
Dynamic Communicating Automata

and Branching High-Level MSCs

Benedikt Bollig1,�, Aiswarya Cyriac1,�, Löıc Hélouët2,
Ahmet Kara3,��, and Thomas Schwentick3,��

1 LSV, ENS Cachan, CNRS & INRIA, France
2 INRIA/IRISA Rennes, France

3 Lehrstuhl Informatik 1, TU Dortmund, Germany

Abstract. We study dynamic communicating automata (DCA), an ex-
tension of classical communicating finite-state machines that allows for
dynamic creation of processes. The behavior of a DCA can be described
as a set of message sequence charts (MSCs). While DCA serve as a model
of an implementation, we propose branching high-level MSCs (bHMSCs)
on the specification side. Our focus is on the implementability problem:
given a bHMSC, can one construct an equivalent DCA? As this prob-
lem is undecidable, we introduce the notion of executability, a decidable
necessary criterion for implementability. We show that executability of
bHMSCs is EXPTIME-complete. We then identify a class of bHMSCs
for which executability effectively implies implementability.

1 Introduction

Communicating automata (CA) [7] are a popular model of boolean concurrent
programs, in which a fixed finite number of finite-state processes exchange mes-
sages through unbounded FIFO channels. One particular research branch con-
siders a semantics of CA in terms of message sequence charts (MSCs). MSCs
propose a visual representation of system executions, can be composed by for-
malisms like high-level MSCs (HMSCs), and are standardized by the ITU [13].
A natural question in this context is the implementability problem, which asks
if a given HMSC can be translated into an equivalent CA [11,1,12,20,10,17,9].

Most previous formal approaches to communicating systems and MSCs re-
strict to a fixed finite set of processes. This limits their applicability, as, nowa-
days, many applications are designed for an open world, where the participating
actors are not entirely known in advance. Example domains include mobile com-
puting and ad-hoc networks. In [4], dynamic communicating automata (DCA)
were introduced as a model of programs with process creation. In a DCA, a
process may (i) send and receive messages, or (ii) spawn a new process which is
equipped with a unique process identifier (pid). Pids can be stored in registers
and be exchanged through messages. The use of registers in DCA suggests close

� Supported by DIGITEO LoCoReP and LIA InForMel.
�� We acknowledge the financial support by the German DFG, grant SCHW 678/4-1.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 177–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



178 B. Bollig et al.

connections with register automata (also known as finite-memory automata) and
formal languages over infinite alphabets (cf. [21] for an overview).

DCA are inherently hard to analyze and to synthesize. To facilitate the spec-
ification of dynamic systems, we introduce branching HMSCs (bHMSCs). Just
like DCA generalize CA, bHMSCs extend HMSCs. They are based on branching
automata [15,16], which rely on a natural principle of distributed computing: a
process can start a number of parallel subprocesses and resume its activity once
these subprocesses terminate. Each subprocess may start some subclients so that
the number of processes running in parallel is a priori not bounded. Like DCA,
bHMSCs use finitely many registers to store pids. In a sense, bHMSCs combine
branching automata and register automata.

In this paper, we study the implementability question: given a bHMSC, is
there an equivalent DCA? This question is undecidable already in the case of
a bounded number of processes [12]. Therefore, we consider the notion of ex-
ecutability, a necessary condition for implementability, which amounts to the
question if, in every scenario, communicating processes may know each other at
the time of communication. We prove executability of bHMSCs to be EXPTIME-
complete. Moreover, we identify the fragment of guarded join-free bHMSCs, for
which executability and implementability coincide. In this case we also provide
an exponential construction of an equivalent DCA.

Related Work. A first step towards MSCs over an evolving set of processes was
made in [14], where MSO model checking is shown decidable for fork-and-join
MSC grammars. Branching HMSCs are similar to these grammars, but take into
account pids as message contents and distinguish messages and process creation.
Moreover, (implementable) subclasses can be identified more easily. Nevertheless,
several of our results apply to the formalism from [14] once the latter is adjusted
to our setting. In [5], an MSC semantics was given for the π-calculus. Note that
the problems studied in [14] and [5] are very different from ours and do not
distinguish between a specification and an implementation.

The present paper supersedes [4] in several aspects. Branching HMSCs are
more expressive than the previous formalism, simpler to understand, and more
adequate, since they are based on a natural, well-established extension of finite
automata to parallelism. Moreover, we extend DCA in such a way that messages
themselves can carry (visible) process identifiers. This aspect is important and
frequently used (e.g., in the leader election protocol). Finally, we provide tight
complexity bounds for the executability problem and solve the implementability
problem for a class of specifications that cannot be handled by [4].

Other formalisms with dynamic process creation (not necessarily involving
message passing) can be found, for example, in [8,18,6,2]. However, these papers
consider neither an MSC based semantics nor implementability aspects.

Outline. In Section 2, we define MSCs. Branching HMSCs and DCA are pre-
sented in Sections 3 and 4, respectively. In Section 5, we study executability.
Section 6 identifies a fragment of bHMSCs for which executability and imple-
mentability coincide. We conclude in Section 7. Proofs can be found in [3].



Dynamic Communicating Automata and Branching High-Level MSCs 179

2 Dynamic Message Sequence Charts

For sets A and B, let [A ⇀ B] denote the set of partial mappings fromA toB. We
identify f ∈ [A ⇀ B] with the set {a �→ f(a) | a ∈ dom(f)}. A ranked alphabet
is a nonempty finite set A where every letter a ∈ A has an arity arity(a) ∈ N.

Let P be a set of process names (or, simply, processes). Later, P will be
instantiated either by the infinite set P = {0, 1, 2, . . .} of process identifiers (pids,
for short), or by a finite set of registers. We fix a ranked alphabet A of message
labels. The set of messages (over P ) is defined as A(P )

def
= {a(p1, . . . , pn) | a ∈ A,

n = arity(a), and p1, . . . , pn ∈ P}.
A message sequence chart (MSC) consists of a number of processes. Each

process p ∈ P is represented by a set of events Ep, totally ordered by a direct-
successor relation �proc. Every event has a type from T = {start, spawn, !, ?}. The
minimal event of a process has type start. Subsequent events can then execute
spawn (spawn), send (!), or receive (?) actions. The relation �msg associates each
send event with a unique receive event which is always on a different process.
The exchange of messages between two processes has to conform with a FIFO
policy. Similarly, �spawn relates a spawn event e ∈ Ep with the unique start event
of a different process q �= p, meaning that p has created q.

Definition 1 (MSC). A message sequence chart (MSC) over A and P is a
tuple M = (E,�, λ, μ) where E is a nonempty finite set of events, � is the edge
relation, which is partitioned into �proc � �spawn � �msg, the mapping λ : E →
T × P assigns a type and a process to each event, and μ : �msg → A(P ) labels
a message edge with a message. For each type θ ∈ T , we let Eθ

def
= {e ∈ E |

λ(e) ∈ {θ} × P}. We define the mapping pid : E → P such that pid(e) = p if
λ(e) ∈ T × {p}. Accordingly, for p ∈ P , set Ep

def
= {e ∈ E | pid(e) = p}. We

require the following:

1. (E,�∗) is a partial order with a unique minimal element init(M) ∈ Estart,
2. �proc ⊆

⋃
p∈P (Ep × Ep) and, for each p ∈ P , �proc ∩ (Ep × Ep) is the

direct-successor relation of some total order on Ep,
3. Estart = {e ∈ E | there is no e′ ∈ E such that e′ �proc e},
4. �spawn and �msg are subsets of

⋃
p,q∈P |p�=q(Ep × Eq),

5. �spawn induces a bijection between Espawn and Estart \ {init(M)},
6. �msg induces a bijection between E! and E? satisfying the following (FIFO):

for e1, e2 ∈ Ep and f1, f2 ∈ Eq with e1 �msg f1 and e2 �msg f2, we have
e1 �∗

proc e2 iff f1 �∗
proc f2.

The set of MSCs over A and P is denoted by MSC(A,P ).

MSCs enjoy a natural graphical representation. Figure 1 depicts the MSCs M(n)
and M0 over A = {a, b, c} and P, where arity(a) = 1 and arity(b) = arity(c) = 0.
The events are the endpoints of arrows. Each arrow is either an element of �spawn

(those with two arrow heads) or an element of �msg (those with one arrow head
and a label from A(P)). The relation �proc orders (top-down) two consecutive
points located on the same process line. Event init(M), which is located on the
process with pid 0, is depicted as a small circle.



180 B. Bollig et al.

0
1

2
n− 1 n

a(n)

a(n)

a(n)

· · ·

c

0
1

2

3
a(2)

a(3) c

cb

0 1 2

3
a(2)

a(3) c

cb

M(n) M0 M ′
0

Fig. 1. Two MSCs and a partial MSC

We do not distinguish MSCs that differ only in their event names. We say that
two MSCs over A and P are equivalent if one can be obtained from the other by
a renaming of pids. The equivalence class of M is denoted [M ]. Moreover, for a
set L of MSCs, we let [L] =

⋃
M∈L[M ]. We say that L is closed if L = [L].

Depending on the application, a spawn in an MSC may have different inter-
pretations, such as create subprocess, contact server, etc. In some cases, one may
therefore wish to communicate a message to the new process. This can be sim-
ulated in our framework by a message edge that immediately follows a spawn.

For a message m, we will actually use
p q

m as an abbreviation for

p q

m .

3 Branching High-Level Message Sequence Charts

In this section, we propose a generalization of HMSCs that is suited to our
dynamic setting. It is inspired by branching automata over series-parallel pom-
sets [15,16]. An MSC can be seen as one single execution of a distributed system.
To generate infinite collections of MSCs, specification formalisms usually provide
a concatenation operator. It will allow us to append to an MSC a partial MSC,
which does not necessarily have start events on each process.

Definition 2 (partial MSC). Let M = (E,�, λ, μ) ∈ MSC(A,P ) and let
E′ ⊆ E be a nonempty upward-closed set containing only complete messages
and spawning pairs: for all (e, f) ∈ �∗ ∪ �−1

msg ∪ �−1
spawn, we have that e ∈ E′

implies f ∈ E′. Then, the restriction of M to E′ is called a partial MSC over
A and P . The set of partial MSCs is denoted by pMSC(A,P ).

In Figure 1, M ′
0 is a partial MSC that is not an MSC. Notations such as pid(e)

carry over from MSCs to partial MSCs as expected. Let M = (E,�, λ, μ) ∈
pMSC(A,P ) be a partial MSC. By MsgPar (M), we denote the set of p ∈ P that
occur as parameters in messages, i.e., those p, for which there is a(p1, . . . , pn) ∈
μ(�msg) with p ∈ {p1, . . . , pn}. For every p ∈ P with Ep �= ∅, there are a unique
minimal and a unique maximal event in the total order (Ep,�∗ ∩ (Ep × Ep)),
which we denote by minp(M) and maxp(M), respectively.



Dynamic Communicating Automata and Branching High-Level MSCs 181

We let Pids(M)
def
= {p ∈ P | Ep �= ∅}. By Free(M)

def
= {p ∈ Pids(M) |

Estart ∩ Ep = ∅}, we denote the set of free processes of M . Intuitively, free
processes of a partial MSCM are processes that are not initiated inM . Moreover,
Bnd(M)

def
= Pids(M) \ Free(M) denotes the set of bound processes. In Figure 1,

we have Bnd(M ′
0) = {3} and Free(M ′

0) = {0, 1, 2}.
Let M = (E,�, λ, μ) and M ′ = (E′,�′, λ′, μ′) be partial MSCs over A and

P . The concatenation M ◦M ′ glues identical processes together. It is defined if
(i) Bnd(M ′) ∩ Pids(M) = ∅, (ii) Free(M ′) �= ∅, and (iii) Free(M) = ∅ implies

Free(M ′) ⊆ Pids(M). In that case, M ◦ M ′ def
= (Ê, �̂, λ̂, μ̂) where Ê = E � E′,

�̂proc = �proc ∪ �′
proc ∪ {(maxp(M),minp(M

′)) | p ∈ Pids(M) ∩ Pids(M ′)},
�̂msg = �msg ∪�′

msg , �̂spawn = �spawn ∪�′
spawn , λ̂ = λ ∪ λ′, and μ̂ = μ ∪ μ′.

Next we define a formalism to describe sets of MSCs. This is analogous to
branching automata, but the transitions are labelled with partial MSCs.

Definition 3 (bHMSC). A branching high-level MSC (bHMSC) over the set
of message labels A is a tuple H = (L,X,Linit, Lacc, x0, T ) where L is the finite
set of locations, Linit ⊆ L is the set of initial locations, Lacc ⊆ L is the set of
accepting locations, X is the finite set of registers with initial register x0 ∈ X,
and T is the finite set of transitions. There are two types of transitions:

– A sequential transition is a triple (�,M, �′) ∈ L× pMSC(A,X)× L, usually
written �

M−→ �′, such that Free(M) �= ∅ and MsgPar (M)∩Bnd(M) = ∅ (the
latter guarantees an unambigous interpretation of message parameters).

– A fork-and-join transition is of the form � → {(�1, X1, �
′
1), . . . , (�n, Xn, �

′
n)} →

�′, where n ≥ 1 is the degree of the transition, �, �1, . . . , �n, �
′
1, . . . , �

′
n, �

′ are
locations from L, and X1, . . . , Xn are nonempty and pairwise disjoint subsets

of X. It may also be depicted as �

�1

...

�n

X1

Xn

�′

�′
n

...

�′1

Xn

X1

Fork-and-join transitions are similar to the split operator in [14]. At location �, n
subcomputations are started in �1, . . . , �n, respectively, keeping only the register
contents (pids) from X1, . . . , Xn. The other register contents are inaccessible
until each subcomputaion i terminates at �′i (the registers as such may be used,
but not their contents at �). Then, the main computation resumes in �′, and
registers in Xi adopt the final assignment from the i-th subcomputation.

We associate MSCs with a bHMSC through the notion of runs, which we will
define next after some preparation. A partial mapping ν : X ⇀ P is a register
assignment if it is injective. The set of register assignments is denoted by R(X).
For ν ∈ R(X) and Y ⊆ X , we let ν�Y

def
= {x �→ ν(x) | x ∈ dom(ν) ∩ Y }. Given

ν, ν′ ∈ R(X) and an M ∈ pMSC(A,X) that occurs in H, we write ν
M−→ ν′ (to

be read as: M can be instantiated and performed at ν and yields ν′) if

– Free(M) ∪MsgPar (M) ⊆ dom(ν) (i.e., free processes can be instantiated),
– dom(ν′) = dom(ν) ∪ Bnd(M), and ν and ν′ coincide on X \ Bnd(M) (i.e.,

registers remain unchanged unless they are overwritten for a new process),
– ν′(Bnd(M)) ∩ ν(X) = ∅ (i.e., bound processes obtain fresh pids).



182 B. Bollig et al.

A run G = (V,R, loc, reg, ρ) of the bHMSC H consists of a finite directed acyclic
graph (V,R), R ⊆ V × V , with a unique source node in(G), a unique sink node
out(G), and labeling functions loc : V → L, reg : V → R(X), and ρ : R →
2X ∪ pMSC(A,P). The set of runs of H is defined inductively as follows:

– Let ν, ν′ ∈ R(X) be register assignments and let �
M−→ �′ be a sequential

transition such that ν
M−→ ν′. Set M ′ = ν′(M), which we obtain from M by

uniformly replacing x with ν′(x). Then, the graph G = �

ν

�′
ν′

M ′

is a run of H. We set Pids(G)
def
= ν(X)∪Pids(M ′) and Bnd(G)

def
= Bnd(M ′).

– Consider runs G1 =
�1 �2

ν1 ν2
and G2 =

�2 �3

ν2 ν3
of H.

If Pids(G1)∩Bnd(G2) = ∅, then the graphG =
�1 �2

ν1 ν2

�3

ν3

is a run of H. We set Pids(G)
def
= Pids(G1) ∪ Pids(G2) and Bnd(G)

def
=

Bnd(G1) ∪ Bnd(G2).

– For n ≥ 1, let G1 =
�1 �′1

ν1 ν′1 , . . . , Gn =
�n �′

n

νn ν′
n

be runs, �

�1

...

�n

X1

Xn

�′

�′
n

...

�′1

Xn

X1

be a fork-and-join transition, and

ν, ν′ ∈ R(X) be register assignments. Then, the graph

G =

G1

�1 �′1

ν1 ν′1

Gn

�n �′
n

νn ν′
n

...� �′
ν ν′

X1

Xn

X1

Xn

is a run of H if Bnd(Gi) ∩ (ν(X) ∪
⋃

j �=i Pids(Gj)) = ∅ and νi = ν�Xi
for

all i ∈ {1, . . . , n}, and ν′ = ν�X0 ∪
⋃

i∈{1,...,n}(ν
′
i)�Xi where X0 = X \ (X1 ∪

. . . ∪ Xn). We set Pids(G)
def
= ν(X) ∪

⋃
i∈{1,...,n} Pids(Gi) and Bnd(G)

def
=

⋃
i∈{1,...,n} Bnd(Gi).

By choosing any enumeration M1, . . . ,Mn ∈ pMSC(A,P) of the partial MSCs
occurring in G that respects the partial order induced by the edge relation R,
we define M(G)

def
= M1 ◦ . . . ◦ Mn ∈ pMSC(A,P). Since, in a fork-and-join,

subcomputations employ disjoint sets of pids, M(G) is well defined and does not
depend on the chosen enumeration. We call run G accepting if loc(in(G)) ∈ Linit,



Dynamic Communicating Automata and Branching High-Level MSCs 183

loc(out(G)) ∈ Lacc, and reg(in(G)) = {x0 �→ p} for some p ∈ P. The language of

H is L(H)
def
= {

p
◦ M(G) | G is an accepting run of H with reg(in(G)) = {x0 �→

p}} ⊆ MSC(A,P). Note that L(H) is always closed.

Example 4. The bHMSC below models a peer-to-peer protocol. It has only se-
quential transitions and is defined over A = {r, a, c} (request, acknowledgment,
communication) with arity(r) = arity(a) = 1 and arity(c) = 0. The initial reg-
ister is x0. A request is forwarded to new processes along with the pid p of the
initial process. At some point, a process acknowledges the request, sending its
own pid q to the initial process. Processes p and q may then communicate and
exchange messages. A generated MSC is depicted beside the bHMSC.

�0 �1 �2

�3 �4⊥

x0 x1
r(x0)

x1 x2
r(x0)

x2 x1
r(x0)

x0 x1
a(x1)

x0 x2
a(x2)

0

1
2

3

r(0)
r(0)

r(0)
a(3)

c
c

x0 x1
c
c

x0 x2
c
cx0 x1

c
c

x0 x2
c
c

Example 5. The following bHMSC has one fork-and-join transition whose target
state ⊥ is the only final state. Due to the fork, registers can be used simultane-
ously at different places so that the generated MSCs have a tree-like structure.

�0 �1 �2

⊥

{x0} {x1}

{x0} {x1}

x0 x1 x1 x0

x0 x1 x1 x0

0
1

2
3

Examples 4 and 5 represent important subclasses of bHMSCs, sequential and
join-free bHMSCs, respectively, which we define in the following.

A bHMSC is called sequential if it contains only sequential transitions. Thus,
the bHMSC from Example 4 is sequential.

Let H = (L,X,Linit, Lacc, x0, T ) be a bHMSC. By Lseq, Lfork, and L⊥ we
denote the sets of locations with outgoing sequential transitions, with outgoing
fork-and-join transitions, and without outgoing transitions, respectively.

We say that bHMSC H is join-free if there is a distinguished location ⊥ ∈ L
such that Lacc = L⊥ = {⊥} and all fork-and-join transitions are of the form
� → {(�1, X1,⊥), . . . , (�n, Xn,⊥)} → ⊥. Thus, the bHMSCs from Examples 4



184 B. Bollig et al.

and 5 are join-free. The run of a join-free bHMSC may be viewed as a tree, as
it can always be completed towards a run with a single target node. We will,

therefore, consider that a fork-and-join transition is of the form �

�1

...

�n

X1

Xn

and

rather call it a fork transition. Note that any bHMSC generating the MSCs M(n)
from Figure 1 is inherently not join-free. Moreover:

Lemma 6. Join-free bHMSCs are more expressive than sequential bHMSCs.

The first natural question to ask for a bHMSC H is whether L(H) �= ∅, i.e., the
nonemptiness problem.

Theorem 7. Nonemptiness of bHMSCs is EXPTIME-complete. It is already
EXPTIME-hard for join-free bHMSCs. Nonemptiness of sequential bHMSCs is
NP-complete.

The proofs of the upper bounds use a notion of symbolic runs. EXPTIME-
hardness is shown by a reduction from the intersection-nonemptiness problem
for tree automata; for NP-hardness, we use a reduction from 3-CNF-SAT.

4 Dynamic Communicating Automata

In this section, we introduce an extension of the model of dynamic commu-
nicating automata as presented in [4]. A configuration of a DCA consists of
several processes that can exchange messages through FIFO channels. A process
can spawn new processes so that there is a priori no bound on the number of
processes that participate in a system execution. In contrast to [4], we allow a
message to contain process identities and receptions to be non-selective (i.e., a
receiver may receive a message without knowing the sender).

Definition 8 (DCA). A dynamic communicating automaton (DCA) over the
ranked message alphabet A is a tuple D = (S,X, Sinit, Sacc, Δ) where S is a
finite set of states with initial states Sinit ⊆ S and accepting states Sacc ⊆ S,
X is a finite set of registers, and Δ is the set of transitions. A transition is
of the form (s, α, s′) where s, s′ ∈ S, and α is an action, possibly a send action
!x(a(x1, . . . , xn)), a receive action ?y(a(y1, . . . , yn)), or a spawn action x :=
spawn(s, z), where x, z ∈ X, y ∈ X ∪ {∗}, s ∈ S, a(x1, . . . , xn) ∈ A(X � {self}),
and a(y1, . . . , yn) ∈ A(X � {−}) such that, for all i, j ∈ {1, . . . , n}, yi = yj ∈ X
implies i = j.

When a process executes !x(a(x)) with x = (x1, . . . , xn), it sends a message to
the process whose pid is stored in register x. The message consists of label a
as well as n = arity(a) many pids stored in registers x (or the sender’s pid
if xi = self). Executing ?y(a(y)), a process receives a message from the process



Dynamic Communicating Automata and Branching High-Level MSCs 185

whose pid is stored in y (selective receive) or, in case y = ∗, from any process
(non-selective receive). The message must be of the form a(p1, . . . , pn). In the
resulting configuration, the receiving process updates its local registers y1, . . . , yn
to p1, . . . , pn, respectively, unless yi = −. Finally, a process executing x :=
spawn(s, z) spawns a new process, whose fresh pid is henceforth stored in register
x. The new process starts in state s. Its registers are a copy of the registers of the
spawning process, except for z, which is set to the pid of the spawning process.

A run of DCA D on an MSC M = (E,�, λ, μ) ∈ MSC(A,P) is a pair (σ, τ),
where σ : E → S and τ : E → [X ⇀ P], respecting the following conditions:

– σinit(M) ∈ Sinit,

– τinit(M) is undefined everywhere,

– for all e1, e2, f ∈ E with e1 �proc e2 �spawn f , the relation Δ contains a local

transition σe1

x := spawn(s,y)−−−−−−−−−→ σe2 such that σf = s, τe2 = τe1 [x �→ pid(f)],
and τf = τe1 [y �→ pid(e1)], and

– for all e1, e2, f1, f2 ∈ E with e1 �proc e2 �msg f2 and f1 �proc f2, the relation

Δ contains transitions σe1

!x(a(x1,...,xn))−−−−−−−−−→ σe2 and σf1

?y(a(y1,...,yn))−−−−−−−−−−→ σf2 such
that {x, x1, . . . , xn} ⊆ dom(τe1) ∪ {self}, τe2 = τe1 , τe1 (x) = pid(f1),

(
y =

∗ or τf1(y) = pid(e1)
)
, and, letting pi =

{
τe1(xi) if xi ∈ X

pid(e1) if xi = self ,
we have

μ(e2, f2) = a(p1, . . . , pn) and τf2(z) =

{
pi if z = yi

τf1(z) if z �∈ {y1, . . . , yn} .

Here, σe and τe denote σ(e) and τ(e), respectively. Moreover, τe[x �→ p] is the
partial mapping that maps x to p and coincides with τe on all other arguments.

The run (σ, τ) is accepting if σe ∈ Sacc for all e ∈ {maxp(M) | p ∈ Pids(M)}.
By L(D), we denote the set of MSCsM overA and P such that there is an accept-
ing run of D on M . Note that L(D) is closed, i.e., L(D) = [L(D)]. Nonemptiness
is undecidable for CA, and consequently also for DCA.

There are languages L that are not the language of a DCA, but for which
there is a DCA implementing them up to some refinement. The refinement
allows a DCA to attach more information to a message than the specifica-
tion provides, for example additional pids. This is formalized as follows. Let
A,B be ranked alphabets and let h : B → A. We say that the pair (B, h)
is a refinement of A if, for all b ∈ B, arity(h(b)) ≤ arity(b). We can ex-
tend h to a mapping h : MSC(B,P) → MSC(A,P) as follows: for an MSC
M = (E,�, λ, μ) ∈ MSC(B,P), we let h(M) = (E,�, λ, μ′) ∈ MSC(A,P) where
μ′(e, f) = h(b)(p1, . . . , parity(h(b))) whenever μ(e, f) = b(p1, . . . , pn). The map-
ping is then further extended to sets of MSCs as expected.

Definition 9 (realizable, implementable). We call a set L ⊆ MSC(A,P)
realizable if [L] = L(D) for some DCA D. We say that L is implementable if
there are a refinement (B, h) of A and a DCA D over B such that [L] = h(L(D)).



186 B. Bollig et al.

0
1

2

b

0
1

2

b

0
1

2

3
c

c

0
1

2

3c

c

M1 M2 M3 M4

Fig. 2. Realizability vs. Implementability

For both realizability and implementability, it is necessary that the sender p of
a message knows the receiver q at the time of sending, i.e., q should be stored in
some register of p. Note that this aspect does not arise in simple CA.

Example 10. The MSC language {M1} (see Figure 2) is not implementable, as
process 1 does not know 2 when sending message b. However, {M2} is imple-
mentable (and even realizable), as 2 may know 1: when spawning 2, process 0
can communicate the pid 1 to 2. The language {M3} is not realizable: as pro-
cess 0 does neither know 2 nor 3 when it receives the messages, it has to use a
non-selective receive. But then, the DCA also accepts M4. On the other hand,
{M3,M4} is realizable. However, {M3} and {M4} are implementable by refining
the messages from 2 and 3.

5 Executability

An accepting run of a bHMSC generates an MSC. However, this MSC need not
be implementable always, as Example 10 shows. Unfortunately, implementability
(and also realizability) is undecidable for bHMSCs, which follows from undecid-
ability for HMSCs over a fixed finite set of processes [12,1].

Theorem 11 (cf. [12,1]). Implementability and realizability of bHMSCs are
undecidable. This already holds for sequential bHMSCs.

We now focus on implementability and introduce an effective necessary criterion,
called executability: every sender in a generated MSC should be “aware of” the
receiver and the processes whose pids are used as message parameters.

Given an MSC M , a process q and an event e of M , we write q �M e if
there is a path from the minimal event minq(M) of q to e in M . This path
might involve the reversal of the spawn edge that started q. That is, q �M e
if (minq(M), e) ∈ (� ∪ �−1

spawn)
∗. Intuitively, q �M e indicates that the process

executing e is aware of process q. Next, we formally define executability of MSCs.

Definition 12 (executability). Let M ∈ MSC(A,P). A message (e, f) ∈ �msg

of M with message contents a(p1, . . . , pn) is executable if q �M e, for every



Dynamic Communicating Automata and Branching High-Level MSCs 187

q ∈ {pid(f), p1, . . . , pn}. Moreover, M is executable if each of its messages
is executable. Finally, a bHMSC H is executable if each MSC from L(H) is
executable.

For example, in Figure 2, M2,M3,M4 are executable, while M1 is not. Let M be
an MSC and H be a bHMSC. One can verify that 1) M is executable iff {M} is
implementable, and 2) H is executable if it is implementable (while the converse
might fail). Unlike implementability, executability is decidable:

Theorem 13. Executability of bHMSCs is EXPTIME-complete. Moreover, the
lower bound already holds for bHMSCs that are join-free.

The lower bound is deduced from the lower bound of the nonemptiness problem
(Theorem 7). For the upper bound, we abstract the knowledge of processes by
a finite number of awareness relations, so as to work over symbolic runs.

6 Implementing Guarded Join-Free bHMSCs

We identify a subclass of bHMSCs for which executability and implementabiliy
coincide. Guarded bHMSCs are based on the notion of a leader process, which
determines the next transition to be taken in a bHMSC. They are an adaptation
of locality from [10]. For M = (E,�, λ, μ) ∈ pMSC(A,X), Y ⊆ X , and x ∈ X ,
we write Y �M x if x ∈ Pids(M)∩Y and, for all y ∈ Pids(M)∩Y , maxy(M) �∗

maxx(M). Intuitively, all processes in Pids(M) ∩ Y terminate before x.

Definition 14 (guarded). A join-free bHMSC H = (L,X,Linit, Lacc, x0, T ) is
called guarded if L = Lseq � Lfork � {⊥}, Linit ⊆ Lseq, and there is a mapping
leader : Lseq → X such that

1. for all partial MSCs M = (E,�, λ, μ) ∈ pMSC(A,X) that occur in H,
(E,�∗) has a unique minimal element e; we let first(M)

def
= pid(e),

2. for all sequential transitions �
M−→ �′, it holds leader (�) = first(M), and, if

�′ ∈ Lseq, also X �M leader (�′), and

3. for all transition patterns �
M−→�′

�1
...

�n

X1

Xn

and all i ∈ {1, . . . , n}, we have

�i ∈ Lseq and Xi �M leader (�i).

Example 15. The bHMSCs from Examples 4 and 5 are both guarded.

Theorem 16. A guarded join-free bHMSC is implementable if and only if it
is executable. Moreover, if it is implementable, an equivalent DCA can be con-
structed in exponential time.



188 B. Bollig et al.

Towards an implementation of a given guarded join-free bHMSC H, we first
enrich locations of H with awareness relations (in the same spirit as in the
proof of Theorem 13). Then, we rely on techniques employed in the context
of a bounded number of processes [11,10], to build a DCA (together with a
refinement) that recognizes L(H).

Note that guardedness does not yield better complexities:

Theorem 17. Nonemptiness and executability of guarded join-free bHMSCs are
both EXPTIME-complete.

7 Future Work

In future work, we aim at finding classes of bHMSCs for which executability
and implementability coincide and that are not necessarily join-free or guarded
(e.g., by transferring concepts like fork-acyclicity from branching automata to
bHMSCs). Moreover, connections with the π-calculus [19] should be explored.

Acknowledgments. We thank the anonymous reviewers as well as Martin
Schuster and Thomas Zeume for their helpful comments.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theoretical Computer Science 331(1), 97–114 (2005)

2. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. Logical Methods in Computer Science
7(4) (2011)

3. Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic Communi-
cating Automata and Branching High-Level MSCs. Research Report LSV-12-20,
LSV (November 2012)

4. Bollig, B., Hélouët, L.: Realizability of Dynamic MSC Languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010)

5. Borgström, J., Gordon, A., Phillips, A.: A chart semantics for the Pi-calculus.
Electronic Notes in Theoretical Computer Science 194(2), 3–29 (2008)

6. Bozzelli, L., La Torre, S., Peron, A.: Verification of well-formed communicating
recursive state machines. Theoretical Computer Science 403(2-3), 382–405 (2008)

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983)

8. Buscemi, M.G., Sassone, V.: High-Level Petri Nets as Type Theories in the Join
Calculus. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp.
104–120. Springer, Heidelberg (2001)

9. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Information and Com-
putation 204(6), 920–956 (2006)



Dynamic Communicating Automata and Branching High-Level MSCs 189

10. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
Model-checking and realizability. Journal of Computer and System Sciences 72(4),
617–647 (2006)

11. Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from
HMSCs. In: Proceedings of FMICS 2000, pp. 203–224. Springer (2000)

12. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M.A., Thiagarajan,
P.S.: A theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)

13. ITU-TS: ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva (February 2011)

14. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic Message Sequence
Charts. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp.
253–264. Springer, Heidelberg (2002)

15. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoretical Computer Science 237(1-2), 347–380 (2000)

16. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Information
and Computation 171(2), 269–293 (2001)

17. Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps.
Theoretical Computer Science 309(1-3), 529–554 (2003)

18. Meyer, R.: On Boundedness in Depth in the π-Calculus. In: Ausiello, G.,
Karhumäki, J., Mauri, G., Ong, L. (eds.) Proceedings of IFIP TCS 2008, vol. 273,
pp. 477–489. Springer, Boston (2008)

19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information
and Computation 100(1), 1–40 (1992)

20. Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

21. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet.
In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg
(2006)


	Dynamic Communicating Automataand Branching High-Level MSCs
	Introduction
	Dynamic Message Sequence Charts
	Branching High-Level Message Sequence Charts
	Dynamic Communicating Automata
	Executability
	Implementing Guarded Join-Free bHMSCs
	Future Work
	References




