈ Pk and hence k = 6 if
Kα∩S �= Pc

6. Given σ, τ ∈ Kα∩S two 18S-adjacent voxels, let α, α′ the vertices
of the 1-cell σ ∩ τ . Notice that Kα − S has exactly two 6-components whenever
Kα ∩ S ∈ P6 − {Pf

4}, one contained in Aσ and the other in Bσ since S is simple
(k, 6)-surface. Therefore Kα′ − S is not 6-connected too. Hence Kα′ ∩ S ∈ P6

and (2) follows by the definition of fk6.
For the proof of (3) we have some choices to make. Let ρi ∈ Kα − S be the

voxel strictly 26-adjacent to σi and notice that ρi /∈ Aσi ∪ Bσi , while Aσi and
Bσi contain at least one of the other three voxels in Kα−S, which are 6-adjacent
to σi. Without loss of generality assume that ρ1, ρ3 ∈ Aσ0 and ρ2 ∈ Bσ0 . The
argument used in the previous case also shows that fk6(S, σ0 ∩ σi) = 1 for
i = 1, 3. To check that fk6(S, σ0 ∩ σ2) = 0 it suffices to prove that Kα′ − S is
6-connected, where α′ �= α is the other vertex of the 1-cell σ0 ∩ σ2. Otherwise,
if Kα′ − S is not 6-connected, the voxels in Kα′ −Kα which are 6-adjacent to
ρ1 and ρ2 are necessarily in S, while the voxel τ0 ∈ Kα′ −Kα 6-adjacent to σ0

is in Bσ. However, under these conditions it is not difficult to check that any
6-path in Oσ0 from ρ2 to τ0 crosses any 6-path from ρ1 to ρ3. Now, the same
argument applied to σ2 and σ1 yields that fk6(S, σ2 ∩ σi) = 1, for i = 1, 3 (since
fk6(S, σ0 ∩ σ2) = 0) and fk6(S, σ1 ∩ σ3) = 0, respectively. ��

Lemma 24. Let β ∈ R3 be a 1-cell with vertices α1, α2. If Kβ ⊆ S then Kα1−S
and Kα2 − S are k-connected and, for any voxel σ ∈ Kβ, these differences are
contained in distinct k-components of Oσ k-adjacent to σ.

Proposition 25. Let γ ∈ R3 be a 2-cell with fkk(S, α) = 1; that is, γ is the
intersection of two 6-adjacent voxels, σ, τ ∈ S. Then fkk(S, δi) = 1 for exactly
two faces δ1, δ2 < γ and, moreover, δ1 �< δ2.
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Proof. Notice that Dγ = |st(c(γ),AR3) | − |st(c(γ),AS) | ⊆ Dσ ∩ Dτ since any
face of γ is also a face of σ and τ . Then, if Dγ is connected ∪c(δ)∈Dγ

Kδ−S = Oσ∩
Oτ is contained in a k-component of both Oσ and Oτ , which is a contradiction
with Lemma 3. Therefore, fkk(S, δ) = 1 for, at least, two faces of γ.

Let αi and βi be the vertices and edges of γ, respectively, with αi, αi+1mod 4 <
βi, 0 ≤ i ≤ 3. If fkk(S, βi) = 1 then the unit square Kβi is contained in S and
we know, by Prop. 22, that fkk(S, αi) = 0 = fkk(S, αi+1) and Kαi − S ⊆ Aσ,
Kαi+1 − S ⊆ Bσ by Lemma 24. On the other hand, if fkk(S, αi) = 1, then
k = 6, 18 and fkk(S, βi) = 0 = fkk(S, βi−1). Moreover, it is readily checked that
Kβi − S and Kβi−1 − S are in distinct 6-components of Kγ − S and thus one
is contained in Aσ while Bσ contains the other. Therefore, if fkk lights more
than two faces of γ then it lights exactly either all its vertices or all its edges.
Moreover, in the second case Kα0 ∪Kα2 − S ⊆ Aσ while Kα1 ∪Kα3 − S ⊆ Bσ.
However, ones easily check that any k-path from Kα0 − S to Kα2 − S must
be contained in Oσ − N26(τ) and then it crosses any k-path from Kα1 − S to
Kα3 − S, which is a contradiction. ��

Lemma 26. Let β ∈ R3 be a 1-cell which is a face of some voxel σ ∈ S. The
two following properties hold for the subset of simplices Xβ ⊆ lk(c(σ),AS) whose
vertices are in {c(δ) ; Kδ ⊆ Kα1 ∪Kα2}, where α1, α2 are the two vertices of β.

1. If k = 6 then Xβ is not a 1-sphere.
2. If k ∈ {18, 26} and Xβ is a 1-sphere then ∪αKα − S is contained in one of

the k-components of Oσ which are k-adjacent to σ, where α ranges over the
vertices of σ distinct from α1 and α2.

Proof (Sketch). There are exactly three configurations in (Kα1 ∪ Kα2) ∩ S for
which Xβ is a 1-sphere:

(a) For some i = 1, 2, Kαi ∩ S = P7 consists of three unit squares containing σ.
(b) (Kα1∪Kα2)∩S consists of four unit squares, distinct from Kβ, containing σ.
(c) Kα1 ∩S ∈ Pk while Kα2 ∩S is either in Pk or it consists of two unit squares.

From the definition of fkk we know that case (c) is not possible for k = 26 while,
by Prop. 9, case (a) is only posible for this adjacency. Then Kαi − S = {μ} is
a 26-component of Oσ and property (2) follows in this case. On the other hand,
in cases (b) and (c) the voxel τ ∈ Kβ strictly 18-adjacent to σ is not in S and
it can be checked that it belongs to a k-component C of Oσ which is contained
in (Kα1 ∪Kα2) − S. Therefore, C ∈ {Aσ, Bσ} if k ∈ {18, 26} and the proof of
(2) is completed. However, C is not 6-adjacent to σ. Therefore, case (c) is not
possible for k = 6 since τ ∈ Kα1 ∩ S and this set corresponds to a pattern in
P6−{Pf

4}; hence Kα1 −S has exactly two 6-components which are contained in
Aσ and Bσ by Def. 8.

To complete the proof of (1) it suffices to find a 2-cell γ < σ such that c(γ)
belongs to three segments in lk(c(σ),AS), which is a contradiction with Prop. 25.
This is readily checked from the fact that Aσ and Bσ share the two only voxels
in N26(σ) − (Kα1 ∪Kα2) which are 6-adjacent to σ. ��
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Proposition 27. The link lk(c(σ),AS) is a 1-sphere for each voxel σ ∈ S.

Proof (Sketch). It is not hard to derive from Prop. 22, 23 and 25 that lk(c(σ),AS)
is the disjoint union of a non-empty set of 1-spheres. Next we check that this set
consists of just one 1-sphere.

Firstly, assume that there exists a voxel τ ∈ S 6-adjacent to σ, and let Lγ ⊆
lk(c(σ),AS) be the 1-sphere that contains the centre c(γ) of the 2-cell γ = σ∩τ .
In addition, let δ < γ be one of the two cells with fkk(S, δ) = 1 provided by
Prop. 25. Then c(γ), c(δ), c(σ ∩ ρ) ∈ Lγ for any other voxel ρ ∈ S 6-adjacent
to σ and such that δ < ρ. Moreover, c(δ′) ∈ Lγ for any face of γ or σ ∩ ρ with
fkk(S, δ′) = 1. Hence, the vertices of some other 1-sphere in lk(c(σ),AS) should
be centres of cells which are the intersection of voxels in Kα1∪Kα2 , where α1, α2

are the two vertices of σ which are not vertices of τ or ρ. However, notice that
if δ is a 0-cell then Kδ − S is not k-connected, by Remark 13, and it contains
voxels of Aσ and Bσ by Def. 8. Otherwise, if δ is a 1-cell then it is the centre of
the unit square Kδ and, according to Lemma 24, Kα3 −S ⊆ Aσ, Kα4 −S ⊆ Bσ,
where α3, α4 are the vertices of δ. Therefore, Lemma 26 yields that no other
1-sphere in lk(c(σ),AS) can be determined by the voxels in Kα1 ∪Kα2 .

Using a similar but more elaborate argument we reach the same conclusion
if the voxel ρ > δ is strictly 18-adjacent to σ. Thus, we are done if we prove
that lk(c(σ),AS) consists of a single 1-sphere in case the six voxels {τi}6i=1 =
N6(σ)−{σ} are not in S and, thus, they are shared by Aσ and Bσ. This follows
by analysing the four possible configurations: (1) Aσ contains just the voxel τ1;
(2) {τ1, τ2} ⊆ Aσ where, in addition, τ1 and τ2 are proved to be 18-adjacent;
(3) {τi}3i=1 ⊆ Aσ (two configurations). All these configurations are easily worked
out by taking into account that if τi ∈ Aσ and τj ∈ Bσ then any voxel which is
6-adjacent to both lies in S since this case can occur only if k = 6. ��
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Abstract. Grayscale skeletonization offers an interesting alternative to
traditional skeletonization following a binarization. It is well known that
parallel algorithms for skeletonization outperform sequential ones in terms
of quality of results, yet no general and well defined framework has been
proposed until now for parallel grayscale thinning. We introduce in this
paper a parallel thinning algorithm for grayscale images, and prove its
topological soundness based on properties of the critical kernels frame-
work. The algorithm and its proof, given here in the 2D case, are also
valid in 3D. Some applications are sketched in conclusion.

1 Introduction

Topology-preserving transformations, in particular topology-preserving thinning
and skeletonization, are essential tools in many applications of image processing.
In the huge litterature dealing with this topic, almost all works are devoted to the
case of binary images. Even so, there are cases when thinning directly a grayscale
image, instead of a binarization of this one, can be beneficial [23, 1, 9, 13].
First, binarization unsually involves important information loss, and it may be
desirable to defer this loss to the latest steps of the processing chain. Second,
working with full grayscale information permits to detect and to use specific
features, such as crests and valleys, peaks and wells, or saddle points. These
features can be precisely defined within the framework exposed in this paper.

Some attention has been given to the development of thinning algorithms act-
ing directly on grayscale images. Dyer and Rosenfeld [11] proposed an algorithm
based on a notion of weighted connectedness. The thinning is done directly over
the graylevel values of the points but, as pointed out in the same paper [11],
the connectivity of objects is not always preserved. Thinning based on a fuzzy
framework for image processing has been proposed in [22, 20], but also in this
case object connectedness is not ensured in the final skeleton. The more recent
works in [25, 2] use an implicit image binarization into a background and a
grayscale foreground.
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Other approaches for grayscale thinning (that is, thinning of grayscale images
without prior segmentation, resulting in either a grayscale or a binary skele-
ton) are pseudo distance maps [19, 12], pixel superiority index [13], and partial
differential equations (see e.g. [16]). In all these works, no property relative to
topology preservation is claimed.

In this paper, we adopt a topological approach, beginning with a definition
of the topological equivalence between two maps. This definition is based on
the decomposition of a map into its different sections [8, 7]: let F be a map
from Z2 into Z, the section of F at level k is the set Fk of points x in Z2

such that F (x) ≥ k. Following this approach called cross-section topology , a
transformation is homotopic, i.e. preserves the topology of F , if it preserves
the topology in the binary sense of every section Fk. An elementary homotopic
transformation consists of lowering the value of a so-called destructible point
(a notion introduced in [6], which generalizes the notion of simple point [15]
to maps). Based on this elementary operation, sequential thinning algorithms
for grayscale images have been proposed in [7, 10], with applications to image
segmentation, filtering and restoration.

By nature, all these sequential thinning algorithms have the drawback of pro-
ducing a result that depends on arbitrary choices that must be done, with regard
to the order in which the destructible points are treated.

On the other hand, although parallel thinning of binary images is a quite
well developped topic in the image processing community, with thousands of
references, very few attempts have been made until now to propose parallel
grayscale thinning algorithms. In [18], an algorithm was proposed but no well-
stated property and no proof of topological correctness was given. The first
(to our best knowledge) approach for parallel grayscale thinning with proved
properties was introduced by [17], in the framework of partial orders. Here, the
result is a map which is defined on a space which is not the classical pixel
grid, but can be seen as a grid with higher resolution. Finally, [21] introduces
order-independant thinning for both binary and grayscale images. However their
definition is combinatorial in nature, and does not lead to efficient algorithms.

The approach taken in this paper is based on the framework of critical kernels
[3], which is to our knowledge the most general framework to analyze and design
parallel homotopic thinning algorithms in discrete spaces, with the guarantee
of topology preservation. Our main contribution are algorithm 1, which simul-
taneously considers all pixels of a grayscale image and lowers some of them in
one thinning step, and the proof of its topological soundness (theorem 14). We
conclude the paper by an illustration of the algorithm and some applications.

2 Parallel Topological Transformations of Binary Images

As we base our notion of topological equivalence for functions on the one for sets
(or binary images), we begin by providing some definitions and results for this
latter case. The framework of critical kernels, introduced by one of the authors
in [3], will serve us to prove the topological soundness of the proposed method.
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This framework is established within the context of simplicial or cubical com-
plexes, however the resulting algorithms can be directly implemented in Z2

thanks to very simple masks. Only a small set of definitions and properties
based on cubical complexes are needed to understand the rest of the paper.

Intuitively, a cubical complex may be thought of as a set of elements having
various dimensions (e.g. squares, edges, vertices) glued together according to
certain rules.

Let Z be the set of integers. We consider the families of sets F1
0, F

1
1, such that

F1
0 = {{a} | a ∈ Z}, F1

1 = {{a, a + 1} | a ∈ Z}. A subset f of Z2, which is the
Cartesian product of exactly d elements of F1

1 and (2−d) elements of F1
0 is called

a face or a d-face in Z2, d is the dimension of f , we write dim(f) = d.
A d-face is called a point if d = 0, a (unit) edge if d = 1, a (unit) square or a

pixel if d = 2. We denote by P2 the set composed of all 2-faces (pixels) in Z2. We
denote by P the collection of all finite sets which are composed solely of pixels.

Let x, y be two pixels, let d ∈ {0, 1}. We say that x and y are d-adjacent if
there is k, 2 � k � d, such that x ∩ y is a k-face. We write Nd(x) to denote the
set of all pixels that are d-adjacent to x. Note that for any pixel x and any d,
we have x ∈ Nd(x). We set N ∗

d (x) = Nd(x) \ x. Remark that we have 4 (resp.
8) pixels in N ∗

1 (x) (resp. N ∗
0 (x)). Let Y be a set of pixels, we say that x and Y

are d-adjacent if there exists a pixel y in Y such that x and y are d-adjacent.
Let X ∈ P and let Y ⊆ X , Y �= ∅. We say that Y is d-connected in X if,

for any x, y ∈ Y , there exists a sequence 〈x0, . . . , x�〉 of pixels of X , such that
x0 = x, x� = y, and for any i ∈ {1, . . . , �}, xi is d-adjacent to xi−1. We say
that Y is a d-connected component of X if Y is d-connected in X and if it is
maximal for the inclusion, that is, we have Y = Z whenever Y ⊆ Z ⊆ X and Z
is d-connected in X .

Let X ∈ P and let x ∈ X . We denote by X the complementary set of X , that
is, X = P2 \X . We denote by T (x,X) the number of 0-connected components
of N ∗

0 (x)∩X . We denote by T (x,X) the number of 1-connected components of
N ∗

0 (x) ∩X that are 1-adjacent to x.
Intuitively, a pixel x in a set X of pixels is simple if its removal from X “does

not change the topology of X”. We recall here a definition of a simple pixel,
which is based on the following recursive definition.

Definition 1 ([5]). Let X ∈ P . We say that X is a reducible set if either:

i) X is composed of a single pixel, or
ii) there exists x ∈ X such that N ∗

0 (x) ∩ X is a reducible set and X \ x is a
reducible set.

x y

z t

(a) (b)

Fig. 1. (a): Four elements x, y, z, t of Z2. (b): A graphical representation of the set of
faces {{x, y, z, t}, {x, y}, {z}}: a pixel, an edge, and a point.
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Definition 2 ([5]). Let X ∈ P . A pixel x ∈ X is simple for X if N ∗
0 (x) ∩X is

a reducible set. If x is simple for X , we say that X \ x is an elementary thinning
of X .

Let X,Y ∈ P . We say that Y is a thinning of X if there exists a sequence
〈X0, . . . , X�〉 such that X0 = X , X� = Y , and for any i ∈ {1, . . . , �}, Xi is an
elementary thinning of Xi−1.

In [5] it has been shown that the above definition of a simple pixel is equivalent
to a definition based on the notion of collapse [24], this operation being a discrete
analogue of a continuous deformation (a homotopy). Furthermore, the following
proposition, which is a straightforward consequence of Prop. 8 [5], shows that
definition 2 leads to a characterization of simple pixels which is equivalent to
previously proposed ones (see e.g. [14]).

Proposition 3. Let X ∈ P and let x ∈ X . The pixel x is simple for X if and
only if T (x,X) = T (x,X) = 1.

Now, we are ready to give a short introduction to the framework of critical
kernels [3], which is to our knowledge the most powerful framework to study
and design parallel topology-preserving algorithms in discrete spaces. We limit
ourselves to a minimal yet sufficient set of notions, interested readers may refer
to [3, 4, 5] for a more complete presentation.

Let C ∈ P , let d ∈ {0, 1, 2}. We say that C is a d-clique, or simply a clique,
if ∩{x ∈ C}, the intersection of all pixels in C, is a d-face.

Let X ∈ P and let C ⊆ X be a clique. We say that C is essential for X if we
have D = C whenever D is a clique such that:
i) C ⊆ D ⊆ X , and
ii) ∩{x ∈ D} = ∩{x ∈ C}.
Remark that, if C is composed of a single pixel (i.e. C is a 2-clique), then C is
necessarily essential.

Definition 4 ([5]). Let S ∈ P . The K-neighborhood of S, written K(S), is the set
made of all pixels that are 0-adjacent to each pixel in S. We set K∗(S) = K(S)\S.

Notice that we have K(S) = N0(x) if and only if S is made of a single pixel x.

Definition 5 ([5]). Let X ∈ P and let C be a clique that is essential for X . We
say that the clique C is regular for X if K∗(C) ∩ X is a reducible set. We say
that C is critical for X whenever C is not regular for X .

Remark that, if C is a singleton {x}, the clique C is regular whenever x is simple.
The following result is a consequence of a general theorem which holds for

complexes of arbitrary dimension (see [3], Th. 4.2).

Theorem 6 ([5]). Let X ∈ P and let Y ⊆ X . If any clique that is critical for
X contains at least one pixel of Y , then Y is a thinning of X .

Our goal is to define a subset of an object X that contains at least one pixel of
each critical clique. We also want this subset to be as small as possible, in order
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to obtain an efficient thinning procedure. This motivates the following definition,
where the set K plays the role of a constraint set (that is, a set of pixels that
must be preserved from deletion, for other reasons than topology preservation).

Definition 7 ([5]). Let X ∈ P , let K ∈ P , and let C ⊆ X \K be a d-clique that
is critical for X , d ∈ {0, 1, 2}. We say that the clique C is d-crucial (or crucial)
for 〈X,K〉 if
i) d = 2, or
ii) d = 1 and C does not contain any non-simple pixel, or
iii) d = 0 and C does not contain any non-simple pixel, nor any pixel belonging
to a 1-clique which is crucial for 〈X,K〉.

The following corollary directly follows from theorem 6.

Corollary 8 ([5]). Let X ∈ P and let Y ⊆ X . If any clique that is crucial for
X contains at least one pixel of Y , then Y is a thinning of X .

The following proposition allows us to characterize crucial cliques by the use of
only two masks, which apply directly to any object represented by a set of pixels
(there is no need to consider the underlying cubical complex, nor to check the
condition of definition 5.)

b

f
D

a
C
e

B
D

A
C

M1 M0

Fig. 2. Masks for 1-crucial (M1) and 0-crucial (M0) pixels

The masks M1, M0 are given in figure 2. For the mask M1, we also consider
the mask obtained from it by applying a π/2 rotation: we get 3 masks (2 for M1,
and 1 for M0).

Definition 9. Let X ∈ P , and let M be a set of pixels of X .
1) The set M matches the mask M1 if:

i) M = {C,D}; and
ii) the pixels C,D are simple for X ; and
iii) the sets {a, b}∩X and {e, f}∩X are either both empty or both non-empty.

2) The set M matches the mask M0 if:
i) M = {A,B,C,D} ∩X ; and
ii) the pixels in M are simple and not matched by M1; and
iii) at least one of the sets {A,D}, {B,C} is a subset of M .

Proposition 10. Let X ∈ P , K ⊆ X , and let M be a set of pixels in X \K
that are simple for X .
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Then, M is a crucial clique for 〈X,K〉 if and only if M matches the mask M0

or the mask M1.

This proposition was proved with the help of a computer program, by exami-
nation of all possible configurations (see also [5] for similar characterizations in
3D).

3 Parallel Thinning for Grayscale Images

In this section, topological notions such as those of simple pixel, thinning, crucial
clique, are extended to the case of grayscale images. Then, we introduce our
parallel thinning algorithm and prove its topological properties.

A 2D grayscale image can be seen as a function F from P2 into Z. For each
pixel x of P2, F (x) is the gray level, or the luminosity of x. The support of F is
the set of pixels x such that F (x) > 0, denoted by Supp(F ). We denote by F
the set of all functions from P2 into Z that have a finite support.

Let F ∈ F and k ∈ Z, the cross-section (or threshold) of F at level k is
the set Fk composed of all pixels x ∈ P2 such that F (x) � k. Observe that a
cross-section is a set of pixels, that is, a binary image.

Intuitively, we say that a transformation of F preserves topology if topology
of all cross-sections of F is preserved. Hence, the “cross-section topology” of a
function (i.e., of a grayscale image) directly derives from the topology of binary
images [7]. Based on this idea, the following notion generalize the notion of
simple pixel to the case of functions.

Definition 11 ([7]). Let F ∈ F , x ∈ P2, and k = F (x). The pixel x is destruc-
tible (for F ) if x is simple for Fk. If x is destructible for F , we say that the map
F ′ defined by:

F ′(y) =

{
F (x)− 1 if y = x,

F (y) otherwise
is an elementary thinning of F .

Let F,G ∈ F . We say that G is a thinning of F if there exists a sequence
〈F0, . . . , F�〉 such that F0 = F , F� = G, and for any i ∈ {1, . . . , �}, Fi is an
elementary thinning of Fi−1.

Intuitively, the gray level of a destructible pixel may be lowered of one unit,
while preserving the topology of F .

We define also:
N−−(x) = {y ∈ N ∗

0 (x);F (y) < F (x)}

F−(x) =

{
max{F (y); y ∈ N−−(x)}, if N−−(x) �= ∅

F (x) otherwise.

It is easy to see that lowering a destructible pixel x down to the value F−(x) is a
topology-preserving transformation. Informally, it is due to the fact that in all the
cross-sections from the value F (x) down to the value F−(x)+1, the neighborhood
of x is the same. The following proposition shows that a more general property
holds for cliques that contain x. Let C be a clique and k ∈ Z, we denote by
Kk(C) the K-neighborhood of C in Fk. In addition, we set K∗

k(C) = Kk(C) \C.
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Proposition 12. Let F ∈ F , let x ∈ Supp(F ), let � = F (x). Let C be a clique
of F� such that x ∈ C (possibly C = {x}). Let k = F−(x).

For any j ∈ {k + 1, . . . , �}, we have K∗
j (C) = K∗

� (C).

The proof is quite easy and left to the reader as an exercice.
Thinning a grayscale image is a useful operation, with applications to image

segmentation, filtering, and restoration [7, 10]. Intuitively, this operation extends
the minima of an image while reducing its crests to thin lines. In [10], several
sequential algorithms to perform this operation have been proposed and studied.
Basically, these algorithms consider one destructible point at a time and lower it.
Their common drawback lies in the fact that arbitrary choices have to be made
concerning the order in which destructible points are considered. In consequence,
notions such as the result of a thinning step can hardly be defined with this
approach.

Here, we introduce a new thinning algorithm for grayscale images, that low-
ers points in parallel. Then, we prove that the result of this thinning, which
is uniquely defined, can also be obtained through a process that lowers one
destructible point at a time: this guarantees the topological soundness of our
algorithm.

The following algorithm consitutes one step of parallel thinning. This opera-
tion may be repeated a certain number of times, depending on the application,
or until stability if one wants to thin an image as much as possible. Furthermore,
we introduce as a parameter of the algorithm, a secondary grayscale image K
that plays the role of a constraint: whatever a point x, it cannot be lowered
below the level K(x).

Algorithm 1. ParGrayThinStep(F,K)

Data : F ∈ F , K ∈ F such that K � F
D = {x ∈ Supp(F ) | x is destructible for F and F (x) �= K(x)};22

R = {x ∈ D | x is crucial for 〈Fk,Kk〉, with k = F (x)};44

foreach x ∈ Supp(F ) do66

if x ∈ D \R then G(x) = max{F−(x),K(x)}; else G(x) = F (x);88

return G1010

The next proposition is an essential step for proving the topological soundness
of this algorithm (theorem 14).

Proposition 13. Let F ∈ F , let K ∈ F such that K � F .
Let G =ParGrayThinStep(F,K).
For any k ∈ Z, k > 0, if C is a critical clique of Fk, then Gk contains at least

one pixel of C.

Proof: Let C be a critical clique of Fk, note that C may be composed of only
one, non-simple pixel. If there exist two pixels x and y of C that are such that
F (x) > F (y), then G(x) � F−(x) � F (y). As F (y) � k, we have x ∈ G(k), thus
Gk contains at least one pixel of C.
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Now suppose that, for any x, y ∈ C, F (x) = F (y) = �, thus � � k (for C is a
clique of Fk), and C ⊆ F�.

Suppose that C ∩K� �= ∅. Since G(x) = max{F−(x),K(x)} (line 8), we have
G(x) � �, for any x ∈ C ∩K�. We have C ∩K� ⊆ G� and C ∩K� ⊆ Gk (since
G� ⊆ Gk, for � � k): Gk contains at least one pixel of C.

In the sequel, we suppose that C ∩K� = ∅.
The set K∗

k(C) is not reducible, for C is a critical clique of Fk. We also remark
that C is necessarily an essential clique for F�.

1) Suppose that K∗
� (C) is not reducible. This implies that C is a critical clique

of F�. By definition of a crucial pixel, there exists at least one pixel x of C that
is crucial for F� (and, by consequence, for 〈F�,K�〉). In this case, we have x ∈ R
(line 4), hence G(x) = F (x) (line 8), and we have x ∈ G� and x ∈ Gk.

2) Suppose that K∗
� (C) is reducible, thus C ⊆ D\R (line 4). This implies that

K∗
� (C) �= K∗

k(C), and that there exists x ∈ K∗
k(C), x �∈ K∗

� (C). Thus, we have
F (x) � k and F (x) < �. If y ∈ C, then F−(y) � F (x) � k. Hence G(y) � k,
and C ⊆ Gk. �

Based on the above property, we can now prove the following theorem, which is
the main result of this article. Intuitively, it assesses that algorithm ParGray-
ThinStep is topology-preserving, in the sense of cross-section topology.

Theorem 14. Let F ∈ F , let K ∈ F such that K � F .
Let G =ParGrayThinStep(F,K).
Then, G is a thinning of F .

Proof: Let M = max{F (x) | x ∈ Supp(F )}, m = min{F (x) | x ∈ Supp(F )}. For
any k ∈ {m, . . . ,M}, we define the map H(k) as follows:

For any x ∈ Supp(F ), H(k)(x) =

{
G(x) if G(x) � k,

min{F (x), k} otherwise.

By construction, we have H(M) = F , H(m) = G, and for any k ∈ {m, . . . ,M},
we have H

(k)
k = Fk.

Let C be any critical clique ofH
(k)
k . By proposition 13, Gk contains at least one

pixel of C. We can see that G � H(k−1) (indeed G � H(j), for any j), hence Gk ⊆
H

(k−1)
k and H

(k−1)
k contains at least one pixel of C. Thus by theorem 6, H

(k−1)
k is

a thinning of H
(k)
k . In other words, there exists a sequence of elementary (binary)

thinnings from H
(k)
k to H

(k−1)
k . By construction, to this sequence corresponds a

sequence of elementary (grayscale) thinnings from H(k) to H(k−1). Thus H(k−1)

is a thinning of H(k) for any k ∈ {m+1, . . . ,M}, hence G = H(m) is a thinning
of F = H(M). �
Remark: proposition 13, theorem 14 and their proofs hold whatever the (finite)
dimension of the space.
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4 Illustration and Applications

Figure 3 presents an example of gray level thinning. We have a gray level image
with 4 dark minima separated by lighter borders, as well as 3 maxima in (a).
After one iteration of symmetric parallel thinning, we see in (b) that the “width
of the borders” has been reduced. The image in (c) is obtained after 3 iterations,
when stability is achieved. We note that all the 4 minima and the 3 maxima are
preserved at their original height. The minimal height of the borders separating
the minima is also preserved but these borders are thinner and the minima are
larger.

However, the borders and the maxima can be further thinned by a variant
of our algorithm, called asymmetric parallel thinning. The three maxima in
(c), for example, correspond to crucial cliques and are completely preserved by
the symmetric thinning algorithm. The variant consists of lowering, in such a
configuration, all the points but one. A precise statement and validation of this
algorithm will appear in an extended version of this article.

The result of asymmetric parallel thinning applied to (c) is shown in (d). We
see that the borders are now even thinner, and each maximum is now reduced
to a peak point.
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thinning

Fig. 3. Gray scale thinning

The gray scale thinning can be used to postpone the binarization process nec-
essary in many applications to obtain a skeleton. This approach allows further
processing steps in the richer gray scale space before transforming the image to
the more constrained binary image space. In the rest of this section, we show
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(a) : fingerprint (b) : thinning of (a) (inverted)

(c) : crests of (b) with contrast 0
(binary)

(d) : crests of (b) with contrast 50
(binary)

Fig. 4. Fingerprint grayscale thinning and skeleton extraction

(a) : human retina (b) : thinning of (a)

(c) : characters (d) : thinning of (c)

Fig. 5. Gray scale thinning applications

three examples of applications where grayscale skeletonization can be preferred
to binary skeletonization [23, 1, 9, 13]: fingerprint analysis, medical image pro-
cessing and optical character recognition.

Many fingerprint analysis systems use skeletonization as an essential step.
Usually, the fingerprint image is binarized before skeletonization. Here, we present
a way to obain a (binary) skeleton without a prior binarization of the image
(see figure 4). After a grayscale thinning (b), we use the remaining gray scale
information to select robust crest points (c) having high contrast with their
background (d).
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The crest points are formally defined as follows. Let α be an integer, we say
that a point x is a crest point with contrast α for an image F if there exists a level
k such that T (x, Fk) � 2, and such that k −max{F (y), y ∈ Fk ∩ N ∗

0 (x)} � α.
For example in figure 3(d), the points at levels 8 and 9 are not crest points with
contrast α = 10 for example, but they are crest points with contrast α = 2. In
figure 5(d) we show the crest points with contrast α = 50. As we can see the
resulting skeleton is free of spurious branches and is well centered.

We illustrate two other applications in figure 5. The first is the thinning of a
vascular network in an image of a human retina. The vessels correspond to the
lighter pixels in figure 5(a). After the gray scale thinning, we obtain the image in
(b). A second application is the thinning of scanned characters shown in figures
5(c) and (d).

5 Conclusion

In this paper, we introduced a parallel thinning algorithm and proved its topo-
logical soundness, using some properties issued from the framework of critical
kernels. We also sketched some possible applications, in areas where the ben-
efits of avoiding segmentation prior to skeletonization have been pointed out
by several authors. The perspectives of this work include: the analysis of the
computational cost of our algorithm, both in theory and in practice; the intro-
duction and study of an asymmetric parallel thinning algorithm, evoked in the
previous section; the introduction and study of a faster algorithm dedicated to
the case of ultimate thinning; the validation of this approach by its evaluation
in the context of a real-world application. These items will be developped in a
forthcoming paper.
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Abstract. We propose new axioms relative to combinatorial topology.
These axioms are settled in the framework of completions which are
inductive properties expressed in a declarative way, and that may be
combined.

We introduce several completions for describing dyads. A dyad is a
pair of complexes which are, in a certain sense, linked by a “relative
topology”.

We first give some basic properties of dyads, then we introduce a
second set of axioms for relative dendrites. This allows us to establish
a theorem which provides a link between dyads and dendrites, a den-
drite is an acyclic complex which may be also described by completions.
Thanks to a previous result, this result makes clear the relation between
dyads, relative dendrites, and complexes which are acyclic in the sense
of homology.

Keywords: Acyclic complexes, Combinatorial topology, Simplicial Com-
plexes, Collapse, Completions.

1 Introduction

Simple homotopy plays a fundamental role in combinatorial topology [1–7]. It
has also been shown that the collapse operation is fundamental to interpret
some notions relative to homotopy in the context of computer imagery [8–10],
see also [11–13].

In this paper, we further investigate an axiomatic approach related to simple
homotopy. This approach has been introduced in [14] where the notion of a
dendrite was presented through two simple axioms. A dendrite is an acyclic
object. A theorem asserts that an object is a dendrite if and only if it is acyclic
in the sense of homology.

Here, we present new axioms for describing dyads. Intuitively, a dyad is a
couple of objects (X,Y ), with X ⊆ Y , such that the cycles of X are “at the right
place with respect to the ones of Y ”. Let us consider Fig. 1, where an object
X , and two objects Y ⊆ X , Z ⊆ X are depicted. We see that it is possible to
continuously deform Y onto X , this deformation keeping Y inside X . Thus, the
pair (Y,X) is a dyad. On the other hand, Z is homotopic to X , but Z is not “at
the right place”, therefore (Z,X) is not a dyad.
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project.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 83–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



84 G. Bertrand

X Y Z

Fig. 1. An object X (an annulus), and two objects Y ⊆ X, Z ⊆ X (two simple closed
curves). The pair (Y,X) is a dyad, while (Z,X) is not.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sec. 2). Then, we recall some basic facts relative to the
notion of a completion (Sec. 3), completions will be used as a language for
describing our axioms. We also recall the definition of a dendrite (Sec. 4). In
the two following sections we introduce new axioms for presenting the notion
of a dyad (Sec. 5), and the notion of a relative dendrite (Sec. 6). In Sec. 7, we
give a theorem (Th. 4) which makes clear the link between dyads and dendrites.
Thanks to a previous result, this result makes clear the relation between dyads,
relative dendrites, and complexes which are acyclic in the sense of homology.

The paper is self contained. In particular, almost all proofs are included.

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is the
complex X− = {y ⊆ x | x ∈ X}. The family X is a (finite simplicial) complex
if X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X . A facet of X
is a simplex of X which is maximal for inclusion.

A simplicial subcomplex of X ∈ S is any subset Y of X which is a simplicial
complex. If Y is a subcomplex of X , we write Y � X .

Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number of
its elements minus one. The dimension of X , written dim(X), is the largest
dimension of its simplices, the dimension of ∅ is defined to be −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty facet x.
We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all cells. A cell
α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. We say that
X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if X ∩ Y = ∅. Thus,
X and Y are disjoint if and only if X ∩ Y = ∅ or X ∩ Y = {∅}.

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.

Important Convention. In this paper, if X,Y ∈ S, we implicitly assume that
X and Y have disjoint ground sets whenever we write XY .
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Let A ∈ C and X � A. The dual of X for A is the simplicial complex,
written X∗

A, such that X∗
A = {x ∈ A | (A \ x) �∈ X}.

We have ∅∗A = A and {∅}∗A = A◦, and, for any A ∈ C, we have the following:
- If X � A, then (X∗

A)
∗
A = X .

- If X � A, Y � A, then (X ∪ Y )∗A = X∗
A ∩ Y ∗

A and (X ∩ Y )∗A = X∗
A ∪ Y ∗

A .

3 Completions

We give some basic definitions for completions, they will allow us to formulate
our axioms as well as to combine them. A completion may be seen as a rewriting
rule which permits to derive collections of sets. See [14] for more details.

Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 2S, thus K ⊆ 2S× 2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.

Let 〈K〉 be a property which depends on K. We say that 〈K〉 is a completion
(on S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is an arbitrary finitary binary relation on 2S.
If 〈K〉 is a property which depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1. [14] Let 〈K〉 be a completion on S and let X ⊆ S. There exists,
under the subset ordering, a unique minimal collection which contains X and
which satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique minimal
collection which contains X and which satisfies 〈K〉.

Let 〈K〉 be a completion which is expressed as the above property 〈K〉. By
a fixed point property, the collection 〈X; K〉 may be obtained by starting from
K = X, and by iteratively adding to K, until idempotence, all the sets G such
that (F,G) ∈ K and F ⊆ K (see [14]).

Let 〈K〉 and 〈Q〉 be two completions on S. It may be seen that 〈K〉 ∧ 〈Q〉
is a completion, the symbol ∧ standing for the logical “and”. In the sequel of
the paper, we write 〈K,Q〉 for 〈K〉 ∧ 〈Q〉. Also, if X ⊆ S, the notation 〈X; K,Q〉
stands for the smallest collection which contains X and which satisfies 〈K〉∧〈Q〉.

Example. Let us consider the collection S = S. Thus, K denotes an arbitrary
collection of simplicial complexes. We define the property 〈Υ 〉 as follows:
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T �= {∅}. 〈Υ 〉
Let K be the binary relation on 2S such that (F,G) ∈ K iff there exist S, T ∈ S,
with F = {S, T }, G = {S ∪ T }, and S ∩ T �= {∅}. We see that K is finitary
and that 〈Υ 〉 may be expressed as the property 〈K〉. Thus 〈Υ 〉 is a completion.
Now, let us consider the collection Π = 〈C;Υ 〉. It may be checked that Π is
precisely the collection of all simplicial complexes which are (path) connected
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(see also [17] where the property 〈Υ 〉 is used in a different context). Having in
mind the above iterative procedure, 〈C, Υ 〉 may be seen as a dynamic structure
where the completion 〈Υ 〉 acts as a generator, which, from C, makes it possible
to enumerate all finite connected simplicial complexes.

4 Dendrites

The notion of a dendrite was introduced in [14] as a way for defining a remarkable
collection made of acyclic complexes.
In the rest of the paper, K will denote an arbitrary subcollection of S.

Definition 1. We define the two completions on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
We set R = 〈C;D1〉 and D = 〈C;D1,D2〉, thus we have R ⊆ D.
Each element of R is a ramification and each element of D is a dendrite.

Let us recall some basic definitions relative to simple homotopy [1], note that
these notions may also be introduced by the means of completions [14].

Let X,Y ∈ S and x, y be two distinct faces of X . If y is the only face of X
which contains x, then Y = X\{x, y} is an elementary collapse of X . We say that
X collapses onto Y , if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X ,
Xk = Y , and Xi is an elementary collapse of Xi−1, i ∈ [1, k]. The complex X
is collapsible if X collapses onto ∅. We say that X is (simple) homotopic to Y
if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y , and either
Xi is an elementary collapse of Xi−1, or Xi−1 is an elementary collapse of Xi,
i ∈ [1, k]. The complex X is (simply) contractible if X is simple homotopic to ∅.

For example, if X is a tree, then X is collapsible, X is a dendrite, and also
a ramification. In fact, any collapsible complex is a ramification [6]. The Bing’s
house with two rooms [15] and the dunce hat [16] are classical examples of
complexes which are contractible but not collapsible. Both of them are dendrites.

In fact, it was shown [14] that any simply contractible complex is a dendrite.
Furthermore it was shown that:
- a complex is a dendrite if and only if it is acyclic in the sense of homology; and
- a complex is a dendrite if and only if its suspension is simply contractible.

5 Dyads

In this section, we introduce the notion of a dyad and give some propositions
which are necessary to establish one of the main result of the paper (Th. 4). See
the introduction and Fig. 1 for an intuitive presentation of a dyad. See also Fig.
2 for an illustration of the axiom 〈Ẍ1〉.

We set S̈ = {(X,Y ) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
In the sequel of the paper, K̈ will denote an arbitrary subcollection of S̈. Fur-
thermore, α and β will always denote vertices.
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R S T

Fig. 2. Two objects R, S which constitute a dyad (R,S). An object T which is glued
to S. The couple (S ∩ T, T ) is a dyad, thus, by axiom 〈Ẍ1〉, (R,S ∪ T ) is also a dyad.

Definition 2. We define three completions on S̈: For any (R,S) ∈ S̈, T ∈ S,
-> If (R,S) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S ∪ T ) ∈ K̈. 〈Ẍ1〉
-> If (R,S) ∈ K̈ and (R,S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ẍ2〉
-> If (R,S ∪ T ) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S) ∈ K̈. 〈Ẍ3〉
We set Ẍ = 〈C̈; Ẍ1, Ẍ2, Ẍ3〉. Each element of Ẍ is a dyad.

We introduce the following completions on S̈ (the symbols T̈, Ü, L̈ stand respec-
tively for “transitivity”, “upper confluence”, and “lower confluence”):
For any (R,S), (S, T ), (R, T ) ∈ S̈,
-> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈T̈〉
-> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈Ü〉
-> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈L̈〉

Considering complexes R,S, T such that R � S � T , we see that we obtain
directly 〈T̈〉, 〈Ü〉, 〈L̈〉 from 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉, respectively. Thus, we have:

Proposition 1. The collection Ẍ satisfies the properties 〈T̈〉, 〈Ü〉, and 〈L̈〉.

Proposition 2. For any X ∈ S, we have (∅, αX) ∈ Ẍ.

Proof. If X = ∅, then (∅, αX) ∈ Ẍ (since (∅, ∅) ∈ C̈). If X = {∅}, then (∅, αX) ∈
Ẍ (since αX = α and (∅, α) ∈ C̈). Suppose X �= ∅ and X �= {∅}.
i) If X has a single facet, then X ∈ C. Thus (∅, αX) ∈ Ẍ (since (∅, αX) ∈ C̈);
ii) If X has more than one facet, then there exists X ′, X ′′ ∈ S such that X =
X ′ ∪ X ′′, and Card(X ′) < Card(X), Card(X ′′) < Card(X). Suppose that
(∅, αX ′) ∈ Ẍ, (∅, αX ′′) ∈ Ẍ, and (∅, α(X ′ ∩ X ′′)) ∈ Ẍ. Then, by 〈Ü〉, we have
(α(X ′∩X ′′), αX ′′) ∈ Ẍ. Therefore, by 〈Ẍ1〉 (setting R = ∅, S = αX ′, T = αX ′′),
we have (∅, αX) ∈ Ẍ. The result follows by induction on Card(X). �

Proposition 3. For any X ∈ S, we have (X,X) ∈ Ẍ.

Proof. By Prop. 2, we have (∅, αX) ∈ Ẍ. Since Ẍ satisfies 〈Ü〉, it implies that
(αX,αX) ∈ Ẍ (setting R = ∅, and S = T = αX). By 〈Ẍ2〉 (setting R = S = αX ,
and T = X), this gives (αX ∩X,X) = (X,X) ∈ Ẍ. �
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We define two completions on S̈: For any S, T ∈ S,
-> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈Ÿ1〉
-> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ÿ2〉

We give, hereafter, a theorem (Th. 2) which provides another way to generate the
collection Ẍ. This theorem will be used in section 7 to establish a link between
dendrites and dyads. Before, we make a remark on a basic property of com-
pletions which allows one to establish the equivalence between two completions
structures. This property is necessary for the proof of Th. 2.

Remark 1. Let 〈K〉 be a completion on S and let X ⊆ S. It may be shown [14]
that we have 〈X; K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satisfies 〈K〉}. Thus, if a
given collection Y ⊆ S is such that X ⊆ Y and Y satisfies 〈K〉, then we have
necessarily 〈X; K〉 ⊆ Y.

Theorem 2. We have Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.

Proof. We set Ẍ′ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉. As a consequence of Prop. 3, we can
obtain 〈Ÿ1〉 and 〈Ÿ2〉 from 〈Ẍ1〉 and 〈Ẍ2〉, respectively (setting R = S). The
collection Ẍ also satisfies the properties 〈T̈〉, 〈Ü〉, 〈L̈〉 (Prop. 1). Thus, since
C̈ ⊆ Ẍ, we have Ẍ′ ⊆ Ẍ (see remark 1). Now, let (R,S) ∈ S̈ and T ∈ S:
- Suppose (R,S) ∈ Ẍ′ and (S∩T, T ) ∈ Ẍ′. Then, by 〈Ÿ1〉, we have (S, S∪T ) ∈ Ẍ′.
Therefore, by 〈T̈〉, we have (R,S ∪ T ) ∈ Ẍ′,
- Suppose (R,S) ∈ Ẍ′ and (R,S ∪ T ) ∈ Ẍ′. Then, by 〈Ü〉, we have (S, S ∪ T )
∈ Ẍ′. Therefore, by 〈Ÿ2〉, we have (S ∩ T, T ) ∈ Ẍ′,
- Suppose (R,S ∪ T ) ∈ Ẍ′ and (S ∩ T, T ) ∈ Ẍ′. Then, by 〈Ÿ1〉, (S, S ∪ T ) ∈ Ẍ′.
Therefore, by 〈L̈〉, we have (R,S) ∈ Ẍ′.
It follows that Ẍ′ satisfies the three properties 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉. Thus, since
C̈ ⊆ Ẍ′, we have Ẍ ⊆ Ẍ′ (see remark 1). �

6 Relative Dendrites

In this section, we introduce new axioms for defining the notion of a relative
dendrite. We will see in the sequel (next section) that these axioms provide
another way to describe dyads. We set C̈+ = C̈ ∪ {({∅}, {∅})}.

Definition 3. We define two completions on S̈: For any (S, T ), (S′, T ′) ∈ S̈,
-> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈Z̈1〉
-> If (S, T ), (S′, T ′), (S ∪ S′, T ∪ T ′) ∈ K̈, then (S ∩ S′, T ∩ T ′) ∈ K̈. 〈Z̈2〉
Each element of 〈C̈+; Z̈1, Z̈2〉 is called a relative dendrite.

In Fig. 3, two examples of two couples (S, T ), (S′, T ′) ∈ S̈ which satisfy the
conditions of 〈Z̈1〉 are given. Thus, in these two examples, (S ∪ S′, T ∪ T ′) is a
relative dendrite.

In Fig. 3 (a), (S ∪S′, T ∪S′) and (T ∪S′, T ∪ T ′) are dyads (this fact may be
seen using the forthcoming Prop. 9). Then, using 〈T̈〉, it is possible to generate
(S ∪ S′, T ∪ T ′) with the axioms of a dyad.
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Fig. 3. (a) and (b): Two examples of two couples (S, T ), (S′, T ′) ∈ S̈ which satisfy the
conditions of 〈Z̈1〉 (we consider triangulations of these objects). In (a), S and S′ are
two simple open curves, S ∩S′ is a complex made of two vertices. In (b), S and S′ are
also two simple open curves, but S ∩ S′ is a complex made of a segment.

Now, we observe that, in Fig. 3 (b), (S ∪ S′, T ∪ S′) is not a dyad (it can be
checked that X and Y must have the same Euler characteristic whenever (X,Y )
is a dyad). Thus, it is not possible to generate, in a straightforward manner, the
relative dendrite (S ∪ S′, T ∪ T ′) with the axioms of a dyad.

Remark 2. As a direct consequence of the definitions of 〈Z̈1〉, 〈Z̈2〉, and the one
of a dendrite, we have 〈C̈; Z̈1, Z̈2〉 ⊆ {(X,Y ) ∈ S̈ | X ∈ D, Y ∈ D}. This fact
emphasizes the role of ({∅}, {∅}) in 〈C̈+; Z̈1, Z̈2〉.

Let (X,Y ) ∈ S̈. If α is a vertex such that αX ∩ Y = X , we say that αX ∪ Y
is a cone on (X,Y ), and we write αX ∪̈ Y for αX ∪ Y .

Proposition 4. Let Z ∈ S and let α be an arbitrary vertex. There exists a
unique couple (X,Y ) ∈ S̈ such that Z = αX ∪̈ Y .

Thus, by Prop. 4, if Z ∈ S and if α is an arbitrary vertex, the complexes X
and Y are specified whenever we write Z = αX ∪̈ Y . Note that we may have
α �� Z, in this case X = ∅ and Z = Y .

Proposition 5. Let Z,Z ′, Z ′′ ∈ S.
We set Z = αX ∪̈ Y , Z ′ = αX ′ ∪̈ Y ′, and Z ′′ = αX ′′ ∪̈ Y ′′.
1) If Z = Z ′ ∪ Z ′′, then X = X ′ ∪X ′′ and Y = Y ′ ∪ Y ′′;
2) If Z = Z ′ ∩ Z ′′, then X = X ′ ∩X ′′ and Y = Y ′ ∩ Y ′′.

Proof. The result follows from 1), 2), and Prop. 4.
1) If Z = Z ′ ∪ Z ′′, then Z = α(X ′ ∪ X ′′) ∪ (Y ′ ∪ Y ′′). Furthermore, since
(X ′ ∪ X ′′) ⊆ (Y ′ ∪ Y ′′) and since α is disjoint from Y ′ ∪ Y ′′, we have α(X ′ ∪
X ′′) ∩ (Y ′ ∪ Y ′′) = X ′ ∪X ′′.
2) Suppose Z = Z ′ ∩ Z ′′. Then Z = (αX ′ ∪ Y ′) ∩ (αX ′′ ∪ Y ′′) = α(X ′ ∩X ′′) ∪
(Y ′∩Y ′′)∪(αX ′∩Y ′′)∪(αX ′′∩Y ′). Since (αX ′∩Y ′′)∪(αX ′′∩Y ′) ⊆ Y ′∩Y ′′, we
have Z = α(X ′∩X ′′)∪(Y ′∩Y ′′). Furthermore, since (X ′∩X ′′) ⊆ (Y ′∩Y ′′) and
since α is disjoint from Y ′ ∩ Y ′′, we have α(X ′ ∩X ′′)∩ (Y ′ ∩ Y ′′) = X ′ ∩X ′′. �
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Theorem 3. Let (X,Y ) ∈ S̈. The couple (X,Y ) is a relative dendrite if and
only if αX ∪̈ Y is a dendrite.

Proof
1) If (X,Y ) ∈ C̈+, we see that αX ∪̈ Y is a ramification. Thus, αX ∪̈ Y is
a dendrite. Suppose R = αS ∪̈ T and R′ = αS′ ∪̈ T ′ are dendrites. Then, by
the very definition of a dendrite, R ∩ R′ is a dendrite if and only if R ∪ R′ is a
dendrite. Consequently, by Prop. 5, α(S∩S′) ∪̈ (T ∩T ′) is a dendrite if and only
if α(S ∪ S′) ∪̈ (T ∪ T ′) is a dendrite. By the preceding remarks, we may affirm,
by induction on 〈C̈+; Z̈1, Z̈2〉, that αX ∪̈ Y is a dendrite whenever (X,Y ) is a
relative dendrite.
2) Suppose Z = αX ∪̈ Y is a dendrite.
i) Suppose Z ∈ C. If X = ∅, we have (X,Y ) ∈ C̈. If X = {∅}, we must have
Y = {∅}, otherwise Z would not be connected, thus (X,Y ) ∈ C̈+. If X �= ∅ and
X �= {∅}, it may be seen that we must have X ∈ C and Y = X , thus (X,Y ) ∈ C̈.
ii) Suppose we have Z = Z ′∪Z ′′, with Z ′, Z ′′, Z ′∩Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′

and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∩ X ′′, Y ′ ∩ Y ′′) are relative
dendrites, then (X ′∪X ′′, Y ′ ∪Y ′′) is a relative dendrite (by 〈Z̈1〉), which means
that (X,Y ) is a relative dendrite (Prop. 5 (1)).
iii) Suppose we have Z = Z ′∩Z ′′, with Z ′, Z ′′, Z ′∪Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′

and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∪ X ′′, Y ′ ∪ Y ′′) are relative
dendrites, then (X ′∩X ′′, Y ′ ∩Y ′′) is a relative dendrite (by 〈Z̈2〉), which means
that (X,Y ) is a relative dendrite (Prop. 5 (2)).
By i), ii), and iii), we may affirm, by induction on 〈C;D1,D2〉, that (X,Y ) is a
relative dendrite whenever αX ∪̈ Y is a dendrite. �

7 Dyads and Dendrites

The goal of this section is to derive a theorem (Th. 4) which makes clear the
link between dyads and dendrites, this link is formulated with the notion of a
relative dendrite. The proof of the theorem is made possible mainly thanks to
the previous Th. 2 and 3 and the following propositions.

In the following proposition, and by the convention introduced in Section 2,
the notation αA implicitly means that α is disjoint from the cell A. Thus, since
X � Y � A, αX ∪ Y is a cone on (X,Y ) and αY ∗

A ∪X∗
A is a cone on (Y ∗

A , X∗
A).

Proposition 6. If A ∈ C, and X � Y � A, then (αX ∪̈ Y )∗αA = αY ∗
A ∪̈ X∗

A.

Proof. We have (αX ∪ Y )∗αA = (αX)∗αA ∩ Y ∗
αA. But (αX)∗αA = αX∗

A (by Cor.
1 of [14]) and Y ∗

αA = αY ∗
A ∪ A (by Cor. 2 of [14]). Thus, (αX ∪ Y )∗αA = αX∗

A ∩
(αY ∗

A ∪ A) = αY ∗
A ∪X∗

A (since Y ∗
A � X∗

A and X∗
A � A). �

Proposition 7. Let (X,Y ) be a relative dendrite. We have X ∈ D if and only
if Y ∈ D.
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Proof. Let (X,Y ) ∈ S̈ such that αX ∪̈ Y is a dendrite (see Th. 3).
i) Suppose Y ∈ D. Since αX ∈ D (Prop. 6 of [14]) then, by D2, we have αX∩Y =
X ∈ D.
ii) Let A ∈ C such that Y � A, we suppose that α is disjoint from A. Suppose
X ∈ D. Thus, X∗

A ∈ D and (αX∪Y )∗αA ∈ D (Prop. 11 of [14]). But (αX∪Y )∗αA =
αY ∗

A∪X∗
A (Prop. 6). Since αY ∗

A ∈ D, by D2, it implies that αY ∗
A ∩X∗

A = Y ∗
A ∈ D,

thus Y ∈ D (Prop. 11 of [14]). �

Lemma 1. The collection 〈C̈+; Z̈1, Z̈2〉 satisfies 〈Ÿ1〉 and 〈Ÿ2〉.

Proof
i) In 〈Z̈1〉, if we replace S by S ∩ T , S′ by S, and T ′ by S, we obtain:
-> If (S ∩ T, T ), (S, S), (S ∩ T, S ∩ T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈.
ii) In 〈Z̈2〉, if we replace T by S ∪ T , S′ by T , and T ′ by T , we obtain:
-> If (S, S ∪ T ), (T, T ), (S ∪ T, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈.
iii) If X ∈ S, then αX ∪̈ X = αX is a dendrite. Thus, by Th. 3, (X,X) is
a relative dendrite. In consequence, if K̈ is the collection made of all relative
dendrites, we obtain 〈Ÿ1〉 and 〈Ÿ2〉 from i) and ii), respectively. �

The following is easy to check.

Proposition 8. Let X,Y ∈ S.
1) If X,Y ∈ D, then X ∩ Y ∈ D if and only if X ∪ Y ∈ D.
2) If X,X ∩ Y ∈ D, then Y ∈ D if and only if X ∪ Y ∈ D.
3) If X,X ∪ Y ∈ D, then Y ∈ D if and only if X ∩ Y ∈ D.
4) If X ∩ Y,X ∪ Y ∈ D, then X ∈ D if and only if Y ∈ D.

Lemma 2. The collection 〈C̈+; Z̈1, Z̈2〉 satisfies 〈T̈〉, 〈Ü〉, and 〈L̈〉.

Proof. Let (R,S) ∈ S̈ and (S, T ) ∈ S̈, and let α, β be two distinct vertices
disjoint from T . Note that αR∪S � αR∪T . We set U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ).
i) We observe that U = (αβR) ∪ (βS ∪ T ). We have αβR ∈ D, and (αβR) ∩
(βS ∪ T ) = βR ∈ D. Thus, by Prop. 8 (2), U ∈ D if and only if βS ∪ T ∈ D, i.e.,
if and only if (S, T ) is a relative dendrite (Th. 3).
ii) Suppose (S, T ) is a relative dendrite. By i) and Th. 3, (αR ∪̈ S, αR ∪̈ T )
is a relative dendrite. By Prop. 7, αR ∪̈ S is a dendrite if and only if αR ∪̈ T
is a dendrite. By Th. 3, it follows that (R,S) is a relative dendrite if and only
if (R, T ) is a relative dendrite. This fact allows us to affirm that the collection
〈C̈+; Z̈1, Z̈2〉 satisfies 〈T̈〉 and 〈L̈〉.
iii) Suppose that (R,S) and (R, T ) are relative dendrites, thus αR ∪̈ S and
αR ∪̈ T are dendrites (Th. 3). We have U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ) and
β(αR ∪̈ S)∩ (αR ∪̈ T ) = αR ∪̈ S. Thus, we see that, by D1, the complex U is a
dendrite. By i), it follows that (S, T ) is a relative dendrite. This last fact allows
us to affirm that the collection 〈C̈+; Z̈1, Z̈2〉 satisfies 〈Ü〉. �

Lemma 3. If X ∈ D, then (∅, X) ∈ Ẍ.
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Proof
i) If X ∈ C, then (∅, X) ∈ C̈. Thus (∅, X) ∈ Ẍ.
ii) Let S, T ∈ D such that S∩T ∈ D. By 〈D1〉, we have S∪T ∈ D. Suppose (∅, S),
(∅, T ), (∅, S ∩ T ) ∈ Ẍ. We have (S ∩ T, T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S, S ∪ T ) ∈ Ẍ (Th. 2 and 〈Ÿ1〉). Then (∅, S ∪ T ) ∈ Ẍ (Prop. 1 and 〈T̈〉).
iii) Let S, T ∈ D such that S ∪ T ∈ D. By 〈D2〉, we have S ∩ T ∈ D. Suppose
(∅, S), (∅, T ), (∅, S∪T ) ∈ Ẍ. We have (S, S∪T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S ∩ T, T ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Then (∅, S ∩ T ) ∈ Ẍ (Prop. 1 and 〈L̈〉).
By the very definition of a dendrite, the result follows by induction. �

The following theorem is one of the main results of the paper. Intuitively, it
asserts that, if (X,Y ) is a dyad, then we cancel out all cycles of Y (i.e., we
obtain an acyclic complex), whenever we cancel out those of X (by the way of
a cone, see Th. 3). Furthermore, Th. 4 asserts that, if we are able to cancel all
cycles of Y by such a way, then (X,Y ) is a dyad.

Theorem 4. Let (X,Y ) ∈ S̈. We have (X,Y ) ∈ Ẍ if and only if (X,Y ) is a
relative dendrite.

Proof
i) Suppose (X,Y ) is a relative dendrite, i.e., (X,Y ) ∈ 〈C̈+; Z̈1, Z̈2〉. By Th.
3, we have αX ∪̈ Y ∈ D and, by Lemma 3, (∅, αX ∪̈ Y ) ∈ Ẍ. We also have
(∅, αX) ∈ Ẍ (Prop. 2). It means that (αX,αX ∪̈ Y ) ∈ Ẍ (Prop. 1 and 〈Ü〉). We
obtain (αX ∩ Y, Y ) = (X,Y ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Thus, 〈C̈+; Z̈1, Z̈2〉 ⊆ Ẍ.
ii) The collection 〈C̈+; Z̈1, Z̈2〉 contains C̈ and satisfies 〈Ÿ1〉, 〈Ÿ2〉, 〈T̈〉, 〈Ü〉, and
〈L̈〉 (Lemmas 1 and 2). Thus 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉 ⊆ 〈C̈+; Z̈1, Z̈2〉 (see remark 1).
By Th. 2, the result is Ẍ ⊆ 〈C̈+; Z̈1, Z̈2〉. �

Trivially, we have X ∈ D if and only if α∅ ∪̈ X ∈ D. Thus, by Th. 3, X ∈ D if
and only if (∅, X) is a relative dendrite. It follows that, as a direct consequence
of Th. 4, we have the following.

Corollary 1. Let X ∈ S. We have X ∈ D if and only if (∅, X) ∈ Ẍ.

The following fact will be used for the illustration of the next section.

Proposition 9. Let X,Y, Z ∈ S such that X � Y � Z.
If Y collapses onto X, then (X,Z) ∈ Ẍ if and only if (Y, Z) ∈ Ẍ.
If Z collapses onto Y , then (X,Y ) ∈ Ẍ if and only if (X,Z) ∈ Ẍ.

Proof. If Y collapses onto X , then it may be seen that U ′ = αY ∪̈ Z collapses
onto V ′ = αX ∪̈ Z. Thus, U ′ is simple homotopic to V ′. If Z collapses onto
Y , then U ′′ = αX ∪̈ Z collapses onto V ′′ = αX ∪̈ Y . Again, U ′′ is simple
homotopic to V ′′. The result follows from Th. 3, Th. 4, and from Prop. 12 of
[14]. This last proposition ensures that a complex S is a dendrite whenever it is
simple homotopic to a dendrite. �
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Fig. 4. (a): A triangulation D of the dunce hat, vertices with the same label have to be
identified, (b): The complex X = D \ {1, 5, 6} and the complex Y 
 X (highlighted),
(c): The complex Z (highlighted) collapses onto Y , (d): The complex Z collapses onto
T (highlighted), (e) and (f): The first steps of a collapse sequence of X onto T .

8 The Dunce Hat

We give, in this section, an illustration of the previous notions. We consider the
complex D which is the triangulation of the dunce hat [16] depicted in Fig. 4 (a).
As mentioned before, the dunce hat is contractible but not collapsible. In fact,
it is possible to find a collapsible complex which collapses onto D (e.g., see Th.1
of [16]). This shows that D is a dendrite. In the following, we will see that it
is possible to recognize D as a dendrite without considering any complex larger
than D (by using only “internal moves”).

We consider the complex X = D \ {1, 5, 6}, we denote by C the cell whose
facet is {1, 5, 6}, and by Y the complex Y = C ∩ X , see Fig. 4 (b). We will
see below that (Y,X) ∈ Ẍ. By 〈Ÿ1〉, this fact implies (C,C ∪ X) ∈ Ẍ, i.e.,
(C,D) ∈ Ẍ. Since (∅, C) ∈ Ẍ, by 〈T̈〉, this implies (∅, D) ∈ Ẍ. Thus, by Cor. 1
of Th. 4, we get D ∈ D. Now, we check that (Y,X) ∈ Ẍ using Prop. 9:
- The complex Z of Fig. 4 (c) collapses onto Y , thus (Y,X) ∈ Ẍ if (Z,X) ∈ Ẍ;
- Z collapses onto the complex T of Fig. 4 (d), thus (Z,X) ∈ Ẍ if (T,X) ∈ Ẍ;
- It could be checked that X collapses onto T , the first steps of a collapse sequence
are given 4 (e) and (f). Thus, since (T, T ) ∈ Ẍ, we have (T,X) ∈ Ẍ.

9 Conclusion

We introduced several axioms for describing dyads, i.e., pair of complexes which
are, in a certain sense, linked by a “relative topology”. Our two main results are
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theorems 3 and 4 which make clear the links between dyads and dendrites, i.e.,
between dyads and acyclic complexes.

We proposed an approach which is exclusively based on discrete notions and
also, by the means of completions, on constructions on sets.

In the future, we will further investigate the possibility to develop a discrete
framework related to combinatorial topology.
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Abstract. Recent work of Brlek et al. gives a characterization of digi-
tally convex polyominoes using combinatorics on words. From this work,
we derive a combinatorial symbolic description of digitally convex poly-
ominoes and use it to analyze their limit properties and build a uniform
sampler. Experimentally, our sampler shows a limit shape for large digi-
tally convex polyominoes.

Introduction

In discrete geometry, a finite set of unit square cells is said to be a digitally
convex polyomino1 if it is exactly the set of unit cells included in a convex region
of the plane. We only consider digitally convex polyominoes up to translation.
The perimeter of a digitally convex polyomino is that of the smallest rectangular
box that contains it.

Brlek et al. [7] described a characterization of digitally convex polyominoes, in
terms of words coding their contour. In this paper, we reformulate this character-
ization in the context of constructible combinatorial classes and we use it to build
and analyze an algorithm to randomly sample digitally convex polyominoes.

Our algorithm, based on a model of parametrized samplers, called Boltzmann
samplers [8], draws digitally convex polyominoes at random. Although all possi-
ble digitally convex polyominoes have positive probability, the perimeter of the
randomly generated polyomino being itself random, two different structures with
the same perimeter appear with the same probability. Moreover, an appropriate
choice of the tuning parameter allows the user to adjust the random model, typ-
ically in order to generate large structures. We present also in this paper how to
tune this parameter.

1 The usual definition of a polyomino requires the set to be connected, whereas dig-
itally convex sets may be disconnected. However, one can coherently define some
polygon as the boundary of any digitally convex polyomino; in the case of discon-
nected sets, this boundary will not be self-avoiding.
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c© Springer-Verlag Berlin Heidelberg 2013
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The Boltzmann model of random sampling, as introduced in [8], is a general
method for the random generation of discrete combinatorial structures where,
for some real parameter x > 0, each possible structure γ, with (integer) size |γ|,
is obtained with probability proportional to x|γ|. A Boltzmann sampler for a
combinatorial class C is a randomized algorithm that takes as input a parameter
x, and outputs a random element of C according to the Boltzmann distribution
with parameter x.

Samples obtained via this generator suggested that large random quarters of
digitally convex polyominoes exhibit a limit shape. We identify and prove this
limit shape in Section 2

The first section is dedicated to introducing the characterization of Brlek et al
[7] in the framework of symbolic methods. In Section 2, we analyze asymptotic
properties of quarters of digitally convex polyominoes. Finally, we give in Sec-
tion 3 the samplers for digitally convex polyominoes and some analysis for the
complexity of the sampling. Due to the lack of space, all proofs are postponed.

1 Characterization of Digitally Convex Polygons

The goal of this section is to recall (without proofs) the characterization by
Brlek, Lachaud, Provençal, Reutenauer [7] of digitally convex polyominoes and
recast it in terms of the symbolic method. This characterization is the starting
point to efficiently sample large digitally convex polyominoes, and is thus needed
in the next chapters.

1.1 Digitally Convex Polyominoes

Definition 1. A digitally convex polyomino, DCP for short, is the set of all
cells of Z2 included in a bounded convex region of the plane.

Fig. 1. A few digitally convex polyominoes (in grey) of perimeter 24,26 and 16, and
their contour (in black)

A first geometrical characterization directly follows from the definition: a set of
cells of the square lattice P is a digitally convex polyomino if all cells included
in the convex hull of P is in P .

For our propose, a DCP will be rather characterized through its contour.
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Definition 2. The contour of a polyomino P is the closed non-crossing path on
the square lattice with no half turn allowed such that its interior is P . In the
case where P is not connected, we take as the contour, the only such path which
stays inside the convex hull of P .

We define the perimeter of P to be the length of the contour (note that, for dig-
itally convex poyominoes, it is equal to the perimeter of the smallest rectangular
box that contains P ).

The contour of DCP can be decomposed into four specifiable sub-paths through
the standard decomposition of polyominoes.

The standard decomposition of a polyomino distinguishes four extremal points:

– W is the lowest point on the leftmost side
– N is the leftmost point in the top side
– E is the highest point on the rightmost side
– S is the rightmost point on the bottom side

N

W

S

E

N

W

Fig. 2. A polyomino composed of 4 NW-convex. The W to N NW-convex path is coded
by w = 1110110101010001001.

The contour of a DCP is then the union of the four (clockwise) paths WN , NE,
ES and SW . Rotating the latter three paths by, respectively, a quarter turn, a
half turn, three quarter turn counterclockwise leaves all paths containing only
north and east steps; digital convexity is characterized by the fact that each
(rotated) side is NW-convex.

Definition 3. A path p is NW-convex if it begins and ends by a north step and
if there is no cell between p and its upper convex hull (see Fig. 2).

In the following, we mainly focus on the characterization and random sampling
of NW-convex paths.

1.2 Words

The characterization in [7] is based on combinatorics on words. Let us recall
some classical notations. We are interested in words on the alphabet {0, 1}.
Thus {0, 1}∗ is the set of all words, {0, 1}+ is the set of non-empty words.
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Each NW-path can be bijectively coded by a word w ∈ {0, 1}∗. From W to
N , the letter 0 encodes a horizontal (east) step and 1 a vertical (north) step (see
figure 2).

The idea is to decompose a NW-convex path w by contacts between w and
its convex hull.

Definition 4. Let p, q be two integers, with p ≥ 0 and q > 0. The Christoffel
word associated to p, q is the word which codes the highest path going from (0, 0)
to (p, q) while staying under the line going from (0, 0) to (p, q). A Christoffel
word is primitive if p and q are coprime.

(0, 0)

(5, 2)

Fig. 3. The Christoffel primitive word 0001001, of slope 2/5

Note that a Christoffel primitive word always ends with 1.

1.3 Symbolic Characterization of NW-Convex Paths

Let us recall in this section, two basic notions in analytic combinatorics: the
combinatorial classes and the enumerative generating functions.

A combinatorial class is a finite or countable set C, together with a size func-
tion |.| : C �→ N such that, for all n ∈ N, only a finite number cn of elements
of C have size n. The (ordinary) generating function C(z) for the class C is the
formal power series C(z) =

∑
n cnz

n =
∑

γ∈C z|γ|. If C(z) has a positive (pos-
sibly infinite) convergence radius ρ (which is equivalent to the condition that

lim c
1/n
n < ∞), standard theorems in analysis imply that the power series C(z)

converges and defines an analytic function in the complex domain |z| < ρ; here
we will only use the fact that C(z) is defined for real 0 < z < ρ.

Our sampler is based on the following decomposition theorem.

Theorem 1. [7] A word is NW-convex if and only if it is a sequence of Christof-
fel primitive words of decreasing slope, beginning with 1.

The reason of a NW-convex path to begin with a vertical step is to avoid half-
turn on the contour of a polyomino. Indeed, since all Christoffel primitive words
end with 1, this ensures compatibility with the standard decomposition (begin-
ning and ending on a corner). Since the Christoffel primitive words appear in
decreasing order, NW-convex paths can be identified with multisets of Christof-
fel primitive words, with the condition that the word 1 appears at least once
in the multiset (this condition can be removed by removing the initial vertical
step from NW-convex paths). This is the description we will use in what follows
next.
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The generating function of Christoffel primitive words, counted by their
lengths, is

∑
n≥1

ϕ(n)zn, with ϕ the Euler’s totient function. It follows [11, p. 29]

that the generating function of the class S of NW-convex paths, counted by

length, is S(z) =
∞∏
n=1

(1 − zn)−ϕ(n). More precisely, we can use the 3-variate

generating function S(z, h, v) = (1−zv)−1
∞∏
n=2

∏
p+q=n,p∧q=1

(1−znvphq)−1, to de-

scribe by [znhivj ]S(z, h, v) the number of NW-convex paths beginning in (0, 0)
and terminating in position (i, j).

2 Asymptotics for NW-Convex Paths and Its Limit
Shape

This section is dedicated to the analysis of some properties of NW-convex paths.
The main objective is to describe a limit shape for the normalized random NW-
convex paths. This is obtained in three steps. In the first one we extract the
asymptotic of NW-convex paths using a Mellin transform approach. In the sec-
ond one, using the same approach we prove that the asymptotic of the average
number of initial vertical steps of a NW-convex path is in O( 3

√
n). Then, using

some technical lemmas, we conclude with the fact that the limit shape is
√
2z−z

with 0 ≤ z ≤ 1/2. For more details, see [11].
The first step is to determine the Mellin transform of ln(S(e−t)) which is

easier than to obtain that the Mellin transform of S(z). After that it is quite
easy to compute the expansion for S(z) when z tends to 1.

Lemma 1. The Mellin transform associated with the series of irreducible dis-
crete segments is

M[ln(S(e−t))](s) =
ζ (s + 1) ζ (s− 1)Γ (s)

ζ (s)
,

where ζ(z) and Γ (z) denote the Riemann zeta function and the Gamma function,
respectively.

Using technical approach [10] following Mellin transform properties and Hay-
man’s method, we can extract from the lemma 1, the asymptotic growth of the
number of NW-convex paths of size n:

Proposition 1. For the number pNW (n) of NW-convex paths of size n, we have

pNW (n) ∼ αn−11/18 exp

(
βn2/3 + g

((
12ζ(3)

nπ2

)1/3
))

,

with g(t) =
∑

r t−rΓ (r)ζ(r + 1)ζ(r − 1) where r runs over the non-trivial zeros
of the Riemann zeta function and
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α =
1

6

25/9e
(5/2) ζ(3)−2 ζ′(−1)π2

π2 9
√

ζ (3)3
11
18

π
8
9

∼ 0.3338488807...

and β =
3

22/3

(
ζ(3)

ζ(2)

)1/3

=
2−1/334/3ζ(3)1/3

π2/3
∼ 1.702263426...

Remark 1. The contribution of g

((
12ζ(3)
nπ2

)1/3)
is a fluctuation of very small

amplitude. In particular, this contribution is imperceptible on the first 1000
coefficients.

Now, we focus on the study of the average number of initial vertical steps (which
corresponds to the size of the first block of 1 in its associated word) in a NW-
convex path.

Lemma 2. The average number of initial steps is equivalent to
3√
18π2n

6 3
√

ζ(3)
.

In particular, if we renormalize the NW-convex path by 1/n, the contribution
of the initial steps for the limit shape is null.

Now, we are interested in the average position of the terminating point of a
random NW-convex path. If we consider NW-convex path without their initial
vertical steps, then by symmetry, we can conclude that the average ending po-
sition is (xn ∼ n

2 , yn ∼
n
2 ). But by lemma 2 and the fact that the length of the

renormalized initial vertical steps is o(1), it follows that:

Lemma 3. The average position of the ending point of a random NW-convex
path of size n is (xn ∼ n

2 , yn ∼
n
2 ).

Following the same approach, with a little more work, we can prove that:

Proposition 2. The average abscissa of the point of slope x in a renormalized

by 1/n NW-convex path of size n is
1

2

(
1−

(
x

1 + x

)2
)

.

At this stage, to prove that the limit shape is deterministic, we need to show
that the standard deviation of the abscissa is in o(n). This proof is long and
technical, but follows the same way that we do for the expectation. We conclude

by solving the differential equation:

{
f (0) = 0, 2f (z) = 1− ( d

dz f(z))
2

(1+ d
dz f(z))

2

}
which

explains the fact that the slope of f(z) is x at the abscissa
1

2

(
1−

(
x

1 + x

)2
)

.

Consequently, we have:

Theorem 2. The limit shape for the renormalized by 1/n NW-convex path of
size n as n tends to the infinity is the curve of equation f(z) =

√
2z − z.
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3 Boltzmann Samplers for NW-Convex Paths

Boltzmann samplers have been introduced in 2004 by Duchon et al. [8] as a
general framework to generate uniformly at random specifiable combinatorial
structures. These samplers are very efficient, their expected complexity is typ-
ically linear. In comparison with the recursive method of sampling, the princi-
ple of Boltzmann samplers essentially deals with evaluations of the generating
function of the structures, and avoids counting coefficient (which need to be
pre-computed in the recursive method). Quite a few papers have been written
to extend and optimize Boltzmann samplers [13,2,5,4,6,1,3].

Consequently, we choose Boltzmann sampling for the class of digitally convex
polyominoes. After a short introduction to the method, we analyze the com-
plexity of the sampler. This part is based on an analysis by Mellin transform
techniques.

3.1 A Short Introduction to Boltzmann Samplers

Let us recall the definitions and the main ideas of Boltzmann sampling.

Definition 5. Let A be a combinatorial class and A(x) its ordinary generating
function. A (free) Boltzmann sampler with parameter x for the class A is a
random algorithm ΓxA that draws each object γ ∈ A with probability:

Px(γ) =
x|γ|

A(x)
.

Notice that this definition is consistent only if x is a positive real number taken
within the disk of convergence of the series A(x).

The great advantage of choosing the Boltzmann distribution for the output size
is to allow simple and automatic rules to design Boltzmann samplers from a
specification of the class.

Note that from free Boltzmann samplers, we easily define two variants: the
exact-size Boltzmann sampler and the approximate-size one, just by rejecting the
inappropriate outputs until we obtain respectively a targeted size or a targeted
interval of type [(1 − ε)n, (1 + ε)n]. In order to optimize this rejection phase, it
is crucial to tune efficiently the parameter x. A good choice is generally to take
the unique positive real solution xn (or an approximation of it when n tends to

infinity) of the equation
xA′(x)

A(x)
= n which means that the expected size of the

output tuned by xn equals n.
To conclude, let us recall that authors of the seminal paper [8] distinguished

a special case where Boltzmann samplers are particularly efficient (and we prove
in the sequel, that we are in this situation). This case arises when the Boltzmann
distribution of the output is bumpy, that is to say, when the following conditions
are satisfied:
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– μ1(x)→∞ when x→ ρ−

– σ(x)/μ1(x)→ 0 when x→ ρ−,

where μ1(x) (resp. σ
2(x)) is the expected size (resp. the variance) of the output,

and ρ is the dominant singularity of A(x).

3.2 The Class of the Digitally Convex Polyominoes

Let us recall that the digitally convex polyominoes can be decomposed into
four NW-convex paths, each of them being a multiset of discrete irreducible
segments. Moreover, according to the previous section, we have a specification
for the discrete irreducible segments in terms of word theory. This brings us the
generating function associated to a NW-convex path:

S(z) =
∞∏
n=1

(1− zn)−ϕ(n),

where ϕ(n) designs the Euler’s totient function.
The first question that occurs concerns the determination of the parameter xn

which is a central point for the tuning of the sampler. In order to approximate
xn as n tends to infinity, we need to apply the asymptotic of S(z) as z → 1, we
already calculate for the asymptotic of the NW-convex paths.

3.3 The Boltzmann Distribution of the NW-Convex Paths

The first step to analyze the complexity of exact- and approximate-size Boltz-
mann sampler is to characterize the type of the Boltzmann distribution. In this
subsection we prove that the Boltzmann distribution is bumpy. This ensures
that we only need on average a constant number of trials to draw an object of
approximate-size. Moreover, a precise analysis allows us to give the complexity
of the exact-size sampling.

Firstly, we derive from the equivalence of S(z) close to its dominant singularity
ρ = 1, an expression for the tuning of the Boltzmann parameter:

Corollary 1. A good choice for the Boltzmann parameter xn in order to draw

a large NW-convex paths of size n is xn = 1− 3

√
12ζ (3)

nπ2
.

So, the first condition for the bumpy distribution is clearly verified. We now
focus our attention on the fraction σ(x)/μ1(x).

Lemma 4. The expected size of the Boltzmann output satisfies:

μ1(x) ∼
12ζ (3)

(1− x)
3
π2

as x tends to 1.

The variance of the size of the Boltzmann output satisfies:

σ(x) ∼ 6
√

ζ (3)x

π(1− x)
2 as x tends to 1.

So, the Boltzmann distribution of the NW-convex paths is bumpy.
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Finally, we describe the sampler for digitally convex polyominoes. This needs
some care during the stage when we glue the NW-convex paths together.

3.4 Random Sampler to Draw Christoffel Primitive Words

We now look more precisely how to implement the samplers. Firstly, we address
the question of drawing two coprime integers which is non-classical in Boltzmann
sampling, from which we derive a Boltzmann sampler for NW-convex paths. The
first step to generate NW-convex paths is to draw Christoffel primitive words
with Boltzmann probability. We recall that this is equivalent to draw two coprime

integers p, q with probability xp+q
∑

n≥1 ϕ(n)xn .

Let b(x, n) :=
ϕ(n)xn

∞∑
n=1

ϕ(n)xn

. The following algorithm is an elementary way to

answer the question posed above:

Algorithm 1. ΓCP

Input: a parameter x
Output: Two coprime integers
Draw n with Boltzmann probability b(x, n)1

Do Draw p uniformly in {1, ..., n}2

While p, n not coprime3

return (p, n− p)4

The average complexity of the algorithm is in O(n ln ln(n)).

3.5 Random Sampler Drawing a NW-Convex Path

To draw a NW-convex path, we use the isomorphism between NW-convex paths
and multisets of Christoffel primitive words. The multiset is a classical construc-
tor, for which its Boltzmann sampler in the unlabelled case had been given in [9].
The idea is to draw with an appropriate distribution (called IndexMax distri-
bution) an integer M , and then draw a random number of Christoffel primitive
words with a Boltzmann sampler of parameter xi and to replicate each drawn ob-
ject i times, for all 1 ≤ i ≤M . Well chosen probabilities ensures the Boltzmann
distribution.

Once we get a multiset of pairs of coprime integers, we can transform it into
a NW-convex path coded on {0, 1} as follows:

– Draw a multiset m in MSet(PC),
– Sort the elements (p, q) of m in decreasing order according to q/p,
– Transform each element into the discrete line of slope q/p coded on {0, 1},
– add a 1 at the beginning.

Clearly, this transformation has a complexity in O(n ln(n)), due to the sorting.
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3.6 Complexity of Sampling a NW-Convex Path in Approximate
and Exact Size

The previous sections bring all needed elements to determine the complexity
of the Boltzmann sampler for a NW-convex path. The two following theorems
respectively tackle the complexity of the sampling in the case of approximate-size
output or exact size output.

Theorem 3. An approximate-size Boltzmann sampler for NW-convex paths suc-
ceeds in one trial with probability tending to 1 as n tends to infinity. The overall
cost of approximate-size sampling is O(n ln(n)) on average.

Theorem 4. An exact-size Boltzmann sampler for NW-convex paths succeeds

in mean number of trials tending to κ·n2/3 with κ =
6
√
2 3
√
3π5/6

6
√

ζ (3)
≈ 4.075517917...

as n tends to infinity. The overall cost of exact-size sampling is O(n5/3 ln(ln(n)))
on average.

Remark 2. Since ϕ(n) grows slowly, the parameter xn tuned to draw large ob-
jects will be close to 1, which gives big replication orders. A consequence is that
we do not need to calculate the generating function of primitive Christoffel words
to a huge order to have a good approximation of our probabilities.

3.7 Random Sampler Drawing Digitally Convex Polyominoes

We can now sample independent NW-convex paths with Boltzmann probability.
We want to obtain an entire polyomino by gluing four (rotated) NW-convex
path.

However, gluing a 4-tuple of NW-convex paths, we do not necessarily obtain
the contour of a polyomino. Indeed, we need the following extra conditions: the
four NW-convex paths should be non-crossing, and they need to form a closed
walk with no half-turn.

Algorithm 2. ΓP

Input: a parameter x
Output: a quadruple of compatible NW-convex paths.
Repeat:1

Draw WN, NE, ES, SW using independent calls to a Boltzmann sampler of2

NW-convex path of parameter x.3

If |WN |0 + |NE|1 = |ES|0 + |SW |1 and |NE|0 + |ES|1 = |SW |0 + |WN |14

then return (WN,NE,ES, SW )5

The non-crossing and no half-turn conditions are trivially satisfied when the
four paths are NW-convex. Then the closing problem stays and we need to add
a rejection phase at this step. More precisely, to be closed, we need to have as
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much horizontal steps in the upper part from W to E as in the lower part from E
to W, and as much vertical steps in the left part from S to N as in the right part
from N to S. A naive way to sample DCP according to a Boltzmann distribution
is presented in Algorithm 2. A more efficient uniform sampler can probably be
adapted from [1] and is currently under development.

Fig. 4. To the left, a random polyomino of perimeter 81109 drawn with parameter
x = 0.98. To the right perimeter distribution of a NW-convex path drawn with x =
0.8908086616.

Conclusion

We proposed in this paper an effective way to draw uniformly at random digitally
convex polyominoes. Our approach is based on Boltzmann generators which
allows us to build large digitally convex polyomioes. These samples point out
the fact that random digitally convex polyominoes admit a limit shape as their
size tends to infinity. The limit shape of the NW-convex paths we proved in
this paper seems to be also the limit shape for NW part of the digitally convex
polyominoes. The tools to tackle it are for the moment beyond our reach. Even,
the simpler question of a precise asymptotic enumeration of the digitally convex
polyominoes (the order of magnitude is proven [12]) is currently a challenge.
We conclude by noting that our work could certainly be extended to higher
dimensions. But, this is a work ahead...
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Abstract. The critical thickness of an arithmetical discrete plane refers
to the infimum thickness that preserves its 2-connectedness. This infi-
mum thickness can be computed thanks to a multidimensional continued
fraction algorithm, namely the fully subtractive algorithm. We provide a
characterization of the discrete planes with critical thickness that contain
the origin and that are 2-connected.

1 Introduction

This paper studies the connectedness of thin arithmetic discrete planes in the
three-dimensional space. We focus on the notion of 2-connectedness, and we
restrict ourselves to planes with zero intercept that have critical thickness, that
is, planes whose thickness is the infimum of the set of all the ω ∈ R+ such
that the plane of thickness ω is 2-connected (see Definitions 2.1 and 2.5). Let
us recall that standard arithmetic discrete planes are known to be 2-connected,
whereas naive ones are too thin to be 2-connected. We thus consider planes with
a thickness that lies between the naive and the standard cases.

The problem of the computation of the critical thickness was raised in [6]. It
has been answered in [9,10,7], with an algorithm that can be expressed in terms
of a multidimensional continued fraction algorithm, namely the so-called fully
subtractive algorithm. This algorithm explicitly yields the value of the critical
thickness when it halts, and this value can be computed when the algorithm
enter a loop (possibly infinite). Furthermore, the set F3 of vectors for which the
algorithm enters an infinite loop has Lebesgue measure zero, as a consequence
of results of [12] in the context of a percolation model defined by rotations on
the unit circle. Our main result is that a discrete plane with intercept zero and
critical thickness is 2-connected when its normal vector belongs to F3. We also
prove that vectors in F3 are the only ones for which critical arithmetical discrete
planes are 2-connected.

Our methods rely on a combinatorial generation method based on the notion
of susbtitution for the planes under study (see Section 2.3 for more details). In
Section 3 we construct a sequence of finite patterns (Tn)n of the planes with
critical thickness, and we prove that these patterns are all 2-connected when

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 107–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the parameters belong to F3. We then relate these finite patterns with thin-
ner patterns Pn that belong to the naive discrete plane with same parameters.
These pattern are generated in terms of a geometric interpretation of the fully
subtractive algorithm. Next, the thinner patterns Pn are proved in Section 4
to generate the full naive plane. This yields the 2-connectedness of the critical
plane (see Section 5). In other words, we use the fact that the underlying naive
plane provides a relatively dense skeleton of the critical plane.

2 Basic Notions and Notation

2.1 Discrete and Stepped Planes

Let {e1, e2, e3} be the canonical basis of R3, and let 〈·, ·〉 stand for the usual
scalar product on R3. Given v ∈ R3 and i ∈ {1, 2, 3}, we let vi = 〈v, ei〉 denote
the ith-coordinate of v in the basis {e1, e2, e3}.

Definition 2.1 (Arithmetical discrete plane [13,1]). Given v ∈ R3
+, μ ∈ R

and ω ∈ R+, the arithmetical discrete plane with normal vector v, intercept μ,
and thickness ω is the set P(v, μ, ω) defined as follows:

P(v, μ, ω) =
{
x ∈ Z3 : 0 � 〈x,v〉 + μ < ω

}
.

If ω = ‖v‖∞ = max{|v1|, |v2|, |v3|} (resp. ω = ‖v‖1 = |v1| + |v2| + |v3|),
then P(v, μ, ω) is said to be a naive arithmetical discrete plane (resp. standard
arithmetical discrete plane).

Even if any finite subset of a digitized plane can be represented as a subset of an
arithmetical discrete plane with integer parameters, we do not restrict ourselves
here with finite sets, and we consider general arithmetical discrete with possibly
non-integer parameters.

We will also deal with another discrete approximation of Euclidean planes,
namely stepped planes. They can be considered as a more geometrical version,
in the sense that they consist of unit faces instead of just points of Z3.

Definition 2.2 (Unit faces, stepped planes). A unit face [x, i]� is defined
as:

[x, 1]� = {x+ λe2 + μe3 : λ, μ ∈ [0, 1]} =
[x, 2]� = {x+ λe1 + μe3 : λ, μ ∈ [0, 1]} =
[x, 3]� = {x+ λe1 + μe2 : λ, μ ∈ [0, 1]} =

where i ∈ {1, 2, 3} is the type of [x, i]�, and x ∈ Z3 is the distinguished vertex
of [x, i]�. Let v ∈ R3

+. The stepped plane Γv is the union of unit faces defined
by:

Γv = {[x, i]� : 0 � 〈x,v〉 < 〈ei,v〉}.

The notation x+ [y, i]� stands for the unit face [x+ y, i]�.

Remark 2.3. The set of distinguished vertices of Γv is the naive arithmetical
discrete plane P(v, 0, ‖v‖∞), whereas the set of all vertices of the faces of Γv is
the standard arithmetical discrete plane P(v, 0, ‖v‖1).
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2.2 Connecting Thickness and the Fully Subtractive Algorithm

Definition 2.4 (Adjacency, connectedness). Two distinct elements x and
y of Z3 are 2-adjacent if ‖x− y‖1 = 1.

A subset A ⊆ Z3 is 2-connected if for every x,y ∈ A, there exist x1, . . . ,xn ∈
A such that xi and xi+1 are 2-adjacent for all i ∈ {1, . . . , n − 1}, with x1 = x
and xn = y.

Definition 2.5 (Connecting thickness [9]). Given v ∈ R3
+ and μ ∈ R, the

connecting thickness Ω(v, μ) is defined by:

Ω(v, μ) = inf {ω ∈ R+ : P(v, μ, ω) is 2-connected} .

In order to compute Ω(v, μ) we may assume without loss of generality that 0 �
v1 � v2 � v3. We thus restrict ourselves in the sequel to the set of parameters
O+

3 =
{
v ∈ R3 : 0 � v1 � v2 � v3

}
.

A first approximation of Ω(v, μ) is provided by ‖v‖∞ � Ω(v, μ) � ‖v‖1 (see
Corollary 10 of [2]). Given v ∈ O+

3 and ε > 0, it follows from the definition of
Ω(v, μ) that P (v, μ,Ω(v) − ε) is not 2-connected and that P (v, μ,Ω(v) + ε) is
2-connected.

It is shown in [10] how to compute Ω(v, μ) from the expansion of the vector
v according to the ordered fully subtractive algorithm F : O+

3 → O+
3 defined by:

F(v) =

⎧⎨⎩ (v1,v2 − v1,v3 − v1) if v1 � v2 − v1 � v3 − v1

(v2 − v1,v1,v3 − v1) if v2 − v1 � v1 � v3 − v1

(v2 − v1,v3 − v1,v1) if v2 − v1 � v3 − v1 � v1.
(1)

Theorem 2.6 ([10]). Let v ∈ O+
3 and μ ∈ R. The arithmetical discrete plane

P(v, μ, ω) is 2-connected if and only if so is P(F(v), μ, ω − v1). Consequently,
Ω(v, μ) = Ω(F(v), μ) + v1.

Let us fix v ∈ O+
3 , and consider the expansion of v according to the ordered

fully subtractive algorithm F (Eq. 1). We recover a possibly infinite sequence of
matrices (Mn)n∈N with values in {MFS

1 ,MFS
2 ,MFS

3 } where

MFS
1 =

⎡⎣1 0 0
1 1 0
1 0 1

⎤⎦ , MFS
2 =

⎡⎣0 1 0
1 1 0
0 1 1

⎤⎦ , MFS
3 =

⎡⎣0 0 1
1 0 1
0 1 1

⎤⎦ ,

and a sequence of nonzero vectors (v(n))n∈N with nonnegative entries such that,
for all n ∈ N�, v = M1 . . .Mn · v(n), with v(n) = Fn(v). We set v(0) = v.

The set of parameters v for which v
(n)
1 +v

(n)
2 > v

(n)
3 for all n has been shown

in [11] to play here a particular role: indeed limn→∞ v(n) = 0 if and only if

v
(n)
1 + v

(n)
2 � v

(n)
3 for all n. We thus introduce the following notation:

F3 =
{
v ∈ O+

3 : v
(n)
1 + v

(n)
2 > v

(n)
3 , for all n ∈ N

}
.

Remark 2.7 ([14]). If v ∈ F3 then dimQ{v1,v2,v3} = 3.
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Let us illustrate the interest of working with this set of parameters.

Proposition 2.8. If v ∈ F3, then Ω(v, μ) =
∑∞

n=0 v
(n)
1 =

‖v‖1
2

.

Proof. According to Theorem 2.6, we have: v1 + v2 + v3 − 2Ω(v, μ) = v
(i)
1 +

v
(i)
2 + v

(i)
3 − 2Ω(v(i), μ) for all i ∈ {1, . . . , n}. Since Ω(v(n), μ) � ‖v(n)‖1 and

limn→∞ v(n) = 0, then limn→∞ Ω(v(n), μ) = 0 and the result follows. ��

In particular, if v ∈ F3, then Ω(v, μ) does not depend on μ. Hence, from now
on, we consider only v ∈ F3 and we refer to Ω(v, μ) as Ω(v).

2.3 Substitutions and Dual Substitutions

Let A = {1, 2, 3} be a finite alphabet and A� be the set of finite words over A.

Definition 2.9 (Substitution). A substitution over A is a morphism of the
free monoid A�, i.e., a function σ : A� → A� with σ(uv) = σ(u)σ(v) for all
words u, v ∈ A�.

Given a substitution σ overA, the incidence matrix Mσ of σ is the square matrix
of size 3× 3 defined by Mσ = (mij), where mi,j is the number of occurrences of
the letter i in σ(j). A substitution σ is unimodular if detMσ = ±1.

Definition 2.10 (Dual substitution [3]). Let σ : {1, 2, 3}� −→ {1, 2, 3}� be
a unimodular substitution. The dual substitution E�

1(σ) is defined as

E�
1(σ)([x, i]

�) = M−1
σ x+

⋃
(p,j,s)∈A�×A×A� : σ(j)=pis

[M−1
σ �(s), j]�,

where � : w �→ (|w|1, |w|2, |w|3) ∈ Z3 is the Parikh map counting the occurrences
of each letter in a word w. We extend the above definition to any union of unit
faces: E�

1(σ)(P1 ∪ P2) = E�
1(σ)(P1) ∪E�

1(σ)(P2).

Note that E�
1(σ ◦ σ′) = E�

1(σ
′) ◦E�

1(σ) for unimodular σ and σ′ (see [3]).

Proposition 2.11 ([3,8]). We have E�
1(σ)(Γv) = ΓtMσv for every stepped

plane Γv and unimodular substitution σ. Furthermore, the images of two dis-
tinct faces of Γv have no common unit face.

We now introduce the substitutions associated with the ordered fully subtractive
algorithm, which will be our main tool. Let

σFS
1 =

⎧⎨⎩1 �→ 1
2 �→ 21
3 �→ 31

σFS
2 =

⎧⎨⎩1 �→ 2
2 �→ 12
3 �→ 32

σFS
3 =

⎧⎨⎩1 �→ 3
2 �→ 13
3 �→ 23

The matrices occurring in the expansion of v according to the ordered fully
subtractive algorithm are the transposes of the matrices of incidence of the σFS

i ,
that is, MσFS

i
= tMFS

i for i ∈ {1, 2, 3}.
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We denote by ΣFS
i the three dual substitutions E�

1(σ
FS
i ) for i ∈ {1, 2, 3}. They

can be represented as follows, where the black dot respectively stands for the
distinguished vector of a face and its image.

ΣFS
1 :

⎧⎪⎨⎪⎩
�→
�→
�→

ΣFS
2 :

⎧⎪⎨⎪⎩
�→
�→
�→

ΣFS
3 :

⎧⎪⎨⎪⎩
�→
�→
�→

3 Properties of the Patterns Tn

Let (Mn)n∈N� be the sequence of matrices with values in {MFS
1 ,MFS

2 ,MFS
3 }

such that v = M1 · · ·Mn · Fn(v) = M1 · · ·Mn · vn for all n. Let (σn)n∈N� be
the sequence of corresponding substitutions with values in {σFS

1 , σFS
2 , σFS

3 }, such
that Mn = tMσn for all n.

Definition 3.1 (Generation by translations). Let (Tn)n∈N be the sequence
of subsets of Z3 defined as follows for all nonnegative integer n:

T0 = {0}, T1 = {0, e1}, Tn+1 = Tn ∪
(
Tn + t(M1 . . .Mn)

−1 · e1
)
.

Note that the second initial condition T1 = {0, e1} is consistent with the usual
convention that an empty product of matrices is equal to the identity matrix.

Proposition 3.2. We have ∪∞
n=0Tn ⊆ P(v, 0,Ω(v)).

Proof (Sketch). We prove by induction that 〈x,v〉 <
∑n

i=0 v
(i)
1 for all x ∈ Tn, by

noticing that 〈t(M1 . . .Mn)
−1 ·e1,v〉 = 〈t(M1 . . .Mn)

−1 ·e1,M1 . . .Mn ·v(n)〉 =
〈e1,v(n)〉 = v

(n)
1 . ��

Proposition 3.3. For all n ∈ N, the set Tn is 2-connected.

Proof (Sketch). With the same arguments as in proof of Proposition 3.2, and by
using Remark 2.7, we first get by induction that, for all n ∈ N�:

Tn =

{
x ∈ Z3 : 〈x,v〉 =

n−1∑
i=0

εiv
(i)
1 with εi ∈ {0, 1} for all i

}
.

Now, for all n ∈ N, let xn ∈ Tn such that 〈xn,v〉 =
∑n−1

i=0 v
(i)
1 (we set x0 = 0).

Let us prove by induction the following property: for all n ∈ N� there exists
in ∈ {1, 2, 3} such that xn − ein ∈ Tn−1. This property implies that xn is
2-adjacent to Tn−1, which implies the 2-connectedness of Tn.

The induction property is true for n = 1 with x1 = e1. Let us now assume
that the induction hypothesis hold for n � 1. Let u1 · · ·un ∈ {1, 2, 3}N

�

be such
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that MFS
u1
· · ·MFS

un
v(n) = v. We have 〈xn+1,v〉 = 〈xn,v〉+v

(n)
1 , and by definition

of the fully subtractive algorithm (see Eq. 1):

v
(n)
1 =

{
v
(n−1)
1 , if un = 1

v
(n−1)
2 − v

(n−1)
1 , if un ∈ {2, 3}.

We distinghuish several cases according to the values taken by u1 · · ·un.

Case 1. If un = 1, then, 〈xn+1,v〉 = 〈xn,v〉+ v
(n−1)
1 , and

〈xn+1 − ein ,v〉 = 〈xn − ein︸ ︷︷ ︸
∈Tn−1

,v〉+ v
(n−1)
1 =

n−2∑
i=1

εiv
(i)
1 + v

(n−1)
1 ,

where εi ∈ {0, 1} for 1 � i � n − 2, which implies that xn+1 − ein ∈ Tn, so
taking in+1 = in yields the desired result.
Case 2. If un ∈ {2, 3} and u1 · · ·un−1 = 1k, then

〈xn+1,v〉 = 〈xn,v〉+ v
(n−1)
2 − v

(n−1)
1 = 〈xn−1,v〉+ v

(n−1)
2

= 〈xn−2,v〉+ v
(n−2)
2 = · · · = 〈xn−1−k,v〉 + v

(n−1−k)
2 = v

(0)
2 ,

which implies that xn+1 − e2 ∈ Tn.
Case 3. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 21k with 0 � k � n− 2, then

〈xn+1,v〉 = 〈xn,v〉+ v
(n−1)
2 − v

(n−1)
1 = 〈xn−1,v〉+ v

(n−1)
2

= 〈xn−1−k,v〉+ v
(n−1−k)
2 = 〈xn−1−k,v〉+ v

(n−2−k)
1 ,

so xn+1 − ein−1−k
∈ Tn−1−k ⊆ Tn.

Case 4. If un ∈ {2, 3} and u1 · · ·un−1 = w31k with w ∈ {1, 2}� and k � 0, then

〈xn+1,v〉 = 〈xn−1−k,v〉+ v
(n−1−k)
2 = 〈xn−2−k,v〉+ v

(n−2−k)
3

= 〈xn−2−k−�,v〉 + v
(n−2−k−�)
3 = v

(0)
3 ,

so xn+1 − e3 ∈ Tn.
Case 5. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 3w31k with w ∈ {1, 2}�, k � 0, then

〈xn+1,v〉 = 〈xn−2−k−�,v〉+ v
(n−2−k−�)
3

= 〈xn−2−k−�,v〉+ v
(n−3−k−�)
1

so xn+1 − ein−2−k−�
∈ Tn−2−k−� ⊆ Tn. ��

Definition 3.4 (Generation by dual substitutions). Let U = [0, 1]� ∪
[0, 2]� ∪ [0, 3]� = and let (σn)n∈N� be the sequence of fully subtractive substi-
tutions generated by v. For n ∈ N, let:

– Pn = E�
1(σn ◦ · · · ◦ σ1)(U) with P0 = U ;
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– Pn be the set of distinguished vertices of the set Pn of unit faces.

Proposition 3.5. For every n ∈ N, we have Pn ⊆ Tn.

Proof. We first remark that E�
1(σ

FS
i )(U) = U ∪ [e1, 2]

� ∪ [e1, 3]
� = for all

i ∈ {1, 2, 3}. For n ∈ N, we have

Pn+1 = E�
1(σn+1 ◦ · · · ◦ σ1)(U)

= E�
1(σn ◦ · · · ◦ σ1) ◦E�

1(σn+1)(U)
= Pn ∪E�

1(σn ◦ · · · ◦ σ1)([e1, 2]
� ∪ [e1, 3]

�),

which implies Pn ⊆ Pn+1. Since [e1, 2]
� ∪ [e1, 3]

� ⊆ e1 + U , we have Pn+1 ⊆
Pn ∪E�

1(σn ◦ · · · ◦ σ1)(e1 + U). By Definition 2.10, we then have

E�
1(σn ◦ · · · ◦ σ1)(e1 + U) = M−1

σn◦···◦σ1
· e1 +E�

1(σn ◦ · · · ◦ σ1)(U)
= (tMn · · · tM1)

−1 · e1 + Pn

= t(M1 · · ·Mn)
−1 · e1 + Pn,

which proves Pn ⊆ Pn+1 ⊆ Pn ∪
(
Pn + t(M1 · · ·Mn)

−1 · e1
)
. The result now

follows by induction. ��

4 Generation of Naive Planes with Dual Substitutions

The aim of this section is to prove that the patterns Pn cover the naive plane, by
showing that iterations of dual substitutions yield concentric annuli (see Defini-
tion 4.5) with increasing radius. The main result of this section is the following.

Proposition 4.1. If v ∈ F3, then
⋃∞

n=0 Pn = P(v, 0, ‖v‖∞).

The proof will be given at the end of Section 4.3. The remaining of this section
is devoted to the development of specific tools used in this proof. Such tools
have also been used in [5] to study other multidimensional continued fraction
algorithms.

4.1 Covering Properties and Annuli

A pattern is a union of unit faces. In the rest of this section we will consider
some sets of connected patterns (L, Ledge and LFS) that will be needed in order
to define (strong) coverings. The patterns contained in these sets are considered
up to translation only, as it is all that matters for the definitions below (see
Figure 1).

Definition 4.2 (L-cover). Let L be a set of patterns. A pattern P is L-covered
if for all faces e, f ∈ P , there exist Q1, . . . , Qn ∈ L such that:

1. e ∈ Q1 and f ∈ Qn;
2. Qk ∩Qk+1 contains at least one face, for all k ∈ {1, . . . , n− 1};
3. Qk ⊆ P for all k ∈ {1, . . . , n}.
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Lemma 4.3. Let P be an L-covered pattern, Σ a dual substitution and L a set
of patterns such that Σ(Q) is L-covered for all Q ∈ L. Then Σ(P ) is L-covered.
We will need strong coverings to ensure that the image of an annulus is an
annulus. We denote by Ledge the set of all the twelve edge-connected two-face
patterns (up to translation).

Definition 4.4 (Strong L-cover). Let L be a set of edge-connected patterns.
A pattern P is strongly L-covered if

1. P is L-covered;
2. for every pattern X ∈ Ledge such that X ⊆ P , there exists a pattern Y ∈ L

such that X ⊆ Y ⊆ P .

The intuitive idea behind the notion of strong L-covering is that every occurrence
of a pattern of Ledge in P is required to be “completed within P” by a pattern
of L.
Definition 4.5 (Annulus). Let L be a set of edge-connected patterns and Γ be
a stepped plane. An L-annulus of a pattern P ⊆ Γ is a pattern A ⊆ Γ such that:

1. P , A ∪ P and Γ \ (A ∪ P ) are L-covered;
2. A is strongly L-covered;
3. A and P have no face in common;
4. P ∩ Γ \ (P ∪ A) = ∅.

The notation Γ \ (P ∪ A) stands for the topological closure of Γ \ (P ∪ A).
Conditions 1 and 2 are combinatorial properties that we will use in the proof

of Lemma 4.11 in order to prove that the image of an LFS-annulus by a ΣFS
i is

an LFS-annulus. Conditions 3 and 4 are properties of topological nature that we
want annuli to satisfy.

4.2 Covering Properties for Σ1, Σ2, Σ3

Let LFS be the set of patterns containing , , , , , ∈ Ledge and

= [0, 2]� ∪ [(1, 0, 0), 2]� ∪ [0, 3]�,

= [0, 3]� ∪ [(1, 0, 0), 3]� ∪ [0, 2]�,

= [0, 3]� ∪ [(0, 1, 0), 3]� ∪ [0, 1]�.

Lemma 4.6 (LFS-covering). Let P be an LFS-covered pattern. Then the pat-
tern Σi(P ) is LFS-covered for every i ∈ {1, 2, 3}.
Lemma 4.7. Let Γ be a stepped plane that does not contain any translate of
one of the patterns , , ∈ Ledge and = [0, 3]� ∪ [(1, 1, 0), 3]�. Then no

translate of any of these four patterns appears in Σi(Γ).

Lemma 4.8 (Strong LFS-covering). Let P be a strongly LFS-covered pattern

which is contained in a stepped plane that avoids , , and . Then Σi(P )

is strongly LFS-covered for every i ∈ {1, 2, 3}.
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L =

{
, ,

}

P =

Fig. 1. On the left, the pattern P is L-covered. Two faces of P are connected via a
sequence of patterns from L. On the right, examples of LFS-annulus. Patterns P0 �
P4 � P7 are defined by P0 = U and Pi+1 = ΣFS

3 (Pi). The lighter pattern P7 \ P4 is a
LFS-annulus of P4 and the darker pattern P4 \ P0 is an LFS-annulus of P0.

4.3 Annuli and Dual Substitutions

The proof of the following proposition (by induction) relies on Lemma 4.10 (base
case) and on Lemma 4.11 (induction step). We recall that U = [0, 1]� ∪ [0, 2]� ∪
[0, 3]� =

Proposition 4.9. Let (Σi)n∈N be a sequence with values in {ΣFS
1 , ΣFS

2 , ΣFS
3 }

such that ΣFS
3 occurs infinitely often, and let k ∈ N such that (Σ1, . . . , Σk)

contains ΣFS
3 at least four times.

Then for every � � 1, Σ1 · · ·Σk+�(U) \ Σ1 · · ·Σ�(U) is an LFS-annulus of
Σ1 · · ·Σ�(U) in the stepped plane Σ1 · · ·Σk+�(Γ(1,1,1)).

Proof. We prove the result by induction on �. The case � = 0 (i.e., Σ1 · · ·Σk(U)\
U is an annulus of U) is settled by Lemma 4.10. Now, assume that the induction
property holds for some � ∈ N. The pattern Σ1 · · ·Σk+�(U) is contained in the
stepped plane Σk+�(Γ(1,1,1)), so it does not contain any of the patterns forbidden
by Lemma 4.7. We can then apply Lemma 4.11 to deduce that Σ1 · · ·Σk+�+1(U)\
Σ1 · · ·Σ�+1(U) is an LFS-annulus of Σ1 · · ·Σ�+1(U). ��

Lemma 4.10. Let Σ be a product of Σ1, Σ2 and Σ3 such that Σ3 appears at
least four times. Then Σ(U) \ U is an LFS-annulus of U in Σ(Γ(1,1,1)).

Proof. Below, “P
i→ Q” means that Q ⊆ Σi(P ) so the result follows.

1, 2, 3 3 3 3

1, 2 1, 2
1, 2 1, 2, 3

��

Lemma 4.11. Let Γ be a stepped plane that avoids , , and . Let A ⊆ Γ

be an LFS-annulus of a pattern P ⊆ Γ, and let Σ = Σi for some i ∈ {1, 2, 3}.
Then Σ(A) is an LFS-annulus of Σ(P ) in the stepped plane Σ(Γ).
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Proof. We must prove the following:

1. Σ(P ), Σ(A) ∪Σ(P ) and Γ \ (Σ(A) ∪Σ(P )) are LFS-covered;
2. Σ(A) is strongly LFS-covered;
3. Σ(A) and Σ(P ) have no face in common;
4. Σ(P ) ∩Σ(Γ) \ (Σ(P ) ∪Σ(A)) = ∅.

Conditions 1 and 3 hold thanks to Lemma 4.3 and Proposition 2.11 respectively,
and 2 holds thanks to Lemma 4.8. It remains to prove that 4 holds.

Suppose that 4 does not hold. This implies that there exist faces f ∈ P, g ∈
Γ \ (A ∪ P ), f ′ ∈ Σ(f) and g′ ∈ Σ(g) such that f ′ and g′ have a nonempty
intersection. Also, f ∪ g must be disconnected because P and Γ \ (P ∪ A) have
empty intersection by hypothesis.

The strategy of the proof is as follows: we check all the possible patterns f ∪g
and f ′ ∪ g′ as above, and for each case we derive a contradiction. This can be
done by inspection of a finite number of cases. Indeed, there are 36 possibilities
for f ′ ∪ g′ up to translation (the number of connected two-face patterns that
share a vertex or an edge), and each of these patterns has a finite number of
two-face preimages.

The first patterns f ′ ∪ g′ which have disconnected preimages are f ′ ∪ g′ =
[0, 3]� ∪ [(1, 1, 0), 3]� or [0, 2]� ∪ [(1,−1, 1), 1]� or [0, 2]� ∪ [(1, 0, 1), 2]�. These
cases can be ignored thanks to Lemma 4.7: the first case ( ) is forbidden by
assumption. In the second case, Definition 2.2 implies that if a stepped plane
contains f ′ ∪ g′, then it contains the face [(0, 0, 1), 2]� shown in dark gray .
This contains a pattern ruled out by Lemma 4.7, which settles this case. The
third case can be treated in the same way.

Another possibility is f ′ ∪ g′ = [0, 2]� ∪ [(1,−1, 1), 3]�, which admits six dis-
connected preimages (two for each Σi). They are shown below (in light gray),
together with their only possible completion within a stepped plane (in dark
gray), which can be deduced from Definition 2.2:

Σ1 : , Σ2 : , Σ3 : , .

The patterns that appear in dark gray are forbidden by Lemma 4.7, so this case
is settled.

The last two possibilities are f ′ ∪ g′ = [0, 3]� ∪ [(1, 1,−1), 1]� or f ′ ∪ g′ =
[0, 3]� ∪ [(1, 1,−1), 2]�. Below (in light gray) are all the possible preimages f ∪ g
(which are the same for the two possibilities), and in dark gray is shown their
only possible completion X within a stepped plane:

Σ1 : , Σ2 : , Σ3 : , .

Now, we have X ⊆ A because Condition 4 for A and P would fail otherwise
(f and g cannot touch). However, this contradicts the fact that strongly LFS-
connected. Indeed, X ∈ Ledge but there cannot exist a pattern Y ∈ LFS such

that X ⊆ Y ⊆ A because then we must have Y = , or , so Y must
overlap with f or g, which is impossible because f and g are not in A. ��
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Proof (Proof of Proposition 4.1). Let v ∈ F3. To prove the proposition, it is
enough to prove that ∪∞

n=0Pn = Γv, thanks to Remark 2.3. Let P ∈ Γv be a
finite pattern. The combinatorial radius of P is defined to be the length of the
smallest path of edge-connected unit faces from the origin to Γv \ P .

Now, since v ∈ F3, Σ
FS
3 occurs infinitely many often in the sequence (Σi)i∈N of

the dual substitutions associated with the expansion of v. Hence, we can apply
Proposition 4.9 to prove that there exists k ∈ N such that for all � � 0, the
pattern A� := Σ1 · · ·Σk+�(U) \Σ1 · · ·Σ�(U) is an LFS-annulus of Σ1 · · ·Σ�(U).

By Condition 1 of Definition 4.5, the pattern A� ∪ Σ1 · · ·Σ�(U) is simply
connected for all � � 0, so its combinatorial radius increases at least by 1 when �
is incremented, thanks to Conditions 3 4. This proves the required property. ��

5 Main Results

In general, we do not know if the set {ω ∈ R | P(v, ω,Ω(v)) is 2-connected} is
closed. In fact, {ω ∈ R | P(v, 0,Ω(v))} may be 2-connected or not.

Theorem 5.1. Let v ∈ O+
3 . The arithmetical discrete plane P(v, 0,Ω(v)) is

2-connected if and only if v ∈ F3.

Proof. Let v ∈ F3 and x ∈ P(v, 0,Ω(v)), by Proposition 2.8 we have Ω(v) =
‖v‖1/2. If ‖v‖∞ � 〈x,v〉 < ‖v‖1/2, then ‖v‖∞ − v1 � 〈x − e1,v〉 <
‖v‖1/2− v1 < ‖v‖∞, so x − e1 ∈ P(v, 0, ‖v‖∞). In other words, an element x
of P(v, 0,Ω(v)) either belongs to P(v, 0, ‖v‖∞) or is 2-adjacent to an element
of P(v, 0, ‖v‖∞).

Now, given y ∈ P(v, 0,Ω(v)), both x and y belong or are adjacent to
P(v, 0, ‖v‖∞), so they are 2-connected in P(v, 0,Ω(v)) because:

– P(v, 0, ‖v‖∞) ⊆ ∪∞
n=0Tn, thanks Propositions 3.5 and 4.1,

– ∪∞
n=0Tn is 2-connected: it is a increasing union of sets Tn which are 2-

connected thanks to Proposition 3.3,
– ∪∞

n=0Tn ⊆ P(v, 0,Ω(v)), thanks to Proposition 3.2.

We now prove the converse implication, and we assume that P(v, 0,Ω(v)) is
2-connected. Assume dimQ{v1,v2,v3} = 1, v ∈ Z3 with gcd{v1,v2,v3} = 1.

Let n ∈ N such that v
(n)
1 = 0. The plane P(v, 0,Ω(v)) is 2-connected if and only

if so is P(v(n), 0,Ω(v(n))). But Ω(v(n)) = v
(n)
2 + v

(n)
3 − 1 so P(v(n), 0,Ω(v(n)))

is the translation along e1 of an arithmetical discrete line strictly thinner than a
standard one and cannot be 2-connected. Hence dimQ{v1,v2,v3} > 1. If v �∈ F3,

there exists n ∈ N such that v
(n)
1 + v

(n)
2 � v

(n)
3 . The plane P(v, 0,Ω(v)) is 2-

connected if and only if so is P(v(n), 0,Ω(v(n))). But Ω(v(n)) = ‖v(n)‖∞, so
P(v(n), 0, ‖v(n)‖∞) cannot be 2-connected since x and x+ e3 cannot be both in
P(v(n), 0, ‖v(n)‖∞). ��
The theorem below is a direct consequence of Propositions 3.5 and 4.1, but it is
worth mentioning.

Theorem 5.2. If v ∈ F3, then P(v, 0, ‖v‖∞) ⊆
⋃∞

n=0 Tn, i.e., the naive plane
of normal vector v is included in

⋃∞
n=0 Tn.



118 V. Berthé et al.

6 Conclusion

We have provided a full understanding of the 2-connectedness of discrete planes
with critical thickness, using a combination of tools issued from numeration
systems and combinatorics on words. Theorem 5.1 highlights the limit behavior
of discrete plane with critical thickness which is reminiscent of similar phenomena
occurring in percolation theory. We plan to investigate further the properties of
critical planes (as in [4]), their tree structure, and we plan to explore more deeply
the connections with Rauzy fractals and numeration systems.

Acknowledgments. The authors warmly thank Éric Domenjoud and Laurent
Vuillon for many helpful discussions.
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5. Berthé, V., Jolivet, T., Siegel, A.: Substitutive Arnoux-rauzy sequences have pure
discrete spectrum. Unif. Distrib. Theory 7(1), 173–197 (2012)

6. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput.
Sci. 319(1-3), 203–227 (2004)

7. Domenjoud, E., Jamet, D., Toutant, J.L.: On the Connecting Thickness of Arith-
metical Discrete Planes. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI
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2 Université Paris Est, LIGM, A3SI-ESIEE

2, boulevard Blaise Pascal, 93162 Noisy le Grand CEDEX, France
{laurent.noel,v.biri,michel.couprie}@esiee.fr

Abstract. We present a novel 3D curvilinear skeletonization algorithm
which produces filtered skeletons without needing any user input, thanks
to a new parallel algorithm based on the cubical complex framework.
These skeletons are used in a modified path tracing algorithm in order
to produce less noisy images in less time than the classical approach.

1 Introduction

Path tracing algorithms [8,9] are able to render photorealistic images from a
scene description by simulating light propagation. The photorealistic aspect is
achieved by simulating diffusion of light: elements of the scene which are illu-
minated by a light source can cast part of the light they receive. Consequently,
parts of the scene which are not directly illuminated by any light source actually
receive light, thus giving a realistic effect of light diffusion to the resulting image.

A path tracing algorithm sends rays from the camera, and let them bounce
around the scene until they encounter a directly illuminated zone. When a ray
hits a point of any surface, it is reemitted in a random direction. Once it reaches
a directly illuminated area, all luminance gathered through its journey in the
scene is averaged in order to set one of the image pixels, a process repeated for
each pixel of the output image. To reduce the noise resulting from this stochastic
process, the algorithm actually sends many rays for each pixel of the image: the
more rays, the longer the algorithm will take to produce an image, but the more
realistic the result will look. A path tracing can be seen as a random walk process
through the scene.

In order to avoid infinite bouncing of rays in the scene, a limit is set for the
number of bounces a ray can do. If a ray does not reach any directly illuminated
area after a given number of bounces, its contribution is considered null. Such
lost ray is a waste of computation time, and minimizing this loss would speed
up the algorithm (see Fig 1.a).
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c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Note how rays are guided toward the illuminated area thanks to our skeleton
based algorithm (image b), compared to classical path tracing (image a). Images c and
d point out the noise reduction between the classic path tracing (c) and our method
(d).

Our proposition is to reduce both the time taken by a path tracing algo-
rithms and the noise in the output images by guiding rays towards the scene’s
light sources (see Fig 1.b), thus reducing the number of rays “lost” during the
computation. To do this, we perform some precomputation on the void space
of the scene (the medium where the rays of light propagate) in order to have,
later in the algorithm, a clue on the direction a ray should bounce in order to
meet an illuminated area. Unfortunately, such precomputation may take time
and become more expensive than the original algorithm.

To keep the precomputation fast, we perform it only on a subset of points
of the voids of the scene. Since this precomputation relies on paths and visibil-
ity tests, we want this set of points to be representative of both the topology
and the geometry of the original scene. For example, it should possess branches
propagating in the elongated parts of the scene. A filtered curvilinear skeleton
of the scene’s void meets all the required properties for our subset of points:
it is a thin subset of points, with the same topology and retaining the main
geometrical information of the scene. Note that in this application, the filtering
of the skeleton (elimination of spurious branches) need to be both efficient and
completely automatic, for one cannot ask a user to set parameters for each scene.

The purpose of this paper is twofold: we first introduce a new curvilinear
skeletonization algorithm (Sec. 3) in the cubical complex framework (Sec. 2),
producing filtered skeletons without needing any user input (Sec. 4). Then, we
expose a new method, based on such skeletons, to enhance the results (see Fig 1.c
and d) and the performance of the path tracing algorithm (Sec. 5).

2 The Cubical Complex Framework

In the 3D voxel framework, objects are made of voxels. In the 3D cubical complex
framework, objects are made of cubes, squares, lines and vertices. Let Z be the set
of integers, we consider the family of sets F1

0 and F1
1, such that F1

0 = {{a} | a ∈ Z}
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and F1
1 = {{a, a+ 1} | a ∈ Z}. Any subset f of Zn such that f is the Cartesian

product of m elements of F1
1 and (n −m) elements of F1

0 is called a face or an
m-face of Zn, m is the dimension of f , we write dim(f) = m. A 0-face is called
a vertex, a 1-face is an edge, a 2-face is a square, and a 3-face is a cube.

Given m ∈ {0, . . . , n}, we denote by Fn
m the set composed of all m-faces in

Zn. We denote by Fn the set composed of all m-faces in Zn : Fn =
⋃

m∈[0;n]

Fn
m.

Let f ∈ Fn. We set f̂ = {g ∈ Fn|g ⊆ f}, and f̂∗ = f̂ \ {f}. Any element of f̂

(resp. f̂∗) is a face of f (resp. a proper face of f). The closure of a set of faces

X is the set X̂ = ∪{f̂ |f ∈ X}.

Definition 1. A finite set X of faces in Fn is a complex if X = X̂, and we
write X � Fn.

Any subset Y of X which is also a complex is a subcomplex of X, and we
write Y � X.

A face f ∈ X is a facet of X if f is not a proper face of any face of X . The
dimension of X is dim(X) = max{dim(f) | f ∈ X}. If dim(X) = d, then we say
that X is a d-complex.

Traditionally, a binary image is a finite subset of Zn (called voxel image when
n = 3). To transpose such an image S to the cubical complex framework, we
associate to each element of S ⊆ Zn an n-face of Fn. Let x = (x1, ..., xn) ∈ S,
we define the n-face Ψ(x) = {x1, x1 +1}× . . .×{xn, xn +1}. We can extend the
map Ψ to sets: Ψ(S) = {Ψ(x)|x ∈ S}. Given a set S ⊂ Zn, we associate to it the

cubical complex Ψ̂(S).
The collapse operation is the basic operation for performing homotopic thin-

ning of a complex, and consists of removing two distinct faces (f, g) from a
complex X under the condition that they form a free pair:

Definition 2. Let X � Fn, and let f, g be two faces of X. The face g is free
for X, and the pair (f, g) is a free pair for X if f is the only face of X which
strictly contains g.

It can be easily seen that if (f, g) is a free pair for a complex X , then f is a facet
of X and dim(g) = dim(f)− 1.

Definition 3. Let X � Fn, and let (f, g) be a free pair for X. The complex
X \ {f, g} is an elementary collapse of X.

Let Y � Fn. The complex X collapses onto Y if there exists a sequence of com-
plexes (X0, ..., X�) of Fn such that X = X0, Y = X� and for all i ∈ {1, . . . , �}, Xi

is an elementary collapse of Xi−1. We also say, in this case, that Y is a collapse
of X.

Recent works in the cubical complex framework brought new parallel thinning
algorithms in the voxel framework ([2], [1]).
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3 A Parallel Directional Thinning Based on Cubical
Complex

In the cubical complex framework, parallel removal of free pairs can be easily
achieved when following simple rules that we give now. First, we need to define
the direction and the orientation of a free face. Let (f, g) be a free pair for
X � Fn : we have dim(g) = dim(f) − 1, and it can be seen that g = f ∩ f ′,
where f ′ is the translate of f by one of the 2n vectors of Zn which have all their
coordinates equal to 0 except one, which is either equal to +1 or -1. Let v be this
vector, and c its non-null coordinate. We define Dir(f, g), called the direction of
the free pair (f, g), as the index of c in v. The orientation of the free pair (f, g)
is defined as Orient(f, g) = 1 if c = 1, and Orient(f, g) = 0 else.

Now, we give a property of collapse (previously proven in [4]) which brings a
necessary and sufficient condition for removing two free pairs of faces in parallel
from a complex, while preserving topology.

Proposition 4. Let X � Fn, and let (f, g) and (k, �) be two distinct free pairs
for X. The complex X collapses onto X \ {f, g, k, �} if and only if f �= k.

From Prop. 4, the following corollary is immediate.

Corollary 5. Let X � Fn, and let (f1, g1) . . . (fm, gm) be m distinct free pairs
for X such that, for all a, b ∈ {1, . . . ,m} (with a �= b), fa �= fb. The complex X
collapses onto X \ {f1, g1 . . . fm, gm}.
Considering twodistinct freepairs (f, g) and (i, j) forX � Fn such thatDir (f, g) =
Dir(i, j) andOrient(f, g) = Orient(i, j), we have f �= i. From this observation and
Cor. 5, we deduce the following property.

Corollary 6. Let X � Fn, and let (f1, g1) . . . (fm, gm) be m distinct free pairs
for X having all the same direction and the same orientation. The complex X
collapses onto X \ {f1, g1 . . . fm, gm}.
Intuitively, we want our thinning algorithm to remove free faces of a complex
“layer by layer” and to avoid having unequal thinning of the input complex.
Therefore, we want each execution of the algorithm to remove free faces located
on the border of the input complex. We define Border (X) as the set all faces
belonging to a free pair for X . We now introduce Alg. 1, a directional parallel
thinning algorithm.

On a single execution of the main loop of Alg. 1, only faces located on the
border of the complex are removed (l. 7). Thanks to corollary 6, we can remove
faces with same direction and orientation in parallel (l. 8), while guaranteeing
topology preservation. Figure 2 depicts the first steps of the algorithm.

Different definitions of orientation and direction can be given, each corre-
sponding to a different order of free faces removal in the complex and leading to
different results. Algorithm 1 can be implemented to run in linear time complex-
ity (proportionally to the number of faces in the complex). Indeed, checking if a
face is free or not may be easily done in constant time and when a free pair (f, g)
is removed from the input complex, it is sufficient to scan the faces contained in
f in order to find new free faces.
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Algorithm 1. ParDirCollapse(X,W, �)

Data: A cubical complex X 
 Fn, a subcomplex W 
 X which represents faces
of X which should not be removed, and � ∈ N, the number of layers of
free faces which should be removed from X

Result: A cubical complex
1 while there exists free faces in X \W and � > 0 do

2 L = ̂Border(X);
3 for t = 1 → n do
4 for s = 0 → 1 do
5 for d = n → 1 do
6 E = {(f, g) free for X | g /∈ W, Dir(f, g) = t, Orient(f, g) = s,

dim(f) = d};
7 G = {(f, g) ∈ E | f ∈ L and g ∈ L};
8 X = X \G;

9 l = l − 1;

10 return X;

Fig. 2. Four first iterations of Alg. 1 running on the left-most shape

4 Aspect Preservation during Thinning

As previously said, our goal is to use the skeleton of the voids of a scene in order
to guide light rays from the camera of the scene towards the light. Moreover, this
skeleton needs to capture the main geometrical features of the original scene. For
example, if the input is a corridor (the void of the corridor), then the skeleton
should be a line following the main direction of the corridor.

Generally, two strategies are possible to achieve this goal: find, during the
skeletonization process, points whose neighbourhood configuration seems inter-
esting and keep them in the result [6] [7] [5], or choose, before skeletonization,
interesting points of the object which should remain untouched, based on a func-
tion on these points and a filtering parameter [2] [12].

Algorithm 1 does not necessarily preserve geometrical features of the input
object in the resulting skeleton (for example, the skeleton of a corridor could be
reduced to a single vertex). In the following, we introduce a new method in the
cubical complex framework, requiring no user input, for obtaining a curvilinear
skeleton yielding satisfactory geometrical properties. Our method is based on
the two previously listed strategies: it finds, during thinning, elements with a
specific neighbourhood configuration, and uses a function on these elements to
decide whether to preserve them, or not, in the result.
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4.1 The Lifespan of a Face

In the following, we define additional functions in the cubical complex, related
to the thinning process (Alg. 1), which are essential for the filtering step of the
skeletonization. The first one we present is the death date of a face.

Definition 7. Let f ∈ X � Fn. The death date of f inX, denoted by DeathX(f),
is the smallest integer δ such that f /∈ ParDirCollapse(X, ∅, δ).

Intuitively, the death date of a face indicates how many layers of free faces should
be removed from a complex X , using Alg. 1, before removing completely the face
from X . We now define the birth date of a face:

Definition 8. Let f ∈ X � Fn. The birth date of f in X, denoted by BirthX(f),
is the smallest integer b such that either f is a facet of ParDirCollapse(X, ∅, b),
or f /∈ ParDirCollapse(X, ∅, b).

The birth date indicates how many layers of free faces must be removed from
X with Alg.1 before transforming f into a facet of X (we consider that a face
“lives” when it is a facet). Finally, we define the lifespan of a face :

Definition 9. Let f ∈ X � Fn. The lifespan of f in X is the integer

LifespanX(f) =

{
+∞ if DeathX(f) = +∞
DeathX(f)− BirthX(f) otherwise

These three values depend on the order of direction and orientation chosen for
Alg. 1.

The lifespan of a face f of X indicates how many “rounds” this face “survives”
as a facet in X , when removing free pairs with Alg. 1, and is a good indicator of
how important a face can be in an object. Typically, the higher the lifespan is,
and the more representative of an object’s geometrical feature the face is. The
lifespan, sometimes called saliency, was used in [10] (with the name “medial
persistence”) in order to propose a thinning algorithm in cubical complexes
based on two parameters.

4.2 Distance Map, Opening Function and Decenterness Map

In addition to the lifespan of a face, the proposed homotopic thinning method
uses information on distance between faces in order to decide if a face should be
kept safe from deletion. We define hereafter various notions based on distances
in the voxel framework.

We set d1(x, y) as the L1 distance between x and y (Manhattan distance).
Let S ⊂ Zn, we set Sc = Zn \ S, and for all x ∈ Zn, the map D1(S) : Zn → N is
such that D1(S)(x) = min

y∈Sc
d1(x, y).

The maximal 1-ball in S centered on x is the setMB1
S(x) = {y ∈ Zn|d1(x, y) <

D1(S)(x)}. We set, for all x ∈ S, the map Ω1(S) : Zn → N such that Ω1(S)(x) =
max

x∈MB1
S(y)

D1(S)(y): this value indicates the radius of a largest maximal 1-ball
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Fig. 3. Examples of opening and decenterness map - From left to right: a shape
S ⊂ Z2 (in gray), D1(S), Ω1(S) and DC1(S) (low values have dark colour)

contained in S and containing x. If x ∈ Sc, we set Ω1(S)(x) = 0. The map
Ω1(S) is known as the opening function of S based on the 1-distance (also
called the granulometry function) [11]: it allows to compute efficiently results of
morphological openings by balls of various radius, and gives information on the
local thickness of an object.

Given S ⊂ Zn, the value of Ω1(S)(x) of every x ∈ S can be naively computed
by performing successive morphological dilations of values of the map D1(S). A
linear algorithm for computing the map Ω1(S) (with regard to the size of the
input image) was proposed in [3], and will be explored further in details in a
future paper.

Finally, we define the decenterness map:

Definition 10. Given S ⊂ Zn, the decenterness map of S is the map DC1(S) =
Ω1(S)−D1(S).

An example of these maps is shown on Fig. 3.
In order to extend all these previous maps defined in Zn to the cubical complex

framework, we use the map Ψ−1, inverse of the bijective map Ψ : Zn → Fn
n defined

in Sec. 2. It is used to project any n-face of Fn into Zn. This map induces a map
from P(Fn

n) to P(Zn), that we also denote by Ψ−1.
Given Y ⊂ Fn, we set S = Ψ−1(Y ∩Fn

n). We define the map Dcc
1 (Y ) : Fn → N

as follows: for all f ∈ Fn,

Dcc
1 (Y )(f) =

{
D1(S)(Ψ

−1(f)) if f is an n-face
max

f∈(ĝ∗∩Fn
n)

Dcc
1 (Y )(g) otherwise

Informally, if f is a 3-face, then Dcc
1 (Y )(f) is the length of the shortest 1-path

between the voxel “corresponding” to f and the set of voxels corresponding to
Y . In the same way, we define Ωcc

1 (Y ) and DCcc1 (Y ).

4.3 Parameter-Free Filtered Thinning

As previously said, we add edges to the set W of Alg. 1 in order to retain, in the
resulting curvilinear skeleton, important edges from the original object. Given
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Algorithm 2. CurvilinearSkeleton(X)

Data: A cubical complex X 
 F3

Result: A cubical complex Y 
 F3

1 W = {f ∈ X|LifespanX(f) > DCcc
1 (X)(f) + BirthX(f) −Dcc

1 (X)(f) and
dim(f) = 1} ;

2 return ParDirCollapse(X,W,+∞);

a cubical complex X , if an edge of X has a high decenterness value for X , then
it is probably located too close to the border of X and does not represent an
interesting geometrical feature to preserve. On the other hand, if an edge has a
high lifespan for X , then it means it was not removed quickly, after becoming a
facet, by the thinning algorithm and might represent some precious geometrical
information on the original object. An idea would be to keep, during thinning,
all edges whose lifespan is superior to the decenterness value. Unfortunately, this
strategy produces skeletons with many spurious branches in surfacic areas of the
original object.

We can identify surfacic areas of a complex as zones where squares have a
high lifespan. Therefore, in order to avoid spurious branches in surfacic areas,
we need to make it harder for edges to be preserved in these zones. It can be
achieved by deciding that an edge will be kept safe from deletion by the thinning
algorithm if its lifespan is superior to the decenterness value plus the lifespan of
squares “around” this edge. This leads us to proposing Alg. 2.

In order to understand what was realised on line 1 of Alg. 2, we might point
out that the birth date of an edge corresponds to the highest death date of the
squares containing this edge. Moreover, the map Dcc

1 (X) gives, for all 3-faces
of X , their death date (as the thinning algorithm naturally follows this map to
eliminate cubes from a 3-complex). Therefore, for an edge f of X , Dcc

1 (X)(f)
informs us on the highest death date of cubes containing f , also equal to the
highest birth date of squares containing f . In conclusion, BirthX(f)−Dcc

1 (X)(f)
is an approximation of the lifespan of the squares containing f .

Although the output of Alg.2 may contain 2-faces, the algorithm is said to be
a curvilinear skeletonization algorithm because it only adds 1-faces (edges) in the
inhibitor set W (used for the visual aspect preservation step) (on line 1 of Alg. 2).
For the same reason, we say that the output of Alg. 2 is a curvilinear skeleton.
In the scenes studied in Sec. 5, the outputs of Alg. 2 were one dimensional
complexes.

4.4 Results

Algorithm 2 allows to obtain a filtered curvilinear skeleton from a three dimen-
sional complex. The results presented in Fig. 4 show that the skeletons contain
the main geometrical information from the input shapes, and no spurious branch.
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Fig. 4. Results of algorithm 2 for two shapes: a hand (left) and a statue (right). In
each pair, the rightmost image represents the skeleton.

5 Application to Path Tracing

In this section, we explain how the curvilinear skeleton of the voids of the scene
can enhance the path tracing algorithm. We start with some basic elements
related to path tracing and then present our modified path tracing algorithm.

5.1 The Path Tracing

Let O be the origin of the camera in the scene. For each pixel P of the final

image, let x be the nearest intersection point of the ray (O,
−−→
OP = −Θ) with

an element of the scene. To obtain the luminosity, we must solve the rendering
equation [8] which is a recursive integral equation, the integrand containing the
radiance function that we must compute:

L(x→ Θ) = Le(x→ Θ) +
∫
Φ∈Ωx

fs(x,Θ ↔ Φ)L(r(x, Φ) → −Φ)dωΦ

where L is the radiance (a radiometric quantity that represents luminosity) from
point x toward direction Θ and Le is the emitted radiance (non null only on light
sources). The point r(x, Φ) is the nearest visible point from x in the direction
Φ of the hemisphere Ωx. The fs function expresses how much luminosity is
exchanged, on point x, between an incoming ray Φ and the outgoing ray Θ.

The previous equation expresses an intuitive idea: the reflected radiance from
x towards the camera is the result of computing all incoming luminosity on x
scaled by a factor which depends on the material on x and the angle of the ray
going from the camera to x. The most common method used to estimate the
integral, denoted by Lr(x→ Θ), is the Monte-Carlo integration which provides
the following:

〈Lr(x→ Θ)〉 = fs(x,Θ ↔ Φ)L(r(x, Φ) → −Φ)

p(Φ)

The function p is a probability density function (pdf) that is used to sample Φ.
This estimator is unbiased, meaning that the expected value E[〈Lr(x → Θ)〉]
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is equal to Lr(x → Θ). The variance of the estimator expresses its quality and
depends on the chosen pdf p. The best choice is a pdf that matches the shape of
the function to integrate (ie. gives high density to samples that have high values
for the function and low density to samples that have low values). The strategy
of choosing an adapted pdf is called importance sampling [8] and is used in global
illumination to improve the convergence speed of the algorithms.

The algorithm computes L as follow: it chooses one random direction Φ based
on the pdf p and applies the estimator by calling L recursively to compute Lr

(shoots a new ray in the direction Φ, computes the new hit point with the scene,
and compute the new radiance at this point). Finally, it returns the sum of the
emitted radiance Le and the result for Lr. The recursion stops when either a
maximal number of bounces or a directly illuminated area have been reached.

This computation is done multiple times for each pixel. We average the re-
sults and get an estimation of the mean radiance passing through the pixel and
heading towards the camera. A bad pdf would lead in picking directions that do
not reach the light before the end of the recursion, and produce results with a
lot of noise in the final image. In the next part, we explain how to produce a pdf
based on the curvilinear skeleton.

5.2 Skeleton Based Importance Sampling

As stated in the introduction, a curvilinear skeleton of the void (with some
preprocessing performed on it) gives us information on which directions the
light comes from. Given these directions, we can build a efficient pdf pskel and
guide our rays by sampling the hemispheres with pskel. The integrand of Lr is:

fs(x,Θ ↔ Φ)L(r(x, Φ) → −Φ).

The most common strategy used to sample Ωx is to use the function fs because
it is an input of the algorithm. The term L, representing the distribution of light
in the scene, is unknown. Our method gives a way to sample L.

Construction of the Importance Points. The skeleton of the voids of the
scene is computed using Alg. 2 (as shown on Fig. 5 on the right) and is converted
to a graph (the nodes are the 0-faces and the edges are the 1-faces). We then
compute a set of importance points, which will be used to sample Ωx in the path
tracing algorithm. To each node n of the skeleton, one importance point impn
is computed. Intuitively, the importance point associated to n is the direction
to follow in order to find a light source.

Let L be the light source of the scene and nL the nearest node of the skeleton
that is visible by L. For each node, we compute the shortest path to nL along
the skeleton. To do so, we use the Dijkstra algorithm and weight the edges of
the skeleton depending on a visibility criteria: the weight of an edge e is 1 if e
is visible from nL and 10 else. It results that illuminated paths will be shorter
than paths located in dark areas.

Let n be a node of the skeleton and Vn the set of visible nodes from n along
the shortest path toward nL. The importance point impn associated to n is the
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Fig. 5. On the left, we illustrate the importance point impn associated to a node n.
The dotted black line shows the closest node to n not included in Vn. On the right,
an example of the curvilinear skeleton (in red) obtained in the Sponza scene.

Fig. 6. Same scene rendered using the classical path tracing (image a) or our method
(image b). Images c and d are both details of respectively images a and b

Scene Corridor Sponza 1 Sponza 2 (Fig. 6)

MSE 100 145 / 57 301 / 156 881 / 826

MSE 40 434 / 260 924 / 628 2678 / 2570

Fig. 7. Time (s) to reach an MSE of 100 and 40 against reference images. In each cell,
the left number is for the standard path tracing, the right is for our method

barycenter of Vn. An example is shown on Fig. 5 on the left. The algorithm can
be extended to multiple light sources by taking into account, when computing
the importance point of a skeleton node, only the closest light source.

Sampling According to L. Given a point x on the scene and a direction Θ,
we want to compute L(x→ Θ) and then sample the hemisphere Ωx. We search
for the nearest skeleton node n to x and its importance point impn. We sample

the hemisphere with a power-cosine pdf centered on
−−−−→
x impn:

pskel(Φ) =
s+1
2π ∗ cossα

with α the angle between
−−−−→
x impn and Φ, s being a parameter called skeleton

strength. The higher s is, the closer to
−−−−→
x impn we sample.
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5.3 Results and Discussion

Some results are presented on Fig. 6 and Fig. 1 where we can see that our method
produces less noisy images compared to the regular path tracing. We present, in
Fig 7, the time taken by each method to produce an image of same quality (the
quality is measured by the mean square error (MSE) with a reference image) in
different scenes: our method is the fastest.

6 Conclusion

We presented in this article a new skeletonization algorithm that both preserves
geometrical features of objects and produces a pure curvilinear skeleton. These
two properties allow us to improve the path tracing algorithm in guiding the
rays towards the main illuminated area of the scene. Our algorithm is faster and
produce less noise than the classical path tracing method.
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Abstract. A 3D object decomposition method is presented, which is based on 
the decomposition of the linear skeleton guided by the zones of influence. 
These are the connected components of voxels obtained by applying the reverse 
distance transformation to the branch points of the skeleton. Their role is to 
group sufficiently close branch points and to detect perceptually meaningful 
skeleton branches that are in a one-to-one relation with the object parts. 

1 Introduction 

According to the structural approach to shape analysis, an object can be interpreted as 
constituted by a number of perceptually meaningful parts and its description can be 
given in terms of the description of the various parts and of their spatial relationships. 
This approach has been inspired by the behavior of the human visual system, as 
discussed in [1-4]. One of the advantages of such a structured representation is a 
greater robustness under changes in viewing conditions. 

The skeleton is a tool often employed to achieve a structural analysis of the object 
it represents [5-12]. In fact, the skeleton is a linear subset of the object reflecting the 
topological and geometrical features of the object and such that each skeleton branch 
is in correspondence with one of the parts understood as constituting the object. Thus, 
a decomposition of an object into its constituting parts can be guided by a 
decomposition of the skeleton into its constituting branches.  

Parts associated with skeleton branches meeting in common points, the branch 
points of the skeleton, overlap with each other. If decomposition into disjoint parts is 
preferred, care is necessary to deal with the overlapping regions. 

We have suggested shape decomposition methods guided by skeleton 
decomposition for both 2D and 3D objects. In the 2D case, we decomposed the 
skeleton into its constituting branches and obtained object decomposition into 
partially overlapping parts [5,6]. In the 3D case, we favored decomposition into 
disjoint parts and to this purpose we suggested a suitable partition of the skeleton 
[10,11]. In particular in [11], we partitioned the skeleton into three types of 
components, respectively called complex sets, simple curves and single points, which 
correspond to three types of object parts, respectively called kernels, simple regions 
and bumps. Simple regions and bumps protrude from the kernels. In turn, kernels can 
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be interpreted as sort of main bodies of the object. Kernels were identified in 
correspondence with the positions where different skeleton branches meet. 

In this paper, we work with 3D objects and propose a decomposition method that is 
inspired by our work in 2D as concerns the decomposition of the skeleton into its 
constituting branches, and shares with our 3D method the fact that the object is 
decomposed into disjoint parts. The current method will face the problem of 
identifying skeleton branches corresponding to meaningful object parts, and will deal 
with the assignment of each overlapping region to only one of the proper object parts 
overlapping each other. 

The object parts obtained as described in this paper are somehow analogous to the 
simple regions and bumps of the decomposition method in [11]. In both cases, object 
decomposition is into disjoint parts. An important difference between the two 
methods is that with the current method no region merging is necessary to achieve an 
object decomposition in accordance with human intuition. Other analogies and 
differences will be discussed in Section 4. 

2 Preliminaries 

We consider objects rid of cavities in binary voxel images in cubic grids. The 26-
connectedness is used for the object and the 6-connectedness for the background. The 
neighbors of a voxel p are the 26 voxels sharing with p a face, an edge, or a vertex.  

The distance between two voxels p and q is defined as the length of a minimal 
discrete path linking p to q. The three integer weights wf=3, we=4 and wv=5 are used 
to measure the unit moves from a voxel towards its face-, edge- and vertex-neighbors 
along the path, respectively. This choice of weights is motivated by the fact that the so 
obtained <3,4,5> weighted distance provides a reasonably good approximation to the 
Euclidean distance [13].  

According to the model proposed by Blum [14], the skeleton of an object is a 
subset of the object consisting of points symmetrically placed within the object, 
having the same topology of the object, and such that each skeleton point is associated 
with its distance from the background. The value of a skeleton point can be 
interpreted as the radius of a ball that, centered on the point, is bi-tangent to the 
object’s boundary and is included in the object. The object can be recovered starting 
from its skeleton by computing the envelope of the balls associated to its points.  

For 3D objects, the above model originates a surface skeleton, which consists of 
the union of surfaces and curves. The surface skeleton of objects rid of cavities can be 
furthermore reduced to originate a skeleton exclusively consisting of curves. Only 
partial object recovery from such a skeleton is possible, unless the object consists of 
parts with tubular shape. In fact, only in such a case the symmetry points are mostly 
aligned along symmetry axes, while in the general case symmetry points are placed 
along symmetry planes and axes.  

In the digital space, the skeleton of a 3D object can be computed according to the 
model of Blum by identifying the centers of maximal balls in the distance transform 
of the object. The distance transform DT is a multi-valued replica of the object, where 
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each voxel is labeled with its distance from the background. Thus, each voxel in DT 
can be interpreted as the center of a ball with radius equal to the corresponding 
distance label. In particular, a voxel whose associated ball is not included by any 
other single ball in the object is called center of maximal ball CMB. The object can be 
recovered by the union of the balls associated to the CMBs of the object. The ball 
associated to any distance labeled voxel p can be obtained by applying to p the 
reverse distance transformation [15].  

In this paper, we compute DT by using the <3,4,5> weighted distance. There, to 
establish whether a voxel p is a CMB it is enough to compare the distance label of p 
with the distance labels of its 26 neighbors, by suitably taking into account the 
weights wf, we and wv [16]. As for the skeleton used to guide object decomposition, 
we refer to the linear skeleton obtained by the algorithm for DT based skeletonization 
suggested in [17]. We are aware that when using a linear skeleton a difference 
generally exists between the input object and the union of the only balls associated 
with the voxels of its skeleton. Thus, our decomposition method is completely 
effective only in case of objects that are perceived as consisting of parts with tubular 
shape, since in this case the above difference is negligible. This is the object domain 
considered in the following. 

3 The Method 

Let S be the skeleton of the object at hand. A voxel p of S is an end point when it has 
only one neighbor in S, is a normal point when it has two neighbors in S, and is a 
branch point when it has more than two neighbors in S. A skeleton branch is a curve 
of S entirely consisting of normal points, except for the two extremes of the curve that 
are end points or branch points. 

Balls associated to a set of distance labeled skeleton voxels by the reverse distance 
transformation may overlap and merge into connected components. Let us consider 
the balls associated with all the branch points of S. Each group of these balls forming 
a connected component is called zone of influence of the branch points it includes. 
Branch points that are neighbors of each other or are closer to each other than the sum 
of their associated distance labels are included in the same zone of influence.  

Intersecting object parts are mapped into branches of an ideal continuous skeleton 
that meet in a single branch point. In turn, more than one single branch point is 
generally found in the digital skeleton S in correspondence with intersecting object 
parts. However, in any such a case the branch points are likely to be very close to 
each other, so that they are included in a unique zone of influence. Thus, the zones of 
influence can be used to group branch points of S actually corresponding to a single 
branch point configuration of the skeleton that would ideally represent the object at 
hand. Obviously, the number of zones of influence may be smaller than the number of 
branch points of S. 

In the following, the zones of influence are used to correctly identify the 
configurations where skeleton branches meet with each other. They are also used to 
count the number of perceptually meaningful branches of the skeleton and, hence, the 
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number of object decomposition parts. To this aim, connected component labeling is 
accomplished on the zones of influence, as well as on the set that is obtained from S 
by removing from it all voxels that result to be included in any zone of influence.  

Short branches may exist in S, whose voxels are all included in a zone of influence, 
e.g., see Fig. 1. These short branches do not correspond to meaningful object parts 
and, hence, should not be counted. This is guaranteed since connected component 
labeling of S is done after removal of the skeleton voxels placed in zones of influence.  

 

Fig. 1. A zone of influence (gray) including a short skeleton branch 

3.1 Detecting Skeleton Components 

To illustrate our object decomposition method, let us refer to the object “horse”, 
shown in Fig. 2 top left, which will be used as running example. The skeleton S 
computed by the algorithm [17] is shown in Fig. 2 top right, where red, black and 
green are used for branch points, normal points and end points, respectively. We note 
that S includes six branch points, six end points, and nine skeleton branches. The two 
zones of influence resulting after applying the reverse distance transformation to the 
six branch points of S are shown in Fig. 2 bottom left; finally, the result obtained by 
applying connected component labeling to the zones of influence and to the voxels 
outside them is shown in Fig. 2 bottom right, where different colors represent 
different identity labels.  

 

  

  

Fig. 2. From top left to bottom right: the object “horse”, its skeleton, the zones of influence and 
the result of connected component labeling 
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Still with reference to Fig. 2, we note that out of the nine skeleton branches 
initially detected in the skeleton S, only seven branches having at least one voxel 
outside the zones of influence are identified as having perceptual significance. These 
skeleton branches correspond to the object parts of which the object can be interpreted 
as constituted. The seven object parts intersect with each other in correspondence of 
the zones of influence. However, as it will be explained in the following, the actual 
overlapping region among the object parts in correspondence of a given zone of 
influence is likely to be larger than the zone of influence itself. 

3.2 Identifying Object Decomposition Components 

Ideally, by subtracting from the input object the zones of influence we should obtain a 
number of connected components of object voxels equal to the number of skeleton 
branches counted by connected component labeling. However, notwithstanding the 
fact that the image domain considered in this work includes only objects perceived as 
consisting of parts with almost tubular shape, a difference unavoidably exists between 
the volume of the input object and the volume of the object that could be obtained by 
applying to S the reverse distance transformation. Each zone of influence is certainly 
adjacent somewhere to the original background, but such an adjacency does not 
regard the whole surface delimiting the zone of influence. Thus, the number of 
achieved connected components of object voxels is generally smaller than expected. 
See Fig. 3 top left, where a section (black voxels) of the set that would be obtained by 
subtracting from “horse” the zones of influence (gray voxels) is shown. We observe 
that only one connected component of object voxels would remain after subtraction, 
while our aim is to decompose that part of the object into the four regions (torso, tail 
and the two back legs) that are in correspondence with the four detected perceptually 
meaningful skeleton branches. 

To solve the above problem, we need to expand the zones of influence, so as to 
identify the proper overlapping regions. We aim at overlapping regions such that the 
cuts resulting in the object, when subtracting the overlapping regions from the input 
object, are in correspondence with significant curvature changes along the boundary 
of the object. To avoid both a too little expansion that would not produce the desired 
separation of the object parts, and an excessive expansion that would originate parts 
with unnatural separation cuts, we exploit distance information available in DT. In 
practice, the voxels of the zones of influence are labeled with the distances pertaining 
to them in DT. Then, the expansion is achieved by applying the reverse distance 
transformation to the so obtained distance labeled zones of influence.  

The above process guarantees that the surfaces of the overlapping regions have a 
high adjacency degree with the original background. At the same time, reverse 
distance transformation also guarantees that unnatural cuts are not produced when the 
overlapping regions are subtracted from the input object. In fact, the zones of 
influence are nearly convex regions and this geometric property is preserved when the 
zones of influence are expanded. Thus, the overlapping regions cannot extend beyond 
the curvature minima along the boundary of the object. The overlapping regions 
obtained for the running example are shown in Fig. 3 top right.  
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We remark that the number of object parts has already been determined by 
counting the number of connected components of skeleton voxels outside the zones of 
influence. Thus, care should be taken to avoid diminishing such a number due to a 
possible fusion of the regions obtained when applying the reverse distance 
transformation to the distance labeled zones of influence. To this aim, a topology 
preserving reverse distance transformation is taken into account so as to avoid fusion. 
In practice, topology is maintained by setting to the background value the voxels that, 
though reached by the expansion of the zones of influence, result to be at the same 
distance from more than one zone of influence.  

The overlapping regions are subtracted from the input object and the identity labels 
assigned to the voxels of the perceptually meaningful skeleton branches are finally 
used to label the connected components of object voxels they belong to. See Fig.3 
bottom left, where the components of object voxels are colored as the corresponding 
perceptually meaningful skeleton branches. In his way, the preliminary object 
decomposition shown in Fig. 3 bottom right is obtained, where each overlapping 
region, colored as the influence zone from which has been obtained, still has to be 
ascribed to the proper component of object voxels. 

 

   

  

Fig. 3. From top left to bottom right: section showing in gray the voxels of the zones of 
influence; the overlapping regions obtained by applying the topology preserving reverse 
distance transformation to the zones of influence; the components of object voxels obtained by 
subtracting from the object the overlapping regions; and the preliminary decomposition of the 
object before ascribing the overlapping regions to the proper object parts 

For the sake of completeness, we point out that when computing the set difference 
between the input object and the overlapping regions, some connected components 
composed by a small number of object voxels may exist, which do not include any 
skeletal voxel. Such components are likely to exist since their voxels were not 
reached when applying the reverse distance transformation to the zones of influence 
due to the fact that S does not include all the CMBs of the object. These components 
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do not correspond to meaningful object parts and their voxels are assigned to the 
overlapping regions they are adjacent to. 

3.3 Ascribing the Overlapping Regions 

According to our model, the object should be decomposed into a number of disjoint 
parts equal to the number of perceptually meaningful skeleton branches. To reach this 
goal, a decision must be taken to ascribe each overlapping region to only one of the 
disjoint components of object voxels adjacent to it. 

By observing an overlapping region, say ORk, and the adjacent components of 
object voxels, say P1, P2,..,Pn, we may note that while ORk is an almost convex set, P1, 
P2,..,Pn show a different degree of concavity in correspondence with the positions 
where they result to be adjacent to ORk. Let Ak denote the area of the surface 
bounding the overlapping region ORk, i.e., the number of voxels of ORk having at 
least one face-neighbor outside ORk. Moreover, let Ak(Pi) denote the portion of the 
area of the surface bounding the overlapping region ORk that is adjacent to Pi, i.e., the 
number of voxels of ORk having at least one face-neighbor in Pi. Then, we roughly 
evaluate how much ORk intrudes into the adjacent component Pi, by computing the 
ratio R= Ak(Pi)/Ak. We ascribe the overlapping region ORk to the adjacent component 
of object voxels that maximizes the ratio R. The choice of this criterion is due to the 
fact that in our opinion the more ORk intrudes in a given component Pi, the more the 
shape of Pi benefits if the overlapping region is ascribed to it. 

To accomplish the assignment of the overlapping regions in a computationally 
convenient manner, an adjacency matrix is built having as many rows as many are the 
overlapping regions and a number of columns equal to the number of components of 
object voxels plus one for the background. By inspecting the array where the 
preliminary decomposition of the object is stored, each time that a voxel of ORk is 
met having at least one face neighbor outside ORk, the proper element of the k-th row 
of the matrix is increased by one. In this way, once the matrix has been built, the 
value at row k and column j measures the portion of surface of ORk in common with 
the background or with one of the adjacent components of object voxels. Then, we 
can easily decide to which component of object voxels to assign each overlapping 
region. In the rare case in which for an overlapping region an identical ratio is 
obtained for more than one adjacent component, the overlapping region is assigned to 
any of such components. 

The adjacency matrix for the running example is shown in Table 1, where the two 
overlapping regions OR1 and OR2 are respectively those colored in green and blue in 
Fig. 3 bottom right.  

Table 1. The adjacency matrix fort he running example 

 background leg1 leg2 leg3 leg4 neck torso tail 
OR1 1517 44 33 0 0 125 411 0 
OR2 1622 0 0 70 53 0 414 5 
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The decomposition obtained for the running example is shown in Fig. 4 from two 
different view points. 

 

   

Fig. 4. The obtained decomposition seen from two different view points 

4 Experimental Results and Discussion 

We have tested our method on 3D objects taken from publicly available shape 
repositories, e.g., [18], as done by most of the researchers in this field. The obtained 
results are generally satisfactory. In particular, for some objects used also in [7, 9, 12] 
to show the performance of the corresponding decomposition methods, our results 
seem to be qualitatively better. In Fig. 5 a few examples are given to show the 
performance of our decomposition method. 

 

    

    

    

Fig. 5. From top to bottom: The skeletons of various input objects, the preliminary decompositions, 
and the resulting object decompositions 

The algorithm runs on a Pentium 4 (3 GHz, 2 GB RAM) personal computer and its 
computational cost is O(N), where N is the number of voxels in the image. The 
decomposition method is simple to implement, is rather fast and is completely 
automatic since it does not require any threshold. Of course, the quality of the results 
is influenced by the quality of the starting skeleton. In this respect, the skeletonization 
algorithm [17] has a positive impact on the decomposition method. In fact, due to the 
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use of the <3,4,5> distance that provides a good approximation of the Euclidean 
distance, the skeleton is rather stable under object rotation and for scale changes. 
Thus, stability also characterizes object decomposition. Moreover, the skeletonization 
algorithm includes a clever pruning step that, if the same object is presented in a 
different pose, allows us to obtain a skeleton with mostly the same structure. Actually, 
in this respect a key role for a satisfactory object decomposition is played by the 
zones of influence. In fact the skeleton of the same object in different poses may be 
characterized by a different number of branch points. However, due to the zones of 
influence we detect the same number of branch point configurations in all cases and, 
hence, the same number of perceptually significant skeleton branches. 

Stability of the decomposition method with respect to pose/size changes can be 
appreciated by referring to Fig. 6, for the object “armadillo”. We observe that the 
main parts of the armadillo (the torso, the four limbs, the tail, the ears and the muzzle) 
are detected in all poses as individual decomposition parts. This is due to the detection 
of the zones of influence, which identifies the same number of branch point 
configurations in all cases, and to the criterion adopted to assign the overlapping 
regions to the proper adjacent components of object voxels. In turn, small peripheral 
parts, such as the toes, are not always individually detected as object parts since they 
are not individually mapped into skeleton branches. 

 

   

   

   
Fig. 6. The skeleton of “armadillo” in different poses/sizes, top, the preliminary decomposition, 
middle, and the decomposition after assignment of the overlapping regions, bottom 

We have also tested stability of decomposition when the object is deformed, e.g., by 
stretching it without tearing it apart or sticking distinct parts together. For example, see 
Fig. 7, where the decomposition of a deformed version of “horse” is shown. We note that 
also in this case two overlapping regions are found, which are still assigned to the torso. 
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Fig. 7. The preliminary decomposition of a deformed version of “horse”, top, and the 
decomposition into the same number of disjoint parts as that achieved for the non deformed 
“horse”, bottom 

As pointed out in the introduction, this decomposition method has some analogies 
with our previous decomposition method [11]. Both methods decompose the skeleton 
and generate object decompositions into disjoint parts. Moreover, the overlapping 
regions and the components of object voxels obtained by subtraction of the 
overlapping regions from the input have some analogy with the kernels and with the 
simple regions and bumps detected in [11]. However, the two methods are rather 
different, both as concerns the model and as concerns the computational cost. 

As concerns the model, in [11] we give a prominent role to the kernels, while in 
this paper the key role is played by the object parts that correspond to the perceptually 
meaningful skeleton branches. The one-to-one correspondence between the skeleton 
components identified during the skeleton decomposition process and the parts into 
which the object is decomposed is maintained by the current process, which produces 
as many object parts as many are the detected perceptually significant skeleton 
branches. In turn, with the method in [11] the one-to-one correspondence is 
maintained only if no merging phase is accomplished; on the other hand, merging is 
almost always necessary in order to obtain a decomposition more in accordance with 
intuition.  

As regards the computational cost, the current method is noticeably cheaper. The 
object parts are simply obtained by subtraction from the input of the overlapping 
regions, while a 2-step more sophisticated and expensive process was used in [11] to 
build the various regions starting from the skeleton components. Moreover, a 
concavity filling algorithm had to be used in [11] to move a number of voxels from 
any kernel to the adjacent regions, so as to have almost planar separation cuts where 
significant changes of curvature occurred along the boundary of the object. In turn, 
this is no longer necessary in the new method, due to the criterion adopted to identify 
the overlapping regions. Finally, merging was a necessary step in [11], which implies 
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an additional computational effort and the use of merging thresholds, while such a 
step is not necessary in the current work.  

As already said, our method effectively works for objects perceived as composed 
by the superposition of parts with tubular shape, possibly characterized by different 
width. According to our method, the overlapping regions cannot individually exist, 
nor are divided among the adjacent components of object voxels. The component to 
which an overlapping region is ascribed is the one whose shape appears as completed 
by the assignment of the overlapping region. Such a component is characterized by 
width comparable to the width of the adjacent overlapping region, while the 
remaining adjacent components have smaller width.  

To extend the applicability of the method to an image domain wider than that 
including only objects that are perceived as composed by parts with tubular shape, 
some considerations on the assignment of the overlapping regions can be done. For 
example, think of a rounded pincushion from which a number of pins come out. We 
can assume that a unique large overlapping region exists, which exhausts the portion 
of the 3D space occupied by the cushion. If such an overlapping region is assigned to 
one of the pins, the shape of the so obtained object part would have no perceptual 
evidence. The boundary of the compound part (cushion plus pin), in fact, would not 
be characterized by that good continuity that a human observer would consider 
adequate to perceive that compound object part as a whole. A feature that would 
certainly characterize the adjacency matrix built for the pincushion is that the ratio R 
remains always rather small, since the cushion intrudes very little within the pins. 
Thus, a way to extend the decomposition method to a wider domain is to introduce a 
threshold on the minimal value that the ratio R should have in order a compound 
region (overlapping region plus adjacent component of object voxels) can be 
reasonably perceived as a whole. Selecting the proper value for such a threshold will 
be argument of future investigations.  If for all components of object voxels adjacent 
to a given overlapping region the ratio R is below the threshold value, the overlapping 
region is not assigned to any component and is taken as an individual decomposition 
part. Obviously, the method would be no longer fully automatic, since a threshold has 
to be set, the one-to-one correspondence between perceptually meaningful skeleton 
branches and object parts would be no longer guaranteed, since overlapping regions 
may be individual decomposition parts, but the method would have larger 
applicability.  

5 Concluding Remarks 

In this work we have introduced a 3D object decomposition method based on skeleton 
decomposition. The objects of interest are understood as constituted by parts with 
tubular shape and possibly different width. Starting from the linear skeleton of the 
object, the zones of influence, i.e., the regions where different skeleton branches 
meet, are identified. The zones of influence are used to group branch points 
sufficiently close to each other, and to identify the perceptually meaningful skeleton 
branches. Then, the overlapping regions, i.e., the object regions where object parts 
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intersect, are identified and components of object voxels are obtained by subtraction 
of the overlapping regions from the input object. The overlapping regions are finally 
ascribed to the adjacent components of object voxels that better benefit of such an 
assignment. 
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Abstract. A new approach to simplify orthogonal pseudo-polyhedra
(OPP) and binary volumes is presented. The method is incremental and
produces a level-of-detail (LOD) sequence of OPP. Any object of this
sequence contains the previous objects and, therefore, it is a bounding
orthogonal approximation of them. The sequence finishes with the min-
imum axis-aligned bounding box (AABB). OPP are represented by the
Extreme Vertices Model, a complete model that stores a subset of their
vertices and performs fast Boolean operations. Simplification is achieved
using a new approach called merging faces, which relies on the applica-
tion of 2D Boolean operations. We also present a technique, based on the
model continuity, for a better shape preservation. The method has been
tested with several datasets and compared with two similar methods.

Keywords: Simplification, LOD, Bounding Volumes, Orthogonal Poly-
hedra, Binary volumes.

1 Introduction

The large size and complexity of the models often affects the computation speed-
up of their characteristics and their rendering efficiency. Simplification techniques
can diminish these problems. Moreover, in some situations it is advantageous to
exchange an exact geometric representation of an object for an approximated
one, which can be processed more efficiently. Bounding structures are used for
model simplification to accelerate tasks such as collision detection or distance
computation. The most used bounding structures are AABB, spheres, oriented
boxes or convex polyhedra. In this paper we present an approach to simplify
OPP. The method computes a LOD sequence of bounding volumes (BV), that are
also OPP, denoted as bounding OPP (BOPP). BOPP satisfy the two following
properties: (1) any BOPP contains the previous one and (2) all the BOPP, as
well as the original object, have the same AABB. Fig. 1 depicts a 3D model and
the obtained BOPP sequence, with the AABB for each one. We use the Extreme
Vertices Model (EVM) to represent OPP. The presented simplification approach,
called merging faces, relies on the application of 2D Boolean operations, which
are fast using EVM, over the OPP faces. The presented method deals with
general 3D orthogonal objects with any number of shells, cavities and through

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 143–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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92,922 EV 18,346 EV 8,768 EV 3,948 EV 802 EV

Fig. 1. A level-of-detail sequence of orthogonal pseudo-polyhedra (OPP) generated by
our approach. From left to right: Original model, OPP with 19.7%, 9.4%, 4.2% and
0.8% of extreme vertices (EV). In the last one, the 1st and 5th objects are put together.

holes. We also develop a technique for a better shape preservation that avoids
abrupt changes. The method has been tested with several datasets and compared
with similar methods, showing satisfactory results.

2 Related Work

Model simplification has been extensively applied to triangular meshes [5] and ex-
tended to tetrahedral meshes evaluating the approximation error and the quality
of the obtained mesh [4]. Methods for LOD sequences of triangular and tetrahe-
dral meshes can also be found extensively in the literature [16] as well as methods
to simplify quadrilateral meshes [11,21]. In contrast to these methods, that rely
on geometric operations as edge-collapse or clustering, simplification can follow
other strategies. Morphological operators as filleting and rounding can be used
to simplify 2D binary images as well as 3D triangular meshes [26]. A carving
strategy is applied to an octree model [23] as well as to a tetrahedral mesh [12]
to simplify the topology. Simplification strategies have also been developed for
B-Rep models [19] by removing connected sets of faces.

Several applications as collision detection [14], ray tracing [25] and volume of
interest computation [9] use approximated shapes that are BV. Simple spheres
[10] and AABB [20] are used as well as more sophisticated shapes as convex
[15] or oriented [6] polytopes. Orthogonal polyhedra have also been proposed
as BV [8] and as geometric bounds for CSG [1]. Orthogonally convex polygons
are computed as orthogonal hulls for 2D images [3]. An orthogonal polygon is
orthogonally convex if any axis-parallel line intersects it in at most one line
segment. This problem has been extended to orthogonally convex polyhedra [2].

A sequence of BV can be obtained using alternative representations as octrees
[18,23] resulting in a simplified geometry and topology, or BSP [13] obtaining a
LOD sequence with a decreasing number of nodes. OP simplification has been
carried out with a moving faces strategy that performs face displacements (but
fails for objects with holes or more than one connected component) and the
rectangle pairs strategy based on a box partition of the OP [8].
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3 Extreme Vertices Model (EVM)

OP are two-manifold polyhedra with all their faces oriented in the three main
axes. OPP are regular OP with a possible non-manifold boundary. General OPP
are OPP with vertex coordinates having any value in R3. Polycubes are a subset
of OPP all of whose vertices have integer coordinates, formed by joining one or
more equal cubes (voxels) face to face. A 3D binary digital image represents an
object as the union of its foreground voxels and its continuous analog is an OPP.
In this paper we work with all these kind of objects represented with EVM. Let
Q be a finite set of points in R3, the ABC-sorted set of Q is the set resulting
from sorting Q according to A-coordinate, then to B-coordinate, and then to
C-coordinate. Let P be an OPP, a brink is the maximal uninterrupted segment
built out of a sequence of collinear and contiguous two-manifold edges of P and
its ending vertices are called extreme vertices (EV). An OPP can be represented
in a concise way with the ABC-sorted set of its EV and such representation
scheme is called EVM. EVM is a complete solid model [24].

Let P be an OPP and Πc a plane whose normal is parallel, without loss of
generality, to the X axis, intersecting it at x = c, where c ranges from −∞
to ∞. Then, this plane sweeps the whole space as c varies within its range,
intersecting P at some intervals. Let us assume that this intersection changes at
c = c1, . . . , cn. More formally, P ∩ Πci−δ �= P ∩ Πci+δ, i = 1, . . . , n, where δ is
an arbitrarily small quantity. Then, Ci(P ) = P ∩ Πci is called a cut of P and
Si(P ) = P ∩ Πcs , ci < cs < ci+1, is called a section of P . Two cuts bounding
a section Ci and Ci+1 are called consecutive cuts. See Fig. 2. Sections can be
computed from cuts and vice versa:

S0(P ) = Sn(P ) = ∅, Si(P ) = Si−1(P )⊗∗ Ci(P ), i = 1...n− 1 (1)

Ci(P ) = Si−1(P )⊗∗ Si(P ), i = 1...n (2)

where n is the number of cuts and ⊗ denotes the xor operation. Overline sym-
bolizes the project operator, that projects a d-dimensional set of vertices lying
on an orthogonal plane, like a cut or a section, onto the corresponding main
plain, discarding their dth coordinate. The star exponent ∗ denotes a regular-
ized Boolean operation. A regularized set is defined as the closure of its interior.
Regularized Boolean operations are needed to ensure 3D homogeneity [22].

Eq. 2 can be rewritten by expressing the ⊗∗ operation as the union of differ-
ences: Ci(P ) = (Si−1(P ) −∗ Si(P )) ∪∗ (Si(P ) −∗ Si−1(P )), and any cut can be
decomposed into its forward difference (FD) and backward difference (BD):

FDi(P ) = Si−1(P )−∗ Si(P ), BDi(P ) = Si(P )−∗ Si−1(P ), i = 1...n (3)

FDi(P ) is the set of Ci(P ) faces whose normal vector points to the positive
side of the coordinate axis perpendicular to Ci(P ) and BDi(P ) is the set of
faces whose normal vector points to the negative side (see Fig. 2). This property
guarantees the correct orientation of faces and the computation of the non-EV.
EVM Boolean operations are computed by applying recursively (in nD) the same
Boolean operation over the (n-1)D OPP sections. The base case performs this
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Fig. 2. An EVM-encoded (ABC-sorted) OPP. Left: EV marked with dots, cuts de-
composed in FD (blue) and BD (orange), normal vectors represented with arrows; a
vertical brink from vertex a to c is marked showing that these vertices are both EV
while the vertex b is a non-EV. Right: The sections of the object highlighted in yellow.

operation in 1D. The ⊗∗ is even faster, EV M(P⊗∗Q) = EV M(P )⊗∗EV M(Q),
i.e, it is a simple point-wise xor, without section computation. For more details
concerning EVM see [1] and [17].

4 Algorithm Overview

Let B(P ) be the bounding orthogonal pseudo-polyhedron (BOPP) of an OPP P
and let φ0 be an initial OPP. A finite sequence φ1, φ2, ..., φp of OPP is generated
that fulfill the following properties:

1. φi+1 = B(φi), i = 0...p− 1
2. φi ⊆ B(φi), i = 0...p− 1, and, therefore, φi ⊆ φi+1, i = 0...p− 1
3. φp = AABB(φi), i = 0...p

The first property indicates that the approach is incremental. The second one,
called subset property, is intrinsic in bounding structures. The last property
states that the sequence is finite and that ends with the AABB that is shared
by all the OPP of the sequence.

The simplification strategy,merging faces, works with pairs of consecutive cuts
of P . For each cut of a pair, a displacement to its faces in the direction of their
corresponding normal vector is applied and, then, the displaced faces are merged
with those faces of the other cut with the same normal vector. The process
is controlled by the displacement parameter, d, that indicates the maximum
displacement allowed, in such a way that only pairs of consecutive cuts that are at
a distance ≤ d are actually merged. If P is represented as an ABC-sorted EVM,
the application of this process only will coarsen P in the A-coordinate. Therefore
to obtain B(P ) the process is repeated for the other two main directions. The
result can be slightly different depending on the ordering in which the three
main directions are selected. In order to speed up the computation, the best
first candidate would be the ABC-ordering with A-axis having less number of
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cuts, but as EVM does not report this value, it can be approximated by cn− c1,
c1 and cn being respectively the coordinates of the first and last cut in this
direction. We can compute the whole sequence of BOPP or ask for a BOPP
with a maximum number of EV.

The input of the whole method is an EVM represented OPP, P , which corres-
ponds to the initial object φ0 and the desired maximum number of EV, nv, in
the simplified model, and returns an EVM represented OPP, Q, corresponding to
the object φk of the sequence, which has no more than nv EV. As the method is
incremental, it actually computes all the objects between φ1 and φk. It performs
k times the merging faces process for successive values of d, d = di, i = 1, ..., k,
obtaining the corresponding φi. Displacements di can be in any units and incre-
mented in any quantity. For OPP corresponding to digital images the basic unit
is one voxel, i.e. di = i. For general OPP, with float coordinate values, di can
take any values ranging from the minimum distance between cuts and the AABB
size. Note that if the increment of d is too large, far apart consecutive cuts can
be merged in early iterations causing abrupt changes in the simplified object.
The next pseudocode shows the iterative algorithm and concerning d consid-
ers digital images. Get nev() returns the number of EV of the given object P ,
mergingFaces() receives the object P and a distance d, and returns the object
Q = B(P ), merging pairs of consecutive cuts at a distance ≤ d. To compute the
whole LOD sequence of BOPP, nv must be 8.

EVM Simplification(EVM P , int nv ) {
EVM Q = P ;

for(int d =1; Q ->Get_nev() > nv ; d ++){
Q ->SetSorting(ABC ); Q = mergingFaces(Q ,d );

Q ->SetSorting(BAC ); Q = mergingFaces(Q ,d );

Q ->SetSorting(CAB ); Q = mergingFaces(Q ,d ); }
return Q ; }

5 Merging Faces Approach

In this section we first explain the basic process, then the treatment of the void
space and finally, we discuss the way to select pairs of cuts. Let P be an OPP
and let CA and CB be two consecutive cuts of P with FDA, BDA, FDB, BDB

as their corresponding forward and backward differences (see Eq. 3). To obtain
a coarsened OPP, the merging faces process displaces BDB to the position of
BDA, and FDA to the position of FDB. Then the new cuts newCA and newCB

that will replace CA and CB , respectively, in the input model, are computed as:

newCA = BDA ∪∗ BDB, newCB = FDA ∪∗ FDB (4)

This process fulfills the properties stated in Sec. 4. Face displacements are done
in the direction of their respective normal vector, i.e. outward of the object.
Then, for any P , P ⊆ B(P ) (subset property). The property concerning AABB
can be proved by considering that the AABB of an OPP can be defined as
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(a) (b) (c) (d)

Fig. 3. 2D example: (a) Faces merged in a first step. (b) Result after applying Eq. 4
and end for XY-sorting. (c) Faces merged by YX-sorting. (d) Resulting BOPP.

the intersection of the six planes corresponding to the first and last cut in the
three main directions, and the fact that the object will never extend beyond the
first and last cut of the initial object because the displacements are bounded by
these cuts. Moreover, in the last iteration, the first cut of φp (the AABB), will
correspond to the union of all BD of all cuts, and likewise the last cut to the
union of all FD. Fig. 3 shows a 2D example where the process is applied.

An OPP may have any number of rings on faces, through holes and shells.
In these cases, Eq. 4 could not give the desirable result, for instance, the object
in Fig. 4(a), remains the same after the application of Eq. 4. To deal with this
issue, we first detect and then close void spaces. Given CA and CB , BDA and
BDB are sets of faces whose normal vectors point to the opposite direction of
FDA and FDB, but FDA and BDB define a void space as vSpace(CA, CB) =
FDA∩∗ BDB. Removing vSpace from both newCA and newCB , closes the void
space between CA and CB. Then, Eq. 4 is extended as:

newCA = (BDA ∪∗ BDB)−∗ (FDA ∩∗ BDB) (5)

newCB = (FDA ∪∗ FDB)−∗ (FDA ∩∗ BDB)

Observe that when vSpace = ∅, Eq. 5 and 4 are equivalent. The subset and the
AABB properties are also guaranteed as we remove interior void spaces. Fig. 4(a)
shows an example with a single hole, here FDA = BDB and vSpace(CA, CB) =
FDA = BDB. Then, applying Eq. 5, newCA=∅ and the hole is closed (Fig.
4(b)). In Eq. 5, basic merging and void space removal are performed jointly.
Some void spaces, as the simple concavity in Fig. 4(c), are solved with Eq. 4.
However, general void spaces, as those in Fig. 4(d–f), require the application of
Eq. 5. Some void spaces can be detected in all three directions, as the cavity
depicted in Fig. 4(f) but some others are only detected in one or two directions.
Fig. 4(g–j) show a working example in an object with through holes.

Two EVM properties, that state that for two special cases union and difference
consist in simple point-wise xor operations [1], together with two EVM theorems,
permit to rewrite Eq. 5 in a way faster to compute.

– Property 1: Let P and Q be two OPP such that P∩∗Q = ∅, having EV M(P )
and EV M(Q) as their models, then EV M(P∪∗Q) = EV M(P )⊗∗EV M(Q).

– Property 2: Let P and Q be two OPP such that P ⊇ Q, with EV M(P ) and
EV M(Q) as their models, then EV M(P −∗ Q) = EV M(P )⊗∗ EV M(Q).
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Fig. 4. Merging faces and treatment of void space

Theorem 1. The projection of FD and BD of two consecutive cuts CA and CB

are quasi-disjoint sets respectively, i.e. FDA∩∗FDB = ∅ and BDA∩∗BDB = ∅.

Proof. The proof is based on the Jordan theorem and the fact that any ray
crossing the boundary of the polyhedron, alternatively goes from outside to
inside and vice versa. Therefore, in any OPP, assuming that FDA ∩∗ FDB �= ∅,
would mean that a ray could cross FDA going outside and then cross FDB going
outside again, which is a contradiction. The same reasoning applies to BD. ��

Theorem 2. vSpace(CA, CB) ⊆ (BDA ∪∗ BDB)

Proof. vSpace(CA, CB) = FDA ∩∗ BDB. Without loss of generality:
(FDA ∩∗ BDB) ⊆ BDB ⊆ (BDA ∪∗ BDB), and thus:
(FDA ∩∗ BDB) ⊆ (BDA ∪∗ BDB)
In a similar way vSpace(CA, CB) ⊆ (FDA ∪∗ FDB) can be proved. ��

According to these theorems and the EVM properties, Eq. 5 is rewritten as:

newCA = BDA ⊗∗ BDB ⊗∗ (FDA ∩∗ BDB) (6)

newCB = FDA ⊗∗ FDB ⊗∗ (FDA ∩∗ BDB)

Merging faces takes pairs of consecutive cuts but we must establish the way in
which they are selected. After analyzing several alternatives, we selected the one
with best visual results. It consists in taking cuts two by two: (CA = Ci, CB =
Ci+1), i = 1, i ≤ n− 1, i = i+2, i.e. first the pair (C1, C2), then (C3, C4), and so
on. However, when CA and CB are such that FDA = BDB = ∅, merging faces
has no effect (e.g. consider CA=C1 and CB=C2 in Fig. 4(h)). On the other hand,
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only pairs of cuts at a distance ≤ d are processed. Then, given the pair of cuts
(CA=Ci, CB=Ci+1), if Exp. 7 is fulfilled, this pair is processed and the method
continues with the pair (Ci+2, Ci+3). Otherwise Ci is copied to the resulting OPP
and the method continues with the pair (Ci+1, Ci+2). Moreover, for symmetry
preservation purposes, the model is analyzed from both sides at a time.

(FDA �= ∅ or BDB �= ∅) and distance(CA, CB) ≤ d (7)

6 Shape Preservation

Shape preservation is an important aspect in model simplification. Merging two
cuts is performed in all their extension, but there are parts of these cuts that
are isolated and merging them could result in too abrupt changes. Let (CA, CB)
be the pair of cuts to be merged, we will refer as isolated faces those faces of
CA whose projections do not share either an edge or a vertex with others in CB

and vice versa. Removing these faces of the merging process results in a better
approximation (see Fig. 5(d–f)). Let IA and IB be the isolated faces of CA and
CB respectively, the new FD′

A, BD′
A, FD′

B and BD′
B are computed according to

Eq. 8. These values are used in Eq. 6 to generate newC′
A and newC′

B , and after
that, the isolated faces can be reintegrated with a union operation. However,
by definition IA and CA are disjoint sets and therefore, IA and newC′

A are
also disjoint sets (the same applies to IB, CB and newC′

B). Then, according to
Property 1, an xor operation is performed instead (See Eq. 9).

FD′
A = FDA −∗ IA, BD′

A = BDA −∗ IA (8)

FD′
B = FDB −∗ IB, BD′

B = BDB −∗ IB

newCA = newC′
A ⊗∗ IA, newCB = newC′

B ⊗∗ IB (9)

Fig. 5(a–c) show an example where an isolated face (if) is depicted. Note that
if remains in place, and only those faces that share either an edge or a vertex
are taken into account throughout the merging faces process. The application of
this technique does not affect the subset property (see Sec. 4). However, the pro-
perty concerning finiteness cannot be guaranteed, as there may be consecutive

Fig. 5. Shape preservation technique. (a) A simple 3D model. (b) All cuts and EV; in
red an isolated face. (c) Result of applying merging faces with the technique to the
pair (CA, CB). (d) Original DiskBrake model. (e) and (f) BOPP with and without the
shape preservation technique respectively, both having less than 15% of EV.
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cuts where all the faces are isolated and, in this case, we would not reach the
AABB. Therefore, when all the faces are isolated, we do not apply the shape
preservation technique and use directly Eq. 6. To detect isolated faces between
CA and CB, we check each face of CA against each face of CB. For this process we
use a decomposition model, the Compact Union of Disjoint Boxes (CUDB) [7],
which is derived from EVM by splitting the orthogonal faces into a set of AB-
sorted rectangles. We have implemented an algorithm for rectangle adjacency
detection. As a 2D CUDB is a sorted set of rectangles, we apply a merging
process, i.e., we perform a traversal of the CUDB models of each face in CA and
CB at a time and check for rectangle intersection. Thus, if we have n faces with
mi boxes each one, the worst case time-complexity is O(n·M), M =

∑n
i=1 mi.

7 Results and Discussion

We have tested merging faces with and without shape preservation in several
3D datasets with different shape features, obtained from public repositories and
our own collection. All of them have been converted to EVM using existing algo-
rithms [17]. The presented algorithms have been written in C++ and executed
on a PC Intel R©Core i7 CPU 870 at 2.93GHz with 16Gb of RAM under Linux.
The computation time of merging faces depends directly on the number of EV
which is related to how well aligned is the object with respect to the three axes.
This fact is shared by most of the EVM-based developed methods.

Table 1 shows the obtained results. Note that merging faces with shape preser-
vation requires, in general, more time than without it. However, in some cases
the time is almost the same (DiskBrake) or even less (Pegasus, Dragon). This is
due to that in some datasets the application of shape preservation results in a
significant reduction of the number of processed pairs and, consequently, in the
execution time. Figures 1 and 6 depict some of these datasets with several BOPP
of their LOD sequence using shape preservation. We consider EV as the basic
geometric element and these figures show the number of EV and the percentage
of reduction with respect to the number of EV the original dataset. We can ob-
serve that BOPPs with less than 25% of EV give a very good approximation of

Table 1. For each dataset: size in voxels and number of EV (|EV |); maximum distance
d, number of processed pairs np and time T to compute the whole LOD sequence
without shape preservation; dsp, npsp and Tsp: same values with shape preservation

Dataset Size |EV | d np T (sec.) dsp npsp Tsp(sec.)

DoorPieces 267x394x72 11,784 46 894 0.35 46 953 0.47

Bunny 127x128x98 24,796 24 1,098 0.63 30 1,236 0.85

Foot 96x270x97 39,078 55 2,031 1.32 49 2,009 1.73

DiskBrake 299x300x43 55,246 32 2,335 1.85 35 2,173 1.95

Engine 140x197x108 92,922 19 2,189 3.08 22 2,761 4.95

Pegasus 382x512x367 290,916 103 20,782 37.85 137 9,228 19.55

Dragon 511x360x228 314,290 56 10,646 19.01 57 8,325 18.42
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Fig. 6. Some results of the tested models, showing the number of extreme vertices

the objects, that BOPPs with less than 10% yield an acceptable approximation,
and, although BOPPs with less than 1% look blocky, they still give an indication
of the object shape. Also note how the holes progressively get closed, specially in
Engine and DoorPieces and the connected components are joined in DoorPieces.

We have compared the presented method against two similar methods that
compute bounding volumes (see Figs. 6 and 7). We compare the experimental
results in terms of percentage of basic geometric elements reduction versus visual
approximation. The first method (OCT) [18] is an octree-based approximation
and compression method for 3D objects. Approximations are obtained by trun-
cating the octree. The results of the method are presented in terms of number of
blocks (octree nodes), which is the basic geometric element of the octree and the
test model used is the Bunny dataset. The original model requires 29,007 blocks
and 24,796 EV. Figures 7(left) show two objects generated by OCT. We can see
that merging faces gives a better indication of the shape with less than 5.1% of
elements than OCT, and even an object with 22.2% gives a better approxima-
tion than OCT with 52%. The second method (BSP)[13] is a progressive solid
simplification of objects represented by a Binary Space Partition tree. It uses
a volume bounded convex simplification and a plane collapse method to reduce
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Fig. 7. Some results of OCT (Bunny dataset) and BSP (Foot dataset) methods, show-
ing the number of elements, blocks and BSP nodes respectively. Figures have been
taken from the references [18,13].

the BSP-tree depth. The basic geometric element is a plane (BSP node). We
have used the most of the datasets presented in this work and converted them to
EVM in such a way that the number of EV of the original model is appoximately
the same than the number of planes in the BSP tree. We report here the results
of the Foot dataset. The original model has 39,078 EV and 38,535 planes. Fig-
ures 7(right) show two LOD-objects generated by BSP. We can observe that the
shape of the fingers in merging faces is preserved until the 1.7% version while in
the BSP method the fingers look wrapped since the 30% version. Similar results
have been obtained with the other datasets.

8 Conclusions

We have proposed an approach to simplify orthogonal polyhedra and binary im-
ages, represented with the EVM. It generates a LOD sequence of BOPP, fulfilling
the common subset and AABB properties of bounding structures. The approach
is based on a merging strategy that involves pairs of consecutive cuts. We have
showed that our approach can deal with objects with any number of holes and
connected components, and presented a technique, based on the model continu-
ity, for a better shape preservation. We have compared our method against two
similar methods, and in general, our method gives better approximations with
the same number of basic geometric elements. Directions for future work include
the study of a lossless simplification approach based on the presented one.
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Abstract. In R2, rigid transformations are topology-preserving opera-
tions. However, this property is generally no longer true when considering
digital images instead of continuous ones, due to digitization effects. In
this article, we investigate this issue by studying discrete rigid transfor-
mations (DRTs) on Z2. More precisely, we define conditions under which
digital images preserve their topological properties under any arbitrary
DRTs. Based on the recently introduced notion of DRT graph and the
classical notion of simple point, we first identify a family of local pat-
terns that authorize topological invariance under DRTs. These patterns
are then involved in a local analysis process that guarantees topological
invariance of whole digital images in linear time.
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simple point, DRT graph, Eulerian model.

1 Introduction

In 2D, rigid transformations (i.e., rotations composed with translations) are
involved in numerous image processing/analysis tasks, e.g., registration [1] or
tracking [2]. In such applications, the images are generally digital, and can then
be considered as functions I : S → F from a finite subset S ⊂ Z2 to a value
space F . While rigid transformations are topology-preserving operations in R2,
this property is generally lost in Z2, due to the discontinuities induced by the
mandatory digitization from R to Z. In particular, discrete rigid transformations
(DRTs) –that include discrete rotations [3,4,5,6]– are not guaranteed to preserve
the homotopy type of digital images, as exemplified in Fig. 1.

In this article, we study this specific issue. More precisely, we investigate some
conditions under which digital images preserve their topological properties under
any arbitrary DRTs, by considering the Eulerian (i.e., backwards) transforma-
tion model. To reach this goal, we consider (i) the notion of DRT graph, recently
introduced by the authors in [7,8], that defines a combinatorial model of all the
rigid transformations of a digital image, and (ii) the classical notion of simple
point [9,10], that provides sufficient conditions to guarantee the preservation of
homotopy type.
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Fig. 1. Left: a binary digital image and the grid modeling its discrete structure. Middle:
a rigid transformation applied on this grid. Right: the resulting transformed image, with
a homotopy different from the initial one (the black pixels, in the 8-adjacency, have
been split).

By combining these two notions, we first propose a way to determine trans-
formed images which have the same homotopy type as the initial one, by scanning
the whole DRT graph associated to this image. Then, we show that this global
approach, which presents a polynomial complexity, can be simplified into a local
approach, based on a spatial decomposition of the image into covering samples.
In order to do so, we identify a family of local patterns that authorize topologi-
cal invariance under DRTs. These patterns can then be involved in a procedure
based on look-up tables (LUT) that guarantee topological invariance of a whole
digital image in linear time.

The article is organised as follows. Sec. 2 presents background notions related
to rigid transformations and digital topology. Sec. 3 describes the topological
issues induced by DRTs. Sec. 4 explains how DRT graphs and simple points
can be combined to evaluate topological invariance under DRTs, leading to an
algorithm detailed in Sec. 5. Experiments are proposed in Sec. 6, while Sec. 7
concludes the article.

2 Background Notions

2.1 (Discrete) Rigid Transformations

In R2, a rigid transformation (i.e., a transformation composed of a translation
and a rotation) is expressed as a bijection T : R2 → R2 defined, for any x =
(x, y) ∈ R2 by

T (x) =
(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)
with a, b ∈ R and θ ∈ [0, 2π[ (1)

Such a transformation (also noted Tabθ) is unambiguously modeled by the triplet
of parameters (a, b, θ). It is not possible to apply directly T on a digital image
I : S → F , since there is no guarantee that T (x) ∈ Z2, for any x ∈ S ⊂ Z2. The
handling of discrete rigid transformations (DRTs) then requires the definition of
a function T : Z2 → Z2, which is the “discrete analogue” of T . Considering the
standard rounding function D : R2 → Z2, this can be conveniently performed
by setting T = D ◦ T , as illustrated on the diagram below.
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Z2 T=D◦T−−−−−→ Z2⏐⏐,Id

-⏐⏐D

R2 T−−−−→ R2

The function T : Z2 → Z2 is then explicitly defined, for any p = (p, q) ∈ Z2, by

T (p) = D ◦ T (p) =
(
[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)
(2)

In general, this function is not bijective. However, by setting T−1 = D ◦ T −1 :
Z2 → Z2, we can define the transformed digital image I ◦ T−1 : Z2 → F with
respect to T . Note that T−1 is not the inverse function of T in general.

2.2 Digital Topology

Several frameworks are available to model the topological structure of a digital
image. In Z2, most of these frameworks (see, e.g., [11,12]) can be conveniently
unified within the frequently used –and also simple– framework of digital topol-
ogy [9]. In this framework, the topological notions derive from a graph structure
induced by two adjacency relations, namely the 4- and 8-adjacencies, which are
defined for any two points p, q ∈ Z2 such that p and q are 4-adjacent (resp.
8-adjacent) if ||p − q||1 ≤ 1 (resp. if ||p − q||∞ ≤ 1). It is well known that, to
deal with topological paradoxes related to the digital version of the Jordan the-
orem, we generally use in one binary digital image a pair of different adjacency
relations, and denote as (α, β) where α and β are adjacency relations for fore-
ground (black) and background (white) pixels respectively. In 2D, we consider
in particular (α, β) = (4,8) or (8,4).

In the graph-based framework of digital topology, the concept of simple point
[9,10] (see Fig. 2) relies on the local notion of adjacency and on the induced
global notion of connectedness. The simple points provide a way to characterise
the preservation of topological properties in a (binary) image during its trans-
formation. Practically, a pixel x ∈ S of an image I : S → F is simple if its
binary value can be switched without modifying the topological properties of
I. In particular, the simplicity of a pixel can be tested, in constant time, by
only studying its 3 × 3 neighbourhood [9]. We will say that two images I and
I ′ are simple-equivalent [13] if I ′ is obtained from I by iteratively modifying
(successive) simple points. Thus I and I ′ present the same homotopy type.

3 Discrete Rigid Transformations: Topological Issues

A (continuous) rigid transformation T establishes a bijection from R2 to itself.
By opposition, due to the digitisation process D (see Eq. (2)), a discrete rigid
transformation T is, most of the time, not a bijection from Z2 to itself.

It is plain that for any three distinct pixels x1,x2,x3 ∈ Z2, we have
maxi,j∈{1,2,3}{||xi − xj ||2} ≥

√
2. This leads to the following definition that



158 P. Ngo et al.

tz

y

x

Fig. 2. Examples of simple points (x, y) and non-simple points (z, t). Modifying the
value of z would merge two black connected components, while modifying the value of
t would create a white connected component. In both cases, the homotopy type of the
image would be modified.

Fig. 3. Left: a digital image support and the grid modeling its discrete structure. Right:
examples of a null pixel (in green), a single pixel (in blue) and a double pixel (in red)
with respect to a discrete rigid transformation.

enables to characterise the status of a pixel; there are only three possibilities, as
illustrated in Fig. 3.

Definition 1. For a pixel x ∈ Z2 and a given DRT T , let M(x) = {y ∈ Z2 |
T (y) = x}.

– If |M(x)| = 0, we say that x is a null pixel.
– If |M(x)| = 1, we say that x is a single pixel.
– If |M(x)| = 2, we say that x is a double pixel.

Similar notions for the case of discrete rotations can be found in [5,6].
In particular, a discrete rigid transformation T behaves like a bijection for

single pixels. However the possible existence of null (resp. double) pixels may
forbid T to be a surjection (resp. an injection). Null and double pixels thus
raise topological issues in both Lagrangian and Eulerian transformation models
(see Sec. 3.1). In addition to these “cardinality-based” issues, supplementary
topological problems are induced by the alteration of adjacency relations between
pixels (see Sec. 3.2).

3.1 Transformation Models

Two standard transformation models can be considered: the Lagrangian (or for-
wards) and the Eulerian (or backwards) models. The Lagrangian model consists
of observing T (x) for every pixel x in the initial space, while the Eulerian model
consists of observing T −1(y) for every pixel y in the transformed space. These
models are equivalent in R2, since T is bijective. In Z2, they are however gener-
ally distinct, since T and T−1 may not be inverse functions.
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?

(a) Lagrangian model (b) Eulerian model

Fig. 4. The interpretations of double pixels (left figures) and null pixels (right figures)
in the context of discrete rigid transformations for (a) the Lagrangian and (b) the
Eulerian models
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Fig. 5. (a) A 2 × 2 pixel sample with values a, b, c, d. (b) Local pixel configurations
(up to rotations and symmetries) leading to the sample (a) when applying a discrete
rigid transformation. (c) Examples of transformations in which the sample preserves
the topology of local pixel configurations. (d) Examples of transformations in which
the sample provokes a topological alteration.

Depending on each model, null and double pixels lead to different interpreta-
tions. In the Lagrangian model (see Fig. 4(a)), a double pixel in the transformed
space may receive two different pixel values, and a null pixel receive no pixel
value. While this may be conveniently handled in the case of binary images
(which can be considered in a set-based paradigm), it can lead to correctness
and completeness issues in the case of multivalued images. In the Eulerian model
(see Fig. 4(b)), a double pixel of the initial space may transfer its value to two
pixels of the transformed space, while the value of a null pixel will be lost.

In this preliminary work, we consider the Eulerian model which enables us
to focus on the topological issues raised by the alteration of adjacency relations
(see Sec. 3.2), and as the Lagrangian model is fraught with additional difficulties
(see Sec. 7). For the sake of readability, our study is carried out in the context
of binary images, but the introduced methodology remains valid in the case of
multivalued images (see Sec. 7).
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3.2 Adjacency Alterations

In order to illustrate the topological issues raised by the alterations of adjacency
relations during discrete rigid transformations, let us consider a 2×2 pixel sample
of the transformed space (see Fig. 5(a)). Such a sample is composed of pixels
of values a, b, c and d, and all the possible local pixel configurations of the
initial space from which the sample is generated (see Fig. 5(b)). Despite local
adjacency alterations between pixels, the global topology of the sample may
sometimes be preserved (see Fig. 5(c)). Unfortunately, such local alterations may
also lead to topological alterations in the sample (see Fig. 5(d)), and further in
the whole image possibly. In the next section, we propose an algorithm enabling
the detection of potential topological changes during a DRT. On the contrary,
this algorithm can be used to guarantee the topological invariance between an
image and all of its transformed ones. This algorithm is based on (i) the recently
introduced notion of DRT graph [7,8], and (ii) the classical notion of simple
point [9,10]. The first notion provides a way to exhaustively explore the space of
transformed (sub)images while the second provides information on the possible
topological modifications when performing such an exploration.

4 Mathematical Tools for Topological Verification
of Images under Rigid Transformations

4.1 Discrete Rigid Transformation Graph

In opposition to rigid transformations inR2, discrete rigid transformations (DRTs)
are not continuously defined w.r.t. the parameters a, b and θ. In particular, the
parameter space (a, b, θ) ∈ R3 is divided into 3D open cells, in each of which the
functions Tabθ are equal, while the 2D surfaces bounding these open cells represent
to discontinuities of the DRTs, induced by the digitisation process (see Eq. (2)). In
fact, each 2D surface is corresponded to an elementary modification of one pixel.

From a theoretical point of view, each 3D open cell can be seen as the equiv-
alent class of the rigid transformations T that leads to a same DRT T = D ◦ T
whose boundaries are the 2D surfaces. By mapping any 3D cell onto a 0D point
and any 2D surface onto a 1D edge, the combinatorial structure of the parame-
ter space can be modeled in a dual way by a connected graph, as illustrated in
Fig. 6. In particular, each 0D point corresponds to a transformed image gener-
ated by the associated T and an 1D edge between two cells indicates that the
two associated images differ at exactly one pixel.

Definition 2 (DRT graph [7]). A DRT graph G = (V,E) is defined such that:
– any vertex v ∈ V models a 3D open cell and associates to a transformed

image;
– any (labeled) edge e = (v, w, (p,p′)) ∈ E models a 2D discontinuity surface

between the transformed images corresponding to the DRTs v and w which differ
at the single pixel p′, and p is the pixel corresponding to p′ in the original image.
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Fig. 6. A part of the parameter space subdivided by four 2D surfaces corresponding
to the discontinuities of DRTs (left), and the associated part of the DRT graph (right)

The label (p,p′) on each edge is –implicitly– associated to a function indicating
the value modification of the pixel p′ that differs between the transformed image
associated to DRTs v and w. More precisely, the value of p′ at the vertex v is
defined by Iv(p

′) = I(p) where I : S → F is the original image function. After
the elementary rigid motion at e, we then obtain a new image Iw by simply
changing the pixel value at p′ as Iw(p

′) = I(p + δ) where δ = (±1, 0) or
(0,±1). Note that δ corresponds to an elementary motion, i.e., a smallest pixel
movement, that changes either x- or y-coordinate by 1.

It was proved in [7] that the DRT graph associated to a digital image of
size N2 has a space complexity of O(N9) (and can be built with a similar time
complexity [7,8]). Note that the structure of the DRT graph depends only on the
support of the given images, but not on their pixel values. By construction, the
DRT graph provides all the transformed images of a given image I. In particular,
these transformed images can be generated by progressively and exhaustively
scanning the DRT graph.

Remark 3. Let I : S → F , and G = (V,E) be its DRT graph. For each edge
e = (v, w, (p,p′)) ( i.e., each elementary modification of a pixel p′ ∈ S), two
cases can occur:

(i) Iv(p
′) = Iw(p

′), i.e., the images of I by the DRTs v and w are equal
(Iv = Iw);
(ii) Iv(p

′) �= Iw(p
′), i.e., Iv �= Iw.

In the (considered) case of binary images, the value of p′ may then be flipped
from white to black (or vice versa), and this may constitute the only modification
between the transformed images of I by the DRTs v and w.

4.2 Topological Analysis of Binary Images from DRT Graphs

From a DRT graph, one can generate exhaustively all the DRT images of an
image I. Moreover, from Rem. 3, we know that this can be done by modifying
(at most) one pixel value between two successive transformed images. In the
case of binary images, it is actually possible to check if such a local modification
involves a simple point.
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Algorithm 1. Construction of simple-equivalent DRT images
Input: A DRT graph G = (V,E); the vertex u ∈ V associated to I .
Output: A connected partial subgraph G′′ = (V ′, E′′) of vertices

simple-equivalent to u/I .
1 V ′ ← {u}; E′′ ← ∅; S ← {u}; U ← V ;
2 while S �= ∅ do
3 Let v ∈ S ; S ← S \ {v};
4 if v ∈ U then
5 U ← U \ {v};
6 foreach e = (v, w, (p,p′)) ∈ E such that w ∈ U do
7 if p′ is a simple point then V ′ ← V ′ ∪ {w}; E′′ ← E′′ ∪ {e};

S ← S ∪ {w};

Practically, the edges of a DRT graph G = (V,E) can then be classified in
two categories: those that do not modify the topology of the transformed images
(i.e., the edges that correspond to case (i) in Rem. 3, as well as those that
correspond to case (ii) for which p′ is a simple point); and those that modify
this topology (i.e., the edges that correspond to case (ii) in Rem. 3 for which p′

is not simple).
The partial graph G′ = (V,E′) is obtained by maintaining only the edges E′ ⊆

E of the first category. G′ is composed of connected components of vertices whose
associated transformed images are simple-equivalent (see Sec. 2.2), and thus have
the same homotopy type. In particular, the connected component contains the
vertex u corresponding to the initial image I, as well as those corresponding
to transformed images obtained from I by elementary motion sequences which
are topology-preserving. This specific set of vertices can be straightforwardly
computed by using a standard spanning-tree algorithm, initialized from the seed
vertex u (see Alg. 1).

Remark 4. The connected component of G′ that contains u may constitute only
a strict subset of the vertices/transformed images that are simple-equivalent to
u/I. Indeed, the edges of the DRT graph G only model the local modifications
associated to DRTs. In particular, there may exist other series of local modifica-
tions relying on simple points but not modeled in the DRT graph. In other words,
the analysis of the DRT graph provides sufficient (but not necessary) conditions
to guarantee homotopy-type preservation.

In the case where V ′ = V (see Alg. 1), i.e., when all the vertices of the DRT
can be reached from u by a sequence of edges involving only simple points,
the algorithm successfully detects –as a side effect– an image I that is actually
topologically invariant under any DRTs. The algorithmic cost of this algorithm
is directly linked to the size of the DRT graph, that is O(N9). This algorithmic
complexity is indeed reached in the worst cases. In the next section, we show that
this problem can however be decomposed spatially, thus leading to a practical,
lower complexity algorithm.
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5 Local Evaluation of Topological Invariance under DRTs

In the previous section, we have proposed to explore the whole DRT graph of an
image I in order to check its potential topological invariance under DRTs. For
each edge e = (v, w, (p,p′)) of the DRT graph, we verify that the pixel p′ whose
value is modified at this edge is actually a simple point for the transformed
images Iv and Iw. This test is performed locally, more precisely in the 3 × 3
neighbourhood centered on p′ in the transformed space.

We now take advantage of the local nature of these tests to develop a spatial
decomposition strategy that will lead to a local version of the previously pro-
posed global method. To this end, we first need to introduce basic notions and
properties related to the influence of DRTs on pixel neighbourhoods.

5.1 Neighbourhoods and DRTs

Let p ∈ Z2 be a pixel. We define the neighbourhoods of p as follows: N8(p) =
{q ∈ Z2 | ||q − p||2 < 2}; N20(p) = {q ∈ Z2 | ||q − p||2 < 2

√
2}. The first 3 × 3

neighbourhood is classically used in digital geometry and topology. The second
corresponds to a 5× 5 square from which the 4 extremal corner pixels have been
removed. We provide the following property where we consider any arbitrary
DRT T : Z2 → Z2.

Property 5. Let p ∈ Z2 and q ∈ N8(p). We then have T−1(q) ∈ N20(T
−1(p)).

Proof. This property derives from the above definitions of the neighbourhoods,
and from the fact that a DRT T (due to the digitization induced by D, see
Eq. (2)) implies a possible (strict) majoration of

√
2 for the distance between

transformed points, w.r.t. its associated rigid transformation T . �

5.2 A Local Approach for Topological Analysis

As stated above, a DRT graph models all the rigid transformations of a given
digital image I. Despite the fact that the space of these transformations is ac-
tually infinite, the DRT graph is defined as a finite structure. This restriction
can be made without loss of correctness/completeness by considering translation
invariance. Indeed, a rigid transformation is defined as a composition of a rota-
tion and a translation (Eq. (1)). In particular, a rigid transformation T = t ◦ r,
composed of a rotation r around the origin and a translation t ∈ R2, can be also
expressed as T = t ◦ t′−1 ◦ r′ ◦ t′, where t′ is the translation by a vector p ∈ Z2,
and r′ is the rotation around p. Such a translation in Z2 (that induces no topo-
logical modification, since the whole image is translated), allows any pixel p of
S of the image I to be considered as the origin of S.

Let come back to the DRT graph G = (V,E) considered until now, and
involved in the global process defined in the previous section. We now focus on
an edge e = (v, w, (p,p′)) of G. Obviously, the vertices v and w exist in G,
and also in the (equivalent) DRT graph where we consider p as origin. In the
later graph, any edge that does not involve in its label a pixel of N20(p) has no
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influence on the topological modifications in N8(p
′) (see Prop. 5). Without loss of

correctness, such topological modifications at p′ in N8(p
′) (and thus of p′ in the

whole image) only depends on the part of the DRT graph that corresponds to the
restriction of I to N20(p), denoted by I|N20(p). Based on these considerations, it
appears that if for any pixel q in the initial image I, the restriction I|N20(q) does
not lead to topological modifications under any DRTs, then the same conclusion
holds for the whole image I. In other words, every elementary topological change
occurring on the DRT graph G of I can be observed locally. Therefore, we need
only to verify the topological invariance for every pixel of I in its neighbourhood
N20 in the original binary image.

Proposition 6. Given a binary image I : S → F , for every p ∈ S if I|N20(p)

is a local binary configuration which is topologically invariant under any rigid
transformations, then the image I is topologically invariant.

We assume that the modified pixel p′ at each elementary rigid modification of
the DRT graph corresponds to the origin o2 in the transformed image, and that
the corresponding pixel p is the origin o1 in the original image of size in its
N20(o1). Then, we simply need to construct the DRT graph with p′ ∈ [−1, 1]2,
p ∈ [−2, 1]2 (i.e., the DRT graph of edges labels (p,p′) with this constraint),
denoted by Gp = (Vp, Ep). We use Alg. 1 proposed in Sec. 4.2 to verify in Gp the
topological equivalence between two adjacent vertices v and w whose edge has
the label (o1,o2). If every edge has topologically equivalent vertices, then the
center point o1 of such a configuration is topologically invariant under any rigid
transformations. This approach, in particular, leads to the following consider-
ation: if we study the topological invariance property for all the binary image
configurations of N20(o1), we can identify a family of elementary configurations
that authorise topological invariance under DRTs.

From Prop. 6, we propose a look-up-table-based algorithm for characteriz-
ing the topologically invariant property of any binary image. More precisely, we
generate a set P4 (resp. P8) which contains only topologically invariant configu-
rations in (4, 8)- (resp. (8, 4)-) adjacent relations. Then we use P4 and P8 to verify
whether the given image is topologically invariant. The method for building P4

and P8 is given in Alg. 2. Let C be the set of all binary image configurations
of size N20, which is used to build P4 and P8, |C| ≤ 220. From Rem. 3 we have
Iv �= Iw if Iv(o2) �= Iw(o2), where Iv(o2) = I(o1) and Iw(o2) = I(o1 + δ). We
thus need to consider the configurations of N20 whose the central pixel value
I(o1) and that of its 4-neighbouring pixel I(o1+δ) are different, e.g., I(o1) = 1
and I(o1+δ) = 0. Here we set δ = (0, 1), i.e., o1+(1, 0) is the right pixel of o1.
In other words, the pixel values of o1 and its right pixel o1+δ are pre-set. Under
such conditions, |C| is reduced to 218. Thanks to the reflection and rotational
symmetries, we can again reduce |C| to 124 260. Then, we use Alg. 1 proposed in
Sec. 4.2 to study the topologically invariant property of configurations in C. We
store in P4 and P8 the subset of C containing only the topologically invariant
configurations w.r.t. the (4, 8)- and (8, 4)-adjacent relations. Using Alg. 2, we
obtain sets of 10 643 and 19 446 topologically invariant configurations in P4 and
P8 respectively. Fig. 7 shows some elements of P4 and P8.
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Based on Prop. 6 and the sets P4 and P8, the algorithm for characterizing the
topologically invariant property of a given binary image I : S → F by a local
verification of pixels is given in Alg 3. The algorithm scans I and considers for
each pixel p ∈ S its N20(p) with either P4 or P8 depending on the binary value
of p. Note that I(p) = 1− I(p).

Algorithm 2. Generation of topologically invariant configuration set P4

(resp. P8)
Input: The DRT graph Gp = (Vp, Ep) and the set C of 124 260 binary local

configurations of size N20.
Output: The set P4 (resp. P8).

1 P4 ← ∅; (resp. P8 ← ∅;)
2 foreach IC ∈ C do
3 B ← TRUE; U ← Vp; S ← {u} where u is the vertex associated to IC in

Gp;
4 while S �= ∅ and B = TRUE do
5 Let v ∈ S ; S ← S \ {v};
6 if v ∈ U then
7 U ← U \ {v};
8 foreach e = (v, w, (p,p′)) ∈ Ep such that w ∈ U do S ← S ∪ {w};
9 if ∃ e = (v, w, (o1,o2)) ∈ Ep such that w ∈ U and o2 is not a

simple point in its (4, 8) (resp. (8, 4))-adjacency relations then
B ← FALSE;

10 if B = TRUE then P4 ← P4 ∪ {IC}; (resp. P8 ← P8 ∪ {IC};)

Algorithm 3. Local verification of the topology invariance of a binary
image

Input: A binary image I : S → F and the sets P4 and P8.
Output: Yes if I is topologically invariant and No otherwise.

1 foreach p ∈ S do
2 if I(p) = 1 and I|N20(p) �∈ P4 then return No;
3 if I(p) = 0 and I |N20(p) �∈ P8 then return No;

4 return Yes;

6 Experiments
In this section, we illustrate the relevance of our approach by presenting im-
ages which have been detected as topology-invariant (see Fig. 8(a-c),(d-f)), or
topology-variant (see Fig. 8(g,h), (i,j), (k,l)). Thanks to our LUT-based ap-
proach, such a detection can be carried out in linear time w.r.t. the image size.

As mentioned in Rem. 4, we only have a sufficient condition for homotopy-type
preservation, so far we do not have a proof for a necessary condition. Nonetheless
we have not found any example for which our algorithm fails to characterize its
topological invariance.
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(a)

(b)

Fig. 7. Some topologically invariant configurations of P4 (a) and P8 (b)

(a) (b) (c) (d) (e) (f)

(g) (h) (i)
Fig. 8. (a-f) Some examples of topology-invariant images. (g-i) Three examples of
topology-variant images (left) with their transformed images (right) exhibiting different
topologies from their respective original images.
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7 Conclusion
We have proposed an algorithmic process for determining the topological invari-
ance of digital images under any discrete rigid transformations. This work is
based on the recently introduced notion of DRT graph [7,8], which presents a
polynomial complexity that generally forbids its practical application on whole
images. Nevertheless, DRT graphs have been successfully involved in a prelimi-
nary local analysis that finally led to a low complexity methodology, relying on
image spatial decomposition.

Beyond its theoretical aspects, this work may contribute to the better under-
standing of the relationships that exist between geometry and topology in the
framework of digital imaging, where both notions are more strongly linked than
in continuous spaces.

This study was carried out in the context of binary images. However, it re-
mains relevant whenever a notion of simple point (or more generally a local
characterisation of topology preservation) is available. This is verified, for in-
stance, in the context of n-ary images [14]. On the other hand, only the Eulerian
(backwards) model has been considered in this study. In future work, we will
extend these results to the case of the Lagrangian (forwards) model. Note that
additional difficulties arise in the Lagrangian model, such as double pixels in
the transformed space that may receive two different values, and null pixels that
do not have any value. The Lagrangian model thus involves a value decision
problem for such pixels.
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Abstract. In recent years, the theory behind distance functions defined
by neighbourhood sequences has been developed in the digital geometry
community. A neighbourhood sequence is a sequence of integers, where
each element defines a neighbourhood. In this paper, we establish the
equivalence between the representation of convex digital disks as an in-
tersection of half-planes (H-representation) and the expression of the
distance as a maximum of non-decreasing functions.

Both forms can be deduced one from the other by taking advantage
of the Lambek-Moser inverse of integer sequences.

Examples with finite sequences, cumulative sequences of periodic se-
quences and (almost) Beatty sequences are given. In each case, closed-
form expressions are given for the distance function and H-representation
of disks. The results can be used to compute the pair-wise distance
between points in constant time and to find optimal parameters for
neighbourhood sequences.

1 Introduction

A discrete distance function is often defined by using the concept of minimal
cost paths obtained by weighted paths and/or neighbourhood sequences [10].
The paths in the traditionally used city-block d4 and chessboard d8 distance
functions [9] are restricted to the four (and eight) closest neighbours of each
grid point in Z2. In [5,2], different weights for closest neighbours and diagonal
neighbours are considered giving the weighted distances and in [10,2], the neigh-
bourhood that is allowed in each step is not constant, but defined by a neigh-
bourhood sequence. In [11], both weights and neighbourhood sequences are used
to define the distance function. One benefit with the path-generated, discrete,
distance functions over the Euclidean distance is when computing point-to-point
distances on non-convex domains with the constrained distance transform. The
cDT labels each object pixels with the distance to the closest seed pixels, where
paths that define the distances are not allowed to cross obstacle pixels. With
minimal cost-path distances, the cDT can be computed using standard shortest-
path techniques for weighted graphs resulting in a linear time algorithm. A
bucket sorting implementation of the Dijkstra’s algorithm is used in [12]. See
also [11].
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A neighbourhood sequence is an integer sequence, but the link between the
theory on integer sequences and the theory on discrete distance functions has
not been examined in detail yet. In this paper we will apply the theory on integer
sequences and use the Lambek-Moser inverse, which is defined for non-decreasing
integer sequences, to express the weighted ns-distance. We apply the so-obtained
expression to parameter optimization. In [3], neighbourhood sequences on the
form of Beatty sequences are considered.

By establishing a link between integer (neighbourhood) sequences and the
Lambek-Moser inverse, this paper enables the use of Beatty sequences for dis-
tance computations. The inverse of a Beatty sequence can be written in closed
form and any element can be computed in constant time. This property is use-
ful for efficient computation (using, for example, wave-front propagation, con-
strained (geodesic) DT), [11]. Moreover, we giveH-representation of digital disks,
which is useful for, for example, parameter optimization by the link between
digital disks and their enclosing polyhedron given in this paper.

2 Integer Sequences – The Lambek-Moser Inverse and
Beatty Sequences

We denote sequences of integers as f = (f(1), f(2), . . . ). The Lambek-Moser
inverse of the non-decreasing sequence f , denoted by f †, is a non-decreasing
sequence of integers defined by [4]:

∀m,n ∈ N2
+, f(m) < n ⇔ f †(n) �< m ⇔ f †(n) ≥ m . (1)

In Lambek and Moser’s paper, f and f † are only defined for positive indices.
However, (1) still holds without altering f † if we extend the domain of f to Z
with f(m) = 0, ∀m ≤ 0 (the same applies to f †):

∀m ∈ Z, ∀n ∈ N+,m ≤ 0 or f(m) < n ⇔ f †(n) ≥ m .

Proposition 1. f †(f(m) + 1) + 1 is the rank of the smallest term greater than
m where f increases [7,8].

If we extend f with f(0) = 0, and define g by g(0) = 0, g(n+1) = f †(f(g(n))+
1) + 1, then f(g(n)) takes, in increasing order, all the values of f , each one
appearing once [7,8].

A Beatty sequence is the sequence obtained by taking the integer parts of the
multiples of an irrational constant τ : (�τ�, �2τ�, �3τ�, . . . ) [1]. Beatty sequences
with parameter τ ≥ 1 are non-decreasing. We call Rational Beatty sequence the
sequence produced with a rational parameter τ . Hajdu introduced the use of
Beatty sequences in the context of discrete distances [3].

The inverse of the Beatty sequence f : m �→ �τm� with a scalar τ , is f † :
n �→ #nτ − 1$ whereas the inverse of f : m �→

⌊
am
b + c

⌋
is f † : m �→

⌊
bm
a − c− 1

⌋
where a, b and c are integers.
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3 Distance Functions and H-Representation of Balls

3.1 Discrete Distances

Definition 1 (Discrete distance and metric). Consider a function d : Zn×
Zn → N and the following properties ∀x, y, z ∈ Zn, ∀λ ∈ Z:

1. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y ,
2. symmetry d(x, y) = d(y, x) ,
3. triangle inequality d(x, z) ≤ d(x, y) + d(y, z) ,

d is called a distance function, or distance, if it verifies conditions 1 and 2 and
a metric with conditions 1 to 3.

Definition 2 (Closed Ball). For a given distance function d, the closed ball
D with radius r centered in c is the following set of points of Zn:

D(c, r) = {p : d(c, p) ≤ r} . (2)

A series of disks is increasing with respect to set inclusion:

∀r ∈ N, D(c, r) ⊆ D(c, r + 1) . (3)

Moreover, a discrete distance function is completely described by the sequence
of its balls.

d(O, p) = min
{
r : p ∈ D(O, r)

}
(4)

3.2 H-Representation of Balls

In this section, we will establish the link between digital disks (discrete poly-
topes) and H-polytopes.

Definition 3 (Polyhedron). A convex polyhedron is the intersection of a finite
set of half-hyperplanes.

Definition 4 (Polytope). A polytope is the convex hull of a finite set of points.

Theorem 1 (Weyl-Minkowski). A subset of Euclidean space is a polytope if
and only if it is a bounded convex polyhedron.

As a result, a polytope in Rn can be represented either as the convex hull of its
k vertices (V-representation) or by a set of l half-planes (H-representation):

P = conv({pi}1≤i≤k) =

{
p =

k∑
i=1

αipi : αi ∈ R+ and

k∑
i=1

αi = 1

}
, (5)

P =
{
x : Ax ≤ y

}
, (6)

where A is a l× n matrix, y a vector of n values that we name H-coefficients of
P . Given two vectors u and v, we denote u ≤ v if and only if ∀i, ui ≤ vi.



172 N. Normand, R. Strand, and P. Evenou

Definition 5 (Discrete polytope). A discrete polytope Q is the intersection
of a polytope P in R with Z (Gauss discretization of P).

The minimal parameter representation introduced below is introduced in order
to avoid redundancies in the representation.

Definition 6 (Minimal parameter representation). A minimal parameter
H-representation of a discrete polytope Q, denoted Ĥ-representation, is a H-
representation of P =

{
x : Ax ≤ y

}
such that y is minimal:

P = {x ∈ Zn : Ax ≤ y} and ∀i ∈ [1..l], ∃x ∈ P : Aix = yi , (7)

where Ai stands for the ith line of the matrix A.

The Ĥ function, introduced for convenience, gives the minimal parameter vector
for a given polytope P : Ĥ(P ) = max

{
Ax : x ∈ P

}
. As a consequence,

{x : Ax ≤ Ĥ(P )} is the Ĥ-representation of P = {x : Ax ≤ y}.

Definition 7 (Convex discrete set). A Set in Z is convex if it is a discrete
polytope.

By the construction above, any convex discrete set is given by a (Ĥ-representation
of a) discrete polytope.

Our main result, Theorem 2 below, gives a link between digital disks and
intersection of half-planes in R2. The half-planes are given by the Lambek-Moser
inverse of the sequences fi and the matrix A. This result will be used as an
efficient representation for distance computation and parameter optimization.

Theorem 2. The following statements are equivalent:

D(O, r) = {p : Aip ≤ f †
i (r + 1), ∀i} (8)

d(O, p) = max
i
{fi(Aip)} (9)

Where, by convention, ∀i, ∀r ≤ 0, fi(r) = 0

Proof. Assume that (9) holds. By definition of a disk:

D(O, r) = {p : d(O, p) ≤ r}
= {p : max

i
{fi(Aip)} ≤ r}

= {p : fi(Aip) ≤ r, ∀i}
= {p : fi(Aip) < r + 1, ∀i}
= {p : Aip ≤ f †

i (r + 1), ∀i}
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Conversely,

d(O, p) = min{r : p ∈ D(O, r)}
= min{r : Aip ≤ f †

i (r + 1), ∀i}

= max
i

{
min{r : Aip ≤ f †

i (r + 1)}
}

= max
i
{min{r : fi(Aip) < r + 1}}

= max
i
{min{r : r ≥ fi(Aip)}}

= max
i
{fi(Aip)} ��

Each row Ai of the matrix A is a vector normal to a facet of the polytope. The
sequence fi represents the speed of the polytope growth in direction Ai which
does not need to be uniform as illustrated in Fig. 1.

Ak−1

Ak

Ak+1

0

2 1 2 3 4 5 6

3 3 3 3 3 4 5 6 7 ∞

4 4 4 4 4 4 5 6 7 7 ∞

6 6 5 4 4 5 5 6 6 7 ∞ ∞

∞ 7 7 6 6 6 6 7 7 7 7 ∞ ∞

∞ ∞ ∞ 7 7 7 7 7 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Fig. 1. Illustration of theorem 2. The normal vectors Ak−1 to Ak+1

are (2, 1),(1, 3) and (−1, 2). The sequences fk−1 to fk+1 are respectively
(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7,∞), (1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7,∞)
and (1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7,∞) and their inverse sequences f†

k−1 to f†
k+1 are

(0, 2, 4, 6, 8, 10, 12, 15, 16), (0, 3, 5, 8, 12, 14, 16, 20, 24) and (0, 2, 4, 6, 9, 10, 12, 14, 15).
Distance values computed with (9) are given for each discrete point.
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4 Neighbourhood Sequences and Lambek-Moser Inverse

4.1 Weighted Neighbourhood Sequences

We recall some definitions on weighted neighbourhood sequences from [11]. Two
grid points p1 = (x1, y1),p2 = (x2, y2) ∈ Z2 are ρ-neighbours, ρ ∈ {1, 2}, if

|x1 − x2|+ |y1 − y2| ≤ ρ and (10)
max {|x1 − x2|, |y1 − y2|} = 1.

The points p1,p2 are adjacent if p1 and p2 are ρ-neighbours for some ρ. Two ρ-
neighbours such that the equality in (10) is attained are called strict ρ-neighbours.
A ns B is a sequence B = (b(i))

∞
i=1, where each b(i) denotes a neighbourhood

relation in Z2. If B is periodic, i.e., if for some fixed strictly positive l ∈ Z+,
b(i) = b(i+ l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)).

We use

1B(k) = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2B(k) = |{i : b(i) = 2, 1 ≤ i ≤ k}|.

to denotate the number of 1:s and 2:s in the ns B up to position k.
A path, denoted P , in a grid is a sequence p0,p1, . . . ,pn of adjacent grid

points. A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and pi

are b(i)-neighbours. The number of 1-steps and strict 2-steps in a given path P
is denoted 1P and 2P , respectively.

Definition 8. Given the ns B, the ns-distance d(p0,pn;B) between the points
p0 and pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a B-path P of length n, where
exactly l (l ≤ n) pairs of adjacent grid points in the path are strict 2-neighbours
be given. The cost of the (α, β)-weighted B-path P is (n− l)α+ lβ. The B-path P
between the points p0 and pn is a (α, β)-weighted minimal cost B-path between
the points p0 and pn if no other (α, β)-weighted B-path between the points has
lower cost than the (α, β)-weighted B-path P .

Definition 9. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn;B) is the cost of (one of) the (α, β)-weighted minimal cost B-path(s)
between the points.

We denote the cumulative sum BΣ(k) of the ns B as

BΣ(k) =

k∑
l=1

B(l) = k + 2B(k)

The following construction gives a non-decreasing sequence of integers: f(k) =
BΣ(k − 1) + 1 = 2B(k − 1) + k.

Example 1. Given the neighbourhood sequence B = (1, 2, 1, 2, 2), the cumulative
sum is BΣ(m) =

⌊
8
5m

⌋
, its inverse is BΣ†(m) =

⌈
5
8m− 1

⌉
, the non-decreasing

sequence f defined above is f(m) =
⌊
8
5m− 3

5

⌋
, and its inverse is f †(m) =⌈

5
8 (m− 1)

⌉
.
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m 1 2 3 4 5 6 7 8 9 10 11

B(m) 1 2 1 2 2 1 2 1 2 2 1

BΣ(m) 1 3 4 6 8 9 11 12 14 16 17

BΣ†
(m) 0 1 1 2 3 3 4 4 5 6 6

f(m) 1 2 4 5 7 9 10 12 13 15 17
f †(m) 0 1 2 2 3 4 4 5 5 6 7

The following formula for weighted ns-distance is given in [11].

d(0, (x, y)) = α(2k − x− y) + β(x+ y − k), where (11)
k = min{l : l ≥ x+max{0, y − 2B(l)}} (12)

Proposition 2 below gives an alternative formula for (12). Since the Lambek-
Moser inverse f † of a Beatty sequence can be written on closed form, it is very
efficient to compute.

Proposition 2. min{l : l ≥ x+max{0, y − 2B(l)}} = max{x, f †(x+ y + 1)}

Proof.

{k = min{l : l ≥ x+max{0, y − 2B(l)}}}{
k ≥ max{x, x+ y − 2B(k)}
k − 1 < max{x, x+ y − 2B(k − 1)}

}
⎧⎨⎩k ≥ x

k ≥ x+ y − 2B(k)
k = x or k ≤ x+ y − 2B(k − 1)

⎫⎬⎭⎧⎨⎩k ≥ x
k + 2B(k) ≥ x+ y
k = x or k + 2B(k − 1) ≤ x+ y

⎫⎬⎭⎧⎨⎩k ≥ x
f(k + 1)− 1 ≥ x+ y
k = x or f(k) ≤ x+ y

⎫⎬⎭⎧⎨⎩
k ≥ x
k + 1 > f †(x + y + 1)
k = x or k ≤ f †(x+ y + 1)

⎫⎬⎭⎧⎨⎩
k ≥ x
k ≥ f †(x + y + 1)
k = x or k ≤ f †(x+ y + 1)

⎫⎬⎭ ��

Corollary 1. (11) can be rewritten as:

d(0, (x, y)) = (2α− β)max{x, f †(x+ y + 1)}+ (β − α)(x + y) . (13)
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Example 2. With α = 4, β = 5 and B from Example 1.

d(0, (x, y)) = 3max
{
x, f †(x+ y + 1)

}
+ x+ y

= max
{
4x+ y, 3f †(x+ y + 1) + x+ y

}
= max

{
f1

((
4 1

) (
x y

)t)
, f2

((
1 1

) (
x y

)t)}
as in (9) where f1 : m �→ f1(m) = m and f2 : m �→ 3f †(m + 1) +m.

m 1 2 3 4 5 6 7 8 9 10 11

f1(m) 1 2 3 4 5 6 7 8 9 10 11

f †
1 (m) 0 1 2 3 4 5 6 7 8 9 10

f2(m) 4 8 9 13 17 18 22 23 27 31 32

f †
2 (m) 0 0 0 0 1 1 1 1 2 3 3

4.2 Specific Cases

Example 3 (Special case I – Weighted distances). B = (2), BΣ = (2, 4, 6, . . . ), f =
(1, 3, 5, 7, . . . ) = 2k − 1, f † = (0, 1, 1, 2, 2, 3, 3, 4, 4, . . .) = �k2 � When x ≥ y ≥ 0,
max{x, f †(x + y + 1)} = x, so (13) becomes:

d(0, (x, y)) = (2α− β)x+ (β − α)(x + y)

= αx+ (β − α)y

which is consistent with [2] and can be written in the form of (9) with the matrix
A =

(
α β − α

)
and the function f1 : m �→ f1(m) = m which Lambek-Moser

inverse is f †
1 : m �→ m − 1. A similar distance formulation for chamfer norms

with arbitrary large masks was given in [6, (20)].

Example 4 (Special case II – ns-distances). A ns-distance is a special case of wns-
distance for which path costs are computed with unitary weights (α = β = 1).
Then (13) becomes:

d(0, (x, y)) = max{x, f †(x+ y + 1)} .

This can be written in the form of (9) with A =

(
α β − α
1 1

)
=

(
1 0
1 1

)
,

f1 : m �→ m and f2 : m �→ f †(m + 1). The Lambek-Moser inverses of f1 and f2
are f †

1 : m �→ m− 1 and f †
2 : m �→ f(m)− 1. I.e.

D(0, r) = {p : gi(Aip) < r + 1, ∀i}
= {p : Aip ≤ f †

i (r + 1), ∀i}

=

{
p :

(
1 0
1 1

)
p ≤

(
f †
1 (r + 1)

f †
2 (r + 1)

)}
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m 1 2 3 4 5 6 7 8 9 10 11

B(m) 1 2 1 2 2 1 2 1 2 2 1

f †(m) 0 1 2 2 3 4 4 5 5 6 7

f1(m) 1 2 3 4 5 6 7 8 9 10 11

f †
1 (m) 0 1 2 3 4 5 6 7 8 9 10

f2(m) 1 2 2 3 4 4 5 5 6 7 7

f †
2 (m) 0 1 3 4 6 8 9 11 12 14 16

5 Optimization

In this section, we will find parameters α, β, τ that minimize the rotational de-
pendency of the wns-distance. The digital disk obtained by wns is

D(0, r) = {p : Aip ≤ f †
i (r + 1), ∀i}

Now, we restrict the cumulative neighbourhood sequence BΣ to rational Beatty
sequences, i.e. on the form BΣ(m) = �τm�, 1 ≤ τ ≤ 2.

αx1 + (β − α)y1 ≤ f †
1 (r + 1)

x2 + y2 ≤ f †
2 (r + 1)

With f †
1 (r + 1) = r and equality above and x = x1 = x2 and y = y1 = y2, we

calculate the coordinates of the vertices of the H-polytopes:

x =
r + (α− β)f †

2 (r + 1)

2α− β

y =
αf †

2 (r + 1)− r

2α− β

With equality above and x = x1 and y2 = y1 = 0,

x =
r

α

By symmetry, the whole polygon is given by the vertices(
r + (α− β)f †

2 (r + 1)

2α− β
,
αf †

2 (r + 1)− r

2α− β

)
,
( r

α
, 0
)
.

Optimization Procedure. Loop over integer α, β in some predefined interval
and rational τ (that defines the Beatty sequence) between 1 and 2.

Find the parameters α, β, τ that gives the minimum P 2A for each value up
to Rmax that is attained for the specific parameters.
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Example 5. τ : 500 uniform samples between 1 and 2. 1 ≤ α ≤ β ≤ 10 (and
2α ≤ β).

radius τ α β mean P 2A/(4π)

α 2 t t 1.27

2α 1.5 t t 1.1667

3α 2 3 4 1.1207

4α 2 7 9 1.0937

5α 2 7 9 1.0748

6α 2 7 9 1.0658

7α 2 7 9 1.0605

8α 2 7 9 1.0567

9α 1.834 7 9 1.0537

10α 1.834 7 9 1.0489

Note that in Example 5, the neighbourhood sequence always start with a 1 due
to the definition of f . In Example 6, we use f ′(k) = f(k) + 1 instead, which
means that the first element in B instead is always a 2.

Example 6. τ : 500 uniform samples between 1 and 2. 1 ≤ α ≤ β ≤ 10 (and
2α ≤ β). f ′(k) = f(k) + 1

radius τ α β mean P 2A/(4π)

α 1 t t 1.1312

2α 1 t t 1.1312

3α 2 5 6 1.1081

4α 1.6680 4 5 1.1024

5α 1.75 7 9 1.0758

6α 1.75 7 9 1.0644

7α 1.75 7 9 1.0567

8α 1.6680 7 9 1.0504

9α 1.6680 7 9 1.0458

10α 1.6680 7 9 1.0424
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6 Conclusions

In this paper, we express digital distance functions in terms of integer sequences.
Our main result, Theorem 2, gives a link between digital distance functions that
can be written on the form (9) and the corresponding digital disks. The obtained
expressions are elegant and, most importantly, can be computed efficiently. Since
the inverse of Beatty sequences can be computed in constant time, this holds
also for distance functions written on the form given in Theorem 2.

We give examples on how the new way of expressing the distance functions can
be applied to well-known digital distance functions such as weighted distances
and distances based on neighbourhood sequences. The so-obtained formulas are
used to find optimal parameters for short neighbourhood sequences.

We also believe that the results presented in this paper has the potential
of having large impact on the development of the theory on digital distance
functions.
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Abstract. Multidimensional persistent modules do not admit a con-
cise representation analogous to that provided by persistence diagrams
for real-valued functions. However, there is no obstruction for multidi-
mensional persistent Betti numbers to admit one. Therefore, it is rea-
sonable to look for a generalization of persistence diagrams concerning
those properties that are related only to persistent Betti numbers. In this
paper, the persistence space of a vector-valued continuous function is in-
troduced to generalize the concept of persistence diagram in this sense.
Furthermore, it is presented a method to visualize topological features
of a shape via persistence spaces. Finally, it is shown that this method
is resistant to perturbations of the input data.

1 Introduction

Analyzing and interpreting digital images and shapes are challenging issues in
computer vision, computer graphics and pattern recognition [24,25]. Topological
persistence – including the theory of persistent homology [13] and size theory
[17] – has been promisingly linked to the aforementioned research fields [2].

The classical persistence setting is continuous. Data can be modeled as a pair
(X, f), with X a topological space and f : X → R a continuous function called a
filtering function. The role of X is to represent the data under study, while f is a
descriptor of some properties which are considered relevant to analyze data. The
main idea of persistence is to topologically explore the evolution of the sublevel
sets of f in X . These sets, being nested by inclusion, produce a filtration of X .
Focusing on the occurrence of important topological events along this filtration
– such as the birth and death of connected components, tunnels and voids –
it is possible to obtain a global description of data, which can be formalized
via an algebraic structure called a persistence module. Such information can be
encoded in a parameterized version of the Betti numbers, known in the literature
as persistent Betti numbers [14], a rank invariant [6] and – for the 0th homology –
a size function [26]. The key point is that these descriptors can be represented in
a very simple and concise way, by means of multi-sets of points called persistence
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diagrams. Moreover, they are stable with respect to the bottleneck distance, thus
implying resistance to noise [12].

In concrete applications, where images and shapes are digital, the input data is
necessarily discrete. According to the problem at hand, spaces can be modeled
by discrete structures such as triangle meshes or cubical complexes. Filtering
functions are usually taken to be piecewise-linear. Persistence fits nicely in this
discrete framework with none or very little changes. In particular, the case of
gray-scale images is treated in [23] and [15].

Thanks to this property, persistence is a viable option for analyzing data
from the topological perspective, as shown in a number of concrete problems
concerning shape comparison and retrieval [1,10], segmentation [19,20], denoising
[11], 3D image simplification [23] and reconstruction [27], visualization [21,22].

A common scenario in applications is to deal with multi-parameter informa-
tion. An example is given by photometric properties, which are usually taken
into account for digital image segmentation. Another instance is the analysis of
4D time-varying CT scans in medical imaging. Further examples can be found
in contexts such as computational biology and scientific simulations of natural
phenomena. In all these cases, the use of vector-valued filtering functions would
enable the study of multi-parameter filtrations, whereas a scalar-valued function
only gives a one-parameter filtration. Therefore, Frosini and Mulazzani [18] and
Carlsson and Zomorodian [6] proposed multidimensional persistence to analyze
richer and more complex data. Also in this case the passage from continuous to
discrete input data works finely, as shown in [7].

A major issue in multidimensional persistence is that, when filtrations depend
on multiple parameters, it is not possible to provide a complete and discrete rep-
resentation for multidimensional persistence modules analogous to that provided
by persistence diagrams for one-dimensional persistence modules [6]. This the-
oretical obstruction discouraged so far the introduction of a multidimensional
analogue of the persistence diagram.

Given the importance of persistence diagrams for the use of persistence in
concrete tasks, one can immediately see that the lack of such an analogue is
a severe drawback for the actual application of multidimensional persistence.
Therefore a natural question we may ask is the following one: In which other
sense may we hope to construct a generalization of a persistence diagram for the
multidimensional setting?

The persistence diagram is known to satisfy the following important properties
[12] (see also [8,16]):

– it can be defined via multiplicities obtained from persistent Betti numbers;
– it allows to completely reconstruct persistent Betti numbers;
– the coordinates of its off-diagonal points are homological critical values.

Therefore, it is reasonable to require that a generalization of a persistence dia-
gram for the multidimensional setting satisfies all these properties. We underline
that, because of the aforementioned impossibility result in [6], no generalization
of a persistence diagram exists that can achieve the goal of representing com-
pletely a persistence module, but only its persistent Betti numbers. For this
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reason, in this paper we will only study persistent Betti numbers and not per-
sistence modules.

The main contribution of the present work is the introduction of a persistence
space. We show that it generalizes the notion of a persistence diagram in the
aforementioned sense. More precisely, we define a persistence space as a mul-
tiset of points defined via multiplicities (Definition 3). In the one-dimensional
case it coincides with persistence diagrams. Moreover, it allows for a complete
reconstruction of multidimensional persistent Betti numbers (Multidimensional
Representation Theorem 2), and the coordinates of its off-diagonal points are
multidimensional homological critical values (Theorem 5).

Having established these properties (Section 3), the next step is to use per-
sistence spaces to analyze shapes. The tasks we consider are visualization of a
summary of topological information of a shape, and comparison of shapes. Indeed
these are the main tasks where persistence diagrams are employed. Therefore,
as further contributions of this paper, we show that persistence spaces can be
visualized and stably compared.

To the best of our knowledge, so far it was impossible to visualize in a single
structure the information contained in multidimensional persistent Betti num-
bers (although a line-by-line visualization method is given, e.g., in [8]). Our vi-
sualization method relies on a projection of points of the persistence space onto
a lower dimensional space. Moreover, each point is enriched with the persistence
value of the topological feature it represents (color-coded). Our visualization
procedure is presented in Section 4.

We devote Section 5 to show that the persistence space is resistant to noise.
Indeed, persistence spaces can be compared using the multidimensional matching
distance introduced in [4]. This comparison turns out to be stable as a simple
consequence of the stability of multidimensional persistent Betti numbers [8].

Section 6 concludes the paper with a discussion on the results obtained in this
paper and some questions for future research.

2 Background

Let us first consider the case when the filtering function f is real-valued. We can
consider the sublevel sets of f to define a family of subspacesXu = f−1((−∞, u]),
u ∈ R, nested by inclusion, i.e. a filtration of X . Homology may be applied to
derive some topological information about the filtration of X induced by f . The
first step is to define persistent homology groups as follows. Given u < v ∈ R, we
consider the inclusion of Xu into Xv. This inclusion induces a homomorphism
of homology groups Hk(Xu) → Hk(Xv) for every k ∈ Z. Its image consists of
the k-homology classes that live at least from Hk(Xu) to Hk(Xv) and is called
the kth persistent homology group of (X, f) at (u, v). If X satisfies some mild
conditions [5] – which will be assumed to hold throughout this paper – this group
is finitely generated: Its rank is called a kth persistent Betti number of (X, f),
and is denoted by βf (u, v) (references to X and k are omitted for simplicity).

A simple and compact description for the kth persistent Betti numbers of
(X, f) is provided by the corresponding persistence diagrams. Figure 1(b) and
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Fig. 1. (a) A model from the TOSCA dataset [3] with the “height” filtering function
color-coded (left), and the corresponding 0th (b) and 1st (c) persistence diagram

Figure 1(c) show respectively the 0th and the 1st persistence diagrams which are
obtained from the 0th and the 1st persistent Betti numbers of a surface model
– the space X – filtered by the height function (Fig. 1(a)).

As shown in Fig. 1, persistence diagrams can be seen as multi-sets of points
lying in the half-plane Δ+ = {(u, v) ∈ R × R : u < v}. For each point, the u-
coordinate represents the birth – in terms of the values of the filtering function
– of a topological feature (e.g., connected components in the case of Fig. 1(b),
tunnels in the case of Fig. 1(c)), whereas the v-coordinate represents its death.
In particular, the red line in Fig. 1(b) can be interpreted as a point at infinity,
representing a connected component that will never die, i.e. its v-component is
equal to +∞. The distance of a point from the diagonal Δ : u = v represents the
lifespan of the associated topological feature, which in turn reflects its impor-
tance: points far from the diagonal describe important or global features, i.e. the
long-lived ones, whereas points close to the diagonal describe local information
such as smaller details and noise. For example, consider the three red points in
Fig. 1(b) which are farthest from Δ. Together with the red line, they reveal the
existence of four meaningful features: The limbs of the gorilla (Fig. 1(b)) born
at the four minima of the height function.

A persistence diagram can be formally defined via the notion of multiplicity
[13,16]. In what follows, the symbol Δ∗ denotes the set Δ+ ∪ {(u,∞) : u ∈ R}.
Since we assume that the homology degree and the topological space are fixed,
we keep omitting any reference to k and X .

Definition 1 (Multiplicity). The multiplicity μf (u, v) of (u, v) ∈ Δ+ is the
finite, non-negative number given by

min
ε>0

u+ε<v−ε

βf (u+ ε, v − ε)− βf (u− ε, v − ε)− βf (u+ ε, v + ε) + βf (u− ε, v + ε).

The multiplicity μf (u,∞) of (u,∞) is the finite, non-negative number given by

min
ε>0, u+ε<v

βf (u+ ε, v)− βf (u− ε, v).
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Definition 2 (Persistence Diagram). The persistence diagram Dgm(f) is the
multiset of all points p ∈ Δ∗ such that μf (p) > 0, counted with their multiplicity,
union the points of Δ, counted with infinite multiplicity.

Definition 2 implies that, given the persistent Betti numbers of f , βf , it is pos-
sible to completely and uniquely determine Dgm(f). The converse is also true,
as shown by the following result [16], also known as k-triangle Lemma [14].

Theorem 1 (Representation Theorem). For every (ū, v̄) ∈ Δ+ it holds that

βf (ū, v̄) =
∑

u≤ū, v>v̄

μf (u, v) +
∑
u≤ū

μf (u,∞).

2.1 The Multidimensional Setting

If the considered filtering function is vector-valued, i.e. f : X → Rn, providing
the multidimensional analogue of persistent homology groups and Betti numbers
is straightforward. For u, v ∈ Rn, with u = (u1, . . . , un) and v = (v1, . . . , vn), we
say that u ≺ v (resp. u � v, u ' v) iff ui < vi (resp. ui ≤ vi, ui > vi) for every
i = 1, . . . , n. Given u ≺ v, the multidimensional kth persistent homology group of
(X, f) at (u, v) is defined as the image of the homomorphism Hk(Xu)→ Hk(Xv)
induced in homology by the inclusion of Hk(Xu) into Hk(Xv). Its rank, still
denoted by βf (u, v), is called a multidimensional persistent Betti number.

What is not straightforward is to generalize Definition 1 and Definition 2.
As a consequence, even the multidimensional counterpart of the Representation
Theorem 1 cannot be directly deduced from its one-dimensional version. These
are actually the main goals of the next section.

3 The Persistence Space of a Multi-parameter Filtration

In this section we present the main theoretical results of the paper. Proving most
of them is rather technical, and requires a number of intermediate results which,
for the sake of clarity, we prefer not to recall here. For more details the reader
is referred to the extended version of this work [9].

We start by observing that, in general, βf (u, v) can be seen as the number of
homology classes of cycles “born” no later than u and “still alive” at v. Having
this in mind, it is easy to figure out that, for u′ , u′′ with u′ � u′′ , the homology
classes of cycles “born” no later than u′ are necessarily not larger in number
than the ones “born” no later than u′′ . Indeed, it holds that

βf (u
′′ , v)− βf (u

′ , v) ≥ 0 (1)

for every v ∈ Rn with u′′ ≺ v. Analogously we can argue that, given v′ , v′′ ∈ Rn

with u′ � u′′ � v′ � v′′ , the number of homology classes born between u′ and
u′′ and still alive at v′ is certainly not smaller than the number of those still
alive at v′′ . More formally,

βf (u
′′ , v′ )− βf (u

′ , v′ ) ≥ βf (u
′′ , v′′ )− βf (u

′ , v′′ ). (2)
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Let us now set Δ+
n = {(u, v) ∈ Rn × Rn : u ≺ v}. The next step is to recall

some properties of the discontinuity points for βf , which is considered here as
a function taking each (u, v) ∈ Δ+ to βf (u, v). The next two propositions give
some constraints on the presence of discontinuity points for βf . For every ū ∈ Rn,
we denote by Rn

±(ū) the subset of Rn given by {u ∈ Rn : u ≺ ū ∨ u ' ū}.

Proposition 1. Let p = (ū, v̄) ∈ Δ+
n . A real number ε > 0 exists, such that

Wε(p) = {(u, v) ∈ Rn
±(ū)× Rn

±(v̄) : ‖u− ū‖∞ < ε, ‖v − v̄‖∞ < ε}

is an open subset of Δ+
n , and does not contain any discontinuity point for βf .

Proposition 2. Let ū ∈ Rn. A real number ε > 0 exists, such that

Vε(ū) = {(u, v) ∈ Rn
±(ū)× Rn : ‖u− ū‖∞ < ε, vi >

1

ε
, i = 1, . . . , n}

is an open subset of Δ+
n , and does not contain any discontinuity point for βf .

We can now introduce the multidimensional analogue of Definition 1. For every
(u, v) ∈ Δ+

n and e ∈ Rn with e ' 0 and u+ e ≺ v − e, we consider the number

μe
f (u, v) = βf (u+ e, v − e) − βf (u− e, v − e)+

− βf (u+ e, v + e)+ βf (u− e, v + e).
(3)

Since we are assuming that the persistent homology groups of (X, f) are finitely
generated, we have that μe

f (u, v) is an integer number, and by (2) it is non-

negative. Once again by (2), if η ∈ Rn with 0 ≺ e � η, then μe
f (u, v) ≤ μη

f (u, v),
i.e. μe

f (u, v) is non-decreasing in e. Moreover, by Proposition 1 each term in the
sum defining μe

f (u, v) is constant for every e ' 0 in Rn with ‖e‖∞ sufficiently
close to 0. Similarly, the number

βf (u+ e, v)− βf (u− e, v) (4)

is certainly an integer number, non-negative by (1). It is also non-decreasing in e
and non-increasing in v, as easily implied by (1) and (2), respectively. Moreover,
by Proposition 2 each term in (4) is constant for every for e ' 0 in Rn with ‖e‖∞
sufficiently close to 0, and every v ∈ Rn with vi > 1

‖e‖∞
for all i = 1, . . . , n. The

previous remarks justify the following definition.

Definition 3 (Multiplicity). The multiplicity μf (u, v) of (u, v) ∈ Δ+
n is the

finite, non-negative number defined by setting

μf (u, v) = min
e�0

u+e≺v−e

μe
f (u, v). (5)

The multiplicity μf (u,∞) of (u,∞) is the finite, non-negative number given by

μf (u,∞) = min
e�0, u+e≺v

βf (u+ e, v)− βf (u− e, v). (6)
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Having extended the notion of multiplicity to a multidimensional setting, the def-
inition of persistence space is now completely analogous to the one of persistence
diagram for a real-valued filtering function. Set Δ∗

n = Δ+
n ∪ {(u,∞) : u ∈ Rn}

and Δn = ∂Δ+
n .

Definition 4 (Persistence Space). The persistence space Spc(f) is the mul-
tiset of all points p ∈ Δ∗

n such that μf (p) > 0, counted with their multiplicity,
union the points of Δn, counted with infinite multiplicity.

Persistence spaces can be reasonably thought as the analogue – in the case of a
multi-parameter filtration – of persistence diagrams. This is due to a number of
properties they have in common.

First, it is quite easy to see that, if f : X → Rn and n = 1, then Definition 2
and Definition 4 coincide as a simple consequence of the equivalence between
Definition 1 and Definition 3.

Second, similarly to the one-dimensional case, a persistence space is com-
pletely and uniquely determined by the corresponding persistent Betti numbers.
Moreover, even in the multi-parameter situation the converse is true as well, since
it is possible to prove the following Multidimensional Representation Theorem.
In what follows, 〈e〉 denotes the line in Rn spanned by e.

Theorem 2 (Multidimensional Representation Theorem). Let (ū, v̄) ∈
Δ+

n . For every e ∈ Rn with e ' 0, it holds that

βf (ū, v̄) =
∑

u�ū, v�v̄
ū−u, v−v̄∈〈e〉

μf (u, v) +
∑
u�ū

ū−u∈〈e〉

μf (u,∞). (7)

A further analogy between persistence diagrams and persistence spaces concerns
points with positive multiplicity. In both cases, such points can be characterized
via the notion of homological critical value, introduced in [12] for real-valued
functions and in [7] for vector-valued functions.

Definition 5 (Homological critical value). We say that u ∈ Rn is a ho-
mological critical value of f : X → Rn if, for every sufficiently small real
value ε > 0, there exist u′ , u′′ ∈ Rn such that u′ ≺ u ≺ u′′ , ‖u′ − u‖∞ ≤ ε,
‖u′′−u‖∞ ≤ ε, and the homomorphism Hk(Xu)→ Hk(Xv) induced by inclusion
is not an isomorphism for some integer k.

It is well known that the coordinates of points in a persistence diagram are ho-
mological critical (real) values [12]. The same holds for the points of a persistence
space. In fact, the following result can be proved.

Theorem 3. Let p be a point of Spc(f), with μf (p) > 0. If p = (u, v) then both u
and v are homological critical values for f . If p = (u,∞) then u is a homological
critical value for f .
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4 Visualization of Multidimensional Persistence

One of the main applications of persistence is in visualization and data analysis,
mainly due to the fact that the persistence diagram allows us to visualize the
appearance and disappearance of topological features in a filtration in a way that
is resistant to noise. This is especially important in application areas, where data
often come from noisy measurements.

In this section we address the problem of visualizing appearance and dis-
appearance of topological features in a multi-filtration. Our main tool is the
persistence space introduced in the previous section.

The idea underlying our visualization method is motivated by the following
observations. Recall that, by definition, the persistence space consists of points
of Δ∗

n = Δ+
n ∪Δn, where n is the number of parameters in the filtration. In par-

ticular, these points are exactly those with a positive multiplicity. For simplicity
we can think that this multiplicity is exactly equal to 1, since higher values for
multiplicity correspond to non-generic situations. Moreover, intuition suggests
that points are arranged on patches of 2(n−1)-dimensional manifolds that inter-
sect each other. For example, for n = 1, we have exactly a set of isolated points
in R2, for n = 2 we have patches of 2-dimensional surfaces in R4. In general,
since Δ∗

n ⊆ Rn × Rn, in order to visualize these points, we project them into a
lower dimensional space.

Since each point of the persistence space captures the birth and death of a
topological feature along the filtration, how can we visualize its life-time or per-
sistence? In the one-dimensional setting, i.e. for persistence diagrams, this is
achieved simply by considering the distance from the diagonal: the larger the
distance, the more persistent the feature. In the multidimensional setting, per-
sistence can analogously be defined as the distance from Δn. However, in the
visualization process, when we project onto a lower dimensional space, distances
are deformed. Therefore, our idea is to color-code points in the projection ac-
cording to the persistence of the topological feature they represent.

The result of our method is illustrated in Figure 4 for the case of 1-homology
of triangular meshes of a cube and a sphere, respectively. In both cases the
considered filtering function on the vertices of the mesh is 2-dimensional and has
the first component equal to |x| (left, color-coded) and the second component
equal to |y| (center, color-coded), and it is interpolated on the other faces. The
corresponding persistence spaces are visualized on the right. The darker a point,
the more persistent the feature it represents. The projection from R4 to R3 is
obtained using an implementation of Sammon’s algorithm.

Having given the main idea of the method, we now explain it step-by-step for
a filtering function f : X → Rn. Basically, the method consists of the following
steps:

Step 1: Compute a sample of the points p = (u, v) of the persistence space such
that u � v.

Step 2: Compute the persistence of each such point (u, v) as ‖v−u‖∞, and the
reciprocal distance – in the max-norm – between these points in R2n.



188 A. Cerri and C. Landi

−20

−10

0

10

−10
0

10
20

30
40

−15

−10

−5

0

5

10

−20
−10

0
10

−10 0 10 20 30 40

−15

−10

−5

0

5

10

Fig. 2. Triangular meshes of a cube and a sphere, endowed with the filtering function
|x| (left), |y| (center) and a visualization of the 1-homology persistence space for the
2-dimensional function (|x|, |y|) (right)

Step 3: Project these points onto a lower dimensional space by an algorithm
that tries to preserve the structure of inter-point distances computed in Step
2 in the lower-dimension projection (e.g., Sammon’s algorithm).

Step 4: Plot points coloring them according to the persistence computed in
Step 2.

Computations in Step 1 can be accomplished as follows, using the one-dimensional
reduction described in [4]. Intuitively, the idea is to consider the set of the so-called
admissible lines. A line parameterized by s with equation u = sm+b is admissible
if b = (b1, . . . , bn) is such that

∑n
i=1 bi = 0, and m = (m1, . . . ,mn) is such that

mi > 0 for each i and
∑n

i=1 m2
i = 1. The filtration obtained by sweeping each

such line correspond to a persistence diagram: Gluing together all diagrams gives
us the persistence space. It follows that, by taking a finite set of admissible lines,
we get an approximation of a persistence space. More in details:

– Chose k admissible lines L1, . . . , Lk in Rn.
– For h = 1, . . . k, consider the line Lh. Assume its parametric equation is

u = smh + bh. Compute the points (s, t) ∈ R2 of the persistence diagram of
the one-dimensional filtration induced by the real-valued function FLh(x) =

m∗ · max
i=1,...,n

{
fi(x)−bhi

mh
i

}
, with m∗ = mini mi.

– For each h and for each point (s, t) in the persistence diagram of FLh , com-
pute the corresponding point (u, v) ∈ Rn × Rn of the persistence space of f
by the formulas u = smh + b, v = tmh + b.
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In particular, the above procedure is justified by the correspondence existing
between the points in Spc(f) and the ones in the persistence diagrams Dgm(FLh)
[9, Lemma 3.16].

In the next section we shall see that persistence spaces enjoy stability with
respect to perturbations of f . We observe that stability is inherited by the pro-
jections obtained according to the proposed method, provided that the point-
projection procedure in step 3 preserves the structure of inter-point distances.

5 Stable Comparison of Persistence Spaces

A crucial property for applications is the stability of persistence spaces, which
means that close functions in the sup-norm should have close persistence spaces
in a natural metric.

The reason why our method is stable intuitively is that each admissible line
L : u = sm + b can be associated with a 1-parameter filtration: By sweeping L,
the birth and the death of a topological event occur according to the values of
the function FL previously defined, whose sublevel sets represent the subspaces
of the filtration. It follows that each admissible line L can be associated to a
persistence diagram Dgm(FL). Moreover, it happens that the collection of per-
sistence diagrams associated with the set Ln of all possible admissible lines turns
out to be a complete descriptor of the persistent Betti numbers βf . Therefore,
given another filtering function g : X → Rn, it is possible to define the multidi-
mensional matching distance Dmatch between βf and βg by comparing line by
line the associated persistence diagrams via the bottleneck distance dB [4]:
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Fig. 3. Superimposition of the 1-homology persistence spaces of the cube (red points)
and the sphere (blue points) of Figure 4
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Dmatch(βf , βg) = sup
L∈Ln

dB(Dgm(FL),Dgm(GL)).

Such a distance is stable with respect to perturbations of the considered vector-
valued filtering function: In [8] it has been proved that

Dmatch(βf , βg) ≤ max
x∈X

‖f(x)− g(x)‖∞.

Now, we can conclude that, by the Multidimensional Representation Theorem 2,
persistence spaces inherit stability from multidimensional persistent Betti num-
bers.

In Figure 5 stability of persistence spaces is illustrated by displaying the 1-
homology persistence spaces of the cube (red points) and the sphere (blue points)
of Figure 4 (superimposed). It is clearly visible that points with higher persis-
tence (dark colored) are almost overlapping, while differences are appreciable for
points with lower persistence (light colored).

6 Conclusions

We have shown that persistence spaces provide a representation of the topological
properties of vector-valued functions, and have described how persistence spaces
can be visualized. Finally, we have explained how stability of multidimensional
persistent Betti numbers implies stability of persistence spaces.

Some questions remain unanswered. Is it possible to further improve this
representation by using only a finite set of points, at least in simple cases such
as for functions interpolated on vertices of simplicial complexes? Is it possible
to explicitly define a bottleneck distance between persistence spaces?
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Abstract. The computation of multidimensional persistent Betti num-
bers for a sublevel filtration on a suitable topological space equipped with
a Rn-valued continuous filtering function can be reduced to the problem
of computing persistent Betti numbers for a parameterized family of
one-dimensional filtering functions. A notion of continuity for points in
persistence diagrams exists over this parameter space excluding a dis-
crete number of so-called singular parameter values. We have identified
instances of nontrivial monodromy over loops in nonsingular parameter
space. In other words, following cornerpoints of the persistence diagrams
along nontrivial loops can result in them switching places. This has an
important incidence, e.g., in computer-assisted shape recognition, as we
believe that new, improved distances between shape signatures can be
defined by considering continuous families of matchings between cor-
nerpoints along paths in nonsingular parameter space. Considering that
nonhomotopic paths may yield different matchings will therefore be nec-
essary. In this contribution we will discuss theoretical properties of the
monodromy in question and give an example of a filtration in which it
can be shown to be nontrivial.

Keywords: Persistence diagram, topological persistence, multifiltration,
shape comparison, shape recognition.

Introduction

The last few decades have seen an explosion of the amount of data to be processed
in many scientific contexts, due in large part to the availability of powerful
computing technology. This has led researchers to consider methods to study
qualitative information, such as the topological analysis of data, which has been
applied, for example, to computer imaging [14] and shape analysis [3].

In this context, topological persistence has revealed itself to be an increasingly
interesting approach for data analysis and comparison. Indeed, it enables a deep

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 192–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Study of Monodromy in the Computation of Multidimensional Persistence 193

reduction in the complexity of data, by confining the analysis only to the relevant
parts [12,13]. Moreover, persistence allows for a stable description and compar-
ison of data, and ensures invariance under different groups of transformations
[3]. The main idea of this theory consists in studying the k-dimensional holes
(components, tunnels, voids . . . ) of the sublevel sets of a continuous function,
called filtering function, varying the level, and using the information gleaned for
topological denoising and shape comparison. The relevance of components, tun-
nels and voids is given by their persistence, i.e. the duration of the life of these
homological structures if the level is interpreted as time. The more persistent
a homological property is, the higher its incidence on shape comparison algo-
rithms, since holes of low persistence are assumed to be the result of noise. A key
result shows that if the filtering function is real-valued, then persistent homology
can be completely described by a countable collection of points in the real plane,
called a persistence diagram [10]. The stability of this descriptor with respect
to noise makes it important in applications of digital topology and discrete ge-
ometry to denoising, where spatial data are only known up to approximation
error due to digitization (cf. [6]). Other applications in which persistence has
been successfully exploited range from 3D image analysis [1], simplification [17]
and reconstruction [18] to image segmentation [16], shape comparison [11] and
retrieval [9].

In recent years greater attention has been given to multidimensional persis-
tence, i.e. persistent homology for Rn-valued filtering functions (e.g. [7]). This
extension of the theory is motivated by the fact that data analysis and compar-
ison often involve the examination of properties that are naturally described by
vector-valued functions. In computer vision, for example, photometric properties
of digital images constitute a standard feature which is taken into account for
their segmentation. In point cloud data analysis, the object of study is usually a
finite set of samples from some underlying topological space. Each sample is asso-
ciated with multiple labels, representing several measurements possibly obtained
from multiple modalities. Another example is the analysis of 4D time-varying
CT scans in medical imaging.

The study of multidimensional persistent homology is proving to be much
harder than that of one-dimensional persistent homology. As an example of
this difficulty, we recall the lack of a complete and discrete stable descriptor
in the case that the filtering function is vector-valued [7]. Fortunately, a method
is available to reduce the multidimensional persistent homology of a function
ϕ : X → Rn to the one-dimensional persistent homology of each function in a
suitable parameterized family {ϕ(m,b) : X → R} (cf. [2,5]). For each function
ϕ(m,b) a persistence diagram can be obtained, and from the parameterized fam-
ily of diagrams the multidimensional persistent homology of ϕ (in the sense of
the corresponding persistent Betti numbers) can be recovered.

While this approach has opened a new line of research, it has also brought
new problems and questions to the surface. In this work we illustrate that an
interesting link exists between the classical concept of monodromy and the per-
sistence diagrams associated with the functions ϕ(m,b). In plain words, when we
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move in our parameter space {(m, b)} along a closed path around a so-called sin-
gular point, the points in the persistence diagrams may exchange their position.
This switching of places generates a monodromy that, besides its theoretical rel-
evance, could be important for defining new distances between multidimensional
persistent Betti numbers.

The paper is organized as follows. In Section 1 we recall the definitions and
results needed in our exposition. In Section 2 we demonstrate the continuity of
the movement of each point in persistence diagrams over paths in parameter
space. In Section 3 we describe an example where this continuous movement
creates a nontrivial monodromy over persistence diagrams. A section illustrating
our conclusions ends the paper.

1 Preliminaries

In this section we recall the definitions and results we will be needing in this
paper. For the treatment, we refer the reader to [8].

We shall use the following notations: Δ+ will be the open set {(u, v) ∈ R×R :
u < v}. Δ will represent the diagonal set {(u, v) ∈ R × R : u = v}. We can
further extend Δ+ with points at infinity of the kind (u,∞), where |u| < ∞.
Denote this set Δ∗. Let us assume that a topological space X and a continuous
function ϕ : X → R are given. For any k ∈ N, if u < v, the inclusion map of
the sublevel set Xu = {x ∈ X : ϕ(x) ≤ u} into the sublevel set Xv = {x ∈ X :
ϕ(x) ≤ v} induces a homomorphism from the kth homology group of Xu into the
kth homology group of Xv. The image of this homomorphism is called the kth

persistent homology group of (X,ϕ) at (u, v), and is denoted by H
(u,v)
k (X,ϕ). In

other words, the group H
(u,v)
k (X,ϕ) contains all and only the homology classes

of k-cycles born before or at u and still alive at v.
In what follows, we shall work with coefficients in a field K, so that homology

groups are vector spaces. Therefore, they can be completely described by their
dimension, leading to the following definition (cf. [13]).

Definition 1 (Persistent Betti Numbers Function). The persistent Betti
numbers function of ϕ, briefly PBN, is the function βϕ : Δ+ → N∪{∞} defined
by

βϕ(u, v) = dimH
(u,v)
k (X,ϕ).

Throughout the paper, we shall assume that X is triangulable, implying the
finiteness of βϕ for all (u, v) ∈ Δ+ [8]. Obviously, for each k ∈ Z, we have
different PBNs of ϕ (which might be denoted βϕ,k), but for the sake of notational
simplicity we omit adding any reference to k.

The PBNs of ϕ can be simply and compactly described by the corresponding
persistence diagrams. Figure 1(b) and (c) show respectively the 0th and the 1st
persistence diagram obtained from the PBNs of the height function defined on
a surface model (Fig. 1(a)).

As shown in Figure 1, persistence diagrams can be represented as multisets of
points lying in Δ+. For each point, the u-coordinate denotes the birth, in terms
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Fig. 1. (a) A model from the TOSCA dataset [4] filtered by the “height” function
(color-coded, left), and the corresponding 0th (b) and 1st (c) persistence diagrams

of the values of the filtering function, of a topological feature (e.g. connected
components in the case of Fig. 1(b), holes in the case of Fig. 1(c)), whereas the
v-coordinate denotes its death. In particular, the red line in Fig. 1(b) can be
thought as a point at infinity, i.e. a connected component that will never die;
indeed, its v-component is equal to +∞. The distance of a point from Δ can be
interpreted as the lifespan of the associated topological feature, thus reflecting
its importance: points far from the diagonal are associated with important or
global features, i.e. long-lived ones, while points close to the diagonal correspond
to local information such as smaller details and noise.

Formally, a persistence diagram can be defined via the notion of multiplicity
[12,15]. Following the convention used for PBNs, any reference to k will be
dropped in the sequel.

Definition 2 (Multiplicity). The multiplicity μϕ(u, v) of (u, v) ∈ Δ+ is the
finite, non-negative number given by

min
ε>0

u+ε<v−ε

βϕ(u+ ε, v− ε)− βϕ(u− ε, v− ε)− βϕ(u+ ε, v + ε) + βϕ(u− ε, v + ε).

The multiplicity μϕ(u,∞) of (u,∞) is the finite, non-negative number given by

min
ε>0, u+ε<v

βϕ(u+ ε, v)− βϕ(u− ε, v).

Definition 3 (Persistence Diagram). The persistence diagram Dgm(ϕ) is
the multiset of all points p ∈ Δ∗ such that μϕ(p) > 0, counted with their multi-
plicity, union the singleton {Δ}, counted with infinite multiplicity.

Each point p ∈ Δ∗ with positive multiplicity will be called a cornerpoint. A
cornerpoint p will be said a proper cornerpoint if p ∈ Δ+, and a cornerpoint at
infinity if p ∈ Δ∗ \Δ+.

Persistence diagrams show stability properties with respect to the so-called
bottleneck distance (a.k.a. matching distance). Roughly, small changes in the fil-
tering function induce only small changes in the position of the cornerpoints



196 A. Cerri, M. Ethier, and P. Frosini

which are far from the diagonal in the associated persistence diagram, and pos-
sibly produce variations close to the diagonal [8,10]. An intuition of this fact is
given in Figure 2. More precisely, we have the following definition:

Definition 4 (Bottleneck distance). Let Dgm1, Dgm2 be two persistence di-
agrams. The bottleneck distance dB

(
Dgm1,Dgm2

)
is defined as

dB(Dgm1,Dgm2) = min
σ

max
p∈Dgm1

d(p, σ(p)),

where σ varies among all the bijections between Dgm1 and Dgm2 and

d ((u, v) , (u′, v′)) = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
(1)

for every (u, v) , (u′, v′) ∈ Δ∗ ∪ {Δ}.
In practice, the distance d defined in (1) measures the cost of taking a point p
to a point p′ as the minimum between the cost of moving one point onto the
other and the cost of moving both points onto Δ. In particular, the matching of
a proper cornerpoint p with Δ can be interpreted as the destruction of p. The
stability of persistence diagrams can then be formalized as follows.

Theorem 1 (Stability Theorem). Let ϕ, ψ : X → R be two filtering func-
tions. It holds that

dB (Dgm(ϕ),Dgm(ψ)) ≤ ‖ϕ− ψ‖∞.

We conclude this subsection by noting that if we use Čech homology, persistence
diagrams allow the recovery of all information represented in PBNs [8].

1.1 Multidimensional Setting

The definition of a persistent Betti numbers function can be easily extended to
the case of Rn-valued filtering functions [8]. Moreover, it has been proven that
the information enclosed in the persistent Betti numbers function of a filtering
function ϕ = (ϕ1, . . . , ϕn) : X → Rn is equivalent to the information represented
by the set of persistent Betti numbers functions of the parameterized family
{ϕ(m,b)} of one-dimensional filtering functions defined by setting

ϕ(m,b)(x) = min
i
{mi} ·max

i

{
ϕi(x) − bi

mi

}
for every x ∈ X , varying (m, b) in the set of admissible pairs

Admn =

{
(m, b) ∈ Rn × Rn : ∀i mi > 0,

∑
i

mi = 1,
∑
i

bi = 0

}
.

Intuitively, each admissible pair (m, b) corresponds to a line of Rn, say r(m,b),
whose generic point is given by u = τm + b with τ ∈ R. Each such point can
be associated with the sublevel set Xu of X defined as Xu = {x ∈ X : ϕi(x) ≤
ui, i = 1, . . . , n}. The filtration {Xu}u∈l(m,b)

corresponds to the one associated
with ϕ(m,b). Details on this approach to multidimensional persistence can be
found in [8].
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0 1

Fig. 2. The change of the filtering function induces a change in the persistence diagram.
In this example, the graphs on the left represent two different real-valued filtering
functions, defined on the interval [0, 1]. The corresponding 0th persistence diagrams
are displayed on the right.

Following Proper Cornerpoints. Obviously, when we change the parameter
(m, b) in Admn, the cornerpoints of Dgm(ϕ(m,b)) move in the topological space
Δ∗ ∪ {Δ}. The main goal of the present work is to describe some properties of
such movements, in the case of proper cornerpoints. To this end, we endow the
set Δ+ ∪ {Δ} with the metric d defined in (1).

2 Our Main Theorem

We define the pair (m, b) ∈ Admn as singular for proper cornerpoints for ϕ if
at least one proper cornerpoint of Dgm(ϕ(m,b)) has multiplicity strictly greater
than 1. Otherwise, (m, b) is regular for proper cornerpoints. The concept of
singularity and regularity would more generally also include the multiplicities of
cornerpoints at infinity, but for our purposes here proper cornerpoints suffice.
In the sequel, we will therefore use the terms “regular” and “singular” to refer
to regularity and singularity with respect to proper cornerpoints. We denote by
Adm∗

n(ϕ) the set of regular pairs of ϕ. Moreover, ϕ is said to be normal if the set
of singular admissible pairs for ϕ is discrete. We can prove the following result.
Let I be the closed interval [0, 1].

Theorem 2. Let ϕ : X → Rn be a normal filtering function. For every con-
tinuous path γ : I → Adm∗

n(ϕ) and every proper cornerpoint p ∈ Dgm(ϕγ(0)),
there exists a continuous function c : I → Δ+ ∪ {Δ} such that c(0) = p and
c(t) ∈ Dgm(ϕγ(t)) for all t ∈ I. Furthermore, if there is no t ∈ I such that
c(t) = Δ, c is the only such continuous function.
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Proof. For every δ ≥ 0, we set Iδ = [0, δ] and consider the following property:

(∗) a continuous function cδ : Iδ → Δ+ ∪ {Δ} exists, with cδ(0) = p and
cδ(t) ∈ Dgm(ϕγ(t)) for all t ∈ Iδ.

Define the set A = {δ ∈ [0, 1] : property (∗) holds}. A is non-empty, since
0 ∈ A. Set δ̄ = supA. We will need to show that δ̄ ∈ A. First let (δn) be a
non-decreasing sequence of numbers of A converging to δ̄. Since δn ∈ A, for each
n there is a continuous function cδn : Iδn → Δ+ ∪ {Δ} such that cδn(0) = p and
cδn(t) ∈ Dgm(ϕγ(t)) for all t ∈ Iδn . Moreover, we can assume that the following
holds:

(∗∗) if m ≤ n, the restriction of cδn to the interval Iδm coincides with cδm .

To clarify this, let us distinguish between two cases. In the first one, we have that
Δ /∈ cδn(Iδn), for any n. Then, if (∗∗) failed, by the Stability Theorem 1 a real
value t̄ ∈ Iδm should exist such that Dgm

(
ϕγ(t̄)

)
would have a proper cornerpoint

of multiplicity strictly greater than 1, which is against our assumption that
γ(t) ∈ Adm∗

n(ϕ) for all t ∈ I. In order to show this, we can set t̄ = max{t ∈
[0, δm] : cδm(t) = cδn(t)}. The second case is when Δ ∈ cδn(Iδn) for some indices
n. Let m be the first index at which this happens, and let t′ = min{t ∈ [0, δm] :
cδm(t) = Δ}. Then, to ensure that (∗∗) holds, for every n ≥ m we simply modify
all the functions cδn by setting cδn(t) = Δ for all t ∈ [t′, δn].

Therefore, by (∗∗) we can define a continuous function c̃δ̄ :
[
0, δ̄

)
→ Δ+∪{Δ}

such that c̃δ̄(0) = p and c̃δ̄(t) ∈ Dgm(ϕγ(t)) for all t ∈
[
0, δ̄

)
. However, to

prove that δ̄ ∈ A we still need to show that c̃δ̄ can be continuously extended
to the point δ̄. The localization of cornerpoints ([8, Prop. 3.8]) implies that,
possibly by extracting a convergent subsequence, we can assume that the limit
limn cδn(δn) = limn c̃δ̄(δn) exists. Once more by the Stability Theorem 1, we
have that limn c̃δ̄(δn) ∈ Dgm(ϕγ(δ̄)). Now the function c̃δ̄ can be extended to δ̄

by setting c̃δ̄(δ̄) = limn c̃δ̄(δn), to show that δ̄ ∈ A.
Last, we prove by contradiction that δ̄ = 1. Let us suppose that δ̄ < 1. If

cδ̄(δ̄) = Δ, then cδ̄ can be easily extended by setting cδ̄(t) = Δ for all t ∈ [δ̄, 1].
Otherwise, by the Stability Theorem 1 and the fact that γ(δ̄) is regular, for any
sufficiently small ε > 0 we can pick a real number η > 0 (small enough with
respect to ε) such that there is only one proper cornerpoint p′(t) ∈ Dgm(ϕγ(t))

with d
(
p′(t), cδ̄(δ̄)

)
≤ ε for every t with δ̄ ≤ t ≤ δ̄+η. By setting cδ̄(t) = p′(t) for

every such t, we get a continuous path that extends cδ̄ to the interval [0, δ̄ + η).
In any case, we get a contradiction of our assumption that δ̄ = supA.

We now show the uniqueness of c, assuming it does not reach Δ for any t ∈ I.
Let c, c′ : I → Δ+ be two continuous paths such that c(0) = c′(0) = p, and
c(t), c′(t) ∈ Dgm(ϕγ(t)) for all t ∈ I. Denote by t̄ the greatest value such that
c(t) = c′(t) for any t with 0 ≤ t ≤ t̄. By the Stability Theorem 1, if t̄ < 1 then
c(t̄) would be a proper cornerpoint of Dgm(ϕγ(t̄)) having multiplicity strictly
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greater than 1. This is against our assumption that γ(t) ∈ Adm∗
n(ϕ) for all

t ∈ I. Therefore t̄ = 1, and our statement is proven.

Remark 1. In order to preserve the uniqueness of the function c even in the cases
when it reaches Δ for a value t ∈ I, what could be done would be to restrict
the domain of c to the subinterval [0, t̃] such that t̃ = sup{t ∈ I : Δ /∈ c([0, t])}.
Indeed, while there is no way to keep track of proper cornerpoints after they’ve
reached Δ, it is also unnecessary to do so, for the simple reason that they then no
longer correspond to extant topological properties. This is in contrast to singular
admissible pairs, where the definition of c presents a true ambiguity.

3 An Example Illustrating Monodromy in
Multidimensional Persistent Homology

Intuition might suggest that a natural correspondence exists between corner-
points associated to different points in the parameter space Admn. Example 3
disproves this belief, showing that this correspondence depends on the path fol-
lowed. Indeed, when following the persistence diagrams Dgm(ϕγ(t)) along a loop
γ : I → Adm∗

n(ϕ), that is, along a continuous path such that γ(0) = γ(1),
nontrivial monodromies may occur if γ is not homotopic to a constant path
in Adm∗

n(ϕ). In other words, while Dgm(ϕγ(0)) = Dgm(ϕγ(1)), there may be a
p ∈ Dgm(ϕγ(0)) such that c(1) �= p.

Example 3 (Nontrivial monodromy). Consider the function ϕ : R2 → R2

defined on the plane in the following way: ϕ1(x, y) = x, and

ϕ2(x, y) =

⎧⎪⎪⎨⎪⎪⎩
−x if y = 0
−x+ 1 if y = 1
−2x if y = 2
−2x+ 5

4 if y = 3

,

ϕ2(x, y) then being extended linearly for every x on the segment joining (x, 0)
with (x, 1), (x, 1) with (x, 2), and (x, 2) to (x, 3). On the half-lines {(x, y) ∈ R2 :
y < 0} and {(x, y) ∈ R2 : y > 3}, ϕ2 is then being taken with constant slope −1
in the variable y. The function ϕ2 is shown plotted in Figure 3. As written the
domain of ϕ is not a compact space, but we can easily obtain a compact domain
by considering a suitable subset of R2.

In the case of filtering functions with values in R2, Adm2 is the set of pairs
(m, b) where m = (a, 1 − a) with a ∈ (0, 1), and b = (β,−β) with β ∈ R. We
may therefore represent an admissible pair as (a, β) ∈ (0, 1)×R. In Figure 4 we
can see a “flattened” version of the graph of ϕ, as if projected on its codomain.
It is easily seen that ϕ admits only one singular admissible pair, that being
(1/4, 0). Consider a loop γ in Adm∗

2(ϕ) moving around this singular pair; for
example, γ(0) = γ(1) = (1/4,−ε), γ(1/4) = (1/4 − ε, ε), γ(1/2) = (1/4, ε), and
γ(3/4) = (1/4+ ε,−ε), with γ linear in Adm∗

2(ϕ) between these points. The 0th
order persistence diagram Dgm(ϕγ(t)) is shown for these values of t in Figure 5;
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in each case it has two proper cornerpoints, and this property is in fact true for
every t ∈ I. If the cornerpoints of Dgm(ϕγ(0)) are denoted p and q, we obtain
that cp(1) = q and cq(1) = p, cp and cq being respectively the functions tracking
the cornerpoints p and q.

Fig. 3. Function ϕ2 of Example 3. Depth is x, width is y

Fig. 4. Codomain of ϕ for Example 3. Full lines are birth or death points of 0-cycles;
dotted lines are r(m,b) for a few values in Adm2. The loop γ : I → Adm∗

2(ϕ) is also
shown.
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Fig. 5. Schematic of the evolution of the 0th order persistence diagram Dgm(ϕγ(t)) for
Example 3 as t goes from 0 to 1. Circle and cross denote the proper cornerpoints.
Persistence diagrams are not to scale, but respective positions of cornerpoints are
preserved. Similarly, path in (a, β)-space does not actually follow a geometric circle,
but is a simple closed curve.

4 Conclusions

In this paper we have shown that monodromy can appear in multidimensional
topological persistence, and illustrated how it can be managed by specifying the
paths to follow in the parameter space Admn of all admissible pairs. This new
phenomenon is expected to reveal itself important in shape comparison, opening
the way to the definition of new distances between persistence diagrams based
on the idea of matchings continuously dependent on the parameters m, b. The
next step in our research will be to study possible methods to construct these
new metrics and their application to problems in shape analysis.
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Abstract. Complex models can be simply described by notions such
as skeletons. These robust shape descriptors faithfully characterize the
geometry and the topology of an object. Several methods have been de-
veloped yet to obtain the skeleton from regular object representations
(e.g. 2D images or 3D volumes) but only a few attempt to extract the
skeleton from unstructured 3D mesh patches. In this article, we extract
a skeleton by topological thinning from vertex sets lying on arbitrary
triangulated surface meshes in 3D. The key idea comes down to eroding
a 2D set located on a discrete 2-manifold. The main difficulty is to trans-
pose the notion of neighborhood from the classical thinning algorithms
where the adjacency is constant (e.g. 26-adjacency in digital volumes, 8-
adjacency in 2D images) to the mesh domain where the neighborhood is
variable due to the adjacency of each vertex. Thus we propose a thinning
operator dedicated to irregular meshes in order to extract the skeleton
of a vertex set. To estimate the robustness of our technique, several tests
and an application to the feature line detection are presented as a case-
study.

Keywords: surface skeleton extraction, topological thinning, irregular
mesh.

1 Introduction

The skeleton is a robust shape descriptor faithfully characterizing the topology
and the geometry of an object. This notion is widely used for various appli-
cations such as video tracking [4], shape recognition [12], surface sketching [9],
and in many other scientific domains. Several techniques have been proposed
to extract the skeleton from binary 2D images [13], 3D closed meshes defin-
ing a volume [1], or 3D cubic grids [8]. However few have been dedicated to
the extraction of skeletons from a binary information located on an arbitrary
triangulated mesh. Rössl et al. [10] have presented a method in which some
mathematical morphology operators have been ported to triangulated meshes.
The main interest of this approach is to combine an efficient computation and
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a simple implementation. However, regarding the operator definitions and the
underlying algorithm, several drawbacks have been pointed out which mainly
lead to unexpectedly disconnected skeletons [7].

Contributions
In this article, we propose a novel method to extract the skeleton of unstruc-
tured mesh patches by a topological thinning process. To figure out the issues
of skeletonization of heterogeneous and arbitrary triangulated meshes, we ex-
tend the concepts introducted in [10]. The presented approach herein strictly
relies on the mesh connectivity to achieve the extraction of the final skeleton.
Therefore, for the sake of understanding, the basic method of Rössl et al. is de-
scribed in Section 2 with an assessment of its abilities and drawbacks. Section 3
details the proposed approach and introduces the additional definitions and the
novel algorithm. The results of our method including tests on irregular meshes
as well as on the performance of the algorithm are shown in Section 4. Finally,
an application to the feature line detection is presented in Section 5.

2 Basic Notions and Definitions

2.1 Position of the Problem

Let S be an arbitrary manifold surface represented by an unstructured mesh
patchM such asM = (V , E , T ). The sets V , E , and T correspond, respectively,
to the vertices, the edges, and the triangles composing M, the piecewise linear
approximation of S. The vertices are denoted by pi, with i ∈ [0;n[ and n = |V|
being the total number of vertices of M. The neighborhood N of a vertex pi is
then defined as following:

N (pi) = {qj | ∃ a pair (pi, qj) or (qj , pi) ∈ E}. (1)

In such a case, mi = |N (pi)| represents the total number of neighbors of pi.
Let now consider a binary attribute F on each vertex of V . The set R ⊆ V is

then written as follows:

∀pi ∈ R ⇐⇒ F (pi) = 1. (2)

The attribute F may be defined from beforehand process such as a manual selec-
tion, or a thresholding based on geometrical properties (triangle area, principal
curvatures, etc.). Then, an edge e = (p, q) belongs to R if and only if p, q ∈ R.
Similarly, a triangle t = (p, q, r) belongs to R if and only if p, q, r ∈ R.

The main objective is to finally develop a technique to extract the skeleton of
the set R by using a topological thinning based on the mesh connectivity.

2.2 The Existing Approach

The skeletonization algorithm introduced by Rössl et al. consists in an itera-
tive constraint thinning. This relies on a classification of each vertex of R. The
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authors proposed then three vertex types and c(pi), the complexity of the vertex
pi such as:

c(pi) =

mi−1∑
j=0

|F (qj)− F (qk)|, (3)

where k = j + 1 mod mi and qj , qk ∈ N (pi).

Definition 1. A vertex pi is considered as complex if and only if c(pi) ≥ 4.
The set of all complex vertices is named C.

A complex vertex pi thus potentially corresponds to a part of a skeleton branch
if c(pi) = 4, or a connection through several branches if c(pi) > 4.

Definition 2. A vertex pi is marked as center if and only if and N (pi) ⊆ R.
The set of all center vertices is named E.

Definition 3. A vertex pi is called disk if and only if ∃qj ∈ N (pi), qj ∈ E that
is a center. The set of all disk vertices is named D.

A disk vertex corresponds to a simple point: a point that does not modify the
expected skeleton topology if it is removed [3]. We denote X the complementary
of the set X in the region R.

Definition 4. The skeleton operator of R is defined as a constrained thinning:

skeletonize(R) = R \ (D ∩ C ∪ E). (4)

After applying the skeleton operator until idempotence on R, the set of the
remaining vertices, corresponding to the final skeleton, is called SkR. During
each pass, the skeleton operator removes the boundary disk vertices. Figure 1
illustrates the execution of the algorithm. After obtaining the skeleton SkR of
R, it is possible to remove the smallest branches. This last operation is called
pruning and defined as follows:

prune(SkR) = SkR \ C. (5)

This pruning step is shown by Figure 1 (d).

2.3 Result Assessment

Due to the simplicity of the used operators, the computational time of the Rössl
et al. method is very low, and the skeleton extraction is thus almost instan-
taneous on meshes composed of 50K triangles. However, the accuracy and the
continuity of the obtained skeleton deeply depends on the mesh configuration.
In other words, a same set R defined on two different triangulations of S could
lead to skeletons with two topologies drastically different. Moreover, the lack of
continuity also occurs in the case of particular configurations that are shown in
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Fig. 1. Illustration of the Rössl et al. algorithm. From left to right: (a) a set of vertices
R, (b) classification of R, (c) thinning until idempotence, and (d) resulting skeleton
after pruning.

Figure 2 because the removal of disk vertices can modify the topology of the
skeleton. Figure 3 illustrates the unexpected results and disconnections gene-
rated by the execution of the skeletonization. Once the vertices P1 and P2 are
removed (b), the skeleton becomes disconnected at this location (c). However,
some vertices would change to complex if a new classification step was applied.
This kind of vertices represents relevant points in a topological point of view
and thus, should not be deleted.

Another issue occurs since pruning is applied: the ending vertices of the skele-
ton are removed. As a matter of fact, when the set R contains no center and
no complex vertex, the pruning operator removes all the vertices. This case is
illustrated by Figure 4.

3 A Skeletonization Method for Any Arbitrary
Triangulated Mesh

Both a new definition of particular vertices and a new algorithm have been
elaborated to solve the disconnection issues previously raised up in Section 2.
These two key points of the approach we propose are successively presented
below.

3.1 Additional Definitions

The different classes of vertices proposed by Rössl et al. aim at describing the
topology of R. However, they are not sufficient as there are still vertices that
are unmarked and that are then not considered in the skeletonization. For this
reason, we introduce the outer class.
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Fig. 2. Example of unexpected results by applying the Rössl et al. method. From left
to right: (a) the set of feature points R, (b) classification of R, (c) skeletonization of
R, (d) resulting skeleton after pruning.

Definition 5. A vertex pi is marked as outer if and only if F (pi) = 1 and
pi /∈ (C∪D∪E). The set of outer vertices is named O and is defined as follows:

O = R \ (C ∪D ∪E) (6)

As it has been shown previously, a vertex may change from one class to another
and, as a side-effect, this may lead to potential disconnections during the skele-
tonization. To counteract this issue, we propose to define a priority between the
classes.

Definition 6. The disk class has a lower priority over the other classes.

If a vertex is already classified as disk, it can change to complex, center or outer
if necessary.

3.2 Algorithm

If the skeleton operator defined by Rössl et al. is directly applied to an unstruc-
tured patch, the final result may suffer from disconnections as some disk vertices
are deleted while they characterize the topology of the object. To correct this
issue, the algorithm we propose does not remove all the disk vertices but only
those that will not be converted to a different priority class after the operator
application. This requires to add an additional step in the algorithm: at each
application of the skeleton operator, the class of a vertex is recomputed before
its deletion. For example, if a disk vertex becomes a complex vertex, the vertex
is not removed.

However, the resulting skeleton may be too thick using this technique (e.g.
if it is composed of only outer vertices). For this reason, a final cleaning step
is added to obtain the expected skeleton. At this stage, the skeleton must be
composed of complex vertices (i.e. the skeleton branches or nodes) and outer
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Fig. 3. Execution of the skeletonization operator [10]: (a) vertex classification, (b)
execution of the algorithm, (c) final skeleton with a broken topology

Fig. 4. Example of a particular configuration: while the vertices of R are not classified,
they will be deleted by the pruning operator of Rössl et al.

vertices, the ending points of the branches with only one complex vertex in their
neighborhood. Thus, to obtain the final skeleton, a two steps process is applied:

– the outer vertices that have more than two neighbors belonging to R are
removed;

– the outer vertices with at most one neighbor belonging to R are kept.

Moreover, as for the skeleton operator, each vertex complexity change is checked
before removing this vertex. Examples of resulting skeletons are shown in Fi-
gure 6 and the impact of the algorithm modification with the update step is
presented in Figure 7: disk vertices are deleted (b) after checking their classes
(c). During the deletion of P1 and the update step, the class of P2 changes
from disk to complex and P4 from outer to complex. Thus, these vertices are
not removed and the extracted skeleton is fully connected and faithfully cha-
racterizes the topology of R (d). The complete method of skeleton extraction is
summarized by the algorithm presented on Figure 5.
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repeat

forall the vertices pi ∈ R do

if pi is a disk vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change then
delete pi

until idempotence

repeat

forall the vertices pi ∈ R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 2 then
delete pi

until idempotence

repeat

forall the vertices pi ∈ R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 1 then
delete pi

until idempotence

Fig. 5. Extraction of the skeleton

4 Results

Some results of skeleton extraction on meshes are presented in Figures 8, 9
and 10. The obtained skeletons describe the geometry and the topology of the
original set R. The used meshes are relatively homogeneous in Figure 8 while,
in Figures 9 and 10, the algorithm has been tested on irregular meshes to show
the robustness of the proposed approach to unstructured meshes. It may be
noticed that the resulting skeletons are the expected ones and reflect correctly
the topology and geometry of the original set R in a proper way.

Moreover, since the definitions and the operators used to extract the skeleton
are very simple, the computational time of the proposed approach is also very
low, even if an additional checking step has been added. It is possible to process
a mesh with 100K vertices in 1 second. The tests have been ran on an Intel Core
2 Duo 2.8 Ghz.

To complete the algorithm tests and to evaluate the robustness of the proposed
approach, an application dedicated to the feature line detection is presented in
the following section.
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Fig. 6. Illustration of the proposed approach: (a) region R, (b) vertex classification,
(c) execution of the thinning algorithm with update, (d) final skeleton fully connected

Fig. 7. Detailed view of the thinning process: (a) vertex classification, (b) execution of
the skeleton operator, (c) update of vertex classes after deletion, (d) final skeleton

Fig. 8. Application of the skeletonization algorithm on regular triangulated 3D meshes
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5 Application to the Feature Line Detection

The detection of features within 3D models is a crucial step in shape analysis. It
is possible to extract from the surface of an object simple shape descriptors such
as lines (drawn on the surface). Generally, the methods of feature line detection
focus on the estimation of differential quantities and the research of curvature

Fig. 9. Skeleton extraction on irregular 3D meshes

Fig. 10. Extraction of the skeletons on meshes with mixed and unstructured meshes
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Fig. 11. Algorithm of feature lines extraction: (a) curvature estimation, (b) definition
of the set R, (c) extraction of lines from R by the proposed thinning approach

Fig. 12. Comparison of results obtained from feature detection applied on Dinosaur
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extrema. However, these techniques are based on third-order differential pro-
perties and it leads to a common issue: they produce disconnected feature lines
because of flat and spherical areas and because of the noise present in data sets.
Thus, it is particularly difficult to generate intersections between feature lines.
To overcome these recurrent issues, we propose to apply our method to extract
salient lines of a model.

In order to define sets over triangulated 3D meshes, we use the algorithm
proposed by Kudelski et al. [6]. We compute the mean curvature H through a
local polynomial fitting in the least-squares sense [5]. The binary attribute F is
then defined at each vertex pi as follows:

Hpi > 0 =⇒ F (pi) = 1. (7)

Finally, the objective is to thin the set, corresponding to potential feature parts
of the mesh, in order to obtain lines describing the geometry and the topology
of the object.

Figure 11 illustrates the process of feature line detection. The obtained charac-
teristic lines are fully connected and describe accurately the topology of the sets.
Then, due to the use of second-order differential properties (i.e., the mean cur-
vatures), the feature extraction is more robust. Moreover, this type of approach
allows to generate intersections between feature lines which it is not possible
with classical approaches (Figure 12).

6 Conclusion

In this article, we have proposed an efficient and general new algorithm to ex-
tract in a robust way the skeleton of a set R defined on a triangulated mesh
by topological thinning. This approach relies on the definitions presented by
Rössl et al. [10]. However, the latter generates, for some mesh configurations,
unexpected skeletons that are generally more disconnected than they should. To
overcome this issue, an additional definition of vertex categories has been added.
Then, we have improved the thinning process by integrating a priority between
vertex classes. Tests have been applied on different categories of meshes (homoge-
neous and heterogeneous) and set configurations. These tests and the application
of feature line extraction, presented in the end, illustrate the efficiency of the
approach.

As future work, a formal proof based on [2] and issued from the notion of
simple vertices (by analogy to simple points) may need to be considered. Indeed,
the Rössl et al. article does not include formal validations because the vertices
classification is incomplete. With the changes we have made, the disk vertices
truly correspond to simple points lying on a discrete 2-manifold. Thus it will
be possible to transpose the notion of geodesic neighborhood in order to define
topological numbers associated with simple vertices.

A second prospect is related to the position of the skeleton nodes. They may
be still discussed and further works have to be dedicated to this subject. In-
deed, the defined operators do not integrate any geometrical information and
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the extraction of the skeleton only relies on a one-ring neighborhood. However,
as the position of the skeleton is generally easier to correct than the topology,
post-processing steps could be envisaged to optimize the skeleton position. A
possible improvement of our method will be to refine the node placement by
energy minimization during the extraction to evolve like active contours. In this
way, the resulting skeleton will describe in a better way both the topology and
the geometry of the set lying on the mesh.
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1 Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69621, France
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Abstract. In many geometry processing applications, the estimation of
differential geometric quantities such as curvature or normal vector field
is an essential step. In this paper, we investigate a new class of estimators
on digital shape boundaries based on Integral Invariants. More precisely,
we provide both proofs of multigrid convergence of curvature estimators
and a complete experimental evaluation of their performances.

Keywords: Digital geometry, curvature estimation, multigrid conver-
gence, integral invariants.

1 Introduction

In many shape processing applications, differential quantities estimation on the
shape boundary is usually an important tool. When evaluating a differential es-
timator on discrete or digital data, we need a way to mathematically link the
estimated quantity to the expect Euclidean one. In Digital Geometry, we usually
consider multigrid convergence principles: when the shape is digitized on a grid
with resolution tending to zero, the estimated quantity should converge to the
expected one [4]. Hence, in dimension 2, parameter free convergence results have
been obtained for length [3] and normal vector estimation [20]. Based either on
binomial convolution principles [15,5], or polynomial fitting [18], convergence
results can also be obtained for higher order derivatives of digital curves. Algo-
rithms are parametrized by the size of the convolution or fitting kernel support
and convergence theorem holds when such support size is an increasing function
of the grid resolution and some shape characteristics. For curvature estimation
along 2D curves, multigrid convergence of parameter free estimator is still chal-
lenging, although accurate experimental results have been obtained [19]. In 3D,
several empirical methods exist for estimating curvatures, but none achieves
multigrid convergence (e.g. see [6]).

In geometry processing, interesting mathematical tools have been developed
to design differential estimators on smooth surfaces based on integral invariants
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[17,16]. They consist in moving a kernel along the shape surface and in com-
puting integrals on the intersection between the shape and the kernel. Authors
have demonstrated that some integral quantities provide interesting curvature
information when the kernel size tends to zero.

The contributions of the paper can be sketched as follows. First, we define
digital versions of integral invariant estimators for which convergence results
can be obtained when the grid resolution tends to zero. We provide an explicit
formula for the kernel size, which guarantees uniform convergence for smooth
enough curves (Sect. 3). Furthermore, we demonstrate that these estimators have
efficient implementations and that they compete with classical ones in terms of
accuracy (Sect. 4). We also illustrate the strength of the framework to design
mean and Gaussian curvature estimators on surfaces in Z3.

2 Preliminaries

2.1 Shapes, Digital Shapes and Multigrid Convergence

Since we are interested in evaluating both theoretically and experimentally the
behavior of a given differential estimator on digital object boundaries, we first
have to formalize links between Euclidean objects and digital ones with the help
of a digitization process. Let us consider a family X of smooth and compact
subsets of Rd. In Section 3 we will be more precise on the notion of smoothness
for shapesX ∈ X. We denote Dh(X) the digitization ofX in a d−dimensional grid
of resolution h. More precisely, we consider classical Gauss digitization defined
as

Dh(X)
def
=

(
1

h
·X

)
∩ Zd (1)

where 1
h · X is the uniform scaling of X by factor 1

h . Furthermore, the set ∂X
denotes the frontier of X (i.e. its topological boundary). If z ∈ Zd, then Qz

denotes the unit d-dimensional cube of Rd centered on z. The h-frontier ΔhZ

of a digital set Z ⊂ Zd is defined as ΔhZ
def
= ∂(h · ∪z∈ZQz). Therefore, the

h-frontier of Dh(X) is a d−1-dimensional subset of Rd, which is close to ∂X . We
will precise the term “close” later in this subsection. Since this paper deals with
multigrid convergence, digital shapes will always come from the digitization of
continuous shapes. To simplify notations, the h-frontier of the Gauss digitization

at step h of a shape X will simply be denoted by ∂hX
def
= ΔhDh(X), and called

later on h-boundary of X .
As discussed in various previous works, the idea of multigrid convergence is

that when we define a quantity estimator on Dh(X), we check if the estimated
quantity converges (theoretically and/or experimentally) to the associated one
on X when h tends to zero. In this paper, we focus on local and global estimated
quantities. More formally,

Definition 1 (Multigrid convergence for local geometric quantities). A
local discrete geometric estimator Ê of some geometric quantity E is multigrid
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convergent for the family X if and only if, for any X ∈ X, there exists a grid
step hX > 0 such that the estimate Ê(Dh(X), x̂, h) is defined for all x̂ ∈ ∂hX
with 0 < h < hX , and for any x ∈ ∂X,

∀x̂ ∈ ∂hX with ‖x̂− x‖∞ ≤ h, |Ê(Dh(X), x̂, h)− E(X, x)| ≤ τX,x(h), (2)

where τX,x : R+ \ {0} → R+ has null limit at 0. This function defines the speed

of convergence of Ê toward E at point x of X. The convergence is uniform for X
when every τX,x is bounded from above by a function τX independent of x ∈ ∂X
with null limit at 0.

When a geometrical quantity is global (e.g. area or volume), we do not need
explicit mapping between ∂X and ∂hX , and Def. 1 can be rephrased to define
multigrid convergence of global geometric quantities [4]. A local discrete estima-
tor thus estimates a geometric quantity at points on the h-frontier of a digital
set, otherwise said at any point on the interpixel representation of the digital
set boundary. This definition encompasses usual definitions where input points
are pointels, linels or surfels. In some proofs, a more precise mapping between
points x ∈ ∂X and x̂ ∈ ∂hX is required. For a 2D shape X with bounded curva-
ture κmax along its boundary, this mapping is the back-projection map (cf Fig.
1-(right)). Let n(X, x, l) be the straight segment, centered on x, aligned with
the normal vector at x along ∂X , and of half-length l.

Definition 2 (Back-projectionπX
h [12]).For 0 < h ≤ 1/κmax, letπ

X
h : ∂hX →

∂X, x̂ �→ x = πX
h (x̂), where x is the only point such that x̂ ∈ n(X, x,

√
2
2 h).

Lemma B.9 [12] indicates that the map πX
h is well-defined and onto. Lemma

B.10 further tells that this map is continuous. It shows that the boundaries ∂hX

and ∂X are indeed close, since their Hausdorff distance is no greater than
√
2
2 h.

2.2 Integral Invariants Theory

In Geometry Processing, integral invariants have been widely investigated to con-
struct estimators of differential quantities (see [17,16] for a complete overview).
For short, the main idea is to move a kernel on points x ∈ ∂X and to compute
integrals on the intersection between X and the kernel. Even if different kernels
(Euclidean ball, Euclidean sphere,. . . ) and different integration functions can be
considered, we focus here on volumetric integral invariants defined as follows:

Definition 3. Given X ∈ X and a radius r ∈ R+∗, the volumetric integral Vr(x)
at x ∈ ∂X is given by (see Fig. 1−(left))

Vr(x)
def
=

∫
Br(x)

χ(p)dp , (3)

where Br(x) is the Euclidean ball with radius r and center x and χ(p) the char-
acteristic function of X. In dimension 2, we simply denote Ar(x) such quantity.
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x

Br(x)

X

x

∂X

x

∂hX

x̂

πX
h (x̂)

h

Fig. 1. Integral invariant computation (left) and notations (right) in dimension 2

Several authors have detailed connections between Vr(x) and curvature (resp.
mean curvature) at x for shapes in R2 (resp. R3) [2,17,16].

Lemma 1 ([16]). For a sufficiently smooth shape X in R2 x ∈ ∂X, we have

Ar(x) =
π

2
r2 − κ(X, x)

3
r3 +O(r4) (4)

where κ(X, x) is the curvature of ∂X at x. For a sufficiently smooth shape X in
R3 and x ∈ ∂X, we have

Vr(x) =
2π

3
r3 − πH(X, x)

4
r4 +O(r5) (5)

where H(X, x) is the mean curvature of ∂X at x.

Such results are obtained by Taylor expansion at x of the surface ∂X approx-
imated by a parametric function y = f(x) in 2D and z = f(x, y) in 3D. From
Eq. (4) and (5) and with a fixed radius r, one can derive local estimators κ̃r(x)
and H̃r(x) respectively:

κ̃r(X, x)
def
=

3π

2r
− 3Ar(x)

r3
, H̃r(X, x)

def
=

8

3r
− 4Vr(x)

πr4
(6)

In this way, when r tends to zero, both estimated values will converge to expected
ones (respectively κ and H). More formally:

κ̃r(X, x) = κ(X, x) +O(r), H̃r(X, x) = H(X, x) +O(r) (7)

We mention additional results which allows us to access to directional informa-
tion such as principal curvature directions. Instead of computing the measure of
Br(x) ∩X as in Def. 3, we consider its covariance matrix. In [17], authors have
demonstrated that eigenvalues and eigenvectors of the covariance matrix provide
principal curvature and principal direction information. We do not detail this
approach here but we give preliminary results on digital curvature estimators
based on this fact in Sect. 4.
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When dealing with digital shapes Dh(X), implementation of these estimators
becomes straightforward: choose a radius r, center a Euclidean (or digital) ball at
chosen points of ∂hX (e.g. centroids of linels or surfels), compute the intersection
in terms of number of pixels/voxels and finally estimate κ̃ and H̃ using (6).
However, several issues are hidden in this approach: What are meaningful values
for r according to the shape size and geometry ? Do points of ∂hX converge to
points x ∈ ∂X for which Lemma 1 is valid ? Does counting the number of pixels
(resp. voxels) converge to Ar(x) (resp. Vr(x)) ? The rest of the paper addresses
all these questions.

3 Multigrid Convergence of Curvature Estimator in
Digital Space

We first recall multigrid convergence theorems for area and volume estimation
by counting which will be useful to design digital version of integral invariants.
A new digital curvature estimator κ̂r is then defined (Eq. (11)) and its multigrid
convergent properties are established (Theorems 1 and 2).

3.1 Area or Volume Estimation by Counting

Area in the plane and volume in the space can be estimated by counting the
number of digital points belonging to the shape. Given digital shapes Z ⊂ Z2

and Z ′ ⊂ Z3, the discrete area and volume estimators by counting at step h

are defined as Ârea(Z, h)
def
= h2Card(Z) and V̂ol(Z ′, h)

def
= h3Card(Z ′). Now, if

those digital shapes Z and Z ′ come from digitizations of Euclidean shapes X
and X ′, then as the digitization step h gets finer, these estimators give better
and better estimation of the area of X and of the volume of X ′ respectively. We
have the following convergence results, letting X be a finite convex shape of R2

and X ′ defined similarly in R3:

Ârea(Dh(X), h) = Area(X) +O(hβ), V̂ol(Dh(X
′), h) = Vol(X ′) + O(hγ), (8)

where β = 1 in the general case (known since Gauss and Dirichlet according to
[10]) and may be improved to 15

11 − ε, ε > 0 arbitrary small, when the shape
boundary is C3 with non-zero curvature [8]. Similar results hold in 3D, γ = 1 is
the general case (e.g. see [11]) while γ = 243

158 for smoother boundary [7]. In fact,
preceding equations hold whenever the shape boundary can be decomposed in
a finite number of convex pieces [9].

3.2 Estimation of Integral Invariants

We are mainly concerned by the estimation of the quantityAr(x) = Area(Br(x)∩
X) of Def. 3 at a step h. We cannot readily use Eq. (8) to estimate this area: in
this case, the big “O” notation hides the fact that the involved constant depend
on the shape size, scale and maximal curvature. It is obvious that doubling the
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size of X will induce a better estimate of the area of 2 · X at the same scale
h. This is a problem with integral invariants, since the involved balls have a
radius r which tends toward 0 as h tends toward 0. We need to normalize our
area estimation so that the error is no more influenced by the scale. Hence we
estimate the area Ar(x) as follows:

Ârea(Dh(Br(x) ∩X), h)
def
= h2Card((

1

h
· (Br(x) ∩X)) ∩ Z2),

= h2Card((
r

h
· (B1(

1

r
· x) ∩ 1

r
·X)) ∩ Z2),

= r2
h2

r2
Card((

r

h
· (B1(

1

r
· x) ∩ 1

r
·X)) ∩ Z2),

= r2Ârea(Dh/r(B1(
1

r
· x) ∩ 1

r
·X), h/r),

by definitions of Ârea and D. We insert (8) in the right handside term:

Ârea(Dh(Br(x) ∩X), h) = r2
(
Area(B1(

1

r
· x) ∩ 1

r
·X) +O((h/r)β)

)
. (9)

Let SB(r) denotes the set B1(
1
r · x) ∩

1
r · X . The constant K1 associated to

the big “O” depends only of the maximal curvature of ∂SB(r). The curvature
is not defined on the subset ∂B1(

1
r · x) ∩

1
r · ∂X , but its influence on the area

estimation is negligible (at most O(h2)). The remaining part of ∂SB(r) has a
maximal curvature which is obviously 1 for sufficiently small r. Indeed, since
X has bounded curvature, its dilated 1

r · ∂X becomes flat at point 1
r · x, the

maximal curvature value 1 is thus induced by ∂B1(x). We conclude that there
exists some r0 such that the constant K1 holds for arbitrary r < r0. Developping
the big “O” with K1 and inserting in (9) the straightforward relation Ar(x) =
Area(Br(x) ∩X) = r2Area(B1(

1
r · x) ∩

1
r ·X), we finally obtain:

|Ârea(Dh(Br(x) ∩X), h)−Ar(x)| ≤ K1h
βr2−β . (10)

The preceding convergence relation holds for h ≤ r ≤ r0, and is also valid when
x is any point of R2, not necessarily a point of ∂X . Note that the constant K1

is independent of the shape X (but not r0).
The same reasoning is valid in 3D: The curvature is then not defined on the

subset ∂B1(
1
r · x) ∩

1
r · ∂X , which tends toward the unit circle as r → 0. The

induced error on volume estimation is then the number of intersected voxels
(≈ 2π/h) times the volume of a voxel (h3), and is hence negligible. Maximal
curvatures are obviously 1 for sufficiently small r. The same relation as (10)

holds for V̂ol, where β is replaced by γ.

3.3 Digital Curvature Estimator

In a similar spirit to (6), we define the integral digital curvature estimator κ̂r of
a digital shape Z at point x ∈ R2 and step h as:

∀0 < h < r, κ̂r(Z, x, h)
def
=

3π

2r
−

3Ârea(Br/h(
1
h · x) ∩ Z, h)

r3
. (11)
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To establish its multigrid convergence when Z is the digitization of some subset
X of R2, we proceed in two phases, depending on whether or not we know the
exact position of point x on ∂X or only an approximation x̂ on ∂hX .

Convergence When x ∈ ∂X. Using relations on integral invariants (6), (10),
and relation Dh(Br(x) ∩X) = Br/h(

1
h · x) ∩ Dh(X), we obtain for r < r0:

|κ̂r(Dh(X), x, h)− κ(X, x)| =
∣∣∣∣∣3π2r − 3Ârea(Br/h(

1
h · x) ∩ Dh(X), h)

r3
− κ(X, x)

∣∣∣∣∣ ,

|κ̂r(Dh(X), x, h)− κ(X, x)| ≤
∣∣∣∣3π2r − 3Area(Br(x) ∩X)

r3
− κ(X, x)

∣∣∣∣+ 3K1
hβ

r1+β

≤ |κ̃r(X, x)− κ(X, x)|+ 3K1
hβ

r1+β
,

≤ O(r) + 3K1
hβ

r1+β
, (using Eq. (7)). (12)

There are two error terms, both of which depends on the choice of the ball radius
r. We propose to set r = khα, and to choose k and α so as to minimize the error
bound. Denoting by K2 the constant in the big “O”, we derive:

|κ̂r(Dh(X), x, h)− κ(X, x)| ≤ K2kh
α +

3K1

k1+β
hβ−α(1+β). (13)

Since one error term in (13) increases with α while the other decreases with α, the
minimum is achieved when the exponents are the same (solve α = β−α(1+β)).
The constant k is then obtained by studying its variation at the optimal α. We
obtain the convergence theorem below.

Theorem 1 (Convergence of digital curvature estimator κ̂r along ∂X).
Let X be some convex shape of R2, with at least C2-boundary and bounded cur-
vature. Then ∃h0,K1,K2, such that

∀h < h0, r = kmhαm , |κ̂r(Dh(X), x, h)− κ(X, x)| ≤ Khαm , (14)

where αm = β
2+β , km = ((1 + β)K1/K2)

1
2+β ,K = K2km + 3K1/k

1+β
m . When the

boundary of X is C3 without null curvature points, the exponent αm = 15
37 − ε ≈

0.405, otherwise αm = 1
3 .

Convergence for x̂ ∈ ∂hX. Unfortunately, the exact position of x is unknown
in digital geometry applications. We only know some digital point x̂ ∈ ∂hX ,
which is close to some point x ∈ ∂X . More precisely, the back-projection is used
to determine x as πX

h (x̂). Integral invariants are not directly applicable since
estimator κ̂r at x̂ is then related to Ar(x̂), where x̂ does not generally lie onto
∂X . We have to determine the error between the area measure at x̂ and at x.
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Notice first that point x̂ lies on the normal direction to ∂X at x, at a distance

δ
def
= ‖x−x̂‖2. In 3D, we could use Theorem 7 of [17]. In 2D, we achieve similarly:

|Ar(x̂)−Ar(x)| = 2rδ(1 +O(r2) +O(δ)). (15)

We write (10) at point x̂ (recall that Ar(y) = Br(y) ∩X) and insert (15):

|Ârea(Dh(Br(x̂) ∩X), h)−Ar(x̂)| ≤ K1h
βr2−β , which implies

|Ârea(Dh(Br(x̂) ∩X), h)−Ar(x)| ≤ K1h
βr2−β + 2rδ(1 +O(r2) +O(δ)).(16)

In order to get the curvature estimator, we follow the same reasoning as in (12)
but we use (16) instead of (10), which gives:

|κ̂r(Dh(X), x̂, h)− κ(X, x)| ≤ O(r) + 3K1
hβ

r1+β
+

6δ

r2
(1 +O(r2) +O(δ)).(17)

We know that δ ≤
√
2
2 h (see above). In fact, in some cases (see [13]), we can hope

to get a better localization of x wrt x̂. Therefore we write δ = O(hα′
), where

α′ ≥ 1. We rewrite (17) to obtain an error bound depending only on h by setting
r = khα:

|κ̂r(Dh(X), x̂, h)− κ(X, x)| ≤O(hα) +O(hβ−α(1+β))

+O(hα′−2α) +O(hα′
) +O(h2α′−2α).

(18)

We follow the same idea as for (13) to find the best possible parameter α. The
difference is that the optimal αm depends not only on β but also on α′. Simple
computations give αm = β

1+β if α′ ≥ 3β
1+β , otherwise αm = α′

3 . If point x̂ is

taken on the digital boundary ∂hX , then α′ = 1 from the relation δ ≤
√
2
2 h (see

above). We obtain then the convergence theorem below.

Theorem 2 (Uniform convergence of curvature estimator κ̂r along ∂hX).
Let X be some convex shape of R2, with at least C3-boundary and bounded curva-
ture. Then, ∃h0 ∈ R+, for any h ≤ h0, setting r = kh

1
3 , we have

∀x ∈ ∂X, ∀x̂ ∈ ∂hX, ‖x̂− x‖∞ ≤ h⇒ |κ̂r(Dh(X), x̂, h)− κ(X, x)| ≤ Kh
1
3 .

Proof. Let x̂ ∈ ∂hX and set x0 = πX
h (x̂). We know that δ = ‖x̂− x0‖2 ≤

√
2
2 h.

Thus α′ = 1 and αm = 1
3 . Then (18) becomes:

|κ̂r(Dh(X), x̂, h)− κ(X, x0)| ≤ O(h
1
3 ). (19)

with r = kh
1
3 , k is an arbitrary positive constant, and r < r0 (constant that

depends on X). This implies h < h1
def
= (r0/k)

3. Let x ∈ ∂X with ‖x̂−x‖∞ ≤ h.

Since ‖x̂− x0‖2 ≤
√
2
2 h =⇒ ‖x̂− x0‖∞ ≤

√
2
2 h < h, we conclude that x and x0

are under the same closed square Q of edge length 2h centered on x̂. It is proven
that for sufficiently regular shapes (called par(R)-regular shapes in [14], R is the
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inverse of the maximal curvature) there exists a gridstep h2 =
√
10
5 R below which

the boundary of the shape digitization has same topology as the shape boundary
([12], Theorem B.5). Furthermore, these two boundaries are very close (Hausdorff
distance is below h). For h < R/2 < h2, since Q ∩ ∂hX is connected, Q ∩ ∂X
is connected. Hence x and x0 both belongs to the same piece of Q ∩ ∂X , whose
length is upper bounded by πh. Since the boundary is C3 the curvature may
only vary between x and x0 by some O(πh). Hence |κ(X, x)−κ(X, x0)| ≤ O(h).
Inserting the previous relation in (19) and observing that O(h) is negligible

against O(h
1
3 ) allow us to conclude for h < h0

def
= min(h1, R/2). ��

Mean and Gaussian Curvature in 3D. For the mean curvature, we may
follow the same principles as above, using (6) and (7), and inserting the vol-

ume estimator V̂ol into the formulas. Since (10) holds for V̂ol (if γ replaces β),
we derive the uniform convergence for the the integral digital mean curvature
estimator Ĥr of a digital shape Z ′ ⊂ Z3 at point x ∈ R3 and step h as:

∀0 < h < r, Ĥr(Z
′, x, h)

def
=

8

3r
−

4V̂ol(Br/h(
1
h · x) ∩ Z ′, h)

πr4
. (20)

If X has C2-boundary and bounded curvatures, the uniform convergence of Ĥr

towards Hr is achieved along ∂X for r = K ′h1/3, with a speed of convergence of
O(h1/3). To be valid along ∂hX , it is required to prove that the back-projection
has the same properties in 3D as in 2D. This is not developed here for space rea-
sons. Similarly, an integral digital Gaussian curvature estimator can be obtained
by digital approximation of the covariance matrices of X ∩Br(x). Convergence
results rely on the fact that digital moments converge in the same manner as
volumes [10].

4 Experimental Evaluation

We present an experimental evaluation of curvature estimators in 2D and 3D.
We have implemented these Integeral Invariant estimators (II) in the DGtal

library [1] which allows us to have parametric or implicit shape construction in
dimension 2 and 3 for multigrid evaluation. Furthermore, it allows comparison
with former approaches available in DGtal: Most-centered Digital Circular Arc
(MDCA) [19] and Binomial based convolution [5].

As described in Sect. 2, brute-force implementation is trivial. We first need to
construct a kernel from a Euclidean ball in dD with radius given by r = kmhαm

as described in theorem statements. Then, we track the digital object boundary,
center the kernel on each surface elements and compute the volume intersection
between the kernel and the object. Using this approach, we obtain a computa-
tional cost in O((r/h)d) per surface element (i.e. the size of the kernel digitization
with grid-step h). However, we can take benefit from digital surface structure to
considerably speed-up this algorithm: if we consider a surface tracker for which
surface elements are processed by proximity (the current surface element is a
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neighbor of the previous one through a translation vector δ), the area/volume
computation can be done incrementally since they are countable additive:

Ârea(Dh(X) ∩Br(x+ δ), h) = Ârea(Dh(X) ∩Br(x), h)

+Ârea(Dh(X) ∩ (Br(x+δ) \Br(x)), h)−Ârea(Dh(X) ∩ (Br(x) \Br(x+δ)), h).

If we precompute all kernels Dh(Br(0±δ)\Br(0)) for some δ displacements (based
on surface element umbrella configurations, 8 in 2D and 26 in 3D for ‖δ‖∞ =
h), the computational cost per surface element can be reduced to O((r/h)d−1).
Finally, the first surfel has to be computed using kernelBr(x̂) and the subsequent
neighboring surfels are processed using sub-kernels Dh(Br(0 ± δ) \Br(0)).

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

L ο
ο

er
ro

r

h

α=1/2
α=2/5
α=1/3
α=2/7
α=1/4

0.1

1

10

0.0001 0.001 0.01 0.1 1

L ο
ο

er
ro

r

h

α=1/2
α=2/5
α=1/3
α=2/7
α=1/4

Fig. 2. Comparison of hα on an ellipse (left) and on the accelerated flower (right)

As discussed in the previous section, we first validate the experimental multi-
grid convergence for various αm parameters. Fig. 2 gives results for two 2D
shapes: error is given by the l∞ distance to the true expected values in order
to match with theorem settings. For multigrid ellipses (Fig. 2, left) which cor-
responds to theorem hypothesis (convex C3 shape), we observe convergence for
several αm values. However, as suggested by Theorem 2, αm = 1

3 provides better
worst-case errors. Furthermore, note that for αm = 1

3 , the behavior of the l∞
error is experimentally in O(h

1
3 ) as suggested by the theorem. For non-convex

accelerated flower shape (Fig. 2, right), we still observe the convergence but val-
ues αm higher than 1

3 (and thus larger digital kernel size) seem to lead to lower
error values. Further analysis should be done to clearly understand this fact.

In Fig. 3, we compare the proposed 2D curvature estimator (II with αm = 1
3 )

with binomial convolution and MDCA estimator for the l∞ error metric. In these
noise-free object, MDCA performs better than II or Binomial. However, since II
and Binomial are based on integration, we may expect better results on noisy ob-
jects. Note that in our experiments, observed convergence speeds on ellipses are:
O(h0.154) for binomial, O(h0.42) for MDCA, and O(h0.38) for II using least square
linear fitting. The first one differs from theoretical results of [5]. In both graphs,
we had to stop the computations for Binomial and MDCA for the following rea-
sons: for our implementation of Binomial, the mask size was too large for small h
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values which induces memory usage issues. For MDCA, circular arc recognition in
DGtal is driven by a geometrical predicate based on a determinant computation
of squared point coordinates. Hence, small h values lead to numerical capacity
issues and thus instability (which could be solved considering arbitrary precision
integer numbers but would lead to efficiency issues). The proposed integral invari-
ant estimator does not suffer from these two kind of issues. Fig. 4, right, details
timings for the 2D accelerated flower and for the 3D blobby cube (see below). We
have performed the same analysis in 3D for the mean curvature: evaluation of αm

parameters (Fig. 4, left) on a blobby cube1. Concerning the literature and as far
as we know, no estimators target multigrid convergence. We have compared with
fixed neighborhood convolution as described in [6].

Finally, Fig. 5 illustrates mean and Gaussian curvature estimation in 3D
(based on covariance matrix of the intersection between the kernel and the shape)
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Fig. 3. Comparison of L∞ error with Binomial [5] and MDCA [19] on multigrid ellipses
(left) and accelerated flower (right)
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1 Implicit surface is 81x4 + 81y4 + 81z4 − 45x2 − 45y2 − 45z2 − 6 = 0.
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Fig. 5. Illustration of curvature estimation on a 3D blobby cube. From left to right:
mean curvature and Gaussian curvature mapping (h = 0.02, highest is yellow, lowest is
blue, red is in-between, furthermore we have set to black zero curvature surfels), first
and second principal curvature directions.

and principal curvature directions (eigenvectors of the covariance matrix). Con-
cerning mean curvature, setting αm = 1

3 leads to an experimental convergence

speed in O(h0.52) for the blobby cube, which means either that h
1
3 is not a tight

upper bound or that tested parameters h are not small enough and far from the
asymptotic behavior (note that for the finest experiment h = 0.0247, the object
surface contains 1277288 elements).

5 Conclusion

In this paper, we have used integral invariant results from differential geometry
to design simple and efficient digital curvature estimator in dimension 2 and 3.
Digital Geometry is a perfect domain for such differential tools: volume/area
computations are digital by nature, interesting connections to fundamental re-
sults on Gauss digitization exist, fast computations induced by the specific geom-
etry of digital surfaces. Concerning the 2D curvature estimator, its theoretical
convergence speed in O(h

1
3 ) on C3 contours is comparable to state-of-the-art

methods (O(h
4
9 ) for [5] and O(h

1
3 ) for [18]). Evaluation confirms this bound and

has demonstrated efficient algorithm in practice with low computational costs.
We have also demonstrated that such integral invariants lead to digital mean and
Gaussian curvature estimators in 3D. A convergence result for mean curvature
has been established and similar results for principal and Gaussian curvatures
are expected. Moreover, convergence speed is obtained with a weak constraint
on the distance between x̂ and x (which just needs to be lower that h for the l∞
metric). Using specific projection as discussed in [12], better convergence speed
is expected at least for dimension 2.
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Abstract. Assume that a simplified liver model consists of some vein
cells and liver cells. Such a liver model contains two kinds of components,
the vein component and the liver components, each of them consists
of cells which are 26-connected. The vein component has a tree-shape
topology. Suppose that the vein component has already been cut into
two parts, and one of them is diseased. Liver surgery planning systems
need to design an algorithm to decompose the liver components into two
kinds of subsets, one (usually just one component) that has been affected
by the diseased vein component while the other one is still healthy. So
far, existing algorithms depend heavily on surgeons’ personal expertise to
detect the diseased liver component which needs to be removed. We pro-
pose an efficient algorithm for computing the diseased liver component
which is based on the diseased vein component, and not on surgeons’
personal manipulations.

1 Introduction and Related Work

In 2000 it was estimated that liver cancer remains the fifth most common malig-
nancy in men and the eighth in women worldwide, and the number of new cases
is 564,000 per year [1]. Liver resection is an often cure for primary liver cancer.
The literature reports many liver resection surgical techniques. For example, see
[7,10].

Existing liver surgery planning usually requires surgeons’ personal expertise
to interact during surgery. For example, the planning stage proposed in [10]
needs branch labelling which is the most time-consuming step in the planning
procedure and usually involves some trial and error on the user’s part. Mint
Liver, a novel 3D image analysis software for liver resection, has to be used by
experienced hepatic surgeons for designing the new transection plan. The preop-
erative planning in [13] calculates the vascular perfusion area using an algorithm
based on direction and diameter of the portal vein branch. Reference [8] proposes
a probabilistic atlas for liver surgery planning, and [3] discusses a deformable
cutting plane for virtual resection where 3D interaction techniques are used to

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 228–240, 2013.
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specify and to modify the clip geometry by medical doctors. The system of [5]
relies on the surgeon’s capacity to perform a mental alignment between the re-
section map and the operating field. The squared Euclidean distance transform
was applied in [12] for approximately computing the liver part which should be
removed.

In this paper, we apply basic ideas of digital geometry [4] to propose an
algorithm for computing the diseased part of a liver. Our algorithm is both
time-efficient1 and “accurate”. The problem to be solved is as follows: Let Sl

be the set of cells in the given 3D input image classified to be liver cells. Set
Sh contains all cells classified to be healthy vein cells. Set Sd contains all the
detected diseased vein cells. We have to calculate that part of the liver which is
affected by diseased vein cells.

The accurate solution for this problem is defined by the maximum subset
A ⊆ Sl such that A “is affected” (still to be defined) by the set Sd of diseased
cells. This is an optimization problem. It is solved in this paper by computing
exactly three sets Sab

, Sah
, and Sad

such that Sl = Sab
∪Sah

∪Sad
where Sab

is
“affected” by both Sh and Sd, and Sai is “affected” by Si only, for i = d, h.

Existing algorithms compute only approximately the liver part which should
be removed; so far there is no exact specification of the part which should be
removed. Sab

can be understood as being a set of boundary cells “between”
healthy liver cells and the diseased vein cells. Sab

∪ Sad
is finally the set of all

liver cells which should be removed.
The paper is structured as follows: In Section 2 we define some notions and

notations which are used in our algorithms. In Section 3 we describe and explain
the algorithms whose time complexities are analysed in Section 4. We show some
experimental results in Section 5 and conclude the paper in Section 6.

2 Basics

Image data are given in a regular 3D grid of grid constant θ0 > 0. We only
consider finite sets in this paper. We identify a (grid) cell with its centroid,
which is a grid point. In this section we discuss the 2D case (i.e. one slice of the
3D data) only; generalization to 3D is straightforward. We also consider a multi-
grid approach by varying the given grid constant. Let θ > 0 be an arbitrary
grid constant. Let de(p, q) be the Euclidean distance between two points p and
q in the plane (e.g. centroids of cells). Given two sets A and B in the plane,
define dmin(A,B) = min{de(p, q) : p ∈ A ∧ q ∈ B}. In particular, dmin(A,B) is
denoted by dmin(p,B) if A contains only a single point p. Define dmax(A,B) =
max{de(p, q) : p ∈ A ∧ q ∈ B}.

We consider healthy vein cells (type-h), diseased vein cells (type-d), and liver
cells (type-l), each cell being one voxel. Considering the 2D case only in this
section, a cell is a pixel. Let Si be the set of type-i cells, for i = d, h, l. Let S be

1 For example, [10] reports about an average labelling time of about 17 minutes,
depending on the data set.
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Fig. 1. Left: A set S of labelled cells for original grid constant θ0, with h for type-h,
d for type-d, and l for type-l. Right: Cells for grid constant θ = θ0 × 3.

the union of those three sets. See Fig. 1 on the left. Cells can be uniquely either
of type-d, type-h, type-l, or of no assigned type at all (i.e. background cells).

Thus, the three types define sets Sd, Sh, and Sl of cells in the plane which
are pairwise disjoint. We say that set Sl is only affected by Sh if for each pixel
pl ∈ Sl, dmin(pl, Sh) < dmin(pl, Sd); analogously, we can also have that set Sl

is only affected by Sd. We say that Sl is affected by both Sh and Sd if for each
pixel pl ∈ Sl, dmin(pl, Sh) = dmin(pl, Sd).

Let Ω be the rectangle of minimum size which contains all the cells of size
θ0× θ0 of the given set S. For a positive integer m, let θ = θ0 ·m. We analyse Ω
by using grid constant θ. See Fig. 1, right, for an example. Set Ω is subdivided
into larger θ× θ cells (supercells) which contain several θ0× θ0 cells. Case m = 1
is possible and defines the original constant θ0.

At constant θ, set S can be described by an (undirected weighted) θ-graph
G = [V,E] based on 8-adjacency. Each vertex in V corresponds to one θ× θ cell
which contains at least one of the labelled θ0 × θ0 cells of set S. Two vertices
v1 and v2 in V define an edge e = {v1, v2} iff the corresponding cells C1 and C2

Fig. 2. Illustration of the θ-graph corresponding to Fig. 1, right. Weights are either θ
or θ

√
2.
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Fig. 3. Left: adjacency set of a type-sldoh supercell C, containing twenty grey cells.
Right: adjacency set N(C, 3, 5, 2) of a type-sl supercell C, shown by grey cells.

are 8-adjacent. Such a graph structure is used in Procedures 1 and 2, and in the
main algorithm in Subsection 3.2. See Fig. 2 for an example.

We use standard adjacency definitions of digital geometry to specify four
different types of adjacency sets. Consider grid constant θ. For a cell C, L∞-
distances i ≥ 0 define layers N(C, 1, i) of θ× θ cells around this cell. In general,
we have 8× i cells in set N(C, 1, i), as already discussed in [11]. The four corner
cells in N(C, 1, i) have a Euclidean distance

√
2×θ×i to cell C. We call N(C, 1, i)

the first adjacency set of supercell C with radius i (i.e. cells near to C but not
including C and layers of radius j < i, thus not a neighbourhood in the sense of
topology which would include C).

We call N(C, 2, i) = ∪i
j=1N(C, 1, j) the second adjacency set of supercell C

with radius i (also not including supercell C). Furthermore, we also use adjacency
sets defined by the Euclidean metric L2; let N(C, 3, r) be the set of all cells C′

with dmax(C
′, C) ≤ r. We call N(C, 3, r) the third adjacency set of supercell C

with radius r (not including supercell C). So far, this is all very basic digital
geometry and just listed here for specifying the used notation.

For our particular application context, we define that an type-sldoh cell is one
supercell (i.e. with edge length θ0 ·m) that contains at least one type-l cell (with
edge length θ0) but also at least one type-h or type-d cell. A type-sl cell is one
supercell that contains type-l cells only. For example, the θ × θ cell in Fig. 1
(right), corresponding to vertex v1 in Fig. 2, is of type-sldoh because it contains
five type-h cells and two type-l cells; the cell in Fig. 1 (right), corresponding to
v9, is of type-sl because it contains seven cells which are all of type-l. The follow-
ing adjacency set definitions for type-sldoh or type-sl cells are motivated by the
particular application, and they have been heuristically derived from the given
(extensive) image data. Those adjacency sets can be modified without affecting
the basic ideas of the algorithms. Assume grid constant θ. The adjacency set of
a type-sldoh supercell C is defined by N(C, 3, 2 ×

√
2 × θ). See Fig. 3, left. We

make use of this in Lines 1–8 of Procedure 1 as shown in Fig. 6. For defining the
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adjacency set of a type-sl supercell C, let m and n be two non-negative integers
with n < m. Set

N(C, 4,m, n) = N(C, 3,m(
√
2× θ)) \N(C, 2, n)

is the fourth adjacency set of supercell C. Figure 3, right, illustrates a set
N(C, 4, 5, 2). We make use of this in Lines 1–9 of Procedure 2.

Definitions given in this section can be generalized for the 3D case, and we
do not specify them here because those generalizations are straightforward.

3 Algorithms

Assume that we have a number of slices of 2D images from a CT -scan. Each 2D
image contains θ0 × θ0 cells of type-d, type-h, type-l, or “other” cells (that is,
background cells). Each type-h cell represents a healthy vein cell. Each type-d
cell represents a diseased vein cell. Each type-l cell represents a liver cell. Our
goal is to classify type-l cells pl ∈ Sl depending on the value dmin(pl, Sh) and
dmin(pl, Sd).

In this section, we describe a naive brute-force algorithm (Algorithm 1), its
improved version (Algorithm 2), and then a more efficient main algorithm (Algo-
rithm 3). These three algorithms are used to classify type-l cells based on type-d
and type-h cells. As usual, Si is the set of type-i cells, for i = d, h, l.

3.1 A Brute-Force Algorithm and Its Improved Version

The idea of Algorithm 1 is simple. We scan through the set Sl of all type-l cells.
For each cell pl ∈ Sl, we decide to which subset (Sab

, Sad
or Sah

) cell pl belongs
to by simply testing the values of dmin(pl, Si), for i = d, h: If dmin(pl, Sh) <
dmin(pl, Sd), then let pl be in Sah

; else, if dmin(pl, Sh) > dmin(pl, Sd), then let
pl be in Sad

; otherwise let pl be in Sab
. The pseudocode is given in Fig. 4.

Algorithm 1. (A brute-force algorithm for separating type-l cells)
Input: Three sets Sd, Sh, and Sl such that Si contains type-i cells, where i =
d, h, l.
Output: Three sets Sab

, Sad
and Sah

such that Sl = Sab
∪ Sad

∪ Sah
, where Sab

is affected by both Sd and Sh, and Sai is affected by Si only, for i = d, h.
Pseudocode: See Fig. 4.

The idea of Algorithm 2 is also simple. We may not have to go through each grid
point in Sd. If there exists a cell pd such that de(pl, pd) < dmin(pl, Sh) then let pl
be in Sad

, and break both this for-loop and the outer for-loop, and test the next
cell after pl in Sl. The pseudocode of Algorithm 2 is modified from the code of
Algorithm 1 by inserting a few lines after Line 3 in Fig. 4. It is described in Fig. 5.

Algorithm 2. (An improved version of Algorithm 1)
Input and output are the same as for Algorithm 1 but for set cardinalities assume
that |Sh| ≤ |Sd|.
Pseudocode: See Fig. 5.
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1: Let Sab = Sad = Sah = ∅.
2: for each pl ∈ Sl do
3: Go through Sh for computing dmin(pl, Sh).
4: Go through Sd for computing dmin(pl, Sd).
5: if dmin(pl, Sd) = dmin(pl, Sh) then
6: Sab = Sab ∪ {pl}
7: else
8: if dmin(pl, Sd) < dmin(pl, Sh) then
9: Sad = Sad ∪ {pl}
10: else
11: Sah = Sah ∪ {pl}
12: end if
13: end if
14: end for
15: Return Sab , Sad , and Sah .

Fig. 4. A brute-force algorithm for separating type-l cells (pseudocode of Algorithm 1)

1: Lines 1–3 from Fig. 4.
2: for each pd ∈ Sd do
3: if de(pl, pd) < dmin(pl, Sh) then
4: Sad = Sad ∪ {pl}
5: Break both this for-loop and the outer for-loop.
6: end if
7: end for
8: Exactly copy Lines 4–15 from Fig. 4, but remove Line 7.

Fig. 5. An improved version of Algorithm 1 for separating type-l cells: Simply insert
Lines 3–6 in the code of Algorithm 2 after Line 3 in the code of Algorithm 1. Note that
the ‘outer for-loop’ refers to the outer loop as specified in Algorithm 1.

3.2 Algorithm in 2D

Algorithm 3, our main algorithm, is based on Algorithm 2 and Procedures 1 and
2. Procedure 1 is used to compute relevant adjacent cells within the adjacency
set of a type-sldoh supercell. The procedure is shown in Fig. 6. The word relevant
means here that each returned supercell is both in the adjacency set of the given
type-sldoh supercell as well as of the corresponding supercell of the θ-graph, for
grid constant θ ≥ θ0.

Procedure 1. (Compute relevant supercells in adjacency set of a type-sldoh
supercell)
Input: A θ-graph G = [V,E], and a type-sldoh supercell represented by vertex
v ∈ V .
Output: Return a subset Nv of V such that dmin(v

′, v) ≤ θ, for each supercell
v′ ∈ Nv.
Pseudocode: See Fig. 6.
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1: Let Ni be the sets of supercells of the first two adjacency sets of supercell v, where
i = 1, 2.

2: Let N ′
2 = ∅.

3: for each supercell u ∈ N2 do
4: if dmin(u, v) ≤ θ then
5: N ′

2 = N ′
2 ∪ {u}

6: end if
7: end for
8: Let N = N1 ∪N ′

2.
9: Let Nv = ∅.
10: for each supercell u ∈ N do
11: if u ∈ V then
12: Nv = Nv ∪ {u}
13: end if
14: end for
15: Return Nv.

Fig. 6. Computation of relevant cells adjacent to a type-sldoh supercell v (Procedure 1)

The following Procedure 2 is used to compute relevant supercells in the adja-
cency set of a type-sl supercell. The word relevant means here that the returned
supercells are both in the adjacency set of the type-sl supercell and the supercells
of the θ-graph. The pseudocode is shown in Fig. 7.

Procedure 2. (Compute relevant supercells in the adjacency set of a type-sl
supercell)
Input: A θ-graph G = [V,E], a type-sl supercell v ∈ G. Assume that there exist
type-d or type-h cells.
Output: Return a subset Nv of V such that, for each supercell v′ ∈ Nv, we have
that de(v

′, v) ≤ Rv, where Rv is the radius of N(v, 3, Rv).
Pseudocode: See Fig. 7.

The imaged part of the liver is defined by all type−l cells. Its veins consists
of type-i cells, where i = d, h.

The main idea of the following main algorithm (Algorithm 3) is to decompose
the liver into some supercells so as to reuse the improved version of the above
brute-force algorithm (i.e., Algorithm 2) “locally” by removing unnecessary type-
i cells (where i = d, h) which are “too far” from the current supercell (thus, also
“too far” from any type-l cells contained in the current supercell).

Algorithm 3. (Main Algorithm)
Input: A set S containing type-i cells, where i = d, h, l, and a parameter m > 0
(for example, m = 20).
Output: Three sets Sab

, Sad
, and Sah

such that Sl = Sab
∪ Sad

∪ Sah
, where Sab

is affected by both Sd and Sh, and S3i is affected by Si only, for i = d, h.
Pseudocode: See Fig. 8.

Regarding a proof of the correctness of Algorithm 3, at first, the set of liver cells
(i.e. of their centroids) can be assumed to be digitally convex (i.e. the Gauss
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1: i = 1
2: while there is not any type-d or type-h cell contained in a supercell in N(v, 1, i)

(i.e., the first adjacency set with distance i of the supercell v) do
3: i = i+ 1
4: end while
5: Take any corner supercell u in N(v, 1, i).
6: Let Rv = dmax(u, v).
7: Compute N(v, 3, Rv) (i.e., the third adjacency set of the supercell v with radius

Rv).
8: Compute N(v, 2, i) (i.e., the second adjacency set of the supercell v with radius i).
9: Let N4 = N(v, 3, Rv)\N(v, 2, i).
10: Let Nv = ∅.
11: for each supercell u ∈ N4 do
12: if u ∈ V then
13: Nv = Nv ∪ {u}
14: end if
15: end for
16: Return Nv.

Fig. 7. Computation of relevant supercells adjacent to a type-sl supercell v (Proce-
dure 2)

digitization of a convex polyhedron). Thus we can define affected by using dmin

as in Section 2, based on the Euclidean distance de.
For each supercell C, if C is of type-sldoh supercell then, for any two original

(i.e., before digitization in Line 3) cells p1 and p2 contained in C, for their
distance we have that de(p1, p2) <

√
2 · θ0. Thus, we can only consider type-i

cells inside of N(C, 3,
√
2 · θ) for separating type-l cells in C, for i = d, h. In

short, the candidate sets are reduced from Sd and Sh to Sd ∩N(C, 3,
√
2 · θ) and

Sh ∩N(C, 3,
√
2 · θ).

For each supercell C, if C is of type-sl then for any two original cells p1 and p2
contained in C and the corner supercell C′ (See Fig. 9 for an illustration of C and
C′.), we have that dmax(p1, p2) ≤ RC . Note that the radius RC = dmax(C

′, C)
is defined in Line 6 in Procedure 2. Thus, we can only consider type-i cells inside
of NC for separating the type-l cells in C, where i = d, h (NC is the subset
returned by Procedure 2).

In short, the candidate sets are reduced from S1 and S2 to S1∩N(C, 3,
√
2×θ)

and S2 ∩N(C, 3,
√
2 × θ), respectively. See Fig. 9 for an illustration of RC and

NC .

3.3 Algorithm in 3D

The limited space does not allow a full description. However, the algorithms
are very straightforward extensions of the 2D case: copy from Subsection 3.2
and replace

√
2 by

√
3. Figure 10 shows some experimental results of our main

algorithm in 3D.
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1: Let θ = m× θ0.
2: Let Ω be the smallest isothetic circumscribing rectangle that contains all cells of

set S.
3: Digitize Ω using grid constant θ and label a supercell C to be “active” if C contains

type-i cells, where i = d, h, l.
4: Construct the h-graph G = [V, E] as follows: Let V be all “active” supercells. For

any two supercells C1 and C2 in V , define an edge e = {C1, C2} if C1 and C2 are
8-adjacent.

5: Let Sab = Sad = Sah = ∅.
6: for each supercell v ∈ V do
7: if v is a type-sldoh supercell then
8: Let G and v be the input for Procedure 1 for computing relevant adjacent

supercells Nv for the type-sldoh supercell v.
9: Let Sd = Sh = ∅.
10: Let Sl be the set of all cells in v.
11: for each supercell u ∈ Nv ∪ {v} do
12: for each cell p ∈ u do
13: if p is type-d cell then
14: Sd = Sd ∪ {p}
15: else
16: if p is type-h cell then
17: Sh = Sh ∪ {p}
18: end if
19: end if
20: end for
21: end for
22: Let Sd, Sh and Sl be the input for Algorithm 2 for computing three sets

Sab(v), Sad(v) and Sal(v) such that Sl = Sab(v) ∪ Sad(v) ∪ Sal(v), where
Sab(v) is affected by both Sd and Sh, and S3i(v) is affected by Si only, for
i = d, h.

23: S3i = S3i ∪ S3i(v), where i = d, h, l.
24: else
25: if v is a type-sl supercell then
26: Let G and v be the input for Procedure 2 for computing relevant adjacent

supercells Nv for the type-sl supercell v.
27: Exactly copy Lines 9–23 into here.
28: end if
29: end if
30: end for
31: Return the three sets Sab , Sad , and Sal .

Fig. 8. Pseudocode of the main algorithm: m is a parameter and can be adjusted
depending on the size and distribution of the input data set S

4 Time Complexity

Regarding the time complexity of Algorithms 1 and 2, and of Procedures 1 and
2, we have the following:
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Fig. 9. Illustration for the correctness proof of Algorithm 3

Fig. 10. Left, top: The liver model. Right, top: The vein component which has a tree
shape topology, and the tumour. Left, bottom: The cells in the vein component and the
tumour. Right, bottom: A liver usually consists of eight parts shown in eight colours.
Only the red part on the right is the diseased part, as detected by our algorithm, and
it should be removed. It seems there are some green cells between red cells. This may
disappear if we change the angle of view.

Lemma 1. Algorithm 1 takes |S3| · (|S1|+ |S2|) operations.

Lemma 2. Algorithm 2 takes at most |S3| · (|S1|+ |S2|) operations.
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Table 1. The results of five experiments are shown from left to right, organized in
columns. Parameter m is applied in Line 1 of Algorithm 3, and the time is in seconds
for a 3D voxel data set of dimensions 324× 243× 129.

m Time m Time m Time m Time m Time

0 53 0 167 0 69 0 53 0 49
10 24 10 36 10 12 10 36 10 33
20 24 20 23 20 14 20 37 20 32
40 38 40 41 40 23 40 57 40 50

Lemma 3. Procedure 1 takes O(|N |) operations, where N is defined as in Line
8 of Procedure 1.

It is N = N(v, 3,
√
2×θ) in the 2D case, and N = N(v, 3,

√
3×θ) in the 3D case.

For any integer parameter m ≥ 1 it is |N | = 20 in the 2D case, and |N | = 80 in
the 3D case.

Lemma 4. Procedure 2 takes O(|N(v, 3, Rv)|) operations, where Rv is defined
in Line 6 of Procedure 2.

Regarding the time complexity of the main algorithm (Algorithm 3), the main
computations occur in Lines 8, 22, and 26.

By Lemma 3, the computation in Line 8 takes O(n× |N |) operations, where
n is the number of supercells.

By Lemma 4, the computation in Line 26 takes O(n × nmax) operations,
nmax is the maximal value of all |N(v, 3,MRv)|’s, and Rv is defined in Line 6 in
Procedure 2.

By Lemma 2, the computation in Line 22 takes O(c2i × (n× |N |+ n× nmax)
operations, where c2i is the maximum number of cells in a supercell, i = 2
for the 2D case, and i = 3 for the 3D case. By the definition of supercells,
we have that c2i = mi, for i = 2, 3. Thus, the computation in Line 22 takes
O(mi × n× (|N | + nmax)) operations, where i is 2 or 3 for the 2D or 3D case,
respectively. Recall that |N | = 20 in the 2D case and |N | = 80 in the 3D case.
Thus, we have the following

Theorem 1. The runtime of Algorithm 3 is in O(mi×n×nmax), where nmax is
the maximum value of all |N(v, 3,MRv)|’s, Rv is defined in Line 6 in Procedure 2,
and i = 2 for the 2D case, and i = 3 for the 3D case.

Exact Euclidean Distance Transform takes O(mi × ni) operations [2,6]. Thus,
the main algorithm (Algorithm 3) may be faster or slower than the exact Eu-
clidean Distance Transform depending on the value of nmax which depends on
the distribution of input type-i cells, for i = d, h, l.

5 Experimental Results

Our experiments used a liver model of 107 cells within a cuboid which is 324
pixels long, 243 pixel wide, and 129 pixels high. This kind of constant is typical
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Fig. 11. The diseased liver volumes (i.e., sets V in Table 2) in the i-th experiment,
from left to right and top to bottom. Note that the tumour was not included in set
V in Experiments 1, 3 and 4. This is because the diseased vein S2 in Table 2 is only
simulated in the experiments.

Table 2. By i we denote the index of an experiment. V is the volume of the diseased
liver, S2 are the cells inside the volume of the diseased vein, and S1 are the cells inside
of the volume of the healthy vein.

i V S2 S1 i V1 S2 S1

1 87.491 105 2120 4 251.6717 182 1487
2 350.4517 525 1700 5 232.631 153 1516
3 242.179 331 1894

for a current CT scan of a liver. Each voxel is not perfectly cubic, having side
length 0.683 in two directions and 1.0 in the third. We used a PC with 2.50 GHz
CPU and 3.0 Gb RAM.

Table 1 shows the relationship between parameter m as applied in Line 1 of
Algorithm 3 and the running time. Times for m = 0 are the running times of the
improved brute-force algorithm (Algorithm 2). The experiments indicate that
Algorithm 3 is better than Algorithm 2 for m = 10 and = 20. The algorithm
appears to be inefficient if m is either to small or to large.

Table 2 shows diseased volumes in five experiments. See Fig. 11 for sets V as
mentioned in the table.
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6 Conclusions

We presented a simple and time-efficient algorithm for separating liver cells us-
ing basic ideas of digital geometry. In contrast to existing liver-surgery planning
algorithms, our algorithm is not only independent of a surgeons’ personal inter-
active manipulations, but also outputs the exact solution. The paper introduced
an important existing problem to the digital geometry community.

Acknowledgements. The authors thank all three anonymous reviewers for very
valuable comments which have been taken into account for the final paper.
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Abstract. This paper presents a method for fitting 4-connected digital
circles to a given set of points in 2D images in the presence of noise
by maximizing the number of inliers, namely the optimal consensus set,
while fixing the thickness. Our approach has a O(n3log n) time com-
plexity and O(n) space complexity, n being the number of points, which
is lower than previous known methods while still guaranteeing optimal
solution(s).

Keywords: Shape fitting, consensus set, inliers, outliers, digital circle,
4-connected digital circle, 0-Flake digital circle.

1 Introduction

In the present paper, we are considering the fitting problem of a set of points in a
noisy 2D image by a 4-connected digital circle. Such a 4-connected digital circle
(see Fig. 1(c)) can be obtained by a morphological based digitization scheme. The
0-Flake in Fig. 1(a) is the structuring element. Such circles can be characterized
analytically [5,9]. The 0-Flake digital circle is defined as all the digital points (see
Fig. 1(c)) inside a sort of Annuli (see Fig. 1(b)), called 0-Flake Annuli, composed

Fig. 1. (a) 0-Flake circle and Boundary circles, (b) 0-Flake annulus and (c) correspond-
ing 4-connected digital circle
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of four circles (see Fig. 1(a)). These circles are called boundary circles. It is
important to note that the thickness of the digital 0-Flake circles is fixed. Most
annuli fitting methods consider only classical annuli defined by two concentric
circles and try to find annuli with minimal or maximal thicknesses given some
other parameters. This is not adequate for digital circle fitting.

The set of points (inliers) which fits a model is called a consensus set. The idea
of using such consensus sets was proposed for the RANdom Sample Consensus
(RANSAC) method [6], which is widely used in the field of computer vision.
However RANSAC is inherently probabilistic in its approach and does not guar-
antee optimality. This paper aims at proposing a new lower time complexity
for the computation of the optimal consensus set. This means that our goal is
to maximize the number of inliers. In our case, an inlier is simply defined as a
point inside the 0-Flake annulus. Non Probablistic methods that detect annuli
have been proposed (for example [11]). Most of these algorithms minimize or
maximize the thickness of the annuli [8] which is not adequate when consider-
ing digital circles where the thickness is fixed. Only few algorithms deal with
outliers [12,7,13] but the number of outliers is usually predefined [7,13] and the
problem consists again in minimizing the thickness. The method proposed by
O’Rourke et al. [14,15] that transforms a circle separation problem into a plane
separability problem, is also not well suited because the fixed thickness of the
digital circles translates into non fixed vertical thicknesses for the planes. In this
case, the problem is complicated (See [4] for some solutions on how to handle
this difficulty).

So our problem is finding the optimal consensus set (maximal number of in-
liers) of digital points inside a 0-Flake annulus which has a fixed thickness where
the center and the radius are unknowns. In [1] and [2], brute force algorithms
were proposed to compute the optimal consensus set respectively for Andres dig-
ital circle (defined as digital points inside a classical annulus of fixed thickness)
and 0-Flake digital circles. It was shown that if an optimal solution exists then
there exists a finite number of equivalent optimal solutions (with the same set
of inliers) with three points on the boundary (internal and/or external) of the
annulus. Testing all the configurations of three points and counting the inliers
leads therefore to all the possible optimal solution sets with a time complexity
of O(n4) where n is the number of points.

A new method is proposed in this paper for fitting 0-Flake digital circles.
This method requires just two points to be located on the boundary circles.
This method is inspired by the dual space proposed by [11]: the centers of all the
circles with two specific points on the boundary correspond to a straight line.
A dual space where the x axis represents the center locations and the y axis
represents the distance to this center allows to find the largest empty annulus
using an interval sorting.

We adapt this idea to our problem but there are several major differences:
in our case, the thickness is fixed and we look for a maximal number of inliers.
Moreover, since we deal with Flake annuli, there are more than only one straight
line for the center locations (see section 2.2). The idea is the following: given a set
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S and given two specific points on the boundary of a Flake annuli, we consider
the center locations straight lines as parametric axis. We then determine when
a point enters and leaves the flake annuli while the center moves along the axis.
This allows us to compute the intervals where the number of inliers is maximized
(Section 3). By considering all the combinations of two points, we are able to
compute the exhaustive set of all optimal consensus sets in O(n3 logn).

The paper is organized as follows: in Section 2 we expose some properties and
characterizations of the 0-Flake digital circles and its analytical annulus defini-
tion. Section 3 provides the general idea and the detailed algorithm for finding
the optimal consensus sets. Section 4 presents some results. Finally Section 5
proposes a conclusion and some perspectives.

2 The 0-Flake Annulus : Definitions and Properties

In [1] and [2], we proposed a brute force algorithm with O(n4) time complexity
for fitting Andres circle and 0-Flake circle of fixed thickness, with n the number
of points to fit. We have shown that if an optimal solution (set of inliers) exists
then there exists an equivalent optimal solution (with the same set of inliers)
with three points on the boundary (internal and/or external). In this section
we are considering the problem of characterizing the 0-Flake annulus that are
equivalent (same inliers, same thickness) to some optimal solution with only two
points on the boundary circles of the Flake annuli. Let us first introduce some
basic notations as well as the analytical definition of the 0-Flake digital circles.
In a second part of this section, we will look at the annulus characterization for
0-Flake circles with thickness 1.

2.1 Notations and Basic Definitions

In this section, we present 0-Flake digital circles with the associated notations
and definitions. See [10,5,3,9] for more details on the digitization models and
properties of the different types of digital circles. The digitization scheme we
are considering is an Adjacency Flake Digitization [5,3,9]. It is based on a mor-
phological digitization scheme with a structuring element called an Adjacency
Flake. In this paper we are limiting our self to 0-adjacency Flake (or simply
0-Flake) circles for the sake of simplicity. The 2D 0-Flake corresponds to the
diagonals of a unit cube. The figure 1.a shows the 0-Flake and a corresponding
Flake annulus.This corresponds to 4-connected digital circles when the size of
the Flake and thus the thickness of the Flake annulus is equal to one. However,
the proposed fitting method works as well for 2D 1-adjacency Flake circles (8-
connected circles) and for other thicknesses [3,9]. The 0-Flake digitization DF0

of the Euclidean circle C(C,R) of center C and radius R is defined as follows:

DF0 (C(C,R)) = (X ⊗ C(C,R))
⋂

Z2

Where X is the 0-Flake corresponding to the diagonals of a unit square. Proof
that such a digital circle is 4-connected can be found in [5,9].
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The 0-Flake annulus AF0 of the Euclidean circle C(C,R) of center C and
radius R is analytically defined as follows [9]:

AF0 (C(C,R)) = (X ⊗ C(C,R)) ={
x ∈ R2 : −|x− Cx| − |y − Cy | − 1

2 ≤
(x− Cx)

2 + (y − Cy)
2 −R2 ≤ |x− Cx|+ |y − Cy|+ 1

2

}
The smallest possible 0-Flake circle is of radius

√
2/2. With a Flake structuring

element, the analytical characterization of circles of smaller radii are not correct.
This is one of the limitations of the Flake model. It is however not a big constraint
as it corresponds to a circle that spans only a couple of pixels [9].

We call boundary circles the 4 circles that form the boundary of the 0-Flake
annulus, i.e. the circles centered on (Cx ± 1

2 , Cy ± 1
2 ). On figure 1.a, we can see

the four boundary circles C00, C01, C10 and C11:

Definition 1. Let Cij be a boundary circle of the 0-Flake circle C(Cx, Cy) of
radius R. Cij is defined as the circle of center (Cx, Cy) + (1/2, 1/2)− (i, j) and
radius R.

The actual boundaries of the 0-Flake annulus are only parts of those boundary
circles (see fig. 1). We call internal (resp. external) boundary of the 0-Flake
annulus, the parts of the boundary circles that are closest (resp. farthest) to the
center of the 0-Flake annulus. We define the 0-Flake digital circle as the set of
digital points in the 0-Flake annulus.

Definition 2. Let us consider a set of points S. Two Flake annuli are said to
be equivalent with regard to S if the points of S belong to both annuli.

2.2 0-Flake Annulus Characterization

In [2], it has been proven that given a 0-Flake annulus covering a set of points
there exists an equivalent 0-Flake annulus (same inliers, same thickness) which
has at least three points of the set on its boundary circles, not necessarily on
the actual internal or external boundary of the annulus. For the fitting method
we are going to present here, we need to show that if a Flake annulus covers a
set of points then there exists an equivalent Flake annulus with two points on
the boundary circles. Again, we do not require the points to be on the actual
internal or external boundary as simply being on the boundary circles is sufficient
to provide a straight line of possible center locations. The proof in [2] is obviously
sufficient for our purpose.

Now we have two points of the set on the boundary circles, we are going
to check all the possible 0-Flake annuli that have those two points on their
boundary circles. The following proposition provides the characterization of the
center locations for those annuli.

Proposition 1. Let us suppose that we have a set of points S and two points p
and q ∈ S.
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– The centers of all the Flake annuli having p and q on their boundary circles
belong to a maximum of 16 straight lines. We call these straight lines, center
axes.

– The set of all the centers of the annuli covering the consensus set S with p
and q on the boundary circles is a set of straight line segments, half lines or
straight lines belonging to the center axes.

Proof. Let us suppose that we have a consensus set S in a 0-Flake annulus F of
center C (C(Cx, Cy), R, ) with two points p and q of S on its boundary circles.
First, let us note that if we consider Flake annuli with two points p and q on some
of its boundary circles, we have several possibilities since p and q may belong
to the boundary circles C00, C01, C10 or C11. There are 16 possible different
configurations.

– If p and q belong to the same boundary circle Cij of center (Cijx, Cijy) =
(Cx, Cy) + (i, j) − (1/2, 1/2) then the center of Cij has to belong to the
perpendicular bisector of p and q. Therefore the 0-Flake annulus F centers
belong to its parallel passing through the points (Cijx, Cijy) + (1/2, 1/2)−
(i, j).

– If p belongs to the boundary circle Cij and q to the boundary circle Ckl then
obviously the point q′ = q + (i − k, j − l) belongs to Cij and the previous
reasoning works with p and q′ at the condition that p is different from q′. In
this case there is no center axis but all the points in space can be centers. We
can actually discard such configurations because in such a case it is easy to
see that there exist an equivalent configuration with two points of S on the
boundary circles that do not have this problem. One has simply to discard
one of the two points, for instance by keeping p, and use the principle of [2] to
find another point on a boundary circle. Since only four points around p may
cause such a problem, we have either other points or a set of four neighboring
points that can easily be dealt with otherwise. The corresponding optimal
solutions will therefore be treated by some other configurations of points.

This proves that there is a maximum of 16 center axes. The actual center axis
equation for p ∈ Cij and q ∈ Ckl is given by:

2(px − qx + i− k)Cx + 2(py − qy + j − l)Cy + (px − 1/2 + i)2

+(py − 1/2 + j)2 − (qx − 1/2 + k)2 − (qy − 1/2 + l)2 = 0

Let us now consider a point t of S and a center axis defined by p and q belonging
to Cij and Ckl respectively, with i, j, k, l ∈ {0, 1}. The point t is an inlier if it
is inside of at least one of the four boundary circles and not inside all four
boundary circles (see Figure 1.a). Let us determine when, with the center of the
flake annulus moving along the center axis, t enters or leaves a boundary circle
Cmn and thus when it may be inside 0,1,2,3 or 4 boundary circles. Different
cases have to be examined:

– Let us suppose that t − (m,n) �= p − (i, j) and t − (m,n) �= q − (k, l).
Let us consider the following three points p, q′ = q + (i − k, j − l) and
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t′ = t + (i −m, j − n). There is of course only one circumcenter c for p, q′

and t′. There is therefore a unique center point c′ = c + (1/2, 1/2) − (i, j)
on the center axis such that p ∈ Cij , q ∈ Ckl and t ∈ Cmn. On one side of
c′ on the center axis, t will be inside the boundary circle Cmn while for all
the centers on the other side of c′ on the center axis, t will be outside the
boundary circle Cmn.

– If t− (m,n) = p− (i, j) or t− (m,n) = q − (k, l) then t belongs to Cmn for
all the Flake annuli with center on the center axis.

Now, for each center axis defined by p and q, with some parametrization of the
center axis, for each point t we have four intervals of type ]−∞, x], [x,+∞[
or ]−∞,+∞[. The intersection of four such intervals is a straight line seg-
ment on the center axis, an half-line on the center axis, the complete center
axis or is empty. By considering all the center axes we obtain the result of the
proposition. ��

3 Fitting Algorithm

Using the above proposed flake annuli characterization, our fitting problem can
be described as follows: given a finite set S =

{
(Px, Py) ∈ Z2

}
of n points such

that n ≥ 2, and given a fixed thickness 1 we would like to find a 0-Flake annulus
such that it contains the maximum number of points of S. Points belonging to
the annulus are called inliers; otherwise they are called outliers.

The idea behind our fitting method is inspired by [11] where the authors try
to maximize the width of an empty annulus. In [11], given two points p and
q, they define a dual space where the perpendicular bisector of the two points
becomes the abscissa axis. These are all the centers of the circles that have p and
q on its boundary. For any point t, the ordinate value is given by its distance
to a point of the bisector and thus to the center of a circle that has p and q
on its boundary. It allows them to determine when a point t enters a circle
centered on the bisector. By sorting these entry points relatively to the abscissa
axis, they determine the biggest empty annulus. Since they look for the biggest
empty annulus, they do not represent an annulus in their parameter space but
only circles. It is the biggest empty interval projected on the abscissa axis that
will define the looked for annulus.

Our purpose is quite different but their idea of taking the axes where the pos-
sible centers of the annuli are located can be adapted in the following way. One
of the main difference with our problem is that we deal with Flake annuli and
therefore we have four boundary circles that are not concentric: for two given
points p and q, the 0-Flake annuli centers may follow 16 different straight lines,
called center axis. Each of these center axis will be considered separately. We
do not consider an actual dual space. There is no ordinate axis since the distance
from p and q to the center axes and thus to the center of the Flake annuli are not
equal. We simply consider a parametrization of each center axis and determine
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the parameter λt
ij for which a given point t enters the boundary circle Cij of

a flake annulus centered on the considered center axis. This corresponds to a
set of a maximum 4 parameter values that are sorted. We complete this list by
adding −∞ and +∞. Each parameter interval (between two consecutive values
of the list) is tested to check if the point t is inside or outside the corresponding
0-Flake annulus. One needs only to test the midpoint of each interval and in
the case of semi open intervals such as ]−∞, λ] (respectively [λ,+∞[), we test a
value that is significantly smaller (respectively bigger) than λ in order to avoid
numerical problems. This leads to a set of one or two intervals where t is inside

Algorithm 1. 0-Flake annulus fitting

input : A set S of n grid points
output: A list V of centers and radius values for the best fitted 0-Flake annuli

1 begin
2 initialize Max = 0;
3 initialize the list V to the empty list;
4 foreach p ∈ S do
5 foreach q ∈ S do
6 foreach of the 16 different configurations of p and q do
7 compute the straight line Δpq where the center are located;
8 initialize the list of parameters Lλ; foreach t ∈ S do
9 initialize the valide interval to [];

10 foreach For each one of the four boundary circle : do
11 compute the parameter λ for which the point t is ON

the boundary circles;
12 test a value in the interval ]∞, λ] to know if the point is

inside the boundary circle for this interval;
13 keep the valid interval It where t is inlier with the

following rule: when t belongs to the zero or four circles
it is an outlier;

14 foreach sub-interval [min,max] in It do
15 Add the couples (min, 1) and (max,−1) to the

parameter list Lλ;

16 Sort the pair elements (λk, fk) of Lλ with the values λk as keys;
17 Initialize F = 0;
18 foreach couple (λk, fk) in Lλ do
19 F = F + fk;
20 if F > Max and fk+1 = −1 then
21 Set Max = F ; Erase V and set it to the interval

[λk, λk+1] ;

22 if F = Max and fk+1 = −1 then
23 Add the interval [λk, λk+1] to V

24 return V;
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a 0-Flake. In order to avoid interval sorting (which might have a O(n2) worst
case complexity), these intervals are then simply coded as a general parameter
list as follows: let us suppose that the point t belongs to a 0-Flake annulus for
the interval [a, b], then we add the elements (a,+1) and (b,−1) to a general
parameter list. This codes for the fact that at parameter value a the number of
inliers is increased by 1 and at parameter value b it is decreased by 1.

This is repeated for each point t (different from p and q) of the set S. The
general parameter list is then sorted by parameter value and, starting at param-
eter value −∞, the number of inliers are counted by summing up the +1 and
−1. This results in a list of intervals for which a maximum of inliers is obtained.
These intervals and their corresponding generator values p, q, i, j, k and l are
added to the already existing maximal inlier interval list. If the maximum of in-
liers increases, then the former maximal inlier interval list is wiped and replaced
by a new one.

A pair of points defines a maximum of 16 center axes. For each other point, we
determine the parameter values on each center axis for which it is inside a flake
annulus. There is a maximum of 4 such parameter values per point. All these are
sorted for each center axis with a time complexity of therefore n logn. scanning
each list to determine the interval where we have a maximum consensus set is
linear in the number of parameter values and thus in n. Since this is repeated
for every couple of points in the set, the final complexity is O(n3 logn).

Example: Here is an example of values obtained while fitting the points (0, 0),
(5, 3) and (2, 1). At some point we have a (already sorted) set of parame-
ter values −23.4953,−4.0588,−3.08697, 8.57493 for a center axis correspond-
ing to (0, 0) and (5, 3). The corresponding general parameter list looks like
((−∞, 1), (−3.08697,−1), (8.57493, 1), (+∞,−1)). This means that the point t
(in this case (2, 1)) belongs to a 0-Flake annulus for the parameter intervals
]−∞,−3.08697] and [8.57493,+∞[. The parameter values−23.4953 and −4.0588

t t t 
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Fig. 2. The 0-Flake annulus with p ∈ C11 and q ∈ C00 and an interval where the point
t belongs to the Flake annulus
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disappear as they correspond to t leaving or entering a boundary circle inside
the annulus. Note that (+∞,−1) is not really needed for the inlier computation
but it is useful for expressing the intervals.

Fig. 2 gives an example of a 0-Flake annulus with p ∈ C11 and q ∈ C00. Doing
this for all the couple of points among the set of points to fit yields the optimal
0-Flake annulus in terms of number of inliers.

4 Experiments

We used Mathematica for implementing our method. We applied our method for
2D noisy 0-Flake annuli as shown in fig. 4(a). A bounding region (center,radius)

  

Fig. 3. A representation of the number of times a point belongs to the optimal con-
sensus sets found for, on the left side an example with 85% noise and on the right side
an example with 90% noise

Fig. 4. a) Fitting of 2D noisy 0-Flake circles. b) bounding region of all the optimal
centers.
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Fig. 5. Tests with different levels of noise on a digital 0-Flake circular arc
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of all the possible solutions corresponding to optimal consensus sets for this
image are shown in fig. 4(b).

The figure 5 presents a 0-Flake circular arc of 100 points and some degraded
versions of it: In each image, we keep 100 points but for the different degraded
versions of x% noise, we kept 100 − x random points of the original arc and
added x randomly located points as noise in the background. Part a) presents
the tested data : the noisy arc with x points (bottom) and this arc and its noisy
background (top). Part b) shows one solution for each case, the optimal number
of inliers found and the number of distinct limit solutions (corresponding to an
center interval end point).

5 Conclusion and Perspectives

In this paper we have presented a new method for fitting 0-Flake digital circles
to a set of points while fixing the thickness. Various papers have been written
on fitting circles or annuli but usually they have not dealt with fixed thicknesses
which is a fundamental property of digital circles. Our approach guarantees opti-
mal results from the point of view of maximal consensus sets: we are guaranteed
to fit a digital circle with the least amount of outliers. In terms of computation
time, this approach has a lower time complexity than the one presented in [2].
The method is general enough that is can be extended to 1-Flake circles, Andres
circles and probably most other types of digital circles [3,9] with thicknesses not
limited to 1. This work opens many interesting perspectives for the future. One
obvious question that remains open is the question of the optimal time complex-
ity we can expect for such a problem. We have reasons to believe that we can not
beat a O(n3) time complexity simply because this is the optimal time complexity
for a similar problem of 3D plane fitting [16]. Now, the reason why we suspect
that the optimal time complexity might be the same is simply because of some
arguments coming from conformal space representations. This needs however to
be proved and an according method would need to be found. One of the inter-
esting aspects that has not been yet fully explored is that computing optimal
consensus sets or near optimal consensus sets allows us to classify points and
introduce notions of strong or weak inliers . We can for instance, differentiate
inliers that belong to many optimal or near optimal consensus sets from points
that only belong to some of those solutions (See Figure 6. for an example). The
method we proposed seems to extends pretty well to higher dimension but we
need a formal proof of the Flake annulus characterization in higher dimensions.
A last perspective is of course fitting of other types of digital curves such as
digital conics for instance.

Acknowledgments. The work for this paper was partly financed by Egide,
franco-Japanese PHC Sakura project n 27608XJ and by the Poitou Charentes
region project n 11/RPC-R-051.
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Abstract. A digital annulus is defined as a set of grid points lying be-
tween two circles sharing an identical center and separated by a given
width. This paper deals with the problem of fitting a digital annulus to
a given set of points in a 2D bounded grid. More precisely, we tackle the
problem of finding a digital annulus that contains the largest number
of inliers. As the current best algorithm for exact optimal fitting has
a computational complexity in O(N3 logN) where N is the number of
grid points, we present an approximation method featuring linear time
complexity and bounded error in annulus width, by extending the ap-
proximation method previously proposed for digital hyperplane fitting.
Experiments show some results and runtime in practice.

Keywords: fitting, annulus, approximation, halfspace range searching.

1 Introduction

Shape fitting is widely used in computer vision, computational geometry, image
analysis and many other areas. Given a set of points S, a shape model M (for
example, lines, curves, planes, or circles), and some criterion F , the problem is
to fit M to S under F . Depending on the criteria employed, we have several
well-known methods dealing with this problem. The method of least-squares [1]
minimizes the sum of squared residuals from all given points. This method is
popular, but it is not efficient in the presence of outliers. In order to enhance
the robustness, many alternative methods have also been proposed, such as the
method of least-absolute-values [2], the method of least-median-of-squares [3].
However, these methods are still not robust in the presence of many outliers. One
of the commonly used methods for robust shape fitting is RANdom SAmple Con-
sensus (RANSAC) [4]. It can provide robust results even if there is a significant
number of outliers, with reasonable runtime in practice, while it provides neither
guarantee of optimal solution nor bound of approximation error.
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In this paper, we use a criterion similar to that of RANSAC. As we assume
that our input data is discrete, such as a digital image, we use a digital shape
model, instead of a continuous one as generally used for the above mentioned
conventional methods. Fitting of digital lines [5] or digital planes [6] has been
already studied. This paper aims at exploring the problem of fitting a digital
circle. We consider a digital circle as a digital annulus [7], defined as a set of grid
points lying between two circles sharing a center but with different radii. This
paper treats the problem of fitting a digital annulus to a given set of points in
a 2D bounded grid. More precisely, we tackle the problem of finding a digital
annulus that contains the largest number of inliers. The current best algorithm
for exact optimal fitting has a computational complexity in O(N3 logN) [8]. We
present an approximation method featuring linear time complexity and bounded
error in annulus width by extending an approximation method proposed for
digital hyperplane fitting [6].

We first formulate our digital annulus fitting as the digital plane fitting prob-
lem with some particular setting. For our approximation method, we then employ
the approximate halfspace range searching technique [9], which consists of two
main steps: generating an approximate range space, and providing a data struc-
ture to solve approximate halfspace range searching with a constant query time.
We follow these two steps, in the context of solving our converted digital plane
fitting, by combining two problems of approximate halfspace range searching.
We also explain how to interpret results of digital plane fitting in the context
of digital annulus fitting, with an interpretation of bounded error. Finally, we
provide experimental results and measured runtimes.

2 Problem of Digital Annulus Fitting

2.1 Digital Annulus and Its Fitting Problem

In this paper, we follow the definition of a digital annulus as introduced by
Andres et al. [7] and used by Zrour et al. for fitting [8]. We first describe the
continuous model of circles. A continuous circle C with center (a, b) and radius
r in the Euclidean space R2 is defined by

C = {(x, y) ∈ R2 : (x− a)2 + (y − b)2 = r2} (1)

where a, b, r ∈ R. In the discrete space Z2, the digitization of (1) is defined by a
set of grid points lying between two circles that share the same center (a, b) and
two different radii r − w

2 and r + w
2 , where w ∈ R is the width between the two

circles. Namely,

A =

{
(x, y) ∈ Z2 :

(
r − w

2

)2
≤ (x − a)2 + (y − b)2 ≤

(
r +

w

2

)2}
. (2)

This is called a digital annulus, or Andres circle [7]. Given a set S of discrete
points coming from a [0, δ]2 grid, where δ ∈ N, the problem is to fit this digital



Efficient Robust Digital Annulus Fitting with Bounded Error 255

annulus model A to S such that the fitted digital annulus contains as many
points of S as possible, called inliers. This problem is described below. Points
that are not contained in the model are called outliers.

Problem 1 (Digital annulus fitting)
Input : A set S of discrete points bounded in a [0, δ]2 grid, and a fixed width w.
Output : A digital annulus A containing the maximum number of inliers in S.

This digital annulus fitting problem is solved by an exact method, introduced in
[8], in time O(|S|3 log |S|). This complexity of the exact solution is not feasible
in practice when |S| is large. In some cases it may be sufficient to compute an
approximate solution if the solution is obtained with inexpensive computational
complexity. We thus propose here an approximate method with linear runtime
and bounded error, instead of searching for the exact solution. For this purpose,
we first convert our digital annulus fitting problem into a more simple problem
in the following.

2.2 Digital Plane Fitting Induced by Digital Annulus Fitting

Since the inequalities (2) are non-linear with respect to the unknown parameters
a, b, r, we convert those to linear ones along the known conversion [10]. Then,
the digital annulus formula of (2) can be converted into the digital plane formula
[11], defined by two inequalities of the form 0 ≤ Ax + By + z + C ≤ W where
W is the width.

The inequalities (2) are written as:(
r − w

2

)2
≤ −2ax− 2by + x2 + y2 + a2 + b2 ≤

(
r +

w

2

)2
. (3)

Letting ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z = x2 + y2,
A = −2a,
B = −2b,
C = a2 + b2 −

(
r − w

2

)2
,

C′ = a2 + b2 −
(
r + w

2

)2
,

(4)

we have that
0 ≤ Ax+By + z + C ≤ C − C′.

We can thus define the converted digital plane model as follows:

P =
{
(x, y, z) ∈ Z3 : 0 ≤ Ax+By + z + C ≤ C − C′} . (5)

Obviously this has the form of a digital plane [11], which is defined as a set of grid
points lying between two parallel planes, whose width is set to be W = C −C′.
Therefore, (5) leads to the following observation.

Observation 1. The problem of digital annulus fitting is equivalent to the prob-
lem of digital plane fitting for the model defined by (5).

This converted problem is described as follows.



256 M.S. Phan et al.

Fig. 1. Illustration of converting a circle (colored in blue) in 2D into a plane (colored
in red) in 3D. The converted 3D points are on the parabola z = x2 + y2 (colored in
violet).

Problem 2 (Converted digital plane fitting)
Input : A set S of discrete points bounded in a [0, δ]2 grid, and width w.
Output : A digital plane P containing the maximum number of inliers when the
input set is S′ = {(x, y, x2 + y2) : (x, y) ∈ S}.

Figure 1 illustrates the relationship betweenA andP, so that the 2D coordinates
(x, y) of A are converted into 3D coordinates (x, y, x2 + y2) of P. In fact, the
setting of new parameters in (4) is not efficient since ∀(x, y) ∈ [0, δ]2 ⇒ z =
x2 + y2 ∈ [0, 2δ2], and consequently the 2D grid of size [0, δ]2 for digital annulus
fitting is changed to the 3D grid of size [0, δ]2 × [0, 2δ2] for the converted digital
plane fitting; the grid size for z is too large in practice. We therefore define,
instead of (4), ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z = 1
2δ (x

2 + y2),
A = −a

δ ,
B = − b

δ ,

C = 1
2δ

(
a2 + b2 −

(
r − w

2

)2)
,

C′ = 1
2δ

(
a2 + b2 −

(
r + w

2

)2)
,

(6)

by dividing all the terms in (3) by 2δ. With this setting, we see that x, y ∈
[0, δ] ⇒ z = 1

2δ (x
2 + y2) ∈ [0, δ], so that we have a 3D grid [0, δ]3 for digital

plane fitting.
Concerning the ranges of the new parameters A, B, C and C′, we first obtain

a, b ∈ [0, δ] ⇒ A = −a
δ , B = − b

δ ∈ [−1, 0]. Accordingly, the search space for
the converted digital plane is reduced, compared with the standard digital plane

fitting. To enforce
(
r − w

2

)2
and

(
r + w

2

)2
to be positive, C and C′ in (6) must

satisfy

C,C′ ≤ a2 + b2

2δ
or equivalently, C,C′ ≤ δ(A2 + B2)

2
.
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This indicates that the ranges of the parameters C and C′ depend on those of

A and B, and we can simply specify that C,C′ ∈ [−δ, δ(A2+B2)
2 ].

We also recall that the width W of a digital plane, converted from a digital
annulus, is given by

W = C − C
′
=

rw

δ
(7)

after the normalization of (6). This indicates that W is not constant, but depends
on the radius r of the digital annulus. Therefore, our converted digital plane
fitting problem is different from the standard one [6] in that the width W is not
a constant. Since we obtain from (6)

r =

√
δ(A2 +B2)

2
− 2δC +

w

2
, (8)

we can also say that W depends on A, B and C. In other words, once we set
the values for A, B and C, we can automatically set the value for r, and thus
for W as well.

For this converted digital plane fitting problem, we apply the approximate
method, which is originally proposed for the standard digital plane fitting prob-
lem [6]. We show in the next section that the dependency of W on A, B and C
does not critically obstruct applying the approximate method to our converted
digital plane fitting problem.

3 Approximate Method for Digital Annulus Fitting

3.1 Method Outline

The proposed digital annulus fitting algorithm consists of four steps, as described
in Algorithm 1. In the first step, we convert the problem of digital annulus fitting
into a problem of digital plane fitting by using the notions presented in the
previous section. In other words, a set of points S in the 2D grid of size [0, δ]2 is

transformed into the set of points S′ = {(x, y, x2+y2

2δ ) : (x, y) ∈ S} in the 3D grid
of size [0, δ]3. In the second step, we build a data structure with respect to S′ for
the approximate halfspace range searching algorithm. More precisely, we specify
a query set H for approximate halfspace range searching with a given bounded
error ε, and generate a data structure that allows to answer the following query:
for any plane h ∈ H, how many points of S′ are on or below h with the bounded
error ε. In the third step, we first modify the query for the digital plane fitting
with width W + 5ε, i.e., we count the number of points of S′ that lie between
two parallel planes with distance W + 5ε. We then find an approximate digital
plane with the maximum number of inliers. The final step is to interpret the
result of the converted problem as that of the original digital annulus problem.

As Steps 1 and 4 are already explained in the previous section, we describe
Steps 2 and 3. Furthermore, we discuss the complexity of our proposed method.
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Algorithm 1. Approximate digital annulus fitting

Input: A set S of discrete points bounded in [0, δ]2 grid, an approximation
error ε > 0, a digital annulus width w > 0.

Output: The fitted digital annulus A containing the maximum number of
inliers in S.

1 Convert Problem 1 into Problem 2;
2 Build a data structure for approximate halfspace range searching;
3 Make queries about range counting for all of the approximate digital planes and

Find the one that contains the maximum number of inliers;
4 Interpret the result of the digital plane fitting as digital annulus fitting.

3.2 Data Structure for Approximate Halfspace Range Searching

As this part is based on the work of Fonseca et al. [9], we first summarize their
method, and then explain the changes suitable for our problem.

Given a set of 3D points T and a plane h in the form Ax+ By + z + C = 0,
halfspace range searching (or counting) is the problem of counting the number
of points of T that are on, or below h. In order to solve this problem, Fonseca
et al. [9] have proposed an approximate method with a bounded error ε > 0.

One of the main ideas of the method is to define a sufficiently large finite
set of planes H, so that any query plane is approximated by some plane in H
with bounded error ε. In this paper, H is obtained by generating different slopes

A,B ∈ [−1, 0] and different intercepts C ∈ [−δ, δ(A2+B2)
2 ]; for their ranges, see

the previous section. For A and B, the interval of their variations should be set
to be ε

δ , while it should be ε for C (see [9] for more details).
For each plane h ∈ H, we compute a counting function f(T ∩ h) that returns

approximately the number of points of T that are on, or below h. The objective
of constructing a data structure is to compute this function f(T ∩ h) for all
the planes h ∈ H. Points within distance ε from a plane h may or may not be
reported.

The computational complexity is described as follows:

Theorem 1. (Fonseca et al. [9]) For a set of N points in the [0, 1]3 unit grid
and some ε > 0, one can build a data structure with O(ε−3) storage space, in
O(N+ε−3logO(1)(ε−1)) time, such that for a given query plane h, the number of
points on or below h can be approximately reported in O(1) time, in the following
sense: all the points (below h) that have a larger distance than ε from h are
counted. Points that are closer to h on both sides may or may not be reported.

In fact, in order to obtain this complexity (linear to N), we build a data structure
based on an octree. Let us call a [0, δ]3 grid a primitive cube, which is divided
into 8 children. Its children are also divided recursively into 8 subcubes, until
the size of divided cubes equals ε. Let X be a cube generated from a primitive
cube, and T be a set of points bounded by X in dimension δ. We then verify
whether each plane of H passes through X , and compute f(T ∩h), ∀h ∈ H in the
following way. Let Xi denote the children of X , for i = 1..8, and Ti = Xi ∩ T .
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We then compute f(T ∩ h) by summarizing all the results from its children
f(Ti ∩ h), which is also recursively computed, as follows:

f(T ∩ h) =

⎧⎪⎪⎨⎪⎪⎩
8∑

i=1

f(Ti ∩ h) if the size of X is larger than ε and h ∩X �= ∅,

0 if the size of X is larger than ε and h is below X ,
|T | otherwise.

(9)

Finally, the data structure of a primitive cube is built recursively. Figure 2 illus-
trates a 2D example for computing the counting function f(T ∩ h) of (9).

Fig. 2. Illustration for recursively computing f(T ∩h) in a 2D case (a line) by dividing
a primitive square (corresponding to a cube in 3D) into 4 children. The light grey cells
are the squares of size ε through which a query line h goes, while the dark grey cells
are the squares below h. See (9) for the definition.

3.3 Query for Approximate Digital Plane Fitting

After building a data structure for a set of points S′ in the [0, δ]3 grid, we count
the number of points lying in every digital plane, i.e., between a pair of parallel
planes with distance W . In order to calculate it approximately, we need a finite
query set Q of approximate digital planes for our converted digital plane fitting
as follows. For each plane h ∈ H, we take the values of A, B and C of h for the
digital plane parameters A, B, and C, respectively. Once the values of A, B and
C are fixed, we can automatically set C′ or W from (7) and (8), i.e., the rest of
the digital plane parameters. To generate a query for approximate digital plane
fitting with a width W , we refer to the following theorem presented in [6].1

Theorem 2. (Aiger et al. [6]) Given a set of N points in [0, δ]3, and some
ε > 0, W > 0, a digital plane of width W +5ε that contains n > nopt points, can
be found in O(N + ( δε )

3logO(1)( δε )) time, where nopt is the maximum number of
points that any digital plane of width W in [0, δ]3 can contain.

1 Even if the original theorem was proposed for N points on a [0, δ]3 grid, the theorem
itself, as well as the proposed method, is established for a more general setting such
that the N points can simply be in [0, δ]3 regardless of any grid.
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In fact, we need to generate a new query set Q such that any digital plane
with width W is completely contained in at least one of the digital planes in Q.
Theorem 2 indicates that such query digital planes must have a width of at least
W +5ε. In other words, due to this setting, the important property, n ≥ nopt, is
guaranteed. Even if W is not constant as in this paper, because it depends on
each parameter set of A, B and C, this result is still valid.

An approximate solution of the converted digital plane fitting is obtained by
finding the digital plane in Q in which the number of points is maximized.

Fig. 3. Relationship between approximate (dotted line) and optimal digital line (con-
tinuous line). There is at least one approximate digital line that contains the optimal
digital line.

3.4 Complexity of the Approximate Digital Annulus Fitting

As a result, we obtain the next corollary from Theorem 2 after minor adaptations.

Corollary 1. Given a set of N points on a grid [0, δ]2, and some ε > 0, w > 0,
a digital annulus of width w+5 δ

r ε that contains n > nopt points, can be found in

O(N + ( δε )
3logO(1)( δε )) time, where r is the radius of a digital annulus of width

w + 5 δ
rε and nopt is the maximum number of points that any digital annulus of

width w in [0, δ]2 can contain.

This corollary shows that the proposed method has linear computational com-
plexity with respect to N . Obviously, if we decrease the bounded error ε, the
computational time increases due to the second term, just like for approximated
digital plane fitting; see Theorem 2. The difference to Theorem 2 is that ε can-
not be tuned directly in the original 2D grid for digital annulus fitting, but
in the 3D grid for the converted digital plane fitting. In other words, we can
give ε as a constant ambiguous zone around the border of a digital plane in 3D
(i.e. a zone in which points may or may not be counted), but once we project it to
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(a) (b)

(c) (d)

Fig. 4. The fitted digital annuli (colored in red) for ε = 1.5 (a) and ε = 1.0 (b). They
contain the true digital annulus (colored in blue). The converted digital planes are also
illustrated for ε = 1.5 (c) and ε = 1.0 (d).

2D before the conversion, the corresponding ambiguous zone becomes δ
rε which

is obtained from (7).

4 Experiments

The 2D point cloud data used for the experiments were created as follows. By
using the digital annulus A of (2) with w = 3.0, a = b = 100.0, we randomly
generated 400 inliers that satisfy A, and 100n outliers that do not satisfy A,
for n = 0, . . . , 10; there are 11 variations for the number of outliers. All of the
generated points are bounded in the [0, 200]2 grid. The values for the parameters
of the converted digital planes P of (5) are also computed: A = B = −0.5,
C = 30.1975 and C′ = 28.84. Note that the experiments were run on a standard
PC with core i3 CPU at 2.20 GHz.

In the first experiment, we had n = 1 constant (i.e., 100 outliers) for the input
data and observed the fitting results by using different bounded errors such that
ε = 3.0, 2.5, 2.0, 1.5, 1.0. As seen in Table 1 and Figure 4, the number of inliers
decreases as ε becomes smaller, and it tends to converge to the ground-truth
solution. Clearly, the smaller the value of ε, the more precise the solution. Con-
cerning the runtime, it is in fact polynomial in factor ε (see Figure 6). Therefore,
we need to select an appropriate ε (for example 1.5 or 1.0 for this experiment)
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Table 1. Results of digital annulus fitting with varied ε to the data with n = 1

ε runtime parameters
(approx. a b r A B C C′ inliers
method)

3.0 7.80 sec 96.0 96.0 89.62 -0.48 -0.48 34.0 18.0 441

2.5 13.11 sec 92.5 97.5 90.89 -0.46 -0.49 31.5 17.5 435

2.0 26.43 sec 96.0 104.0 95.03 -0.48 -0.52 33.0 22.0 425

1.5 59.46 sec 99.0 96.0 90.64 -0.48 -0.50 31.5 22.5 419

1.0 200.54 sec 100.0 98.0 89.46 -0.50 -0.49 32.0 26.0 406

ground truth 100.0 100.0 90.5 -0.50 -0.50 30.20 28.84 400

for assuring a reasonable runtime and an approximate solution which is not far
from the ground-truth.

In the second experiment, we decided to use ε = 1.5 for digital annulus fit-
ting, for all the input data sets (i.e., different numbers of outliers, 100n for
n = 0, . . . , 10). As seen in Table 2 and Figure 5, numbers of inliers are always
greater than 400 (i.e., the number of inliers for the ground-truth digital annu-
lus) and the parameter values are almost similar, while the runtimes are linear
- almost constant (around 1 minute). For comparison, the exact algorithm [8]
with computational complexity in O(N3 logN) was also applied. The obtained
parameter values are a = 99.25, b = 99.5 and r = 90.65 for all n. The runtimes,
shown in Table 2 and Figure 6, are indeed polynomial with respect to the number
of points.

Table 2. Results of digital annulus fitting with ε = 1.5 to the data with 100n outliers.
The runtimes of the approximation method and the exact method are compared.

outliers runtime parameters runtime
(100n) (approx. a b r A B C C′ inliers (exact.

method) method)

0 46.20 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 400 1 m 22 sec

100 59.46 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 419 2 m 45 sec

200 61.48 sec 94.5 96.0 92.46 -0.47 -0.48 28.5 19.5 437 4 m 45 sec

300 63.83 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 454 7 m 43 sec

400 63.94 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 476 11 m 37 sec

500 64.57 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 500 16 m 43 sec

600 65.00 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 519 23 m 8 sec

700 65.22 sec 96.0 102.0 90.66 -0.48 -0.51 33.0 24.0 551 30 m 49 sec

800 65.77 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 570 40 m 24 sec

900 66.04 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 591 51 m 3 sec

1000 66.18 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 618 64 m 8 sec

ground truth 100.0 100.0 90.5 -0.50 -0.50 30.20 28.84 400
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(a) (b) (c)

(d) (e) (f)

Fig. 5. The fitted digital annuli (colored in red) with 100n outliers in input for n = 1
(a), n = 4 (b), n = 10 (c). They contains the true digital annulus (colored in blue).
The converted digital planes are also illustrated for n = 1 (d), n = 4 (e), n = 10 (f).

(a) (b)

Fig. 6. Runtimes of digital annulus fitting with respect to varied ε (a) and to number
of outliers (b)

5 Conclusion

This paper presented an approximation method for fitting a digital annulus.
Given N points in a [0, δ]2 grid, a width w and an approximation parameter ε,
the fitted digital annulus that contains the maximum number of points with a
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width w + 5 δ
r ε, is found in O(N + ε−3logO(1)(ε−1)) time. The method is linear

in the number of points N , but it is polynomial in approximation parameter ε.
Therefore, we need to find an appropriate ε for assuring a reasonable runtime.
The method is also robust to outliers. The number of inliers converges to the
optimal solution when ε decreases.
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Abstract. In the present paper, we introduced an arc recognition tech-
nique suitable for irregular isothetic object. It is based on the digital
inter-pixel (DIP) circle model, a pixel-based representation of the Ko-
valevsky’s circle. The adaptation to irregular image structurations allows
us to apply DIP models for circle recognition in noisy digital contours.
More precisely, the noise detector from Kerautret and Lachaud (2009)
provides a multi-scale representation of the input contour with boxes
of various size. We convert them into an irregular isothetic object and,
thanks to the DIP model, reduce the recognition of arcs of circles in this
object to a simple problem of point separation.

Keywords: Arc recognition, Irregular isothetic grid, Digital circle.

1 Introduction

The recognition of circles from noisy image data has been widely studied since
60’s, and was first introduced by Duda and Hart [5]. The Hough Transform is
a powerful tool, robust to noise and to missing parts of an object. Neverthe-
less, computational and storage requirements of the algorithm are O(n3) for
circles, where n is the size of the input data. Heuristic techniques [15] or non-
deterministic algorithms [10] are faster but do not guarantee the same accuracy.

Arcs and circles can also be recognized from extracted contours. P. Dam-
aschke [3] presented a linear-time algorithm by showing that the problem of
circle recognition is equivalent to solve a set of inequalities in dimension 3 [11].
Online algorithms with a O(n4/3) time complexity are introduced in [1,16] to
segment a digital curve into arcs. All of these techniques are based on the re-
duction of the problem to a circle separation problem. However, this kind of
approaches has the main drawback of not being suitable for noisy contours.
In [12], the authors proposed a novel approach, online and linear in time, based
on a tangential space. The contour needs to be first polygonized. Thus, noisy

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 265–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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contours can be handle by using blurred segments [4] rather than digital seg-
ment. In [13], the method is improved with the used of a noise detector [6,7] to
adapt the width of each blurred segment to the data.

In the present paper, we introduce a new digital circle model (DIP -circle)
easy to recognize throw circle separation. It extends to irregular isothetic ob-
jects and provides arc recognition in such objects. We thus propose a complete
unsupervised scheme that aims at recognizing arcs of circle from noisy image
data in O(n4/3).

In Section 2, we introduce the definition of circle (DIP -circle) on which we
based our work. In Section 3, we give some recalls about irregular isothetic
grids and objects. We also present how DIP -circles extend to such grids and
allow reduction of the arc recognition problem to a circle separation problem.
In Section 4, we present the unsupervised arc recognition scheme and several
experiments validating it and giving some clues about its accuracy.

2 Digital Inter-Pixel Circles

2.1 Basic Notions and Recalls

Let {e1, e2} denote the canonical basis of the Euclidean vector plane and o its
origin. A point x is then defined by x = x1e1 + x2e2. Let ⊕ be the Minkowski
addition such that A⊕ B = ∪b∈B{a+ b : a ∈ A}. It is also known as dilation.
The pixel associated to an integer point x is the dilation P(x) = {x}⊕B∞(1/2)
where B∞(1/2) is the ball of radius 1/2 based on the �∞-norm, or, in other
words, the square of side 1 centered at x. The interface between two pixels is
their intersection. A digital object is a set of integer points or a set of pixels,
depending of the context.

Two integer points x and y are said to be 4-adjacent if ‖x−y‖1 = |x1− y1|+
|x2 − y2| = 1. Similarly, two integer points x and y are said to be 8-adjacent if
‖x−y‖∞ = max{|x1−y1|, |x2−y2|} = 1. By extension, two pixels are k-adjacent
(k = 4 or k = 8) if their associated integer points are k-adjacent. We also called
them k-neighbors.

A k-path is a sequence of integer points such that every two consecutive points,
in the sequence, are k-adjacent. If each point appears only one time in the path
and admits at most two k-neighbors in, then it is called a k-arc. A digital object
E is k-connected if there exists a k-path in E between any two points of E. A
maximum k-connected subset of E is called a k-connected component. Let us
suppose that the complement of a digital object E, Zn \E admits exactly two k-
connected components F1 and F2, or, in other words, that there exists no k-path
joining integer points of F1 and F2, then E is said to be k-separating in Zn.

2.2 A New Digital Circle Model

Let cc,r be the characteristic polynomial of a circle of center c ∈ R2 and r ∈ R+.
One has:

∀x ∈ R2 : cc,r(x) = (x1 − c1)
2 + (x2 − c2)

2 − r2.
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Definition 1 (Digital Inter-pixel Circle). Let c ∈ R2 and r >
√
2/2. The

digital inter-pixel circle (DIP-circle for short), CDIP(c, r) is defined as follows:

CDIP(c, r) =

⎧⎪⎪⎨⎪⎪⎩p ∈ Z2 :

−|p1 − c1| − |p2 − c2| −
1

2
< cc,r(p)

and

cc,r(p) ≤ |p1 − c1|+ |p2 − c2| −
1

2

⎫⎪⎪⎬⎪⎪⎭ .

Property 1 (Topology of a DIP -circle). A DIP -circle is a 4-connected and 8-
separating set.

Let c ∈ R2 and r ∈ R. Let D be the set of pixels with associated integer point
in the disk of center c and radius r. The Kovalevsky’s circle [9] of center c and
radius r is then the set of vertices of the inter-pixel boundary of D (the interfaces
of the pixels in D with pixels not in). The DIP -circle model is strongly related
to this type of circles.

Property 2 (DIP -circle and Kovalevsky’s circle). The Kovalevsky’s circle of cen-
ter c and radius r defines the same set of points as CDIP(c

′, r) ⊕ (−1/2,−1/2)
with c′ = c⊕ (1/2, 1/2).

Kovalevsky’s circles and DIP -circles are identical up to a translation. Kovalesky’s
circles thus allow us to link DIP -circles with the inter-pixel boundary.

2.3 DIP-Circles Recognition

Circle recognition from inter-pixel boundary (vertices and edges) directly re-
duces to a circle separation problem: inner and outer points are easily obtained
with boundary tracking. From DIP -circles - only the vertices of the inter-pixel
boundary - the reduction to a circle separation problem is no more trivial. Some-
times DIP -circles contain pixels with more than two 4-neighbors and we lack
information to track the boundary (one neighbor is the previous pixel in the
tracking and one can not decide which of the two remaining pixels is the next
one. . . ). Thus, we only consider recognition process of DIP -circle performed on
4-arcs.

Fig. 1. In a 4-arc, a DIP -circle may be recognized by resolving a separation problem
between the extremities of each interface between two 4-adjacent pixels
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Property 3 (Characterization of 4-arcs of DIP -circles). Let p and q be two
4-adjacent integer points of CDIP(c, r) such that they form a 4-arc with their
4-neighbors in CDIP(c, r). Then, we have:
- both P(p) and P(q) deprived of their interface intersect the circle C(c, r),
- the circle C(c, r) intersects only in one point the interface between P(p) and
P(q) deprived of its end points at a distance to c lower than r.

Property 3 allows to easily convert the recognition of arcs of DIP -circle into a
circle separation problem: the parameters of the recognized DIP -circle are the
same of those of a circle which separates the both extremities of each interface
between two 4-adjacent pixels in a 4-arc, as in Figure 1.

3 Digital Inter-Pixel Circles on I-grids

We first recall the I-grid (Irregular Isothetic grid) model [2,17]:

Definition 2 (2-D I-grid). Let R be a closed rectangular subset of R2. A 2-D
I-grid G is a tiling of R with closed rectangular cells whose edges are parallel to
the X and Y axes, and whose interiors have a pairwise empty intersection. The
position of each cell R is given by its center point (xR, yR) ∈ R2 and its length
along X and Y axes by (lxR, lyR) ∈ R∗

+
2.

This model permits to generalize many irregular image representations such as
quadtrees, kd-trees, run-length encodings, and the geometry of frames encoded
with video coding standards like MPEG, H.264, etc.

We also define some topological objects on I-grids, thanks to the following
definitions.

Definition 3 (ve−adjacency and e−adjacency). Let R1 and R2 be two cells.
R1 and R2 are ve−adjacent (vertex and edge adjacent) if :

or

⎧⎨⎩ |xR1 − xR2 | =
lxR1

+lxR2

2 and |yR1 − yR2 | ≤
lyR1

+lyR2

2

|yR1 − yR2 | =
lyR1

+lyR2

2 and |xR1 − xR2 | ≤
lxR1

+lxR2

2

R1 and R2 are e−adjacent (edge adjacent) if we consider an exclusive “or” and
strict inequalities in the above ve−adjacency definition. The letter k may be
interpreted as e or ve in the following definitions.

An other important notion for our work is the concept of order on I-grids. In the
following, we will consider the total order relations based on the cell borders.
We denote the left, right, top and bottom borders of a cell R respectively RL,
RR, RT and RB. The abscissa of RL, for example, is equal to xR − (lxR/2). In
the following, we also denote by ≤

x
(resp. ≤

y
) the natural order relation along X

(resp. Y ) axis. It is legitimate to use the order ≤
x

on left and right borders of
cells and the order ≤

y
on top and bottom borders of cells.
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Definition 4 (Order relations on an I-grid). Let R1 and R2 be two cells of
an I-grid G. We define the total order relations �L and �T , based on the cells
borders:

R1 �L R2 ⇔ RL
1 <

x
RL

2 ∨
(
RL

1=x
RL

2 ∧RT
1 ≤y RT

2

)
;

R1 �T R2 ⇔ RT
1 <

y
RT

2 ∨
(
RT

1 =y
RT

2 ∧RL
1≤xRL

2

)
.

A k-path from R to R′ is a sequence of cells (Ri)1≤i≤n with R = R1 and R′ = Rn

such that for any i, 2 ≤ i < n, Ri is k-adjacent to Ri−1 and Ri+1.

Definition 5 (k-arc). Let A = (Ri)1≤i≤n be a k-path from R1 to Rn. Then A
is a k-arc iff each cell Ri has exactly two k-adjacent cells in A except R1 and
Rn which have only one k-adjacent cell in A. The cells R1 and Rn are called the
extremities of A.

Fig. 2. In an e-arc on I-grids, a DIP -circle may be recognized by resolving a separation
problem between the extremities of each interface between two e-adjacent cells

Our purpose is now to extend the DIP-circle model we have previously presented
to this kind of grids. The extension we use is natural.

Property 4 (Characterization of e-arcs of DIP -circles). Let R1 and R2 be two
e-adjacent cells of CDIP(c, r) such that they form a e-arc with their e-neighbors
in CDIP(c, r). Then, we have:
- both R1 and R2 deprived of their interface intersect the circle C(c, r),
- the circle C(c, r) intersects only in one point the interface between R1 and R1

deprived of its end points at a distance to c lower than r.

The reduction of the arc recognition problem in an I-grid to a circle separation
problem follows the same principle as in a regular grid: the parameters of the
recognized DIP -circle are the same of those of a circle which separates the both
extremities of each interface between two e-adjacent cells of the initial e-arc, as
in Figure 2.

4 Application to Noisy Contour Reconstruction

In this section, we attempt to build a global system of recognition of arcs of
circles through digital contours. Our goal is to confront the concepts previously
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introduced to practical cases. At this point, it is mainly used to recognize circles,
since it applies only to contours of disk-shaped objects. The limitation comes
from the difficulties to deduce global k-arcs from any irregular isothetic object.
At the end of the present paper, we point out some perspectives on how to
overcome this limitation.

4.1 Method

The flowchart of our method is given in Figure 3. Our arc reconstruction method
is divided into three main steps: a multi-scale noise detection, a topological recon-
struction of the resulting object and a translation into a circle separation problem.

Fig. 3. The global scheme of our method, where an example leads to the recognition
of one arc of circle (the complete circle)

The noise detector developed in [6,7] exploits the known asymptotic properties
of maximal straight segments for flat parts, or smooth curved parts, of a digital
contour. Asymptotic properties hold for finer and finer scale, but it appears that
in practice, it fits also well for coarser and coarser scales. The contour is then
subsampled at different scales and the asymptotic properties are tested. If they
are not satisfied, the finer scales are removed and the properties tested again.
Each contour point is then covered by a square cell, called meaningful box, whose
size is the finest resolution determined by this scale detection. Finally, the higher
the local amount of noise is, the bigger the meaningful box is. In Figure 4, we
present the result of this process on a sample noisy image, the set M of the
meaningful boxes deduced from the contour of the black object.

As shown in Figure 4(b), the meaningful boxes of M overlap and thus cannot
be viewed as an irregular isothetic object directly (Definition 2). However each
one contains a given number of pixels (at the initial resolution) so that the set
of boxes covers a subset of the input image. This subset P , which is an irregular
isothetic object, is transformed into four k-arcs (Definition 5). Instead of using
a unique order relation over the complete object M, we use either �L or �T ,
depending on the position of the treated cells. More precisely, we use the follow-
ing procedure (see also Figure 5):

(1) We compute the barycenter p̄ of the input digital object, based on the center
of the pixels belonging to P .
(2) We construct two straight lines �1 and �2 passing through p̄, with slopes 1
and -1. These lines define four quadrants in the Euclidean plane.
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(a) (b)

Fig. 4. We analyze the noise of a digital contour to get a multi-scale structure

(3) We use the topological reconstruction algorithm from [17] with �L order for
pixels of P in quadrants 1 and 3 and �T order for pixels of P in quadrants 2
and 4.
The result is a set of four e-arcs, one in each quadrant defined by �1 and �2. Cells
on both side of the boundary between two quadrant can overlap. For clarity
issues, overlapping cells are not drawn in Figure 5.


L


T 
T


L

Fig. 5. The construction of the barycenter at the intersection of �1 and �2

Then, we consider the interface (Euclidean segments shared) between two
consecutive cells in the e-arcs over the quadrants 1 to 4, in the clockwise order.
Finding circles inside the original noisy contour can now be considered as a
problem of separation of the points defined as the extremities of these segments.
To do so, we apply Algorithm 1 introduced by Roussillon et al. [16]. It is online
and its time complexity is basicallyO(nS

2) (nS is the number of input segments),
but may be optimized to O(nS

4/3) and even seems to be linear in practice.
Algorithm 1 first aims to recognize a set of straight lines Pl(Aj) passing

through the input intervals (also known as preimage), from line 3 to 7 (Fig-
ure 6(a)). This recognition process is realized in an incremental way, by inserting
input segments in the arc Aj . The end of this phase means that no straight line
can pass through Aj . Then, a fixed point p is selected from one of the extremities
of the interval that fails the first step. The arc Aj is updated so that it represents
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Algorithm 1. Computation of a set of arcs of circles from a set of segments
input : A set of nS intervals (segments) S = {Si}1≤i≤nS

output: A set of nA arcs of circles A = {Aj}1≤j≤nA

i ← 1, j ← 1 ;1
do2

Aj ← {Si} ; {Aj is considered as a straight arc of radius ∞}3
do4

i ← i+ 1 ;5
Aj ← Aj ∪ {Si} ;6

while i ≤ nS ∧ Pl(Aj) �= ∅ ;7
{Aj is not straight anymore, since its preimage Pl(Aj) is empty }
Choose a point p ∈ Si ; {p is the fixed point}8
Update radius and support points of Aj ;9
{Aj is the arc of circle passing through p and two support points in Aj }
do10

i ← i+ 1 ;11
Update radius, fixed point and support points of Aj with Si ;12

while i ≤ nS ∧ Pc(Aj) �= ∅ ;13
A ← A∪ {Aj} ;14
j ← j + 1 ;15

while i ≤ nS ;16

a circle passing through p and two support points of Aj . These points belong to
the partial upper and lower convex envelopes of the set of points to separate [16].
While intervals are added incrementally, the support points and the fixed point
are updated to fit the circle at best to the input segments (Figure 6(b)). This
second phase, from line 10 to 13 in Algorithm 1, finishes once the set of circles
passing through Aj , denoted by Pc(Aj), is empty. The arc Aj is added to the
set of recognized arcs A, lines 14 and 15, and a new arc may be constructed. If
the number of segments nS is achieved at this moment, the result only contains
one arc, as in Figure 6(c).

4.2 Experiments

Synthetic Image. Throughout Section 4.1, we illustrate the different steps of
our method with the example of a circle with non uniform noise distribution. It is
reconstructed as a single circle with parameters different from those of the circle
used to generate the image (see the result in Figure 6(c)). The circle separation
problem our method solves has generally many solutions and Algorithm 1 chooses
only one. We have checked that the original circle is also one of the solutions.

Sun Image at Different Resolutions. In Figure 7, we consider a sun image
of size n× n, with two different resolutions n = 512 and n = 1024. A contour of
the sun is extracted by a simple thresholding. In both cases, our method succeeds
in reconstructing only a single circle.
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(a)

(b)

(c)

Fig. 6. The first step of Algorithm 1 consists in recognizing a segment (a). When this
phase stops, a first arc of circle is constructed, passing through a fixed point (indexed
3), and two support points (indexed 1 and 2). This process continues, and these three
points are updated, leading to the update of the circle recognized (b). The process
stops when all the input intervals are treated (c).
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When we consider the highest resolution available for this picture (n = 2400),
we obtain a decomposition of 33 arcs of circles. At this scale the small details
of the digital contour are no more considered as noise and the algorithm is now
able to detect arcs defined in finer resolution.

(a) n =512 (b) n =1024 (c) n =2400

Fig. 7. The extraction of one circle realized on an image of Sun, for the 512 and 1024
resolutions. For the original resolution (2400), our method leads to a decomposition of
33 arcs of circles.

Non-circular Shapes. We have also tested our method on an image of road
sign (of 520×340 pixels), where the contour is roughly elliptic. In this case again,
we are able to extract arcs of circles close to the real contour, as illustrated in
Figure 8.

(a) Meaningful boxes (b) Arcs of circles, nA = 7

Fig. 8. Extraction of the meaning boxes from the road sign (a), and its associated
decomposition into 7 arcs of circles (b)
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5 Conclusion and Future Works

In the present paper, we have introduced a new circle model close to the Ko-
valevsky’s one. Thanks to its links with the inter-pixel boundary, it is provided
with interesting properties to be recognized through the resolution of a circle
separation problem. Moreover, it extends nicely to irregular isothetic grids and
objects.

From a practical point of view, we have designed a simple arc recognition
scheme. It involves recent results in the fields of digital geometry about noise
detection, isothetic irregular objects and digital circles. Each step can be pro-
ceeded in linear time with respect to the length of the digital contour analyzed.
Applications to synthetic images ensure that we are able to evaluate a promis-
ing method, whereas applications to real images show its concrete interest and
efficiency. Nevertheless, deeper tests and comparisons with existing recognition
schemes should be performed.

In future works, we plan to improve the decomposition of the irregular iso-
thetic object into e-arcs. In the scheme presented in the present paper, we can
only process disk-shaped objects. This is due to the naive decomposition of the
isothetic object used to reconstruct e-arcs : we break it, according to the case of
circles, into quadrants where the total order relation �L applies and quadrants
where the total order relation �T applies. This limitation can be overcome by
adapting the decomposition to the treated object. A first approach could con-
sist in recognizing segments in the set of the meaning boxes; their directions
are indeed sufficient to choose the appropriate order relation for each part of
the contour. A second approach could consist in computing the isothetic objects
associated to each total order relation. Then, an approriate decomposition is a
cover of the set of meaningful boxes by e-arcs of these isothetic objects.

The decomposition in both arcs and segments of noisy contours is also a
question we intend to address. Indeed, tools and approaches for both primitives
are similar [18,19].
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Abstract. In some applications, the tomographic reconstruction is not
an end in itself. When the goal is rather to gather information about the
object being studied, the question is if it is more interesting to directly
extract these information from the projections without the reconstruct-
ing step. We would then know if less projections are needed to directly
get the information than to reconstruct the object. In this paper, we
address the problem of extracting quantitative information about an ob-
ject namely an estimation of its area, an upper and a lower bound to the
perimeter given its projections from point sources.

1 Introduction

Tomographic reconstruction aims to reconstruct the image of an object given
its projections. In some applications, this is done in the purpose of gathering
information about this object. This information can be of a qualitative type: the
topology (connexity, Euler number, tree of connected components), the geometry
(convexity, shape). The information sought can also be of a quantitative type:
perimeter, surface area, curvature,etc.

Many researches were lead to know how many projections are needed for
the tomographic reconstruction and how this reconstruction is possible in an
optimal way. For example, in [6] it is proven that we need three point sources
to reconstruct a convex set. The aim of our study is to answer the following
question: do we need less projections to directly get the information without
reconstructing the image of the object? In this case, it would be more interesting
to skip the reconstruction step

In literature, some papers worked on this idea. For example in [5] the small-
est possible boundary length of the projected set is estimated from horizontal
and vertical projections, in [3] the perimeter of convex sets is estimated from
horizontal and vertical projections. In [2], decision trees are used to classify hv-
convex sets only from their projections. The cited works consider projections
from parallel X-rays, while we address here the problem for projections from
point sources. This context is more realistic and general than the parallel X-rays
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since the latter is obtained via an approximation supposing that the point source
is at an infinite distance from the object being studied.

This paper is organized as follows. In Section 2 we define the basic tools that
will be used in this work. Section 3 is dedicated to the estimation of the surface
area from point source projections while in Section 4 an upper and a lower bound
to the perimeter are presented.

2 Definition and Notation

In this section we introduce the notation and define the tools that will be useful
in the paper. When a statement is true as well in R2 and in Z2, we use the
notation S2.

All topological notion used in this paper is considered relatively to the usual
topology (Euclidean topology).

With no loss of generality, we consider that the point sources are collinear on
the x-axis.

We start by defining the notion of line segment in the continuous and the
discrete space:

Definition 1. Let a, b ∈ S2. We define the continuous line segment as [a, b] =
{λa+ (1− λ)b | 0 ≤ λ ≤ 1}.

When a, b ∈ Z2, we define the discrete line segment as �a, b� = [a, b] ∩ Z2.

Let E be a subset of R2 and a and b be two distinct points of R2. We use the
following notation:

– If E is a finite set, then |E| is the cardinality of E indicating the number of
elements of E.

– δE is the boundary of E.
– E̊ is the topological interior of E.
– (ab) is the straight line joining a and b.
– P(E) is the powerset of E (P(E) = {F |F ⊆ E}).
– A ray or a half-line Rθ from a point S = (x0, y0) in the direction −→u θ =

(u1, u2) where ||−→u θ|| = 1, and cos θ = u1 and sin θ = u2 can be defined in
different ways:

Rθ =
{
(x, y) ∈ R2 | u2(x− x0)− u1(y − y0) = 0 and x ≥ x0

}
;

= {(x0, y0) + λ−→u θ | λ ≥ 0} ;

=
{
M ∈ R2 | P̂ SM = θ

}
;

where P̂ SM denotes the angle between (SP ) and (SM) with P = S+(1, 0)

(see Figure 1.). In what follows, the angle P̂ SM is denoted θM .
– For a point S ∈ R2, we define the set K(S, S2) formed by all the angles of

all the rays issuing from S and passing through points of S2 with respect to
the horizontal line passing through P = S + (1, 0):
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∗
S

uθM

P

RθM

θM

M

Fig. 1. The ray RθM is defined by the source point S and the angle θM

K(S, S2) =
{
θM ∈ [0, 2π[ | M ∈ S2

}
.

– L(E) and A(E) are respectively the perimeter and the surface area of E.

Definition 2. Consider a set E ⊂ R2, r > 0.
We denote by rZ2 the discrete grid having a resolution that is equal to p = 1/r

called r-grid.
We define the discretization operator Λr: P(R2) �→ P(rZ2) such that Λr(E) =

Er = E ∩ rZ2.

We now introduce the notions of projections from a point source.
The continuous projection (or R-projection) of E ⊂ R2 from the point source

S ∈ R2 \ E denoted XR(E, S, .): [0, 2π[ �→ R is:

XR(E, S, θ) =

∫ +∞

0

χE(S + t−→u θ)dt.

Where −→u θ = (cos θ, sin θ) and

χE(x) =

⎧⎪⎨⎪⎩
1 if x ∈ E

0 otherwise.

Then, XR(E, S, θ) = μ(E ∩Rθ) where μ is the usual Lebesgue’s measure on R.
Let r > 0, we define the notion of discrete projection from a point source on

the r-grid. Let S ∈ R2 and a finite subset D ⊂ rZ2 such that S /∈ D.
D being a finite set, we have a finite number of rays issuing from S and passing
through points of D and each of these rays passes through a finite number of
points of D. The rZ−projection of D from the point source S is the function
XrZ(D,S, .): [0, 2π[ �→ N such that:

XrZ(D,S, θ) = |Rθ ∩D| .

Finally, we define the support of the projection for a point source and the pro-
jected set [1].
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∗
S

Rθ

θ

XR(E, S, θ)

∗
S

Rθ

θ

Fig. 2. Continuous(left) and discrete(right) point X-rays

Definition 3. Let S ∈ S2 and E ⊂ S2 such that S /∈ E. The support of
S−projections of E for the point source S is the set:

SuppS(E, S) =
{
θ ∈ K(S, S2) | XS(E, S, θ) �= 0

}
.

3 Surface Area Estimation from Point X-Rays

In this section, we aim to find an estimation of the surface area of a set given
its projections.

Consider a set E ⊂ R2, r > 0 and Er = Λr(E).
We suppose in this subsection that we have the exact rZ-projections of Er

for any r. The sum of the projections of Er is the cardinality of Er and then is
the same for any point source. Let nr be the number of the rays from S passing
through all the points of Er. Given the projections from each of these rays, the
number of the points of Er is given by:

|Er| =
nr∑
j=1

srj .

where srj is the number of points of rZ2 lying on the jth ray corresponding to
an angle of SupprZ(Er, S).

In all the following, we suppose that we have the boundary δE = Γ1∪Γ2 such
that Γ1 and Γ2 respectively the graphs of continuous functions f1, f2 : [a, b] �→ R
with a, b ∈ R (see Figure 3 for illustration).

For each point P = (p1, p2) of rZ2, we consider the pixel centered at P :
W (P ) = {(x, y) ∈ R2 | |x− p1| ≤ r/2; |y− p2| ≤ r/2}. The area of W (P ) is then
equal to r2. This will be used to estimate the area of Er as follows:

A(Er) = r2 ∗
nr∑
j=1

srj ;

We present in the following proposition a new estimator of the area of E:

Proposition 1. Given a set E ∈ R2 with δE = Γ1 ∪ Γ2 such that Γ1 and Γ2

respectively the graphs of continuous functions and Er = Λr(E) with r > 0. We
have:

lim
r→0

A(Er)→ A(E)
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Γ1

Γ2

a b

Fig. 3. δE = Γ1 ∪ Γ2 such that Γ1 and Γ2 are the graphs of continuous functions

Proof. This proof is based on the Riemann Integral theory. Indeed, consider
a line (ab) that divides the boundary of E into Γ1 and Γ2 such that Γ1 and
Γ2 are respectively the graphs of continuous functions f1, f2 : [a, b] �→ R.
We can suppose with no loss of generality that (ab) is the x-axis. We are then

interested in measuring A(E) =
∫ b

a
f1(x) dx +

∫ b

a
f2(x) dx. Let us show how to

estimate
∫ b

a
f1(x). The same can be done for f2. We will cover the considered

area with rectangles of width equal to r starting from ar = #ar $ × r and ending

at br = � br � × r as illustrated on Figure 4.

Γ1

r
x

y

a bar br

Fig. 4. The area of the considered set is covered by rectangles of width equal to r

By the property of Riemann’s integral, we have:

lim
r→0

r ×
∑
i

min
x∈[i×r,(i+1)×r]

f1(ar + x)→
∫ b

a

f1(x) dx

In our case, we only have the points with coordinates in rZ2. For a rectangle i,

we consider ni = � f1(ar+i×r)
r � (see Figure 5). The additional error induced by

considering ni instead of f1(ar + i× r) on each rectangle of the partition is then
r × (f1(ar + i × r) − ni × r) where (f1(ar + i × r) − ni × r) ≤ r. Summing on
all the rectangles gives then an error that is at most equal to (b − a) × r. Yet,
limr→0(b − a)× r → 0.

There remains the parts we neglected when we started the rectangles at ar
and finished at br. Since f1 is continuous on the compact subset [a, b], there
exists M(f1) = max

x∈[a,b]
(f1(x)). The area of the neglected part is then at most

equal to 2× r ×M(f1) and so it tends to 0 when r tends to 0. �
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r

f1(ar + (i+ 1) ∗ r)

f1(ar + i ∗ r)

ni ∗ r

Ni ∗ r

Γ1

ar + i ∗ r ar + (i+ 1) ∗ r

(ni + 1) ∗ r

Fig. 5. The error on each rectangle of the partition is r × (f1(ar + i× r)− ni)

3.1 Example

Let E = [1, 2]2 be a square having the sides equal to 1. The projections from
any point source S ∈ R2 \E of Er = Λr(E), with r = 1/p > 0 and p ∈ N∗, verify
the following:

nr∑
j=1

srj = (
1

r
+ 1)2

The area of the pixel of rZ2 is equal to r2, and so :

A(Er) = (
1

r
+ 1)2 × r1 = 1 + 2r + r2

Then limr→0A(Er)→ 1 = A(E).

4 Perimeter Estimation from Point Sources

In this part we give two lower bounds and a higher bound to the perimeter of a
given set from two projections.

4.1 Lower Bounds of the Perimeter with One Point Source

A lower bound of the perimeter of a set E is given thanks to the following
property called the isoperimetric inequality [4]

L2(E) ≥ 4πA(E)
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∗
S

Fig. 6. The discretization of the square at a resolution 1/r contains ( 1
r
+ 1)2 points of

r − Z2

where A is the measure of the area enclosed by a curve of length L. When E is
a circle, we obtain the isoperimetric equality: L2(E) = 4πA(E).

From the isoperimetric inequality we can then deduce the following:

Proposition 2. Given E ⊂ R2 and a point source S ∈ R2. The perimeter L(E)
of E necessarily verifies the following inequality:

L2(E) ≥ 4π lim
r→0

A(Er) (1)

When E is convex, another lower bound of the perimeter can be given thanks
to the Crofton Formula:

Proposition 3. [Crofton Formula] Let γ : [0, 1] �→ R2 be a planar curve.
Then the length of γ is given by

l(γ) = 1/2
∫∫

P
ηγ(ρ, θ) dρdθ

where P = R+ × [0, 2π[ and for all (ρ, θ) ∈ P, ηγ(ρ, θ) = |γ([0, 1]) ∩ D(ρ, θ)| ∈
N ∩ {∞} which is the number of intersection points of the curve γ with the
straight line D(ρ, θ) as represented in Figure 7.

Then, if ηE(ρ, θ) is the number of points of E on the straight line D(ρ, θ), we
have

L(E) = 1/2

∫∫
P

ηE(ρ, θ) dρdθ

Yet any straight line intersects a convex set in 0, 1 (if it is a tangent line) or 2
points.

With one point source we have :

Proposition 4. Given a convex set E ⊂ R2 and a point source S ∈ R2. The
perimeter L(E) of E necessarily verifies the following inequality:

L2(E) ≥
∫∫

Ir ,SuppR(E,S)

dρdθ = |Iρ|∗ |SuppR(E,S)| ≥ 1/2| cos(θu)−cos(θd)|∗ |θu+θd|

Where Iρ = [ρmin, ρmax], θu and θd as represented in Figure 8.
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θ

D

ρ

Fig. 7. Representation of a straight line with (ρ, θ) ∈ R2 × [0, 2π[

θu

ρmin

∗
S

Δθ

ρmax

θd

Fig. 8. Representation of the rays of a point source S. Δθ = θu + θp

4.2 Higher Bound of the Perimeter

To find a higher bound of the perimeter of a given convex set E ⊂ R2, we need
two point sources S and S′ of R2. Similarly to the notation for S, we denote θ′

the angles of the rays issuing from S′.
Let θ1, θn, θ

′
1 and θ′m be such that

θ1 = min {θ ∈ SuppR(E, S)}, θn = max {θ ∈ SuppR(E, S)} ,
θ′1 = min {θ′ ∈ SuppR(E, S′)}, θ′m = max {θ′ ∈ SuppR(E, S′)}.

The following result is true only when both extreme rays of S (Rθ1 and Rθn)
intersect with both extreme rays of S′ (Rθ′

1
and Rθ′

m
). In this situation, let us

consider A,B,C and D the intersection points of the extreme rays of S and S′

see Figure 9. It is evident that we have E ⊆ ABCD. Thus we can prove the
following result.

Proposition 5. Let E ⊂ R2 and two point sources S, S′ ∈ R2. The perimeter
of L(E) of E necessarily verifies the following inequality:

L(E) ≤ L(ABCD)

where A,B,C and D are the intersection points of the extreme rays of S and S′.

Proof. As proven in [3], since ABCD is a convex, E is a convex as well, and
E ⊆ ABCD, then L(E) ≤ L(ABCD).
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∗
S

∗
S ′

A

B

C

D

Fig. 9. A,B,C and D the intersection points of the extreme rays of S and S′

4.3 Example

We consider the same square E = [1, 2]2 as for the last section. We suppose that
the vertices are (1, 1), (2, 1), (1, 2) and (2, 2). We have L(E) = 4.

– First lower bound:
Using the information about the surface area A(E) we have: L2(E) ≥ 4π ×
1 = 12.566 and so L ≥

√
12.566 = 3.54.

– Second lower bound:
To apply the Crofton formula we consider a point source S = (2, 0) (see
Figure 10).
We have then θu = 45 and θd = 0. Thus:

L2(E) ≥ 1

2
|
√
2

2
− 1| ∗ 45 = 6.59

– Upper bound:
To compute the upper bound to the perimeter, we consider a second point
source S′ = (0, 1) as illustrated on Figure 11.
We have then L(E) ≤ 3 + 2

√
2 = 5.82.

θu ∗
S(0, 0)

Fig. 10. The square E and a point source S = (2, 0). L(E) = 4.



286 F. Abdmouleh and M. Tajine

∗
S(0, 0)

∗S ′

A

B

C D

Fig. 11. Computation of an upper bound to the square. ABCD = 3 + 2
√
2

The perimeter verifies then :

3.54 ≤ L(E) = 4 ≤ 5.82.

5 Conclusion

We presented in this paper a new method of extracting some information about
sets given the projections from point sources. With one point source, we can
estimate the surface area of the projected set and find two lower bounds for
its perimeter. An additional point source is needed in order to have a higher
bound of the perimeter. This quantitative information is deduced directly from
the projection with no reconstruction step and with less point sources than for
the reconstruction.

A question remains about the possibility of estimating the perimeter from
projections with two point sources. Another interesting perspective to this work
is the extraction of qualitative information from projections such as topological
information.
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Abstract. In Discrete Tomography there is a wide literature concerning
(weakly) bad configurations. These occur in dealing with several ques-
tions concerning the important issues of uniqueness and additivity. Dis-
crete lattice sets which are additive with respect to a given set S of lattice
directions are uniquely determined byX-rays in the direction of S. These
sets are characterized by the absence of weakly bad configurations for S.
On the other side, if a set has a bad configuration with respect to S,
then it is not uniquely determined by the X-rays in the directions of
S, and consequently it is also non-additive. Between these two opposite
situations there are also the non-additive sets of uniqueness, which de-
serve interest in Discrete Tomography, since their unique reconstruction
cannot be derived via the additivity property. In this paper we wish to
investigate possible interplays among such notions in a given lattice grid
A, under X-rays taken in directions belonging to a set S of four lattice
directions.
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1 Introduction

In Discrete Tomography the usual line integrals employed in Computerized To-
mography are replaced simply by the discrete X-rays, counting the number of
points on each line parallel to given directions, so providing the so-called Discrete
Radon Transform (DRT). The inversion of DRT aims to deduce the local atomic
structure from the collected counting data. The original motivation came from
High-Resolution Transmission Electron Microscopy (HRTEM) which is able to
obtain images with atomic resolution and provides quantitative information on
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the number of atoms that lie in single atomic columns in crystals choosing main
X-ray directions such as (0, 1), (1, 0), (1, 1), (1, 2), . . . to be resolvable by the
microscopy (see [18–20]). The high energies required to produce the discrete X-
rays of a crystal mean that only a small number of X-rays can be taken before
the crystal is damaged. Therefore, DT focuses on the reconstruction of images
with few different grey levels, and, in particular, on the reconstruction of binary
images from a small number of X-rays. It is worth mentioning that this problem
was considered in its pure mathematical form even before its connection with
electron microscopy ([6]). Atoms are modeled by lattice points and so crystals by
finite sets of lattice points. The tomographic grid is a finite set G of lattice points
which are intersections of lines parallel to the X-ray directions corresponding to
nonzero X-ray and feasible solutions of the reconstruction problem are subsets of
G [15]. If there is only one solution the lattice set is G-unique, or simply unique.
On this regard, a special class of geometric objects, called additive sets, has
been studied in considerable depth (see Section 2 for the formal definition). It
was shown in [6] that a finite subset F of Z2 is uniquely determined by its X-rays
in the coordinate directions if and only if F is additive. The sufficient condition
was later extended to any dimension, pointing out that notions of additivity
and uniqueness are equivalent when two directions are employed, whereas, for
three or more directions, additivity is more demanding than uniqueness. Actu-
ally, every additive set is uniquely determined, but there are non-additive sets
of uniqueness [7]. Further generalizations have been considered in [8], where the
notion of additivity has been extended to n-dimension, with respect to a set of
linear manifolds. The literature suggests that, without the additivity property, it
may be quite difficult to decide whether a lattice set is uniquely determined by its
X-rays taken in a set of more than three directions. In fact, the inversion of DRT
is generally NP-hard ([17]), so that any reconstruction algorithm must consist of
exponentially many steps in the size of F . One related problem is to find suitable
sub-classes of lattice sets that can be reconstructed in polynomial time (see, for
instance [2, 3]), or to provide uniqueness results from the a priori knowledge of
the geometric features of the class (see [9, 10]). In general, uniqueness is not a
property of the set S of X-ray directions, as for each S there exists a lattice set
which is not uniquely determined by S. On the contrary if we restrict to bounded
sets in a given rectangular grid A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n},
there are whole families of lattice directions which uniquely determine all the
finite subsets (so called bounded sets) of A [4]. Unless the tomographic grid G is
contained in A, uniqueness in A does not imply uniqueness in G. Therefore it is
interesting to try to understand which bounded sets uniquely determined by S in
A are also G-unique and/or additive. In some sense, roughly speaking, we mea-
sure “how strongly unique”, they are. In Section 4 we classify all the bounded
sets in a grid A which are uniquely determined by a set of four directions of
uniqueness for A that contains the coordinate directions. In this important case,
we also compute the proportion of non-additive sets of uniqueness with respect
to additive sets in A. This ratio depends only on the number of X-ray directions
whereas it is independent on the size of A, and hence it is constant in the case
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study. Finally, we show how to explicitly construct non-additive sets of unique-
ness. These results partially answer an open question posed by Fishburn and
Shepp in [8].

2 Background

Let a, b ∈ Z with gcd(a, b) = 1 and a ≥ 0, with the further assumption that b = 1
if a = 0. We call (a, b) a lattice direction. By lines with direction (a, b) ∈ Z2 we
mean lattice lines defined in the x, y plane by equations of the form ay = bx+ t,
where t ∈ Z. We refer to a finite subset of Z2 as a lattice set.

Let A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n} be a finite grid. We refer to
the lattice sets E ⊆ A as bounded sets. A bounded set E ⊂ A can be identified,
in a natural way, with its characteristic function χE : A → {0, 1} defined by
χE(i, j) = 1 for (i, j) ∈ E, and χE(i, j) = 0 otherwise.

For a function f : A → Z, we write |f | = max
(i,j)∈A

{|f(i, j)|}. Further, the

line sum of f along the lattice line with equation ay = bx + t is defined as∑
aj=bi+t f(i, j).
Given a lattice direction (a, b), the X-ray of E in the direction (a, b) is the

function giving the number of points in E on each line parallel to (a, b). Two
sets E,F ⊆ Z2 are said to be tomographically equivalent with respect to a set
S of lattice directions if E and F have the same X-rays in the directions in
S. A finite set E ⊆ Z2 is a set of uniqueness with respect to a set S of lattice
directions, or simply S-unique, if E is uniquely determined by its X-rays taken in
the directions belonging to S. In other words, if F is tomographically equivalent
to E with respect to S, then F = E. Given a finite set S of lattice directions,
we say that two functions f, g : A → {0, 1} are tomographically equivalent if
they have equal line sums along the lines corresponding to the directions in S.
Note that two non trivial functions f, g : A → {0, 1} which are tomographically
equivalent can be interpreted as characteristic functions of two lattice sets which
are tomographically equivalent.

Let (a, b) be a lattice direction. Set

f(a,b)(x, y) =

⎧⎪⎪⎨⎪⎪⎩
xayb − 1, if a > 0, b > 0
xa − y−b, if a > 0, b < 0
x− 1, if a = 1, b = 0
y − 1, if a = 0, b = 1.

Given a finite set S of lattice directions, we denote by FS(x, y) the polynomial
associated to S defined by (see [13, p. 19]):

FS(x, y) =
∏

(a,b)∈S

f(a,b)(x, y) =
∑

(i,j)∈A
f(i, j)xiyj .

For any function h : A → Z, its generating function is the polynomial defined
by

Gh(x, y) =
∑

(i,j)∈A
h(i, j)xiyj.
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Conversely, we say that the function h is generated by a polynomial P (x, y)
if P (x, y) = Gh(x, y). Notice that the function f generated by the polynomial
FS(x, y) vanishes outside A if and only if the set S = {(ak, bk)}dk=1 of d lattice
directions satisfies the conditions

d∑
k=1

ak < m,

d∑
k=1

|bk| < n. (1)

We then say that a set S = {(ak, bk)}dk=1 of d lattice directions is valid for a
finite grid A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}, if (1) holds. Moreover, the
function f generated by FS(x, y) has zero line sums along the lines ay = bx+ t
taken in the directions (a, b) ∈ S. For example, if b �= 0

FS(x, x
−a

b ) = 0 =
∑

(i,j)∈A
f(i, j)xix− ja

b =
∑

(i,j)∈A
aj=bi+t

f(i, j)x− t
b =

∑
t

x− t
b

∑
(i,j)∈A
aj=bi+t

f(i, j).

The other cases can be obtained analogously.
Note that a generating function can be interpreted as follows: a monomial

with its sign h(i, j)xiyj ∈ Z[x, y] is associated to the lattice point p = (i, j),
together with the weight h(i, j) which we call multiplicity. If |h(i, j)| > 1 we say
that p is a multiple point. In order to simplify the notation furthermore we will
denote a polynomial by P (x, y), its associated lattice set by P , specifying the
set of lattice points with positive (resp. negative) multiplicity by P+ (resp. P−).
In particular we denote by FS the set of lattice points associated to FS(x, y),
counted with their multiplicities, namely

FS =
{
((i, j), l(i, j)) ∈ Z2 × Z : l(i, j) = f(i, j) �= 0

}
.

From the geometric point of view, FS is a S-weakly bad configuration, namely
a pair of lattice sets (Z,W ) consisting of k lattice points z1, ..., zk ∈ Z, and k
points w1, ..., wk ∈W , not necessarily distinct (counted with multiplicity), such
that for each direction (a, b) ∈ S, and for each zr ∈ Z, the line through zr in
direction (a, b) contains a point wr ∈W (see Figure 1). We then say that a lattice
set E has a weakly bad configuration if a weakly bad configuration (Z,W ) exists
for some k ≥ 2, such that Z ⊆ E, W ⊆ Z2 \ E.

If all the points in the sets Z,W are distinct, then (Z,W ) is called S-bad con-
figuration. This notion plays a crucial role in investigating uniqueness problems,
since any set S of directions is a set of uniqueness if and only if it has no bad
configurations [6, Theorem 1].

Consider now the following definition. A finite set E ⊆ Z2 is additive with
respect to S, or simply S-additive if for each u ∈ S, there is a ridge function gu,
that is a function defined in Z2 which is constant on each lattice line parallel to
u, such that

E =

{
p ∈ Z2 :

∑
u∈S

gu(p) > 0

}
. (2)
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Fig. 1. The weakly bad configuration FS associated to FS(x, y) = (x− 1)(y− 1)(x2y−
1)(xy2 − 1) = x4y4 − x3y4 − x4y3 + x3y3 − x2y3 + xy3 − x3y2 + 2x2y2 − xy2 + x3y −
x2y + xy − y − x+ 1 (S = {(1, 0), (2, 1), (1, 2), (0, 1)}). The Z component is formed by
the union of the white point (corresponding to f(2, 2) = 2 and counted twice) with
the set of grey points (which correspond to f(i, j) = 1), while the set of black points
(corresponding to f(i, j) = −1) form the W component.

Additivity is also fundamental for treating uniqueness problems, due to the
following facts (see [6, Theorem 2]):

1. Every additive set is a set of uniqueness.
2. There exist sets of uniqueness which are not additive.

3. A set is additive if and only if it has no weakly bad configurations.

3 Weakly Bad Configurations

L.Hajdu and R.Tijdman [14, Lemma 3.1] showed that if a function h : A → Z
has zero line sums along the lines taken in the directions in S, then FS(x, y)
divides Gh(x, y) over Z ([14, Lemma 3.1]). In other words, since a weakly bad
configuration is algebrically determined by h, we can reformulate the result as
follows:

Lemma 1. Let S be a set of lattice directions. Gh is an S-weakly bad configu-
ration if and only if Gh(x, y) = H(x, y)FS(x, y), where H(x, y) is a polynomial.

By Theorem 2.4 in [13], less than four directions are never sufficient to distin-
guish all the subsets of a given grid A, and consequently |S| = 4 represents a
minimal choice for our problem. Therefore, throughout the paper, we assume
S = {u1, u2, u3, u4}, with the further condition that u1 + u2 ± u3 = u4. Motiva-
tion for this position relies on the fact that such cases give the unique situations
where FS represents a weakly bad configuration (see [4]). In particular, FS has a
multiple point, say p = 1

2 (u1+u2+u3+u4), and p is positive if u4 = u1+u2−u3,
whereas it is negative if u4 = u1 + u2 + u3.

We next show that the weakly bad configuration FS can be described by
means of its multiple point and the given set S of directions. To this end we
need some further notations.

We denote Ŝ =
{
± (v− u4) : v ∈ {u1, u2, u4− u1− u2}

}
, ±S = {±u : u ∈ S}

and D = ±S∪Ŝ. Geometrically, the set D represents all the possible shifts which
map the multiple point in FS to another point of the weakly bad configuration
FS (see Figure 2), as it is shown by the following result.
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Proposition 1. The set FS is completely determined by the couple (p,D).

Proof. Assume that b ≥ 0 for all (a, b) ∈ S, the positive points of FS are

0, u1 + u2, u1 + u3, u1 + u4,
u2 + u3, u2 + u4, u3 + u4, u1 + u2 + u3 + u4

(3)

and the negative points are:

u1, u2, u3, u4,
u1 + u2 + u3, u1 + u2 + u4, u1 + u3 + u4, u2 + u3 + u4,

(4)

not all necessarily distinct. (We note that if b < 0 for some (a, b) ∈ S, then the

sets of positive and negative points exchange and are translated by the vector
(0,−h), where h is the sum of negative values of b for (a, b) ∈ S. In any case,
the properties we are looking for are invariant by integer translations. From the
algebraic viewpoint, this corresponds to substituting the polynomial FS(x, y) by
the rational function yhFS(x, y).) By direct computation, we can check that all
the points of the set FS can be obtained as the translations of the multiple point
p by a vector d in D and, if p = u1 + u2 (i.e. f(p) > 0), the multiplicities are
given by:

l(p) = f(p) = 2

l(p+ d) = −(f(p) + f(d)) = −1, if d ∈ ±S

l(p+ d) = f(p)− f(d) = 1, if d ∈ D \ ±S.

If p = u1+u2+u3 (i.e. f(p) < 0), exchange the second and third cases and take
the opposite signs. ��
In general, uniqueness is not a property of the set S of X-ray directions, as for
each S there exists a lattice set which is not uniquely determined by S. On the
contrary if we restrict to bounded sets in a given rectangular grid A = {(i, j) ∈
Z2 : 0 ≤ i < m, 0 ≤ j < n}, there are whole families of lattice directions which

Fig. 2. The set FS is completely determined by the couple (p,D), for p = (2, 2) and
D = ±{(1, 0), (0, 1), (1, 2), (2, 1)} ∪±{(1, 1), (1,−1), (2, 2)} (left) and for p = (3, 3) and
D = ±{(0, 1), (1,−2), (2,−1), (3,−2)} ∪ ±{(1,−1), (2, 0), (3,−3)} (right). The arrows
show that each point of the configuration FS can be reached from the multiple point
by adding a vector in D.
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uniquely determine bounded sets in A. To show this, split D into two disjoint
sets A,B, defined as follows.

A = {(a, b) ∈ D : |a| > |b|}, (5)

and
B = {(a, b) ∈ D : |b| > |a|}. (6)

Moreover, if |a| = |b|, for some (a, b) ∈ D, and

4∑
r=1

ar = h,

4∑
r=1

|br| = k (where

(ar, br) = ur), we then include (a, b) in A if min{m− h, n− k} = m − h, while
(a, b) ∈ B otherwise. Thus we have D = A ∪B, where one of the sets A,B may
be empty. Then we get the following Theorem 1, proved in [5].

Theorem 1. Let S = {u1, u2, u3, u4 = u1 + u2 ± u3} be a valid set for the grid

A = {(i, j) ∈ Z2, 0 ≤ i < m, 0 ≤ j < n} and

4∑
r=1

ar = h,

4∑
r=1

|br| = k, being

(ar, br) = ur where r = 1, ..., 4. Suppose that g : A → Z has zero line sums along
the lines in the directions in S, and |g| ≤ 1. Then g is identically zero if and
only if

min
|a|

A ≥ min{m− h, n− k} and min
|b|

B ≥ min{m− h, n− k}, (7)

and

m− h < n− k, ⇒ ∀(a, b) ∈ B (|a| ≥ m− h or |b| ≥ n− k) , (8)

n− k < m− h, ⇒ ∀(a, b) ∈ A (|a| ≥ m− h or |b| ≥ n− k) , (9)

where, if one of the sets A,B is empty, the corresponding condition in (7) drops.

Notice that Proposition 1, together with Lemma 1, suggests that in order to get
a bad configuration one has to translate FS so that its multiple point overlaps a
point of FS with multiplicity of opposite sign, without producing new multiple
points. The above theorem provides the conditions for which such situations
cannot occur within the grid A.

4 Non-additive Sets of Uniqueness

By means of Theorem 1 we can check if a set of four directions S uniquely
determines bounded sets in a grid A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}.
In general, any lattice set is unique (or G-unique) if does not exists a different
lattice set with the same X-rays in the tomographic grid G. Unless G ⊆ A,
uniqueness in A does not imply uniqueness in the tomographic grid G. Therefore
it is interesting to try to understand which bounded sets, among those uniquely
determined by S in A, are also G-unique and/or additive.
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Trivially, the sets S non valid for A uniquely determine all the subsets of
A, since no weakly bad configuration, and hence no bad configuration, can be
constructed inside the grid. In general such bounded sets are not G-unique, since
G \ A �= ∅. Differently, if G ⊆ A (for example if {(1, 0), (0, 1)} ∈ S, and S is non
valid for A), then bounded sets are additive and therefore G-unique.

Consider now a set S of four directions valid for A which ensures uniqueness
in the gridA. As before, if G ⊆ A, then bounded sets are trivially G-unique. Non-
additive sets of uniqueness are those E among bounded sets such that FS

+ ⊆ E
(resp. FS

− ⊆ E ) and E ∩ FS
− = ∅ ( resp. E ∩ FS

+ = ∅ ), because they have
FS as weakly bad configuration. More in general,

Theorem 2. Let A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}, and let S =
{u1, u2, u3, u4 = u1+u2±u3} be a set of uniqueness valid for A. A set E ⊂ A is
non-additive if and only if there exists a polynomial P (x, y) = H(x, y)FS(x, y),
such that |P | ≥ 1, P+ ⊆ E and P− ∩ E = ∅ (or P− ⊆ E and P+ ∩E = ∅).

Proof. Assume E ⊂ A is non-additive with respect to S. Then E has a weakly
S-bad configuration (Z,W ), where Z ⊆ E and W ∩ E = ∅ (or conversely). By
[14, Lemma 3.1], we know that Z = P+ and W = P− (or conversely), where
P (x, y) = H(x, y)FS(x, y) for some polynomial H(x, y). Therefore P+ ⊂ E and
P− ∩ E = ∅ (or P− ⊂ E and P+ ∩ E = ∅).

Assume now that a polynomial P (x, y) = H(x, y)FS(x, y) exists, such that
|P | ≥ 1, P+ ⊆ E and P− ∩ E = ∅ (or P− ⊆ E and P+ ∩ E = ∅). Then E has
the weakly bad configuration (P+, P−), so that it is non-additive. ��

Corollary 1. AssumeA andS are as inTheorem2.LetP (x, y) = H(x, y)FS(x, y)
be any polynomial satisfying degxP (x, y) < m and degyP (x, y) < n. Then the set
E = P+ (or E = P−) is non-additive and it is uniquely determined in A.

Proof. Since degxP (x, y) < m and degyP (x, y) < n, E ⊂ A, so that E is unique
within A. Moreover, E has the bad configuration (P+, P−), which is conse-
quently a weakly bad configuration, and E is also non-additive. ��
Differently, every nonempty lattice set E ⊆ FS , with E �= F−

S , E �= F+
S , is

additive. This immediately follows by the observation that the tomographic grid
related to E is contained in the tomographic grid related to FS .

We can use Corollary 1 to explicitly construct non-additive (bounded) sets of
uniqueness.

Algorithm 3. 1. Select a set S according to Theorem 1.

2. Compute the weakly bad configuration associated to FS(x, y).

3. Select any polynomial H(x, y) such that P (x, y) = H(x, y)FS(x, y) satisfies
degxP (x, y) < m and degyP (x, y) < n.

4. Take each set E ⊂ A such that P+ ⊂ E and P− ∩ E = ∅ (or P− ⊂ E and
P+ ∩ E = ∅).
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Example 1. Assume A = {(i, j) ∈ Z2 : 0 ≤ i < 8, 0 ≤ j < 7}, and let
S = {(0, 1), (1,−2), (2,−1), (3,−2)}. Then S is a valid set for A, and we have

S1 − S2 = {±(−3, 3),±(−2, 0),±(−1, 1)}
D = {±(0, 1),±(1,−2),±(2,−1),±(3,−2),±(−3, 3),±(−2, 0),±(−1, 1)}
A = {±(2,−1),±(3,−2),±(−2, 0)}
B = {±(0, 1),±(1,−2)} ∪ {±(−3, 3)}
min{m− h, n− k} = 1.

Therefore, min|a| A = 2 > min{m−h, n−k}, min|b| B = 1 = min{m−h, n−k},
and |a| ≥ m− h = 2 for all (a, b) ∈ A, so that conditions of Theorem 5 in [5] are
satisfied. Consequently, S is a set of uniqueness for A.

Assume H(x, y) = x− 1, and consider the following polynomial

P (x, y) = (x− 1)FS(x, y) = (x− 1)(y − 1)(x− y2)(x2 − y)(x3 − y2) =

= x7y − x7 − x6y3 + x6y2 − x6y + x6 + x5y3 − 2x5y2 + x5y + x4y4−
− 2x4y3 + 2x4y2 − x4y + x3y5 − 2x3y4 + 2x3y3 − x3y2 − x2y5+

+ 2x2y4 − x2y3 − xy6 + xy5 − xy4 + xy3 + y6 − y5.

Note that several multiple points appear. Let E be the set of lattice points
corresponding to the monomials with positive sign. Then E is a non-additive set
S-unique in A. The same holds for the set of lattice points corresponding to the
monomials with negative sign.

We now consider the special case where {(1, 0), (0, 1)} ⊂ S (S is a valid set of
uniqueness for the given grid). Notice that all the non-additive sets of uniqueness
are obtained as described above in Theorem 2 with H(x, y) = 1, whereas all the
other bounded sets are additive. In fact, in the latter case, the bounded sets
cannot have a weakly bad configuration since every weakly bad configuration is
obtained by the product P (x, y) = H(x, y)FS(x, y) for some H(x, y), and hence
possibly “enlarging” FS . But in this case degxP (x, y) ≥ m or degyP (x, y) ≥ n,
since degxH(x, y) ≥ 1 or degyH(x, y) ≥ 1 and m − h = n − k = 1 (h, k as in
Theorem 1).

Therefore, if {(1, 0), (0, 1)} ⊂ S, we get a complete classification of bounded
sets. We can summarize the results as follows:

Theorem 4. Let A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}, and let S =
{u1, u2, u3, u4 = u1+u2±u3} be a set of uniqueness for A, where {(1, 0), (0, 1)} ⊂
S.

1. If S is not valid for A, then all bounded sets are additive.

2. If S is valid for A, then:
• every bounded set E such that FS

+ ⊆ E ∧ E ∩ FS
− = ∅, or FS

− ⊆
E ∧ E ∩ FS

+ = ∅ is a non-additive set of uniqueness;

• all the other bounded sets are additive.
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In [8] Fishburn et al. notice that an explicit construction of non-additive sets of
uniqueness has proved rather difficult even though it might be true that non-
additive uniqueness is the rule rather than exception. In particular they suggest
that for some set of X-ray directions of cardinality larger than 2 the proportion
of lattice sets E of uniqueness that are not also additive approaches 1 as E gets
large. They leave it as an open question in the discussion section.

By means of Theorem 4 we can count the number of bounded additive and
bounded non-additive sets of uniqueness as follows.

Theorem 5. Let A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}, and let S =
{u1, u2, u3, u4} be a set of uniqueness, valid for A, where {(1, 0), (0, 1)} ⊂ S.
The proportion of bounded non-additive sets of uniqueness w.r.t. those additive
is 2

2|FS |−2
.

Proof. The non-additive sets of uniqueness contained in FS are precisely F−
S and

F+
S , therefore 2·2|A\FS |

2|A|−2·2|A\FS| =
2

2|FS |−2
. ��

The theorem shows that for this family of sets of four directions, the proportion
does not depend on the size of the lattice sets into consideration.

As a final remark, we note that a strong tool to treat these questions is
provided by linear programming. Indeed the reconstruction problem can be re-
formulated as the following integer linear program (ILP):

Pz = q and z ∈ {0, 1}m×n, (10)

where the vector z represents the set A, vector q contains the values of the line
sums, and P is a 0, 1-matrix whose rows specify which points of A are on each
line l parallel to the directions in S. Each equation corresponds to a line sum on
a lattice line l. The NP-hardness of the reconstruction problem for more than
two directions is reflected in the integrality constraint for z. Therefore, in order
to deal with this problem one can transform (10) by replacing the integrality
constraint with an interval constraint, that is, z ∈ [0, 1]m×n. This approach has
been introduced by Aharoni et al. in [1] and then studied by several authors (see,
for instance [12, 21, 22]). To our aim, we can follow the method described in [7].
Indeed the authors proved that additive (lattice) sets are the unique solutions of
the relaxed linear program (LP). Differently, for non-additive (lattice) sets there
are many fuzzy sets with the given line sums, even if the lattice set solution is
unique.

We refer the reader to the cited paper for a formal description of the method.
However we recall that Fishburn and Shepp [8] choose to use interior point
methods not only for efficiency “but because they produce solutions that lie in
the center of optimality.” Moreover the set of all the solutions of LP is convex,
that is, if z and z′ are solutions, then λz+(1−λ)z′ is a solution with 0 < λ < 1.
There follows that integral solutions are extreme members of the set. This allows
to deduce that if the solution z of the relaxation determined by interior point
method is such that for some i ∈ {1, . . . ,m × n} zi = 1 (resp. zi = 0) then all
the solutions z′ have z′i = 1 (resp. z′i = 0).
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Here we just sketch the possible outputs for our concern.

1) if LP does not admit any solution, then no solution exists for (10).
2) if the solution z of LP is such that z ∈ {0, 1}m×n, then it follows from

the interior point method, convexity, and Theorems 1 and 2 of [6] that the
corresponding lattice set is additive;

3) else if the solution z of LP is such that z ∈ [0, 1]m×n, then the situation is am-
biguous and if there is exactly one extreme solution, then the corresponding
lattice set is unique, even if non-additive.

Recently issues about uniqueness and additivity have been reviewed and settled
by a more general treatment in [11]. In particular the concept of J-additivity
has been introduced to study invariant sets, i.e. sets each point of which either
belongs to all or does not belong to any solution of the reconstruction problem.
As a further step in our research we would like to explore possible connections
between our approach and the notion of J-additivity. We also plan to conduct
some experiments to estimate, for a given grid A and set S of uniqueness for A,
which bounded sets are additive and/or non-additive but unique, in the cases
where the tomographic grid G is not contained in A.
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Abstract. In hypergraph theory, determining a good characterization
of d, the degree sequence of an h-uniform hypergraphH, and deciding the
complexity status of the reconstruction of H from d, are two challenging
open problems. They can be formulated in the context of discrete to-
mography: asks whether there is a matrix A with nonnegative projection
vectors H = (h, h, . . . , h) and V = (d1, d2, . . . , dn) with distinct rows.

In this paper we consider the subcase where the vectors H and V
are both homogeneous vectors, and we solve the related consistency and
reconstruction problems in polynomial time. To reach our goal, we use
the concepts of Lyndon words and necklaces of fixed density, and we
apply some already known algorithms for their efficient generation.

Keywords: Discrete Tomography, Reconstruction problem, Lyndon word,
Necklace, hypergraph degree sequence.

1 Introduction

The degree sequence, also called graphic sequence, of a simple graph (a graph
without loop or parallel edges) is the list of vertex degrees, usually written in
nonincreasing order, as d = (d1, d2, . . . , dn), d1 ≥ d2 ≥ · · · ≥ dn. The problem of
characterizing the graphic sequences of graphs was solved by Erdös and Gallai
(see [4]):

Theorem 1. (Erdös, Gallai) A sequence d = (d1, d2, . . . , dn) where d1 ≥ d2 ≥
· · · ≥ dn is graphic if and only if Σn

i=1di is even and

Σk
i=1di ≤ k(k − 1) +Σn

i=k+1 min{k, di}, 1 ≤ k ≤ n.

An hypergraph H = (V, E) is defined as follows (see [5]): V ert = {v1, . . . , vn} is
a ground set of vertices and E ⊂ 2|V ert| \ ∅ is the set of hyperedges such that
e �⊂ e′ for any pair e, e′ of E . The degree of a vertex v ∈ V ert is the number of
hyperedges e ∈ E such that v ∈ e. An hypergraph H = (V ert, E) is h-uniform

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 300–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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if |e| = h for all hyperedge e ∈ E . Moreover H = (V ert, E) has no parallel
hyperedges,i.e., e �= e′ for any pair e, e′ of hyperedges. Thus a simple graph
(loopless and without parallel edges) is a 2-uniform hypergraph.

The problem of the characterization of the degree sequences of h-uniform
hypergraphs is one of the most relevant among the unsolved problems in the
theory of hypergraphs [5] even for the case of 3-uniform hypergraphs. Also its
complexity status is still open.

This problem has been related to a class of problems that are of great relevance
in the field of discrete tomography.More precisely the aim of discrete tomography
is the retrieval of geometrical information about a physical structure, regarded as
a finite set of points in the integer lattice, from measurements, generically known
as projections, of the number of atoms in the structure that lie on lines with fixed
scopes. A common simplification is to represent a finite physical structure as a
binary matrix, where an entry is 1 or 0 according to the presence or absence of
an atom in the structure at the corresponding point of the lattice. One of the
challenging problems in the field is then to reconstruct the structure, or, at least,
to detect some of its geometrical properties from a small number of projections.
One can refer to the books of G.T. Herman and A. Kuba [14,15] for further
information on the theory, algorithms and applications of this classical problem
in discrete tomography.

Here we recall the seminal result in the field of the discrete tomography
due to Ryser [19]. Let H = (h1, . . . , hm), h1 ≥ h2 ≥ · · · ≥ hm, and V =
(v1, . . . , vn), v1 ≥ v2 ≥ · · · ≥ vn, be two nonnegative integral vectors, and
U(H,V ) be the class of binary matrices A = (aij) satisfying

Σn
j=1aij = hi 1 ≤ i ≤ m (1)

Σm
i=1aij = vj 1 ≤ j ≤ n (2)

In this context H and V are called the row, respectively column, projection of
A, as depicted in Fig. 1. Denoting by V̄ = (v̄1, v̄2, . . .) the conjugate sequence,
also called the Ferrer sequence, of V where v̄i = |{vj : vj ∈ V, vj ≥ i}|. Ryser
gave the following [19]:

Theorem 2. (Ryser) U(H,V ) is nonempty if and only if

Σm
i=1hi = Σn

i=1vi (3)

Σi
j=1hj ≥ Σi

j=1v̄j ∀i ∈ {1, . . . ,m} (4)

Moreover this characterization, and the reconstruction of A from its two pro-
jections H and V , can be done in polynomial time (see [14]). Some applica-
tions in discrete tomography requiring additional constraints can be found in
[1,7,2,11,16,17,18,23].

As shown in [4] this problem is equivalent to the reconstruction of a bipartite
graph G = (H,V,E) from its degree sequences H = (h1, . . . , hm) and V =
(v1, . . . , vn). Numerous papers give some generalizations of this problem for the
graphs with colored edges (see [3,6,9,10,13]).
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So, in this context, the problem of the characterization of the degree se-
quence (d1, d2, . . . , dn) of an h-uniform hypergraph H (without parallel edges)
asks whether there is a binary matrix A ∈ U(H,V ) with nonnegative projection
vectors H = (h, h, . . . , h) and V = (d1, d2, . . . , dn) with distinct rows, i.e., A is
the incidence matrix of H where rows and columns correspond to hyperedges
and vertices, respectively. To our knowledge the problem of the reconstruction
of a binary matrix with distinct rows has not be studied in discrete tomography.

In this paper, we carry on our analysis in the special case where the h-uniform
hypergraph to reconstruct is also d-regular, i.e., each vertex v has the same
degree d, in other words the vector of the vertical projection is homogeneous,
i.e. V = (d, . . . , d).

The studies in this paper focuses both on the decision problem, and on the
related reconstruction problem, i.e. the problem of determining an element of
U(H,V ) consistent with H and V . To accomplish this task we will design an
algorithm that runs in polynomial time with respect to m and n the dimensions
of the matrix to reconstruct. This algorithm uses the concepts of Lyndon words
and necklaces of fixed density, also we apply some already known algorithms for
their efficient generation.

2 Definitions and Introduction of the Problems

Let A be a binary matrix having m rows and n columns, and let us consider the
two integer vectors H = (h1, . . . , hm) and V = (v1, . . . , vn) of its horizontal and
vertical projections, respectively, as defined in Section 1 (see Fig. 1).

3

0 0 0 0 0 0 0
00000000

000001 1
11 00000

0 0 0 0 10 0
000000

1
1
1
1

1111111
0
0

10000001

00100001
100100 0 1

H=

V = 3 3 42221 6

3
2
0
0
2
7
1
2
3

0

Fig. 1. A binary matrix, used in discrete tomography to represent finite discrete sets,
and its vectors H and V of horizontal and vertical projections, respectively

These few notions are enough to state the general version of the problems
we will consider in this paper (in fact, we consider more specialized versions, as
defined further below):
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Consistency (H,V, C)

Input: two integer vectors H and V , and a class of discrete sets C.
Question: does there exist an element of C whose horizontal and vertical pro-

jections are H and V , respectively?

Reconstruction (H,V, C)

Input: two integer vectors H and V , and a class of discrete sets.
Task: reconstruct a matrix A ∈ C whose horizontal and vertical projections

are H and V , respectively, if it exists, otherwise give failure.

In the sequel we are going to consider the class of binary matrices having no
equal rows and homogeneous horizontal projections, denoted E , due to its con-
nections, as mentioned in the Introduction, with the characterization of the
degree sequences of h-uniform hypergraphs.

In [20], Ryser gave a characterization of the instances of Consistency(H,V, C),
with C being the class of the binary matrices, that admit a positive answer, after
noticing that the following conditions are necessary for the existence of a matrix
consistent with two generic vectors H and V of projections:

Condition 1: for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, it holds hi ≤ n and vj ≤ m;
Condition 2: Σm

i=1hi = Σn
j=1vj ,

and then he added a further condition in order to obtain the characterization of
the instances that admit a solution, as recalled in the Introduction.

The authors of [8], pointed out that these two conditions turn out to be
sufficient in case of homogeneous horizontal and vertical projections, by showing
their maximality w.r.t. the cardinality of the related sets of solutions.

Ryser defined a well known greedy algorithm to solve Reconstruction(H,V, C)
that does not compare the obtained rows, and does not admit an easy general-
ization to perform this further task.

So, since we want to restrict ourself to deal with matrices having different
rows, and homogeneous horizontal projections, we approach the two problems
in a different way, considering each row as a binary word, and grouping them into
equivalence classes according to their cyclic shifts, as defined in the next section.
Now, we state a third necessary condition for answering to Consistency(H,V, E):

Condition 3: Consistency(H,V, E) has a negative answer if the dimension of
the vector H is greater than

(
n
h

)
.

In other words, there does not exist a matrix having H and V as homoge-
neous projections, and more than

(
n
h

)
different rows; this result can be eas-

ily deduced using a cardinality argument. From our analysis, we will prove
that the three conditions are also sufficient to solve in linear time the problem
Consistency(H,V, E) with homogeneous H and V .
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3 The Problem Consistency(H, V, E)
Let us face the consistency problem for the class E on the homogeneous instance
H and V from a different perspective, by observing that each row of a binary
solution matrix can be regarded as a binary finite word u = u1 u2 . . . un, whose
length n is the number of columns of the matrix, and whose number h of 1-
elements is the common horizontal projection.

We note that applying a cyclic shift to the word u, denoted by s(u), we obtain
a different word s(u) = u2 u3 . . . un u1, unless the cases u = (1)n or u = (0)n, of
the same length, and having the same number of elements 1 inside, so it can be
considered as a possible row different from u of a solution matrix. Iterating the
shift of a word u, one can think to easily obtain a sequence of words that row
wise arranged inside a matrix, lead to a solution of Consistency(H,V, E). We
indicate with sk(u), where k ≥ 0, the application of k times the shift operator
to the word u. Unfortunately, two problems may occur: the words repeat after
at most n shifts, and the vertical projections may not reach the desired value v,
i.e. the arranged shifts form a submatrix of a solution matrix (see Fig. 2). The
following trivial property holds:

Property 1. Let u be a binary word of length n having h ≤ n 1-elements inside.
Let us consider the n×n matrix A obtained by row wise arranging all the cyclic
shifts of u. Then, A has all horizontal and vertical projections equal to h.

One can easily notice that the rows of the matrix A may not all be different.
Throughout the paper we will denote by M(u) the matrix obtained by row
wise arranging all the different cyclic shifts of a word u. To establish how many
different rows can be obtained by shifting a given binary word, we need to recall
the definitions and main properties of necklaces and Lyndon words.

Following the notation in [21], a binary necklace (briefly necklace) is an equiv-
alence class of binary words under cyclic shift. We identify a necklace with the
lexicographically least representative u in its equivalence class, denoted by [u].

The set of all (the words representative of) the necklaces with length n is
denoted N(n). For example,

N(4) = {0000, 0001, 0011, 0101, 0111, 1111} .

An important class of necklaces are those that are aperiodic. An aperiodic (i.e.
period ≥ n) necklace is called a Lyndon word. Let L(n) denote the set of all
Lyndon words with length n. For example, L(4) = {0001, 0011, 0111}.

We denote fixed-density necklaces, Lyndon words in a similar manner by
adding the additional parameter d to represent the number of 1s in the words.
We refer to the number d as the density of the word. Thus the set of necklaces
with density d is represented by N(n, d), and the set of Lyndon words with
density d is represented by L(n, d). For example, N(4, 2) = {0011, 0101}, and
L(4, 2) = {0011}.
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It is known from Gilbert and Riordan [12] that the number of fixed density
necklaces and Lyndon words is

N(n, d) =
1

n

∑
j\ gcd(n,d)

φ(j)

(
n/j

d/j

)
, L(n, d) =

1

n

∑
j\ gcd(n,d)

μ(j)

(
n/j

d/j

)
respectively, where the symbols φ and μ refer to the Euler and Möbius functions.

Now we enlighten the connection between these objects and our problem, refining
Property 1.

Proposition 1. If u is a word of length n and density h ≤ n, then the cardinality
of [u] (i.e. the number of rows of M(u)) is a divisor of n.

As a consequence, we have the following refinements:

Proposition 2. If u is a Lyndon word of length n and density h, then the
cardinality of [u] (i.e. the number of rows of M(u)) is equal to n, and the vertical
projections of M(u) are all equal to h.

Figure 2 shows the 12 different cyclic shifts of the Lyndon word u = (0)6(1)6

arranged in the first 12 rows of the matrix. All the rows of M(u) have horizontal
and vertical projections equal to the density of u, i.e. 6.

M (000000111111)

1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0

000 1110 1 0 1 0 1
1 1 1 1 1 10 0 0 0 0 0

000 111
0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1

01 1 1 1 0 0 0
000011111 0

1 01 1 1 1 1 0 0 0 0 0
0
0 0

1
1 1

010 0 0 1 1 1
111000 1 1 0 0

0001110 0 0 1 1 1
0
0 0

1
1 1

111000 0 0 0 1 1 1

0 0 11
1 11000

1 1110000 10
0 0 0 0 1 1 11

0 0 1 10 0 0 0 1 1 11
1
1
1
1 1

1
1

1
1 1

0
0
0
0

0
0 0

00 0

M (010101010101)

M (001100110011)

0

Fig. 2. A solution to Reconstruction(H,V, C) when the horizontal projections have
constant value 6, and the vertical projections 9. The submatrices M(u) obtained by row
wise arranging the elements of three necklaces are highlighted. Note that M((0011)3)
and M((01)6) are the only two possible necklaces of length 12 and density 6 having 4
and 2 rows, respectively.
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Proposition 3. If u = vk (i.e. u = v . . . v, k times), with k = gcd{n, h}, is a
necklace of length n and density h, and v a Lyndon word, then the cardinality of
[u] is equal to n/k, and the vertical projections of M(u) are all equal to h/k.

Figure 2 shows the 12/3 = 4 different cyclic shifts of the word u = (0011)3

arranged from row 13 to row 16 of the matrix, and the 12/6 = 2 different cyclic
shifts of the word v = (01)6 in rows 17 and 18. All the rows of M(u) have
horizontal projections equal to 6 and vertical projections equal to 6/3 = 2, while
the rows of M(v) have horizontal projections equal to 6 and vertical projections
equal to 6/6 = 1.

In the following we will prove that a pair H and V of projections satisfy
Conditions 1, 2, and 3 if and only if they are consistent with a matrix in E ,
solving Consistency(H,V, E).

Let d0 = 1, d1, d2, . . . , dt be the increasing sequence of the common divisors
of n and h. The following equation holds:(

n

h

)
=

∑
i=0...,t

n

di
L

(
n

di
,
h

di

)
.

This equation is an immediate consequence of the fact that each word of length
n and density h belongs to exactly one necklace.

Theorem 3. Let H and V be two homogeneous vectors of projections of dimen-
sion m and n, and elements h and v, respectively, satisfying Conditions 1, 2,
and 3, i.e. being a valid instance of Consistency(H,V, E). Then, there exists a
Lyndon word L(n/di, h/di) such that n/di ≤ m.

Proof. Let us proceed by contradiction assuming that there does not exist a
Lyndon word whose length is n/d < m, for each d ∈ d1, . . . , dt. Since H and
V are homogeneous, and satisfy Conditions 1 and 2, then there exists a matrix
A having H and V as projections (a consequence of Ryser’s characterization of
solvable instances, as stated in [8], Theorem 3).

Let us assume that d = dt = gcd{n, h}, h′ = h/d, and n′ = n/d; by Condition
1, it holds

h′m = vn′ (5)

with n′ and h′ coprime, so v = h′(m/n′), and n′ divides m. The hypothesis
n′ > m leads to a contradiction. ��
Theorem 3 can be rephrased saying that if H and V are homogeneous consistent
vectors of projections, then there exists a solution that contains all the elements
of a necklace [u]. The solution in linear time of Consistency(H,V, E) is a neat
consequence:

Corollary 1. Let H and V be two homogeneous vectors satisfying Conditions
1, 2, and 3. There always exists a matrix having different rows, and H and V
as projections.



On the Degree Sequences of Uniform Hypergraphs 307

The result of Theorem 3, together with the following proposition that point out
a property of the necklace whose representant is u = (0)n−h(1)h, will be used in
the next section to solve Reconstruction(H,V, E).

Proposition 4. Let u′ be an element of the class [u], with u = (0)n−h(1)h. The
elements u′, sh(u′), s2h(u′), . . . , s(k−1)h(u′), with k = n/ gcd{n, h}, forms a
subclass of [u], and they can be arranged in a matrix A′ such that

1. the vertical projections of A′ are homogeneous and equal to h/ gcd{n, h};
2. A′ is minimal with respect to the number of rows among the matrices having

H as horizontal projections, and homogeneous vertical projections.

The proof directly follows from the properties of the greatest common divisor. Let
us denote with M(u)1, . . . ,M(u)gcd{n,h} the matrices defined in Proposition 4.

4 An Algorithm to Solve Reconstruction(H, V, E)
We start recalling that in [22] a constant amortized time (CAT) algorithm Fast-
FixedContent for the exhaustive generation of necklaces of fixed length and
density N(n, h) is presented. The author then shows that a slight modification
of his algorithm can also be applied for the CAT generation of Lyndon words
L(n, h) of fixed length and density. In particular, his algorithm –here denoted
GenLyndon(n, h)– constructs a generating tree of the words, and since the
tree has height h, the computational cost of generating k words of L(n, h) is
O(k · h · n).

Our reconstruction algorithm works as follows:

Rec(H,V, E)

Input : Two homogeneous vectors: H = (h, . . . , h) of length m, and V =
(v, . . . , v) of length n, satisfying Conditions 1, 2, and 3.

Output : An element of the class E having H and V as horizontal and vertical
projections, respectively.

Step 1: Let compute the sequence d0 = 1 < d1 < d2 < · · · < dt of the common
divisors of n and h, and initialize the matrix A−1 = ∅.

Step 2: For i = 0 to t do:

Step 2.1: By applying GenLyndon(n, h), generate the sequence of q =
min {�v/h�, L(n, h)} Lyndon words, denoted u1, . . . , uq. If q �= L(n, h),
then do not include in the sequence the Lyndon word (0)n−h(1)h.

Step 2.2: Create the matrix Ai, obtained by row wise arranging the matri-
ces M((uj)

di), for j = 1, . . . , q.
Update v = v − q · h.
If v = 0 then output Ai,
else if q �= L(n, h), create the matrix A obtained by row wise arranging
the matrix Ai with the column wise arranging of di times the matrices
M(u)j , with u = (0)n−h(1)h, j = 1, . . . , q′, and q′ = v · gcd{n, h}/h,
else update n = n/di+1, and h = h/di+1.
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To better understand the reconstruction algorithm, we give a first simple
example with the instance H = (2, . . . , 2) of length m = 15, and V = (5, . . . , 5)
of length n = 6. In Step 1 the values d0 = 1, and d1 = 2 are set.

In Step 2, GenLyndon(6, 2) generates q = 2 Lyndon words, i.e. the words
000011, and 000101; since L(6, 2) = 2, then the word 000011 is included in the
sequence. Now the matrix A0, depicted in Fig. 3, on the left, is created. Finally,
the values v = 5− 2 · 2 = 1, n = 6/2 = 3, and h = 2/2 = 1 are updated.

The second run of Step 2 starts, and GenLyndon(3, 1) generates the Lyndon
word 001. The matrix A1 is created by row wise arranging A0 with the matrix
M((001)2) as shown in Fig. 3, on the right.
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Fig. 3. The solution of dimension 15× 6 obtained by applying Rec(H,V, E) when the
horizontal projections have constant value 2, and the vertical projections 5

A second example concerns the use of the word (0)n−h(1)h that in certain
cases is set aside from the sequence of Lyndon words generated in Step 2: the
instance we consider is H = (3, . . . , 3) of length m = 15, and V = (5, . . . , 5) of
length n = 9. In Step 1 the values d0 = 1, and d1 = 3 are set.

In Step 2, GenLyndon(9, 3) generates q = min{�5/3�, L(9, 3)} = 1 Lyndon
words, i.e. the word 000001011; since q �= L(9, 3), then the word 000000111 is
not included in the sequence. Now the matrix A0, depicted in Fig. 4, on the left,
is created. The value v = 5− 3 · 1 = 2 is set.

Now, since q �= L(9, 3), q′ = 2(= 2 ·gcd{9, 3}/3) submatrices of M(000000111)
are computed, as defined in Proposition 4, and row wise arranged with A0,
obtaining the matrix in Fig. 4, on the right.

Note that without the use of the Lyndon word 000000111, the procedure is
not able to reach the solution since in the second run of Step 2,GenLyndon(3, 1)
generates only one Lyndon word, i.e. 001, whose matrix M((001)3) has
homogeneous vertical projections equal to 1, not enough to reach the desired
value 2.
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Fig. 4. The solution of dimension 15× 9 obtained by applying Rec(H,V, E) when the
horizontal projections have constant value 3, and the vertical projections 5

The validity of Rec(H,V, E) is a simple consequence of Theorem 3. Clearly,
the obtained matrix has homogeneous horizontal and vertical projections, equal
to h and v, respectively, and, by construction, all the rows are distinct. Moreover,
the algorithm always terminates since at each iteration, we add as many rows
as possible to the final solution. Concerning the complexity analysis, we need to
generate O(m) different Lyndon words and shift each of them O(n) times. So,
since the algorithm GenLyndon(n, h) requires O(k · h · n) steps to generate k
words of L(n, h), the whole process takes polynomial time.

We conclude the paper by observing that our strategy could be suitably ex-
tended to a larger class of binary matrices with different rows, homogeneous
horizontal projections, where the vertical projections are “quasi-homogeneous”,
in the sense that their differences are bounded by a constant value.
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In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810,
pp. 530–538. Springer, Heidelberg (2009)
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Abstract. Given a binary matrix, deciding wether it can be decomposed
into three hv-convex matrices is an NP-complete problem, whereas its
decomposition into two hv-convex matrices or two hv-polyominoes can
be performed in polynomial time. In this paper we give a polynomial time
algorithm that decomposes a binary matrix into three hv-polyominoes,
if such a decomposition exists. These problems are motivated by the
Intensity Modulated Radiation Therapy (IMRT).

Keywords: computational complexity, matrix decomposition, convex
polyomino.

1 Introduction

The problem of the minimum decomposition of an integer matrix finds its prac-
tical applications in the Intensity Modulated Radiation Therapy (IMRT). For
cancer treatment IMRT consists in delivering a radiation dose to destroy the
tumor while maintaining the functionality of organs surrounding the tumor.
The collimator is the medical machine that delivers the radiation dose (dose
matrix). Technically, the collimator cannot deliver all shapes of matrices. The
shape decomposition problem consists in decomposing the dose matrix into a set
of deliverable shape matrices. In the literature, the decomposition into consecu-
tive ones matrices is the most studied [1,5,6,12]. Baatar et al. [1] show that the
problem of deciding wheter a binary matrix A can be decomposed into at most
K h-convex matrices is NP-complete in the strong sense even in the case where
A has one single row.

Motivated by a theoretical point of view, Jarray et al. [17] consider the prob-
lem of deciding wheter it is possible to decompose a binary matrix into a (small)
fixed number of binary matrices fulfilling some specific requirements as it is usual
in the field of the theoretical discrete tomography. They show that the decompo-
sition into three hv-convex matrices is NP-complete in the strong sense whereas
the decomposition problem into two hv-convex matrices is polynomial even in
the case where each of the two matrices is an hv-polyomino. Note that this last
requirement is of great importance for the applications in IMRT.
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Following the work of Jarray et al. [17] we study the decomposition of a
binary matrix into three hv-polyominoes. We design a polynomial time algorithm
that given a binary matrix that either returns a decomposition into three hv-
polyominoes or failure if such a triplet of hv-polyominoes does not exist.

The paper is organized as follows: in the following section we give the defi-
nitions, and the basic notions about convex polyominoes. In Section 3 we give
the polynomial time algorithm that decomposes a binary matrix into three hv-
polyominoes if such a decomposition exists. In the last section we conclude and
some directions for future works are given.

2 Definitions and Notations

Let us consider binary m × n matrices and let us graphically represent them
by sets of cells on a squared surface in a standard way, i.e. the 1-elements and
0-elements correspond to the presence or the absence of a cell in the related po-
sition. A binary matrix is horizontally convex, briefly h-convex, if the 1-elements
of each row are connected; similarly, we say that it is vertically convex, briefly
v-convex, if the 1-elements of each column are consecutive. Finally, an hv-matrix
is a matrix that is horizontally and vertically convex (see Fig. 1).

Fig. 1. From the left to the right: a h-convex matrix, a v-convex polyomino, a hv-convex
polyomino

A binary matrix is a polyomino, if its elements are connected w.r.t. the side
adjacency relation. In the sequel, we consider matrices that are both hv-convex
and polyominoes, i.e. hv-polyominoes. Polyominoes, first introduced in [14], are
well known combinatorial objects, and some of their subclasses are widely studied
both in Combinatorics, and in Discrete Tomography. In the first area, there
are many enumeration results according to different parameters [4,7,8,10], that
lead, among others, to efficient exhaustive and random generation algorithms
[11,16], while in the second area, their geometrical aspects are studied by means
of quantitative data, called projections, about the number of cells that lie on
parallel lines having discrete directions [2,3] or that lie inside small areas of fixed
shape [13] (for an overview of the topic see [15]).

We consider the rows and the columns of a m × n matrix numbered in the
standard way, i.e. downward from row 1 to row m, and rightward from column 1
ro column n. These few notions are enough to state the problem 3-decomposition
we are going to study:

given a binary matrix A, we want to efficiently decompose it into at most three
hv-polyominoes, if possible, otherwise give failure.
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To accomplish this task we will define a polynomial time (w.r.t. the dimension
of A) algorithm 3-phv-DEC that returns either at most three hv-polyominoes X ,
Y , and Z such that A = X + Y +Z or failure when such a decomposition does
not exist. Note that a strategy that fulfills this task gives also an answer in
polynomial time to the related decision problem.

Our strategy will use the result of Proposition 1, that directly follows from
an alternative definition of hv-polyomino: for any two elements (i, j) and (i′, j′)
of a polyomino A, a path from (i, j) to (i′, j′) is a sequence (i1, j1), ..., (ir, jr) of
distinct adjacent elements of A, with (i, j) = (i1, j1) and (i′, j′) = (ir, jr). For
each 1 ≤ k ≤ r − 1, we say that the two consecutive cells (ik, jk), (ik+1, jk+1)
form
- an east step if ik+1 = ik and jk+1 = jk + 1;
- a north step if ik+1 = ik − 1 and jk+1 = jk;
- a west step if ik+1 = ik and jk+1 = jk − 1;
- a south step if ik+1 = ik + 1 and jk+1 = jk.

We define a path to be monotone if it is entirely made of only two of the four
types of steps defined above. So, in [9], the following definition is given: a poly-
omino is hv-convex if and only if every pair of cells is connected by a monotone
path.

Proposition 1. Let (i, j) and (i′, j′) be two elements of the border of an hv-
polyomino A. If we replace the path π that connects them and runs along the
border of A, with any another monotone path π′ that connects (i, j) to (i′, j′),
then the hv-convexity is preserved in the new polyomino.

The intuitive idea of the replacement of the border path π with another monotone
border path π′ in A having the same starting and ending positions, is that of
inserting a 1-element in each position of π′, then set to 0 the elements in the
exterior of π′, w.r.t. A, and to 1 those inside A, the whole process has to be
carried on without compromising the connectedness of A.

We define a monotone path connecting the cells a and b to be maximum
[resp. minimum] if each of its elements has the maximum [resp. minimum] row
index w.r.t. the element in the correspondent positions in all the other monotone
pathes that lead from a to b (note that, by definition, all the monotone pathes
that lead from a to b have the same number of elements).

3 A Fast Algorithm to Solve 3-decomposition

The first step in defining a valid strategy to solve 3-decomposition for a generic
binary matrix A, consists in cutting off some trivial cases that allow us to im-
mediately identify a solution or state that no solution exists.

So, we start by giving A as input to the algorithm 2-phv-DEC defined in [17],
and that solves 2-decomposition. So, if 2-phv-DEC decomposes A, then a solution
to 3-decomposition has been reached as well, otherwise, if it fails, we start the
search for a decomposition into exactly three hv-polyominoes, if possible. It is
straightforward that if the matrix A is composed by at least two non connected
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components, then 3-decomposition can be solved in polynomial time by means
of a run of 2-phv-DEC on each component.

As a consequence, the strategy to solve 3-decomposition we are going to de-
fine, considers only input matrices A having one single connected component,
i.e. polyominoes. It consists in the labeling of each cell of A with one label
l ∈ {x, y, z}, according to the belonging to one of the three hv-polyominoes,
indicated by X , Y and Z, we are trying to split A into.

3.1 Starting the Labeling Process

We continue indicating with A the input polyomino of 3-decomposition. First,
we observe that the convexity of the polyominoes X , Y and Z implies that if two
elements of A with the same label lie on the same row [resp. column], then all
the elements between them must belong to A, and share the same label. Second
if two elements belong to two disconnected components of a row [resp. column],
then they have different labels. During the labeling process we often use this
property in order to assign labels by convexity.

We define a row of A to be a k-row if it is constituted by exactly k + 1
non connected sequences of elements; the cells between two consecutive of these
sequences form a hole; these same definitions can be given for columns (in Fig.
2 the two disconnected components of the extremal rows form two holes). By
convexity, it is immediate to realize that if A has a k-row [resp. k-column] with
k ≥ 3, then 3− decomposition has no solution.

Proposition 2. If 3− decomposition has a solution for A, then each 2-row of
A has a labeling of the form

0k1(L1)
k20k3(L2)

k40k5(L3)
k60k7 ,

with k2, . . . k6 different from zero, k1 + · · ·+ k7 = n, and L1, L2, and L3 being
the three different labels.

We say that in a labeling like that of Proposition 2 the labels alternate as L1L2L3.
It is noteworthy that the connectedness of the three polyominoes X , Y and Z
imposes that all the 2-rows [resp. 2-columns] of A have the same alternation of
labels, see Fig. 2. This property can be extended by connectedness to two generic
rows of A even if not the three labels are present, i.e. admitting one or more
among the kis, with i = 2, 4, 6, to be zero:

Proposition 3. Let i1 and i2 be two rows of A, i1 being a 2-row. If 3−decompo-
sition has a solution for A, then i1 and i2 have the same alternation of the labels.

This last proposition plays a special role in our decomposition strategy, since it
allows to unambiguously assign an alternation of labels to the matrix A. Note
that if no 2-rows are present in the matrix, then different alternations of variables
can be possible, however, we underline that their number is six at most.

Finally, a similar definition of label alternation can be stated for the columns
of A. So, from now on, we assume w.l.g. that A has the row alternation xyz.
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Afterwards we fix one column alternation among the six permutations of {x, y, z}
(we will require 3-phv-DEC to carry on the six combinations).

The labeling process we are going to define consists of two main steps, the
first one takes care of the areas of A that lie between two 2-rows, and the second
one that considers the remaining part of A, i.e. those areas that are delimited
by at most one single 2-row.

Labeling the Area between Two 2-Rows

Consider the area 2A between two 2-rows i1 and i2, with i1 < i2, and let the
leftmost and rightmost cells of the sequence of labels x in row i1 [resp. i2] be
x1
l and x1

r [resp. x2
l and x2

r]; identify in a similar way the extremal cells of the
sequences of labels y and z, as shown in Fig. 2.

Since the border of A connects, on the left, the cells x1
l and x2

l of 2A, and, on
the right, the cells z1l and z2l of 2A, it holds:

Theorem 1. If 3-decomposition has a solution for A, then the elements of the
border of A inside 2A that connects the cells x1

l and x2
l [resp. z1l and z2l ] have

label the x (see Fig. 2 (a)) [resp. z].

We assume that no 1-rows lie inside 2A, and we label the cells of this area
according to the mutual positions of the extremal labeled cells of the 2-rows:

Proposition 4. If 3-decomposition has a solution for A, and the area 2A has no
1-rows, then there also exists an (eventually different) decomposition such that
the cells of 2A till the border between X and Y are labeled as follows, according
to the mutual positions of the extremal cells of the sequences x and y of the 2-
rows: let us assume that the index of the column of y1l is greater than or equal
to that of y2l , briefly y1l ≥ y2l

Case i: x1
r ≥ y2l . Each cell c ∈ 2A not already labeled such that

1. c < y2l , has label x;
2. it belongs to the minimum monotone path leading from y2l to y1l , has label

y, as shown in Fig. 2, (a);
Case ii: x2

r < x1
r < y2l . Each cell c ∈ 2A not already labeled such that

1. c ≤ x1
r, has label x;

2. x1
r < c < y2l , has the label x or y according to the column alternation of

A;
3. it belongs to the minimum monotone path leading from y2l to y1l , it has

label y;
Case iii: x1

r < x2
r. Each cell c ∈ 2A not already labeled such that

1. c ≤ x2
r, has label x;

2. x2
r < c < y2l , has the label x or y according to the column alternation of

A;
3. it belongs to the minimum monotone path leading from y2l to y1l , it has

label y.

Proof. Case i is a direct consequence of Proposition 1, as shown in Fig. 2, (a).
Case ii: the labelings defined in 1., and 3. resemble those of Case i, while 2. is
performed according to the column alternation of the labels, say L1L2L3. The
following cases arise:
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a. if at least one of the columns from the cell x1
r to the cell y2l is a 2-column,

then c has label L2;
b. if the column immediately on the right of x1

r has no cells above the area 2A,
then c has label x;

c. if the column immediately on the right of x1
r has no cells below the area 2A,

then c has label y.

In all these three cases, we are not able to set a labeling that maintains, at the
same time, the monotonicity of the right border of X and of the left border of Y ,
as in Case i. So, we determine the label of at least one cell inside the area defined
in 2., and we extend it to all the remaining cells, obtaining the monotonicity of
one of the two borders, and consequently preserving the convexity of both the
polyominoes X and Y . In case a., some cells inside the area of 2. already have
the label L2 by the column alternation of the labels, in case b. (Fig. 2, (b)) the
cells in the columns rightward x2

r , and in row i2 + 1 can not have label x, so
the cells inside the area 2. can have label x without compromising the convexity
of the polyomino X in the solution, and leaving the path of the right border of
Y monotone and minimum in 2A. Finally, in case c. the cells in the columns
leftward y1l , and in row i1 − 1 can not have label y, so the cells inside the area
2. can have label y without compromising the convexity of the polyomino Y in
the solution, and leaving the path of the left border of X monotone in 2A.
Case iii can be treated as Case ii. ��
Note that the labeling of the right border of X , and consequently of the left
border of Y , when the extremal cells x1

r , y1l , x2
r , and y2l of the 2-rows have the

remaining three different mutual positions can be obtained by symmetry. Still by
symmetry, we also obtain the labeling of the right border of Y , and consequently
of the left border of Z, giving a complete labeling of the 2A area when no 1-rows
are present inside.

The labeling defined in Proposition 4 will be useful in the whole decomposition
process, since it can be used each time two holes labeled as in Fig. 3, (a) (or,
by extension, having the same labeling) have to be connected with a minimum
monotone path.

Now we approach the problem of labeling the same area 2A when 1-rows are
present inside, by showing how to set the labels at the border of each of their
holes, if not already provided, in order to connect them using Proposition 4; the
row alternation is xyz, and the column alternation is fixed as well.

Proposition 5. Let i be a 1-row of A lying in the 2A area between the 2-rows i1
and i2, that contains a hole from the column j to the column j′. If a solution to
3-decomposition for A exists, then there exists a solution such that the labeling
of the elements of the border of the hole resembles one of those depicted in Fig.3,
according to the alternation of the labels in the columns.

The proof is a direct consequence of the convexity both of the rows and of the
columns surrounding the hole.

We remark that each hole lies on the border between X and Y or Y and
Z, but such a choice is not always deterministic, i.e. they can lie on different
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Fig. 2. Two examples of labelings of the area 2A for cases i, (a), and ii, (b). In (a) the
labeling of the areas are set, from left to right, as follows: first by the labeling of the
border of A, then by subcases 1, and 2. In (b) the labels are set, from left to right, as
follows: the first area by the labeling of the border of A, then by subcases 1, 2, and 3.
Note that, for subcase 2, is represented the situation b, where the cells above the hole
in row i1 do not belong to A, and the dashed area below the hole of row i2 can not
have any cell with label x.
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Fig. 3. The labeling of the hole in (a) requires that the label x precedes the label y in
the column alternation, while the labeling in (b) requires that the label y precedes the
label x. Similarly it holds in (c) and (d) with the labels y and z. The four cases admit
the row alternation xyz.

borders, for different solutions of 3-decomposition. However, if some cells around
it have already been labeled, then Fig. 3 shows how to extend these labels to
the whole border of the hole. To carry on this labeling, we consider the mutual
positions of all the holes inside 2A and of the holes in the rows i1 and i2.

Assuming that the column alternation of labels to be xyz, we arrange the
holes of the 1-rows inside 2A in a sequence σ = {(i′1, j′1), . . . , (i′k, j′k)}, according
to the column indexes of their leftmost (void) cells, and if two cells lie in the
same column, then they are arranged in decreasing order w.r.t. their row indexes.
Note that the internal holes whose column indexes intersect those of the holes
in the row i1 or i2 have already been labeled, since they are 2-columns, and
the same holds for the holes that share at least one column. We recall that an
element (i, j) of σ is a left-to-right minimum if for each element (i′, j′) that lies
on its left in σ, it holds i ≤ i′; the definition of right-to-left maximum is similar.

Proposition 6. If a solution of 3-decomposition for A exists, then the non
already labeled hole (i′t, j

′
t), with 1 ≤ t ≤ k, has label as in Fig. 3, (a) if it is a

left-to-right minimum, and not a right-to-left maximum (w.r.t. the row indexes)
for the sequence σ.
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The proof follows from the convexity of the polyominoes X , Y , and Z. We
observe that, if in the column alternation of A, the label y precedes the label
x, then the following changes has to be done: the sequence σ is defined on the
rightmost cell of each hole, and in Proposition 6, the hole (i′t, j

′
t) is a right-to-left

minimum and its labeling is as in Fig. 3, (b). A similar labeling can be defined
for the holes that lie on the border between Y and Z. As a neat consequence of
the proof of Proposition 6, it holds:

Corollary 1. If there exists an element of σ that is neither a left-to-right min-
imum nor a right-to-left maximum, then 3-decomposition has no solution.
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Fig. 4. In (a), and (b) the two possible labelings of the holes internal to a 2A area, when
a hole that is both left-to-right minimum (dashed holes) and right-to-left maximum
(blank holes) is present. The border between X and Y is the minimum one, while the
one between Y and Z is the maximum.

Now we consider the case of a non labeled hole that is both left-to-right minimum
and right-to-left maximum: we observe that it may allow two different labelings,
i.e., with the assumed column alternation of labels, those of Fig. 3 (a) and (c),
as shown in Fig. 4, by the half dashed hole.

However, if a hole is a left-to-right minimum and a right-to-left maximum,
then there exists a hole on its right or on its left that is a left-to-right minimum
or a right-to-left maximum, respectively. The label of the hole is the following:

Proposition 7. Let the cell (i′t, j
′
t) ∈ σ be both a left-to-right minimum and a

right-to-left maximum. If there exists a cell (i′s, j
′
s) ∈ σ that is a left-to-right

minimum and not a right-to-left maximum, with j′t < j′s, then there exists a
solution of 3-decomposition for A where the hole in (i′t, j

′
t) has its labeling as

in Fig. 3 (a). If the cell (i′s, j
′
s) does not exist, then the hole in (i′t, j

′
t) has its

labeling as in Fig. 3 (c).

The proof is immediate since the presence of the left-to-right minimum (i′s, j
′
s)

assures that the polyomino X extends till the column j′t, since j′t < j′s.
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A similar reasoning holds in the case that there exists a cell (i′s, j
′
s) ∈ σ that

is a right-to-left maximum, and not a left-to-right minimum, with j′t > j′s.
This last observation completes the labeling process of the holes inside the

2A area (when the label x precedes the label y in the column label alternation).
So we can determine the border between X and Y by connecting, row after row
from i2 to i1, the holes labeled with x and y using monotone minimum pathes.

Labeling the Zone with Only One 2-Row or without 2-Rows

Properties 6 and 7 give a valuable way of detecting the borders of X , Y , and Z
in presence of holes, and below it will be used in a more general setting.

So, let us assume that the column alternation of labels in A is still xyz and
that, w.l.g., row i is a 2-row, and, for each i′ < i, row i′ is not; we indicate
this area with 2A− (in the sequel, 2A− can also indicate an area where row i
is a 2-row, and, for each i′ > i, row i′ is not, or the whole matrix if there are
no 2-rows). Now, we proceed in labeling 2A−: if no 1-rows are present, then we
act similarly to what performed in Proposition 4, considering as holes also those
inside the 1-columns along the border of A, say border 1-columns. Those holes
that do not belong to any 1-row, by the connectedness of X , Y , and Z, can lie
only in this area, and their extremal cells must have different labels. Since we
assumed the column alternation of labels to be xyz, then only three labelings
are possible, i.e. those shown in Fig. 5. Consecutive border 1-columns whose
holes share at least one row forms a border 1-columns block. The following is
straightforward:

Proposition 8. In a 2A− area, if the border 1-columns j and j′ belong to two
different blocks, then the extremal cells of their holes can not have the same
labeling.

By Property 8, it holds that the number of different labelings of the border 1-
columns in a 2A− area is linear w.r.t. the number of columns, so we can consider
each of them in a different line of computation, maintaining the polynomiality
of the decomposition of A.
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Fig. 5. The three possible labelings of blocks of border 1-columns in a 2A− area, when
the column alternation is xyz. The possible borders of X, Y and Z are set with dotted
lines. Note that the rightmost example shows a situation where two different labelings
of the holes are present in the same block.
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If there also exist some 1-rows in 2A−, then we proceed in labeling them
according to Properties 6 and 7. Now, all the holes inside 2A− are labeled, and
the decomposition procedure can proceed by detecting the border between X
and Y , and, using symmetry, the other one between Y and Z.

Finally, if the polyomino A contains neither 2-rows nor 2-columns, then the
holes of its 1-rows, together with the holes of its border 1-columns, can be still
labeled using the results of Properties 6 and 7.

The Decomposition Procedure

Now, we are able to give the final procedure 3-phv-DEC that detects a solution
to 3-decomposition on the polyomino A, if possible, by labeling its cells:

Procedure: 3-phv-DEC

Input: a binary matrix A.
Output: three hv-polyominoes X , Y , and Z such that A = X + Y + Z, if

possible, otherwise failure.
Step 1: run the procedure 2-phv-DEC defined in [17] on each connected com-

ponent of A. If at most three hv-polyominoes are detected, then give them
as output. Otherwise, if A has one single connected component, then goto
Step 2, else give failure;

Step 2: label the 2-rows of A according to the row alternation xyz, and the
2-columns according to each of the six possible column alternation of labels.
For each of them proceed to Step 3;

Step 3:

Step 3.1: for each 2A area in A, label the border of A with x and z. If there
are no 1-rows inside, then label the cells of X as defined in Proposition
4, and symmetrically do the same with Z, else label the holes as in
Properties 6 and 7. If there is a non labeled hole, then give failure;

Step 3.2: for each 2A− area, label the holes of the 1-rows as in Properties
6 and 7, and for all possible combinations label the extremal cells of
the holes of the border 1-columns according with the chosen column
alternation. Note that this exhaustive labeling involves two different 2A−

areas at most. Apply this labeling even in the case where A does not
contain any 2-row.

Step 4: for each 2A area inside the 2-rows i1 and i2, consider the sequence σ
as defined in Proposition 6. Connect with the minimum monotone path the
holes of the 1-rows whose border contains x cells, acting as in Fig. 2, (a); the
whole path will be part of the right border of X . Finally, connect the 2-row
i2 with the monotone path as described in Proposition 4, after considering as
x1
r the cell (i′s, j

′
s) that is the first element of σ such that the cell (i′s, j

′
s − 1)

has label x. The 2-row i2 can be connected to the monotone path similarly.
Act symmetrically to detect the border between Y and Z;

Step 5: for each 2A− area, act as in Step 4 connecting with the minimum
monotone path the holes of the 1-rows whose border contains x cells, then
connect the 2-row of 2A− with the monotone path. Complete the monotone
path leading northward or southward, and maintaining its minimality (for
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the northward case, see Fig. 2, (b) for an example). Symmetrically, detect
the border between Y and Z. Finally, complete the labeling of the border of
A in the area;

Step 6: if the polyomino A does not contain any 2-row, then connect the holes
of the 1-rows as in Step 4 to find the border between X and Y , and, sym-
metrically, the border between Y and Z. Then complete the monotone path
both northward and southward maintaining its minimality. Once found the
internal border of the three polyominoes, complete the labeling of the cells
at the border of A;

Step 7: complete the labeling of the internal cells of A by convexity. If the three
obtained polyominoes X , Y , and Z are hv-convex, then give them as output,
else give failure.

The correctness of the algorithm is assured by the fact that at each step we
generate the border between X and Y by using minimum monotone pathes that
connect all the detected x cells. Since those cells either have to belong to X
for each solution of 3-decomposition (Properties 4 and 6), or can be connected
to them by a monotone path (so they belong to at least one solution of 3-
decomposition, as stated in Proposition 7), then the correctness follows. The same
reasoning holds for the border between Y and Z. The computational complexity
of the procedure is clearly polynomial, and it is performed for six times at most,
one for each possible column alternation of the three labels. So the whole process
turns out to be performed in polynomial time, as well.

4 Conclusions and Further Works

We designed a polynomial time algorithm that decomposes a binary matrix
into three hv-polyominoes Recall that in contrast the decomposition into three
hv-matrices is an NP-hard problem (see [17]). Now, a natural question is the
following: given k > 3, can this algorithm be adapted for the decomposition into
k hv-polyominoes?

Other further works should be the following: motivated from a practical prob-
lem, give an extension of the algorithm in the three-dimensional case. Which kind
of generalization should be the theoretical treatments in the higher dimensional
discrete space.

References

1. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of
integer matrices and multileaf collimator sequencing. Discrete Applied Mathemat-
ics 152(1-3), 6–34 (2005)

2. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex
polyominoes from horizontal and vertical projections. Theoretical Computer Sci-
ence 155, 321–347 (1996)

3. Barcucci, E., Frosini, A., Rinaldi, S.: An algorithm for the reconstruction of discrete
sets from two projections in presence of absorption. Discrete Applied Mathemat-
ics 151(1-3), 21–35 (2005)



322 A. Frosini and C. Picouleau

4. Battaglino, D., Fedou, J.M., Frosini, A., Rinaldi, S.: Encoding Centered Polyomi-
noes by Means of a Regular Language. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 464–465. Springer, Heidelberg (2011)

5. Boland, N., Hamacher, H., Lenzen, F.: Minimizing beam-on time in cancer radia-
tion treatment using multileaf collimators. Networks 43(4), 226–240 (2003)

6. Bortfeld, T., Boyer, A., Kahler, D., Waldron, T.: X-ray field compensation
with multileaf collimators. International Journal of Radiation Oncology, Biology,
Physics 28(3), 723–730 (1994)

7. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Mathematics 154, 1–25 (1996)

8. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Enumeration
of L-convex polyominoes. II. Bijection and area. In: Proceedings of FPSAC 2005,
#49, pp. 531–541 (2005)

9. Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electronic
Notes in Discrete Mathematics 12, 290–301 (2003)

10. Delest, M., Viennot, X.: Algebraic languages and polyominoes enumeration. The-
oretical Computer Science 34, 169–206 (1984)

11. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumer-
ation of some classes of convex polyominoes. The Electronic Journal of Combina-
torics 11, #R60 (2004)

12. Ehrgott, M., Hamacher, H.W., Nußbaum, M.: Decomposition of Matrices and
Static Multileaf Collimators: A Survey. In: Optimization in Medicine. Optimization
and Its Applications, vol. 12, pp. 25–46 (2008)

13. Frosini, A., Nivat, M.: Binary Matrices under the Microscope: A Tomographical
Problem. Theoretical Computer Science 370, 201–217 (2007)

14. Golomb, S.W.: Checker boards and polyominoes. American Mathematical
Monthly 61(10), 675–682 (1954)

15. Herman, G.T., Kuba, A. (eds.): Discrete tomography: Foundations algorithms and
applications. Birkhauser, Boston (1999)

16. Hochstätter, W., Loebl, M., Moll, C.: Generating convex polyominoes at random.
In: Proceeding of the 5th FPSAC, Discrete Mathematics, vol. 153, pp. 165–176
(1996)

17. Jarray, F., Picouleau, C.: Minimum decomposition in convex binary matrices. Dis-
crete Applied Mathematics 160, 1164–1175 (2012)

18. Shepard, D., Ferris, M., Olivera, G., Mackie, T.: Optimizing the delivery of radia-
tion therapy to cancer patients. SIAM Review 41(4), 721–744 (1999)



Multi-resolution Cell Complexes

Based on Homology-Preserving Euler Operators
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Abstract. We have proposed a complete set of basis Euler operators
for updating cell complexes in arbitrary dimensions, which can be clas-
sified as homology-preserving and homology-modifying. Here, we de-
fine the effect of homology-preserving operators on the incidence graph
representation of cell complexes. Based on these operators, we build a
multi-resolution model for cell complexes represented in the form of the
incidence graph, and we compare its 2D instance with the pyramids of
2-maps, designed for images.

Keywords: geometric modeling, cell complexes, homology-preserving
operators, multi-resolution representations.

1 Introduction

Cell complexes, together with simplicial complexes, have been used as a model-
ing tool in a variety of application domains. Several data structures have been
designed in the literature for representing the connectivity of a cell complex (inci-
dence and adjacency relations among the cells in the complex), such as incidence
graphs, introduced in [6], and n-maps, introduced informally in [7].

Many topological operators have been designed for building and updating
data structures representing 2D and 3D cell complexes. In [3], we have proposed
a set of Euler operators which form a minimally complete basis for building
and updating cell complexes in arbitrary dimensions in a topologically consis-
tent manner. We distinguish between operators that preserve the homology of
the complex, and the ones that modify it in a controlled manner. Homology-
preserving operators add (or remove) a pair of cells of consecutive dimension,
but they do not change the Betti numbers of the complex. Homology-modifying
operators add (or remove) an i-cell, and increase (decrease) the ith Betti number.

Here, we define the effect of homology-preserving operators on the incidence
graph, based on which we build a multi-resolution model for the topology of the
complex, that we call the Multi-Resolution Cell Complex (MCC). We present
some experimental results validating the MCC, and we compare its 2D instance
with the pyramidal model used for images represented in the form of a 2-map.
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2 Background Notions

We review some notions on the topology of cell complexes (see [1] for details).
A k-cell in the Euclidean space En is a homeomorphic image of an open k-

dimensional ball, and a cell d-complex in En is a finite set Γ of cells in En of
dimension at most d, 0 ≤ d ≤ n, such that (i) the cells in Γ are pairwise disjoint
and (ii) for each cell γ ∈ Γ , the boundary of γ is a disjoint union of cells of Γ .

Intuitively, an n-dimensional quasi-manifold is an n-dimensional complex
which can be obtained by gluing together n-cells along (n − 1)-cells (for de-
tails see [11]). In a quasi-manifold, an (n − 1)-cell belongs to the boundary of
at most two n-cells. The notion of quasi-manifold is weaker that the notion of
pseudo-manifold. Recall that a simplicial complex Σ is a pseudo-manifold if (i)
Σ is homogenous (each simplex is a face of some n-simplex), (ii) each (n − 1)-
simplex in Σ is an (n−1)-face of at most two n-simplexes and (iii) Σ is strongly
connected (for any two distinct n-simplexes σ and τ in Σ there is a sequence
σ = σ1, σ2,..,σk = τ , such that σi and σi+1 share an (n− 1)-simplex, 1 ≤ i < n).

A variety of data structures have been proposed for representing the topology
of cell complexes. Some represent the cells in the complex explicitly, e.g. incidence
graphs, which can be used to represent arbitrary cell complexes, and abstract
cellular complexes [9]. Some represent them implicitly, e.g. n-maps, which are
used to represent orientable quasi-manifolds without boundaries.

An Incidence Graph (IG) [6] representing a cell complex Γ is a multigraph
G = (N,A), such that:

1. the set of nodes N is partitioned into n+1 subsets N0, N1,...,Nn, such that
there is a one-to-one correspondence between the nodes in Ni (which we call
i-nodes) and the i-cells of Γ ,

2. there are k arcs joining an i-node p with an (i+1)-node q if and only if i-cell
p appears k times on the boundary of (i+ 1)-cell q in Γ .

We model the incidence (multi-)graph as an ordinary labeled graph, in which
each node is labeled with the dimension of the corresponding cell, and each arc
between two nodes is labeled with its multiplicity ϕ (the number of arcs between
the two nodes in the corresponding multi-graph). If Γ is a simplicial complex
then all the arcs in A are simple (with label equal to one).

An n-map (or n-dimensional combinatorial map) [2] is a finite set D of el-
ements, called darts, together with n permutations βi on D, 1 ≤ i ≤ n, such
that βi is an involution, 2 ≤ i ≤ n, and βi ◦ βj is an involution, i + 2 ≤ j,
i, j ∈ {1, , ..., n}. Intuitively, a dart in D corresponds to an (n+ 1)-tuple of cells
(c0, .., cn), where ci is an i-cell, 0 ≤ i ≤ n, and each ci is on the boundary of ci+1.
For an n-map M = (D, β1, .., βn), n ≥ 2, and a dart b in D, the 0-cell incident
in b is the set of all darts that can be reached starting from b by applying any
combination of permutations in the set {β−1

1 ◦β2, .., β
−1
1 ◦βn}; the i-cell incident

in b, 1 ≤ i ≤ n, is obtained by applying permutations in {β1, .., βn}\{βi}. 2-maps
are widely used for image processing and geometric modeling. In the 2D case,
permutations β1 and β2 are usually denoted as σ and α, respectively.
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The Euler-Poincaré formula expresses the necessary validity condition of a cell
complex with manifold or non-manifold carrier [1]. The Euler-Poincaré formula
for a cell d-complex Γ with ni i-cells states that

d∑
i=0

(−1)ini = n0 − n1 + ..+ (−1)dnd =

d∑
i=0

(−1)ibi = b0 − b1 + ..+ (−1)dbd.

Here, bi is the ith Betti number of Γ , and it measures the number of independent
non-bounding i-cycles in Γ , i.e., the number of independent i-holes.

3 Related Work

A general idea of multi-resolution modeling is to provide several decompositions
of a shape at different, uniform or variable, scales. We review related work on a
hierarchical model for cell complexes, called combinatorial (or n-map) pyramid.

A 2-map pyramid [2] is a hierarchical data structure used for image analysis.
Each level in a 2-map pyramid is a 2-map. The first level describes the initial
full-resolution data; the other levels describe successive reductions of the pre-
vious levels. Usually, a pixel in the initial full-resolution 4-connected image is
represented as a vertex in a 2D cubical complex, and adjacency relation between
pixels is represented through edges in the complex. The reduction is obtained
by applying operators that merge regions in the lower level into one region in
the successive level (called contraction operators) and simplify the boundaries
between the new merged regions (called removal operators). Each region in a
coarser resolution image is a (connected) set of vertices, the representative of a
region is an element of this set, called a surviving vertex, and other elements are
called non-surviving vertices.

More formally, a 2-map (m+1)-level pyramid P is the set P = {Gk}0≤k≤m of
2-maps such that for each k, 0 < k ≤ m, Gk is obtained fromGk−1 by contracting
the cells (edges) in a set of cells Ck−1 (contraction kernel) and removing the
cells (edges) in a set of cells Rk−1 (removal kernel). Several strategies have been
proposed to choose the sets of the removed and contracted cells [8].

Another general multi-resolution framework, used mainly for simplicial com-
plexes, called a Multi-Complex, has been introduced in [5].

4 Homology-Preserving Euler Operators

We review the Euler operators on cell complexes, proposed in [3], and we define
the effect of homology-preserving Euler operators on the IG representing them.

4.1 Homology-Preserving Euler Operators on Cell Complexes

Operators that modify a cell complex, by modifying the number of cells in the
complex and its Betti numbers, and maintain the validity of Euler-Poincaré
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formula, are called Euler operators. In the literature, a variety of sets of basis
Euler operators have been proposed, mainly for the 2D and the 3D case.

In [3], we have proposed a minimal set of Euler operators on cell complexes
in arbitrary dimensions, which subsume all the other Euler operators proposed
in the literature. These operators can be classified as:

– homology-preserving operators: MiC(i+ 1)C (Make i-Cell and (i+1)-Cell),
– homology-modifying operators: MiCiCycle (Make i-Cell and i-Cycle).

Homology-preserving operators MiC(i + 1)C change the number of cells in the
complex Γ , by increasing the number ni of i-cells and the number ni+1 of (i+1)-
cells by one. The Euler characteristic and the Betti numbers of the complex
remain unchanged. Homology-preserving operator MiC(i+ 1)C can create two
new cells p and q from an existing i- or (i+1)-cell, or insert the new cells in the
complex.

The first type of MiC(i+ 1)C operator has two instances. It either splits an
existing i-cell p′ in two by splitting its co-boundary, and creates an (i + 1)-cell
q bounded by the two i-cells p and p′, or dually, it splits an existing (i+ 1)-cell
p′ into two by splitting its boundary, and creates an i-cell q separating the two
(i + 1)-cells p and p′. In both cases, the created i-cell appears exactly once on
the boundary of the created (i+ 1)-cell.

The second type of MiC(i + 1)C operator either creates an i-cell and an
(i + 1)-cell bounded only by the i-cell, or dually, it creates an (i + 1)-cell and
an i-cell bounding only the (i+ 1)-cell. In both cases, the created i-cell appears
exactly once on the boundary of the created (i + 1)-cell.

Figure 1 illustrates a sequence consisting of M0C1C(p1, q1) (second type, sec-
ond instance), M1C2C(p2, q2) (first type, second instance) and M0C1C(p3, q3)
(first type, first instance) in 2D. Figure 2 illustrates a sequence consisting of
M1C2C(p1, q1) and M2C3C(p2, q2) (both of first type, second instance) in 3D.
For brevity, we will consider only the operators of the first type.

Fig. 1. A sequence consisting of M0C1C, M1C2C and M0C1C on a 2D cell complex;
M0C1C creates 0-cell p1 and 1-cell q1, M1C2C creates 1-cell q2 and 2-cell p2, M0C1C
creates 0-cell p3 and 1-cell q3

The inverse KiC(i+1)C (Kill i-Cell and (i+1)-Cell) operators delete an i-cell
and an (i+ 1)-cell from Γ . The first type of KiC(i+ 1)C operator is feasible in
the following two cases:

(i) the deleted (i+1)-cell q is bounded by exactly two i-cells (the deleted i-cell
p and the non-deleted i-cell p′) and the deleted i-cell p appears exactly once
on the boundary of (i+ 1)-cell q;
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Fig. 2. A sequence consisting of M1C2C and M2C3C on a 3D cell complex; M1C2C
creates 1-cell q1 and 2-cell p1, M2C3C creates 2-cell q2 and 3-cell p2

(ii) the deleted i-cell q bounds exactly two (i+1)-cells (the deleted (i+1)-cell p
and the non-deleted (i + 1)-cell p′) and the deleted i-cell q appears exactly
once on the boundary of (i+ 1)-cell p.

In the first case, the effect of the operator is that the deleted i-cell p is replaced
with the non-deleted i-cell p′ in the boundary of each (i + 1)-cell r in the co-
boundary of the deleted i-cell p. One copy of (i+1)-cell q is merged into (i+1)-cell
r for each time i-cell p appears on the boundary of (i + 1)-cell r. The second
case is dual.

Homology-modifying operators change both the number of cells in the complex
Γ and its Betti numbers, and they change the Euler characteristic of Γ . They
increase the number ni of i-cells and the number bi of non-bounding i-cycles by
one. The inverse KiCiCycle (Kill i-Cell and i-Cycle) operators delete an i-cell
and destroy an i-cycle, thus decreasing the numbers ni and bi by one.

4.2 Homology-Preserving Euler Operators on Incidence Graphs

KiC(i + 1)C operator on an IG G = (N,A) deletes an i-node and an (i + 1)-
node from N , and suitably reconnects the remaining nodes. Its first instance is
feasible on IG G if

– (i+ 1)-node q is connected to exactly two different i-nodes p and p′, and
– there is exactly one arc in A connecting (i+ 1)-node q and i-node p.

The effect of KiC(i+ 1)C(p, q) on G is that

– nodes p and q, all the arcs incident in (i+1)-node q and all the arcs incident
in i-node p and connecting p to (i− 1)-nodes are deleted,

– all the arcs incident in i-node p and connecting p to (i + 1)-nodes are re-
placed with arcs connecting i-node p′ to the same (i+ 1)-nodes for each arc
connecting i-node p′ to (i + 1)-node q.

In terms of the ordinary labeled incidence graph, let us denote as ϕ′(p′, r) the
label of the arc (p′, r) after the simplification, where r is an (i+1)-node connected
to the deleted i-node p. The label ϕ′(p′, r) is increased by the product of the
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label of the arc connecting nodes p′ and q and the label of the arc connecting
nodes p and r (ϕ′(p′, r) = ϕ(p′, r) + ϕ(p′, q) · ϕ(p, r)).

The second instance of the KiC(i+1)C operator can be expressed as a mod-
ification of the IG G = (N,A) in a completely dual fashion.

The inverse MiC(i + 1)C on an IG G = (N,A) also has two instances. The
first instance is specified by the two inserted nodes ((i+1)-node q and i-node p),
the i-node p′ that is the only i-node apart from i-node p that will be connected
to (i+1)-node q, the (i+2)-nodes that will be connected to (i+1)-node q, and
the (i− 1)-nodes and (i+ 1)-nodes that will be connected to i-node p, together
with the multiplicity (labels ϕ′) of all the inserted arcs. It is feasible if all the
specified nodes are in N , and the label ϕ(p′, r) before the refinement for each
(i + 1)-node r that will be connected to i-node p is greater than or equal to
ϕ′(p′, q) · ϕ′(p, r). Its effect is to add nodes p and q in N and all the specified
arcs in A and to set ϕ′(p′, r) = ϕ(p′, r)− ϕ′(p′, q) · ϕ′(p, r). The second instance
has a completely dual effect.

4.3 Homology-Preserving Operators on 2-Maps

Simplification operators have been defined on 2-maps in terms of elimination of
darts from set D and modifications of permutations on the remaining darts. The
simplification operators are called removal and contraction. They are the same
as K0C1C and K1C2C operators, respectively.

5 Multi-resolution Model

We have defined and implemented a multi-resolution model for the topology of
cell complexes represented through an IG, that we call a Multi-Resolution Cell
Complex (MCC). It is generated from the IG representing the cell complex at
full resolution by iteratively applying KiC(i + 1)C operators. The IG GB =
(NB, AB) obtained as a result of a specific simplification sequence (determined
by the error criterion adopted) applied to the initial full-resolution graph is the
coarsest representation of the topology of the complex, and we call it the base
graph. It is the first ingredient of the multi-resolution model.

The second ingredient is the set M of refinement operators, inverse to the
simplification operators applied in the simplification process.

The third ingredient of the multi-resolution model is a dependency relation
R on the set M plus μ0, where μ0 is a dummy refinement that generates GB =
(NB, AB). We define a dependency relation between refinements in M ∪ μ0

as follows: refinement μ, which introduces nodes p and q, directly depends on
refinement μ∗ if and only if μ∗ creates at least one node that is connected to
either p or q by μ. The transitive closure of the direct dependency relation defined
above is a partial order relation, since a node is never introduced twice by the
refinements in M. A multi-resolution model for the topology of cell complexes
is, thus, a triple MCC = (GB ,M,R), where GB is the IG representing the
cell complex at the coarsest resolution, M is the set of refinements inverse to
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the simplifications applied in the generalization process, and R is the direct
dependency relation defined over M.

The MCC can be encoded as a Directed Acyclic Graph (DAG), in which the
root corresponds to modification μ0, i.e., to the creation of the base graph GB ,
the other nodes correspond to the modifications in M, and the arcs represent
the direct dependency relation R.

6 Selective Refinement

We discuss how to extract a large number of adaptive representations from an
MCC = (GB,M,R) and briefly discuss some algorithmic aspects.

The set U = {μ0, μ1, μ2, ..., μm} ⊆ M of refinements in M is closed with
respect to dependency relation R if for each 1 ≤ l ≤ m in U , each refinement on
which refinement μl depends is in U . Let U = (μ0, μ1, μ2, ..., μm) be a sequence
of the refinements belonging to U ⊆ M, such that, for each μl ∈ U and each
refinement ν on which μl depends, ν = μj ∈ U , 0 ≤ j < l. Then, U is called a
feasible sequence. The front graph GU associated with a feasible sequence U is the
graph obtained from the base graph GB by applying the sequence of refinements
U . It can be shown that any two feasible sequences U1 and U2 obtained from
the same closed set U produce the same front graph. Thus, a closed subset U of
refinements can be applied to the base IG GB in any total order U that extends
the partial order, producing an IG GU at an intermediate resolution. If a feasible
sequence U contains all refinements in M, then the front graph GU associated
with U is the same as the IG at full resolution.

An MCC encodes the collection of all representations of a cell complex, at
intermediate levels of resolution, which can be obtained from the base repre-
sentation GB by applying a closed set of modifications on GB . From an MCC
it is thus possible to dynamically extract representations of the topology of a
cell n-complex at uniform and variable resolutions. The basic query for extract-
ing a single-resolution representation from a multi-resolution model is known as
selective refinement.

A selective refinement query on an MCC consists of extracting from it the
IG with the minimum number of nodes, satisfying some application-dependent
criterion. This criterion can be formalized by defining a Boolean function τ over
all nodes of an MCC, such that the value of τ is true on nodes which satisfy the
criterion, and false otherwise. An IG G = (N,A) is said to satisfy a criterion τ if
function τ assumes the value true on all nodes in N . Thus, a selective refinement
query consists of extracting from the MCC an intermediate graph of minimum
size that satisfies τ . Equivalently, it consists of extracting a minimal closed set U
of modifications from M such that the corresponding complex satisfies τ . Such
closed set of modifications uniquely determines a front graph, which is obtained
from the base graph GB = (NB, AB) by applying to it all modifications from U
in any order that is consistent with the partial order defined by the dependency
relation. The criterion τ can be defined based on various conditions posed on the
cells in the extracted complex, like the size of the cell (which may be expressed
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as the maximum distance between its vertices or the diameter of its bounding
box) or the portion of the complex in which the maximum resolution is required
(while in the rest of the complex, the resolution may be arbitrarily low).

We have implemented a depth-first algorithm for the selective refinement
query. The algorithm starts from the coarse IG GB and recursively applies to it
all refinements μi which are required to satisfy the error criterion. In order that
a new modification μ be applied, all its ancestor modifications need to be applied
before μ to maintain the partial order. It can easily be proven that the result
of a selective refinement algorithm is a graph G = GU with minimal number
of nodes among the graphs that can be extracted from the MCC, such that all
nodes in GU satisfy criterion τ .

7 Experimental Results

The purpose of experiments is twofold. In the first set of experiments, we have
tested two simplification strategies to build the MCC: one approach is based
on performing simplifications one at the time, and the other on performing a
set of independent simplifications. In the second set, we show the capabilities
of the MCC to extract adaptive representations at variable resolutions, and
compare timings for the two approaches. We have performed the experiments
on 2D and 3D simplicial complexes available on the Web and encoded in an IG,
that become cell complexes after undergoing some simplification. The initial
size of these complexes is between 400K and 953K triangles for 2D data sets,
and between 68K and 577K tetrahedra for 3D data sets. Experiments have been
performed on a desktop computer with a 3.2Ghz processor and 16Gb of memory.

To build the MCC, we start from the IG at full resolution and perform all the
feasible simplifications in the order guided by some criterion τ until the coarsest
representation is reached. The implementation of the simplification algorithm is
independent of criterion τ . We have used a geometric criterion computed on the
vertices of the deleted cells, and we have implemented two different simplification
approaches. In the first one, called step-by-step simplification, simplifications
are extracted from the priority queue in ascending order and performed if still
feasible. After each simplification, the local connectivity of the nodes involved in
it changes and each new feasible simplification is enqueued. The algorithm ends
when there are no more feasible simplifications.

The second approach, called batch simplification, tries to execute at each step
a large number of feasible independent simplifications (that involve nodes not
involved by any other already selected simplification). At each step, we build a
priority queue with all the feasible simplifications sorted in ascending order. We
select a set of simplifications from the queue, we perform all of them, and we
initialize a new priority queue.

In Table 1 we summarize the results obtained with the two approaches. The
columns show, from left to right, data set name (Data set), total number of
cells (Cells), number of simplifications (Simpl. Num.), time needed to perform
them (Simpl. T ime), time needed to build the MCC (MCC Time), storage
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cost of the MCC (MCC storage), time needed to perform all the refinements
in the MCC (Ref. T ime), storage cost of the cell complex at full resolution
(Full complex) and storage cost of the base complex (Base complex).

Table 1. Experimental results for the DAG construction. The storage cost is expressed
in Megabytes and the computation time in seconds.

Data
Cells

Simpl. Simpl. MCC MCC Ref Full Base
set Num. Time Time storage Time complex complex

2D

Step-by-step simplification
Eros 2859566 1429781 74.4 5.3 254.9 18.1 349.0 0.0002
Hand 1287532 643694 35.4 2.3 117.2 7.58 157.1 0.01
VaseLion 1200002 599999 26.7 2.1 105.8 6.8 146.4 0.00028

Batch simplification
Eros 2859566 1429781 218.8 6.4 241.0 18.7 349 0.0002
Hand 1287532 643741 99 2.6 120.7 7.6 157.1 0.004
VaseLion 1200002 599999 90.7 2.3 110.5 7.7 146.4 0.00028

Data
Cells

Simpl. Simpl. MCC MCC Ref Full Base
set Num. Time. Time. storage Time complex complex

3D

Step-by-step simplification
VisMale 297901 147594 45.1 0.6 40.4 5.1 48 0.46
Bonsai 1008357 498790 380.6 2.7 146.9 27.2 162.5 1.8
Hydrogen 2523927 1248743 8643.8 7.8 395.7 419.5 407.4 4.4

Batch simplification
VisMale 297901 148116 69.2 0.7 37.6 2.5 48 0.28
Bonsai 1008357 501524 305.8 2.69 126.4 10.4 162.5 0.89
Hydrogen 2523927 1253913 1412.9 7.4 321.3 33.9 407.4 2.7

We can notice that the time needed to perform all the refinements is always
much less than the time needed to perform all the simplifications (refinement
is 5 to 10 times faster than simplification). An important aspect is that the
storage cost of the MCC structure plus the base graph is less than the storage
cost of the graph at full resolution, with the exception of the largest tested
(Hydrogen) data set using the step-by-step method. Although the total number
of simplifications is slightly higher for the batch simplification approach, the
time required to perform all simplifications that lead to the base complex is less
in the case of step-by-step simplification, since it requires fewer computations.
On the other hand, the MCC generated through batch simplification uses less
memory and consequently can be visited in less time. We have observed that
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Table 2. Experimental timing results (in seconds) for extraction at variable resolution

2D 3D

Data
Perc.

Refinement Time Data
Perc.

Refinement Time
set step-by-step batch set step-by-step batch

Eros
50% 0.80 0.92

VisMale
50% 3.45 0.12

80% 1.42 1.01 80% 3.77 0.15
100% 2.63 2.60 100% 4.01 0.53

Hand
50% 0.31 0.57

Bonsai
50% 15.3 0.65

80% 0.45 0.65 80% 17.4 0.69
100% 1.20 1.19 100% 19.1 1.88

VaseLion
50% 0.73 0.69

Hydrogen
50% 106.3 8.1

80% 1.01 0.99 80% 127.7 8.7
100% 1.10 1.06 100% 172.1 11.3

the DAGs produced by the batch simplification have less dependency relations
compared to the ones produced by step-by-step simplification.

In Table 2, we show timing results for performing extractions at variable res-
olution. Column Perc. indicates the desired percentage of operations performed
inside a query box. Refinement T ime indicates the time needed to perform the
required number of refinements with the step-by-step method (step-by-step) or
the batch (batch) simplification methods. The query box has been chosen by
hand to cover a relevant part for each data set and with size between 15 and
30 percent of the whole data set at full resolution. We can observe that the
extraction times for refinements are similar for the two methods in the 2D case,
while they differ considerably in the 3D case. Note that in 2D each 1-node in
the incidence graph is connected with at most two different 0-nodes and two
different 2-nodes, while in 3D there is a variable number of arcs between 1-nodes
and 2-nodes: a larger number of arcs in the IG leads to a larger number of de-
pendency relations in the MCC. This has a a significant impact in the use of a
simplification method that reduces the MCC complexity.

In Figure 3, we show examples of refinement queries at uniform and variable
resolution performed on the VaseLion data set. The holes that seem to appear
in the crown of the lion are rendering artifacts.

8 Discussion and Outlook

We compare the 2D instance of the MCC defined on IGs with the pyramid
model defined on 2-maps.

The first advantage of the MCC over pyramidal models is its space effi-
ciency. This is a consequence of the fact that the IG occupies less memory than
the n-map representing the same complex. Each dart in an n-map corresponds
to a path in the IG representing the same n-dimensional cell complex from an
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(a) (b) (c) (d) (e)

Fig. 3. In (a), (b) and (c) the representations obtained from the MCC after 10000,
50000 and 2000000 refinements, respectively. In (d), the complex at full resolution of
the VaseLion data set. In (e) the representation obtained with a query at variable
resolution.

n-node to a 0-node. For each dart, the set of n involutions is encoded plus a
pointer for each entity which points to the geometric and attribute description
of such entities, as discussed in [10]. This leads to a storage cost of B ∗ (2n+ 1)
items, where B is the number of darts. For n = 2, it can be easily seen that
B = 4n1, where n1 denotes the number of 1-cells in the complex, while the
number of arcs in the IG is equal to 4n1 (they can be encoded through 8n1

pointers), and the number of nodes is equal to the total number of cells in the
complex. In general, we can observe that each path in the IG is defined by a set
of n− 1 arcs, and the storage cost is less than B ∗ (n− 1) items, since the paths
overlap. We have evaluated on a set of 2-complexes and 3-complexes, the ratio
between the storage cost for the IG and for the n-map; the value for this ratio
is around 50% for 2-complexes, and around 18% for 3-complexes.

The second advantage is a wider representation domain. IGs can represent
arbitrary cell complexes, while n-maps can represent (closed orientable) quasi-
manifolds, which are a class of pseudo-manifolds.

We plan to apply the homology-preserving operators to the computation of
homology of a cell complex. An arbitrary cell complex at full resolution can
be simplified by applying a sequence of homology-preserving operators, until
no further simplification is possible. Homology can be computed on the simpli-
fied complex using standard techniques [1]. Homology generators on the simpli-
fied complex can be computed using the method similar to the ones in [12,4],
proposed for images and complexes represented as n-G-maps, respectively, and
propagated from such complex to the full-resolution complex using the MCC.

Acknowledgments. This work has been partially supported by the Italian
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Abstract. Differentials estimation of discrete signals is almost manda-
tory in digital segmentation. In our previous work, we introduced the fast
level-wise convolution (LWC) and its complexity of O(2n.log2(m)). We
present convergence proofs of two LWC compatible kernel families. The
first one is the pseudo-binomial family, and the second one the pseudo-
Gaussian family. In the experimental part, we compare our method to
the Digital Straight Segment tangent estimator. Tests are done on dif-
ferent digitized objects at different discretization step using the DGtal
library.

Keywords: Differential estimator, discrete differential operator, fast con-
volution, sparse differential operator, FFT.

Introduction

Digital segmentation algorithms such as active contour models often use signal
parameters as energy. Estimation of differentials is almost mandatory for most of
them as they use regularization terms like the snake algorithm [7]. Previous works
are divided into two categories: the non convolutional and the convolutional
methods.

1. Non convolutional methods. The Digital Straight Segment (DSS) tangent
estimator [8,2] extracts maximal DSS and computes their tangents. One of the
advantages of this method is its ability to detect corners, its convergence rate
is O(13 ). The Taylor polynomial approximation [12] fits the values of a digital
function by a polynomial. It introduces a roughness parameter to relax the func-

tion values within an interval. It has a bounded maximal error of O(h
1

1+k ) for
the kth derivative and a resolution h, its convergence rate is O( 1

1+k ). The Global
min-curvature estimator (GMC) is a curvature estimator along digital contours.
It first estimates the uncertainty of tangents using a tangential cover, and then
minimizes the global curvature.
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2. Convolutional methods. The binomial convolution Method (BC) [11,3] ap-
proximates differentials with finite differences after applying a digital version of
the scale space [9] function smoothing, using integer-only binomial coefficients

as a convolution mask. It is noise resistant, has a convergence rate of O(h( 2
3 )

k

)
and a complexity of O(n.m) with n the size of the image and m the one of the
convolution mask.

In our previous work [4] we defined a differential estimator based on a Level-
wise Convolution Kernel, thus obtaining a LWC method. Compared to BC, it
has a better complexity and speed and appears to provide similar error results in
experiments. In this paper, we use two techniques to generate level-wise kernels
from a given smoothing kernel. We then focus on theorems and proofs of con-
vergence for two kernel families and experimental convergence confirmation as
well. More precisely, under some relaxed assumptions of absence of noise and for
floating point methods, we prove that LWC converges in O(h2) with both a level-
wise pseudo-Gaussian kernel and a level-wise binomial kernel. In the presence
of a uniform noise in O(hα), we prove a result similar to [3] for the faster LWC
method. We have not been able to prove such a result for a pseudo-Gaussian
kernel or a level-wise pseudo-gaussian kernel. At last, to further improve com-
parison with other methods we also show results comparing the precision and
speed of our LWC with respect to DSS. The scope of this paper being limited to
first order derivative estimators we don’t compare here our method with GMC.

Section 1 gives definitions of the LWC and two compatible kernels. One based
on the Gaussian function and one based on the binomial coefficients. In the
following two sections we present mathematical proofs of convergence for the
LWC using the two kernels. First the level wise pseudo-binomial kernel (LWBn)
and then the level-wise pseudo-Gaussian kernel LWG. In the experimental results
section, we show comparisons with DSS in terms of precision and runtime.

1 Level-Wise Convolution

When dealing with derivatives estimation, one of the most classical methods is
to use the finite differences (f(x + h) − f(x))/h. Although effective in continu-
ous geometry, it cannot be applied as such to discrete images because derivative
values would be limited to integers. A solution is to average each pixel of the
image with its neighbour, a process called smoothing. This mathematical oper-
ation is known as the convolution product of a function in the integers interval
f : [0, n] → [0, n], the image to be convolved and a function H : [0, n] → [0, n],
the averaging kernel. Gaussian function as a kernel is the standard in this field
as described by Lindeberg in the scale space theory [9]. The resulting image can
then serve to compute differentials, using finite differences with a convolution
by a differential operator Δ as the kernel. Figure 1, is an example of the convo-
lution of a digital function 1, 2, 2, 4, 5 by a binomial coefficients kernel 1, 2, 1. To
preserve the image scale, each value has to be divided by the mass (or weight) of
the kernel (the sum of all its values) in this case W = 2n = 4. After we convolve
the smoothed image by a differential operator to obtain the derivatives (first
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order). There are three kinds of first order derivative operator, the centered one,
as in the example f(1)− f(−1), the backward difference (f(0)− f(−1)) and the
forward difference (f(1)− f(0)). The choice of the derivative operator depends
on symmetric properties of the smoothing kernel. For a centered kernel (odd
size) we use the centered operator. For an even size kernel we can convolve it
with left or right shift (we use the opposite smoothing kernel shift). Out of the
range of the discretization there is no information on the function values. The
convolution loses precision when those pixels are required. This is known as the
border problem and for the example of Figure 1, unknown values are set to 0.
In the experimental part we only use functions for which we know those values.
The major drawback of this method in the discrete paradigm is its complexity
of O(n.m), with n being the size of the image and m the size of the kernel.

Definition 1. The discrete convolution product (noted ∗) is a transform of two
discrete functions F : Z→ Z and H : Z→ Z. At least one is of finite support.

(F ∗H)(x) =
∑
i∈Z

f(x− i).H(i)

H is said to be a smoothing kernel when
∑

i∈Z
H(i) = 1.

Definition 1 shows the discrete convolution product of an image f with a
kernel H for the pixel x of f .

(F ∗H)(n) =

k∑
j=0

k−j∑
i=−k+j

f(n+ i).(H(−k + j)−H(−k + j − 1)) (1)

(F ∗H)(n + 1) = (F ∗H)(n)−H(−k).F (n− k − 1) +H(k).F (n + k) (2)

Looking at the right part of Figure 1 the kernel can be viewed in a multilevel
way. The values are the same for the whole level and by adding them all we

1 2 2 4 5

1 2 1

4 7 10 15 14

-1 0 1

7 6 8 4 -15

Convolution kernel H with binomial
coefficients for n=2

Digital image

Differential operator delta with
centered finite differences

Smoothened image without the
weight (sum of kernel values 2^(-2))

First order derivative of the original
image without the weight 2^(-1)

(a) Derivative estimation example

1 8 28 56 70 56 28 8 1

14

28 28 28

20 20 20 20 20

7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

(b) Level view of the kernel

Fig. 1. (a). First the detailed process of convolving a digital image with a binomial
coefficients kernel, second the convolution of the smoothed image with the central
differential operator of central finite differences. (b). Level view of the binomial kernel
for

(
n
k

)
with n = 8 and k the line index.
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obtain the original kernel as shown in the upper right part. The discrete con-
volution product can be rewritten to apply one level of the kernel at a time, as
shown in Equation (1), the convolution of the function f with the kernel H only

for the pixel n. The first loop
∑k

j=0 iterates through all levels and the second

one
∑k−j

i=−k+j through the whole current level. The complexity has changed to

O(
∑	m/2


i=0 2i + 1) since m = 2k + 1, but Equation (1) only concerns one pixel
and since each level of the kernel has the same value, we only need to convolve
for the first pixel as indicated in Equation (2) and Figure 2.

F

H

F

H
-k k0 -k k0

nn-k n+k - +n+1n

-k-1

x x

1 1 1 1 1

Fig. 2. Convolution of image f with kernel H of size m = 2k + 1 centered in 0

The left part is the convolution of the pixel n and the right part is the convo-
lution of pixel n+ 1 using the previous result. Since each level of the kernel has
the same value Figure 1, we only need to subtract the product of H(−k) and
F (n− k − 1) and to add the product H(k) and F (n + k) to the convolution of
pixel F (n) to get the result.

1.1 Complexity

The resulting complexity depends on the number of levels of the kernel and we
only use kernels with log2 bounded number of levels. We have a O(2n.log2(m))
complexity which is smaller than the binomials convolution of O(n.m) in [11,3]
and theoretically slightly better to the latest complexity of the FTT of

O(394 N.log2(N)) in [5,10,6]. This complexity is only for the FFT, and in order
to compute a convolution using Fourier transform, several steps are required.
The first step, is to apply the transform to the image to be in Fourier space. The
second is to multiply the image by the Gaussian kernel. The third is to apply
an inverse transform to the result of the previous multiplication to return to the
original space. Using other bounds for the number of levels than the logarithm
can increase or decrease the complexity and it could be interesting to have a
kernel with a fixed number of levels. In higher dimension the complexity will be
O(ndim.log2(m)) with dim being the dimension.

1.2 Kernel Compatibility and Extension to Higher Dimensions

For a kernel to be compatible with this method (central difference), it must have
an even size to avoid data shift. It has a log2 bounded number of levels in order
to have the complexity described in Subsection 1.1. The convolution should work
in higher dimensions using the tensor product of one dimension kernels. The use
of n dimension kernels is possible if they are separable in 1 dimension elements.
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2 Kernels Presentation

We introduce two discrete kernels of low complexity. They are level-wise versions
of two known kernels, the binomial kernel and the Gaussian kernel. There are
two methods to generate level-wise kernels. The first one consists in averaging
kernel’s coefficients per level (pseudo-binomial). The second uses a logarithmic
function (pseudo-Gaussian). The fastest discrete converging method for the first
three order derivative is the binomial coefficient kernel. And the fastest in terms
of computational times is the Gaussian kernel. Kernels are symmetrical: H(x) =
H(−x) and they decrease from center to periphery: H(x) >= H(y)for|x| < |y|.
First let us introduce classical binomial and Gaussian kernels.

Definition 2. The binomial kernel is a discrete approximation of the Gaussian
function. Its coefficients are obtained using the binomials

(
n
k

)
, with n the width

of the kernel and k its index. Bn : Z→ Z.

Bn(k) =

(
2n

n− k

)
Let us recall that the classical Gaussian kernel used in scale space is g(x) =

1
σ
√
2π

e−
x2

2σ2 . We introduce now the smoothing kernel obtained by discretizing

this one.

Definition 3. The Gaussian kernel’s coefficients are the ones of the centered
Gaussian function. GλZ→ R.

Gλ(i) = α2−λi2 where α =
∑
i∈Z

2−λi2

The parameter α is chosen to get 1 as total weight. The parameter λ determines
the length of the mask.

2.1 Pseudo-gaussian Kernel

To create this kernel, we start from the continuous Gauss formula. We create
a rough kernel with its level number bounded by the log2 function LWGλγ

Definition 4. It is always centered in 0 with α representing the weight such as
the integral of the kernel is equal to 1 in order not to scale the image after
convolution. Parameter γ controls the number and length of levels.

Definition 4. The level-wise pseudo-Gaussian (LWG). LWGλ,γ : Z→ R.

LWGλ,γ(i) = α2−λγ
2.� log2(|i|)

log2γ
�
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2.2 Building Complexity

Since we can not predict at which value of i the level change will occur, we have
to compute the values for the whole kernel size O(m) with m being the size of
the kernel. The building process can be speeded up by using the left arithmetic
shift to compute powers of 2.

2.3 Pseudo-binomial Kernel

We used the binomial coefficients as a basis for this kernel since it is a good
discretization of the Gaussian function G. It is a level-wise kernel and the values
of the levels are the sum of the binomial coefficients between two boundaries
controlled by the floor function. In Definition 5, we have the pseudo-binomial
kernel LWBn. The integers parameters are: m is the size of the kernel and n the
number of levels. Let us denote s(i) is the signature of the i. Figure 3 illustrates
the relation between the binomial kernel and BLW . On top Bn is represented by
the different levels which size are increasing by power of two. BLW level values
are the average of the values in the corresponding level.

Definition 5. The level-wise pseudo-binomial (LWBn). LWBn : Z→ Z.

LWBn(0) =
1

22α+1−2

(
2α+1 − 2

2α − 1

)
for n �= 0

LWBn(i) =
1

22α+1−2+	log2(|i|)


⎛⎝k=21+�log2(|i|)�−1∑
k=2�log2(|i|)�

(
2α+1 − 2

2α − 1 + s(i)k

)⎞⎠

where

{
s(i) = +1 if n > 0

s(i) = −1 if n < 0
and m = 2α+1 − 2

2.4 Building Complexity

To minimize the complexity we use the Pascal triangle building method to com-
pute the binomial coefficients. For the memory management, we use the upper
bound 4n

8n
√
πn

to allocate our triangle’s line.

3 Convergence

In this section, we prove convergence results for discretization of functions f :
R → R having a bounded third continuous derivative f (3). At the end, we
compare the convergence rate of our method to the ones in literature.
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Odd length binomial coefficient kernel Bn

Pseudo-binomial level averaged kernel

Fig. 3. Top. Odd length binomial kernel Bn with the center marked by the black
square. Bottom. Pseudo-binomial kernel LWBn. The lower line represent power of 2
coefficients determining the level size.

3.1 Convergence and Error Estimation for Unnoisy Images

We prove here a convergence result for discretization by real numbers of func-
tions having a bounded third continuous derivative. Such a result is convenient
for implementations using floating numbers. It is valid for all the kernels we
mentioned in the previous section.

For a discretization step h, let Γ : Z→ R be a real discretization of f : R→ R
and f ′ the first order derivative of f .

hΓ (i) = f(ih)

It is convenient for implementations using floating numbers. The following the-
orem is worthwhile for all the kernels we mentioned in the previous section.

Theorem 1. Let H be any non negative symmetric smoothing kernel and Δ∗H
be the associated derivating kernel, where Δ is the central difference operator
defined by Δ(−1) = 1

2 and Δ(+1) = − 1
2 and Δ(i) = 0 for other values of i. Let

x0 = i0h with i0 ∈ Z. Suppose that
∑
j≥1

j2H(j) exists. Suppose moreover that

H(i) is decreasing for non negative i.

(1) (local convergence): lim
h→0

((Δ ∗H) ∗ Γ )(x0) = f ′(x0)

(2) (rate of local convergence):

((Δ ∗H) ∗ Γ )(x0)− f ′(x0) ∼h→0

1 + 3
∑

j≥1 j2H(j)

6
f (3)(x0)h

2
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(3) (uniform convergence):

Sup {|(Δ ∗H) ∗ Γ )(x)− f ′(x)| ;x ∈ hZ} ≤
1 + 3

∑
j≥1 j2H(j)

6
‖f (3)‖∞ |h|2

Proof. Let ai = (Δ ∗H)(i). We have to evaluate
1

h

(∑
i∈Z

aif(x+ ih)

)
− f ′(x)

For each i in Z, there are x′
i between Min{x, x+ (i − 1)h} and Max{x, x +

(i− 1)h} such that

f(x+ ih) = f(x) + ihf ′(x) +
(ih)2

2
f (2)(x) +

(ih)3

6
f (3)(x′

i)

Now it is easy to check that
∑
i∈Z

ai = 0 and
∑
i∈Z

iai = 1 and
∑
i∈Z

i2ai = 0 and∑
i∈Z

i3ai exists ; hence we have:

1

h

(∑
k∈Z

aif(x+ ih)

)
− f ′(x) =

h2

6

(∑
i∈Z

i3aif
(3)(xi)

)

But now, as the i3ai are non negative, we have
∑
i∈Z

|i3ai| =
∑
i∈Z

i3ai = 2
∑
i≥1

i3ai =∑
i≥1

i3(H(i−1)−H(i+1)) = 1+3
∑
j≥1

j2H(j) and the two first results are coming

immediately when h tends to 0.

Noticing that

(∑
i∈Z

i3aif
(3)(xi)

)
≤ ‖f (3)‖∞

∑
i∈Z

|i3ai|, the reader would im-

mediately consider that the proof is complete.

3.2 Error Estimation for Noisy Images

We consider here the following model for noisy images: let f : R −→ R be the
real image; suppose that the sequence Γ : Z −→ Z is a noisy discretization with
a uniformly bounded error |hΓ (i)− f(hi)| ≤ Khα, where α ∈] 12 , 1], K ∈ R∗

+ and
h ∈ R∗

+.

Theorem 2. Suppose that f is a C3 function and f (3) is bounded. If m =⌊
h2(α−3)/5

⌋
, then we have |(LWB2m ∗ Γ )(n)− f ′(nh)| ∈ O(h(4α−2)/5) for suffi-

ciently large h.

Proof. We prove the following inequality in a standard way:

|LWB2m ∗ Γ (n)− f ′(nh)| ≤ 2 + 3m2

6
h2‖φ(3)‖∞ +

2Khα−1

4m

(
2m
m

)
From the well known Stirling’s formula, n ∼

√
2πn

(
n
e

)n
we get for m→ +∞
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1

4m

(
2m
m

)
∼ 1

4m

√
4πm

(
2m
e

)2m(√
2πm

(
m
e

)m)2 =

√
4πm

2πm
=

1√
πm

Hence choosing m = �h 2(α−3)
3 � provides the result.

Notice that this result is significantly worse than the corresponding result for
Binomial smoothing kernel (non level-wise) which has a convergence proof for C2
functions. However this is a preliminary result that could probably be strengthen.
It seems possible to generalize the results to C2 functions in the case of the
pseudo-binomial kernel. Otherwise, we fail to prove such a result for pseudo-
Gaussian (even non level-wise) smoothing kernel. Ulterior work may show counter
examples for the pseudo-Gaussian kernel in terms of convergence or convergence
rate for C2 functions.

3.3 State of the Art

Maximal error of differential estimation mainly depends on the image. This is
the reason why we include the image in our convergence rate in Figure 4. We can
not bound the error for an arbitrary family of functions since our upper bound
depends on the norm of the derivatives, but we can bound the error for a set of
functions. Trigonometrical functions have the following bound ||f ′′′(x)||∞ = 1.
For polynomial functions, the bound will depend on the degree of the function.

BC DSS Taylor P. LWC

1/3 2/3 1/2 |f ′′′(x)|.h2

6

∑
(i3ai)

Fig. 4. Convergence rates of different estimators for the first order derivative. Datas
were taken from [12].

4 Experiments

We have created level-wise version of two kernel families. The Gaussian kernel
used in the scale space theory (SCT), and the binomial kernel used in discrete ge-
ometry. With level-wise convolution we have reduced the convolution complexity.
Figure 9 and Figure 6 show experiment results of computational time verifying
theoretical complexity. Figure 7 and Figure 8 show experimental convergence
rates for the two families of kernel on a ball and on an ellipsis.

The tests of the two kernels have been done on 2D digitized images gener-
ated by the DGtal library [1]. The convolution is a 1D kernel applied on the
contour of the images, so computational time does not suffer from the 1D tests
presented in [4]. Since our convergence proofs implies that objects are C3, we
choose the ones that have this property. The y axis is the Euclidian norm of the
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Discretization step 0.1 0.01 0.001

Pseudo-Gaussian γ 5 20 80

Pseudo-Gaussian λ 1 1 1

Pseudo-binomial α 4 8 12

Fig. 5. Parameters of kernels families used in the experimental part

difference between the expected value and the estimators value. The x axis is
the logarithm of the inverse of the discretization step. The LWG used in this
experiments LWG exp Definition 6 is a derivated form of the one presented in
Definition 4.

Definition 6. Experiments version of the LWG kernel, LWG expλ,γ : Z→ R.
log2 e is a result from the change of e in 2.

LWG expλ,γ = α2−λlog2e.γ
2.� log2(|i|)

log2γ
�

Kernels parameters were chosen empirically, but they are the same for each
function as shown in Figure 5.
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Fig. 6. Computational time comparison of convolution of an image of size 1000 by
kernels of the same size. (a). Binomial kernel using regular convolution and pseudo-
binomial using LWC. (b). Gaussian kernel using FFT and pseudo-Gaussian kernel using
LWC.

The computational time results of Figure 6 were obtained with a digitized
ball of radius 1. Both methods are not optimized for computational time result.
DSS is implemented using integers and our method uses floating-point numbers.
The difference is significant enough, and this regardless of implementations to
conclude that our method is faster.
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Fig. 7. Experimental convergence rates on a digitized ball of radius 1. (a). Comparison
results for the pseudo-binomial kernel family. (b). Comparison results for the pseudo-
Gaussian kernel family
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Fig. 8. Experimental convergence rates on a digitized ellipsis of large radius 1. (a).
Comparison results for the pseudo-binomial kernel family. (b). Comparison results for
the pseudo-Gaussian kernel family.
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5 Conclusion

We have presented a uniform convergence proof for LWC for two compatible
kernel families. We have experimentally confirmed convergence as well. The ex-
perimental part shows the precision even with empiric parameters on selected
differentiable objects. Also LWC is significantly faster than DSS (as implemented
in the DGtal library). It is important to note that both implementations of DSS
and LWC that we used may not be optimized. In our future work we will focus
on parameters selection and the adaptivity of our kernel using multi-pass convo-
lutions for higher order differentials. Noise resistance proof for pseudo-Gaussian
kernels will be further investigated. We will also do some tests in higher dimen-
sion and higher derivative order. The last goal will be the GPU implementation
allowing the multi-pass approach to improve the runtime.

Acknowledgement. The research leading to these results has received funding
from the KIDICO project of the French Agence Nationale de la Recherche (Grant
Agreement ANR-2010-BLAN-0205-02).
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Abstract. In this paper we examine concurrency relations between
planes whose position is not precisely known. The simplest case con-
sists of four planes, where we have to determine whether the four planes
can be forced to pass through one common intersection point by moving
them slightly within specified limits. We prove that if such a concurrency
relation is possible then it can be found in a finite number of steps by
a simple geometrical construction. This result remains valid for larger
collections of planes, with multiple concurrency relations, provided each
pair of relations shares at most one plane, and the relations do not form
cycles.

1 Introduction

In 3D concurrencies of planes occur when at least 4 planes meet at a common
point. However, when the planes are extracted from real data, e.g., point clouds,
even when four planes are concurrent in the real scene, the extracted planes will
not meet at a common point, because of imprecise data. Concurrencies may still
be possible, but within prespecified tolerances for the positions and slopes of the
planes. Our goal is to find hidden concurrencies by simple geometric construc-
tions that are easy to implement. A geometric construction here means that the
concurrent planes pass through lines and points constructed from intersections
and spans of a finite set of initial points. When the initial points have integral
coordinates all the computations can be done with rational numbers, with the
significant advantage that the results are exact.

In this paper the tolerances on the position of a plane are defined by a convex
polytope, which we will call a domain. Thus given a set of n domains and a set
of m concurrency relations, our goal is to determine whether the concurrency
relations can hold for n plane positions chosen from the domains.

Part of this work is motivated by the renewed interest in visual hulls [1]. Al-
though known for some time [2, 3], multi-camera systems now provide means
to acquire detailed visual hulls in real time. One former obstacle for acquiring
visual hulls was that they need accurate silhouettes. Although obtaining reliable
silhouettes from image segmentation remains difficult [4], motion detection algo-
rithms with sophisticated background models are now able to extract silhouettes
that are sufficiently reliable [5, 6]. Each camera added to the network improves
the accuracy of the hull. In fact, an abundance of cameras allows us to deal with
occlusions and missing segments.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 347–359, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1 shows a synthetic image of the visual hull of a cubic box when viewed
by 4 cameras. The visual hull is a polytope which results from the intersection of
4 cones, and the halfspace defined by the ground plane. Each cone is generated
by the light rays that pass through the projection center of one of the cameras
and the silhouette of the box as seen by this camera. The precise combinatorial
structure of the visual hull depends on the position of the box relative to the
cameras. Thus the number of vertices, edges, and facets may vary when a box
is displaced. However, at a corner of the box, typically the visual hull will have
multiple supporting planes that meet at a common point. For example, in Fig. 1,
six planes meet at the corner in front. Clearly, if we want to embed a box inside
a visual hull, it is interesting to know where n planes, with n > 3, meet at
a common point. Fig. 2 shows the real data for a rectangular box. Because of
noisy data, concurrencies that should occur at corners are not present, but slight
displacements of the facets can make them reappear.

�a�

� 1
2

0
1
2

x
� 1

2

0

1
2

y

0

1
2

1

z

�b�

� 1
2

0
1
2

x
� 1

2

0

1
2

y

0

1
2

1

z

Fig. 1. Synthetic generation of a visual hull. (a) shows the edges of the box (bold
lines) together with the edges of its visual hull. (b) shows the same result but with
facets shown as filled polygons. Because of the edges and facets are quite small, a slight
change of the camera positions may already give a different combinatorial structure.

Tolerances for planes and lines also arise naturally in digital geometry [7–
9]. The results proven in this paper closely resemble previous results on the
concurrency of lines [10]. As before, the domain of a plane [11], i.e., the set of all
parameters that fall within the prespecified tolerances, plays an important role,
since all proofs are given in the dual parameter space.

Section 2 introduces concurrency relations in the primal as well as in the dual
space. In Section 3 we clarify what it means for a concurrency relation to be
constructible. The paper is concluded in Section 4.
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Fig. 2. Visual hull of a box acquired by 4 cameras. (a) Shows a voxel representation of a
close up of the upper part of the visual hull. Because each horizontal layer of the visual
hull is constructed separately, the surface contains gaps between voxels. (b) Shows the
result of segmentation, and then fitting planes to each segment. The dots indicate the
vertices that rest on the ground plane. The combinatorial structure depends strongly
on the fitting process. For example, L∞ fitting gives a different outcome than L2 fitting.

2 Concurrency Relations

2.1 Concurrencies in Primal Space

A convenient way to model the tolerance of a plane is to describe its parameters
by a convex polytope, also called the domain. There are several ways to arrive to
such a domain. Let W be a finite set of points in R3, and let τ > 0 be a positive
thickness. Then the set of all positions the plane can take such that it passes
within a distance τ/2 of W is defined as the set of parameter points (a, b, c) that
satisfy

−τ

2
≤ zi − axi − byi − c ≤ τ

2
, ∀(xi, yi, zi) ∈W.

The thickness τ can be chosen as large as needed to accommodate for the un-
certainty of the point positions. Alternatively, the tolerance of a plane can be
defined by the way it separates point sets. Let U and V be finite and non-empty
subsets of Z3 such that U can be linearly separated from V . Then each parameter
(a, b, c) point that satisfies

zi − axi − byi − c > 0, ∀(xi, yi, zi) ∈ U
zj − axj − byj − c < 0, ∀(xj , yj , zj) ∈ V.

(1)

corresponds to a plane that separates the two subsets. We will define the domain
D(U, V ) as the set of parameter points (a, b, c) that satisfy

zi − axi − byi − c ≥ 0, ∀(xi, yi, zi) ∈ U
zj − axj − byj − c ≤ 0, ∀(xj , yj , zj) ∈ V.
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Thus D(U, V ) is the topological closure of the set defined by (1). In general a
domain is a convex polyhedron. If the inequalities are such that the domain is
bounded, it is a polytope. A domain becomes infinite if the position of one of
the separating planes is orthogonal to the xy-plane. To avoid this complication,
we will assume that there exists at least one plane in space to which none of
the separating planes are orthogonal. Then, we can always rotate the coordinate
axes such that all domains will be bounded convex polytopes, and all planes can
be defined by an equation of the form z − ax− by − c = 0.

We will allow special kinds of domains. A domain will be a planar segment
(or polygon) in R3 if we require that the plane that separates two point sets also
has to pass through a given point p1. Similarly, a domain will be a line segment
if the separating plane has to pass through two points, and trivially, a domain is
a single point if we require that the separating plane has to pass through three
given points. These special cases will be useful when we want to verify some
results in extreme situations.

Each domainD defines a set of possible plane positions defined by the equation
z = ax + by + c, where (a, b, c) ∈ D. To define concurrencies, the plane at
position (a, b, c) will be denoted as Π(a,b,c). If we denote with Pconc(a1, . . . , c4)
the determinant ∣∣∣∣∣∣∣∣

1 a1 b1 c1
1 a2 b2 c2
1 a3 b3 c3
1 a4 b4 c4

∣∣∣∣∣∣∣∣ ,
then the four planes Π(a1,b1,c1), . . . , Π(a4,b4,c4) are concurrent if
Pconc(a1, . . . , c4) = 0.

This polynomial will also be denoted as Pconc(Π1, Π2, Π3, Π4).
Our main problem is now the following. Suppose we are given n domains Di

and m geometric relations Pj . Can we find a plane configuration Π(a1,b1,c1), . . .,
Π(an,bn,cn), with (ai, bi, ci) ∈ Di such that Pj(ai, . . . , bk) = 0 holds for all m
relations Pj?

This is a non-linear programming problem with linear inequalities for the do-
mains and non-linear equations for the concurrency relations. Hence, we may
expect that in general a solution can only be found by solving systems of non-
linear equations. We shall show, however, that for certain configurations a so-
lution can be found by a geometric construction. The feasibility of a geometric
solution depends on how the concurrencies are linked to each other. An example
of the configurations we envision is shown in Fig. 3, as a graphical diagram.
Each node represents a plane, each quadrangle represents a concurrency rela-
tion. Thus Fig. 3 represents the concurrency relations Pconc(Π11, Π12, Π13, Π14)
and Pconc(Π14, Π22, Π23, Π24), sharing one plane, Π14.

The results we prove are valid for all chains of this type. Chains can be
of arbitrary length, but two subsequent relations cannot share not more than
one plane. Fig. 4 shows a chain with 3 relations. Obviously, we can also have
multiple chains with no planes in common between chains. In this case each
chain is handled separately.
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Fig. 3. (a) shows a chain with two concurrency relations, Pconc(Π11,Π12,Π13,Π14)
and Pconc(Π14,Π22,Π23,Π24) share one plane Π14. (b) shows how such a chain can
arise in the primal space. A polytope has 2 small facets, each adjacent to 4 large facets
(some facets are hidden). By changing the position of the large facets slightly, the small
facets could disappear and be replaced by two vertices. Each of the five large facets in
(b) corresponds to a plane Πij in (a). The plane Π14 corresponds to the large facet
incident to both small facets.
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Fig. 4. A chain for three concurrency relations. A chain with m relations will comprise
3m+ 1 planes. Planes are labeled such that plane Πij is involved in the i-th relation.
Planes that are involved in two relations receive labels of the form Πi4.

2.2 Concurrencies in Dual Space

We will call the xyz-space the primal space, and the parameter space the dual
space. Geometrically, n planes Π(ai,bi,ci) in the primal space are concurrent if
and only if their parameters (ai, bi, ci) are coplanar in the dual space. As a
result, n parameter domains will give rise to n concurrent planes if we can
find n coplanar parameter points, one point from each domain. Clearly, this is
equivalent to the assertion that there is at least one plane in the parameter
space that crosses all the domains. Such a plane is called a common stabbing.
Thus, finding concurrencies in the primal space, is equivalent to finding common
stabbings in the dual space. Concurrency relations for lines correspond to line
stabbings [12, 13], while concurrency relations for planes correspond to plane
stabbings. When n parameter points, where n ≥ 4 lie on a stabbing plane in the
dual space, the corresponding n planes in the primal space are concurrent. Both
conditions are expressed by the same algebraic equation, Pconc = 0. Furthermore,
stabbing planes in the dual space correspond directly to intersection points in



352 P. Veelaert, M. Slembrouck, D. Van Haerenborgh

the primal space. If the stabbing plane has the form b = γ−αa−βb, the common
intersection point in the primal space is (α, β, γ).

For example, for the concurrency relations of Fig. 3, we must find two common
stabbings in the dual space, one for the domains D11, D12, D13, D14, and a second
for D14, D22, D23, D24 . What complicates the stabbing problem, however, is
that the intersection line of the two stabbing planes must cross D14. This is not
guaranteed by the mere existence of two separate stabbings, which means that
the concurrency problem cannot be solved locally.

3 Constructible Solutions

Our goal is to show that solutions can be found by geometrical constructions
that start from known points. These known points may either be the points used
to define the domains, i.e., points in U and V , but even when D is given without
specifying U and V , we can always indicate a set of known points in the primal
space.

Definition 1. Let D be a convex, polytopal domain of plane parameters with
vertex set VD. Let {(ai, bi, ci), ...} be a subset of vertices in VD that lie on a
common facet F . Then the point (x, y, z) that lies at the intersection of the sets
defined by

z = aix+ biy + ci, ∀(ai, bi, ci) ∈ (F ∩ VD)

is called a support point of D.

Thus, each facet of the polytope defines a unique support point in the primal
space. This support point is defined as the common intersection point for the
different positions a plane can take as defined by one facet of its domain. It
is also easy to see that the support points of U and V are sufficient to define
D(U, V ). In fact, if S denotes the set of all support points of D(U, V ), then
D(U, V ) = D(U ∩ S, V ∩ S).

We will make extensive use of the dualism between the primal and dual space.
A vertex v = (a, b, c) in the dual space represents the plane Π at the position
defined by the equation z = ax+by+c. We will denote this relationship as v′ = Π ,
or vice-versa Π ′ = v. Similarly, the stabbing plane Γ defined as c = γ−aα− bβ,
with parameters α, β, γ corresponds to the primal point p = (α, β, γ). The dual
plane Γ contains all the parameters of primal planes that pass through the primal
point p. We will denote this relationship as p = Γ ′, or vice-versa p′ = Γ . A vertex
always lies on at least 3 facets. Hence, a vertex v of a domain is the dual of a
plane v′ = Π that contains at least three support points. We will therefore call
this primal plane v′ a support plane. A support plane v′ is the affine span of a
subset of the support points.

3.1 Meet and Join Operations in the Primal Space

Suppose we are given a connected chain of m concurrency relations and n =
3m+1 domains. Our goal is to show that if the concurrency relations can satisfied
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by n planes, one plane chosen from each domain, then it is always possible to
construct geometrically a solution from the support points. From the support
points we construct new points and planes by applying either the meet ∧ or
the join operator ∨. Let Π1 ∧Π2 ∧ ... denote the intersection of the planes Π1,
Π2, . . .. Let p1∨p2∨ ... denote the affine span of the points p1, p2, . . .. The affine
span of three points is a plane, provided the points are in general position. The
intersections of two planes is a line, provided the planes are not parallel.

A possible construction for the problem of Fig. 3 may now take the form:

Π11 = p11 ∨ q11 ∨ s11
Π12 = p12 ∨ q12 ∨ s12
Π13 = p13 ∨ q13 ∨ s13
Π14 = p14 ∨ q14 ∨ (Π11 ∧Π12 ∧Π13)
Π22 = p22 ∨ q22 ∨ s22
Π23 = p23 ∨ q23 ∨ s23
Π24 = p24 ∨ q24 ∨ (Π14 ∧Π22 ∧Π23),

(2)

where pij , qij , sij are support points, and the indices point out the corresponding
domain, i.e, p11 is a support point of D11. However, many more constructions of
this form are possible, depending on which support points are selected, and in
what order. Our goal is to show that if the concurrency problem has a solution,
then there always exists a solution that can be constructed geometrically by meet
and join operations on the support points and previously constructed points and
planes. Since there are only a finite number of possible constructions, this means
that the existence of a solution can be demonstrated or disproved in a finite
number of steps.

In a construction like this it is important that all the planes are defined, and
that the concurrency relations are automatically satisfied when the points are
in general position. For example, the same construction would be invalid if the
fourth plane was constructed as Π14 = p14 ∨ q14 ∨ s14, because then in general
the planes Π11, Π12, Π13, Π14 would not be concurrent.

3.2 Meet and Join Operations in the Dual Space

The meet and join operations of (2) provide one simple example of a possible
construction. The constructions that we will need can be much more complicated.
In fact, the concurrencies will first be established in the dual space, and then
translated into the primal space. In the dual space concurrencies are established
by constructing stabbing planes by meet and join operations that start from the
vertices of the domains. For example, for the configuration of Fig. 3 we may have
a stabbing plane of the form

Γ1 = v11 ∨ v12 ∨ v13,

where vij denotes a vertex of domain Dij . But we also allow more complicated
expressions of the form

Γ2 = (Γ1 ∧ (v14a ∨ v14b)) ∨ v22 ∨ v23
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where Γ2 is constructed from vertices of domains involved in the second relation
and a previously constructed stabbing plane Γ1 from the first relation.

3.3 Constructible Stabbings Yield Constructible Primal Planes

Expressions in the dual space can always be translated into expressions that
involve support points in the primal space. In fact, each vertex in the dual space
corresponds to a support plane in the primal space, which is the affine span of
three support points. For example, if the points p1j, q1j , r1j lie on the facet that
corresponds to v1j , then

v1j = (p1j ∨ q1j ∨ r1j)
′

and we have
Γ1 =

∨
j=1,...,3

(p1j ∨ q1j ∨ r1j)
′,

which specifies how the stabbing plane can be constructed by taking duals from
affine spans of support points.

However, the construction of the stabbing planes in terms of support points
still leaves some freedom with respect to the parameters of the primal planes
Πij . Suppose that we have constructed m stabbing planes from the domain
vertices such that the intersection line Γn ∧ Γn+1 crosses the domain Dn4 for
each subsequent pair. Then we still have to make clear how we can derive the
parameters of the planes Πij that satisfy the concurrency relations. To this end
we will select in each domain a parameter point that lies on the stabbing plane,
but where necessary we introduce additional constraints, which are explained
below, to remove remaining degrees of freedom.

The additional constraints are chosen as simple as possible, e.g., by requiring
that a parameter point lies on a edge of a domain. We have to make a distinction
between domains that are involved either in one or in two relations. First, for a
domain Dij involved in one relation, if the stabbing plane Γi passes through one
or more vertices of Dij , we select one of these vertices. If Γi contains no vertex,
the stabbing plane still passes through at least one edge of domain Dij . In this
case we select the intersection point of the edge and the stabbing plane. Second,
for a domain Di4 that is involved in two relations, we select the intersection
point of a facet of Di4 and the intersection line Γi ∧ Γi+1. Clearly, all the se-
lected parameter points are constructible in the dual space, since they lie either
at a vertex, at the intersection of an edge and a constructible stabbing plane, or
at the intersection of a facet and two constructible stabbing planes. For exam-
ple, (Γ1 ∧ Γ2 ∧ (u14 ∨ v14 ∨ w14))

′
represents a plane in the primal space whose

parameter point is defined in the dual space as the intersection of two stab-
bing planes and a facet spanned by the vertices u14, v14, w14. In turn, each
vertex can be written as the dual of the affine span of three support points, e.g.,
u14 = (p14∨q14∨s14)

′. Hence, when a parameter point (a, b, c) is constructible in
the dual space from the vertices, the corresponding plane Π(a,b,c) is constructible
in the primal space from the support points.
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3.4 Proof of the Main Result

We start with a simple result for one concurrency relation with 4 primal planes.

Proposition 1. If four domains can be stabbed by a common dual plane, then
there is a dual plane passing through 3 domain vertices that stabs the fourth
domain.

Proof. The requested stabbing is easily found by three rotations. Let
a11, a12, a13, a14 denote four arbitrarily chosen points on the common stabbing
plane, one point chosen from each domain, i.e., aij ∈ Dij . We let the stabbing
plane rotate around the axis a13a14 until we hit a vertex in one of the two other
domains. Without loss of generality we assume that this vertex lies in D11 and
call it v11. Next we let the plane rotate around the axis a14v11 until we hit a
second vertex either in D12 or D13. Without loss of generality we may assume
this vertex lies in D12, and call it v12. Finally, we let the plane rotate around
v11v12, until we hit a third vertex either in D13 or D14. The resulting plane passes
through 3 vertices in 3 different domains and still stabs the fourth domain. �

Note that a domain vertex corresponds to a supporting plane. Thus the above
result translates into: there exist three supporting planes, such that there is a
fourth separating plane that passes through the common intersection point of
the three supporting planes and two support points of the fourth domain.

To prove the main theorem, we will extend the previous result. However, in
order to ensure that the stabbings stay within the common domains Di4, we
introduce visual hulls in the dual, which should not be confused with the visual
hulls of Section 1. Suppose we have a convex polytope D, and two vertices v1
and v2 not in D. We define a visual hull of D as seen from the line v1 ∨ v2 as
follows:

H(v1 ∨ v2, D) = {p ∈ R3 : (p ∨ v1 ∨ v2) ∩D �= ∅}. (3)

In other words the visual hull is the set of all points that lie on planes that
pass through v1 ∨ v2 and cross D. Note that this a variant of the more common
definition of a visual hull. In our case the light rays are not lines but planes, and
the projection center is not a point but a line. It is also clear that the intersection
of a visual hull H(v1∨v2, D) with another domain D′ is again a polytope, whose
vertices can be constructed by meet and join operations on v1, v2, the vertices
of D, and the vertices of D′.

We will now prove the general theorem. The proof is given in the dual space,
but it is helpful to keep the dualities of Table 1 in mind. The dual space column in
Table 1 indicates how the primal plane can be constructed from domain vertices
and duals of stabbing planes.

Theorem 1. Suppose we have a connected chain ofm concurrency relations, with
3n + 1 domains D11, . . . , Dm4. If there exist 3n + 1 primal planes Φ11, . . . , Φm4,
with Φ′

ij ∈ Dij , that satisfy the concurrency relations, then there is a second set of
primal planes Π11, . . . , Πm4 with Π ′

ij ∈ Dij, where each Πij can be constructed by
meet and join operations on the support points and previously constructed planes.
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Table 1. Dualities between primal and dual space

dual space primal space

Γi passes through vertex v support plane spanned by 3 support points of v′

Γi crosses edge v1v2 plane spanned by 2 support points in v′1 ∩ v′2 and by Γ ′
i

line Γi ∧ Γi+1 crosses facet plane spanned by 1 support point, Γ ′
i and Γ ′

i+1

Proof. The general idea of the proof is to start from stabbing planes in the dual
space that correspond to a solution, which is known to exist, and then rotate the
stabbing planes until they pass through a sufficient number of vertices, edges or
facets of the domains.

First Stage. We start with the first relation in the chain. Since there is a solu-
tion, there is also stabbing plane Γ1 in the dual space that stabs the 4 domains
of the first relation. Let a11, a12, a13 denote three arbitrarily chosen points on
the common stabbing plane, one point chosen from each domain D11, D12, D13.
Let a14 be a point chosen from D14 on the line Γ1 ∩ Γ2. We let the stabbing
plane Γ1 rotate around the axis a13 ∨ a14 until we hit a vertex in one of the two
other domains D11 or D12. Without loss of generality we assume that this is a
vertex of D11, which we call v11. Next we let the plane rotate around the axis
a14 ∨ v11, until we hit a second vertex either in D12 or D13. Assume this vertex
lies in D12, and call it v12.

We now have a stabbing plane Γ1 that passes through the vertices v11 ∈ D11

and v12 ∈ D12. Furthermore, a14 still lies on the rotated stabbing plane, as well as
on Γ2. In principle, it is possible to let Γ1 rotate further around the axis v11∨v12
until it hits a third vertex in either D13 or D14, which would then completely
determine the position of Γ1. However, there is a risk that the resulting plane
would cross D14 in a part that can no longer be reached by Γ2. We will therefore
proceed with Γ2. But also when rotating Γ2 we run the risk that it will cross
D14 in a part that is no longer reachable by Γ1. To avoid this, we introduce the
visual hull of D13 as seen from the axis v11 ∨ v12, and we replace D14 by

D̂14 = D14 ∩H(v11 ∨ v12, D13).

Clearly, for any point a14 in D̂14, we can always find a plane that passes through
the axis v11 ∨ v12 and that crosses D13, since in (3) the visual hull was defined
in a way to guarantee this. As mentioned previously, the visual hull can be
constructed by joins and meets of domain vertices.

To proceed we choose arbitrary points a23 ∈ D23 and a24 ∈ D24 and let Γ2

rotate around the axis a23∨a24 until we hit a vertex in D̂14 or D22, for example,
v22 ∈ D22. Next, we let the plane rotate around the axis v22 ∧ a24 until we hit a
second vertex, for example, the vertex v14 of D̂14. Note that this vertex may or
may not be a vertex of the original domain D14, but it is always constructible.

As soon as Γ2 passes through two vertices, we compute the visual hull of the
third domain, chosen such that it is not equal to D24, and as seen from the axis
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passing through the two vertices already selected. For example, if the vertices
are v22 and v14, we compute

D̂24 = D24 ∩H(v14 ∨ v22, D23)

and replace D24 by D̂24. The previous step is now repeated until we have found
m stabbing planes that contain two vertices each.

Second Stage.We note that for the last stabbing plane Γm, it is no longer a prob-
lem to rotate it around its two vertices, since the last domain in the configuration,
Dm4, is not used in any (m + 1)-th concurrency relation. Hence, by rotating the
last plane around the axis passing through the two vertices that have already been
determined, we can determine a third vertex for the last plane. As soon as this ver-
tex is known, we can go through the configuration in the opposite direction and
determine a third vertex for each of the stabbing planes.

While doing this we have to replace the domains Di4 by their intersection
with a stabbing plane. Suppose, for example, that there are three relations, as in
Fig. 4, and that we have found vertices v32, v33, v34 that completely determine
the third stabbing plane Γ3 = v32∨v33∨v34. To ensure that the second stabbing
plane Γ2 will be able to meet Γ3 the third stabbing plane within the domain
D̂24, we replace D̂24 by

D̃24 = D̂24 ∩ (v32 ∨ v33 ∨ v34).

Note that D̃24 is a planar polygon. Next we rotate the second last plane until it
hits a third vertex, and replace the polytopes D̂i4 when necessary by polygons
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Fig. 5. Theorem 1 is not valid for the chain shown in (a) where 2 relations share more
than one plane. (b) shows how this chain can arise in primal space. A polytope has
two small facets, each adjacent to 4 larger facets. By changing the position of the
large facets slightly, the small facets could disappear and be replaced by two vertices.
However, two of the large facets are adjacent to both smaller facets. Each of the six
large facets in (b) corresponds to a plane Πij in diagram (a). The planes Π13 and Π14

correspond to the large facets incident to both small facets.
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D̃i4, until all the stabbing planes pass through constructible vertices in the dual
space. Note that these vertices may either be vertices of the original domains,
vertices of intersections of domains and visual hulls, or vertices of the polygons
that result from taking the intersection of a domain, a visual hull and a stabbing
plane already found.

After all the stabbing planes have been constructed, constructible primal
planes can be pinned down as explained in Section 3.3. �

4 Conclusion

We have shown that if a solution of the concurrency problem exists, it can be
constructed in a finite number of steps. We did not specify how many steps are
necessary. Such more detailed analysis has been performed for line configurations
in [10], but not yet for planes. Furthermore, the main result is only valid for
connected chains where two concurrency relations share only one plane. In fact,
when relations share two or more planes, as in Fig. 5, one can easily find examples
where a solution cannot be constructed in a simple way from the support points.
It remains to examine whether geometric constructions are possible for more
complicated configurations than the ones studied here.
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Abstract. We propose an Euclidean medial axis filtering method which
generates subsets of Euclidean medial axis were filtering rate is con-
trolled by one parameter. The method is inspired by Miklos’, Giesen’s
and Pauly’s scale axis method which preserves important features of an
input object from shape understanding point of view even if they are at
different scales. Our method overcomes the most important drawback of
scale axis: scale axis is not, in general, a subset of Euclidean medial axis.
It is even not necessarily a subset of the original shape. The method and
its properties are presented in 2D space but it can be easily extended
to any dimension. Experimental verification and comparison with a few
previously introduced methods are also included.

Keywords: Filtered medial axis, discrete scale axis, shape representa-
tion, image analysis, stability.

1 Introduction

The notion of medial axis has been introduced by Blum in the 60s [4]. The medial
axis of an object X is composed by the centers of the balls which are included
in X but which are not fully included in any other ball included in X. This set
of points is, by nature, centered in the object with respect to the distance which
is used to define the notion of ball.

In the literature, different methods have been proposed to compute the medial
axis approximately or exactly, for instance methods relying on discrete geome-
try [5,15,16,7], digital topology [13,25], mathematical morphology [22], compu-
tational geometry [3,20], partial differential equations [24], or level-sets [17]. In
this work we focus on the discrete medial axis based on the Euclidean metric.

The medial axis is a very useful representation of the object and plays a major
role in shape analysis in numerous applications, for example object recognition,
registration or compression. From the medial axis points and associated ball
radii, one can exactly reconstruct the original shape. However it can be hard
or even impossible to use this tool effectively without first dealing with some
problems, especially in discrete spaces and with noisy objects.
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Firstly, the medial axis in discrete spaces has not, in general, the same topol-
ogy as the original object. Solutions to this problem have been proposed by
several authors, for instance [13,25,11]. They use discrete homotopic transfor-
mations guided and constrained by the medial axis, to obtain homotopic skeleton
which contains the medial axis (see, Fig. 1). We do not consider these topological
problems in the rest of the paper, and rely on this solution.

The second problem is sensitivity of the Euclidean medial axis to small con-
tour perturbations (see, for example, Fig. 1). In other words, the medial axis
is not stable under small perturbations of a shape: modifying a shape slightly
(for example in terms of Hausdorff distance) can result in substantially different
medial axes. This is a major difficulty when the medial axis is used in practical
applications (e.g. shape recognition). A recent survey which summarises selected
relevant studies dealing with this topic is presented in [2]. This fact, among oth-
ers, explains why it is usually necessary to add a filtering step (or pruning step)
to any method that aims at computing the medial axis and when a nonreversible
but simplified description of binary objects is of interest.

(a) (b) (c)

Fig. 1. (a): a shape (in gray) and its Euclidean medial axis (in black); (b) the homotopic
skeleton of the shape constrained by its Euclidean medial axis; (c) the same shape, but
with small amount of noise added on the contour. The medial axis of the shape (c) is
much more complicated than the medial axis of the shape (a).

The simplest strategy to filter the medial axis is to keep only points which are
centers of maximal balls of at least a given diameter. Different criteria can be
used to locally threshold and discard spurious medial axis points or branches:
see [1,12], for methods based on the angle formed by the vectors to the closest
points on the shape boundary, or the circumradius of these closest points [8,15].

In these methods, a local information (that is, geometric information extracted
from a single medial ball) is compared to a global parameter value to determine
the importance of the corresponding medial axis point. However, it is well known
that this local filtering can lead to remove small branches which might be impor-
tant for the shape understanding (see Fig. 2) especially for shapes with features
at different scales [2].
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(a) (b) (c)

Fig. 2. (a): a shape X (in gray); (b): The filtered medial axis of X (in black) calculated
by using algorithm [7]. The medial axis is not sufficiently filtered in the middle of the
shape. However, we already start to loose the tail; (c) A more filtered medial axis of X.
Now, the middle of the shape is well filtered. However, we lost all information about
the tail.

A more complex criterion was proposed by [9]: they utilize information about
ball importance in the shape with respect to all other balls by counting the
number of object points inside a ball which are not covered by other balls. The
medial axis point will be removed if the uncovered area of corresponding ball is
too small.

In [19], the authors address this issue and propose an approach that put in
relation local information and regional information, that is, the status of a ball
is only influenced by the one of neighboring balls. Their method is based on
the theory of the scale axis transform [14], and defines a whole family of medial
representations at different levels of abstraction, called scale axis representations
(see Fig. 3). For objects or scenes that include parts showing different scales, this
method gives good results in many cases.

Fig. 3. Different scale axes of the same object (contoured), using different values of the
scale parameter. In pink, the part of the object reconstructed from the filtered axis.

However, the scale axis representation is not free of drawbacks. The most
important one is that the scale axis is not necessarily a subset of the Euclidean
medial axis (see Fig. 4), it is even not necessarily a subset of the original shape.

In this paper we propose a new method for the Euclidean medial axis filtering
(see section 4). Our proposition is inspired by the scale axis method (see section
3). However, as result we obtain a filtered Euclidean medial axis instead of
a set of points that is not necessarily a subset of the latter. Furthermore, our
method produces axes that preserve important features for shape understanding,
even if they are at different scales. Therefore, our algorithm overcomes the most
important drawbacks noticed in previously presented methods following a similar
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approach. Moreover, the new method works in arbitrary dimensions. We evaluate
experimentally its properties, and compare it with the previously introduced
methods [9,12] (see section 5).

2 Basic Notions

In this section, we recall some basic geometrical and topological notions for
binary images [6,18].

We denote by Z the set of integers, by N the set of nonnegative integers, and
by N+ the set of strictly positive integers. We denote by E the discrete space
Zd. A point x in E is defined by (x1, . . . , xd) with xi in Z. Let x, y ∈ E, we
denote by d(x, y) the Euclidean distance between x and y, that is, d(x, y) =
((x1 − y1)

2 + . . .+ (xd − yd)
2)1/2. In practice, the squared Euclidean distance is

used in order to avoid floating numbers. Let Y ⊂ E, we denote by d(x, Y ) the
Euclidean distance between x and the set Y , that is, d(x, Y ) = miny∈Y {d(x, y)}.
Let X ⊂ E (the ”object”), we denote by DX the map from E to R+∪{0} which
associates, to each point x of E, the value DX(x) = d(x,X), where X denotes the
complementary of X (the ”background”). The map DX is called the (Euclidean)
distance map of X . Let x ∈ E, r ∈ R+, we denote by Br(x) the ball of radius
r centered on x, defined by Br(x) = {y ∈ E, d(x, y) < r}. Notice that, for any
point x in X , the value DX(x) is precisely the radius of a ball centered on x
and included in X , which is not included in any other ball centered on x and
included in X .

Now, let us recall the notion of medial axis (see also [21,25]). Let X ⊆ E.
A ball Br(x) ⊆ X , with x ∈ X and r ∈ N+, is maximal for X if it is not
strictly included in any other ball included in X . The medial axis of X , denoted
by MA(X), is the set of the all couples (x, r) such that Br(x) is a maximal ball
for X .

Let X ⊂ E, Y ⊂ X , we denote by REDTX(Y ) the reverse Euclidean distance
transform [9], defined by

REDTX(Y ) =
⋃
y∈Y

BDX (y)(y).

For exact and unfiltered MA(X) we have X = REDTX(MA(X)).

3 Discrete Scale Axis

In this section, we adapt the notion of scale axis (see [19,14]), originally intro-
duced in the continuous space and implemented in a framework of unions of
balls, to the case of discrete grids. We denote by R+ the set of strictly positive
reals. Let X ⊆ E, x ∈ X , r ∈ N+ and s ∈ R+. The parameter s is called
the scale factor. We denote by Xs the multiplicatively s-scaled shape, defined by
Xs =

⋃
(x,r)∈MA(X) Brs(x). For s � 1, we denote by SATs(X) the s-scale axis

transform of X , defined by

SATs(X) = {(x, r/s) | (x, r) ∈MA(Xs)}.
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The original algorithm to compute discrete scale axis, given by [19] in the frame-
work of union of balls (UoBs), can be straightforwardly adapted to the case of
Zd as follows. First, calculate the Euclidean medial axis of X. To do so, we use
an efficient algorithm presented in [9]. Then multiply radius of each medial ball
by the chosen scaling factor s.

In consequence small medial balls are covered completely by larger nearby
balls since they are not important. On the other hand, small balls without larger
balls in their neighborhood are not covered and will be preserved.

Next step is to reconstruct object Xs based on scaled radius values. Recon-
struction can be made efficiently by reverse Euclidean distance transform (see
section 2). Computing the medial axis of Xs achieves the simplification and
MA(Xs) will be free of all covered balls, since these do not touch the boundary
anymore and are thus no longer maximal. For s = 1, the scale axis is identical
to unfiltered Euclidean medial axis. With increasing s, the scale axis gradually
ignores less important features of X leading to successive simplifications of Xs

and the scale axis structure.
The final step of the algorithm consists of rescaling the medial balls of MA(Xs)

by a factor 1/s to obtain the scale axis of X . Finally, discrete scale axis algorithm
can be presented in the following pseudocode:

Algorithm 1. DiscreteScaleAxis(Input X ,s Output SATs(X))

01. Compute MA(X)
02. Reconstruct Xs

03. Compute MA(Xs)
04. Compute SATs(X)

All four steps of DiscreteScaleAxis algorithm can be calculated in linear time
in relation to #X , #Xs, #Xs and #MA(Xs) respectively, where #X stands
for cardinality of X . Therefore, computational complexity of the algorithm is
O(#Xs).

4 The Scale Filtered Medial Axis

The crucial part of the method presented in the previous section, which is a
source of problems (MA(Xs) � MA(X)), is the reconstruction part after medial
balls scaling and the need for generating a new medial axis from the scaled object
(see Fig. 4). On the other hand, at first sight, this is the most important part of
the algorithm since the medial axis simplification occurs in this part.

To filter MA(X) by removing centers of unimportant medial balls one must
avoid reconstruction part and hold simplification property at the same time.
Therefore, to solve this problem we assume that to make efficient filtration we
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(a) (b) (c)

s = 1 s = 1.1 s = 1.3

Fig. 4. (a): a shape X (in gray) and its Euclidean medial axis MA(X) (in black); (b):
the multiplicatively 1.1-scaled shape of X and its 1.1-scaled axis; (c): the multiplica-
tively 1.3-scaled shape of X and its 1.3-scaled axis. In (b, c) we can see that scale axes
are not subsets of MA(X). In both cases, an additional branch even appears.

just need to decide which MA(X) points are not important and should be re-
moved. Therefore, we do not generate a new object Xs and its MA(Xs). In this
way we obtain filtered Euclidean medial axis of X which is a subset of MA(X).

This informal discussion motivates the following definition of the Scale Fil-
tered Euclidean Medial Axis (SFEMA).

Let x ∈ X, r ∈ N+. We denote by BX
r (x) the intersection of Br(x) with X ,

that is, BX
r (x) = {y ∈ X | d(x, y) < r}.

Definition 1. Let X ⊆ E, and s ∈ R, s � 1. We denote by SFEMAs(X) the
Scale Filtered Euclidean Medial Axis of X defined by

SFEMAs(X) = {(x, r) ∈MA(X) | BX
rs(x) �

⋃
(y,t)∈MA(X),t>r

BX
ts (y)}.

Below, we give an algorithm to compute SFEMAs(X) of a given object X ⊆ E.
The algorithm in line 02 performs sorting of medial axis elements, linearly in

time using a counting sort [10]. In the following lines the algorithm performs
two loops. The first one starts in line 04 and does #X iterations. The next,
nested loop, starts in line 06 and in worst case performs #MA(X) iterations.
Summarizing, computational complexity of SFEMA is O(#X#MA(X)).

Examples of SFEMAs(X) for different scale factors si, are shown in Fig. 5.
Let us analyze properties and the major differences between the Miklos’s [19]

s-scale axis and our s-scale filtered Euclidean medial axis. The most important
property is that SFEMAs(X) consists of MA(X) points only, that is, for all
s � 1: SFEMAs(X) ⊆ MA(X). This property (inclusion property, for short)
is essential in many applications of the medial axis. In Fig.4 we have shown
an example of the Miklos’s scale axis where an additional branch even appears
after filtering. Fig.6 shows another problem. The scale axis is too much simplified,
looses important features of the object and is not included in the object. However,
s-scale filtered medial axis holds inclusion property and permits to reconstruct
the most of the original object.

The second interesting property relies on the notion of s-scale ball. If we want
to simplify the object, using Miklos’s scale axis, for example, by removing a
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Algorithm 2. SFEMA(Input X ,s Output H)

01. H ← ∅
02. MA(X) ← EuclideanMedialAxis(X)
03. Let (x1, r1), . . . , (xn, rn) denote the elements of MA(X)

sorted in decreasing order of radii, that is, r1 � . . . � rn
04. foreach p ∈ X do
05. i ← 1
06. while i � n and d(xi, p) > sri do i ← i+ 1 end
07. If i � n then
08. H ← H ∪ {(xi, ri)}
09. end
10. end
11. return H

(a) (b)

(c) (d)

Fig. 5. (a): a shape X (in gray) and its Euclidean medial axis (in black); (b, c, d): the
same shape and its SFEMA1.1(X), SFEMA1.4(X), SFEMA1.6(X), respectively. In
all cases the elephant’s tail, trunk, tusks and legs were considered as important and
were not removed.

medial ball Br(x), x ∈ X , the scale factor should be big enough that ball Brs(x)
is included in one of other medial balls, that is, Brs(x) ⊂ Brs(y), y ∈ X (see
Fig.7c), or in a union of such balls. In our algorithm, since we use notion of
s-scaled ball, we only test inclusion inside X (see Fig.7b). This allows us to use
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(a) (b) (c)

original shape s = 1.3 s = 1.3

Fig. 6. (a): a set X (in green) and its MA(X) (in black); (b): the 1.3-scale axis of X;
(c): the 1.3-scale filtered medial axis of X

(a) (b) (c)

original object s = 1.1 s = 1.3

Fig. 7. (a): a set X (in green) and its MA(X) (red dots); (b): multiplicatively scaled
medial balls. The smaller ball is not fully covered by the bigger one after scaling. In
scale axis representation both balls will be preserved. However, the bigger ball includes
the smaller one inside set X. Therefore, the smaller ball will not exist in SFEMAs(X);
(c): multiplicatively scaled medial balls. The smaller ball is included in the bigger one.
Therefore, it is neither in the scale axis nor in SFEMAs(X).

smaller scale factor. Therefore, we have better ability to control resulting s-scale
filtered Euclidean medial axis.

5 Experiment Methodology and Results

In this section, we compare qualitatively and quantitatively properties of three
medial axis filtering algorithms: discrete λ-medial axis (DLMA) [7], Euclidean
medial axis filtered with the use of bisector function (BisEMA) [12] and SFEMA.
In our experiments we use shapes from Kimia’s database [23].
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We first introduce some notions which help us to compare the algorithms. As
it was stated in sec. 2, considering the exact and unfiltered MA(X), the reverse
Euclidean distance transform of MA(X) is equal to X . However, this property is
no longer true if we consider filtered medial axes e.g. DLMA, BisEMA, SFEMA.
Therefore, it is interesting to measure how much information about the original
object is lost when we perform filtering. Considering a subset Y of MA(X), we
define:

RX(Y ) =
|X \REDTX(Y )|

|X | .

We call RX(Y ) the (normalised) residuals of Y . Residuals give us a numerical
evaluation of reconstruction error. Now we can set Y to different filtered medial
axes, e.g. by using different methods or filtering parameters, and then evaluate
which filtration is better in respect of ability to reconstruct the original object.
The result RX(Y ) is a real value between 0 (perfect reconstruction) and 1 (bad
reconstruction).

The normalised residuals factor is not enough to assess the quality of a fil-
tered medial axis. It is difficult to compare different algorithms because filtering
parameters of the algorithms have different meanings, therefore we introduce the
normalised medial axis size NS.

Let denote by NSX(Y ) normalised medial axis size defined as a ratio of the
number of the medial axis points to the number of object points: NSX(Y ) =
#Y/#X .

Fig. 8.Medial axes in black superimpose to input object in grey color. Consecutive rows
(from left to the right) contain results for DLMA, BisEMA and SFEMA respectively.
Columns contain results for different values of normalised residuals: 0.01, 0.03, 0.05,
0.1 respectively.
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Now we can compare normalised residuals obtained using different methods
for the same NS. In other words, we replace the parameters of the different
medial axis filtering algorithms by only one parameter (NS), which ensures a
fair comparison.

Figure 8 presents DLMA, BisMA and SFEMA of an exemplary shape, ex-
tracted for several values of normalised residuals. The figure shows that SFEMA
of smaller size than DLMA results in the same value of R. Moreover, in contrast
to DLMA, SFEMA represents the most important fragments of an input object
in different scales (see the tail in the last column of Fig. 8). SFEMA algorithm
filters better than BisEMA some unimportant points close to the border of the
sea devil main body.

Table 1. Average normalised residuals calculated for 18 representative shapes from
Kimia’s database [23]. Lowest values are highlighted in gray.

.

2D

NS 2% 3% 5%

DLMA 0.2566 0.1717 0.0996

BisEMA 0.3268 0.1183 0.0775

SFEMA 0.0991 0.0562 0.0112
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Fig. 9. Residuals as a function of normalised medial axis size for DLMA(curve with
circles), BisEMA(curve with triangles) and SFEMA(curve with squares). Results gen-
erated for sea devil image (see Fig 8). Each marker (triangle, circle and square) repre-
sents parameters of one filtered medial axis. Lines has been added only to emphasise
the trend of measurements.
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The next important property of SFEMA can be concluded from Fig. 9 which
shows accuracy of the object representation by filtered medial axis for different
NSs. One can see that SFEMA obtains the smallest residuals value for most
NSs. In other words SFEMA results with filtered medial axes which the most
accurately represent the input object in different scales. Moreover Fig. 9 shows
that SFEMA algorithm generates many more different filtered medial axes than
DLMA algorithm does. This property is important when we are interested in
multiscale representation of an input object. In this case, the number of different
filtered medial axes generated with DLMA algorithm might be not enough. The
above conclusions confirm results presented in Table 1. SFEMA has obtained
the lowest mean normalised residuals for all NSs.

6 Conclusions

The article presents a new method for Euclidean medial axis filtering which
possesses the following properties:

– generates subsets of Euclidean medial axis,
– filtering is based on only one parameter,
– generates filtered medial axes which preserve important parts of an input

object in different scales,
– obtains smaller normalised residuals than other compared medial axis filter-

ing algorithms,
– computation complexity of the algorithm is O(#X#MA(X)).

Future works will include the design of a more formalised framework for quanti-
tative comparison of filtered medial axes at different scales. Using this framework
the authors plan to perform more tests for 2D and 3D objects.
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Abstract. Binary tomography deals with the problem of reconstruct-
ing a binary image from its projections. Depending on properties of the
unkown original image, the constraint that the image is binary enables
accurate reconstructions from a relatively small number of projection an-
gles. Even in cases when insufficient information is available to compute
an accurate reconstruction of the complete image, it may still be possible
to determine certain features of it, such as straight boundaries, or ho-
mogeneous regions. In this paper, we present a computational technique
for discovering the possible presence of such features in the unknown
original image. We present numerical experiments, showing that it is of-
ten possible to accurately identify the presence of certain features, even
without a full reconstruction.

1 Introduction

Binary tomography deals with the problem of reconstructing a binary image
from its projections. While accurate image reconstruction requires availability
of a large number of projections for general grey scale images, knowledge about
the fact the the unknown original image is binary can drastically reduce the
number of projection angles needed for a detailed reconstruction in some cases.

A range of algorithms have been proposed for binary tomography [1–4]. Al-
though each of these methods has demonstrated the ability to compute accurate
reconstructions from a small number of projections in certain cases, none of these
methods offer a guarantee that the reconstructed image is identical, or even sim-
ilar to the unknown original image. In fact, one can state that giving such a
guarantee will be impossible in general, as the reconstruction problem in binary
tomography is known to be inherently unstable: a small change in the projection
data can lead to a dramatic change in the (unique) reconstruction [5–7]. More-
over, several constructions are known for so-called switching components : binary
images in which a selected set of zeros and ones can be interchanged, leading to
a different image having the same projections [8, 9].

Even in cases when insufficient information is available to compute an ac-
curate reconstruction of the complete image, it may still be possible to answer
certain questions about the original image, or to determine certain features of it.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 372–382, 2013.
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In [10], it was shown that connectivity and convexity properties can be derived
– to some extent – directly from the projection data. It can also be desirable to
know whether a certain boundary or homogeneous region can possibly exist in
the unkown image, or not.

Even though finding a binary solution of the reconstruction problem is typi-
cally hard, it is often easier to prove that a solution cannot exist. For example,
if the projections do not satisfy certain consistency conditions, a solution will
certainly not exist. General consistency conditions for the Radon transform are
presented in [11], while a detailed analysis of consistency conditions for the grid
model in discrete tomography can be found in [12]. A particular condition for
the existence of binary solutions is given in [13], which will be used and extended
throughout the present paper.

In this article, we extend the general idea of consistency to the detection
whether or not certain substructures can exist in the original image. We present a
computational technique for discovering the possible presence of certain features
(e.g., blobs, edges). For each feature, a probe structure is defined, which can
detect that particular feature. Based on an analysis of the existence of binary
solutions of the reconstruction problem, our technique can prove, in certain cases,
if the probed feature cannot exist in a given region of the original image. Our
approach is independent of a particular reconstructed image or reconstruction
method.

This paper is structured as follows. In Section 2, the basic model and notation
are introduced. In Section 3, the basic idea of a probe image is presented and
formally defined. Section 4 covers various algorithms that can be used to prove
– in certain cases – that a given probe image cannot be present in the unknown
original image. Section 5 presents a series of simulation experiments that was
performed to obtain a first assessment of the capabilities of the proposed method.
Conclusions are drawn in Section 6.

2 Basic Notation and Model

Throughout the discrete tomography literature, several imaging models have
been considered: the grid model, the strip model, the line model, etc. [14, section
7.4.1]. In this paper we focus on the strip model, but our approach can be used
for other projection models as well.

In the strip model, a projection is computed by considering a set of parallel
strips in a given direction and for each strip computing the weighted sum of all
the pixels which intersect that strip with a weight equal to the intersection area
of the strip and the pixel (see Fig. 1).

We now define some general notation. An image is represented by a vector
x = (xi) ∈ Rn. We refer to the entries of x as pixels, which correspond to unit
squares in the strip model. Throughout this paper we assume that all images
are square, consisting of c rows and c columns, where n = c2. A binary image
corresponds with a vector x̄ ∈ {0, 1}n.
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Fig. 1. The strip
model

For a given set of k projection directions, the projection
map maps an image x to a vector p ∈ Rm of projection
data, where m denotes the total number of line measure-
ments. As the projection map is a linear transformation, it
can be represented by a matrixW = (wij) ∈ Rm×n, called
the projection matrix. Entry wij represents the weight
of the contribution of xj to projected line i. Note that
for the strip model its entries are real values in [0, 1].
From this point on, we assume that the projection matrix
has the property that

∑m
i=1 wij = k for all j = 1, . . . , n.

This property is satisfied for the strip projection model,
as the total pixel weight for each projection angle is equal to the area of a pixel,
which is 1.

The general reconstruction problem consists of finding a solution of the system
Wx = p for given projection data p, i.e., to find an image that has the given
projections. In binary tomography, one seeks a binary solution of the system.
For a given projection matrix W and given projection data p, let SW (p) =
{x ∈ Rn : Wx = p}, the set of all real-valued solutions corresponding with the
projection data, and let S̄W (p) = SW (p)∩{0, 1}n, the set of binary solutions of
the system. As the main goal of incorporating prior knowledge of the binary grey
levels in the reconstruction is to reduce the number of required projections, we
focus on the case where m is small with respect to n, such that the real-valued
reconstruction problem is severely underdetermined.

3 Probe Structure

We now introduce the concept of a probe image. A probe image is represented
by a vector v = (vi) ∈ {0, 1, ?}n. We say that a binary image x̄ satisfies the
probe image v iff x̄i = vi whenever vi ∈ {0, 1}. This relation is denoted by the
predicate F (v, x̄). In other words, the zeros and ones in the probe image prescribe
the values of the corresponding pixels in x̄, while a pixel value of ’?’ in the probe
image allow any pixel value in the corresponding pixel of x̄. We denote the set
of all images satisfying a probe image v by F(v) = {x̄ ∈ {0, 1}n : F (v, x̄)}. For
any probe image v, define s(v) = #{1 ≤ i ≤ n : vi �=′?′}, the total number of
0’s and 1’s in the probe image.

Suppose that we want to know if the unknown original image may contain a
certain homogeneous region of 1’s (i.e., white pixels). We then define a probe
image v̄ that has such a homogeneous region, and contains the ’?’ symbol in
all pixels that are not in this region (see Fig. 2a). The question whether there
exists a binary solution of the tomography problem that has such a region can
then be rephrased as a check whether the set S̄W (p) ∩ F(v) is empty or not.
Similarly, one can define an edge detection probe image such as shown in Fig.
2b. Any image that has a horizontal edge at the indicated position, consisting
of a black strip of background pixels and a white strip of foreground pixels (i.e.,
an edge at the bottom of a white region), will be part of the set F(v) for this
probe image v. This brings us to the central problem considered in this paper:
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Fig. 2. Two probe images. The pixels are colored as follows: black (0), grey (?), white
(1). Left: homogeneous white region; right: horizontal edge at the bottom of a white
region.

Problem 1. (Probe problem). Let W ∈ Rm×n be a given projection matrix and
let v ∈ {0, 1, ?}n be a given probe image. Determine if S̄W (p) ∩ F(v) = ∅.

If the intersection between the solution set of the tomography problem and the
set of images that satisfy the probe image is not empty, we cannot conclude if the
unknown original image satisfies the probe image. However, if the intersection
between both sets is empty, we can conclude that no binary solution exists that
has the probed feature. As we will see in the next sections, one can often prove
that the answer to Problem 1 is “yes”, even without enumerating the set S̄W (p)
of binary solutions of the reconstruction problem.

Now consider the system of equations⎛⎝ | |
w1 · · · wn

| |

⎞⎠
⎛⎜⎝x1

...
xn

⎞⎟⎠ = p, (1)

where wi denotes the ith column vector of W . We now define the operation
of fixing a pixel xi at value vi ∈ R. It transforms the system (1) into the new
system

⎛⎝ | | | |
w1 · · · wi−1 wi+1 · · · wn

| | | |

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...
xi−1

xi+1

...
xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= p− viwi. (2)

The new system has the same number of equations as the original system,
whereas the number of variables is decreased by one. The fixing operation can
be performed for more than one pixel at time.

Proposition 1. Let W ∈ Rm×n be a given projection matrix and let v ∈
{0, 1, ?}n be a given probe image. Let Ry = q be the linear system that is
obtained by fixing all pixels xi to value vi whenever vi ∈ {0, 1}. Then solving
Problem 1 is equivalent to checking whether S̄R(q) = ∅.
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We call the linear system formed in Prop. 1 the reduced linear system corre-
sponding to the probe image v.

4 Partially Solving the Probe Problem

As noted in the previous section, the probe problem can be rephrased as the
question whether or not the reduced linear system has a binary solution. In [13],
the authors present a sufficient condition for the existence of binary solutions of
a given linear system Wx = p which satisfies

∑m
i=1 wij = k for all j = 1, . . . , n.

In summary, it is proved that all binary solutions of this linear system lie on
a hypersphere centered in the minimum norm solution x∗ and having radius

R(p, x∗) =
√∑m

i=1 pi

k − ‖x∗‖22. If the binary vector closest to x∗ is outside this
hypersphere then the given linear system contains no binary solutions:

Theorem 1. Let x∗ = W †p, where W † denotes the Moore-Penrose inverse of
W [15]. For α ∈ R, let ρ(α) = min(|α|, |1−α|) and put T (x∗) =

√∑n
i=1 ρ2(x∗

i ).
If R(p, x∗) < T (x∗), then S̄W (p) = ∅.

Proof. See [13].

In the remainder of this section we present two related techniques for proving
that the unknown original image does not satisfy a given probe image v. Both
methods use variants of Theorem 1.

4.1 Probing by Analyzing the Binary Solutions of the Reduced
Linear System

Let v be a given probe image. We now analyze the reduced linear systemRy = q
corresponding to v, in terms of the existence of binary solutions, following the
idea of Theorem 1.

Let y∗ = R†q and ρ(α) = min(|α|, |1 − α|). Put T (y∗) =
√∑n

i=1 ρ2(y∗i ) and
define T (y∗) = {r̄ ∈ {0, 1}n−s(v) : ‖r̄ − y∗‖2 = T (y∗)}. Also, let r̄ ∈ T (y∗),
i.e., r̄ is among the binary vectors that are nearest to y∗ in the Euclidean sense.
Vector r̄ can be easily computed by rounding the entries of y∗ to their nearest
value in the set {0, 1}. Despite r̄ may not be unique, any choice of r̄ yields the
same results in this context.

Rewriting Theorem 1 in the framework of identifying the existence of binary
images satisfying a given probe image v, we have:

Theorem 2. Let y∗ = R†q and r̄ ∈ T (y∗). If ‖r̄ − y∗‖2 >

√∑
m
i=1 qi
k − ‖y∗‖22

then the original system Wx = p does not have a binary solution which satisfies
v.

Proof. From Theorem 1, we know that if ‖r̄ − y∗‖2 >

√∑
m
i=1 qi
k − ‖y∗‖22 then

there is no binary vector satisfying Ry = p. Hence, there is no x̄ ∈ S̄W (p) that
satisfies v.
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4.2 Probing by Analyzing the Binary Solutions of the Original
Linear System

Using an idea similar to what was used in the previous subsection, we now ana-
lyze the consistency of the original linear system with respect to binary solutions.
However, instead of using r̄, the binary vector closest to the minimum norm so-
lution x∗, we define r̃ as the binary vector, satisfyig the probe image v, which
is closest to x∗.

Theorem 3. Let x∗ = W †p and r̄ ∈ T (x∗). For i = 1, . . . , n, define r̃i = v̄i if

vi �=′?′ and r̃i = r̄i otherwise. If ‖r̃ − x∗‖2 >

√∑m
i=1 pi

k − ‖x∗‖22, then v is not

satisfied by any x̄ ∈ S̄W (p).

Proof. The vector r̃ is the binary image which contains the structure of the
probe image that is closest to x∗. If r̃ is out of the hypersphere containing all
binary solutions of Wx = p (see [13]), then there is no binary image satisfying
the probe image v that is on this hypersphere. Therefore v is not satisfied by
any binary solution of Wx = p.

5 Numerical Experiments

Although the two techniques from Section 4 can detect sufficient conditions for
the non-existence of binary solutions of the reconstruction problem that satisfy
the given probe image, an empirical study is needed to determine the usefulness
of the proposed methods for actual tomography data. A series of experiments
was performed to investigate the presented method, for three different phantom
images using a variable number of projections. The experiments are all based
on simulated projection data obtained by computing the projections of the test
images (so-called phantoms) in Fig. 3:

For the experiments, we have used probe images that only consider 0’s and
1’s inside a square sub-image of size 8×8 pixels. This subregion is then moved
across the full image region, scanning the possible presence of the probe structure
throughout the image of size 64×64 pixels.

(a) Phantom 1, 64× 64 (b) Phantom 2, 64× 64 (c) Phantom 3, 64× 64

Fig. 3. Original phantom images used for the experiments
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For each experiment, both techniques from Section 4 were used, checking
whether any of these two methods can prove that the probe structure cannot
occur in a particular region of the unknown original image.

To compute the shortest least-squares solutions of the linear systems involved
in the methods of Section 4, the CGLS algorithm was used. We refer to [13] for
details.

In the following subsections, we consider experiments for two different probe
structures, for detecting homogeneous regions and horizontal edges, respectively.

5.1 Homogeneous Regions

In this section, we focus on the identification of square homogeneous regions in
the unknown original image. Two types of probe images were defined: a square
8×8 region of 1’s (white pixels) surrounded by ’?’ pixels, and a square 8×8
region of black pixels, also surrounded by ’?’ pixels. These square regions were
then moved across the full 64×64 image region to determine at each location
whether such a homogeneous black or white square can possibly occur in the
binary solution set of the tomography problem.

For each probe image we are able to define a status based on the results
obtained by applying the presented methods with the two different types of probe
images. We define the status forbidden for a probe image which, according to
the methods, have no binary solution satisfying it. We also define the status
allowed for a probe image in which the methods could not determine whether
there exists a binary solution satisfying this probe image.

The results for a given phantom image leads to a new 2D greyscale image,
which represents – for each position of the probe region – the outcome for both
probe types, as follows:

– If the black region is allowed and the white region is forbidden then asso-
ciate a black color;

– If the black region is forbidden and the white region is allowed then asso-
ciate a white color;

– If the black region is allowed and the white region is allowed then associate
a light grey color;

– If the black region is forbidden and the white region is forbidden then
associate a dark grey color;

The resulting greyscale images are shown in Fig. 4 for Phantoms 1 and 2, de-
picting results for an increasing number of projection angles. It can be observed
that as the number of angles grows, the results of the probe experiments provide
an increasingly accurate view of the true presence of homogeneous regions in the
phantom image.

5.2 Horizontal Edges

The goal of this section is to identify straight horizontal edges which could
be present in the original image. We use the term horizontal edges to indicate
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(a) Phantom 1. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 1. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 2. Number of projection angles: 16, 20, 24, and 28

Fig. 4. Homogeneous region status for the phantom images of dimension 64× 64

horizontally adjacent pixels with intensity 1 (white) which are vertically adjacent
to the same number of horizontally adjacent pixels with intensity 0 (black color).
So, we define a square probe structure of size 8×8 such that the pixels in the
upper half of the square are set to 0 and the pixels in the lower half of the square
are set to 1. The vertically mirrored version of this probe structure was also used
to detect edges at the bottom of an object.
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Similar to the previous section, the results for this probe structure give rise to a
new greyscale image, defined as follows. Starting from a completely black image,
if at a certain position for the probe structure no unsatisfiability is detected, the
“white” part of the edge (corresponding to the interior of the object) is colored
white in the output image if it is also white in the original image and dark grey if
it is black in the original image. The “black” part of the edge (corresponding to
the outside of the object) is colored black in the output image if it is also black

(a) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 2. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 3. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 3. Number of projection angles: 16, 20, 24, and 28

Fig. 5. Possible edges for the phantom images of dimension 64× 64
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in the original image and light grey if it is white in the original image. Also, if
at a certain position for the probe structure the unsatisfiability is detected but
there are white pixels in this region in the original image, then those pixels are
colored as light grey. The results of this procedure are shown in Fig. 5, which
identifies the regions that could be edges according to our results, for a varying
number of projection angles. Again, we see that as the number of projections
increases, the results of the probe experiments provide an increasingly accurate
view of the true presence of horizontal edges in the phantom image.

6 Outlook and Conclusion

In this article we have proposed a novel approach for obtaining information about
an object from a small number of its projections. By using necessary conditions
for the existence of binary solutions of the tomography problem, and combining
these with probe images for particular substructures of the image, it can be
determined whether such a substructure can possibly occur, or whether it can
certainly not occur in the unknown original image.

The experimental results for a limited set of simulation experiments show
that this approach can indeed lead to the recovery of substantial information
about the original image, without resorting to a particular, possibly non-unique
reconstruction.

More research in this direction will be necessary to determine what the lim-
itations are of the proposed method, and how it compares to image analysis
algorithms that try to find the structure directly in a reconstructed image.

Acknowledgements. W.F. acknowledges support from the Erasmus Mundus
program of the European Union, and from the University of Leiden. K.J.B.
was supported by the Netherlands Organisation for Scientific Research (NWO),
programme 639.072.005.
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Knot Segmentation in Noisy 3D Images of Wood
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Abstract. Resolving a 3D segmentation problem is a common challenge
in the domain of digital medical imaging. In this work, we focus on an-
other original application domain: the 3D images of wood stem. At first
sight, the nature of wood image looks easier to segment than classical
medical image. However, the presence in the wood of a wet area called
sapwood remains an actual challenge to perform an efficient segmen-
tation. This paper introduces a first general solution to perform knot
segmentation on wood with sapwood. The main idea of this work is to
exploit the simple geometric properties of wood through an original com-
bination of discrete connected component extractions, 2D contour detec-
tion and dominant point detection. The final segmentation algorithm is
very fast and allows to extract several geometrical knot features.

Keywords: 3D segmentation, dominant points, histogram, geometrical
features, wood knot.

1 Introduction

Outside the classical medical applications, 3D digital imaging systems like X-
Ray Computer Tomography are an interesting way for biologists to analyze wood.
Even less frequent, these original images could offer the possibility to access to
numerous geometric informations about wood knots [12]. A wood knot is the
young part of a branch included in the wood stem (see Fig. 1(b)). Sawmills
are also interested by knot segmentation in 3D images to optimize the cutting
decisions of wood planks. They expect to improve at the same time the wood
plank appearance and the productivity.

By nature, wood structures are simpler to segment than medical images. At
first view, the extraction of wood knot does not seem difficult on ideal configu-
rations as in Fig. 1(a). On the contrary, the image 1(b) remains an important
problem to apply segmentation. A simple threshold is no more possible since sap-
wood and knot are connected and of similar intensity. The problem of sapwood
is a well known major difficulty.

More precisely, several authors have tried to remove the limitations induced
by sapwood. We can cite Andreu and Rinnhofer who propose a specific method
based on knot model to segment knots [5]. Their approach is robust on sapwood
but is limited to the Norway spruce. Moreover, it can only detect knots with
particular orientation specific to the species. This approach can not detect the
correct knot structure inside sapwood. Another approach was proposed by Aguil-
era et al. [2]. They use a 2D deformable model with simulated annealing. Their

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 383–394, 2013.
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(a)

Knot

Pith
Sapwood

︸ ︷︷ ︸

(b) (c) (d)

Fig. 1. Illustration of different knot qualities in X-Ray images. Image 1(a) is an ideal
configuration without sapwood, image 1(b) is an noisy version with sapwood. Images
1(c) and 1(d) show the limitations of the previous proposed approach [9].

approach can give results in presence of sapwood but an important separation
is visible between knot and sapwood on the examples of their experiments. The
proposed method also suffers from the setting of the deformable model param-
eters. Moreover, it is not automatic: the deformable model must be manually
initialized. We can also refer to the work of Nordmark [14]. He proposes to use
neural networks to solve the knot detection problem in presence of sapwood.
This original solution is interesting but presents the main inconvenients to be
very slow and does not always provide precise results. Note that other classical
segmentation approaches, like the 3D deformable models, are also not able to
perform knot segmentation in presence of sapwood (see for instance the segmen-
tation comparison in [9] or the one of Fig 10(f).

In previous work, we proposed a sapwood robust approach to detect position
and orientation of knots [9]. This first step is only limited to the detection and
does not segment the knots. In particular, the limits of such approach are illus-
trated on Fig. 1(c) and 1(d). The contribution of this new paper is to advance
further than the previous detection by performing a real segmentation even in
presence of sapwood. The main idea of the proposed method is to exploit geo-
metric information analyzed from the discrete contour of 2D images. Through
this method, we can integrate an a priori shape knowledge on knot and sapwood
while remaining efficient.

Before introducing this new solution, we summarize in the following section
the previous work of knot area detection which represents an important step in
the proposed method. Afterwards, we detail our knot segmentation method. Fi-
nally, we present our results and comparisons with results of recent segmentation
algorithms.

2 Knot Areas Detection

In previous work, we present an histogram based method to isolate each tree
knot in an angular interval [9]. Since our work relies on this detection we recall
here the main steps of the algorithm.
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Fig. 2. Schema of the detection of slice intervals and angular intervals. In green a
slice and an angular sector corresponding to a peak in the z-motion histograms and
pie-charts. The [k − i, k + j] intervals are the computed intervals from each peaks.

We work with a 3D grey level image I of N × M × K resolution. A slice Sk

of size N × M is a subimage of I corresponding to a cross-section of the tree.
S1 and SK correspond respectively to the bottom and the top of tree when it is
scanned from bottom to top. We work also with the pith. Biologically, the pith is
the tree center, the growth rings center and the most important for us, the knot
origin. To localize the pith, we use an algorithm proposed by Fleur Longuetaud
[11] based on the growth rings detection. The pith position is defined as the
intersection point of the lines perpendicular to the growth rings. We obtain one
pixel by slice. The pith position will be used like center of all the angular sectors.

The z-Motion. By sliding the slices, we can observe that knots move from the
pith to the bark. Only the knots produce big motions due to a big contrast with
softwood. We name this motion the z-motion.

Definition 1. Let (Sk)k∈[1,K] be a set of K slices. The z-motion slice Zk is
defined as the absolute value of intensity variation between the two consecutive
slices Sk−1 and Sk :

Zk = |Sk − Sk−1|
The set of Zk images provides a new 3D image of dimension N × M × K − 1
where a big value implies a big motion. It is not a problem to have the first slice
S1 without corresponding z-motion slice. It is the first or the last slice and we
ignore these slices during the stem analysis: they are too noisy. The set of Zk is
used to identify slice intervals containing knots. In each of them, we identify the
angular intervals containing knots.

Let us see now how to use z-motion to determine slice intervals and angular
intervals containing knots.
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2.1 Slice and Angular Intervals

The first detection identifies the slice intervals (see Fig. 2). To determine these
intervals, we construct the histogram of z-motion sum (see Fig. 3). Each value
represents the sum of all pixels of a slice Zk. The peaks correspond to a slice with
a lot of big motions, meaning that we are in presence of knots. The algorithm
to determine significant peaks and the corresponding intervals is based on the
analysis of derivative gradient. It is detailed in [9].

Fig. 3. Histogram and pie-chart of z-motion sum. In each of them, we identify knot
intervals with the same algorithm.

Usually, the knots constitute a whorl1. This implies that there are several
knots in a slice interval. To isolate each knot of a whorl, we proceed to a second
analysis of z-motion in each slice interval [Zk−i, Zk+j ]. Each slice is divided in
360 angular sectors centered on the pith. We construct the pie-chart of z-motion
sum illustrated on the Fig. 3. One value corresponds to the z-motion sum on a
same angular sector taken on all the slices of [Zk−i, Zk+j ]. In the same way than
for the slices, we compute intervals of angular sectors. An angular interval is a
set of consecutive angular sectors containing just one knot (see Fig. 2).

3 A Suitable Segmentation in Angular Intervals

Let I be a billon’s image of size N ×M ×K. I can be seen as a sequence of slices
(Sk)k∈[1,K] or as a sequence of angular sectors (sd)d∈[1,D]. After the detection
process of slice intervals (see Section 2), we obtain a set (ix) of slice intervals.
The original image I restricted to an interval ix generates a slice subsequence
Px (see Fig. 4).

A detection process of angular sector is applied to each slice subsequence
Px. This process furnishes a set (αy) of angular intervals with usually just one
1 Knot group with the same origin, the pith, and organized in circle around the pith

axis (see Fig. 1(a)).
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Fig. 4. Notation illustration

knot. The slice interval Px restricted to an angular interval αy is an angular
subsequence Px,y similar to a piece of pie. In the following, we name “ knot
area ” the subsequences Px,y (see on the right of the Fig. 4).

The segmentation process described in this section is applied to each knot
area Px,y. It begins by a 3D connected component extraction based on the grey
level. The objective of this extraction is to eliminate the connected components
resulting from noise as growth rings. The chosen threshold is −100 to be sure
to not cut the knots (in general fixed beetween −90 and −70 by biologists). As
a reminder, the grey level interval corresponding to the wood density in X-Ray
images is [−900, 530]. As a result, we obtain one or more connected components
and we keep the biggest (within the meaning of voxel number) in a new binary
knot area Bx,y with the same dimensions than Px,y.

The proposed algorithm is applied on each 2D slice Sx,y of Bx,y. It consists of
the four main steps described in the following sub-sections (see Fig. 5).

3.1 Step 1: 2D Connected Component Extraction

The first step consists in a 2D connected component extraction applied on Sx,y.
It potentially contains a part of the biggest connected component of Bx,y. We
can have more than one connected component in the 2D slice Sx,y while Bx,y

contains only one connected component. It is a previous or a next slice of Bx,y

that merges the different connected components of Sx,y.
After the 2D connected component extraction, we keep the components with

more than 152 pixels. We name this new slice S′
x,y. In Fig. 5(a), we have an

example of S′
x,y with just one connected component drawn in pink. The two

dark pink lines represents the bounds of the αy angular interval.

3.2 Step 2: Contour Detection

We search P0 in S′
x,y, the nearest pixel to the pith belonging to a 2D connected

component found at the previous step. To do this, we use Andres’s circle [4]
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with an increasing radius. The Andres’s circle ensures to visit all the surface
of S′

x,y by a complete paving of plan. The found pixel P0, drawn in red and
green in Fig. 5(b), is the first point of the contour C. From P0, we applied an
algorithm based on the Moore’s neighborhood to determine the other C points
of the nearest connected component of the pith.

To obtain better results in the next step, we smooth the contour C with an
averaging mask of radius 3. It is the smoothed contour Cs that appears in blue
in Fig. 5(b).

(a) Step 1: connected com-
ponent extraction

(b) Step 2: contour detec-
tion

(c) Step 3.1: dominant point
detection

(d) Step 3.2: main dominant
point detection

(e) Step 4: segmented knot

Fig. 5. Knot segmentation algorithm in four steps

3.3 Step 3: Dominant Points

The objective of this step is to find the junction points PL and PR between
knot and sapwood inside the smoothed contour Cs. The proposed method uses
the dominant point notion (characteristic points of the contour) and a criterion
based on distances to the pith to discriminate them.
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Step 3.1: Dominant Point Detection. We detect the dominant points of
Cs with a method proposed by Nguyen et al. in [13]. The algorithm relies on
arithmetical discrete lines [16] and blurred segments [7].

The notion of blurred segment was intro- y

x

Fig. 6. A blurred segment

duced from the notion of arithmetical dis-
crete line. An arithmetical discrete line, noted
D(a, b, μ, ω), is a set of points (x, y) ∈ Z2 that
verifies μ ≤ ax − by < μ + ω. A blurred seg-
ment with a main vector (b, a), lower bound μ
and thickness ω is a set of integer points (x, y)
that is optimally bounded (see [7]) for more
details) by a discrete line D(a, b, μ, ω). The
value ν = ω−1

max(|a|,|b|) is called the width of
this blurred segment. The upper figure shows
a blurred segment (the sequence of gray points) whose the optimal bounding
line is D(5, 8, −8, 11).

Nguyen et al. proposed the notion of maximal blurred segment. A maximal
blurred segment of width ν (see Fig. 6) is a blurred segment that can not be
extended to the left and the right sides. A linear recognition algorithm of width
ν blurred segments [7] permits for a given contour C to obtain the sequence
SCν of all its maximal blurred segments of width ν. We then scan the sequence
SCν : in each smallest zone of successive maximal blurred segments whose slopes
are increasing or decreasing, the candidate as dominant point is detected as the
middle point of this zone.

This method is used on the Cs contour detected at the previous step on the
S′

x,y slice, with a width ν = 3. Let (Pn)1≤n≤NP be the sequence of the NP

dominant points obtained on the Cs contour (see example in Fig. 5(c)).

Pp

Px-2
Px-1

Px

Px+1

(a) Px = ¬MDP (b) Decision tree
Pp

Px-2

Px
Px1 2

Px-+

(c) Px = MDP

Fig. 7. Decision tree of the MDP criterion with illustration of two different executions.
In (a), C1 is false and C2, C3 and C4 are true. In (c), C4 is false.
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Step 3.2: Main Dominant Points Detection. We want to identify the two
main dominant points (MDP), PL and PR, with L, R ∈ [1, NP ], L < R and
respectively on the left and on the right of P0 (see Fig. 5(d)). The left and right
sides are defined from the pith position and the orientation of the αy angular
interval: left in counterclockwise, right in clockwise. We are still working on the
slice S′

x,y and the two points make the junction between knot and sapwood on
this slice.

We test successively each dominant point Pn with the decision tree presented
in Fig. 7. They are tested in clockwise from P1 to determine PL and in counter-
clockwise from PNP to determine PR.

For each dominant point Px, the MDP criterion is based on the euclidean
distances d between the pith point Pp and four dominant points:

• Px−2, Px−1, Px and Px+1 when we search PL,
• Px+2, Px+1, Px and Px−1 when we search PR.

The Fig. 7 presents the tree decision and examples of the MDP criterion for
PL. The first condition C1 ensures that Px is not a MDP when the next dom-
inant point Px+1 moves far enough away from the pith (more than 10 pixels)
relatively to Px. The following conditions C2 to C4 ensure a distance order such
as d(Pp, Px−2) < d(Pp, Px−1) < d(Pp, Px+1). These conditions reflect the stem
shape and the pith circularity: they identify the first dominant point that does
not move away from the pith.

The main dominant point detection furnishes zero, one or two points from
which we can separate the knot from the pith. We need to treat the three cases
to obtain a segmentation of any slice S′

x,y.

3.4 Step 4: Knot Segmentation in Sapwood from MDP

From each found MDP, we define a cut line to separate knot from sapwood.
These lines are named ΔL for PL and ΔR for PR. Each of them is built from two
points: the considered MDP and the mean point of the previous dominant points
for PL, respectively the following dominant points for PR. Moreover, we define
the segment ΔMDP linking PL to PR when we find two MDP (see Fig. 8(c)).

We consider three cases depending on the number of MDP, illustrated by the
Fig. 8. On each of them, the light pink area corresponds to the segmented knot.

No MDP. In this case we considered that all the connected component of S′
x,y

corresponds to the knot. There are two typical cases involving no MDP detection:
• when the knot and the sapwood are not connected (see Fig. 8(a)),
• when the knot is completly included in the sapwood.

One MDP. When there is only one MDP, PL or PR, the part of the connected
component section corresponding to the knot is:

• on the right to PL if PL is the detected MDP (see Fig. 8(b)),
• on the left to PR if PR is the detected MDP.
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(a) No MDP detected. (b) One MDP detected (c) Two MDP detected.

Fig. 8. Knot estimation based on the number of main dominant points

Two MDP. It is the most common case. It occurs most often when the knot is
in contact whith the sapwood. In this case, we define the segment ΔMDP which
allows to separate the knot in two parts: the upper part and the lower part.
They correspond respectively to the knot parts inside and outside the sapwood
(see Fig. 8(c)).

We segment separately the two parts. The lower part is segmented by defining
a contour C1. C1 is composed of the two parts of Cs, (PR, P0) and (P0, PL), and the
segment ΔMDP . All pixels inside C1 and belonging to the considered connected
component of S′

x,y belong to the knot. The second part, above the ΔMDP so
inside the sapwood, is a restricted area of the considered connected component
of S′

x,y. It is the connected component part simultaneously on the right of ΔL,
on the left of ΔR and on the top of ΔMDP .

The fusion of the two parts produces the segmented knot of the slice S′
x,y, in

light pink in Fig. 8(c).
The four steps of algorithm allow to segment a knot on a 2D slice Sx,y of

a 3D knot area Px,y. By merging all 2D segmented knots, we obtain the 3D
reconstruction of the knot of Px,y. But all slices of Px,y do not contain part of the
knot. It is necessary to detect in Px,y the interval [l, u] of slices containing a part
of the knot to obtain a clean 3D reconstruction. In fact, the slices outside [l, u]
contain just sapwood that the algorithm can segment as on the right of Fig. 9.
It is usually the case but we can see that the segmented connected component
does not contain knot. The [l, u] detection allows to reconstruct knot with just
slices containing a part of knot.

The slice interval [l, u] is computed from the distance to the pith of the first
dominant point P0 in each slice Sx,y of a knot area Px,y. We construct the
corresponding histogram H , illustrated on Fig. 9. In this histogram, we can
detect the knot interval [l, u]. The process starts with the localization of the
minimum, in red on Fig. 9. Afterwards, we seek the bounds l and u (in green
on Fig. 9) on each side of the minimum. A slice index j is the lower bound l,
respectively the upper bound u, if Hj−6 − Hj−1 < 5, respectively if Hj+6 −
Hj+1 < 5.



392 Knot Segmentation in Noisy 3D Images of Wood

Fig. 9. Histogram of distances to the pith of a knot area Px,y. On the right, an example
af sapwood segmentation in a slice without knot.

Fig. 10. Illustration of the segmentation results of the proposed approach (images
(a,b)) and comparisons with previous work (images (d,e)) [9]. Images (c,f) show com-
parison between our approach (c) and deformable model (f) [10]. The static and dy-
namic visualizations were generated with the DGtal library [1].
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Fig. 11. Experiments of various segmentation methods on the bottom left part of
image of Fig. 1(b). Images (a-d) show results obtained from a Component Tree based
approach [15] with different values of the user parameter α. Result of morphological
snake [3] is given in (e) and power watersheds [6] algorithm result is displayed with
two configurations of markers (images (f-i)). The result of our algorithm is displayed
in image (j) in light pink color.

4 Experiments and Comparisons

To evaluate the efficiency of our approach, the knot segmentation was applied
on a difficult sample of spruce containing continue areas of sapwood. The seg-
mentation results are presented on images (a-c) of Fig. 10. Note that we focus
on the extraction of the larger branches by constraining the segmentation from
a threshold on the minimal size of the segmented component. As comparison,
the basic knot segmentation (images (d,e)) is performed with a simple threshold
on the knot areas detected from previous work [9]. As shown in figure Fig. 10,
our approach is able to remove all sapwood areas without any markers.

Comparisons with Other Approaches. Before defining the proposed ap-
proach, we experimented several recent and promising segmentation methods.
The first one is the method of the Component Tree [15]. Even with a manual
adjustment of the markers and the numeric parameter, we can see that result
does not fit to the initial knot (images (a-d)) of Fig. 11. We also apply the power
watersheds [6] and morphological snake algorithms [3] respectively on images (e)
and (f-i). As comparison, the result of our segmentation method is displayed in
image (j). The images (c,f) of Fig. 10 complete the comparisons of our algorithms
(image (c)) with a 3D deformable model [10]. Contrary to our approach, the 3D
deformable model also segments together the sapwood with the knots.

5 Conclusion

This paper proposes a segmentation method applied to the wood knot problem.
Known as a difficult problem, we use histograms and discrete tools to propose a
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new solution. The resulting approach is efficient (running time around few min-
utes for a complete log, without optimization) in comparison to 3D deformable
model [10] (order of hours for the sample of Fig. 10). Some improvements can
be done in future work to apply segmentation on large and small knots simulta-
neously. The source code of the algorithm is available online [8].

Acknowledgements. We would like to thank F. Longuetaud and F. Mothe for
their wood expertise, J.-O. Lachaud and B. Taton for the source code of the de-
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Abstract. We propose in this paper an estimator of derivative and cur-
vature of discrete curves. Based on adaptive convolution that preserves
contour, we use local geometrical information as the heat kernel to con-
volve with a discrete curve and give estimation of its geometrical param-
eters. We recover on regular part of the curve the classical convolution
based on gaussian kernel. We study the bounded error of our approach
for first and second order derivative and we discuss about the multigrid
convergence.

1 Introduction

Curvature is a geometrical invariant of shapes or curves which characterizes the
object. It has a clear definition in the smooth setting but on discrete shapes, it
is an important problem to give an estimation of this invariant and there exists
many approaches.

A geometrical definition, based on digital segment decomposition of the shape,
estimating the first derivative of the curve is given in [6,10]. Digital circle arcs
decomposition is used in [3,16,15]. Decomposition into maximals segments has
been proved multigrid convergent, meaning that when the digital discretization
step tends to zero, the derivative estimation converges toward the underlying
continuous one. This approach has been generalized by using maximal digital
circle arcs in [15]. The authors studied the multigrid convergence according to
the length of the digital circle arcs when the discretization step tends to zero, and
conjectured the multigrid convergence of their approach. Segmentation with non-
primitive objects has been studied in [14] where the authors proved the multigrid
convergence. Others approaches have been proposed, based on convolution by a
Gaussian kernel in [12,9] or a kernel adapted to the contour in [7]. Gaussian kernel
has been widely studied in Image analysis to reduce noise effect [17]. Although
Gaussian kernel is optimal on flatten parts (Theorem of Gabor [11]), its has
a blurring on the contour. For this reason a large amount of works deals with
adaptive kernels to reduce the blurring effect whereas still reducing the intensity
of the noise. We have proposed in a previous work a digital and adaptive kernel
suited for curves and surfaces [7,8], but we were not able to prove the multigrid
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convergence of this approach. On the other hand, the gaussian kernel has been
proved multigrid convergent for C3 curves in [12] and for C2 curves in [5] for
derivative of order one.

We propose in this paper to study the multigrid convergence of derivatives of
order one and two on curves. We rely on convolution estimators (Section 2) with
Least square methods to give an estimation of the derivative (Section 3). With
the help of a previous work [2], we will use the link between the two approaches
to show that estimation based on adaptive kernel is multigrid convergent (Sec-
tion 4), and finally we will propose numerical examples of curvature estimation
on digital curves (Section 5).

2 Convolution Derivatives Estimator

2.1 Convolution with Gaussian Kernel

Definition 1. Convolution Product
Let F : Z −→ Z and K : Z −→ Z be two discrete functions. We call the
convolution product of F by K denoted F ∗ K the function:

F ∗ K : Z → Z (1)

a �→
∑
i∈Z

F (a − i)K(i) (2)

Definition 2. Derivative Estimation[12]
Let ϕ be a discrete function. An estimation of the first derivative of ϕ at point
x is given by:

(Δ2m−1 ∗ ϕ)(x) = 1
22m−1

m∑
i=−m+1

(
2m − 1

m − 1 + i

)
(ϕ(n + i + 1) − ϕ(n − 1 + i))(3)

Theorem 3. [5]
Let f : R → R be a C3 bounded function, let α ∈]0, 1], K ∈ R∗

+ and h ∈ R∗
+.

We suppose that Γ : Z → Z is such that |hΓ (i) − f(hi)|≤ Khα. Then for
m = h2(α−3)/3 we have |(D2m−1 ∗ u)(n) − f ′(nh)|∈ O(h2α/3)

We have proposed in [7,8] to study an adaptive kernel for derivative estimation.
Gaussian Kernel previously introduced has been widely used in image analysis
but its blurring effect destroy fine structures and boundaries. Nevertheless, Ga-
bor [11] shows that on flatten part of an image gaussian kernel are the most
efficient masks to reduce noise. Many works deal with an adaptive kernels that
preserve contours while reducing noise [13,1]. Along these lines, we propose this
discrete kernel which is gaussian on regular parts of a curve and adaptive on
high curvature points.
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2.2 Convolution with Adaptive Kernel

We recall the definition of our adaptive kernel. It is a weighted version of the
classical adjacency matrix.

Definition 4. Adaptive Kernel
Let Σ ⊂ Zn be a sets of 0-connected voxels. We define on Σ the Markov chain in

discrete time whose states are E, the voxels of Σ, and whose transitions between
two neighbors are constrained by:

– Probability 1
2n to go from center of the voxel to one of its corner

– Equiprobable repartitions from the corner to every adjacent voxel.

We call As the adjacency matrix of the adaptive digital diffusion process. Many
properties of this digital diffusion process can be found in [7,8].

Definition 5. First derivative estimation
Let ϕ be a discrete function and Am

s the adaptive kernel computed on ϕ. Its first
derivative estimation at point n is given by:

(D1
(2m+1) ∗ ϕ)(n) =

m∑
i=−m

Am
s (n, i)(ϕ(n + i + 1) − ϕ(n − 1 + i)) (4)

Following Theorem. 3, we will show that the estimator error is bounded an
converges toward zero when the discretization step tends to zero. We use the
least square method to tackle the problem.

3 Least Square Approximation

3.1 Definitions

Let {y0, y1, . . . , yn} and {x0, x1, . . . , xn} be two matching sets of experimental
measures. We search a relation between xk and yk for k ∈ [1, n]. In the case
of derivative estimation, we are looking for the line fitting the set and passing
through a point (xi, yi) i ∈ [1, n]. Classical least square approximation is to
compute the minimum of the following sum S(a) with respect to a, the slope of
the target line, with

S(a) =
n∑

j=1
((yj − yi) − a(xj − xi))2

In our situation, the diffusion process defines a reliability weight between two
given points: Let Am

s (i, j) the weight at point j starting from point i:

S(a) =
n∑

j=1
((yj − yi) − a(xj − xi))2Am

s (i, j) (5)
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Then the optimal slope a is the solution of

∂S

∂a
=

n∑
j=1

2 ((yj − yi) − a(xj − xi)) × (xj − xi)Am
s (i, j) = 0

=
n∑

j=1
(yj − yi)(xj − xi)Am

s (i, j) − a

n∑
j=1

(xj − xi)2Am
s (i, j) = 0

a =
∑n

j=1(yj − yi)(xj − xi)Am
s (i, j)∑n

j=1(xj − xi)2Am
s (i, j)

Definition 6. Let C = {c0, c1, . . . , cn} be a discrete curve and Am
s the adaptive

kernel associated with C. We call the least square estimation in ci = (xi, yi), the
line of slope a such that:

a =

n∑
j=1

(yj − yi)(xj − xi)Am
s (i, j)

n∑
j=1

(xj − xi)2Am
s (i, j)

(6)

b = yi − axi (7)

In the next section, we will study the link between the least square approach
and the one based on the associated weighted convolution.

3.2 Link with Gaussian Convolution

The classical least square derivative approach is proved to be multigrid conver-
gent for C2 curves [2]. The authors also generalize this results to second order
derivative functions. We will add geometrical informations of weights in the least
square approach and we will prove that the formula is related to the gaussian
convolution.

Theorem 7. Let C = {c0, c1, . . . , cn} be a discrete curve such that cj = (xj , yj)
and As the stochastic matrix associated with C. If Am

s (i, j) = 1
22m−1 Cm−j+1

2m+1 ,
then we have: ∑2m

j=0(yj − yi)(xj − xi)Am
s (i, j)∑2m

j=0(xj − xi)2Am
s (i, j)

= D1
2m−1(ci)

Remark 8. This theorem allows us to connect the gaussian weighted least square
approach and the gaussian convolution. Note that the theorem only holds for
gaussian weights but we will see how to deal with adaptive weights.
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Proof. We rewrite the least square estimation formula to simplify the proof.
Without loss of generality, we suppose that the estimation tangent point is cen-
tered at 0. Let pj = Am

s (i, j)

a =
∑m

j=−m(yj − y0)jpj∑m
j=−m j2pj

If pj is given by binomial numbers, we have:

a =
∑m

j=−m(yj − y0)jCm+j
2m−1∑m

j=−m j2Cm+j
2m

We easily check that
∑m

j=−m j2Cm+j
2m = m22m−1.

We collect yj in:

(D1
(2m+1) ∗ ϕ)(x) =

2m+1∑
i=0

Cm+j
2m−1(yj+1 − yj−1)

Cm+j
2m−1(−yj)+Cm+j−1

2m−1 (yj) = yj

(
(2m − 1)!

(m + j − 1)!(m + j)!
− (2m − 1)!

(m + j)!(m − j − 1)!

)

= yj
(2m)!
2m

m + j − (m − j)
(m + j)!(m − j)!

= yj
1

2m

2j(2m)!
(m + j)!(m − j)!

= yj
j

m
Cm+j

2m

We will use this result to show the link with our adaptive kernel.

3.3 Link with Adaptive Kernel

First we need technical results about our adaptive kernel.

Theorem 9. [7] Let D(a, b, μ, ω) be a discrete line and let As be its adaptive
kernel. Then 1√

2m+1 Am
s (0) L−−−−→

m→∞ N (0, 1).

This theorem shows that on discrete lines, the adaptive kernel follows a normal
law; the adaptive kernel has, in the limit, the same statistic distribution as the
gaussian kernel.

Proposition 10. The discrete standard normal diffusion, on the sampling of a
curve of continuous curvature, converges in law toward the centered normalized
normal law.
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More precisely:

Lemma 11. Let f ∈ C2, Let x ∈ Df and σx be the standard deviation of diffu-
sion on a discrete line of slope f ′(x). Let iε be the discrete point associated to x
on ϕε : Z −→ Z discretization of f with a step ε, As the convolution kernel asso-
ciated to ϕε and pε the length of the maximal segment centered at iε. We choose
mε such that pε

2 > mε > pε

4 and we note Xε(y) = 1
mσx

Am
s (iε, iε + � ymσx

ε 	), the
standard normal diffusion process at iε. Then (Xε)ε∈R converges in law toward
the standard normal law:

Xε
L−−−→

ε→0
N (0, 1)

Remark 12. This proposition refers to the asymptotic distribution of the diffu-
sion process for large time being equivalent to a normal law for a given standard
deviation. Therefore, on a curve of continuous curvature, the adaptive kernel
converges toward the gaussian kernel.

Proof. The starting point of diffusion iε belong to S, maximal segment centered
at iε with length pε. Statistical distribution of weights starting from point iε

have a standard deviation σε. Because of the class of the function f ∈ C2, the
deviation σε actually converges, when ε → 0, toward a number σx, which is the
standard deviation of the discrete diffusion on the discrete line of slope f ′(x).

For j such that |iε − j| < pε, being on a maximal segment, the standard
deviation of the process between iε and j for a time m < pε is identical to the
process on the discrete line S.

According to theorem. 9, the standard normal diffusion process on the discrete
line S converges in law toward the normal law when m → ∞. And according
to [10], pε is not bounded when ε → 0. Then for pε

2 > mε > pε

4 ,

Xε
L−−−→

ε→0
N (0, 1)

4 Multigrid Convergence of Derivatives Estimator

In this section, we study the asymptotic convergence of the derivative estimator
of order one and two. In the last section, we study the link between convo-
lution and least square approach. We will use this link to prove the multigrid
convergence of our approach. In [2], the authors propose a proof of multigrid con-
vergence of least square approach without ponderation. We extend their work to
the gaussian approach and our adaptive approach. The need for this extension
has been already documented in image analysis: the constant averaging mask
is not efficient, the gaussian mask taking into account the distance from the
treated pixel is better, and to preserve contours, one needs an adaptive mask
that takes into account the geometry of the image. We propose a similar ap-
proach on discrete curves, and in a forthcoming paper we will apply it to gray
level images.
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4.1 Theorical Convergence

Theorem 13. Let yi = D1(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretisation of
a functiony = f(x) C2. Then ∀j, ∃ζj ∈ [x, xj ] such that:

∀k, |D1(f)(xk) − f ′(xk)|≤ max
xj∈Vk

{∣∣∣∣f ′′(ζj)
2

(xj − xk)
∣∣∣∣
}

Proof. Under the hypothesis that f is C2, we have a Taylor expansion in xk:
∀x ∈ R, ∃ζ ∈ [x, xk]

f(x) = f(xk) + f ′(xk)(x − xk) + f ′′(ζ)
2

(x − xk)2

∀j, ∃ζj with a weight pj such that:

yj − yk = f(xj) − f(xk) = f ′(xk)(xj − xk) + f ′′(ζj)
2

(xj − xk)2 (8)

Bringing in Equation 8 into the definition of the derivative, we get:

D1(f)(xk) =
∑n

j=1(yj − yk)(xj − xk)pj∑n
j=1(xj − xk)2pj

=
∑n

j=1 f ′(xk)(xj − xk)2pj + f ′′(ζj)
2 (xj − xk)3pj∑n

j=1(xj − xk)2pj

= f ′(xk) +
∑n

j=1
f ′′(ζj )

2 (xj − xk)3pj∑n
j=1(xj − xk)2pj

.

Then,

|D1(f)(xk) − f ′(xk)| =

∣∣∣∣∣
∑n

j=1
f ′′(ζj )

2 (xj − xk)3pj∑n
j=1(xj − xk)2pj

∣∣∣∣∣
≤

∑n
j=1 maxj∈Vk

{∣∣∣ f ′′(ζj)
2 (xj − xk)

∣∣∣} (xj − xk)2pj∑n
j=1(xj − xk)2pj

≤ max
j∈Vk

{∣∣∣∣f ′′(ζj)
2

(xj − xk)
∣∣∣∣
}

.

With a similar approach, we have a bounded error for derivatives of order two:

Theorem 14. Let yi = D2(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretization
of a function y = f(x) defined on I C3. We note h the discretization step and
Δik = (xi−xk)3pi∑n

i=1
(xi−xk)2pi

. Then ∀i, j, k, ∃ζj ∈ [x, xj ], ∃εi ∈ [x, xi] et ∃ε′
i ∈ [x, x′

i]
such that:

|D2(f)(xk)−f ′′(xk)|≤ max
j∈Vk

{∣∣∣f ′′′(ζj)
2

(xj − xk)
∣∣∣}+ max

i,j∈Vk

{
n

(xj − xk)h
f ′′(εi)Δik − f ′′(ε′

i)Δij

}
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Proof. Let xk ∈ I, the second derivative at point k is given by:

D2(f)(xk) =
∑n

j=1(D1(f)(xj) − D1(f)(xk))(xj − xk)pj∑n
j=1(xj − xk)2pj

(9)

Identically to the last proof, ∃ζj ∈ [x, xj ] such that:

f ′(xj) − f ′(xk) = f ′′(xk)(xj − xk) + f ′′′(ζj)
2!

(xk − xj)2 (10)

Identically to Theorem 13, we have:

∃ζi ∈ [x, xi], D1(f)(xk) = f ′(xk) +
∑n

i=1
f ′′(ζi)

2 (xi − xk)3pi∑n
i=1(xi − xk)2pi

∃ζ′
i ∈ [x, x′

i], D1(f)(xj) = f ′(xj) +
∑n

i=1
f ′′(ζ′

i)
2 (xi − xj)3pi∑n

i=1(xi − xj)2pi

(11)

f ′(xj) − f ′(xk) = f ′′(xk)(xj − xk) + f ′′′(ζj)
2

(xj − xk)2

(f ′(xj) − f ′(xk))(xj − xk) = f ′′(xk)(xj − xk)2 + f ′′′(ζj)
2

(xj − xk)3

(D
1(f)(xj ) − D

1(f)(xk))(xj − xk) = f
′′(xk)(xj − xk)2 +

f ′′′(ζj )
2

(xj −xk)3 + (xj −xk) (12){∑
n

i=1
f ′′ (ζi )

2 (xi − xk)3pi∑
n

i=1
(xi − xk)2pi

−
∑

n

i=1
f ′′ (ζ′

i
)

2 (xi − xj)3pi∑
n

r=1
(xi − xj )2pi

}
(xj −xk)

Bringing Equation 12 into Equation 9,

D2(f)(xk) =
∑n

j=1(D1(f)(xj) − D1(f)(xk))(xj − xk)pj∑n
j=1(xj − xk)2pj

(13)

(14)

D2(f)(xk) =
∑n

j=1(f ′′(xk)(xj − xk)2pj + f ′′′(ζj)
2 (xj − xk)3pj∑n

j=1(xj − xk)2pj
+

∑n
j=1

{∑
n

i=1
f′′(ζi)

2 (xi−xk)3pi∑
n

i=1
(xi−xk)2pi

−
∑

n

i=1

f′′(ζ′
i

)
2 (xi−xj)3pi∑

n

i=1
(xi−xj)2pi

)

}
(xj − xk)pj∑n

j=1(xj − xk)2pj
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D2(f)(xk) − f ′′(xk) =

∑
n

j=1
f ′′′(ζj )

2 (xj − xk)3pj∑n

j=1(xj − xk)2pj

+

∑n

j=1

{∑n

i=1

f′′(ζj )
2

(xi−xk)3pi∑
n

i=1
(xi−xk)2pi

−
∑n

i=1

f′′(ζ′
j

)

2
(xi−xj )3pi∑

n

i=1
(xi−xj )2pi

)

}
(xj − xk)pj∑

n

j=1(xj − xk)2pj︸ ︷︷ ︸
S2

S2 =

∑n
j=1

{∑
n

i=1
f′′(ζj )

2 (xi−xk)3pi∑n

i=1
(xi−xk)2pi

−
∑

n

i=1

f′′(ζ′
j

)
2 (xi−xj)3pi∑n

i=1
(xi−xj)2pi

)

}
(xj − xk)pj∑n

j=1(xj − xk)2pj

We note h the discretization step. We call (xi − xk) = δikh:

S2 =

∑n
j=1 δjkhpj

{∑
n

i=1
f′′(ζj )

2 δ3
ikh3pi∑

n

i=1
δ2

ik
h2pi

−
∑

n

i=1

f′′(ζ′
j

)
2 δ3

ijh3pi∑
n

i=1
δ2

ij
h2pi

)

}
∑n

j=1 δ2
jkh2pj

.

We lay Δik = δ3
ikpi∑

n

i=1
δ2

ik
pi

S2 =
∑n

j=1 δjkhpj {∑n
i=1 f ′′(ζi)Δik − f ′′(ζ′

i)Δij}∑n
j=1 δ2

jkh2pj

By taking the maximum:

S2 ≤ max
i,j∈I

⎧⎨
⎩

∑n
j=1

δ2
jkh2pj

δjkh {∑n
i=1 f ′′(ζi)Δik − f ′′(ζ′

i)Δij}∑n
j=1 δ2

jkh2pj

⎫⎬
⎭

≤ max
i,j∈Vk

{∣∣∣∣ n

δikh
(f ′′(ζi)Δik − f ′′(ζ′

i)Δij)
∣∣∣∣
}

We deduce the bounded error for second order derivative:

∣∣D2(f)(xk)−f ′′(xk)
∣∣ ≤ max

j∈Vk

{∣∣∣f ′′′(ζj)
2

(xj − xk)
∣∣∣}+ max

i,j∈Vk

{∣∣∣ n

δikh
f ′′(ζi)Δik − f ′′(ζ′

i)Δij

∣∣∣}
Corollary 15. Let yi = D1(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretization
of a function y = f(x) with ∈ C3. Let h be the discretization step. Then, when
h → 0, we have |D1(f)(xk) − f ′(xk)|→ 0 and |D2(f)(xk) − f ′′(xk)|→ 0

Proof. The study of the convergence of the bounded error could be found in [2]
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4.2 Experimentation

In this section, we propose examples to support the convergence of this estimator.
We propose an estimation of the first derivative in Figure 1. We plot as well the
estimation of the second derivative with a mask of length 50 and a discretization
step of 1

100 (Figure 3). Then we study the convergence of this estimation when the
mask length is increased and the discretization step decreased. Whereas, in the first
approximation there are some artifacts, we can see for a larger mask and a better
digitalization step that we recover a good approximation (Figure 5 and Figure 6).

500 600 700 800 900 1000 1100 1200

-100

-50

0

50

100

Fig. 1. First order derivative estima-
tion for a mask of length 50 for x �→
sin(x)
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-100

-50
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50

100

Fig. 2. First order derivative estima-
tion for a mask of length 150 for x �→
sin(x)
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Fig. 3. Second order derivative estima-
tion for a mask of length 50 for x �→
sin(x)
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Fig. 4. Second order derivative esti-
mation for a mask of length 600 for
x �→ sin(x)

100 200 300 400

-15

-10

-5

5

10

15

Fig. 5. Curvature estimation with a
mask of length 300 and discrete step
h = 1

100
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Fig. 6. Zoom on curvature estimation
details Figure. 5

Fig. 7. Examples of curvature estimation on the function x �→ sin(x). Even for quite
large discretization steps and small mask size, we have a reasonably good approximation
of the curvature (Figure 5). But when considering smaller discretization steps, the
estimation converges toward the exact values.
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5 Conclusion

In this article, we proposed a curvature estimator based on an adaptive kernel.
Our approach is similar to a gaussian convolution on regular parts of the curve.
First we have studied the link between the gaussian kernel and our approach.
We proved that the gaussian process converges toward our adaptive estimator
when the grid step converges toward zero and the mask length converges toward
infinity. Then we used a least square method to bound the error between the
estimation and the exact function with adaptive approach. This bounded error
converges toward zero when the grid step converges toward zero and the length
mask converges toward infinity. The issue of the length of the mask has not been
studied in this paper and we have few information about the minimal length to
have a satisfying estimation. In a forthcoming paper we will study the minimal
length mask for a target bound of the error.
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