
Primitive Words and Lyndon Words

in Automatic and Linearly Recurrent Sequences

Daniel Goč1, Kalle Saari2, and Jeffrey Shallit1

1 School of Computer Science
University of Waterloo, Waterloo, ON N2L 3G1, Canada

{dgoc,shallit}@cs.uwaterloo.ca
2 Mathematics and Statistics, University of Winnipeg
515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada

kasaar2@gmail.com

Abstract. We investigate questions related to the presence of primitive
words and Lyndon words in automatic and linearly recurrent sequences.
We show that the Lyndon factorization of a k-automatic sequence is
itself k-automatic. We also show that the function counting the number
of primitive factors (resp., Lyndon factors) of length n in a k-automatic
sequence is k-regular. Finally, we show that the number of Lyndon factors
of a linearly recurrent sequence is bounded.

Keywords: Lyndon word, Lyndon factorization, primitive word,
automatic sequence, linearly recurrent sequence.

1 Introduction

We start with some basic definitions. A nonempty word w is called a power if
it can be written in the form w = xk, for some integer k ≥ 2. Otherwise w is
called primitive. Thus murmur is a power, but murder is primitive. A word y is
a factor of a word w if there exist words x, z such that w = xyz. If further x = ε
(resp., z = ε), then y is a prefix (resp., suffix) of w. A prefix or suffix of a word
w is called proper if it is unequal to w.

Let Σ be an ordered alphabet. We recall the usual definition of lexicographic
order on the words in Σ∗. We write w < x if either

(a) w is a proper prefix of x; or
(b) there exist words y, z, z′ and letters a < b such that w = yaz and x = ybz′.

For example, using the usual ordering of the alphabet, we have common < con <
conjugate. As usual, we write w ≤ x if w < x or w = x.

A word w is a conjugate of a word x if there exist words u, v such that w = uv
and w = vu. Thus, for example, enlist and listen are conjugates. A word
is said to be Lyndon if it is primitive and lexicographically least among all its
conjugates. Thus, for example, academy is Lyndon, while googol and googoo are
not. Lyndon words have received a great deal of attention in the combinatorics
on words literature. For example, a finite word is Lyndon if and only if it is

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 311–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 D. Goč, K. Saari, and J. Shallit

lexicographically less than each of its proper suffixes [9] and this can be tested
in linear time.

We now turn to (right-) infinite words. We write an infinite word in boldface,
as x = a0a1a2 · · · and use indexing starting at 0. For i ≤ j+1, we let [i..j] denote
the set {i, i+1, . . . , j}. (If i = j +1 we get the empty set.) We let x[i..j] denote
the word aiai+1 · · ·aj . Similarly, [i..∞] denotes the infinite set {i, i+ 1, . . .} and
x[i..∞] denotes the infinite word aiai+1 · · · .

An infinite word or sequence x = a0a1a2 · · · is said to be k-automatic if there
is a deterministic finite automaton (with outputs associated with the states)
that, on input n expressed in base k, reaches a state q with output τ(q) equal to
an. For more details, see [6] or [2]. In several previous papers [1,5,14,16,10], we
have developed a technique to show that many properties of automatic sequences
are decidable. The fundamental tool is the following:

Theorem 1. Let P (n) be a predicate associated with a k-automatic sequence x,
expressible using addition, subtraction, comparisons, logical operations, indexing
into x, and existential and universal quantifiers. Then there is a computable
finite automaton accepting the base-k representations of those n for which P (n)
holds. Furthermore, we can decide if P (n) holds for at least one n, or for all n,
or for infinitely many n.

If a predicate is constructed as in the previous theorem, we just say it is “ex-
pressible”. Any expressible predicate is decidable. As an example, we prove

Theorem 2. Let x be a k-automatic sequence. The predicate P (i, j) defined by
“x[i..j] is primitive” is expressible.

Proof. (due to Luke Schaeffer) It is easy to see that a word is a power if and
only if it is equal to some cyclic shift of itself, other than the trivial shift. Thus
a word is a power if and only if there is a d, 0 < d < j − i + 1, such that
x[i..j − d] = x[i + d..j] and x[j − d+ 1..j] = x[i..i + d− 1]. A word is primitive
if there is no such d.

Theorem 3. Let x be a k-automatic sequence. The predicate LL(i, j,m, n) de-
fined by “x[i..j] < x[m..n]” is expressible.

Proof. We have x[i..j] < x[m..n] if and only if either

(a) j − i < n−m and x[i..j] = x[m..m+ j − i]; or

(b) there exists t < min(j − i, n − m) such that x[i..i + t] = x[m..m + t] and
x[i + t+ 1] < x[m+ t+ 1].

Theorem 4. Let x be a k-automatic sequence. The predicate L(i, j) defined by
“x[i..j] is a Lyndon word” is expressible.

Proof. It suffices to check that x[i..j] is lexicographically less than each of its
proper suffixes, that is, that LL(i, j, i′, j) holds for all i′ with i < i′ ≤ j.

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 313

We can extend the definition of lexicographic order to infinite words in the obvi-
ous way. We can extend the definition of Lyndon words to (right-) infinite words
as follows: an infinite word x = a0a1a2 · · · is Lyndon if it is lexicographically less
than all its suffixes x[j..∞] = ajaj+1 · · · for j ≥ 1. Then we have the following
theorems.

Theorem 5. Let x be a k-automatic sequence. The predicate LL∞(i, j) defined
by “x[i..∞] < x[j..∞]” is expressible.

Proof. This is equivalent to ∃t ≥ 0 such that x[i..i+ t− 1] = x[j..j + t− 1] and
x[i+ t] < x[j + t].

Theorem 6. Let x be a k-automatic sequence. The predicate L∞(i) defined by
“x[i..∞] is an infinite Lyndon word” is expressible.

Proof. This is equivalent to LL∞(i, j) holding for all j > i.

2 Lyndon Factorization

Siromoney et al. [17] proved that every infinite word x = a0a1a2 · · · can be
factorized uniquely in exactly one of the following two ways:

(a) as x = w1w2w3 · · · where each wi is a finite Lyndon word and w1 ≥ w2 ≥
w3 · · · ; or

(b) as x = w1w2w3 · · ·wrw where wi is a finite Lyndon word for 1 ≤ i ≤ r, and
w is an infinite Lyndon word, and w1 ≥ w2 ≥ · · · ≥ wr ≥ w.

If (a) holds we say that the Lyndon factorization of x is infinite; otherwise we
say it is finite.

Ido and Melançon [13,12] gave an explicit description of the Lyndon factoriza-
tion of the Thue-Morse word t and the period-doubling sequence (among other
things). (Recall that the Thue-Morse word is given by t[n] = the number of 1’s
in the binary expansion of n, taken modulo 2.) For the Thue-Morse word, this
factorization is given by

t = w1w2w3w4 · · · = (011)(01)(0011)(00101101) · · · ,
where each term in the factorization, after the first, is double the length of the
previous. Séébold [15] and Černý [4] generalized these results to other related
automatic sequences.

In this section, generalizing the work of Ido, Melançon, Séébold, and Černý,
we prove that the Lyndon factorization of a k-automatic sequence is itself k-
automatic. Of course, we need to explain how the factorization is encoded. The
easiest and most natural way to do this is to use an infinite word over {0, 1},
where the 1’s indicate the positions where a new term in the factorization begins.
Thus the i’th 1, for i ≥ 0, appears at index |w1w2 · · ·wi|. For example, for the
Thue-Morse word, this encoding is given by

100101000100000001 · · · .

314 D. Goč, K. Saari, and J. Shallit

If the factorization is infinite, then there are infinitely many 1’s in its encoding;
otherwise there are finitely many 1’s.

In order to prove the theorem, we need a number of results. We draw a
distinction between a factor f of x (which is just a word) and an occurrence of
that factor (which specifies the exact position at which f occurs). For example,
in the Thue-Morse word t, the factor 0110 occurs as x[0..3] and x[11..15] and
many other places. We call [0..3] and [11..15], and so forth, the occurrences of
0110. An occurrence is said to be Lyndon if the word at that position is Lyndon.
We say an occurrence O1 = [i..j] is inside an occurrence O2 = [i′..j′] if i′ ≤ i
and j′ ≥ j. If, in addition, either i′ < i or j < j′ (or both), then we say O1 is
strictly inside O2. These definitions are easily extended to the case where j or j′

are equal to ∞, and they correspond to the predicates I (inside) and SI (strictly
inside) given below:

I(i, j, i′, j′) is i′ ≤ i and j′ ≥ j

SI(i, j, i′, j′) is I(i, j, i′, j′) and ((i′ < i) or (j′ > j))

An infinite Lyndon factorization

x = w1w2w3 · · ·

then corresponds to an infinite sequence of occurrences

[i1..j1], [i2..j2], · · ·

where wn = x[in..jn] and in+1 = jn + 1 for n ≥ 1, while a finite Lyndon
factorization

x = w1w2 · · ·wrw

corresponds to a finite sequence of occurrences

[i1..j1], [i2..j2], . . . , [ir..jr], [ir+1..∞]

where wn = x[in..jn] and in+1 = jn + 1 for 1 ≤ n ≤ r.

Theorem 7. Let x be an infinite word. Every Lyndon occurrence in x appears
inside a term of the Lyndon factorization of x.

Proof. We prove the result for infinite Lyndon factorizations; the result for finite
factorizations is exactly analogous.

Suppose the factorization is x = w1w2w3 · · · . It suffices to show that no Lyn-
don occurrence can span the boundary between two terms of the factorization.
Suppose, contrary to what we want to prove, that uwiwi+1 · · ·wjv is a Lyndon
word for some u that is a nonempty suffix of wi−1 (possibly equal to wi−1), and
v that is a nonempty prefix of wj+1 (possibly equal to wj+1), and i ≤ j + 1. (If
i = j + 1 then there are no wi’s at all between u and v.)

Since u is a suffix of wi−1 and wi−1 is Lyndon, we have u ≥ wi−1. On the
other hand, by the Lyndon factorization definition we have wi−1 ≥ wi ≥ · · · ≥

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 315

wj ≥ wj+1. But v is a prefix of wj+1, so just by the definition of lexicographic
ordering we have wj+1 ≥ v. Putting this all together we get u ≥ v. So ux ≥ v
for all words x.

On the other hand, since uwi · · ·wjv is Lyndon, it must be lexicographically
less than any proper suffix — for instance, v. So uwi · · ·wjv < v. Take x =
wi · · ·wjv to get a contradiction with the conclusion in the previous paragraph.

Corollary 8. The occurrence [i..j] corresponds to a term in the Lyndon factor-
ization of x if and only if

(a) [i..j] is Lyndon; and
(b) [i..j] does not occur strictly inside any other Lyndon occurrence.

Proof. Suppose [i..j] corresponds to a term wn in the Lyndon factorization of x.
Then evidently [i..j] is Lyndon. If it occurred strictly inside some other Lyndon
occurrence, say [i′..j′], then we know from Theorem 7 that [i′..j′] itself lies in
inside some [im, jm], so [i..j] must lie strictly inside [im, jm], which is clearly
impossible.

Now suppose [i..j] is Lyndon and does not occur strictly inside any other
Lyndon occurrence. From Theorem 7 [i..j] must occur inside some term of the
factorization [i′..j′]. If [i..j] �= [i′..j′] then [i..j] lies strictly inside [i′..j′], a contra-
diction. So [i..j] = [i′..j′] and hence corresponds to a term of the factorization.

Corollary 9. The predicate LF (i, j) defined by “[i..j] corresponds to a term of
the Lyndon factorization of x” is expressible.

Proof. Indeed, by Corollary 8, the predicate LF (i, j) can be defined by

L(i, j) and ∀ i′, j′ (SI(i, j, i′, j′) =⇒ ¬L(i′, j′)).

We can now prove the main result of this section.

Theorem 10. Using the encoding mentioned above, the Lyndon factorization of
a k-automatic sequence is itself k-automatic.

Proof. Using the technique of [1], we can create an automaton that on input i
expressed in base k, guesses j and checks if LF (i, j) holds. If so, it outputs 1
and otherwise 0. To get the last i in the case that the Lyndon factorization is
finite, we also accept i if L∞(i) holds.

We also have

Theorem 11. Let x be a k-automatic sequence. It is decidable if the Lyndon
factorization of x is finite or infinite.

Proof. The construction given above in the proof of Theorem 10 produces an
automaton that accepts finitely many distinct i (expressed in base k) if and only
if the Lyndon factorization of x is finite.

316 D. Goč, K. Saari, and J. Shallit

We programmed up our method and found the Lyndon factorization of the Thue-
Morse sequence t, the period-doubling sequence d, the paperfolding sequence p,
and the Rudin-Shapiro sequence r, and their negations. (The results for Thue-
Morse and the period-doubling sequence were already given in [12], albeit in a
different form.) Recall that the period-doubling sequence is defined by p[n] =
|t[n+1]−t[n]|. The paperfolding sequence p = 0010011 · · · arises from the limit

of the sequence (fn), where f0 = 0 and fn+1 = fn0fn
R
, where R denotes reversal

and x maps 0 to 1 and 1 to 0. Finally, the Rudin-Shapiro sequence r is defined
by r[n] = the number of (possibly overlapping) occurrences of 11 in the binary
expansion of n, taken modulo 2. The results are given in the theorem below.

Theorem 12. The occurrences corresponding to the Lyndon factorization of
each word is as follows:

– the Thue-Morse sequence t: [0..2], [3..4], [5..8], [9..16], . . . , [2i + 1..2i+1], . . .;

– the negated Thue-Morse sequence t: [0..0], [1..∞];

– the Rudin-Shapiro sequence r: [0..6], [7..14], [15..30], . . . , [2i−1..2i+1−2], . . .;

– the negated Rudin-Shapiro sequence
r: [0..0], [1..1], [2..2], [3..10], [11..42], [43..46], . . . , [4i − 4i−1 − 4i−2 − 1..4i −
4i−1 − 2], [4i − 4i−1 − 1..4i+1 − 4i − 4i−1 − 1], . . .;

– the paperfolding sequence p: [0..6], [7..14], [15..30], . . . , [2i − 1..2i+1 − 2], . . .;

– the negated paperfolding sequence p: [0..0], [1..1], [2..4], [5..9], [10..20], [21..84],
. . . , [(4i − 1)/3..4(4i − 1)/3], . . .;

– the period-doubling sequence d: [0..0], [1..4], [5..20], [21..84], . . .,
[(4i − 1)/3..4(4i − 1)/3], . . .;

– the negated period-doubling sequence d: [0..1], [2..9], [10..41], [42..169], . . .,
[2(4i − 1)/3..2(4i+1 − 1)/3− 1],

3 Enumeration

There is a useful generalization of k-automatic sequences to sequences over N,
the non-negative integers. A sequence (an)n≥0 over N is called k-regular if there
exist vectors u and v and a matrix-valued morphism μ such that an = uμ(w)v,
where w is the base-k representation of n. For more details, see [3].

The subword complexity function ρ(n) of an infinite sequence x counts the
number of distinct length-n factors of x. There are also many variations, such
as counting the number of palindromic factors or unbordered factors. If x is
k-automatic, then all three of these are k-regular sequences [1]. We now show
that the same result holds for the number ρPx (n) of primitive factors of length
n and for the number ρLx of Lyndon factors of length n. We refer to these two
quantities as the “primitive complexity” and “Lyndon complexity”, respectively.

Theorem 13. The function counting the number of length-n primitive (resp.,
Lyndon) factors of a k-automatic sequence x is k-regular.

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 317

Proof. By the results of [5], it suffices to show that there is an automaton ac-
cepting the base-k representations of pairs (n, i) such that the number of i’s
associated with each n equals the number of primitive (resp., Lyndon) factors
of length n.

To do so, it suffices to show that the predicate P (n, i) defined by “the factor
of length n beginning at position i is primitive (resp., Lyndon) and is the first
occurrence of that factor in x” is expressible. This is just

P (i, i+ n− 1) and ∀j < i x[i..i+ n− 1] �= x[j..j + n− 1],

(resp.,

L(i, i+ n− 1) and ∀j < i x[i..i + n− 1] �= x[j..j + n− 1]).

We used our method to compute these sequences for the Thue-Morse sequence,
and the results are given below.

Theorem 14. Let ρLt (n) denote the number of Lyndon factors of length n of
the Thue-Morse sequence. Then

ρLt (n) =

⎧
⎪⎨

⎪⎩

1, if n = 2k or 5 · 2k for k ≥ 1 ;

2, if n = 1 or n = 5 or n = 3 · 2k for k ≥ 0;

0, otherwise.

Theorem 15. Let ρPt (n) denote the number of primitive factors of length n of
the Thue-Morse sequence. Then

ρPt (n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 · 2t − 4, if n = 2t;

4n− 2t − 4, if 2t + 1 ≤ n < 3 · 2t−1;

5 · 2t − 6, if n = 3 · 2t−1;

2n+ 2t+1 − 2, if 3 · 2t−1 < n < 2t+1.

We can also state a similar result for the Rudin-Shapiro sequence.

Theorem 16. Let ρLr (n) denote the Lyndon complexity of the Rudin-Shapiro
sequence. Then ρLr (n) ≤ 8 for all n. This sequence is 2-automatic and there is
an automaton of 2444 states that generates it.

Proof. The proof was carried out by machine computation, and we briefly sum-
marize how it was done.

First, we created an automaton A to accept all pairs of integers (n, i), repre-
sented in base 2, such that the factor of length n in r, starting at position i, is a
Lyndon factor, and is the first occurrence of that factor in r. Thus, the number
of distinct integers i associated with each n is ρLr (n). The automaton A has 102
states.

318 D. Goč, K. Saari, and J. Shallit

Using the techniques in [5], we then used A to create matrices M0 and M1 of
dimension 102×102, and vectors v, w such that vMxw = ρLr (n), if x is the base-2
representation of n. Here if x = a1a2 · · ·ai, then by Mx we mean the product
Ma1Ma2 · · ·Mai .

From this we then created a new automaton A′ where the states are products
of the form vMx for binary strings x and the transitions are on 0 and 1. This
automaton was built using a breadth-first approach, using a queue to hold states
whose targets on 0 and 1 are not yet known. From Theorem 24 in the next section,
we know that ρLr (n) is bounded, so that this approach must terminate. It did so
at 2444 states, and the product of the vMx corresponding to each state with w
gives an integer less than or equal to 8, thus proving the desired result and also
providing an automaton to compute ρLr (n).

Remark 17. Note that the Lyndon complexity functions in Theorems 14 and 16
are bounded. This will follow more generally from Theorem 24 below.

4 Finite Factorizations

Of course, the original Lyndon factorization was for finite words: every finite
nonempty word x can be factored uniquely as a nonincreasing product w1w2 · · ·
wm of Lyndon words. We can apply this theorem to all prefixes of a k-automatic
sequence. It is then natural to wonder if a single automaton can encode all the
Lyndon factorizations of all finite prefixes. The answer is yes, as the following
result shows.

Theorem 18. Suppose x is a k-automatic sequence. Then there is an automa-
ton A accepting

{(n, i)k : the Lyndon factorization of x[0..n− 1] is w1w2 · · ·wm

with wm = x[i..n− 1]}.
Proof. As is well-known [9], if w1w2 · · ·wm is the Lyndon factorization of x, then
wm is the lexicographically least suffix of x. So to accept (n, i)k we find i such
that x[i..n− 1] < x[j..n − 1] for 0 ≤ j < n and i �= j.

Given A, we can find the complete factorization of any prefix x[0..n−1] by using
this automaton to find the appropriate i (as described in [11]) and then replacing
n with i.

We carried out this construction for the Thue-Morse sequence, and the result
is shown below in Figure 1.

In a similar manner, there is an automaton that encodes the factorization of
every factor of a k-automatic sequence:

Theorem 19. Suppose x is a k-automatic sequence. Then there is an automa-
ton A′ accepting

{(i, j, l)k : the Lyndon factorization of x[i..j − 1] is w1w2 · · ·wm

with wm = x[l..j − 1]}.

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 319

Fig. 1. A finite automaton accepting the base-2 representation of (n, i) such that the
Lyndon factorization of t[0..n − 1] ends in the term t[i..n − 1]

Fig. 2. A finite automaton accepting the base-2 representation of (i, j, l) such that the
Lyndon factorization of t[i..j − 1] ends in the term t[l..j − 1]

We calculated A′ for the Thue-Morse sequence using our method. It is a 34-state
machine and is displayed in Figure 2.

320 D. Goč, K. Saari, and J. Shallit

Another quantity of interest is the number of terms in the Lyndon factoriza-
tion of each prefix.

Theorem 20. Let x be a k-automatic sequence. Then the sequence (f(n))n≥0

defined by

f(n) = the number of terms in the Lyndon factorization of x[0..n]

is k-regular.

Proof. We construct an automaton to accept {(n, i) : ∃j ≤ n such that L(i, j)
and if SI(i, j, i′, j′) and 0 ≤ i′ ≤ j′ ≤ n then ¬L(i′, j′)}.
For the Thue-Morse sequence the corresponding sequence satisfies the relations

f(4n+ 1) = −f(2n) + f(2n+ 1) + f(4n)

f(8n+ 2) = −f(2n) + f(4n) + f(4n+ 2)

f(8n+ 3) = −f(2n) + f(4n) + f(4n+ 3)

f(8n+ 6) = −f(2n)− f(4n+ 2) + 3f(4n+ 3)

f(8n+ 7) = −f(2n) + 2f(4n+ 3)

f(16n) = −f(2n) + f(4n) + f(8n)

f(16n+ 4) = −f(2n) + f(4n) + f(8n+ 4)

f(16n+ 8) = −f(2n) + f(4n+ 3) + f(8n+ 4)

f(16n+ 12) = −f(2n)− 2f(4n+ 2) + 3f(4n+ 3) + f(8n+ 4)

for n ≥ 1, which allows efficient calculation of this quantity.

5 Linearly Recurrent Sequences

Definition 21. A recurrent infinite word x = a0a1a2 · · · , where each ai is a
letter, is called linearly recurrent with constant L > 0 if, for every factor u and
its two consecutive occurrences beginning at positions i and j in x with i < j, we
have j − i < L|u|. The word aiai+1 · · · aj−1 is called a return word of u. Thus
linear recurrence can be defined from the condition that every return word w of
every factor u of x satisfy |w| < L|u|. Let Ru denote the set of return words of
u in x.

Remark 22. Linear recurrence implies that every length-k factor appears at least
once in every factor of length (L+ 1)k − 1.

Lemma 23 (Durand, Host, and Skau [8]). Let x be an aperiodic linearly
recurrent word with constant L.

(i) If u is a factor of x and w its return word, then |w| > |u|/L.
(ii) The number of return words of any given factor u of x is #Ru ≤ L(L+1)2.

Primitive and Lyndon Words in Automatic and Linearly Recurrent Sequences 321

Theorem 24. The Lyndon complexity of any linearly recurrent sequence is
bounded above by a constant.

Proof. Let x be a linearly recurrent sequence with constant L. If x is ultimately
periodic, the subword complexity is already bounded above by a constant, so
the Lyndon complexity is also bounded. Now assume that x is aperiodic, and
let n ≥ L. Denote k = 	(n+ 1)/(L+ 1)
, so that

(L+ 1)k − 1 ≤ n < (L+ 1)(k + 1)− 1. (1)

The left-hand side inequality in (1) and Remark 22 together imply that all
factors in x of length k occur in all factors of length n. Therefore if u is the
lexicographically smallest factor of length k, then every Lyndon factor of x of
length n must begin with u. Since every suffix of x that begins with u can be
factorized over Ru, we conclude further that every length-n Lyndon factor of x
is a prefix of a word in R∗

u.
The return words of u have length at least k/L by Lemma 23. Furthermore,

the right-hand side inequality in (1) gives

n

k/L
<

(L+ 1)(k + 1)− 1

k/L
<

L(L+ 1)(k + 1)

k
≤ 2L(L+ 1).

Therefore any Lyndon factor of length n is a prefix of a word in R2L(L+1)
u . Since

#Ru ≤ L(L+ 1)2 by Lemma 23, we conclude that

ρLx (n) ≤ max
{
ρLx(1), ρ

L
x (2), . . . , ρ

L
x(L − 1), (L(L+ 1)2)2L(L+1)

}
,

so that the Lyndon complexity of x is bounded.

Definition 25. Let h : A∗ → A∗ be a primitive morphism, and let τ : A → B
be a letter-to-letter morphism. If h is prolongable, so that the limit hω(a) :=
limn→∞ hn(a) exists for some letter a ∈ A, then the sequence τ

(
hω(a)

)
is called

primitive morphic.

Lemma 26 (Durand [7,8]). Primitive morphic sequences are linearly
recurrent.

Corollary 27. The Lyndon complexity of any primitive morphic sequence is
bounded.

Proof. Follows from Lemma 26 and Theorem 24.

Corollary 28. If x is k-automatic and primitive morphic, then its Lyndon com-
plexity is k-automatic.

Proof. Follows from Corollary 27 and Theorem 13, because a k-regular sequence
over a finite alphabet is k-automatic [3].

322 D. Goč, K. Saari, and J. Shallit

Acknowledgments. We thank Luke Schaeffer for suggesting the argument in
the proof of Theorem 2. We thank the referees for a careful reading of this paper.

References

1. Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press (2003)

3. Allouche, J.-P., Shallit, J.O.: The ring of k-regular sequences. Theoret. Comput.
Sci. 98, 163–197 (1992)

4. Černý, A.: Lyndon factorization of generalized words of Thue. Discrete Math. &
Theoret. Comput. Sci. 5, 17–46 (2002)

5. Charlier, É., Rampersad, N., Shallit, J.: Enumeration and Decidable Properties
of Automatic Sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 165–179. Springer, Heidelberg (2011)

6. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
7. Durand, F.: A characterization of substitutive sequences using return words. Dis-

crete Math. 179, 89–101 (1998)
8. Durand, F., Host, B., Skau, C.: Substitution dynamical systems, bratteli diagrams,

and dimension groups. Ergod. Theory & Dynam. Sys. 19, 953–993 (1999)
9. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381

(1983)
10. Goč, D., Henshall, D., Shallit, J.: Automatic Theorem-Proving in Combinatorics on

Words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191.
Springer, Heidelberg (2012)

11. Goč, D., Schaeffer, L., Shallit, J.: The subword complexity of k-automatic sequences
is k-synchronized (June 23, 2012) (preprint), http://arxiv.org/abs/1206.5352

12. Ido, A., Melançon, G.: Lyndon factorization of the Thue-Morse word and its rela-
tives. Discrete Math. & Theoret. Comput. Sci. 1, 43–52 (1997)

13. Melançon, G.: Lyndon Factorization of Infinite Words. In: Puech, C., Reischuk, R.
(eds.) STACS 1996. LNCS, vol. 1046, pp. 147–154. Springer, Heidelberg (1996)

14. Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic se-
quences. Int. J. Found. Comput. Sci. (2012) (to appear)

15. Séébold, P.: Lyndon factorization of the Prouhet words. Theoret. Comput. Sci. 307,
179–197 (2003)

16. Shallit, J.: The critical exponent is computable for automatic sequences. In:
Ambroz, P., Holub, S., Másaková, Z. (eds.) Proceedings 8th International Con-
ference Words 2011. Elect. Proc. Theor. Comput. Sci., vol. 63, pp. 231–239 (2011)

17. Siromoney, R., Mathew, L., Dare, V., Subramanian, K.: Infinite Lyndon words.
Inform. Process. Lett. 50, 101–104 (1994)

http://arxiv.org/abs/1206.5352

	Primitive Words and Lyndon Words
in Automatic and Linearly Recurrent Sequences

	Introduction
	Lyndon Factorization
	Enumeration
	Finite Factorizations
	Linearly Recurrent Sequences
	References

