Primitive Words and Lyndon Words in Automatic and Linearly Recurrent Sequences

Daniel Goč¹, Kalle Saari², and Jeffrey Shallit¹

¹ School of Computer Science University of Waterloo, Waterloo, ON N2L 3G1, Canada
{dgoc,shallit}@cs.uwaterloo.ca ² Mathematics and Statistics, University of Winnipeg 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada kasaar2@gmail.com

Abstract. We investigate questions related to the presence of primitive words and Lyndon words in automatic and linearly recurrent sequences. We show that the Lyndon factorization of a *k*-automatic sequence is itself *k*-automatic. We also show that the function counting the number of primitive factors (resp., Lyndon factors) of length *n* in a *k*-automatic sequence is *k*-regular. Finally, we show that the number of Lyndon factors of a linearly recurrent sequence is bounded.

Keywords: Lyndon word, Lyndon factorization, primitive word, automatic sequence, linearly recurrent sequence.

1 Introduction

We start with some basic definitions. A nonempty word w is called a *power* if it can be written in the form $w = x^k$, for some integer $k \geq 2$. Otherwise w is called *primitive*. Thus murmur is a power, but murder is primitive. A word y is a *factor* of a word w if there exist words x, z such that $w = xyz$. If further $x = \epsilon$ (resp., $z = \epsilon$), then y is a *prefix* (resp., *suffix*) of w. A prefix or suffix of a word w is called *proper* if it is unequal to w.

Let Σ be an ordered alphabet. We recall the usual definition of lexicographic order on the words in Σ^* . We write $w < x$ if either

- (a) w is a proper prefix of x ; or
- (b) there exist words y, z, z' and letters $a < b$ such that $w = yaz$ and $x = ybz'$.

For example, using the usual ordering of the alphabet, we have common < con < conjugate. As usual, we write $w \leq x$ if $w < x$ or $w = x$ $w = x$ $w = x$.

A word w is a *conjugate* of a word x if there exist words u, v such that $w = uv$ and $w = vu$. Thus, for example, enlist and listen are conjugates. A word is said to be *Lyndon* if it is primitive and lexicographically least among all its conjugates. Thus, for example, academy is Lyndon, while googol and googoo are not. Lyndon words have received a great deal of attention in the combinatorics on words literature. For example, a finite word is Lyndon if and only if it is

A.-H. Dediu, C. Martín-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 311–322, 2013. c Springer-Verlag Berlin Heidelberg 2013

lexicographically less than each of its proper suffixes [9] and this can be tested in linear time.

We n[ow](#page-11-1) tu[rn](#page-11-2) to (right-) infinite words. W[e w](#page-11-3)[r](#page-11-4)[ite](#page-11-5) [an](#page-11-6) [infi](#page-11-7)nite word in boldface, as $\mathbf{x} = a_0 a_1 a_2 \cdots$ and use indexing starting at 0. For $i \leq j+1$, we let $[i..j]$ denote the set $\{i, i+1, \ldots, j\}$. (If $i = j+1$ we get the empty set.) We let $\mathbf{x}[i..j]$ denote the word $a_i a_{i+1} \cdots a_j$. Similarly, [i.. ∞] denotes the infinite set $\{i, i+1, \ldots\}$ and $\mathbf{x}[i..\infty]$ denotes the infinite word $a_i a_{i+1} \cdots$.

An infinite word or sequence $\mathbf{x} = a_0 a_1 a_2 \cdots$ is said to be k-*automatic* if there is a deterministic finite automaton (with outputs associated with the states) that, on input n expressed in base k, reaches a state q with output $\tau(q)$ equal to a_n . For more details, see [6] or [2]. In several previous papers [1,5,14,16,10], we have developed a technique to show that many properties of automatic sequences are decidable. The fundamental tool is the following:

Theorem 1. Let $P(n)$ be a predicate associated with a k-automatic sequence **x**, *expressible using addition, subtraction, comparisons, logical operations, indexing into* **x***, and existential and universal quantifiers. Then there is a computable finite automaton accepting the base-*k *representations of those* n *for which* P(n) *holds. Furthermore, we can decide if* $P(n)$ *holds for at least one* n, or for all n, *or for infinitely many* n*.*

If a predicate is constructed as in the previous theorem, we just say it is "expressible". Any expressible predicate is decidable. As an example, we prove

Theorem 2. Let **x** be a k-automatic sequence. The predicate $P(i, j)$ defined by *"***x**[i..j] *is primitive" is expressible.*

Proof. (due to Luke Schaeffer) It is easy to see that a word is a power if and only if it is equal to some cyclic shift of itself, other than the trivial shift. Thus a word is a power if and only if there is a $d, 0 < d < j - i + 1$, such that $x[i..j - d] = x[i + d..j]$ and $x[j - d + 1..j] = x[i..i + d - 1]$. A word is primitive if there is no such d.

Theorem 3. Let **x** be a k-automatic sequence. The predicate $LL(i, j, m, n)$ de*fined by "***x**[i..j] \lt **x**[m..n]" is expressible.

Proof. We have $\mathbf{x}[i..j] < \mathbf{x}[m..n]$ if and only if either

- (a) $j i < n m$ and $\mathbf{x}[i..j] = \mathbf{x}[m..m + j i]$; or
- (b) there exists $t < \min(j i, n m)$ such that $\mathbf{x}[i..i + t] = \mathbf{x}[m..m + t]$ and $\mathbf{x}[i + t + 1] < \mathbf{x}[m + t + 1].$

Theorem 4. Let **x** be a k-automatic sequence. The predicate $L(i, j)$ defined by *"***x**[i..j] *is a Lyndon word" is expressible.*

Proof. It suffices to check that $\mathbf{x}[i..j]$ is lexicographically less than each of its proper suffixes, that is, that $LL(i, j, i', j)$ holds for all i' with $i < i' \leq j$.

We can extend the definition of lexicographic order to infinite words in the obvious way. We can extend the definition of Lyndon words to (right-) infinite words as follows: an infinite word $\mathbf{x} = a_0 a_1 a_2 \cdots$ is Lyndon if it is lexicographically less than all its suffixes $\mathbf{x}[j..\infty] = a_j a_{j+1} \cdots$ for $j \geq 1$. Then we have the following theorems.

Theorem 5. Let **x** be a k-automatic sequence. The predicate $LL_{\infty}(i, j)$ defined *by* " $\mathbf{x}[i..\infty] < \mathbf{x}[j..\infty]$ " *is expressible.*

Proof. This is equivalent to $\exists t \geq 0$ such that $\mathbf{x}[i..i + t - 1] = \mathbf{x}[j..j + t - 1]$ and $$

Theorem 6. Let **x** be a k-automatic sequence. The predicate $L_{\infty}(i)$ defined by *"***x**[i..∞] *is an infinite Lyndon word" is expressible.*

Proof. This is equivalent to $LL_{\infty}(i, j)$ holding for all $j > i$.

2 Lyndon Factorization

Siromoney et al. [17] proved that every infinite word $\mathbf{x} = a_0 a_1 a_2 \cdots$ can be fac[tori](#page-11-8)[zed](#page-11-9) uniquely in exactly one of the following two ways:

- (a) as $\mathbf{x} = w_1 w_2 w_3 \cdots$ where each w_i is a finite Lyndon word and $w_1 \geq w_2 \geq$ $w_3 \cdots$; or
- (b) as $\mathbf{x} = w_1 w_2 w_3 \cdots w_r \mathbf{w}$ where w_i is a finite Lyndon word for $1 \leq i \leq r$, and **w** is an infinite Lyndon word, and $w_1 \geq w_2 \geq \cdots \geq w_r \geq \mathbf{w}$.

If (a) holds we say that the Lyndon factorization of **x** is infinite; otherwise we say it is finite.

Ido and Melancon $[13,12]$ gave an explicit description of the Lyndon factorizat[ion](#page-11-10) of the Thue[-M](#page-11-11)orse word **t** and the period-doubling sequence (among other things). (Recall that the Thue-Morse word is given by $t[n] =$ the number of 1's in the binary expansion of n , taken modulo 2.) For the Thue-Morse word, this factorization is given by

 $\mathbf{t} = w_1 w_2 w_3 w_4 \cdots = (011)(01)(0011)(00101101) \cdots$

where each term in the factorization, after the first, is double the length of the previous. Séébold $[15]$ and Cern \acute{y} [4] generalized these results to other related automatic sequences.

In this section, generalizing the work of Ido, Melançon, Séébold, and Černý, we prove that the Lyndon factorization of a k -automatic sequence is itself k automatic. Of course, we need to explain how the factorization is encoded. The easiest and most natural way to do this is to use an infinite word over $\{0, 1\}$, where the 1's indicate the positions where a new term in the factorization begins. Thus the *i*'th 1, for $i \geq 0$, appears at index $|w_1w_2 \cdots w_i|$. For example, for the Thue-Morse word, this encoding is given by

 $1001010001000000001 \cdots$

If the factorization is infinite, then there are infinitely many 1's in its encoding; otherwise there are finitely many 1's.

In order to prove the theorem, we need a number of results. We draw a distinction between a *factor* f of **x** (which is just a word) and an *occurrence* of that factor (which specifies the exact position at which f occurs). For example, in the Thue-Morse word **t**, the factor 0110 occurs as **x**[0..3] and **x**[11..15] and many other places. We call [0..3] and [11..15], and so forth, the *occurrences* of 0110. An occurrence is said to be Lyndon if the word at that position is Lyndon. We say an occurrence $O_1 = [i..j]$ is *inside* an occurrence $O_2 = [i'..j']$ if $i' \leq i$ and $j' \geq j$. If, in addition, either $i' < i$ or $j < j'$ (or both), then we say O_1 is *strictly inside* O_2 . These definitions are easily extended to the case where j or j' are equal to ∞ , and they correspond to the predicates I (inside) and SI (strictly inside) given below:

$$
I(i, j, i', j') \text{ is } i' \le i \text{ and } j' \ge j
$$

$$
SI(i, j, i', j') \text{ is } I(i, j, i', j') \text{ and } ((i' < i) \text{ or } (j' > j))
$$

An infinite Lyndon factorization

$$
\mathbf{x} = w_1 w_2 w_3 \cdots
$$

then corresponds to an infinite sequence of occurrences

$$
[i_1..j_1],[i_2..j_2],\cdots
$$

where $w_n = \mathbf{x}[i_n..j_n]$ and $i_{n+1} = j_n + 1$ for $n \geq 1$, while a finite Lyndon factorization

$$
\mathbf{x} = w_1 w_2 \cdots w_r \mathbf{w}
$$

corresponds to a finite sequence of occurrences

 $[i_1..i_1], [i_2..i_2], \ldots, [i_r..i_r], [i_{r+1}..\infty]$

where $w_n = \mathbf{x}[i_n..j_n]$ and $i_{n+1} = j_n + 1$ for $1 \le n \le r$.

Theorem 7. *Let* **x** *be an infinite word. Every Lyndon occurrence in* **x** *appears inside a term of the Lyndon factorization of* **x***.*

Proof. We prove the result for infinite Lyndon factorizations; the result for finite factorizations is exactly analogous.

Suppose the factorization is $\mathbf{x} = w_1 w_2 w_3 \cdots$. It suffices to show that no Lyndon occurrence can span the boundary between two terms of the factorization. Suppose, contrary to what we want to prove, that $uw_iw_{i+1} \cdots w_iv$ is a Lyndon word for some u that is a nonempty suffix of w_{i-1} (possibly equal to w_{i-1}), and v that is a nonempty prefix of w_{i+1} (possibly equal to w_{i+1}), and $i \leq j+1$. (If $i = j + 1$ then there are no w_i 's at all between u and v.)

Since u is a suffix of w_{i-1} and w_{i-1} is Lyndon, we have $u \geq w_{i-1}$. On the other hand, by the Lyndon factorization definition we have $w_{i-1} \geq w_i \geq \cdots \geq$ $w_j \geq w_{j+1}$. But v is a prefix of w_{j+1} , so just by the definition of lexicographic ordering we have $w_{j+1} \geq v$. Putting this all together we get $u \geq v$. So $ux \geq v$ for all words x.

On the other hand, since $uw_i \cdots w_i v$ is Lyndon, it must be lexicographically less than any proper suffix — for instance, v. So $uw_i \cdots w_j v \langle v$. Take $x =$ $w_i \cdots w_j v$ to get a contradiction with the conclusion in the previous paragraph.

Corollary 8. *The occurrence* [i..j] *[co](#page-3-0)rresponds to a term in the Lyndon factorization of* **x** *if and only if*

- *(a)* [i..j] *is Lyndon; and*
- *(b)* [i..j] *does not [oc](#page-3-0)cur strictly inside any other Lyndon occurrence.*

Proof. Suppose [i..j] corresponds to a term w_n in the Lyndon factorization of **x**. Then evidently $[i..j]$ is Lyndon. If it occurred strictly inside some other Lyndon occurrence, say $[i'..j']$, then we know from Theorem 7 that $[i'..j']$ itself lies in inside some $[i_m, j_m]$, so $[i..j]$ must lie strictly inside $[i_m, j_m]$, which is clearly impossible.

Now su[pp](#page-4-0)ose $[i..j]$ is Lyndon and does not occur strictly inside any other Lyndon occurrence. From Theorem 7 $[i..j]$ must occur inside some term of the factorization $[i'..j']$. If $[i..j] \neq [i'..j']$ then $[i..j]$ lies strictly inside $[i'..j']$, a contradiction. So $[i..j] = [i'..j']$ and hence corresponds to a term of the factorization.

Corollary 9. *The predicate* $LF(i, j)$ *defined by* "[*i..j*] *corresponds to a term of the Lyndon factorization of* **x***" is expressible.*

Proof. Indee[d,](#page-11-3) by Corollary 8, the predicate $LF(i, j)$ can be defined by

$$
L(i, j)
$$
 and $\forall i', j' (SI(i, j, i', j')) \implies \neg L(i', j')).$

We can now prove the main result of this section.

Theorem 10. *Using the encoding mentioned above, the Lyndon factorization of a* k*-automatic sequence is itself* k*-automatic.*

Proof. Using the technique of [1], we can create an automaton that on input i expressed in base k, guesses j and checks if $LF(i, j)$ holds. If so, it outputs 1 and oth[e](#page-4-1)rwise 0. To get [th](#page-4-1)e last i in the case that the Lyndon factorization is finite, we also accept *i* if $L_{\infty}(i)$ holds.

We also have

Theorem 11. *Let* **x** *be a* k*-automatic sequence. It is decidable if the Lyndon factorization of* **x** *is finite or infinite.*

Proof. The construction given above in the proof of Theorem 10 produces an automaton that accepts finitely many distinct i (expressed in base k) if and only if the Lyndon factorization of **x** is finite.

We programmed up our method and found the Lyndon factorization of the Thue-Morse sequence **t**, the period-doubling sequence **d**, the paperfolding sequence **p**, and the Rudin-Shapiro sequence **r**, and their negations. (The results for Thue-Morse and the period-doubling sequence were already given in [12], albeit in a different form.) Recall that the period-doubling sequence is defined by $p[n] =$ $|\mathbf{t}[n+1] - \mathbf{t}[n]|$. The paperfolding sequence $\mathbf{p} = 0010011 \cdots$ arises from the limit of the sequence (f_n) , where $f_0 = 0$ and $f_{n+1} = f_n 0 \overline{f_n}^R$, where R denotes reversal and \bar{x} maps 0 to 1 and 1 to 0. Finally, the Rudin-Shapiro sequence **r** is defined by $\mathbf{r}[n] =$ the number of (possibly overlapping) occurrences of 11 in the binary expansion of n, taken modulo 2. The results are given in the theorem below.

Theorem 12. *The occurrences corresponding to the Lyndon factorization of each word is as follows:*

- $-$ *the Thue-Morse sequence* **t**: [0..2], [3..4], [5..8], [9..16], ..., $[2^i + 1..2^{i+1}]$, ...*;*
- **–** *the negated Thue-Morse sequence* **t***:* [0..0], [1..∞]*;*
- **–** *the Rudin-Shapiro sequence* **r***:* [0..6], [7..14], [15..30],..., [2ⁱ −1..2ⁱ+1 −2],...*;*
- **–** *the negated Rudin-Shapiro sequence* **r***:* [0..0], [1..1], [2..2], [3..10], [11..42], [43..46]*,* ..., [4ⁱ − 4ⁱ−¹ − 4ⁱ−² − 1..4ⁱ − $(4^{i-1}-2), [4^{i}-4^{i-1}-1..4^{i+1}-4^{i}-4^{i-1}-1], \ldots,$
- **–** *the paperfolding sequence* **p***:* [0..6], [7..14], [15..30],..., [2ⁱ − 1..2ⁱ+1 − 2],...*;*
- **–** *the negated paperfolding sequence* **p***:* [0..0], [1..1], [2..4], [5..9], [10..20], [21..84]*,* \ldots , $[(4^{i}-1)/3..4(4^{i}-1)/3]$, ...*;*
- **–** *the period-doubling sequence* **d***:* [0..0], [1..4], [5..20], [21..84],...*,* $[(4^i-1)/3..4(4^i-1)/3], \ldots;$
- **–** *the negated period-doubling sequence* **d***:* [0..1], [2..9], [10..41], [42..169],...*,* $[2(4^{i}-1)/3..2(4^{i+1}-1)/3-1], \ldots$

3 Enumeration

There is a useful generaliz[at](#page-11-3)ion of k -automatic sequences to sequences over N , the non-negative integers. A sequence $(a_n)_{n>0}$ over N is called k-regular if there exist vectors u and v and a matrix-valued morphism μ such that $a_n = u\mu(w)v$, where w is the base-k representation of n. For more details, see [3].

The subword complexity function $\rho(n)$ of an infinite sequence **x** counts the number of distinct length-n factors of **x**. There are also many variations, such as counting the number of palindromic factors or unbordered factors. If **x** is k -automatic, then all three of these are k -regular sequences [1]. We now show that the same result holds for the number $\rho_{\mathbf{x}}^{\vec{P}}(n)$ of primitive factors of length n and for the number $\rho_{\mathbf{x}}^L$ of Lyndon factors of length n. We refer to these two quantities as the "primitive complexity" and "Lyndon complexity", respectively.

Theorem 13. *The function counting the number of length-*n *primitive (resp., Lyndon) factors of a* k*-automatic sequence* **x** *is* k*-regular.*

Proof. By the results of [5], it suffices to show that there is an automaton accepting the base-k representations of pairs (n, i) such that the number of i's associated with each n equals the number of primitive (resp., Lyndon) factors of length n.

To do so, it suffices to show that the predicate $P(n, i)$ defined by "the factor of length n beginning at position i is primitive (resp., Lyndon) and is the first occurrence of that factor in **x**" is expressible. This is just

$$
P(i, i + n - 1) \quad \text{and} \quad \forall j < i \mathbf{x}[i..i + n - 1] \neq \mathbf{x}[j..j + n - 1],
$$

(resp.,

$$
L(i, i+n-1) \quad \text{and} \quad \forall j < i \mathbf{x}[i..i+n-1] \neq \mathbf{x}[j..j+n-1]).
$$

We used our method to compute these sequences for the Thue-Morse sequence, and the results are given below.

Theorem 14. Let $\rho_{\mathbf{t}}^L(n)$ denote the number of Lyndon factors of length n of *the Thue-Morse sequence. Then*

$$
\rho_{\mathbf{t}}^{L}(n) = \begin{cases} 1, & \text{if } n = 2^{k} \text{ or } 5 \cdot 2^{k} \text{ for } k \ge 1 ; \\ 2, & \text{if } n = 1 \text{ or } n = 5 \text{ or } n = 3 \cdot 2^{k} \text{ for } k \ge 0; \\ 0, & \text{otherwise.} \end{cases}
$$

Theorem 15. Let $\rho_{\mathbf{t}}^P(n)$ denote the number of primitive factors of length n of *the Thue-Morse sequence. Then*

$$
\rho^P_{\mathbf{t}}(n) = \begin{cases} 3 \cdot 2^t - 4, & \text{if } n = 2^t; \\ 4n - 2^t - 4, & \text{if } 2^t + 1 \leq n < 3 \cdot 2^{t-1}; \\ 5 \cdot 2^t - 6, & \text{if } n = 3 \cdot 2^{t-1}; \\ 2n + 2^{t+1} - 2, & \text{if } 3 \cdot 2^{t-1} < n < 2^{t+1}. \end{cases}
$$

We can also state a similar result for the Rudin-Shapiro sequence.

Theorem 16. Let $\rho_{\mathbf{r}}^L(n)$ denote the Lyndon complexity of the Rudin-Shapiro *sequence. Then* $\rho_{\mathbf{r}}^L(n) \leq 8$ *for all n. This sequence is* 2-*automatic and there is an automaton of 2444 states that generates it.*

Proof. The proof was carried out by machine computation, and we briefly summarize how it was done.

First, we created an automaton A to accept all pairs of integers (n, i) , represented in base 2, such that the factor of length n in \mathbf{r} , starting at position i , is a Lyndon factor, and is the first occurrence of that factor in **r**. Thus, the number of distinct integers *i* associated with each *n* is $\rho_{\mathbf{r}}^L(n)$. The automaton *A* has 102 states.

Using the techniques in [5], we then [used](#page-9-0) A to create matrices M_0 and M_1 of dimension 102×102 , and vectors v, w such that $vM_xw = \rho_{\mathbf{r}}^L(n)$, if x is the base-2 representation of n. Here if $x = a_1 a_2 \cdots a_i$, then by M_x we mean the product $M_{a_1}M_{a_2}\cdots M_{a_i}$.

From this we then created a new automaton A' where the states are products of the form vM_x for binary strings x and the tran[sitio](#page-6-0)ns [are](#page-6-1) on 0 and 1. This automaton was built using a breadth-first [app](#page-9-0)roach, using a queue to hold states whose targets on 0 and 1 are not yet known. From Theorem 24 in the next section, we know that $\rho_{\mathbf{r}}^L(n)$ is bounded, so that this approach must terminate. It did so at 2444 states, and the product of the vM_x corresponding to each state with w gives an integer less than or equal to 8, thus proving the desired result and also providing an automaton to compute $\rho_{\mathbf{r}}^L(n)$.

Remark 17. Note that the Lyndon complexity functions in Theorems 14 and 16 are bounded. This will follow more generally from Theorem 24 below.

4 Finite Factorizations

Of course, the original Lyndon factorization was for finite words: every finite nonempty word x can be factored uniquely as a nonincreasing product $w_1w_2 \cdots$ w_m of Lyndon words. We can apply this theorem to all prefixes of a k -automatic sequence. It is then natural to wonder if a *single* automaton can encode *all* the Lyndo[n](#page-11-12) factorizations of *all* finite prefixes. The answer is yes, as the following result shows.

Theorem 18. *Suppose* **x** *is a* k*-automatic sequence. Then there is an automaton* A *accepting*

$$
\{(n,i)_k : the Lyndon factorization of $\mathbf{x}[0..n-1]$ is $w_1w_2\cdots w_m$ with $w_m = \mathbf{x}[i..n-1]\}.$
$$

Proof. [As](#page-8-0) is well-known [9], if $w_1w_2\cdots w_m$ is the Lyndon factorization of x, then w_m is the lexicographically least suffix of x. So to accept $(n, i)_k$ we find i such that $\mathbf{x}[i..n-1] < \mathbf{x}[j..n-1]$ for $0 \leq j < n$ and $i \neq j$.

Given A, we can find the complete factorization of any prefix $\mathbf{x}[0..n-1]$ by using this automaton to find the appropriate i (as described in [11]) and then replacing n with i .

We carried out this construction for the Thue-Morse sequence, and the result is shown below in Figure 1.

In a similar manner, there is an automaton that encodes the factorization of *every* factor of a k-automatic sequence:

Theorem 19. *Suppose* **x** *is a* k*-automatic sequence. Then there is an automaton* A' *accepting*

$$
\{(i, j, l)_k : the Lyndon factorization of \mathbf{x}[i..j-1] is w_1w_2\cdots w_m
$$

with $w_m = \mathbf{x}[l..j-1]\}.$

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 319

Fig. 1. A finite automaton accepting the base-2 representation of (n, i) such that the Lyndon factorization of **t**[0*..n −* 1] ends in the term **t**[*i..n −* 1]

Fig. 2. A finite automaton accepting the base-2 representation of (i, j, l) such that the Lyndon factorization of **t**[*i..j −* 1] ends in the term **t**[*l..j −* 1]

We calculated A' for the Thue-Morse sequence using our method. It is a 34-state machine and is displayed in Figure 2.

Another quantity of interest is the number of terms in the Lyndon factorization of each prefix.

Theorem 20. Let x be a k-automatic sequence. Then the sequence $(f(n))_{n>0}$ *defined by*

 $f(n) =$ *the number of terms in the Lyndon factorization of* $\mathbf{x}[0..n]$

is k*-regular.*

Proof. We construct an automaton to accept $\{(n,i) : \exists j \leq n \text{ such that } L(i,j) \}$ and if $SI(i, j, i', j')$ and $0 \leq i' \leq j' \leq n$ then $\neg L(i', j')$.

For the Thue-Morse sequence the corresponding sequence satisfies the relations

$$
f(4n + 1) = -f(2n) + f(2n + 1) + f(4n)
$$

\n
$$
f(8n + 2) = -f(2n) + f(4n) + f(4n + 2)
$$

\n
$$
f(8n + 3) = -f(2n) + f(4n) + f(4n + 3)
$$

\n
$$
f(8n + 6) = -f(2n) - f(4n + 2) + 3f(4n + 3)
$$

\n
$$
f(8n + 7) = -f(2n) + 2f(4n + 3)
$$

\n
$$
f(16n) = -f(2n) + f(4n) + f(8n)
$$

\n
$$
f(16n + 4) = -f(2n) + f(4n) + f(8n + 4)
$$

\n
$$
f(16n + 8) = -f(2n) + f(4n + 3) + f(8n + 4)
$$

\n
$$
f(16n + 12) = -f(2n) - 2f(4n + 2) + 3f(4n + 3) + f(8n + 4)
$$

for $n \geq 1$, which allows efficient calculation of this quantity.

5 Linearly Recurrent Sequences

Definition 21. *A recurrent infinite word* $\mathbf{x} = a_0 a_1 a_2 \cdots$, where each a_i is a *letter, is called* linearly recurrent with constant $L > 0$ *if, for every factor* u and *its two consecutive occurrences beginning at positions i* and *j* in **x** *with* $i < j$ *, we have* $j - i < L|u|$ *. The w[ord](#page-11-14)* $a_i a_{i+1} \cdots a_{j-1}$ *is called a* return word *of* u*. Thus linear recurrence can be defined from the condition that every return word* w *of every factor* u of **x** *satisfy* $|w| < L|u|$ *. Let* \mathcal{R}_u *denote the set of return words of* u *in* **x***.*

Remark 22. Linear recurrence implies that every length-k factor appears at least once in every factor of length $(L + 1)k - 1$.

Lemma 23 (Durand, Host, and Skau [8]). *Let* **x** *be an aperiodic linearly recurrent word with constant* L*.*

- *(i)* If u is a factor of **x** and w its return word, then $|w| > |u|/L$.
- *(ii)* The number of return words of any given factor u of x is $\#\mathcal{R}_u \leq L(L+1)^2$.

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 321

Theorem 24. *The Lyndon complexity of any linearly recurrent sequence is bounded above by a constant.*

Proof. Let \bf{x} be a linearly recurrent sequence with constant L. If \bf{x} is ultimately periodic, the subword complexity is already bounded above by a constant, so the Lyndon complexity is also bounded. Now assume that **x** is aperiodic, and let $n \geq L$. Denote $k = \lfloor (n+1)/(L+1) \rfloor$, so that

$$
(L+1)k - 1 \le n < (L+1)(k+1) - 1.
$$
 (1)

The left-hand [sid](#page-10-0)e inequality in (1) and Remark 22 together imply that all factors in **x** of length k occur in all factors of length n. Therefore if u is the lexicographically smallest factor of length k, then every Lyndon factor of **x** of length n must begin with u. Since every suffix of **x** that begins with u can be factorized over \mathcal{R}_u , we conclude further that every length-n Lyndon factor of **x** is a prefix o[f a](#page-9-1) word in \mathcal{R}_u^* .

The return words of u have length at least k/L by Lemma 23. Furthermore, the right-hand side inequality in (1) gives

$$
\frac{n}{k/L} < \frac{(L+1)(k+1)-1}{k/L} < \frac{L(L+1)(k+1)}{k} \le 2L(L+1).
$$

Therefore any Lyndon factor of length n is a prefix of a word in $\mathcal{R}_u^{2L(L+1)}$. Since $\#\mathcal{R}_u \leq L(L+1)^2$ by Lemma 23, we conclude that

$$
\rho_{\mathbf{x}}^{L}(n) \le \max\{\rho_{\mathbf{x}}^{L}(1), \rho_{\mathbf{x}}^{L}(2), \ldots, \rho_{\mathbf{x}}^{L}(L-1), (L(L+1)^{2})^{2L(L+1)}\},\
$$

so that the Lyndon complexity of **x** is bounded.

Definition 25. Let $h: \mathcal{A}^* \to \mathcal{A}^*$ be a primitive morphism, and let $\tau: \mathcal{A} \to \mathcal{B}$ *be a letter-to-letter morphism. If* h *is prolongable, so that the limit* $h^{\omega}(a) :=$ $\lim_{n\to\infty} h^n(a)$ $\lim_{n\to\infty} h^n(a)$ $\lim_{n\to\infty} h^n(a)$ *exists for so[me](#page-9-0) letter* $a \in \mathcal{A}$ *, then the sequence* $\tau(h^{\omega}(a))$ *is called* primitive [mor](#page-10-1)phic*.*

Lemma 26 (Durand [7,8]). *Primitive morphic sequences are linearly recurrent.*

Corollary [27.](#page-10-2) *Th[e](#page-11-16) [L](#page-11-16)yndon [com](#page-5-0)plexity of any primitive morphic sequence is bounded.*

Proof. Follows from Lemma 26 and Theorem 24.

Corollary 28. *If* **x** *is* k*-automatic and primitive morphic, then its Lyndon complexity is* k*-automatic.*

Proof. Follows from Corollary 27 and Theorem 13, because a k-regular sequence over a finite alphabet is k-automatic [3].

Acknowledgments. We thank Luke Schaeffer for suggesting the argument in the proof of Theorem 2. We thank the referees for a careful reading of this paper.

References

- 1. Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)
- 2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)
- 3. Allouche, J.-P., Shallit, J.O.: The ring of *k*-regular sequences. Theoret. Comput. Sci. 98, 163–197 (1992)
- 4. Černý, A.: Lyndon factorization of generalized words of Thue. Discrete Math. $\&$ Theoret. Comput. Sci. 5, 17–46 (2002)
- 5. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and Decidable Properties ´ of Automatic Sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 165–179. Springer, Heidelberg (2011)
- 6. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
- 7. Durand, F.: A characterization of substitutive sequences using return words. Discrete Math. 179, 89–101 (1998)
- 8. Durand, F., Host, B., Ska[u,](http://arxiv.org/abs/1206.5352) [C.:](http://arxiv.org/abs/1206.5352) [Substitution](http://arxiv.org/abs/1206.5352) [dynamical](http://arxiv.org/abs/1206.5352) [system](http://arxiv.org/abs/1206.5352)s, bratteli diagrams, and dimension groups. Ergod. Theory & Dynam. Sys. 19, 953–993 (1999)
- 9. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381 (1983)
- 10. Goˇc, D., Henshall, D., Shallit, J.: Automatic Theorem-Proving in Combinatorics on Words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191. Springer, Heidelberg (2012)
- 11. Goˇc, D., Schaeffer, L., Shallit, J.: The subword complexity of k-automatic sequences is k-synchronized (June 23, 2012) (preprint), http://arxiv.org/abs/1206.5352
- 12. Ido, A., Melancon, G.: Lyndon factorization of the Thue-Morse word and its relatives. Discrete Math. & Theoret. Comput. Sci. 1, 43–52 (1997)
- 13. Melançon, G.: Lyndon Factorization of Infinite Words. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 147–154. Springer, Heidelberg (1996)
- 14. Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic sequences. Int. J. Found. Comput. Sci. (2012) (to appear)
- 15. Séébold, P.: Lyndon factorization of the Prouhet words. Theoret. Comput. Sci. 307, 179–197 (2003)
- 16. Shallit, J.: The critical exponent is computable for automatic sequences. In: Ambroz, P., Holub, S., Másaková, Z. (eds.) Proceedings 8th International Conference Words 2011. Elect. Proc. Theor. Comput. Sci., vol. 63, pp. 231–239 (2011)
- 17. Siromoney, R., Mathew, L., Dare, V., Subramanian, K.: Infinite Lyndon words. Inform. Process. Lett. 50, 101–104 (1994)