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Preface

These proceedings contain the papers that were presented at the 7th Interna-
tional Conference on Language and Automata Theory and Applications (LATA
2013), held in Bilbao, Spain, during April 2-5, 2013.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms for semi-structured data mining; algorithms on automata and words;
automata and logic; automata for system analysis and program verification; au-
tomata, concurrency and Petri nets; automatic structures; cellular automata;
combinatorics on words; computability; computational complexity; computa-
tional linguistics; data and image compression; decidability questions on words
and languages; descriptional complexity; DNA and other models of bio-inspired
computing; document engineering; foundations of finite state technology; foun-
dations of XML; fuzzy and rough languages; grammars (Chomsky hierarchy,
contextual, multidimensional, unification, categorial, etc.); grammars and au-
tomata architectures; grammatical inference and algorithmic learning; graphs
and graph transformation; language varieties and semigroups; language-based
cryptography; language-theoretic foundations of artificial intelligence and artifi-
cial life; parallel and regulated rewriting; parsing; pattern recognition; patterns
and codes; power series; quantum, chemical, and optical computing; semantics;
string and combinatorial issues in computational biology and bioinformatics;
string processing algorithms; symbolic dynamics; symbolic neural networks; term
rewriting; transducers; trees, tree languages and tree automata; weighted au-
tomata.

LATA 2013 received 97 submissions. Each one was reviewed by three Program
Committee members, many of whom consulted with external referees. After a
thorough and vivid discussion phase, the committee decided to accept 45 pa-
pers (which represents an acceptance rate of 46.39%). The conference program
also included four invited talks and two invited tutorials. Part of the success in
the management of such a large number of submissions is due to the excellent
facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

January 2013 Adrian-Horia Dediu
Carlos Mart́ın-Vide

Bianca Truthe
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Complexity Dichotomy for Counting Problems

Jin-Yi Cai

University of Wisconsin-Madison, WI 53706, USA
jyc@cs.wisc.edu

Abstract. I would like to report on some significant progress in the
study of the exact complexity of counting problems. Specifically I will
describe the classification program of counting complexity of locally spec-
ified problems. This classification program is advanced in three interre-
lated frameworks: Graph Homomorphisms, Counting CSP, and Holant
Problems. In each formulation, complexity dichotomy theorems have
been achieved which classify every problem in a given class to be either
solvable in polynomial time or #P-hard.

1 Introduction

Computational complexity theory is a branch of Theoretical Computer Science.
The primary goal of complexity theory is to classify computational problems
according to their inherent computational complexity. The success of this theory
is judged by how complete a classification one can obtain. Unfortunately we
currently lack any strong lower bound that pertain to the conjectured separation
of natural complexity classes such as P vs. NP. For example, we cannot prove
any super linear circuit lower bound for any natural problem in NP. Instead, the
great success of complexity theory in the past 40 years has been through the
notion of completeness, which has the implication that, e.g., assuming P �= NP,
then every NP-complete problem is not solvable in polynomial time.

For counting problems the corresponding notion is #P-completeness or more
generally #P-hardness. #P is the class of all functions that correspond to count-
ing the number of accepting computations of an NP machine. This class was
introduced by Valiant [20] and is the analogue of NP for counting problems. It
is stronger than the Polynomial-time Hierarchy [19]. Assuming #P is separate
from P, a statement trivially implied by P �= NP, every #P-hard function cannot
be computed in polynomial time. As an overly ambitious goal, one might wish to
classify every function in #P to be either computable in polynomial time or #P-
hard. Such a result is called a complexity dichotomy theorem [18]. However for
the whole #P this is known to be false, assuming #P is separate from P. There-
fore, for counting problems, assuming #P is separate from P, one cannot hope
to prove such a dichotomy theorem for all of #P. Instead one aims to achieve
such a complete classification for as broad a class of problems as possible.

What appears to be the broadest type of problems for which such a complete
classification is feasible are the sum-of-product computations. For these prob-
lems, recently there has been remarkable progress on this classification program.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J.-Y. Cai

Progress has been made in at least three frameworks: Graph Homomorphisms,
Counting CSP, and Holant problems. In each case strong and broadly applicable
complexity dichotomy theorems have been achieved.

2 Partition Function of Graph Homomorphisms

Graph homomorphism is defined as follows [17,16]. Given a k × k matrix A, the
graph homomorphism function, a.k.a. the partition function, ZA(G) is defined as

ZA(G) =
∑

ξ:V→[k]

∏
(u,v)∈E

Aξ(u),ξ(v),

where G = (V,E) is any input graph. If A is symmetric and G is an undirected
graph, then this is graph homomorphism for undirected graphs, which has been
studied most intensively over the years. The function ZA(G) can encode many
interesting graph properties. E.g. counting vertex covers corresponds to the 2

by 2 matrix

[
0 1
1 1

]
(this matrix enclodes the binary Or function), and counting

k-colorings corresponds to the k by k matrix with 0’s on the diagonal and 1’s
off diagonal (this is the binary DisEquality function on domain size k).

Dyer and Greenhill were the first to give a complexity dichotomy theorem for
ZA(G), where the matrixA is an arbitrary fixed 0-1 symmetric matrix [12]. Their
elegant dichotomy criterion is as follows: Let H be the undirected graph with
adjacency matrix A. Then ZA(G) is computable in polynomial time in the size
of G, provided every connected component of H is an isolated vertex without a
loop, or a complete graph with all loops present, or a complete unlooped bipartite
graph. In all other cases, ZA(G) is #P-complete. Bulatov and Grohe [2] then
gave a substantial generalization of this theorem to all non-negative symmetric
matrices A. It basically states that ZA(G) is computable in P if each block of
A has rank at most one, and is #P-hard otherwise. More precisely, decompose
A as a direct sum of Ai which correspond to the connected components Hi

of the undirected graph H defined by the nonzero entries of A. Then, ZA(G)
is computable in P if every ZAi(G) is, and #P-hard otherwise. For each non-
bipartite Hi, the corresponding ZAi(G) is computable in P if Ai has rank at
most one, and is #P-hard otherwise. For each bipartite Hi, the corresponding
ZAi(G) is computable in P if Ai has the following form:

Ai =

(
0 Bi

Bi
T 0

)
,

where Bi has rank one, and is #P-hard otherwise. (For considerations of models
of computation, strictly speaking the entries of the matrix A should be algebraic
numbers. The same remarks apply below.)

The result of Bulatov and Grohe is both sweeping and applicable. It com-
pletely solves the problem for all non-negative symmetric matrices. However,
when we are dealing with non-negative matrices, there are no cancellations in
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the exponential sum ZA(G). These potential cancellations, when A is either a
real or a complex matrix, may in fact be the source of surprisingly efficient algo-
rithms for computing ZA(G). The occurrence of these cancellations, or the mere
possibility of such occurrence, makes proving any complexity dichotomies more
difficult. Such a proof must identify all polynomial-time algorithms utilizing the
potential cancellations, such as those found in holographic algorithms [22,21,7],
and at the same time carves out exactly what is left. This situation is similar
to monotone versus non-monotone circuit complexity. It turns out that indeed
there are more interesting tractable cases over the reals, and in particular, the
following 2× 2 Hadamard matrix H

H =

(
1 1
1 −1

)
, (1)

turns out to be one of such cases.
This is the starting point of the next great chapter on the complexity of

ZA(·). In a beautiful paper [14], Goldberg, Jerrum, Grohe, and Thurley proved
a complexity dichotomy theorem for all real-valued symmetric matrices A. The
readers should read the paper to see the precise statement, but the main result
is a complexity dichotomy criterion on A such that the problem of computing
ZA(G) for any real A is either in P or #P-hard. The Hadamard matrix H and
its tensor products H⊗H⊗ · · · ⊗H play a major role in the tractable case.

The final dichotomy theorem for ZA(G) was given in [5]. This theorem applies
to all complex-valued symmetric matrices A. It is a long and difficult paper with
many components. The final result is that there is a dichotomy criterion on the
matrix A. If A satisfies this criterion then ZA(G) is computable in polynomial
time; if it does not satisfy this criterion then ZA(G) is #P-hard. The precise
statement of the criterion will take many careful steps to formulate, but roughly
speaking, the theorem states that in order to be computable in polynomial time,
the matrix A must be a tensor product of Fourier matrices, or a specific kind of
modification of such a tensor product by a rank-one matrix. The final tractability
uses the exact summability of quadratic Gauss sums. However, even though the
dichotomy criterion is intricate to state, it is decidable. This means that given a
matrix A, one can decide, in fact decide in polynomial time, whether A satisfies
this tractability criterion.

Next we consider directed graph homomorphism.
For directed graph homomorphism, the matrix A is in general not symmetric. In
a paper that won the best paper award at ICALP in 2006, Dyer, Goldberg, and
Paterson [11] proved a dichotomy theorem for ZA(·), where A is a 0-1 matrix
representing a directed acyclic graph H . They introduced the concept of Lovász-
goodness and proved that ZA(·) is computable in polynomial time if the graphH
is layered and Lovász-good, and is #P-hard otherwise. A directed acyclic graph
is layered if one can partition its vertices into k sets V1, . . . , Vk, for some k ≥ 1,
such that every edge goes from Vi to Vi+1 for some i : 1 ≤ i < k. The property
of Lovász-goodness turns out to be polynomial-time decidable.

In [3], a dichotomy theorem for the family of all non-negative real matrices A
was proved. We showed that for every fixed non-negative matrix A, the problem
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of computing ZA(·) is either in polynomial time or #P-hard. Moreover, the
dichotomy criterion is decidable: There is a finite-time algorithm which, given
any non-negative matrix A, decides whether ZA(·) is in P or #P-hard. But the
complexity of this decision algorithm for the dichotomy criterion is not known
to be in polynomial time (in the size of the matrix A.)

3 Counting Constraint Satisfaction Problems

A broader class of locally constrained counting problems is known as the count-
ing Constraint Satisfaction Problems (CSP). For unweighted counting CSP, de-
noted as #CSP, the problem is defined as follows: Let D be an arbitrary fixed
finite domain and let Γ be an arbitrary fixed finite set of constraint relations
{R1, . . . , Rk} over D, where each Ri has some arity ri. An instance of #CSP(Γ )
consists of two parts. The first part is a finite set of variables X = {x1, . . . , xn}
each taking values in D. The second part is a finite sequence of relations from Γ ,
each applied to some variables in X . These are the constraints to be satisfied for
this instance. Let R be the n-ary relation over D defined to be the Boolean con-
junction of these constraints. The (unweighted) #CSP(Γ ) problem asks for the
cardinality of R, namely the number of assignments satisfying all the constraints
in the input instance.

More generally, in a (complex-weighted) #CSP, Γ is replaced by a fixed finite
set of constraint functions F = {f1, . . . , fk}, where each fi maps Dri to the com-
plex numbers C. An instance of #CSP(F) consists of variables X , ranging over
D, and a sequence of constraint functions from F , each applied to some variables
in X . It defines an n-ary function F : For any (x1, . . . , xn) ∈ Dn, F (x1, . . . , xn)
is the product of the constraint function evaluations. The output of #CSP(F) is
the sum of F over all assignments, known as the partition function for #CSP(F).
Clearly unweighted #CSP is the special case where each constraint function fi
is 0-1 valued.

#CSP can encompass an enormous varieties of counting problems which can
be expressed by choosing a particular D, and a particular Γ or F . Graph Homo-
morphism corresponds to the special case of #CSP with a single binary function
expressed as the matrix A. In 2008, Bulatov [1] gave a dichotomy theorem for all
(unweighted) #CSP(Γ ). The theorem states that for every D and Γ , #CSP(Γ )
is either computable in polynomial time or #P-complete. This proof uses deep
structural theorems from Universal Algebra. Dyer and Richerby [13] gave an al-
ternative proof of Bulatov’s dichotomy theorem for unweighted #CSP. They also
showed that the decision problem, given D and Γ whether #CSP(Γ ) satisfies
the criterion for being #P-complete, is decidable in NP.

Very recently, this has been extended to the full generality of complex-valued
#CSP [4]. Again, one has to deal with the difficult situation when the constraint
functions can have cancellations in the partition function since they can take
negative or complex values. The proof ideas of graph homomorphisms [5] are
used. The only tool from Universal Algebra that is still used is the notion of
a Maltsev polymorphism. Another important ingredient of the proof is a data
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structure of Dyer and Richerby called a frame, which is a succinct representation
for a rectangular relation.

While the full complex-valued #CSP dichotomy theorem requires some back-
ground to state properly, the dichotomy over the Boolean domain D = {0, 1} has
an independent proof obtained earlier [8], and has a crisp and easily decidable
tractability criterion.

Let F (X) be a function from {0, 1}k to C. We define the underlying relation,
or support, of F by RF = {X ∈ {0, 1}k | F (X) �= 0}. We say a relation
R ⊆ {0, 1}k is affine if it is an affine subspace over Z2 (including possibly empty).
It is composed of solutions to a system of (affine) linear equations over Z2.
Equivalently, it satisfies the property that if α, β, γ ∈ R, then the bit-wise XOR
string α⊕ β ⊕ γ ∈ R. If RF is affine, we say F has affine support. We also view
relations as functions from {0, 1}k to {0, 1}.

We define two classes of functions, for which the #CSP problems over the
Boolean domain D = {0, 1} are tractable. Let X̂ denote the k + 1 dimen-
sional column vector (x1, x2, . . . , xk, 1)

T over the field Z2. Suppose A is a matrix
over Z2. The characteristic function χAX̂ denotes the affine relation on inputs

x1, x2, . . . , xk, whose value is 1 if AX̂ is the zero vector, and 0 otherwise.
We denote by A , the set of all functions of affine type, to have the form

λ·χAX̂ ·iL1(X)+L2(X)+···+Ln(X), where λ ∈ C, i =
√
−1, each Lj is a 0-1 indicator

function of the form 〈αj , X̂〉, where αj is a k + 1 dimensional vector, and the
dot product 〈·, ·〉 is computed over Z2. We may compute the dot product as
an ordinary integer dot product, and then take the value mod 2, producing an
integer value 0 or 1. The additions among Lj(X) are the usual addition in Z. It
can be computed mod 4, but not mod 2.

The second class we define is P , the set of all functions of product type.
These are functions expressible as a product of unary functions (i.e., functions
on one variable), binary equality functions and binary disequality functions, on
not necessarily disjoint pairs of variables.

Theorem 1. Suppose F is a class of functions mapping Boolean inputs to com-
plex numbers. If F ⊆ A or F ⊆ P, then #CSP(F) is computable in polynomial
time. Otherwise, #CSP(F) is #P-hard.

The expressibility as λiL1(X)+L2(X)+···+Ln(X) is equivalent to an expression of
the form λ′iQ(X) where Q is a homogeneous quadratic polynomial over Z with
the additional requirement that every cross term xsxt has an even coefficient,
where s �= t.

Let us denote a symmetric function F on k Boolean variables by [f0, f1, . . . , fk],
where fj is the value of F on inputs of weight j. We define

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.
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These functions are defined above by listing its values as a vector of length 2k, as
in a truth table. They can be explicitly listed in the symmetric function notation
as follows, up to an arbitrary constant multiple from C.

1. [1, 0, 0, . . . , 0,±1];
2. [1, 0, 0, . . . , 0,±i];
3. [1, 0, 1, 0, . . . , 0/1];
4. [0, 1, 0, 1, . . . , 0/1];
5. [1, i, 1, i, . . . , i/1];
6. [1,−i, 1,−i, . . . , (−i)/1];
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0/1/(−1)];
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1/(−1)];
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0/1/(−1)];
10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1/(−1)].

A function of arity k is called degenerate if it is the tensor product of k unary
functions on k variables.

D = {F | F = [a1, b1]⊗ [a2, b2]⊗ · · · ⊗ [ak, bk], for some ai, bi ∈ C}

A binary function is in D iff its corresponding matrix is singular.
The class F1 ∪F2 ∪F3 is the restriction of A to symmetric functions. More

precisely, F1∪F2∪F3 consists of scalar multiples of all unary or non-degenerate
symmetric functions in A .

The special case where r = 1, k = 2 and λ = (1 + i)−1 in F3 is noteworthy.
In this case we get a real valued function H(0, 0) = H(0, 1) = H(1, 0) = 1
and H(1, 1) = −1. The matrix form of this function is the Hadamard matrix

H =
[
1 1
1 −1

]
. If we take r = 0, any k and λ = 1 in F1 we get the Equality

function on k bits. In this way, from the tractability of the family F1 ∪F2 ∪F3

we recover the tractability of the graph homomorphism function ZH(G).

4 Holant Problems

Motivated by holographic algorithms, another framework to capture locally con-
strained counting problems was proposed [8]. The Holant framework is as follows.
D is a finite set called a domain, and F is a finite set of functions over D. A sig-
nature grid Ω = (G,F , π) consists of a labeled graph G = (V,E) where π labels
each vertex v ∈ V with a function fv ∈ F . We consider all edge assignments
ξ : E → D; fv takes inputs from its incident edges E(v) at v and outputs values
in C. The counting problem on the instance Ω is to compute

HolantΩ =
∑

ξ:E→D

∏
v∈V

fv(ξ |E(v)). (2)

For example, if we take D = {0, 1} and attach the Exact-One function at every
vertex v ∈ V , then HolantΩ computes exactly the number of perfect matchings
of G.
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#CSP is the special case of Holant problems where Equality functions of
all arities are assumed to be present in F . In fact each #CSP instance can be
realized as a signature grid on a bipartite graph where each vertex on the LHS
is labeled by a variable xi attached with an Equality function and each vertex
on the RHS is labeled by a constraint function of the #CSP instance. For Holant
problems there is a strong interaction with holographic algorithms [21,7], and
the issue of cancellation is of the foremost concern. Dichotomy theorems have
been achieved in this framework, mostly on domain size 2 (Boolean domain) [8,9].
The primary challenge is to deal with domain size greater than 2. Some progress
has been made in domain size 3 [10]. Below we will focus on the Boolean domain.

A Holant problem is parametrized by a set of signatures.

Definition 2. Given a set of signatures F , we define the counting problem
Holant(F) as:

Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We say a signature set F is tractable (resp. #P-hard) if the corresponding count-
ing problem Holant(F) is tractable (resp. #P-hard). Similarly for a signature f ,
we say f is tractable (resp. #P-hard) if {f} is.

To introduce the idea of holographic reductions, it is convenient to consider
bipartite graphs. For a general graph, we can always transform it into a bipartite
graph while preserving the Holant value, as follows. For each edge in the graph,
we replace it by a path of length 2. (This operation is called the 2-stretch of the
graph and yields the edge-vertex incident graph.) Each new vertex is assigned the
binary Equality signature (=2) = [1, 0, 1]. We use Holant (R | G) to denote the
Holant problem on bipartite graphs H = (U, V,E), where each signature for a
vertex in U or V is from R or G, respectively. An input instance for this bipartite
Holant problem is a bipartite signature grid and is denoted byΩ = (H ; R | G; π).
Signatures in R are considered as row vectors (or covariant tensors); signatures
in G are considered as column vectors (or contravariant tensors).

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of
arity n, g = T⊗nf}, similarly for FT . Whenever we write T⊗nf or TF , we view
the signatures as column vectors; similarly for fT⊗n or FT as row vectors.

Let T be an invertible 2-by-2 matrix. The holographic transformation by T
is the following operation: given a signature grid Ω = (H ; R | G; π), for the
same graph H , we get a new grid Ω′ = (H ; RT | T−1G; π′) by replacing each
signature in R or G with the corresponding signature in RT or T−1G.

Theorem 3 (Valiant’s Holant Theorem [21]). If there is a holographic
transformation mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

Holographic transformations can reveal the inner relationship and equivalence
of two apparently different problems.

Consider the following constraint function f : {0, 1}4 → C. Let the input
(x1, x2, x3, x4) have Hamming weight w, then f(x1, x2, x3, x4) = 3, 0, 1, 0, 3, if
w = 0, 1, 2, 3, 4, respectively. In symmetric function notation this function is
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f = [3, 0, 1, 0, 3]. What is the counting problem defined by the Holant sum in
equation (2) on 4-regular graphs G when F = {f}? By definition, this is a sum
over all 0-1 edge assignments of products of local evaluations. We only sum over
assignments which assign an even number of 1’s to the incident edges of each
vertex, since f = 0 for w = 1 and 3. Then each vertex contributes a factor 3
if the 4 incident edges are assigned all 0 or all 1, and contributes a factor 1
if exactly two incident edges are assigned 1. At first sight this problem may
look artificial. Let’s consider a holographic transformation. Consider the edge-
vertex incident graph H = (E(G), V (G), {(e, v) | v is incident to e in G}) of
G. This Holant problem can be expressed in the bipartite form Holant (=2 | f)
on H , where =2 is the binary Equality function. Thus, every e ∈ E(G) is
assigned =2, and every v ∈ V (G) is assigned f . We can write =2 by its truth
table (1, 0, 0, 1) indexed by {0, 1}2. If we apply the holographic transformation
Z = 1√

2

[
1 1
i −i

]
, then Valiant’s Holant Theorem tells us that Holant (=2 | f)

is exactly the same as Holant
(
(=2)Z

⊗2 | (Z−1)⊗4f
)
. Here (=2)Z

⊗2 is a row
vector indexed by {0, 1}2 denoting the transformed function under Z from (=2

) = (1, 0, 0, 1), and (Z−1)⊗4f is the column vector indexed by {0, 1}4 denoting

the transformed function under Z−1 from f . Let f̂ be the Exact-Two function
on {0, 1}4. We can write its truth table as a column vector indexed by {0, 1}4,
which has a value 1 at Hamming weight two and 0 elsewhere. In symmetric
signature notation, f̂ = [0, 0, 1, 0, 0]. Then we have

Z⊗4f̂ = Z⊗4{[ 10 ]⊗ [ 10 ]⊗ [ 01 ]⊗ [ 01 ] + · · ·+ [ 01 ]⊗ [ 01 ]⊗ [ 10 ]⊗ [ 10 ]}
= 1

4{[ 1i ]⊗ [ 1i ]⊗
[

1
−i

]
⊗

[
1
−i

]
+ · · ·+

[
1
−i

]
⊗

[
1
−i

]
⊗ [ 1i ]⊗ [ 1i ]}

= 1
2 [3, 0, 1, 0, 3]

= 1
2f ;

hence (Z−1)⊗4f = 2f̂ . (Here we use the elementary fact that (A⊗B)(u ⊗ v) =
Au⊗Bv for tensor products of matrices and vectors.) Meanwhile, Z transforms
=2 to the binary Disequality function �=2:

(=2)Z
⊗2 = ( 1 0 0 1 )Z⊗2

=
{
( 1 0 )

⊗2
+ ( 0 1 )

⊗2
}
Z⊗2

= 1
2

{
( 1 1 )

⊗2
+ ( i −i )

⊗2
}

= [0, 1, 0]

= (�=2).

Hence, up to a global constant factor of 2n on a graph with n vertices, the Holant
problem with [3, 0, 1, 0, 3] is exactly the same as Holant (�=2 | [0, 0, 1, 0, 0]). A mo-
ment’s reflection shows that this latter problem is counting the number of Eule-
rian orientations on 4-regular graphs, a well-studied problem. Thus holographic
transformations can reveal the fact that these two problems are really the same
problem.
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A signature f (resp. a signature set F) is A -transformable if there exists
a holographic transformation T such that f ∈ TA (resp. F ⊆ TA ) and
[1, 0, 1]T⊗2 ∈ A , where A is the affine family. Similarly, a signature f (resp. a
signature set F) is P-transformable if there exists a holographic transformation
T such that f ∈ TP (resp. F ⊆ TP) and [1, 0, 1]T⊗2 ∈ P , where P is the prod-
uct type family. These two families are tractable because after a transformation
by T , it is a tractable #CSP instance.

Definition 4. A set of signatures F is called vanishing if the value HolantΩ is
zero for every signature grid Ω using the functions in F . A signature f is called
vanishing if the singleton set {f} is vanishing.

Definition 5. An arity n symmetric signature of the form f = [f0, f1, . . . , fn]
is in R+

t for a nonnegative integer t ≥ 0 if t > n or for any 0 ≤ k ≤ n − t,
fk, . . . , fk+t satisfy the recurrence relation(

t

t

)
itfk+t +

(
t

t− 1

)
it−1fk+t−1 + · · ·+

(
t

0

)
i0fk = 0. (3)

We define R−
t similarly but with −i in place of i in (3).

It is easy to see that R+
0 = R−

0 is the set of all zero signatures. Also, for
σ ∈ {+,−}, we have Rσ

t ⊆ Rσ
t′ when t ≤ t′. By definition, if arity(f) = n then

f ∈ Rσ
n+1.

Let f = [f0, f1, . . . , fn] ∈ R+
t with 0 < t ≤ n. Then the characteristic polyno-

mial of its recurrence relation is (1 + xi)t. Thus there exists a polynomial p(x)
of degree at most t − 1 such that fk = ikp(k), for 0 ≤ k ≤ n. This statement
extends to R+

n+1 since a polynomial of degree n can interpolate any set of n+ 1
values. Furthermore, such an expression is unique. If there are two polynomials
p(x) and q(x), both of degree at most n, such that fk = ikp(k) = ikq(k) for
0 ≤ k ≤ n, then p(x) and q(x) must be the same polynomial. Now suppose
fk = ikp(k) (0 ≤ k ≤ n) for some polynomial p of degree at most t − 1, where
0 < t ≤ n. Then f satisfies the recurrence (3) of order t. Hence f ∈ R+

t .
Thus f ∈ R+

t+1 iff there exists a polynomial p(x) of degree at most t such that

fk = ikp(k) (0 ≤ k ≤ n), for all 0 ≤ t ≤ n. For R−
t+1, just replace i by −i.

Definition 6. For a nonzero symmetric signature f of arity n, it is of positive
(resp. negative) recurrence degree t ≤ n, denoted by rd+(f) = t (resp. rd−(f) =
t), if and only if f ∈ R+

t+1 − R+
t (resp. f ∈ R−

t+1 − R−
t ). If f is the all zero

signature, we define rd+(f) = rd−(f) = −1.

Lemma 7. Let f = [f0, . . . , fn] be a symmetric signature of arity n, not iden-
tically 0. Then for any nonnegative integer 0 ≤ t < n and σ ∈ {+,−}, the
following are equivalent:

(i) There exist t unary signatures v1, . . . , vt, such that

f = Symn−t
n ([1, σi]; v1, . . . , vt). (4)

where Symn−t
n ([1, σi]; v1, . . . , vt) is the symmetrized version of the tensor

product of n− t copies of [1, σi] and v1, . . . , vt.
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(ii) f ∈ Rσ
t+1.

In terms of rdσ we can prove

V σ = {f | 2 rdσ(f) < arity(f)}.

The latest Holant problem dichotomy concerns an arbitrary set of symmetric
complex-valued local constraint functions on the Boolean domain [6].

Theorem 8. Let F be any set of symmetric, complex-valued signatures in
Boolean variables. Then Holant(F) is #P-hard unless F satisfies one of the
following conditions, in which case the problem is in P:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for σ ∈ {+,−};
5. All non-degenerate signatures in F are in Rσ

2 for σ ∈ {+,−}.

Valiant introduced a novel class of algorithms called holographic algorithms us-
ing matchgates [21,22,7]. In terms of the type of problems that can be solved by
holographic algorithms using matchgates, we have gained a substantial knowl-
edge, both about what they can do and what they can’t do. There are some
very strong dichotomy theorems that pertain to matchgates based holographic
algorithms. They are mainly still restricted to symmetric function sets F on
Boolean variables. They generally indicate that the complexity of the counting
problems defined by F (in both the #CSP and in Holant frameworks) can be
classified into exactly three classes, depending on F : Those that can be solved
in polynomial time in general; those that are #P-hard in general but solvable
in polynomial time over planar structures; and those that remain #P-hard over
planar structures. Furthermore, the second class is precisely those which can be
realized by matchgates under a holographic transformation, and then the polyno-
mial time algorithm over the planar instances is the Fisher-Kasteleyn-Temperley
algorithm under a holographic transformation. To prove this in full generality is
an outstanding open problem. See [9,15] for details.
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Infinite-State Recursive Probabilistic Systems
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Until recent years, research on automated verification and model checking of
probabilistic systems was largely confined to using finite-state Markov chains
(MCs) and finite-stateMarkov Decision processes (MDPs) as the core underlying
models. In recent years, researchers have begun to develop new algorithms for,
and study the computational complexity of, analysis and verification problems
for classes of finitely-presented infinite-state probabilistic systems that arise as
probabilistic extensions to classic infinite-state automata-theoretic models.

A number of important countable infinite-state stochastic processes (including
multi-type branching processes, stochastic context-free grammars, and quasi-
birth-death processes), which are all closely related to classic automata-theoretic
and process-algebraic models, can be suitably captured by subclasses of recursive
Markov chains and recursive Markov decision processes, which are obtained by
adding a natural recursion feature to finite-state MCs and MDPs. Recursive MCs
and MDPs provide natural abstract models of probabilistic procedural programs
with recursion, and they are expressively equivalent to probabilistic and MDP
extensions of pushdown automata.

Key computational problems for analyzing recursive MCs, and for analyzing
important subclasses of resursive MDPs and recursive stochastic games, can all
be boiled down to computing the least fixed point (LFP) solution of correspond-
ing monotone systems of nonlinear polynomial (min/max) equations.

In this talk I will survey algorithms for, and discuss the complexity of, some
key analysis and model checking problems for (sub)classes of recursive MCs,
MDPs, and stochastic games. In particular, I will discuss recent joint work with
Alistair Stewart and Mihalis Yannakakis (in papers that appeared at STOC’12
and ICALP’12), in which we have obtained polynomial time algorithms for
computing, to within arbitrary desired precision, the extinction probabilities
of multi-type branching processes, the probability that an arbitrary stochastic
context-free grammar generates a given string, and the optimum (maximum
or minimum) extinction probabilities for branching MDPs. This requires com-
puting the LFP solution of corresponding monotone systems of probabilistic
min/max polynomial equations, which amount to Bellman optimality equations
for minimizing/maximizing extinction and termination probabilities for branch-
ing MDPs, context-free MDPs, and 1-exit recursive MDPs. Our algorithms com-
bine generalizations of Newton’s method with other techniques, including linear
programming, to compute the LFP within desired precision in P-time. The algo-
rithms are fairly easy to implement, but analyzing their running time is involved.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, p. 12, 2013.
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Recursion Schemes, Collapsible Pushdown

Automata and Higher-Order Model Checking

Luke Ong
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Abstract. This paper is about two models of computation that under-
pin recent developments in the algorithmic verification of higher-order
computation. Recursion schemes are in essence the simply-typed lambda
calculus with recursion, generated from first-order symbols. Collapsi-
ble pushdown automata are a generalisation of pushdown automata to
higher-order stacks — which are iterations of stack of stacks — that
contain symbols equipped with links. We study and compare the expres-
sive power of the two models and the algorithmic properties of infinite
structures such as trees and graphs generated by them. We conclude
with a brief overview of recent applications to the model checking of
higher-order functional programs. A central theme of the work is the
fruitful interplay of ideas between the neighbouring fields of semantics
and algorithmic verification.

1 Introduction

Over the past decade, there has been significant progress in the development
of finite-state and pushdown model checking for software verification. Though
highly effective when applied to first-order imperative programs such as C, these
techniques are less useful for higher-order functional programs. In contrast, the
standard approaches to the verification of higher-order programs are type-based
static analysis on the one hand, and theorem proving and dependent types on the
other. The former is sound but imprecise; the latter typically requires human
intervention.

Recently an approach to model checking higher-order programs based on re-
cursion schemes has emerged as a verification methodology that promises to
combine accurate analysis with push-button automation. A grammar for gener-
ating possibly-infinite trees, recursion schemes are in essence the simply-typed
λ-calculus with recursion, built up from first-order symbols. Ong [53] proved that
the trees generated by recursion schemes have decidable monadic second-order
(MSO) theories, subsuming earlier well-known MSO decidability results for reg-
ular (order-0) [63] and algebraic (order-1) trees [15]. Building on [53], Kobayashi
[39] introduced a novel approach to the verification of higher-order functional
programs by reduction to the recursion schemes model checking problem: does
the tree generated by a given recursion schemes satisfy a given correctness
property?

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 13–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This survey paper concerns two models of higher-order computation: recursion
schemes and collapsible pushdown automata. Recursive program schemes are an
old formalism for the semantical analysis of both imperative and functional pro-
grams [52,19,14]. Recursion schemes, which generalise recursive program schemes
to higher orders, are a compelling model of higher-order functional programs.
Pushdown automata characterise the control flow of first-order recursive pro-
grams [34]; pushdown model checkers (such as Moped [26]) are an important
component of state-of-the-art software model checkers. The two models are suit-
able for the algorithmic verification of higher-order computation. On the one
hand, they model higher-order computation accurately: recursion schemes are a
version of PCF [62]; and collapsible pushdown automata compute exactly the
innocent strategies, which give rise to the fully abstract model of PCF [32,49,29].
On the other, they enjoy rich algorithmic properties [36,12,53,29].

The goal of our work is to use semantic methods, in conjunction with al-
gorithmic ideas and techniques from verification, to formally analyse program-
ming situations in which higher-order features are important. In Section 2, we
present two families of generators of infinite structures: recursion schemes and
higher-order pushdown automata; we study their relationship and characterise
their expressivity. In Section 3, we survey recent results on the model checking
of trees generated by recursion schemes. In Section 4, we introduce collapsible
pushdown automata, study their relationship with recursion schemes, and dis-
cuss developments in the solution of parity games over the configuration graphs
of collapsible pushdown systems. In Section 5, we briefly discuss recent appli-
cations to the model checking of higher-order functional programs, and then
conclude.

2 Two Families of Generators of Infinite Structures

2.1 Higher-Order Pushdown Automata

Higher-order pushdown automata were introduced by Maslov [45,46] as a gen-
eralisation of pushdown automata and nested pushdown automata. Let Γ be
a stack alphabet that contains a distinguished bottom-of-stack symbol ⊥. An
order-0 stack is just a stack symbol. An order-(n + 1) stack is a non-null se-
quence (written [s1 · · · sl]) of order-n stacks. We often abbreviate order-n stack
to n-stack, and write n-StackΓ for the set of n-stacks over Γ . As usual, ⊥ cannot
be popped from or pushed onto a stack. (Thus we require an order-1 stack to be
a non-null sequence [a1 · · ·al] of Γ -symbols such that for all 1 ≤ i ≤ l, ai = ⊥ if
and only if i = 1.) We define ⊥k, the empty k-stack : ⊥0 := ⊥ and ⊥k+1 := [⊥k].
When displaying examples of n-stacks, we shall omit ⊥ to avoid clutter.

Operations on n-Stacks The following operations are defined on 1-stacks:

pushZ1 [Z1 · · · Zi−1 Zi] := [Z1 · · · Zi−1, Zi, Z] where Z ∈ Γ \ {⊥ }
pop1 [Z1 · · · Zi−1 Zi] := [Z1 · · · Zi−1] where Zi �= ⊥
top1 [Z1 · · · Zi−1 Zi] := Zi
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The following operations are defined on n-stacks, where n ≥ 2:

pushn [s1 · · · si−1 si] := [s1 · · · si−1 si si]
popn [s1 · · · si−1 si] := [s1 · · · si−1]

pushk [s1 · · · si−1 si] := [s1 · · · si−1pushk si] where 2 ≤ k < n

pushZ1 [s1 · · · si−1 si] := [s1 · · · si−1 push
Z
1 si] where Z ∈ Γ \ {⊥ }

popk [s1 · · · si−1 si] := [s1 · · · si−1 popk si] where 1 ≤ k < n
topn [s1 · · · si−1 si] := si
topk [s1 · · · si−1 si] := topk si where 1 ≤ k < n

For 1 ≤ k ≤ n, the operation popk is undefined on any n-stack such that its top
k-stack (or the n-stack itself, in case k = n) has only one element. For example
pop2[[⊥αβ]] and pop1[[⊥αβ][⊥]] are both undefined. For n ≥ 0, we define
the set Opn of order-n stack operations :

Op1 := { pushZ1 | Z ∈ Γ \ {⊥ } } ∪ { pop1 }
n ≥ 2, Opn := { pushk, popk | 2 ≤ k ≤ n } ∪Op1.

Higher-order pushdown automata were first used to define word languages. Here
we take a somewhat generic approach to the definition.

Definition 1. An abstract store system is a tuple 〈Γ,AStoreΓ ,Op, top,⊥〉where
Γ is a (finite) store alphabet, AStoreΓ is a set of abstract stores notionally gen-
erated from Γ , Op is a set of abstract store operations which are just partial
functions AStoreΓ ⇀ AStoreΓ , top : AStoreΓ → Γ is an abstract read function,
and ⊥ ∈ AStoreΓ is the initial abstract store.

For example, for n ≥ 0, the tuple 〈Γ, n-StackΓ ,Opn, top1,⊥n〉, which we shall
call the system of order-n stacks over Γ , is an abstract store system. Another
example is the system of order-n collapsible stacks, which will be introduced in
Section 4.1. The semi-infinite tape (of a Turing machine) and the FIFO queue
(of a Minsky machine) are also examples of abstract store system.

Definition 2. (i) Let S = 〈Γ,AStoreΓ ,Op, top,⊥〉 be an abstract store sys-
tem. A word-language S-automaton is a tuple A = 〈S, Q,Σ,Δ, qI , F 〉 where Q
is a finite set of states, Σ is an input alphabet, Δ ⊆ Q× (Σ∪{ ε })×Γ ×Op×Q
is a transition relation, qI ∈ Q is the initial state, and F ⊆ Q is a set of
final states. A configuration is a pair (q, s) where q ∈ Q and s ∈ AStoreΓ ;
the initial configuration is (qI ,⊥) where ⊥ ∈ AStoreΓ . The transition rela-
tion Δ induces a transition relation between configurations according to the
rule: if (q, a, Z, θ, q′) ∈ Δ and top(s) = Z then (q, s)

a−→ (q′, θ(s)). A word
w ∈ Σ∗ is accepted by A just in case there is a sequence of transitions of the
form (qI ,⊥)

a1−→ (q1, s1)
a2−→ · · · am−−→ (qm, sm) such that qm ∈ F , sm = ⊥ and

w = a1 · · · am.
(ii) We say that a word-language S-automaton is deterministic just if Δ is a

partial function Q× (Σ ∪ { ε })× Γ ⇀ Op ×Q; further, for every q and Z, if Δ
is defined on (q, ε, Z), then it must be undefined on (q, a, Z) for every a ∈ Σ.
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(iii) In case S = 〈Γ, n-StackΓ ,Opn, top1,⊥n〉 is the system of n-stacks over
Γ , we refer to a word-language S-automaton as an order-n pushdown word-
language automaton, and specify it as 〈Γ,Q,Σ,Δ, qI , F 〉. When it is clear from
the context, we call it an order-n pushdown automaton or simply n-PDA.

By definition, order-0 PDA are finite-state automata. Order-1 PDA are (ordi-
nary) PDA. Order-2 PDA capture the indexed languages of Aho [4]. There are
several major studies on higher-order PDA in the literature [19,25]. 1

Example 3. (i) The language L = { an bn cn | n ≥ 0 } is recognisable by an
order-2 deterministic PDA 〈{⊥, Z }, { q1, q2, q3 }, { a, b, c }, δ, q1, { q1, q3 }〉 where
δ : Q× (Σ ∪ { ε })× Γ ⇀ Op∗

2 ×Q is defined as follows:

(q1, a,⊥) �→ (push2 ; push
Z
1 , q1) (q1, b, Z) �→ (pop1, q2) (q2, c,⊥) �→ (pop2, q3)

(q1, a, Z) �→ (push2 ; push
Z
1 , q1) (q2, b, Z) �→ (pop1, q2) (q3, c, Z) �→ (pop2, q3)

For example, the following computation accepts a2 b2 c2.

q1 [[]]
a �� q1 [[][Z]]

a �� q1 [[][Z][ZZ]]

b
��

q2 [[][Z][Z]]

b
��

q3 [[]] q3 [[][Z]]c
�� q2 [[][Z][]]c

��

(ii) Using the same idea, we can use order-2 deterministic pushdown automata
to recognise { an bn cn dn | n ≥ 0 } and so on.

Several basic properties of the pushdown hierarchy of word languages were
proved by Maslov [45,46].

Theorem 4 (Maslov 1974). Let n ≥ 0.
(i) The emptiness problem for order-n PDA is decidable.
(ii) The order-n languages form an abstract family of languages2.
(iii) Higher-order PDA define an infinite hierarchy of word languages.

In the sequel, we shall use higher-order pushdown automata and a new variant,
called collapsible pushdown automata, to generate infinite structures such as
languages of infinite trees (Section 4.1) and infinite graphs (Section 4.2). These
structures have rich algorithmic properties.

1 Engelfriet’s work used a somewhat different (but equivalent) machine called iterated
pushdown automata.

2 An abstract family of languages (AFL) is a collection of languages closed under union,
concatenation, Kleene star, intersection with regular languages, homomorphism and
inverse homomorphism.
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2.2 Recursion Schemes

Recursion schemes are a method of constructing possibly infinite term-trees (or
sets of such trees). The idea goes back to Park’s pioneering work on program
schemes and fixpoint theory [57] in the late 1960s and Patterson’s PhD the-
sis [61]. Program schemes are a program calculus that clearly separates control
structure and operations on data, thus providing a framework for investigating
purely structural program transformation and the descriptive power of control
structures. There is a large literature [5,51,52,28]throughout the 1970s and much
of the 1980s on the semantics and transformation of recursive program schemes.
In the late 1970s Damm, Fehr and Indermark [18,20,19] introduced program
schemes constrained by a family of simple types, and considered them as gen-
erators of finite-word and tree languages. For a survey of the early work, see
Courcelle’s handbook article [14].

For us, types are simple types defined by the grammar A ::= o | A → B.
By convention, arrows associate to the right; thus every type can be written
uniquely as A1 → · · · → An → o, for some n ≥ 0. We define the order of a type:
ord(o) := o and ord(A → B) := max(ord(A) + 1, ord(B)). Intuitively the order
of a type measures how deeply nested it is on the left of the arrow.

Assume a countably infinite set Var of typed variables. Let Θ be a set of
typed symbols such as Var ; we write s : A to mean s has type A. The set of
applicative terms generated from Θ is the least set containing Θ closed under the
application rule: if s : A→ B and t : A then s t : B. By convention, application
associates to the left. Given a term s : A, we define ord(s) := ord(A).

Definition 5. A higher-order recursion scheme (or simply recursion scheme) is
a tuple G = 〈Σ,N ,R, S〉 where

- Σ is a ranked alphabet of terminals i.e. each f ∈ Σ has an arity ar(f) ≥ 0,
which is written f : ar(f) by abuse of notation; we assume that f has the type
o→ · · · → o→︸ ︷︷ ︸

ar(f)

o.

- N is a set of typed non-terminals ; S ∈ N is a distinguished start symbol of
type o.

- R is a finite set of rewrite rules of the form F ξ1 · · · ξn → e where F : A1 →
· · · → An → o, each ξi : Ai, and e : o is an applicative term generated from
Σ ∪ N ∪ { ξ1, · · · , ξn }.

The order of a recursion scheme is defined to be the highest order (of the type) of
its non-terminals. In the following we shall use uppercase letters F,G,H , etc. to
range over non-terminals, lowercase letters f, g, h, etc. to range over terminals,
and ξ, ϕ, ψ, x, y, z, etc. to range over variables.

We use deterministic recursion schemes (i.e. at most one rewrite rule for each
non-terminal) to define possibly-infinite trees. (In general, recursion schemes
define tree languages. Henceforth, when defining trees, we assume that recursion
schemes are deterministic.) Given a recursion scheme G, the term-tree generated
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by G, denoted [[G]], is the possibly-infinite applicative term constructed from the
terminals, which is obtained from the start symbol S by unfolding the rewrite
rules ad infinitum, replacing formal by actual parameters each time.

Example 6 (An order-1 recursion scheme G1). Take the ranked alphabet Σ =
{ f : 2, g : 1, a : 0 }. Consider the order-1 recursion scheme G1 with rewrite rules:

S → F a F x→ f x (F (g x))

where F : o→ o. Unfolding from the start symbol S, we have

S → F → f a (F (g a)) → f a (f (g a) (F (g (g a)))) → · · ·

f
��� ���

a f
��� ���

g f
��� ���

a g f

g
...

a

thus generating the infinite applicative term

f a (f (g a) (f (g (g a))(· · · ))).

Because the rewrite system is Church-Rosser, it does
not matter which reduction strategy is used provided it
is fair in the sense of not neglecting any branch. The
tree generated by G1, [[G1]], is the abstract syntax tree
of the infinite term as shown on the right.

Formally the rewrite relation →G is defined by induction over the rules:

Fξ1 · · · ξn → e is a R-rule

Ft1 · · · tn →G e[t1/ξ1, · · · , tn/ξn]
t→G t′

s t→G s t′
t→G t′

t s→G t′ s

We write →∗
G for the reflexive, transitive closure of →G.

Let l := max { ar(f) | f ∈ Σ }. A Σ-labelled tree is a partial function t from
{ 1, · · · , l }∗ to Σ such that dom(t) is prefix-closed; we assume that t is ranked
i.e. if t(w) = a and ar(a) = m then { i | w i ∈ dom(t) } = { 1, · · · ,m }. A (possibly
infinite) sequence π over { 1, · · · , l } is a path of t if every finite prefix of π is in
dom(t). Given a term t, we define a (finite) tree t⊥ by:

t⊥ :=

⎧⎨⎩
f if t is a terminal f
t1

⊥t2⊥ if t is of the form t1t2 and t1
⊥ �= ⊥

⊥ otherwise

For example (f (F a) b)⊥ = f ⊥ b. Let � be the partial order on Σ ∪ {⊥}
defined by ∀a ∈ Σ.⊥ � a. We extend � to a partial order on trees by: t � s :=
∀w ∈ dom(t).(w ∈ dom(s) ∧ t(w) � s(w)). For example, ⊥ � f ⊥ ⊥ � f ⊥ b �
f a b. For a directed set T of trees, we write

⊔
T for the least upper bound

of elements of T with respect to �. We define the tree generated by G, or the
value tree of G, by [[G]] :=

⊔
{ t⊥ | S →∗

G t }. By construction, [[G]] is a possibly

infinite, ranked (Σ ∪ {⊥})-labelled tree. For n ≥ 0, we write RecSchTreeΣn for
the class of Σ-labelled trees generated by order-n recursion schemes.

Example 7 (An order-2 recursion scheme G2).
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f
��� ���

g f
��� ���

a g f
��� ���

g g f

a g
.
.
.

g

g

a

Take Σ = { f : 2, g : 1, a : 0 }, with rewrite rules:

S → F g
B ϕψ x→ ϕ (ψ x)

F ϕ→ f (ϕa) (F (B ϕϕ))

where B : (o → o) → (o → o) → o → o and F : (o →
o) → o. The value tree, [[G2]] : { 1, 2 }∗ −→ Σ, is shown on
the right.

Recursion Schemes as Generators of Word Languages. By viewing a word as
a linear tree i.e. a tree with branching factor at most one, we can use (non-
deterministic) recursion schemes to generate word languages. Thus a finite word
“a b c” (say) is represented by the applicative term a (b (c e)), where a, b and c
are now regarded as terminal symbols of arity 1, and e is a distinguished nullary
end-of-word marker. We call such a recursion scheme a word-language recursion
scheme.

Example 8. (i) The language { an bn | n ≥ 0 } is generated by the order-1 re-
cursion scheme: S → F e F x→ a (F (b x)) F x→ x

(ii) The language { an bn cn | n ≥ 0 } is generated by the order-2 recursion
scheme:

S → F I e F ϕx→ F (H ϕ) (c x) I x→ x
F ϕx→ ϕx H ϕy → a (ϕ (b y))

where F : (o→ o) → o→ o, H : (o→ o) → o→ o and I : o→ o.

Take a rewrite rule F x → s for the non-terminal F . If the head symbol of s
is a terminal symbol a, then we say that it is an (F, a)-rule; otherwise it is an
(F, ε)-rule. We say that a word-language recursion scheme is deterministic just
if for every non-terminal F and ξ ∈ Σ ∪ { ε }, there is at most one (F, ξ)-rule;
further, for each F , if there is a (F, ε)-rule, then there can be no (F, a)-rule where
a ∈ Σ. Thus both schemes in Example 8 are non-deterministic. However there
are deterministic recursion schemes that generate the languages of the Example.

Example 9. The following deterministic recursion scheme generates the language
{ an bn cn | n ≥ 0 }.

S → e A ϕ1 ϕ2 → b (ϕ1 (ϕ2 e))
S → a (A I (F c I)) F ϕ1 ϕ2 x→ ϕ1(ϕ2 x)
A ϕ1 ϕ2 → a (A (F b ϕ1) (F c ϕ2)) I x→ x

where A : (o → o) → (o → o) → o, F : (o → o) → (o → o) → o → o and
I : o→ o.

2.3 Maslov’s Pushdown Hierarchy of Word Languages

In the original 1974 paper [45], Maslov mentioned in brief several formalisms
that are equivalent to higher-order pushdown automata. In a subsequent paper
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in 1976 [46], he set out the details of one such formalism, called higher-order in-
dexed grammars. Using a key operation of “raising a language to a power given
by another language”, higher-order indexed grammars generalise Aho’s indexed
grammars [4] (which are the order-2 indexed grammars) to all finite orders; fur-
ther, infinite-order indexed grammars define exactly the recursively enumerable
languages. In a different direction, Damm [18,19] studied a system of recursion
schemes that are constrained by derived types. Damm and Geordt [19,21] showed
that, as generators of word languages, order-n safe recursion schemes are equiv-
alent to order-n pushdown automata, which are in turn equivalent to order-n
indexed grammars. The notion of safety is introduced in Section 2.4.

Theorem 10 (Maslov 1976, Damm 1982, Damm and Goerdt 1986). For
each n ≥ 0, the following formalisms define the same class of word languages:

(i) order-n pushdown automata
(ii) order-n indexed grammars
(iii) order-n safe recursion schemes.

The low-order languages of Maslov’s pushdown hierarchy are well-known and
much studied. The order-2 languages, which are indexed languages, were a topic
of interest in the 1970s and early 1980s [30,27,56,23]. A notable recent advance
[60] was Parys’ pumping lemma for the class of ε-closure of order-n pushdown
graphs, for every n ≥ 0. (The result was subsequently extended by Kartzow and
Parys [35] to a pumping lemma for the hierarchy of ε-closure of collapsible push-
down graphs.) Another significant development was the result, due to Inaba and
Maneth at FSTTCS 2008 [33], that every language in the pushdown hierarchy
(equivalently the OI hierarchy [19]) is context sensitive. By considering word
languages in the image of iterated composites of macro tree transducers, they
show that languages of the pushdown hierarchy are in non-deterministic linear
space and NP-complete [33, Corollary 9].

An interesting and challenging problem is to find higher-order analogues of
Parikh’s Lemma and such powerful characterisation results as the Myhill-Nerode
Theorem. There is a famous logical characterisation of regular languages due to
Büchi: the order-0 languages are exactly those definable by S1S, monadic second-
order logic with one-successor. Lautemann et al. [44] extended the characterisa-
tion to context-free languages by augmenting S1S with a notion of quantification
over matchings. To our knowledge, no such logical characterisations are known
for languages of order 2 or higher.

Much of what is known about the complexity of languages recognisable by
automata with higher-order stacks (and other auxiliary memory) is due to En-
gelfriet. His seminal paper [25] contains a wealth of results. We pick out a few
here that are particularly useful for studying the algorithmics of infinite struc-
tures generated by higher-order PDA.

Theorem 11 (Engelfriet 1991). Let s(n) ≥ log(n).

(i) For k ≥ 0, the word acceptance problem of non-deterministic order-k PDA
with a two-way work-tape with s(n) space is k-EXPTIME complete.
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(ii) For k ≥ 1, the word acceptance problem of alternating order-k PDA with
a two-way work-tape with s(n) space is (k − 1)-EXPTIME complete.

(iii) For k ≥ 0, the word acceptance problem of alternating order-k PDA is
k-EXPTIME complete.

(iv) For k ≥ 1, the emptiness problem of non-deterministic order-k PDA is
(k − 1)-EXPTIME complete.

2.4 The Hierarchy of Higher-Order Pushdown Trees

Fix a ranked alphabet Σ with m := max { ar(f) | f ∈ Σ }. The branch language
[13] of a Σ-labelled ranked tree t is a set of finite and infinite words that represent
its maximal branches (or paths). Writing [m] = { 1, · · · ,m }, the branch language
of t : dom(t) → Σ consists of:

- infinite words (f1, d1)(f2, d2) · · · such that there exists d1 d2 · · · ∈ [m]ω with
t(d1 · · · di) = fi+1 and di+1 ≤ ar(fi+1) for every i ≥ 0, and

- finite words (f1, d1) · · · (fn, dn) fn+1 such that there exists d1 · · · dn ∈ [m]
∗
with

t(d1 · · · di) = fi+1 for every 0 ≤ i ≤ n, di ≤ ar(fi) for every 1 ≤ i ≤ n, and
ar(fn+1) = 0.

For example, the branch language of the tree generated by the recursion scheme
G1 of Example 6 is { (f, 2)ω } ∪ { (f, 2)n (f, 1) (g, 1)n a | n ≥ 0 }. It follows from
the definition that two ranked trees are equal if and only if they have the same
branch language.

Definition 12. (i) Let S = 〈Γ,AStoreΓ ,Op, top,⊥〉 be an abstract store
system. A tree S-automaton is a tuple A = 〈S, Q,Σ, δ, qI〉 where Q is a finite
set of states, qI ∈ Q is the initial state, Σ is a ranked alphabet, and

δ : Q× Γ −→ (Q×Op ∪ { (f, q1 · · · qar(f)) | f ∈ Σ, qi ∈ Q })

is a transition function. A configuration is either a pair (q, s) where q ∈ Q and s ∈
AStoreΓ , or a triple of the form (f, q1 · · · qar(f), s) where f ∈ Σ and q1 · · · qar(f) ∈
Q∗. Let Σ be the label-set { (f, i) | f ∈ Σ, 1 ≤ i ≤ ar(f) }∪{ a ∈ Σ | ar(a) = 0 }.
We define the labelled transition relation between configurations induced by δ:

(q, s)
ε−→ (q′, θ(s)) if δ(q, top s) = (q′, θ)

(q, s)
ε−→ (f, q, s) if δ(q, top s) = (f, q) and ar(f) ≥ 1

(q, s)
a−→ (a, ε, s) if δ(q, top s) = (a, ε) and ar(a) = 0

(f, q, s)
(f,i)−−−→ (qi, s) for every 1 ≤ i ≤ ar(f)

Let w be a finite or infinite word over the alphabet Σ. We say that w is a trace of

A just if there is a possibly-infinite sequence of transitions (qI ,⊥)
	1−→ γ1 · · ·

	m−−→
γm

	m+1−−−→ · · · such that w = �1�2 · · · . We say that A generates the Σ-labelled
tree t just in case the branch language of t coincides with the set of traces of A.
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(ii) In case S = 〈Γ, n-StackΓ ,Opn, top1,⊥n〉 is the system of n-stacks over
Γ , we refer to a tree S-automaton as an order-n pushdown tree automaton, and
simply specify it by the tuple 〈Γ,Q,Σ, δ, qI〉. For n ≥ 0, we write PushdownTreeΣn
for the class of Σ-labelled ranked trees generated by order-n tree pushdown
automata.

Example 13. The tree of Example 6 is generated by the order-1 pushdown tree
automaton 〈{Z,⊥}, { qI , q1, q2 }, Σ, δ, qI〉 where δ is defined as follows:

(qI ,⊥) �→ (f, q1 q2) (q2,⊥) �→ pushZ1 ; (f, q1 q2) (q2, Z) �→ pushZ1 ; (f, q1 q2)
(q1,⊥) �→ (a, ε) (q1, Z) �→ pop1 ; (g, q1).

In a FoSSaCS 2002 paper [36], Knapik, Niwiński and Urzyczyn introduced the
class SafeRecTreeΣn of Σ-labelled trees generated by order-n recursion schemes
that are homogeneously typed and satisfy a syntactic constraint called safety.
They proved that for every n ≥ 0, SafeRecTreeΣn = PushdownTreeΣn . Thus
SafeRecTree0Σ, the order-0 trees, are the regular trees (i.e. trees generated by
finite-state transducers), and SafeRecTree1Σ, the order-1 trees, are those gener-
ated by order-1 pushdown tree automata.

Later in the year, in an MFCS 2002 paper [12], Caucal introduced a hierarchy
of trees and a dual hierarchy of graphs, which are defined by mutual recursion,
using a pair of powerful functors.3 The functor from graphs to trees is the un-
ravelling operation, and the functor from trees to graphs is given by inverse
rational mapping. Level 0 of the graph hierarchy are the finite. Caucal showed
[12, Theorem 3.5] that SafeRecTreeΣn = CaucalTreeΣn , where CaucalTreeΣn con-
sists of Σ-labelled trees obtained from the regular Σ-labelled-trees (i.e. trees
from PushdownTreeΣ0 ) by iterating n-times the operation of inverse determinis-
tic rational mapping followed by unravelling. To summarise:

Theorem 14. For all n ≥ 0, SafeRecTreeΣn = PushdownTreeΣn = CaucalTreeΣn .

2.5 Homogeneous Types and the Safety Constraint

Safety [36] is a syntactic constraint on the rewrite rules of a recursion scheme. It
specifies whether a formal parameter of a rewrite rule may occur in a subterm of
the RHS of the rule, depending on the position of the subterm, and the respective
orders of the parameter and the subterm.

Definition 15. (i) A type A1 → · · · → An → o is homogeneous just if each
Ai is homogeneous, and ord(A1) ≥ ord(A2) ≥ · · · ≥ ord(An). (It follows
that the base type o is homogeneous.) A term (or a rewrite rule or a
recursion scheme) is homogeneously typed just if all types that occur in it
are homogeneous.

(ii) A rewrite rule F y1 · · · yk → t is safe just if for each subterm s of t that oc-
curs in the operand position (i.e. as the second argument) of an application,
for every 1 ≤ j ≤ k, if the parameter yj occurs in s then ord(s) ≤ ord(yj).

3 The functors preserve the decidability of MSO theories. It follows that all structures
in the two hierarchies have decidable MSO theories.
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(iii) A recursion scheme is safe just if it is homogeneously typed and all its
rewrite rules are safe.

For example, the order-2 rule F ϕxy → f (F (F ϕy) y (ϕx)) a, where F : (o→
o) → o → o → o and f : o→ o→ o, is unsafe, because the order-0 parameter y
occurs in the underlined order-1 subterm, which is in an operand position. Note
that it follows from the definition that order-0 and order-1 recursion schemes
are always safe. Safety may be regarded as a reformulation of Damm’s derived
types [19]; see de Miranda’s thesis [47] for a proof of equivalence.

Remark 16. The definition of safe recursion schemes by Knapik et al. [36] as-
sumes that all types are homogeneous. In an unpublished note, Blum and Broad-
bent [7] have shown that (i) homogeneity is superfluous for safety, in the sense
that for generating ranked trees, homogeneously-typed safe recursion schemes
are equi-expressive as safe recursion schemes, (ii) homogeneity is superfluous in
general i.e. homogeneously-typed unsafe recursion schemes are equi-expressive
as unsafe recursion schemes.

What is the point of safety? Though somewhat unnatural as a syntactic con-
straint, safety does have a clear algorithmic value. It is a well-known fact of
symbolic logic and formal systems such as the lambda calculus that capture-
permitting substitution is unsound. Therefore, when performing substitution, one
must avoid variable capture, for example, by renaming bound variables. Remark-
ably, in safe recursion schemes, it is a relatively straightforward consequence of
the definition that capture-permitting substitution is sound; in other words, it
is safe not to rename bound variables. It follows that no fresh names are needed
when computing the value tree of a safe recursion scheme. Knapik et al. [36]
used this fact in their proof of the decidability of the MSO theories of the value
trees of safe recursion schemes.

In view of their algorithmic advantage (namely, space efficiency), it is perti-
nent to ask if safe recursion schemes are less expressive. (We consider this impor-
tant question in Section 4.3.) The safe lambda calculus [8,6] is a formalisation
of safety as a subsystem of the simply-typed lambda calculus. Blum and Ong
[8] showed that, using Church numerals, the numeric functions representable
by simply-typed safe lambda-terms are exactly the multivariate polynomials.
This should be contrasted with the classical result of Schwichtenberg [65]: the
numeric functions representable by simply-typed lambda-terms are the multi-
variate polynomials augmented with conditionals. For a systematic study of the
safe lambda calculus, including its expressivity, complexity and semantics, see
Blum’s doctoral thesis [6].

3 Model Checking Higher-Order Recursion Schemes

What classes of infinite structures have decidable monadic second-order (MSO)
theories? One of the best known examples of such a decidable class are the reg-
ular trees as studied by Rabin in a landmark paper in 1969 [63]. Muller and
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Shupp [48] subsequently proved that the configuration graphs of pushdown sys-
tems also have decidable MSO theories. In the 1990s, as finite-state technologies
matured, researchers embraced the challenges of software and hence infinite-
state model checking. A highlight in this period was Caucal’s result [11] that
prefix-recognisable graphs (equivalently the ε-closure of configuration graphs of
pushdown systems) have decidable MSO theories. Another concerned algebraic
trees, which are trees generated by context-free tree grammars. Courcelle [15]
showed that these trees have decidable MSO theories. In 2002, work by Knapik
et al. [36] and Caucal [12] significantly extended and unified earlier developments.

Theorem 17 (Knapik et al. 2002 & Caucal 2002). For each n ≥ 0, all
trees in SafeRecTreeΣn = PushdownTreenΣ = CaucalTreeΣn have decidable MSO
theories.

We give an outline of the proof [36] which is by induction on n. Given an order-
(n + 1) safe recursion scheme G, consider an associated tree, call it �G, which
is obtained by contracting all the order-1 β-redexes in the rewrite rules of G.
The tree �G coincides with the tree generated by an order-n recursion scheme
Gα i.e. �G = [[Gα]]; further the MSO theory of the original order-(n + 1) tree
[[G]] is reducible to that of the order-n tree [[Gα]] i.e. there is a computable
transformation of MSO sentences ϕ �→ ϕ′ such that [[G]] � ϕ iff [[Gα]] � ϕ′ [36,
Theorem 3.3]. Thanks to the safety assumption, it is sound to contract β-redexes
using capture-permitting substitution i.e. without renaming bound variables. It
follows that one can construct the tree �G using only the original variables of
the recursion scheme G. The same construction on an arbitrary recursion scheme
would require an infinite set of fresh variable names.

3.1 Some Key Questions

Assuming safety, recursion schemes have decidable MSO theories, and their ex-
pressivity is characterised by higher-order pushdown automata. Yet safety is an
awkward condition, both syntactically and semantically. Is safety really essential
for these desirable properties? We consider a number of key questions.

Question 1 MSO Decidability: Do trees generated by recursion schemes have
decidable MSO theories?

Question 2 Automata-Theoretic Characterisation: Find a class of automata
that characterise the expressive power of recursion schemes. Specifically, can
higher-order pushdown automata be so extended that they define the same
class of ranked trees as recursion schemes?

Question 3 Graph Families : Is there a good definition of graphs generated by
recursion schemes? We expect the unravelling of these graphs to coincide
with the value trees of recursion schemes. What logical theories of these
graphs are decidable?

Question 4 Expressivity: Does safety really constrain expressivity? Are there
inherently unsafe word languages / trees / graphs?

The rest of the section is devoted to Question 1. We consider the remaining
questions in Section 4.
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3.2 MSO Decidability and a Semantic Proof

A first partial answer to Question 1 was obtained by Aehlig et al. [2]; they showed
that all trees up to order 2, whether safe or not, and whether homogeneously
typed or not, have decidable MSO theories. Independently, Knapik et al. ob-
tained a somewhat sharper result [37]. Subsequently, in a LICS 2006 paper [53],
Ong answered the question fully.

Theorem 18 (Ong 2006). For each n ≥ 0 the modal mu-calculus model check-
ing problem for trees generated by order-n recursion schemes is n-EXPTIME
complete.

Since MSOL and the modal mu-calculus are equi-expressive over trees, it follows
that these trees have decidable MSO theories. In the following we sketch a proof
of the theorem.

Thanks to Emerson and Jutla [24], we can reduce the mu-calculus model
checking problem to an alternating parity tree automaton (APT) acceptance
problem: Given an order-n recursion scheme G and an APT B, does B have an
accepting run-tree over the value tree [[G]]? The proof has two main ingredients.

I. The first is a transference principle from the value tree to an auxiliary
computation tree, which is regular. Using game semantics [32], we establish a
strong correspondence between paths in the value tree and traversals in the
computation tree. This allows us to prove that the APT B has an accepting
run-tree over the value tree if and only if it has an accepting traversal-tree over
the computation tree.

II. The second ingredient is the simulation of an accepting traversal-tree by
a certain set of annotated paths over the computation tree: we construct a
traversal-simulating APT, B̂, as a recognising device for this set of paths.

Thus we have

APT B has an accepting run-tree over the value tree [[G]]
⇐⇒ { I. Transference Principle: Traversal-Path Correspondence}

APT B has an accepting traversal-tree over the computation tree λ(G)
⇐⇒ { II. Simulation of Traversals by Paths }

Traversal-simulating APT B̂ has an accepting run-tree over λ(G)

which is decidable, because the computation tree λ(G) is regular.

We elaborate on the key ideas behind the proof. By construction, the value
tree is the extensional outcome of a potentially infinite process of rewriting. It
would be quite futile to analyse the value tree directly, since it has no useful
structure for our purpose. Our approach is to consider what we call the long
transform, of a recursion scheme G, written G, which is obtained by expanding
the right-hand side of each rewrite rule to its η-long form, inserting explicit
application operators, and then currying the rule. The transform allows us to
tease out the two constituent actions of the rewriting process, namely, unfolding
and β-reduction, and hence analyse them separately. See Example 19(i). Thus,
take a recursion scheme G.
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- We first build an auxiliary computation tree λ(G) which is obtained by
performing all of the unfolding but none of the β-reduction in the rewrite rules
of G. Formally λ(G) is defined to be the value tree of the long transform G,
which is an order-0 recursion scheme by construction. See Example 19(ii). As no
substitution is performed, no variable-renaming is needed.

- We then analyse the β-reductions locally (i.e. without the global operation
of substitution) using game semantics [32].

Example 19. Fix a ranked alphabet Σ = { g : 2, h : 1, a : 0 }.
(i) We present the long transform G3 of an order-2 (unsafe) recursion scheme

G3:

G3 :

⎧⎨⎩
S → H a

H z → F (g z)
F ϕ→ ϕ (ϕ (F h))

�→ G3 :

⎧⎨⎩
S → λ.@H (λ.a)
H → λz.@F (λy.g (λ.z) (λ.y))
F → λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x))))

The value tree [[G3]] is the tree on left in Figure 1. The only infinite path in the
tree is 221ω.

(ii) The computation tree λ(G3) of G3 is the tree on the right in Figure 1.
In the figure, for ease of reference, we give nodes of λ(G3) numeric names (in
square-brackets).

(iii) With reference to Figure 1, the maximal traversals (pointers omitted)
over the computation tree λ(G3) are:

0 1 2 3 4 5 13 14 15 16 19 20
0 1 2 3 4 5 13 14 17 18 6 7 13 14 15 16 19 20
0 1 2 3 4 5 13 14 17 18 6 7 13 14 17 18 8 9 10 21 11 12 · · ·

They correspond respectively to the paths g a, g g a and g g hω in [[G]].

Note that we do not (need to) assume that the recursion scheme G is safe.
We can now state a strong correspondence between paths in the value tree and
traversals [53,54] over the computation tree. See Example 19(iii).

Theorem 20 (Path-Traversal Correspondence). Fix a ranked alphabet Σ.
Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in the value tree
[[G]] and maximal traversals tp over the computation tree λ(G).

(ii) Further, for each p, we have p � Σ = tp � Σ.

The theorem is proved using game semantics [54,32]. In the language of game
semantics, paths in the value tree correspond exactly to P-views in the strategy-
denotation of the recursion scheme; a traversal is then (a representation of)
the uncovering4 of such a play. The path-traversal correspondence allows us to

4 In game semantics [32], plays in the composite strategy σ ;τ : A→ C are constructed
from those in σ : A→ B and τ : B → C by “parallel composition plus hiding” [31].
By construction, every play s in the composite strategy σ ; τ is obtained from an
interaction sequence ŝ — which is a certain sequence of moves-with-pointer from
arenas A,B and C — by hiding all moves of B. We call ŝ the uncovering of s.
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Fig. 1. The value tree [[G3]] and computation tree λ(G3) of Example 19

prove that a given alternating parity tree automaton (APT) has an accepting
run-tree over the value tree if and only if it has an accepting traversal-tree over
the computation tree.

Our problem is then reduced to finding an effective method of recognising
certain sets of infinite traversals over a given computation tree that satisfy the
parity condition. This requires a new idea as a traversal is most unlike a path;
it can jump all over the tree and may even visit certain nodes infinitely often.
Our solution again exploits the game-semantic connexion. It is a property of
traversals that their P-views are paths (in the computation tree). This allows us
to simulate a traversal over a computation tree by the P-views of its prefixes,
which are annotated paths of a certain kind in the same tree. The simulation
is made precise in the notion of traversal-simulating APT. We establish the
correctness of the simulation by proving that a given APT B has an accepting
traversal-tree over the computation tree if and only if the associated traversal-
simulating APT B̂ has an accepting run-tree over the computation tree. The
control-states of a traversal-simulating APT are variables profiles, which are
assertions concerning variables about the APT-state being simulated and the
largest priority encountered during a relevant part of the computation.

Decidability of the modal mu-calculus model checking problem for trees gen-
erated by recursion schemes follows at once since computation trees are regular,
and the APT acceptance problem for regular trees is decidable [63,24].
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Finally, to prove n-EXPTIME decidability of the model checking problem,
we first establish a certain succinctness property for traversal-simulating APT:
If a traversal-simulating APT has an accepting run-tree, then it has one with a
reduced branching factor. The desired time bound is then obtained by analysing
the complexity of solving an associated (finite) acceptance parity game, which is
an appropriate product of the traversal-simulating APT and a finite determin-
istic graph that unravels to the computation tree in question.

3.3 Other Proofs of the Decidability Theorem

Several other proofs of Theorem 18 have been published.
In a LICS 2008 paper [29], Hague et al. gave a proof by reducing the modal mu-

calculus model checking of recursion schemes to the solution of parity games over
the configuration graphs of collapsible pushdown automata (see Theorem 32 in
the sequel). The proof of correctness of the scheme-to-automaton transformation
(Theorem 24) uses game semantics.

In a LICS 2009 paper [40], Kobayashi and Ong gave a proof that uses type
theory. They exhibit a transformation that, given an APT A, constructs a type
system KA such that a recursion scheme is typable in KA if and only if the value
tree of the recursion scheme is accepted by the APT A. The model checking
problem is thus reduced to a type inference problem. An advantage of this model
checking algorithm is that it has an improved parameterised complexity: the time
complexity is polynomial in the size of the recursion scheme, assuming that the
types and the APT are fixed.

Salvati and Walukiewicz [64] recently gave yet another proof of Theorem 18.
They consider trees generated by the λY -calculus, and use Krivine machine as
a model of computation. Their proof is by reducing the problem of solving a
parity game over the configurations of a Krivine machine to that of solving a
finite parity game.

4 Collapsible Pushdown Automata

In this section, we consider Questions 2, 3 and 4 of Section 3.1. We introduce
a variant of higher-order pushdown automata, called collapsible pushdown au-
tomata, and show that they generate the same class of trees as recursion schemes.
We then define the configuration graphs of collapsible pushdown systems, and
state a result on the solution of parity games over these graphs. Finally we
discuss recent progress on the Safety Conjecture.

4.1 Collapsible Pushdown Automata

Collapsible pushdown automata (CPDA) are a variant of higher-order pushdown
automata in which every symbol in the stack has a link to a prefix of the stack.
In addition to the higher-order stack operations pushi and popi, CPDA have
an important operation called collapse, whose effect is to “collapse” the stack s
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to the prefix indicated by the link from the top1(s). The main result is that for
every n ≥ 0, order-n recursion schemes and order-n CPDA are equi-expressive
as generators of ranked trees.

Let Γ be a stack alphabet and n ≥ 1. An order-n collapsible stack s is an order-
n stack such that every non-⊥ symbol that occurs in it has a link to a collapsible
stack (of order k) situated below it in s; we call the link a (k + 1)-link. Note
that k is necessarily less than n. We shall abbreviate order-n collapsible stack
to n-stack, whenever it is clear form the context. The empty k-stack is defined
as before. When displaying examples of n-stacks, we shall omit ⊥ and 1-links
(i.e. links to stack symbols) to avoid clutter; thus we write [[][a b]] instead of
[[⊥ a b]]

For n ≥ 2 the set Op†
n of order-n operations on collapsible stacks consists of

the following four types of operations:

(i) popk for each 1 ≤ k ≤ n

(ii) collapse

(iii) pusha,k1 for each 1 ≤ k ≤ n and each a ∈ (Γ \ {⊥ })
(iv) pushj for each 2 ≤ j ≤ n.

The operation popi is defined as before in Section 2.1. Let s be an n-stack and
2 ≤ i ≤ n. To construct pusha,i1 s, we first attach a link from a fresh copy of a to
the (i − 1)-stack that is immediately below the top (i − 1)-stack of s, and then
push the symbol-with-link onto the top 1-stack of s. As for collapse, suppose the
top1-symbol of s has a link to a (particular occurrence of) k-stack u in s. Then
collapse s causes s to “collapse” to the prefix s0 of s such that topk+1 s0 = u.
Finally, for j ≥ 2, the order-j push operation, pushj , simply takes a stack s and
duplicates the top (j − 1)-stack of s, preserving its link structure.

Example 21. Take the 3-stack s = [[[ a]] [[][ a]]]. We have

pushb,21 s = [[[ a]] [[][ a b]]] collapse (pushb,21 s) = [[[a]] [[]]]

pushc,31 (pushb,21 s)︸ ︷︷ ︸
θ

= [[[ a]] [[][ a b c]]]

Then push2 θ and push3θ are respectively

[[[ a]] [[][ a b c][ a b c]]] and [[[ a]] [[][ a b c]] [[][ a b c]]].

We have collapse (push2 θ) = collapse (push3 θ) = collapse θ = [[[ a]]].

As in the case of order-n stacks, the tuple 〈Γ, n-Stack†
Γ ,Op†

n, top1,⊥n〉 is called
the system of order-n collapsible stacks, which is an abstract store system. We
shall use automata equipped with order-n collapsible stacks to define word lan-
guages and trees, and (in Section 4.2) infinite graphs.
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Definition 22. Let S = 〈Γ, n-Stack†
Γ ,Op†

n, top1,⊥n〉 be the system of order-n
collapsible stacks over Γ . An order-n collapsible pushdown word-language au-
tomaton is just a word-language S-automaton 〈S, Q,Σ,Δ, qI , F 〉, and we specify
it as 〈Γ,Q,Σ,Δ, qI , F 〉. Similarly an order-n collapsible pushdown tree automa-
ton is just a tree S-automaton 〈S, Q,Σ, δ, qI〉, and we specify it as 〈Γ,Q,Σ, δ, qI〉.

Example 23 (Urzyczyn 2003; Aehlig, de Miranda and Ong 2005).
(i) We define the language U over the alphabet { (, ), ∗ } as follows. A U -word

is composed of 3 segments:

( · · · ( · · · (︸ ︷︷ ︸
A

( · · · ) · · · ( · · · )︸ ︷︷ ︸
B

∗ · · · ∗︸ ︷︷ ︸
C

- Segment A is a prefix of a well-bracketed word that ends in (, and the opening
( is not matched in the (whole) word.

- Segment B is a well-bracketed word.
- Segment C has length equal to the number of ( in A.
It is a consequence of the definition that every U -word has a unique decomposi-
tion. For example, ( ( ) ( ( ) ( ( ) ) ∗ ∗ ∗ is in U ; its B-segment is underlined. For

each n ≥ 0, the word ( (n )n ( ∗n ∗ ∗ is in U , the respective B-segments are all
empty.

(ii) The language U is recognisable by a deterministic order-2 collapsible
pushdown automaton 〈{ qI , q1, q2 }, { (, ), ∗ }, {⊥, Z }, δ, qI , { q2 }〉, where δ : Q×
Σ × Γ → Op∗

n ×Q is as follows:

(qI , (,⊥) �→ (push2 ; push
Z
1 , q1) (q1, ∗, Z) �→ (collapse, q2)

(q1, (, Z) �→ (push2 ; push
Z
1 , q1) (q2, ∗, Z) �→ (pop2, q2)

(q1, ), Z) �→ (pop1, q1)

The idea is that the pair (q1, Z) ∈ Q× Γ indicates that the number of “(” read,
minus the number of “)” read, is at least one. Note that (q1,⊥) indicates a “stuck
configuration” which is reachable upon reading e.g. ( ). To illustrate, we present
the computation of the U -word ( ( ) ( ( ) ∗ ∗ ∗ in Figure 2. (In the figure, we omit
the unimportant links.)
It follows from [3] that U is recognisable by a non-deterministic order-2 push-
down automaton. This illustrates the power of collapse.

The main result of this section is the following equi-expressivity result.

Theorem 24 (Hague, Murawski, Ong and Serre 2008). For every n ≥ 0,
order-n recursion schemes and order-n collapsible pushdown tree automata define
the same class of Σ-labelled trees.

The proof is in the long version of [29]. Here we explain the main ideas.

From CPDA to Recursion Schemes. We construct an algorithm that transforms
a given order-n CPDA to an equivalent order-n recursion scheme. To illustrate,
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qI , [[]]
(→ q1, [[][Z]]
(→ q1, [[][Z][Z Z]]
)→ q1, [[][Z][Z]]
(→ q1, [[][Z][Z][Z Z]]
(→ q1, [[][Z][Z][Z Z][Z Z Z]]
)→ q1, [[][Z][Z][Z Z][Z Z]]
∗→ q2, [[][Z][Z]]
∗→ q2, [[][Z]]
∗→ q2, [[]]

Fig. 2. The computation of the U -word ( ( ) ( ( ) ∗ ∗ ∗

we present the algorithm in the order-2 case, which is due to Knapik et al. [37].
For a generalisation to all finite orders, see [29]. Fix an order-2 CPDA A with
state-set { 0, · · · ,m− 1 }. Let 0 be the base type; we define n + 1 := nm → n
where Am → B is a shorthand for the type A → · · · → A → B (m occurrences
of A). For each stack symbol Z and each state 0 ≤ p ≤ m − 1, we introduce a
non-terminal

FZ
p : 0m → 1m → 0m → 0

that represents the (top-of-stack) symbol Z with a (order-2) link in state p. In
addition, for i ∈ { 0, 1 }, we introduce a non-terminal Ωi : i, and fix a start
symbol S : 0. Let P (i) be a term with an occurrence of (the parameter) i; we
write 〈P (i) | i〉 as a shorthand for the sequence P (0) · · ·P (m− 1). For exam-
ple 〈FZ

i | i〉 denotes the sequence FZ
0 · · · FZ

m−1.
We briefly explain the idea of the translation. The intuition is that a term of

the form FZ
p LM1M0 : 0 represents a configuration (p, s) where p is a state and

s is a 2-stack; equivalently the sequence 〈FZ
i LM1M0 | i〉 represents the 2-stack

s (the state is “abstracted” by the sequence). Further

- (p, top1 s) — where the top1-symbol of s is Z which has a link to the 1-stack
represented by L : 0m — is represented by FZ

p L : 2

- (p, top2 s) is represented by FZ
p LM1 : 1

- (p, pop2 s) is represented by M0,p : 0 and (p, pop1 s) by M1,pM0 : 0

- (p, collapse s) is represented by Lp : 0.

Definition 25. The order-2 recursion scheme determined by A, written GA,
has the following rewrite rules. We use vector notation; for example ψ1 is a
shorthand for the sequence ψ1,0 · · ·ψ1,m−1.

- Start rule: S → F⊥
0 Ω0Ω1Ω0
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- For each (p, Z, q, θ) ∈ δ: FZ
p ϕψ1 ψ0 → Ξ(q,θ) where Ξ(q,θ) is defined by

(q, θ) Ξ(q,θ)

(q, pushY1 ) FY
q ψ0 〈FZ

i ϕψ1 | i〉ψ0

(q, push1) FZ
q ϕ 〈FZ

i ϕψ1 | i〉ψ0

(q, push2) FZ
q ϕψ1 〈FZ

i ϕψ1 ψ0 | i〉

(q, θ) Ξ(q,θ)

(q, pop1) ψ1,q ψ0

(q, pop2) ψ0,q

(q, collapse) ϕq

- For each (p, Z, f, q) ∈ δ: FZ
p ϕψ1 ψ0 → f (FZ

q1 ϕψ1 ψ0) · · · (FZ
qar(f)

ϕψ1 ψ0).

Example 26. Consider the language U and the order-2 CPDA defined in Exam-
ple 23. Applying the transformation, we obtain an order-2, deterministic, unsafe
recursion scheme over the ranked alphabet { ( : 1, ) : 1, ∗ : 1, e : 0 } that generates
U .

S → F⊥
0 Ω0 Ω1 Ω0

F⊥
0 z ϕ x → (

(
FZ

1 〈F⊥
i z ϕ x | i〉 〈F⊥

i z ϕ | i〉 〈F⊥
i z ϕ x | i〉

)
FZ

1 z ϕ x → (
(
FZ

1 〈FZ
i z ϕ x | i〉 〈FZ

i z ϕ | i〉 〈FZ
i z ϕ x | i〉

)
FZ

1 z ϕ x → ) (ϕ1 x)
FZ

1 z ϕ x → ∗ z2
FZ

2 z ϕ x → ∗ x2
F⊥

2 z ϕ x → e

From Recursion Schemes to CPDA. Our proof uses the theory of traversals
[54,6], which is based on game semantics [32].

Let G be an order-n recursion scheme. From the computation tree G, we
define a labelled directed graph Gr(G), which will serve as a blueprint for the
definition of CPDA(G), the CPDA determined by G. To construct Gr(G), we
first take the forest consisting of the abstract syntactic tree of the right-hand
sides of G. We orient the edges towards the leaves. For each node with label f
(say), the outgoing edges are labelled with directions 1, 2, · · · , ar(f) respectively,
except that edges from nodes labelled by @ are labelled from 0. Let us write
v = Ei(u) just if (u, v) is an edge labelled by i. Next, for every non-terminal F ,
we identify the root rtF of the abstract syntactic tree of the right-hand side of
the rule for F with all nodes labelled F (which were leaves in the forest). We
designate the node rtS , where S is the start symbol of G, as the root of Gr(G).
The graph Gr(G3) for the order-2 recursion scheme G3 of Example 19 is shown
in Figure 3.

We are now ready to describe CPDA(G). The set of nodes of Gr(G) will
become the stack alphabet of CPDA(G). The initial configuration will be the
n-stack pushv0,11 ⊥n, where v0 is the root of Gr(G). For ease of explanation, we
define the transition map δ as a function that takes a node u ∈ Gr(G) to a
sequence of stack operations, by a case analysis of the label lu of u. When lu is
not a variable, the action is just pushv,11 , where v is an appropriate successor of
the node u. Precisely, we define v as follows.

v :=

⎧⎨⎩
E0(u) if lu = @
E1(u) if lu = λϕ
Ei(u) if lu ∈ Σ
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Fig. 3. The graph Gr(G3) determined by the order-2 recursion scheme G3

where i is the direction that the automaton is to explore in the value tree.
Finally, suppose lu is a variable ϕi and its binder is a lambda node λϕ which

is in turn a j-child.

- If ϕ has order l ≥ 1 we define

δ(u) :=

{
pushn−l+1 ; popp+1

1 ; push
Ei(top1),n−l+1
1 if j = 0

pushn−l+1 ; popp1 ; collapse ; push
Ei(top1),n−l+1
1 otherwise

where push
Ei(top1),k
1 is defined to be the operation s �→ push

Ei(top1 s),k
1 s.

- If ϕ has order 0 we define

δ(u) :=

{
popp+1

1 ; push
Ei(top1),1
1 if j = 0

popp1 ; collapse ; push
Ei(top1),1
1 otherwise.

It can be shown that the runs of CPDA(G) are in 1-1 correspondence with traver-
sals, in the sense of Ong [53] (see the systematic treatment [54]). Since traversals
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are uncoverings [32] of paths in the value tree [[G]], for every order-n recursion
scheme G, the order-n CPDA-transform, CPDA(G), generates the value tree [[G]].

Remark 27. (i) Since the construction of the CPDA-transform in the scheme-
to-automata translation is based on game semantics [32], Theorem 24 also gives
an automata-theoretic characterisation of innocent strategies. There are several
machine-theoretic representations of innocent game semantics in the literature:
PAM, the Pointer Abstract Machine of Danos et al. [22], may be viewed as
an implementation of linear head reduction of lambda-terms; Curien and Her-
belin [16,17] used abstract Böhm trees as the basis of a family of abstract ma-
chines. Compared to these machines, the characterisation by CPDA seems clearly
syntax-independent: contrast, for example, the type-theoretic notion of order
with the order of collapsible stacks. (ii) Blum and Broadbent [7] recently proved
that if the recursion scheme G is safe, then the CPDA-transform, CPDA(G),
does not use collapse in its computation.

In a LICS 2012 paper [10], Carayol and Serre gave a syntactic proof of Theo-
rem 24. Their scheme-to-CPDA translation does not use game semantics. They
show that if the recursion scheme is safe, then the CPDA-translate does not use
collapse in its computation.

4.2 Parity Games over CPDA Configuration Graphs

Definition 28. (i) Let S = 〈Γ,AStoreΓ ,Op, top,⊥〉 be an abstract store
system. An S-transition system is a tuple T = 〈S, Q,Δ, qI〉 where Q is a finite
set of control-states, qI ∈ Q is the initial state, and Δ ⊆ Q × Γ × Q × Op
is the transition relation. A configuration is a pair (q, s) where q ∈ Q and
s ∈ AStoreΓ ; and (qI ,⊥) is the initial configuration. The transition relation
Δ induces a (labelled) transition relation between configurations according to

the rule: (q, s)
(q′,θ)−−−→ (q′, θ(s)) provided (q, top(s), q′, θ) ∈ Δ. The configuration

graph of T is a directed graph whose vertices are the configurations, and edge-set
is the induced transition relation.

(ii) In case S = 〈Γ, n-StackΓ ,Opn, top1,⊥n〉 is the system of order-n stacks
over Γ , we refer to a S-transition system T = 〈S, Q,Δ, qI〉 as an order-n push-
down system (order-n PDS).

(iii) Similarly, in case S = 〈Γ, n-Stack†
Γ ,Op†

n, top1,⊥n〉 is the system of order-
n collapsible stacks over Γ , we call a S-transition system T = 〈S, Q,Δ, qI〉 as
an order-n collapsible pushdown system (order-n CPDS).

Example 29 (An undecidable CPDS graph). Take the order-2 CPDS with state-
set { 0, 1, 2 }, stack alphabet { a, b,⊥} and transition relation given by

{ (0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0) }

where − means any symbol, † means any non-⊥ symbol, and t, a, b, 0 and 1 are
shorthand for the stack operations push2, push

a,2
1 , pushb,21 , collapse and pop1

respectively. We present its configuration graph (with edges labelled by stack
operations only) in Figure 4.
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Fig. 4. A order-2 CPDS graph with an undecidable MSO theory

Let G = 〈V,E〉 be the configuration graph of an S-transition system A, and
QE ∪ QA be a partition of Q, and let Ω : Q → { 0, · · ·M − 1 } be a priority
function. Together they define a partition VE∪VA of V whereby a vertex belongs
to VE if and only if its control state belongs to QE, and a priority function
Ω : V → { 0, · · · ,M − 1 } where a vertex is assigned the priority of its control
state. We call the structure G = 〈G, VE, VA〉 an order-n CPDS game graph and
the pair G = 〈G, Ω〉 an order-n CPDS parity game.

In this section we consider the problem:
(P1) Given an order-n CPDS parity game decide if Élöıse has a winning strategy

from the initial configuration.
The Problem (P1) is closely related to the following problems:

(P2) Given an order-n CPDS graph G, and a modal mu-calculus formula ϕ,
does ϕ hold at the initial configuration of G?

(P3) Given an APT and an order-n CPDS graph G, does the APT accept the
unravelling of G?

(P4) Given an MSO formula ϕ and an order-n CPDS graph G, does ϕ hold at
the root of the unravelling of G?

Using the techniques of Emerson and Jutla [24], it is straightforward to show
that Problem (P1) is polynomially equivalent to Problems (P2) and (P3); and
Problem (P1) is equivalent to Problem (P4) – the reduction from (P1) to (P4)
is polynomial, but non-elementary in the other direction.

A useful fact is that the unravelling of an order-n CPDS graph is actually
generated by an order-n collapsible pushdown tree automaton (putting labels on
the edges makes the order-n CPDS graph deterministic and hence its unravelling
as desired). Thus an important consequence of Theorem 24 is the following.

Proposition 30. Let t be the value tree of an order-n recursion scheme. Con-
sider the following problems:
(P′

2) Given t and a modal mu-calculus formula ϕ, does ϕ hold at the root of t?
(P′

3) Given t and an APT, does the automaton accept t?
(P′

4) Given t and an MSO formula ϕ, does ϕ hold at the root of t?
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Then problem (Pi) is polynomially equivalent to problem (P′
i) for i = 2, 3 and 4.

Since the modal mu-calculus model checking problem for value trees of recursion
schemes is decidable [53], we obtain the following as an immediate consequence.

Theorem 31. (P1), (P2), (P3) and (P4) are n-EXPTIME complete.

Another consequence of Theorem 24 is that it gives new techniques for model
checking or solving games played on infinite structures generated by automata.
In particular it leads to new proofs/optimal algorithms for the special cases that
have been considered previously [67,66,37]. Conversely, as Theorem 24 works
in both directions, we note that a solution of Problem (P1) would give a new
proof of the decidability of Problems (P′

2), (P
′
3) and (P′

4), and would give a
new approach to problems on recursion schemes. Actually, the techniques of
Walukiewicz [67] and Knapik et al. [37] can be generalised to solve order-n CPDS
parity games without reference to Ong’s work [53]. Further they give effective
winning strategies for the winning player (which was not the case in [37] where
the special case n = 2 was considered).

Theorem 32 (Hague, Murawski, Ong and Serre 2008). The problem of
solving an order-n CPDS parity game is n-EXPTIME complete. Further one can
build an order-n collapsible pushdown transducer (i.e. automaton with output)
that realises a winning strategy for the winning player.

Remark 33. This result can be generalised to the case where the game has an
arbitrary ω-regular winning condition, and is played on the ε-closure of the
configuration graph of an order-n CPDS graph. Consequently parity games on
Caucal graphs [12,66] are a special case of this problem.

The Caucal graphs have decidable MSO theories [12]. Do the configuration
graphs of CPDS also have decidable MSO theories?

Theorem 34 (Hague, Murawski, Ong and Serre 2008). There is an order-
2 CPDS whose configuration graph has an undecidable MSO theory. Hence the
class of ε-closure of configuration graphs of CPDS strictly contains the Caucal
graphs.

For a proof, recall that MSO interpretation preserves MSO decidability. Now
consider the following MSO interpretation I of the configuration graph of the
order-2 CPDS in Example 29:

IA(x, y) = x
C−→ y ∧ x

R−→ y IB(x, y) = x
1−→ y

• A ��
B��

• A ��
B��

• A ��
B��

· · ·

• A �� • A ��
B��

• A ��
B��

· · ·

• A �� • A ��
B��

· · ·

• A �� · · ·

with C = 1
∗
b a t b 1∗ and R = 0 t a 0 ∨ 1 0 t a 0 1.

Note that for the A-edges, the constraint C requires that
the target vertex should be in the next column to the right,
while R specifies the correct row. Observe that I’s image
is the “infinite half-grid” which has an undecidable MSO
theory.
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Winning Regions and Logical Reflection Broadbent et al. [9] gave the first char-
acterisation of the winning regions of order-n CPDS parity games: they are
regular sets defined by a new class of automata. As a corollary, it is shown that
recursion schemes are reflective with respect to MSOL and modal mu-calculus
i.e. there is an algorithm that transforms a given property ϕ and a recursion
scheme G to a new recursion scheme Gϕ that reflects the property in that [[Gϕ]]
has the same underlying tree as [[G]] except that the nodes that satisfy ϕ have
a special label. Thus we may view Gϕ as a transform of G that can internally
observe its behaviour against a specification ϕ.

4.3 Expressivity and the Safety Conjecture

The Safety Conjecture [36] is about the expressivity of safe recursion schemes.
The conjecture states that there is an inherently unsafe tree i.e. there is a tree
which is generated by an unsafe recursion scheme, but not by any safe recursion
scheme. In view of Theorems 17 and 24, the Safety Conjecture can be stated
equivalently in terms of CPDA. As recursion schemes (and CPDA) can be used
to define word languages, trees and graphs, it is meaningful to consider the
expressivity of safe recursion schemes in each of the three cases.

Aehlig et al. [3] showed that there are no inherently unsafe order-2 word lan-
guages: for every unsafe order-2 recursion scheme (respectively order-2 CPDA),
there is a safe non-deterministic order-2 recursion scheme (respectively order-2
PDA) that defines the same language. However, Parys [58] has recently shown
that the conjecture holds for word languages when restricted to deterministic
devices.

Theorem 35 (Parys 2011). There is a language (similar to U of Example 23)
which is recognised by a deterministic order-2 CPDA but not by any deterministic
order-n PDA, for any n ≥ 0.

The Safety Conjecture (for trees) was recently proved by Parys [59].

Theorem 36 (Parys 2012). There is a tree which is generated by an order-2
unsafe recursion scheme but not by any safe order-n recursion scheme, for any
n ≥ 0.

It follows from Theorem 34 that the Safety Conjecture is false in the case of
graphs.

5 Application to Model Checking Higher-Order
Functional Programs

In a POPL 2009 paper [39], Kobayashi proposed a type-based model checking al-
gorithm for recursion schemes. He considered properties expressible by trivial au-
tomata [1], which are Büchi tree automata in which every state is final (thus the
acceptance condition is trivial). The key result is that given a trivial automaton
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A, there is an intersection type system TA such that for every recursion scheme
G, the automaton A accepts the value tree [[G]] if and only if G is typable in TA.
Thus model checking is reduced to type inference. (This type-based approach
was subsequently extended by Kobayashi and Ong [40] to a model checking al-
gorithm for all alternating parity tree automata.) Even though trivial automata
correspond to a tiny fragment of the modal mu-calculus, the model checking
problem is hugely expensive: the complexity remains n-EXPTIME hard [42].
Kobayashi showed that many verification problems of higher-order functional
programs, such as reachability, flow analysis and resource usage verification, can
be expressed as trivial automata model checking problems of recursion schemes.
Thus, the model checking algorithm can serve as a basis for the verification of
higher-order functional programs. In a subsequent paper [38], Kobayashi pre-
sented a “practical” type inference algorithm. He showed that a tool implemen-
tation of the algorithm, called TRecS, performs remarkably well on a range of
small but tricky examples, despite the hyper-exponential worst-case complexity.

There has been much progress in higher-order model checking in recent years.
Kobayashi [41] and Neatherway, Ramsay and Ong [50] have introduced algo-
rithms for model checking recursion schemes against trivial automata which
are inspired by or based on game semantics. There have also been advances
in the automatic safety verification of realistic classes of functional programs.
Ong and Ramsay [55] have proposed an extension of recursion schemes, called
pattern matching recursion schemes, which model algebraic data types and func-
tion definition by pattern matching, features that are ubiquitous in functional
programs. Using counterexample-guided abstraction refinement (CEGAR), they
have proposed a sound and semi-complete method for verifying pattern-matching
recursion schemes. In a different direction, Kobayashi et al. [43] have formalised
predicate abstraction and CEGAR for higher-order model checking, which en-
able the automatic verification of programs that use infinite data domains such
as integers.

6 Conclusions

Higher-order model checking is challenging and worthwhile. Recursion schemes
and collapsible pushdown automata are robust and highly expressive higher-
order formalisms for constructing infinite structures. They have rich algorithmic
properties. Recent progress in the theory have used semantic methods (such as
game semantics and types) as well as automata-theoretic techniques from algo-
rithmic verification. Despite prohibitive worst-case complexity, there are “prac-
tical” model checking algorithms which perform remarkably well on small but
tricky examples.
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Abstract. The theory of dynamical systems is concerned with describ-
ing and studying the evolution of systems over time, where a ‘system’
is represented as a vector of variables, and there is a fixed rule govern-
ing how the system evolves. Dynamical systems originate in the devel-
opment of Newtonian mechanics, and have widespread applications in
many areas of science and engineering. Systems that evolve in a piece-
wise continuous manner (typically via differential equations) are known
as continuous dynamical systems, whereas systems exhibiting discrete
transitions (commonly via difference equations) are known as discrete
dynamical systems.

The theory of dynamical systems comprises a rich body of techniques
and results, mainly geared towards the analysis of long-term qualita-
tive behaviour of systems: existence and uniqueness of attractors, fixed
points, or periodic points, sensitivity to initial conditions, etc. From a
computer-science perspective, it is somewhat surprising to note that the
literature is largely devoid of work on decision problems concerning dy-
namical systems, e.g., whether a fixed point or a particular region will
actually be reached in finite time, whether a variable will assume negative
values infinitely often, etc. Such questions, in turn, have numerous ap-
plications in a wide array of scientific areas, such as theoretical biology
(analysis of L-systems, population dynamics), microeconomics (stabil-
ity of supply-and-demand equilibria in cyclical markets), software ver-
ification (termination of linear programs), probabilistic model checking
(reachability in Markov chains, stochastic logics), quantum computing
(threshold problems for quantum automata), as well as combinatorics,
term rewriting, formal languages, cellular automata, the study of gener-
ating functions, etc.

In this tutorial, I will first briefly introduce the main elements of the
theory of (both continuous and discrete) dynamical systems, using sev-
eral illustrative examples. I will then present various interesting decision
problems, mainly in the context of discrete linear dynamical systems, for
which there already are many open questions. Finally, I will survey some
of the main known results and techniques, which draw on a wide array
of mathematical tools, including linear algebra, algebraic and analytic
number theory, real algebraic geometry, and model theory.
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Abstract. XML is the standard format for data exchange over the in-
ternet and the Web contains millions of XML documents. Even though
the structure of XML documents can be very flexible, it is desirable for
many applications that documents come with a schema that describe
their structure in a concise way. Whereas there exists a lot of software
for the manipulation of XML documents and modern database manage-
ment systems can deal with XML, the foundations of XML schema and
document management systems are still not fully understood and they
constitute an active research area.

Schema languages for XML, most prominently XML Schema and
DTD, are closely related to concepts from Formal Language Theory,
including context-free grammars, tree automata and regular expressions.
However, the official standards of the World Wide Web Consortium
(W3C) pose various restrictions that have not been much studied in
Formal Language Theory before the advent of XML (and its precur-
sor SGML). Altogether, the foundations of XML schema and document
management systems raise a lot of new challenges to Automata Theory,
in particular, to provide suitable algorithms and concepts.

The aim of this talk is to describe some of these challenges, to report
on recent developments and to highlight some current directions of re-
search. Topics will include the expressive power of schema languages, the
repair of schemas that do not obey the restrictions posed by the W3C
standards, the combination of schemas, schema conversion, schema min-
imisation, inference of schemas from a given set of documents, segmenta-
tion of schemas for distributed documents, and constraints that combine
structural and data aspects.

� We acknowledge the financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme for Research of the
European Commission, under the FET-Open grant agreement FOX, number FP7-
ICT-233599.
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Abstract. Discounted Cost Register Automata (DCRA) associate costs
with strings in a regular manner using the operation of discounted sum.
The min-cost optimization problem for DCRAs corresponds to comput-
ing shortest paths in graphs with more general forms of discounting than
the well-studied notion of future discounting. We present solutions to two
classes of such shortest path problems: in presence of both past and fu-
ture discounting, we show the decision problem is NP-complete, but has
a polynomial-time approximation scheme; in presence of two future dis-
counting criteria that are composed in a prioritized manner, we show
that the problem is solvable in Nexptime.

1 Introduction

The classical shortest path problem is to determine the minimum-cost path from
a given source to a given target vertex in a finite directed graph whose edges
are labeled with costs from a numerical domain, where the cost of a path is the
sum of the costs of the edges it contains. In a generalized version of the shortest-
path problem, each edge is labeled with a cost as well as a discount factor: at
every step, the cost of each subsequent edge is scaled by the current discount
factor (that is, the cost of a path consisting of the edges e1e2 · · · en is given
by the expression

∑
i(ci

∏
j<i dj), where ci and di denote respectively the cost

and discount of the edge ei) [8]. This form of future discounting is used in the
study of Markov decision processes and more recently, in quantitative analysis
of systems [6,3]. The problem of computing the shortest path in presence of such
future discounting can be solved in polynomial-time [9,8].

While the existing work on generalized shortest paths considers only future
discounting, there are some natural variations for associating costs with paths in
presence of discounting. For example, we can define past discounting , where the
cost of each preceding edge is scaled by the current discount factor (that is, the
cost of a path is

∑
i(ci

∏
j>i dj)), and global discounting , where each cost is scaled

by the discount factors of all the edges appearing in the path (that is, the cost of
a path is

∑
i(ci

∏
j dj)). The goal of this paper is to initiate a systematic study

of shortest path problems for such models with different notions of discounting.

� This research was partially supported by NSF awards CCF 1137084, CCF 1138996,
and CCF 0915777.
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Our framework for defining a general class of discounted shortest-path prob-
lems is based upon the recently proposed notion of regular functions that map
strings over an input alphabet Σ to a numerical domain with a specified set
of operations [2]. For our purpose, the numerical domain D consists of pairs
(c, d), where c ranges over incremental costs and d ranges over discount fac-
tors, (0, 1) is the identity, and the binary discounted sum operation is defined
as (c1, d1) ⊗ (c2, d2) = (c1 + d1 ∗ c2, d1 ∗ d2). A regular function is computed
by a discounted cost register automaton (DCRA), a deterministic machine that
maps strings over an input alphabet to cost values using a finite-state control
and a finite set of registers containing values in D. At each step, the machine
reads an input symbol, updates its control state, and updates its registers us-
ing expressions involving the discounted sum operation (such as x := (c, d)⊗ x;
x := x⊗(c, d); x := x⊗y; y := (0, 1), where x and y are registers). After process-
ing the input, the machine outputs the cost stored in one of the registers. The
appeal for the class of functions computed by DCRAs is based on its connection
to the well understood theory of regular string-to-string transformations with
multiple equivalent characterizations and closure properties [5,4,1]. For exam-
ple, if a function f is computable, then so is fR defined by fR(w) = f(wR),
where wR is the reverse of the string w; and if we were to allow a DCRA to
make speculative decisions based on a regular property of the suffix of the input,
instead of just the current input symbol, then such regular-look-ahead does not
add to expressiveness. Different versions of discounted shortest-path problems
turn out to be special cases of the min-cost problem for DCRAs, namely, given
a function defined by a DCRA, find a string with minimal cost.

To solve the min-cost problem for DCRAs with one register, we focus on the
shortest-path problem in a graph with past-and-future discounting: the cost of a
path e1e2 · · · en is given by

∑
i(ci

∏
j<i fj

∏
j>i pj), where ci, fi, and pi denote,

respectively, the cost, future discount, and past discount, of the edge ei. This
generalizes problems such as future discounting, past discounting, and global
discounting. We show that the decision version of the problem is NP-complete:
while the strongly-connected-components in the input graph can be analyzed
efficiently, the problem is NP-hard even for acyclic graphs. Then, we develop a
polynomial-time approximation scheme to solve the problem.

Our next set of results focus on the min-cost problem for DCRAs with two
registers. We first consider the prioritized shortest-path problem: each edge is la-
beled two cost-discount pairs (c, d) and (c′, d′), and the cost of a path e1e2 · · · en
corresponds to evaluating the expression (c1, d1)⊗ (c2, d2) · · · (cn, dn)⊗ (c′1, d

′
1)⊗

(c′2, d′2) · · · (c′n, d′n). Thus, this corresponds to having two future-discounting func-
tions, where the cost of a path is obtained by taking the discounted sum of a
high-priority future-discounted cost with a low-priority future-discounted cost.
While in the classical future discounting problems, for a given cycle, either it is
beneficial to skip the cycle entirely, or it is beneficial to repeat it indefinitely,
with prioritized discounting, the optimal number of times a cycle should be re-
peated depends on the cost/discount of the context. While the structure of an
optimal path can be complex, we can establish an upper bound on the length
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of such a path, leading to decidability. We show that the decision version of the
prioritized shortest-path problem is solvable in Nexptime. A prioritized short-
est path problem corresponds to a DCRA with two registers x and y, where the
registers are composed only at the end. If we allow repeated composition using
the update {x := x ⊗ y; y := (0, 1)} on any edge, we are still able to establish
decidability. Decidability of the min-cost problem for the general class of DCRAs
remains an open problem.

2 Discounted Cost Register Automata

We use D to denote the domain consisting of pairs (c, d), where c is a cost and d is
a discount factor. The typical choice for D is D = Q≥0×Q≥0, where Q≥0 denotes
the set of nonnegative rational numbers. We define the discounted sum operator
⊗ for elements in D as follows. For any two elements (c1, d1), (c2, d2) from D,
(c1, d1) ⊗ (c2, d2) = (c1 + d1 ∗ c2, d1 ∗ d2). It is easy to check that (D,⊗) forms
a semigroup with the identity (0, 1). For an element e = (c, d) ∈ D, we denote
the first component of e by e.cost and the second component by e.discount, i.e.
e.cost = c and e.discount = d.

A discounted cost register automaton (DCRA) is a deterministic machine that
maps strings over an input alphabet to costs using a finite-state control and a
finite number of registers that hold values in D. At every step, the machine
reads an input symbol, updates its control state, and updates its registers using
a parallel assignment. The right-hand-side in each assignment is an expression
built from registers and constants in D using the discounted sum operation. The
assignment is required to be copyless : no register appears more than once in the
right-hand-sides of these assignments. The copyless restriction is common in the
theory of transducers, and ensures that the output grows linearly in the size of the
input. The output function associates with each accepting state an expression
over the registers, evaluating which gives the resulting cost. The syntax and
semantics of DCRAs is formalized in the following definitions.

A discounted cost register automaton (DCRA) M is a tuple (Σ,Q, q0,
F,X, δ, ρ, μ), Σ is a finite input alphabet, Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a set of accepting states, X is a finite set of registers,
δ : Q×Σ → Q is the state transition function, ρ : Q×Σ×X → (X ∪D)∗ is the
register-update function with the copyless restriction: for each state q ∈ Q, each
register x ∈ X , and every symbol a ∈ Σ, x appears at most once in the multiset
of strings {ρ(q, a, y)|y ∈ X}, μ : F → (X ∪ D)∗ is the output function with the
copyless restriction: for each state q ∈ F , each variable x ∈ X , x appears at
most once in μ(q).

A configuration of a DCRA M = (Σ,Q, q0, F,X, δ, ρ, μ) is a pair (q, s), where
q ∈ Q is a state and s : X → D is a valuation function that maps each register to
an element in D. The valuation function s naturally extends to a mapping from
(X∪D)∗ to D by evaluating the discounted sum. The run ofM on an input string
w = a1 . . . an ∈ Σ∗ is a sequence of configurations (q0, s0) . . . (qn, sn), where q0 is
the initial state, s0 is the initial valuation that maps each register to the identity
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(0, 1), and qi+1 = δ(qi, ai+1), and for each x ∈ X , si+1(x) = si(ρ(qi, ai+1, x)),
for 0 ≤ i < n. The DCRA M defines a (partial) function �M� from Σ∗ to Q≥0:
if qn ∈ F then �M�(w) = sn(μ(qn)).cost, and �M�(w) is undefined otherwise.

It is worth noting that a DCRA is basically the same as a streaming string
transducer (SST) that maps strings over input alphabet to strings over out-
put alphabet [1]: a DCRA interprets string concatenation as discounted sum
and hence its output symbols and register values are elements of D rather than
strings over the output alphabet as is the case for SSTs. SSTs have the same
expressiveness as MSO-definable string-to-string transformations, two-way de-
terministic sequential transducers, and Macro string transducers [5,4,1]. This
class of regular string-to-string transformations has appealing closure properties
such as closure under reversal and closure under regular look-ahead, and these
carry over to DCRA-definable functions. In other words, DCRAs capture a ro-
bust class of functions for associating costs with strings by composing elements
in D using the discounted sum operation in a regular manner.

The following decision problems are natural for DCRAs:

1. Given a DCRA M , and a string w over the input alphabet Σ, the evaluation
problem is to compute the value of �M�(w).

2. Given two DCRAs M1 and M2 over the same input alphabet Σ, the equiv-
alence checking problem is to decide whether �M1�(w) = �M2�(w) for every
string w over Σ.

3. Given a DCRA M over input alphabet Σ, the min-cost problem is to decide
the value of inf{�M�(w)|w ∈ Σ∗}.

It is easy to see that the evaluation problem for DCRAs is solvable in time linear
in the size of input string. The equivalence checking problem for DCRAs can be
solved in time polynomial in the number of states and exponential in the number
of registers using the techniques discussed in [2]. In this paper we focus on the
complexity of the min-cost problem for DCRAs with at most 2 registers.

3 Past-and-Future Discounting

First observe that to solve the min-cost problem for a DCRA, we can ignore
the input symbols, and focus on computing shortest paths in the directed graph
corresponding to the state-transition structure of a DCRA. We first look at
discounted shortest-path problems corresponding to DCRAs with one register.

3.1 Generalized Shortest Path Problem

Given a DCRAM with one register x, where each update is of the form x := x⊗
(c, d), the min-cost problem forM coincides with a problem called the generalized
shortest-path problem, or shortest-paths in presence of only future-discounting,
defined below.

Given a labeled directed graph G = (V,E, L), where L : E → D is the labeling
function, and two vertices s, t ∈ V , the generalized shortest path problem



48 R. Alur et al.

is to find the s-t path p that minimizes the cost L(p).cost, where the labeling
function is extended to paths using the discounted sum operator, that is, for a
path p = e1 . . . ek, L(p) = L(e1)⊗ L(e2) · · ·L(ek).

We denote C(p) = L(p).cost and D(p) = L(p) .discount. Polynomial-time
algorithms for this optimization problem are given in [9].

Theorem 1. Given a labeled directed graph G = (V,E, L), the generalized short-
est path problem can be solved in O(mn2 log n), where n = |V | and m = |E|.
Here, we are more interested in the structure of the optimal path. A lasso is a
path p consisting of a simple path p0 followed by a simple cycle l such that l is the
only cycle in p. Given a lasso p = p0l such that D(l) < 1, we define the limiting
cost of p to be the limit of the costs of paths in the sequence (p0l, p0ll, . . .), which

equals C(p0)+D(p0)
C(l)

1−D(l) . It turns out that the optimal path must be either a

simple path from s to t, or a lasso. In other words, if it is beneficial to include a
cycle to reduce the cost, then it is beneficial to repeat the cycle arbitrarily many
times. This property holds even when the graph has finite number of vertices,
but infinitely many edges.

Lemma 1. Let G = (V,E) be a graph, with V finite but E possibly infinite. For
any vertices s, t ∈ V , and any labeling function L : E → D there is an optimal
path which is either a simple path from s to t, or a lasso from s.

Proof. Suppose the optimum p is not a simple path from s to t, then p has the
structure p0lp1, where l is the first cycle in p. If C(l) + D(l)C(p1) < C(p1),
we have that the limiting cost of the lasso p0l is no more than C(p0l

np1) for
any natural number n. If C(l) + D(l)C(p1) ≥ C(p1), we have that C(p0p1) ≤
C(p0lp1). In either case, we can see by induction that the solution is a simple
path or a lasso. ��

3.2 Shortest Path in Past and Future Discounted Graphs

The generalized shortest path problem can be seen as a future discount problem
– the discount at an edge applies to the costs of all future edges. Reversing the
direction on the edges, we see that it is equivalent to a past discount problem,
where the discount at an edge applies to all past edges. We consider the following
variant: each edge e is now given a cost c(e), a past discount p(e) to be applied
to all preceding edges, and a future discount f(e) to be applied to all succeeding
edges. In this problem, we assume that discounts are in the range [0, 1]. The

cost of a path p = e1 . . . ek is C(p) =
∑k

i=1 c(ei)
∏

j<i f(ej)
∏

j>i p(ej). Given a

directed graph G = (V,E), vertices s, t ∈ V , and cost function c : E → Q≥0 and
discount functions p, f : E → [0, 1], the past and future discount problem
seeks to find an s-t path p minimizing C(p).

This variant corresponds to the DCRA with one register, where each update is
of the form x := (0, p′)⊗x⊗(c′, f ′). Note that on each edge, c(e) = c′p′, p(e) = p′

and f(e) = f ′p′.
First, we present a sequence of assumptions about the graph structure such

that if each assumption does not hold, the optimal cost is easy to compute.
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Lemma 2. We may assume that any strongly connected component in G satis-
fies at least one of the following: all of the past discounts are equal to 1, or all
of the future discounts are equal to 1.

Proof. Suppose not. Then let S be a strongly connected component, and e1 an
edge with past discount < 1 and e2 an edge with future discount < 1. Since this
is a strongly connected component, there is a cycle containing e1 and e2. Thus,
a path from s to S, arbitrarily many iterations of a fixed cycle containing e1 and
e2, and a path to t has cost arbitrarily close to 0. ��

Lemma 3. We may assume that every non-trivial strongly connected component
in G has an edge with a past discount < 1 or an edge with a future discount < 1.

Proof. Suppose not. Then we can construct a graph G′ on which this is true.
Consider a strongly connected component S in G in which each edge has both
discounts equal to 1. Then any optimal path p reaching S at u and leaving S at
v uses a shortest path (in the classical discount-less sense) from u to v. Thus,
we may replace S as follows: for a vertex v ∈ S, we replace it with vertices
v− and v+. For an edge (u, v) with u /∈ S, replace the endpoint v with v−.
Similarly, for (v, u) with u /∈ S, replace v with v+. Now, for all pairs of vertices
u, v ∈ S, add an edge (u−, v+) with cost equal to the cost of the (classical)
shortest path from u to v in S and both discounts 1. It is clear that replacing
all non-trivial strongly connected components in this way yields a graph G′

with each component containing at least a discount, and that a solution in G′

determines a solution G and vice versa. ��

Lemma 4. We may assume there is a topological ordering of the strongly con-
nected components of G such that all strongly connected components with a past
discount less than 1 occur before components with a future discount less than 1.

Proof. Suppose not. Then we have a path from s to a component with a future
discount less than 1, to a component with a past discount less than 1, to t. If we
use a cycle repeatedly in the future discount component with discount < 1 and
similarly use a cycle in the past discount component, we drive the cost to 0. ��
Now, we are ready to prove our results.

Theorem 2. The decision version of the past and future discount problem (that
is, given K, is there path p with C(p) ≤ K) is NP-complete .

Proof. First, the problem is NP. From Lemma 4, we know that in a topological
ordering, the strongly connected components with a past discount occur before
strongly connected components with a future discount. From Lemma 1, we know
that the structure of an optimum subpath in the strongly connected components
must be a simple path or a lasso. Thus, a sufficient proof would be the path itself.

The problem is NP-hard, by a reduction from subset product (which is shown
to be NP-hard in [7]). ��
Now we proceed to establish that the problem can be approximated efficiently.
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Theorem 3. The past and future discount problem has a polynomial-time ap-
proximation scheme.

Proof. Given a graph G = (V,E), cost and discount functions c, f, p, and an
approximation factor ε, we will give an approximation scheme that finds a path
with cost at most (1 + ε) times that of the minimum cost path. We will assume
that G has the structure imposed by the preceding lemmas.

By Lemma 4, we note that in a topological ordering of the strongly connected
components of G, all of the components with past discounts precede all of the
components with future discounts. Let us denote the strongly connected com-
ponents S1, . . . , Sr (in topological sort order), and let us say that k is such that
for all i ≤ k, Si is either trivial (consisting of a single vertex) or has a past
discount, and for all i > k, Si is either trivial or has a future discount. We use
dynamic programming from s through Sk, and a similar, reversed process, from
t backwards through Sk+1, and then stitch the results together.

Let δ = log(1+ε)
2n where |V | = n, and let c be the highest cost value on any

edge. At each vertex, we will store the path with the best future discount that
has cost in the interval [(1+ δ)i, (1+ δ)i+1). Then the cost of a simple s-t path is

at most n · c, and so we need to manage at most O
(

n log c
log (1+ε)

)
such buckets. Let

Tv[i] denote the best (least) discount for paths in the bucket [(1+δ)i, (1+δ)i+1).
We start our dynamic program at s, where we have no paths. The program

then processes entire strongly connected components at a time. For a component
Si, we first consider all of the edges from outside Si to a vertex of Si. Let
e = (u, v) with u ∈ Si′ for some i′ < i and v ∈ Si. Then for each l that Tu[l] is
not empty, we look in the bucket for the interval j containing p(e) · (1 + δ)l+1 +
c(e) · Tu[l], and if Tu[l] · f(e) is less than Tv[j], then we update Tv[j] with this
new value.

Having resolved any paths to vertices in Si that do not use any other vertices
in Si, we now address paths to vertices in Si through other vertices. Note that if
a strongly connected component is trivial, this case does not arise. For each pair
of vertices u, v ∈ Si, and each Tu[l] that is not empty, we build a graph which
is just Si, except we add a vertex t′ and an edge (v, t′) with cost (1 + δ)l+1 and
past discount Tu[l]. All other edges will have the same costs and discounts as
in G. Now, since Si had only past discounts < 1, we can solve a past discount
problem to find the best (possibly infinite) path from u to t′. Note then that
this represents a path from s to v, going through u, where the subpath from s
to u is the one stored in Tu[l]. Repeating this for each l and each pair of vertices
completely resolves the table Tv for each v ∈ Si.

We can do this for all i up to k. We perform the analogous process for Sk+1

and subsequent components: we reverse the roles of past and future discounts,
and reverse the orientations on the edges. So for v ∈ Si for i ≤ k, Tv[l] will have
the path with the best future discount in the l-th bucket, while for v ∈ Si for
i > k, Tv[l] will have the path with the best past discount. Now, for all edges
(u, v) with u ∈ Si and v ∈ Sj with i ≤ k < j, and all l1, l2 for which Tu[l1] and
Tv[l2] are non-empty, we consider the path adjoining the path in the l1-th bucket
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at u to (u, v) to the path in the l2-th bucket at v (note this is an s-t path). Now
the claim is that the minimum cost path from across all such u, v, l1, l2 has cost
at most (1 + ε) times the true optimum.

Lemma 5. For each u ∈
⋃

i≤k Si, and each l, the path from s to u realizing the

discount Tu[l] has cost at most (1+δ)l+1

1+ε .

Proof. Observe that the only time a path’s cost becomes overestimated is when
it is placed in bucket j (representing paths with approximate costs in the interval
[(1+δ)j , (1+δ)j+1)), where the cost can only be overestimated by a factor (1+δ).
Since a path can be put in a bucket only twice per strongly connected component,

we see that its cost is overestimated by at most (1 + δ)2n = (1 + log(1+ε)
2n )2n ≤

elog(1+ε) = 1 + ε. ��
A similar lemma applies for u ∈

⋃
i>k Si and t. Thus we have found the path

with the least approximate cost, where for each path, the approximate cost is
at most (1 + ε) times its true cost, and in particular, this path has cost at most
(1 + ε) times the cost of the optimum path. ��

4 Prioritized Discounting

In this section, we look at the prioritized discounting problem which corresponds
to the min-cost problem for DCRAs with two registers where one register always
leads the other in both update and output.

4.1 Shortest Path in Prioritized Discounted Graph

We first define the Prioritized Discounted Graph and the shortest path problem
in a Prioritized Discounted Graph.

A prioritized discounted graph is a labeled directed graph G = (V,E, Lx,
Ly), where Lx, Ly : E → D are labeling functions. Given a prioritized dis-
counted graph G = (V,E, Lx, Ly) and s, t ∈ V , the prioritized shortest-
path problem seeks to find the s-t path p minimizing the cost defined as
C(p) = (Lx(p)⊗ Ly(p)) .cost.

The prioritized shortest-path corresponds to the min-cost problem of DCRAs
with two registers x and y, and each update is of the form {x := x⊗(cx, dx); y :=
y ⊗ (cy, dy)} and the output function is x⊗ y.

We show that the decision version of the shortest path problem for prioritized
discounted graph is decidable, assuming that D = Q≥0 × [0, 1].

Theorem 4. Given a prioritized discount graph G and a nonnegative rational
K, deciding whether there is an s-t path in G such that C(p) ≤ K is solvable in
Nexptime.

Proof. For a path p, let (Cx(p), Dx(p)) = Lx(p) and (Cy(p), Dy(p)) = Ly(p). We
call cycle l a “x-neutral cycle” if Lx(l) = (0, 1). If there is a path p such that
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C(p) = Cx(p) + Dx(p)Cy(p) ≤ K, then the x-cost of p (i.e. Cx(p)) is at most
K. Let us call a path p a “candidate path” if Cx(p) ≤ K. If there is an edge
e in p such that Dx(e) = 0, then p has the simple structure as in the future
discount problem. Therefore, we may assume G doesn’t contain such edges.
We first consider the case where G doesn’t contain any x-neutral cycles. Let
p0l be the “best” lasso minimizing limi→∞ Cx(p0l

i). If K ≥ limi→∞ Cx(p0l
i),

limi→∞ C(p0l
i) = limi→∞ Cx(p0l

i) ≤ K. Otherwise, the length of any candidate
path cannot exceed L for some natural number L. The following lemma shows
an exponential upper bound for L.

Lemma 6. Let T be the least limiting x-cost among all the lassos. If K < T ,
the length of any candidate path is at most L, for some L = 2O(nb), where n is
the number of vertices in G and b is the maximum number of bits to describe the
labeling functions and the bound K.

Proof. Fix a vertex v. Let m be the maximum number of occurrences of v in a
candidate path. Let’s consider the candidate path p with the least x-cost among
all the paths in which v appears m times. Suppose p = p0l1l2...lm−1pm. Here,
p0 is a path from s to v and li’s are cycles that start and end in v, pm is a path
from v to t. For brevity, let ci = Cx(li) and di = Dx(li). By Lemma 1, we further
assume that p0, pm are simple paths and li’s are simple cycles.

First we claim that ci/(1− di) ≤ ci+1/(1− di+1), for i = 1...m− 2. Note that
we define ci/(1 − di) = ∞, if di = 1. Suppose not, there is a cycle li such that
ci/(1 − di) > ci+1/(1 − di+1). This results in a path p′ = p0l1...li+1li...lm−1pm
with the same occurrences of v and x-cost less than Cx(p).

Let Qi = Cx(lili+1...lm−1pm). We claim that Q1 > ... > Qm. Suppose not, we
have Qi ≤ Qi+1 for some i. Then T ≤ limn→∞ Cx(p0l1...li−1l

n
i ) ≤ K.

Let T1 and T2 be the least and second least limiting x-cost among the simple
cycles that start and end in v. Let l1, l2, ..lk be the cycles with the limiting x-
cost T1, so the limiting x-cost of li(i > k) is at least T2, and Q1 < T1.Consider
any i > k. If di = 1, Qi − Qi+1 = ci + di · Qi+1 − Qi+1 = ci > 0. If di < 1,
Qi − Qi+1 = ci + di · Qi+1 − Qi+1 = ci − (1 − di)Qi+1 = (1 − di)(

ci
1−di

−
Qi+1) ≥ (1 − d) · (T2 − T1). Here d is the largest x-discount among all the
simple cycles other than 1. Therefore, Qk+1 ≥ Qm + δ(m− k − 1), where δ =
min{ci, (1 − d)(T2 − T1)|i = 1...m − 1, ci > 0}. Also we know Qk+1 < T1, so
m < T1

δ + k + 1 = k + 2O(nb).
Finally, we show an exponential bound for k. Since Cx(p0l1...lk) ≤ K,we know

Cx(p0l1...lk) = Cx(p0) +Dx(p0)T1(1−
k∏

i=l

di) ≤ K

Therefore, k ≤ log (1− K−Cx(p0)
T1Dx(p0)

)/ log d ≤ K
(Cx(p0)+T1Dx(p0)−K) log 1/d = 2O(nb).

Therefore, L ≤ 2O(nb). ��
Now consider the case where G contains x-neutral cycles. Let p be a path such
that C(p) ≤ K. If p does not contain any x-neutral cycles, either the best
lasso has the limiting cost at most K or by Lemma 6, the length of p is at
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most L. Otherwise p = p0lp1 for some x-neutral simple cycle l. Without loss of
generality, assume there is no x-neutral cycles in p0 and Cy(lp1) < Cy(p1). Then
limi→∞ C(p0l

ip′1) ≤ C(p), where p′1 is the path obtained by eliminating all the
x-neutral cycles in p1. By Lemma 6, the length of p0lp

′
1 is at most L+ 2n. ��

We show a lower bound for the complexity of shortest path problem in a priori-
tized discounted graph.

Theorem 5. Given a prioritized discounted graph G, and a source vertex s
and a target vertex t, deciding whether there is a path p from s to t such that
C(p) ≤ K is NP-hard.

Proof. We reduce from subset product problem [7]. ��

4.2 Shortest Path in Prioritized Past and Future Discounted Graph

Consider the most general min-cost problem for DCRAs with one register: each
update is of the form x := (c′, d′)⊗x⊗(c, d). In fact, these DCRAs can be modeled
by DCRAs with two registers, where each update is {x := (c′, d′) ⊗ x; y :=
y⊗ (c, d)} and the output is x⊗ y. The min-cost problem for this set of DCRAs
can be formalized as a variant shortest path problem in prioritized discounted
graphs: Given a prioritized discounted graphG = (V,E, Lx, Ly), and s, t ∈ V , we
wish to find an s-t path minimizing

(
Lx(p

R)⊗ Ly(p)
)
.cost. Here, pR denote the

reverse of p (that is, if p = (e1e2...ek),p
R = (ekek−1...e1)). By applying similar

idea as that in theorem 4 and analyzing the cost of the Lx(p
R), it is easy to see

that this variant shortest path problem is decidable for D = Q≥0 × [0, 1].

Theorem 6. Given a prioritized discounted G and a nonnegative rational K,
deciding whether there is an s-t path in G such that

(
Lx(p

R)⊗ Ly(p)
)
.cost ≤ K

is solvable in Nexptime.

4.3 Shortest Path in Prioritized Discounted Resetting Graph

A prioritized discounted resetting graph is a labeled directed graph G =
(V,E1, E2, Lx, Ly). V is the set of vertices and there are two types of edges E1

and E2. The labeling functions are only defined on the edges in E1, i.e. Lx, Ly :
E1 → D are the labeling functions. E2 is the set of resetting edges. We denote
p ∈ E∗

i if the path p only consists of edges fromEi, for i = 1, 2. Given a prioritized
discounted resetting graph G = (V,E1, E2, Lx, Ly) and two vertices s, t ∈ V , the
shortest path problem forG is to find the s-t path p = (p1e1p2e2...pkek) which
minimizes the cost defined as C(p) = (Lx(p1)⊗Ly(p1) · · ·Lx(pk)⊗Ly(pk)).cost.
Here pi ∈ E∗

1 , ei ∈ E2 and we assume that every path from s to t ends with an
edge in E2 without loss of generality.

The shortest path problem for prioritized discounted resetting graphs corre-
sponds to the min-cost problem of a subset of DCRAs, where there are two reg-
isters x, y and each update is of the form {x := x⊗ (cx, dx); y := y⊗ (cy, dy)}(we
model this update as the edges in E1) or {x := x⊗ y, y := (0, 1)} (we model this
update as the edges in E2), and the output function is x⊗ y.
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Now we show that the decision version of the shortest problem in a prioritized
discounted resetting graph is decidable, with the assumption that D = Q≥0 ×
[0, 1].

Theorem 7. Given a prioritized discounted resetting graph G = (V,E1, E2, Lx,
Ly), and s, t ∈ V and a nonnegative rational K ∈ Q≥0, deciding whether there
is an s-t path p in G, such that C(p) ≤ K is decidable.

Proof. We reduce the shortest path problem inG to the generalized shortest path
problem in a graph G′ = (V ′, E′, L′) with finitely many vertices but potentially
infinitely many edges. First, for each edge e ∈ E2, we construct a vertex ve. We
also create a source vertex s′ and target vertex t′. Thus, V ′ = {s′, t′, ve|e ∈ E2}.
Now we show the construction of the edges in G′ and the labeling functions.
Consider any edge e = (u, v) ∈ E2, and any path p ∈ E∗

1 from s to u, we
construct an edge ep = (s′, ve) with label L′(ep) = Lx(p)⊗Ly(p). Consider each
(ordered) pair of edges (e1, e2) such that ei = (ui, vi) ∈ E2 for i = 1, 2. For
any path p ∈ E∗

1 from v1 to u2 we construct an edge ep = (ve1 , ve2) with label
L′(ep) = Lx(ep) ⊗ Ly(p). Finally, for any edge e = (v, t) ∈ E2, we construct
an edge e′ = (ve, t

′) with label L′(e′) = (0, 1). It is easy to see the equivalence
between the shortest path in G and G′.

Lemma 7. For any s-t path p in G, there exists an s′-t′ path p′ in G′ such that
C(p) = C(p′). For any s′-t′ path p′ in G′, there exists an s-t path p in G, such
that C(p) = C(p′).

Let G1 = (V,E1, Lx, Ly) and Lx(p) ⊗ Ly(p) = (C1(p), D1(p)) for any path
p ∈ E∗

1 . We now describe a nondeterministic algorithm to solve the shortest
path in the prioritized discounted resetting graph G. By Lemma 1, there is a
generalized shortest path in G′, which is a simple path or a lasso. First, the
algorithm guesses the structure of the generalized shortest path p′ in G′. If
p′ is a simple path, by Lemma 7, the shortest path in G has the structure
p = (p1e1 . . . pkek), where ei = (ui, vi) ∈ E2 and pi ∈ E∗

1 for i = 1 . . . k and
k ≤ |E2|. Second, since C(p) ≤ K, the cost of the subpath p1e1, which is from s to
v1 through u1, is at mostK, i.e. C1(p1) = C(p1e1) = (Lx(p1)⊗Ly(p1)).cost ≤ K.
Therefore, the algorithm suffices to solve the prioritized shortest-path problem
in G1 with source s and target u1 and bound K. If there is an infinite se-
quence of paths p′j in G1 with unbounded length and limiting cost at most K,
then by theorem 4, limj→∞D1(p

′
j) = 0. Therefore, the algorithm outputs “yes”,

since by taking any finite path p′2 from v1 to t, we have limj→∞ C(p′je1p
′
2) =

limj→∞ C1(p
′
j) ≤ K; otherwise, there are finitely many candidate paths. Among

all the candidate paths, the algorithm guesses one path p1. Now, the algo-
rithm will solve for the second subpath p2 between v1 and u2. Note that, since

C(p1e1p2e2) ≤ K, we know C1(p2) = C(p2e2) ≤ K1, where K1 = K−C1(p1)
D1(p1)

.

Therefore, the algorithm solves the prioritized shortest-path problem in G1 with
source v1 and target u2 and bound K1. The algorithm solves other subpaths
similarly. Finally, if there is a guessed path from s to t with cost at most K,
output “yes”, otherwise output “no”. If the guessed path p′ in G′ is a lasso,
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again by Lemma 7, the corresponding shortest path in G has the structure
p = (p1e1 · · · pjej · · · pkekpk+1ej · · · pkekpk+1ej · · ·), where ei = (ui, vi) ∈ E2 for
i = 1 . . . k, k ≤ |E2|, and the cycle l = (ej · · · pkekpk+1ej) repeats after the sub-
path p0 = (p1e1 · · · pj). The algorithm behaves as the same when guessing the
subpath pi between vi−1 and ui. If there is a guessed path p with limiting cost
limi→∞ C(p0l

i) ≤ K, output “yes”, otherwise output “no”. ��

5 Conclusions

The model of Discounted Cost Register Automata defines a robust class of func-
tions for mapping strings to costs using the discounted sum operator in a regular
manner. The min-cost problem for this class offers a unifying framework for gen-
eralizing the classical notion of discounting. While decidability of the min-cost
problems for the general class of DCRAs remains an open problem, we have
solved two interesting special cases. The shortest path problem in presence of
past-and-future discounting is NP-complete with a polynomial-time approxima-
tion scheme. In prioritized discounting, two cost criteria with future discounting
are combined using discounted sum. The structure of the optimal path becomes
significantly more complex in this case, and we have established Nexptime up-
per bound for this problem, and also proved decidability for variants.
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Abstract. Uniform semi-unification is a generalization of unification;
its efficient algorithms have been extensively studied in (Kapur et al.,
1994) and (Oliart&Snyder, 2004). For (uniform) semi-unification, sev-
eral variants of rule-based calculi are known. But, some of these calculi
in the literature lack the termination property, i.e. not all derivations are
terminating. We revisit symbolic semi-unification whose solvability coin-
cides with that of uniform semi-unification. We give an abstract criterion
of the strategy on which a general rule-based calculus for symbolic semi-
unification terminates. Based on this, we give an alternative and robust
correctness proof of a rule-based uniform semi-unification algorithm.

Keywords: Semi-Unification, Rule-Based Calculi, Termination.

1 Introduction

Describing algorithms using rule-based calculi is often useful to present algo-
rithms abstractly and to study the correctness of algorithms by separating the
issue from those of the search strategy and/or efficiency. For many algorithms,
rule-based calculi have been widely adapted and commonly used to extend or
modify the algorithms; well-known such examples are the unification algorithm
and the Knuth-Bendix completion algorithm (see e.g. [1]).

Semi-unification is a generalization of unification. Its application includes non-
termination proving of term rewriting systems [3, 8, 16] and polymorphic type
inference problems of ML languages [7, 11]; it is also related to some problems
in proof theory [17] and in computational linguistics [2]. Like unification, if a
semi-unifier exists, there exists a most general semi-unifier [7, 10, 17]. Unlike
unification, however, semi-unification is undecidable in general [10]. Hence, many
decidable classes of semi-unification have been studied: uniform semi-unification
[4, 8, 15, 17–19], acyclic semi-unification [11, 14], left-linear semi-unification [6,
9], quasi-monadic semi-unification [13] and semi-unification in two variables [12].

Decidability of uniform semi-unification has been shown in various articles
almost at the same time [4, 5, 8, 12, 17]. Efficient algorithms for uniform semi-
unification have been extensively studied in [8, 15]. Like with unification, working
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on graphs is mandatory in order to give efficient algorithms, and thus these
best efficient algorithms are based on graphs. The basis of correctness of these
algorithms, however, is given by a simple version of the algorithms given in
[8] that can be almost adapted as a rule-based calculus (not on graphs but on
terms). In [15], a variant of this calculus are adapted as a rule-based calculus
but no correctness proof is presented.

In contrast to similar rule-based calculi for the unification, some of such cal-
culi in the literature lack the termination property, i.e. not all derivations are
terminating. It is mentioned in [8] that “it can be shown that Algorithm A-
1 will always terminate either reporting failure or semi-unifiability;...” without
a proof. But, actually, derivations in their rule-based calculus terminate only
if some suitable interpretation or derivation strategy is assumed. The calculus
given in [15] is more flexible than that of [8], and it is not terminating either.

It may be thought that giving a terminating variant of these calculi is easy.
However, it is, at least, difficult to adapt a termination proof similar to the
one applied to calculi for unification for the following reasons: (1) equations
in “solved” form may later be changed to “unsolved”, and (2) the multiset of
the (extended) variables in the equations may increase. In fact, as pointed out
in [13], it seems not easy to give a well-founded ordering that guarantees the
termination of such calculi.

In this paper, we revisit symbolic semi-unification, whose solvability coin-
cides with that of uniform semi-unification. We present a new characterization
of symbolic semi-unification, which reinforces the correspondence between these
presentations of uniform semi-unification. We give an abstract criterion of the
strategy on which a general rule-based calculus for symbolic semi-unification ter-
minates. In this way, we give an alternative and robust proof for the correctness
of a rule-based uniform semi-unification algorithm.

2 Preliminaries

We denote sets of arity-fixed function symbols and variables by F and V , re-
spectively. The set of terms is denote by T(F ,V). The set of variables in an
object α, which may be a term, etc. is denoted by V(α). A context is a term in
T(F ∪ {�},V) containing a single occurrence of �, which is a special constant
not contained in F . A term obtained by replacing � in a context C with a term t
is denoted by C[t]. A term s is a subterm of a term t (written as s � t) if t = C[s]
for some context C. A substitution σ is a mapping from V to T(F ,V) with the
finite domain dom(σ) = {x | x �= σ(x)}. Substitutions are homomorphically
extended to mappings over T(F ,V). We write σ(t) as tσ. A substitution σ with
dom(σ) = {x1, . . . , xn} and σ(xi) = ti is denoted by {x1 := t1, . . . , xn := tn}.

We denote an equation by s ≈ t which is indistinguished from t ≈ s and an
inequation by s � t. We also consider indexed inequations of the form s �i t
where the index i ranges over 1, . . . , k. Let E = {si ◦i ti | 1 ≤ i ≤ n, ◦i ∈ {≈,�1

, . . . ,�k}} be a set of equations and indexed inequations. Then E is said to be
semi-unifiable if there exists a substitution τ, ρ1, . . . , ρk such that τ(si) = τ(ti)
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for all si ≈ ti ∈ E and ρj(τ(si)) = τ(ti) for all si �j ti ∈ E; the substitution τ
is called a semi-unifier of E and the substitutions ρ1, . . . , ρk are called residual
substitutions of the semi-unifier τ . A semi-unification problem is a problem to ask
whether there is a semi-unifier for a given set of equations and (indexed) inequa-
tions. A semi-unification problem is said to be uniform if k = 1 (i.e. the index of
inequations is unique); when we think of a uniform semi-unification problem the
index of inequations will be omitted. Any (uniform) semi-unification problem E
can be reduced to a (uniform) semi-unification problem without equations by
replacing si ≈ ti ∈ E with zi � si, zi � ti using a fresh variable zi. Thus, one
can assume w.l.o.g. that any semi-unification problem deals with only the set of
inequations.

Example 1. Let E = {f(h(y), x) � f(x, h(h(y)))}. Take σ = {x := h(y′)} and
ρ1 = {y := y′, y′ := h(y)}, where y′ is a fresh variable. We have f(h(y), x)σρ1 =
f(h(y), h(y′))ρ1 = f(h(y′), h(h(y))) = f(x, h(h(y)))σ. Thus E is semi-unifiable and
σ is a semi-unifier. Note here that f(h(y), x) and f(x, h(h(y))) are not unifiable.

3 Symbolic Semi-Unification

In this section, we introduce a notion of symbolic1 semi-unification. The notion
is based on the idea of syntactically representing the substitution ρ of the iden-
tity ρ(τ(s)) = τ(t) expressing semi-unifiability. This idea goes back to [8]. Our
presentation mostly follows a nicer formulation given in [13]. In the literature,
various symbols are used as the “place holder” for ρ; we here use ∇ as it is
clearly distinguished from substitutions denoted by ρ, τ, σ, etc.

Definition 2 (symbol ∇, ∇-variables, ∇-terms, operator ∇).

1. We use a unary special function symbol ∇ which is supposed to be not
contained in F .

2. We define ∇-terms as follows: (i) ∇i(x) where x ∈ V and i ≥ 0 are ∇-terms

where ∇i(x) abbreviates

i-times︷ ︸︸ ︷
∇(· · · ∇(x) · · · ); (ii) if t1, . . . , tn are ∇-terms then

f(t1, . . . , tn) is a ∇-term for any f ∈ F of arity n. Equations of ∇-terms
are said to be ∇-equations.

3. ∇-terms of the form ∇i(x) (i ≥ 0) are called ∇-variables. We denote ∇i(x)
by xi. Hence x0 = x, ∇(xi) = xi+1, and xj � xi for all j ≤ i. The sets of
∇-variables and ∇-terms are denoted by V∗ and T(F ,V∗), respectively. The
set of ∇-variables in an object α is denoted by V∗(α).

4. We define a unary operation ∇ on ∇-terms recursively as follows: ∇(xi) =
xi+1; ∇(f(t1, . . . , tn)) = f(∇(t1), . . . ,∇(tn)).

Example 3. A∇-term t = f(x, g(∇(∇(y)))) may be also written as f(x, g(∇2(y)))
or f(x, g(y2)). The set of ∇-variables in t is V∗(t) = {x, y,∇(y),∇(∇(y))} =
{x, y, y1, y2}. We have ∇(t) = ∇(f(x, g(∇2(y)))) = f(∇(x),∇(g(∇2(y)))) =
f(∇(x), g(∇3(y))) = f(x1, g(y3)) and ∇2(t) = ∇(∇(t)) = f(x2, g(y4)).

1 The name “symbolic” is from [19].
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Contexts over∇-terms and the subterm relation on∇-terms are defined similarly
to the usual contexts and subterms. We define ∇-substitutions below.

Definition 4 (∇-substitution).

1. A ∇-substitution is a partial mapping σ from V∗ to T(F ,V∗) such that (i)
the domain dom(σ) of σ is finite; (ii) for each x ∈ V there exists at most
one i such that xi ∈ dom(σ); (iii) for each xi, yj ∈ dom(σ), yj �� σ(xi).

2. The application σ(t) of a ∇-substitution σ to a ∇-term t is recursively defined
as follows: σ(yj) = yj if yi /∈ dom(σ) for any i ≤ j; σ(yj) = ∇j−i(σ(yi)) if
yi ∈ dom(σ) for some i ≤ j; σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

3. The many-time application σ∗(t) of a ∇-substitution σ to a ∇-term t is
defined as follows: σ∗(t) = t if xi �� t for any xi ∈ dom(σ); σ∗(t) = σ∗(σ(t))
otherwise.

We write σ(t) as tσ and σ∗(t) as tσ∗; in particular, we write σ∗(∇(t)) as ∇(t)σ∗.
The notion of many-time application of a ∇-substitution to a ∇-term is used to
give an invariance of derivation for symbolic semi-unification.

Example 5. The partial mapping σ = {x := a, x1 := b} is not a ∇-substitution,
as the σ does not satisfy the condition (ii). Neither is the partial mapping σ =
{x1 := f(y1), y1 := b}, as the σ does not satisfy the condition (iii). The partial
mapping σ = {x1 := y, y1 := f(z2)} is a ∇-substitution, and we have σ(y3) =
∇2(σ(y1)) = ∇2(f(z2)) = f(z4) and σ∗(x2) = σ∗(∇(y)) = σ∗(y1) = f(z2).

It may be not so obvious from the definition that tσ∗ is always well-defined;
however, this can be derived from our definition of ∇-substitutions.

Lemma 6. For any ∇-substitution σ and ∇-term t, tσ∗ is well-defined.

Proof. Define, for each ∇-variable xj , w(xj) = max{j − i+ 1, 0} if xi ∈ dom(σ)
for some i, and w(xj) = 0 otherwise. Let W(t) be the multiset of weight of
∇-variables in a ∇-term t. Then if t �= tσ then W(t) � W(tσ), where � is the
multiset extension (e.g. [1]) of the natural order > on the set of natural numbers.
The claim follows from the well-foundedness of �. ��

Lemma 7. For any ∇-term t and ∇-substitution σ, ∇(t)σ∗ = ∇(tσ∗)σ∗.

Proof. LetR = {ug → vg | u := v ∈ σ} be a TRS (see e.g. [1]), where ()g replaces
each variable with a distinct constant. The claim follows from completeness of
the TRS R∪ {∇(f(x1, . . . , xn)) → f(∇(x1), . . . ,∇(xn)) | f ∈ F}. ��

We now introduce a notion of symbolic semi-unification.

Definition 8 (symbolic semi-unification). For a set E of ∇-equations, a
semi-unifier of E is a ∇-substitution σ such that sσ∗ = tσ∗ for all s ≈ t ∈ E; if
E has a semi-unifier, E is said to be semi-unifiable. A symbolic semi-unification
problem asks whether there exists a semi-unifier for a given set of ∇-equations.

The next lemma is shown using Lemma 7.
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Lemma 9 (semi-unifiability is closed under ∇). Let σ be a ∇-substitution
and s, t be ∇-terms. If sσ∗ = tσ∗ then ∇(s)σ∗ = ∇(t)σ∗.

Remark 10. In contrast to Lemma 9, sσ = tσ does not necessary imply ∇(s)σ =
∇(t)σ: Let σ = {x2 := f(x)}, s = x3 and t = f(x1). Then sσ = f(x1) = tσ, but
∇(s)σ = x4σ = f(x2) �= f(f(x)) = f(x2)σ = ∇(t)σ.

The notions of ∇-equality and inconsistency were introduced in [8].

Definition 11 (∇-equality). For a set E of ∇-equations, the ∇-equality gen-
erated by E, denoted by ≈E, is the smallest equivalence relation such that (i)
s ≈E t for any s ≈ t ∈ E, (ii) s ≈E t implies ∇(s) ≈E ∇(t), and (iii) for any
f ∈ F , f(s1, . . . , sn) ≈E f(t1, . . . , tn) iff, for any i = 1, . . . , n, si ≈E ti holds.

Definition 12 (inconsistency). A set E of ∇-equations is inconsistent if ei-
ther (i) xi ≈E s with xi � s /∈ V∗, or (ii) f(s1, . . . , sm) ≈E g(t1, . . . , tn) with
f �= g for some f, g ∈ F . Furthermore, E is consistent if it is not inconsistent.

The next lemma will be used heavily in our proof.

Lemma 13. Let E be a set of ∇-equations. Suppose E is semi-unifiable and let
σ be a semi-unifier of E. Then for any ∇-terms u, v, u ≈E v implies uσ∗ = vσ∗.

Proof. By induction on the derivation of u ≈E v using Lemma 9. ��

4 Symbolic Semi-Unification and Semi-Unification

In this section, we show the equivalence between the consistency and the sym-
bolic semi-unifiability of ∇-equations and the semi-unifiability of the correspond-
ing inequations. Thus, we extend and give a rigorous proof of a result of [8]. A
part of the proof will be postponed until Section 6.

We first introduce interpretations of ∇-terms, a key notion of our proof.

Definition 14 (interpretation). Let τ, ρ be substitutions. An interpretation
[[t]]τρ ∈ T(F ,V) of t ∈ T(F ,V∗) is given by [[xi]]τρ = ρi(τ(x)); [[f(s1, . . . , sn)]]

τ
ρ =

f([[s1]]
τ
ρ , . . . , [[sn]]

τ
ρ).

Lemma 15. Let τ, ρ be substitutions. (1) For t ∈ T(F ,V∗), [[∇(t)]]τρ = ρ([[t]]τρ).
(2) For t ∈ T(F ,V), [[t]]τρ = τ(t).

Proof. By induction on t. ��

A solution σu, σm of a uniform semi-unification problem can be obtained from a
solution σ of symbolic semi-unification problem as follows.

Definition 16 ([8]). Let σ be a ∇-substitution. Then we define its unification
part σu and matching part σm as below.

1. Let X0 = {x ∈ V | x ∈ dom(σ)}, X1 = {xi | xi ∈ dom(σ), i > 0}, and
X2 = (

⋃
{V∗(xi ≈ σ(xi)) | xi ∈ dom(σ)}) \ (V ∪X1).
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2. Prepare fresh distinct variables for each xi ∈ X2 and let ϕ be a mapping that
assigns to each xi ∈ X2 the corresponding fresh variable; let ϕ be recursively
extended as ϕ(y) = y; ϕ(f(t1, . . . , tn)) = f(ϕ(t1), . . . , ϕ(tn)).

3. For each xi ∈ X1, put σm(x
i−1) = ϕ(σ(xi)) if i = 1, and σm(ϕ(x

i−1)) =
ϕ(σ(xi)) otherwise. For each xi ∈ X2, put σm(x

i−1) = ϕ(xi) if i = 1, and
σm(ϕ(x

i−1)) = ϕ(xi) otherwise.
4. For each x ∈ X0, put σu(x) = ϕ(σ(x)).

Example 17. Let σ = {x := f(y, z1), y1 := f(y, z), z3 := f(z1, w2)}. Then X0 =
{x}, X1 = {y1, z3} and X2 = {z1, z2, w1, w2}. Put ϕ = {z1 := z′, z2 := z′′, w1 :=
w′, w2 := w′′}. Then we have σm = {y := f(y, z), z′′ := f(z′, w′′), z := z′, z′ :=
z′′, w := w′, w′ := w′′} and σu = {x := f(y, z′)}.

Lemma 18. For any ∇-substitution σ, σu and σm are well-defined substitutions.

Lemma 19. (1) σim(x) = ϕ(xi) for xi ∈ X2. (2) σ
i
m(x) = ϕ(σ(xi)) for xi ∈ X1.

Lemma 20. Let t ∈ T(F ,V∗) such that V(t) ∩ X0 = ∅ and V∗(t) \ V ⊆ X2.
Then [[t]]σu

σm
= ϕ(t). In particular, for any xi ∈ X1, [[σ(x

i)]]σu
σm

= ϕ(σ(xi)).

The next two key lemmas are used to prove the theorem below.

Lemma 21. For any t ∈ T(F ,V∗) and any ∇-substitution σ, [[σ∗(t)]]σu
σm

= [[t]]σu
σm
.

Proof. First prove [[σ(t)]]σu
σm

= [[t]]σu
σm

using Lemmas 15, 19 and 20. ��

Lemma 22. Let s, t ∈ T(F ,V∗), and ρ, τ be substitutions. Suppose that [[l]]τρ =
[[r]]τρ for any l ≈ r ∈ E. Then if u ≈E v then [[u]]τρ = [[v]]τρ.

Proof. By induction on the derivation of u ≈E v, using Lemma 15. ��

Theorem 23 (consistency and semi-unifiability). For any terms s, t ∈
T(F ,V), the following are equivalent: (i) {∇(s) ≈ t} is semi-unifiable, (ii)
{s � t} is semi-unifiable, and (iii) {∇(s) ≈ t} is consistent.

Proof. (iii) ⇒ (i) will be shown later (Corollary 45). To show (i) ⇒ (ii), use
Lemmas 15 and 21. To show (ii) ⇒ (iii), use Lemmas 15 and 22. ��

(ii) ⇔ (iii) was obtained in [8]; we incorporate an equivalence with (i).

5 Partial Correctness of Symbolic Semi-Unification

In this section, we give a rule-based symbolic semi-unification procedure and
show its partial correctness. Our calculus is a variant of the one given in [8].
Essentially the same calculi are given in [12, 13, 15, 19]. Before giving the pro-
cedure, we need a preparation.

Definition 24 (relation �). We fix an arbitrary (strict) total order � on V∗

satisfying (i) i > j implies xi � xj and (ii) xi � yj implies xi+1 � yj+1. The
order � is extended by xi � t for any t /∈ V∗ and xi �� t.
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Decompose {f(s1, . . . , sn) ≈ f(t1, . . . , tn)} � E

{s1 ≈ t1, . . . , sn ≈ tn} ∪E
f ∈ F

Reduce
{xi ≈ t, C[xi] ≈ u} �E

{xi ≈ t, C[t] ≈ u} ∪E
xi � t

Delete {xi ≈ xi} � E

E

Clash {f(s1, . . . , sm) ≈ g(t1, . . . , tn)} � E

⊥ f 
= g, f, g ∈ F

Check {xi ≈ t} � E

⊥ t /∈ V∗, xi � t

Fig. 1. Inference rules for symbolic semi-unification

It readily follows from our condition that (i) i > j iff xi � xj and (ii) xi � yj

iff xi+1 � yj+1. One way to give � is to fix some total order > on V and define
xi � yj iff either x > y or (x = y and i > j) as in [8, 15, 19]. But our proof
reveals that the abstract condition above is sufficient.

Definition 25 (symbolic semi-unification procedure). One step deriva-
tion using any of inference rules listed in Figure 1 is denoted by �. Here, the
inference rules act on a finite set of ∇-equations and " denotes the disjoint
union. For an input of a finite set E0 of ∇-equations and the relation �, a
symbolic semi-unification procedure non-deterministically constructs a deriva-
tion E0 � E1 � · · · (possibly following some fixed derivation strategy). The
derivation may be finite or infinite, and it is maximal if it does not end with
Ek for which a further application of an inference rule is possible. A symbolic
semi-unification procedure (following a fixed derivation strategy) terminates if
any derivation (following that derivation strategy) is finite.

The reflexive transitive closure of � is denoted by
∗
�.

Example 26. Let the total order � be given by wi �xj � yk � zl for any i, j, k, l.
Consider E = {y3 ≈ z, w3 ≈ x, x2 ≈ f2(y), x1 ≈ f(w2)}. Then we have

{y3 ≈ z, w3 ≈ x, x2 ≈ f2(y), x1 ≈ f(w2)}
� {y3 ≈ z, w3 ≈ x, f(w3) ≈ f2(y), x1 ≈ f(w2)}
� {y3 ≈ z, w3 ≈ x,w3 ≈ f(y), x1 ≈ f(w2)}
� {y3 ≈ z, f(y) ≈ x,w3 ≈ f(y), x1 ≈ f(w2)}
� {y3 ≈ z, x ≈ f(y), w3 ≈ f(y), f(y1) ≈ f(w2)}
� {y3 ≈ z, x ≈ f(y), w3 ≈ f(y), w2 ≈ y1}
� {y3 ≈ z, x ≈ f(y), y2 ≈ f(y), w2 ≈ y1}
� {z ≈ f(y1), x ≈ f(y), y2 ≈ f(y), w2 ≈ y1}.

Here, modified parts are underlined.
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Remark 27. In [8], the following (almost) rule-based procedure is given: (1) Ap-
ply Decompose as many times as possible; Apply Clash or Check if possible. (2)
Fix a total order > on variables. Consider a ground TRS R = {l → r | l ≈
r ∈ E, l > r}. Then: “For each rule, reduce each side (if reducible) by a single
step of rewriting by other rules. If no rule can be rewritten any further, report
SUCCESS. Otherwise replace the rule by the new equation thus obtained and
go to Step (1).”

It is claimed in [8] that this procedure is terminating. The description “For
each rule, ...” is difficult to interpret: for example,

{h(g(y1), g(z1), g(x1)) ≈ h(x, y, z)} � {x ≈ g(y1), y ≈ g(z1), z ≈ g(x1)}
� {x ≈ g2(z2), y ≈ g2(x2), z ≈ g2(y2)}
� {x ≈ g4(y4), y ≈ g4(z4)), z ≈ g4(x4)}
� · · ·

should not be the case, as they claim that their procedure terminates.

Remark 28. Recall the following inference rules of the unification procedure cor-
responding to Reduce and Check:

Reduce′ Check′

〈{x ≈ t} " E, σ〉
〈{x := t}(E), {x := t} ◦ σ〉 x /∈ V(t) 〈{x ≈ s} " E, σ〉

⊥ x� s, s /∈ V

Two differences can be observed:

• the equations part and the substitution part are separated, and
• Reduce′ uses the substitution (replacing all occurrences of x), while Reduce

uses the replacement (replacing a single occurrence of xi).

In the unification procedure, the substitution part can be naturally separated
from the equations part, as the substitution {x := t} is not needed again in the
equation part. But in the case of semi-unification, this is not the case:

{x1 ≈ f(x, y2), y1 ≈ g(x), y3 ≈ g(z)} {x1, x, y2, y1, x, y3, z}
� {x1 ≈ f(x, y2), y1 ≈ g(x), g(x2) ≈ g(z)} {x1, x, y2, y1, x, x2, z}
� {x1 ≈ f(x, y2), y1 ≈ g(x), x2 ≈ z} {x1, x, y2, y1, x, x2, z}
� {x1 ≈ f(x, y2), y1 ≈ g(x), f(x1, y3) ≈ z} {x1, x, y2, y1, x, x1, y3, z}
� · · ·

At the first line, x1 := f(x, y2) can not be applied to other equations, while it
can be applied to the equation x2 ≈ z at the third line. Thus, a solved equation
needs to be kept in the system for the future simplifications or for the case the
equation itself is simplified in the future. Hence, it is not possible to split off the
solved equations as the substitution part. Furthermore, since the substitution
does not eliminate the future need of the application of the same substitution,
it seems natural to use the replacement in Reduce instead of the substitution.

It is also observed that the derivation from the first line to the fourth line
strictly increases the multiset of ∇-variables in the equation, which is listed at
the right. Hence it is difficult to adapt a termination proof similar to the one
applied to calculi for unification (see e.g. [1]).
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Example 29. In fact, our calculus is not terminating—this is witnessed by the
following derivation.

{x ≈ z, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(y) ≈ z, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(y) ≈ g(x), x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {y ≈ x, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(z) ≈ x, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(z) ≈ g(y), x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {z ≈ y, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(x) ≈ y, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {g(x) ≈ g(z), x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� {x ≈ z, x ≈ g(y), y ≈ g(z), z ≈ g(x)}
� · · ·

We note that because of some postponed applications of Reduce, Check is not
applicable in the derivation. This infinite derivation is also valid in the calcu-
lus given in [15]. In Section 6, we will give a sufficient criterion on derivation
strategies under which any derivation terminates.

Remark 30. The infinite derivation above is not possible, if one adopts a variant
of Reduce using substitution (instead of the replacement):

Reduce′′ {xi ≈ t} " E
{xi ≈ t} ∪ {xi := t}(E)

xi � t

Rule-based semi-unification calculi in [8, 15] use the replacement, and those in
[12, 13, 19] use the substitution. We note that any substitution can be simulated
by repeated applications of replacement. We refer Lemma 43 for the termination
of the calculus obtained by replacing the Reduce by Reduce′′—termination of
such calculus under a particular derivation strategy is also obtained in [12].

Remark 31. Another difference of the rule-based semi-unification calculi in the
literature is whether the transformation ∇(f(t1, . . . , tn)) = f(∇(t1), . . . ,∇(tn))
is admitted in the course of derivations. The calculi in [15, 19] admit such flexibil-
ity. Adding such flexibility, however, causes another non-terminating derivation2.

We now give several properties of finite derivations.

Lemma 32. Suppose E
∗
� E′ with E′ �= ⊥. Then ≈E = ≈E′ .

Using Lemma 13, we have

Corollary 33. If E
∗
� E′ �= ⊥, then E is semi-unifiable iff E′ is semi-unifiable.

Using Lemma 13 and Corollary 33, partial correctness of our symbolic semi-
unification procedure is obtained.

Theorem 34 (partial correctness). Let E be a finite set of ∇-equations. (1)

If E
∗
� ⊥ then E is not semi-unifiable. (2) If E

∗
� E′ �= ⊥ and no inference

rules are applicable to E′, then E is semi-unifiable.

2 The authors learned this observation from an anonymous reviewer.
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6 Termination of Symbolic Semi-Unification Procedure

In this section, we show termination of our rule-based symbolic semi-unification
procedure under an assumption on the derivation strategy employed.

For the proof, we introduce a new relation.

Definition 35 (variable relation). A relation >v on ∇-variables, called the
variable relation consistent with a set of ∇-equations E and the order �, is the
smallest transitive relation satisfying the following conditions: (i) if xi ≈E yj

with xi � yj then xi >v y
j, (ii) if xi ≈E C[yj ] with C[yj ] /∈ V∗ for some strict

context C then xi >v y
j. Here, a context C is strict if C is not of the form

C′[∇(�)] for some context C′. The reflexive closure of >v is denoted by ≥v.

Lemma 36. Let >v be a variable relation consistent with E and �. If xi >v y
j

then xi ≈E C[yj ] for some context C; furthermore, if C = � then xi � yj.

Lemma 37. Let X be a finite set of variables. Let a0, a1, . . . be an infinite se-
quence of ∇-variables from X∗ = {xi | x ∈ X, i ≥ 0}. Then there exist indexes
i, j with i < j such that aj = ∇k(ai) for some k ≥ 0.

Definition 38 (M(t), M(E)). The multiset M(t) of ∇-variables that occur
maximally in a ∇-term t is defined like this: M(xi) = {xi}; M(f(t1, . . . , tn)) =⊎

i M(ti). For a finite set E of ∇-equations, we put M(E) =
⊎
{M(s)"M(t) |

s ≈ t ∈ E}. Here, " denotes the multiset union.

The next property is well-known (see e.g. [1]).

Proposition 39. Let �v be the multiset extension of >v and ≥≥v its reflexive
closure. Let M0 ≥≥v M1 ≥≥v · · · be an infinite sequence of finite multisets such
thatMi �v Mi+1 for infinitely many indexes i. Then there is an infinite sequence
a0 ≥v a1 ≥v · · · with ai ∈Mi such that ai >v ai+1 for infinitely many indexes i.

Lemma 40. Let E0 be a finite set of ∇-equations, >v the variable relation con-
sistent with E0 and �. If E0

∗
� E � E′ �= ⊥ then M(E) ≥≥v M(E′). In

particular, if E � E′ is by Reduce, then M(E) �v M(E′).

Proof. Distinguish the cases by the inference rule used in E � E′. ��

Theorem 41 (termination of symbolic semi-unification procedure). Ev-
ery derivation starting from a consistent finite set of ∇-equations is finite.

Proof. Suppose E0 � E1 � · · · be an infinite derivation and E0 is consistent.
Then, Clash and Check can not be used in this derivation. Decompose and
Delete do not increase M(Ei) but reduce the number of symbols. Hence there
does not exists an index j such that the Decompose and Delete are used for all
Ei � Ei+1 with i > j. Thus there are infinitely many i such that Reduce is used
on Ei � Ei+1. Hence M(E0) ≥≥v M(E1) ≥≥v · · · and there are infinitely many i
such that M(Ei) �v M(Ei+1) by Lemma 40. Then, by Proposition 39, we have
an infinite sequence xi00 >v x

i1
1 >v · · · . Thus by Lemma 37 there exists indexes
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k, l (k < l) such that ik ≤ il and xk = xl = x. Since >v is transitive relation,
xikk >v x

il
l . Hence by Lemma 36, xik ≈E C[xil ] for some context C such that

C = � implies xik � xil . C �= � contradicts with the consistency of E. If C = �
then xik � xil contradicts ik ≤ il. Thus there exists no infinite derivation. ��
The above theorem motivates the following definition.

Definition 42 (refutational completeness). A derivation strategy is said to
be refutationally complete if any maximal derivation starting from an inconsis-
tent set of ∇-equations and following that strategy is finite and ends with ⊥.

The next lemma gives a concrete example of refutationally complete derivation
strategy. Note that the rule Reduce′′ is given in Remark 30.

Lemma 43. A derivation strategy subject to using Reduce′′ in place of Reduce
and applying Check whenever possible is refutationally complete.

Proof. Suppose E0 � E1 � · · · be a maximal derivation and E0 is inconsis-
tent. If Clash or Check is used then we are done. Otherwise, from the proof
of Theorem 41, we have a sequence of ∇-variables xik = xikk >v x

ik+1

k+1 >v

· · · >v x
il
l = xil with ik ≤ il. This means that there exist xik ≈ Ck[x

ik+1

k+1 ] ∈
Eik , . . . , x

il−1

l−1 ≈ Cl[x
il ] ∈ Eil−1

. Since Reduce′′ is simulated in our derivation,

every x
ij+1

j+1 in Cj [x
ij+1

j+1 ] is replaced by Cj+1[x
ij+2

j+2 ] for j = k+1, . . . , l− 1. Hence

xik ≈ Ck[x
ik+1

k+1 ] ∈ Eik has the descendant xik ≈ C[xil ] ∈ Eil such that C = �
implies xik � xil . If C �= � then Check can be applied, which contradicts our
assumption. If C = � then xik � xil contradicts ik ≤ il. ��
The next theorem immediately follows from Theorems 34 and 41.

Theorem 44 (total correctness). The symbolic semi-unification procedure
terminates if it follows a refutationally complete derivation strategy; either the
input E is semi-unifiable and any maximal derivation ends with a set of ∇-
equations or E is not semi-unifiable and any maximal derivation ends with ⊥.

We now obtain Theorem 4.1 of [8], on which their correctness proof is based, as
a corollary.

Corollary 45 (consistency and semi-unifiability [8]). Let E be a finite set
of ∇-equations. Then E is consistent iff E is semi-unifiable.

Proof. (⇒) Use Theorem 44 and Lemma 32. (⇐) Use Lemma 13. ��

7 Conclusion

We have revisited rule-based calculi for uniform semi-unification, on which ef-
ficient uniform semi-unification procedures [8, 15] are based. We have given a
new characterization of symbolic semi-unification and extended the correspon-
dence between symbolic semi-unifiability and uniform semi-unifiability. For a
rule-based calculus of symbolic semi-unification, which is given in a general form
essentially including those of [8, 12, 15, 19], we have shown its termination and
correctness under refutationally complete derivation strategy.
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Abstract. A language is factorial if it is closed under taking factors
(i.e. contiguous subwords). Every factorial language can be described
by an antidictionary, i.e. a minimal set of forbidden factors. We show
that the problem of deciding whether a factorial language given by a
finite antidictionary is well-quasi-ordered under the factor containment
relation can be solved in polynomial time.

Keywords: well-quasi-ordering, factorial language, polynomial-time
algorithm.

1 Introduction

Well-quasi-ordering (wqo) is a highly desirable property and frequently discov-
ered concept in mathematics and theoretical computer science [6,9]. One of the
most remarkable recent results in this area is the proof of Wagner’s conjec-
ture stating that the set of all finite graphs is well-quasi-ordered by the minor
relation [11]. However, the subgraph or induced subgraph relation is not a well-
quasi-order. Other examples of important relations that are not well-quasi-orders
are pattern containment relation on permutations [12], embeddability relation
on tournaments [3], minor ordering of matroids [7], factor (contiguous subword)
relation on words [10]. On the other hand, each of these relations may become
a well-quasi-order under some additional restrictions. In the present paper, we
study restrictions given in the form of obstructions, i.e. minimal excluded (“for-
bidden”) elements (precise definitions and examples will be given in the next
section). The fundamental problem of our interest is the following: given a par-
tial order P and a finite set of obstructions Z, determine if the set of elements
of P containing no elements from Z forms a well-quasi-order. This problem was
studied for the induced subgraph relation on graphs [8], the pattern contain-
ment relation on permutations [2], the embeddability relation on tournaments
[3], the minor ordering of matroids [7]. However, the decidability of this problem
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has been shown only for one or two forbidden elements (graphs, permutations,
tournaments, matroids). Whether this problem is decidable for larger numbers
of forbidden elements is an open question. In the present paper, we answer this
question positively for factorial languages.

All preliminary information related to the topic of the paper can be found in
Section 2.

2 Preliminaries

2.1 Partial Orders and WQO

For a set A we denote by A2 the set of all ordered pairs of (not necessarily
distinct) elements from A. A binary relation on A is a subset of A2. If a binary
relation R ⊂ A2 is

– reflexive, i.e. (a, a) ∈ R for each a ∈ A,
– transitive, i.e. (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R,

then R is a quasi-order (also known as pre-order). If additionally R is

– antisymmetric, i.e. (a, b) ∈ R and (b, a) ∈ R imply a = b,

then R is a partial order.

We say that two elements a, b ∈ A are comparable with respect to R if either
(a, b) ∈ R or (b, a) ∈ R. A set of pairwise comparable elements of A is called a
chain and a set of pairwise incomparable elements of A is called an antichain.

A quasi-ordered set is well-quasi-ordered if it contains

– neither infinite strictly decreasing chains, in which case we say that the set
is well-founded,

– nor infinite antichains.

All examples of quasi-orders in this paper will be antisymmetric (i.e. partial
orders) and well-founded, in which case well-quasi-orderability is equivalent to
the non-existence of infinite antichains.

Examples.

(1) Let A be the set of all finite simple (i.e. undirected, without loops and
multiple edges) graphs. If a graph H ∈ A can be obtained from a graph
G ∈ A by a (possibly empty) sequence of

• vertex deletions, then H is an induced subgraph of G,
• vertex deletions and edge deletions, then H is a subgraph of G,
• vertex deletions, edge deletions and edge contractions, then H is a minor
of G,

• vertex deletions and edge contractions, then H is an induced minor of G.
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According to the celebrated result of Robertson and Seymour [11] the mi-
nor relation on the set of graphs is a well-quasi-order. However, this is not
the case for the subgraph, induced subgraph and induced minor relation. In-
deed, it is not difficult to see that the set of all chordless cycles C3, C4, C5, . . .
creates an infinite antichain with respect to both subgraph and induced sub-
graph relations, and the complements of the cycles form an infinite antichain
with respect to the induced minor relation. Besides, the set of so-called H-
graphs (i.e. graphs represented in Figure 1) also forms an infinite antichain
with respect to subgraph and induced subgraph relations.

� � � � � � � �

�

�

�

�

1 2 i

Fig. 1. The graph Hi

(2) Let A be the set of all finite permutations. We say that a permutation π ∈ A
of n elements is contained in a permutation ρ ∈ A of k elements (n ≤ k) as
a pattern, if π can be obtained from ρ by deleting some (possibly none) ele-
ments and renaming the remaining elements consecutively in the increasing
order. Obviously, the pattern containment relation is a well-founded partial
order. However, whether it is a quasi-order is not an obvious fact. Finding
an infinite antichain of permutations becomes much easier if we associate to
each permutation its permutation graph. Let π be a permutation on the set
N = {1, 2, . . . , n}. The permutation graph Gπ of π is the graph with vertex
set N in which two vertices i and j are adjacent if and only if they form an
inversion in π (i.e. i < j and π(i) > π(j)). It is not difficult to see that if ρ
contains π as a pattern, then Gρ contains Gπ as an induced subgraph. There-
fore, if G1, G2, . . . is an infinite antichain of permutation graphs with respect
to the induced subgraph relation, then the corresponding permutations form
an infinite antichain with respect to the pattern containment relation. Since
the H-graphs (Figure 1) are permutation graphs (which is easy to see), we
conclude that the pattern containment relation on permutations is not a
well-quasi-order.

(3) Let A be the set of all finite words in a finite alphabet. A word α ∈ A is
said to be a factor of a word β ∈ A if α can be obtained from β by omitting
a (possibly empty) suffix and prefix. If the alphabet contains at least two
symbols, say 1 and 0, the factor containment relation is not a well-quasi-
order, since it necessarily contains an infinite antichain, for instance, 010,
0110, 01110, etc.
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2.2 Hereditary Properties of Partial Orders

Let (A,R) be a well-founded partial order. A property on A is a subset of A.
A property P ⊆ A is hereditary (with respect to R) if x ∈ P implies y ∈ P for
every y ∈ A such that (y, x) ∈ R. Hereditary properties are also known as lower
ideals or downward closed sets.

Examples.

– If A is the set of all finite graphs and R is the minor relation, then a hered-
itary property on A is known as a minor-closed class of graphs.

– If A is the set of all finite graphs and R is the subgraph relation, then a
hereditary property on A is known as a monotone class of graphs.

– If A is the set of all permutations and R is the pattern containment rela-
tion, then a hereditary property on A is known as a pattern class or pattern
avoiding class.

– If A is the set of all words in a finite alphabet andR is the factor containment
relation, then a hereditary property on A is known as a factorial language.

The word “avoiding” used in the terminology of permutations suggests that a
hereditary property can be described in terms of “forbidden” elements. To better
explain this idea, let us introduce the following notation: given a set Z ⊆ A, we
denote

Free(Z) := {a ∈ A | (z, a) �∈ R ∀z ∈ Z}.
Obviously, for any Z ⊆ A, the set Free(Z) is hereditary. On the other hand, for
any hereditary property P ⊆ A there is a unique minimal set Z ⊆ A such that
P = Free(Z). We call Z the set of forbidden elements for Free(Z) and observe
that a minimal set of forbidden elements is necessarily an antichain.

Examples.

– Since the minor relation on graphs contains no infinite antichains, any minor-
closed class of graphs can be described by a finite set of forbidden minors. In
particular, for the class of planar graphs the set of minimal forbidden minors
consists of K5, the complete graph on 5 vertices, and K3,3, the complete
bipartite graph with 3 vertices in each part.

– The set of minimal forbidden permutations for a pattern avoiding class is
also known as the base of the class.

– The set of minimal forbidden words for a factorial language is also known as
the antidictionary of the language.

In the above notation, the problem of our interest can be stated as follows:

Problem 1. Given a finite set Z ⊂ A, determine if Free(Z) is well-quasi-ordered
with respect to R.

This question is not applicable to the minor relation on graphs, since this rela-
tions is a well-quasi-order. For hereditary properties of graphs with respect to
the subgraph relation, Problem 1 has a simple solution which is due to Ding [5]:



72 A. Atminas, V. Lozin, and M. Moshkov

a monotone class of graphs is well-quasi-ordered by the subgraph relation if and
only if it contains finitely many cycles and finitely many H-graphs. Therefore,
if Z is finite, then Free(Z) is well-quasi-ordered with respect to the subgraph
relation if and only if Z includes a chordless path (or an induced subgraph of a
chordless path), because otherwise Free(Z) contains infinitely many cycles.

For other relations, such as the induced subgraph relation on graphs or pattern
containment relation on permutations, only partial results are available, where Z
contains one or two elements (see e.g. [1,8]). Whether this problem is decidable
for larger numbers of forbidden elements is an open question. In the present
paper, we study Problem 1 for factorial languages and show that the problem
is efficiently solvable for any finite set Z. To this end, we use the result from [4]
which allows representing a factorial language defined by a finite antidictionary
in the form of a finite deterministic automaton.

2.3 Languages and Automata

Let k ≥ 2 be a natural number and Ek = {0, 1, . . . , k − 1} be an alphabet. A
finite deterministic automaton over Ek is a triple A = (G, q0, Q), where

– G is a finite directed graph, possibly with multiple edges and loops, in which
the edges are labeled with letters from Ek in such a way that any two edges
leaving the same node have different labels,

– q0 is a node of G, called the start node, and
– Q is a nonempty set of nodes of G, called the terminal nodes.

A directed path in G is any sequence v1, e1, . . . , vm, em, vm+1 of nodes vi and
edges ej such that for each j = 1, . . . ,m, the edge ej is directed from vj to vj+1.
We emphasize that both nodes and edges can appear in such a path repeatedly.

With each directed path τ in the graph G we associate a word over Ek by
reading the labels of the edges of τ (listed along the path) and denote this word
by w(τ). A directed path in G will be called an A-path if it starts at the node
q0 and ends at a terminal node.

Let α be a word over Ek. We say that an automaton A = (G, q0, Q) accepts α
if there is an A-path τ such that w(τ) = α. The set of all words accepted by A is
called the language accepted (or recognized) by A and this language is denoted
L(A). It is well-known that the set of languages accepted by finite deterministic
automata are precisely the regular languages.

The following result was proved in [4].

Theorem 2. Given a set Z of n words over Ek, in time O(nk) one can construct
a finite deterministic automaton A such that L(A) coincides with the factorial
language Free(Z).

We call an automaton A = (G, q0, Q) reduced if for each node of G there exists an
A-path containing this node. It is not difficult to see that any finite automaton
can be transformed into an equivalent (i.e. accepting the same language) reduced
automaton in polynomial time. This observation together with Theorem 2 reduce
Problem 1 to the following one:
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Problem 3. Given a finite deterministic automaton A, determine if L(A) is well-
quasi-ordered with respect to the factor containment relation.

In the next two sections, we give an efficient solution to this problem.

3 Auxiliary Results

Given a word α, we denote by |α| the length of α, i.e. the number of letters in
α. Also, αi denotes concatenation of i copies of α and is called the i-th power of
α.

A word α = α1 . . . αn is called a periodic word with period p if

– either p ≥ n
– or p < n and αi = αi+p for i = 1, . . . , n− p.

A word γ will be called a left extension of a power of a word α if γ can be
represented in the form σαi, where σ is a suffix of α. Similarly, γ will be called a
right extension of a power of α if γ can be represented in the form αiσ, where σ
is a prefix of α. Directly from the definition we obtain the following conclusion.

Lemma 4. A word γ is a left extension of a power of α if and only if the word
γα is a periodic word with period |α|. A word γ is a right extension of a power
of α if and only if the word αγ is a periodic word with period |α|.

Now we prove a number of further auxiliary results.

Lemma 5. Let γ, α, δ be words such that either γ is a left extension of a power
of α or δ is a right extension of a power of α. Then the set {γαiδ : i = 0, 1, 2, . . .}
is a chain, i.e. any two words in this set are comparable.

Proof. Let γαiδ and γαjδ be two words with i < j. If γ is a left extension of
a power of α, then the word γ can be represented as σαk where σ is a suffix of
α. Therefore, the word γαiδ can be obtained from the word γαjδ by removing
a prefix of length (j − i)|α|. Similarly, if δ is a right extension of a power of α,
then the word γαiδ can be obtained from the word γαjδ by removing a suffix of
length (j − i)|α|. ��

Lemma 6. Let γ, α, δ be words such that γ is not a left extension of a power
of α, and δ is not a right extension of a power of α. Then the set of words
{γαiδ : i = 1, 2, . . .} contains an infinite antichain.

Proof. Let p be a natural number such that p |α| > |γ|+ |δ|. We will show that
the set of words {γαipδ : i = 1, 2, . . .} is an antichain. Assume the contrary, i.e.
assume there are numbers 0 < i < j such that the words γαipδ and γαjpδ are
comparable, i.e. one of them is a factor of the other. We know that

∣∣γαipδ
∣∣ <∣∣αjp

∣∣. Therefore, either γαip is a factor of αjp, or αipδ is a factor of αjp. In the
first case, γα is a periodic word with period |α|. In the second case, αδ is a
periodic word with period |α|. Both cases are impossible according to Lemma 4,
since neither γ is a left extension of a power of α nor δ is a right extension of a
power of α. ��
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Lemma 7. Let γ, α, δ, β be words. If δ is not a right extension of a power of α,
then the word γα|β|δ is not a left extension of a power of β.

Proof. Let us assume the contrary, i.e. assume that γα|β|δ is a left extension
of a power of β. Then, by Lemma 4, the word ε = γα|β|δβ is a periodic word
with period |β| and, therefore, with period |β| |α|. Since α|β| is a factor of ε and
|β| |α| is a period of ε, the word ε is a factor of the word α|β|p for a large enough
natural number p. Hence, ε is a periodic word with period |α|. As a result, αδ
also is a periodic word with period |α|. However, this is impossible by Lemma 4,
since δ is not a right extension of a power of α. ��

4 Main Results

In this section, we show how to decide for a given finite deterministic automaton
A = (G, q0, Q) whether the language L(A) contains an infinite antichain or not
with respect to the factor containment relation. Our solution is based on the
analysis of the structure of cycles in G.

A cycle in G is any directed path with at least one edge in which the first
and the last nodes coincide. A cycle is simple if its nodes are pairwise distinct
(except for the first node being equal to the last node). Given a simple cycle C,
we denote by |C| the length of C, i.e. the number of nodes in C. For a node v of
C, we denote by w(C, v) the word of length |C| obtained by reading the labels
of the edges of C starting from the node v.

We distinguish between two basic cases: the case where G contains two dif-
ferent simple cycles that have at least one node in common and the case where
all simple cycles of G are pairwise node disjoint.

Proposition 8. Let A = (G, q0, Q) be a reduced finite deterministic automaton.
If G contains two different simple cycles which have a node in common, then the
language L(A) contains an infinite antichain.

Proof. Let C1 and C2 be two different simple cycles with a common node v. Since
the cycles are different we may assume without loss of generality that the node
of C1 following v is different from the node of C2 following v. As a result, the
edges of C1 and C2 leaving v are labeled with different letters of the alphabet.

We denote α = w(C1, v)
|C2| and β = w(C2, v)

|C1|. The words α and β have the
same length, but they differ in the first letter according to the above assumption.

Since A is reduced, there exist a directed path ρ from the start node to v and
a directed path π from v to a terminal node. Therefore, every word of the form
w(ρ)βαiβw(π) (i = 1, 2, . . .) belongs to the language L(A). Since the words α
and β have the same length and differ in the first letter, we conclude that β, and
hence w(ρ)β, is not a left extension of a power of α. Similarly, the word βw(π)
is not a right extension of a power of α. Therefore, by Lemma 6, the language
L(A) contains an infinite antichain. ��
From now on, we consider automata in which every two simple cycles are node
disjoint. In this case, we decompose the set of nodes into finitely many subsets
of simple structure, called metapaths.
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A metapath consists of a number of node disjoint simple cycles, say C1, . . . , Ct

(possibly t = 0), and a number of directed paths ρ0, . . . , ρt such that ρ0 connects
the start node q0 to C1, ρ1 connects C1 to C2, ρ2 connects C2 to C3, and so on,
and finally, ρt connects Ct to a terminal node of the automaton. Let us observe
that ρ0 and ρt can be of length 0, while all the other paths are necessarily of
length at least one, since the cycles are node disjoint.

We denote by s(ρi) and f(ρi) the first and the last node of ρi, respectively,
and observe that for i > 0, s(ρi) belongs to Ci, and for i < t, f(ρi) belongs to
Ci+1.

If t = 0, then the metapath contains no cycles and consists of the path ρ0
alone. This path connects the start node q0 to a terminal node of the automaton
and no node of this path belongs to a simple cycle.

If t > 0, then f(ρ0), s(ρ1), f(ρ1), . . . , s(ρt−1), f(ρt−1), s(ρt) are the only nodes
of the paths ρ0, ρ1, . . . , ρt that belong to simple cycles.

For i = 1, . . . , t, we denote by

– πi the directed path from f(ρi−1) to s(ρi) taken along the cycle Ci,
– γi the word w(πi)w(ρi),
– αi the word w(Ci, f(ρi−1)).

Also, by γ0 we denote the word w(ρ0).
Let τ be a metapath with t cycles, as defined above. The set of words accepted

by this metapath can be described as follows: if t = 0 then L(τ) = {γ0} , and if
t > 0 then

L(τ) = {γ0αj1
1 γ1 . . . γt−1α

jt
t γt : j1, . . . , jt = 0, 1, . . .}.

Clearly, the set T (A) of all metapaths is finite and

L(A) =
⋃

τ∈T (A)

L(τ).

It is also clear that L(A) contains an infinite antichain if and only if L(τ) contains
an infinite antichain for at least one metapath τ ∈ T (A).

If t = 0, the set L(τ) is finite and hence cannot contain an infinite antichain. In
order to determine if L(τ) contains an infinite antichain for t > 0, we distinguish
between the following three cases: t = 1, t = 2 and t ≥ 3. In our analysis below
we use the following simple observation:

Observation 1. For i = 1, . . . , t− 1, the word γi is not a right extension of a
power of αi.

The validity of this observation is due to the fact that the edge of ρi and the
edge of Ci leaving vertex s(ρi) must have different labels. On the other hand, we
note that γ0 may be a left extension of a power of α1, while γt may be a right
extension of a power of αt.

Proposition 9. Let τ be a metapath with exactly one cycle. Then L(τ) contains
an infinite antichain if and only if
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– neither γ0 is a left extension of a power of α1

– nor γ1 is a right extension of a power of α1.

Proof. If γ0 is a left extension of a power of α1 or γ1 is a right extension of a
power of α1, then L(τ) does not contain an infinite antichain by Lemma 5.

If neither γ0 is a left extension of a power of α1 nor γ1 is a right extension of
a power of α1, then L(τ) contains an infinite antichain by Lemma 6. ��

Proposition 10. Let τ be a metapath with exactly two cycles. Then L(τ) con-
tains an infinite antichain if and only if

– either γ0 is not a left extension of a power of α1

– or γ2 is not a right extension of a power of α2.

Proof. Assume γ0 is not a left extension of a power of α1. From Observation 1
we know that γ1 is not a right extension of a power of α1. This implies that
γ1γ2 is not a right extension of a power of α1. Therefore, by Lemma 6, the set
{γ0αi

1γ1γ2 : i = 1, 2, . . .} contains an infinite antichain. Since this set is a subset
of L(τ), we conclude that L(τ) contains an infinite antichain.

Suppose now that γ2 is not a right extension of a power of α2. By Observa-
tion 1, γ1 is not a right extension of a power of α1. Therefore, by Lemma 7,

γ0α
|α2|
1 γ1 is not a left extension of a power of α2. This implies, by Lemma 6,

that the set {γ0α|α2|
1 γ1α

i
2γ2 : i = 1, 2, . . .} contains an infinite antichain. Since

this set is a subset of L(τ), we conclude that L(τ) contains an infinite antichain.
Finally, assume that γ0 is a left extension of a power of α1 and γ2 is a right

extension of a power of α2. Then every word in L(τ) has the form σαi
1γ1α

j
2δ,

where σ is a suffix of α1, δ is a prefix of α2, and i, j are natural numbers. Let
ε1 = σαi1

1 γ1α
j1
2 δ and ε2 = σαi2

1 γ1α
j2
2 δ be two words of this form. Obviously, if

these words are incomparable, then either i1 < i2 and j1 > j2 or i1 > i2 and
j1 < j2. This implies that any antichain in L(τ) containing ε1 can contain at
most i1 + j1 words in L(τ) different from ε1. Therefore the set L(τ) does not
contain an infinite antichain. ��

Proposition 11. Let τ be a metapath with t ≥ 3 cycles. Then L(τ) contains an
infinite antichain.

Proof. By Observation 1, γ1 is not a right extension of a power of α1, and hence,

by Lemma 7, γ0α
|α2|
1 γ1 is not a left extension of a power of α2. Also, by Ob-

servation 1, γ2 is not a right extension of a power of α2, and hence γ2 . . . γt
is not a right extension of a power of α2. Therefore, by Lemma 6, the set

{γ0α|α2|
1 γ1α

i
2γ2 . . . γt : i = 0, 1, 2, . . .} contains an infinite antichain. Since this

set is a subset of L(τ), we conclude that L(τ) contains an infinite antichain. ��

We summarize the above discussion in the following final statement which is the
main result of the paper.

Theorem 12. Given a deterministic finite automaton A one can decide in poly-
nomial time whether the language accepted by A contains an infinite antichain
with respect to the factor containment relation or not.
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Proof. Since the automaton A is finite, the question of the existence of infinite
antichains in L(A) is decidable by Propositions 8, 9, 10, 11. Now we sketch the
proof of polynomial-time solvability.

First, we identify strongly connected components in G, which can be done in
polynomial time. If at least one strongly connected component contains a simple
cycle and is different from the cycle (i.e. contains at least one edge outside of
the cycle), then it necessarily contains two cycles with a common node, in which
case L(A) contains an infinite antichain by Proposition 8.

If each of the strongly connected components of G is a simple cycle (or a
single vertex without loops), then the cycles of G are pairwise node disjoint. In
this case, we construct an auxiliary acyclic graph G′ by contracting each simple
cycle into a single node, called cyclic node. Each metapath in G corresponds to
a directed path in G′.

First, we check if G′ contains a directed path containing at least 3 cyclic
nodes. This can be done for G′ in cubic time. If such a path exists, then by
Proposition 11 L(A) necessarily contains an infinite antichain.

In order to check if G contains a metapath with precisely two cycles and
satisfying conditions of Proposition 10, we choose in G′ an ordered pair of cyclic
nodes c1, c2 and delete from the graph all other cyclic nodes, obtaining in this
way the graph G′′. The nodes c1 and c2 correspond to the cycles C1 and C2 in G.
We assume that in G′′ there is a directed path ρ0 connecting q0 to c1, a directed
path ρ1 connecting c1 to c2 and a directed path ρ2 connecting c2 to a terminal
node. Any three such paths must be node disjoint (except, of course, c1 and c2),
since otherwise a directed cycle arises. Therefore, together with C1 and C2 any
three such paths form a metapath in G. Our task is to verify if there is a triple
(ρ0, ρ1, ρ2) that defines a metapath satisfying conditions of Proposition 10.

Let us observe that every choice of ρ0 uniquely defines the word α1 (inscribed
in C1) which we denote by αρ0

1 . Therefore, in order to verify the first of the two
conditions of Proposition 10 we need to solve the following problem.

(1) Determine if G′′ contains a path ρ0 connecting q0 to c1 such that the corre-
sponding word γ0 = w(ρ0) is not a left extension of a power of αρ0

1 .

The second of the two conditions of Proposition 10 involves the word α2, which is
defined by the path ρ1. However, it turns out that this condition can be verified
without specifying this path. In order to show this, let us associate with every
path ρ2 connecting c2 to a terminal node the word αρ2

2 defined as w(C2, s(ρ2)),
i.e. αρ2

2 is the word of length |C2| inscribed in C2 starting at the first node of
ρ2. Then γ2 = w(π2)w(ρ2) is not a right extension of a power of α2 if and only
if w(ρ2) is not a right extension of a power of αρ2

2 . Therefore, in order to verify
the second of the two conditions of Proposition 10 we need to solve the following
problem.

(2) Determine if G′′ contains a path ρ2 connecting c2 to a terminal node such
that w(ρ2) is not a right extension of a power of αρ2

2 .

To solve problem (1), we denote by n the number of nodes of G′′ and by Ni

the set of nodes of G′′ for which there exists a directed path of length i from q0
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(N0 = {q0}). We observe that the sets Ni are not necessarily disjoint, each of
them contains at most n nodes and for i > n, the sets Ni are empty (since G′′

is acyclic). Consider a vertex x ∈ Ni with i > 0 and assume there is a directed
path connecting x to c1 ∈ Nj with j > i (which can be easily verified). We check
if at least two edges coming to x from the vertices of Ni−1 are labelled with
different letters of the alphabet. If this is the case, then clearly there is a path
ρ0 connecting q0 to c1 through x such that the corresponding word γ0 = w(ρ0)
is not a left extension of a power of αρ0

1 . If for each i and for each vertex x ∈ Ni

all edges coming to x from Ni−1 have the same label and this label coincides
with the respective letter of αρ0

1 (counted cyclically from the end of αρ0

1 ), then
problem (1) has no positive solution. It is not difficult to see that the overall
time complexity of problem (1) is polynomial in the number vertices of G.

To solve problem (2), for each vertex v of C2 we check if v can be connected to
a terminal node by at least two different paths. If this is the case, then at least
one of them is a path ρ2 such that the word w(ρ2) is not a right extension of a
power of αρ2

2 , because the edges leaving the node where the two paths split must
be labeled differently. If for each v ∈ C2 there is at most one path ρ2 connecting
v to a terminal node and the word w(ρ2) is a right extension of a power of αρ2

2 ,
then problem (2) has no positive solution. Clearly, problem (2) can be solved in
polynomial time too.

If at least one of the two problems, say (1), has a positive solution, then, in
addition to this solution, we find an arbitrary directed path connecting c1 to c2
and an arbitrary directed path connecting c2 to a terminal node. Together with
the cycles C1 and C2 these three paths form a metapath τ in G such that L(τ)
contains an infinite antichain by Proposition 10.

The above arguments show that in polynomial time we can check if G has a
metapath τ with precisely two cycles such that L(τ) contains an infinite an-
tichain. If this is not the case, we need to check if G contains a metapath
with exactly one cycle satisfying conditions of Proposition 9. This can be done
by solving for each cyclic node of G′ two problems similar to problems (1)
and (2). ��
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Abstract. One way to generate an accessible deterministic finite au-
tomaton is to first generate a spanning tree and then complete it to
an automaton. We introduce the ideas of a sequential automaton, that
are automata with sequential trees as breadth-first spanning subtrees.
We introduce the concept of elementary equivalent states and explore
combinatorial properties of non-minimal sequential automata. We then
show that minimality is negligible among sequential automata by calcu-
lating the probability that an automaton has two elementary equivalent
states and showing that this probability approach 1 as the size of the
automaton increases.

Keywords: minimal automata, asymptotic density, random generation,
sequential tree.

1 Introduction

Deterministic Finite Automata (DFA) are the simplest form of computation,
composed of a finite number of statesQ, transition between states δ : Q×Σ → Q,
the start state,i and the set of final states F . An accessible DFA (ADFA) is
one that the start state can reach every other state. There are a number of
ways to generate an ADFA with n states. In 1973, Harary and Palmer [12]
enumerated isomorphic automata with output functions as certain ordered pairs
of functions. Harrison [13] considered the enumeration of non-isomorphic DFAs
and connected DFAs up to a permutation of the alphabet symbols. Korshunov
[15] has enumerated the number of non-isomorphic strongly connected finite
automata and with the same criteria Robinson [20] has counted the number
of strongly connected automata. Domaratzki et al. [10] have proposed a lower
bound for the number of accessible deterministic finite automata (ADFAs) over
an alphabet of size k. Nicaud [18] in 2000, and Champarnaud and Paranthoen
[9] in 2005 presented a method for randomly generating ADFAs using spanning
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trees. Nijenhuis and Wilf [19] introduced a recursive method to generate DFAs
at random, which was later systematized by Flajolet, Zimmermann and Van
Custem [11]. This method requires a significant memory space however.

Bassino and Nicaud [5,7] showed that the number of ADFAs isΘ(n2nS(kn, n)),
where S(kn, n) is the Stirling number of the second kind. Using breadth-first
spanning trees, Almeida et. al [1] have also proposed efficient algorithms to gen-
erate ADFAs at random and confirmed the previous result.

There is also an interest in generating a minimal automaton with n states
which is an open question. One way to generate a minimal automaton is to
generate an accessible DFA at random and use a rejection algorithm, to decide
if it is minimal, assuming that the asymptotic density of the minimal automata
exists and is constant. Recently Bassino, et al [6] have shown that the asymptotic
density of minimal automata in the set all ADFAs of size n is constant. They
have shown that for an alphabet of size k, the proportion of minimal automata

is e−
1
2 ckn

−k+2

where ck = 1
2ω

k
k , and ωk is a solution of −kωk = ln(1 − k). For

k = 2 this density is about 0.8532.
We have used the breadth first spanning tree to generate families of automata.

In such families, the number of automata having a given tree as a breadth-first
subtree varies widely, for instance there are trees, degenerate trees for which
there are 2nnn! automata in the span of the tree, and there are trees, full binary
trees with 2nnn+1 automata in the span of the tree. In addition to that, these
families behave very differently in terms of minimality, i.e. there are trees for
which minimality is generic in the span of the tree and there are those for
which minimality is negligible, however for most trees the proportion of minimal
automata hovers around the bound of Bassino et al [6].

In our investigation of automata generation over an alphabet of size 2, we
have constructed a family of automata that are almost always minimal [4]. While
studying those that are minimal is our objective, we have come across a family
of automata that are always non-minimal. In this paper we construct a family
of trees and hence automata in the span of each tree for which the probability
that the automaton is minimal approaches 0 as the number of states approach
infinity.

We use a breadth-first spanning subtree to construct the automata we call
sequential automata. This paper is organized as follows: section 2 includes some
definitions and notations related to string representation of automata and trees,
and minimality. In section 3 we introduce the notion of a sequential automaton
and study combinatorial properties of such automata when non-minimal, we
introduce elementary equivalence of states (similar to M-motif in [6]), and find
the asymptotic density of a sequential automaton having two or more elementary
equivalent states. We calculate the conditional probability of being non-minimal
using a recursive equation, and we present some experimental results obtained
from Monte-Carlo simulations on such automata and show that they agree with
our results.
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2 Definitions and Notation

2.1 Asymptotic Density

A size function on a set A is a map s : A → N such that for all n ∈ N; s−1(n) is
a finite set. A stratification of A into balls is an increasing sequence of subsets
of A with A0 ⊆ A1 ⊆ A2 · · · where each Ai is finite and

⋃∞
i=1 Ai = A. Hence

given a size function s on A, one can find a stratification of A by A0 = s−1({0})
and Ai = s−1({0, 1, · · · , i}). We can also form spheres of radius n defined as
Sn = An −An−1.

LetM be a subset ofA. Define the upper (respectively lower) spherical asymp-
totic density of M to be

ρ̄ = lim sup
n→∞

|M ∩ Sn|
|Sn|

, and ρ = lim inf
n→∞

|M ∩ Sn|
|Sn|

We say that M has a spherical asymptotic density ρ if the limit exist and ρ̄ = ρ.

We say M is generic if ρ = 1 and is negligible if ρ = 0. Note that ρn =
|M ∩ Sn|

|Sn|
can also be viewed as P(M) in Sn with respect to the uniform measure on Sn.

2.2 Automata, Trees, String Representation and Random
Generation

A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ) where Q is a
finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, F ⊂ Q
is the set of final states, and δ is the transition function mapping Q × Σ to Q.
Extend δ by defining δ(q, aw) = δ(δ(q, a), w). An ADFA (accessible deterministic
finite automaton) is an initially connected DFA in which there is a directed path
from the start state, q0 to every other state. A transition structure(TS) is an
automaton (Q,Σ, δ, q0) with no final states.

In this section we also present a canonical representation of a transition struc-
ture and its respective spanning tree which is very useful in enumeration, gener-
ation and analysis of automata. This presentation has been discussed and used
by Almeida et al. in [1] and Babaali in [2]. Any ADFA, A with n states, can be
decomposed into its breadth-first spanning tree with n nodes and the remaining
transitions. This decomposition will lead to an ordering of states of A, and hence
a numbering of states, from 1 to n. This numbering is unique when we fix an
order on Σ. In our paper we fix the ordering a < b in Σ = {a, b}. We also let
the start state to always be state number 1.
Considering the spanning tree T , it can be represented by a binary sequence βT
of length 2n + 1, where βT (0) = 1; βT (i) ∈ {0, 1}. For 1 ≤ k ≤ n, define the
binary representation βT of a tree T by

βT (2k − 1) =

{
1 if there is an edge leaving state k with label a,

0 otherwise,
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and

βT (2k) =

{
1 if there is an edge leaving state k with label b,

0 otherwise.

Notice that by looking at βT (i), we can determine if there is an edge leaving state⌈
i

2

⌉
, labeled by alphabet letters a or b. Similar representations have been used to

generate random binary trees, as shown in the survey by Mäkinen in [16]. One can
show that each βT has precisely n 1s, and n+1 0s. This representation also has
the property that each initial segment w of βT has the property |w|0 < 1+ |w|1.
An example of such a representation is shown in figure 1.

Example 1. Consider the automaton AT and its breadth-first spanning tree T
shown below. Using the definition of the binary representation of a tree, βT =
101110000.

Fig. 1. An automaton and its spanning tree T

For a given tree T , the span of T , S(T ) is the set of all automata having T as
a breadth-first spanning subtree. Now let us count the number of automata in
S(T ) for a given T . Define a new sequence KT to be the difference sequence of
T , which is defined as the number of zeroes between any two consecutive 1’s in
βT . Hence KT = (k1, k2, · · · , kn) is a sequence of non-negative integers of length
n, with the following properties:

1) kn ≤ n+1 , 2) 0 ≤
∑i

j=1 kj ≤ i for 1 ≤ i ≤ n− 1, and 3)
∑n

i=1 ki = n+1.
The string representation and the difference sequence of a tree are very helpful
tools in counting |S(T )|, the number of automata having this tree as a breadth-
first spanning subtree. That is:

|S(T )| = 2n
n∏

i=1

iki (1)

The factor of 2n is counting the different combinations of subsets of final states,
and

∏n
i=1 i

ki is the number of transition structures having T as a spanning
subtree. For example for the tree of figure 1, the difference sequence is KT =
(1, 0, 0, 4) and there are |S(T )| = 24 × 11 × 20 × 30 × 44 automata having T as a
spanning subtree. More details on this method and the associated proof can be
found at [3].
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2.3 Minimal Automata

Let A be a DFA, the language accepted by a A is defined as L(A) = {w ∈
Σ∗|δ(q0, w) ∈ F} . Two DFAs are equivalent if they accept the same language.
An automaton is minimal if it is the automaton with the smallest number of
states accepting a given regular language. Minimal DFAs are unique up to a
renaming of the states, and the minimal automaton of a regular language can
be found using a number of algorithms. There are a number of algorithms that
compute the minimal automaton of A by computing the coarsest partition that
saturates F . Hopcroft [14], Moore [17] and Brzozowski [8] are among the most
studied algorithms.

A partition P = {P1, P2, · · · , Pm}of Q is a set of disjoint subsets of Q with
Q =

⋃m
i=1 Pi. We say that P saturates F if F is a union of classes of P . Two

states p, q ∈ Pi in a given automata A are indistinguishable or equivalent states
if for all w ∈ Σ∗: δ(p, w) ∈ F ⇐⇒ δ(q, w) ∈ F

Clearly p is distinguishable from q if there is a string w such that δ(p, w) is
in F but δ(q, w) is not. In a minimal automaton all states are distinguishable.
Let p ∼ q if p and q are indistinguishable states. Then ∼ is an equivalence
relation on Q which leads to a partition of equivalent states in Q. In more
details, an automaton can be minimized with identification of equivalent states
in the coarsest partition of Q that saturates F .

Definition 2. Let A = (Q,Σ, δ, q0, F ) be an ADFA, with i, j ∈ Q state of A
which are both final or non-final. Then we say that i and j are elementary equiv-
alent and we denote it by i ∼e j if any of the following condition holds

1. δ(i, σ) = δ(j, σ) for all σ ∈ Σ;
2. δ(i, σ1) = j , δ(j, σ1) = i and δ(i, σ) = δ(j, σ) for all σ ∈ Σ − {σ1};
3. δ(i, σ1) = i , δ(j, σ1) = j and δ(i, σ) = δ(j, σ) for all σ ∈ Σ − {σ1}.

A visual description of elementary equivalent states on an alphabet of size 2 is
shown in figure 2. Note that the first condition is an M-motif presented in [6].

Fig. 2. Elementary equivalent states on Σ = {a, b}

Lemma 3. If A is a DFA with some states i and j with i ∼e j then i and j are
indistinguishable states and hence A is not minimal.
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3 Sequential Automata

In this section we study classes of automata S(T ) for which the conditional
asymptotic density of an automaton being minimal approaches 0 as the number
of states of the automaton increases. That is to say that for very large values of
|Q| = n, the automaton is very likely to be non-minimal.

Definition 4. A binary tree T is sequential if it has a string representation of
the form βT = 111a1a2 · · · ak−10000 where ai = 1100 or 0011, i.e. at every level,
there is exactly one node that has no children and one that has two children. An
automaton is sequential, if it has a sequential tree T as a breadth first spanning
subtree. That is to say A ∈ S(T ).

Fig. 3. All Sequential trees of size 7

Examples of sequential trees of size 7 are shown in figure 3. Using the recurrence

equation cn = 2cn−2 with c3 = 1, there are cn = 2
n−3
2 sequential trees with n

nodes. Recall that such tree has an odd number of states, say n = 2k + 1. A
sequential automaton and its breadth first spanning tree are shown in figure 4:

Fig. 4. A Sequential automaton and its breadth first spanning tree



86 P. Babaali and C. Knaplund

3.1 Probability Measures and the Number of Sequential Automata

Let us define the uniform probability measure on S(T ) for a given sequential
tree. In order to do this we need to count the number of automata in S(T ).
Studying the possible difference sequences for sequential trees of size n = 2k+1,
it is easy to see that the sequential tree with the smallest number of automata
is Tb = 111 0011 · · ·0011︸ ︷︷ ︸

k − 1 times

0000, this is the tree where the right child always has 2

children and the left child has no children. The number of automata in S(Tb) is:

|S(Tb)| = 2n × 32 × 52 × 72 · · · × (2k + 1)2 × (2k + 1)2 = (n!!)
2
n2

The sequential tree with the largest number of automata is,

Ta = 111 1100 · · ·1100︸ ︷︷ ︸
k−1times

0000

the tree where the right child always has no children and the left child has two
children. The number of automata in S(Ta) can be calculated as:

|S(Ta)| = 2n × 52 × 72 × 92 · · · × (2k + 1)2 × (2k + 1)4 = (n!!)
2 n

4

9

Hence we have a bound on the number of automata in |S(T )|

2n (n!!)
2
n2 ≤ |S(T )| ≤ 2n (n!!)

2 n
4

9

For a subset E ⊂ S(T ) define

P(E) = P(A ∈ E) = |E|
|S(T )|

One way an automaton to be non-minimal, is to have states that are elementary
equivalent. An interesting and powerful property of a random sequential au-
tomaton is the number of configurations for a state to be elementary equivalent
to another state. In the next section we will compute this number in more detail
and show that there are many configurations for which the automaton has two
or more elementary equivalent states. We only need to find these probabilities
for S(Ta) and S(Tb), since for all other sequential automata these probabilities
are bounded by those of S(Ta) and S(Tb).

3.2 Elementary Equivalent States for Automata in S(Ta)

There are two types of state in a sequential tree, 1)those that are odd numbered,
or leaves in the spanning tree with a degree of freedom of 2, and 2) those that
are even numbered, which have a degree of freedom of 0. Recall that for a state
to be elementary equivalent to another, at least one of the states have to be
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a leaf in the spanning tree. Knowing this we will find the probability that an
odd-numbered state is elementary equivalent to another state.

Case 1. Let Ei,l be the set of automata in S(Ta) in which state 2i+ 1 ∼e 2l for
some 2l ≤ 2i. We will estimate P(Ei,l). In this case, since δ(2l, a) = 2l + 2 and
δ(2l, b) = 2l + 3, the choices for δ(2i + 1, σ) are limited to that of δ(2l, σ) for
σ = a, b. The next important point is that states 2i + 1 and 2l have the same
parity, that is they are both final or non-final. Since all other remaining states q
have freedom in the number of choices for δ(q, σ), we have

P(Ei,l) =
2n−1 × 52 × 72 × · · · × 12 × · · · × (2k + 1)6

2n × 52 × 72 · · · × (2i+ 3)2 × · · · × (2k + 1)6
=

1

2

1

(2i+ 3)2

Case 2. Let Ei,j be the set of automata in S(Ta) in which state 2i+1 ∼e 2j+1
for some j < i. In this case, df(2i + 1) = df(2i + 1) = 2, which implies that
δ(2j + 1, σ) has 2j + 3 choices, particularly δ(2j + 1, σ) may be 2j + 1. In this
case δ(2i+1, σ) can be both 2i+1 or 2j+1. This is the second case in Lemma 2.
Hence

P(Ei,j) =
∏
σ

P
(
2i+ 1 ∼e 2j + 1

∣∣∣ δ(2j + 1, σ) = 2j + 1

)
+

P
(
2i+ 1 ∼e 2j + 1

∣∣∣ δ(2j + 1, σ) �= 2j + 1

)
=

(
1

2

2

(2i+ 3)

1

(2j + 3)
+

1

2

1

(2i+ 3)

2j

(2j + 3)

)2

=

(
j + 1

(2j + 1)(2i+ 1)

)2

Finally we are interested in P(Ei) = P (
⋃

k Ei,k). Recall

P(Ei) = P

(
i−1⋃
k=1

Ei,k

)
=

i−1∑
k=1

P (Ei,k)−
∑
k,j

P (Ei,k ∩ Ei,j)︸ ︷︷ ︸
(*)

+
∑
n,m,j

P (Ei,n ∩ Ei,m ∩ Ei,j)− · · ·

First note that Ei,j are independent and hence P (Ei,n ∩ Ei,m) = P (Ei,n)P (Ei,m).
We can see that the contribution of additional term of intersection of these
events are extremely improbable, hence negligible. To see this, first note that
when 3 or more states are elementary equivalent, at most one of them can be
an even numbered state. Let’s study the smallest case (*), and suppose that
2i+ 1 ∼e 2k ∼e 2j + 1.

∑
k≤j≤i

P (Ei,k ∩ Ei,j) =
∑

k≤j≤i

P (Ei,k)P (Ei,j) =
i−1∑
j=1

j−1∑
k=1

1

2(2i+ 3)2
1

2(2j + 3)2
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=
1

2(2i+ 3)2

i−1∑
j=1

j − 1

2(2j + 3)2
≤ 1

24(2i+ 3)2

i−1∑
j=1

1

j + 3/2

≤ 1

24(2i+ 3)2

i−1∑
j=1

1

j
∼ ln(i − 1) + C

24(2i+ 3)2
for some constant C

A very similar argument shows that when 2i+ 1 ∼e 2k + 1 ∼e 2j + 1, the term

obtained from the intersection has order
1

24(2i+ 3)2

i−1∑
j=1

log(2j + 1)

(2j + 3)2
. The sum

of both these terms is very small. With the intersection of m terms a factor

of
1

2m+2(2i+ 3)2
is added to each term of the sum. A similar argument to the

above can be used to show that this term’s contribution to the sum of P (Ei,j) is
of negligible order. Hence the magnitude of what is taken away from

∑
k P(Ei,k)

is very small. Now we have:

P(Ei) =
1

2(2i+ 3)2︸ ︷︷ ︸
P (2i+ 1 ∼e 1)

+

i−1∑
l=1

1

2(2i+ 3)2︸ ︷︷ ︸
P (2i + 1 ∼e l)

+

i−1∑
j=1

(
j + 1

(2j + 3)(2i+ 3)

)2

− small term

∼ i

2(2i+ 3)2
+

1

(2i+ 3)2

i−1∑
j=1

(
j + 1

2j + 3

)2

≤ 3i+ ln(i) + C

4(2i+ 3)2
≤ 4i

4(2i+ 3)2

for i < n. Note that there is an exception for when i = n. In this case

P(En) ∼
n

2(2n+ 1)2
+

1

(2n+ 1)2

n−1∑
j=1

(
j + 1

2j + 3

)2

3.3 Elementary Equivalent States for Automata in S(Tb)

A similar argument can be used to find P(Ei in S(Tb). Let E2i,l be the set of
automata in S(T ) in which state 2i ∼e q for some q ≤ 2i− 1.

Case 1. When 2i ∼e 2l− 1 for some l ≤ i. In this case:

P(Ei,l) =
1

2

1

(2i+ 1)2

Case 2. When 2i ∼e 2j for some j < i. In this case, since δ(2j, a) has 2j + 1
choices, particularly δ(2j, σ) may be 2j, hence δ(2i, σ) are very limited:

P(E2i,2j) =
∏
σ

P
(
2i ∼e 2j

∣∣∣δ(2j, σ) = 2j

)
+ P

(
2i ∼e 2j

∣∣∣δ(2j, σ) �= 2j

)
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=

(
1

2

2

(2i+ 1)

1

(2j + 1)
+

1

2

1

(2i+ 1)

2j

(2j + 1)

)2

=

(
j + 1

(2j + 1)(2i+ 1)

)2

Again, we can assume that the contribution of the intersection of terms in P (Ei)
is negligible. Hence

P(Ei) = P

(⋃
k

Ei,k

)
∼

i−1∑
l=1

1

2(2i+ 1)2
+

1

2(2i+ 1)2
+

i−1∑
j=1

(
j + 1

(2j + 1)(2i+ 1)

)2

We can bound P(Ei) by:

2i+ 1

4(2i+ 1)2
≤ P(Ei) ≤

4i+ 1

4(2i+ 1)2
(2)

3.4 Minimality in S(T ) for a Sequential Tree

In this section we will find the probability that an automaton is non-minimal,
only by considering the occurrence of states that are elementary equivalent. As
it turns out, this event is probable enough that for large values of n, it is a
generic set in S(T ). Consider an automaton in S(T ), with 2n + 1 states, and
let Pn = P(

⋃n
i=1 Ei), Recall that Ei is the event that state 2i+ 1 ∼e q for some

state q ∈ Q.

Pk = P(
n⋃

i=1

Ei) = P(
n−1⋃
i=1

Ei ∪ En) = Pn−1 + P(En)− Pn−1P(En)

Let an = P(En), in this case the recurrence equation is

Pn = Pn−1(1− an) + an (3)

We can solve Pk for a given ak. For instance when ak =
4k + 1

4(2k + 1)2
, then equation

3 has a solution of the form:

Pk = 1− |Γ (k + ω)|2
|Γ (k + 1

2 )|2
where ω is a solution of equation ω2 + 3

4ω + 3
16 = 0

Let l =
|Γ (k + ω)|2
|Γ (k + 1

2 )|2
, we show that l → 0 as n→ ∞.

l =
|Γ (k + ω)|2
|Γ (k + 1

2 )|2
=

|ω + n− 1|2
| 12 + n− 1|2

|ω + n− 2|2
| 12 + n− 2|2

· · · |ω + 1|2
| 12 + 1|2

|ω|2
| 12 |2

|Γ (ω)|2
|Γ (12 )|2

=

n∏
i=1

(n− i)2 + 3
4 (n− i) + 3

16

(n− i)2 + (n− i) + 4
16

|Γ (ω)|2
|Γ (12 )|2
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log(l) =

n∑
i=0

log

(
(n− i)2 + 3

4 (n− i) + 3
16

(n− i)2 + (n− i) + 4
16

)
=

n∑
i=1

log

(
1−

i+ 1
4

4i2 + 4i+ 1

)
The behavior of this series log(l) is the same as log

(
1− 1

i

)
, and hence the series

diverge. This proves

lim
n→∞Pn = 1− lim

n→∞
|Γ (n+ ω)|2
|Γ (n+ 1

2 )|2
= 1− 0 = 1

It can be shown that for all other sequences an = P(∪n
i=1Ei), Pn has a solution

of the form Pn = 1− |Γ (n+ ω)|2
|Γ (n+ 1

2 )|2
that converges to 1, however the convergence

is extremely slow. The following theorem is proved.

Theorem 5. Let T be a sequential tree. Then the conditional asymptotic density
of M in S(T ) is zero. That is

lim
n→∞P(M|S(T )) = 0

In other words minimality is a negligible property among degenerate automata.

4 Conclusion

In this paper we have shown that minimality is a negligible property among
sequential automata, i.e. those automata with a sequential tree as a breadth
first subtree, however the convergence is extremely slow. We have confirmed this
result experimentally by generating a large number of sequential automata for
each size shown in table 1. The automata were generated uniformly randomly,
and the proportion of minimal automata was calculated using Hopcroft’s algo-
rithm. The numerical values are presented in table 1.

Table 1. The proportion of minimal automata in S(Ta) and S(Tb)

Number of States 21 51 101 201 301 401 499

P(M|S(Ta)) 0.5491 0.4461 0.3761 0.3161 0.2853 0.2640 0.2512

P(M|S(Tb)) 0.6527 0.5449 0.4620 0.3923 0.3549 0.3289 0.3153

Another aspect to consider is the result of Bassino et al [6], that the asymptotic
density of minimal automata for an alphabet of size 2 is about 85%. Our result
shows that studying automata from the point of view of their spanning subtree
may lead to different behavior than the set of all DFA’s. It is also shown by the
authors [4], that there are trees for which minimality is generic in S(T ), that is
P(M|S(T )) → 1 as n→ ∞.
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9. Champarnaud, J.-M., Paranthoën, T.: Random generation of DFAs. Theoretical
Computer Science 330, 221–235 (2005)

10. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and
Combinatorics 7(4), 469–486 (2002)

11. Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random genera-
tion of labelled combinatorial structures. Theoretical Computer Science 132, 1–35
(1994)

12. Harary, F., Palmer, E.M.: Graphical enumeration. Academic Press, New York
(1973)

13. Harrison, M.A.: A census of finite automata. In: Proceedings of the Fifth Annual
Symposium on Switching Circuit Theory and Logical Design, pp. 44–46 (1964)

14. Hopcroft, J.: An nlogn algorithm for minimizing the states in a finite automaton.
In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computation (Proc. Internat.
Sympos. Technion, Haifa), pp. 189–196 (1971)

15. Korshunov, A.D.: On the number of non-isomorphic strongly connected finite au-
tomata. J. Inf. Process. Cybern. 22, 459–462 (1986)
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Abstract. Automata with weights on edges, especially automata with
counters, have been studied extensively in recent years, both because
of to their interesting theory and due to their practical applications in
data analysis. One of the most significant differences between weighted
and classical automata concerns determinization: while every classical
automaton can be determinized, this is not the case for weighted au-
tomata. Still, obtaining an equivalent automaton as close to a sequential
(deterministic) one as possible is crucial in many practical applications,
as unbounded non-determinism incurs large computational costs. There
exist a few ways to limit the non-determinism of a counter automa-
ton. For each word, one can require that only k runs are accepting (k-
ambiguous automata), that there are only k possible runs at all (k-path
automata), or one can restrict the automaton itself to be a disjoint sum of
k sequential ones (k-sequential automata). Moreover, there are different
types of automata with counters: distance automata that cannot reset,
desert automata, and R-automata with many counters. In this paper,
we establish a hierarchy for all these possibilities. First, we show that
the parameter k induces a hierarchy in all cases. Then, we prove that
k-path automata can be made 2k−1-sequential and that this bound is
strict. Finally, we show an unambiguous automaton which is not finitely
sequential at all.

1 Introduction

Automata with the incrementation operation, known as distance automata,
where introduced by Hashiguchi in the context of the restricted star height
problem. Later, they were extended by Kirsten in [5,6] to nested distance desert
automata, which also use the reset operation and have a hierarchical structure.
These automata where crucial in a beautiful reduction [6] of the restricted star
height problem to the limitedness problem of nested distance desert automata,
which resulted in the famous first elementary algorithm for star height. After
this success, the interest in counter automata only increased. Automata with
many counters and both reset and incrementation operations appeared as ωBS-
automata [3] in the context of a decidable extension of the monadic second-
order logic with bounding and unbounding quantifiers. Colcombet developed a
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theory of regular cost functions over finite and infinite words [4] representable,
among other models, by B-automata and S-automata. Krcal studied in [1] an-
other model, called R-automata, as a specification language for systems operat-
ing on finite numbers of resources. The resources are consumed by the systems in
small parts, described by incrementation transitions, which can be replenished
by actions represented by resetting transitions.

In parallel with the developments in theory described above,weighted automata
gained importance in practical applications. Variants of counter automata are
used as a data structure in speech recognition and in machine translators [9,10].
There, roughly speaking, the weight of a run on a word represent its cost, and the
run with minimal weight corresponds to the optimal answer. Since these automata
get very large, finding the optimal run in a general non-deterministic automaton
incurs an excessive computational cost in these domains. Of course, that cost is
negligible for sequential automata, as then there is just one run for each word.
Since counter automata cannot be determinized in general, the research focused
on heuristics to decrease the search costs [2] and on sub-classes of automata with
limited non-determinism [8,7].

The best known of these sub-classes are unambiguous automata, in which
there is at most one accepting run on every word. More generally, one can con-
sider the class of k-ambiguous automata, where there are at most k accepting
runs on each word. Clearly 1-ambiguous is then just another name for unam-
biguous. The classes of sequential, unambiguous and unrestricted automata are
known to be distinct in every studied model of counter automata, see [8] for
a more thorough map. For distance automata, Weber also established that the
classes of k-ambiguous automata form a strict hierarchy [12,13]. But k-ambiguity
does not directly yield any practical benefits. Instead of limiting the number of
accepting runs, one would prefer a stronger constraint: allowing at most k runs
on every word, whether accepting or not. We use the name k-path automata for
this class. Note that one needs to trace at most k runs in parallel when using a
k-path automaton, a property that can be directly exploited in practice. Finally,
the strongest requirement short of determinism is when the automaton is a dis-
joint sum of k sequential ones. Such k-sequential automata can be implemented
on k independent machines resulting in fast parallel execution.

With the above-mentioned three models of counter automata (desert, dis-
tance, and R-automata) and the three constraints on determinism (k-ambiguous,
k-path and k-sequential automata), there is a natural question about their re-
lationship and the hierarchies induced by k. We first show that the parameter
k indeed induces a hierarchy, for each of the automata models and each con-
straint class. This generalizes the results of Weber [12,13] mentioned before.
Next, we show that every k-path automaton can be translated to an equivalent
2k−1-sequential one, in each of the models. Moreover, this bound is strict, i.e.
we demonstrate a k-path automaton which is not 2k−1 − 1-sequential (again,
in all models). Finally, we show an automaton which is unambiguous, and even
satisfies an additional stronger constraint, but is not equivalent to any k-path
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or k-sequential automaton, no matter for which k. The results can thus be sum-
marized as follows. For all of distance, desert and R-automata:

– k-ambiguous, k-path, and k-sequential classes form a strict hierarchy,
– k-path automata can be made 2k−1-sequential and this bound is strict,
– but even basic unambiguous automata are stronger than all k-path ones.

2 Definitions

Let N+ = N\{0}. For k ∈ N+, we will write [k] to denote the set {1, 2, . . . , k}.
An R-automaton is a tuple A = 〈Σ,Q, I, F, Γ, δ〉, where Σ is a finite input

alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, F is the set
of final states, and Γ is a finite set of counters. The transition relation δ satisfies

δ ⊆ Q×Σ ×Q×ΔΓ ,

where Δ = {i, r, ε} are the names of operations applied to counters: increment,
reset, and leaving them intact. We call A a distance automaton when |Γ | = 1
and δ ⊆ Q × Σ × Q × {i, ε}, i.e. if there is only one counter and it can only
be incremented or left intact. A is a desert automaton when |Γ | = 1 and δ ⊆
Q×Σ×Q×{i, r}, i.e. if there is one counter which, in each step, must be either
incremeted or reset.

A transition t of an R-automaton A is a quadruple t = (p, a, q, γ) ∈ δ. A path
π in A of length k is a sequence of transitions t1t2 . . . tk such that, for some
states q0 . . . qk, input letters a1 . . . ak and operations γ1 . . . γk, it holds that each
ti = (qi−1, ai, qi, γi). The sequence of input letters a1 . . . ak is called the label of
π and is sometimes denoted by label(π). We write π(i, j) to denote the sub-path
titi+1 . . . tj of π. For another path π′, we will write π′ � π if it is a sub-path of
π, i.e. if π′ = π(i, j) for some i and j. We allow j = i − 1, in which case the
sub-path is empty, in all other cases it is non-empty. A subpath π(i, j) = ti . . . tj
is a loop if the starting state of ti equals the ending state of tj .

We say that a path t1t2 . . . tk in A is accepting if the first state t1 is initial
and the last state tk is final, i.e. if t1 ∈ I and tk ∈ F . The automaton A accepts
a word w ∈ Σ∗ if there exists an accepting path π with label(π) = w. The
automaton A recognizes the language L(A) = {w | A accepts w}. Note that
L(A) does not depend on the counter operations at all.

For a transition t = (p, a, q, γ) and a counter α ∈ Γ , we will write v(α, t) =
γ(α) to denote the operation that t effects on the counter α. If there is only one
counter, we will slightly abuse this notation and write just v(t). v(t1 . . . tn, α) =
v(t1, α) · · · v(tn, α) ∈ Δ∗.

The valuation of the counters if a vector NΓ . This valuation changes according
to the semantics of the symbols i, r, ε. The symbol i stands for incrementation, r
is a reset, meaning that the counter is re-assigned to 0, and ε is called a pause and
it means that the counter is left unchanged. Formally, for a counter valuation
c ∈ NΓ and a vector of counter operations op ∈ ΔΓ , the result of applying op
on c is a valuation c′ ∈ NΓ such that c′(α) = c(α) + 1 if op(α) = i, c′(α) = 0 if
op(α) = r, and c′(α) = c(α) if op(α) = ε.
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For a given R-automaton A and a path π = t1 . . . tk, let c0 . . . ck be the
sequence of counter valuations such that c0 = 0Γ and ci+1 is the result of
applying γi on ci, where γi is the counter operation of the transition ti. Let
d(π) be the maximal value reached by a counter during the run along π, i.e.
d(π) = max{ci(α) | i ≤ k, α ∈ Γ}. We define dA : Σ∗ → N ∪∞ as

dA(w) =

{
min{d(π) : π is labeled by w and accepting} if w ∈ L(A),

∞ otherwise.

Two R-automata A and B are equivalent if dA = dB.
For an R-automaton A, let us define two functions, ambA, tambA : Σ∗ → N,

which return, for a word w, respectively the number of accepting paths labeled
by w and the number of all paths labeled by w in A (not necessarily accepting).

We say that that A is k-ambiguous, or k-amb, if ambA(w) ≤ k for all w ∈
L(A). An automaton is complete if for all states q ∈ Q and all letters a ∈ Σ there
exists transition (q, a, p, γ) to a state p ∈ Q. This simple condition is necessary
to reasonably account for all non-accepting runs, as will become clear later. We
call A a k-path automaton, or just k-path, if it is complete and tambA(w) ≤ k
for all w ∈ L(A).

An automaton A is sequential, or deterministic, if for every state q ∈ Q and
letter a ∈ Σ there exists at most one transition (q, a, p, γ) ∈ δ, and if |I| = 1, i.e.
there is exactly one initial state. We call A finitely sequential if it satisfies the
first condition, but not the second one, i.e. I may be arbitrary. We say that it is
k-sequential, or k-seq, if |I| ≤ k.

Slightly abusing notation, we will use the terms k-seq, k-path, and k-amb
to denote both the classes of automata A as well as the classes corresponding
functions dA. It follows directly from the above definitions that the following
sequence of inclusions is satisfied.

k − seq ⊆ k − path ⊆ k − amb.

Let Ai = 〈Σ,Qi, Ii, Fi, Γ, δi〉 (for i = 1, . . . , s) be R-automata with pairwise
disjoint sets of states. The disjoint union of A1, . . . , As, denoted by ·

⋃s
i=1Ai, is

an R-automaton A = 〈Σ,Q, I, F, Γ, δ〉 where

Q =
s⋃

i=1

Qi, I =
s⋃

i=1

Ii, F =
s⋃

i=1

Fi, δ =
s⋃

i=1

δi.

Note that every k-sequential automaton A with I = {ii, . . . , ik} can be rep-
resented as a disjoint union of k deterministic components A1, . . . ,Ak. Each
component Aj is equal to A except that it has I = {ij}.

3 Hierarchies Induced by the Parameter k

In this section, we show that the parameter k induces a strict hierarchy of k-amb,
k-path, and k-seq automata, for distance, desert, and the general R-automata
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as well. Among the results presented in [13] it has been proved that k − amb �
(k+1)−amb for distance automata, and the constructions in those proofs imply
that k−amb �⊆ (k+1)− seq in that model. The following theorem uses a similar
construction to generalize the result to other models.

Theorem 1. For every k ∈ N+, there exists (k + 1)-seq distance (desert) au-
tomaton which isn’t equivalent to any k-amb R-automaton.

Before we start the proof, let us remark that in [11] Sakarovitch and de Souza
proved that k-amb N-weighted automata can be translated into equivalent au-
tomata which are a disjoint union of k unambiguous automata. Their technique,
multi-skimming, i.e. covering of an N-weighted automaton, works in particular
for R-automata. We exploit this fact in the form of the following corollary of
their result.

Corollary 2.. Let k ∈ N. Let M = 〈Σ,S,Q, F, Γ, δ〉 be a k-amb R-automaton.
Then, there exist k unambiguous R-automata M1, . . . ,Mk such that M is equiv-
alent to disjoint union of M1, . . . ,Mk.

Proof. Let Σ = {a0, . . . , ak}. Let dA : Σ∗ �→ N be a function which assigns to
every string w ∈ Σ∗ the length of the shortest subword u such that u = (ai)

l for
some i ∈ [k] and l ≥ 1, and such that w = w1uw2 for some w1, w2 ∈ (Σ \ {ai})∗.
For strings which shuffle one letter with another the value of dA equals ∞. It’s
easy to construct (k+1)-seq desert automaton A = 〈Σ,S,Q, F, Γ, δ〉 recognizing
Σ∗ with weights determined by dA: Q = F = S = {q0, . . . , qk} and γ = 1 for
(qi, aj , qi, γ) ∈ δ if i = j, 0 otherwise. Hence the function dA ∈ (k + 1)-seq.

Now the proof goes as follows: suppose that there exists a k-amb automaton
M′ = 〈Σ,S′, Q′, Γ ′, F ′, d′〉 equivalent to A. From Corollary 2,M′ can be decom-
posed into k unambiguous R-automata M1, M2,. . .Mk. For each Mi it is easy
to build an unambiguous automaton M′

i such that L(M′
i) = Σ∗ \ L(Mi) and

all of its transitions are of the type iε|Γ |−1. Let M̃i = Mi ·∪M′
i. The automaton

M̃i is unambiguous because both components Mi and M′
i are unambiguous

and, moreover, they recognize disjoint languages.
Note that distance automata A = ·

⋃k
i=1 Mi and Ã = 〈Σ, S̃, Q̃, F̃ , d̃〉, where

Ã = ·
⋃k

i=1 M̃i, are equivalent. This holds because both these automata recognize

Σ∗ and the weight of a string w in A is the same as in Ã, for all w ∈ Σ∗.
The weights of w in A and Ã are equal because all accepting paths in A have
counterparts in Ã and all accepting paths in Ã with no counterparts in A come
from the component M ′

i (for some i). Their weights are equal of their length,
because of the incrementation of the first counter in each transition.

Let n be the maximum number of states of the automata M̃1, M̃2,. . .M̃k

and let w = an
k

0 an
k

1 . . . an
k

k . Let πi be a path in M̃i accepting w and let πi,j be a

subpath of πi corresponding to an
k

j . Then there exist l
(1)
j , l

(3)
j ∈ N and l

(2)
j ∈ N+

such that l
(1)
j + l

(2)
j + l

(3)
j = nk and, for each i, πi,j can be factorized into π

(1)
i,j ,

π
(2)
i,j , π

(3)
i,j . The subpath π

(m)
i,j consumes a

l
(m)
j

j and, for each i and j, π
(2)
i,j is a loop

(i.e. it has the same starting and ending state).
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First, note that weight of each path πi is at least n
k because the weight of a

string w equals nk. All loops π
(2)
i,j have lengths at most nk. We call a loop π

(2)
i,j

growing if there exists a counter which is incremented and not reset any time

along π
(2)
i,j . Otherwise, we call a loop non-growing.

Note that multiple iterations of a loop π
(2)
i,j , which is non-growing, increase the

weight of the subpath π
(2)
i at most by |π(2)i | − 11 independently of the number

of iterations. Otherwise, when the iterated loop is growing, the weight of the
outcome path increases at least by li,j , where li,j is the number of iterations

that have been applied to π
(2)
i,j .

Note that, for every α ∈ {0, . . . , k}, denoting the part of w containing an
k

α ,
there exists i = i(α), indexing the number of component M̃i and i

th accepting
path labeled by w, such that, for every j ∈ {0, 1, . . . k}, if α �= j, then the path

π
(2)
i,j is non-growing. Otherwise, there may exist α such that for all accepting

paths πi labeled by w one can find j(i) �= α such that weight of π
(2)
i,j(i) is growing.

In such case all loops π
(2)
i,j(i) could be pumped up nk+1 times, in the parts π

(2)
i,j(i),

producing k accepting paths of weight greater than nk labeled by pumped word

w′ = a
nk+l

(2)
0 (nk+1)

0 . . . a
nk+l

(2)
α−1(n

k+1)

α−1 an
k

α a
nk+l

(2)
α+1(n

k+1)

α+1 . . . a
nk+l

(2)
k (nk+1)

k

of weight exactly nk. This contradicts the fact that Ã and A are equivalent.
Now let α, α1 be such that α �= α1 and i0 = i(α) = i(α1). Such pair exists by

the pigeon hole principle. Then, all subpaths π
(2)
i0,j

are non-growing. Let t ≥ nk

be a weight of the path πi0 and c = (k + 1) · max{l(2)0 , . . . , l
(2)
k } + t. Consider

the word w′ = a
nk+l

(2)
0 c

0 a
nk+l

(2)
1 c

1 . . . a
nk+l

(2)
k c

k . By previous observation – that
iterations of non-growing loops do not increase the weight of the path less than
by the length of the loop – we obtain that πi0 , after pumping, is transformed
into an accepting path π′i0 . It labels w

′ with the weight d(π′i0 ) not greater than
t +

∑k
i=0 l

(2)
i ≤ c. According to the equivalence of Ã and A, the weight of π′i0

should be at least nk + c. Since nk + c > t, this is a contradiction. Therefore Ã
does not exist and, consequently, neither does M ′. ��

4 Finitely Sequential and k-Path Automata

In this section, we show that k-path automata are 2k−1-sequential and that this
bound is tight. We will start with the counterexample that proves the tightness
of the bound. To make uniform proofs for distance and desert automata, let us
first define an auxiliary function θ, such that θ : {0, 1} → {ε, i} for distance
automata and θ : {0, 1} → {r, i} for desert automata.

1 An even better estimation can be done –

⌊ ∣∣∣π(2)
i

∣∣∣
2

⌋
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θ(x) =

{
i if x = 1,

ε (for distance aut.) | r (for desert aut.) otherwise.

Now let us define the automaton A = 〈Σ,Q, I, F, Γ, δ〉 which is a k-path distance
(or, desert depending on the choice in the function θ) automaton. It will be easy
to see from its definition that it belongs to the k-path class, and we will use it
as a counterexample in the next proof.

Let Σ = {a, 0, 1}, S = {f1,1}, F = {fj,l|j ∈ {0, 1}, l ∈ [k]} \ {f0,1}, Q =
F ∪ {[gb]}, and define the distance function as follows

– v(fj,l, a, fj,l) = θ(j);
– v(fj,l, x, [gb]) = θ(0) if j �= x and x ∈ {0, 1} or l = k;
– v([gb], x, [gb]) = θ(0), where x ∈ Σ;
– v(fx,l, x, fy,l+1) = θ(y) if l < k, x, y ∈ {0, 1};

f1,1 gb. . .

. . .f1,2

f0,2

f1,3

f0,3

f1,k

. . . f0,k
0|r, ε

1|i

1|i

0|r
, ε

1|i

1|i

a, 0|r, ε a, 0|r, ε

1|r, ε

1|r, ε

a, 0|r, ε

0|r, ε

0|r, ε

a, 0, 1|r, ε

a,
0,
1|r
, ε

a|i a|i

1|i

0|r, ε

1|i

0|r
, ε

a, 0, 1|r, ε

a|i

a, 0|r, ε

Fig. 1. The A automaton

The automaton A accepts all 0− 1 sequences b1, . . . , bs separated by sequences
of letter a, such that s ≤ k. In the distance version, the automaton counts
occurrences of 1 together with a letters standing right before them. In the desert
version, it counts the length of the longest sequence of a standing right before
a 1 occurrence plus one. The automaton A is k-path because one can chose an
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arbitrary state q ∈ Q and for all letters x ∈ Σ there exists a transition starting
at q and labeled by x. The following theorem is proved in Appendix A.

Theorem 3. For every k ∈ N+, there exists a k-path desert (distance) automa-
ton which is not equivalent to any (2k−1 − 1)-seq R-automaton.

We will now show a method of translating k-path distance, desert and R-automata
to an equivalent 2k−1-seq automata of the same type. Let S be a set which con-
tains finite number of tokens. Let Tk be an arbitrary finite tree with k leaves.
The pair (S, Tk) represents a process of uniform token distribution which works
as follows:

(1) The distribution starts at the root of Tk, where we put all tokens.
(2) At every step of the distribution, all tokens placed at some inner node or

are moved to its children.
(3) The tokens are moved in such a way that the difference between the numbers

of tokens at each pair of children is at most one, after replacement.
(4) The process ends when all tokens are distributed to the leaves of Tk.

Note that distribution process is not necessarily unambiguous. Many different
traces of distribution satisfy the definition of uniform token distribution.

Lemma 4. Let T be a tree with k leaves and let S be a set which contains 2(k−1)

tokens. Then an (S, T ) process of uniform token distribution always ends with
the configuration where every leaf gets at least one token.

Proof. First consider how many tokens each vertex needs to satisfy the lemma’s
condition in its subtree. Clearly each leaf needs only one token and each internal
vertex needs the maximum number of tokens required for one of it’s children
multiplied by number of its children. Therefore the function f which returns,
for each inner node v of T , the minimal number of tokens required to cover the
leaves of the subtree of T rooted in v after the process, can be defined in the
following way. Let C(v) be the set of children of node v.

f(v) =

{
1 if v is a leaf ,

|C(v)| ∗maxw∈C(v) f(w) otherwise

The minimum tokens number needed to cover the leaves of T is f(root(T )) and
will be denoted by f(T ). From now to the end of this proof, a path p of a tree
T denotes the set of node labels occurring in some path from the root of T to
some leaf of T. We assume that each node in a tree has a unique label.

Fact 5. In the tree T there exists the path p from root to one of the leaves such
that f(T ) = Πv∈p′C(v), where p′ is p without ending leaf.

Proof. The proof is by induction on the height of T . If the height of T is 1, it’s
obvious, as f(T ) = 1 and, since the root of T is also a leaf, there is only one
path in T for which the product from this fact is 1 (because p′ is empty). Now
suppose that this fact holds for every tree with height less than n. Let the height
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of T be n and let v be a child of root(T ) such that f(v) = maxw∈C(root(T )) f(w),
let p be a path in subtree rooted in v such that f(v) = Πw∈p′C(w), where
p′ is p without the ending leaf – such p exists by inductive assumption. Now
f(T ) = |C(root(T ))| ∗ f(v) = |C(root(T ))| ∗Πw∈p′C(w) = Πw∈p′′C(w), where
p′′ is p′ with root(T ) attached at the beginning. ��
Now we are ready to prove Lemma 4. Let T be a tree with k leaves and p, p′

be the paths from Fact 5. We show that Πw∈p′C(w) ≤ 2k−1 by the following
induction over the number of vertices in p′.

– If p′ = 0 then T has only one vertex, k = 1 and f(T ) = 1 = 20.
– Let p′ be a path such that f(T ) = Πv∈p′C(v). Let p′′ be p′ without the root

of T , and n = |C(root(T ))|, and d = Πw∈p′′C(w). Let T 1, . . . , T n be trees
rooted at children of root(T ). f(T i) ≤ d for all 1 ≤ i ≤ n and f(T i) = d
for at least one i. Note that f(T ) = nd. Since all trees T i contain at least
one leaf of the tree T then, by induction hypothesis d ≤ 2k−1−(n−1) for all
i. Therefore f(T ) = nd ≤ n2k−1−(n−1) ≤ 2k−1. ��

Theorem 6. For every k-path n−state R-automaton (distance, desert) there
exists an equivalent 2k−1-seq R-automaton (distance, desert) with 23k−3n states,
of which 2k−1 are starting ones.

Proof. LetA = 〈Σ,Q, I, F, Γ, δ〉 be a k-pathR-automaton (distance, desert) with
n−states. We define an equivalent 2(k−1)-seq automaton B = 〈Σ,Q′, I ′, F ′, Γ, δ′〉
as follows. Let Q′ = {(i, p, b, e) : 1 ≤ i ≤ 2k−1, p ∈ Q, 1 ≤ b ≤ e ≤ 2k−1} where
i is a marker which assigns the state to particular deterministic component of
automaton B. Assume that tokens from Lemma 4 are linearly ordered and in-
dexed by numbers 1, . . . , 2(k−1). Let D[b, e, n] denote uniform division of interval
of token indexes [b, e] on n adjacent disjoint subintervals. Difference between the
number of elements of any pair of intervals in D[b, e, n] is at most one. Assume
that consecutive intervals at D[b, e, n] are created according to nondecreasing
number of elements. Let D[b, e, n][i] denotes ith interval in the ordering. Also
assume that the set of states Q is linearly ordered. Let S[j] denotes jth element
of S with respect to the ordering. Define S′ as{

(i, p, b, e) | 1 ≤ b ≤ i ≤ e ≤ 2k−1, [b, e] = D[1, 2(k−1)][j] and

p = S[j] for j ∈ [|S|]} ,
F ′ = {(i, p, b, e) ∈ Q′ | p ∈ F}. Let C(p, a) = {t ∈ Q | d(p, a, t) �= ∞}. By
C(p, a)[j] denote j−th state in C(p, a) with respect to the ordering over set of
states.

Let us list relations between the components of the new states, that we need
to define δ′ :

[bb, ee] = D[b, e, n][k] (1)

q = C(p, a)[k] (2)

n = |C(p, a)| (3)

bb ≤ i ≤ ee. (4)
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Now δ′ for B is defined as

{((i, p, b, e), a, (i, q, bb, ee), γ) |(p, a, q, γ) if for some k ∈ [n], }

The intuition behind this construction goes as follows. By the definition of k-path
automata, the number of paths for any w in A is not greater than k. Moreover,
it cannot happen that some of the nondeterministic paths disappear on a proper
prefix of w. Then the paths form a ’solid’ tree Tw with paths stretched from the
beginning of w to the last letter of w. Tree Tw has at most k leaves for any w. The
root of this tree is a dummy node with children that correspond to all states from
S. One can think that, for an arbitrary string w, tokens are uniformly spread
out to cover all nondeterministic choices of the automata A working over w.
By Lemma 4, the process of uniform token distribution puts finally some token
at leaves of an arbitrary tree with k leaves when it starts with 2(k−1) tokens.
Each component of B corresponds to one token. A particular component inherits
from A these paths which contain a corresponding token from the beginning
to the end of the token distribution process. The token corresponding to any
component of B is a part of a state description of all states. Uniform distribution,
which spread tokens at each node with nondecreasing number of tokens looking
from the left to the right son, is unambiguous (we fix order of nondeterministic
choices at each step of computation). This fact determine that outcome of B
construction is a function δ′. Hence B is a finitely sequential automaton. Since
B has 2(k−1) components each path of automaton A working over arbitrary w
has his counterpart at some component of B, and automaton A is equivalent
to B. ��

5 The Power of Unambiguous Automata

In this section, we prove the following theorem by showing a counterexample.

Theorem 7. There exists an unambiguous distance (desert) automaton which
is not a j-seq R-automaton for any j ∈ N+. It is thus not equivalent to any j-seq
R-automaton for any j ∈ N+.

Proof. Let A = 〈Σ,Q, I, F, Γ = {α}, δ〉 be a distance or desert automaton,
where: Σ = {a, b, c}, Q = {p, q}, S = {p}, F = {q}, and

δ = {(p, a, p, θ(1)), (p, c, p, θ(1)), (p, a, q, θ(0)), (q, b, q, θ(0)), (q, c, q, θ(0))} ,

where θ is the function defined in the previous section. Recall that the definition
of θ depends on which type of automata is considered, whether distance or desert.
It is easy to notice that A is unambiguous.

For the sake of contradiction, assume that there exists a finitely sequential
R-automaton B = 〈Σ,Q′, I ′, F ′, Γ ′, δ′〉 equivalent to A. Let k denote number of

starting states of B. Let ci = c2
i+2−1a, bi = c2

i+2−1b, r−1 = a, ri = ri−1ck−i,
si = ri−1bk−i.
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p q

a, c|θ(1) b, c|θ(0)

a|θ(0)

Fig. 2. Illustration for the Proof of Theorem 7

We show that each of word s0, s1, . . . sk is accepted with minimum weight
by a different deterministic component of B. For s0 and s1 we have dA(s0) =
dA(abk) = 0 and dA(s1) = dA(ackbk−1) = 2k+2. Now suppose that these two
words are accepted by the same deterministic component in B. In this compo-

nent, for the prefix ac2
k+2−1, there cannot be any transition t such that v(t, α) = i

for some α ∈ Γ ′ (because dA(s0) = 0). Otherwise, there could exist a counter
in Γ ′ which gets positive value in the accepting path labeled by s0 and, by the
assumption that the path was chosen with minimal weight, dB(s0) > 0. Hence,
if a transition t = (q1, x, q2, γ) comes from the the proper prefix of s0, then
γ ∈ (Δ \ {i})|Γ ′|. But this means that the weight of s1 can be derived from
suffix abk−1, which is impossible because |abk−1| = 2k+1 + 1 < 2k+2. Before we
proceed, consider the following two observations:

Observation 8. dA(si) = |si−1|.

Observation 9. In every accepting path πsi labeled by si, with minimal weight,
the path πrj which is the prefix of πsi labeled by rj , such that 1 < j < i, it holds
that d (πrj) ≥ |rj−1|+ 2.

Assuming that d (πrj) < |rj−1| + 2, we obtain that no counter reaches the
value |rj−1| + 2 in πrj . Let πsi = πrjπ. The length of π is less than 2k−j+2.
Hence the greatest value reached by some counter is less than

|rj−1|+ 2 + 2k−j+2 ≤ 2k+2 − 2k−j+3 + 1 + 2 + 2k−j+2 =

= 2k+2 − 2k−j+2 + 3 < |si−1| = 2k+2 − 2k−(i−1)+2 + 4.

This is a contradiction with Observation 8.
Assume that j < i. Suppose that si and sj are accepted with minimal weight

by the same deterministic component of B. Strings si and sj have a common
prefix of length |sj | − 1. Since sj is accepted with the minimal weight |sj−1|
along the path πsj (this is the value reached by some of the counters), the path
πj , which is a prefix of π, labeled by its prefix of length |sj | − 1, has weight not
greater than |sj−1|. By Observation 8, the weight of the same path is greater
than |rj−1|+ 1. Since |sj−1| = |rj−1|, we obtain a contradiction. ��
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Unambiguous Automata Denoting Finitely

Sequential Functions�
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Abstract. The min-plus automata with real weights are interesting
both in theory and in practice, e.g. their variants are used as a data
structure in speech recognition. In this paper we study automata which
are finite unions of deterministic ones, called finitely sequential automata.
Such automata allow fast detection of optimal paths in parallel while still
allowing to express ambiguous functions. We provide a polynomial time
algorithm which decides if the given min-plus unambiguous automaton,
with rational weights, has a finitely sequential version and we show how
to build such equivalent one if the answer is positive. To this end, we
introduce the Fork Property which plays the same role as the negation
of the Twin Property in case of determinisation. We show that an un-
ambiguous automaton can be transformed into a finitely sequential one
if and only if the Fork Property is not satisfied.

1 Introduction

The min-plus automata and transducers have been used successfully to represent
models derived from large data sets. In automatic speech recognizers or transla-
tors they are used as a data structures encoding possible translations together
with probabilities that a translation is proper. One of the tasks of the translation
is to find the best or most probable path for the given input. When the automa-
ton is deterministic (sequential) the searching process can be done much faster
than in case of fully nondeterministic automata. However, in contrast to the clas-
sical automata, weighted automata do not always have a deterministic equivalent
representing the same mapping from strings to its values. The determinisation
problem asks, given an automaton, whether there exists an equivalent determin-
istic one. It is still open whether the determinisation problem is decidable and
it probably cannot be solved efficiently in general. Hence heuristic algorithms
gained importance in speech recognition applications. The heuristics of pruning
transitions with substantially smaller weights, approximations [3] and exploiting
sufficient conditions for determinisation such as the Twin Property were studied
from ’90s until recently [1] and some of them have been implemented [11], [2].
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For automata which are a union of deterministic ones, searching for the best
solution can be done in parallel. Until the number of deterministic components
is not too big, the post-processing which establishes the optimal solution can
be advantageous in comparison to searching methods applied usually for non-
deterministic automata. One can conjecture that the question if a min-plus au-
tomaton over real numbers has a finitely sequential equivalent is not easier than
the existence of a deterministic version. Therefore we deal with the problem for
less complex inputs such as unambiguous automata. It is known that unambigu-
ous min-plus automata can describe function which cannot be described by any
finitely sequential min-plus automaton [8].

This paper provides an algorithm for deciding the existence of a finitely se-
quential counterpart for a given unambiguous min-plus automaton. The algo-
rithm works in polynomial time by deciding the Fork Property. When the given
automaton is unambiguous, the Fork Property can be seen as a generalization
of the Twin Property which is a necessary and sufficient condition for the exis-
tence of a deterministic counterpart [10]. We prove that the negation of the Fork
Property is a necessary and sufficient condition for the existence of a finitely
sequential counterpart of an automaton. We also present how to construct the
suitable set of deterministic automata if the Fork Property does not hold. Sim-
ilar properties have been defined for translations of finitely ambiguous [8] and
polynomially ambiguous automata [7] into unambigous ones.

Organisation: Section 2 presents basic definitions and a map of decision problems
concerning translations between the nondeterminism-level classes of min-plus
automata. Section 3 contains the definitions closely related to the proof and next
the proof that, for a given unambiguous min-plus automata, the Fork Property
is necessary and sufficient for non-existence of a finitely sequential equivalent. In
the paragraph ’Complexity’ we give an upper bound on the size of the finitely
sequential output if the unambiguous input does not satisfy the Fork Property
and an analysis of the complexity of establishing whether the Fork Property
holds or not.

Related Work. For classical finite automata over finite strings or trees, determin-
istic automata describe the same class of languages as nondeterministic ones. The
situation is quite different for weighted automata. With respect to the forms of
nondeterminism, functions recognizable by automata over the tropical semirings
form a hierarchy [8,5] which can be depicted as follows:

Seq � (Namb ∩ Fseq)
↗� Fseq �↘
↘� Namb �↗Famb � Pamb � Rat

It is not known in general whether the determinisation problem is decidable.
The known decidablity result [7] works for polynomially ambiguous automata,
for which it is decidable in a constructive way if a deterministic equivalent exists.
One of the results presented in [7] is the proof that the Intermediate Property is
a necessary and sufficient condition for polynomially ambiguous automaton to
have an unambiguous equivalent. The property says that there is a number Y
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such that if a path is accepting and minimal for its label then other accepting
paths with the same label cannot deviate, reaching substantially smaller weight
on a prefix (with the difference smaller than Y ), from the weight of the prefix
of the optimal path.

As for the complexity of the decision problem, the equivalence between a
polynomially ambiguous automaton and an unambiguous automaton is triply
exponential in the number of states of the first one. The equivalence problem
between min-plus automata its known to be undecidable in general. When one
of given automata is unambiguous it becomes decidable.

For unambiguous automata, the determinisation problem has a positive answer
if and only if the Twin Property holds [4,10]. The Twin Property is decidable in
polynomial time (O(|Q|2 + |E|2), E is the set of transitions) for unambiguous
automata [1] and in polynomial space for arbitrary automata [6]. Moreover, the
determinisation algorithm [10] returns automata of size at most exponential with
respect to the size of the input.

For finitely ambiguous automata [8] the determinization problem has been
solved in two stages: First deciding if a translation to an unambiguous automa-
ton is possible and then deciding the Twin Property over the unambiguous equiv-
alent. The first stage starts from translation of the given automaton into a finite
union of unambiguous ones. The best known translation is exponential in the size
of the automaton [12]. Then the Dominance Property has been defined over the
new representation – the union of unambiguous automata. The Dominance Prop-
erty separates these unions which can be translated into unambiguous automata
from those which have no unambiguous equivalent. The property is decidable in
polynomial time with respect to the union, hence exponential with respect to
the input.

Below we summarize results concerning translations. A row label denotes the
source and a column label denotes the destination class of a translation. Each
cell contains a description of the time complexity class to which the translation
belongs and the translation’s size. The complexities presented in the table follow
from the proofs presented in the cited papers.

pamb famb fseq namb seq
rat ? ? ? ? ?

pamb - ? ? *, 3-exp [7] *, 4-exp [7]
famb - - ? exp, 2-exp [8] exp, 3-exp [8]
fseq - - - p, exp [8] p, 2-exp [8]
namb - - p, 2-exp [here] - p, exp [10]

∗ The solution of the decision problems presented in [7] and marked by the
star symbol in the table above depends on the equivalence problem between
polynomially ambiguous and unambiguous automata. This problem is known to
be decidable by [9] there is no any detailed estimation of the procedure and we
could only speculate about the complexity.
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2 Preliminaries

Formally a weighted finite automaton over a semiring K = 〈K,+, ·, 1K , 0K〉
(wfa) is a quintuple A = 〈Q,Σ, λ, μ, γ〉 where Σ is a finite alphabet, Q is a
finite set called states, λ, γ ∈ KQ, and μ : Σ∗ → KQ×Q is a homomorphism into
the semiring of Q×Q-matrices over K. A state q ∈ Q is called initial if λ[q] �= 0K
and final if γ[q] �= 0K .

A quadruple (p, a, l, q) ∈ Q × Σ × K × Q is a transition of the wfa A if
μ(a)[p, q] = l. A path π in A of length k is a sequence of transitions t1t2 . . . tk,
where ti = (qi−1, ai, li, qi). The word a1a2 . . . ak is the label of π and it is denoted
by label(π). A path π = t1t2 . . . tk is accepting if the first state of t1 is an initial
one, the last state of tk is an accepting one and li �= 0K for i ∈ [k]. An automaton
A accepts a string w if there exists an accepting path t1t2 . . . tk labeled by w. By
L(A) we denote the set of all strings accepted by A and we say that A recognizes
the language L(A). We call π(i, j) = titi+1 . . . tj−1 a subpath of π. Expression
π′ � π denotes that π′ is a subpath of π. Subpath π(i, j) = ti . . . tj is non-empty
if 0 < i ≤ j ≤ k and it is a a loop if the source state of transition ti and the
destination state of tj are the same.

An automaton A is deterministic (or sequential) if for each a ∈ Σ, q ∈ Q there
exists at most one q ∈ Q such that μ(a)[p, q] �= 0K and the set of initial states I is
a singleton. If the second condition is not satisfied, an automaton is called finitely
sequential (fseq). Let ambA : Σ∗ �→ N be the function which, for each string w ∈
Σ∗, assigns number of different accepting paths labeled by w to w. An automaton
A is finitely ambiguous (famb) if there exists a nonnegative integer c such that
ambA(w) ≤ c for all w ∈ L(A). If c ≤ 1 then finitely ambiguous automata
are called unambiguous (namb). An automaton A is polynomially ambiguous
(pamb) if there exists a polynomial p such that ambA(w) < p(|w|). The classes
of sequential automata and all automata are denoted by seq and rat.

In this paper we study only automata over the tropical semiring 〈{R∪∞} =
R∞,min,+,∞, 0〉 earlier called as min-plus automata. The constructive part
of this paper deals with the semiring with rational domain rather than real
numbers, to deal with finite representations of numbers. A wfa A over the
tropical semiring defines a function S(A) : Σ∗ → R∞ such that S(A)(w) =
λ ·μ(w) · γ for w ∈ Σ∗. Later, the value S(A)(w) will be also denoted by 〈w,A〉.

For the tropical semiring, the weight of a path is the sum of the weights of
the transitions taken along the path, and the value of a word w is the minimal
weight of an accepting path on it. Every nonaccepted string is mapped into ∞.

By Seq,Namb,Fseq,Famb,Pamb,Rat we denote classes of functions described
by automata which respectively belong to seq, namb, fseq, famb, pamb, rat.

In order to make the text more readable we use an arrow notation together
with the notation ofWFA introduced above. If we write

x−→ q, it means λ[q] = x.

A sequence
v0−→ q0

a1|v1−−−→ q1
a2|v2−−−→ · · · ai|vi−−−→ qi denotes a path π being a sequence

of transitions t1, . . . , ti such that label(π) = a1 . . . ai, the transition tj has weight
vj , and λ[q0] = v0.
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A state q ∈ Q is accessible if there exists string w ∈ Σ∗ such that λμ(w)[q] ∈ R
and coaccessible if μ(w)γ[q] ∈ R. An automaton A is trimmed if all of its states
are accessible and coaccessible. Two states p and q are said to be siblings if they
satisfy → qI

u−→ p and → pI
u−→ q for some u, v ∈ Σ∗.

States p, q ∈ Q are twins if for every words u1, u2 the following formula holds

if
x0−→ pI

u1|x1−−−→ p
u2|x2−−−→ p and

y0−→ qI
u1|y1−−−→ q

u2|y2−−−→ q then x2 = y2.

An automaton A has twin property if all of its pair of states p, q are twins. For

a t ∈ Σ+, a pair of states q1, q2 is t−fork if q1
t−→ q1 and q1

t−→ q2.
By the [k] we denote the set {1, . . . , k}. An automaton A =

⋃
· ki=1 Ai is a

disjoint sum of automata Ai if

1. Qi are pairwise disjoint sets of states and Q =
⋃k

i=1Qi,
2. for each i ∈ [k], q ∈ Qi it holds that λi(q) = λ(q) and γi(q) = γ(q),
3. for each i, j ∈ [k], p ∈ Qi, q ∈ Qj if i = j then μ(a)[p, q] = μi(a)[p, q], else
μ(a)[p, q] = ∞.

3 Results

Given two words u, v ∈ Σ∗, by lcp(u, v) we denote the longest common prefix of
u and v. Define d(u, v) = |u|+ |v|− 2|lcp(u, v)|. The automaton A is N-Lipschitz
if

∀u, v ∈ L(A) |〈u,A〉 − 〈v,A〉| ≤ Nd(u, v)

and A is Lipschitz if it is N-Lipschitz for some N ∈ N+.
Lets consider an unambiguous trimmed automaton A = 〈Q,Σ, λ, μ, γ〉 over

the tropical semiring.

Definition 1 [Fork Property]. A trimmed unambiguous automaton A has
the Fork Property (FP) if there exist states q1, q2 such that q1 and q2 are not
twins and there exists a t ∈ Σ+ such that q1, q2 is a t−fork.

The proof of the next theorem is similar to the proof of non-emptiness of Namb∩
Fseq in subsection 3.3 of [8]. The new thing, compared to the mentioned proof
is a generalization which states that any of the loops of the considered fork can
have smaller weight and weights can be negative.

Theorem 2. If A has the Fork Property then S(A) /∈ Fseq.

Proof. Assume that A has FP and q1, q2 is a pair of non twin states mentioned
in FP. Therefore

∃w ∈ Σ∗∃qI ∈ Q ε|λ(qI )−−−−→ qI
w|c1−−−→ q1 and

∃v ∈ Σ+∃x1, x2, x1 �= x2 q1
v|x1−−−→ q1 and q2

v|x2−−−→ q2
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and q1, q2 is a t−fork for some t ∈ Σ+. For the sake of contradiction, assume
that S(A) ∈ Fseq. There exist B ∈ fseq such that S(A) = S(B) and B =

⋃
· ki=1 Bi,

where Bi ∈ seq. Any B ∈ seq is Lipschitz (see [10] for the proof of this fact). We
will define a set of words such that any two words of this set cannot have its
weight from the same Bi, contradicting the fact that Bi is NBi− Lipschitz. Let
z be any word that leads from q2 to an accepting state qF . Such a word exists
because A is trimmed. Let c3 be the weight of the path labeled by z. We define
W as a set of words of the form Wj := w

(
tvNi

)
i=1..j

z, where j ∈ [k + 1]. We

describe later how to choose the constants Ni to suit our purpose. The weight
〈Wj ,A〉 equals

λ(qI) + c1 + (j − 1)h1 + h2 + x1

⎛⎝ ∑
i=1..j−1

Ni

⎞⎠ + x2Nj + c3 + γ(qF ),

where h1 = μ(t)[q1, q1], h2 = μ(t)[q1, q2]. Due to the unambiguity ofA, all theWj

share the starting and ending state – if (ps,Wi, pe), (qs,Wj , qe) denote accepting
paths labeled byWi andWj respectively starting at ps, qs and pe, qe then ps = qs
and pe = qe. Hence, for j > l

|〈Wj ,A〉 − 〈Wl,A〉| =

∣∣∣∣∣∣h1(j − l) + x1

⎛⎝ ∑
i=l···j−1

Ni

⎞⎠ + x2Nj − x2Nl

∣∣∣∣∣∣
=

∣∣∣∣∣∣Nl(x1 − x2) + h1(j − l) + x1

⎛⎝ ∑
i=l+1···j−1

Ni

⎞⎠ + x2Nj

∣∣∣∣∣∣
= |Nl(x1 − x2) + C(l, j)| ,

In the equation above,C(l, j) depends onNl+1, . . . , Nj and constants k, x1, x2, h1.
We will now define the numbers Ni. Let N = max{NBi|i ∈ [k]}. Note that

d(Wj ,Wl) = 2|z|+ (j − l)|t|+ |v|
∑

i=l+1···j
Ni

So d(Wj ,Wl) does not depend on Nl. Let us define the inequality for Wj , Wl as:

|〈Wj ,A〉 − 〈Wl,A〉| > Nd(Wj ,Wl) (1)

The numbers Ni will be defined in such way that inequality (1) holds for all
pairs Wj ,Wl, Wj and Wl preventing them from having it’s weight from the
same automaton Bi. Values of N1 · · ·Nk+1 are defined inductively starting from
Nk+1 = 1. When Nm+1 · · ·Nk+1 are already defined and all pairs Wj , Wl, for
any j > l, j, l ∈ {m+ 1..k + 1} satify (1) we can define the next constant Nm.

The inequality for Wj and Wl, j > l can be presented as:

|Nl(x1 − x2) + C(l, j)| > N ·

⎛⎝2|z|+ (j − l)|t|+ |v|
∑

i=l+1···j
Ni

⎞⎠
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We will find Nl ∈ R+ so big, that

|Nl(x1 − x2) + C(r, j)| > N ·
(
2|z|+ (k − l + 1)|t|+ |v|

∑
i=l+1···k+1

Ni

)
︸ ︷︷ ︸

=Cl

for every r, j such that r ≥ l and j ≤ k + 1. Let B = min{C(r, j)|r ≥ l,

j ≤ k + 1}. Then observe Nl = Cl+|B|+1
|x1−x2| is sufficient to fulfill the

inequalities. ��

We have shown that the negation of the Fork Property is a necessary condition
for having a finitely sequential equivalent if the given automaton is unambiguous.
Now we will show that the negation of the Fork Property is also sufficient.

Definition 3 [Critical Pair]. Let

DA := {〈q1, q2〉 ∈ Q×Q | q1 and q2 are siblings, not twins in A}.

A pair 〈q, E〉 ∈ Q×P (Q) is said to be critical if ∃p ∈ Q 〈q, p〉 ∈ DA and {q, p} ⊆
E.

We define Â as 〈Q̂, Σ, λ̂, μ̂, γ̂〉, where:

Q̂ := Q × P (Q)

λ̂(〈q, E〉) :=
{
λ(q), if E = {r ∈ Q |λ(r) �= ∞ }
∞ otherwise

γ̂(〈q, E〉) := γ(q)

μ̂(a) (〈q1, E1〉, 〈q2, E2〉) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(a)(q1, q2), if q1 ∈ E1, and 〈q1, E1〉 is not
critical and

E2 = {q|∃p ∈ E1 μ(a)(p, q) �= ∞}
μ(a)(q1, q2), if q1 ∈ E1 ∧ 〈q1, E1〉 is critical

and E2 = {q|μ(a)(q1, q) �= ∞}
∞ otherwise

The intuition behind above definitions is the following: The first component
simulates the automaton A. The automaton starts from the initial states which
holds all initial states in the second component. The fact that the current state
is critical means that a non-twin pair of states has been detected and one of the
states is our current first component. Following the transitions we accumulate in
the second component all states that can be reached in A from the last critical
state. When we are in the new critical state we reduce the second component
to the single state remembering only this first component which currently is the
cause of non-twin pair occurrence.
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Note that if q0
a0|t0−−−→ q1

a1|t1−−−→ · · · ai−1|ti−1−−−−−−→ qi is a path in A then for some

sequence (Ej)j=1,..,i, 〈q0, E0〉
a0|t0−−−→ 〈q1, E1〉

a1|t1−−−→ · · · ai−1|ti−1−−−−−−→ 〈qi, Ei〉 is a path

in trim(Â). In addition, when we have a path in the automaton trim(Â), by
mapping all its states with πf (〈q, E〉) := q we obtain a valid path in A. Hence
we obtain the following.

Remark 4. S(A) = S(trim(Â)).

The function μ̂ is defined such that for each 〈q1, E1〉 if μ(a)(q1, q2) �= ∞ then
the E2 such that μ̂(a)(〈q1, E1〉, 〈q2, E2〉) �= ∞ is uniquely determined. Hence
nonambiguity is preserved for Â.

Remark 5. trim(Â) ∈ namb.

Let us now show a crucial property of trim(Â).

Lemma 6. An automaton A has the Fork Property iff for all m ∈ N there exists
an accepting path in trim(Â) with more than m critical states.

Proof. Assume that A has FP. Moreover, assume that q1, q2 are the states from
the property definition. Let w be the word leading to the state q1 and v be a
word leading from q2 to a final state. Consider the word sm := wtm+2v. The

word sm is accepted by A on the path π : q0
w−→ q1

(
t−→ q1

)m t−→ q2
v−→ qf . The

path π has a corresponding path π in trim(Â), where

π = 〈q0, E0〉
w−→ 〈q1, E1〉

(
t−→ 〈q1, E2···m+2〉

)m+1 t−→ 〈q2, Em+3〉
v−→ 〈qf , Ef 〉.

Let us consider the subpath of π starting after 〈q1, Ei〉 and ending with 〈q1, Ei+1〉.
If all the states on this subpath before 〈q1, Ei+1〉 are non-critical, then, by the
construction of trim(Â), {q1, q2} ⊆ Ei+1 and so 〈q1, Ei+1〉 is critical. Therefore
there is at least one critical state on the subpath. The path π contains m + 1
such subpaths with at least one critical state on each one, so it has more than
m critical states. It is also an accepting path. This proves the first implication.

Assume that for every m ∈ N there exists an accepting path in trim(Â)
with more than m critical states. Let us take such path for m = |Q| + 1. It
contains at least one pair of critical states 〈q0, E0〉 and 〈q1, E1〉 with the same
first coordinate q0 = q1. As 〈q1, E1〉 is critical, there exist p1 ∈ E1 such that q1
and p1 are siblings and are not twins. By the definition of Â if 〈q0, E0〉 is critical
then all states in E1 are reachable from q0 in A by some word w. Thus, there is
a path from 〈q0, E0〉 to 〈p1, H1〉 for some H1 labeled with the same word as our

path from 〈q0, E0〉 to 〈q1, E1〉. Therefore in A, q0 w−→ q1 and q0
w−→ p1, and so A

has the Fork Property. ��

The Lemma 6 says that if the Fork Property does not hold, then only short
sequences of critical states can appear on a single path of trim(Â). The number
of critical states is bounded by m = |Q| + 1. This gives the intuition that all
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accepting paths can be split between components which contain paths with the
same sequence of critical states. Since the length of the sequence is bounded, only
a finite number of components must be considered. The main purpose of such
split between components is to obtain components satisfying the Twin Property,
which can then be determinized. This intuition is correct but insufficient to
ensure Twin Property of the component because several paths with the same
label may contain the same maximal subsequence of critical states. Hence the
sequence of critical states will be strengthened by adding to each critical state
a number to distinguish between different paths labeled by the same string and
the same sequence of critical states.

The rest of this section is devoted to the formal construction of the split de-
scribed above and the proof that each component we construct has the Twin
Property. In the proof below we are focused on correctness of the formal con-
struction. Correctness means that each component is unambiguous and has the
Twin Property. Completeness, meaning that the outcome represents the same
function, is straightforward.

It would suffice to take m = |Q| + 1 in the proof of Lemma 6. Let k be a
positive integer not greater than m. Let R ⊆ Q × P(Q) × [m] be the maximal
set such that if 〈p,E, j〉 ∈ R then 〈p,E〉 is critical. An a ∈ Rk is a sequence of
critical pairs of trim(Â) marked by numbers from [m]. By a[i] we denote the
i’th element of the sequence. If a[i] = 〈p,E, j〉 by a1[i],a2[i],a3[i] we denote
respectively p,E, j.

If q = 〈c1[i], c2[i]〉 and c3[j] = 0 ⇐⇒ j ≥ i we call i the q-upgrade of c
we also say that such a q extends c. A vector b ∈ Rk is decent if it satisfies
∀i ∈ [k]

(
b3[i] = 0 ⇒ ∀j > i b3[j] = 0

)
. A decent vector c subsumes a decent

vector b, what is denoted also by b ' c if ∀i ∈ [k] b3[i] �= 0 ⇒ b3[i] = c3[i]. A
vector c ∈ Rk is an a-type, if 〈c1[i], c2[i]〉 = 〈a1[i],a2[i]〉 for all i ∈ [k], and it is
decent. A vector c ∈ Rk is an a-verge if it is a−type and c ' a.

Fix a ∈ Rk such that 0 < a3[i] ≤ m for all i ∈ [k]. By A[a] = 〈Σ,Qa, λa, μa,
γa〉 we denote an a−split automaton defined as follows: Qa = Q̂ × Rk ×
P(Q̂×Rk).

Definition 7 [Context Extension]. Let c ∈ Rk be an a−type vector and
let A ∈ P(Q̂ × Rk). Let q ∈ Q̂ be a non-critical state or a critical state which
extends c. An a−type vector b is an A-context extension of c by q, denoted by
b = c+ q[A] ∈ Rk if

1. b = c and q is non-critical or
2. q is the i−upgrade of c and for all l ∈ [k]

b3[l] =

{
min([m] \ {j > 0 | ∃〈p,d〉 ∈ A d3[i] = j}) l = i,

c3[l] otherwise.

We would like to emphasize here that the expression b = c + q[A] is a relation
between b, c, q, and A. In particular if q is a critical state which do not extends
c, ¬(b = c+ q[A]).

Let Ta be the set of all a−type elements in Rk.
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Definition 8 [Context Successor]. For b ∈ Σ, let nsb : P(Q̂ × Ta) →
P(Q̂× Ta) be a function such that for given A, nsb(A) = B if

B = {〈q, b〉 ∈ Q̂× Ta | ∃〈p, c〉 ∈ A μ̂(b)(p, q) �= ∞∧ b = c+ q[A]}.

Set B is called b−successor of context A, and nsb is called b−successor function.
Note that such definition of nsb ensures that the number marking a vec-

tor is not greater than m. We have to emphasize also that the definition of
B is correct as well as the next definition because we are restricted to the un-
ambiquous automaton A and moreover there is at most one 〈p, b〉 ∈ A which
satisfies μ̂(a)(p, q) �= ∞∧ b = a+ q[A].

Now we are ready to define functions μ, λ, γ for A[a]. For Q = 〈q, c, A〉 such
that c is an a-type

λa(Q) :=

⎧⎪⎨⎪⎩
λ̂(q), if

∑k
i=1 c

3[i] = 0,

A = {〈p, b〉 :
∑k

i=1 b
3[i] = 0, λ̂(p) �= ∞, b is an a− type}

∞ otherwise

γa(〈q,a, A〉) := γ̂(q)

For Q1 = 〈q1,a1, A1〉, Q2 = 〈q2,a2, A2〉 we define

μa(b) (Q1, Q2) :=

{
μ̂(b)(q1, q2), if A2 = nsb(A1);a2 = a1 + q2[A1]; a1, a2 ' a

∞ otherwise

In the special case of an A[a] automaton, when k = 0 and a has no co-ordinates,
we write a = ε. In this case all nonzero transitions are between non-critical
states. In our construction of automata A[a] all paths of trim(Â) are distributed
between A[a] without changing weights of transitions. Therefore each path in
trim(Â) has his counterpart in C =

⋃
·

k∈[m]

⋃
·

a∈Rk∪{ε}
A[a] where consecutive states

in the first path are equal to the first coordinate of the corresponding states
in the second one. The fact that each of the paths in Â belongs to some A[c]
depends on the sequence of critical states occurring on the path and the marking
numbers given by the context extension operation. Since for each word w number
of paths labeled by w is at mostm a particular path labeled by w gets its marking
numbers for the critical states. Hence each of paths are enclosed to some A[c].

Remark 9. S(trim(Â)) = S (C) and ∀a ∈
⋃

k∈[m]

Rk ∪ {ε}, A[a] ∈ namb.

From the fact that definition of μa allows only vectors which are subsumed by
a, we also get the following.

Fact 10. For every w ∈ Σ+ and every pair of different paths if
x0−→ p0

w|x1−−−→
〈p, b, A〉 and y0−→ q0

w|y1−−−→ 〈q, c, B〉 in A[a] then c ' b or b ' c.

Now, we can prove our main technical result.
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Theorem 11. If A ∈ namb does not satisfy the Fork Property, then S(A) ∈
Fseq.

Proof. By the previous remarks we have that

S(A) =
⋃
·

k∈[m]

⋃
·

a∈Rk∪{ε}
A[a],

and all of A[a] are namb. Now we need to show that any A[a] has twin property
and therefore all of them are determinizable. This proves S(A) ∈ Fseq.

For the sake of contradiction assume that A[a] has no twin property. That
means that there are p, q ∈ Qa and w, v ∈ Σ∗ such that

∞ �= x2 = μa(v)(q, q) �= μa(v)(p, p) = y2 �= ∞,

and for some q0, p0 ∈ Qa there are two different paths

π1 =
x0−→ q0

w|x1−−−→ p
v|x2−−−→ p and π2 =

y0−→ p0
w|y1−−−→ q

v|y2−−→ q.

Assume that π1 and π2 can be presented as π1 = α1α2α3α4, π2 = α1β2β3β4,
where

1. |βi| = |αi| for i = 2, 3, 4 and |α4| = |v|;
2. 〈p′, c, A〉, and 〈q′,d, B〉 are respectively the first states of α3 and β3 and at

the same time the earliest mutual states such that c �= d;
3. 〈p′′, e, A〉, and 〈q′′, e, B〉 are respectively the first states of α2 and β2 and at

the same time the earliest mutual states such that p′′ �= q′′.

First note that states 〈p′, c, A〉, and 〈q′,d, B〉 have to appear on the paths not
later than states p, q and 〈p′′, e, A〉, 〈q′′, e, B〉 appears not later than 〈p′, c, A〉,
〈q′,d, B〉. Now remark that the second components of all states, excluding the
last one, on the paths α2 and β2 are equal e. Otherwise A[a] would not be
unambiguous, as each change to the other vector f , according to the assumptions,
can be done simultaneously for both paths extending e by the same state r.
But this means that there are two different paths leading to the state r in Â.
Therefore there are no states in α2 and β2 with critical first component.

By Fact 10 either c = e or d = e. Without loss of generality assume that
c = e. By the definition of μa, in particular due to the definition of the operation
of context extension (a2 = a1 + q[A]), all states in α3α4 cannot be extended
being still subsumed by a. This is because that if i is an upgrade of c then it
cannot be an upgrade of any f such that d ' f , just context extension assigns
a number to c3[i] different then upgraded earlier f3[i]. Now we have a complete
picture of which paths in Â are covered by A[a] – only that which are a−verge.

This means that all first components of states in α3α4 are non-critical. Note
that neither p′′ nor q′′ are critical states, otherwise because, they are different,
we would have contradiction with the second item of the assumption. Let p =
〈〈s1, E1〉, e, A〉 and q = 〈〈s2, E2〉, e′, B〉. Now, by the definition of Â, s2 ∈ E1 but

s1
v|x2−−−→ s1 and s2

v|y2−−→ s2 are the subpaths in A. This contradicts the previous
conclusion that 〈s1, E1〉 is not critical in Â. ��
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Complexity. It is decidable in polynomial time for unambiguous automata if
given p, q are twins [1]. Therefore one can iterate the decision procedure for
all pairs and in each step the reachability condition which appears in the fork
property can be tested. Hence the Fork Property and its negation can be decided
in polynomial time.

The naive estimation of the upper bound for the size of one component in C
can getm32O(m3). This is exponential in the size of the input becausem = |Q|+1.

The number of components in C can be bounded bym22O(m2). Therefore deciding
if an unambiguous automaton is finitely sequential can be done in ptime and
the counterpart is at most doubly exponential in the size of the input - because
components of C need to be determinized.

Acknowledgement. We thank Lukasz Kaiser for bunch of remarks concerning
the text improvement. We are grateful to Daniel Kirsten for sharing the ’almost
full version’ of the paper [7] and for discussions during the first author’s visit at
Humboldt University and Liafa Laboratory.
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Abstract. Recently, an Alignment approach for the comparison of two
genomes, based on an evolutionary model restricted to Duplications and
Losses, has been presented. An exact linear programming algorithm has
been developed and successfully applied to the Transfer RNA (tRNA)
repertoire in Bacteria, leading to interesting observation on tRNA shift
of identity. Here, we explore a direct dynamic programming approach for
the Duplication-Loss Alignment of two genomes, which proceeds in two
steps: (1) (The Dynamic Programming step) Outputs a best candidate
alignment between the two genomes and (2) (Minimum Label Alignment
problem) Finds an evolutionary scenario of minimum duplication-loss
cost that is in agreement with the alignment. We show that the Minimum
Label Alignment is APX-hard, even if the number of occurrences of a gene
inside a genome is bounded by 5. We then develop a heuristic which is
a thousands of times faster than the linear programming algorithm and
exhibits a high degree of accuracy on simulated datasets. The heuristic
has been implemented in JAVA and is available on request.

Keywords: Comparative Genomics, Genome Alignment, Duplication,
Algorithms, Computational Complexity, Dynamic Programming.

1 Introduction

The abundance of completely sequenced and annotated genomes present in pub-
lic repositories has reinforced the role of genome comparison as the primary
approach to gain insight in the evolution of genomes and gene families. When
comparing complete genomes, the mutations of interest are macro-evolutionary
events such as rearrangements (inversions, transpositions, translocations etc.)
and content modifying operations (duplications, losses, horizontal gene transfer
etc.) affecting the overall organization of genes, rather than micro-evolutionary
events, such as single nucleotide substitutions, affecting single gene sequences. In
other words, genomes are modeled as strings of characters over an alphabet Σ of
gene families. The case of strings being permutations (i.e. each gene family with a
single representative in each genome) has been largely considered by the genome

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 116–127, 2013.
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rearrangement community for pairwise comparison (for example [3,8,10,13]) or
multiple comparison in a phylogenetic framework (for example [4,12,14,15]). An
extra degree of difficulty is introduced in the case of strings containing multiple
gene copies. Most of the methods used for comparing two genomes with dupli-
cates (reviewed in [6,7,9]) rely mainly on rearrangement events. Contrariwise,
we considered in [11], an evolutionary model restricted to content-modifying op-
erations, and more specifically to duplications and losses. We showed that this
model is required to study the evolution of certain gene families, such as Transfer
RNAs (tRNAs). From a combinatorial point of view, the main consequence of
ignoring rearrangements is the fact that gene organization is preserved, which
allows reformulating the comparison of two genomes as a Duplication-Loss Align-
ment problem: find an alignment minimizing the cost of duplications and losses.
As in [11], we consider in this paper the cost of an alignment to be the number of
underlying segmental duplications (duplication of a string of adjacent genes) and
single losses (loss of a single gene). Although alignments are a priori simpler to
handle than rearrangements, we showed in [11] that a direct approach based on
dynamic programming leads, at best, to an efficient heuristic, and we rather de-
veloped an exact pseudo-boolean linear programming algorithm. This algorithm
is however exponential in the worst case, preventing from being applicable to
relatively large genomes (more than 200 genes). The problem has actually been
recently shown to be NP-hard [5].

In this paper, we further explore the suggested direct dynamic programming
approach, which is in two steps: (1) (The Dynamic Programming step) Output
a best candidate alignment between the two genomes and (2) (Minimum Label
Alignment problem) Find an evolutionary scenario of minimum duplication-loss
cost that is in agreement with the alignment. The way to solve the Minimum
Label Alignment problem, as well as its complexity, were left open in [11]. We
show in Section 4 that it is APX-hard, even if the number of occurrences of a gene
inside a genome is bounded by 5. We then, in Section 5, present a heuristic for
the Duplication-Loss Alignment problem, which is a thousands of times faster
than the linear programming algorithm and exhibits optimal or near-optimal
results on simulated datasets obtained with an evolutionary model consistent
with that observed for the tRNA repertoire in Bacillus .

We begin by introducing the notations and alignment problems in Section 2,
and the dynamic programming approach in Section 3.

2 Preliminaries

Strings: We consider single chromosomal (circular or linear) genomes, repre-
sented as gene orders with duplicates. More precisely, given an alphabet Σ, each
character representing a specific gene family, a genome or string is a sequence
of characters from Σ, where each character may appear many times. As the
content-modifying operations considered in this paper do not change gene ori-
entation, we can assume w.l.o.g. that genes are unsigned. For example, X in
Figure 1 is a genome on the alphabet Σ = {a, b, c, d, e, f}, with four gene copies
from the gene family identified by b, and a single copy from family f .
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Given a string Z, we denote by |Z| its length, by Z[i], 1 ≤ i ≤ |Z|, the i-th
character of Z, and by Z[i, j], 1 ≤ i ≤ j ≤ |Z|, the substring of Z that starts at
position i and ends at position j. Finally, two substrings Z[i1, i2] and Z[j1, j2],
1 ≤ i2 ≤ j2 ≤ |Z|, overlap if j1 ≤ i2.

The Duplication-Loss Model of Evolution: We assume that present-day genomes
have evolved from an ancestral string through duplications and losses, where:
(i) A Duplication of size k is an operation that copies a substring of size k of
a current genome X somewhere else in the genome. Given two identical non
overlapping substrings X [i, i+k− 1] and X [j, j+k− 1] of X , we denote by D =
(X [i, i+ k − 1], X [j, j + k − 1]) a duplication from X [i, i+k−1] to X [j, j+k−1];
the stringX [i, i+k−1] is called the source, and the stringX [j, j+k−1] the target
of the duplication D; (ii) A loss of size k is an operation L = (X [i, i + k − 1])
that removes a substring X [i, i+ k − 1] of size k from genome X .

Consider a duplication D = (X [i1, i2], X [j1, j2]) of X . Such a duplication is
called maximal if it cannot be extended using positions adjacent to the source
and target substrings.

Given an integer k ≥ 1, the cost of a duplication of size k is denoted by
c(D(k)), and the cost of a loss of size k is denoted by c(L(k)).

The Duplication-Loss Alignment Problem: We introduced in [11] the concept
of “Feasible” Labeled Alignment of two genomes X and Y , and showed the one-
to-one correspondence between the set of such alignments and the set of all
possible “visible” evolutionary histories from a common ancestor A to X and Y .
Definitions on alignments are given below, and illustrated in Figure 1.

a b c a b c d b e f d b e

fb ca e

X:

Y: b

a b c a b c d b e f d b e

b fb ca e
L L

X:

Y:
L

(i)

(ii)
1 1 1 2 2 2 1 3 1 1 2 4 2

326353

1 1 1 2 2 2 1 3 1 1 2 4 2

326353

(i) Cyclic labeled alignment: 4 duplications

(ii) Feasible lab. alignment: 3 duplications and 2 losses

(iii) Feasible lab. alignment: 3 duplications and 1 loss

Fig. 1. Labeled alignments for strings X = “abcabcdbefdbe” and Y = “abcbfe”. Costs
are c(D(k)) = 1 and c(L(k)) = k for any integer k. Losses are denoted by “L” and
duplications by arrows from source (indicated by bracket) to target. Two different
labeling are given for the left alignment: one (i) with “d2 b4” being interpreted as the
target of a duplication, and one (ii) with the same substring interpreted as two losses.

In the remaining of this paper, we consider two genomes X and Y on an
alphabet Σ, with |X | = n and |Y | = m. Let Σ− = Σ ∪ {−} be the alphabet Σ
augmented with an additional character ‘-’ called a gap.

Definition 1. An Alignment of X and Y is a pair (X ,Y) of strings on Σ−×Σ−

obtained by filling X and Y respectively with gaps, such that the resulting Aligned
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Genomes X and Y are equal length. Moreover, each position i, with 1 ≤ i ≤ |X |,
is such that either X [i] = Y[i] �= − (position i is called a Match), or exactly one
of X [i], Y[i] is equal to a gap (position i is called a Mismatch).

In order to uniquely match an alignment (X ,Y) with a duplication-loss history
leading to X and Y from a common ancestor, we need to label unmatched
characters of the aligned genomes X and Y in terms of duplications and losses.

Definition 2. A Labeling L(X ) of an aligned genome X (or simply L if no
ambiguity) is a set of losses and duplications, such that for each mismatched
position j, 1 ≤ j ≤ |X |, L(X ) contains either a loss L = (X [j1, j2]) or exactly
one duplication D = (X [i1, i2],X [j1, j2]), with 1 ≤ j1 ≤ j ≤ j2 ≤ |X |.

Now, a Labeling of an alignment (X ,Y) is a pair (L(X ),L(Y)) where L(X )
and L(Y) are labeling of X and Y respectively. The pair (L(X ),L(Y)) is a La-
beled Alignment of X and Y . The cost of a labeling L(X ) is the cost of the
underlying operations (losses and duplications). The cost of a labeled alignment
(L(X ),L(Y)) is the sum of cost of the two labeling L(X ) and L(Y).

The above definition is not sufficient to ensure a correct interpretation of an
alignment in term of duplication-loss history, as it does not prevent from a
“cyclic” interpretation of an alignment. For example the labeled alignment (i)
in Figure 1 is not feasible as it reflects a history with two circular duplications
D = (d1b3e1, d2b4e2) and D

′ = (d2b4, d1b3). A “feasible labeling” is a non-cyclic
labeling, where cycles are rigorously defined as follows.

Definition 3. Consider a set of duplications D. D induces a Duplication Cycle
if there is a permutations D1 = (X [i1, r1],X [j1, s1]), D2 = (X [i2, r2],X [j2, s2]),
. . . , Dh = (X [ih, rh],X [jh, sh]) of the duplications in D, such that the substrings
X [jp, sp] and X [ip+1, rp+1] overlap, for each 1 ≤ p ≤ h − 1, and the substrings
X [jh, sh] and X [i1, r1] overlap.

Now, a labeling L(X ) is Feasible if there is no subset of duplications in L(X ) that
induces a duplication cycle. Finally a Feasible Labeled Alignment (L(X ),L(Y))
is a labeled alignment of X and Y where L(X ) and L(Y) are feasible labeling.
In Figure 1, (ii) and (iii) are two feasible labeled alignments of X and Y , with
(iii) being one of minimum cost.

We are now ready to give the main optimization problem allowing to infer
a most parsimonious history of duplications and losses leading to present-day
genomes from a common ancestor.

Problem 1. Duplication-Loss Alignment[DLA]
Input: Two genomes X and Y .
Output: A Feasible Labeled Alignment (L(X ),L(Y)) of minimum cost.

This problem has been shown NP-hard in [5]. An exact pseudo-boolean linear
programming algorithm has been developed in [11] for this problem. The next
section presents an alternative approach based on dynamic programming.
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3 A Dynamic Programming Approach

Let |X | = n and |Y | = m. Let C(i, j) (Cf (i, j) respectively) be the minimum
cost of a labeled (feasible labeled respectively) alignment of two prefixes X [1, i]
and Y [1, j] of X and Y . Then the problem is to compute Cf (m,n). A natural
approach sketched in [11] proceeds in two steps:

• Step 1. Unlabeled Alignment. Based on a dynamic programming ap-
proach, compute C(i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Recurrences given in [11]
allow to compute all values M(i, j), DX(i, j), DY (i, j), LX(i, j) and LY (i, j)
reflecting the minimum cost of an alignment (Xi,Yj) of X [1, i] and Y [1, j] satis-
fying respectively, the constraint that the last characters of Xi and Yj represent
a match, a duplication in X or in Y, a loss in X or in Y.

After computing all the values leading to C(m,n), a bottom-up approach
allows to output a labeled alignment (L(X ),L(Y)) of minimum cost C(m,n).
Unfortunately, (L(X ),L(Y)) is not necessarily a feasible alignment, as the re-
currences for DX(i, j) may lead to invalid cyclic evolutionary scenarios. Notice
that, as the DLA problem has been recently shown to be NP-complete [5], unless
P = NP , no alternative recurrences would lead to a polynomial-time algorithm
for computing Cf (m,n).
• Step 2. Minimum Labeling Alignment. Consider an (unlabeled) alignment
(X ,Y) output by Step 1, and label it in an optimal way, e.g. find labeling L(X )
and L(Y) for X and Y respectively, such that (L(X ),L(Y)) is a feasible labeled
alignment of minimum cost over all possible labeling of (X ,Y). Notice that once
the genomes are aligned, each labeling can be computed independently. Hence,
the Minimum Labeling Alignment problem can be formulated as follows:

Problem 2. Minimum Labeling Alignment[MLA]
Input: An aligned genome X .
Output: A Feasible Labeling L(X ) of minimum cost.

The complexity of the MLA problem, as well as an appropriate algorithm to
solve it, were left open in [11]. These are precisely the goals of our paper. It has
to be noted that this approach cannot lead to an exact algorithm, as an align-
ment of minimum cost C(m,n) does not necessarily lead to a feasible alignment
of minimum cost Cf (m,n). For example in Figure 1, an optimal labeling for
alignment (i) of minimum cost C(m,n) = 4 leads to the feasible alignment (ii)
of cost 5, which is not optimal, as (iii) is a better feasible alignment of cost 4.

Cost: As in [11], we will consider c(D(k)) = 1 and c(L(k)) = k. This leads
to a natural weight of an evolutionary history in term of number of segmental
duplications (duplication of a string of adjacent genes) and single losses (loss
of a single gene). Although segmental deletions are also likely to occur during
evolution, accumulation of mutations transforming a single gene into a pseu-
dogene is the most frequent cause of gene loss. From an optimization point of
view, the DLA problem is trivial if we count segmental losses as single events in
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the same way as duplications, that is c(L(k)) = 1. Indeed, in this case, a most
parsimonious labeled alignment can always be obtained by ignoring duplications.

4 Hardness of Minimum Labeling Alignment

In this section, we prove that the MLA problem is APX-hard, even if each
character (gene) has at most 5 occurrences in an aligned genome X , by giving an
L-reduction from the Minimum Vertex Cover problem on Cubic graphs (MVCC),
known to be APX-hard [1], to MLA (for details on L-reduction see [2]). A graph
is cubic iff each vertex of the graph has degree 3. Given a cubic graphG = (V,E),
with V = {v1, . . . , vn}, MVCC asks for a minimum cardinality set V ′ ⊆ V , such
that for each {vi, vj} ∈ E, at least one of vi, vj belongs to V ′.

Next, we present the L-reduction from MVCC to MLA. Let G = (V,E) be a
cubic graph. Define the following ordering on the edges in E: {vi, vj} < {vx, vy}
if and only if i < x, or (in case i = x) j < y. Based on this ordering, we denote
the edges incident on vi, as the first, the second and the third edges of vi. In
what follows, given vi ∈ V , we denote with {vi, vj}, {vi, vh}, {vi, vk} the first,
the second and the third edges respectively of G incident on vi.

First, we define the aligned genome X corresponding to the cubic graph G.
We present an overview of the construction of X , then we give the details of
the construction. The aligned genome X consists of two parts (see Fig. 2): the
leftmost part is called the Vertex-Edge-set Part (VE-Part), the rightmost part
is called the Auxiliary Part (A-Part). Each part is then divided into substrings,
called blocks. Each position of X in the A-part is a match, while positions in
the VE-part can be either matches or mismatches. Hence a labeling L of X is
computed by labeling the mismatched positions in the VE-part of X .

The VE-part of X consists of the concatenation of |V |+ |E| blocks (see Fig.
2). For each vertex vi ∈ V there is one block BV E(vi) in the VE-part of X ; for
each edge {vi, vj} ∈ E, there is one block BV E(ei,j) in the VE-part of X .

The A-part of X consists of the concatenation of 2|V | blocks (see Fig. 2). For
each vi ∈ V , there exist two blocks BA,1(vi), BA,2(vi) in the A-part of X . Now,

X = BV E(v1) . . . BV E(vn)BV E(e1,a) . . . BV E(ez,w)︸ ︷︷ ︸
VE-part

·

·BA,1(v1)BA,2(v1) . . . BA,1(vn)BA,2(vn)︸ ︷︷ ︸
A-part

Fig. 2. The structure of the aligned genome X

we define the specific values of the blocks of X . Given an edge {vi, vj} ∈ E,
where i < j, {vi, vj} is the p-th edge of vi, 1 ≤ p ≤ 3, and the q-th edge of vj ,
1 ≤ q ≤ 3, we define its associated block BV E(ei,j) as follows:

BV E(ei,j) = se,i,jxi,pei,j,1ei,j,2xj,q
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where the first position of BV E(ei,j), that is the position containing character
se,i,j , is a match and each other position of BV E(ei,j) is a mismatch.

Now, we define the block BV E(vi), with vi ∈ V . First, define the i-encoding
of {vi, vj}, denoted as i-enci,j, as the following string: i-enci,j = xi,pei,j,1ei,j,2.
Moreover, let i-encli,j = xi,p, and i-enc

r
i,j = ei,j,1ei,j,2. The j-encoding of {vi, vj},

denoted as j-enci,j, is defined as follows: j-enci,j = ei,j,1ei,j,2xj,q, and j-enc
l
i,j =

ei,j,1ei,j,2, j-enc
r
i,j = xj,q.

The block BV E(vi) is defined as follows:

BV E(vi) = sizi,1zi,2 i-enci,j zi,3zi,4 i-enci,h zi,5zi,6 i-enci,k zi,7zi,8

BV E(vi) contains one matched position, the first position containing character
si, and 17 mismatched positions (from position 2 to position 18 of BV E(vi)).

Now, we define the A-part of X . Recall that each position of the A-part of X
is a match. The block BA,1(vi) is defined as follows:

BA,1(vi) = wi,1zi,1zi,2wi,2zi,3zi,4wi,3zi,5zi,6wi,4zi,7zi,8

The block BA,2(vi) is defined as follows:

BA,2(vi) = ui,1zi,2 i-enc
l
i,j ui,2 i-enc

r
i,j zi,3ui,3zi,4 i-enc

l
i,h ui,4 i-enc

r
i,h zi,5·

·ui,5zi,6 i-encli,k ui,6 i-encri,k zi,7
Before giving the details of the proof, we give a high-level description of the
reduction. We will show that each block BV E(vi) can be labeled essentially in
two possible ways (see Remark 4):
1. with a type a labeling, defining seven maximal duplications from substrings of
blocks BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi) to substrings of block BV E(vi);
a type a labeling is the optimal labeling of BV E(vi) (see Lemma 6) and has a
cost of 7;
2. with a type b labeling, defining six maximal duplications from substrings of
block BA,2(vi) to substrings of block BV E(vi) and two losses; a type b labeling
is a suboptimal labeling of BV E(vi) (see Lemma 6) and has a cost of 8.

Thanks to the property of block BV E(ei,j) (see Remark 5 and Lemma 7),
we can relate these two kinds of labeling with a cover of G (see Lemma 8 and
Lemma 9): a type b labeling of BV E(vi) corresponds to a vertex vi in a vertex
cover V ′ of G, a type a labeling of BV E(vi) corresponds to a vertex vi in V \ V ′

of G.
Now, we give the details of the reduction. First, we introduce some prelimi-

naries properties of X .

Remark 4. Consider a cubic graph G = (V,E), and the corresponding instance
X of MLA. Let vi be a vertex of V , with {vi, vj}, {vi, vh}, {vi, vk} the first,
the second and the third edges of vi respectively. A type a labeling of BV E(vi)
consists of the following 7 duplications:

– four duplications, each one from the substring zi,2p−1, zi,2p, 1 ≤ p ≤ 4, of
block BA,1(vi), to the substring zi,2p−1, zi,2p, of block BV E(vi);
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– a duplication from the substring i-enci,x, with x ∈ {j, h, k}, of BV E(eix) to
the substring i-enci,x of BV E(vi).

A type b labeling labeling of BV E(vi)) consists of the following 6 duplications
and 2 losses (hence it has a cost of 8):

– six duplications from substrings of BA,2(vi) to substrings of BV E(vi) (specif-
ically for the six substrings zi,2 i-enc

l
i,j, i-enc

r
i,j zi,3, zi,4 i-enc

l
i,h, i-enc

r
i,h zi,5,

zi,6 i-enc
l
i,k, i-enc

r
i,k zi,7);

– two losses for the leftmost position and the rightmost position of BV E(vi).

Notice that in a type b labeling for BV E(vi), there is no duplication from sub-
strings of BV E(eij), BV E(eih), BV E(eik) to substrings of BV E(vi).

Remark 5. Let G = (V,E) be a cubic graph, let {vi, vj} ∈ E, with i < j, be the
p-th edge of vi, 1 ≤ p ≤ 3, and the q-th edge of vj , 1 ≤ q ≤ 3. Let X be the
corresponding instance of MLA. The following two labeling of BV E(ei,j) (recall
that the first position of BV E(ei,j) is a match) have cost 2:

– one duplication from the substring xi,pei,j,1ei,j,2 of BV E(vi) to the substring
xi,pei,j,1ei,j,2 of BV E(ei,j), one loss for the last position of BV E(ei,j)

– one duplication from the substring ei,j,1ei,j,2xj,q of BV E(vj) to the substring
ei,j,1ei,j,2xj,q BV E(ei,j), one loss for the second position of BV E(ei,j)

Now, we are ready to show that a type a labeling is the only optimal labeling for
BV E(vj).

Lemma 6. Let G = (V,E) be an instance of MVCC and let X be the corre-
sponding instance of MLA. Then, given a block BV E(vi), with vi ∈ V : (1) any
feasible labeling of BV E(vi) has a cost of at least 7; (2) if a labeling has cost of
7, then such a labeling is a type a labeling of BV E(vi).

Proof. (Sketch.) (1) The proof follows from a simple counting argument. Block
BV E(vi) contains 17 unmatched positions. By construction the leftmost position
and the rightmost position of BV E(vi) are labeled by duplications of length at
most 2. The remaining positions are at least 13, and since by construction are
labeled by duplications of length at most 3, it follows that at least 2 + ( 13

3 ) = 7
duplications are required for each feasible labeling of BV E(vi).

(2) It is easy to see that if a feasible labeling of BV E(vi) contains only du-
plications from substrings of BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi), then
it has a cost of 7 iff is a type a labeling. Similarly if a feasible labeling of
BV E(vi) contains only duplications from substrings of BA,2(vi), it has a cost
of at least 8. Assume that a feasible labeling L of BV E(vi) contains a duplica-
tion D = (X [i1, i2],X [j1, j2]), where X [i1, i2] is a substring of BA,2(vi), and a
duplication from a substring of one of BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi).
It is easy to see that D can (eventually) be extended so that it is a maximal
duplication. Then by replacing each other duplication of L having as a target a
substring of BV E(vi) with a duplication from substrings of BA,2(vi) (or a loss),
we obtain a type b labeling. This implies that L has a cost of at least 8. ��
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Now, we prove a property on the labeling of a block BV E(ei,j).

Lemma 7. Let G = (V,E) be an instance of MVCC and let X be the correspond-
ing instance of MLA. Then, each feasible labeling of BV E(ei,j), with {vi, vj} ∈ E,
has a cost of at least 2, in which case BV E(ei,j) must be labeled with one dupli-
cation having target in BV E(vi) or in BV E(vj).

Proof. By construction, since there is no other substring in the aligned genome
X identical to BV E(ei,j), it follows that any labeling of BV E(ei,j) requires a cost
of at least 2. Now, assume that BV E(ei,j) is not labeled by a duplication having
a target in BV E(vi) or in BV E(vj). Then, by construction, either each position
of BV E(ei,j) is labeled as a loss (the cost of such labeling is 4) or the position
corresponding to the substring ei,j,1, ei,j,2 of BV E(ei,j) is labeled as a duplication
from a substring of BA,2(vi), implying a cost of 3 for the labeling. ��
Now, we are ready to prove the two main properties of the reduction in Lemma
8 and in Lemma 9.

Lemma 8. Let G be an instance of MVCC and let X be the corresponding
instance of MLA. Then, given a vertex cover V ′ ⊆ V of G, we can compute in
polynomial time a solution of MLA over instance X of cost 8|V ′|+7|V \V ′|+2|E|.
Proof. (Sketch). Given a cover V ′ ofG, we define a solution of MLA over instance
X having cost 8|V ′| + 7|V \ V ′| + 2|E| as follows: (1) for each vi ∈ V ′, define
a type b labeling for the corresponding block BV E(vi) (of cost of 8, see Remark
4); (2) for each vi ∈ V \ V ′, define a type a labeling for the corresponding block
BV E(vi) (of cost of 7, see Remark 4); (3) a duplication of cost 2 for eachBV E(ei,j)
associated with edge {vi, vj} ∈ E (see Remark 5). Since V ′ is a vertex cover of
G, at least one of vi, vj ∈ V ′, hence this labeling is feasible. ��
Lemma 9. Let G be an instance of MVCC and let X be the corresponding
instance of MLA. Then, given a feasible labeling of X of cost 8p+7(|V |−p)+2|E|,
we can compute in polynomial time a vertex cover of G of size at most p.

Proof. (Sketch). Let L be a feasible labeling of X of cost 8p+7(|V | − p) + 2|E|.
First, by Lemma 6, we can assume that BV E(vi) is associated in L either with
a type a labeling or with a type b labeling.

Now, consider a block BV E(ei,j), with {vi, vj} ∈ E. We show that we can
assume that at least one of BV E(vi), BV E(vj) has a type b labeling in L. If
this is not the case, BV E(ei,j) cannot be labeled with a duplication having
source in BV E(vi), BV E(vj), hence by Lemma 7, the cost of the labeling of
BV E(ei,j) is at least 3. We compute in polynomial time a feasible labeling L′,
such that c(L′) ≤ c(L), as follows: (1) define a type b labeling for one of BV E(vi),
BV E(vj), w.l.o.g. BV E(vi); (2) define a duplication D from the substring i-enci,j
of BV E(vi) to the substring i-enci,j of BV E(ei,j), and a loss for the unmatched
position ofBV E(ei,j) not contained in the target ofD. Hence we can assume that,
for each block BV E(ei,j), at least one of BV E(vi), BV E(vj) has a type b labeling
in L. It follows that we can define a vertex cover V ′ of G as follows: V ′ = {vi :
BV E(vi) has a type b labeling in L}. Since the cost of L is at most 8p+ 7(|V | −
p) + 2|E|, it follows that |V ′| ≤ p. ��
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The following result is a direct consequence of Lemmas 8 and 9.

Theorem 1. MLA is APX-hard.

5 An Efficient Heuristic

We now present DLAlign , which is a heuristic based on the dynamic program-
ming approach (Section 3) for the Duplication-Loss Alignment (DLA, Problem 1)
of two genomes X and Y . Recall that |X | = n and |Y | = m.

• Step 1. Dynamic Programming:
− Compute all the values of C(i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m;
− Output a labeled alignment (L(X ),L(Y)) of cost C(m,n). To limit the possi-
bility of creating cycles we do the following: (i) in the bottom-up approach used
to output a labeled alignment after filling the dynamic programming table C, we
choose a match operation whenever possible; (ii) for any duplication involving
a given string Z, the rightmost position of Z in the genome is always chosen to
be the source of the duplication.
• Step 2. Minimum Labeling Alignment: Resolve each duplication cycle D of
(L(X ),L(Y)), by interpreting the shortest overlapping string of D as a loss rather
than a duplication (see Examples (i) and (ii) in Figure 1).

Complexity: For simplicity, suppose |X | = |Y | = n. From the recurrences de-
tailed in [11], each C(i, j), for 1 ≤ i, j ≤ n, can be computed in time O(n) which
leads to an O(n3) algorithm for Step 1. As for Step 2, it requires constructing a
graph for X (Y respectively): for each duplication, add two vertices correspond-
ing to its source and target, and one edge from source to target. Constructing
the graphs, findings the cycles and resolving them can be done in time O(n3),
which leads to an O(n3) worst-time complexity for the whole heuristic.

5.1 Simulations

A random string R was drawn from the set of all strings of length n on an
alphabet of size a, and l moves were then applied to R to obtain an ancestral
genome A. To obtain the extant genomesX and Y , l more moves were applied to
A for each. The set of moves were segmental duplications and single gene losses.
The length of a duplication was drawn from a Gaussian distribution with mean
5 and standard deviation 2; these lengths were consistent with those observed
for the tRNA repertoire in Bacillus lineages [11].

Execution time: With 2l/n = 1/5 and a/n = 1/2, statistics similar to those
observed for the tRNA repertoire in Bacillus, strings of length 5000 took a couple
of days to be processed by the linear programming algorithm on a standard PC
workstation with 4 GB of memory. In comparison, the same data have been
processed by DLAlign on the same computer in less than two seconds.
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Fig. 3. The score returned by DLAlign compared to the optimal one returned by the
linear programming algorithm, for datasets of size up to n = 200. The left diagram
is obtained by varying the alphabet size a (x-axis is a/n), and the right diagram by
varying the number of moves l (x-axis is 2 ∗ l/n). See text for more details.

Accuracy: We compare Res, the alignment cost returned by DLAlign, with the
optimal cost Opt obtained by running the linear programming algorithm. Due
to the exponential-time complexity of the later, we had to restrict ourselves to
relatively small values of n, a and l. Results of Figure 3 are averaged over up to
Total = 1000 simulations. White bars refer to Error = Res−Opt

Res , and blue ones

to Accuracy = NbOpt
Total , where NbOpt is the number of simulations among Total

for which DLAlign outputs the optimal alignment (i.e. Error = 0).
With ratios 2l/n = 1/5 and a/n = 1/2, DLAlign returns the optimal alignment

cost for more than 85% of the simulations. This accuracy rate remains stable for
decreasing alphabet size, i.e. increasing number of gene copies (left diagram in
Figure 3), but quickly drops with increasing number l of moves (right diagram).
Notice however that, even for a number of moves being equal to the size of the
strings, the error rate Error always remains lower than 0.16.

6 Conclusion

In this paper, we investigated the problem of aligning two genomes, based on a
duplication and loss model of evolution. We developed a heuristic in two steps:
first use dynamic programming to output a best candidate solution, then consider
MLA to compute a feasible solution. The heuristic exhibited a high degree of
accuracy on simulated datasets. Moreover, it is a thousands of times faster than
the previously developed linear programming algorithm, which makes possible its
application to large genomes, and allows generalization to multiple genome align-
ment in a phylogenetic context. From a theoretical point of view, we showed that
the MLA problem is APX-hard even when each gene has at most five occurrences
in a genome. Interesting future work will be to investigate the approximation
and parametrized complexity of MLA.

Acknowledgements. We thank Krister M. Swenson for advices and help with
simulations.
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Abstract. The channel capacity of a deterministic system with confidential data
is an upper bound on the amount of bits of data an attacker can learn from the
system. We encode all possible attacks to a system using a probabilistic specifica-
tion, an Interval Markov Chain. Then the channel capacity computation reduces
to finding a model of a specification with highest entropy.

Entropy maximization for probabilistic process specifications has not been
studied before, even though it is well known in Bayesian inference for discrete
distributions. We give a characterization of global entropy of a process as a reward
function, a polynomial algorithm to verify the existence of an system maximizing
entropy among those respecting a specification, a procedure for the maximization
of reward functions over Interval Markov Chains and its application to synthesize
an implementation maximizing entropy.

We show how to use Interval Markov Chains to model abstractions of deter-
ministic systems with confidential data, and use the above results to compute their
channel capacity. These results are a foundation for ongoing work on computing
channel capacity for abstractions of programs derived from code.

1 Introduction

Quantified Information Flow [7] is a quantitative approach to compute the number of
bits of information an attacker would gain about the confidential data of a system by
interacting with the system and observing its behavior.

Leakage is defined as the difference between the attacker’s information [17] about the
confidential data before and after the attack. If we view the system as a channel through
which the attacker gets information about the secret, its capacity can be computed as
the maximum leakage over all prior infromations of attackers. This provides a security
guarantee for the system, as no attack can leak an amount of information higher than the
system’s channel capacity [15]. For a deterministic system, the leakage is the entropy
of the observable behavior of the system [13], and thus computing the channel capacity
reduces to computing the behavior of the system that maximizes entropy.

Our goal is to develop theories and algorithms to synthesize the process with max-
imum entropy among all those respecting a given probabilistic specification, allowing
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us to give a security guarantee valid for all the infinite processes respecting the speci-
fication. We use Markov chains (MCs) as process models and Interval Markov Chains
(Interval MCs) [11] as specification models. We use the continuity of the real-valued
intervals to encode the infinite number of possible attackers and implementations we
want to consider.

In the theoretical sense, in this paper we extend the well know Maximum Entropy
Principle of Jaynes [10], from constraints on probability distributions to interval con-
straints on discrete probabilistic processes. We consider Interval MCs as constraints
over probabilistic processes and resolve them for maximum entropy. As a result we
validate the intuition that channel capacity computation as known in security research
corresponds to obtaining least biased solutions in Bayesian inference for processes.

Given a deterministic protocol specified as an Interval MC, we show how to:

1. Compute the entropy of a given implementation. We provide a polynomial-time
procedure to compute entropy for a Markov chain, by reduction to computation of
the Expected Total Reward [16, Chpt. 5] of a local non-negative reward function
associated with states over the infinite horizon.

2. Check if a protocol allows for insecure implementations. We provide a polynomial-
time procedure for deciding finiteness and boundedness of the entropy of all im-
plementations of an Interval MC. In general a Maximum Entropy implementation
might not exist. Implementations might be non-terminating and accumulate infi-
nite entropy, or they may have arbitrarily high, i.e. unbounded, finite entropy, so
standard optimization techniques would diverge. In such case it is not possible to
give a security guarantee for the implementations. We provide a polynomial-time
algorithm to distinguish the two cases. If a protocol allows implementations with
infinite or unbounded entropy then no matter the size n of the secret, it will have
an implementation leaking all n bits of it. We detect this so that the designer can
strengthen the protocol design appropriately.

3. Compute channel capacity of a protocol. This is a multidimensional nonlinear
maximization problem on convex sets [18]. We use a numerical procedure for syn-
thesizing with arbitrary approximation an implementation maximizing a reward
function over Interval MCs. An Interval MC can be considered as an infinite set
of processes, and since entropy is a nonlinear function of all possible behaviors of
a system, finding the one with highest entropy is not trivial. We apply this proce-
dure to synthesize a Maximum Entropy process implementing an Interval MC; the
entropy of such process is the channel capacity of all processes implementing the
Interval MC.

Motivating Examples. Consider two examples of models of deterministic authentica-
tion processes. Figure 1a presents a specification of a two-step authentication protocol.
A user is requested to input a username, and is rejected if the username is unknown.
If it is correct the user is asked to input a password, and is accepted if the password
corresponds to the username and rejected otherwise. The actual transition probabilities
will depend on how many usernames exist in the system, on the respective passwords,
on their length and on the attacker’s knowledge about all of these. Staying at the spec-
ification level allows us to consider the worst case of all these possible combinations,
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Fig. 1. a) Two-step Authentication b) Repeated Authentication

and thus gives an upper bound on the leakage. The Maximum Entropy implementation
for the Two-step Authentication is given in Fig. 2. Its entropy is the channel capacity of
the system over all possible prior informations and behaviors of the attacker and design
choices.
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Fig. 2. Maximum Entropy implementa-
tion for the Two-step Authentication

Consider another example. Figure 1b presents
an Interval MC specification of the Repeated Au-
thentication protocol. A user inserts a password
to authenticate, and is allowed access if the pass-
word is correct. If not, the system verifies if the
password entered is in a known black list of com-
mon passwords, in which case it rejects the user,
considering it a malicious attacker. If the pass-
word is wrong but not black listed the user is al-
lowed to try again. The black list cannot cover
more than 90% of the possible selection of pass-
words.

Note that the transition probabilities from state 2 depend on a design choice left to
the implementer of the system and on the attacker’s knowledge about it, while the tran-
sition probabilities from state 1 depend on the length of the password and the attacker’s
knowledge about it. By abstracting these different sources of nondeterminism at the
same time we maximize entropy over all possible combinations of design choices and
attackers, effectively finding the channel capacity of the specification.

Implementations with higher entropy reveal more information about the system’s
secret. This is consistent with our intuition. For instance, in the example in Fig 1b de-
creasing the black list, which decreases probability of reject, increases the possible in-
formation leakage. If the black list is empty the user can continue guessing the password
indefinitely: the probability of eventually reaching state 3 is 1. In this implementation
sooner or later the attacker will discover the password, and thus the system’s secret will
be completely revealed. So, a larger black list increases the chance that the system will
enter the absorbing state 4 and leak less information, and symmetrically a smaller black
list increases the leakage.

In fact, it is not possible to give a Maximum Entropy implementation for such proto-
col. Whatever is the length n of the secret, it is possible to give an implementation that
leaks all n bits of information. We show how these undesirable cases can be recognized
in polynomial time and how the specification can be modified to avoid them.

Figure 3bc shows two implementations of the Repeated Authentication presented in
Fig. 3a. None of them maximizes entropy. In fact, it is not possible to give a
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Maximum Entropy implementation for such protocol. We will discuss the significance
of this in Sect. 6. The Maximum Entropy implementation for the Two-step Authentica-
tion is given in Fig. 2. We explain how it has been synthesized in Sect. 5.

Related Work. Channel capacity as a security guarantee [15] has been studied for many
different models of computation. Chatzikokolakis, Palamidessi and Panangaden use it to
give a formula for anonymity analysis of protocols described by weakly symmetric ma-
trices [5], based on the probabilistic anonymity approach by Bhargava and Palamidessi
[2]. Chen and Malacaria generalize this result to asymmetric protocols [6] and also
study the channel capacity of deterministic systems under different observation models
[14]. Our method, unlike theirs, handles infinite classes of models instead of single mod-
els, and uses different states of a Markov chain to represent the different logical states
of the system instead of considering the system as a function from inputs to outputs.

2 Background on Probabilistic Processes

Definition 1. A triple C = (S, s0, P ) is a Markov Chain (MC), if S is a finite set of
states containing the initial state s0 and P is an |S| × |S| probability transition matrix,
so ∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

We slightly abuse the notation, interpreting states as natural numbers and indexing ma-
trices with state names. This is reflected in figures by labeling of states both with textual
descriptions and numbers.

A state is deterministic if it has exactly one outgoing transition with probability 1,
stochastic otherwise. It is known [8] that the probability of transitioning from any state
s to a state t in k steps can be found as the entry of index (s, t) in P k. We call π(k) the
probability distribution vector over S at time k and π(k)s the probability of visiting the
state s at time k; note that π(k) = π0P

k, where π(0)s is 1 if s = s0 and 0 otherwise. A
state t is reachable from a state s if ∃k.P k

s,t > 0. We assume that all states are reachable
from s0 in the MCs considered. A subset R ⊆ S is strongly connected if for each pair
of states s, t ∈ R, t is reachable from s. Let ξs denote the residence time in a state s:
ξs =

∑∞
n=0 P

n
s0,s.

For the purpose of defining entropy, it is useful to consider the alternative, less
automata-theoretical but more probabilistic, view of an MC. An MC can be seen as an
infinite sequence of discrete random variables (Xn, n ∈ N), where P(Xk = s) = π

(k)
s

represents the probability that the chain will be visiting state s ∈ S at time k. The
processes must respect the Markov property: P (Xn = sn | Xn−1 = sn−1, . . . , X0 =
s0)=P (Xn = sn | Xn−1 = sn−1), ∀s0, s1, ..., sn ∈ S, n ∈ N.

A state s is recurrent iff ξs = ∞, transient otherwise. Residence time of each state
of an MC can be calculated in polynomial time [16].

Usage of Markov chains to model generic secret-dependent processes has been pre-
viously introduced by the authors [3], including ways to automatically generate them
from imperative program code. Each state of the MC represents a reachable combina-
tion of values of the public variables of the system and levels of knowledge about the
private variables. We refer to [3] for the full discussion.
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Fig. 3. a) Correct implementation of the Repeated Authentication. b) Incorrect implementation of
the Repeated Authentication.

Definition 2. [4] A closed-interval Interval Markov Chain (Interval MC) is a tuple I =
(S, s0, P̌ , P̂ ) where S is a finite set of states containing the initial state s0, P̌ is an
|S|×|S| bottom transition probability matrix, P̂ is a |S|×|S| top transition probability
matrix, such that for each pair of states s, t ∈ S we have P̌s,t ≤ P̂s,t.

The following defines when an MC implements an Interval MC in the Uncertain Markov
Chain (UMC) semantics [4]:

Definition 3. A Markov chain C = (S, s0, P ) implements an Interval Markov Chain
I = (S, s0, P̌ , P̂ ), written C � I, if ∀s, t ∈ S. P̌s,t ≤ Ps,t ≤ P̂s,t.

An example of an Interval MC is the Repeated Authentication of Fig. 1b. The MC in
Fig. 3a uses a black list with 80% of the passwords and is thus an implementation of the
Interval MC, while the Markov chain in Figure 3b uses a black list with 99% and it is
not an implementation of the Interval MC.

We assume that our Interval MCs are coherent, meaning that every value for each
transition interval is attained by some implementation. Coherence can be established
by checking that both following conditions hold [12]:
1) ∀s, t ∈ S.P̌s,t ≥ (1 −

∑
u�=t P̂s,u) 2) ∀s, t ∈ S.P̂s,t ≤ (1 −

∑
u�=t P̌s,u)

Assuming coherence is not a limitation. If an Interval MC I = (S, s0, P̌ , P̂ ) is not
coherent it can be made coherent in polynomial time [12]; we produce the coherent
Interval MC I ′ = (S, s0, P̌

′, P̂ ′) by changing the top and bottom transition probability
matrices to the following:
1) P̌ ′

s,t = max(P̌s,t, 1−
∑

u�=t P̂s,u) 2) P̂ ′
s,t = min(P̂s,t, 1−

∑
u�=t P̌s,u)

The resulting coherent Interval MC I ′ is unique and has the same implementations
as the original incoherent Interval MC I [12], so in particular it has an implementation
iff I has at least one implementation.

A state s of an Interval MC is deterministic if ∃t. P̌s,t = 1, stochastic otherwise.
We say that a state t is reachable from a state s if ∃s1, s2, ..., sn ∈ S.s1 = s ∧ sn =
t ∧ P̂si,si+1 > 0 for 1 ≤ i < n. We say that a subset R ⊆ S is strongly connected if
∀s, t ∈ R. t is reachable from s.

Note that if there is an implementation in which a subset of states R ⊆ S is strongly
connected, then R must be strongly connected in the Interval MC.

We often refer to deterministic, stochastic and nondeterministic behavior. We use the
adjective deterministic for a completely predictable behavior, stochastic for a behavior
that follows a probability distribution over some possible choices, and nondeterministic
for a choice where no probability distribution is given.
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3 Entropy of Processes and Specifications

The entropy of a discrete probability distribution quantifies lack of information about
the events involved. This idea can be extended to quantify nondeterminism, understood
as degree of unpredictability of an MC. For a discrete set of n events (x1, ..., xn) en-
tropy is defined as −

∑n
i=1 P(xi) log2(P(xi)) and is maximal for the uniform distribu-

tion, in which case its value is log2 n [8]. For MCs, entropy is maximum for the process
in which all possible paths in the chain have the same probability.

To define the entropy of a Markov chain C we need to introduce the concepts of condi-
tional entropy and joint entropy [17,8]. Conditional entropy quantifies the remaining en-
tropy of a variable Y given that the value of other random variables (Xi here) is known.

H(Y | X1, . . . , Xn) = −
∑
t∈S

∑
s1∈S

· · ·
∑
sn∈S

P(Y = t,X1 = s1, . . . , Xn = sn) ·

· log2 P(Y = t | X1 = s1, . . . , Xn = sn) ,

where P(Y = t,X1 = s1, . . . , Xn = sn) denotes the joint probability of the events
Y = t, X1 = s1, . . . , Xn = sn.

Joint entropy is simply the entropy of several random variables computed jointly, i.e.
the combined uncertainty due to the ignorance of n random variable. It turns out [8] that
joint entropy can be calculated in the following way, using conditional entropy, which
will be instrumental in our developments for MCs.

H(X0, X1, . . . , Xn) = −
∑
s0∈S

∑
s1∈S

· · ·
∑
sn∈S

P(X0 = s0, X1 = s1, . . . , Xn = sn) ·

· log2(P(X0 = s0, X1 = s1, . . . , Xn = sn)) =

= H(X0) +H(X1 | X0) + · · ·+H(Xn | X0, X1, . . . , Xn−1)

Now, the definition of entropy of an MC is unsurprising, if we take the view of the
processes as a series of random variables; it is the joint entropy of these variables (recall
that due to the Markov property, the automata-view, and the probabilistic view of MCs
are interchangeable):

Definition 4. We define the entropy of a Markov chain C = (Xn, n ∈ N) as the joint
entropy over all

Xn:H(C) = H(X0, X1, X2, . . . ) =

∞∑
i=0

H (Xi |Xi−1 . . . X0 ) .

Note that since we have assumed a single starting state in each MC, it is always the case
thatH(X0) = 0. Also the above series always converges to a real number, or to infinity,
since it is a sum of non-negative real numbers.

In leakage analysis, entropy corresponds to the information leakage of the system
only when the system is deterministic and the attacker cannot interact with it [13]. Using
probability intervals we can lift the latter restriction, as different distributions on the
attacker’s input would only lead to different transition probabilities, and the intervals
already consider all possible transition probabilities.
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The entropy of an MC is in general infinite; we will give a characterization in Corol-
lary 6 in the next Section showing that the entropy of an MC is finite if and only if the
chain is absorbing. Considering only absorbing MCs avoids the problem of the entropy
of an MC being in general infinite. We always consider terminating protocols, and they
can be encoded as absorbing MCs where the absorbing states represent the termination
of the protocol; consequently the entropy of a Markov chain encoding a terminating
process is always finite.

We stress that it is common [17,9] to compute the average entropy of each step of
the MC and to call it the entropy of the MC, while it’s technically an entropy rate [8].
Even though entropy rate is always finite, we want to compute the actual entropy since
it represents the information leakage in a security scenario where the states of the MC
are the observables of a deterministic program.

An alternative characterization of entropy of a process depends explicitly on which
states get visited during the lifetime of the process. Since every state s has a prob-
ability distribution over the next state we can compute the entropy of that distribu-
tion, which we will call local entropy L(s) of s: L(s) = H(Xk+1 | Xk = s) =
−

∑
t∈S Ps,t log2 Ps,t. Note that L(s) ≤ log2(|S|). Also the value of entropy of an

MC is in general not equal to the sum of the local entropy values for each state. Such
sum will have to be weighted against the residence time of each state to characterize the
“global” entropy.

Now consider the Interval MC specification of the Repeated Authentication in Fig. 1b.
Different implementations of it, like the ones in Fig. 3ab, will have different entropy
values. We define a Maximum Entropy implementation for an Interval MC, as an imple-
mentation MC, which has entropy not smaller than entropy of any other implementation
(if such exists). The boundedness and synthesis of the Maximum Entropy implementa-
tion of an Interval MC will be treated in Sect. 5. It may be that the maximum entropy is
actually infinite, or that the set of attainable entropies is unbounded; we discuss these
cases in Sect. 6.

4 Computing Entropy of Markov Chains

We now provide an algorithm for computing entropy of a given MC. We cast entropy
as a non-negative reward function on an MC, and then apply standard techniques to
compute it. We also provide a simple decision procedure for deciding whether entropy
of an MC is finite.

A non-negative reward function over the transitions of an MC is a function R : S ×
S → R+ assigning a non-negative real value, called reward, to each transition. Given a
reward function R we can compute the value of the reward for a concrete execution of
an MC by summing reward values for the transitions exercised in the execution. More
interestingly, we can compute the expected reward of each state s ∈ S as R(s) =∑

t∈S Ps,tRs,t, and then the expected reward over the infinite behavior of an MC C is
R(C) =

∑
s∈S R(s)ξs [16, Chpt. 5].

Each R(s) can be computed in time linear in the number of states, so calculation
of expected rewards for all states can be done in quadratic time. Since computing the
residence time for a state s is in PTIME, we can also computeR(C) in polynomial time.
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Let the reward function be R(s, t) = − log2 Ps,t. Then the expected reward for each
state is its local entropy, or R(s) = −

∑
t∈S Ps,t log2 Ps,t = L(s). Note that this is an

unorthodox non-negative reward function, since it depends on the choice of probability
distribution, as a function of the formR : S×S×P → R+. It turns out that the (global)
entropy of the MC is the expected reward with this reward:

Theorem 5. For an MC C = (S, s0, P ) we have that H(C) =
∑

s∈S L(s)ξs

As any other reward of this kind, the entropy of an MC can be infinite. Intuitively, the
entropy is finite if it almost surely stops increasing. This happens if the execution is
eventually confined to a set of states with zero local entropy (deterministic). Since the
recurrent states of a chain are exactly the ones that are visited infinitely often, we obtain
the following characterization:

Corollary 6. The entropy H(C) of a chain C is finite iff the local entropy of all its
recurrent states is zero.

The above observation gives us an algorithmic characterization of finiteness of entropy
for MCs: the entropy of a chain is finite if and only if the chain has one or more absorb-
ing states or absorbs into closed deterministic cycles. Entropy can only be infinite for
infinite behaviors; for the first n execution steps the entropy is bounded by n log2 |S|.

We can classify the processes in two categories: those which eventually terminate
the stochastic behavior, and those which do not. Many processes become deterministic
(or even terminate) after some time. This is the case for a terminating algorithm like
a randomized primality test, or for randomized IP negotiation protocols like Zeroconf,
which stops behaving randomly as soon as an IP number is assigned. Such processes
have finite entropy. On the other hand, the processes that take probabilistic choices
forever and never become deterministic have infinite entropy. Using Corollary 6 we
characterize the processes having finite entropy as terminating and the processes having
infinite entropy as non-terminating.

5 Maximum Entropy Implementation of an Interval MC

Interval MCs describe infinite sets of MCs. We now show how to find an implemen-
tation that maximizes entropy. Since our Markov chains represent the behavior of de-
terministic processes, the Maximum Entropy implementation we synthesize is also the
one with maximum leakage, and its leakage is thus the channel capacity of all imple-
mentations.

In Fig. 2 we show the Maximum Entropy implementation of the Two-step Authenti-
cation specification in Fig. 1a. Its entropy of log2 3 ≈ 1.58496 bits. This allows us to
guarantee that none of the infinite possible implementations of the Two-step Authenti-
cation will leak more than log2 3 bits of information to any possible attacker.

Obtaining such an implementation is a challenging problem. In the first place, such
an implementation may not exist, so we need an algorithm to verify its existence. Sec-
ondly, even if it exists finding it consist in solving a nonlinear optimization problem
with constraints over an infinite domain.
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In this section we present a new algorithm that given an Interval MC I finds its
implementation, in the sense of Def. 3, that maximizes the entropy value. We propose
a numerical approach to the general problem of solving Interval MCs for non-negative
reward functions, and apply it to finding a Maximum Entropy implementation. We first
check that such an implementation exists, and then proceed to synthesize it. Remember
that an implementation maximizing the reward function R(s, t) = − log2(Ps,t) is a
Maximum Entropy implementation.

The expected reward of a non-negative reward function may be infinite. An Interval
MC admits implementations with infinite entropy if it has a state that can be recurrent
and stochastic in the same implementation. We call this the infinite case.

If an Interval MC has a state that is recurrent in some implementations and stochastic
in some others, but never both recurrent and stochastic in the same implementation, the
set of entropies of its implementations is unbounded, despite all the individual imple-
mentations having finite entropy; an example is the Repeated Authentication in Fig. 1b.
We call this the unbounded case. This happens because the reward assigned to a transi-
tion is not a constant, but a logarithmic function of the actual transition probability—the
logarithm is taken of the value that depends on the probability distribution of the imple-
mentation. With such reward it is possible that the total reward value can be unbounded
across possible implementations (not just finite or infinite as for classical non-negative
rewards). Note that this does not happen with constant rewards, and is specific to our
problem.

5.1 Existence of a Maximum Entropy Implementation

We now show an algorithm for determining whether an Interval MC has a Maximum
Entropy implementation with finite entropy. To do this we first give a definition of
end components [1] for Interval MCs. Then we show the algorithm for deciding the
existence of a Maximum Entropy implementation.

1
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3
[0,0.4]

[0,1]
[0,0.5]

[0.6,1]

[0.5,1]

[0,1]

Fig. 4. Interval MC with multiple
end components

We propose a definition of an end component for
Interval MCs. An end component is a set of states
of the Interval MC for which there exists an imple-
mentation such that once the behavior enters the end
component it will stay inside it forever and choose all
transitions inside it an infinite number of times with
probability 1. We refer to [1] for further discussion.

For an Interval MC I = (S, s0, P̌ , P̂ ), R ⊆ S is
an end component of I then there is an implementa-
tion of I in which P(Xn+1 /∈ R | Xn ∈ R) = 0.

Definition 7. Given an Interval MC I = (S, s0, P̌ , P̂ ), a set of states R ⊆ S is an end
component of I if
1) R is strongly connected; 2) ∀s ∈ R, t ∈ S\R.P̌s,t = 0; 3) ∀s ∈ R.

∑
u∈R P̂s,u ≥ 1.

An end component is maximal if no other end component contains it. In the Interval MC
pictured in Fig. 4 we have that {1, 2} is an end component, {1, 3} is an end component,
and {1, 2, 3} and {4} are maximal end components.
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Algorithm 1 finds all maximal end components of an Interval MC. It first identifies
all candidate end-components and their complement—the obviously transient states;
then it propagates transient states backwards to their predecessors who cannot avoid
reaching them. The predecessors are pruned from the candidate end-components and
the procedure is iterated until a fixed point is reached.

Lemma 8. Algorithm 1 runs in polynomial time, and upon termination precisely
the states that are part of any maximal end component are tagged as ENDCOMPO-
NENTSTATE, while the remaining states are tagged as TRANSIENT.

Tag all states of S as UNCHECKED;
Find the strongly connected components (SCCs) of the Interval MC (e.g. with Tarjan’s
algorithm) and tag any state not in any SCC as TRANSIENT;
repeat

foreach SCC C do
Select a state s ∈ C tagged UNCHECKED;
Check that ∀t ∈ S\C.P̌s,t = 0. If not, remove s from C, tag it TRANSIENT, tag
UNCHECKED all states in C with a transition to s and select another state;
Check that

∑
u∈C .P̂s,u ≥ 1. If not, remove s from C, tag it TRANSIENT, tag

UNCHECKED all states in C with a transition to s and select another state;
Tag s as ENDCOMPONENTSTATE;

end
until all states in any non-empty SCC are tagged as ENDCOMPONENTSTATE ;

Algorithm 1. Find all maximal end components of an Interval MC.

The algorithm to establish finiteness of maximum entropy across all implementations
of an Interval MC follows these steps:

Make the Interval MC coherent (see Sect.2);
Find the maximal end components of the Interval MC and call their union Sω;
If there is a stochastic state in Sω, then no Maximum Entropy implementation
exists.

After finding the maximal end components we check whether each end component state
in I is deterministic. Because the Interval MC is coherent, this check simply amounts to
verifying that for each state in each end component there is a successor state with lower
bound on transition probability being 1. If this is the case, then there exists a Maximum
Entropy implementation for I with a finite entropy value.

The following theorem states that the above approach to deciding existence of finite
maximum entropy implementation is sound and complete:

Theorem 9. Let I be an Interval MC and Sω the union of all its end components. Then
I has no Maximum Entropy implementation iff a state s ∈ Sω is stochastic.

5.2 Synthesis of a Maximum Entropy Implementation

We have been characterizing the existence of a Maximum Entropy implementation with
finite entropy, now we propose a numerical technique to synthesize it with an arbitrary
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Fig. 5. a) Specification for the Repeated Authentication with unbounded entropy. b) Specification
for the Repeated Authentication with bounded entropy.

precision [18]; the Maximum Entropy implementation of the Two-step Authentication
in Fig. 2 has been obtained this way. We reduce the problem to solving a multidimen-
sional maximization on convex sets by considering each of the |S|2 transition proba-
bilities Ps,t in the chain as different dimensions, each of which can take values in the
interval [P̌s,t, P̂s,t], generating a convex polytope.

Due to coherence of the Interval MC there exists at least one Markov chain im-
plementing it, so the polytope will be nonempty. We need to add to the system the
constraints ∀s ∈ S.

∑
t∈S Ps,t = 1 to ensure every solution can be interpreted as a

MC. Since these constraints are linear, the domain is still a convex polytope. A point
in the polytope thus defines a Markov chain. The objective function to maximize is the
entropy of such Markov chain, which can be calculated in PTIME as shown in Sect. 4.

This optimization problem for an everywhere differentiable function can be solved us-
ing numerical methods. Once the global maximum is found with a numerical algorithm,
the parameters Ps,t interpreted as a MC give a Maximum Entropy implementation.

Example. Consider the Two-step Authentication in Fig. 1a. The entropy of the system
is H = (−(P1,2 log2(P1,2))− ((1−P1,2) log2(1−P1,2)))+P1,2(−(P2,4 log2(P2,4))−
((1−P2,4) log2(1−P2,4))) under constraints 0≤P1,2 ≤ 1∧ 0≤P2,4 ≤ 1. It is maximal
for P1,2 = 2/3, P2,4 = 0.5. The Maximum Entropy implementation is shown in Fig. 2.

6 Infinite vs. Unbounded Entropy for Interval MCs

We now give insight about the difference between unbounded and infinite entropy for an
Interval MC and give a decision procedure to distinguish the two cases. The infinite case
means that it is possible to give non-terminating implementations, while the unbounded
case means that all implementations terminate but may leak the whole secret, and thus
we cannot give security guarantees for their behavior.

Consider the Repeated Authentication in Fig. 5a; since state 1 can be both recurrent
and stochastic but never both, we are in the unbounded case, and in fact it is possible
to give implementations with arbitrary entropy. Since the Repeated Authentication is a
security scenario, this means that it is possible to give implementations that leak any
amount of information about the confidential data, and thus this should be considered
an insecure authentication protocol, as it is not possible to give any security guarantee
for it.

In this particular case this depends on the fact that we allow the black list to be
empty; in this implementation the attacker can try all possible passwords, and thus will
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eventually leak all of the confidential data. In Figure 5b we show a modified version
in which the black list covers at least 30% of the passwords; for this case the Interval
MC has a Maximum Entropy implementation, and is thus possible to give a security
guarantee.

The idea to discriminate the two cases is to build an implementation that maximizes
the end components (in which all states that can be stochastic are stochastic). If this
implementation has stochastic states in a strongly connected component, then it will
be possible to generate an infinite amount of entropy, otherwise the entropy of any
implementation is always finite.

Find all maximal end components of the Interval MC;
Modify the transition probabilities so that all end components are closed: for
each end component R, set P̂s,t = 0 for all s ∈ R, t /∈ R;
Make the Interval MC coherent again with the coherence algorithm;
If all states in all end components of the coherent Interval MC are deterministic,
then the original Interval MC does not allow infinite entropy implementations;
else it does.

After step 2 the Interval MC will still have implementations, since by the definition
of end components it’s possible to give an implementation that has probability 0 of
leaving the end component; we are just forcing it to happen for all our end components
and checking if this makes them necessarily deterministic or not.
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Abstract. A MAT learning algorithm is presented that infers the uni-
versal automaton (UA) for a regular target language, using a polynomial
number of queries with respect to that automaton. The UA is one of
several canonical characterizations for regular languages. Our learner is
based on the concept of an observation table, which seems to be particu-
larly fitting for this computational model, and the necessary notions and
definitions are adapted from the literature to the case of UA.

Keywords: universal automata, query learning, observation tables.

1 Introduction

The area of Grammatical Inference (GI) is concerned with algorithms that ex-
trapolate from limited information to infer a formal description of an unknown
language. An important concept in this context is the convergence to a certain
partition of the target language, which is obtained by splitting and merging sets
(or, from the automaton perspective; states). In this paper, we present an al-
gorithm with the objective of inferring the universal automaton (UA) for the
target language, and in doing so we restrict our attention to automata in which
states are non-mergible by definition. We may therefore adopt a general strategy
of iteratively dividing states until the conditions for the desired type of descrip-
tion are met. The long-term memory [5] of our learner shall be an observation
table, which in its most general interpretation fits the characteristics of universal
automata more closely than those of any other kind of finite-state automaton.
This also means that our way of obtaining an automaton from an observation
table is distinctively different from earlier approaches such as [2,3]. Learning of
universal automata (in a different learning model) has been successfully applied
to some problems from bioinformatics, as reported in [1].

When formalizing a learning task, the information source is of key importance.
A substantial amount of work has also been devoted to algorithms that learn
by querying an oracle. Angluin [2] introduced the notion of a minimal adequate
teacher (MAT) to allow for polynomial-time learning of regular languages. This is
an oracle capable of answering two types of queries, membership and equivalence
queries. Let L be the target language. An equivalence query (EQ) is of the form
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“Is A a correct description of L?”, and is answered by the oracle either with
a simple ‘yes’, or with a counterexample in the symmetric difference of L(A)
and L (that is, with an element in c ∈ (L \ L(A)) ∪ (L(A) \ L)). Membership
queries (MQs), on the other hand, are of the type “Is w an element of L?” and
are answered with ‘yes’ or ‘no’. In the present article, we adopt the MAT model
and require the learner to return the target universal automaton after a finite
number of queries.

Whereas [2] focused on learning regular languages by presenting minimal de-
terministic finite-state automata (DFA) as hypotheses to the teacher, our learner
builds universal automata (UA), which offer another kind of canonical descrip-
tion for regular languages. A survey of the theory of UA is found in [10].

2 Preliminaries

A finite-state automaton (FA) is a tuple A = 〈Σ,Q, I, F, δ〉 whereΣ is a finite set
of symbols, Q is the finite set of states, I ⊆ Q is the set of start or initial states,
F ⊆ Q is the set of accepting states, and δ ⊆ Q×Σ×Q is the transition relation.
From the transition relation δ, we derive the functions δ+ : Q×Σ∗ −→ 2Q and
δ∗ : Σ∗ −→ 2Q. Intuitively, δ+(q, w) is the set of all states that can be reached
from q on input w ∈ Σ∗, and δ∗(w) is the set of all states that can be reached
from an initial state on w. With every state q, we shall associate two sets of
strings, Pq and Fq, the past of q and the future of q, i.e., for every state q ∈ Q,
let Pq := {s ∈ Σ∗ | q ∈ δ∗(s)} and Fq := {e ∈ Σ∗ | δ+(q, e) ∩ F �= ∅}. A state
q is reachable if Pq �= ∅ and co-reachable if Fq �= ∅. An automaton is trim if all
of its states are reachable and co-reachable. By keeping only the states that are
reachable and co-reachable we obtain the trimmed version of an automaton; this
can be done in polynomial time and does not change the accepted language.

We identify the automaton A with the membership predicate for the language
that it recognizes. Given w ∈ Σ∗, we thus write A(w) = 1 if δ∗(w)∩F �= ∅. The
language accepted by A is L(A) := {w ∈ Σ∗ | A(w) = 1}. A string language is
regular if it is accepted by an FA.

An FA A is total if, for every a ∈ Σ and q ∈ Q, there is some 〈q, a, q′〉 ∈ δ.
Furthermore, A is a deterministic FA (abbreviated DFA) if 〈q, a, q′〉, 〈q, a, q′′〉 ∈
δ implies q′ = q′′, otherwise non-deterministic (an NFA). For DFA, we may
abbreviate δ∗(s) = {q} to δ∗(s) = q, and δ+(s, e) = {q} to δ+(s, e) = q without
risk of confusion. We also write L(w) = 1 if w ∈ L for w ∈ Σ∗ and L ⊆ Σ∗, and
L(w) = 0 if w /∈ L.

Let Σ be an alphabet and L ⊆ Σ∗ be a language. A pair 〈X,Y 〉 with X,Y ⊆
Σ∗ is a subfactor of L if X · Y ⊆ L. A subfactor 〈X,Y 〉 is a factor of L if for
every X ′ ⊇ X and Y ′ ⊇ Y , L ⊇ X ′Y ′ implies X ′ = X and Y ′ = Y . The set
fac(L) is the set of all factors of L.

As shown by [10], a language L is regular if and only if fac(L) is finite. The
set Q = fac(L) can be viewed as the states of an FA UL = 〈Σ,Q, I, F, δ〉 with

– I = {〈X,Y 〉 ∈ fac(L) | ε ∈ X}, F = {〈X,Y 〉 ∈ fac(L) | ε ∈ Y },
– 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ if and only if XaY ′ ⊆ L.
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This (unique!) automaton is called the universal automaton of L.
For 〈X,Y 〉 ∈ fac(L), the set X determines Y and vice versa via, for example,

Y =
⋂

x∈X x−1L. The bijection has several interesting implications [10], e.g.:

〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ ⇐⇒ Xa ⊆ X ′ ⇐⇒ aY ′ ⊆ Y .

Let L ⊆ Σ∗ be the target language. A triple T = 〈S,E, obs〉 consisting of
two non-empty finite sets S,E ⊆ Σ∗ and a function obs : S × E −→ {0, 1} is
an observation table for L if S is prefix-closed, E is suffix-closed, obs is a total
function with

obs(s, e) =

{
1 if se ∈ L is confirmed,

0 if se /∈ L is confirmed.

3 Tables of Subsets

The following ideas, which only require some basic set theory, are fundamental
for our approach. Similar notions have been developed in [6,8].

We consider a universe U×V and a target T ⊆ U×V . By letting U = 2U and
V = 2V , we create a frame U×V. An element (X,Y ) ∈ U×V is a subfactor of T
if X×Y ⊆ T . A subfactor (X,Y ) of T is a factor if, for every subfactor (X ′, Y ′)
of T , X ⊆ X ′ and Y ⊆ Y ′ imply that X = X ′ and Y = Y ′. A set C ⊆ U×V is
a cover with respect to T if, for every (x, y) ∈ T , there is some (X,Y ) ∈ C with
x ∈ X and y ∈ Y . A cover C ⊆ U×V is a subfactor cover (or a factor cover) if
each (X,Y ) ∈ C is a subfactor (or a factor, respectively).

The reasoning behind these definitions is as follows: Consider an alphabet Σ,
take U = Σ∗, V = Σ∗, and let L be the target language of some learning process.
The language L then defines an infinite target table TL given by (u, v) ∈ TL iff
uv ∈ L. The condition X × Y ⊆ TL is now clearly equivalent to X · Y ⊆ L. In
the formal language terminology introduced in Section 2, 〈X,Y 〉 is a (sub)factor
of L iff (X,Y ) is a (sub)factor of TL, while a (sub)factor cover corresponds to a
set of (sub)factors {〈Xi, Yi〉 | i ∈ J} of L with

⋃
i∈J Xi · Yi = L.

Lemma 1. Let C ⊆ U × V and let T ⊂ T ′ ⊆ U × V be two targets. If C is a
cover (subfactor cover) with respect to T , then there is some cover (subfactor
cover) C′ ⊆ U×V with respect to T ′, extending C in the sense that C ⊆ C′.

It is tempting to claim the same for factor covers, but unfortunately it does
not hold. This is witnessed by U = {1}, V = {a, b}, T = {(1, a)}, and T ′ =
T ∪ {(1, b)}. Here, {U × {a}} is a factor cover of T , but U × {a} is not a factor
of T ′, so no cover of T ′ can both contain U × {a} and be a factor cover of T ′.
As we shall see, it is possible to obtain a result corresponding to Lemma 1 also
for factor covers, but this requires additional notation.

To this end, let us fix a sub-universe S × E of U × V such that S ⊆ U and
E ⊆ V . This restriction induces a sub-frame S × E, with S = 2S ⊆ U and
E = 2E ⊆ V. Again, let T ⊆ U × V be our target, and assume that C ⊆ U ×V
is a cover with respect to T . The cover and target induced by S × E is then
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C|S×E = {(X ∩ S, Y ∩E) | (X,Y ) ∈ C}, and T |S×E = T ∩ (S ×E), respectively.
The names are justified by the elementary Lemma 2.

Lemma 2. Let C be a cover with respect to T . Then C|S×E is a cover with
respect to T |S×E. If C is a subfactor cover then C|S×E is a subfactor cover.

Example 3. As we shall see, even if C is a factor cover then this need not be the
case for C|S×E . Let U × V with U = {1, 2, 3, 4} and V = {a, b, c} be a universe
and T = {(1, a), (1, b), (1, c), (2, a), (2, b), (3, b), (4, a)} be our target. Let S × E
be a sub-universe with S = {1, 2} and E = {a, b}. The target induced by S×E is
T |S×E = {(1, a), (1, b), (2, a), (2, b)}. The only factor cover with respect to T |S×E

is {S × E}. If we look at the factor cover C = {{1}×V, {1, 2, 4}×{a}, {1, 2, 3}×
{b}} of T then its restriction C|S×E = {{1}×E, S×{a}, S×{b}} is not a factor
cover of T |S×E. However, by Lemma 2, it is a subfactor cover of T |S×E.

For the reverse direction, where we enlarge rather than restrict the domain,
it is possible to embed smaller factor covers into larger ones. We introduce a
further notion that becomes important in this context. Let T be a target with
the universe U ×V . For X ⊆ U , (X,V [X ]) denotes the right-maximal subfactor
induced by X , i.e., V [X ] is the largest subset of V such that (X,V [X ]) is a
subfactor of T , i.e., X × V [X ] ⊆ T . For Y ⊆ V , (U [Y ], Y ) analogously denotes
the left-maximal subfactor induced by Y .

Lemma 4. For the subset
– X ⊆ U , (X,V [X ]) is a subfactor with V [X ] = {v ∈ V | ∀x ∈ X : (x, v) ∈ T }.
– Y ⊆ V , (U [Y ], Y ) is a subfactor with U [Y ] = {u ∈ U | ∀y ∈ Y : (u, y) ∈ T }.
– X ⊆ U , (U [V [X ]], V [X ]) is a factor, called the factor induced by X.
– Y ⊆ V , (U [Y ], V [U [Y ]]) is a factor, called the factor induced by Y .

Let C ⊆ U×V be a factor cover with respect to the target T .

Lemma 5. If C is a factor cover with respect to T |S×E then there is a factor
cover C′ with respect to T such that C ⊆ C′|S×E. This fact is testified by the
embedding f : C → C′, (X,Y ) �→ (U [Y ], V [U [Y ]]) which satisfies X ⊆ U [Y ] and
Y ⊆ V [U [Y ]].

Example 6. (cont’d) Starting from the factor cover C′ = {S × E} of T |S×E, we
can use the embedding f in the proof of Lemma 5, which has a fixed-point on
S×E, to find the cover K = C"C′ = {{1}×V, {1, 2, 4}×{a}, {1, 2, 3}×{b}, S× E}
of T . Note that both K and C are factor covers of T , even though one is a
proper subset of the other. This shows that factor covers are not necessarily
unique, and that C′ ⊆ K|S×E may be strict. If we increase T slightly, setting
T ′ = T ∪ {(2, c)} and using the same restricting set S × E we would then get
K = {{1, 2, 4}× {a}, {1, 2, 3}× {c}, S × V }. Moreover, f(S × E) = S × V .

Lemma 7 is important for the analysis of our learning algorithm.

Lemma 7. The embedding f : C → C′, (X,Y ) �→ (U [Y ], V [U [Y ]]) given in
Lemma 5 is injective and satisfies X = U [Y ] ∩ S and Y = V [U [Y ]] ∩ E.
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Proof. Assume that there are (X,Y ) and (X ′, Y ′) such that (U [Y ], V [U [Y ]]) =
(U [Y ′], V [U [Y ′]]). The mapping f is defined in two steps, by first computing the
first component from Y and then computing the second component from U [Y ].
Let us treat the first of these steps. By Lemma 5, X is extended towards U [Y ]
satisfying U [Y ]× Y ⊆ T . Observe that, since (X,Y ) was a factor of T |S×E,

(U [Y ] \X) ∩ S = ∅ . (1)

Analogously, (U [Y ′] \X ′) ∩ S = ∅. Clearly, (U [Y ], V [U [Y ]]) = (U [Y ′], V [U [Y ′]])
implies that U [Y ] = U [Y ′] and hence that U [Y ] ∩ S = U [Y ′] ∩ S, which implies
X = X ′ due to Equation 1. A similar argument applies for the second step,
yielding Y = Y ′. This proves the claim.

Lemma 8. If (Xi, Yi), i ∈ {1, . . . , r}, are factors of T over U × V then so are
(
⋂r

i=1Xi, V [
⋂r

i=1Xi]) with
⋃r

i=1 Yi ⊆ V [
⋂r

i=1Xi] and (U [
⋂r

i=1 Yi],
⋂r

i=1 Yi) with⋃r
i=1Xi ⊆ U [

⋂r
i=1 Yi], if the intersections are not empty.

In the following sections, T will be alternatively interpreted as the (learning)
target and as the observation table of a learning process.

4 Properties of Hypotheses

In this section, we establish the connection between observation tables and uni-
versal automata. We begin by defining the factors of an observation table, to be
contrasted with the previously defined factors of a language. Let T = 〈S,E, obs〉
be an observation table. A subfactor of T is a pair 〈X,Y 〉 with X ⊆ S and
Y ⊆ E such that for all s ∈ X and all e ∈ Y we have obs(s, e) = 1. Analogously,
a factor of T is a subfactor 〈X,Y 〉 of T such that for every subfactor 〈X ′, Y ′〉 of
T with X ⊆ X ′ and Y ⊆ Y ′, we have 〈X,Y 〉 = 〈X ′, Y ′〉. The set of all factors
of T is denoted by fac(T ).

Note that in contrast to the classical representation of observation tables
introduced above, there is a more general interpretation – clearly, any observation
table corresponds to some subset T ⊆ S × E, and the reader can easily verify
that the according notions of (sub)factors as discussed in Section 3 coincide.

To differentiate between the notion of factors based on Cartesian products
discussed in Section 3 and the one based on the concatenation product, we use
parentheses (, ) in the first case and pointed brackets 〈, 〉 in the second one.

Let T be an observation table for a language L. The associated automaton
derived from T is AT = 〈Σ,QT , IT , FT , δT 〉 with QT = fac(T ), IT = {〈X,Y 〉 ∈
QT | ε ∈ X}, FT = {〈X,Y 〉 ∈ QT | ε ∈ Y }, and for every a ∈ Σ and
〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT , we have 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT if and only if X · {a} ·
Y ′ ⊆ L. FromAT , we obtain the associated hypothesis HT = 〈Σ,QT , IT , FT , δT 〉
as the trimmed version of AT .

In the following, HT will be the hypothesis that our learner presents to the
teacher, while the condition X · {a} ·Y ′ ⊆ L in the construction of AT is checked
via membership queries to the teacher. Since we allow such queries during the
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synthesis process, we are guaranteed to find AT for any observation table T . This
sets our algorithm apart from previous MAT learners which require additional
properties in their observation tables before synthesizing an automaton. There
are examples of observation table T where AT �= HT .

Remark 9. For a ∈ Σ we define T ◦ a := 〈S,E, obsa〉 such that obsa(s, e) = 1
if sae ∈ L is confirmed, and 0 if sae /∈ L is confirmed. The definition of AT

necessitates these auxiliary tables, and an efficient implementation should save
the information thus gathered to economize with membership queries. This may
speed up the computation but has no bearing on the correctness of the algorithm.

Definition 10. AT is strongly reachable if, for all a ∈ Σ and 〈X ′, Y ′〉 ∈ QT

and all xa ∈ X ′, there is some 〈X,Y 〉 ∈ QT with 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT and
x ∈ X. Analogously, we can define strong co-reachability.

Lemma 11. If AT is strongly reachable then it is trim, i.e., AT = HT .

Definition 12. An observation table T = 〈S,E, obs〉 for a language L ⊆ Σ∗ is
stable if for every s, s′ ∈ S such that there is ae ∈ ΣE with L(sae) > L(s′ae),
there is e′ ∈ E such that L(se′) > L(s′e′); and for every e, e′ ∈ E such that there
is sa ∈ SΣ with L(sae) > L(sae′), there is s′ ∈ S such that L(s′e) > L(s′e′).

This is similar to Angluin’s consistency condition in her LSTAR algorithm. The
proof of the following assertion is pretty straightforward.

Lemma 13. If T is stable, AT is strongly reachable and strongly co-reachable.

We propose the procedure MakeStable(T ): Look for s, s′ ∈ S such that there is
ae ∈ ΣE with L(sae) > L(s′ae) but there is no e′ ∈ E with L(se′) > L(s′e′).
Add ae to E and fill the table with MQs. Similarly, strings can be added to S.

Lemma 14. Every time we add an element from S · Σ to S, or from Σ · E to
E in order to make T stable, the number of factors in T increases.

Proof. Sketch. Suppose that e′ is added to E due to Condition 1 in Definition 12.
Every factor 〈X,Y 〉 of T with s ∈ X also had s′ ∈ X since no element in Y
can prevent it. By adding e′ to E, 〈X,Y 〉 splits into 〈X,Y 〉 and 〈X ′, S[X ′]〉 with
X ′ := {s ∈ X | se′ ∈ L}. A similar argument holds when S is enlarged.

As we will make sure that any hypothesis automaton our learner conjectures
is from a stable observation table T , we assume stability for all tables in the
remainder of this section. This also implies that fac(T ) is the state set of any
automaton AT we consider, as AT = HT .

Lemma 15. Let 〈X,Y 〉 ∈ QT . Then X = P〈X,Y 〉 ∩ S and Y = F〈X,Y 〉 ∩ E.

Proof. We only prove X = P〈X,Y 〉 ∩S since the part for the future set of 〈X,Y 〉
follows from a symmetrical argument. Let 〈X,Y 〉 ∈ QT . We have to prove
the following two assertions: (1) If w ∈ X then w ∈ P〈X,Y 〉 ∩ S, and (2) If
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w ∈ P〈X,Y 〉 ∩ S then w ∈ X . The proof is by induction on the length of w. As
the induction base, consider w = ε.
(1) Since ε ∈ X implies 〈X,Y 〉 ∈ IT we have ε ∈ P〈X,Y 〉 by definition of P〈X,Y 〉.
(2) If ε ∈ P〈X,Y 〉∩S then 〈X,Y 〉 must be an initial state of AT , as our automata
do not have transitions on the empty word. By definition, this means that ε ∈ X .

Now, assume the claim to hold for all states and for all words w of length up
to n. Consider some w with |w| = n + 1. Hence, w = ua ∈ S for some u ∈ Σn

and a ∈ Σ. The remainder of the proof is as follows for the respective directions:
(1) Consider w = ua ∈ X . As AT is strongly reachable (Lemma 13), there is a ta-
ble factor 〈X ′, Y ′〉 with u ∈ X ′ and 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By the induction
hypothesis, u ∈ P〈X′,Y ′〉∩S since S is prefix-closed. As 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT ,
w ∈ P〈X,Y 〉 ∩ S.
(2) Assume w ∈ P〈X,Y 〉 ∩ S. Let 〈X ′, Y ′〉 be a state that can be passed when
leading w = ua into 〈X,Y 〉, with 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By the choice of
〈X ′, Y ′〉, u ∈ P〈X′,Y ′〉 ∩ S since S is prefix-closed. By the induction hypothe-
sis, u ∈ X ′. By the definition of δT , in particular for all y ∈ Y , we find that
obsa(u, y) = 1. Since w = ua, obs(w, y) = 1 for all y ∈ Y . As 〈X,Y 〉 is a table
factor, we conclude that w ∈ X .

We now turn our attention to a notion of consistency well-known in Learning
Theory but less frequently addressed explicitly in Grammatical Inference:

Definition 16. A is T -consistent if A(se) = obs(s, e) for every 〈s, e〉 ∈ S × E.

Lemma 17. The automaton AT is T -consistent.

Proof. Let 〈s, e〉 ∈ S × E with obs(s, e) = 1. There is a factor 〈X,Y 〉 =
〈S[{e}], E[S[{e}]]〉 such that s ∈ X and e ∈ Y . Assuming that T is stable,
by Lemma 15, X = P〈X,Y 〉 ∩ S and Y = F〈X,Y 〉 ∩ E, so 〈X,Y 〉 ∈ δ∗T (s) and

δ+T (〈X,Y 〉, s) ⊆ FT , and consequently AT (se) = 1.
For the opposite direction, assume that there is an accepting run of AT on

se. After having read all of s, AT must be in some state 〈X,Y 〉 from which it
can continue to an accepting state. We thus know that s ∈ P〈X,Y 〉 ∩ S and that
e ∈ F〈X,Y 〉 ∩ E. By Lemma 15, s ∈ X and e ∈ Y , and since 〈X,Y 〉 is a factor,
this yields obs(s, e) = 1.

We may therefor assume that AT is T -consistent, which is useful in the up-
coming correctness proof for our inference algorithm. Moreover, by Lemma 15:

Lemma 18. If the states 〈X,Y 〉, 〈X1, Y1〉, . . . , 〈Xr, Yr〉 ∈ QT are such that the
language F〈X,Y 〉 fulfils F〈X,Y 〉 ⊆

⋃r
i=1 F〈Xi,Yi〉 then we have Y ⊆

⋃r
i=1 Yi.

Another important property of observation tables is closedness. In our frame-
work, this corresponds to the notion of saturation.

Definition 19. An observation table T for the language L is saturated if for
every pair of table factors 〈X,Y 〉, 〈X ′, Y ′〉 with XaY ′ ⊆ L, there is some x ∈ X
such that xa ∈ X ′ and there is some y ∈ Y ′ such that ay ∈ Y .
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Lemma 20. Let T be a saturated observation table. For every natural number
r and choice of r table factors 〈Xi, Yi〉, i ∈ {1, . . . , r}, it holds that

r⋂
i=1

P〈Xi,Yi〉 �= ∅ if and only if

r⋂
i=1

Xi �= ∅ .

Proof. The “if” direction is immediate from Lemma 15.
Let x be a string of minimal length that is witness to the falsity of the opposite

direction of the lemma. We note that x cannot be the empty string because a
state 〈X,Y 〉 is in δ∗T (x) if and only if it is an initial state, which it is if and only if
ε ∈ X . Let x = ua for some string u ∈ Σ∗ and symbol a ∈ Σ, and let {〈Xi, Yi〉 |
i ∈ {1, . . . , r}} = δ∗T (x). Moreover, let 〈Wi, Zi〉 with i ∈ {1, . . . , r} be a selection
of factors in δ∗T (u) such that {〈〈Wi, Zi〉, a, 〈Xi, Yi〉〉 | i ∈ {1, . . . , r}} ⊆ δT . By
Lemma 8 and the minimality of x, the factor 〈W,Z〉 = 〈

⋂r
i=1Wi, E[

⋂r
i=1Wi]〉

exists and since W is a subset of every Wi the set {〈〈W,Z〉, a, 〈Xi, Yi〉〉 | i ∈
{1, . . . , r}} is contained in δT . Definition 19 now lets us pick an arbitrary w ∈ W
such that wa ∈ Xj for some j ∈ {1, . . . , r}, and because of WaYi ⊆ L for every
Yi, the maximality of the factors and the containment of wa ∈ Xj ⊆ S, we have
wa ∈ Xi for every i ∈ {1, . . . , r}. This contradicts our assumption concerning x.

We propose the following procedure, which we call MakeSaturated(T ):

For j ← 0 to |QT | do:
for every state 〈X, Y 〉 that contains an x ∈ X of length j as a shortest word:
for every state 〈X′, Y ′〉 and letter a with xa /∈ X′, add xa to X′.

Clearly, adding words to X ′ amounts in extending S. We proceed similarly
with conflicts on the second component. We only argue for conflicts in the first
component in the following. Observe that, as we add longer and longer words, no
state could have been overlooked by this procedure as inductively we guarantee
the containment of words of length j in states 〈X,Y 〉 reachable in j steps; more-
over, we could visualize its work (on the first component) as proceeding from
the initial states (for j = 0) further and further down through the automaton,
and we will reach all states by the assumed stability of T , see Lemma 13.

Lemma 21. Let T = 〈S,E, obs〉 be an observation table for L and let T ′ =
〈S′, E′, obs ′〉 be the observation table resulting from MakeSaturated(T ). Provided
that the procedure always terminates, T ′ is a saturated observation table for L.

Proof. Consider two factors p = 〈X,Y 〉 and q = 〈X ′, Y ′〉 of T ′ with XaY ′ ⊆ L.
Our procedure MakeSaturated(T ) guarantees that among the shortest strings in
X , there is some x with xa ∈ X ′. By a symmetric argument, among the shortest
strings in Y , there is some y with ay ∈ Y ′.

Termination will be ensured when we present our learner, but we assume it for
now and continue to state Theorem 22, the backbone of our learning algorithm.

Theorem 22. AT is the universal automaton for L(AT ).
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The proof is by two lemmata. Lemma 23(which follows from Lemma 15) shows
that the states of AT satisfy the defining property of UA, and Lemma 24 that
the states correspond to factors of the language recognized by AT .

Lemma 23. For states 〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT and the symbol a ∈ Σ, the tran-
sition 〈〈X,Y 〉, a, 〈X ′, Y ′〉 ∈ δT if and only if P〈X,Y 〉 · {a} · F〈X′,Y ′〉 ⊆ L(AT ).

Lemma 24. For all q ∈ QT , the pair 〈Pq,Fq〉 is a factor of L(AT ).

Proof. To prove the claim, we can assume T = 〈S,E, obs〉 to be saturated by
Lemma 21. In the following, let q = 〈X,Y 〉. Clearly, 〈Pq,Fq〉 is a subfactor of
L(AT ). If it were not maximal, there would be an s /∈ Pq with {s} ·Fq ⊆ L(AT )
or an e /∈ Fq with Pq · {e} ⊆ L(AT ). By symmetry, it is sufficient to discuss one
case, and prove by induction that {s} · Fq ⊆ L(AT ) implies s ∈ Pq.

Assume then that {s} · Fq ⊆ L(AT ), from which we obtain {s} · Y ⊆ L(AT )
by applying Lemma 15. If s = ε then Fq ⊆ L, and hence q is an initial state and
ε is trivially in Pq. This proves the base case of the induction.

For the inductive step, assume the claim to be true for all s of length up to
n and consider some s = ua of length n + 1. Let δ∗T (s) = {〈Xi, Yi〉 | 1 ≤ i ≤ r}
for some r ∈ N. As {s} · Fq ⊆ L(AT ), we have δT (s) �= ∅ and moreover Fq ⊆⋃r

i=1 F〈Xi,Yi〉. By Lemma 18 this yields Y ⊆
⋃r

i=1 Yi. Let us consider certain
factors of T in sequence: (i) For every i ∈ {1, . . . , r}, let 〈Zi,Wi〉 ∈ δ∗T (u) and
〈〈Zi,Wi〉, a, 〈Xi, Yi〉〉 ∈ δT . (ii) For every i ∈ {1, . . . , r}, letX ′

i = S[Yi∩Y ] ⊇ X ′
i∪

X and Y ′
i = Yi∩Y . Since Yi and Y overlap, this factor exists, and as Yi∩Y ⊆ Yi,

we have 〈〈Zi,Wi〉, a, 〈X ′
i, Y

′
i 〉〉 ∈ δT . (iii) Let 〈Z,W 〉 fulfil Z =

⋂r
i=1 Zi andW =

E[
⋂r

i=1 Zi] ⊆
⋃r

i=1Wi. Since u ∈
⋂r

i=1 P〈Zi,Wi〉, the intersection Z =
⋂r

i=1 Zi is
not empty, because of Lemma 20 and T being saturated. Moreover, 〈Z,W 〉 is a
factor by Lemma 8, and 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT , as zay ∈ L for every z ∈ Z
and y ∈ Y . Now, {u} · F〈Z,W 〉 ⊆ L(AT ), and thus u ∈ P〈Z,W 〉 by the induction
hypothesis. As 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT , we get s ∈ P〈X,Y 〉.

5 Our MAT Learner for Universal Automata

We assume that the target alphabet Σ is given to the learner in advance.

Initialization. The learner starts out with an initial table T0 = 〈S0, E0, obs0〉,
defined by S0 = E0 = {ε}.

Loop. The table Ti is completed using MQs, and made stable and saturated
using MakeStable and MakeSaturated. The synthesized automaton ATi is
passed to the teacher through an EQ. If the teacher accepts ATi as the
universal automaton for the target languageL, then the algorithm terminates
successfully. Otherwise, the teacher provides a counterexample wi. In this
case, it adds all prefixes of wi to Si and all suffixes to Ei, before reentering
the loop with the updated table Ti+1.

This algorithm satisfies a number of properties which we state in a sequence of
lemmata. By Lemma 17 the learner’s hypothesis AT is always T -consistent.
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Lemma 25. Either L(AT0) = ∅ or there is some A ⊆ Σ with L(AT0 ) = A∗.

The languages mentioned in Lemma 25 are exactly those acceptable by any UA
with at most one state; our algorithm needs one EQ for these.

Lemma 26. For each i ≥ 0, if ATi+1 is presented as a hypothesis, then there is
an injective embedding fi : Qi → Qi+1 with the property that whenever 〈X,Y 〉 �→
〈X ′, Y ′〉 then X = X ′ ∩Si and Y = Y ′ ∩Ei. A similar statement is true for the
intermediate automata obtained before calling MakeStable or MakeSaturated.

Proof. The proof makes use of notation from Section 3. First, observe that Ti =
Ti+1|Si×Ei . Clearly, Qi = fac(Ti) is a factor cover of Ti. Hence, Lemmas 5
and 7 provide an injective embedding into some factor cover of Ti+1 which is
clearly contained in Qi+1 = fac(Ti+1). The claimed properties X = X ′ ∩ Si and
Y = Y ′ ∩Ei translate from Lemma 7.

Lemma 27. For each i ≥ 0, if the automaton ATi+1 is presented as a hypothesis

and if the embedding fi : Qi → Qi+1 is bijective then f−1
i : Qi+1 → Qi is an

automaton morphism. The induced mapping di : δTi+1 → δTi is injective.

Proof. To avoid a special case, observe that since our algorithm always makes
progress in the sense of changing its hypothesis between two rounds, no set of
states and no set of transitions considered in this lemma can be empty, as the
only possibility to obtain the empty language or the language {ε} as a hypothesis
would be with AT0 ; we refer to Lemma 25. It remains to show that, whenever
there is an a-transition from q to p in ATi+1 then there is an a-transition between

the corresponding states f−1
i (q) and f−1

i (p). More concretely, we know that
q, p ∈ fac(Ti+1), i.e., q = 〈Xq, Yq〉 and p = 〈Xp, Yp〉. Moreover, Lemma 7 explains
that f−1

i (q) = q′ = 〈X ′
q, Y

′
q 〉 with X ′

q = Xq ∩Si and f
−1
i (p) = p′ = 〈X ′

p, Y
′
p〉 with

X ′
p = Xp ∩ Ei. By definition, 〈q, a, p〉 ∈ δTi+1 if xay ∈ L for all x ∈ Xq and all

y ∈ Yp. Hence, we have xay ∈ L for all x ∈ X ′
q and y ∈ Y ′

p, so that 〈q, a, p〉 ∈ δTi+1

implies 〈q′, a, p′〉 ∈ δTi as claimed. Clearly, di : 〈q, a, p〉 �→ 〈q′, a, p′〉 ∈ δTi is
injective since fi is a bijection.

Let UL be the universal automaton for the target language L with state set
Q = fac(L). The following assertion can be seen similar to Lemma 26.

Lemma 28. For each i ≥ 0, for ATi+1 there is an injective embedding fi : Qi →
Q such that whenever 〈X,Y 〉 �→ 〈X ′, Y ′〉 then X = X ′ ∩ Si and Y = Y ′ ∩ Ei.

Theorem 29. The algorithm converges to UL within max{1, |Σ|n3} many equi-
valence queries, where n is the number of states of the target automaton UL.

Proof. Due to Lemma 28, any hypothesis automaton has at most as many states
as UL. Moreover, Lemma 26 shows that ni ≤ ni+1, where nj = |Qj | is the num-
ber of states of the jth hypothesis. This together with Theorem 22 and the
fact that universal automata are unique up to renaming of states shows that
the learning algorithm will finally yield the target automaton UL. In the follow-
ing reasoning, let mj denote the number of transitions of the jth hypothesis.
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Clearly, mj ≤ |Σ|n2j . Since we always have ATj �= ATj+1 due to the received
counterexamples, we can observe two kinds of progress: The first kind is when
nj < nj+1. Since nj+1 ≤ n, this kind of progress can occur at most n times. The
second is when nj = nj+1 but mj > mj+1. This case is due to Lemma 27. Since
mj ≤ |Σ|n2j ≤ |Σ|n2, the second kind of progress can occur at most |Σ|n2 times.
When combined, the two observations yield the claimed rate of convergence.

Remark 30. An argument similar to the proof of Theorem 29 shows that the
procedures MakeStable and MakeSaturated terminate, as they either increase
the number of states or add a small number of table entries a fixed number of
times.

6 Discussions, Conclusions and Future Research

To discuss similarities and differences to the famous LSTAR learner of [2], further
notation is needed. Let T = 〈S,E, obs〉 be an observation table. For s ∈ S, let
row [s] = {e ∈ E | obs(s, e) = 1}. Abusing the notation of Section 3, 〈{s}, row [s]〉
is the factor induced by {s}, as row [s] = E[{s}] is the right-maximal subfactor
of {s}. For row [s] �= ∅, let 〈S[row [s]], row [s]〉 be the row factor of s. Likewise,
let col [e] = {s ∈ S | obs(s, e) = 1} and 〈col [e], E[col [e]]〉 be the column factor of
e. Let R and C collect all row and column factors, respectively.

Remark 31. If 〈X,Y 〉 is any factor, then (X,Y ) ∈ R ∪ C. This also gives an
algorithm for computing fac(T ): As long as there exists some yet uncovered (s, e)
with obs(s, e) = 1, compute the row and column factor of s and e, respectively,
and add them to the cover.

Remark 32. If LSTAR constructs a hypothesis from T , then the hypothesized
automaton has as state set R. By way of contrast, our algorithm’s hypothesis
automaton AT has state set fac(T ) = R ∪ C.

Another difference lies in the definition of a transition function for LSTAR.
Define row [s]a = {e ∈ E | obsa(s, e) = 1} for a ∈ Σ. We obtain a transition
〈s, a, s′〉 for s, s′ ∈ S and a ∈ Σ if row [s]a = row [s′]. If for all a ∈ Σ and all s ∈ S
there is some s′ ∈ S with row [s]a = row [s′] then we call T closed and all states
in the resulting automaton are reachable. If for all a ∈ Σ and all s, s′ ∈ S with
row [s] = row [s′] we have row [s]a = row [s′]a then we call T consistent and the
resulting automaton is deterministic. Hence, our way of deriving an automaton
from an observation table also differs from those in [2] or [3] for residual finite-
state automata (RFSA). However, it is similar to the notion of distributional
learning developed by [7] for context-free grammars [6].

As indicated in the last sections of [10], we may find that a generalization of
our approach towards the learning of subsets of monoids, not only free monoids,
is possible. We are only aware of text learning results for algebraic structures,
see [13]. We also encourage to further our approach to learning other structures
such as trees, matrices of symbols, or tuples of strings. Alternatively, we can look
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into other learning models, taking universal automata as our target descriptions.
For instance, see [9] for an alternative universal automata learner from positive
and negative examples relying on the state merging paradigm.

We hope to report on implementations of our algorithm soon, possibly inte-
grated within existing frameworks like LearnLib [11] or Libalf [4].

Acknowledgements. We thank the referees for their helpful comments and
suggestions.
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In: Sempere, Garćıa (eds.) [12], pp. 38–51

8. Courcelle, B., Niwinski, D., Podelski, A.: A geometrical view of the determinization
and minimization of finite-state automata. Mathematical Systems Theory 24(2),
117–146 (1991)
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Abstract. Recently, Tittmann et al. introduced the subgraph component
polynomial and showed that its power for distinguishing graphs is quite
different from the power of other graph polynomials that appear in the
literature such as the matching polynomial, the Tutte polynomial, the
characteristic polynomial, the chromatic polynomial, etc. The subgraph
component polynomial enumerates vertex induced subgraphs in a given
undirected graph with respect to the number of components. We show
the use of the subgraph component polynomial to count the number of
primitive partial words of a given length over an alphabet of a fixed size,
which leads to a method for enumerating such partial words.

1 Introduction

Motivated by social and biological networks, Tittmann et al. [11] introduced
the subgraph component polynomial Q(G;x, y) of an undirected graph G with n
vertices as the bivariate generating function which counts the number of con-
nected components in vertex induced subgraphs. More precisely, Q(G;x, y) =
Σn

i=0Σ
n
j=0qij(G)x

iyj, where qij(G) is the number of vertex induced subgraphs of
G with exactly i vertices and j connected components. They related the subgraph
component polynomial to other graph polynomials that appear in the literature
such as the Tutte polynomial, the universal edge elimination polynomial, etc.
(see, for instance, [9] for more information on graph polynomials). They showed
several remarkable properties of the subgraph component polynomial, among
them is their use to compute the so-called “residual connectedness reliability”.
They also showed that the problem of computing Q(G;x, y) is �P -hard, but
that it is fixed parameter tractable when restricting to graph classes that have
bounded tree-width and to classes of bounded clique-width.
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Primitivity is a well-studied topic in combinatorics on words (see, for instance,
[5]). It is well-known that the number of primitive words of a given length over
an alphabet of a fixed size can be calculated using the Möbius function [8,10].
In this paper, we discuss the use of the above subgraph component polynomial
to count the number Ph,k(n) of primitive partial words with h holes of length
n over a k-letter alphabet. Research on primitive partial words was initiated by
the first author in [1]. Partial words, also referred to as strings with don’t-cares,
may have some undefined positions or holes. In [2], formulas for h = 1 and h = 2
are given in terms of the formula for h = 0 and some bounds are provided for
h > 2, but no exact formulas are given for h > 2. Here, we associate a graph
Gn,P with any partial word of length n with period set P as follows: the vertices
represent the positions 0, . . . , n−1 and the edges are the pairs {i, i+mp}, where
0 ≤ i < i +mp ≤ n − 1, m ∈ Z, and p ∈ P . It turns out that Ph,k(n) can be
expressed in terms of the Q(Gn,P ;x, y)’s.

In Section 2, we answer the question “How many holes can a primitive partial
word of length n over a k-letter alphabet contain?”. We show that this number
can be expressed in terms of the large factors of n. In Section 3, we describe
a general method for counting primitive partial words with the subgraph com-
ponent polynomial, which leads to a method for the enumeration of primitive
partial words. In Section 4, we discuss in particular non-primitive partial words
of length pq, where p and q are distinct primes. In doing so, we give a frame-
work for understanding partial words that are exactly p-periodic and exactly
q-periodic without being 1-periodic (this relates to a variant of Fine and Wilf’s
periodicity theorem [6]). In Section 5, we further discuss the computation of
Nh,k(n) =

(
n
h

)
kn−h − Ph,k(n), the number of non-primitive partial words with

h holes of length n over a k-letter alphabet, using the subgraph component
polynomial. Finally in Section 6, we conclude with some remarks.

We end this section by reviewing a few basic concepts on partial words. Let A
be a non-empty finite set, or an alphabet. We consider a partial word w over A as
a word over the enlarged alphabet A� = A∪{+}, where the additional character
+ plays the role of an undefined position or a hole. For 0 ≤ i < n, the character
at position i of w is denoted by w(i). If w(i) ∈ A, then i is defined, otherwise i
is a hole. A full word is a partial word with an empty set of holes. We denote by
w[i..j) the factor of w that starts at position i and ends at position j − 1, and
by |w| the length of w or the number of characters in w.

If w1 and w2 are two partial words of equal length, then w1 is contained in
w2, denoted by w1 ⊂ w2, if w1(i) = w2(i) for all defined positions i in w1. The
greatest lower bound of w1 and w2, denoted by w1 ∧ w2, is the maximal partial
word contained in both w1 and w2, i.e, (w1∧w2) ⊂ w1 and (w1∧w2) ⊂ w2, and if
w ⊂ w1 and w ⊂ w2, then w ⊂ (w1∧w2). For example, ab+b+a∧a+aa++ = a+++++.

For a positive integer p, a partial word w has a period of p or w is p-periodic
if for all positions i, j defined in w such that i ≡ j mod p, we have w(i) = w(j).
A partial word has an exact period of p or is exactly p-periodic if it is p-periodic
and p divides its length. A partial word w is primitive if there exists no full word
v such that w ⊂ vi with i ≥ 2, equivalently, if there is no proper factor p of
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|w| such that w is p-periodic. Clearly, if w is primitive and w ⊂ w′, then w′ is
primitive.

2 Maximizing Number of Holes in Primitive Words

We define the set of large factors LF (n) of an integer n as the set of integers m
such that m < n, m | n, and for t �= m, t | n, we have m � t. For example, when
n = 30 we have LF (30) = {6, 10, 15}. Clearly, the large factors of n come from
dividing n by its prime factors.

Proposition 1. Given a primitive partial word of length n which contains the
maximum number of holes, set LF (n) = {f1, . . . , fm}. For any non-hole posi-
tions i and j, we have i− j = c1f1 + · · ·+ cmfm for some ci ∈ Z. Moreover, the
fewest number of non-holes which rule out all of the large factors of n as periods
is |LF (n)|+ 1.

Proof. To rule out the large factor f1, we must use two non-holes i1, i2 and they
must differ by a multiple of f1. Note that for each i and j, we have lcm(fi, fj) = n,
so i1 and i2 rule out at most one large factor, i.e., f1. To rule out the next large
factor f2, there must exist a non-hole position i3 that differs from i1 or i2, say
i1, by some multiple of f2. Since i1 − i2 = c1f1 and i1 − i3 = c2f2 for some
c1, c2 ∈ Z, we get i2 − i3 = i2 − i1 + i1 − i3 = −c1f1 + c2f2. As noted earlier, the
addition of i3 cannot possibly rule out any large factor other than f2. Continue
in this way until all large factors have been ruled out as periods. After ruling
out the first large factor with two non-holes, |LF (n)| − 1 non-holes are required
to rule out the remaining |LF (n)| − 1 large factors. This necessitates a total of
|LF (n)|+ 1 non-hole positions to rule out all large factors of n. ��
Theorem 2. The maximum number of holes that a primitive partial word of
length n over an arbitrary alphabet of at least two letters can contain, denoted
τ(n), is τ(n) = n − |LF (n)| − 1. Moreover, the maximum number of holes a
primitive word can contain can be achieved using a binary alphabet.

Proof. We begin with a construction over the binary alphabet {a, b} which shows
that this number of holes can always be achieved. Let the word w be defined
as w(i) = a if i + 1 ∈ LF (n), w(i) = b if i = n − 1, and w(i) = + otherwise.
There are |LF (n)| a’s and one b, leaving room for exactly n−(|LF (n)|+1) holes
as desired. We observe that it is unnecessary to check for incompatibilities in
smaller periods because for any factor q which divides an element p of LF (n),
an incompatibility in a period of length p implies an incompatibility in a period
of length q, so we need only check that all periods given by our large factor set
do not occur in w.

Let p ∈ LF (n). Since p | n we have n = lp for some l. There is an a in position
p − 1 and a b in position n− 1 = lp − 1, so p cannot be a period of w because
we have two incompatible positions which differ by a multiple of p. We conclude
that this construction yields a primitive word, so τ(n) ≥ n − |LF (n)| − 1. By
Proposition 1, we require our word to have at least |LF (n)| + 1 non-holes, so
τ(n) ≤ n− (|LF (n)|+ 1). Therefore our construction is maximal. ��
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3 Counting with the Subgraph Component Polynomial

We start with the graphical representation Gn,P of a partial word of length n
with period set P where edges indicate compatibility: Gn,P = (V,E) is a simple,
undirected graph where V = {0, . . . , n− 1}, and {i, j} ∈ E if and only if there
exists p ∈ P such that j = i+mp for m ∈ Z. Fig. 1 gives an example.

0

1

2

3

4

5

Fig. 1. Gn,P where n = 6, P = {2, 3}

Let Q(G;x, y) =
∑n

i=0

∑n
j=0 qij(G)x

iyj be the subgraph component polyno-
mial of a graph G with n vertices, where qij(G) is the number of induced sub-
graphs of G with exactly i vertices that have j connected components. For fixed
i, we use the notation Qi(G;x, y) =

∑n
j=0 qij(G)x

iyj . For example, the subgraph
component polynomial for the graph in Fig. 1 is

Q(G6,P ;x, y) = 1 + 6xy + 9x2y + 6x2y2 + 14x3y + 6x3y2 + 15x4y + 6x5y + x6y.

The coefficient 9 on x2y indicates that there are 9 ways to create an induced
subgraph of two vertices with a single connected component. This corresponds
to the 9 edges in our graph.

Lemma 3. The number of partial words of length n with h holes over a k-letter
alphabet with period set P is Qn−h(Gn,P ; 1, k).

Proof. The expressionQn−h(Gn,P ; 1, y) gives a polynomial in y whose coefficient
on yj is the number of induced subgraphs on n − h vertices that have exactly
j connected components. Subgraphs with n − h vertices represent which com-
patibilities must be satisfied amongst the characters in the word. We associate
specific letters with these remaining vertices, noting that each connected com-
ponent must consist of vertices all associated with the same letter. We have k
letter choices to associate with each connected component, so we substitute k
for y. There is no double counting between terms because hole placements that
lead to different numbers of connected components are necessarily distinct. ��

The following theorem gives a formula for the number of non-primitive words of
length n with h holes over k letters.
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Theorem 4. If LF (n) = {f1, . . . , fm}, then

Nh,k(n) =

m∑
i=1

Qn−h(Gn,{fi}; 1, k)−
∑
i�=j

Qn−h(Gn,{fi,fj}; 1, k) + · · ·

+ (−1)l+1
∑

i1 �=···�=il

Qn−h(Gn,{fi1 ,...,fil}; 1, k) + · · ·

+ (−1)m+1Qn−h(Gn,{f1,...,fm}; 1, k).

Proof. A word of length n is non-primitive if and only if it has a period equal to
one of n’s large factors. By Lemma 3, the term in the first sum counts all words
with h holes and period fi. The term in the second sum subtracts those which
are double counted because they have periods fi and fj . By inclusion-exclusion,
the formula counts the total number of words with h holes whose period set
contains at least one large factor of n, and thus all non-primitive words. ��

To investigate methods of computing the desired subgraph component polyno-
mials, we first recall two important facts from [11, Proposition 15,Theorem 12]: If
G = Kn is the complete graph on n vertices, then Q(Kn;x, y) = y(1+x)n−y+1.
While if G = G1 � · · · � Gc is the disjoint union of c graphs, then Q(G;x, y) =∏c

j=1Q(Gj ;x, y).

Proposition 5. Let P = {p}, where p divides n. Then Gn,P is the disjoint

union of p graphs isomorphic to Kn
p
and Q(Gn,P ;x, y) = (y(1 + x)

n
p − y + 1)p.

Proof. Let Vi consist of the vertex labeled i and all other vertices which differ
from i by a multiple of p. This partitions the set of vertices into exactly p
equivalence classes, so each induced subgraph Gi is disjoint from every other
one. By the definition of Gn,P , any two vertices in Vi are connected by an edge
so Gi is a complete graph, but no edge connects a vertex in Vi to a vertex in Vj
for i �= j. Since there are n/p vertices in Vi, we have Gi isomorphic to Kn/p for
0 ≤ i < p. The formula then follows from the abovementioned two facts. ��

As an example, we count the number of non-primitive words of length 6 over a
3-letter alphabet with 2 holes. First note that LF (6) = {2, 3}. By Proposition 5
we have Q(G6,{2};x, y) = (y(1+x)3 − y+1)2 and Q(G6,{3};x, y) = (y(1+x)2 −
y + 1)3. Multiplying out the polynomials and looking at terms of interest we
have Q4(G6,{2};x, y) = 15x4y2 and Q4(G6,{3};x, y) = 3x4y2+12x4y3. Applying
Lemma 3, the number of the words that are 2-periodic is Q4(G6,{2}; 1, 3) =
15(3)2 = 135 and the number of the ones that are 3-periodic is Q4(G6,{3}; 1, 3) =
3(3)2+12(3)3 = 351. Recalling the polynomial associated with G6,{2,3}, the only
term containing x4 is 15x4y. Replacing x with 1 and y with 3, the number of
words that are both 2- and 3-periodic is Q4(G6,{2,3}; 1, 3) = 45. Finally applying
Theorem 4, we find that N2,3(6) = 135 + 351− 45 = 441.

The following theorem illustrates how the subgraph component polynomial
can arise as a product of smaller polynomials.

Theorem 6. If n = c
∏d

i=1 pi for some c ∈ N and primes p1, . . . , pd, then
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Q(G
n,

{
n
p1

,..., n
pd

};x, y) = (Q(Gn
c ,

{
n

cp1
,..., n

cpd

};x, y))c.

Proof. Begin by creating the induced subgraph Gj of G = G
n,

{
n
p1

,..., n
pd

} consist-

ing only of vertices labeled i such that i = j mod c and relabel them 0 through
n
c . In G, two vertices are connected by an edge if and only if they differ by n

p1
,

or . . . , or n
pd
. In Gj , two vertices are connected if and only if they differ by

n
cp1

, or . . . , or n
cpd

. Thus, Gj is precisely Gn
c ,

{
n

cp1
,..., n

cpd

}. By construction, for

i �= j, we have that Gi and Gj are disjoint (with respect to vertices and edges
before the relabeling). Viewed before the relabeling, each Gj is equivalent and
G = G1�· · ·�Gc, so the result follows from the multiplicativity of the subgraph
component polynomial. ��

Suppose we wish to compute N2,2(12). By Theorem 6, Q(G12,{4,6};x, y) =
(Q(G6,{2,3};x, y))2. To count words with 2 holes, we must find terms containing
x10. Squaring the polynomial computed for G6,{2,3}, we find that there is pre-
cisely one such term: 66x10y2. Plugging in x = 1 and y = 2, we see that there are
264 words of length 12 with 2 holes that have periods 4 and 6. Applying Propo-
sition 5 we have Q(G12,{4};x, y) = (y(1 + x)3 − y + 1)4 and Q(G12,{6};x, y) =
(y(1 + x)2 − y + 1)6, and computing coefficients using the binomial theorem we
have Q10(G12,{4};x, y) = 66x10y4 and Q10(G12,{6};x, y) = 6x10y5+60x10y6. By
Lemma 3, there are 66(2)4 = 1056 words of length 12 with 2 holes and period 4,
and 6(2)5 +60(2)6 = 4032 with period 6. Finally we apply Theorem 4 to obtain
1056 + 4032 - 264 = 4824 binary non-primitive words of length 12 with 2 holes.

4 Special Cases

We first discuss non-primitive partial words of length pα for prime number p.
The number of non-primitive partial words with 0 ≤ h < p holes of prime

length p over k letters is
(
p
h

)
k [2]. Summing this over all valid values for h and

adding one for the all hole case gives a total of k2p−(k − 1) non-primitive partial
words of length p. We extend this result to count the number of non-primitive
partial words of length pα for a positive integer α.

An immediate consequence of the definition of p-periodicity is that a partial
word w = a0 · · ·an−1 of length n is p-periodic if and only if for each integer
0 ≤ i < p, aiap+i · · · aqp+i is 1-periodic, where q is the maximal integer such
that qp+ i < n. We use this fact in the next lemma.

Lemma 7. Let k, n, and p be positive integers, and write n = qp + r for 0 ≤
r < p. The number of p-periodic partial words of length n over a k-letter alphabet
is

(
k2q+1 − (k − 1)

)r
(k2q − (k − 1))

p−r
.

Proof. First, let p = 1. Then, r = 0 and n = q. The fact that the words must be
1-periodic means that there can be at most one specific letter in such words. We
can choose that letter in k ways and then each of the n = q positions has two
choices: that letter or the + character. Here, we are counting every word exactly
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once, except for +n, which we are counting k times. Subtracting the extra ones
off gives a total of k2n − (k − 1) words of length n that are 1-periodic, which is
the desired formula since n = q.

Now, let p > 1. Split the target words into i smaller words, each of which must
be 1-periodic. Exactly r of these words have length q+1; the remaining p−r have
length q. Also, each of these words can be chosen independently of the others
to give a unique word of length n with period p. Hence, by the result for p = 1
and the independence property, there are

(
k2q+1 − (k − 1)

)r
(k2q − (k − 1))

p−r

partial words of length n that are p-periodic. ��

We can now prove the desired result.

Theorem 8. Let α ≥ 1 and p be a prime. There are (k2p − (k − 1))
pα−1

non-
primitive partial words of length pα over a k-letter alphabet.

Proof. Any non-primitive partial word of length pα is pα−1-periodic. There

are (k2p − (k − 1))
pα−1

such words by Lemma 7 (set q := p, p := pα−1, and
r := 0). ��

We now discuss non-primitive partial words of length pq for prime numbers p and
q. Since partial words can be exactly p-periodic and exactly q-periodic without
being 1-periodic (unlike full words), this case is more challenging than the one of
prime power length. We provide the necessary framework for working with these
words. We begin with some definitions that help characterize the exceptional
words.

Let p and q be positive integers. A partial word w is (p, q)-special if it is
exactly p-periodic and exactly q-periodic but not gcd (p, q)-periodic. A (p, q)-
special partial word w is k-minimal if there does not exist a (p, q)-special word
using exactly k different letters with fewer holes than w has. (If k = 2, we just
say that w is minimal.) Let Mk (p, q) denote the number of holes in a k-minimal
(p, q)-special partial word.

Let X be the set of 1-periodic partial words of length pq such that every
character at position i mod p, for some 0 ≤ i < p, is a hole and every other
character is not a hole. We say that a partial word w is [p, q]-special if it is (p, q)-
special or if there exists v ∈ X such that w ⊂ v. The notion of minimality is the
same. Given a [p, q]-special partial word w, a weakening of w is a partial word
obtained by replacing some positions congruent to i mod q with holes, for some
0 ≤ i < q. If all non-holes in such indices are replaced, it is a full weakening,
otherwise it is a partial weakening.

Let w1 and w2 be partial words, and let |w1| = q and |w2| = p. Then, we define
str (w1, w2) = wp

1 ∧w
q
2 . A [p, q]-special partial word is minimal-by-inclusion if it

is not a weakening of str (w1, w2) for any partial words w1 and w2.
We now give three important properties of str that are integral to many

remaining proofs.

Lemma 9. Let w1 and w2 be full words over the binary alphabet {a, b}. If p and
q are relatively prime, |w1| = q, |w2| = p, and w2 does not contain all the same
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letter (unless w1 contains all the same letter, and it is the other letter), then
str (w1, w2) is [p, q]-special, and it is (p, q)-special if each of w1 and w2 contains
at least one a and at least one b.

Lemma 10. Every [p, q]-special partial word of length pq over the binary alpha-
bet {a, b} is contained in str (w1, w2) for some full words w1 and w2 such that
|w1| = q and |w2| = p.

Lemma 11. A word over the binary alphabet {a, b} equals str (w1, w2) for some
full words w1 and w2 such that |w1| = q and |w2| = p if and only if it is a
minimal-by-inclusion [p, q]-special word.

The next few results relate to counting the number of holes in minimal (or
minimal-by-inclusion) special partial words over the binary alphabet {a, b}. For
positive integers p and q, let hp,q (m,n) denote the minimum number of holes
possible in str (w1, w2) if |w1| = q, |w2| = p, w1 and w2 are full, w1 contains
m b’s, and w2 contains n b’s. Also, let h′p,q (m,n) denote the minimum number
of holes possible in str (w1, w2) if the above conditions are met and str (w1, w2)
is (p, q)-special. (If that condition is impossible to meet, then h′p,q (m,n) = ∞.)
The following proposition shows that hp,q (m,n) and h′p,q (m,n) can be used
interchangeably under some circumstances.

Proposition 12. If p and q are relatively prime, then h′p,q (m,n) = hp,q (m,n)
everywhere that the former is defined, which is for all m and n unless m = 0,
n = 0, m = q, or n = p.

Proof. By Lemma 9, str (w1, w2) is automatically (p, q)-special unless m = 0,
n = 0, m = q, or n = p. ��

Here, we show that we can compute h and h′ more efficiently than brute-force
under some circumstances.

Lemma 13. If p and q are relatively prime, every possible w1 and w2 over the
binary alphabet {a, b} with |w1| = q, |w2| = p, w1 and w2 full, w1 containing m
b’s, and w2 containing n b’s results in str (w1, w2) containing exactly hp,q (m,n)
holes.

Proof. Let w1 and w2 be full words such that |w1| = q, |w2| = p, and all of the
a’s in both words precede all of the b’s. Any other w′

1 and w′
2 with the same

values of m, n, p, and q are permutations of w1 and w2. If w1 = a0 · · · aq−1 and
w2 = b0 · · · bp−1, consider the following pairing of wp

1 with wq
2 . By the Chinese

Remainder Theorem, each index in w1 is paired exactly once with each index
in w2 (those characters are in the same position as each other in the given
powers). Applying any permutation to the letters of w1 and w2 does not violate
this pairing property. This implies that the resulting greatest lower bound is a
permutation of str (w1, w2). In particular, it has the same number of holes. ��

The next lemma shows that when we consider any minimal-by-inclusion [p, q]-
special word, we can consider one of length lcm (p, q) without loss of generality.
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Lemma 14. If w1 and w2 are full words with |w1| = q and |w2| = p for some
positive integers p and q, str (w1, w2) is lcm (p, q)-periodic.

The following theorem is the main result relating to h, and it is used to find
minima of h for use in counting non-primitive words.

Theorem 15. If p and q are relatively prime, then hp,q (m,n) = mp + nq −
2mn. And if p and q are positive integers (not necessarily relatively prime), then
hp,q (m, 0) = mp, hp,q (0, n) = nq, and hp,q (1, 1) = p+ q − 2 gcd (p, q).

Proof. Let p and q be relatively prime. By the Chinese Remainder Theorem,
when building the greatest lower bound in str (w1, w2) to compute hp,q (m,n)
(using any w1 and w2 that are allowed, as Lemma 13 allows this) every position
in w1 is paired exactly once with every position in w2. Hence, every b in w1

contributes one hole for every a in w2 and every b in w2 contributes one hole
for every a in w1. Hence, the total number of holes in str (w1, w2) is n (q −m)+
m (p− n) = mp+ nq − 2mn.

Now, let m = 1, n = 1, and let p and q be any positive integers. Since
each of w1 and w2 contain exactly one b, by Lemma 13 we can put the b first,
guaranteeing that there is a b in the first lcm (p, q) characters of str (w1, w2).
Since there is only one b per word, there is no more than one b in that block in
str (w1, w2). Hence, the b’s contribute holes wherever else they come up, which is

(in the first lcm (p, q) positions) a total of lcm(p,q)
p + lcm(p,q)

q − 2. Then, hp,q(1, 1)

is
(

lcm(p,q)
p + lcm(p,q)

q − 2
)
gcd (p, q) = p+ q − 2 gcd (p, q). ��

The next corollary leads to an easy way of generating (p, q)-special words with
the minimal number of holes for some pair (p, q).

Corollary 16. If p and q are relatively prime, M2 (p, q) = hp,q (1, 1).

Proof. Note that M2 (p, q) is the minimal value taken by h′p,q. We can assume
that 0 < m < q and 0 < n < p, as h′ is infinite otherwise. We then have
h′p,q (m,n)− h′p,q (1, 1) = mp+nq− 2mn− (p+ q − 2) = (m− 1) p+(n− 1) q−
2 (mn− 1).

Let f (m,n) = (m− 1) p + (n− 1) q − 2 (mn− 1). We wish to minimize f
over the compact region [1, q − 1]× [1, p− 1]. Examining the partial derivatives,
∂f
∂m = p − 2n and ∂f

∂n = q − 2m. These partial derivatives imply that the only
critical point of f is (m,n) =

(
q
2 ,

p
2

)
. We now check the second partial derivatives

to determine what type of critical point we have found: ∂2f
∂m2 = 0, ∂2f

∂n2 = 0, and
∂2f

∂m∂n = −2, so this critical point is a saddle point of f . Hence, the minimum
occurs on the boundary, which are the four line segments where m = 1 from
n = 1 to n = p− 1, n = 1 from m = 1 to m = q − 1, m = q − 1 from n = 1 to
n = p− 1, and n = p− 1 from m = 1 to m = q − 1.

We check the m = 1 case; the other three are similar. Here, the function
becomes f (1, n) = (n− 1) q−2 (n− 1), which has derivative (with respect to n)
q−2, which is not equal to zero unless it is identically zero. Hence, the minimum
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is an endpoint. The values at the endpoints are f (1, 1) = 0 and f (1, p− 1) =
(p− 2) q − 2 (p− 2) = (p− 2) (q − 2). Therefore, (1, 1) is the minimum on this
portion of the boundary. Doing the same for n = 1 yields the same minimum,
and the other two sides yield (q − 1, p− 1) as another minimum, also with value
0. Therefore, a minimum of f occurs at (1, 1), so h′p,q (1, 1) ≤ h′p,q (m,n). Thus,
M2 (p, q) = hp,q (1, 1). ��

Given a binary p-periodic partial word, a letter change move of period p involves
choosing an index 0 ≤ i < p and a letter that does not appear in any of the
positions congruent to i mod p and replacing all holes in those positions with
that letter and all letters in those positions with holes. Note that a letter change
move is invertible if it does not yield all holes or begin with all holes; just perform
another letter change move on the same index. Call a non-invertible letter change
move degenerate, and call an invertible one non-degenerate. Here, we develop the
framework for using letter changes as a counting tool.

Lemma 17. Let p and q be relatively prime, and let w = str (w1, w2) for some
full words w1 and w2 with |w1| = q and |w2| = p over the binary alphabet {a, b}.
Then, applying any letter change move of period q to w yields str (w3, w2) for
some full word w3 with |w3| = q and applying any letter change move of period
p to w yields str (w1, w4) for some full word w4 with |w4| = p.

Proof. We prove the first part. Let w1 = a0 · · · aq−1. Let 0 ≤ i < q, and let
w3 = w1 [0..i)aiw1 [i+ 1..q), where ai indicates the complement of ai. Let w =
str (w1, w2), and let v = str (w3, w2). In every position not congruent to i mod q,
w has the same character as v. In a position congruent to i mod q, if w has a
letter (meaning that wp

1 and wq
2 correspond there), then v has a hole (as wp

3 has
a different character there). Similarly, if w has a hole in such a position, then
v has a letter there, and it is the same letter that was changed to. Hence, v is
precisely the result of applying a letter change of period q to w. ��

The next theorem invokes the previous lemma to count minimal-by-inclusion
special words.

Theorem 18. Let p and q be prime numbers. There are (2p − 2) 2q minimal-
by-inclusion [p, q]-special words of length pq over the binary alphabet.

Proof. There are 2q full words of length q and there are 2p − 2 full words of
length p that are not 1-periodic. Taking str of one word from each of these
groups yields precisely the minimal-by-inclusion [p, q]-special words of length pq,
and each yields a different one. Hence, there are (2p − 2) 2q such words. ��

Finally, we use weakenings to count some non-primitive partial words that are
not minimal-by-inclusion.

Proposition 19. Let p and q be prime numbers. For each integer 0 ≤ h <
q, there are

(
q
h

)
(2p − 2) 2q−h [p, q]-special words of length pq over the binary

alphabet obtained from exactly h full weakenings of a minimal-by-inclusion [p, q]-
special word (and there is one such word for h = q).
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Proof. The fact that there is one such word for h = q is obvious. Note that the
case h = 0 is Theorem 18. Now, beginning with a minimal-by-inclusion [p, q]-
special word w of length pq, let v be a [p, q]-special word over the binary alphabet
obtained from w by performing h (independent) full weakenings on w for some
integer 0 < h < q. The partial word v has exactly h collections of p holes that are
q apart. Each of these hole collections can be identified with a letter. For each
hole in the collection, if the letter is the same as the one removed to create that
hole, that letter can be replaced there, preserving the specialty property. If it is
the other letter and the hole was already a hole, the hole can be replaced by that
letter, also preserving the specialty property. Hence, v can be constructed in this
way from 2h different minimal [p, q]-special words. Also, by Lemma 11, all [p, q]-
special words from such weakenings over the binary alphabet for some integer
0 < h < q can be obtained this way. Since we are choosing h positions from q to

weaken, this gives a total of
(qh)(2

p−2)2q

2h
=

(
q
h

)
(2p − 2) 2q−h [p, q]-special words

of length pq obtained by applying exactly h full weakenings. ��

5 Remarks on Computing Nh,k(n)

If we know the subgraph component polynomials of graphs from 1 through n−1
vertices for any subset of their divisors, how many new subgraph component
polynomials must we compute to find Nh,k(n) using Theorem 4?

As it turns out, if we compute Nh,k(n) starting with n = 1 and increasing by
1 each time, we never have to compute more than one new polynomial at each
step. In fact, more often than not, we do not need to fully compute anything
new. This is a property of Theorem 6. Indeed, by Proposition 5 we know how
to compute the first sum from Theorem 4. Now suppose n has large factors
f1, . . . , fm and we wish to compute the subgraph component polynomial for the
graph representation of some proper subset F of LF (n). Then Theorem 6 tells
us how to do this in terms of smaller polynomials by taking m to be the product
of all n

fi
’s such that fi /∈ F . Finally, we consider the last term in the formula for

Nh,k(n). If n is a multiple of the product of its distinct prime factors then we
may apply Theorem 6 again. Otherwise, we have a new polynomial to compute.
This leads to the following key fact: All subgraph component polynomials which
occur in Theorem 4 arise from polynomials of the form Q(Gn,LF (n);x, y) where
n is a product of distinct primes.

The products 2×3 = 6, 2×5 = 10, 2×7 = 14, 3×5 = 15, 3×7 = 21, 2×11 =
22, and 2 × 13 = 26 exhaust all products of two distinct primes less than 30.
By computing Q(Gn,LF (n);x, y) for n = 6, 10, 14, 15, 21, 22, 26, we can compute
Nh,k(n) for all n < 30 using only powers of these polynomials and Proposition 5.
This means computing 7 polynomials as opposed to the 52 that Theorem 4
suggests. More generally, let ω(n) be the number of distinct prime factors of

n. Then the formula for Nh,k(n) given by Theorem 4 computes
∑N

n=1(2
ω(n) −

1) polynomials to obtain values for all n < N . However, simplifications from
Theorem 6 reduce this to D(N), the number of products of distinct primes less
than N . Using a bound from [7] we have
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n=1(2

ω(n) − 1) ≥
∑N

n=1 ω(n) ≥ N log(logN).

Moreover, D(N) is bounded from above by N . This implies that if we compute
Nh,k(n) for all n < N and let N go to infinity, the ratio of what we compute
after using Theorem 6 to what is computed using Theorem 4 goes to zero.

6 Conclusion

The results of Section 2 have led to the design and analysis of efficient algorithms
for computing all primitively-rooted squares and runs in partial words [3].

The compatibility graphs introduced in Section 3 also appear in the literature
under the name circulant graphs (see, for instance, [4]). As suggested by one of
the referees, a future topic for research would be to investigate special properties
of subgraph counting polynomials of circulant graphs to make the computation
of Nh,k(n), further discussed in Section 5, more efficient.

A WWW server interface at www.uncg.edu/cmp/research/primitivity3

has been established for automated use of a program that calculates the number
of primitive words with a given length, number of holes, and alphabet size.
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Abstract. Suffix trees, introduced by Weiner in 1973, are powerful data
structures used to solve many problems on words such as searching for
patterns in biological sequences, data compression, text processing, etc.
Although they have fallen out of favor in the past years to the more
space-efficient suffix arrays, suffix trees are useful for modelling partial
words by allowing paths to meet whilst keeping them acyclic through
directedness (a partial word may have don’t care symbols or holes, which
are compatible with any letter of the alphabet over which it is defined).
We extend suffix trees to partial words by introducing a suffix directed
acyclic graph, with compatibility links, that exhibits all the suffixes while
preserving the longest common compatible prefix, lccp, between suffixes.
We give an optimal O(n2) time and space algorithm for constructing the
suffix dag of a given partial word w with an arbitrary number of holes
of length n over a fixed alphabet by modifying Weiner’s algorithm. Our
algorithm also computes the lccp array between suffixes of w starting
with holes and all other suffixes of w. It possesses the invariant that
after the suffix at position i has been processed, the lccp between any
suffix starting at or after position i with any suffix starting with a hole
can be computed in constant time. As a result, with O(n2) preprocessing
time, finding the lccp of two given suffixes of w requires constant time.

1 Introduction

Given a word w = w[0..n − 1] of length n, let $ be a symbol not appearing in
w. The suffix trie for w is a tree such that the paths from the root to the n
leaves are in one-to-one correspondence with the n suffixes w[0..n− 1]$, w[1..n−
1]$, . . . , w[n − 1]$ of w$, the paths being labelled by these suffixes. Each node
is labelled by the label on the path from the root to that node, and a node is
called essential if it is labelled by one of these n suffixes. It can be constructed
by inserting these n suffixes of w$ from the longest to the shortest. If the suffixes
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starting at positions n− 1, . . . , i (or suffixes at positions n− 1, . . . , i) have been
inserted, then the suffix x = w$[i− 1..n] = w[i− 1..n− 1]$ is inserted as follows.
Calculate the head of x, which is the longest prefix of x common to the label of a
path already present, say y = w$[i−1..j−1] (the suffix z = w$[j..n] is called the
tail of x). Then create a new branch, labelled by z, starting at the node labelled
by y. In addition, if a node is labelled by ax, where a is a single character and x
is a possibly empty word, there is a suffix link from the node for ax to the node
for x. The suffix trie of a word of length n can be stored in O(n2) space [7].

The suffix tree for w is the suffix trie for w with edges compressed in a certain
way to make the size of the structure linear. The non-essential nodes of degree
one are removed (this is called the compaction of the trie). The edges become
labelled by non-empty words and all the non-essential internal nodes have at
least two children. The suffix tree has at most 2n nodes and can be stored in
O(n) space [7].

Weiner [12] introduced the concept of suffix tree in 1973. Its construction,
which can be done in O(n) time for a fixed alphabet size, was simplified by
McCreight [9] in 1976 and by Ukkonen [11] in 1995. Farach-Colton et al. [4] in
1997 gave an algorithm that is optimal for all alphabet sizes. Suffix trees have
become the basis of many algorithms on words [3,5,10].

We denote by lcp(i, j) the length of the longest common prefix between the
suffixes of w starting at positions i and j. Given two suffixes of w, starting at
positions i and j respectively, the longest common prefix problem or lcp problem is
to find the longest word which is a prefix of both of these suffixes. It is equivalent
to the lowest common ancestor problem of the corresponding suffixes in the
suffix tree of w. We say that a subword s of w is branching if s is the longest
common prefix of distinct suffixes of w. Thus, the suffix tree of w stores all its
branching substrings. The ability to compute the lowest common ancestor (and
thus the longest common prefix) in constant time and O(n) preprocessing time
is a magnificent result [6].

Suffix trees are incredibly powerful data structures for solving some of the
harder problems on words: searching for patterns in biological sequences, data
compression, text processing, etc. Although they have fallen out of favor in the
past years to suffix arrays [8], which are data structures more space-efficient
than suffix trees, suffix trees are useful for modelling partial words by allowing
paths to meet whilst keeping them acyclic through directedness. We also refer
the reader to the directed acyclic word graph (dawg), another data structure
with linear time construction that is more space-efficient than a suffix tree [2].

A partial word is a sequence that may have undefined positions, called holes
and denoted by +’s, that match any letter of the alphabet A over which the word
is defined (a full word is a partial word without holes). We also say that + is
compatible with each a ∈ A. The compatibility relation can be extended to partial
words w and w′ of equal length as follows: w is compatible with w′, denoted by
w ↑ w′, if w[i] = w′[i] whenever w[i], w′[i] ∈ A. The lack of transitivity through
compatibility of words is seen by a ↑ + and + ↑ b, but a �↑ b for distinct letters a
and b (for more information on partial words, see [1]). In the context of partial
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words, we denote by lccp(i, j) the length of the longest common compatible
prefix between the suffixes starting at positions i and j. Given two suffixes of a
partial word w, starting at positions i and j respectively, the longest common
compatible prefix problem or lccp problem is to find the longest word which is a
compatible prefix of both of these suffixes.

Although there are a great deal of research on algorithms for full words (see, for
instance, [3,5,10]), extensions of these algorithms tend to not apply nearly as well
for partial words. The abovementioned lack of transitivity through compatibility
is one of the more important culprits. In this paper, we extend suffix trees for
partial words and show how to use them for computing the longest common
compatible prefix between suffixes.

The contents of our paper are as follows: In Section 2, we introduce the suffix
directed acyclic graph dag for a partial word w. In Section 3, we give an optimal
O(n2) time and space algorithm for construction of the suffix dag, when w has
length n and arbitrarily many holes. We also give such an algorithm when w has
length n and a fixed number of holes. In Section 4, we show how to compute
the longest common compatible prefix of two given suffixes of w with O(n2)
preprocessing and constant time. In Section 5, we conclude with some remarks.

2 Suffix Directed Acyclic Graphs for Partial Words

We describe a suffix directed acyclic graph (suffix dag) that exhibits all the suf-
fixes of a partial word while preserving the lowest common compatible ancestor
or the longest common compatible prefix between suffixes of the word.

We give a description of the basic algorithm that accomplishes this. Let w be
a partial word of length n with h holes. Form the suffix trie of w as if the + was
simply another letter in the alphabet of which w is over. Then, at every branch in
the trie, if any of the branches starts with a +, connect the two nodes between the
branches that exhibit the maximal path from the parent that is compatible with
the other. We call these links, compatibility links or clinks. Then, to compute
the longest common compatible prefix between any two suffixes, we either take
one of the nodes given by the lowest compatibility link between nodes in the
branches of the suffixes or the lowest common ancestor if no such link exists.

We naturally wish to compress/compact the previously created suffix dag.
The rules for compressing nodes is similar to that of the essential nodes for full
words. If a node marks the end of a suffix or if the node has degree two without
considering compatibility links, we call it essential and cannot compress it. Once
we encounter a node with a compatibility link from it, we must stop compression
at that node. Thus, the nodes we can compress, are the chains of nodes of length
at least two where the only node allowed to have a compatibility link from it is
the last node in the chain.

We now consider the difference between the number of nodes in the suffix
tree of a partial word when treating + as another letter in the alphabet and the
number of nodes in the compacted suffix dag of the partial word. We must split
any chain from the suffix tree in the suffix dag whenever we encounter a node
with a compatibility link. We must thus count the number of clinks needed.
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Considering the word an+an, we see that the number of compatibility links
needed is n2+n, that is, the nth oblong number. Thus, the number of compatibil-
ity links is at least O(n2) and so, instead of making links at every branch starting
with a hole, we will only compute the compatibility links at the root node. We
amend our process of computing the longest common compatible prefix:

1. Compute the suffix tree for w treating the + as another letter in the alphabet.
2. Find the branch from the root that starts with a + (this will exist if w has

a hole in it); denote it by branch�.
3. For every subbranch in branch� that starts with a + (including the branch

itself), add compatibility links between the longest common compatible pre-
fix of these branches with all other suffixes in the tree that are not present
in branch�.

4. Compress the suffix dag.

Fig. 1 illustrates an example of an uncompressed suffix dag created by the pro-
cess. In this example, branch� corresponds to the suffix of baba+ba starting at
position 4, that is, +ba. There are four clinks, among them is the link between
+b and a+ since the lccp of branch� and the branch corresponding to the suffix
starting at position 3, that is, a+ba has length two. Note that there is no clink
between +b and ab but there is one between +ba and aba since the lccp of branch�
and the branch corresponding to the suffix at position 1 has length three.

Lemma 1. The suffix dag of a partial word with h holes of length n created by
the previous process has size in O(n(h+ 1)) (or more simply O(nh)).

Proof. The suffix tree for w will have a size in O(n). By adding the compatibility
links and then compressing, we break a chain into two parts whenever it contains
a compatibility link. There are O(nh) possible compatibility links since each
corresponds to comparing a suffix starting with a hole to another suffix. Thus,
we will add at most O(nh) nodes compared to the suffix tree. ��

Let SD be the compressed suffix dag of a partial word w. If we consider each
suffix of w to be labelled as a number (corresponding to start index) in SD, then
we define the lowest common compatible ancestor or lcca between two nodes
(suffixes) i and j to be the node of SD that is a lowest common ancestor of i and
j with the possibility of taking the lowest compatibility link between nodes in
the branch for suffix starting at position i and the branch for suffix starting at
position j if such a link exists. Returning to our example in Fig. 1, for computing
lcca(3, 4) we take the lowest compatibility link, that is, the one between nodes
a+ and +b.

3 Constructing the Suffix Dag

We first provide an optimal algorithm for the construction of the suffix dag for a
partial word w of length n with an arbitrary number of holes, that is, the number
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Fig. 1. The uncompressed suffix dag of bababa with four compatibility links between
nodes b and ,  and a, b and a, and ba and aba (the essential nodes are colored in
grey)

of holes in w is a function of n. Such an algorithm belongs in O(n2) with regards
to both space and running times.

Given a partial word w, denote by NH(w)[i] the position in w of the next
hole occurrence at or after position i if it exists. Otherwise, let NH(w)[i] = −1
if there are no remaining holes at or after i. For example, if w = b++ababa+b then
NH(w) = 112888888(−1).

Algorithm 1. NH(w)

Require: a partial word w of length n and an array NH of length n
Ensure: NH(w) stored in NH indexed by suffix start position
1: nextHole← −1
2: for index pos from n− 1 down to 0 do
3: if w[pos] =  then
4: nextHole← pos
5: NH[pos]← nextHole
6: return NH

Lemma 2. Given a partial word w of length n, Algorithm 1 computes NH(w)
in Θ(n) time.
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We can take advantage of the machinery in Weiner’s algorithm for suffix dag
construction. We modify Weiner’s algorithm, treating the location of appropriate
edge/node to break to insert the next suffix as a black box. Whenever a suffix
is added, we perform an additional O(n) work to compute the longest common
compatible prefix between the new suffix and all suffixes that begin with a hole.

Theorem 3. Given a partial word w with an arbitrary number of holes of length
n over a fixed alphabet, Algorithm 2 runs in O(n2) time and uses O(n2) space.
It computes both the suffix dag of w and the longest compatible common prefix
array between suffixes of w starting with holes and all other suffixes of w. The
algorithm possesses the invariant that after we have processed the suffix starting
at position i, we can compute the longest common compatible prefix between any
suffix starting at or after position i with any suffix starting with a + (anywhere
in w) in constant time.

Proof. Let w = w[0..n− 1] be a partial word with an arbitrary number of holes
of length n. Let HoleSuffixes be the set of positions of w that are holes. Assume
we actually compute the suffix tree for every suffix that starts at a position in
HoleSuffixes first. This does not interfere with any other constructions since no
other suffix starts with a +. Weiner’s algorithm starts with the addition of a node
for w[n−1]$ to the tree. Trivially, we know that the length of the longest common
compatible prefix between any suffix starting at a member of HoleSuffixes and
the suffix starting at n− 1 is 1. Thus, assume we have established this invariant
for all suffixes starting at positions i + 1 through n − 1 for some integer i. We
assume i+ 1 �= 0.

We now add the suffix starting at position i of w. Weiner’s algorithm locates
the longest common prefix (lexically) between the suffix of w starting at i and
all suffixes of w starting at positions larger than i. Due to the $ symbol, no
suffix is a prefix of another, so either we will introduce a new symbol not yet
seen in w, or we will break an edge in the current tree. We denote the longest
common prefix value found as head(i). We define tail(i) as the word that gives
w[i..n − 1] = head(i) tail(i). Weiner’s algorithm locates head(i) in amortized
constant time.

Since we assume a fixed alphabet, we allow the lccp values to be computed
naively with every member of HoleSuffixes if we encounter a suffix that starts
with a symbol not previously seen. Thus we add O(n2) for every letter in the
alphabet to the running time of our algorithm.

We assume now that w[i] introduces a symbol previously seen. We denote by
v the path label of where we will break the edge to add the new suffix w[i..n−1];
we denote d as the length of v. Note that v itself leads to a suffix of w (by not
taking any branches) and we denote its starting position as j. We also denote by
CL[s][j] the compatibility link between nodes in the branch for suffix starting
at j and the branch for suffix starting at a member s of HoleSuffixes (we will
also refer to this link as the one between j and s). We are then met with the
following cases:

Case 4. CL[s][j] is before v.
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Algorithm 2. Modified Weiner’s Algorithm (Arbitrary Hole Case)

Require: a partial word w = w[0..n − 1] of length n with h holes, an array NH of
length n, a list HoleSuffixes of the positions of w with a hole, sorted in ascending
order, and an empty matrix LC of size n× h

Ensure: the suffix dag for w and the longest compatible common prefix array between
suffixes starting with holes and all other suffixes

1: NH ← NH(w)
2: runWeiner’s algorithm on the set of suffixes that start at a position inHoleSuffixes

3: resume Weiner’s algorithm on w by adding node for w[n − 1]$, that is, suffix tree
for suffix starting at n− 1

4: for i from n− 2 down to 0 do
5: create suffix tree for suffix starting at i from suffix tree starting at i+ 1
6: if w[i] is not in w[i+ 1..n− 1] then
7: for s in HoleSuffixes do
8: compute lccp(i, s) naively, update LC[s][i] = lccp(i, s)
9: mark compatibility links between nodes
10: else
11: for s in HoleSuffixes do
12: we are left at the head(i) node which is not the root
13: let d be the length of the path-label of head(i)
14: let j be the starting position of the suffix that the path from head(i) is a

prefix of
15: if compatibility link between j and s is before head(i) then
16: mark compatibility link and use it for w[i..n − 1] to w[s..n− 1]
17: LC[s][i] = LC[s][j]
18: else
19: if w[s+ d] =  then
20: LC[s][i] = d+ LC[s+ d][i+ d]
21: mark compatibility link
22: else
23: l← 0
24: for pos from 0 to NH[s+ d]− (s+ d) do
25: if pos = NH[s+ d]− (s+ d) then
26: LC[s][i] = d+ l + LC[s+ d+ pos][i+ d+ pos]
27: mark compatibility link
28: break
29: if w[s+ d+ pos] 
↑ w[i+ d+ pos] then
30: LC[s][i] = d+ l
31: mark compatibility link
32: break
33: l← l + 1
34: traverse to each compatibility link and break edge
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Algorithm 3. Modified Weiner’s Algorithm (Fixed Hole Case)

Require: a partial word w = w[0..n− 1] of length n with h(n) holes, an array NH of
length n, a list HoleSuffixes of the positions of w with a hole, sorted in ascending
order, and an empty matrix LC of size n× h(n)

Ensure: the suffix dag for w and the longest compatible common prefix array between
suffixes starting with holes and all other suffixes

1: NH ← NH(w)
2: run Weiner’s algorithm on the set of suffixes at a position in HoleSuffixes
3: compute lccp between the suffix starting at the last hole of w and every suffix

before it/mark compatibility links
4: resume Weiner’s algorithm on w by adding node for w[n− 1]$
5: for i from n− 2 down to 0 do
6: create suffix tree for suffix at i from suffix tree for suffix at i+ 1
7: if w[i] is not in w[i+ 1..n− 1] then
8: for s in HoleSuffixes do
9: compute lccp(i, s) naively, update LC[s][i] = lccp(i, s), mark clinks
10: else
11: if w[i] =  then
12: for j from i− 1 down to 0 do
13: lexicalLCP ← LCP(i+ 1, j + 1)
14: nextHoleJ ← NH[j + 1] and nextHoleI ← NH[i+ 1]
15: while −1− i 
= nextHoleI − i = nextHoleJ − j 
= −1− j do
16: nextHoleJ ← NH[nextHoleJ + 1]
17: nextHoleI ← NH[nextHoleI + 1]
18: if nextHoleJ = −1 then
19: nextHoleJ ←∞
20: else if nextHoleI = −1 then
21: nextHoleI ←∞
22: m← min{nextHoleJ − j − 1, nextHoleI − i− 1}
23: if lexicalLCP < m then
24: LC[i][j] ← 1 + lexicalLCP
25: else
26: let holePos be either nextHoleJ or nextHoleI , the one that matches

m, and let otherPos be the other position plus the offset m
27: LC[i][j] ← 1 +m+ LC[holePos][otherPos]
28: else
29: for s in HoleSuffixes do
30: we are left at the head(i) node which is not the root
31: let d be the length of the path-label of head(i) and let j be the starting

position of the suffix that the path from head(i) is a prefix of
32: if compatibility link between j and s is before head(i) then
33: mark compatibility link and use it for w[i..n − 1] to w[s..n− 1]
34: LC[s][i] = LC[s][j]
35: else
36: if w[s+ d] =  then
37: LC[s][i] = d+ LC[s+ d][i+ d] and mark compatibility link
38: else
39: find next hole, update LC as in Algorithm 2, mark clinks
40: traverse to each compatibility link and break edge
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Then there is an incompatibility between v and w[s..n−1]. The suffix starting
at i then satisfies lccp(i, s) = lccp(j, s) and so we do not need to do any work.
We also copy the compatibility link between j and s for i and s.

Case 5. CL[s][j] is after v and w[s+ d] = +.
Then lccp(i, s) ≥ d. In this case, tail(i) is a suffix that must start strictly after

position i. The invariant of the algorithm then assumes that we can compute
lccp(i+ d, s+ d) in constant time. Thus, this step takes constant time.

Case 6. CL[s][j] is after v and w[s+ d] �= +.
For pos from 0 up until NH(w)[s + d] − (s + d), where NH(w)[s + d] is the

next hole after s + d, we must compare w[i + d + pos] with w[s + d + pos] for
compatibility. If always compatible, once we reach NH(w)[s + d] − (s + d), we
can use the invariant to finish the computation using

lccp(i+ d+NH(w)[s+ d]− (s+ d), s+ d+NH(w)[s+ d]− (s+ d)).

This gives a running time for this step in terms of the number of comparisons
we must make before reaching the next hole after s+ d.

Note that the last case takes O(n) time at each suffix insertion. This follows
since we need to only compare up until the next hole in the suffix after w[s+ d].
Thus, each time we invoke that step, we are comparing on a disjoint subset of
positions of w, making the sum bounded by n. There are n suffix links to insert
and so we will have an O(n2) algorithm, optimal in the case when h is a function
of n itself.

Since we will have O(n2) compatibility links, we can keep a reference to where
we should place them and traverse each link and break the edge accordingly to
get the desired suffix dag for w. ��

We next give an optimal algorithm, Algorithm 3, for the fixed hole case which
requires a bit more machinery and a stronger invariant than the arbitrary hole
case. Again, a modified Weiner’s algorithm forms the base.

Theorem 4. Given a partial word w with a fixed number of holes h(n) of length
n over a fixed alphabet, Algorithm 3 runs in O(nh(n)) time and uses O(nh(n))
space. It computes both the suffix dag of w and the longest compatible common
prefix array between suffixes of w starting with holes and all other suffixes of
w. The algorithm possesses the invariant that after we have processed the suffix
starting at position i, we can compute the longest common compatible prefix
between any suffix starting at or after position i with any suffix starting with a
+ (anywhere in w) in constant time.

Proof. The proof is similar to that of Theorem 3. In Lines 11–27, the algorithm
fills the entries of the longest compatible common prefix array between a suffix
starting with a hole at position i and the suffixes starting before position i (the
suffixes starting after position i have been already looked at since the algorithm
processes the suffixes in decreasing order starting from position n − 1 down to
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position 0). For fixed j, 0 ≤ j < i, entry LC[i][j] is filled in as follows. The
algorithm calls LCP(i + 1, j + 1), which returns the length lexicalLCP of the
longest common prefix between the suffix starting at i+ 1 and the one starting
at j + 1. Note that LCP distinguishes + with the letters of the alphabet.

We then look for the positions of the next holes after positions i and j, de-
noted respectively by nextHoleI and nextHoleJ , using NH(w). If −1 − i �=
nextHoleI − i = nextHoleJ − j �= −1 − j, then nextHoleI and nextHoleJ
are at the same distance from i and j respectively. We then update nextHoleI
and nextHoleJ with the positions of the next holes after positions nextHoleI
and nextHoleJ , respectively, and continue until we find two distinct values for
nextHoleI− i and nextHoleJ− j with both nextHoleI and nextHoleJ distinct
from −1, if any. If nextHoleI = −1, then we set nextHoleI = ∞, and similarly
for nextHoleJ . We calculate m = min{nextHoleJ − j − 1, nextHoleI − i− 1}.

If nextHoleI = nextHoleJ = ∞, then m = ∞. Otherwise, we have a hole
in either nextHoleJ or nextHoleI. We let holePos be either nextHoleI or
nextHoleJ , the one that gives the minimum m. If the minimum is given by
nextHoleI, for instance, then holePos = i+m+1 and we let otherPos = j+m+1.
We then compare lexicalLCP with m.

Two cases can happen. If lexicalLCP < m, then LC[i][j] = 1 + lexicalLCP
(the 1 comes from position i, being a +, is thus compatible with position j). And
if lexicalLCP ≥ m, then LC[i][j] = 1 +m+ LC[holePos][otherPos]. ��

To illustrate Lines 11–27 of Algorithm 3, consider w = b++++++ababa+bn and set
i = 2, j = 1. We can align the suffixes starting at positions i and j:

i nextHoleI
2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
+ + + + + a b a b a + b b · · ·
+ + + + + + a b a b a + b · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
j nextHoleJ

We can see that lexicalLCP = lcp(i + 1, j + 1) = lcp(3, 2) = 4, nextHoleI
gets computed as 12 and nextHoleJ as 6, and m = min{nextHoleJ − j −
1, nextHoleI−i−1} = min{6−1−1, 12−2−1}= 4. Thus, holePos = j+m+1 =
1+4+1 = 6 and otherPos = i+m+1 = 2+m+1 = 7. Since lexicalLCP ≥ m,
LC[2][1] = 1+m+LC[holePos][otherPos] = 1+4+LC[6][7] = 1+4+1 = 6, as
desired.

4 Computing the Longest Common Compatible Prefix

The ability to compute the lowest common ancestor (and thus the longest com-
mon prefix) in constant time is a magnificent result [6]. We provide a similar
result by replacing the O(n) time needed for preprocessing for full words of
length n with an O(n2) time for preprocessing for partial words of length n
with h(n) holes. Such preprocessing allows us to obtain a constant time longest
common compatible prefix calculation for partial words.
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Algorithm 4. LCCP(i, j)

Require: a partial word w = w[0..n− 1] of length n, an empty array NH of length n,
and non-negative integers i and j

Ensure: the length of the longest common compatible prefix of the suffixes of w
starting at positions i and j

1: compute the suffix tree ST and suffix dag SD for w
2: if i ≥ n or j ≥ n then
3: return 0
4: NH ← NH(w)
5: fi ← NH[i]− i
6: fj ← NH[j] − j
7: l ← LCP(i, j)
8: if NH[i] = NH[j] = −1 then
9: return l
10: if NH[i] = −1 then
11: m← fj
12: else if NH[j] = −1 then
13: m← fi
14: else
15: m← min{fi, fj}
16: if m = 0 then
17: return 1 + LCCP(i+ 1, j + 1)
18: else if l < m then
19: return l
20: else
21: return m+ LCCP(i+m, j +m)

Theorem 5. There exists an algorithm that, with O(n2) preprocessing, can an-
swer the longest common compatible prefix problem between any two positions in
an input partial word with an arbitrary number of holes of length n in constant
time for a fixed alphabet.

Proof. Let w be a given partial word of length n. Referring to Algorithm 4, we
first build the suffix tree, ST , for w treating the + symbol as just another letter
in the alphabet of which w is over. We make use of one of the many algorithms
to then process ST in O(n) time to allow for constant time lcp calculation. If we
use LCP, we retrieve the longest common prefix in constant time from ST (with
the necessary preprocessing). We also build the suffix dag for w, SD. We use
the LC table computed by Algorithm 2. We also use a copy of NH(w), denoted
NH, which is produced by Algorithm 1.

Let i and j be two positions in w. We want to calculate lccp(i, j) in constant
time. Using NH, we can calculate the positions of the first hole in the suffixes
of w starting at positions i and j, denoting these respective values by fi and fj .
We compute l = lcp(i, j) in ST in constant time. If NH[i] = NH[j] = −1, then
both positions i and j start suffixes that are full. We can just return l in this case.
Otherwise, one of the suffixes has a hole in it. Let m denote the minimum of fi
and fj that is non-negative; in other words, if NH[i] = −1 or NH[j] = −1, then
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let m denote fj or fi respectively (since we are assuming both are not negative
now).

Suppose m = 0. Then the suffix starting at position i or the suffix starting
at position j starts with +, and lccp(i, j) = 1 + lccp(i + 1, j + 1). Otherwise,
suppose l < m. Then lccp(i, j) = l. Finally, suppose l ≥ m. Then lccp(i, j) =
m + lccp(i +m, j +m). But since w[i +m] or w[j + m] starts with +, we can
compute lccp(i+m, j+m) in constant time. Thus, LCCP(i, j) runs in < O(n2),
1 > time. ��

For example, if w = b++ababa+b then Algorithm 4 computes lccp(8, 10) = 0,
lccp(7, 9) = lcp(7, 9) = 0, lccp(6, 8) = 1+ lccp(6+ 1, 8+ 1) = 1, and lccp(3, 5) =
lcp(3, 5) + lccp(3 + 3, 5 + 3) = 3 + 1 = 4.

5 Conclusion

Constructing the suffix dag for partial words may find applications other than
computing the longest common compatible prefix between suffixes, which was
described in our paper. They include: finding the longest compatible repeated
substring, finding the longest common compatible substring, etc. Application
areas include computational biology, data compression, etc.
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Abstract. We study dynamic communicating automata (DCA), an ex-
tension of classical communicating finite-state machines that allows for
dynamic creation of processes. The behavior of a DCA can be described
as a set of message sequence charts (MSCs). While DCA serve as a model
of an implementation, we propose branching high-level MSCs (bHMSCs)
on the specification side. Our focus is on the implementability problem:
given a bHMSC, can one construct an equivalent DCA? As this prob-
lem is undecidable, we introduce the notion of executability, a decidable
necessary criterion for implementability. We show that executability of
bHMSCs is EXPTIME-complete. We then identify a class of bHMSCs
for which executability effectively implies implementability.

1 Introduction

Communicating automata (CA) [7] are a popular model of boolean concurrent
programs, in which a fixed finite number of finite-state processes exchange mes-
sages through unbounded FIFO channels. One particular research branch con-
siders a semantics of CA in terms of message sequence charts (MSCs). MSCs
propose a visual representation of system executions, can be composed by for-
malisms like high-level MSCs (HMSCs), and are standardized by the ITU [13].
A natural question in this context is the implementability problem, which asks
if a given HMSC can be translated into an equivalent CA [11,1,12,20,10,17,9].

Most previous formal approaches to communicating systems and MSCs re-
strict to a fixed finite set of processes. This limits their applicability, as, nowa-
days, many applications are designed for an open world, where the participating
actors are not entirely known in advance. Example domains include mobile com-
puting and ad-hoc networks. In [4], dynamic communicating automata (DCA)
were introduced as a model of programs with process creation. In a DCA, a
process may (i) send and receive messages, or (ii) spawn a new process which is
equipped with a unique process identifier (pid). Pids can be stored in registers
and be exchanged through messages. The use of registers in DCA suggests close
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connections with register automata (also known as finite-memory automata) and
formal languages over infinite alphabets (cf. [21] for an overview).

DCA are inherently hard to analyze and to synthesize. To facilitate the spec-
ification of dynamic systems, we introduce branching HMSCs (bHMSCs). Just
like DCA generalize CA, bHMSCs extend HMSCs. They are based on branching
automata [15,16], which rely on a natural principle of distributed computing: a
process can start a number of parallel subprocesses and resume its activity once
these subprocesses terminate. Each subprocess may start some subclients so that
the number of processes running in parallel is a priori not bounded. Like DCA,
bHMSCs use finitely many registers to store pids. In a sense, bHMSCs combine
branching automata and register automata.

In this paper, we study the implementability question: given a bHMSC, is
there an equivalent DCA? This question is undecidable already in the case of
a bounded number of processes [12]. Therefore, we consider the notion of ex-
ecutability, a necessary condition for implementability, which amounts to the
question if, in every scenario, communicating processes may know each other at
the time of communication. We prove executability of bHMSCs to be EXPTIME-
complete. Moreover, we identify the fragment of guarded join-free bHMSCs, for
which executability and implementability coincide. In this case we also provide
an exponential construction of an equivalent DCA.

Related Work. A first step towards MSCs over an evolving set of processes was
made in [14], where MSO model checking is shown decidable for fork-and-join
MSC grammars. Branching HMSCs are similar to these grammars, but take into
account pids as message contents and distinguish messages and process creation.
Moreover, (implementable) subclasses can be identified more easily. Nevertheless,
several of our results apply to the formalism from [14] once the latter is adjusted
to our setting. In [5], an MSC semantics was given for the π-calculus. Note that
the problems studied in [14] and [5] are very different from ours and do not
distinguish between a specification and an implementation.

The present paper supersedes [4] in several aspects. Branching HMSCs are
more expressive than the previous formalism, simpler to understand, and more
adequate, since they are based on a natural, well-established extension of finite
automata to parallelism. Moreover, we extend DCA in such a way that messages
themselves can carry (visible) process identifiers. This aspect is important and
frequently used (e.g., in the leader election protocol). Finally, we provide tight
complexity bounds for the executability problem and solve the implementability
problem for a class of specifications that cannot be handled by [4].

Other formalisms with dynamic process creation (not necessarily involving
message passing) can be found, for example, in [8,18,6,2]. However, these papers
consider neither an MSC based semantics nor implementability aspects.

Outline. In Section 2, we define MSCs. Branching HMSCs and DCA are pre-
sented in Sections 3 and 4, respectively. In Section 5, we study executability.
Section 6 identifies a fragment of bHMSCs for which executability and imple-
mentability coincide. We conclude in Section 7. Proofs can be found in [3].
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2 Dynamic Message Sequence Charts

For sets A and B, let [A ⇀ B] denote the set of partial mappings fromA toB. We
identify f ∈ [A ⇀ B] with the set {a �→ f(a) | a ∈ dom(f)}. A ranked alphabet
is a nonempty finite set A where every letter a ∈ A has an arity arity(a) ∈ N.

Let P be a set of process names (or, simply, processes). Later, P will be
instantiated either by the infinite set P = {0, 1, 2, . . .} of process identifiers (pids,
for short), or by a finite set of registers. We fix a ranked alphabet A of message
labels. The set of messages (over P ) is defined as A(P )

def
= {a(p1, . . . , pn) | a ∈ A,

n = arity(a), and p1, . . . , pn ∈ P}.
A message sequence chart (MSC) consists of a number of processes. Each

process p ∈ P is represented by a set of events Ep, totally ordered by a direct-
successor relation �proc. Every event has a type from T = {start, spawn, !, ?}. The
minimal event of a process has type start. Subsequent events can then execute
spawn (spawn), send (!), or receive (?) actions. The relation �msg associates each
send event with a unique receive event which is always on a different process.
The exchange of messages between two processes has to conform with a FIFO
policy. Similarly, �spawn relates a spawn event e ∈ Ep with the unique start event
of a different process q �= p, meaning that p has created q.

Definition 1 (MSC). A message sequence chart (MSC) over A and P is a
tuple M = (E,�, λ, μ) where E is a nonempty finite set of events, � is the edge
relation, which is partitioned into �proc " �spawn " �msg, the mapping λ : E →
T × P assigns a type and a process to each event, and μ : �msg → A(P ) labels
a message edge with a message. For each type θ ∈ T , we let Eθ

def
= {e ∈ E |

λ(e) ∈ {θ} × P}. We define the mapping pid : E → P such that pid(e) = p if
λ(e) ∈ T × {p}. Accordingly, for p ∈ P , set Ep

def
= {e ∈ E | pid(e) = p}. We

require the following:

1. (E,�∗) is a partial order with a unique minimal element init(M) ∈ Estart,
2. �proc ⊆

⋃
p∈P (Ep × Ep) and, for each p ∈ P , �proc ∩ (Ep × Ep) is the

direct-successor relation of some total order on Ep,
3. Estart = {e ∈ E | there is no e′ ∈ E such that e′ �proc e},
4. �spawn and �msg are subsets of

⋃
p,q∈P |p�=q(Ep × Eq),

5. �spawn induces a bijection between Espawn and Estart \ {init(M)},
6. �msg induces a bijection between E! and E? satisfying the following (FIFO):

for e1, e2 ∈ Ep and f1, f2 ∈ Eq with e1 �msg f1 and e2 �msg f2, we have
e1 �∗

proc e2 iff f1 �∗
proc f2.

The set of MSCs over A and P is denoted by MSC(A,P ).

MSCs enjoy a natural graphical representation. Figure 1 depicts the MSCsM(n)
andM0 over A = {a, b, c} and P, where arity(a) = 1 and arity(b) = arity(c) = 0.
The events are the endpoints of arrows. Each arrow is either an element of �spawn

(those with two arrow heads) or an element of �msg (those with one arrow head
and a label from A(P)). The relation �proc orders (top-down) two consecutive
points located on the same process line. Event init(M), which is located on the
process with pid 0, is depicted as a small circle.
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Fig. 1. Two MSCs and a partial MSC

We do not distinguish MSCs that differ only in their event names. We say that
two MSCs over A and P are equivalent if one can be obtained from the other by
a renaming of pids. The equivalence class of M is denoted [M ]. Moreover, for a
set L of MSCs, we let [L] =

⋃
M∈L[M ]. We say that L is closed if L = [L].

Depending on the application, a spawn in an MSC may have different inter-
pretations, such as create subprocess, contact server, etc. In some cases, one may
therefore wish to communicate a message to the new process. This can be sim-
ulated in our framework by a message edge that immediately follows a spawn.

For a message m, we will actually use
p q

m as an abbreviation for

p q

m .

3 Branching High-Level Message Sequence Charts

In this section, we propose a generalization of HMSCs that is suited to our
dynamic setting. It is inspired by branching automata over series-parallel pom-
sets [15,16]. An MSC can be seen as one single execution of a distributed system.
To generate infinite collections of MSCs, specification formalisms usually provide
a concatenation operator. It will allow us to append to an MSC a partial MSC,
which does not necessarily have start events on each process.

Definition 2 (partial MSC). Let M = (E,�, λ, μ) ∈ MSC(A,P ) and let
E′ ⊆ E be a nonempty upward-closed set containing only complete messages
and spawning pairs: for all (e, f) ∈ �∗ ∪ �−1

msg ∪ �−1
spawn, we have that e ∈ E′

implies f ∈ E′. Then, the restriction of M to E′ is called a partial MSC over
A and P . The set of partial MSCs is denoted by pMSC(A,P ).

In Figure 1, M ′
0 is a partial MSC that is not an MSC. Notations such as pid(e)

carry over from MSCs to partial MSCs as expected. Let M = (E,�, λ, μ) ∈
pMSC(A,P ) be a partial MSC. By MsgPar (M), we denote the set of p ∈ P that
occur as parameters in messages, i.e., those p, for which there is a(p1, . . . , pn) ∈
μ(�msg) with p ∈ {p1, . . . , pn}. For every p ∈ P with Ep �= ∅, there are a unique
minimal and a unique maximal event in the total order (Ep,�∗ ∩ (Ep × Ep)),
which we denote by minp(M) and maxp(M), respectively.
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We let Pids(M)
def
= {p ∈ P | Ep �= ∅}. By Free(M)

def
= {p ∈ Pids(M) |

Estart ∩ Ep = ∅}, we denote the set of free processes of M . Intuitively, free
processes of a partial MSCM are processes that are not initiated inM . Moreover,
Bnd(M)

def
= Pids(M) \ Free(M) denotes the set of bound processes. In Figure 1,

we have Bnd(M ′
0) = {3} and Free(M ′

0) = {0, 1, 2}.
Let M = (E,�, λ, μ) and M ′ = (E′,�′, λ′, μ′) be partial MSCs over A and

P . The concatenation M ◦M ′ glues identical processes together. It is defined if
(i) Bnd(M ′) ∩ Pids(M) = ∅, (ii) Free(M ′) �= ∅, and (iii) Free(M) = ∅ implies

Free(M ′) ⊆ Pids(M). In that case, M ◦M ′ def
= (Ê, �̂, λ̂, μ̂) where Ê = E " E′,

�̂proc = �proc ∪ �′
proc ∪ {(maxp(M),minp(M

′)) | p ∈ Pids(M) ∩ Pids(M ′)},
�̂msg = �msg ∪�′

msg , �̂spawn = �spawn ∪�′
spawn , λ̂ = λ ∪ λ′, and μ̂ = μ ∪ μ′.

Next we define a formalism to describe sets of MSCs. This is analogous to
branching automata, but the transitions are labelled with partial MSCs.

Definition 3 (bHMSC). A branching high-level MSC (bHMSC) over the set
of message labels A is a tuple H = (L,X,Linit, Lacc, x0, T ) where L is the finite
set of locations, Linit ⊆ L is the set of initial locations, Lacc ⊆ L is the set of
accepting locations, X is the finite set of registers with initial register x0 ∈ X,
and T is the finite set of transitions. There are two types of transitions:

– A sequential transition is a triple (�,M, �′) ∈ L× pMSC(A,X)× L, usually
written �

M−→ �′, such that Free(M) �= ∅ and MsgPar (M)∩Bnd(M) = ∅ (the
latter guarantees an unambigous interpretation of message parameters).

– A fork-and-join transition is of the form �→ {(�1, X1, �
′
1), . . . , (�n, Xn, �

′
n)} →

�′, where n ≥ 1 is the degree of the transition, �, �1, . . . , �n, �
′
1, . . . , �

′
n, �

′ are
locations from L, and X1, . . . , Xn are nonempty and pairwise disjoint subsets

of X. It may also be depicted as �

�1

...

�n

X1

Xn

�′

�′
n

...

�′1

Xn

X1

Fork-and-join transitions are similar to the split operator in [14]. At location �, n
subcomputations are started in �1, . . . , �n, respectively, keeping only the register
contents (pids) from X1, . . . , Xn. The other register contents are inaccessible
until each subcomputaion i terminates at �′i (the registers as such may be used,
but not their contents at �). Then, the main computation resumes in �′, and
registers in Xi adopt the final assignment from the i-th subcomputation.

We associate MSCs with a bHMSC through the notion of runs, which we will
define next after some preparation. A partial mapping ν : X ⇀ P is a register
assignment if it is injective. The set of register assignments is denoted by R(X).
For ν ∈ R(X) and Y ⊆ X , we let ν�Y

def
= {x �→ ν(x) | x ∈ dom(ν) ∩ Y }. Given

ν, ν′ ∈ R(X) and an M ∈ pMSC(A,X) that occurs in H, we write ν
M−→ ν′ (to

be read as: M can be instantiated and performed at ν and yields ν′) if

– Free(M) ∪MsgPar (M) ⊆ dom(ν) (i.e., free processes can be instantiated),
– dom(ν′) = dom(ν) ∪ Bnd(M), and ν and ν′ coincide on X \ Bnd(M) (i.e.,

registers remain unchanged unless they are overwritten for a new process),
– ν′(Bnd(M)) ∩ ν(X) = ∅ (i.e., bound processes obtain fresh pids).
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A run G = (V,R, loc, reg, ρ) of the bHMSC H consists of a finite directed acyclic
graph (V,R), R ⊆ V × V , with a unique source node in(G), a unique sink node
out(G), and labeling functions loc : V → L, reg : V → R(X), and ρ : R →
2X ∪ pMSC(A,P). The set of runs of H is defined inductively as follows:

– Let ν, ν′ ∈ R(X) be register assignments and let �
M−→ �′ be a sequential

transition such that ν
M−→ ν′. Set M ′ = ν′(M), which we obtain from M by

uniformly replacing x with ν′(x). Then, the graph G = �

ν

�′
ν′

M ′

is a run of H. We set Pids(G)
def
= ν(X)∪Pids(M ′) and Bnd(G)

def
= Bnd(M ′).

– Consider runs G1 =
�1 �2

ν1 ν2
and G2 =

�2 �3

ν2 ν3
of H.

If Pids(G1)∩Bnd(G2) = ∅, then the graphG =
�1 �2

ν1 ν2

�3

ν3

is a run of H. We set Pids(G)
def
= Pids(G1) ∪ Pids(G2) and Bnd(G)

def
=

Bnd(G1) ∪ Bnd(G2).

– For n ≥ 1, let G1 =
�1 �′1

ν1 ν′1 , . . . , Gn =
�n �′

n

νn ν′
n

be runs, �

�1

...

�n

X1

Xn

�′

�′
n

...

�′1

Xn

X1

be a fork-and-join transition, and

ν, ν′ ∈ R(X) be register assignments. Then, the graph

G =

G1

�1 �′1

ν1 ν′1

Gn

�n �′
n

νn ν′
n

...� �′
ν ν′

X1

Xn

X1

Xn

is a run of H if Bnd(Gi) ∩ (ν(X) ∪
⋃

j �=i Pids(Gj)) = ∅ and νi = ν�Xi
for

all i ∈ {1, . . . , n}, and ν′ = ν�X0 ∪
⋃

i∈{1,...,n}(ν
′
i)�Xi where X0 = X \ (X1 ∪

. . . ∪ Xn). We set Pids(G)
def
= ν(X) ∪

⋃
i∈{1,...,n} Pids(Gi) and Bnd(G)

def
=⋃

i∈{1,...,n} Bnd(Gi).

By choosing any enumeration M1, . . . ,Mn ∈ pMSC(A,P) of the partial MSCs
occurring in G that respects the partial order induced by the edge relation R,
we define M(G)

def
= M1 ◦ . . . ◦ Mn ∈ pMSC(A,P). Since, in a fork-and-join,

subcomputations employ disjoint sets of pids,M(G) is well defined and does not
depend on the chosen enumeration. We call run G accepting if loc(in(G)) ∈ Linit,
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loc(out(G)) ∈ Lacc, and reg(in(G)) = {x0 �→ p} for some p ∈ P. The language of

H is L(H)
def
= {

p
◦M(G) | G is an accepting run of H with reg(in(G)) = {x0 �→

p}} ⊆ MSC(A,P). Note that L(H) is always closed.

Example 4. The bHMSC below models a peer-to-peer protocol. It has only se-
quential transitions and is defined over A = {r, a, c} (request, acknowledgment,
communication) with arity(r) = arity(a) = 1 and arity(c) = 0. The initial reg-
ister is x0. A request is forwarded to new processes along with the pid p of the
initial process. At some point, a process acknowledges the request, sending its
own pid q to the initial process. Processes p and q may then communicate and
exchange messages. A generated MSC is depicted beside the bHMSC.

�0 �1 �2

�3 �4⊥

x0 x1
r(x0)

x1 x2
r(x0)

x2 x1
r(x0)

x0 x1
a(x1)

x0 x2
a(x2)

0

1
2

3

r(0)
r(0)

r(0)
a(3)

c
c

x0 x1
c
c

x0 x2
c
cx0 x1

c
c

x0 x2
c
c

Example 5. The following bHMSC has one fork-and-join transition whose target
state ⊥ is the only final state. Due to the fork, registers can be used simultane-
ously at different places so that the generated MSCs have a tree-like structure.

�0 �1 �2

⊥

{x0} {x1}

{x0} {x1}

x0 x1 x1 x0

x0 x1 x1 x0

0
1

2
3

Examples 4 and 5 represent important subclasses of bHMSCs, sequential and
join-free bHMSCs, respectively, which we define in the following.

A bHMSC is called sequential if it contains only sequential transitions. Thus,
the bHMSC from Example 4 is sequential.

Let H = (L,X,Linit, Lacc, x0, T ) be a bHMSC. By Lseq, Lfork, and L⊥ we
denote the sets of locations with outgoing sequential transitions, with outgoing
fork-and-join transitions, and without outgoing transitions, respectively.

We say that bHMSC H is join-free if there is a distinguished location ⊥ ∈ L
such that Lacc = L⊥ = {⊥} and all fork-and-join transitions are of the form
� → {(�1, X1,⊥), . . . , (�n, Xn,⊥)} → ⊥. Thus, the bHMSCs from Examples 4
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and 5 are join-free. The run of a join-free bHMSC may be viewed as a tree, as
it can always be completed towards a run with a single target node. We will,

therefore, consider that a fork-and-join transition is of the form �

�1

...

�n

X1

Xn

and

rather call it a fork transition. Note that any bHMSC generating the MSCsM(n)
from Figure 1 is inherently not join-free. Moreover:

Lemma 6. Join-free bHMSCs are more expressive than sequential bHMSCs.

The first natural question to ask for a bHMSC H is whether L(H) �= ∅, i.e., the
nonemptiness problem.

Theorem 7. Nonemptiness of bHMSCs is EXPTIME-complete. It is already
EXPTIME-hard for join-free bHMSCs. Nonemptiness of sequential bHMSCs is
NP-complete.

The proofs of the upper bounds use a notion of symbolic runs. EXPTIME-
hardness is shown by a reduction from the intersection-nonemptiness problem
for tree automata; for NP-hardness, we use a reduction from 3-CNF-SAT.

4 Dynamic Communicating Automata

In this section, we introduce an extension of the model of dynamic commu-
nicating automata as presented in [4]. A configuration of a DCA consists of
several processes that can exchange messages through FIFO channels. A process
can spawn new processes so that there is a priori no bound on the number of
processes that participate in a system execution. In contrast to [4], we allow a
message to contain process identities and receptions to be non-selective (i.e., a
receiver may receive a message without knowing the sender).

Definition 8 (DCA). A dynamic communicating automaton (DCA) over the
ranked message alphabet A is a tuple D = (S,X, Sinit, Sacc, Δ) where S is a
finite set of states with initial states Sinit ⊆ S and accepting states Sacc ⊆ S,
X is a finite set of registers, and Δ is the set of transitions. A transition is
of the form (s, α, s′) where s, s′ ∈ S, and α is an action, possibly a send action
!x(a(x1, . . . , xn)), a receive action ?y(a(y1, . . . , yn)), or a spawn action x :=
spawn(s, z), where x, z ∈ X, y ∈ X ∪ {∗}, s ∈ S, a(x1, . . . , xn) ∈ A(X " {self}),
and a(y1, . . . , yn) ∈ A(X " {−}) such that, for all i, j ∈ {1, . . . , n}, yi = yj ∈ X
implies i = j.

When a process executes !x(a(x)) with x = (x1, . . . , xn), it sends a message to
the process whose pid is stored in register x. The message consists of label a
as well as n = arity(a) many pids stored in registers x (or the sender’s pid
if xi = self). Executing ?y(a(y)), a process receives a message from the process
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whose pid is stored in y (selective receive) or, in case y = ∗, from any process
(non-selective receive). The message must be of the form a(p1, . . . , pn). In the
resulting configuration, the receiving process updates its local registers y1, . . . , yn
to p1, . . . , pn, respectively, unless yi = −. Finally, a process executing x :=
spawn(s, z) spawns a new process, whose fresh pid is henceforth stored in register
x. The new process starts in state s. Its registers are a copy of the registers of the
spawning process, except for z, which is set to the pid of the spawning process.

A run of DCA D on an MSC M = (E,�, λ, μ) ∈ MSC(A,P) is a pair (σ, τ),
where σ : E → S and τ : E → [X ⇀ P], respecting the following conditions:

– σinit(M) ∈ Sinit,

– τinit(M) is undefined everywhere,

– for all e1, e2, f ∈ E with e1 �proc e2 �spawn f , the relation Δ contains a local

transition σe1
x := spawn(s,y)−−−−−−−−−→ σe2 such that σf = s, τe2 = τe1 [x �→ pid(f)],

and τf = τe1 [y �→ pid(e1)], and

– for all e1, e2, f1, f2 ∈ E with e1 �proc e2 �msg f2 and f1 �proc f2, the relation

Δ contains transitions σe1
!x(a(x1,...,xn))−−−−−−−−−→ σe2 and σf1

?y(a(y1,...,yn))−−−−−−−−−−→ σf2 such
that {x, x1, . . . , xn} ⊆ dom(τe1) ∪ {self}, τe2 = τe1 , τe1 (x) = pid(f1),

(
y =

∗ or τf1(y) = pid(e1)
)
, and, letting pi =

{
τe1(xi) if xi ∈ X
pid(e1) if xi = self ,

we have

μ(e2, f2) = a(p1, . . . , pn) and τf2(z) =

{
pi if z = yi

τf1(z) if z �∈ {y1, . . . , yn} .

Here, σe and τe denote σ(e) and τ(e), respectively. Moreover, τe[x �→ p] is the
partial mapping that maps x to p and coincides with τe on all other arguments.

The run (σ, τ) is accepting if σe ∈ Sacc for all e ∈ {maxp(M) | p ∈ Pids(M)}.
By L(D), we denote the set of MSCsM overA and P such that there is an accept-
ing run of D onM . Note that L(D) is closed, i.e., L(D) = [L(D)]. Nonemptiness
is undecidable for CA, and consequently also for DCA.

There are languages L that are not the language of a DCA, but for which
there is a DCA implementing them up to some refinement. The refinement
allows a DCA to attach more information to a message than the specifica-
tion provides, for example additional pids. This is formalized as follows. Let
A,B be ranked alphabets and let h : B → A. We say that the pair (B, h)
is a refinement of A if, for all b ∈ B, arity(h(b)) ≤ arity(b). We can ex-
tend h to a mapping h : MSC(B,P) → MSC(A,P) as follows: for an MSC
M = (E,�, λ, μ) ∈ MSC(B,P), we let h(M) = (E,�, λ, μ′) ∈ MSC(A,P) where
μ′(e, f) = h(b)(p1, . . . , parity(h(b))) whenever μ(e, f) = b(p1, . . . , pn). The map-
ping is then further extended to sets of MSCs as expected.

Definition 9 (realizable, implementable). We call a set L ⊆ MSC(A,P)
realizable if [L] = L(D) for some DCA D. We say that L is implementable if
there are a refinement (B, h) of A and a DCA D over B such that [L] = h(L(D)).
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Fig. 2. Realizability vs. Implementability

For both realizability and implementability, it is necessary that the sender p of
a message knows the receiver q at the time of sending, i.e., q should be stored in
some register of p. Note that this aspect does not arise in simple CA.

Example 10. The MSC language {M1} (see Figure 2) is not implementable, as
process 1 does not know 2 when sending message b. However, {M2} is imple-
mentable (and even realizable), as 2 may know 1: when spawning 2, process 0
can communicate the pid 1 to 2. The language {M3} is not realizable: as pro-
cess 0 does neither know 2 nor 3 when it receives the messages, it has to use a
non-selective receive. But then, the DCA also accepts M4. On the other hand,
{M3,M4} is realizable. However, {M3} and {M4} are implementable by refining
the messages from 2 and 3.

5 Executability

An accepting run of a bHMSC generates an MSC. However, this MSC need not
be implementable always, as Example 10 shows. Unfortunately, implementability
(and also realizability) is undecidable for bHMSCs, which follows from undecid-
ability for HMSCs over a fixed finite set of processes [12,1].

Theorem 11 (cf. [12,1]). Implementability and realizability of bHMSCs are
undecidable. This already holds for sequential bHMSCs.

We now focus on implementability and introduce an effective necessary criterion,
called executability: every sender in a generated MSC should be “aware of” the
receiver and the processes whose pids are used as message parameters.

Given an MSC M , a process q and an event e of M , we write q �M e if
there is a path from the minimal event minq(M) of q to e in M . This path
might involve the reversal of the spawn edge that started q. That is, q �M e
if (minq(M), e) ∈ (� ∪ �−1

spawn)
∗. Intuitively, q �M e indicates that the process

executing e is aware of process q. Next, we formally define executability of MSCs.

Definition 12 (executability). LetM ∈ MSC(A,P). A message (e, f) ∈ �msg

of M with message contents a(p1, . . . , pn) is executable if q �M e, for every



Dynamic Communicating Automata and Branching High-Level MSCs 187

q ∈ {pid(f), p1, . . . , pn}. Moreover, M is executable if each of its messages
is executable. Finally, a bHMSC H is executable if each MSC from L(H) is
executable.

For example, in Figure 2,M2,M3,M4 are executable, while M1 is not. LetM be
an MSC and H be a bHMSC. One can verify that 1) M is executable iff {M} is
implementable, and 2) H is executable if it is implementable (while the converse
might fail). Unlike implementability, executability is decidable:

Theorem 13. Executability of bHMSCs is EXPTIME-complete. Moreover, the
lower bound already holds for bHMSCs that are join-free.

The lower bound is deduced from the lower bound of the nonemptiness problem
(Theorem 7). For the upper bound, we abstract the knowledge of processes by
a finite number of awareness relations, so as to work over symbolic runs.

6 Implementing Guarded Join-Free bHMSCs

We identify a subclass of bHMSCs for which executability and implementabiliy
coincide. Guarded bHMSCs are based on the notion of a leader process, which
determines the next transition to be taken in a bHMSC. They are an adaptation
of locality from [10]. For M = (E,�, λ, μ) ∈ pMSC(A,X), Y ⊆ X , and x ∈ X ,
we write Y 'M x if x ∈ Pids(M)∩Y and, for all y ∈ Pids(M)∩Y , maxy(M) �∗

maxx(M). Intuitively, all processes in Pids(M) ∩ Y terminate before x.

Definition 14 (guarded). A join-free bHMSC H = (L,X,Linit, Lacc, x0, T ) is
called guarded if L = Lseq " Lfork " {⊥}, Linit ⊆ Lseq, and there is a mapping
leader : Lseq → X such that

1. for all partial MSCs M = (E,�, λ, μ) ∈ pMSC(A,X) that occur in H,
(E,�∗) has a unique minimal element e; we let first(M)

def
= pid(e),

2. for all sequential transitions �
M−→ �′, it holds leader (�) = first(M), and, if

�′ ∈ Lseq, also X 'M leader (�′), and

3. for all transition patterns �
M−→�′

�1
...

�n

X1

Xn

and all i ∈ {1, . . . , n}, we have

�i ∈ Lseq and Xi 'M leader (�i).

Example 15. The bHMSCs from Examples 4 and 5 are both guarded.

Theorem 16. A guarded join-free bHMSC is implementable if and only if it
is executable. Moreover, if it is implementable, an equivalent DCA can be con-
structed in exponential time.



188 B. Bollig et al.

Towards an implementation of a given guarded join-free bHMSC H, we first
enrich locations of H with awareness relations (in the same spirit as in the
proof of Theorem 13). Then, we rely on techniques employed in the context
of a bounded number of processes [11,10], to build a DCA (together with a
refinement) that recognizes L(H).

Note that guardedness does not yield better complexities:

Theorem 17. Nonemptiness and executability of guarded join-free bHMSCs are
both EXPTIME-complete.

7 Future Work

In future work, we aim at finding classes of bHMSCs for which executability
and implementability coincide and that are not necessarily join-free or guarded
(e.g., by transferring concepts like fork-acyclicity from branching automata to
bHMSCs). Moreover, connections with the π-calculus [19] should be explored.

Acknowledgments. We thank the anonymous reviewers as well as Martin
Schuster and Thomas Zeume for their helpful comments.
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Abstract. Visibly pushdown automata (VPAs), introduced by Alur and
Madhusudan in 2004, are a useful formalism in various contexts, such as
expressing and checking properties on control flows of programs, or on
XML documents. In this context, we propose efficient antichain-based
algorithms to check universality and inclusion of VPAs. Whereas the
computation complexity is known to be ExpTime-complete for both
problems, we show how antichains can avoid explicit determinization
and save computations. The approach is extended to hedge automata.
We implement the proposed algorithms in a prototype tool and conduct
experiments on randomly generated VPAs. We show that, on numerous
instances, our algorithms outperform other VPA tools.

1 Introduction

The model-checking framework provided many successful tools for decades, star-
ting from the seminal work of Büchi. A lot of them rely on the links between
logics used to express properties on words, and automata allowing to check them.
Some of these results have been adapted to trees, and more recently to words
with a nesting structure.

Visibly pushdown automata (VPAs) have been introduced to process such
words with nesting [2]. VPAs are similar to pushdown automata, but operate
on a partitioned alphabet: a given letter is associated with one action (push
or pop), and thus cannot push when firing a transition, and pop when firing
another. Such automata were introduced to express and check properties on
control flows of programs, where procedure calls push on the stack, and returns
pop [15]. They are also suitable to express properties on XML documents [14].
These documents are usually represented as trees, and serialized as a sequence
of opening and closing tags, also called the linearization of this document, or its
corresponding XML stream.

The model-checking framework with VPAs is confronted to the computational
hardness of testing universality and inclusion. These two problems are ExpTime-
complete on non-deterministic VPAs, due to the expensive determinization step
[2]. Non-determinism naturally arises when automata are obtained from logic
formulas, as for instance XPath expressions with descendant axis [11].
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In this paper we propose antichain-based algorithms for deciding universality
and inclusion of VPAs. We use antichains to get smaller objects to manipulate
and to avoid an explicit determinization step. Recently, antichains have been
successfully applied to decision problems related to non-deterministic automata:
universality and inclusion for finite word automata [7], and for non-deterministic
bottom-up tree automata [4]. This latter work also provides a way to check
universality and inclusion over regular unranked tree languages, by encoding
unranked trees into binary trees. We plan to investigate this procedure in the
near future. Some simulation relations are also known on unranked trees [18,1,8]
but it is unclear whether they can help for our problems.

Nguyen [16] proposed an algorithm for testing the universality of VPAs. This
algorithm simultaneously performs an on-the-fly determinization and reachabil-
ity checking by P-automaton. The notion of P-automaton proposed in [10] pro-
vides a symbolic technique to compute the sets of all reachable configurations
of a VPA. This algorithm has been later improved by Nguyen and Ohsaki [17]
by introducing antichains over transitions of P-automata, in a way to generate
the smallest amount of reachable configurations. Our algorithms for universality
are alternative to this one since we do not use the regularity property of the
set of reachable configurations. When observed on trees, their approach follows
forward steps on the linearization of trees, while our approach is bottom-up on
the structure of trees.

In [12], the authors provide solutions for checking universality and inclusion
of VPAs over finite and infinite words. They avoid the determinization and com-
plementation steps, and use instead Ramsey-based universality- and inclusion-
checking algorithms. Their algorithms do not seem to use antichains.

The paper is structured as follows. In Section 2 we define unranked trees
and visibly pushdown automata seen as trees acceptors. In Section 3, we detail
our antichain-based algorithm for checking universality of VPAs, together with
several optimizations. Section 4 contains extensions of this algorithm to general
VPAs and hedge automata. It also proposes an antichain-based algorithm for
testing the inclusion of VPAs. Section 5 is devoted to the experiments and com-
parisons with other prototype tools. The long version of this paper is available
on the third author’s website.

2 Preliminaries

2.1 Unranked Trees

We here recall the standard definition of unranked trees, as provided for instance
in [6]. Let Σ be a finite alphabet, and Σ∗ (resp. Σ+) be the set of all words (resp.
non empty words) over Σ. The empty word is denoted by ε.

An unranked tree t over Σ is a partial function t : (N \ {0})∗ → Σ such that
the domain is non-empty, finite and prefix-closed. The domain is denoted by
nodes(t) and contains the nodes of the tree t, with the root being the empty
word ε. The function t labels each node p with a letter t(p) of Σ. The set of all
unranked trees over Σ is denoted by TΣ. A hedge h over Σ is a finite sequence
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(empty or not) of unranked trees over Σ. The empty hedge is denoted by ε, and
the set of all hedges over Σ is denoted by HΣ .

Given a tree t, the subtree of t rooted at node p of t is the tree denoted by
t|p, which domain is the set of nodes p′ such that pp′ ∈ nodes(t) and verifying
t|p(p′) = t(pp′). For a given node p ∈ nodes(t), we call children of p the nodes
pi ∈ nodes(t) for i ∈ N \ {0}, and use the usual definitions for parents, ancestors
and descendants. The height of a tree, and more generally of a hedge, is the
length of its longest branch (with the length being the number of nodes).

Trees can be described by well-balanced words which correspond to a depth-
first traversal of the tree. An opening tag is used to notice the arrival on a node
and a closing tag to notice the departure from a node. For each a ∈ Σ, let a itself
represent the opening tag and a the related closing tag. The linearization [t] of
t ∈ TΣ is the well-balanced word over Σ ∪Σ, with Σ = {a | a ∈ Σ}, inductively
defined by: [t] = a [t|1] · · · [t|n] a, with a = t(ε) and the root has n children.

2.2 Visibly Pushdown Automata

Visibly pushdown automata (VPAs, [2,3]) are pushdown automata operating on
a partitioned alphabet where only call symbols can push, return symbols can
pop, and internal symbols can do transitions without considering the stack. For
clarity we only consider languages of unranked trees, so we use VPAs as unranked
tree acceptors, operating on their linearization [13].1

Definition 1. A visibly pushdown automaton A over a finite alphabet Σ is a
tuple A = (Q,Σ, Γ,Qi, Qf , Δ) where Q is a finite set of states containing initial
states Qi ⊆ Q and final states Qf ⊆ Q, a finite set Γ of stack symbols, and a

finite set Δ of rules. Each rule in Δ is of the form q
a:γ−−→ q′ with a ∈ Σ ∪ Σ,

q, q′ ∈ Q, and γ ∈ Γ .

A configuration of a VPA A is a pair (q, σ) where q ∈ Q is a state and σ ∈ Γ ∗ a
stack content. A configuration is initial (resp. final) if q ∈ Qi (resp. q ∈ Qf ) and

σ = ε. For a ∈ Σ ∪Σ, we write (q, σ)
a−→ (q′, σ′) if there is a transition q

a:γ−−→ q′

in Δ verifying σ′ = γ · σ if a ∈ Σ, and σ = γ · σ′ if a ∈ Σ.
A run of a VPA A on a word a1 · · · an ∈ (Σ ∪Σ)∗ is a sequence of configura-

tions (qi, σi), 0 ≤ i ≤ n, such that (qi−1, σi−1)
ai−→ (qi, σi) for all i. It is denoted

by (q0, σ0)
a1···an−−−−→ (qn, σn). It is accepting if a1 · · · an is the linearization of a

tree t ∈ TΣ , (q0, σ0) is initial, and (qn, σn) is final. A tree t ∈ TΣ is accepted by
A if there is an accepting run on its linearization [t]. The set of accepted trees
is called the language of A and is written L(A).

A VPAA is said universal if it accepts all trees, i.e. L(A) = TΣ .
2 Our objective

in the next section, is to propose efficient algorithms for testing universality of

1 These VPAs used as tree acceptors do not use internal symbols. The algorithms we
design for them can easily be adapted to usual VPAs, as explained in Section 4.2.

2 This notion of universality is different from the one proposed for usual VPAs, where
a VPA is universal if it accepts all words of (Σ ∪Σ)∗.
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VPAs. A standard method to check universality of a VPA is to determinize it,
complement it, and check for emptiness. As determinization is in exponential
time for VPAs, the universality problem is ExpTime-complete. Our algorithms
aim at avoiding this exponential blow-up on numerous instances.

3 Checking Universality

In our approach for checking universality of VPAs, the main idea is to find as
fast as possible a tree which linearization is rejected by the automaton (if it
exists), without computing an explicit determinization of the VPA. Antichains
will limit the computations. Proofs are given in the long version of the paper.

3.1 Accessibility Relation

Let A = (Q,Σ, Γ,Qi, Qf , Δ) be a VPA, and t be a tree over Σ. We define the
accessibility relation Acc(t) ⊆ Q×Q as the set

Acc(t) = {(q, q′) ∈ Q ×Q | (q, ε) [t]−→ (q′, ε)}.

Note that in this paper, accessibility means accessibility through the linearization
of a tree, as opposed to the accessibility between configurations of the VPA. With
this notation, a tree t is accepted by A iff Acc(t) ∩Qi×Qf �= ∅.

Let us show how the accessibility relation Acc(t) can be computed for all
t ∈ TΣ. In this aim, we need to introduce the Post operator. For a set R of
relations r ⊆ Q×Q, let R∗ denote the set of all relations obtained by composing
elements of R: R∗ = {r1 ◦ r2 ◦ · · · ◦ rn | n ≥ 0 and ri ∈ R for all 1 ≤ i ≤ n}. In
particular R∗ contains the identity relation idQ over Q, obtained when n = 0.

Definition 2. Given r ∈ R and a ∈ Σ, let

Posta(r) = {(p, p′) ∈ Q ×Q | ∃(q, q ′) ∈ r , p
a:γ−−→ q ∈ Δ, q ′

a:γ−−→ p′ ∈ Δ}.

For R a set of relations over Q, let

Post(R) = {Posta(r) | a ∈ Σ , r ∈ R∗} ∪ R

and Post∗(R) = ∪i≥0Post
i(R) such that Post0 (R) = R, and for all i > 0,

Post i(R) = Post(Post i−1 (R)).

We illustrate the definition of Post in Figure 1. The following lemmas relate
these operators with the accessibility relation.

Lemma 3. Let t ∈ TΣ be such that its root is a node with n children that is
labeled by a. Let ri = Acc(t|i) for 1 ≤ i ≤ n. Then Acc(t) = Posta(r1 ◦ · · · ◦ rn).
Lemma 4. Post i(∅) = {Acc(t) | t is a tree with height ≤ i}.
The next proposition is an immediate consequence of Lemmas 3 and 4.

Proposition 5. Let A = (Q,Σ, Γ,Qi, Qf , Δ) be a VPA. Then A is universal
iff ∀r ∈ Post∗(∅), r ∩Qi×Qf �= ∅.
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a

r1q r2 r3 · · · rn q′

p p′ p
a:γ−−→ q ∈ Δ,

q′
a:γ−−→ p′ ∈ Δ,

(q, q′) ∈ r1 ◦ r2 ◦ · · · ◦ rn

Fig. 1. (p, p′) ∈ Posta (r1 ◦ · · · ◦ rn)

Function Universality(A)

R ← ∅;
R∗ ← {idQ};
repeat

Rnew ← {Posta (r) | a ∈ Σ , r ∈ R∗} \R;
if ∃r ∈ Rnew : r ∩Qi×Qf = ∅ then

return False ; /* Not universal */

end
R ← R ∪Rnew ;
R ′ ← Rnew \R∗ ;
if R ′ 
= ∅ then

R∗ ← CompositionClosure(R∗,R ′);
end

until R ′ = ∅ ;
return True ; /* Universal */

3.2 Algorithm

We are now able to propose an algorithm to check the universality of VPAs. With
Function 1, the set Post∗(∅) is computed incrementally and the universality test
is performed thanks to Proposition 5. At step i, the variable R is used for
Post i(∅), and the variable R∗ contains its closure by composition. We compute
R∗ with Function CompositionClosure, and then potential new relations with
{Posta(r) | a ∈ Σ , r ∈ R∗}. The algorithm always stops, either because a
relation proving non-universality is found, or no new relation can be produced.

Let us detail Function CompositionClosure(R∗,R′) which computes the set
(R∗∪R′)∗. In Function 2, we show how to compute this set without recomputing
R∗ from R. Initially, Relations is equal to R∗ and will be equal to (R∗∪R′)∗ at
the end of the computation. ToProcess contains the relations that can produce
new relations by composition with an element of Relations.

Proposition 6. Given R∗ and R′, Function 2 computes (R∗ ∪ R′)∗.

3.3 Antichain-Based Optimization

In this section we explain how to use the concept of antichain for saving compu-
tations. We show that it is sufficient to only compute the ⊆-minimal elements
of Post∗(∅) for checking universality.
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Function CompositionClosure(R∗,R′)
Relations ← R∗;
ToProcess ← R ′;
while ToProcess 
= ∅ do

rel ← Pop(ToProcess);
R∗ ← R∗ ∪ {rel};
NewRelations ← ∅;
for r ∈ Relations do

NewRelations ← NewRelations ∪ {r ◦ rel , rel ◦ r};
end
ToProcess ← ToProcess ∪ (NewRelations \ Relations);
Relations ← Relations ∪NewRelations ;

end
return Relations

Consider the set 2Q×Q of all binary relations over Q. This set is equipped
with the ⊆ operator such that r ⊆ r′ iff (q, q′) ∈ r ⇒ (q, q′) ∈ r′. An antichain
R of relations over Q is a set of pairwise incomparable relations with respect to
⊆. Given a set R of relations, we denote by .R/ the ⊆-minimal elements of R.

Definition 7. Let A = (Q,Σ, Γ,Qi, Qf , Δ) be a VPA, and R be a set of rela-
tions over Q. Let Post∗min(R) = ∪i≥0Post

i
min(R) such that Post0min(R) = .R/,

and for all i > 0, Post imin(R) =
⌊
Post(Post i−1

min (R))
⌋
.

Lemma 8. Given R a set of relations over Q, for all r ∈ Post∗(R), there exists
r′ ∈ Post∗min(R) such that r′ ⊆ r.

We have the next counterpart of Proposition 5.

Proposition 9. Let A = (Q,Σ, Γ,Qi, Qf , Δ) be a VPA. Then A is universal
iff ∀r ∈ Post∗min(∅), r ∩Qi×Qf �= ∅.

Function 3 checks whether a VPA is universal by computing incrementally
Post∗min(∅). It is an adaptation of Function 1. Notice that we can compute
.Post(R)/ as .{Posta(r) | a ∈ Σ , r ∈ .R∗/} ∪ R/ (we limit the computation to
r ∈ .R∗/). The set .R∗/ is denoted by R∗

min in the algorithm.

3.4 Other Optimizations

Functions 2 and 3 can be optimized in several directions. The optimized algo-
rithm is given in the long version of the paper.

Witness of Non Universality - As soon as a new relation r is yielded (via the
Post operator or the composition of two relations), the emptiness of its intersec-
tion with Qi×Qf is immediately tested, to check whether it is a witness of non
universality.

In Function 2, the relation rel is composed by all relations r ∈ R. We consider
several implementations of ToProcess, with the aim that Pop (ToProcess) returns
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Function UniversalityATC(A)

R ← ∅;
R∗

min ← {idQ};
repeat

Rnew ← �{Posta (r) | a ∈ Σ , r ∈ R∗
min}� \R;

if ∃r ∈ Rnew : r ∩Qi×Qf = ∅ then
return False ; /* Not universal */

end
R ← �R ∪Rnew�;
R ′ ← Rnew \R∗

min;
if R ′ 
= ∅ then

R∗
min ← �CompositionClosure(R∗

min,R
′)�;

end

until R ′ = ∅ ;
return True ; /* Universal */

a relation rel that is the most promising to yield a witness of non universality of
small size. We try to take the sizes of the domain and codomain of the relations
into account. Indeed, the compositions r ◦ rel , rel ◦ r should be more incline to
not intersect Qi×Qf when domains and codomains of rel are small. We also
try to implement ToProcess as a queue. We note that no method appears to be
better. We keep the best results in the experiments.

Data Structures - Efficient data structures are used both for the relations and
the antichains. A relation is stored as an array of bit-vectors. In this way the
composition is computed efficiently using bit-operations, as well as its domain
and codomain.

A hash table is used to store an antichain, such that relations with different
domain or codomain are stored in different lists. In this way, comparing a new
relation r with the elements of the antichain is made more efficient, by limiting
the comparison of r with elements of the same domain and codomain.

To compute .R∗/ in Function 3, we first make a call to Function Composition-
Closure, and then keep the ⊆-minimal elements of the result. One optimization
is, at each step of the CompositionClosure computation, to only consider the
minimal elements.

4 Extensions

In this section, we propose several extensions. We first show how to adapt our
antichain-based algorithm for testing the inclusion of two VPAs. Then we extend
our algorithm for testing universality of the original VPA model [2], accepting
words with internal actions and pending calls or returns. Finally, a third exten-
sion is proposed for checking universality of hedge automata.
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4.1 Checking Inclusion

An antichain-based algorithm for testing the inclusion of two VPAs can be de-
signed, following the same ideas as for testing universality. We here give the
main ideas for VPAs accepting linearizations of trees. For two VPAs A =
(QA, Σ, ΓA, Qi,A, Qf,A, ΔA) and B = (QB, Σ, ΓB, Qi,B, Qf,B, ΔB) over the same
alphabet Σ, we have L(A) � L(B) iff there exists in A an accepting run
on some word w such that all runs on w in B are not accepting. For a tree
t over Σ, instead of considering the accessibility relation Acc(t) as defined
in Section 3.1, we consider pairs ((q, q′), r) ∈ (QA×QA)×2QB×QB such that
(q, q′) ∈ AccA(t) and r = AccB(t) for the same tree t. In this way, t ∈ L(A)\L(B)
iff (q, q′) ∈ Qi,A×Qf,A for some (q, q′) ∈ AccA(t), and AccB(t)∩Qi,B×Qf,B = ∅.

Given a set S ⊆ (QA×QA)×2QB×QB , we define S ∗ as the set {((p, p′), s) |
there exist n ≥ 0, ((qi, q

′
i), ri) ∈ S with q′i = qi+1 for all 1 ≤ i < n, p = q1, p

′ =
qn, and s = r1 ◦ · · · ◦ rn}. In particular S ∗ contains the pairs ((q, q), idQB ) for
all q ∈ QA, obtained when n = 0.

The Post operator is adapted to Post⊆ as follows. In this definition, we use
notation PostB to denote the Post operator used in automaton B.

Definition 10. For S ⊆ (QA×QA)×2QB×QB , we define Post⊆(S ) = S ′ ∪S ,
where S ′ is the set of pairs ((p, p′), s) such that

p
a:γ−−→ q ∈ ΔA, q′

a:γ−−→ p′ ∈ ΔA and s = PostBa (r)

for some a ∈ Σ and ((q, q′), r) ∈ S ∗. Let Post∗⊆(S ) = ∪i≥0Post
i
⊆(S ) such that

Post0⊆(S ) = S , and for all i > 0, Post i⊆(S ) = Post⊆(Post i−1
⊆ (S )).

Proposition 5 is adapted into the next proposition.

Proposition 11. Let A and B be two VPAs. Then L(A) ⊆ L(B) iff ∀((q, q′), r)
∈ Post∗⊆(∅), (q, q′) ∈ Qi,A ×Qf,A ⇒ r ∩Qi,B×Qf,B �= ∅.

An algorithm for testing the inclusion can be designed as done for universal-
ity. Again we can save computations by using antichains. In this context, the
set (QA×QA)×2QB×QB is equipped with the ⊆ operator such that ((q, q′), r) ⊆
((p, p′), s) iff (q, q′) = (p, p′), r ⊆ s. As done in Section 3.3, we can define
Post∗⊆,min(∅) and get the counterpart of Proposition 11 using antichains.

4.2 Universality of General VPAs

We considered VPAs as unranked tree acceptors, i.e. VPAs that only operate on
linearizations of trees. We show here how our algorithms can be easily adapted
to the original VPA model [2].

Three Types of Symbols - The original VPA model operates on an alphabet
partitioned into three disjoint sets: a set Σc of call symbols, a set Σr of return
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symbols3, and a set Σi of internal symbols that have no effect on the stack. Such
a VPA is called universal if it accepts all words of (Σc ∪ Σr ∪ Σi)

∗. Function 1
(resp. Function 3) can be adapted to VPAs with these three types of symbols as

follows. We initialize R∗ (resp. R∗
min) to {idQ} ∪

⋃
a∈Σi

{(q, q′) | q a−→ q′ ∈ Δ}
instead of {idQ}. Indeed, internal symbols can appear at any place in a word, so

the relation {(q, q′) | q a−→ q′ ∈ Δ} has to be combined with any other yielded
relation. We also adapt the Post operator by defining Posta,b(r) = {(p, p′) ∈

Q ×Q | ∃(q, q ′) ∈ r , p
a:γ−−→ q ∈ Δ, q ′

b:γ−−→ p′ ∈ Δ} for all a ∈ Σc and b ∈ Σr.

Pending Calls and Returns - So far we considered linearizations of trees, but all
definitions and results proposed above also hold for linearizations of hedges, for-
mally defined by: [t1 · · · tn] = [t1] · · · [tn]. A word w over Σ ∪Σ is not necessarily
the linearization of a hedge. The general shape of such a word w is:

w = [h0]b0[h1]b1 · · · [hm]bm[h]a1[h
′
1]a2[h

′
2] · · · an[h′n]

where all hi, h
′
j , and h are hedges of HΣ , and bi ∈ Σ, aj ∈ Σ for all i, j. In other

words, w is a sequence of words [hi]bi, followed by the linearization of a hedge
[h], followed by a sequence of words aj[h

′
j ]. The idea here is to adapt Function 1

so that it computes :

– as before, the set R = {Acc(t) | t ∈ TΣ} of all accessibility relations through
linearizations of trees, and its closure by composition R∗. This latter set
corresponds to the accessibility relation through linearizations of hedges.

– C ∗, the closure by composition of C , which is the set of all accessibility
relations through the linearization of a hedge, followed by a symbol in Σ:
C = {Acc([h]b) | h ∈ HΣ , b ∈ Σ}.

– O∗, the closure by composition of O = {Acc(a[h]) | a ∈ Σ, h ∈ HΣ}.

Each time a new relation r is added to R, we update R∗ as previously, using
Function CompositionClosure. We also update C ∗ by first adding all relations

r ◦ rb (instead of r) where rb = {(q, q′) | q b:⊥−−→ q′ ∈ Δ}, and then compute the
closure by composition of C ∗ as done for R∗. The same method is used for O∗,
with relations ra ◦ r. Each time a new relation is added into one of these three
sets (R∗, C ∗ and O∗), we check whether it is a witness of non-universality. Once
these three sets are fully computed, we check whether all relations rc ◦ rh ◦ ro
with rc ∈ C ∗, rh ∈ R∗ and ro ∈ O∗ intersect Qi ×Qf .

4.3 Universality of Hedge Automata

The algorithms presented in this paper are easily adapted from VPAs to hedge
automata [5,6]. We provide a translation of hedge automata to VPAs in the long
version of the paper. Hence we can derive universality and inclusion algorithms
for hedge automata, from the ones we propose for VPAs.

3 Σc and Σr are no longer related by the relation Σc = Σ and Σr = Σ.
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5 Experiments

We have implemented the algorithms of Sections 3 and 4 with the described
optimizations in a prototype tool named ATC4VPA (AnTiChains for Visibly
Pushdown Automata). The code is written mainly in Python, a small part being
written in C for the low level operations on arrays of bit-vectors (used to represent
relations). The experiments were run on a PC equipped with an Intel i7 2.8GHz
processor, 6 GB of RAM and running Linux Ubuntu 3.2.

The experimental tests are performed on randomly generated automata4, and
compared with the results obtained with known prototype tools:

– VPAchecker, a package for deciding universality and inclusion of VPAs, by
using either the classical algorithms based on the determinization of VPAs,
or optimized on-the-fly algorithms [17],

– FADecider, a package for deciding universality and inclusion of VPAs (over
finite and infinite words) using Ramsey-based methods [12],

– OpenNWA, a nested-word automaton library that provides the standard
boolean operations [9]. Nested-word automata are another formalism which
can be seen as an alternative encoding of VPAs [3].

During the random generation of VPAs, some parameters are fixed: there is one
initial state (|Qi| = 1), all states are final (Qf = Q), the alphabets have size 3
(|Σc| = |Σr| = |Σi| = 3)5. Other parameters vary, like the size |Q|, the transition
density, i.e. the number of outgoing transitions per state and per alphabet6, and
the number of generated VPAs for a fixed size (sample size).

In Figure 2, we compare ATC4VPA with FADecider for increasing automata
sizes, with a fixed transition density, and samples of 100 random automata for
each size. The first graph indicates the average time for false (resp. true) in-
stances (without taking into account the timeouts), whereas the second graph
indicates the number of false (resp. true) instances that did not reach a timeout
fixed to 60 seconds (the number of timeouts is thus the sample size minus these
two numbers). By true instances, we mean universal VPAs.

Classical automata techniques (typically complementation) do not scale for
universality and inclusion tests. This is the case with OpenNWA, which quickly
faces timeouts when automata sizes increase. We now focus on optimized tools.

On all instances, we observe that the memory footprint of our tool is much
lower than for FADecider. Indeed, antichains reduce the number of relations that
have to be computed (and thus stored and processed).

On true instances, antichains show their full power, as the state space to be
explored is usually huge. For these instances, ATC4VPA is indeed faster than
both FADecider and VPAchecker. It also answers to more instances than the

4 We did not use the same benchmark as [12] as it relies on only few instances, and
these VPAs have ε-transitions.

5 |Σi| = 0 when the tested tool offers this possibility.
6 For instance, a density transition of 5 means 5 outgoing transitions labeled by sym-
bols of Σc (Σr, Σi resp.) for each state.
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Fig. 2. Universality test for ATC4VPA and FADecider

other tools (less timeouts), the only exception being the universality test in
VPAchecker, where VPAchecker encounters slightly less timeouts. Note however
that it is difficult to make a fair comparison since VPAchecker outputs a wrong
answer for a few true instances.

On false instances, our prototype ATC4VPA is a bit slower and faces a bit
more timeouts, but with the same asymptotical behavior. This is due to the fact
that the data structure for antichains is more involved and our prototype did
not optimize all its details.

6 Perspectives

This work suggests future research in several directions. We first plan to investi-
gate another approach, based on the encoding of unranked trees into binary ones,
and the algorithm in [4]. Second, we would like to extend our benchmark with
realistic (instead of randomly generated) instances coming from the translation
of XML schemas or queries to VPAs. Another step is to decide, when a prefix
u of a word w has been read, whether w will be accepted by a given VPA (this
paper addresses the special case u = ε).

Acknowledgements. We thank Thomas Brihaye for useful discussions, and the
authors of VPAchecker, FADecider and OpenNWA for helping us using their tools.
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tion and Bisimulation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 89–103.
Springer, Heidelberg (2006)

http://www.grappa.univ-lille3.fr/tata


Two-Sided Derivatives for Regular Expressions

and for Hairpin Expressions

Jean-Marc Champarnaud, Jean-Philippe Dubernard,
Hadrien Jeanne, and Ludovic Mignot
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Abstract. The aim of this paper is to design the polynomial construc-
tion of a finite recognizer for hairpin completions of regular languages.
This is achieved by considering completions as new expression opera-
tors and by applying derivation techniques to the associated extended
expressions called hairpin expressions. More precisely, we extend partial
derivation of regular expressions to two-sided partial derivation of hair-
pin expressions and we show how to deduce a recognizer for a hairpin
expression from its two-sided derived term automaton, providing an al-
ternative proof of the fact that hairpin completions of regular languages
are linear context-free.

Keywords: Finite Automaton, Partial Derivation, Two-sided Deriva-
tion, Linear Context-Free Language, Hairpin Completion of Regular Lan-
guages, Hairpin Expression.

1 Introduction

The aim of this paper is to design the polynomial construction of a finite rec-
ognizer for hairpin completions of regular languages. Given an integer k > 0
and an involution H over an alphabet Γ , the hairpin k-completion of two lan-
guages L1 and L2 over Γ is the language Hk(L1, L2) = {αβγH(β)H(α) | α, β, γ ∈
Γ ∗ ∧ (αβγH(β) ∈ L1 ∨βγH(β)H(α) ∈ L2)∧ |β| = k} (see Figure 1). The hairpin
completion of formal languages has been introduced in [6] by reason of its appli-
cation to biochemistry. It aroused numerous studies that investigate theoretical
and algorithmic properties of hairpin completions or related operations (see for
example [8,11,12]). One of the most recent result concerns the problem of decid-
ing regularity of hairpin completions of regular languages; it can be found in [7]
as well as a complete bibliography about hairpin completion.

Hairpin completions of regular languages are proved to be linear context-free
from [6]. An alternative proof is presented in this paper, with a somehow more
constructive approach, since it provides a recognizer for the hairpin completion.
This is achieved by considering completions as new expression operators and
by applying derivation techniques to the associated extended expressions, that
we call hairpin expressions. Notice that a similar derivation-based approach has
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Fig. 1. The Hairpin Completion

been used to study approximate regular expressions [5], through the definition
of new distance operators.

Two-sided derivation is shown to be particularly suitable for the study of
hairpin expressions. More precisely, we extend partial derivation of regular ex-
pressions [1] to two-sided partial derivation of regular expressions first and then
of hairpin expressions. We prove that the set of two-sided derived terms of a
hairpin expression E over an alphabet Γ is finite. Hence the two-sided derived
term automaton A is a finite one. Furthermore the automaton A is over the
alphabet (Γ ∪{ε})2 and, as we prove it, the language over Γ of such an automa-
ton is linear context-free and not necessarily regular. Finally we show that the
language of the hairpin expression E and the language over Γ of the automaton
A are equal.

The paper is organized as follows. Next section gathers useful definitions and
properties concerning automata and regular expressions. The notion of two-sided
residual of a language is introduced in Section 3, as well as the related notion
of Γ -couple automaton. In Section 4, hairpin completions of regular languages
and their two-sided residuals are investigated. The two-sided partial derivation
of hairpin expressions is considered in Section 5, leading to the construction of
a finite recognizer.

2 Preliminaries

An alphabet is a finite set of distinct symbols. Given an alphabet Σ, we denote by
Σ∗ the set of all the words over Σ. The empty word is denoted by ε. A language
over Σ is a subset of Σ∗. The three operations ∪, · and ∗ are defined for any
two languages L1 and L2 over Σ by: L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2},
L1 ·L2 = {w1w2 ∈ Σ∗ | w1 ∈ L1 ∧ w2 ∈ L2}, L∗

1 = {ε}∪{w1 · · ·wk ∈ Σ∗ | ∀j ∈
{1, . . . , k}, wj ∈ L1}. The family of regular languages over Σ is the smallest
family F closed under the three operations ∪, · and ∗ satisfying ∅ ∈ F and
∀a ∈ Σ, {a} ∈ F . Regular languages can be represented by regular expressions.
A regular expression over Σ is inductively defined by: E = a, E = ε, E = ∅,
E = F + G, E = F · G, E = F ∗, where a is any symbol in Σ and F and
G are any two regular expressions over Σ. The width of E is the number of
occurrences of symbols in E, and its star number the number of occurrences of
the operator ∗. The language denoted by E is the language L(E) inductively
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defined by: L(A) = {a}, L(ε) = {ε}, L(∅) = ∅, L(F + G) = L(F ) ∪ L(G),
L(F · G) = L(F ) · L(G), L(F ∗) = (L(F ))∗, where a is any symbol in Σ and
F and G are any two regular expressions over Σ. The language denoted by a
regular expression is regular.

Let w be a word in Σ∗ and L be a language. The left residual (resp. right
residual) of L w.r.t. w is the language w−1(L) = {w′ ∈ Σ∗ | ww′ ∈ L} (resp.
(L)w−1 = {w′ ∈ Σ∗ | w′w ∈ L}). It has been shown that the set of the left
residuals (resp. right residuals) of a language is a finite set if and only if the
language is regular.

An automaton (or a NFA) over an alphabet Σ is a 5-tuple A = (Σ,Q, I, F, δ)
where Σ is an alphabet, Q a finite set of states, I ⊂ Q the set of initial states,
F ⊂ Q the set of final states and δ the transition function from Q × Σ to 2Q.
The domain of the function δ can be extended to 2Q × Σ∗ as follows: for any
word w in Σ∗, for any symbol a in Σ, for any set of states P ⊂ Q, for any state
p ∈ Q, δ(P, ε) = P , δ(p, aw) = δ(δ(p, a), w) and δ(P,w) =

⋃
p∈P δ(p, w).

The language recognized by the automaton A is the set L(A) = {w ∈ Σ∗ |
δ(I, w)∩F �= ∅}. Given a state q in Q, the right language of q is the set

−→
L (q) =

{w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}. It can be shown that (1) L(A) =
⋃

i∈I

−→
L (i),

(2)
−→
L (q) = {ε | q ∈ F} ∪ (

⋃
a∈Σ,p∈δ(q,a){a} · −→L (p)) and (3) a−1(

−→
L (q)) =⋃

p∈δ(q,a)

−→
L (p).

Kleene Theorem [9] asserts that a language is regular if and only if there exists
an NFA that recognizes it. As a consequence, for any language L, there exists a
regular expression E such that L(E) = L if and only if there exists an NFA A
such that L(A) = L. Conversion methods from an NFA to a regular expression
and vice versa have been deeply studied. In this paper, we focus on the notion
of partial derivative defined by Antimirov [1]1.

Given a regular expression E over an alphabet Σ and a word w in Σ∗, the left
partial derivative of E w.r.t. w is the set ∂

∂w
(E) of regular expressions satisfying:⋃

E′∈ ∂
∂w

(E) L(E
′) = w−1(L(E)).

This set is inductively computed as follows: for any two regular expressions
F and G, for any word w in Σ∗ and for any two distinct symbols a and b in Σ,

∂
∂a
(a) = {ε}, ∂

∂a
(b) = ∂

∂a
(ε) = ∂

∂a
(∅) = ∅,

∂
∂a
(F +G) = ∂

∂a
(F ) ∪ ∂

∂a
(G), ∂

∂a
(F ∗) = ∂

∂a
(F ) · F ∗,

∂
∂a
(F ·G) =

{ ∂
∂a
(F ) ·G ∪ ∂

∂a
(G) if ε ∈ L(F ),

∂
∂a
(F ) ·G otherwise,

∂
∂aw

(F ) = ∂
∂w

( ∂
∂a
(F )), ∂

∂ε
(F ) = {F},

where for any set E of regular expressions and for any word w in Σ∗, ∂
∂w

(E) =⋃
E∈E

∂
∂w

(E). Any expression appearing in a left partial derivative is called a
left derived term. Similarly, the right partial derivative of a regular expression E
over an alphabet Σ w.r.t. a word w in Σ∗ is the set (E) ∂

∂w
inductively defined

1 Partial derivation is investigated in the more general framework of weighted expres-
sions in [10].



Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions 205

as follows for any two regular expressions F and G, for any word w in Σ∗ and
for any two distinct symbols a and b in Σ,

(a) ∂
∂a

= {ε}, (b) ∂
∂a

= (ε) ∂
∂a

= (∅) ∂
∂a

= ∅,
(F +G) ∂

∂a
= (F ) ∂

∂a
∪ (G) ∂

∂a
, (F ∗) ∂

∂a
= F ∗ · (F ) ∂

∂a
,

(F ·G) ∂
∂a

=

{
F · (G) ∂

∂a
∪ (F ) ∂

∂a
if ε ∈ L(G),

F · (G) ∂
∂a

otherwise,

(F ) ∂
∂aw

= ((F ) ∂
∂a
) ∂
∂w

, (F ) ∂
∂ε

= {F},
where for any set E of regular expressions for any word w in Σ∗, (E) ∂

∂w
=⋃

E∈E(E) ∂
∂w

. Any expression appearing in a right partial derivative is called a

right derived term. We denote by
←−DE (resp.

−→DE) the set of left (resp. right)
derived terms of the expression E. From the set of left derived terms of a regular
expression E of width n, Antimirov defined in [1] the derived term automaton
A of E and showed that A is a n-state NFA that recognizes L(E).

A language over an alphabet Γ is said to be linear context-free if it can be
generated by a linear grammar, that is a grammar equipped with productions
in one of the following forms:

1. A → xBy, where A and B are any two non-terminal symbols, and x and y
are any two symbols in Γ ∪ {ε} such that (x, y) �= (ε, ε),

2. A→ ε, where A is any non-terminal symbol.

Notice that the family of regular languages is strictly included into the family
of linear context-free languages. In the following, we will consider combinations
of left and right partial derivatives in order to deal with non-regular languages.

3 Two-Sided Residuals of a Language and Couple NFA

In this section, we extend residuals to two-sided residuals. This operation is the
composition of left and right residuals, but it is more powerful than classical
residuals since it allows to compute a finite subset of the set of residuals even
for non-regular languages, which allows to construct a derivative-based finite
recognizer.

Definition 1. Let L be a language over an alphabet Γ and let u and v be
two words in Γ ∗. The two-sided residual of L w.r.t. (u, v) is the language
(u, v)−1(L) = {w ∈ Γ ∗ | uwv ∈ L}.

As above-mentioned, the two-sided residual operation is the composition of the
two operations of left and right residuals.

Lemma 2. Let L be a language over an alphabet Γ and u and v be two words
in Γ ∗. Then: (u, v)−1(L) = (u−1(L))v−1 = u−1((L)v−1).

Corollary 3. Let L be a language over an alphabet Γ and u and v be two words
in Γ ∗. Then: ε ∈ (u, v)−1(L) ⇔ uv ∈ L.
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It is a folk knowledge that NFAs are related to left residual computation accord-
ing to the following assertion (A): in an NFA (Σ,Q, I, F, δ), a word aw belongs

to
−→
L (q) with q ∈ Q if and only if w belongs to a−1(

−→
L (q)) =

⋃
q′∈δ(q,a)

−→
L (q′).

Since a two-sided residual w.r.t. a couple (x, y) of symbols in an alphabet Γ is
by definition the combination of a left residual w.r.t. x and of a right residual
w.r.t. y, the assertion (A) can be extended to two-sided residuals by introducing
couple NFAs equipped with transitions labelled by couples of symbols in Γ . The
notion of right language of a state is extended to the one of Γ -right language
as follows: if a given word w in Γ ∗ belongs to the Γ -right language of a state q′

and if there exists a transition from a state q to q′ labelled by a couple (x, y),
then the word xwy belongs to the Γ -right language of q.

More precisely, given an alphabet Γ , we set ΣΓ = {(x, y) | x, y ∈ Γ ∪ {ε} ∧
(x, y) �= (ε, ε)}. We consider the mapping Im from (ΣΓ )

∗ to Γ ∗ inductively
defined for any word w in (ΣΓ )

∗ and for any symbol (x, y) ∈ ΣΓ by: Im(ε) = ε
and Im((x, y) · w) = x · Im(w) · y. Notice that this mapping was introduced by
Sempere [13] in order to compute the language denoted by a linear expression.
Linear expressions denote linear context-free languages, and are equivalent to
the regular-like expressions of Brzozowski [2].

Definition 4. Let A = (Σ,Q, I, F, δ) be an NFA. The NFA A is a couple NFA
if there exists an alphabet Γ such that Σ ⊂ ΣΓ . In this case, A is called a Γ -
couple NFA. The Γ -language of a Γ -couple NFA A is the subset LΓ (A) of Γ ∗

defined by: LΓ (A) = {Im(w) | w ∈ L(A)}.

The definition of right languages and their classical properties extend to couple
NFAs as follows. Let A = (Σ,Q, I, F, δ) be a Γ -couple NFA and q be a state in

Q. The Γ -right language of q is the subset
−→
L Γ (q) of Γ ∗ defined by:

−→
L Γ (q) =

{Im(w) | w ∈ −→
L (q)}.

Lemma 5. Let A = (Σ,Q, I, F, δ) be a Γ -couple NFA and q be a state in Q.

Then: LΓ (A) =
⋃

i∈I

−→
L Γ (i).

Lemma 6. Let A = (Σ,Q, I, F, δ) be a Γ -couple NFA and q be a state in Q.

Then:
−→
L Γ (q) = {ε | q ∈ F} ∪

⋃
(x,y)∈Σ,q′∈δ(q,(x,y)){x} ·

−→
L Γ (q

′) · {y}.

Corollary 7. Let A = (Σ,Q, I, F, δ) be a Γ -couple NFA, (x, y) be a couple in

ΣΓ and q be a state in Q. Then: (x, y)−1(
−→
L Γ (q)) =

⋃
q′∈δ(q,(x,y))

−→
L Γ (q

′).

The following example illustrates the fact that there exist non-regular languages
that can be recognized by couple NFAs.

Example 8. Let Γ = {a, b} and A be
the automaton of the Figure 2. The Γ -
language of A is LΓ (A) = {anbn | n ∈
N}.

1 (a, b)

Fig. 2. The Couple Automaton A

As a consequence there exist context free languages that are recognized by
a couple NFA. In fact, the family of languages recognized by couple NFAs is
exactly the family of linear context-free languages.
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Theorem 9. A language is linear context-free if and only if it is recognized by
a couple NFA.

We present here two algorithms in order to solve the membership problem2 via
a couple NFA. The Algorithm 2 checks whether the word w ∈ Γ ∗ is recognized
by the Γ -couple NFA A. It returns TRUE if there exists an initial state such
that its Γ -right language contains w. The Algorithm 1 checks whether the word
w ∈ Γ ∗ is in the Γ -right language of the state q.

begin
if w = ε then

P ← (q ∈ F );
end
else

P ← FALSE;
foreach (q, (α, β), q′) ∈ δ | w = αw′β do

P ← P ∨ RightLanguage(A, w′, q′);
end

end
return P

end

Algorithm 1. RightLanguage(A,w,q)

begin
R ← FALSE;
foreach i ∈ I do

R ← R ∨ RightLanguage(A, w, i);
end
return R

end

Algorithm 2. MembershipTest(A,w)

Proposition 10. Let A = (Σ,Q, I, F, δ) be a Γ -couple NFA, q be a state in Q
and w be a word in Γ ∗. The two following propositions are satisfied:

1. Algorithm 1: RightLanguage(A, w, q) returns (w ∈ −→
L Γ (q)),

2. Algorithm 2: MembershipTest(A,w) returns (w ∈ LΓ (A)).

The following sections are devoted to hairpin completions and their two-sided
residuals. It turns out that hairpin completions are linear context-free. Hence, we
show how to compute a couple NFA that recognizes a given hairpin completion.

2 Given a language L and a word w, does w belong to L?
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4 Hairpin Completion of a Language and Its Residuals

Let Γ be an alphabet. An involution f over Γ is a mapping from Γ to Γ satisfying
for any symbol a in Γ , f(f(a)) = a. An anti-morphism μ over Γ ∗ is a mapping
from Γ ∗ to Γ ∗ satisfying for any two words u and v in Γ ∗ μ(u · v) = μ(v) · μ(u).
Any mapping g from Γ to Γ can be extended as an anti-morphism over Γ ∗ as
follows: ∀a ∈ Γ, ∀w ∈ Γ ∗, g(ε) = ε, g(a · w) = g(w) · g(a).

Definition 11. Let Γ be an alphabet and H be an anti-morphism over Γ ∗. Let
L1 and L2 be two languages over Γ . Let k > 0 be an integer. The (H, k)-
completion of L1 and L2 is the language Hk(L1, L2) defined by:

Hk(L1, L2)
=

{αβγH(β)H(α) | α, β, γ ∈ Γ ∗ ∧ (αβγH(β) ∈ L1 ∨ βγH(β)H(α) ∈ L2) ∧ |β| = k}.

The (H, k)-completion operator can be defined as the union of two unary oper-

ators
←−
Hk and

−→
Hk.

Definition 12. Let Γ be an alphabet and H be an anti-morphism over Γ ∗. Let
L be a language over Γ . Let k > 0 be an integer. The right (resp. left) (H, k)-

completion of L is the language
−→
Hk(L) (resp.

←−
Hk(L)) defined by:−→

Hk(L) = {αβγH(β)H(α) | α, β, γ ∈ Γ ∗ ∧ αβγH(β) ∈ L ∧ |β| = k},
←−
Hk(L) = {αβγH(β)H(α) | α, β, γ ∈ Γ ∗ ∧ βγH(β)H(α) ∈ L ∧ |β| = k}.

Lemma 13. Let Γ be an alphabet and H be an anti-morphism over Γ ∗. Let L1

and L2 be two languages over Γ . Let k > 0 be an integer. Then:

Hk(L1, L2) =
−→
Hk(L1) ∪

←−
Hk(L2).

When H is an involution over Γ , the (H, k)-completion of L1 and L2 is called a
hairpin completion [6]. Even in the case where H is not an involution, we will

say that languages such as
−→
Hk(L),

←−
Hk(L) or Hk(L,L

′) are hairpin completed
languages and we will speak of hairpin completions. We first establish formulae in
this general setting in order to compute the two-sided residuals of the completed
language of an arbitrary language. The following operator is useful.

Definition 14. Let Γ be an alphabet and H be an anti-morphism over Γ ∗. Let
L be a language over an alphabet Γ . Let k > 0 be an integer. The language H′

k(L)
is defined by: H′

k(L) = {βγH(β) ∈ L | β, γ ∈ Γ ∗ ∧ |β| = k}.

We split the computation of two-sided residuals of a completed language w.r.t.
(x, y) couples: the first case is when both x and y are symbols.

Proposition 15. Let Γ be an alphabet and H be an anti-morphism over Γ ∗.
Let L be a language over Γ . Let (x, y) a couple of symbols in Γ × Γ . Let k > 0
be an integer. Then:
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(x, y)−1(
−→
Hk(L)) =

⎧⎪⎨⎪⎩
∅ if y �= H(x),
−→
Hk(x

−1(L)) ∪ (x, y)−1(L) if y = H(x) ∧ k = 1,
−→
Hk(x

−1(L)) ∪ H′
k−1((x, y)

−1(L)) otherwise,

(x, y)−1(
←−
Hk(L)) =

⎧⎪⎨⎪⎩
∅ if y �= H(x),
←−
Hk((L)y

−1) ∪ (x, y)−1(L) if y = H(x) ∧ k = 1,
←−
Hk((L)y

−1) ∪ H′
k−1((x, y)

−1(L)) otherwise,

(x, y)−1(H′
k(L)) =

⎧⎨⎩
∅ if y �= H(x),
H′

k−1((x, y)
−1(L)) if y = H(x) ∧ k > 1,

(x, y)−1(L) otherwise.

The problem of two-sided residuals of a completed language w.r.t. couples (x, y)
with either x or y equal to ε is that they add one catenation that has to be
memorized. It can be checked that this may lead to infinite sets of two-sided
residuals.

Proposition 16. Let Γ be an alphabet and H be an anti-morphism over Γ ∗.
Let L be a language over an alphabet Γ . Let k > 0 be an integer. Let L′ be a

language in {←−Hk(L),
−→
Hk(L),H

′
k(L)}. Let x be a symbol in Γ . Then:

(x, ε)−1(L′) = (x,H(x))−1(L′) · {H(x)},
(ε, x)−1(L′) =

⋃
z∈Γ |H(z)=x{z} · (z, x)−1(L′).

Let L be a language over an alphabet Γ . The set RL of two-sided residuals of L
is defined by: RL =

⋃
k≥1 Rk

L, where

Rk
L =

{
{(x, y)−1(L) | (x, y) ∈ ΣΓ } if k = 1,

{(x, y)−1(L′) | (x, y) ∈ ΣΓ ∧ L′ ∈ Rk−1
L } otherwise.

From now on we focus on hairpin completion of regular languages. Let us
recall that such a completion is not necessarily regular [6].

Lemma 17. The family of regular languages is not closed under hairpin
completion.

Proof. Let Γ = {a, b, c}, k > 0 be a fixed integer and H be the anti-morphism

over Γ ∗ defined by H(a) = a, H(b) = c and H(c) = b. Let L′ =
−→
Hk(L(a

∗bkck)).
Let us first show that L′ = {anbkckan | n ≥ 0}. Let w be a word in Γ ∗.

w ∈ L′ ⇔ w = αβγH(β)H(α) ∧ αβγH(β) ∈ L(a∗bkck) ∧ |β| = k
⇔ w = αβγH(β)H(α) ∧ α ∈ L(a∗) ∧ H(β) = ck ∧ β = bk

⇔ w = anbkckan with n ≥ 0.
For any integer j ≥ 0, let us define the language L′

j by:

L′
j =

{
L′ if j = 0,
a−1(L′

j−1) otherwise.

Consequently, it holds L′
j = {an−jbkckan | n ≥ j}. Finally, since for any two

distinct integers j and j′, the word bkckaj belongs to L′
j \ L′

j′ , it holds that for

any two distinct integers j and j′, L′
j �= L′

j′ and (aj)−1(L′) �= (aj
′
)−1(L′). As a

consequence, the set of left residuals of L′ is infinite. ��
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The set of two-sided residuals of a hairpin completion of a regular language may
be infinite, but the restriction to residuals w.r.t. couples (x, y) of symbols is
sufficient to obtain a finite set of two-sided residuals and a finite recognizer.

5 The Two-Sided Derived Term Automaton

The computation of residuals is intractable when it is defined over languages.
However, derived terms of regular expressions denote residuals of regular lan-
guages. We then extend the partial derivation of regular expressions [1] to the
partial derivation of hairpin expressions.

A hairpin expression E over an alphabet Γ is a regular expression over Γ or is

inductively defined by: E =
←−
Hk(F ), E =

−→
Hk(F ), E = H′

k(F ), E = G1+G2, where
H is any anti-morphism over Γ ∗, k > 0 is any integer, F is any regular expression
over Γ , and G1 and G2 are any two hairpin expressions over Σ. If the only
operators appearing in E are regular operators (+, · or ∗), the expressionE is said
to be a simple hairpin expression. The language denoted by a hairpin expression
E over an alphabet Γ is the regular language L(E) if E is a regular expression

or is inductively defined by: L(
←−
Hk(F )) =

←−
Hk(L(F )), L(

−→
Hk(F )) =

−→
Hk(L(F )),

L(H′
k(F )) = H′

k(L(F )), L(G1 + G2) = L(G1) ∪ L(G2), where H is any anti-
morphism over Γ ∗, k > 0 is any integer, F is any regular expression over Γ , and
G1 and G2 are any two hairpin expressions over Γ .

Definition 18. Let E be a hairpin expression over an alphabet Γ . Let (x, y)
be a couple of symbols in ΣΓ . Let k > 0 be an integer. The two-sided partial
derivative of E w.r.t. (x, y) is the set ∂

∂(x,y)
(E) of hairpin expressions defined by:

∂
∂(x,y)

(F ) =

⎧⎪⎨⎪⎩
(F ) ∂

∂y
if x = ε,

∂
∂x
(F ) if y = ε,⋃
F ′∈ ∂

∂x
(F )(F

′) ∂
∂y

otherwise,

∂
∂(x,y)

(
−→
Hk(F )) =

⎧⎪⎨⎪⎩
∅ if y �= H(x),
−→
Hk(

∂
∂x
(F )) ∪ ∂

∂(x,y)
(F ) if y = H(x) ∧ k = 1

−→
Hk(

∂
∂x
(F )) ∪H′

k−1(
∂

∂(x,y)
(F )) otherwise,

∂
∂(x,y)

(
←−
Hk(F )) =

⎧⎪⎨⎪⎩
∅ if y �= H(x),
←−
Hk((F )

∂
∂y
) ∪ ∂

∂(x,y)
(F ) if y = H(x) ∧ k = 1

←−
Hk((F )

∂
∂y
) ∪ H′

k−1(
∂

∂(x,y)
(F )) otherwise,

∂
∂(x,y)

(H′
k(F )) =

⎧⎪⎨⎪⎩
∅ if y �= H(x),
H′

k−1(
∂

∂(x,y)
(F )) if k¿1,

∂
∂(x,y)

(F ) otherwise,
∂

∂(x,y)
(G1 +G2) =

∂
∂(x,y)

(G1) ∪ ∂
∂(x,y)

(G2),

where H is any anti-morphism over Γ ∗, k > 0 is any integer, F is any regular
expression over Γ , G1 and G2 are any two hairpin expressions over Γ , and

for any set H of hairpin expressions:
−→
Hk(H) = {−→Hk(H) | H ∈ H}, ←−Hk(H) =

{←−Hk(H) | H ∈ H}, H′
k(H) = {H′

k(H) | H ∈ H}.
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Let E be a hairpin expression over an alphabet Γ . The set
←→DE of two-sided

derived terms of the expression E is defined by:
←→DE =

⋃
k≥1

←→
Dk

E , where:

←→
Dk

E =

{⋃
(x,y)∈ΣΓ

∂
∂(x,y)(E) if k = 1,⋃

(x,y)∈ΣΓ ,E′∈
←−−→
Dk−1

E

∂
∂(x,y)(E

′) otherwise.

Derived terms of regular expressions are related to left residuals. Let us show
that derived terms of hairpin expressions are related to two-sided residuals.

Proposition 19. Let E be a hairpin expression over an alphabet Γ . Let (x, y)
be a couple of symbols in Γ 2. Then:

⋃
F∈ ∂

∂(x,y)
(E) L(F ) = (x, y)−1(L(E)).

Furthermore, if E is a regular expression, the proposition still holds whenever
(x, y) is a couple of symbols in ΣΓ .

Determining whether the empty word belongs to the language denoted by a
regular expression E can be performed syntactically and inductively as follows:
ε /∈ L(a), ε /∈ L(∅), ε ∈ L(ε), ε ∈ L(G1 · G2) ⇔ ε ∈ L(G1) ∧ ε ∈ L(G2),
ε ∈ L(G1 +G2) ⇔ ε ∈ L(G1) ∨ ε ∈ L(G2), ε ∈ L(G∗

1).
This syntactical test is needed to compute the derived term automaton since

it defines the finality of the states. We now show how to extend this computation
to hairpin expressions.

Lemma 20. Let F be a regular expression and G1 and G2 be two hairpin ex-

pressions. Then: ε /∈ L(−→Hk(F )), ε /∈ L(
←−
Hk(F )), ε /∈ L(H′

k(F )), ε ∈ L(G1+G2) ⇔
ε ∈ L(G1) ∨ ε ∈ L(G2).

The following example illustrates the computation of derived terms. For clarity,
in this example, we assume that hairpin expressions are quotiented w.r.t. the
following rules: ε · E ∼ E, ∅ · E ∼ ∅. Moreover, sets of expressions are also
quotiented w.r.t. the following rule: {∅} ∼ ∅.

Example 21. Let Γ = {a, b, c} and H be the anti-morphism over Γ ∗ defined by

H(a) = a, H(b) = c and H(c) = b. Let E =
−→
H1(a

∗bc). Derived terms of E are

computed as follows: ∂
∂(a,a) (E) = {E}, ∂

∂(b,c)(E) = {−→H1(c), ε}, ∂
∂(c,b)(

−→
H1(c)) =

{−→H1(ε)}. Other partial derivatives are equal to ∅. Furthermore, it holds that ε is
the only derived term F of E such that ε belongs to L(F ).

In the following we are looking for an upper bound for the cardinality of the set of
two-sided derived terms, thus we apply no reduction to the regular expressions.
Notice that this cardinality decreases whenever any reduction is applied.

Proposition 22. Let E be a regular expression of width n > 0 and of star
number h. Let us set m = n+ h. Then the three following propositions hold:

1. Card(
←−DE) ≤ n,

2. Card(
−→DE) ≤ n,

3. Card(
←→DE) ≤ 2m×(m+1)×(m+2)

3 − 3.
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Proposition 23. Let E be a regular expression over an alphabet Γ , H be an
antimorphism over Γ ∗ and k > 0 be an integer. Then:

1. Card(
←−−−→DH′

k(E)) ≤ k × Card(
←→DE),

2. Card(
←−−−→D−→

Hk(E)
) ≤ Card(

←−DE) + k × Card(
←→DE),

3. Card(
←−−−→D←−

Hk(E)
) ≤ Card(

−→DE) + k × Card(
←→DE).

The index of a hairpin expression E is the integer index(E) inductively defined

by: index(F ) = 0, index(
←−
Hk(F )) = k, index(

−→
Hk(F )) = k, index(H′

k(F )) = k,
index(G1 + G2) = max(index(G1), index(G2)), where H is any anti-morphism
over Γ ∗, k > 0 is any integer, F is any regular expression over Γ , and G1 and
G2 are any two hairpin expressions over Γ .

Proposition 24. Let E be a hairpin expression over an alphabet Γ . Then
←→DE is

a finite set the cardinal of which is upper bounded by k× (2m(m+1)(m+2)
3 −3)+n,

where k is the index of E, and m = n+h with n its width and h its star number.

This finite set of two-sided derived terms allows us to extend the finite derived
term automaton to hairpin expressions.

Definition 25. Let E be a hairpin expression over an alphabet Γ . Let A =

(ΣΓ , Q, I, F, δ) be the NFA defined by: Q = {E} ∪←→DE, I = {E}, F = {E′ ∈ Q |
ε ∈ L(E′)}, ∀(x, y) ∈ ΣΓ , ∀E′ ∈ Q, δ(E′, (x, y)) = ∂

∂(x,y)
(E′).

The automaton A is the two-sided derived term automaton of E.

By construction, A is a Γ -couple NFA where Γ is the alphabet of E.

Example 26. Let E be the hairpin expression of Example 21. The derived term
automaton of E is the automaton presented in Figure 3.

E
−→
H1(c)ε −→

H1(ε)

(a, a)

(b, c)(b, c) (c, b)

Fig. 3. The Derived Term Automaton of the Expression E

Theorem 27. Let A be the two-sided derived term automaton of a hairpin ex-
pression E over an alphabet Γ and let k be the index of E. Then LΓ (A) = L(E).

Furthermore A has at most k × (2m×(m+1)×(m+2)
3 − 3) + n + 1 states where

m = n+ h, with n the width of E and h its star number.

Finally, the computation of the two-sided derived term automaton provides an
alternative proof of the following theorem.

Theorem 28. The language denoted by a hairpin expression is linear context-
free.
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6 Conclusion

This paper provides an alternative proof of the fact that hairpin completions of
regular languages are linear context-free. This proof is obtained by considering
the family of regular expressions extended to hairpin operators and by computing
their partial derivatives, a technique that has already been applied to regular
expressions extended to boolean operators [3], to multi-tilde-bar operators [4]
and to approximate operators [5]. Moreover it is a constructive proof since it is
based on the computation of a polynomial size recognizer for hairpin completions
of regular languages. Let us add that it is possible to compute a linear size
recognizer for (H, 0)-completions of regular languages.
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is not sufficient. Streaming (or online) transducers perform edits as the
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that ensures that the ‘maximum fraction’ η of the strings of the source
language are edited, within cost α, to the target language.
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1 Introduction

One of the classic problems in language theory concerns optimally editing an
input string so that it belongs to a given target regular language [3].

Definition 1 (Edit-distance). An edit operation applied to a string u either
deletes a single character, inserts a single character, or changes a single char-
acter. The edit-distance between u, v ∈ Σ∗, denoted ed(u, v), is defined as the
length of a shortest sequence of edit operations that applied to u yields v. For
language T , we define ed(u, T ) := infv∈T ed(u, v).

In [2] the problem was generalized: given source language R and target language
T , how to edit strings from R so that the edited strings belong to T .
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There are two broad categories of transducers Tr that edit strings depending
on how they process input. The non-streaming (or offline) transducers reads the
complete source string u ∈ R and then output the repaired string Tr(u) ∈ T .
The streaming (or online) transducers perform the edits as the letters of input
u are received. For a class of transducers, the main interest is to compare u �→
ed(u,Tr(u)) — ie. the cost of editing using Tr from the class — to u �→ ed(u, T ),
the cost of optimal editing.

Previous results for non-streaming transducers: Wagner [3] gives a polynomial
time algorithm for computing the optimal edit-distance, namely u �→ ed(u, T ),
given a DFA for T . In [2] it was shown (Section III.A) that certain (non-
deterministic) distance automata can compute this optimal cost.

Our contributions for non-streaming transducers: We consider the problem of
finding a natural class of deterministic transducer for computing the optimal edit-
distance u �→ ed(u, T ). We observe that Wagner’s algorithm can be reformulated
using cost-register automata of [1]. Specifically, one can use the deterministic one-
pass transducers with registers that allow parallel updates using the increment
and arbitrary-arity minimum operations. We prove that natural restrictions of
this model, notably by disallowing use of the minimum operator, do not suffice
to compute the optimal edit-distance (Theorem 5). This uses some pumping-like
arguments.

Previous results for streaming transducers: In [2] it was also shown that
whether there is a streaming transducer (Definition 7) with finite streaming-cost
(Definition 8) that repairs strings from R to strings in T is a PTIME-complete
problem (the languages R, T are given as DFAs). Moreover, if the cost is finite,
then a streaming transducer can be extracted from their proof [2][Theorem 3].

Our contributions for streaming transducers: We consider the problem of re-
pairing strings from source to target language in the case that the streaming-cost
is infinite or very large. In this case we fix an edit-distance bound α and ask what
is the ‘largest fraction’ of strings η ∈ [0, 1] that can be repaired within cost α
by a streaming transducer. This is called the partial-repair problem. We show
with an example (Example 12) that although the streaming-cost is infinite, a
large fraction (formalised in Definition 11) of the strings from the source lan-
guage may be edited with small edit distance to belong to the target language.
Our main contribution (Theorem 14) is a polynomial time algorithm solving the
partial-repair problem, and, if one exists, a construction of a corresponding de-
terministic streaming transducer. We do this by building and solving a Markov
decision process whose value is the largest such η.

2 Non-streaming Transducers

Following Wagner [3], there is a dynamic programming algorithm that given
a string u ∈ Σ∗ and a DFA for target language T ⊂ Σ∗ can compute, in
PTIME, the integer cost(u, T ) (and a string t ∈ T with the property that
cost(u, T ) = ed(u, t)). In [2][Section III] it is mentioned that this gives a trans-
ducer of fairly low complexity. We formalise this intuition and observe that
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there is a deterministic transducer model that implements Wagner’s approach
and computes u �→ ed(u, T ). In fact, the transducers are certain cost register au-
tomata (introduced in [1]), which we call repair-transducers. A repair-transducer
is a DFA with a fixed number of register names K. Write intk for the value, a
natural number, of register k ∈ K. Initially each register contains 0. At each
step the DFA reads the next letter from the input string, updates its local state,
and makes a parallel update to the registers. The allowed updates may mention
the register names, the constant 0, addition by a constant, and the minimum of
any number of terms.1 Once the input string has been read the machine outputs
the contents of some of its registers. Thus a repair-transducer realises a function
Σ∗ → Nk. Formally, an update is a term generated by the grammar:

inc-min ::= 0 | int_k (for k∈K) | inc-min + c (for c∈ N)
inc-min ::= min(inc-min, inc-min,...,inc-min)

If ν : K → N and τ is an inc-min term, write [[τ ]]ν for the evaluation of term
τ under assignment ν.2

Definition 2. A repair-transducer Tr is a DFA (Σ,Q, q0, δ) without final states
augmented by a finite set K of register names, a register update function μ :
Q × Σ × K → IMT , and a final register function f : Q → K, where IMT
is the set of inc −min terms. A configuration is an element of Q × NK . The
initial configuration is (q0, ν0) where ν0(k) = 0 for all k ∈ K. The run on input
u = u1 · · ·un ∈ Σ∗ is the sequence of configurations (q0, ν0) · · · (qn, νn) such that
qi+1 = δ(qi, ui) (for 0 ≤ i < n) and for each k ∈ K, νi+1(k) := [[μ(qi, ui, k))]]νi .
The transducer outputs Tr(u) := νn(f(qn)).

Proposition 3. For regular language T there is a repair-transducer Tr comput-
ing u �→ cost(u, T ). Moreover, given a DFA for T one can build Tr in PTIME.

For the proof simply note that the dynamic-programming identities in Wagner’s
algorithm only use the +c and min operations. Clearly if we disallow use of +c
operation then the transducer can’t accumulate values and so can’t compute
u �→ ed(u, T ). What if we disallow the min operation?

Proposition 4. There is a language T such that every repair-transducer for T
requires the use of min in its update rules.

Proof. Let T = 0∗ + 1∗. Suppose there were a repair transducer Tr for T with
state set Q, register set K, but no use of the min operation. Let δ : Q×Σ∗ → Q
be the transition function (extended to strings) andM : Q×Σ∗×NK → NK the
evaluated update function extended to strings. That is: the run of Tr starting
from (q, ν) on input u ∈ {0, 1}∗ ends in (δ(q, u),M(q, u, ν)). Note that Tr(w) is
the minimum of the number of 0s in w and the number of 1s in w.

1 This is similar to the inc-min grammar of [1]. However there they only allow a binary
min operation.

2 Namely, [[0]]ν := 0, [[intk]ν := ν(k), [[τ + c]] := [[τ ]] + c, and [[min(τ1, · · · , τn)]] :=
min{[[τ1]], · · · , [[τn]]}.
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Fact 1. For every (q, u) there are functions Fq,u : K → K and #Fq,u : K → N
such that for all ν, k,

M(q, u, ν)(k) = ν(Fq,u(k)) + #Fq,u(k), (1)

in words: the kth component of M(q, u, ν) is equal to the Fq,u(k)th component
of ν plus integer #Fq,u(k). This can be proved by induction on |u| and uses the
fact that Tr only has +c updates.

Fact 2. For every Fq,u : K → K there exists N,P ∈ N such that for all
y ∈ N, (Fq,u)

N = (Fq,u)
N+Py. This follows from the fact that the set of functions

K → K is a finite set closed under composition so apply the pigeonhole principle.
Fact 3. Fix u, q such that δ(q, u) = q, and N,P from Fact 1 applied to Fq,u.

For every k ∈ K there exists j ∈ K and α, β ∈ N such that for all ν ∈ NK and
y ∈ N, M(q, uN+Py, ν)(k) = β + yα + ν(j). For the proof use: β := #Fq,uN (k),
j := FN

q,u(k), and α := #Fq,uP (j).
We now apply some pumping arguments. Note that in the lemma if α = 0

then pumping doesn’t increase the value. In this case call the triple (u, q, k) flat.
On the other hand if α > 0 then pumping increases the value. In this case call
the triple (u, q, k) increasing. We exploit this dichotomy.

By the pigeonhole principle there exists q0 ∈ Q and c, d ∈ N such that
δ(ι, 0a) = q0, δ(q0, 0

b) = q0. Thus δ(ι, 0a+bx) = q0 for all x ∈ N. Similarly,
there exists q1 ∈ Q, c, d ∈ N such that δ(q0, 1

c) = q1, δ(q1, 1
d) = q1. Thus

δ(q1, 0
c+dy) = q1 for all y ∈ N. Write wx,y := 0a+bx1c+dy. Note that Tr(wx,y) =

min{a+ bx, c+ dy}. Let k := f(q1) be the register whose value is output when
given strings of the form wx,y.

Suppose x is much bigger than y (technically: a + bx > c + d(y + 1)). Then
after reading input wx,y register k has value c + dy. And after reading input
wx,y+1 register k has value c+ d(y+1). This implies that the triple (1d, q1, k) is
increasing. On the other hand, suppose x is smaller than y. Then after reading
input wx,y register k has value a+ bx. And after reading input wx,y+1 register k
has value a + bx. This implies that the triple (1d, q1, k) is flat. But a triple can
not be both increasing and flat. ��

We summarise the results of this section:

Theorem 5. For every regular language T ⊂ Σ∗ there is a repair-transducer Tr
computing cost : Σ∗ → N, u �→ cost(u, T ). Moreover, the models of transducer
which disallow the +c operators or the min operator cannot, in general, compute
this cost.

3 Streaming Transducers

Here is the generalisation of edit-distance to a source and target language:

Definition 6 (Repair-cost). [2] Given two languages R, T ⊂ Σ∗ define the
repair-cost from R to T as cost(R� T ) := supu∈R infv∈T ed(u, v).
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Note the asymmetry in the definition of repair cost: it expresses the worst-
case cost of repairing all strings in R to strings in T . The cost may be finite
cost((ab)∗ � (ba)∗) = 2 — just delete the first and last letter of the input —
or infinite cost(a∗ � (ba)∗) = ∞ — since ed(a2n, (ba)∗) = n.

Definition 7 (Streaming Transducer). A streaming transducer is a device
of the form Tr = (Σ,Σout, Q, δ, q0, Ω), where

– Σ is a finite input alphabet, and Σout is a finite output alphabet,
– Q is a finite set of states and q0 ∈ Q is an initial state,
– δ is a transition function Q×Σ → Σ∗

out ×Q, and
– Ω is a final-output function Q→ Σ∗

out.

For every string u = a1 . . . an in Σ∗, there is a unique sequence of states q0,
q1, · · · , qn and strings v1, · · · , vn such that δ(qi, ai+1) = (vi+1, qi+1) for all 0 ≤
i < n. In this case define the output of Tr on u to be the string Tr(u) =

v1v2 . . . vnvn+1 where vn+1 = Ω(qn). We write q0
a1/v1−−−→ q1

a2/v2−−−→ · · · an/vn−−−−→
qn

vn+1−−−→.
Define the output of Tr on language R to be the set Tr(R) = {Tr(u) | u ∈ R}.

Definition 8 (Streaming Cost3). [2] For a streaming transducer Tr and an

input string u = a1 . . . an ∈ Σ∗, if the run of u on Tr is q0
a1/v1−−−→ q1

a2/v2−−−→
· · · an/vn−−−−→ qn

vn+1−−−→, then the streaming cost of Tr on u is defined as:

costTr(u) = |vn+1|+
n∑

i=1

ed(ai, vi)

For language R define costTr(R) := supu∈R costTr(u).
If Tr(R) ⊂ T then say that Tr is a streaming transducer from R to T .

Note. ed(u,Tr(u)) ≤ costTr(u) and so cost(R � Tr(R)) ≤ costTr(R). The
streaming-cost is an upper bound on the repair-cost. So if cost(R � T ) = ∞
then there is no streaming-transducer from R to T with finite streaming-cost.

Example 9. [2] Let Σ = {a, b, c}, R = (a+ b)c∗(a++ b+) and T = ac∗a++ bc∗b+.
Then for every r ∈ R there is t ∈ T such that ed(r, t) ≤ 1 (correct the first
letter if required). However, for every streaming transducer Tr from R to T ,
costTr(R) = ∞. In other words, the cost of repairing all strings in R to strings
in T is finite, but is not realisable by a streaming transducer with finite streaming-
cost.

In the last example consider a streaming transducer Tr that outputs an ’a’ and
then copies the rest of the input (ie. it sends (a + b)cnw to acnw). It correctly
repairs strings of the form (a+b)c∗a+ (incurring cost ≤ 1) and incorrectly strings
of the form (a + b)c∗b+; that is, it is a streaming transducer from (a + b)c∗a+

3 In [2] this is called the aggregate cost of Tr on u.
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to T . Then, informally, Tr repairs with cost at most 1 half the strings of R to
T ; and formally Tr is a (12 , 1)-streaming transducer (Definition 11). To formalise
this we introduce probability measures over infinite strings.

A distribution on finite set A is a function d : A → [0, 1] with Σa∈Ad(a) = 1.
For instance, d : σ �→ 1

|A| is a distribution on A, and d′ : σ1 · · ·σn �→
∏

i d(σi)

is a distribution on An. The distributions over A will be denoted dbn(A). For
u ∈ A∗, let cone(u) ⊂ Aω be the set of infinite strings that have u as a prefix.
There is a unique probability measure μd on the Borel σ-field generated by the
cones4 with the property that the measure of cone(u) is d′(u).

Example 10. Continuing with Example 9, let d and d′ be as above (thus d′(u) :=
3−|u|). The probability (wrt. μd) that every prefix of an infinite string is in (a+
b)c∗a+ conditioned on the infinite string having a prefix in R = (a+b)c∗(a++b+)
is 1

2 .

Definition 11 ((η, α)-streaming transducer). Fix regular languages R, T ,
and a streaming transducer Tr from R to T , and a non-negative integer α. Say
that infinite string u = a0a1a2 . . .

1. is in need of R-repair if there exists n so that a0 . . . an is in R;
2. is 〈R, T 〉-repairable by Tr within α if for all n with a0 . . . an ∈ R the cost

costTr(a0 . . . an) is at most α and Tr(a0 . . . an) ∈ T .

Say that Tr is an (η, α)-streaming transducer (from R to T ) if η is the probability
that u is 〈R, T 〉-repairable by Tr within α conditioned on u being in need of R-
repair. Here probabilities are taken with respect to μd induced by the measure
on cones d′ itself determined by d : w �→ |Σ|−|w| where Σ is the alphabet of R.
When R and T are fixed we may not mention them.

We give an example where η is close to 1:

Example 12. Let Σ = {a, b, c, d} and Rk := ({a, b}k \ bk)c+ ∪ bkd+ and T =
(a + b)∗c+. Fix k and note that cost(Rk � T ) = ∞ since ed(bkdn, T ) = n
(as T does not accept any string with d in it). However, there exists an (η, α)-
streaming transducer with α = 0 and η = 1 − 1

2k
which operates as follows: it

copies the first k letters and then outputs a ‘c’ for every remaining input letter.
The only strings in Rk which it cannot repair within cost 0 are the ones of the
form bkd+.

Partial-repair Problem. The bounded-repair problem is, given DFAs for R
and T to decide whether or not there exists a streaming transducer Tr from R
to T such that costTr(R) is finite. It is proved in [2] that the bounded repair
problem is PTIME-complete. Moreover, if it exists, a streaming transducer can
be constructed quite easily from their proof.

4 The Borel σ-field is defined as the least collection of subsets of Aω containing the
cones and closed under countable union and complementation. Sets in the σ-field
are called measurable. All our sets in this paper are measurable.



220 K. Chatterjee, S. Chaubal, and S. Rubin

Question 13. Suppose cost(R� T ) = ∞, or costTr(R) is ∞ or just very large
for every streaming-transducer Tr from R to T . How to transform R to T ?

Our proposal is, given R, T and allowed cost α, to construct a streaming trans-
ducer Tr that, roughly, repairs as many strings as possible. Formally this means
solving the partial-repair problem: compute the largest η for which there exists a
(η, α)-streaming transducer from R to T ; and compute the corresponding trans-
ducer. The main theorem of this section states that we can do this in PTIME:

Theorem 14 (partial-repair problem). Given DFAs for R and T , and posi-
tive integer α, given in unary, one can compute, in PTIME, the largest η ∈ [0, 1]
for which there exists an (η, α)-streaming transducer sending R to T .5 Moreover,
we can build an (η, α)-streaming transducer from R to T in PTIME.

The rest of the paper is devoted to a proof of this theorem.

3.1 Tools for Theorem 14

Definition 15 (MC). A Markov chain M is a tuple (Q,Δ, ι) where

– Q is a finite set of states,
– Δ : Q→ dbn(Q) gives the transition probabilities, and
– ι ∈ dbn(Q) is the initial distribution.

The edges E consist of pairs (q, q′) such that Δ(q)(q′) > 0. A path q1q2 · · · of
M is a (finite or infinite) sequence of states such that ι(q1) > 0 and successive
states qi, qi+1 satisfy E.

Write ΩM for the set of infinite paths in M . Form a topology on ΩM by taking
as basis the sets of the form cone(x) where cone(x) consists of all infinite paths
in M that start with the finite path x. Define the probability in M of a path
q1 · · · qn ∈ Q+ as ι(q1) ×

∏
1≤i<nΔ(qi)(qi+1). Define μM on cone(x) as the

probability in M of path x. Then μM can be uniquely extended to the Borel
σ-field generated by the open sets. Write PrM for the unique probability measure
(over ΩM ) extending μM .

Definition 16 (Labelled MC). A Markov chain M = (Q,Δ, ι) is Σ-labelled
if for each q ∈ Q the edges out of q (ie. E(q) := {(q, q′) : E(q, q′)}) are in
bijection with Σ.

Being labelled means that every state q has exactly |Σ| edges, and each edge
goes to a different state.

Example 17 (Uniform MC UΣ). Let U = UΣ have states Σ, transition from σ
to σ′ labelled σ′ with probability 1

|Σ| , initial distribution sends σ to 1
|Σ| . Then

U is a Σ-labelled MC. The probability of u ∈ Σ+ is equal to |Σ|−|u|. Thus the
measure PrU agrees with μd on the cones cone(u). Hence PrU and μd agree on
the measurable subsets of Σω.
5 That is, η is a rational and the algorithm computes a representation for it in PTIME.
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The following lemma is standard:

Lemma 18. There is a PTIME algorithm that given a MC M and a set of
states A computes the probability that a path in M reaches A.

The following definition annotates a MC by the states of a DFA.

Definition 19 (M 1mc D). For Σ-labelled Markov chain M and DFA D over
alphabet Σ ×QM define the Σ-labelled Markov chain M 1mc D as follows:

– The state set is QM ×QD.
– Suppose there is an edge EM (m,m′) labelled σ. Then there is an edge from
(m, d) to (m′, δD(d, (σ,m′))) with probability Δ(m)(m′) and label σ.

– the initial distribution sends (m, d) to ιM (m) if d is the initial state of D,
and to zero otherwise;

As a degenerate case, in case D has alphabet Σ then write M 1mc D to mean
M1mcF where F has the same state set as D, the same initial state, has alphabet
Σ ×QM , and sends, for all m, state q on input (σ,m) to δD(q, σ).

Note. It can be checked that the object defined is indeed a Σ-labelled Markov
chain. We point out that in an edge (m, d) to (m′, d′) labelled σ, the state d′

depends directly on m′ — not m — and σ.
Let M and D be as in the definition. Every path m1m2 · · · of M induces a

unique sequence of labels σ1σ2 · · · such that the edge from (mi,mi+1) is labelled
σi which itself induces a unique sequence d1d2 · · · of states of D satisfying di+1 =
δD(di, (σi,mi+1)) where d1 is the initial state of D. Let

ρ : m1m2 · · · �→ (m1, d1)(m2, d2) · · ·

be the annotation map. Note that since D is a DFA ρ is a bijection between
paths in M and paths in M 1mc D.

Lemma 20. Let M be a Σ-labelled MC, D a DFA over Σ×QM . Then for every
measurable X ⊂ (QM )ω, PrM (X) = PrM�mcD(ρ(X)).

For the proof it is enough to consider X of the form cone(x).

Example 21. Let R be a DFA over Σ with final states FR and U = UΣ the
uniform Markov chain. The lemma says that PrU of the set of paths in need of
R-repair equals the probability in PrU�mcR of the set of paths that reach a state
of the form Σ × FR.

Definition 22. A Markov decision process is a tuple ((V,E), (Vdec, Vrand), μι, μ)
where

– (V,E) is a directed graph, Vdec, Vrand partition V ,
– μ : Vrand → dbn(Vdec) is the edge distribution,
– μι ∈ dbn(Vrand) is the initial distribution,
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– for u ∈ Vrand, (u, v) ∈ E iff μ(u)(v) > 0,
– for v ∈ V , E(v) (the out-going edges from v) is non-empty.

We say that the vertices Vdec belong to the decider, while the vertices Vrand
belong to the randomizer. A play is a path in (V,E).

We think of a labelled MDP just as a labelled MC with the addition that decider’s
edges are labelled by elements from a set Act. Formally:

Definition 23 (Labelled MDP). An MDP is (Σ, Act)-labelled if

– for each v ∈ Vrand the edges from v are in bijection with Σ, and
– for each v ∈ Vdec each edge from v is labelled by an element of Act.

Note (identification). Suppose |E(u)| = 1 for all u ∈ Vdec. Then a (Σ, Act)-
labelled MDP can be naturally viewed as Σ-labelled MC as well as a streaming
transducer with input alphabet Σ and output values taken from Act.6 We call
this identification and write things like “this MDP is the same, modulo the
identification, as that MC”.

Definition 24 (Strategy in an MDP). A strategy σ for the decider is a
function σ: V ∗ · Vdec → V such that for all w ∈ V ∗ and all v ∈ Vdec we have
σ(w · v) ∈ E(v). A memoryless strategy for the decider is independent of the
history and depends only on the current state, and can be described as a function
σ : Vdec → V . A finite-state strategy for the decider is one induced by a DFA
(Q, δ, ι) over input alphabet V and output function θ : V × Q → V as follows:
σ(wv) := θ(v, δ(ι, w)).

As usual, applying a strategy s to an MDP G results in a MC, which we write
G[s].

Definition 25. Let s be a finite-state strategy in G. Write Trs for the streaming
transducer associated with G[s]. Note that Trs has input alphabet Σ and outputs
elements from Act.

We now define a certain interleaving of a MC and an NFA yielding an MDP. The
idea is that the MC determines the allowed moves of the randomizer while the
NFA determines the allowed moves of the decider.

Definition 26 (M 1mdp N). Suppose M is a Σ-labelled Markov chain and N
is an NFA over alphabet Σ × Act. Define a (Σ, Act)-labelled MDP M 1mdp N
as follows:

– the randomizer’s nodes are QM ×QN ,
– the decider’s nodes are QM ×Σ ×QN ;
– if in M there is an edge from m to m′ with label σ and probability x, then

for all n there is an edge in M 1mdp N from (m,n) to (m′, σ, n) with label
σ and probability x;

6 Later Act will be a set of strings output by a streaming transducer.
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– if in N there is a transition from n to n′ labelled σ ∈ Σ and a ∈ Act, then
for all m there is an edge from (m,σ, n) to (m,n′) labelled a;

– the initial distribution sends (m,n) to ιM (m) if n is the initial state of N ,
and to 0 otherwise.

Note. In case D is a DFA then M 1mdp D (with the Act-labelling removed) is,
modulo identification, the Σ-labelled MC M 1mc D.

Lemma 27. If s is a finite-state strategy then the MC (M1mdpN)[s] is, modulo
identification, the same as M 1mc D for some DFA D.

An objective Φ for a game graph is a subset of plays. We consider two types of
objectives, reachability and safety objectives. Given a set X ⊂ V of nodes, the
reachability objective reach(X) requires that some vertex in X be visited, and
dually, the safety objective safe(X) requires that only vertices in X be visited.
Solving an MDP for objective Φ means finding a strategy s such that, amongst
all possible strategies, the probability in the chain G[s] of Φ is maximised. We
call this maximal probability the value of the MDP for objective Φ. The follow-
ing lemma is a slight variation on the standard problem of solving MDPs with
reachability objectives.

Lemma 28. There is a PTIME algorithm that computes the value (and strategy)
of an MDP whose objective is a boolean combination of reachability objectives.

3.2 Proof of Theorem 14

From DFAs R and T and non-negative integer α we construct an MDP GR,T,α

and objectives reach(ObR) and safe(ObS) such that the following two quan-
tities are equal: 1) the maximum probability over all strategies of safe(ObS)
conditioned on reach(ObR); 2) the largest η ∈ [0, 1] for which there exists an
(η, α)-streaming transducer sending R to T . We now provide the construction
(in I), then show how to compute the value (in II), and finally prove that the
value is equal to the required conditional probability (in III).

I. Construction of MDP GR,T,α. The MDP is constructed in three steps:

Step 1. From the DFA R = (QR, Σ, δR, q0R, FR) construct the Σ-labelled
Markov chain UR := UΣ 1mc R, as in Example 21. Its state set is Σ ×QR.

Step 2. From the DFA T = (QT , Σ, δT , q0T , FT ) and non-negative integer α
construct an NFA (without final states) Tα over alphabet Σ×Σ∗ that simulates
the possible repairs of the input string. It does this by storing the allowed number
of edit operations left.The non-determinism will corresponds to Decider’s choices
in the MDP. First we need some notation. Write best-str(q, q′, σ) for some
fixed string w (say the length-lexicographically least) amongst those for which
ed(w, σ) is minimal with the property that δT (q, w) = q′. Now, define Tα as
follows:

– the states are QT × {⊥, 0, 1, · · · , α} (here ⊥ means we have failed to repair
the input string);



224 K. Chatterjee, S. Chaubal, and S. Rubin

– the initial state is (q0T , α) (meaning initially there are α edit operations
available);

– on input (σ, σ) there is a transition from (q,⊥) to (δT (q, σ),⊥), (ie. once we
have failed to repair, just copy the input to the output);

– on input (σ,best-str(q, q′, σ)) there is a transition from (q, n) to (q′,m)
where

m = n− ed(best-str(q, q′, σ), σ)

if this quantity is non-negative, and otherwise m = ⊥.

Step 3. Define the Σ-labelled MDP GR,T,α as 1mdp-product of the Markov
chain UR and NFA Tα.

Notation. Every node in Vrand is of the form (q, t, n) ∈ QUR × QT ×
{⊥, 0, 1, · · · , α}. Every node in Vdec is of the form (q, σ′, t, n) ∈ QUR×Σ×QT ×
{⊥, 0, 1, · · · , α}. The second component of the element q ∈ QUR := Σ × QR is
called the QR-component of (q, t, n) and of (q, σ′, t, n).

Objectives. We introduce two objectives. Let ObR be the set of states of
GR,T,α whose QR-component is in FR. Let ObS be the set of states of GR,T,α

such that if the QR-component is in FR then both t ∈ FT and n �= ⊥. The two
objectives are reach(ObR) and safe(ObS).

II. Computing the Value of GR,T,α. Given R,T and α, the value η∗ of GR,T,α

is defined as the maximum, over all strategies s, of the conditional probability,

PrGR,T,α[s] (safe(ObS) | reach(ObR)) =
PrGR,T,α[s] (safe(ObS) ∩ reach(ObR))

PrGR,T,α[s] (reach(ObR))

Proposition 29. The value of the mdp GR,T,α is computable in PTIME and
can be realised by a memoryless strategy.

For the proof observe that the value of reach(ObR) is independent of the strategy
s chosen by the decider. This is so because s does not have any effect on the QR-
component of the state of GR,T,α. Thus the value of reach(ObR) can be easily
calculated (fix any memoryless strategy and apply Lemma 18). So, we just need
to find the value of the objective safe(ObS) ∩ reach(ObR). By Lemma 28 this
can be computed, and the required strategy is memoryless.

III. Existence of an Optimal Streaming Transducer. Fix R, T and α, and
let η∗ be the value of the MDP GR,T,α for the property safe(ObS) conditioned on
reach(ObR). In this section Proposition 31 immediately implies what we want,
namely: 1) there is an (η∗, α)-streaming transducer from R to T ; 2) there is no
(η, α)-streaming transducer from R to T with η > η∗.

Lemma 30. Let s be a finite-state strategy for GR,T,α and Trs the correspond-
ing streaming transducer. Then the probability in MC GR,T,α[s] of safe(ObS) ∩
reach(ObR) divided by the probability of reach(ObR) is equal to the probability
that a string in need of R-repair is 〈R, T 〉-repaired by Trs within α.
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Proof. By Lemma 27 GR,T,α[s] is a MC of the form UR 1mc D for some DFA
D. Thus the probability of reach(ObR) in GR,T,α[s] is equal to the probability
in UR1mc D of reaching a state whose QR-component is in FR. Note that the
annotation map ρ preserves the property that a path reaches a state whose QR-
component is in FR. By Lemma 20 the latter is equal to the probability in UR
that a path reaches a state whose QR-component is in FR. By Example 21 this is
equal to the probability that that an infinite string is in need of repair. Similarly
it can be shown that the probability of safe(ObS) in GR,T,α[s] is equal to the
probability in that an infinite string is 〈R, T 〉-repairable by Trs within α; and
the same for the intersection. ��

Proposition 31. 1. From a memoryless strategy s in GR,T,α with probability
(of the conditional objective) η one can construct an (η, α)-streaming trans-
ducer from R to T .

2. From an (η, α)-streaming transducer Tr from R to T one can construct a
strategy sTr in GR,T,α with value ≥ η.

Proof. The first item is immediate from Lemma 30.

For the second, a transducer Tr gives rise to the following strategy sTr: suppose
ρ ∈ V ∗ is a play ending in (q, σ, t, n) ∈ Vdec where q is a state of UR and t of
Tα. Let in(ρ) be the input (ie. the letters that Randomizer has chosen) and note
that it ends in σ. The strategy sTr sends ρ to node (q, t′, n′) ∈ Vrand, where
t′ = δT (q0T ,Tr(in(ρ))) where δT is the transition function and q0T the initial
state of the DFA for T . Note that sTr is a finite-state strategy. So let Tr′ be
the transducer associated with strategy sTr and apply Lemma 30. Then the
probability in GR,T,α[sTr] of safe(ObS)∩reach(ObR) divided by the probability
of reach(ObR) is equal to the probability that a string in need of R-repair is
〈R, T 〉-repaired by Tr′ within α. It is required to show that this latter probability
is at least η. For this it is sufficient to show that if a string is repaired by Tr
then it is repaired by Tr′. But this is the case because although both Tr and
Tr′ suggest the same next state for a given input string, say from (q, σ, t, n) to
(q, t′, n′), they possibly differ on the output string, say u and v. In particular,
ed(σ, u) ≥ ed(σ, v) := best-str(t, t′, σ) by the definition of GR,T,α. ��
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Abstract. We study the Shannon information rate of accepting runs of
various forms of automata. The rate is therefore a complexity indicator
for executions of the automata. Accepting runs of finite automata and
reversal-bounded nondeterministic counter machines, as well as their re-
strictions and variations, are investigated and are shown, in many cases,
with computable execution rates. We also conduct experiments on C pro-
grams showing that estimating information rates for their executions is
feasible in many cases.

Key words: information rate, automaton, execution.

1 Introduction

A program, when it runs, will demonstrate an execution path. From a program-
mer’s view, the complexity of the paths is a good indicator of the program’s
semantic complexity, when one treats the program as a white-box. Such an indi-
cator is useful in software testing, where a set of test cases chosen according to
a coverage criterion can again be re-evaluated to see how much of the semantics
are “covered”.

Automata have been a fundamental and universal model for all modern pro-
grams. Therefore, providing a complexity measure for executions of automata
may provide insights to real-world programs. In theory, an execution or a run,
being a sequence of instructions, is a word. In this way, one may collect all the
accepting runs (on all the possible input words) of an automaton into a language
L. Then, what would be a good complexity measure for L? Traditional automata
theory measures a language’s complexity from the computing resources needed
by a device to recognize a word in L; i.e., time/space, storage (finite memory,
pushdown stack, counters etc). However, such measurements are not obviously
relevant to the aforementioned semantic complexity of programs. In fact, there
has already been a fundamental notion called information rate, due to Shannon
[17], to characterize such complexity, which has been confirmed at least in cod-
ing theory [6]. It measures, asymptotically, the bit rate needed to losslessly code
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words of length n in a language L. In this paper, we study various classes of
automata whose execution information rates are computable.

We first study finite automata (NFA). It turns out that, as far as a two-way
NFA (2NFA) is concerned, the problem of computing its execution information
rate is in general open, even when the 2NFA does not have ε-moves, sweeps
from left to right and back, and operates only on unary input. The root of the
difficulty inherently comes from the fact that accepting runs of such two-way
automata are not necessarily regular nor context-free. Results [15,19,2] on com-
puting information rates for formal languages are very limited, not to say for
non-context-free languages. We show that, when the 2NFA is finite-crossing, the
rate is computable. We also show that, through a rather complex proof, when
the aforementioned restricted 2NFA further required to be bounded-crossing
(roughly speaking, on an input, the 2NFA can keep sweeping for an unbounded
number of times), the rate is finally computable. Though the result is very re-
stricted, it reveals, on the other hand, the difficulty of establishing computability
of information rate for non-context-free languages.

As for automata with infinite states, we study reversal-bounded nondeter-
ministic counter machines (NCM), and show that these machines, as well as
many variations, have computable execution information rates. The proofs rely
on our recent fundamental result [7] concerning the computable information
rate for the language accepted by a deterministic reversal-bounded counter ma-
chine. Whether the fundamental result still holds for nondeterministic machines
is open.

Automata are programs. Providing a complexity metric for programs has
been a research issue with a long history; i.e., [11,10,3,4,18]. But most existing
research measures the complexity on its code, with only indirect relationships
to its execution complexity. Clearly, our execution information rates are not
limited to automata; they could be generalized to programs as well. Indeed, we
also conduct experiments on C programs showing that estimating information
rates for their executions is feasible in many cases. However, because in general
programs are Turing-complete, it is a new research issue on how to estimate the
execution information rates for large programs in practice.

2 Execution Information Rate for Finite Automata

An automaton is a device that works on a given input word (when it is 1-tape
automaton). Its program is a set of distinct instructions. It may be equipped with
additional storage; e.g., a stack, one or more counters. A run of the automaton
is simply a sequence of instructions. When coded properly, an instruction can
be understood as a symbol; in this case, the run is a word. A run is a execution
behavior of the automaton in the sense that if we treat an automaton as a C
program, then the run is simply a representation of a sequence of instructions
in the C program may or may not be executed successfully.

A run may not be valid; i.e., does not correspond to an actual execution of the
automaton. For instance, a run that ends up with state s, followed by one more
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instruction saying that to make a move from state s′ �= s, is certainly invalid.
Hence, a valid run is one that will not make the automaton crash. A run is
accepting if it is an actual run, starting from the initial state, of the automaton
on some input word such that the last instruction in the run ends up with an
accepting state (encoded in the instruction).

Let M be an automaton and L(M) be the language accepted by M . We use
R(M) to denote the set of all accepting runs of M ; i.e., R(M) = {α : for some
w ∈ L(M), α is an accepting run when M works on w.} In particular, when M
is nondeterministic, M may have multiple accepting runs on w.

Clearly, when M is an NFA, R(M) is regular. When M is a 2NFA, it is an
NFA but can make turns on the input. In this case, the set R(M) can be defined
accordingly. However, when M runs, after making a turn, the input symbols
read must be the same input symbols read before the turn. Observe that, even
though a 2NFA M can be simulated by an NFA, R(M) is not necessarily regular
nor context-free.

A 2NFA M is finite-crossing if, when it runs, the input head crosses any cell
on the input tape up to a given constant number of times. A 2NFA M is k-turn
if it makes at most k turns in any execution on any input word. M is finite-turn
if it is k-turn for some k. A finite-turn 2NFA is also finite-crossing. In either
case, even though M can be simulated by an NFA, the set R(M), again, is not
necessarily regular nor context-free.

The aforementioned variations of NFAs can be found in a standard textbook
[12]. When the automata are deterministic, we use ‘D’ in place of ‘N’; e.g., DFA.

Let Σ be a nonempty and finite alphabet and L ⊆ Σ∗ be a language. For a
number n, we use Sn(L) to denote the number of words in L whose length is n.
The information rate λL of L is defined as

λL = lim
n→∞

log Sn(L)
n

.

Where the limit does not exist, we take the upper limit, which always exists for a
finite alphabet. By convention, log 0 = 0. Throughout this paper, the logarithm
is to base 2. This definition was proposed by Shannon [17], to characterize the
number of bits per symbol needed to losslessly encode a word in L, and by Chom-
sky and Miller [5] to measure a complexity of a regular language. In a recent
paper [7], we show that, for some classes of formal languages, the information
rate is computable, using a purely automata-theoretic approaches. When an au-
tomaton is thought of a black-box, an accepted word is an externally observable
“behavior” of the automaton. In this sense, the information rate of the language
accepted by the automaton is to measure the complexity of the automaton’s
externally observable behaviors. In this paper, we study the information rate of
R(M) for an automaton M . The rate is also called the execution information
rate of M . The rate is important in practice as well since, when a C program
is modeled as an automaton, it provides a way to estimate the number of test
cases (e.g., execution paths) needed for execution testing the C program.

We need the following fundamental result.
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Theorem 1. The information rate of a regular language is computable [5].

When M is an NFA, clearly, λR(M) is computable since R(M) is a regular lan-
guage. Notice that, in our setting, an instruction is succinctly encoded as a
symbol (with length 1), but the full instruction can always be recovered by a
finite table look-up. In particular, when M is a DFA, λL(M) = λR(M).

Unfortunately, when M is a 2NFA, currently we do not know whether λR(M)

is computable. We are going to study some restricted classes of 2NFAs.

Theorem 2. The execution information rate of a finite-crossing (and hence
finite-turn) 2NFA is computable.

The proof idea of Theorem 2 is to use the standard crossing sequence technique
and introduce a length-preserving and one-to-one encoding of an execution.

As we have mentioned earlier, we do not know whether the execution infor-
mation rate of a 2NFA M is computable. However, one can always restrict the
M to be finite-crossing and hence the rate computed (using Theorem 2) for the
restricted M can be regarded as a lower approximation of the original λR(M).

There is a special case for a non-finite-crossing 2NFAs where the rate is com-
putable. We will study it in below.

A 2NFA is sweeping if it does not have ε-instructions (i.e., will read a symbol
on every move), and, furthermore, every right-to-left turn happens when the
head is at the left end of the tape and every left-to-right turn happens when the
head is at the right end of the tape. We shall emphasize again that the accepting
runs of a sweeping 2NFA are not necessarily regular nor context-free. Also, even
every 2NFA can be made one-way equivalently in terms of language acceptance,
doing this may not maintain the rate of runs of the original 2NFA.

One can imagine a run of a sweeping 2NFA is a multitrack word (or, more
precisely, a two-dimension word): An accepting run always forms a rectangle
with the width n being the length of the input word and the height k being
the number of sweeps that are made in the run; we shall call such a run to be
a (n, k)-run. Clearly, the total length of the run is T = 2nk. (Without loss of
generality, we assume that the head of M returns to the left end of the tape
when it accepts. Each sweep is a round-trip: from the left end of the tape to the
right end, and back to the left end.)

We say that a sweeping 2NFA M with m states is g-crossing-bounded if g is a
monotonic function with g(0) ≥ m and lim g(n)→∞ such that every accepting
(n, k)-run of M is g-crossing-bounded; i.e., satisfying k ≤ g(n). Intuitively, it
says that such an M will not execute a run that keeps sweeping the input for
an unbounded number of times. However, M is not necessarily finite-crossing
since the bound is not uniform in the length n of the input. For instance, when
g(n) = n+m, an accepting run of M always sweeps for at most n+m times when
n is large. This restriction is outside the automaton, of course, since the 2NFA
does not have the memory to count the unbounded number of crossings. That is,
there is a stand alone monitor to supervise a run; when the number of crossings
exceeds the bound, the automaton will be shut down without accepting. We
use Rg(M) to denote the set of all accepting runs of M (that are g-crossing-
bounded). M is crossing-bounded if it is g-crossing-bounded for some g.
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A unary 2NFA is one works on unary input with left and right endmarkers.
Now, we have the following result.

Theorem 3. The execution information rate of a crossing-bounded sweeping
unary 2NFA is computable.

Proof. Let M be a g-crossing-bounded sweeping unary 2NFA. Before we start
further with the proof, some definitions are needed. An s′s-sweep is a run that
starts from state s′ with the head at the left end of the tape and makes exactly
one turn (at the right end of the tape) before entering the left end of the tape
again at state s. In below, when we say that two runs are concatenated, we
implicitly assume that the ending state of the first run is the same of the starting
state of the second run. An s-loop is a run starting with state s and ending with
state s, and is a concatenation of one or more sweeps. A simple-s-loop is a s-loop
where there is no s′-loop, for any s′, inside. A simple-s-loop can not contain more
than m (the number of states in M) sweeps, and hence is finite-crossing.

Let α be an accepting run on unary input word w (the w is encoded in the
run). Clearly, the α can be expressed as a concatenation of a number of sweeps:

βs0s1 · · ·βsk−1sk , (1)

for some distinct states s0, · · · , sq, satisfying: βs0s1 , · · · , βsk−1sk are s0s1-sweep,
· · ·, sk−1sk-sweep, respectively, and, s0 is the initial state, sk is the accepting
state of M (without loss of generality, we assume that the initial and the accept-
ing states are distinct in M). In particular, s0 · · · sk is called the state sequence
of α. Assume that α contains more than m sweeps (i.e., k > m), and hence it
contains one or more loops. One by one, we can delete simple loops from α, until
only one simple loop, say, a simple-s-loop, left. Suppose that the state sequence
(with length not longer than m + 1) of the simple-s-loop is τ , and after we fur-
ther delete the simple-s-loop, we obtain an accepting run, with its state sequence
(with length not longer than m) denoted by η, that does not contain any loops.
In this case we say that the original α has signature θ = (η, τ). Note that the
sequence η contains exactly one appearance of state s and the sequence τ must
start and end with the state s. To emphasize this fact, we use (θ, s) to denote
the signature instead. There are only finitely many choices of signatures, and
one α may corresponds to multiple signatures. We use Lsimple

(θ,s) to denote the set
of all simple-s-loops, such that, for each such simple-s-loop, there is an accept-
ing run α containing exactly one loop, which is the simple-s-loop, and having
signature (θ, s). Every run in Lsimple

(θ,s) is finite-crossing, and hence, from Theorem

2, the information-rate λLsimple
(θ,s)

is therefore computable. (A run in Lsimple
(θ,s) ; it is

a simple-s-loop contained in an accepting run and, after deleting all the loops
but the simple-s-loop, the accepting run is finite-crossing. We can prove that the
simple-s-loop is indeed part of a finite crossing and accepting run by running
another constructed NFA. We omit the details.)

We use λ∗ to denote the maximum of all λLsimple
(θ,s)

; i.e.,

λ∗ = max
(θ,s)

λLsimple
(θ,s)

(2)
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and use (θ∗, s∗) for the signature that reaches the maximum in (2). Notice that
on an input size of n, a run in Lsimple

(θ,s) has fixed length 2|(θ, s)|n, where |(θ, s)|, the
length of τ specified inside θ, is a constant. It is not hard to see by definition, for
any small ε > 0, there is an n0 such that, for every n ≥ n0, and every signature
(θ, s),

log ST (Lsimple
(θ,s) )

T
< λ∗ + ε, (3)

where T = 2|(θ, s)|n, and among which, there are infinitely n satisfying

log ST (Lsimple
(θ∗,s∗))

T
< λ∗ − ε, (4)

where T = 2|(θ∗, s∗)|n.
Now, we are ready to prove the theorem. We use Rfntcrs(M) to denote the

accepting runs of M that makes at most m (the number of states in M) sweeps.
Notice that Rfntcrs(M) ⊆ Rg(M) by definition, and λRfntcrs(M) is computable,
according to Theorem 2. We now consider Rg,>m(M) that is the set of all g-
crossing-bounded accepting runs of M , each of which makes more than m sweeps.

Consider again α ∈ Rg,>m(M) be an accepting run on unary input word w
(the w is encoded in the run). We use n > n0 to denote the length of unary w
and use k = T/2n to denote the number of sweeps, where T is the length of α. As
in before, we use s0 · · · sk to denote the state sequence of α. We are interested in
estimating the number of accepting runs in Rg,>m(M) with length T , and with
the same state sequence. Clearly, one can delete all the simple loops from α,
one by one. The result, which is not necessarily unique, is still an accepting run
containing k0 ≤ m sweeps. The deleted simple loops, totally containing k − k0

sweeps, have combined length being exactly 2n(k − k0). For each such simple
loop, say a simple-s-loop, how many simple-s-loops can we use to replace the
simple-s-loop in the original α such that the resulting α is still an accepting run?
Using (3), the number is upper bounded by 2t(λ∗+ε), where t is the length of the
simple-s-loop. From this, the total number of all possible accepting (n, k)-runs
with the state sequence s0 · · · sk, is bounded above by:

22n(k−k0)(λ∗+ε) · 22nk0λ0 ,

where the λ0 is 2 logm + log |Σ| is the maximum bit rate needed to code an
instruction. Considering that there are at most 2k log m state sequences, the total
number S(n,k) of all possible accepting (n, k)-runs satisfies,

log S(n,k)

T
≤ k log m + 2n(k − k0)(λ∗ + ε) + 2nk0λ0

T
, (5)

where T = 2nk. Sending T to infinity, and using the fact that M is g-crossing-
bounded (so n goes to infinity as well), we have

λRg,>m(M) ≤ λ∗ + ε. (6)
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Taking ε→ 0, we therefore have,

λRg,>m(M) ≤ λ∗. (7)

On the other hand, we consider the signature (θ∗, s∗). By definition, every simple-
s∗-loop in Lsimple

(θ∗,s∗) is part of an accepting run α that has signature (θ∗, s∗) and
contains exactly one loop that is the simple-s∗-loop. Once this loop is dropped,
the number of sweeps k0 is uniquely specified in the signature θ∗ (the length of
η∗ in θ∗). There are a monotonic and infinite sequence of numbers

n1, · · · , ni, · · ·

with each satisfying (4) and limni =∞. Define, accordingly, Ni to be the max-
imum number satisfying |(θ∗, s∗)|Ni < g(ni) − m. That is, the α is still a g-
crossing-bounded accepting run with signature (θ∗, s∗) when the simple-s∗-loop
is looped for Ni times. Notice that, by the definition of g, Ni → ∞ as i → ∞.
Notice that every time it is looped, another simple-s∗-loop working on the same
unary input word w can be chosen (we shall emphasize that, because w is unary,
the length of input decides uniquely the w; this is why the proof does not work
for non-unary 2NFA). Define Ti = k0 + 2|(θ∗, s∗)|Nini, which is the length of
the α with additional loops added. Using (4), this gives

log STi(Rg,>m(M)) ≥ 2|(θ∗, s∗)|Nini(λ∗ − ε).

Immediately, taking i→∞, we have

λRg,>m(M) ≥ λ∗ − ε. (8)

Again, sending ε → 0 and combining (7), we have λRg,>m(M) = λ∗. The result
follows, since λRg(M) = max(λ∗, λRfntcrs(M)). 	


It seems that removing the bounded-crossing condition from Theorem 3 is diffi-
cult. It relies on the following conjecture which we believe is likely true. Let L
be a language. We use

ΛL = sup
log Sn(L)

n

to denote the max-rate of L. We conjecture that the max-rate of a regular
language is computable. If this conjecture holds, we believe we can show the
bounded-crossing condition can be removed from Theorem 3.

Clearly, for a two-way deterministic finite-automaton (2DFA), the execution
information rate is computable, since, when it deterministic, it is finite-turn.

Now we consider 2-tape NFAs. In a 2-tape NFA, each instruction is in the
following form: (p, a, b)→ q where a, b can be ε. One can easily construct a DFA
that accepts all the accepting runs of a 2-tape NFA. Therefore, the execution
information of a 2-tape NFA is computable. The result can be generalized to
multi-tapes.
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3 Execution Information Rate of Some Classes of Infinite
State Automata

A counter is a nonnegative integer variable that can be incremented by 1, decre-
mented by 1, or stay unchanged. In addition, a counter can be tested against 0. A
nondeterministic counter machine (NCM) is a one-way nondeterministic finite au-
tomaton augmented with k counters, for some k. An NCM M is reversal-bounded
[13] if, for some nonnegative integer r, each counter is r-reversal-bounded; i.e., it
makes at most r alternations between nondecreasing and nonincreasing modes in
any computation. When M is deterministic, it is called a reversal-bounded DCM.
As usual, L(M) denotes the language that M accepts.

Reversal-bounded NCMs and their variations have been extensively studied
since its introduction in 1978 [13]. In particular, reversal-bounded NCMs have
found applications in areas like Alur and Dill’s [1] time-automata [8,9], Paun’s
[16] membrane computing systems [14], and Diophantine equations [20]. For the
purpose of this paper, the following result is fundamental:

Theorem 4. The information rate of the language accepted by a reversal-
bounded DCM is computable [7].

Given a run α of a reversal-bounded NCM M , one can straightforwardly con-
struct a reversal-bounded DCM to check whether α is an accepting run of M ,
where the reversal-bounded counters in M are directly simulated in the reversal-
bounded DCM. We still use R(M) to denote the set of all accepting runs
of M . Hence, immediately from Theorem 4, the information rate of R(M) is
computable.

Theorem 5. The execution information rate of a reversal-bounded NCM is
computable.

Similar to Theorem 2, one can generalize Theorem 5 to the case when the
reversal-bounded NCM is finite-crossing.

Theorem 6. The execution information rate of a finite-crossing reversal-
bounded 2NCM is computable.

Clearly, the result can be generalized to a reversal-bounded NCM with multi-
tapes. We now consider a one-way nondeterministic pushdown automaton (PDA)
M . Clearly, R(M) can be accepted by a deterministic PDA; hence from the re-
markable result by Kuich [15] showing that the information rate of an unambigu-
ous context-free language is computable, we immediately have the information
rate of R(M) is also computable. This also generalizes for multi-tape nondeter-
ministic PDA.

We now show the use of the results through examples. Consider a program
M , consisting of two concurrent finite state processes M1 and M2 that receive
signals from the environment. We can conveniently treat Mi (i = 1, 2) as an NFA
with alphabet Σi, while an input word w say, aba, is thought of a sequence of
three “signals” fed into the process. In particular, we call Σ12 = Σ1 ∩Σ2 as the
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alphabet of synchronizing symbols. That is, when such a symbol a is fed into the
concurrent program, both M1 and M2 will read the symbol (i.e., two “read a”
instructions in M1 and M2 respectively run simultaneously). Notice that such a
concurrent program is essentially a 2-tape NFA. Thus, the execution complexity
of the concurrent M can be computed.

When M1 and M2 run concurrently, the speed of the environment proving the
signals is not pre-defined. In other words, suppose that when the environment
feeds a synchronized symbol to M , both M1 and M2 will read the symbol im-
mediately without any delay. In case of an unsynchronized symbol fed to, say,
M1, M1 will read immediately while M2 will wait (since the symbol is not in
its interface or Σ2). In this understanding, a run of M depends on the delays
between symbols fed by the environment, if we consider the run to be of discrete
time. A popular model of real-time systems is timed automata [1], which are
able to “generate” timed words. When discrete time is considered in a timed
automaton, all such timed words form a regular language [1], where a special
‘tick’ symbol is used to indicate every time progress. In this setting, when both
M1 and M2 are also synchronized on the tick symbols in a timed word, the M
is essentially a 2-tape NFA. Hence the execution information rate of M can also
be computed.

We now turn back to the untimed case. Suppose that all the signal sequences
fed to M are drawn from a regular language and further satisfying a linear
constraint P on the counts of signal symbols, say, the numbers of symbols a,b
and c are all the same. The linear constraint can be used to specify a fairness
constraint. In this case, it is not hard to see that M is essentially a two-tape NFA
augmented with reversal-bounded counters, and hence the execution information
rate of M can also be computed.

4 Experiments

In this section, we will evaluate the feasibility of computing execution informa-
tion rates of real-world C programs. In order to do this, theoretically, we need
to translate a C program into an infinite state automaton or a finite automaton
with an astronomical number of states and then compute the execution informa-
tion rate of the automaton. Indeed, it is an impractical approach (if not possible)
since the computation may be inefficient, and even be uncomputable.

We take a more practical approach by using control flow graphs (CFGs),
instead of automata, as an approximation model of executions of C programs.
The benefits of using the CFG model are two fold: (1) translation from a C
program to a CFG is efficient and frequently used in practice, which only need
limited resources; (2) computing the information rate of a CFG is known efficient.
Although, in previous sections, we proved that the execution information rates
for some classes of finite automata and infinite state automata are computable,
it does not imply that there is an efficient algorithm to calculate the execution
information rate of them. However, the execution information rate of a CFG is
much simpler: an “execution” on a CFG is viewed as a path on the CFG so that
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the information rate of the CFG is its execution information rate. Now, the CFG
is simply treated as a graph whose information rate can be calculated efficiently
theoretically [5] and practically [21].

Table 1. Yahtzee Game

No. Time(sec) Rate Lines
1 30.49313463 0.28015439 223
2 21.27258946 0.29491658 211
3 1.59721724 0.09006925 56
4 1.41296586 0.20145839 87
5 6.28271311 0.16978757 212
6 1.33529892 0.09409675 96
7 310.29902566 0.24228938 536
8 0.48937783 0.23247921 69
9 25.09538204 0.12762918 222

10 5.68259796 0.20776446 170
11 1884.03881786 0.22348663 604
12 266.95954819 0.27088418 480
13 1.38500821 0.24429944 73
14 4.76470822 0.21707617 170
15 131.62702442 0.2388927 356
16 95.57444331 0.26930851 342
17 1.82504375 0.05810482 116
18 32.63405040 0.26382353 225
19 2.69637575 0.16071193 86
20 7.97615246 0.208024 146

Table 2. Battleship Game

No. Time(sec) Rate Lines
1 3.25146617 0.14039641 72
2 4.04993043 0.11438705 105
3 4.91766219 0.2126072 117
4 4.50877264 0.2126072 137
5 1.38216377 0.10215237 135
6 6.39848402 0.2126072 131
7 187.69931130 0.11751557 291
8 5.59665177 0.2126072 123
9 24.34702401 0.13267324 199

10 5.78696373 0.2126072 143
11 37.79719132 0.13323103 208
12 8.62281422 0.15347345 170
13 2.59683185 0.05619995 129
14 10.42010990 0.12654569 198
15 241.68989470 0.03471603 418
16 31.62538405 0.11962904 376
17 6.11469088 0.07143966 103
18 6.06059559 0.2126072 149
19 10.47277698 0.23918791 192
20 14.35727940 0.22070435 170

Next, we will show the results of experiments on two sets of C programs to
validate the feasibility of estimating execution information rates of real-world C
programs: one set is twenty programs of Yahtzee game (a student programming
project) and the other set is twenty programs from Battleship game (also a
student program project).

Our procedure of doing the experiments is presented as follows:

– We run CoFlo, a open-source CFG generator, to translate a C program into
a CFG on a Linux machine.

– Using a Python script, we convert the CFG into a matrix and generate
a Matlab program which is able to perform eigenvalue calculation on the
matrix.

– We run the Matlab program to calculate the information rate of CFG, which
is the logarithm of the maximal eigenvalue of the matrix [5].

Note that, due to the capabilities of CoFlo, we can only generate CFG of a
function, rather than the entire program. Hence, we use the CFG of the main
function in a program to approximate that of the entire program. Although this
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approximation is lossy, it is still meaningful since, for students’ programming
projects, most control structures are contained in main functions of programs.

Experimental results are summarized in Table 1 and 2. In these tables, the
term “Time(sec)” represents the execution time of the Matlab program calculat-
ing the execution information rate of a program. “Rate” is the value of execution
information rate of a program. “Lines” represents the number of lines of the main
function in a program. From these results, we conclude that execution informa-
tion rate of programs with hundreds of lines is calculated in hours. How about
the program with thousands of lines? In our experiments, there was an example,
which is not shown in above tables, which is a program with almost 9000 lines
of code. After several hours’ execution, Matlab failed to calculate the execution
information rate of the 9000 lines program because of an “out of memory” er-
ror. This implies, even applying an approximation using CFG, it is still difficult
to compute the execution information rate of a program when the program is
large. Therefore, more efficient approaches to calculate/estimate the execution
information rates of large C programs need be investigated in future.

Our experiments run on a laptop with Intel P8600 processor and 4 GB memory
using a student version Matlab software.

5 Conclusions

We studied the execution information rate of accepting runs of various forms of
automata, including NFAs, finite-crossing 2NFAs, and a restricted form of unary
2NFA, reversal-bounded nondeterministic counter machines and their variations.
We showed that in these cases, the execution information rates are computable.
On the other hand, computing the rate for a two-way automaton is in general
difficult because accepting runs for such an automaton are not necessarily reg-
ular nor context-free. We still need a better set of theoretical tools to handle
such an automaton. In the practical side, we conducted experiments on C pro-
grams showing that computing/estimating information rates for their executions
is feasible in many cases.

Acknowledgement. The authors would like to thank the anonymous reviewers
for many constructive suggestions.
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Abstract. We study decidability and complexity of verification prob-
lems for networks in which nodes communicate via asynchronous
broadcast messages. This type of communication is achieved by using
a distributed model in which nodes have a local buffer. We consider here
safety properties expressed as a coverability problem with an arbitrary
initial configuration. This formulation naturally models the search of an
initial topology that may lead to an error state in the protocol.
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1 Introduction

We present (un)decidability and complexity results for the coverability prob-
lem of Asynchronous Broadcast Networks (ABN), a mathematical model of
distributed systems in which processes interact via topology-dependent and
asynchronous communication. Our formal model of asynchronous broadcast com-
munication combines three main features: a graph representation of a network
configuration decoupled from the specification of individual process behaviour, a
topology-dependent semantics of synchronization, and the use of local mailboxes
to deliver messages to individual nodes. Our main abstraction comes from con-
sidering protocols defined via a communicating finite-state automaton replicated
on each node of the network.

In our setting the coverability problem is formulated as follows. We first define
an initial configuration as any graph in which nodes have labels that represent
the initial state of the protocol (and no constraints on edges). Coverability con-
sists then in checking whether there exists an initial configuration that can reach
a target configuration that contains a given process state. A similar decision
problem is considered in [8] for a mathematical model with synchronous com-
munication and dynamic reconfiguration of the topology called Reconfigurable
Broadcast Network (RBN).

Our analysis is carried out with different policies to handle buffers, namely
unordered bags (an abstraction of a tuple space), and perfect or lossy FIFO
channels. Our technical contribution is as follows. We first show that, in con-
trast with the synchronous case discussed in [9,10], coverability is decidable when
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local buffers are unordered. For the proof, we first give a reduction to the re-
stricted case of fully connected topologies. We then solve the coverability problem
through a reduction to the Cardinality Reachability Problem for Reconfigurable
Broadcast Networks, a PTime-complete problem [8]. The resulting algorithm is
based on a forward labelling procedure described in detail in [8].

When mailboxes are ordered buffers, we obtain undecidability already in the
case of fully connected topologies. The undecidability proof is based on a non-
trivial encoding of the set of operations of a two counter machine in form of a
cooperation protocol between distinct nodes. The protocol consists of different
phases, each one is defined over a distinct set of control messages. The difficulty
of the encoding comes from the fact that it is not possible to infer well-formedness
properties for the content of the mailbox of an individual node. Thus it is not
possible to encode the current value of the counters using the current content of
a set of mailboxes. The current value of the counters is represented however in
the flow of messages consumed by a pair of nodes elected in a preliminary phase
of the protocol, which, in turn, completes successfully only under certain condi-
tions on the sequence of consumed control messages. The coverability problem is
decidable when introducing non-deterministic message losses. The results again
follows from a reduction to the Cardinality Reachability Problem for RBN.

In an extended model in which a node can test if its mailbox is empty, we
obtain undecidability with unordered bags and both arbitrary or fully-connected
topologies. For this reduction we need to control the interferences due to the si-
multaneous communication with several neighbours. We exploit here the
emptiness test in order to enforce the well-formedness of the mailboxes of nodes
involved in the simulation of counter machines.

To our knowledge, the present work shows the first complexity analysis for
(parameterized) coverability in formal models of asynchronous broadcast
communication.

Detailed proofs and encodings are presented in the technical report [13].

2 Asynchronous Broadcast Network (ABN)

In this section we formally define our asynchronous model for broadcast com-
munication. A configuration is defined as a labelled graph. Nodes correspond
to processes running a common, pre-defined protocol. Each node has a local
message buffer used to collect messages sent by neighbours.

A protocol is specified via a finite-state automaton with send and receive
operations that correspond to write [resp. read] on remote [resp. local] buffers.
Communication is topology-dependent, anonymous and asynchronous: when a
process at node n sends a message a, the process does not block, and the message
is added to the local mailbox of all of its neighbours without explicit information
about the sender (i.e. messages do not contain node identifiers).

Formally, we consider a finite set Σ of messages, and different disciplines
for handling the mailbox (message buffer), e.g., unordered mailboxes that we
represent as bags over Σ, and ordered mailboxes that we represent as words
over Σ.
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In order to deal in a uniform way with different mailbox types we define a
transition system parametric on the data structures used to model mailboxes.
More specifically, we consider a mailbox structure M = 〈M, del?, add, del, []〉,
where M is a denumerable set of elements denoting possible mailbox contents;
for a ∈ Σ and m ∈ M, add(a,m) denotes the mailbox obtained by adding a to
m, del?(a,m) is true if a can be removed from m; del(a,m) denotes the mailbox
obtained by removing a from m when possible, undefined otherwise. Finally,
[] ∈ M denotes the empty mailbox. We call an element a of m visible when
del?(a,m) = true. Their specific semantics and corresponding properties change
with the type of mailbox considered.

Definition 1. A protocol is defined by a process P = 〈Q,Σ,R, q0〉, where Q is a
finite set of control states, Σ is a finite message alphabet, Act = {τ}∪ {!!a, ??a |
a ∈ Σ}, R ⊆ Q×Act×Q is a set of transition rules, q0 ∈ Q is an initial control
state.

The label τ represents the capability of performing an internal action, and the
label !!a [??a] represents the capability of broadcasting [receiving] a message
a ∈ Σ.

Definition 2. Configurations are undirected (Q×M)-graphs. A (Q×M)-graph
γ is a tuple 〈V,E, L〉, where V is a finite set of nodes, E ⊆ V ×V is a finite set of
edges (such that E is symmetric and ∀v ∈ V.(v, v) /∈ E), and L : V → (Q×M)
is a labelling function.

In the rest of the paper, for an edge 〈u, v〉 in E, we use the notation u ∼γ v
and say that the vertices u and v are adjacent to one another in γ. We omit γ,
and simply write u ∼ v, when it is made clear by the context. We use L(γ) to
represent the set of labels in γ. The set of all configurations is denoted Γ , while
Γ0 ⊆ Γ is the set of all initial configurations, in which nodes always have the
same label 〈q0, []〉.

Given the labelling L and the node v s.t. L(v) = 〈q,m〉, we define Ls(v) = q
(state component of L(v)) and Lb(v) = m (buffer component of L(v)). Further-
more, for γ = 〈V,E, L〉 ∈ Γ , we use Ls(γ) to denote the set {Ls(v) | v ∈ V }.

Definition 3. For M = 〈M, del?, add, del, []〉, an Asynchronous Broadcast Net-
work (ABN) associated to P is a tuple T (P ,M) = 〈Γ,⇒M, Γ0〉, where ⇒M⊆ Γ ×
Γ is the transition relation defined next. For γ = 〈V,E, L〉 and γ′ = 〈V,E, L′〉,
γ ⇒M γ′ holds iff one of the following conditions on L and L′ holds:

Local. There exists v ∈ V such that (Ls(v), τ, L
′
s(v)) ∈ R, Lb(v) = L′

b(v), and
L(u) = L′(u) for each u ∈ V \ {v}.

Broadcast. There exists v ∈ V and a ∈ Σ such that (Ls(v), !!a, L
′
s(v)) ∈ R,

Lb(v) = L′
b(v) and for every u ∈ V \ {v}

– if u ∼ v then L′
b(u) = add(a, Lb(u)) and Ls(u) = L′

s(u),
– otherwise L(u) = L′(u).
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Receive. There exists v ∈ V and a ∈ Σ such that (Ls(v), ??a, L
′
s(v)) ∈ R,

del?(a, Lb(v)) is satisfied, L′
b(v) = del(a, Lb(v)), and L(u) = L′(u) for each

u ∈ V \ {v}.

A local transition only affects the state of the process that executes it, while
a broadcast also adds the corresponding message to the mailboxes of all the
neighbours of the sender. Notice that broadcast is never blocking for the sender.
Receivers can read the message in different instants. This models asynchronous
communication. A reception of a message a is blocking for the receiver whenever
the buffer is empty or the visible elements are all different from a. If a is visible
in the mailbox, the message is removed and the process moves to the next state.
Furthermore, it is easy to show that, when needed, a set Q0 ⊆ Q of initial states
for P can be modelled by introducing a fresh initial state with outgoing local
transitions to each q ∈ Q0.

An execution is a sequence γ0γ1 . . . such that γ0 is an initial configuration,
and γi ⇒M γi+1 for i ≥ 0. We use ⇒∗

M
to denote the reflexive and transitive

closure of ⇒M. We drop M when the mailbox type is clear from the context.

Decision Problem. The Coverability Problem parametric on the mailbox struc-
ture M, abbreviated as COV (M), is defined as follows.

Definition 4. Given a protocol P with transition system T (P ,M) = 〈Γ,⇒M

, Γ0〉 and a control state q, the coverability problem COV (M) states: are there
two configurations γ0 ∈ Γ0 and γ1 ∈ Γ such that γ0 ⇒∗

M
γ1 and q ∈ Ls(γ1)?

In other words we require that a graph γq with a singleton node labelled q cov-
ers a reachable configuration γ1, i.e., γq is a subgraph of γ1. We often use the
terminology γ0 reaches state q as an abbreviation for γ0 ⇒∗

M
γ1 and q ∈ Ls(γ1)

for some configuration γ1. Besides being parametric on the mailbox structure,
our decision problem is parametric on the shape of the initial configuration. As
mentioned in the introduction, this feature models in a natural way verifica-
tion problems for protocols with partial information about the structure of the
network.

2.1 ABN vs RBN

In the rest of the paper we will often refer to the semantics of RBN models
[8]. Protocols in RBN adhere to the same syntax as ABN. Configurations are
simply Q-graphs, i.e., graphs in which nodes have labels in Q via the labelling
function L. The semantics of broadcast communication however is synchronous
instead of asynchronous. Furthermore, the topology of the network may non-
deterministically change. Formally, given Ra(q) = {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R} and
two Q-graphs θ, θ′ with θ = 〈V,E, L〉, we have θ → θ′ iff θ′ = 〈V,E′, L′〉 and one
of the following conditions holds:

Synch Broadcast. E′ = E and ∃v ∈ V s.t. 〈L(v), !!a, L′(v)〉 ∈ R and L′(u) ∈
Ra(L(u)) for every u ∼ v, and L(w) = L′(w) for any other node w.

Reconfiguration. E′ ⊆ V × V \ {〈v, v〉 | v ∈ V } and L = L′.
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3 Unordered Mailboxes

In this section we study the coverability problems for ABNs in which mailboxes
are unordered buffers modelled as bags over the finite message alphabet Σ.
The mailbox structure Bag is defined as follows: M is the denumerable set of
bags over Σ, add(a,m) = [a] ⊕ m (multiset sum of the singleton [a] and m),
del?(a,m) = true iff m(a) > 0, del(a,m) = m2 [a] (multiset removal of [a] from
m), and [] ∈ M is the empty bag []. The operational semantics follows from the
general definitions.

Let us consider the instance COV (Bag) of the coverability problem. For syn-
chronous broadcast, coverability is undecidable for arbitrary topologies [9]. We
show next that coverability is in PTime for unordered mailboxes.

For the ease of notation, we use T K(P ,M) [resp. COV fc(M)] to denote the
restriction of T (P ,M) [resp. COV (M)] to fully connected configurations only,
i.e., configurations such that u ∼γ v for each pair of distinct nodes u, v ∈ V . We
prove the results in two different steps. We first show that, for the purpose of
deciding COV (Bag), we can focus on fully connected topologies only. We then
show a reduction from COV fc(Bag) to the Cardinality Reachability Problem
for Reconfigurable Broadcast Networks, that, for short, we will refer to as CRP.
The reduction requires reachability queries of the form #q ≥ 1 (at least one
occurrence of control state q). The latter problem is PTime-complete [8].

For asynchronous communication with unordered mailboxes, coverability for
arbitrary topologies case can be reduced to the fully connected case. The follow-
ing lemma indeed holds.

Lemma 5. Given an ABN protocol P = 〈Q,Σ,R, q0〉 and a state q ∈ Q, if there
exists an arbitrary topology from which we can reach state q, then there exists a
fully connected topology from which we can also reach q.

One side of the property is immediate. If there exists a fully connected initial
configuration that reaches a configuration in which state q occurs, then cover-
ability is solved. In order to prove the other implication, the intuition is that we
can exploit the fact that mailboxes are unordered to ignore messages sent along
links that are not present in a given topology.

The following lemma relates coverability in ABN to the cardinality reachabil-
ity problem in RBN.

Lemma 6. Given an ABN protocol P = 〈Q,Σ,R, q0〉 and a state q ∈ Q let P ′

be the RBN protocol with the same rules but with {q0} as singleton set of initial
states. Then, there exists an execution of P ′ that satisfies CRP if and only if
there exists an execution of P satisfying COV fc(Bag).

In the proof we can delay message receptions to simulate deletions of links. Vice
versa, we can exploit reconfigurations and the possibility of adding nodes to the
initial configuration to simulate asynchronous receipts using dynamically created
links and synchronous messages. The previous reduction is done in constant time,
since there is no need of modifying the protocol specification. We can therefore
conclude that the following property holds.
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Theorem 7. COV (Bag) is PTime-complete.

Proof. Thanks to Lemmas 5 and 6 and to the PTIME algorithm for coverability
in RBN [8], we know that COV (Bag) is in PTime. Completeness follows from
a reduction of the Circuit Value Problem (CVP) [19] to COV (Bag). Given an
acyclic circuit G composed by a finite set of gates and a fixed evaluation of
its inputs, CVP consists in evaluating G in the inputs. The reduction is based
on a protocol in which a special node broadcasts the evaluation of a single
input (in form of a message with label true/false and an index associated to
the corresponding variable). Gates (i.e. Boolean operations like and/or/not) are
simulated by processes running on nodes. For each gate, we have nodes that
receive the inputs, evaluate the gate, and broadcast their output to the other
nodes. A special node intercepts the true message corresponding to the output
of the whole circuit and moves in an acceptance state. Regardless the type of
communication topology, number of nodes simulating each gate, and possible
delays, coverability of the acceptance state corresponds to satisfiability of the
circuit G w.r.t. the given assignment. ��

4 FIFO Mailboxes

In this section we move to ABN with perfect FIFO buffers as communication
media. In this context we instantiate the mailbox structure FIFO as follows: M
is defined as Σ∗; add(a,m) = m·a (concatenation of a and m); del?(a,m) = true
iffm = a·m′; del(a,m) is the stringm′ wheneverm = a·m′, undefined otherwise;
finally, [] ∈ M is the empty string ε.

Theorem 8. COV (FIFO) and COV fc(FIFO) are undecidable.

Proof. The proof is based on a reduction of the halting problem for two-counter
machines – a well known undecidable problem – to COV (FIFO). A two-counter
machine is defined by a pair 〈Loc, Inst〉 where Loc is a finite set of control
locations and Inst ⊆ Loc × Op × Loc is a finite set of instructions such that
Op = {c++, c−−, c == 0 | c ∈ {x1, x2}} is a set of operators over the counters
x1 and x2, and �0 ∈ Loc is the initial location. Configurations are tuples 〈�, v1, v2〉
such that � ∈ L is the current location and v1, v2 are natural numbers that denote
the current value of x1 and x2, respectively. The operational semantics is defined
in a standard way: the execution of increment and decrement updates the control
location and the current value of the corresponding counter, a zero-test updates
the location whenever the test is satisfied in the current state of the counter.

The rationale behind the reduction of coverability to the halting problem of
two-counter machines is as follows. We first use an election protocol that assigns
fixed roles (controller/slave) to a pair of adjacent nodes. Since the initial con-
figuration is not fixed a priori our election protocol does not forbid the election
of multiple pairs of controller/slave nodes, but we only require that at least one
pair is elected in order to succeed. The controller/slave nodes set up their mail-
boxes in order to use them as overlapping circular queues. Messages represent
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the current value (in unary) of the counters. The simulation is guided by the
controller. The slave forwards all received messages back to the controller. As an
example, to check that x1 is zero, the controller reads all messages in the mail-
box and checks that in between two successive reads of the marker for x1 there
are no units. We use interference to denote an unwanted message occurring in
the mailbox of a controller/slave node. Since the network topology is not fixed
a priori, a key point of the whole construction is the capability of controlling
interferences with other nodes, e.g., avoiding the adjacency between multiple
controllers and slaves. For this purpose, we use special control messages to coor-
dinate the different phases and exploit the FIFO mailboxes in order to enforce
the simulation to get into a deadlock state whenever the same control message
is received more than once. A detailed description of the protocol is in [13]. The
same construction can be used for the fully connected case. ��

5 Lossy FIFO Mailboxes

We now consider coverability for ABNs in which mailboxes are lossy FIFO chan-
nels, i.e., channels in which messages may non-deterministically be lost. Given
a protocol P , a configuration γ of T K(P , LFIFO) is a multiset of pairs 〈q,m〉
where q ∈ Q and m ∈ Σ∗. To model non-deterministic loss of messages, we
modify the operational semantics by introducing lossy steps.

We first need to define the ordering 	 between configurations. For γ = 〈V, V ×
V, L〉 and γ′ = 〈V ′, V ′ × V ′, L′〉 γ 	 γ′ iff there exists an injection h : V → V ′

s.t. Ls(v) = Ls(h(v)) and Lb(v) ≺ Lb(h(v)) for each v ∈ V , where ≺ denotes the
subword relation, namely, for w,w′ ∈ Σ∗, w ≺ w′ iff there exists an injective and
strictly monotone mapping h : |w| → |w′| s.t. wi = w′

h(i) for i : 1, . . . , |w|, where
vi denotes the i-th symbol in the word v. Intuitively, γ 	 γ′ means that γ is
obtained from γ′ by removing nodes (and all corresponding edges) and messages
from the buffers. We modify the transition relation ⇒ to include lossy steps
before and after each transition in the original system as follows: γ �−→ γ′ iff
there exists η and ν s.t. η 	 γ, η ⇒ ν, and γ′ 	 ν.

The ordering 	 is a simulation relation and is also a well-quasi ordering. These
two properties pave the way for a possible application of the theory of well-
structured transition systems [12] to solve coverability. In the rest of the section
we use a reduction to RBN-coverability to obtain better complexity results. As
for unordered mailbox we first show that we can focus our attention on fully
connected topologies, only.

Lemma 9. There exists an execution of P that satisfies COV (LFIFO) if and
only if there is one of P satisfying COV fc(LFIFO).

We are now at the most tricky part of the proof that consists in proving that
COV fc(LFIFO) can be reduced to CRP. Let P be an ABN protocol, and let P ′

be the corresponding RBN protocol derived as in Section 3.

Lemma 10. There exists an execution of P ′ that satisfies CRP if and only if
there is one of P satisfying COV fc(LFIFO).
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The coverability problem for lossy FIFO mailboxes has a property in common
with the one for bags, that is in both cases processes are able to ignore incoming
messages indefinitely; this is achieved by either leaving the message in the mul-
tiset or by deleting it from the lossy FIFO queue. We can therefore take again
advantage of this property to obtain the following theorem.

Theorem 11. COV fc(LFIFO) is PTime-complete.

Proof. Membership to PTime follows from the reduction to CRP for RBNs.
Hardness follows again from a reduction of CVP to COV for ABN lossy FIFO
queues. The encoding protocol is the same as for unordered mailboxes. ��

6 ABN with Emptiness Test

In this section we enrich the ABN model with a new type of transitions in order to
enable nodes to test whether their mailbox is empty. We call the resulting model
ABNε. The set Act of action labels is extended to include ε, i.e., Act = {τ, ε} ∪
{!!a, ??a | a ∈ Σ}. The transition systems associated to an ABNε are changed
accordingly to take ε into account; given two configurations γ = 〈V,E, L〉 and
γ′ = 〈V,E, L′〉, γ ⇒ γ′ holds also if the following condition is met.

Emptiness Test. There exists a v ∈ V such that (Ls(v), ε, L
′
s(v)) ∈ R, Lb(v) =

L′
b(v) = [], and L(u) = L′(u) for each u ∈ V \ {v}.

The only difference w.r.t. the semantics of τ -transitions consists in the Lb(v) = []
condition, that ensures that ε-transitions only fire when the mailbox is empty.

The introduction of ε-transitions affects the different instances of the cover-
ability problem in different ways. The simplest case is for COV fc(FIFO) and
COV (FIFO), which of course are still undecidable: the possibility to test the
emptiness of the mailbox does not have any effect on the reduction from two-
counter machines. The reduction from COV fc(LFIFO) to CRP of Lemma 10 has
to be modified in order to consider also ε-transitions. Given two configurations
γ, γ′ ∈ Γ such that γ 	 γ′ (see Section 5 for the definition of the 	 ordering), if
ε is enabled in γ then it can be fired starting from γ′ too, through a preliminary
lossy step that empties the relevant mailbox. This means that ε-transitions are
almost the same as internal transitions in case of LFIFO mailboxes. Therefore,
given a protocol P = 〈Q,Σ,R, q0〉 and a target state q ∈ Q, we derive an RBN
protocol P ′ = 〈Q,Σ,R′, {q0}〉 where R′ is the set of rules R where all occur-
rences of ε have been replaced by τ , and then we solve CRP for the target state
q. Thanks to the previously mentioned property of ε-transitions, one could adapt
easily enough the proof of Lemma 10 to this case. From these observations we
can therefore derive that both COV (LFIFO) and COV fc(LFIFO) are decidable
even with ε-transitions.

We incur in a completely different case when considering bags: as it can be
shown, the extended semantics traces indeed a sharp boundary between decid-
ability and undecidability. Without the emptiness test, both reachability prob-
lems COV (Bag) and COV fc(Bag) are decidable; we prove that the operator ε
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introduced with the extended model is sufficient to make them undecidable. The
proof proceeds by building a reduction from the control state reachability prob-
lem for two-counter machines to COV (Bag). The reduction encodes a counter
machine M with an ABN protocol P = 〈Q,Σ,R, q0〉 where, like before, each lo-
cation � ∈ Loc and each instruction i ∈ Inst corresponds respectively to a state
P(�) ∈ Q and to a set of intermediate states and rules. The protocol is split
in two phases. In the first phase processes follow a distributed election protocol
to identify who takes care of which role and who is excluded from the simula-
tion. The second phase is the simulation of M. The alphabet is partitioned in
two sets, Σe for the election and Σs for the simulation. Since we do not make
any particular assumption on the connectivity graph, the proof works for both
COV fc(Bag) and COV (Bag).

Election. A simulation must be carried out by three nodes: a controller and two
slaves, one per counter. Figure 1 shows the protocol used to choose such roles.
We say that a node is in simulation if it reaches (at least once) P(�0), qS1 , or
qS2 . The election guarantees minimal connectivity requirements, as stated in the
following Lemma.

q0 P(�0)
!!c ??s1 ??s2

qS1

!!s1

??c

qhalt qS2

τ
!!s2

??c

Fig. 1. COV (Bag): Election protocol

Lemma 12. If a node is in state P(�0), then at least two of its neighbours are
already respectively in state qS1 and qS2 or they can possibly move only those
states. If a node is in state qS1 or qS2 , then at least one of its neighbours is
already in state P(�0) or it can possibly move only to P(�0).

Simulation. Each slave Sj keeps in its mailbox a number of uj messages equal to
the current value of counter xj . The controller sends messages subj or tzj to give
orders depending on the instruction (�, op, �′) that is going to be simulated by
the system and waits for the slave which manages the involved counter to react
accordingly (see Figure 2). Once the slave is done, the same control message
is sent back to the controller as acknowledgement and the controller is able to
proceed. When A is a set we write ??A to mean that for every a ∈ A the protocol
has a reception rule ??a with the same endpoints. Again, the increment can be
done directly by the controller with a single broadcast !!uj . In order to be able
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qSUBj qSj qTZj

??subj??uj

!!subj

??Σs \ {uj}

??tzj ε

!!tzj

Fig. 2. COV (Bag): Slave process

to prove the correctness of the reduction, we first state some properties of the
simulation phase.

Lemma 13. Any m ∈ Σe received by a node in simulation will persist in its
mailbox forever. Such a node is said to be in interference.

Proof. By construction, for all m ∈ Σe, there are no receptions of m starting
from any state which may be reached by simulating nodes. ��

Lemma 14. At any time, the value of the counter i is equal to the number of
occurrences of units ui in the mailbox of the corresponding slave, provided that
no simulating node is in interference. We say then that the counters are valid.

We remark that the notion of validity of the counters does not have anything to
do with the compliance of their values w.r.t. the ones of the two-counter machine
being simulated. Moreover, since the simulation may proceed even with invalid
counters, the reduction does not compute reachability of the encoding P(�f) of
the target state �f , but instead it checks for the reachability of a fresh state qtarget
added according to Figure 3. This is needed in order to ensure the correctness
of the simulation. It is straightforward to check that the instructions added to

�f �f
x1 == 0

x1 −−

x2 == 0

x2 −−

P
(
�f
)

qtarget
ε

Fig. 3. COV (Bag): Interference detection

M do not have any impact on the reachability of the target location, as they
just decrement down to zero both counters before reaching the destination. We
are now ready to prove that the reduction is indeed a correct simulation of the
given two-counter machine.

Theorem 15. COV (Bag) [COV fc(Bag)] is undecidable in ABNε.
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The correctness of the reduction can be proved by first demonstrating by induc-
tion on the number of simulated instructions that for any number of steps, either
the counters will be valid and consistent w.r.t. the corresponding state of the
two-counter machine or they will be (and remain) invalid. Given this property,
we can exploit Lemma 13 in order to show that the added, final transitions from
Figure 3 ensure that the controller will deadlock before reaching the target state
when the counters are invalid. A detailed description of the protocol is in [13].

7 Related Work

Formal models of broadcast protocols in fully connected topologies have been
defined in [14]. The model is based on extensions of Petri nets with whole place
operations, used to model cache coherence protocols [6]. The coverability prob-
lem for broadcast protocols is decidable in fully connected graphs [16,7]. This
problem is strictly related to marking coverability in Petri nets with transfer or
reset arcs [1]. When individual processes are distributed over graphs of arbitrary
shape, coverability becomes undecidable as shown in [9]. Decidability holds for
special classes like bounded path graphs under the induced graph ordering [9,10],
in presence of communication failures or interferences [11], and with dynamic re-
configuration of the communication topology [8]. The PTIME decision procedure
in [8] is similar to the labelling algorithms used for parameterized verification of
synchronous systems in [18]. In the timed case coverability becomes undecidable
already in special types of star topologies [2].

Other formal models of broadcast communication have been proposed in
[20,22,15,17]. Verification of unreliable communicating FIFO systems have been
studied in [3,4]. In [5] the authors consider different classes of topologies with
mixed lossy and perfect channels. The complexity of the verification procedures
for lossy FIFO channel systems and broadcast protocols (transfer and reset nets)
is discussed in [21]. A classification of the expressive power of different infinite-
state models including lossy FIFO channel systems and broadcast protocols is
discussed in [1].

Differently from all the previous works, we consider here coverability for para-
metric initial configurations for a distributed model with asynchronous broad-
cast. Furthermore, we also consider different policies to handle the message
buffers as well as unreliability of the communication media. Finally, our new
complexity results improve the preliminary analysis presented in the extended
abstract [12], where we used well-structured transition systems for evaluating
decidability for bags and lossy FIFO systems.
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Abstract. Message-passing based concurrent languages are widely used
in developing large distributed and coordination systems. This paper
presents the buffered π-calculus — a variant of the π-calculus where
channel names are classified into buffered and unbuffered: communica-
tion along buffered channels is asynchronous, and remains synchronous
along unbuffered channels. We show that the buffered π-calculus can be
fully simulated in the polyadic π-calculus with respect to strong bisim-
ulation. In contrast to the π-calculus which is hard to use in practice,
the new language enables easy and clear modeling of practical concur-
rent languages. We encode two real-world concurrent languages in the
buffered π-calculus: the (core) Go language and the Core Erlang. Both
encodings are fully abstract with respect to weak bisimulations.

Keywords: process calculus, formal model, full abstraction.

1 Introduction

Concurrent programming languages become popular in recent years thanks to
the large demand of distributed computing and the pervasive exploitation of
multi-processor architectures. Unlike the shared-memory concurrency model,
which is now mainly used on multi-processor platforms, message passing based
concurrent languages are particularly popular in developing large distributed,
coordination systems. Indeed, quite a few real-world concurrent languages are
intensively used in industry. The most well-known languages are probably Er-
lang, developed by Ericsson [1], and the much younger language Go, developed
by Google [6]. Both languages achieve their asynchronous communication via
order-preserving message passing.

On the other side, the π-calculus [11,14] has shown its success in modeling
and verifying both specifications and implementations. Its asynchronous variant
[3,8] is a good candidate as the target formal model. Despite the fact that it is
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called asynchronous, communication in the asynchronous π-calculus is however
synchronous. It is shown in [2] that the communication modelled by the asyn-
chronous π-calculus is equivalent to message passing via bags — senders put
messages into some bags, and receivers may get arbitrary messages from these
bags. This result indicates that additional effort should be made to respect the
order of the messages, which is adopted in the implementation of many concur-
rent languages.

In view of this, we may expect a formal model where asynchronous commu-
nication is supported natively. In fact, our primary goal is to achieve a formal
model by which we can easily define a formal semantics of Go and do verification
on top of it. The developers of Go claim that the concurrency feature of Go is
rooted in CSP [7], while we show that the π-calculus should be an appropriate
model for Go as CSP does not support a channel passing mechanism.

In the spirit of the name passing mechanism of the π-calculus and the channel
type of the Go language, we extend the π-calculus by introducing a special kind
of names, each associated with a first-in-first-out buffer. We call these names
buffered names. Communication along buffered names is asynchronous, while
that along unbuffered (normal) names remains synchronous. We call this variant
language the buffered π-calculus, and abbreviate it as the πb-calculus.

We develop the πb-calculus by defining its operational semantics as a labelled
transition system and supplying an encoding into the polyadic π-calculus. We
also present translations of the languages Go and Erlang into the πb-calculus and
show that the model is sufficient and relatively easier for modeling real-world
concurrent languages.

Beauxis et al introduced the πB-calculus in order to study the asynchronous
nature of the asynchronous π-calculus [2]. Their asynchronous communication is
achieved via explicit use of buffers. In case that the buffers are ordered structures
such as queues or stacks, the asynchronous communication modelled by πB
differs from that by the asynchronous π-calculus. While communication in the
πB-calculus is always asynchronous, we keep both synchronous and asynchronous
communication in the πb-calculus, through different types of names.

Encoding programming languages in process calculus have been studied by
many researchers. Milner defines the semantics of a non-trivial parallel pro-
gramming language by a translation into CCS in [9]. In [15], a translation from
a parallel object oriented language to the minimal π-calculus is presented. The
correctness of the translation is justified by the operational correspondence be-
tween units and their encodings. Our treatments to the Go language follows
the approach in [15]. In addition, we show a full abstraction theorem, namely
equivalent Go programs are translated into equivalent πb processes.

For functional languages, Noll and Roy [12] presented an initial translation
mapping from a Core Erlang [4] to the asynchronous π-calculus. Later on they
[13] improved the translation by revising the non-deterministic encoding of pat-
tern matching based expressions, and by adding the encoding for tuples. Their
translations, however, are not sound in the sense that the order of messages is
not always respected. By modelling the mailbox structure explicitly by buffered
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names in the πb-calculus, we obtain a more accurate encoding which is fully
abstract with respect to weak bisimulation.

The rest of the paper is structured as follows. Section 2 presents the syn-
tax and semantics of the πb-calculus and a simple encoding in the polyadic
π-calculus [10]. We show that this encoding preserves the strong bisimulation
relation. In Section 3 we define a formal semantics for Go and present an en-
coding of Go in the πb-calculus. Due to page limit, the encoding of Erlang is
supplied in the full version of the current paper [5], as well as many definitions
and proofs. Finally, Section 4 concludes the paper.

2 The πb-Calculus

We assume an infinite set N of names, ranged over by a, b, c, d, x, y. Processes
are defined by the following grammar:

P,Q, . . . :=
∑

i∈I πi.Pi

∣∣∣ P |Q ∣∣∣ (νc : n)P ∣∣∣ (νc)P ∣∣∣ !P
where π = c(x) | c〈d〉 | τ .

Most of the syntax is standard:
∑

i∈I πi.Pi is the guarded choice (I is finite),
which behaves nondeterministically as one of its components πj .Pj for some
j ∈ I; composition P |Q acts as P and Q running in parallel; !P is the replication
of process P ; Prefixes c(x) and c〈d〉 are input and output along name c; and τ
is the silent action. We write 0 for the empty guarded choice, it is the process
which can do nothing.

The πb-calculus extends the π-calculus in the fact that names can be buffered
or unbuffered. Unbuffered names are names in the π-calculus, and buffered names
have the buffer attribute specified by a buffer store. A buffer store, denoted by
B, is a partial function from buffered names to pairs (n, l), where n is a posi-
tive integer representing the capacity of the buffer, and l is a list of names in
the buffer, with the same order. Both (νc)P and (νc : n)P are called new pro-
cesses. The (standard) new process (νc)P specifies that c (whether buffered or
unbuffered) is a local name in P . The extended new process (νc : n)P creates
a local buffered name c, whose associated buffer has the capacity n for asyn-
chronous communication inside P . Notice that (νc)P only says that the name
c is local and does not imply that c is unbuffered — c can be a buffered name
whose buffer is already created in the buffer store.

Input process c(x).P and output process c〈d〉.P can communicate with each
other along name c when they run in parallel. If c is an unbuffered name, the
communication is synchronous and happens as in the π-calculus: the object d is
passed from the output side to the input side. If c is a buffered name, then the
communication becomes asynchronous: the output process simply puts d into
the buffer of c if it is not full and continues, or blocks if the buffer is full; the
input process retrieves the oldest value from the buffer of c if it is not empty
and continues, or blocks if the buffer is empty.

As usual, we write c̃ for a sequence of names, and abbreviate (νc1) . . . (νcn)P
to (νc1 . . . cn)P . A name x is bound if it appears in input prefix, otherwise it is
free. We write P{c̃/x̃} for the process resulting from simultaneously substituting
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ci for each free xi in P . The newly created name c in (νc : n)P or (νc)P are
local names. A name is global if it is not localized by any new operator. We use
ln(P ) and gn(P ) for the set of local names and global names occurring in P .

Throughout the development of the paper, we assume the following De Baren-
dregt name convention: Local names are different from each other and from
global names. For instance, we shall never consider processes like a〈c〉.(νa)P or
(νa)(νa)P . We note that this convention is dispensable and we simply adopt it
to make the presentation of the calculus simple and clean. One can also remove
the convention and use syntactic rules to manage name conflicts, but dealing
with names in buffers can be very subtle.

A process can send a local name into a buffer. The fact that a name stored
in buffers is local must be tracked, because it may affect the name scope when
another process retrieves this name from the buffer. The convention also works
for buffer stores. We shall discuss more on this when defining the operational
semantics. Inside a buffer store, a value of the form (νc) indicates that the
name c was sent into the buffer when it was local. Given a buffer store B, we
write gn(B(b)) for the set of global names that occur in b’s buffer, and gn(B) =⋃

b∈dom(B) gn(B(b)). Similarly ln(B(b)) and ln(B) for local names in B(b) and B.
The buffer store B{c/d} is obtained by substituting c for each d in B.

We say a process Q is guarded in P , if every occurrence of Q in P is within
some prefix process. Intuitively, a guarded process cannot affect the behavior
of its host process until the action induced by its guarding prefix is performed.
New operators are guarded in P if all new processes are guarded in P .

The structural congruence ≡B with respect to the buffer store B is defined as
the smallest congruence relation over processes satisfying the following laws:

1. P ≡B Q, if Q is obtained from P by renaming bound names, or local names
not occurring in B.

2. P | Q ≡B Q | P ;P | (Q | R) ≡B (P | Q) | R;P | 0 ≡B P .
3. !P ≡B P | !P .
4. (νc)(νd)P ≡B (νd)(νc)P .
5. (νc)0 ≡B 0, if c �∈ ln(B); (νc)(P |Q) ≡B (νc)P |Q, if c �∈ ln(B)∧c �∈ gn(Q).

Structural congruence allows us to pull unguarded new operators to the “outer-
most” level.

Buffer store B is valid for process P if each local name of B appears in some
new operator occurring at the outermost level of P , i.e., for every c ∈ ln(B),
P ≡B (νc)P ′ for some P ′.

2.1 Operational Semantics

The (early) transition semantics of πb is given in terms of a labelled transition
system generated by the rules in Table 1. The transition rules are of the form
P,B α−→ P ′,B′, where P, P ′ are processes, B,B′ are buffer stores and α is an
action, which can be one of the forms: silent action τ , free input c(d), free output
c〈d〉 or bound output c〈νd〉. We write n(α) for the set of names occurring in α.
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Table 1. Transition Rules of πb

IU
c 
∈ dom(B)

c(x).P,B c(d)−−→ P{d/x},B
OU

c 
∈ dom(B)

c〈d〉.P,B c〈d〉−−→ P,B
Open

P,B{c/νc} d〈c〉−−→ P ′,B′

(νc)P,B d〈νc〉−−−→ P ′,B′

IB
B(b) = (n, [d] :: l)

b(x).P,B τ−→ P{d/x},B[b �→ (n, l)]
OB

B(b) = (n, l); |l| < n

b〈d〉.P,B τ−→ P,B[b �→ (n, l :: [d])]

IBG
B(b) = (n, l); |l| < n; b 
∈ ln(P )

P,B b(d)−−→ P,B[b �→ (n, l :: [d])]
OBG

B(b) = (n, [d] :: l); b 
∈ ln(P )

P,B b〈d〉−−→ P,B[b �→ (n, l)]

Sum
j ∈ I ; πj .Pj ,B α−→ P ′,B′∑

i∈I πi.Pi,B α−→ P ′,B′ Com
P,B c(d)−−→ P ′,B; Q,B c〈d〉−−→ Q′,B; c 
∈ dom(B)

P | Q,B τ−→ P ′ | Q′,B

Par
P,B α−→ P ′,B′; new operators are guarded in P | Q

P | Q,B α−→ P ′ | Q,B′

New
P,B{c/νc} α−→ P ′,B′; c 
∈ n(α)

(νc)P,B α−→ (νc)P ′,B′{νc/c}
Stru

P ≡B P ′; P ′,B α−→ Q′,B′; Q′ ≡B′ Q

P,B α−→ Q,B′

NewB (νb : n)P,B τ−→ (νb)P,B[b �→ (n, [ ])]

These rules are compatible with the transition rules for the π-calculus. IU and
OU are rules for unbuffered names and synchronous communication is specified by
Com. IB and OB define the asynchronous communication along buffered names:
b(x).P performs a τ action by receiving the “oldest” name d from b’s buffer,
while b〈d〉.P performs a τ action by inserting d into b’s buffer. Communication
along buffered names is asynchronous because it involves two transitions (IB and
OB) and other actions may occur between them.

IBG and OBG indicate that a buffer store itself may have actions. If b is a global
buffered name, that is (νb) does not occur in P , then we can insert names to
or receive names from b’s buffer directly. In New and Open, the substitutions on
the buffer store are for the sake of validity. NewB is the rule for the extended
new process. After creating an empty buffer for b, the capacity parameter n is
dropped, leaving the new operator indicating that b is a local name.

The Par rule describes how processes can progress asynchronously, which
typically happens with buffered names. However, unlike in the π-calculus, where
we have open/close rules to manage name scope extension, in the πb-calculus, it
is hard (perhaps impossible) to define an appropriate close rule because when
a local name is exported to a buffer, it becomes hard to track which process
will retrieve the name so as to determine the name scope. For instance, consider
the process P1|P2|P3 where P1 = (νa)b〈a〉.P ′

1, P2 = b(y). · · · , P3 = b(z). · · ·
and a valid buffer store B = [b �→ (2, [ ])]. In the πb-calculus, P1 inserts the
local a into b’s buffer by a τ action, then it can possibly be received by P2 or
P3, hence tracking the scope of a becomes very hard. Our solution here is to
prevent processes from inserting local names into buffers when they are running
in parallel with other processes. For processes like the above example, we extend
the scope of a to the entire process by structural congruence laws and obtain
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a process in the form (νa)(b〈a〉.P ′
1|P2|P3) thanks to the name convention. This

avoids the scope problem.
We have adopted the name convention which simplifies the definition of the

labeled transition system. Dealing with names with buffers is subtle and the
transition rules without the name convention are presented in [5].

The following proposition says that transition rules preserve buffer validity:

Proposition 1. If B is valid for process P and we have the transition P,B α−→
P ′,B′, then B′ is valid for P ′.

As in the π-calculus, strong bisimulation over the set of πb processes can be
defined as follows.

Definition 2. A symmetric binary relation R over πb processes is a bisimula-
tion, if whenever (P,BP )R(Q,BQ) and (P,BP )

α−→ (P ′,B′
P ),

∃(Q′,B′
Q) . (Q,BQ)

α−→ (Q′,B′
Q) ∧ (P ′,B′

P )R(Q′,B′
Q)

Strong bisimilarity ∼̇ is the largest strong bisimulation over the set of πb pro-
cesses. (P,BP ) and (Q,BQ) are strongly bisimilar, written as (P,BP ) ∼̇ (Q,BQ),
if they are related by some strong bisimulation.

2.2 Encoding in the Polyadic π-Calculus

We demonstrate an encoding of the πb-calculus in the polyadic π-calculus.
Intuitively, a πb name c is encoded into a pair of π names (c1, c2) by the

injective name translation function N . In the name pair, c1 is called the input
name and c2 the output name of c. In addition, input and output names for
unbuffered names are identical, but not for buffered names. The two translation
names of buffered name b are exactly the names along which a buffer process
modelling the buffer of b receives and sends values.

The translation function [[·]] takes a πb process and a valid buffer store as
parameters and returns a single π process. The encoding of a buffer store is a
composition of buffer processes each representing a buffered name’s buffer. For
processes, the encoding differs from the original process in the new operators and
prefixes. A new operator is encoded into two new operators localizing the pair
of translation names. The encoding of input prefix c(x) is also an input prefix
but the subject is c’s input name c1, while the encoding of output prefix c〈d〉
has the output name c2 as the subject. Finally, in the encoding of an extended
new process (νb : n)P , a buffer process representing b’s buffer is added.

The formal definition of the translation, including the buffer process and the
translation function, are presented in the companion technical report.

The following lemma shows that transitions of a πb process can be simulated
by its encoding, and no more transition is introduced by the encoding.

Lemma 3. (P,B) α−→ (P ′,B′) if and only if [[P,B]] M(α)−−−→ [[P ′,B′]].
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where M is a bijection relating actions of πb-calculus to actions of π-calculus. It
follows that the encoding preserves strong bisimulation.

Theorem 4. (P,BP ) ∼̇ (Q,BQ) if and only if [[P,BP ]] ∼̇ [[Q,BQ]].

3 The Go Programming Language

The Go programming language is a general purpose language developed by
Google to support easy and rapid development of large distributed systems.
This section presents a formal operational semantics of the (core) Go language
and a fully abstract encoding in the πb-calculus.

The syntax of a core of Go is presented as follows:

Types : t ::= int | chan t
Expressions : e, e1, e2, . . . ::= x | n | ch | make(chan t, n) | <-e
Statements : s, s1, s2, . . . ::= nil | x = e | e1<-e2 | s1; s2 | go f(e1 . . . en)

| select {c1 . . . cn}
where c1, c2, . . . ::= case x = <-e : s | case e1<-e2 : s

The channel type, coupled with the concept called Go-routine, constitutes the
core of Go’s concurrency system. Channel types are of the form chan t, where t is
called the element type. Channels (ch) are first-class values of this language, and
they are created by the make expression make(chan t, n), where chan t specifies
the channel type and the integer n specifies the size of the channel buffer. Notice
that n must be non-negative and if it is zero, the created channel will be a
synchronous channel.

Go-routines are similar to OS threads but much cheaper. A Go-routine is
launched by the statement go f(v1 . . . vn). The function body of f will be ex-
ecuted in parallel with the program that executes the go statement. When the
function completes, this Go-routine terminates and its return value is discarded.

Communication among Go-routines is achieved by sending and receiving op-
erations on channels. Sending statement ch<-v sends v to channel ch, while
receiving <-ch, regarded as an expression in Go, receives a value from ch. Com-
munication via unbuffered channels are synchronous. Buffered (non-zero sized)
channels enable asynchronous communication. Sending a value to a buffered
channel can proceed as long as its buffer is not full and receiving from a buffered
channel can proceed as long as its buffer is not empty.

select statements introduce non-deterministic choice, but their clauses re-
fer to only communication operations. A select statement randomly selects a
clause whose communication is “ready” (able to proceed), completes the selected
communication, then proceeds with the corresponding clause statement.

Without loss of generality, we stipulate that a Go program is a set of func-
tion declarations, each of the form func f(x1 . . . xn) {s}. A Go program must
specify a main function, which we shall refer to as fstart in the sequel, as the
entry point — running a Go program is equivalent to executing go fstart(. . .)
with appropriate arguments. For the sake of simplicity, we only consider function
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calls in go statements and we assume that all functions do not return values and
their bodies contain no local variables other than function arguments.

3.1 Operational Semantics

The structural operational semantics of Go is defined by a two-level labelled
transition system: the local transition system specifies the execution of a single
Go-routine in isolation, and the global transition system describes the behavior
of a running Go program.

We first define the evaluation of expressions. An expression configuration is
a triple 〈e, σ, δc〉, where e is the expression to be evaluated, σ is the local store
mapping local variables to values, and δc is the channel store mapping channels
to triples (n, l, g), where n is the capacity of the channel’s buffer, l is a list of
values in the channel buffer, and g is a tag indicating whether the channel is
local (0) or global (1). The transition rules between expression configurations
α�−→g are defined as follows, where actions can be either silent action τ , or r(ch, v)
denoting receive action. We often omit τ from silent transitions.

Var 〈x, σ, δc〉 �→g 〈σ(x), σ, δc〉 RvE
〈e, σ, δc〉 α�−→g 〈e′, σ, δ′c〉

〈<-e, σ, δc〉 α�−→g 〈<-e′, σ, δ′c〉

RvU
δc(ch) = (0, [ ], g)

〈<-ch, σ, δc〉
r(ch,v)�−−−−→g 〈v, σ, δc〉

RvB
δc(ch) = (n, [v] :: l, g); n > 0

〈<-ch, σ, δc〉 �→g 〈v, σ, δc[ch �→ (n, l, g)]〉

Mak
ch �∈ dom(δc)

〈make(chan t, n), σ, δc〉 �→g 〈ch, σ, δc[ch �→ (n, [ ], 0)]〉

Var retrieves the value of x from local store σ. Mak creates a fresh local channel
ch. Other rules concern receiving from channels. Once the channel expression is
fully evaluated, the real receive begins following rules RvU and RvB. The value
received from an unbuffered channel is indicated in the label, while the value
received from a buffered channel is the “oldest” value of the channel’s buffer.

The local transition system defines transition rules between local configura-
tions. A local configuration is a tuple 〈s, σ, δc〉, where s is the statement to be
executed, σ is the local store and δc is the channel store. Each Go-routine has its
own local store, but the channel store is shared by all Go-routines of a running
program. Some of the local transition rules are presented as follows. Two addi-
tional actions can occur in local transition rules: s(ch, v) for message sending
over channels and g(f, v1 . . . vn) for Go-routine creation.

SdU
δc(ch) = (0, [ ], g)

〈ch<-v, σ, δc〉
s(ch,v)
↪−−−−→g 〈nil, σ, δc〉

SdB
δc(ch) = (n, l, g); n > 0; |l| < n

〈ch<-v, σ, δc〉 ↪→g 〈nil, σ, δc[ch �→ (n, l :: [v], g)]〉

Go 〈go f(v1 . . . vn), σ, δc〉
g(f,v1...vn)
↪−−−−−−−→g 〈nil, σ, δc〉
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Rules SdU and SdB capture the behavior of sending over unbuffered and
buffered channels respectively. Sending a value v over an unbuffered channel
ch carries a sending label s(ch, v), while sending over buffered channels is silent
and can proceed as long as the target channel buffer is not full. The Go rule
says that a go statement does nothing locally and can always proceed with a
transition with the g label — the label is here simply for notifying the global
configuration to generate corresponding Go-routines. Subexpression evaluation
in Go is strict and leftmost.

Global transitions happen between global configurations which contain infor-
mation of all running Go-routines. A global configuration, denoted by Λ,Λ1 . . .,
is defined as a tuple 〈Γ, δc〉, where Γ is a multi-set of statement/local store pairs
(s, σ), of all running Go-routines, and δc is the channel store. A global transition

takes the form δf 4 〈Γ1, δc1〉
α−→g 〈Γ2, δc2〉, where δf is a mapping from function

names to function definitions. A Go program will start from an initial configura-
tion 〈{(sstart, σstart)}, δinit〉, where sstart is the body of the main function start,
σstart is the local store of start, and δinit is the initial channel store. The global
transition rules are listed in Table 2. A global action can be either τ , r(ch, v) or
s(ch, v).

Table 2. Global Transition Rules

Loc
〈s, σ, δc〉 ↪→g 〈s′, σ′, δ′c〉

δf � 〈Γ ∪ {(s, σ)}, δc〉 →g 〈Γ ∪ {(s′, σ′)}, δ′c〉

Com
〈s1, σ1, δc〉

r(ch,v)
↪−−−−→g 〈s′1, σ1, δc〉; 〈s2, σ2, δc〉

s(ch,v)
↪−−−−→g 〈s′2, σ2, δc〉

δf � 〈Γ ∪ {(s1, σ1), (s2, σ2)}, δc〉 →g 〈Γ ∪ {(s′1, σ1), (s′2, σ2)}, δc〉

LGo
〈s, σ, δc〉

g(f,v1 ...vm)
↪−−−−−−−→g 〈s′, σ, δc〉; δf (f) = (func f(x1 . . . xm) {sf})

δf � 〈Γ ∪ {(s, σ)}, δc〉 →g 〈Γ ∪ {(s′, σ), (sf , [x1 �→ v1 . . . xm �→ vm])}, δc〉

GRU
〈s, σ, δc〉

r(ch,v)
↪−−−−→g 〈s′, σ, δc〉; δc(ch) = (0, [ ], 1)

δf � 〈Γ ∪ {(s, σ)}, δc〉
r(ch,v)−−−−→g 〈Γ ∪ {(s′, σ)}, δc〉

GRB
δc(ch) = (n, l, 1); n > 0; |l| < n

δf � 〈Γ, δc〉
r(ch,v)−−−−→g 〈Γ, δc[ch �→ (n, l :: [v], 1)]〉

GSU1
〈s, σ, δc〉

s(ch,v)
↪−−−−→g 〈s′, σ, δc〉; δc(ch) = (0, [ ], 1); v 
∈ dom(δc)

δf � 〈Γ ∪ {(s, σ)}, δc〉
s(ch,v)−−−−→g 〈Γ ∪ {(s′, σ)}, δc〉

GSU2
〈s, σ, δc〉

s(ch,ch′)
↪−−−−−→g 〈s′, σ, δc〉; δc(ch) = (0, [ ], 1); δc(ch

′) = (n′, l′, g′)

δf � 〈Γ ∪ {(s, σ)}, δc〉
s(ch,νch′)−−−−−−→g 〈Γ ∪ {(s′, σ)}, δc[ch′ �→ (n′, l′, 1)]〉

GSB1
δc(ch) = (n, [v] :: l, 1); n > 0; v 
∈ dom(δc)

δf � 〈Γ, δc〉
s(ch,v)−−−−→g 〈Γ, δc[ch �→ (n, l, 1)]〉

GSB2
δc(ch) = (n, [ch′] :: l, 1); n > 0; δc(ch

′) = (n′, l′, g′)

δf � 〈Γ, δc〉
s(ch,νv)−−−−−→g 〈Γ, δc[ch �→ (n, l, 1), ch′ �→ (n′, l′, 1)]〉
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Loc specifies the independent transition of a single Go-routine. Asynchronous
communication will also take this transition since RvB and SdB are both silent
transitions. LGo creates a new Go-routine. Com defines the synchronous commu-
nication between two Go-routines over unbuffered channels. The rules Loc, LGo
and Com all specify internal actions of a running program.

A Go program can communicate with the environment via global channels.
GRU, GSU1 and GSU2 describe how a Go program interact with the environ-
ment via unbuffered channels, and GRB, GSB1 and GSB2 describe interactions
via buffered channels. Because communication over buffered channels are asyn-
chronous, the labels in GRB, GSB1 and GSB2 indicate how a global channel inter-
acts with the environment. For instance, in GRB the label r(ch, v) means that
the channel (buffer) ch receives a value v from the environment. The two rules
GSU2 and GSB2 also describe how a local channel is exposed to the environment
and becomes a global channel, by communication upon global channels. The ν
in the label is required only when the value is a local channel (g′ = 0).

Let t = α1 . . . αn where each αi is a global action, we write t̂ for the ac-
tion sequence obtained by eliminating all the occurrences of τ in t. We write

P,B t−→g P
′,B′ if P,B α1−→g · · · αn−−→g P

′,B′, and P,B t
=⇒g P

′,B′ if P,B =⇒g
α1−→g=⇒g

· · · =⇒g
αn−−→g=⇒g P

′,B′, where =⇒g is the reflexive and transitive closure of
τ−→g.

Definition 5. A symmetric binary relation R over global configurations is a

(weak) bisimulation if Λ1RΛ2 and Λ1
α−→g Λ

′
1 implies ∃Λ′

2 . Λ2
α̂
=⇒g Λ

′
2∧Λ′

1RΛ′
2.

Two global configurations are bisimilar, written as Λ1 ≈g Λ2, if they are related
by some bisimulation.

Two Go programs gp1, gp2 are bisimilar, if their initial global configurations
(with the same δc) are bisimilar.

3.2 Encoding

The encoding of Go in the πb-calculus is achieved by the translation function
[[·]]g(r), which maps Go expressions and statements to πb processes. The param-
eter r is the name along which the result of an expression is returned or the
termination of a statement is signaled. Some of the encodings are as follows.

Make [[make(chan τ, 0)]]g(r) = τ.(νa)r〈a〉 [[make(chan τ, n)]]g(r) = (νb : n)r〈b〉
Recv [[<-e]]g(r) = (νr′)([[e]]g(r′)|r′(y).y(z).r〈z〉)
Send [[e1<-e2]]g(r) = (νr′)(LR(e1, e2, r′)|r′(y, z).y〈z〉.r)
Go [[go f(e1 . . . en)]]g(r) = (νr′)(LR(e1 . . . en, r′)|r′(y1 . . . yn).f〈y1 . . . yn〉.r)

In the encoding, we use synchronous communication via local names to ar-
range the evolution order of πb processes. For instance, in Recv, the right hand
side of the composition will not proceed unless the left hand side outputs along
local name r′.
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Make returns the local name denoting the newly created channel. A receive
operation corresponds to an input prefix in Recv, while a send operation cor-
responds to an output prefix in Send. Auxiliary process LR captures the left-
to-right evaluation of a sequence of expressions. For the go statement, after
evaluating the argument expressions, these arguments are sent to the function
to which f refers. The statement does not wait for the function, rather it outputs
the termination signal along r immediately.

In the encoding, some prefixes and extended new operators are underlined.
They are the most significant part and will be discussed later. The translation
function can be extended to a mapping from global configurations (with δf ) to
πb processes. We write [[Λ]]g for the pair (P,B), where P is the encoding of Λ
and δf , while B is a valid buffer store inferred from channel store δc.

3.3 Correctness

The correctness of the encoding is demonstrated by a full abstraction theorem
with respect to (weak) bisimulation. The following lemma says that a global
transition may be simulated by a nontrivial sequence of transitions of its encod-
ing. Usually, the encoding will perform some internal adjustments before and
after the real simulation.

Lemma 6. If Λ
α−→g Λ

′, then [[Λ]]g ⇒ M(α)−−−→⇒ [[Λ′]]g, where M is an bijection.

The lemma is proved by induction on the depth of inference of the premise in
the local transition system. Conversely, a sequence of transitions of [[Λ]]g should
reflect certain global transitions of Λ. However it is not always possible, since the
simulation may not yet complete, even worse the transition sequence simulating
one global transition may interleave with transition sequences simulating others.
Fortunately, by observing the proof of the previous lemma, we find that actu-
ally only one transition in the sequence plays the crucial role, as this transition
uniquely identifies a global transition. Other τ transitions, whether preceding or
following this special transition, are internal adjustments which prepare for the
special transition immediately after them. We call the special transition a sim-
ulating transition, and the other non-special τ transitions preparing transitions.

Definition 7. A transition P,B
α−→ P ′, B′ is a simulating transition if the ac-

tion α is induced by the underlined prefixes and extended new operators specified
in the encoding in Section 3.2. Otherwise, it is a preparing transition.

Definition 8. Let Λ be a global configuration, the set TΛ is defined as follows:

1. [[Λ]]g ∈ TΛ.
2. (P,B) ∈ TΛ and (P,B) → (P ′,B) is a preparing transition, then (P ′,B) ∈ TΛ.
3. (P,B) ∈ TΛ and (P ′,B) → (P,B) is a preparing transition, then (P ′,B) ∈ TΛ.

Any of the processes in TΛ can be seen as the encoding of Λ.

Lemma 9. If (P,B) ∈ TΛ and (Q,B) ∈ TΛ, then we have (P,B) ≈ (Q,B).

As a consequence, bisimulation is preserved by the encoding.

Theorem 10. Λ1 ≈g Λ2 if and only if [[Λ1]]g ≈ [[Λ2]]g.
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4 Conclusion

We have presented the πb-calculus which extends the π-calculus by buffered
names. Native asynchronous communication is achieved via buffered names. We
have provided a fully abstract encoding of an imperative concurrent language in
the πb-calculus with respect to weak bisimulation. A fully abstract translation
from Core Erlang to the πb-calculus can also be obtained. Since Erlang processes
are communicated via Erlang mailboxes, the main difference of the encoding of
Erlang from that of Go is the explicit modelling of Erlang mailboxes by sequences
of buffered names. The details are relegated to the technical report [5].

Acknowledgement. The authors would like to thank Hao Huang for interesting
discussion on Erlang.
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Abstract. Mix-automatic sequences form a proper extension of the
class of automatic sequences, and arise from a generalization of finite
state automata where the input alphabet is state-dependent. In this pa-
per we compare the class of mix-automatic sequences with the class of
morphic sequences. For every polynomial ϕ we construct a mix-automatic
sequence whose subword complexity exceeds ϕ. This stands in contrast
to automatic and morphic sequences which are known to have at most
quadratic subword complexity. We then adapt the notion of k-kernels to
obtain a characterization of mix-automatic sequences, and employ this
notion to construct morphic sequences that are not mix-automatic.

1 Introduction

Automatic sequences [1] were introduced by Cobham [4] in 1972, and have since
been been studied extensively. A sequence w : N → Δ over a finite alphabet Δ
is automatic if it can be realized by a finite automaton that, for some k ≥ 2,
takes the base-k expansion (n)k of a number n ∈ N as input and outputs the n-th
letter of w; in this case w is called k-automatic. For multiplicatively independent
k and �, k-automaticity and �-automaticity are almost separated notions; e.g., if
a sequence is both 2-automatic and 3-automatic, then it is ultimately periodic.

Therefore it is natural to study also nonstandard numeration systems, and
the classes of automatic sequences they give rise to. Rigo [10] and Rigo and
Maes [11] study ‘abstract numeration systems’ based on the ‘shortlex’ order on
an infinite regular language, induced by an order on the alphabet. With this
concept they precisely capture the class of morphic sequences.

We introduce dynamic radix numeration systems which are obtained as a nat-
ural generalization from another variation of the standard base-k representation:
the mixed radix numeration systems [8] in which the base used only depends on
the position of a digit. In dynamic radix numeration systems the base used may
depend on the input digits read so far. Sequences realized by finite automata
that take dynamic radix input we call mix-automatic.

We first consider an example of a 2-automatic sequence, the celebrated Thue–
Morse sequence, and explain how it is generated by the automaton in Figure 1.
The automaton has states {q0, q1}, initial state q0, input alphabet {0, 1} and
output alphabet {a, b}. The output letter assigned to q0 is a and to q1 is b
(indicated by state/output in the states of the automaton). The n-th letter of
the sequence is the output of the automaton when reading (n)2, the base-2

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 262–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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q0/a q1/b

0 1

1

0

Fig. 1. DFAO generating the Thue–Morse sequence abbabaabbaababba · · ·

expansion of n. For example, for input (3)2 = 11 the automaton ends in state q0
with output a, and for input (4)2 = 100 in state q1 with output b.

The automaton of Figure 1 is called a deterministic finite-state automaton with
output (DFAO). For k ≥ 2, a k-DFAO is an automaton over the input alphabet
N<k = {0, 1, . . . , k − 1}. An infinite sequence w ∈ Δω is called k-automatic if
there exists a k-DFAO such that for every n ∈ N the output of the automaton
when reading the word (n)k ∈ N∗

<k is w(n), with (n)k the base-k expansion of n.

Mix-Automatic Sequences. The class of automatic sequences is well-known to
have good closure properties; for example, it is closed under shifts (prepending
letters or removing prefixes), and taking arithmetic subsequences. The class of
mix-automatic sequences extends the class of automatic sequences, has all these
closure properties, and additionally is closed under k-shuffling, for all k ≥ 2.

Mix-automatic sequences are defined via mix-DFAOs, automata that general-
ize k-DFAOs by allowing that the alphabet of the symbol to be processed next
depends on the current state. Let us consider the example of a mix-DFAO shown
in Figure 2. The state q0 has two outgoing edges, reflecting the input alphabet
{0, 1}, while q1 has three outgoing edges, reflecting the input alphabet {0, 1, 2}.

q0/a q1/b

0
1

0, 1

2

Fig. 2. An example of a mix-DFAO

Dynamic Radix Numeration Systems. Clearly, the numeration system used for
the input of mix-DFAOs cannot be the standard base-k representation. Instead,
in the number representation that we let these automata operate on, the base for
each digit is determined by the lower-significance digits that have already been
read.Thus we let the automata read from the least to the most significant digit
(i.e., we let the reading direction be from right to left). We write (n)M for the
number representation of n that serves as input for the automaton M . For M
the automaton from Figure 2, the representations of the first eight numbers are

(0)M = ε (2)M = 1202 (4)M = 120202 (6)M = 131202

(1)M = 12 (3)M = 1312 (5)M = 2312 (7)M = 130312

where a subscript b (not part of the number representation) in db indicates the
base employed for d. Let us explain this at the example (17)M = 12022312.
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Knowing the base for each digit, we can reconstruct the value of the representa-
tion as follows: 17 = 1 ·2 ·3 ·2+0 ·3 ·2+2 ·2+1 where each digit is multiplied with
the product of the bases of the lower digits. Given just the representation 1021,
the base of each of the digits is determined by the input alphabet of the state of
the automaton reading the digit. The states q0 and q1 ofM have input alphabets
{0, 1} and {0, 1, 2} and thus expect the input in base 2 and 3, respectively. When
reading 1021 (right to left) the automaton M visits the states q0, q1, q0, q0 and
q1. Annotating the input digits with the state of the automaton when reading
the digit, we obtain 1q00q02q11q0 , and taking into account the bases expected by
these states, yields 12022312.

We emphasize that, given a mix-DFAO M , every n ∈ N has a unique rep-
resentation (n)M = dm · · · d0 (without leading zeros). This representation can
be computed as follows. Assume that we have determined the value of the dig-
its di−1 · · · d0 with corresponding bases bi−1 · · · b0. The base bi of digit di is
determined by the input alphabet of the state of the automaton after read-
ing di−1 · · · d0 (right to left), and digit di is the remainder of the division of
n−

∑
0≤j<i dj(bj−1 · · · b1 · b0) by bi.

Every mix-DFAO M gives rise to a mix-automatic sequence w ∈ Δω by
defining for every n ∈ N, w(n) as the output of M when reading (n)M .

Zip-Specifications. In [6] it has been shown that k-automatic sequences are pre-
cisely the class of sequences definable by zip-k specifications, that is, systems of
recursion equations {X1 = t1, . . . , Xn = tn} with terms ti built from the syntax

t ::= Xi | a : t | zipk(t, . . . , t) (1 ≤ i ≤ n, a ∈ Δ)

Semantically, the term notation a : t indicates the concatenation of a letter with a
sequence, and the k-ary symbol zipk stands for the function of type (Σω)k → Σω

that zips (or interleaves or shuffles) its k argument sequences, and is defined by

zipk(w0, . . . , wk−1)(kn+ i) = wi(n) (0 ≤ i < k)

Operationally, zipk can be defined by the rewrite rule

zipk(x : t0, t1, . . . , tk−1) → x : zipk(t1, . . . , tk−1, t0) (1)

The zip operation on finite words is known in the literature as perfect shuffle [2].
An example of a zip-2 specification corresponding to the 2-DFAO from Fig. 1 is

M = a : Q1 Q0 = a : zip2(Q0,Q1) Q1 = b : zip2(Q1,Q0) (2)

The Thue–Morse sequence is the unique solution for the variable M in this spec-
ification, or, from a rewriting perspective, it is the infinite normal form of M in
the rewrite system consisting of (1) and (2), orienting the equations from left to
right. For further details we refer to [6].

The introduction of mix-automatic sequences was motivated by the charac-
terization of k-automatic sequences as the class of sequences that can defined by



Mix-Automatic Sequences 265

zip-k specifications, answering the question: What class of sequences is obtained
when allowing zips of different arities in the same specification? In [6,7] the cor-
respondence between such ‘zip-mix’ specifiable sequences and mix-automatic se-
quences was established. Moreover, it was shown that mix-automaticity properly
extends automaticity: for example, shuffling a 2-automatic and a 3-automatic se-
quence, both not ultimately periodic, is mix-automatic but not automatic.

Contribution and Overview. We continue the study of mix-automatic sequences
started in [6,7] by exploring the relationship with morphic sequences. In Sec-
tion 3, we generalize the characterization of k-automatic sequences via finite
k-kernels to the setting of mix-automatic sequences. In Sections 4 and 5 we
show that neither of the classes (a) mix-automatic sequences and (b) morphic
sequences subsumes the other. In particular we show that the subword com-
plexity of mix-automatic sequences can exceed any polynomial, whereas it is
known [5] that morphic sequences have at most quadratic subword complexity.

2 Preliminaries

We use standard terminology and notation; for example, see Allouche and Shal-
lit [1]. Let Σ be a finite alphabet. Then we denote by

– Σ∗ the set of all finite words over Σ, by ε the empty word,
– Σ+ = Σ∗ \ {ε} the set of finite non-empty words,
– Σω = {w | w : N → Σ} the set of infinite words over Σ,
– Σ∞ = Σ∗ ∪Σω the set of all (finite or infinite) words.

For a word w ∈ Σ∞ and n ∈ N, we write w(n) for the n-th letter of w (counting
from zero). We write |x| for the length of x ∈ Σ∞, with |x| = ∞ if x is infinite.
We call a word v ∈ Σ∗ a subword of x ∈ Σ∞ if x = uvy for some u ∈ Σ∗ and
y ∈ Σ∞, and say that v occurs at position |u|. The subword complexity of a
sequence w ∈ Σω is the function pw : N → N such that pw(n) is the number of
distinct length-n subwords (factors) of w.

Definition 1. A deterministic finite automaton with output (DFAO) is a tuple
〈Q,Σ, δ, q0, Δ, λ〉 where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ a finite input alphabet, Δ an output alphabet,
– δ : Q×Σ → Q a transition function, and
– λ : Q→ Δ an output function.

We extend the domain of δ to Q×Σ∗ by defining, for all q ∈ Q, δ(q, ε) = q and

δ(q, xa) = δ(δ(q, a), x) for all x ∈ Σ∗ and a ∈ Σ,

thus forcing the reading direction from right to left.
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For n, k ∈ N, k ≥ 2, we let (n)k denote the canonical base-k expansion of n
(without leading zeros). More precisely, for n > 0 we have

(n)k = dmdm−1 · · · d0 where 0 ≤ d0, . . . , dm < k, dm > 0 and n =

m∑
i=0

dik
i .

For n = 0 we fix (n)k = ε. We emphasize that the exclusion of leading zeros in
the number representation (n)k is not crucial. Every DFAO can be transformed
into an equivalent DFAO that ignores leading zeros, see [1].

Definition 2. Let k ≥ 2 and define N<k = {0, . . . , k − 1}. A k-DFAO M is a
DFAO 〈Q,Σ, δ, q0, Δ, λ〉 with the input alphabet Σ = N<k.

For q ∈ Q, we define the infinite sequence seq(M, q) ∈ Δω by seq(M, q)(n) =
λ(δ(q, (n)k)), for every n ∈ N. We write seq(M) as shorthand for seq(M, q0).
The automaton M is said to generate the sequence seq(M).

Now automatic sequences can be defined as follows:

Definition 3. A sequence w ∈ Δω is k-automatic if there exists a k-DFAO that
generates w. A sequence is called automatic if it is k-automatic for some k ≥ 2.

3 Mix-Automatic Sequences

In this section we introduce mix-automatic sequences. For this purpose, we de-
fine finite automata (with output) that have state-dependent input alphabets.
As inputs these automata take dynamic radix number representations, which
generalize base-k number representations to the effect that the digits are al-
lowed to belong to different bases, and may depend on previously read digits.
For specifying the format of the dynamic radix number representation that an
automaton can process we use ‘base determiners’, which are themselves finite
automata with (number) output that determine the base of each digit depend-
ing on the values of the lower digits. Number representations according to a thus
obtained dynamic radix number representation can then serve as inputs for a
mix-DFAO. k-DFAOs are special cases of mix-DFAOs. Eventually, we introduce
mix-automatic sequences as sequences that are generated by mix-DFAOs.

Deterministic Finite State Automata with State-Dependent Input Alphabet. We
introduce finite automata with output for which the input alphabet is dependent
on the current state.

Definition 4. A state-dependent input alphabet DFAO is a tuple of the form
〈Q,Σ, δ, q0, Δ, λ〉 where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ = {Σq}q∈Q is a family of input alphabets,
– δ = {δq : Σq → Q}q∈Q is a family of transition functions,
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– Δ is an output alphabet, and
– λ : Q→ Δ is an output function.

We interpret δ as a partial function Q ×
⋃
Σ ⇀ Q, and define δ(q, i) = δq(i)

iff i ∈ Σq. We extend the domain of δ to Q × (
⋃
Σ)∗ by defining for all q ∈ Q,

δ(q, ε) = q, and for all q ∈ Q, x ∈ Σ∗, and a ∈ Σq

δ(q, xa) = δ(δ(q, a), x) if δ(δ(q, a), x) is defined.

Note that the definition of δ forces the reading direction of input words to be
from right to left. An alternative definition of δ is as follows: Let q ∈ Q and
w = an−1 · · ·a0 where ai ∈ Σri (0 ≤ i < n) with ri ∈ Q defined (for 0 ≤ i ≤ n)
by r0 = q and ri+1 = δ(ri, ai); then we set δ(q, w) = rn.

The following definition generalizes k-DFAOs:

Definition 5. A mix-DFAO is a tuple 〈Q, β, δ, q0, Δ, λ〉 that represents a state-
dependent input alphabet DFAO 〈Q, {N<β(q)}q∈Q, δ, q0, Δ, λ〉 with β : Q→ N≥2.

Obviously, mix-DFAOs require a special number representation as input. The
number representation must ensure that the base of each digit matches the input
alphabet of the state the automaton is in when reading the digit. This leads to
the following generalization of the usual base-k number representations.

Dynamic Radix Numeration Systems and Base Determiners. We now introduce
dynamic radix number representations. For defining these representations special
mix-DFAOs called ‘base determiners’ are used to specify the base for each digit
depending on the digits that have been read before.

Definition 6. A base determiner is a tuple 〈Q, β, δ, q0〉 which is a shorthand for
the mix-DFAO 〈Q, β, δ, q0,N, β〉. The base determiner underlying a mix-DFAO
〈Q, β, δ, q0, Δ, λ〉 is the base determiner 〈Q, β, δ, q0〉.

Let B = 〈Q, β, δ, q0〉 be a base determiner. The base-B representation of an
integer n ∈ N is defined by (n)B = (n)q0 where (0)q = ε and for n > 0

(n)q = (n′)δ(q,d) d , n′ = .n/β(q)/ , and d = n− n′ · β(q)

So n′ and d are quotient and remainder of division of n by β(q), respectively.

Definition 7. Let B = 〈Q, β, δ, q0〉 be a base determiner. We define the partial
function [ ]B : N∗ ⇀ N by [w]B = [w, 1]q0 where we let [w, b]q for all b ∈ N and
q ∈ Q be defined by

[ε, b]q = 0 [wd, b]q = [w, bβ(q)]δ(q,d) + bd if d ∈ N<β(q)

and undefined otherwise.

Note that [ ]B is the left inverse of ( )B : for all b ∈ N and q ∈ Q [(n)q, b]q = bn
follows by induction on n ∈ N.
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q/k 0, 1, . . . , k − 1

Fig. 3. A base determiner for the stan-
dard base-k number representation

We obtain ordinary base-k numbers by
defining the base determiner B to consist
of a single state q with output k and edges
0, . . . , k − 1 looping to itself; this is illus-
trated in Figure 3.

Example 8. Consider the following mix-DFAO M and the dynamic numeration
system it defines (where n > 0, and q ∈ {q0, q1, q2}):

q0/a q1/b q2/b

0 1 2

1 0

0

1

(2n)q0 = (n)q00 (0)q = ε

(2n+ 1)q0 = (n)q11 (3n)q1 = (n)q20

(2n)q2 = (n)q10 (3n+ 1)q1 = (n)q01

(2n+ 1)q2 = (n)q01 (3n+ 2)q1 = (n)q12

Let B be the base determiner underlying M (that is, obtained from M by re-
defining the output for q0, q1 and q2 as 2, 3 and 2, respectively).

As an example, we compute (5)B, and (23)B as follows:

(5)B = (5)q0 = (2)q11 = (0)q221 = 21

(23)B = (23)q0 = (11)q11 = (3)q121 = (1)q2021 = (0)q01021 = 1021 .

A k-DFAO is an automaton reading the input in the base-k number format.
We generalize this concept to B-DFAOs that expect to read input in the number
format defined by the base determiner B.

Definition 9. Let M be a mix-DFAO and B a base determiner. We call M a
B-DFAO if M is compatible with B in the sense that (n)B = (n)BM holds for
all n ∈ N, where BM is the base determiner underlying M .

(Note thatM is a BM -DFAO, i.e.,M reads the number format defined by itself.)
A B-DFAO with output alphabet Δ defines a B-automatic sequence w ∈ Δω

by defining for all n ∈ N, w(n) as the output of the DFAO on the input (n)B .
Sequences generated by mix-DFAOs we call ‘mix-automatic’ sequences.

Definition 10. Let B be a base determiner, and M = 〈Q, β, δ, q0, Δ, λ〉 a
B-DFAO. For states q ∈ Q, we define seq(M, q) ∈ Δω by:

seq(M, q)(n) = λ(δ(q, (n)B)) for all n ∈ N

We define seq(M) = seq(M, q0), and say M generates the sequence seq(M).
A sequence w ∈ Δω is B-automatic if there exists a B-DFAO M such that

w = seq(M). A sequence is called mix-automatic if it is B-automatic for some
base determiner B.

Example 11. We continue Example 8. The sequence seq(M) begins with

abbabbaabbbaaaabbbbbbaaaabababbbbbbabababaaaaaababbbabbbabbb · · ·

with entries 5 and 23 underlined. E.g. λ(δ(q0, 1021)) = a since starting from q0
and reading 1021 from right to left brings you back at state q0 with output a.
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Kernels for Mix-Automatic Sequences. Automatic sequences can be character-
ized in terms of their ‘kernels’ being finite. For sequences w ∈ Δω and i, k ∈ N,
k > 0 we define

πi,k(w) = w(i)w(i + k)w(i + 2k)w(i+ 3k)w(i + 4k) · · · ,

the subsequence of w selecting every k-th element starting form the i-th element
(counting from 0). The k-kernel Ker(k, w) of a sequence w ∈ Δω is the set
of arithmetic subsequences Ker(k, w) = {πi,kp(w) | p ∈ N, i < kp}. The set
Ker(k, w) can equivalently be defined as the smallest set K such that w ∈ K,
and for all u ∈ K we have πi,k(u) ∈ K for all 0 ≤ i < k; see further [6].

Fact ([1, Thm. 6.6.2]). A sequence is k-automatic iff its k-kernel is finite.

We now generalize this characterization to mix-automatic sequences.

Definition 12. Let x : Δω → N≥2. The x-kernel Ker(x,w) of a sequence w ∈
Δω is defined as the smallest set K ⊆ Δω such that w ∈ K, and for all se-
quences u ∈ K we have πi,x(u)(u) ∈ K for all 0 ≤ i < x(u).

The function x : Δω → N≥2 determines for every sequence w ∈ Δω the set of
derivative functions {π0,x(w), π1,x(w), . . . , πx(w)−1,x(w)} to be applied to w. The
ordinary k-kernels (k ∈ N) are obtained by defining x(w) = k for every w ∈ Δω .

Theorem 13. A sequence w ∈ Δω is mix-automatic if and only if there exists
a function x : Δω → N≥2 such that the x-kernel of w is finite.

Proof. We show the less obvious direction, from left to right. For this let M =
〈Q, β, δ, q0, Δ, λ〉 be a mix-DFAO that generates a sequence w. For every state
q ∈ Q the equality seq(M, q) = zipβ(q)(seq(M, δ(q, 0)), . . . , seq(M, δ(q, β(q) −
1))) holds, that is, the sequence generated by a state q is the shuffling of the
sequences generated by the successor states of q. As a consequence, whenever
M contains states q1 �= q2 ∈ Q, q2 �= q0 with seq(M, q1) = seq(M, q2) we can
eliminate q2 after redirecting all its incoming edges to q1; this changes the number
representation, but leaves the sequence generated by the automaton unaltered.
Thus we may assume that seq(M, q1) �= seq(M, q2) for all q1 �= q2 ∈ Q. Hence we
can define the function x : Δω → N≥2 as follows: x(seq(M, q)) = β(q) for every
q ∈ Q, and x(u) = 2 for all other sequences u. Then it follows immediately that
Ker(x,w) ⊆ {seq(M, q) | q ∈ Q}, namely, the set of sequences generated by the
reachable states, and that Ker(x,w) is finite. ��

We refine this characterization with respect to a given number representation.

Definition 14. Let B = 〈Q, β, δ, q0〉 be a base determiner. The B-kernel of a se-
quence w ∈ Δω, which is denoted by Ker(B,w), is the set {u | (u, q) ∈ K} where
K ⊆ Δω×Q is the smallest set such that (w, q0) ∈ K, and (πi,β(q)(u), δ(q, i)) ∈ K
for all (u, q) ∈ K and i ∈ N with 0 ≤ i < β(q).

Theorem 15. A sequence w ∈ Δω is B-automatic iff its B-kernel is finite.
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4 The Subword Complexity of Mix-Automatic Sequences

We show for any polynomial ϕ there exists a mix-automatic sequence with a
subword complexity exceeding ϕ. It immediately follows that there are mix-
automatic sequences that are not morphic. This answers a question of [6].

For p, n ∈ N>0 with p a prime number, we use νp(n) to denote the p-adic
valuation of n, that is, the largest integer k ∈ N such that pk divides n. For
every prime number p, we define the sequence γp ∈ {0, 1}ω by

γp = (νp(1) mod 2) (νp(2) mod 2) (νp(3) mod 2) · · ·

The sequence γ2 is the well-known period-doubling sequence [1, Example 6.4.3]:

γ2 = 010001010100010001000101010001010100010101000100010001010100 · · ·

We show that shuffling k sequences from the set {γp | p is prime} yields a
mix-automatic sequence with subword complexity in Ω(nk). We first show that
each of the sequences has at least linear subword complexity:

Lemma 16. The subword complexity of γp is in Ω(n) for every prime number p.

Proof. The Morse–Hedlund theorem [9] asserts that an infinite sequence w is
ultimately periodic if and only if for some n ∈ N not more than n factors of
length n occur in w. Hence, it suffices to show that γp is not ultimately periodic.
Assume that γp would be ultimately periodic. Then there exist n0, k > 1 such
that νp(n) ≡ νp(n + k) (mod 2) for every n ≥ n0. Let n = pνp(k)+2m+1 with
m ∈ N such that n ≥ n0. Then νp(n) = νp(k) + 2m+ 1 and νp(n+ k) = νp(k),
and hence νp(n) �≡ νp(n+ k) (mod 2) contradicting the assumption. ��

We moreover employ that the sequences have the following regular structure:

Lemma 17. Let p be a prime number, k ∈ N and w the prefix of length pk − 1
of the sequence γp. Then w occurs in γp at every position n · pk (n ∈ N).

Proof. Let 0 ≤ i < pk−1. Then we have γp(n ·pk+ i) ≡ νp(n ·pk+ i+1) (mod 2)
and νp(n · pk + i+ 1) = νp(i+ 1) for every n ∈ N. ��

Lemma 18. Let k > 0, p1, . . . , pk be pairwise distinct primes. Then the sequence
zipk(γp1 , γp2 , . . . , γpk

) is mix-automatic and its subword complexity is in Ω(nk).

Proof. By Lemma 16 the sequences γp1 , . . . , γpk
have subword complexity in

Ω(n). Hence, for proving that the subword complexity of zipk(γp1 , γp2 , . . . , γpk
)

is in Ω(nk), it suffices to show the following: for every n ∈ N whenever w1, . . . , wk

are n-length subwords of the sequences γp1 , . . . , γpk
, respectively, the shuffle

zipk(w1, . . . , wk) of length kn is a subword of zipk(γp1 , γp2 , . . . , γpk
).

For this purpose, we show (∗) there exists a position q ∈ N such that for all i
(1 ≤ i ≤ k), the word wi occurs in γpi at position q. Let �1, . . . , �k be such that

every wi (1 ≤ i ≤ k) occurs in the prefix of γpi of length p
	i
i −1. Let o1, . . . , ok be

the positions of the first occurrences of w1, . . . , wk in γp1 , . . . , γpk
, respectively.

(All of these positions are in the respective prefixes of γpi of length p
	i
i − 1.) We

proceed by induction on 1 ≤ i ≤ k to construct integers ai, bi > 0 such that
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(i) for all 1 ≤ j ≤ i, the word wj occurs at all positions ai+m · bi (m ∈ N), and
(ii) for all i < j ≤ k, bi is coprime with pj , i.e., gcd(bi, pj) = 1.

For i = 1, we choose a1 = o1 and b1 = p	11 . Then, as a consequence of Lemma 17,
the word w1 occurs at every position a1 +m · b1 (m ∈ N).

Let i < k and ci+1 = p
	i+1

i+1 . From (ii) it follows that bi and ci+1 are coprime.
By Euler’s theorem, there exists 1 ≤ ei+1 ∈ N such that b

ei+1

i ≡ 1 (mod ci+1).
As a consequence we can find some 0 ≤ a′i < ci+1 and define ai+1 = ai+a

′
i ·b

ei+1

i

such that ai+1 ≡ oi+1 (mod ci+1). We let bi+1 = ci+1 · bei+1

i . Then we have:

ai+1 = ai + (a′i · b
ei+1−1
i ) · bi bi+1 = (ci+1 · bei+1−1

i ) · bi

We have {ai+1 +m · bi+1 | m ∈ N} ⊆ {ai +m · bi | m ∈ N}, and hence for every
1 ≤ j ≤ i + 1, the word wj occurs in γpj at all positions ai+1 + m · bi+1 with
m ∈ N. Moreover ai+1 +m · bi+1 ≡ oi+1 (mod ci+1) for every m ∈ N, and thus
by Lemma 17, wi+1 occurs in γpi+1 at all positions ai+1 +m · bi+1 with m ∈ N.
We have that bi+1 = (ci+1 ·bei+1

i ) = p
	i+1

i+1 ·bei+1

i and thus bi+1 and bj are coprime
for every i+ 1 < j ≤ k.

Finally, we define q = ak and by induction hypothesis (i) we have (∗). ��

Morphic sequences have at most quadratic subword complexity [5]. Hence, by
Lemma 18 the mix-automatic sequences zipk(γp1 , γp2 , . . . , γpk

) for k > 2 are not
morphic.

Theorem 19. The class of mix-automatic sequences is not contained in the
class of morphic sequences.

5 Morphic Sequences That Are Not Mix-Automatic

In the previous section, we have seen that the class of mix-automatic sequences
is not contained in the class of morphic sequences. We now show that the reverse
holds as well, that is, there exist morphic sequences that are not mix-automatic.
In particular, we consider the characteristic sequence of (positive) squares:

squares = 1001000010000001000000001000000000010000000000001 · · ·
= 1021041061081010101210141 · · ·

So squares ∈ {0, 1}ω is defined by squares(n) = 1 iff n+1 is a square number. The
sequence is morphic: it can be obtained by iterating the morphism a �→ a001,
0 �→ 0, 1 �→ 001 on the starting letter a, and applying the coding a �→ 1, 0 �→ 0
and 1 �→ 1 to the limit word.

We show that squares is not mix-automatic.

Lemma 20. Let �, s ∈ N be such that �, s > 1. Then there exists a number
n ∈ N such that 1 + �2(sn − 1) is not a square number.
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Proof. Let �, s ∈ N be such that �, s > 1. Let k be large enough to ensure � < 2sk.
Then (�sk − 1)2 = �2s2k − 2�sk + 1 < 1 + �2(s2k − 1) < (�sk)2 follows, which for
n = 2k traps 1 + �2(sn − 1) in between consecutive squares.

Alternatively, a geometrical rendering is the following. We view s2n − 1 =
(sn)2 − 1 as a square of sn × sn pieces of which one corner piece has been
removed:

sn-times

sn-times

= s2n − 1

Then 1+ �2(s2n − 1) can be visualized as shown on the
right. We have �2−1 cut-out corner pieces. Due to these,
1 + �2(s2n − 1) is strictly less than a square �sn × �sn.
The next smaller square has size (�sn − 1)× (�sn − 1)
and has precisely (2�sn − 1) less pieces than the larger
square. By picking n large enough so that � < 2sn, we
achieve �2−1 < 2�sn−1, and hence there are too many
pieces for the next smaller square. ��

�-
ti
m
es

�-times

1 + �2(s2n − 1) =

Lemma 21. The sequence squares is morphic but not mix-automatic.

Proof. The morphic definition of squares is given above. For a contradiction, let
us assume that the sequence would be mix-automatic. Then by Theorem 13,
there exists x : Δω → N≥2 such that the x-kernel K of squares is finite. For
every n ∈ N we define wn ∈ K and kn ∈ N inductively as follows: w0 = squares
and wn+1 = π0,kn(wn) where kn = x(wn). As K is finite, there exist a, b ∈ N,
a < b such that wa = wb. We define k = k0 ·k1 · · · ka−1, and � = ka ·ka+1 · · · kb−1.
Then wa = π0,k(squares) and wa = wb = π0,	(wa), and in particular

π0,k(squares) = π0,	(π0,	(π0,k(squares))) = π0,k	2(squares) . (3)

Thus (†) for all n ∈ N, kn+ 1 is a square if and only if k�2n+ 1 is a square.
Let p be a prime that does not divide k, and hence is coprime to k. Then by

Euler’s theorem there exists e ∈ N such that (p2)e ≡ 1 (mod k). Thus (∗) for
every m ∈ N, we have that (pem)2 = ((p2)e)m ≡ 1 (mod k) and hence a square
number of the form kn+ 1 for some n ∈ N.

We define s = (p2)e. Then an application of Lemma 20 yields that there exists
m ∈ N such that 1+�2(sm−1) is not a square number. We have that sm = kn+1
for some n ∈ N by (∗). Thus 1 + �2(sm − 1) = 1 + �2kn is not a square while
1 + kn is. This contradicts (†). ��

Theorem 22. The class of morphic sequences is not contained in the class of
mix-automatic sequences.

6 Conclusions and Further Research

Mix-automatic sequences form a natural extension of the class of automatic
sequences. While automatic sequences are generated by DFAOs, mix-automatic
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sequences are generated by DFAOs with state-dependent input alphabets. These
automata read number representations dndn−1 · · · d0 where the base of a digit
dk depends on the value of the lower-significance digits dk−1 · · · d0.

The results of this paper can be summarized as follows:

(i) A characterization of mix-automatic sequences via a generalization of the
concept of k-kernel (by which automatic sequences can be characterized).

(ii) For every polynomial ϕ there is a mix-automatic sequence whose subword
complexity exceeds ϕ. As a consequence there are mix-automatic sequences
that are not morphic, since morphic sequences have quadratic subword
complexity at most.

(iii) A morphic sequence that is not mix-automatic, showing that the class of
morphic sequences is not contained in the class of mix-automatic sequences.

All of these concepts are very recent, and many interesting questions remain.
We highlight three particularly intriguing, and challenging questions:

(1) (J.-P. Allouche) Characterize the intersection of mix-automatic and morphic
sequences. (Note that at least all automatic sequences are in.)

(2) Is the following problem decidable: Given two mix-DFAOs, do they generate
the same sequence?

(3) Can Cobham’s Theorem (below) be generalized to mix-automatic sequences?

Cobham’s Theorem ([3]). Let k, � ≥ 2 be multiplicatively independent (i.e.,
ka �= �b, for all a, b > 0), and let w ∈ Δω be both k- and �-automatic. Then w is
ultimately periodic.

In order to generalize this theorem to mix-automatic sequences, one could look
for a suitable notion of multiplicative independence for base determiners. Recall
that base determiners are themselves finite automata with output.
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Abstract. We initiate a multivariate analysis of two well-known NP-
hard decision problems on DFAs: the problem of finding a short syn-
chronizing word and that of finding a DFA on few states consistent with
a given sample of the intended language and its complement. For both
problems, we study natural parameterizations and classify them with the
tools provided by Parameterized Complexity. Somewhat surprisingly, in
both cases, rather simple FPT algorithms can be shown to be optimal,
mostly assuming the (Strong) Exponential Time Hypothesis.

Keywords: Deterministic finite automata, NP-hard decision problems,
synchronizing word, consistency problem.

1 Introduction

Multivariate analysis of computationally hard problems [16] tries to answer the
question what actually makes a problem hard by systematically considering so-
called natural parameters that can be singled out in an instance or in some target
structure. In problems dealing with finite automata, such parameters could be
the size of the input alphabet, or the number of states. For instance, if some
hardness reduction produces or requires automata with large input alphabets,
then this proof does not reveal much if only binary input alphabets are of in-
terest. Parameterized Complexity offers tools to tell if hardness result could
be expected when fixing, say, the alphabet size. In other words, we target the
question what aspects of our problem cause it to become hard. As the possible
choices of parameters are very abundant, we consider our paper rather as the
starting point of this line of research within the theory of finite automata. Only
limited multivariate analysis research has been undertaken so far on finite au-
tomata problems, NFA minimization being one exception [5], Mealy machines
with census requirements another one [18], offering ample ground to work on.

In this paper, we study the parameterized complexity of two problems related
to finite automata: the problem of finding a shortest synchronizing word in a
deterministic finite automaton (DFA) and that of finding the smallest DFA con-
sistent with a given sample consisting of positive and of negative examples of the
intended language. Both problems have a long history, dating back to the very
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beginning of automata theory, and both questions have found many practical
applications.

The Synchronizing Word (SW) problem is the following one: Given a
DFA A = (S, I, δ, s0, F ) with state set S, input alphabet I, transition function
δ : S × I → S, initial state s0 and set of final states F , together with some
integer k ≥ 0, decide if there exists a synchronizing word of length at most k
for A. Here, a synchronizing word is a string x ∈ I∗ such that there exists
some state sf ∈ S such that, for any start state s ∈ S, δ∗(s, x) = sf . Hence,
a synchronizing word enables to reset an automaton to some well-defined state,
wherever it may start. Therefore, it is also known as a reset sequence and also
under many other different names. This notion and several related ones that we
are going to discuss draw their practical motivation from testing circuits and
automata, cf. [26,27,29].

Eppstein showed [15] that SW is NP-complete. Later, Berlinkov proved in [4]
that the related optimization problem MIN-SW cannot belong to APX under
some complexity assumptions. Walker [33] observed that Eppstein’s reduction
not only works when starting from 3-SAT, but also when using SAT. This will
be useful for our purposes.

We show that SW is W[2]-hard when parameterized by the natural parame-
ter k. This provides an alternative proof of the mentioned NP-hardness result.
As our reduction is from Hitting Set, it also shows that MIN-SW cannot be
approximated even up to some logarithmic factor depending on the size of the
input alphabet [27,1]. This is not the same as Berlinkov’s result, as he focuses
on small alphabet sizes. It would be interesting to know if SW with parameter k
actually belongs to W[2]. Otherwise, it might be one of the few natural problems
known to be placed in higher levels of the W-hierarchy, cf. the discussions in [8].

The related combinatorial questions are nicely reported and reviewed in [29,32].
The most important question in that area is settling or disproving Černý’s con-
jecture [7] that each t-state DFA that has a synchronizing word has also one of

length at most t(t−1)
2 . Currently best upper bounds are of size cubic in t, the

record holder being [31].
As our second problem on automata, we consider the DFA Consistency

problem. Here, the input consists in an alphabet I, two finite disjoint sets of
words X+, X− ⊆ I∗, and an integer t. The question is to decide if there exists
some DFA A with at most t states such that X+ ⊆ L(A) and X− ∩ L(A) = ∅.
This problem was extensively studied in the area of Algorithmic Learning Theory,
especially in Grammatical Inference, as it is central to the model of Learning in
the Limit, initiated by Gold’s seminal work [21]. As the problem was shown
to be NP-hard [2,22,23] and even hard to approximate [28], several heuristics
and translations to other problems were proposed. In our context, reductions
to coloring problems seem to be most relevant, see [10]. We can underline our
approach with a quotation from [23, p. 139]: Alternative proofs of the hardness
of the consistency problem would be of help, in order to better understand what
is really hard. This can be seen as a quest for a multivariate analysis for DFA

Consistency, as we commence in this paper.
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Notice that DFA Consistency can be seen as an implementation of Oc-
cam’s razor in the sense that the shortest explanation (in terms of DFA) for the
given sample is aimed at. This principle can also lead to computationally hard
problems in the context of regular languages if only positive examples are given,
taking into account questions concerning the representability or coding of the
sample words. This kind of question was investigated in [17] from the viewpoint
of Parameterized Complexity. Clearly, the consistency problem can be also asked
for other types of automata and grammars. As long as the universal language I∗

has a simple representation in the corresponding class, the consistency problem
is trivial ifX− = ∅. However, there are also interesting classes of languages where
this is not the case. For instance, it has been shown in [9] that this type of con-
sistency problem is W[2]-hard for a whole range of categorial grammar families.
Further Parameterized Complexity results for algorithmic learning problems can
be found in [3,13,30]. There are also not so many papers dealing with Parame-
terized Complexity classification of questions on finite automata, cf. [18,34] in
this context.

In this extended abstract, we had to omit most of the proofs. A long version
of the paper can be obtained from the authors on request.

2 Preliminaries

A graph G = (V,E) is undirected and unweighted, with vertex set V and edge
set E. Given a subset X ⊆ V , the subgraph of G induced by X is denoted by
G[X ]. A vertex subset X is an independent set if G[X ] has no edges. A partition
of V into V1, V2, . . . , Vr is called a proper r-coloring if G[Vi] is an independent
set for 1 ≤ i ≤ r.

A deterministic finite automaton (DFA) A is a tuple (S, I, δ, s0, F ), where S is
the set of states, I is the input alphabet, δ : S× I → S is the transition function,
s0 is the initial state, and F is the set of final states. We will use t = |S|.

For an introduction to the by now well established field of Parameterized
Complexity, we refer the reader to the textbook [14]. Here we give a short and
informal overview. A decision problem is said to be a parameterized problem if its
input can be partitioned into a main part J and a parameter P . A parameterized
problem with main input size |J | and parameter size |P | is said to be fixed-
parameter tractable (FPT) if it can be solved by an algorithm with running time
O∗(f(|P |)), where f is a computable function depending only on P and not on
J , and the O∗-notation suppresses all factors that are polynomial in |J |. It is
well-known that a parameterized problem is FPT if and only if it has a kernel,
meaning that there is a polynomial time algorithm that produces an equivalent
instance J ′ of size |J ′| ∈ O(g(|P |)), where g is again a function depending only on
P . If g is a polynomial function, then the problem is said to admit a polynomial
kernel. Whether or not a fixed-parameter tractable problem admits a polynomial
kernel is a broad subfield of Parameterized Complexity.

In the same way as NP-hardness of a decision problem indicates that we cannot
expect a polynomial time algorithm, there exists a hierarchy of complexity classes



278 H. Fernau, P. Heggernes, and Y. Villanger

above FPT, and showing that a parameterized problem is hard for any of these
classes makes it unlikely to be FPT. The main classes are: FPT ⊆ W[1] ⊆
W[2] ⊆ . . . ⊆ W[P ] ⊂ XP, where XP is the class of parameterized problems
that are solvable in time O(|J |h(|P |)) for some function h. Consequently, if the
problem is NP-hard when the parameter size is bounded by a constant, then it
is not even likely to belong to XP.

Next we define some well-known problems and complexity theoretical assump-
tions, which will be useful for proving hardness results and lower bounds.

Problem: r-SAT
Input: A boolean CNF formula φ on n variables and m clauses, where each
clause contains at most r literals.
Question: Is there a truth assignment that satisfies φ?

If there is no bound on the number of literals that a clause can contain, then
we simply refer to the problem as SAT.

One common way to argue for the unlikeness of a subexponential algorithm
is to use the Exponential Time Hypothesis (ETH). By the observation that each
variable is used at least once, and by the Sparsification Lemma [25], ETH can
be expanded to:

Exponential Time Hypothesis (ETH)[25]: There is a positive real s such
that 3-SAT instances on n variables and m clauses cannot be solved in time
2sn(n+m)O(1).
Most useful is the following corollary: There is a real s′ > 0 such that 3-SAT
instances on m clauses cannot be solved in time 2s

′m(n+m)O(1).

A slightly stronger assumption is the following one.
Strong Exponential Time Hypothesis (SETH)[25][6]: SAT cannot be
solved in time 2sn(n+m)O(1) for s < 1.

In order to argue for the unlikeliness of polynomial kernels we use:

Proposition 1 ([19]). SAT, parameterized by the number n of variables, does
not have a kernel that is polynomial in n unless NP ⊆ coNP/poly.

We make use of the following NP-complete problems in our reductions [14,20].

Problem: r-Coloring

Input: A graph G on n vertices and m edges.
Question: Is there a proper r-coloring of G?

Problem: Hitting set

Input: A family F of sets over a universe U and an integer k.
Parameter: k
Question: Does there exist a set S ⊂ U such that |S| ≤ k and F ∩ S �= ∅
for each F ∈ F?



A Multivariate Analysis of Some DFA Problems 279

3 Shortest Synchronizing Word

We consider different parameterizations of the following problem.

Problem: Synchronizing Word (SW)

Input: A DFA A = (S, I, δ, s0, F ) and an integer k.
Question: Is there a k-synchronizing word for A?

The most natural parameter is of course k. As we will show, the problem is
W[2]-hard with this parameter. We will consider other natural parameters as
well; these are t = |S| and |I|. Note that s0 and F are simply irrelevant for SW,
and |δ| is simply t times |I|. Table 1 summarizes the results of this section.

Table 1. A summary of the results of this section. In addition, we show that the two
given running time upper bounds are tight in the sense that we cannot expect to solve
SW in time O∗(2o(t)) or in time O∗((|I | − ε)k) for any ε > 0.

Parameter Parameterized Complexity Polynomial Kernel

k W[2]-hard —

|I | NP-complete for |I | = 2 —

k and |I | FPT with running time O∗(|I |k) Not unless NP ⊆ coNP/poly

t FPT with running time O∗(2t) Open

For the first hardness result, we first need the following lemma.

Lemma 2. Given a Hitting Set instance with family F and universe U , a
DFA A = (S, I, δ, s0, F ) can be constructed in time O(|F||U|), such that |S| =
|F|+ k + 1, |I| = |U|, and A has a k-synchronizing word iff F has a hitting set
of size k.

Theorem 3. Synchronizing Word is W[2]-hard, parameterized with k.

If we instead parameterize SW with |I|, we obtain that the problem is not even
in XP. For that result, we first need the following.

Proposition 4 ([15],[33]). Given a SAT formula φ with n variables and m
clauses, a DFA A = (S, I, δ, s0, F ) can be constructed in O(nm) time, such that
|S| = nm+m+ 1, |I| = 2, and A has an n-synchronizing word if and only if φ
has a satisfying truth assignment.

Theorem 5. Synchronizing Word is NP-complete when |I| = 2.

As neither parameter k nor parameter |I| is useful for fixed-parameter tractabil-
ity, a natural next step is to use both k and |I| as a combined parameter.

Theorem 6. Synchronizing Word is FPT when parameterized with |I| and
k; it can be solved in time O∗(|I|k).
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The above result is straight-forward, and one could hope for an improvement or a
polynomial kernel for SW when parameterized with both k and |I|. Interestingly,
no such improvement seems likely, as we show next.

Lemma 7. Given a CNF formula φ with n variables and m clauses, a DFA
A = (S, I, δ, s0, F ) can be constructed in O(nm) time, such that |S| = n+m+1,
|I| = 2n, and A has an n-synchronizing word if and only if φ is satisfiable.

Proof. Let V = {x1, . . . , xn} be a set of variables in φ. Let C = {c1, . . . , cm}
be the set of clauses in φ. We assume, w.l.o.g., that no variable occurs twice
in any clause. The alphabet I contains 2n symbols xi and xi for 1 ≤ i ≤ n,
corresponding to the literals in the formula. We have the following n + m + 1
states:
Variable states qi, 1 ≤ i ≤ n; clause states cj , 1 ≤ j ≤ m; one sink state s.
The transitions are as follows:

1. δ(qi, xi) = δ(qi, xi) = qi+1, with qn+1 = s; δ(qi, xj) = δ(qi, xj) = qi if j �= i.
2. δ(cj , l) = cj for literal l if l /∈ cj . δ(cj , l) = s for literal l if l ∈ cj .
3. δ(s, l) = s for any literal l.

Notice that, as there are no transitions leading from the sink state to any other
state, the state in which the synchronizing word (if it exists) must end is clear,
it must be s. Any synchronizing word must be of length at least n as this is the
length of the shortest path from q1 to s. More precisely, any synchronizing word
must be of the form described by the following regular expression:

(x1 ∪ x1)+(x2 ∪ x2)+ · · · (xv ∪ xn)+(x1 ∪ x1 ∪ x2 ∪ x2 ∪ · · · ∪ xn ∪ xn)∗.

This word should reflect the variable assignment. Namely, if there is a synchro-
nizing word σ = l1 · · · ln of length n, then we can read off a variable assignment
Φ : V → {0, 1} as follows:

Φ(xi) =

{
1, if li = xi
0, if li = xi

As σ leads into s in particular for each state cj , this means that each clause cj
is satisfied by construction. The converse is similarly seen. ��

Theorem 8. Synchronizing Word cannot be solved in time O∗(2o(t)) unless
ETH fails.

Proof. We start by using Lemma 7 to reduce a 3-SAT instance on n variables
and m clauses to a SW instance (A = (S, I, δ, s0, F ), k) where t = n +m + 1,
|I| = 2n, and k = n. If an algorithm existed that solved any SW instance in
O∗(2o(t)), then it would also solve 3-SAT in O∗(2o(n+m)) time, contradicting
ETH. ��

Theorem 9. Synchronizing Word does not have a polynomial kernel when
parameterized with both k and |I| unless NP ⊆ coNP/poly.
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Proof. By Proposition 4 any CNF formula can be reduced to a SW instance
(A = (S, I, δ, s0, F ), k) with |I| = 2 and k = n. If there existed a polynomial
algorithm that produced an equivalent instance of size polynomial in k, |I|, this
would mean that the number of states is reduced. As SW is NP-complete, there
exists a polynomial time reduction back to a CNF formula with n′ variables
and m′ clauses where n′ +m′ is polynomial in k, |I|. This would imply that the
number of clauses in this new CNF formula is bounded by a polynomial in n,
and it is thus a polynomial kernel for SAT when parameterized by the number
of variables n. By Proposition 1 this implies that NP ⊆ coNP/poly. ��

Finally we turn our attention to parameter t. Again, there is a straight-forward
FPT algorithm which is best possible.

Theorem 10 ([29]). Synchronizing Word is FPT when parameterized with
t; it can be solved in time O∗(2t).

Theorem 11. Synchronizing Word cannot be solved in time O∗((|I| − ε)k)
for any ε > 0 unless SETH fails.

Table 2. The table summarizes the results of this section. In addition we show that
the parameter combination (t, |I |) does not admit a polynomial kernel.

Parameter Parameterized Complexity Running time lower bound

t NP-complete for t = 2 -

� NP-complete for � = 2 -

|I | NP-complete for |I | = 2 -

c Open -

t, � NP-complete for t� = 6 -

t, |I | FPT, running time O∗(tt|I|) No O∗(to(t|I|))-time algorithm under ETH

t, c Open -

t, c, � FPT, running time O∗(tc	) No O∗(to(c	))-time algorithm under ETH

4 DFA Consistency

In this section, we consider various parameterizations of the following problem:

Problem: DFA Consistency

Input: An alphabet I, two finite disjoint sets X+, X− ⊆ I∗, and an integer t
Question: Is there a DFA A with at most t states such that X+ is accepted
by A and X− is rejected by A?

The natural parameters we work with here are the number of states t in the
target DFA, the alphabet size |I|, the number of words c = |X+ ∪X−|, and the
maximum length � of any of the words in X+∪X−, i.e., max{|σ| | σ ∈ X+∪X−}.
The results of this section are summarized in Table 2. Notice that for the special
case where c = 2 this problem is called the Separating Word Problem (for
DFA), a recent overview can be found in [12].
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Lemma 12. Given a CNF formula ϕ with n variables and m clauses, an in-
stance of the DFA Consistency problem can be constructed in time O(nm),
where t = 2, |I| = 3n+1, � = 2n, and c = 6n+m+3, such that there is a DFA
on these parameters that distinguishes X+ and X− iff ϕ is satisfiable.

A similar statement was shown by D. Angluin in 1989, but never published.

Lemma 13. Let G = (V,E) on n vertices and m edges be an instance of 3-
Coloring. Then an instance of DFA Consistency can be constructed in time
O(n +m), where t = 3, |I| = n+m, � = 2, c = 2m, and such that there exists
a DFA on these parameters that distinguishes X+ and X− iff G is 3-colorable.

Proof. Let us first construct the DFA Consistency instance and then argue
that it is a YES instance if and only if the 3-Coloring instance is a YES
instance. We start by setting t = 3 and I = V ∪ E, which leaves the definition
of X+ and X−. Let v1, . . . , vn be an arbitrary numbering of the vertices in V .
The sets of words X+ and X− are now constructed as follows:

– X+ = {vie | e = vivj ∈ E, i < j};
– X− = {vje | e = vivj ∈ E, i < j}.

This completes the construction of the DFA Consistency instance.
Let us now argue for the equivalence of the two instances. For the first direc-

tion we assume that there exists a DFA A = (S, I, δ, s0, F ) on three states and
alphabet I = V ∪E that accept X+ and rejects X−. Let s0, s1, s2 be the states
of A and let vi be contained in Vq for 0 ≤ q ≤ 2 if δ(s1, vi) = sq. This gives us
a partitioning V0, V1, V2 of V . Our objective will now be to argue that Vq is an
independent set in G for 0 ≤ q ≤ 2. On the contrary, let e = vivj ∈ E where
i < j be an edge such that vi, vj ∈ Vq. From the construction of X+ and X−

it is clear that set X+ contains word vie and set X− contains vje. As the only
difference between these two words is the first symbol and one word is accepted
and the other one is rejected, it is clear that different states are reached by read-
ing vi and vj from the start state s0. Thus, either vi or vj is not contained in Vq
and the contradiction is obtained.

For the second direction assume that there is a partitioning V0, V1, V2 of V
such that Vq is an independent set for 0 ≤ q ≤ 2. Name the three states s0, s1, s2
and let s0 be the start state and s1 the only accepting state. Function δ is now
defined as follows:

1. δ(s1, vi) = sq, for vi ∈ Vq where 0 ≤ q ≤ 2;
2. δ(sq, vivj) = s1 for 0 ≤ q ≤ 2 and i < j;
3. δ(sq, vivj) = s2 for 0 ≤ q ≤ 2 and i > j;

It is not hard to verify that all words in X+ are accepted and all words in X−

are rejected. ��

Lemma 14. (also see [23]) Given a CNF formula ϕ with n variables and m
clauses, an instance of the DFA Consistency problem can be constructed in
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time O((n+m)2), where t = n+m+1, |I| = 2, � = m+n, and c = 5m+n+4,
such that there exists a DFA on these parameters that distinguishes X+ and X−

iff ϕ is satisfiable.

Theorem 15. DFA Consistency cannot be solved in time O∗(to(t|I|)) unless
ETH fails.

Proof. Through the standard reduction from 3-SAT to 3-Coloring it follows
that that 3-Coloring instance on n vertices and m edges can not be solved in
time O∗(2o(n+m)) unless ETH fails.

By the reduction of Lemma 13 we get an instance of DFA Consistency

where t = 3, |I| = n +m, � = 2, and c = 2m. Any algorithm for DFA Consis-

tency solving it in O∗(to(t|I|)) time will also solve 3-Coloring in O∗(2o(n+m))
and ETH will fail. ��
Theorem 16. DFA Consistency does not have a polynomial kernel when pa-
rameterized with both t and |I| unless NP ⊆ coNP/poly.

Proof. By Lemma 12 any CNF formula can be reduced to a a DFA Consis-

tency instance where t = 2, |I| = 3n + 1, � = 2n, and c = 6n + m + 3
in polynomial time. If there existed a polynomial algorithm that produced an
equivalent instance of size polynomial in t, |I|, this would mean that the number
of words in X+ ∪X− is reduced. As DFA Consistency is NP-complete, there
exists a polynomial time reduction back to a SAT instance with n′ variables
and m′ clauses where n′ +m′ is polynomial in t, |I|. This would imply that the
number of clauses in this CNF formula is bounded by a polynomial in n, and
it is thus a polynomial kernel for SAT when parameterized by the number of
variables. By Proposition 1 this implies that NP ⊆ coNP/poly. ��
Next we turn to parameter combination (t, c, �), which again gives a trivial FPT
algorithm whose running time seems unlikely to be improvable.

Theorem 17. DFA Consistency is FPT when parameterized with t, c, and
�; it can be solved in time O∗(tc	).

Theorem 18. DFA Consistency cannot be solved in time O∗(to(c	)) unless
ETH fails.

Proof. Through the standard reduction from 3-SAT to 3-Coloring it follows
that that 3-Coloring instance on n vertices and m edges can not be solved in
time O∗(2o(n+m)) unless ETH fails. By the reduction of Lemma 13 we get an
instance of the DFA Consistency problem where t = 3, |I| = n + m, � = 2,
and c = 2m. Any algorithm for the DFA Consistency problem solving the
problem in O∗(to(c	)) time will also solve the 3-Coloring problem in O∗(2o(m))
and ETH will fail. ��
We end this section by turning our attention to parameter c. Could it be that
DFA Consistency is NP-hard when t = 2 and c is bounded by a constant? We
are able to answer this question partially with the below positive result.

Theorem 19. DFA Consistency can be solved in polynomial time when t = 2
and c = 2.
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Table 3. A summary of the results on Q-synchronizing word

Parameter Parameterized Complexity

t FPT with running time O∗(2t)
|I | PSPACE-complete for |I | = 2

k W[2]-hard

k and |I | FPT with running time O∗(|I |k)
|Q| and k W[1]-hard

|Q| and |I | W[t]-hard for all t

5 Other Related Problems

The two core problems we investigated so far have quite a number of interesting
variants for which several of our results carry over. We focus on SW-variants,
often computationally harder than SW.

Based on the assumption that some partial information on the current state of
a DFA might be known, formalized by a set of states Q, the Q-Synchronizing

Word (Q-SW) problem was introduced. In this problem we are only interested
in finding a word x, |x| ≤ k, that synchronizes all states from Q, i.e., |δ∗(Q, x)| =
1. From [34] and the reduction from DFA Intersection Nonemptiness given
in [29] that shows PSPACE-hardness of this problem, we can immediately de-
duce the last two rows of Table 3. The only technical problem is that in the
parameterized analogue DFA Intersection, the length parameter m is an ex-
act bound, while the length parameter k is an upper bound. However, by adding
a sequence of m “new” states starting from some Q-state s0, we can enforce
the constructed DFA to have a word of length at least m + 1 as its shortest
Q-synchronizing word. The reduction given in [29] will increase the word length
by one.

Our parameterized complexity results for parameters t, |I|, and k transfer
from Synchronizing Word to this more general setting. Table 3 summarizes
our results.

We also considered related problems on Mealy machines. For reasons of space,
we only mention that finding short homing sequences leads to complexity results
similar to synchronizing words, while finding short distinguishing sequences is
more complex, simmilar to Q-synchronizing words.

6 Conclusion and Questions for Future Research

With this paper, we started some first steps in the multivariate analysis of several
DFA (and Mealy machine) problems. Several questions emerge.

– Does Synchronizing Word have a polynomial kernel with parameter t?
– Is DFA Consistency FPT when parameterized with c or with c and t?

– Does DFA Consistency have a polynomial kernel with parameter (t, c, �)?
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– There are other natural variants of DFA Consistency. Angluin showed [2]
that Regular Expression Consistency is even hard for regular expres-
sions of a very simple structure, without any nested Kleene stars, which sits
very low in the famous star height hierarchy, see [11]. In view of the fact
that for many applications, regular expressions are considered as important
as DFAs, this could give an interesting line of research.

– What could be further natural parameters for problems on regular languages?
Discovering these as possible sources of hardness could be a very fruitful
line of research for both problem classes that we considered in this paper.
Thoughts from the classical theory of Formal Languages could become very
helpful, for instance, from Descriptional Complexity [24].
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Abstract. Austinat, Diekert, Hertrampf, and Petersen [2] proved that
every language L that is (m,n)-recognizable by a deterministic frequency
automaton such that m > n/2 can be recognized by a deterministic finite
automaton as well. First, the size of deterministic frequency automata
and of deterministic finite automata recognizing the same language is
compared. Then approximations of a language are considered, where
a language L′ is called an approximation of a language L if L′ differs
from L in only a finite number of strings. We prove that if a deterministic
frequency automaton has k states and (m,n)-recognizes a language L,
where m > n/2, then there is a language L′ approximating L such that L′

can be recognized by a deterministic finite automaton with no more
than k states.

Austinat et al. [2] also proved that every language L over a single-
letter alphabet that is (1, n)-recognizable by a deterministic frequency
automaton can be recognized by a deterministic finite automaton. For
languages over a single-letter alphabet we show that if a deterministic
frequency automaton has k states and (1, n)-recognizes a language L then
there is a language L′ approximating L such that L′ can be recognized
by a deterministic finite automaton with no more that k states. However,
there are approximations such that our bound is much higher, i.e., k!.

1 Introduction

The notion of frequency computation was introduced by Rose [18] as an attempt
to have an absolutely deterministic mechanism with properties similar to prob-
abilistic algorithms. The definition was as follows. Let N = {0, 1, 2, . . .} denote
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the set of all natural numbers. A function f : N → N is (m,n)-computable, where
1 ≤ m ≤ n, m,n ∈ N, iff there exists a recursive function R : Nn → Nn such
that, for all n-tuples (x1, · · · , xn) ∈ Nn of mutually distinct natural numbers,

card{i | (R(x1, · · · , xn))i = f(xi) , 1 ≤ i ≤ n} ≥ m ,

where (R(x1, · · · , xn))i denotes the ith component of R(x1, · · · , xn).
McNaughton [16] cites in his survey a problem (posed by Myhill) whether f

has to be recursive if m is close to n. This problem was answered by Trakht-
enbrot [20] by showing that f is recursive whenever 2m > n. On the other
hand, Trakhtenbrot [20] proved that, if 2m = n then nonrecursive functions
can be (m,n)-computed. Kinber [14, 13] extended the research by considering
frequency enumeration of sets. The class of (m,n)-computable sets equals the
class of recursive sets if and only if 2m > n. The notion of frequency computa-
tion can be extended to other models of computation. Frequency computation
in polynomial time was discussed in full detail by Hinrichs and Wechsung [11].

For resource bounded computations, the behavior of frequency computability
is completely different: for example, whenever n′ − m′ > n − m, it is known
that under any reasonable resource bound there are sets which are (m′, n′)-
computable, but not (m,n)-computable. However, scaling down to finite au-
tomata, the analogue of Trakhtenbrot’s [20] result holds again: the class of lan-
guages (m,n)-recognizable by deterministic frequency automata equals the class
of regular languages if and only if 2m > n (cf. Austinat et al. [2]). Conversely,
as shown by Austinat et al. [2], for 2m ≤ n, the class of languages (m,n)-
recognizable by deterministic frequency automata is uncountable for a two-letter
alphabet. A stronger result concerning sets separable by finite automata was
claimed by Kinber [13], and this result would imply the results mentioned above
as a corollary. However, as shown by Tantau [19], who gave a counter-example,
Kinber’s [13] Theorem 3 does not hold.

When restricted to a one-letter alphabet, then every (m,n)-recognizable lan-
guage is regular. This was shown by Kinber [14] and also by Austinat et al. [2].

Frequency computations became increasingly popular when relations between
frequency computation and computation with a small number of queries was
discovered [1, 2, 3, 4, 5, 8, 10, 15].

2 Deterministic Frequency Automata

For finite automata the definition of frequency computation is not so obvious.
First, let us fix the necessary notations. We assume familiarity with finite au-
tomata theory, cf., e.g., Hopcroft and Ullman [12]. Let Σ be any finite alphabet,
and let Σ∗ be the free monoid over Σ. Every subset L ⊆ Σ∗ is said to be a
language. The elements of Σ∗ are called strings, and we use |x| to denote the
length of a string x ∈ Σ∗. By χL : Σ

∗ → B, where B = {0, 1}, we denote the
characteristic function of L, i.e., for all x ∈ Σ∗ we set

χL(x) =

{
1, if x ∈ L ;
0, if x /∈ L .
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To define deterministic frequency automata we extend the notion of a determin-
istic finite automaton as follows (cf. Austinat et al. [2]).

Let A = [Q,Σ,#, δ, q0, τ, n], where n ∈ N, n ≥ 1, is a number, Q is a finite set
of states, q0 is the initial state, Σ is a finite alphabet and # is a new symbol such
that # /∈ Σ. The mapping δ : Q×(Σ∪{#})n → Q is the transition function, and
we call τ : Q → Bn the type of state. The type of state is used for the output.
We refer to A as deterministic frequency automaton.

Next, we formally describe the behavior of a deterministic frequency automa-
ton A. Let n ∈ N, n ≥ 1, and let x = (x1, . . . , xn) ∈ (Σ∗)n be an input vector.
We define |x| = max{|xi| | 1 ≤ i ≤ n}, and q ◦ x = δ∗(q, (x1#	1 , . . . , xn#

	n)),
where δ∗ : Q × ((Σ ∪ {#})n)∗ is the usual extension of δ on n-tuples of strings,
and �i = |x| − |xi| for all 1 ≤ i ≤ n. Then the output of A is defined to be the
type τ(q0 ◦ x). We refer to such an automaton as n-DFA for short.

A language L ⊆ Σ∗ is said to be (m,n)-recognized by an n-DFA A iff for each
n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦ x) and
(χL(x1), . . . , χL(xn)) coincide on at least m components. A language L ⊆ Σ∗ is
called (m,n)-recognizable iff there is an n-DFA A that (m,n)-recognizes L.

Frequency computation is not much similar to probabilistic computation. The
advantages of probabilistic algorithms over deterministic ones are based on the
effect that at some moments the algorithm has a choice of several possible contin-
uations of the computation process but there is no information which one suits
better. For example, if the language is L3,5 = {1n | n is divisible by 3 or 5}
then a probabilistic algorithm has a choice: whether to test divisibility by 3 or
divisibility by 5.

Frequency algorithms have no such option. Nonetheless, frequency automata
can have size complexity advantages over deterministic automata as well. To see
this, consider the language L2015 ⊆ {1}∗ defined as

L2015 = {1n | n = 2015} . (1)

A deterministic finite automaton recognizing this language needs to have 2016
states. On the other hand, there is a 1-state 100-DFA A that (99, 100)-recognizes
the language L2015. The 100-DFA A rejects all 100-tuples, i.e., it always outputs
τ(q0 ◦ x) = (b1, . . . , b100) ∈ B100, where bi = 0 for all i = 1, . . . , 100. But
nonetheless A does (99, 100)-recognize the language L2015, since it can only be
wrong on at most one of the 100 strings in any 100-tuple given as input.

This idea can be easily extended. Consider L2015,2158 ⊆ {1}∗ defined as

L2015,2158 = {1n | n = 2015 or n = 2158} . (2)

Then there exists a 1-state 100-DFA A such that A does (98, 100)-recognize the
language L2015,2158. Again, A rejects all 100-tuples, but nonetheless recognizes
the language L2015,2158.

Maybe, the only advantage of deterministic frequency automata over deter-
ministic finite automata is to save size by producing errors on a constant num-
ber of fixed input words? Not at all, some nonregular and even nonrecursive
languages can be recognized by deterministic frequency automata.
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Theorem 1 (Austinat et al. [2]). There exists a nonrecursive language that
is (1, 2)-recognizable by a 2-DFA.

3 Size Complexity

In this section we study the size complexity of deterministic frequency automata
and compare it to the size of ordinary deterministic automata recognizing the
same language or an approximation of it.

First, we extend the example shown in (1). This directly yields the follow-
ing theorem showing that the advantage of deterministic frequency automata
with respect to their size complexity over deterministic finite automata can be
arbitrarily large.

Theorem 2. For every s ∈ N, s ≥ 1, there is a language Ls such that, for every
n ≥ 1 there is an n-DFA A having one state that (n − 1, n)-recognizes Ls, but
every deterministic finite automaton recognizing Ls needs at least s states.

Proof. Let s ≥ 1 be arbitrarily fixed and let Ls be any language defined as

Ls = {1m | m = m0} ,

where m0 is a number such that every deterministic finite automaton needs at
least s states to recognize the language Ls. The desired n-DFA A can then
be easily defined such that Q = {q0} and such that for all n-tuples of strings
x ∈ ({1}∗)n the mapping τ(q0 ◦ x) returns the n-tuple containing only zeros.
Hence, Ls is (n− 1, n)-recognized by A, since A rejects all input strings. But an
error can happen only once, i.e., if 1m0 is part of the input. ��

Clearly, Theorem 2 can be easily generalized along the lines of the example
shown in (2). So the more interesting question is whether or not there is always
a (huge) gap in the size of deterministic frequency automata and determinis-
tic finite automata provided they accept roughly the same language. Here by
“roughly” we mean that we allow the deterministic finite automaton to accept
an approximation of the language accepted by the corresponding deterministic
frequency automaton.

Austinat et al. [2] proved that in the case m > n/2 every language (m,n)-
recognized by an n-DFA is also recognizable by a deterministic finite automaton.
There were no size estimates of the deterministic frequency automata and the
deterministic finite automata, respectively, in [2] but a careful optimization of
the construction given in [2] proves the following theorem.

Theorem 3. Let any pair (m,n), where m > n/2, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L which is (m,n)-
recognized by the n-DFA A then there exists a language L′ differing from L only
in a finite number of strings such that L′ can be recognized by a deterministic
finite automaton with 2k+3 states.
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It is well-known that for nondeterministic finite automata and probabilistic 1-
way automata the size gap to deterministic finite automata recognizing the same
language is exponential [17, 6, 7, 9]. But now we consider approximations and
compare n-DFA and deterministic finite automata. Our next theorem shows that
the gap expressed in Theorem 3 between the sizes of deterministic frequency
automata and deterministic finite automata is not necessary provided |Σ| ≥ 2.

Theorem 4. Let any pair (m,n), where m > n/2, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L which is (m,n)-
recognized by the n-DFA A then there exists a language L′ differing from L only
in a finite number of strings such that L′ can be recognized by a deterministic
finite automaton with k states.

Proof. This proof is nonconstructive. This means that we do not present an
effective construction how to transform a program for (m,n)-recognition of a
language into a program for deterministic recognition of the same language.
Instead we show that such a transformation can be done using a finite amount of
additional information and we show that such an additional information cannot
fail to exist but we do not show how to obtain such additional information
effectively. Since |Σ| ≥ 2, we assume without loss of generality that {0, 1} ⊆ Σ.

By [α1, α2, · · · , αk/β1, β2, · · · , βk], where αi, βi ∈ {0, 1}, 1 ≤ i ≤ k, we denote
the set of all strings x ∈ Σ∗ such that

χL(xα1) = β1 ,

χL(xα1α2) = β2 ,

· · ·
χL(xα1α2 · · ·αk) = βk .

We start to describe a noneffective “construction” of a tree denoted by S. This
tree is defined inductively. In principle, the tree might be infinite but we prove
below that the “construction” results in a finite tree. We will use the resulting
tree as the finite additional information about the given frequency automaton.

– There is a single vertex of the zero level in the tree (called the root). All the
strings x ∈ Σ∗ are assigned to it.

– If the vertex of the p-th level is already in the tree with the set

[α1, α2, · · · , αp/β1, β2, · · · , βp]

used as label to it, we “consider” whether the sets

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1]

are infinite. If the two sets are infinite then we add two (p + 1)-th level
vertices to the tree and label them by the sets

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1] ,
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respectively. We say that these two vertices

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1]

are strictly higher than the vertex v labeled by

[α1, α2, · · · , αp/β1, β2, · · · , βp] (3)

If at least one of these two sets is finite or empty then no vertex is added in
the result of this “consideration.” In this case, we continue as follows. If the
two sets

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 1]

are infinite, then we add two (p+1)-th level vertices to the tree S and label
them by the sets

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 1] ,

respectively. Again, we say that these two vertices are strictly higher than v.
If at least one of these two sets is finite or empty then no vertex is added.

Notice two properties of the sets assigned to the vertices of the tree S.

(1) If a vertex
[α1, α2, · · · , αp+1/β1, β2, · · · , βp+1]

is strictly higher than

[α1, α2, · · · , αp/β1, β2, · · · , βp]

then the following inclusion holds:

[α1, α2, · · · , αp+1/β1, β2, · · · , βp+1] ⊆ [α1, α2, · · · , αp/β1, β2, · · · , βp] .

(2) If two vertices

[α1, α2, · · · , αp/β1, β2, · · · , βp] and

[γ1, γ2, · · · , γr/δ1, δ2, · · · , δr]

are distinct vertices in the tree S then there exist strings

x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp] and

y ∈ [γ1, γ2, · · · , γr/δ1, δ2, · · · , δr]

and a string z ∈ Σ∗ such that (xz ∈ L) � (yz ∈ L).
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Property (1) is an immediate consequence of the construction.
The second property is proved separately for the following two cases.

Case (a). One of the vertices is strictly higher than the other one, e.g., p > r.

By the definition of strictly higher (cf. (3)) we then have αi = γi and βi = δi
for i = 1, . . . , r and so, by Property (1) and the transitivity of set inclusion,
[α1, α2, · · · , αp/β1, β2, · · · , βp] ⊆ [α1, α2, · · · , αr/β1, β2, · · · , βr]. Then we take
any arbitrarily chosen string x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp], and any string
y ∈ [α1, α2, · · · , αr/β1, β2, · · · , βr] \ [α1, α2, · · · , αr, αr+1/β1, β2, · · · , βr, βr+1],
and define z = α1 · · ·αrαr+1, i.e., the concatenation of α1, . . . , αr+1. By con-
struction x, y, and z clearly satisfy Property (2).

The subcase p < r is handled mutatis mutandis.

Case (b). None of the vertices [α1, · · · , αp/β1, · · · , βp] and [γ1, · · · , γr/δ1, · · · , δr]
is strictly higher than the other one.

Let j be the least number less than min{p, r} such that αi = γi and βi = δi
for all i = 1, . . . , j. Note that we allow j = 0 to denote the case that the highest
such vertex is the root, i.e., the vertex of level zero.

Consequently, we then have that αj+1 �= γj+1 or βj+1 �= δj+1. But by
construction we know that αj+1 �= γj+1 cannot occur. Therefore, we know
that βj+1 �= δj+1 must hold, i.e., γj+1 = βj+1, where b denotes the logical
negation of b ∈ {0, 1}. This in turn implies that

[α1, . . . , αj+1/β1, . . . , βj+1] ∩ [α1, . . . , αj+1/β1, . . . , βj+1] = ∅ , (4)

i.e., these two sets partition [α1, . . . , αj/β1, . . . , βj]. So by Property (1) and
Equality (4) we also have

[γ1, · · · , γr/δ1, · · · , δr] ∩ [α1, . . . , αj+1/β1, . . . , βj+1] = ∅ . (5)

Therefore, we can take any string x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp], and any
string y ∈ [γ1, · · · , γr/δ1, · · · , δr]. Furthermore, we set z = α1 · · ·αj+1.

So, if j = 0 then x and y are as above, and z = α1. Thus, χL(xα1) = β1
and χL(yα1) �= β1. In the general case that j > 0 we directly obtain that
χL(xz) = βj+1 and χL(yz) �= βj+1 (cf. (5)), and Property (2) is shown.

Claim: The tree S has at most k vertices.

Suppose that the tree S has at least (k+1) vertices. Take an n-tuple of pairwise
distinct strings from each of the sets, and, again nonconstructively, appropriate
z1, . . . , zk+1 (such that Property (2) will be applicable). Denote the resulting
tuples by (x11z

1, · · · , x1nz1), (x21z2, · · · , x2nz2), . . . , (xk+1
1 zk+1, · · · , xk+1

n zk+1).
The n-DFA A has only k states but we have taken (k + 1) many n-tuples

of strings. Hence there are two distinct values i and j such that, after reading
(xi1z

i · · · , xinzi) and (xj1z
j · · · , xjnzj), the n-DFA A is in the same state. So,

by the choice of the z	, � = 1, . . . , k + 1, we know that zi = zj =: z and
that Property (2) is applicable. Since we also have m > n/2, if the n-tuple
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corresponding to the output on (xi1z · · · , xinz) contains no less than m correct
values then the n-DFA cannot produce an n-tuple as output which contains m
many correct values on the input (xj1z, · · · , xjnz). This is a contradiction, and
the claim is shown.

Now we add one more level to the tree S in order to construct a new tree S′.
Denote the highest level of S by s, We have already shown that s ≤ k−1. Every
vertex of the highest level and only these vertices have the following property.
If the vertex is

[α1, α2, · · · , αp/β1, β2, · · · , βp]
then there may exist a γ ∈ Σ such that the sets

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 1]

are infinite. In this case we add

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 0] and

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 1]

as new vertices of the k-th level over the vertex

[α1, α2, · · · , αp/β1, β2, · · · , βp] .

Each newly added vertex either corresponds to some state of the n-DFA A
that is already related to another vertex of S′ or it corresponds to a state of A
that yet has no vertex in S′. We transform S′ into a graph which is no longer a
tree by identifying vertices that correspond to the same state of the n-DFA A.
We continue adding new and new vertices in the same style. For every vertex
that has been added in the process of transforming the tree S we try to add new
vertices of a higher level but we identify them with vertices already constructed
if no new state of the n-DFA A is employed. It is easy to see that the obtained
graph (we call it S′′) has no more than k vertices.

To construct an equivalent deterministic finite automaton we notice that in
the construction above we distinguished between “infinitely many strings” and
“a finite number of strings.” Let d exceed the length of all considered “a finite
number of strings.” Then every string of length no less than d falls in one or
several of the sets which are names of vertices in S′′. Consider unions of such sets.
We say that a union of the sets which are names of vertices in S′′ is consistent
if it is a union of type

[α1/β1] ∪ [α1, α2/β1, β2] ∪ · · · ∪ [α1, α2, · · · , αp/β1, β2, · · · , βp].

We say that a union is complete if it is not possible to add any other set which
is a name of a vertex in S′′ to this union.

It is easy to see that every consistent and complete union has incorporated a
vertex of the upper-most level which is not present at any other consistent and
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complete union. Hence the number of consistent and complete unions does not
exceed the number of vertices in the graph S′′, i.e., it does not exceed k.

Consider a deterministic finite automaton that has states numbered by the
consistent and complete unions of vertices of the tree S′. The initial state (for
the empty input string) is the vertex of the level zero. The state numbered
[α1, α2, · · · , αj/β1, β2, · · · , βj ] is accepting if and only if βj = 1. Since m > n/2,
it is possible to construct the program for the deterministic finite automaton
counting to which state the transition should take place. For strings that have
a length exceeding d this automaton is equivalent to the given n-DFA A and its
number of states does not exceed k. ��

The formulation of Theorem 4 may seem to be over-complicated. Why another
language is considered? It is well-known that a language differing from a regular
languages only in a finite number of strings is itself regular. However, the number
of states may be influenced very much if we neglect this finite number of strings
(cf. Theorem 2, and Theorems 3 and 4, respectively).

Theorem 4 has a sensitive restriction: the considered deterministic frequency
automata have parameters (m,n) with m > n/2. Looking at Theorem 1 we see
that this restriction cannot be relaxed.

Therefore, we turn our attention to the unary case, i.e., only single-letter
alphabets are allowed. Then the situation changes drastically, since the following
theorem is known.

Theorem 5 (Austinat et al. [2], Kinber [13]). Let any pair (m,n), where
0 < m ≤ n, be arbitrarily fixed, and let A be any n-DFA having k states. Then
every language L over a single-letter alphabet that is (m,n)-recognized by the
n-DFA A is also recognizable by a deterministic finite automaton.

We complement Theorem 5 in terms of size complexity of the automata.

Theorem 6. Let any pair (m,n), where 0 < m ≤ n, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L over a single-
letter alphabet Σ which is (m,n)-recognized by the n-DFA A then there exists a
language L′ ⊆ Σ∗ differing from L only in a finite number of strings such that L′

can be recognized by a deterministic finite automaton with k states.

Proof. Without loss of generality, let the single-letter alphabet Σ = {1}. If an
n-DFA A does (m,n)-recognize a language L ⊆ Σ∗ then A (1, n)-recognizes L,
too. Let Q be the set of states of A. By assumption we know that |Q| = k. For
all qb ∈ Q we consider the following sets of n-tuples of input strings:

Tb = {(1m1, 1m2 , · · · , 1mn) | A after reading

(1m1 , 1m2 , · · · , 1mn) enters state qb} ,

where all mi ≥ 1, i.e., all mi are positive natural numbers. Note that the class Tb
is labeled by the index b of the state qb but not by the n-tuple of input strings.

Let T be the collection T = {Tb | Tb is infinite }. We define a relation be-
tween the sets Tb in T . Let Tb and Tc be any sets in T . Then we say that
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(1m1 , 1m2 , · · · , 1mn) ∈ Tb precedes (1s1 , 1s2 , · · · , 1sn) ∈ Tc if there exists a
string 1v such that

m1 + v = s1,m2 + v = s2, · · · ,mn + v = sn .

Precedence of n-tuples induces precedence of sets in T . Since all the sets Tb ∈ T
are infinite, for every pair (Tb, Tc), either Tb precedes Tc or Tc precedes Tb or
Tb does not precede Tc and Tc does not precede Tb. The precedence relation
divides the sets into equivalence classes corresponding to states b and c in the
same cycle.

Let k be the number of the states in A. Then each set Tb ∈ T contains an
n-tuple (1m1 , 1m2 , · · · , 1mn) such that m1 +m2 + · · ·+mn ≤ n· k.

It may be possible that the same automaton A (1, n)-recognizes several lan-
guages. Let L be one of these languages. Then it is possible to make assertions
about which components of the n outputs of A on a certain n-tuple of input
strings are correct. By the definition of frequency computation, for every n-tuple
of input strings at least one of the outputs is correct.

Assume that each equivalence class of the sets Tb is represented by one set
from the equivalence class:

(1m1 , 1m2 , · · · , 1mn), (1p1 , 1p2 , · · · , 1pn), · · · , (1s1 , 1s2 , · · · , 1sn) .

Let these classes contain tm, tp, · · · , ts sets Tb, respectively. Let N be the least
common multiple of tm, tp, · · · , ts.

Assume that one of the equivalence classes is represented by n-tuples of input
strings

(1m1 , 1m2 , · · · , 1mn) ,

(1m1+1, 1m2+1, · · · , 1mn+1) ,

· · ·
(1m1+tm , 1m2+tm , · · · , 1mn+tm) .

Then by analyzing the outputs on these n-tuples

(y11 , y
1
2 , · · · , y1n)

(y21 , y
2
2 , · · · , y2n)
· · ·

(ytm1 , ytm2 , · · · , ytmn )

we can find one or several periodical sequences f = 〈f(1), f(2), · · · 〉 of elements
0, 1 (any such sequence describes a language in a single-letter alphabet such that
f(n) = 1 iff 1n is in the language) with period tm such that

(f(m1) = y11) ∨ (f(m2) = y12) ∨ · · · ∨ (f(mn) = y1n)

(f(m1 + 1) = y21) ∨ (f(m2 + 1) = y22) ∨ · · · ∨ (f(mn + 1) = y2n)

· · ·
(f(m1 + tm) = ytm1 ) ∨ (f(m2 + tm) = ytm2 ) ∨ · · · ∨ (f(mn + tm) = ytmn ) .
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The Chinese Remainder Theorem gives an algorithm of how to find such
sequences. However, combining all these calculations give us only a sequence
(or several sequences) with period N ≤ k!. On the other hand, the states of
the frequency automaton are periodically repeated with periods tm, tp, · · · , ts,
respectively. The least common multiple of all these periods is N . Hence the
language can be recognized by a deterministic finite automaton with N states.

There is no need to perform these calculations by a finite automaton. After
performing these calculations we can reconstruct a full period of the length N
and construct the program of the deterministic finite automaton.

However, a deeper analysis of the frequency automaton is needed, since our
theorem promises a deterministic finite automaton with no more than k states,
and not N states. Let L be a language (1, n)-recognized by the n-DFA A. For
each cycle

(1m1 , 1m2 , · · · , 1mn) ,

(1m1+1, 1m2+1, · · · , 1mn+1) ,

· · ·
(1m1+tm , 1m2+tm , · · · , 1mn+tm) .

of the frequency automaton we can say which outputs

(y11 , y
1
2 , · · · , y1n)

(y21 , y
2
2 , · · · , y2n)
· · ·

(ytm1 , ytm2 , · · · , ytmn )

are correct and which are not. For every cycle we establish whether for some
i ∈ {1, 2, · · · , tm} all the outputs

y1i , y
2
i , · · · , ytmi

are correct. If there is such a cycle and such an i then the i-th output of this
cycle provides correct results for all sufficiently long input strings.

If such an i does not exist for all cycles then the n-DFA A does not recognize L
correctly, because, by Chinese Remainder Theorem, there is an n-tuple of input
strings such that all the outputs of A are incorrect. ��

However, Theorem 6 does not hold for all approximations.

Theorem 7. Let any number n ∈ N, n ≥ 1, be arbitrarily fixed, and let A be any
n-DFA having k states. If there is a language L over a single-letter alphabet Σ
which is (1, n)-recognized by the n-DFA A then there exists a language L′ ⊆ Σ∗

differing from L only in a finite number of strings such that L′ can be only
recognized by a deterministic finite automaton which has at least k! states.
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Abstract. We illustrate a general technique for enumerating factors of
k-automatic sequences by proving a conjecture on the number f(n) of
unbordered factors of the Thue-Morse sequence. We show that f(n) ≤ n
for n ≥ 4 and that f(n) = n infinitely often. We also give examples of
automatic sequences having exactly 2 unbordered factors of every length.
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1 Introduction

In this paper, we are concerned with certain factors of k-automatic sequences.
Roughly speaking, a sequence x = a0a1a2 · · · over a finite alphabet Δ is said to
be k-automatic if there exists a finite automaton that, on input n expressed in
base k, reaches a state with output an. Automatic sequences were popularized
by a celebrated paper of Cobham [3] and have been widely studied; see [1].

More precisely, let k be an integer ≥ 2, and set Σk = {0, 1, . . . , k − 1}. Let
M = (Q,Σk, Δ, δ, q0, τ) be a deterministic finite automaton with output (DFAO)
with transition function δ : Q × Σk → Q and output function τ : Q → Δ. Let
(n)k denote the canonical base-k representation of n, without leading zeros,
and starting with the most significant digit. Then we say that M generates the
sequence (an)n≥0 if an = τ(δ(q0, (n)k)) for all n ≥ 0.

The prototypical example of a k-automatic sequence is the Thue-Morse se-
quence t = t0t1t2 · · · = 01101001 · · · , defined by the relations t0 = 0 and
t2n = tn, t2n+1 = 1 − tn for n ≥ 0. It is generated by the DFAO below in
Figure 1.

0

0 1

0
1

1

Fig. 1. A finite automaton generating the Thue-Morse sequence t
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A factor of the sequence x is a finite word of the form ai · · ·aj . A finite word w
is said to be bordered if there is some finite nonempty word x �= w that is both a
prefix and a suffix of w [12,11,6,13]. For example, the English word ionization

is bordered, as it begins and ends with ion. Otherwise w is said to be unbordered.
Recently, there has been significant interest in the properties of unbordered

factors; see, for example, [9,8,5,10]. In particular, Currie and Saari [4] studied
the unbordered factors of the Thue-Morse word.

Currie and Saari [4] proved that if n �≡ 1 (mod 6), then the Thue-Morse word
has an unbordered factor of length n, but left it open to decide for which lengths
congruent to 1 (mod 6) this property holds. This was solved in [7], where the
following characterization is given:

Theorem 1. The Thue-Morse sequence t has an unbordered factor of length n
if and only if (n)2 �∈ 1(01∗0)∗10∗1.

A harder problem is to come up with an expression for the number of unbordered
factors of t. In [2], the third author and co-authors made the following conjecture:

Conjecture 2. Let f(n) denote the number of unbordered factors of length n in
t, the Thue-Morse sequence. Then f is given by f(0) = 1, f(1) = 2, f(2) = 2,
and the system of recurrences

f(4n+ 1) = f(2n+ 1)

f(8n+ 2) = f(2n+ 1)− 8f(4n) + f(4n+ 3) + 4f(8n)

f(8n+ 3) = 2f(2n)− f(2n+ 1) + 5f(4n) + f(4n+ 2)− 3f(8n)

f(8n+ 4) = −4f(4n) + 2f(4n+ 2) + 2f(8n)

f(8n+ 6) = 2f(2n)− f(2n+ 1) + f(4n) + f(4n+ 2) + f(4n+ 3)− f(8n)

f(16n) = −2f(4n) + 3f(8n) (1)

f(16n+ 7) = −2f(2n) + f(2n+ 1)− 5f(4n) + f(4n+ 2) + 3f(8n)

f(16n+ 8) = −8f(4n) + 4f(4n+ 2) + 4f(8n)

f(16n+ 15) = −8f(4n) + 2f(4n+ 3) + 4f(8n) + f(8n+ 7).

for n ≥ 0.

Although this conjecture may appear unmotivated, it is characteristic of the
kinds of recurrences that naturally appear for k-regular sequences, and was ob-
tained by computing a large number of values of f and then looking for possible
linear relations among subsequences of the form (f(2in+ j))n≥0.

This system suffices to calculate f efficiently, in O(log n) arithmetic steps.
We now summarize the rest of the paper. In Section 2, we prove Conjecture 2.

In Section 3, we discuss how to obtain relations like those above for a given k-
regular sequence. In Section 4 we discuss the growth rate of f in detail. Finally,
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in Section 5, we give examples of other sequences with interesting numbers of
unbordered factors.

2 Proof of the Conjecture

We now outline our computational proof of Conjecture 2.
First, we need a little notation. We extend the notion of canonical base-k

representation of a single non-negative integer to tuples of such integers. For
example, by (m,n)k we mean the unique word over the alphabet Σk ×Σk such
that the projection π1 onto the first coordinate gives the base-k representation
of m, and the projection π2 onto the second co-ordinate gives the base-k rep-
resentation of n, where the shorter representation is padded with leading 0’s,
if necessary, so that the representations have the same length. For example,
(43, 17)2 = [1, 0][0, 1][1, 0][0, 1][1, 0][1, 1].

Proof. Step 1: Using the ideas in [7], we created an automaton A of 23 states
that accepts the language L of all words (n, i)2 such that there is a “novel”
unbordered factor of length n in t beginning at position i. Here “novel” means
that this factor does not previously appear in any position to the left. Thus,
the number of such words with first component equal to (n)2 equals f(n), the
number of unbordered factors of t of length n. This automaton is illustrated
below in Figure 2 (rotated to fit the figure more clearly).

Step 2: Using the ideas in [2], we now know that f is a 2-regular sequence,
with a “linear representation” that can be deduced from the structure of A.
This gives matrices M0,M1 of dimension 23 and vectors v, w such that f(n) =
vMa1 · · ·Maiw where a1 · · · ai is the base-2 representation of n, written with the
most significant digit first. They are given below.

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 2. Automaton accepting (n, i)2 such that there is a novel unbordered factor of
length n at position i of t
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M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

v = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

w = [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

Step 3: Now each of the identities in (1) corresponds to a certain identity in
matrices. For example, the identity f(16n) = −2f(4n) + 3f(8n) can be written
as

vMM0M0M0M0w = −2vMM0M0w + 3vMM0M0M0w, (2)

whereM is the matrix product corresponding to the base-2 expansion of n. More
generally, we can think of M as some arbitrary product of the matrices M0 and
M1, starting with at least one M1; this corresponds to an arbitrary n ≥ 1. We
can think of M as a matrix of indeterminates. Then (2) represents an assertion
about the entries ofM which can be verified. Of course, the entries ofM are not
completely arbitrary, since they come about as M1 times some product of M0

and M1. We can compute the (positive) transitive closure of M0 +M1 and then
multiply on the left by M1; the entries that have 0’s will be 0 in any product
of M1 times a product of the matrices M0 and M1. Thus we can replace the
corresponding indeterminates by 0, which makes verifying (2) easier.

Another approach, which is even simpler, is to consider vM in place of M .
This reduces the number of entries it is required to check from d2 to d, where d
is the dimension of the matrices.

Step 4: Finally, we have to verify the identities for n = 0 and n = 1, which is
easy.

We carried out this computation in Maple for the matrices M0 and M1 cor-
responding to A, which completes the proof. The Maple program can be down-
loaded from

http://www.cs.uwaterloo.ca/~shallit/papers.html .

http://www.cs.uwaterloo.ca/~shallit/papers.html
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3 Determining the Relations

The verification method of the previous section can be extended to a method
to mechanically find the relations for any given k-regular sequence g (instead of
guessing them and verifying them), given the linear representation of g.

Suppose we are given the linear representation of a k-regular sequence g, that
is, vectors v, w and matrices M0,M1, . . . ,Mk−1 such that

g(n) = vMa1Ma2 · · ·Majw,

where a1a2 · · · aj = (n)k.
Now letM be arbitrary and consider vM as a vector with variable entries, say

[a1, a2, . . . , ad]. Successively compute vMMyw for words y of length 0, 1, 2, . . . over
Σk = {0, 1, . . . , k−1}; thiswill give an expression in terms of the variablesa1, . . . , ad.
After at most d + 1 such relations, we find an expression for vMMyw for some y
as a linear combination of previously computed expressions. When this happens,
you no longer need to consider any expression having y as a suffix. Eventually the
procedure halts, and this corresponds to a system of equations like that in (2).

Consider the following example. Let k = 2, v = [6, 1], w = [2, 4]T , and

M0 =

[
−3 1
1 4

]
M1 =

[
0 2
−3 1

]
Suppose M is some product of M0 and M1, and suppose vM = [a, b].
We find

vMw = 2a+ 4b

vMM0w = −2a+ 18b

vMM1w = −8a− 2b

vMM0M0w = 24a+ 70b

vMM1M0w = 36a+ 24b

and, solving the linear systems, we get

vMM1w =
35

11
vMw − 9

11
vM0w

vMM0M0w = 13vMw + vM0w

vMM1M0w =
174

11
vMw − 24

11
vM0w.

This gives us

g(2n+ 1) =
35

11
g(n) +

9

11
g(2n)

g(4n) = 13g(n) + g(2n)

g(4n+ 2) =
174

11
g(n)− 24

11
g(2n)

for n ≥ 1.
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4 The Growth Rate of f(n)

We now return to f(n), the number of unbordered factors of t of length n. Here
is a brief table of f(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

f(n) 1 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4 8 4 8 0 8 4 4 8 24 0 4 4 8 4

Kalle Saari (personal communication) asked about the growth rate of f(n).
The following results characterizes it.

Theorem 3. We have f(n) ≤ n for n ≥ 4. Furthermore, f(n) = n infinitely
often. Thus, lim supn≥1 f(n)/n = 1.

Proof. We start by verifying the following relations:

f(4n) = 2f(2n), (n ≥ 2) (3)

f(4n+ 1) = f(2n+ 1), (n ≥ 0) (4)

f(8n+ 2) = f(2n+ 1) + f(4n+ 3), (n ≥ 1) (5)

f(8n+ 3) = −f(2n+ 1) + f(4n+ 2) (n ≥ 2) (6)

f(8n+ 6) = −f(2n+ 1) + f(4n+ 2) + f(4n+ 3) (n ≥ 2) (7)

f(8n+ 7) = 2f(2n+ 1) + f(4n+ 3) (n ≥ 3) (8)

These can be verified in exactly the same way that we verified the system (2)
earlier.

We now verify, by induction on n, that f(n) ≤ n for n ≥ 4. The base case is
n = 4, and f(4) = 2. Now assume n ≥ 5. Otherwise,

– If n ≡ 0 (mod 4), say n = 4m and m ≥ 2. Then f(4m) = 2f(2m) ≤ 2 ·2m ≤
4m by (3) and induction.

– If n ≡ 1 (mod 4), say n = 4m+ 1 for m ≥ 1, then f(4m+ 1) = f(2m+ 1)
by (4). But f(2m + 1) ≤ 2m + 1 by induction for m ≥ 2. The case m = 1
corresponds to f(5) = 4 ≤ 5.

– If n ≡ 2 (mod 8), say n = 8m + 2, then for m ≥ 2 we have f(8m + 2) =
f(2m+1)+ f(4m+3) ≤ 6m+4 by induction, which is less than 8m+ 2. If
m = 1, then f(10) = 4 < 10.

– If n ≡ 3 (mod 8), say n = 8m + 3 for m ≥ 1, then f(8m+ 3) = −f(2m+
1) + f(4m+ 2) ≤ f(4m+ 2) ≤ 4m+ 2 by induction.

– If n ≡ 6 (mod 8), say n = 8m+ 6, then f(8m+ 6) = −f(2m+ 1) + f(4m+
2) + f(4m+ 3) ≤ f(4m+ 2) + f(4m+ 3) ≤ 8m+ 5 by induction, provided
m ≥ 2. For m = 0 we have f(6) = 6 and for m = 1 we have f(14) = 4.
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– If n ≡ 7 (mod 8), say n = 8m+7, then f(8m+7) = 2f(2m+1)+f(4m+3)≤
2(2m+1)+ 4m+3 = 8m+5 for m ≥ 3, by induction. The cases m = 0, 1, 2
can be verified by inspection.

This completes the proof that f(n) ≤ n.
It remains to see that f(n) = n infinitely often. We do this by showing that

f(n) = n for n of the form 3 · 2i, i ≥ 1. Let us prove this by induction on i.
It is true for i = 1 since f(6) = 6. Otherwise i ≥ 2, and using (3) we have
f(3 · 2i+1) = 2f(3 · 2i) = 2 · 3 · 2i = 3 · 2i+1 by induction. This also implies the
claim lim supn≥1 f(n)/n = 1.

5 Unbordered Factors of other Sequences

We can carry out similar computations for other famous sequences. In some cases
the automata and the corresponding matrices are very large, which renders the
computations time-consuming and the asymptotic behavior less transparent. We
report on some of these computations, omitting the details.

Theorem 4. Let r = r0r1r2 · · · = 00010010 · · · denote the Rudin-Shapiro se-
quence, defined by rn = the number of occurrences, taken modulo 2, of ‘11’ in
the binary expansion of n. Let fr(n) denote the number of unbordered factors of
length n in r. Then fr(n) ≤ 21

8 n for all n ≥ 1. Furthermore if n = 2i + 1, then
f(n) = 21 · 2i−3 for i ≥ 4.

Theorem 5. Let p = p0p1p2 · · · = 0100 · · · be the so-called “period-doubling”
sequence, defined by

pn =

{
1, if tn = tn+1;

0, otherwise,

where t0t1t2 · · · is the Thue-Morse word t. Note that p is the fixed point of the
morphism 0 → 01 and 1 → 00. Then fp(n), the number of unbordered factors of
p of length n, is equal to 2 for all n ≥ 1.

The period-doubling sequence can be generalized to base k ≥ 2, as follows:

pk := (νk(n+ 1) mod 2)n≥0,

where νk(x) is the exponent of the largest power of k dividing x. For each k, the
corresponding sequence pk is a binary sequence that is k-automatic:

Theorem 6. Let k be an integer ≥ 2. The sequence pk is the fixed point of the
morphism ϕk, where

ϕk(0) = 0k−1 1

ϕk(1) = 0k.
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Proof. Note that pk(n) = c iff νk(n + 1) = 2j + c for some integer j ≥ 0, and
c ∈ {0, 1}.

If 0 ≤ a < k− 1, then pk(kn+ a) = νk(kn+ a+1) mod 2 = 0. If a = k− 1 we
have pk(kn+a) = νk(kn+k) mod 2 = νk(k(n+1)) mod 2 = (2j+ c+1) mod 2.
Hence if pk(n) = 0, then pk[kn..kn+ k − 1] = 0k−1 1, while if pk(n) = 1, then
pk[kn..kn+ k − 1] = 0k. It follows that pk is the fixed point of ϕk.

The generalized sequence pk has the same property of unbordered factors as the
period-doubling sequence:

Theorem 7. The number of unbordered factors of pk of length n, for k ≥ 2 and
n ≥ 1, is equal to 2, and the two unbordered factors are reversals of each other.

We begin with some useful lemmas.

Lemma 8. Let x ∈ {0, 1}∗ be a word. Then 0k−1 ϕk(x)
R = ϕk(x

R) 0k−1.

Proof. Suppose x = a1a2 · · ·an, where each ai ∈ {0, 1}. If a ∈ {0, 1}, let a denote
1− a. Then

0k−1 ϕk(x)
R = 0k−1

⎛⎝ ∏
1≤i≤n

ϕk(ai)

⎞⎠R

= 0k−1

⎛⎝ ∏
1≤i≤n

0k−1 ai

⎞⎠R

= 0k−1

⎛⎝ ∏
1≤i≤n

an+1−i 0
k−1

⎞⎠
=

⎛⎝ ∏
1≤i≤n

0k−1 an+1−i

⎞⎠ 0k−1

=

⎛⎝ ∏
1≤i≤n

ϕk(an+1−i)

⎞⎠ 0k−1

= ϕk(x
R) 0k−1.

Lemma 9. If the word w is bordered, then ϕk(w) is bordered.

Proof. If w is bordered, then w = xyx for x �= ε. Then ϕk(w) = ϕk(x)ϕk(y)ϕk(x)
is bordered.

Lemma 10. If w is a factor of pk, then so is wR.

Proof. If w is a factor of pk, then it is a factor of some prefix pk[0..k
i − 1] for

some i ≥ 1. So it suffices to show that pk[0..k
i − 1]R appears as a factor of pk.

In fact, we claim that

pk[0..k
i − 1]R = pk[k

i − 1..2ki − 2].

To see this, it suffices to observe that νk(k
i − a) = νk(k

i + a) for 0 ≤ a < ki.
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The following lemma describes the unbordered factors of ϕk. If w = 0ax, then
by 0−a w we mean the word x.

Lemma 11. (a) If w is an unbordered factor of pk and |w| ≡ 0 (mod k), then
w = ϕk(x) or w = ϕk(x)

R, for some unbordered factor x of pk with |x| =
|w|/k.

(b) If w is an unbordered factor of pk and |w| ≡ a (mod k) for 0 < a < k, then
w = 0a−k ϕk(x) or w = ϕk(x)

R 0a−k, for some unbordered factor x of pk

with |x| = (|w| − a)/k + 1.

Proof. (a): Suppose that w = pk[i..i+ kn− 1] for some integer i. There are two
cases to consider: pk[i] = 0 and pk[i] = 1.

Suppose pk[i] = 0. Since w is unbordered, we have pk[i+ kn− 1] = 1. Then
νk(i+ kn) ≥ 1, so i+ kn = km for some m ≥ 0. Then i = k(m−n) is a multiple
of k, so w = ϕk(x), where x = pk[i/k..i/k+n−1]. Note that |x| = |w|/k. Finally,
Lemma 9 shows that x is unbordered.

Suppose pk[i] = 1. Since w is unbordered, we have pk[i + kn− 1] = 0. From
Lemma 10 we know that wR is also a factor of pk (and also is unbordered). Then
from the previous paragraph, we see that wR = ϕk(x) for some unbordered factor
x of pk, with |x| = |w|/k. Then w = ϕk(x)

R, as desired.

(b): Suppose that w = pk[i..i+ kn+ a− 1] for 0 < a < k. There are two cases
to consider: pk[i] = 0 and pk[i] = 1.

Suppose that pk[i] = 0. Since w is unbordered, we know that pk[i+kn+a−1] =
1. Then νk(i + kn + a) ≥ 1, so i + kn + a = km for some m ≥ 0. Then
i− (k − a) = k(m− n− 1) is a multiple of k. Hence

0k−a w = pk[i− (k−a)..i+kn+a− 1] = ϕk(pk[(i+a)/k− 1..(i+a)/k+n− 1]).

Let x = pk[(i + a)/k − 1..(i + a)/k + n − 1]. Then w = 0a−k ϕk(x), and |x| =
(|w| − a)/k + 1. If x is bordered, then using Lemma 9 we have that 0k−a w has
a border of length ≥ k, so w has a border of length at least a, a contradiction.

Suppose that pk[i] = 1. Since w is unbordered, we know that pk[i+kn+a−1] =
0. Then by Lemma 10 we know that wR is also an unbordered factor of pk. Then
from the previous paragraph, we get that wR = 0a−k ϕk(x) for some unbordered
factor x of pk where |x| = (|w| − a)/k + 1. So w = ϕk(x)

R 0a−k, as desired.

Lemma 12. Let x be a word and w = 1x0 be an unbordered word. Then 0iϕk(x0)
is unbordered for 1 ≤ i ≤ k.

Proof. If i = k then 0kϕk(x0) = ϕk(1x0) = ϕk(w). Suppose ϕk(w) is bordered;
then there exist u �= ε and v such that ϕk(w) = uvu. Since ϕk(0) = 0k−11, we
know u ends in 1. But since u is a prefix of ϕk(w) that ends in 1, it follows that
|u| ≡ 0 (mod k), and so u is the image of some word r under ϕk. Hence w begins
and ends with r, a contradiction.

Now assume 1 ≤ i < k and 0iϕk(x0) is bordered. Then there exist u �= ε and
v such that 0iϕk(x0) = uvu; note that u must end in 1. It follows that

ϕk(w) = ϕk(1x0) = 0kϕk(x0) = 0k−i(0iϕk(x0)) = 0k−iuvu.
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Since 0k−iu and 0k−iuvu both end in 1 and 0k−iuvu = ϕk(w), we have |vu| ≡
0 (mod k). Hence |u| ≡ i (mod k). It follows that 0k−iuv ends in 0k, so 0k−iuvu =
ϕk(w) begins and ends in 0k−iu, a contradiction.

We are now ready for the proof of Theorem 7.

Proof. First, we show that there is at least one unbordered factor of every length,
by induction on n. The base cases are n < 2k, and are left to the reader. Oth-
erwise n ≥ 2k. Write n = kn′ + i where 1 ≤ i ≤ k. By induction there is an
unbordered word w of length n′+1. Using Lemma 10, we can assume that w be-
gins with 1 and ends with 0, say w = 1x0. By Lemma 12 we have that 0iϕk(x0)
is unbordered, and it is of length i+ kn′ = n.

It remains to prove there are exactly 2 unbordered factors of every length.
If n ≤ 2k, then it is easy to see that the only unbordered factors are 1 0n−1

and 0n−1 1.
Now assume n > 2k and that there are only two unbordered factors of length

n′ for all n′ < n; we prove it for n. Let w be an unbordered factor of length n.
If n ≡ 0 (mod k), then by Lemma 11 (a), we know that either w = φk(x) or

w = φk(x)
R, where x is an unbordered factor of length n/k. By induction there

are exactly 2 unbordered factors of length n/k; by Lemma 10 they are reverses
of each other. Let x be such an unbordered factor; since |x| = n/k > 2, either x
begins with 0 and ends with 1, or begins with 1 and ends with 0. In the former
case, the image w = ϕk(x) begins and ends with 0, a contradiction. So x begins
with 1 and ends with 0. But there is only one such factor, so there are only two
possibilities for w.

Otherwise let a = n mod k; then 0 < a < k. By Lemma 11 (b), we know that
w = 0a−k ϕk(x) or w = ϕk(x)

R 0a−k, where x is an unbordered factor of length
(|w|− a)/k+1 ≥ 2. By induction there are exactly 2 such unbordered words; by
Lemma 10 they are reverses of each other. Let x be such an unbordered factor;
then either x begins with 0 and ends with 1, or begins with 1 and ends with 0.
Let us call them x0 and x1, respectively, with x0 = xR1 . Now ϕk(x0) begins with
0k−1 1, and ends with 0k. Hence, provided a �= 1, we see that w = 0a−k ϕk(x0)
begins with 0 and ends with 0, a contradiction. If a = 1, Lemma 11 (b) gives the
two factors 01−k ϕk(x0) and ϕk(x0)

R 01−k. The former begins with 1 and ends
with 0; the latter begins with 0 and ends with 1.

In the latter case, x1 begins with 1 and ends with 0. There is only one such x1
(by induction), and then either w = 0a−k ϕk(x1) or w = ϕk(x1)

R 0a−k, giving
at most two possibilities for w. In the case a = 1, these two factors would seem
to give a total of four factors of length n. However, there are only two, since

01−k ϕk(x0) = 01−k ϕk(x
R
1 ) = ϕk(x1)

R 01−k

ϕk(x0)
R 01−k = 01−k ϕk(x

R
0 ) = 01−k ϕk(x1)

This completes the proof.
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Abstract. We investigate questions related to the presence of primitive
words and Lyndon words in automatic and linearly recurrent sequences.
We show that the Lyndon factorization of a k-automatic sequence is
itself k-automatic. We also show that the function counting the number
of primitive factors (resp., Lyndon factors) of length n in a k-automatic
sequence is k-regular. Finally, we show that the number of Lyndon factors
of a linearly recurrent sequence is bounded.

Keywords: Lyndon word, Lyndon factorization, primitive word,
automatic sequence, linearly recurrent sequence.

1 Introduction

We start with some basic definitions. A nonempty word w is called a power if
it can be written in the form w = xk, for some integer k ≥ 2. Otherwise w is
called primitive. Thus murmur is a power, but murder is primitive. A word y is
a factor of a word w if there exist words x, z such that w = xyz. If further x = ε
(resp., z = ε), then y is a prefix (resp., suffix) of w. A prefix or suffix of a word
w is called proper if it is unequal to w.

Let Σ be an ordered alphabet. We recall the usual definition of lexicographic
order on the words in Σ∗. We write w < x if either

(a) w is a proper prefix of x; or
(b) there exist words y, z, z′ and letters a < b such that w = yaz and x = ybz′.

For example, using the usual ordering of the alphabet, we have common < con <
conjugate. As usual, we write w ≤ x if w < x or w = x.

A word w is a conjugate of a word x if there exist words u, v such that w = uv
and w = vu. Thus, for example, enlist and listen are conjugates. A word
is said to be Lyndon if it is primitive and lexicographically least among all its
conjugates. Thus, for example, academy is Lyndon, while googol and googoo are
not. Lyndon words have received a great deal of attention in the combinatorics
on words literature. For example, a finite word is Lyndon if and only if it is
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c© Springer-Verlag Berlin Heidelberg 2013



312 D. Goč, K. Saari, and J. Shallit

lexicographically less than each of its proper suffixes [9] and this can be tested
in linear time.

We now turn to (right-) infinite words. We write an infinite word in boldface,
as x = a0a1a2 · · · and use indexing starting at 0. For i ≤ j+1, we let [i..j] denote
the set {i, i+1, . . . , j}. (If i = j +1 we get the empty set.) We let x[i..j] denote
the word aiai+1 · · ·aj . Similarly, [i..∞] denotes the infinite set {i, i+ 1, . . .} and
x[i..∞] denotes the infinite word aiai+1 · · · .

An infinite word or sequence x = a0a1a2 · · · is said to be k-automatic if there
is a deterministic finite automaton (with outputs associated with the states)
that, on input n expressed in base k, reaches a state q with output τ(q) equal to
an. For more details, see [6] or [2]. In several previous papers [1,5,14,16,10], we
have developed a technique to show that many properties of automatic sequences
are decidable. The fundamental tool is the following:

Theorem 1. Let P (n) be a predicate associated with a k-automatic sequence x,
expressible using addition, subtraction, comparisons, logical operations, indexing
into x, and existential and universal quantifiers. Then there is a computable
finite automaton accepting the base-k representations of those n for which P (n)
holds. Furthermore, we can decide if P (n) holds for at least one n, or for all n,
or for infinitely many n.

If a predicate is constructed as in the previous theorem, we just say it is “ex-
pressible”. Any expressible predicate is decidable. As an example, we prove

Theorem 2. Let x be a k-automatic sequence. The predicate P (i, j) defined by
“x[i..j] is primitive” is expressible.

Proof. (due to Luke Schaeffer) It is easy to see that a word is a power if and
only if it is equal to some cyclic shift of itself, other than the trivial shift. Thus
a word is a power if and only if there is a d, 0 < d < j − i + 1, such that
x[i..j − d] = x[i + d..j] and x[j − d+ 1..j] = x[i..i + d− 1]. A word is primitive
if there is no such d.

Theorem 3. Let x be a k-automatic sequence. The predicate LL(i, j,m, n) de-
fined by “x[i..j] < x[m..n]” is expressible.

Proof. We have x[i..j] < x[m..n] if and only if either

(a) j − i < n−m and x[i..j] = x[m..m+ j − i]; or

(b) there exists t < min(j − i, n − m) such that x[i..i + t] = x[m..m + t] and
x[i + t+ 1] < x[m+ t+ 1].

Theorem 4. Let x be a k-automatic sequence. The predicate L(i, j) defined by
“x[i..j] is a Lyndon word” is expressible.

Proof. It suffices to check that x[i..j] is lexicographically less than each of its
proper suffixes, that is, that LL(i, j, i′, j) holds for all i′ with i < i′ ≤ j.
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We can extend the definition of lexicographic order to infinite words in the obvi-
ous way. We can extend the definition of Lyndon words to (right-) infinite words
as follows: an infinite word x = a0a1a2 · · · is Lyndon if it is lexicographically less
than all its suffixes x[j..∞] = ajaj+1 · · · for j ≥ 1. Then we have the following
theorems.

Theorem 5. Let x be a k-automatic sequence. The predicate LL∞(i, j) defined
by “x[i..∞] < x[j..∞]” is expressible.

Proof. This is equivalent to ∃t ≥ 0 such that x[i..i+ t− 1] = x[j..j + t− 1] and
x[i+ t] < x[j + t].

Theorem 6. Let x be a k-automatic sequence. The predicate L∞(i) defined by
“x[i..∞] is an infinite Lyndon word” is expressible.

Proof. This is equivalent to LL∞(i, j) holding for all j > i.

2 Lyndon Factorization

Siromoney et al. [17] proved that every infinite word x = a0a1a2 · · · can be
factorized uniquely in exactly one of the following two ways:

(a) as x = w1w2w3 · · · where each wi is a finite Lyndon word and w1 ≥ w2 ≥
w3 · · · ; or

(b) as x = w1w2w3 · · ·wrw where wi is a finite Lyndon word for 1 ≤ i ≤ r, and
w is an infinite Lyndon word, and w1 ≥ w2 ≥ · · · ≥ wr ≥ w.

If (a) holds we say that the Lyndon factorization of x is infinite; otherwise we
say it is finite.

Ido and Melançon [13,12] gave an explicit description of the Lyndon factoriza-
tion of the Thue-Morse word t and the period-doubling sequence (among other
things). (Recall that the Thue-Morse word is given by t[n] = the number of 1’s
in the binary expansion of n, taken modulo 2.) For the Thue-Morse word, this
factorization is given by

t = w1w2w3w4 · · · = (011)(01)(0011)(00101101) · · · ,

where each term in the factorization, after the first, is double the length of the
previous. Séébold [15] and Černý [4] generalized these results to other related
automatic sequences.

In this section, generalizing the work of Ido, Melançon, Séébold, and Černý,
we prove that the Lyndon factorization of a k-automatic sequence is itself k-
automatic. Of course, we need to explain how the factorization is encoded. The
easiest and most natural way to do this is to use an infinite word over {0, 1},
where the 1’s indicate the positions where a new term in the factorization begins.
Thus the i’th 1, for i ≥ 0, appears at index |w1w2 · · ·wi|. For example, for the
Thue-Morse word, this encoding is given by

100101000100000001 · · · .
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If the factorization is infinite, then there are infinitely many 1’s in its encoding;
otherwise there are finitely many 1’s.

In order to prove the theorem, we need a number of results. We draw a
distinction between a factor f of x (which is just a word) and an occurrence of
that factor (which specifies the exact position at which f occurs). For example,
in the Thue-Morse word t, the factor 0110 occurs as x[0..3] and x[11..15] and
many other places. We call [0..3] and [11..15], and so forth, the occurrences of
0110. An occurrence is said to be Lyndon if the word at that position is Lyndon.
We say an occurrence O1 = [i..j] is inside an occurrence O2 = [i′..j′] if i′ ≤ i
and j′ ≥ j. If, in addition, either i′ < i or j < j′ (or both), then we say O1 is
strictly inside O2. These definitions are easily extended to the case where j or j′

are equal to ∞, and they correspond to the predicates I (inside) and SI (strictly
inside) given below:

I(i, j, i′, j′) is i′ ≤ i and j′ ≥ j

SI(i, j, i′, j′) is I(i, j, i′, j′) and ((i′ < i) or (j′ > j))

An infinite Lyndon factorization

x = w1w2w3 · · ·

then corresponds to an infinite sequence of occurrences

[i1..j1], [i2..j2], · · ·

where wn = x[in..jn] and in+1 = jn + 1 for n ≥ 1, while a finite Lyndon
factorization

x = w1w2 · · ·wrw

corresponds to a finite sequence of occurrences

[i1..j1], [i2..j2], . . . , [ir..jr], [ir+1..∞]

where wn = x[in..jn] and in+1 = jn + 1 for 1 ≤ n ≤ r.

Theorem 7. Let x be an infinite word. Every Lyndon occurrence in x appears
inside a term of the Lyndon factorization of x.

Proof. We prove the result for infinite Lyndon factorizations; the result for finite
factorizations is exactly analogous.

Suppose the factorization is x = w1w2w3 · · · . It suffices to show that no Lyn-
don occurrence can span the boundary between two terms of the factorization.
Suppose, contrary to what we want to prove, that uwiwi+1 · · ·wjv is a Lyndon
word for some u that is a nonempty suffix of wi−1 (possibly equal to wi−1), and
v that is a nonempty prefix of wj+1 (possibly equal to wj+1), and i ≤ j + 1. (If
i = j + 1 then there are no wi’s at all between u and v.)

Since u is a suffix of wi−1 and wi−1 is Lyndon, we have u ≥ wi−1. On the
other hand, by the Lyndon factorization definition we have wi−1 ≥ wi ≥ · · · ≥
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wj ≥ wj+1. But v is a prefix of wj+1, so just by the definition of lexicographic
ordering we have wj+1 ≥ v. Putting this all together we get u ≥ v. So ux ≥ v
for all words x.

On the other hand, since uwi · · ·wjv is Lyndon, it must be lexicographically
less than any proper suffix — for instance, v. So uwi · · ·wjv < v. Take x =
wi · · ·wjv to get a contradiction with the conclusion in the previous paragraph.

Corollary 8. The occurrence [i..j] corresponds to a term in the Lyndon factor-
ization of x if and only if

(a) [i..j] is Lyndon; and
(b) [i..j] does not occur strictly inside any other Lyndon occurrence.

Proof. Suppose [i..j] corresponds to a term wn in the Lyndon factorization of x.
Then evidently [i..j] is Lyndon. If it occurred strictly inside some other Lyndon
occurrence, say [i′..j′], then we know from Theorem 7 that [i′..j′] itself lies in
inside some [im, jm], so [i..j] must lie strictly inside [im, jm], which is clearly
impossible.

Now suppose [i..j] is Lyndon and does not occur strictly inside any other
Lyndon occurrence. From Theorem 7 [i..j] must occur inside some term of the
factorization [i′..j′]. If [i..j] �= [i′..j′] then [i..j] lies strictly inside [i′..j′], a contra-
diction. So [i..j] = [i′..j′] and hence corresponds to a term of the factorization.

Corollary 9. The predicate LF (i, j) defined by “[i..j] corresponds to a term of
the Lyndon factorization of x” is expressible.

Proof. Indeed, by Corollary 8, the predicate LF (i, j) can be defined by

L(i, j) and ∀ i′, j′ (SI(i, j, i′, j′) =⇒ ¬L(i′, j′)).

We can now prove the main result of this section.

Theorem 10. Using the encoding mentioned above, the Lyndon factorization of
a k-automatic sequence is itself k-automatic.

Proof. Using the technique of [1], we can create an automaton that on input i
expressed in base k, guesses j and checks if LF (i, j) holds. If so, it outputs 1
and otherwise 0. To get the last i in the case that the Lyndon factorization is
finite, we also accept i if L∞(i) holds.

We also have

Theorem 11. Let x be a k-automatic sequence. It is decidable if the Lyndon
factorization of x is finite or infinite.

Proof. The construction given above in the proof of Theorem 10 produces an
automaton that accepts finitely many distinct i (expressed in base k) if and only
if the Lyndon factorization of x is finite.
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We programmed up our method and found the Lyndon factorization of the Thue-
Morse sequence t, the period-doubling sequence d, the paperfolding sequence p,
and the Rudin-Shapiro sequence r, and their negations. (The results for Thue-
Morse and the period-doubling sequence were already given in [12], albeit in a
different form.) Recall that the period-doubling sequence is defined by p[n] =
|t[n+1]−t[n]|. The paperfolding sequence p = 0010011 · · · arises from the limit

of the sequence (fn), where f0 = 0 and fn+1 = fn0fn
R
, where R denotes reversal

and x maps 0 to 1 and 1 to 0. Finally, the Rudin-Shapiro sequence r is defined
by r[n] = the number of (possibly overlapping) occurrences of 11 in the binary
expansion of n, taken modulo 2. The results are given in the theorem below.

Theorem 12. The occurrences corresponding to the Lyndon factorization of
each word is as follows:

– the Thue-Morse sequence t: [0..2], [3..4], [5..8], [9..16], . . . , [2i + 1..2i+1], . . .;

– the negated Thue-Morse sequence t: [0..0], [1..∞];

– the Rudin-Shapiro sequence r: [0..6], [7..14], [15..30], . . . , [2i−1..2i+1−2], . . .;

– the negated Rudin-Shapiro sequence
r: [0..0], [1..1], [2..2], [3..10], [11..42], [43..46], . . . , [4i − 4i−1 − 4i−2 − 1..4i −
4i−1 − 2], [4i − 4i−1 − 1..4i+1 − 4i − 4i−1 − 1], . . .;

– the paperfolding sequence p: [0..6], [7..14], [15..30], . . . , [2i − 1..2i+1 − 2], . . .;

– the negated paperfolding sequence p: [0..0], [1..1], [2..4], [5..9], [10..20], [21..84],
. . . , [(4i − 1)/3..4(4i − 1)/3], . . .;

– the period-doubling sequence d: [0..0], [1..4], [5..20], [21..84], . . .,
[(4i − 1)/3..4(4i − 1)/3], . . .;

– the negated period-doubling sequence d: [0..1], [2..9], [10..41], [42..169], . . .,
[2(4i − 1)/3..2(4i+1 − 1)/3− 1], . . ..

3 Enumeration

There is a useful generalization of k-automatic sequences to sequences over N,
the non-negative integers. A sequence (an)n≥0 over N is called k-regular if there
exist vectors u and v and a matrix-valued morphism μ such that an = uμ(w)v,
where w is the base-k representation of n. For more details, see [3].

The subword complexity function ρ(n) of an infinite sequence x counts the
number of distinct length-n factors of x. There are also many variations, such
as counting the number of palindromic factors or unbordered factors. If x is
k-automatic, then all three of these are k-regular sequences [1]. We now show
that the same result holds for the number ρPx (n) of primitive factors of length
n and for the number ρLx of Lyndon factors of length n. We refer to these two
quantities as the “primitive complexity” and “Lyndon complexity”, respectively.

Theorem 13. The function counting the number of length-n primitive (resp.,
Lyndon) factors of a k-automatic sequence x is k-regular.
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Proof. By the results of [5], it suffices to show that there is an automaton ac-
cepting the base-k representations of pairs (n, i) such that the number of i’s
associated with each n equals the number of primitive (resp., Lyndon) factors
of length n.

To do so, it suffices to show that the predicate P (n, i) defined by “the factor
of length n beginning at position i is primitive (resp., Lyndon) and is the first
occurrence of that factor in x” is expressible. This is just

P (i, i+ n− 1) and ∀j < i x[i..i+ n− 1] �= x[j..j + n− 1],

(resp.,

L(i, i+ n− 1) and ∀j < i x[i..i + n− 1] �= x[j..j + n− 1]).

We used our method to compute these sequences for the Thue-Morse sequence,
and the results are given below.

Theorem 14. Let ρLt (n) denote the number of Lyndon factors of length n of
the Thue-Morse sequence. Then

ρLt (n) =

⎧⎪⎨⎪⎩
1, if n = 2k or 5 · 2k for k ≥ 1 ;

2, if n = 1 or n = 5 or n = 3 · 2k for k ≥ 0;

0, otherwise.

Theorem 15. Let ρPt (n) denote the number of primitive factors of length n of
the Thue-Morse sequence. Then

ρPt (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 · 2t − 4, if n = 2t;

4n− 2t − 4, if 2t + 1 ≤ n < 3 · 2t−1;

5 · 2t − 6, if n = 3 · 2t−1;

2n+ 2t+1 − 2, if 3 · 2t−1 < n < 2t+1.

We can also state a similar result for the Rudin-Shapiro sequence.

Theorem 16. Let ρLr (n) denote the Lyndon complexity of the Rudin-Shapiro
sequence. Then ρLr (n) ≤ 8 for all n. This sequence is 2-automatic and there is
an automaton of 2444 states that generates it.

Proof. The proof was carried out by machine computation, and we briefly sum-
marize how it was done.

First, we created an automaton A to accept all pairs of integers (n, i), repre-
sented in base 2, such that the factor of length n in r, starting at position i, is a
Lyndon factor, and is the first occurrence of that factor in r. Thus, the number
of distinct integers i associated with each n is ρLr (n). The automaton A has 102
states.
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Using the techniques in [5], we then used A to create matrices M0 and M1 of
dimension 102×102, and vectors v, w such that vMxw = ρLr (n), if x is the base-2
representation of n. Here if x = a1a2 · · ·ai, then by Mx we mean the product
Ma1Ma2 · · ·Mai .

From this we then created a new automaton A′ where the states are products
of the form vMx for binary strings x and the transitions are on 0 and 1. This
automaton was built using a breadth-first approach, using a queue to hold states
whose targets on 0 and 1 are not yet known. From Theorem 24 in the next section,
we know that ρLr (n) is bounded, so that this approach must terminate. It did so
at 2444 states, and the product of the vMx corresponding to each state with w
gives an integer less than or equal to 8, thus proving the desired result and also
providing an automaton to compute ρLr (n).

Remark 17. Note that the Lyndon complexity functions in Theorems 14 and 16
are bounded. This will follow more generally from Theorem 24 below.

4 Finite Factorizations

Of course, the original Lyndon factorization was for finite words: every finite
nonempty word x can be factored uniquely as a nonincreasing product w1w2 · · ·
wm of Lyndon words. We can apply this theorem to all prefixes of a k-automatic
sequence. It is then natural to wonder if a single automaton can encode all the
Lyndon factorizations of all finite prefixes. The answer is yes, as the following
result shows.

Theorem 18. Suppose x is a k-automatic sequence. Then there is an automa-
ton A accepting

{(n, i)k : the Lyndon factorization of x[0..n− 1] is w1w2 · · ·wm

with wm = x[i..n− 1]}.

Proof. As is well-known [9], if w1w2 · · ·wm is the Lyndon factorization of x, then
wm is the lexicographically least suffix of x. So to accept (n, i)k we find i such
that x[i..n− 1] < x[j..n − 1] for 0 ≤ j < n and i �= j.

Given A, we can find the complete factorization of any prefix x[0..n−1] by using
this automaton to find the appropriate i (as described in [11]) and then replacing
n with i.

We carried out this construction for the Thue-Morse sequence, and the result
is shown below in Figure 1.

In a similar manner, there is an automaton that encodes the factorization of
every factor of a k-automatic sequence:

Theorem 19. Suppose x is a k-automatic sequence. Then there is an automa-
ton A′ accepting

{(i, j, l)k : the Lyndon factorization of x[i..j − 1] is w1w2 · · ·wm

with wm = x[l..j − 1]}.
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Fig. 1. A finite automaton accepting the base-2 representation of (n, i) such that the
Lyndon factorization of t[0..n − 1] ends in the term t[i..n − 1]

Fig. 2. A finite automaton accepting the base-2 representation of (i, j, l) such that the
Lyndon factorization of t[i..j − 1] ends in the term t[l..j − 1]

We calculated A′ for the Thue-Morse sequence using our method. It is a 34-state
machine and is displayed in Figure 2.
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Another quantity of interest is the number of terms in the Lyndon factoriza-
tion of each prefix.

Theorem 20. Let x be a k-automatic sequence. Then the sequence (f(n))n≥0

defined by

f(n) = the number of terms in the Lyndon factorization of x[0..n]

is k-regular.

Proof. We construct an automaton to accept {(n, i) : ∃j ≤ n such that L(i, j)
and if SI(i, j, i′, j′) and 0 ≤ i′ ≤ j′ ≤ n then ¬L(i′, j′)}.

For the Thue-Morse sequence the corresponding sequence satisfies the relations

f(4n+ 1) = −f(2n) + f(2n+ 1) + f(4n)

f(8n+ 2) = −f(2n) + f(4n) + f(4n+ 2)

f(8n+ 3) = −f(2n) + f(4n) + f(4n+ 3)

f(8n+ 6) = −f(2n)− f(4n+ 2) + 3f(4n+ 3)

f(8n+ 7) = −f(2n) + 2f(4n+ 3)

f(16n) = −f(2n) + f(4n) + f(8n)

f(16n+ 4) = −f(2n) + f(4n) + f(8n+ 4)

f(16n+ 8) = −f(2n) + f(4n+ 3) + f(8n+ 4)

f(16n+ 12) = −f(2n)− 2f(4n+ 2) + 3f(4n+ 3) + f(8n+ 4)

for n ≥ 1, which allows efficient calculation of this quantity.

5 Linearly Recurrent Sequences

Definition 21. A recurrent infinite word x = a0a1a2 · · · , where each ai is a
letter, is called linearly recurrent with constant L > 0 if, for every factor u and
its two consecutive occurrences beginning at positions i and j in x with i < j, we
have j − i < L|u|. The word aiai+1 · · · aj−1 is called a return word of u. Thus
linear recurrence can be defined from the condition that every return word w of
every factor u of x satisfy |w| < L|u|. Let Ru denote the set of return words of
u in x.

Remark 22. Linear recurrence implies that every length-k factor appears at least
once in every factor of length (L+ 1)k − 1.

Lemma 23 (Durand, Host, and Skau [8]). Let x be an aperiodic linearly
recurrent word with constant L.

(i) If u is a factor of x and w its return word, then |w| > |u|/L.
(ii) The number of return words of any given factor u of x is #Ru ≤ L(L+1)2.
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Theorem 24. The Lyndon complexity of any linearly recurrent sequence is
bounded above by a constant.

Proof. Let x be a linearly recurrent sequence with constant L. If x is ultimately
periodic, the subword complexity is already bounded above by a constant, so
the Lyndon complexity is also bounded. Now assume that x is aperiodic, and
let n ≥ L. Denote k = .(n+ 1)/(L+ 1)/, so that

(L+ 1)k − 1 ≤ n < (L+ 1)(k + 1)− 1. (1)

The left-hand side inequality in (1) and Remark 22 together imply that all
factors in x of length k occur in all factors of length n. Therefore if u is the
lexicographically smallest factor of length k, then every Lyndon factor of x of
length n must begin with u. Since every suffix of x that begins with u can be
factorized over Ru, we conclude further that every length-n Lyndon factor of x
is a prefix of a word in R∗

u.
The return words of u have length at least k/L by Lemma 23. Furthermore,

the right-hand side inequality in (1) gives

n

k/L
<

(L+ 1)(k + 1)− 1

k/L
<
L(L+ 1)(k + 1)

k
≤ 2L(L+ 1).

Therefore any Lyndon factor of length n is a prefix of a word in R2L(L+1)
u . Since

#Ru ≤ L(L+ 1)2 by Lemma 23, we conclude that

ρLx (n) ≤ max
{
ρLx(1), ρ

L
x (2), . . . , ρ

L
x(L − 1), (L(L+ 1)2)2L(L+1)

}
,

so that the Lyndon complexity of x is bounded.

Definition 25. Let h : A∗ → A∗ be a primitive morphism, and let τ : A → B
be a letter-to-letter morphism. If h is prolongable, so that the limit hω(a) :=
limn→∞ hn(a) exists for some letter a ∈ A, then the sequence τ

(
hω(a)

)
is called

primitive morphic.

Lemma 26 (Durand [7,8]). Primitive morphic sequences are linearly
recurrent.

Corollary 27. The Lyndon complexity of any primitive morphic sequence is
bounded.

Proof. Follows from Lemma 26 and Theorem 24.

Corollary 28. If x is k-automatic and primitive morphic, then its Lyndon com-
plexity is k-automatic.

Proof. Follows from Corollary 27 and Theorem 13, because a k-regular sequence
over a finite alphabet is k-automatic [3].
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Abstract. A capturing group is a syntax used in modern regular expres-
sion implementations to specify a subexpression of a regular expression.
Given a string that matches the regular expression, submatch extraction
is the process of extracting the substrings corresponding to those subex-
pressions. Greedy and reluctant closures are variants on the standard
closure operator that impact how submatches are extracted. The state
of the art and practice in submatch extraction are automata based ap-
proaches and backtracking algorithms. In theory, the number of states
in an automata-based approach can be exponential in n, the size of the
regular expression, and the running time of backtracking algorithms can
be exponential in �, the length of the string. In this paper, we present an
O(�c) runtime automata based algorithm for extracting submatches from
a string that matches a regular expression, where c > 0 is the number
of capturing groups. The previous fastest automata based algorithm was
O(n�c). Both our approach and the previous fastest one require worst-
case exponential compile time. But in practice, the worst case behavior
rarely occurs, so achieving a practical speed-up against state-of-the-art
methods is of significant interest. Our experimental results show that,
for a large set of regular expressions used in practice, our algorithm is
approximately twice as fast as Java’s backtracking based regular expres-
sion library and approximately twenty times faster than the RE2 regular
expression engine.

1 Introduction

Regular expressions (REs) are a succinct method to formally represent sets of
strings over an alphabet. Given an RE and a string, the RE matches the string
if the string belongs to the set described by the RE. Many RE implementations
also support search, i.e. finding the first substring of an input string that matches
the RE. In this paper we only address matching, which has practical applications
in network security, bioinformatics, and other areas.

Most textbooks on compiler design and related topics (e.g. [4]) describe REs
from a theoretical perspective, but omit additional features including capturing
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groups and reluctant closure, that are supported in practical implementations of
REs, such as PCRE [3], Java [7], and RE2 [2].

A capturing group is a syntax used to specify a subexpression. Given a string
that matches the regular expression, submatch extraction is the process of ex-
tracting the substrings corresponding to those subexpressions. This feature en-
ables regular expressions to be used as parsers. Parentheses are commonly used
to indicate the beginning and end of a capturing group. For example, the RE
(.∗) = (.∗) could be used to parse key-value pairs. (Here, the meta-character ‘.’
matches any character in the alphabet, so that .∗ matches any string.)

The reluctant closure operator, denoted ∗?, appears in both Java and PCRE,
and is widely used in practice. This operator is a variant of the standard greedy
closure operator for REs, denoted ∗, with different submatching behavior: where
other rules do not apply, shorter submatches to a subexpression E∗? take priority
over longer ones, whereas for E∗ the reverse is true. For example, consider match-
ing the string a = b = c first against (.∗?)=(.∗), and then against (.∗)=(.∗?). In
the first case the capturing groups match a and b= c, respectively, while in the
second case the submatches are a=b and c.

If the two closure operators in this example are both greedy or both reluctant,
then it is ambiguous which of these two assignments of submatches should be
reported by a matching algorithm. There are no formal standards that specify
precedence rules for such cases. We aimed for consistency with Java’s implemen-
tation, which we verified with extensive testing.

Though REs are widely studied, the problem of efficiently implementing sub-
match extraction has not received much attention. The state of the art includes
backtracking and automata based approaches. Java, PCRE, Perl, Python, Ruby,
and many other tools implement submatch extraction using recursive backtrack-
ing, where an input string may be scanned multiple times before a match is found.
Pike implemented the first automata based submatch extraction algorithm in the
sam text editor [8] based on Thompson’s algorithm [10] for RE matching, which
converts the RE to a nondeterministic finite automaton (NFA). RE2 uses a com-
bination of deterministic finite automata (DFAs) and NFAs to improve the time
efficiency of submatch extraction [2]. RE2 uses DFAs to locate a RE’s overall
match location in an input string and then uses NFA-based matching on the
overall match to extract submatches. Laurikari [5,6] studied ways to implement
submatch extraction using a DFA. Both Pike’s and Laurikari’s implementations
require worst-case exponential time to construct the DFA. Once the DFA has
been constructed these implementations run in O(n�c) time, where n is the num-
ber of states in the NFA corresponding to a RE, � is the length of the string
being matched, and c > 0 is the number of capturing groups.

Our algorithm is suitable for settings where the automaton is compiled once
and matched many times against different input strings. This scenario is com-
mon, for example, in security applications such as intrusion detection systems
and event processing systems which rely heavily on REs and require high-speed
matching of input strings.
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In this paper, we present an O(�c) runtime automata based algorithm for
RE matching and submatch extraction. The time complexity of the runtime
operation for our algorithm does not depend on n, but our algorithm may require
O(2n) compile time and storage space in the worst case.

However, the asymptotic analysis of these algorithms is deceiving. Backtrack-
ing and automata-based approaches almost never have the worst-case behavior
on REs that are used in practice. Thus, achieving a practical speed-up against
state-of-the-art methods is of significant interest. Our experimental results show
that, for a large set of regular expressions used in practice, our algorithm is ap-
proximately twice as fast as Java’s backtracking based regular expression library
and approximately twenty times faster than RE2.

2 Valid Submatch

For the purposes of this paper, the syntax of REs with capturing groups and
reluctant closures on an alphabet Σ is

E ::= ε | a | EE | E|E | E* | E*? | (E)

where a stands for an element of Σ, and ε is the empty string. The notation (E)
indicates a capturing group. If X,Y are sets of strings we use XY to denote
concatenation, i.e. XY = {xy : x ∈ X, y ∈ Y }, and X |Y to denote the union of
sets X and Y . If β is a string and B a set of symbols we use β|B to denote the
string in B∗ obtained by deleting from β all elements that are not in B.

Grouping terms is optional when the order of operations is clear. Specifically,
capturing groups have a higher priority than greedy and reluctant closures, which
have a higher priority than concatenation, which has a higher priority than union.

We use indices to identify capturing groups within a RE. Given a RE E
containing c capturing groups, we assign indices 1, 2, . . . c to each capturing group
in the order of their left parentheses as E is read from left to right. We use
the notation idx(E) to refer to the resulting indexed RE. For example, if E =
((a)∗|b)(ab|b) then idx(E) = ((a)2∗|b)1(ab|b)3.

We introduce the set of symbols T = {St, Et : 1 ≤ t ≤ c}, referred to as tags,
which will be used to encode the start and end of capturing groups.

The language L(F ) for an indexed RE F = idx(E) is a subset of (Σ ∪ T )∗,
defined by L(ε) = {ε}, L(a) = {a}, L(F1F2) = L(F1) · L(F2), L(F1|F2) =
L(F1) ∪ L(F2), L(F∗) = L(F∗?) = L(F )∗, and L((F )t) = {StαEt : α ∈ L(F )},
where ()t denotes a capturing group with index t.

Definition 1. A valid assignment of submatches for RE E and input string α
is a map sub : {1, . . . , c} → Σ∗ ∪ {null} such that there exists β ∈ L(idx(E))
satisfying: (i) β|Σ = α; (ii) if St occurs in β then sub(t) = βt|Σ, where βt is the
substring of β between the last occurrence of St and the last occurrence of Et;
(iii) if St does not occur in β then sub(t) = null. ��
For example, given the RE E = ((a)∗|b)(ab|b) and an input string aaab, the
assignment sub with sub(1) = aaa, sub(2) = a, and sub(3) = b is valid for
β = S1S2aE2S2aE2S2aE2E1S3bE3.
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If α ∈ Σ∗ we say that α matches E if and only if α = β|Σ for some β ∈
L(idx(E)). Note that for a RE without capturing groups, this coincides with the
standard definition of the set of strings matching the expression.

Given a RE containing capturing groups and an input string, the task of a
submatch extraction algorithm is to report a valid assignment of submatches if
there is one, and to report that the string does not match if there is not.

3 Description of the Algorithm

For this entire section we fix a RE E, and show how to compile E into two
deterministic automata, denoted M3 and M4, that will be used to match a
string. This is done in the preprocessing stage. For the matching and extraction
operations, we use M3 to determine whether the input string matches E, and if
it does, we use M4 to determine what submatches to report.

To understand the need for two automata, consider the RE (.∗)a|(.∗)b. If a
procedure is to match a given string against this expression and at the same
time to decide whether to match the string to the first or the second capturing
group, then clearly the procedure must look ahead to the end of the string. A
finite automaton, whose only operating memory is carried by the state it is in,
requires other means in order to perform this “look ahead”. We achieve this by
converting our RE into the DFA M3 that we run backwards on the input string,
accepting or rejecting it as a match; while doing so, we journal the states this
DFA goes through. This journaled sequence of states is used as the input to the
second automaton, M4, which has been constructed using tagging information
from our RE (encoded by the symbols Si, Ei,+,−). This automaton outputs the
appropriate tagging information, which in turn is used to report submatches.

In the preprocessing stage we first construct two other automata,M1 andM2,
and then use these to derive M3 and M4, as described below.

3.1 The Automaton M1

The automatonM1 encodes idx(E) as a automaton. We use separate transitions
with labels St and Et to indicate the start and end of a capturing group with
index t, in addition to transitions labeled with alphabet characters to consume an
input character, and transitions labeled with + and − to indicate submatching
priorities.

The automaton M1 is described by the tuple (Q1, Σ1, Δ1, s1, f1), where Q1

is a set of states identified by the integers in the set {1, 2 . . . f}, Σ1 is the alpha-
bet Σ ∪ {+,−} ∪ T , where + and − are two special alphabet characters that
will be described below, Δ1 is a transition function, s1 = 1 is the start state
and f1 = f is the unique final state. Δ1 is built using structural induction on
idx(E) following the rules illustrated by the diagrams in Fig. 1. The initial state
is marked with > and the final state with a double circle. A dashed arrow with
label F or G is used as shorthand for the diagram corresponding to the indexed
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Fig. 1. Rules for the construction of M1
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Fig. 2. The DFA M1 for ((a)∗|b)(ab|b)

expression F or G. For example, the automaton M1 for ((a)∗|b)(ab|b) is shown
in Fig. 2.

If x is any directed path in M1, when it is considered as a directed graph, we
write ls(x) for its label sequence. For example in Fig. 2 ls(8 → 9 → 10 → 11 →
14) = bE1S3−.

Let π : Q1×Q1 → T ∗ be a mapping from a pair of states to a sequence of tags,
to be used in the constructions below, defined as follows. For any two states p, q ∈
Q1, consider a depth-first search of the graph ofM1, beginning at p and searching
for q, using only transitions with labels from T ∪{+,−}. The construction rules
for M1 ensure that if there is any state with two different outgoing transitions,
one will be labeled ‘+’ and the other ‘−’. The search explores all states reachable
via the transition labeled ‘+’ before following the one labeled ‘−’. If this search
succeeds, finding successful search path λ(p, q), then π(p, q) = ls(λ(p, q))|T is
the sequence of tags along this path. If it fails, then π(p, q) is undefined. Note
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Fig. 3. The automaton M2 for the RE
((a)∗|b)(ab|b)

Fig. 4. The automaton M3 for for the
RE ((a)∗|b)(ab|b), where v = {16}, w =
{13, 14}, x = {8}, y = {5}, and z =
{5, 12}

that π(p, p) is defined to be the empty string, and that this description of the
search uniquely specifies λ(p, q), if it exists.

3.2 The Automaton M2

Next, we convert M1 into another automaton, the NFA M2, described by the
tuple (Q2, Σ,Δ2, S2, f). The set Q2 consists of the final state of M1 together
with any state in M1 that has an outgoing transition labeled with a symbol in
Σ, i.e.

Q2 = {f} ∪ {q : ∃a ∈ Σ, p ∈ Q1, (q, a, p) ∈ Δ1}
If p, q ∈ Q2 and a ∈ Σ, there is a transition (p, a, q) ∈ Δ2 if and only if there
exists a state r ∈ Q1 such that (p, a, r) ∈ Δ1 and π(r, q) is defined. S2 is a set of
initial states, corresponding to those states, p ∈ Q2, for which π(1, p) is defined.

For example, the automaton M2 for ((a)∗|b)(ab|b) is shown in Fig. 3.

3.3 The Automaton M3

Next, we convertM2 into the DFAM3, specified by the tuple (Q3, Σ,Δ3, s3, F3).
The construction of M3 from M2 is a standard powerset construction of a DFA
from a reversed NFA [9], modified in order to process the input string backwards.
Specifically, each state in Q3 corresponds to a subset of states in the powerset
of Q2. The initial state s3 is {f}. We initialize Q3 to {{f}}, and recursively add
states r to Q3 by constructing for each a ∈ Σ the set

P (r, a) = {p ∈ Q2 : (p, a, q) ∈ Δ2 for some q ∈ r},

i.e. the set of states from which there is a transition labeled a to an element of
r. If this set is not empty, it is added to Q3 and the transition (r, a, P (r, a)) is
added to Δ3. We explore each previously unexplored state in Q3 until there are
no states in Q3 left to explore. The set of final states in M3, F3, consists of any
state q in Q3 such that q ∩ S2 is not empty. The DFA M3 for ((a)∗|b)|(ab|b) is
shown in Fig. 4.



Efficient Submatch Extraction for Practical Regular Expressions 329

3.4 The Automaton M4

Next, we useM1,M2 andM3 to construct another automaton,M4, described by
the tuple (Q4, Σ4, Δ4, s4). Q4 is essentially M2 with one extra state, where the
input alphabet is Σ4 = Q3 instead of Σ, and some edges are deleted. Specifically,
we introduce a new state labeled ‘0’, which will be the start state of M4, so that
Q4 = Q2∪{0}. This is a DFA except that the transition function is a four-tuple,
i.e. Δ4 ⊆ Q2 ×Q3 ×Q2 × T ∗.

The definition ofM4 uses a partial ordering on label sequences of paths inM1

that corresponds to the priorities for submatches. The intuition for M4 is that a
transition (p,Q, q, τ) of M4 exists if, among all the paths in M1 that have start
state p, end state in Q, first label in Σ and no other labels in Σ, the path with
the highest-priority label sequence ends at state q and has label sequence aτ for
some alphabet symbol a ∈ Σ. The output τ encodes the capturing groups that
are entered and left as this path is followed; during the runtime operation, this
information will be used to determine the submatch that should be reported for
each capturing group.

Let ≺ be the lexicographic partial ordering on Σ∗
1 that is induced by the

relation {(a, a) : a ∈ Σ1} ∪ {(−,+)} on Σ1. For example, if a, b, c are different
elements of Σ, then a ≺ a-+b ≺ a+c, but ab �≺ ac and ac �≺ ab. Finally, we
define Δ4, the transition function for M4, as follows. Let (p,Q, q, τ) be in Δ4 iff
there exist p, r ∈ Q2, Q ∈ Q3, q ∈ Q, a ∈ Σ, such that (p, a, r) ∈ Δ1, π(r, q) is
defined, and

τ = π(r, q) = (max≺ {ls(λ(r, q′)) : q′ ∈ Q}) |T .

Similarly, let (0, Q, q, τ) be in Δ4 iff there exist Q ∈ Q3, q ∈ Q such that π(1, q)
is defined, and

τ = π(1, q) = (max≺ {ls(λ(1, q′)) : q′ ∈ P}) |T .

For space considerations, we omit from this paper the proof that the maximal
elements used in these definitions exist, and are unique. Continuing with our
running example, the automaton M4 for ((a)∗|b)(ab|b) is shown in Fig. 5.

3.5 Runtime Operation

We extract submatches for a string a1 . . . a	 ∈ Σ∗ in runtime in three steps:

1. We process the string a	a	−1 . . . a1 using M3. As it is processed, we journal
the states q	, q	−1, . . . visited during the processing, where q	 is {f}, the
initial state ofM3. If the processing terminates before the whole input string
has been processed (i.e. because we hit a “dead state” of M3), or terminates
with q0 /∈ F3, we report that the string does not match and stop. This step
runs in O(�) time.

2. If we did not stop in the previous step, we run M4 on input q0, q1, . . . q	,
using an additional data structure along the way in order to discover the
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Fig. 5. The automaton M4 for the RE ((a)∗|b)(ab|b). Transitions are labeled with a
slash separating inputs from outputs.

submatch values for each capturing group. The data structure consists of an
array of length 2c, indexed by elements of T , all initialized to null. While
processing the ith transition, namely (qi, P, qi+1, τ) ∈ Δ4, for each tag in
τ ∈ T ∗ we write i in the array entry corresponding to the tag, overwriting
the current entry. This step runs in O(�c) time.

3. We use the resulting array to read off the submatches from the input string,
as follows. If the array entries for the tags Sj and Ej are sj and ej, respec-
tively, then the submatch for capturing group j is asj+1 . . . aej . If the array
entries Sj and Ej are null, then there is no submatch for the jth capturing
group. This step runs in O(�c) time.

The first two steps together are calledmatching; the third step is called extraction.
For example, consider processing the input string aaab for the RE ((a)∗|b)|(ab|b).
In step 1, we process the string baaa with M3. The states visited are {16},
{13, 14}, {5, 12}, {5}, {5} (see Fig. 4). In step 2, we run automatonM4 with input
{5}, {5}, {5, 12}, {13, 14}, {16}, writing entries in the array with each transition
(see Fig. 5). The resulting array reads

[S1, E1, S2, E2, S3, E3] = [0, 3, 2, 3, 3, 4].

In step 3, we read from the array that the three capturing groups have respective
submatches aaa, a, and b.

To see that the O(�c) complexity bound in step 2 gives the worst-case runtime
for our algorithm, suppose that E = [a(F1)(F2)...(Fc)]

∗ (using square brackets to
denote a non-capturing group) with a, b ∈ Σ, F1 = b|ε, F2 = bb|ε, F3 = bbb|ε . . .,
and ai = a for all 1 ≤ i ≤ �. Then for 1 ≤ i ≤ �, the string output by M4 when
processing qi in the second step of the operation is S1E1S2E2 . . . ScEc, and so
in this case the operation updates 2�c array elements.

Note that in our analysis, we assume that we can read or write the index of
one of the states of our automata in constant time and space. In practice, we
never run our algorithm for a RE whose automaton is exponentially large.
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3.6 Correctness

Here we prove the theorem, which shows the correctness of our algorithm.

Theorem 2. Suppose that the input string α = a1 . . . an matches the RE E.
Then our algorithm reports a valid assignment of submatches for E and α.
Proof. We will prove the theorem by constructing a string γ ∈ L(E), and then
showing that the assignment of submatches for E and α satisfies the three prop-
erties in Definition 1 for a valid assignment, with β equal to γ.

The first step is to show that the operation of our algorithm does not ter-
minate before all of q0, q1, . . . q	 have been processed by M4. Since α matches
E, it is accepted by M2, and by Rabin and Scott’s result relating languages of
automata [9] this implies that the reverse of α is accepted by M3; thus, the first
step of the runtime operation does not terminate early, and ends at state q0 in F3.
By definition of F3, there is some j ∈ q0 such that π(1, j) is defined. Therefore
(0, q0, j0, τ0) ∈ Δ4 for some j0 ∈ q0 and τ0 = π(1, j0) ∈ T ∗. So the processing of
q0, q1 . . . q	 by M4 does not terminate before q0 has been processed.

Suppose inductively that 1 ≤ i ≤ �, the processing of q0 . . . q	 by M4 does not
terminate before qi−1 has been processed, and that ji−1 ∈ qi−1, where ji−1 is the
state ofM4 reached just after qi−1 has been processed. Now, qi is the i

th state of
Q3 visited when a	a	−1 . . . a1 is processed by M3, and so it is the set of elements
of Q2 from which there is a path inM2 from q to f with label sequence ai+1 . . . a	.
Therefore, (ji−1, ai, j) ∈ Δ2 for some j ∈ qi. By the definition of M2, there is
some ki ∈ Q1 such that ei = (ji−1, ai, ki) ∈ Δ1 and π(ki, j) is defined. By the
construction of M4, it follows that there is some ji ∈ qi and τi = π(ki, ji) ∈ T ∗

such that (ji−1, qi, ji, τi) ∈ Δ4. This shows that for 1 ≤ i ≤ �, qi is processed in
step 2 of the operation, as required.

Note that j	 ∈ q	 = {f}, so j	 = f . Let y be the path in M1 from 1 to f
obtained by concatenating λ(1, j0), e1, λ(k1, j1), . . . e	, λ(k	, j	). Now we can
define γ: it is ls(y)|Σ∪T . Note that it is equal to the concatenation of τ0, a1, τ1,
. . . a	, τ	.

It is straightforward to prove by induction on the size of E that L(E) =
{β|Σ∪T :M1 accepts β}. The automaton M1 accepts ls(y), so γ ∈ L(E).

We will now show that the assignment of submatches reported by the opera-
tion satisfies the three criteria for a valid assignment, with β equal to the string
γ. Property (i) holds because γ|Σ = a1 . . . a	 = α.

For property (ii), observe that for 0 ≤ i ≤ �, when qi is processed in step 2
of the operation, i is written in the array entry for each tag in τi. Thus if the
array entries for Sj and Ej at the end of step 2 are sj and ej respectively, then
the last occurrence of Sj in γ lies before a1 if sj = 0, between asj and asj+1 if
0 < sj < � or after a	 if sj = �, and similarly for ej and the last occurrence of
Ej in γ. Property (ii) follows.

For property (iii), observe that it follows from the definition of L(E) that if
St occurs in a string in L(E), then Et must also occur in the string. Suppose
that St does not occur in γ. Then neither does Et, and so St, Et do not occur
in any of τ0, . . . τ	. So at the end of step 2 the array entries for St, Et are null,
and step 3 reports that there is no match to capturing group t, as required.
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Table 1. Results for DHCP and Snort log experiments (times in microseconds)

Our Algorithm Java RE2
RE compile match extract compile match extract compile match+extract

DHCP 16,993 47,685 19,809 44 119,852 21,423 32 1,153,118
Snort 24,761 64,484 804 14 138,138 1,666 22 1,414,001

4 Evaluation

Our first set of experiments deals with parsing logs for Microsoft DHCP logs
and for Snort, which is an open source intrusion detection system. DHCP logs
are a simple comma-separated format with exactly eight fields. To parse such a
log record, the following RE is used,

([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*)

where the syntax [^,] means any character except a comma.
For Snort logs, we must extract the source and destination IP addresses and

the source and destination ports (if they exist). The RE we used is

.*? (\d+\.\d+\.\d+\.\d+)(:\d+)? -> (\d+\.\d+\.\d+\.\d+)(:\d+)? .*

where the metacharacter \d represents any numeral, the operator + is a variation
on closure that requires at least one instance of its operand, and the operator ?
means exactly zero or one instances of its operand.

All experiments were performed on a workstation with twelve 2.67GHz cores
and 6GB of RAM. Our algorithm was implemented in Java, whereas RE2 is
implemented in C++.

We ran an experiment where we matched 100,000 lines of DHCP log files and
25,741 lines of Snort log files against the regular expressions and experimentally
evaluated it in comparison to Java and RE2, as shown in Table 1. Since RE2
matches and extracts in a single operation, these are grouped in the table. Clearly,
our algorithm is much slower in the compilation phase than either Java or RE2.
But as we have discussed in the introduction, we are willing to incur a significant
penalty in the compilation phase, since for the problems we are interested in, we
perform compilation once, but matching and extraction many times for each
RE. When we amortize the compilation time over the matching and extraction
time with multiple strings, our algorithm can actually outperform Java and RE2.
This result is surprising given that RE2 has previously been reported to be faster
than other C/C++ based RE engines [1].

Next, we ran several experiments evaluating our algorithm for performance,
storage usage, and correctness on a set of REs that are included as part of a com-
mercial Security Information and Event Management (SIEM) system that uses
16,805 unique REs. Of these REs, 7732 (46.0%) have no capturing groups, and
thus can be matched with an ordinary DFA; 7596 (45.2%) can be implemented
with our two pass algorithm; 1396 of these REs (8.3%) can be implemented more
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Fig. 6. Performance as a function of RE length

efficiently using a variation on our algorithm that only requires one pass (the
details of that algorithm are beyond the scope of this paper); 51 (0.3%) caused
the size of M3 in our algorithm to grow beyond 4096 states, at which point we
declared failure; 20 (0.1%) have syntactic features which we have not yet imple-
mented in our algorithm, but which we believe will not impact performance.

For the first four categories of REs, we synthetically generated 1,000 matching
strings for each of the REs. We then measured the time to match those strings
using both our algorithm and Java. The results (broken down by RE length)
are shown in Fig. 6. The blue bars are a histogram of the number of REs that
have a length in each bin range. The count of the number of REs is shown on
the left-hand y-axis. We then measure the performance as the log of the time
taken by Java minus the log of the time taken by our algorithm in order to show
speedups in both directions symmetrically. We then plot those results as a box
plot showing the first, second, third and fourth quartiles for each bin. The min
and max performance are the end of the line segments, while the range between
the second and third quartile is shown in the box. The range of performance
values are shown on the right-hand y-axis. As can be seen in the figure, our
algorithm is faster than Java most of the time, regardless of the length of the
RE, often significantly faster. On average, we are 2.3 times faster than Java.

This was a computationally intensive test which took over 8 hours on our
workstation at 580,694 matches per second: we performed 1,000 tests on 1,000
strings for 16,724 REs. We omitted the performance comparisons against RE2
because RE2 would simply take too long.

Theoretically, the number of states in a DFA built using a powerset construc-
tion could be exponential in the size of the RE. However, as described above, less
than 0.3% of the REs exhibited such behavior. In fact, for 99% of the DFAs built
with a powerset construction, the ratio of the number of states to the length of



334 S. Haber et al.

the RE string was less than 5.25. For approximately 58% of the REs, the DFA
actually had fewer states than the length of the RE string. The average RE
needed 28 kBs for the transition tables and other associated data structures.

We were able to measure the memory usage of our own algorithm, but ac-
curately measuring the data structures associated with regular expressions is
infeasible in third party software. Regardless, backtracking algorithms generally
just need enough space to store the regular expression itself, which is essentially
negligible.

Although we have proved that our algorithm is guaranteed to generate a valid
assignment of submatches, we are particularly interested in showing that our
algorithm generates the same submatches as Java since there may be multiple
valid assignments of submatches for a given RE. We synthetically generated 15
matching and non-matching strings for each RE in the first four categories. The
submatches extracted by our approach and Java were identical.

5 Summary

In this paper, we introduced a new algorithm for converting REs to automata
that handles submatch extraction and reluctant closures. Our experimental re-
sults show that our algorithm is approximately twice as fast as Java’s backtrack-
ing based regular expression library and approximately twenty times faster than
RE2 on real-world REs used for several problems involving processing of security
event logs, including a comprehensive test of the algorithm against a database
of 16,724 REs used by a commercial SIEM system.
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Abstract. This paper discusses the decidability of determinacy and
subsumption for tree transducers. For two tree transducers T1 and T2,
T1 determines T2 if the output of T2 is identified by the output of T1,
that is, there is a partial function f such that [[T2]] = f ◦ [[T1]] where [[T1]]
and [[T2]] are tree transformation relations induced by T1 and T2, respec-
tively. Also, T1 subsumes T2 if T1 determines T2 and the partial function
f such that [[T2]] = f ◦ [[T1]] can be defined by a transducer in a desig-
nated class that T2 belongs to. In this paper, we show that determinacy
is decidable for single-valued linear extended bottom-up tree transducers
as the determiner class and single-valued bottom-up tree transducers as
the determinee class. We also show that subsumption is decidable for
these classes.

1 Introduction

In data transformation, it is desirable that certain information in source data
be preserved through transformation. As a formalization for information preser-
vation in data transformation, the notions of deteminacy and subsumption (or
query rewriting) are known [1,6,11]. Let Q be a query to a database and V be
a data transformation (or a view definition) of the database. Determinacy of
Q by V means that the answer to Q is identified by the answer to V . When
information to be preserved is specified by a query Q, determinacy guarantees
that for any database instance D, V (D) gives enough information to uniquely
determine the specified information Q(D) for D. Subsumption means that the
answer to Q can always be computed from the answer to V by some query in
a designated class that Q belongs to. Compared with determinacy, subsump-
tion guarantees that the necessary information Q(D) can be extracted from the
transformed data V (D) by the same query language expressing Q.

We study the decidability of determinacy and subsumption when both a query
and a data transformation are given by tree transducers. Tree transducers are
machines that model relations between labeled ordered trees. A tree transducer
is said to be single-valued if the tree transformation induced by the transducer is
a partial function. Since an XML document has a tree structure, tree transducers
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: a partial function
(possibly incomputable)

(a) determines (b) subsumes w.r.t. 

Fig. 1. Determinacy and subsumption

are often used as a model of XML document transformations. Formally, for two
single-valued tree transducers T1 and T2 in classes Π1 and Π2 of transducers,
respectively, we say T1 determines T2 if there is a partial function f such that
[[T2]] = f ◦ [[T1]] (see Fig. 1(a)), where [[T1]] and [[T2]] are the tree transformation
relations induced by T1 and T2, respectively.Π1 andΠ2 are called the determiner
class and the determinee class, respectively. We also say T1 subsumes T2 with
respect to Π2, if T1 determines T2 and the partial function f such that [[T2]] =
f ◦ [[T1]] can be defined by a transducer in the class Π2 (see Fig. 1(b)). Our
goal is to find practical subclasses of tree transducers for which determinacy and
subsumption are decidable, and to consider the problem of constructing a tree
transducer T3 in the determinee class such that [[T2]] = [[T3]] ◦ [[T1]] if T1 subsumes
T2.

In this paper, we first show that determinacy is decidable for single-valued lin-
ear extended bottom-up tree transducers (sl-xbots) as the determiner class and
single-valued bottom-up tree transducers (s-bots) as the determinee class run-
ning over a ranked-tree encoding of the given XML document. Transformations
induced by transducers in the classes include simple filterings, relabelings, inser-
tions, and deletions of elements. Especially, sl-xbots do not allow duplications of
elements. For some other classes, we show that determinacy is undecidable even
for homomorphism tree transducers as the determiner class, which is a proper
subclass of s-bots and single-valued top-down tree transducers (s-tops). More-
over, determinacy is undecidable for deterministic monadic second-order logic
defined tree transducers (dmsotts) [2,5] as the determiner class, which form a
class incompatible with s-bots and s-tops but is a proper superclass of sl-xbots.
Lastly, we show that subsumption is decidable for sl-xbots as the determiner
class and s-bots as the determinee class. The proof gives a construction method
of an s-bot T3 satisfying [[T2]] = [[T3]] ◦ [[T1]] if T1 subsumes T2.

Due to space limitation, we omit most of the proofs including details of some
construction methods. They are presented in the full version of this paper [8].

2 Preliminaries

2.1 Trees and Tree Automata

We denote the set of nonnegative integers by N. Let [i, j] = {d ∈ N | i ≤ d ≤ j}.
In particular, we denote [1, k] by [k]. A (ranked) alphabet is a finite set Σ of
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symbols with a mapping rk from Σ to N. We denote the set of k-ary symbols
of Σ by Σ(k) = {σ ∈ Σ | rk(σ) = k}. The set TΣ of ranked trees over an
alphabet Σ is the smallest set T such that σ(t1, . . . , tk) ∈ T for every k ∈ N,
σ ∈ Σ(k), and t1, . . . , tk ∈ T . If σ ∈ Σ(0), we write σ instead of σ(). The
set of positions of t = σ(t1, . . . , tk) ∈ TΣ , denoted by pos(t), is defined by
pos(t) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)} where σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ .
We write p ' p′ when p is a prefix of p′, that is, p is an ancestor position of p′,
and p ≺ p′ when p is a proper prefix of p′. For p, p′ ∈ pos(t), let nca(p, p′) be
the nearest common ancestor position of p and p′, that is, the longest common
prefix of p and p′. For p ∈ pos(t), t|p denotes the subtree of t at p, and t[t′]p
denotes the tree obtained from t by replacing the subtree at p with t′.

Let X = {x∗} ∪ {xi | i ≥ 1} be a set of variables of rank 0, and for every
k ≥ 1, Xk = {xi | i ∈ [k]}. For V ⊆ X , we often write TΣ(V ) to mean TΣ∪V .
A tree t ∈ TΣ(V ) is linear if each variable in V occurs at most once in t. Let
CΣ(V ) denote the set of linear trees in TΣ(V ). Let T̄Σ(V ) (resp. C̄Σ(V )) be the
set of trees in TΣ(V ) (resp. CΣ(V )) such that each variable in V occurs at least
once. Note that T̄Σ∪V (V

′) denotes the set of trees in TΣ(V ∪V ′) such that every
variable in V ′ must occur at least once. For t ∈ TΣ(X) and σ ∈ Σ∪X , let posσ(t)
be the set of the positions of t at which σ occurs, and posY (t) =

⋃
σ∈Y posσ(t) for

Y ⊆ Σ ∪X . Let var(t) be the set of variables of t, and yieldX : TΣ(X) → X∗ be
the function such that yieldX(x) = x for every x ∈ X and yieldX(σ(t1, . . . , tk)) =
yieldX(t1) · · · yieldX(tk) for every σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ(X). A tree t ∈
TΣ(X) is normalized if yieldX(t) = x1 · · ·xk for some k ∈ N. Every mapping
θ : V → TΣ(X) with V ⊆ X is called a substitution, which can be extended to
θ : TΣ(V ) → TΣ(X). If V = Xk and xiθ = ti for each i ∈ [k], we also denote
tθ by t[t1, . . . , tk], and if V = {x} and θ(x) = t′, we denote tθ by t[x ← t′]. In
particular, if V = {x∗} and θ(x∗) = t′, we denote tθ by t[t′] or simply tt′.

A finite tree automaton (TA for short) is a 4-tuple A = (Q,Σ,Qa, γ), where
Q is a finite set of states, Σ is an alphabet, Qa ⊆ Q is a set of accepting
states, and γ is a finite set of transition rules, each of which is of the form
(q, C[q1, . . . , qk]) where q, q1, . . . , qk ∈ Q and C ∈ C̄Σ(Xk). The move relation
⇒A of a TA A = (Q,Σ,Qa, γ) is defined as follows: if (q, C[q1, . . . , qk]) ∈ γ
and t|p = C[q1, . . . , qk] where p ∈ pos(t), then t ⇒A t[q]p. Let L(A) denote
{t | t ⇒∗

A qa, qa ∈ Qa} where ⇒∗
A is the reflexive transitive closure of ⇒A. For

a state q of A, let A(q) be a TA obtained from A by replacing the set Qa of
accepting states with the singleton {q}. A set L of trees such that L = L(A) for
some TA A is called a regular tree language, or we say L is regular.

2.2 Tree Transducers

An extended bottom-up tree transducer (xbot) [4] is a 5-tuple (Q,Σ,Δ,Qf , δ),
where Q is a finite set of states, Σ is an input alphabet, Δ is an output alphabet,
Qf ⊆ Q is a set of final states, and δ is a set of transduction rules of the
form Cl[q1(x1), . . . , qk(xk)] → q(tr) where k ∈ N, Cl ∈ C̄Σ(Xk), tr ∈ TΔ(Xk),
q, q1, . . . , qk ∈ Q. A rule is normalized if its left-hand side is normalized. Without
loss of generality, we can assume that every rule is normalized. A rule ρ ∈ δ is
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an ε-rule if the left-hand side of ρ is the form q(x) where q ∈ Q and x ∈ X ,
and it is input-consuming otherwise. Let T = (Q,Σ,Δ,Qf , δ) be an xbot. T is
a bottom-up tree transducer (bot) if the left-hand side of every rule in δ contains
exactly one symbol in Σ. Also, we denote by an xbot−e an xbot without ε-rules.
T is a linear extended bottom-up tree transducer (l-xbot) if the tree tr in the
right-hand side of each rule in δ is linear.

The move relation ⇒T of an xbot T = (Q,Σ,Δ,Qf , δ) is defined as follows:
t ⇒ρ

T t′ for a rule ρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ if there exists
a position p ∈ pos(t) such that t|p = Cl[q1(t1), . . . , qk(tk)] where t1, . . . , tk ∈
TΔ(X) and t′ = t[q(tr[t1, . . . , tk])]p, and t ⇒T t′ if there exists ρ ∈ δ such
that t ⇒ρ

T t′. The transformation induced by T , denoted as [[T ]], is the relation
defined as {(t, t′) | t ⇒∗

T qf (t
′), t ∈ TΣ , t′ ∈ TΔ, qf ∈ Qf} where ⇒∗

T is the
reflexive transitive closure of ⇒T . The domain of T , denoted by dom(T ), is
{t | (t, t′) ∈ [[T ]]}, and the range of T , denoted by rng(T ), is {t′ | (t, t′) ∈ [[T ]]}.
For a tree t, [[T ]](t) = {t′ | (t, t′) ∈ [[T ]]}. For a TA A, the image T (A) of L(A) by
T is {t′ | (t, t′) ∈ [[T ]], t ∈ L(A)}. For a state q of T , let T (q) be an xbot obtained
from T by replacing the set Qf of final states with the singleton {q}.

The tree transducers T and T ′ are equivalent if [[T ]] = [[T ′]]. For tree transduc-
ers T1 and T2, [[T2]] ◦ [[T1]] = {(t, t′) | (t, t′′) ∈ [[T1]], (t

′′, t′) ∈ [[T2]]}. A transducer
T is said to be single-valued (or functional) if any two pairs of (t, t′) and (t, t′′)
in [[T ]] satisfy t′ = t′′. We denote the unique output tree of T on a tree t by
T (t). It is known that the single-valuedness of bots is decidable in polynomial
time [9]. We use the prefix ‘s’ to represent that a transducer is single-valued,
e.g., we write for short an s-xbot to denote a single-valued xbot.

Without loss of generality, we assume that any alphabet contains a special
symbol ⊥, which means “no output” and does not occur in any final output
tree. We recall the notion of reducedness [9], which is defined for bots but can
be naturally applied to xbots. An xbot T = (Q,Σ,Δ,Qf , δ) is called reduced if
and only if the following two conditions hold:

1. T has no useless states, that is, for every state q ∈ Q, there exists a tree
t = Cts ∈ dom(T ) where C ∈ C̄Σ({x∗}) such that t ⇒∗

T C[q(t′s)] ⇒∗
T qf (t

′)
for some qf ∈ Qf and t′s, t

′ ∈ TΔ.
2. There exists a subset U(T ) of Q such that for every rule Cl[q1(x1), . . . ,
qk(xk)] → q(tr) ∈ δ,
– if q ∈ U(T ) then tr = ⊥ and qi ∈ U(T ) for each i ∈ [k], and

– if q /∈ U(T ) then (1) tr �= ⊥ and (2) for each i ∈ [k], qi ∈ U(T ) if and
only if xi /∈ var(tr).

3. If q ∈ Qf then q does not occur in the left-hand side of any rule in δ.

Note that for any q ∈ U(T ) and t = Cts ∈ dom(T ) where C ∈ C̄Σ({x∗}), if
t ⇒∗

T C[q(t′2)] then t
′
2 = ⊥ and the final output for t does not contain ⊥. That

is, the intermediate output at q is always ⊥ and it is eventually abandoned.
Conversely, for q ∈ Q − U(T ), the intermediate output at q is in TΔ−{⊥} and
it is contained in the final output. For every xbot T , a reduced xbot equivalent
with T can be constructed in the same way as the construction for bots [9].
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2.3 Determinacy and Subsumption of Tree Transducers

Let Π1 and Π2 be arbitrary classes of tree transducers.

Definition 1 (Determinacy). Let T1 and T2 be tree transducers in Π1 and
Π2, respectively, such that dom(T2) ⊆ dom(T1). T1 determines T2 iff there exists
a partial function f such that [[T2]] = f ◦ [[T1]]. Π1 is called the determiner class
and Π2 is called the determinee class.

Definition 2 (Subsumption). Let T1 and T2 be tree transducers in Π1 and
Π2, respectively, such that dom(T2) ⊆ dom(T1). T1 subsumes T2 with respect to
Π2 iff there exists a single-valued transducer T3 ∈ Π2 such that [[T2]] = [[T3]]◦[[T1]].

From the definition, if T1 subsumes T2 then T1 determines T2. Conversely, even
if there exists some function f such that [[T2]] = f ◦ [[T1]], f cannot always be
induced by some transducer in Π2 in general.

If determinacy is decidable for a determiner class Π1 and a determinee class
Π2, we simply say determinacy is decidable for (Π1, Π2). We will use a similar
notation for subsumption.

3 Determinacy

3.1 Decidability for (sl-xbots, s-bots)

We consider the problem of deciding whether, given single-valued linear xbot
(sl-xbot) T1 and single-valued bot (s-bot) T2 such that dom(T2) ⊆ dom(T1), T1
determines T2 or not, based on the next proposition.

Proposition 3. For any two single-valued transducers T1 and T2 such that
dom(T2) ⊆ dom(T1), T1 determines T2 iff [[T2]] ◦ [[T1]]

−1 is a partial function,
where [[T1]]

−1 = {(t′, t) | (t, t′) ∈ [[T1]]}.

According to Proposition 3, given sl-xbot T1 and s-bot T2, our decision algorithm
works as follows:

Step 1: Construct a transducer T inv
1 such that [[T inv

1 ]] = [[T1]]
−1;

Step 2: Construct a transducer T3 such that [[T3]] = [[T2]] ◦ [[T inv
1 ]];

Step 3: Decide whether T3 is single-valued.

In Step 1, the inverse transducer T inv
1 of T1 is computed. T inv

1 is not necessar-
ily an l-xbot. Due to this, we introduce a slightly larger class, linear extended
bottom-up tree transducers with grafting (l-xbot+g for short), that can represent
not only inverses of l-xbots but also the composition of the inverses with s-bots.
In Step 2, an xbot+g T3 which represents the composition of T inv

1 followed by
T2 is constructed. Lastly, it is determined whether the composition transducer
T3 is single-valued.

Before we explain the detail of each step, we give an example, which shows
that even the inverse of an sl-bot cannot always be expressed by any l-xbot.
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Fig. 2. A transducer T3.1

Example 4. Let Σ = {r, a,#} and Δ = {a,#}. Consider an sl-bot T3.1 =
({qr, q}, Σ,Δ, {qr}, δ) where

δ = { # → q(#), a(q(x1), q(x2)) → q(a(x1, x2)),

r(q(x1), q(x2)) → qr(x1), r(qr(x1), q(x2)) → qr(x1)}.

In Fig. 2, t is transformed by T3.1, which leaves only the subtree at the left
child of the bottom-most r-node. There is an infinite number of trees t′ such
that T3.1(t

′) = T3.1(t) because the inverse of T3.1 allows to insert any number of
r-labeled ancestor nodes having arbitrary trees in TΣ−{r} as their right subtrees.
For any l-xbot T without ε-rules, the image of a tree t by T is finite. Even if ε-rules
are allowed, no l-xbot allows to insert a node having an arbitrary tree in TΣ−{r}
as its right subtree. Therefore, there is no l-xbot T such that [[T ]] = [[T3.1]]

−1.

To express the inverse of T3.1 in Example 1, a transducer has to, for an input tree,
insert any number of internal nodes and subtrees non-deterministically. To cap-
ture the inverse of sl-xbots, we extend xbots by grafting. We denote a tree trans-
ducer in the class by an xbot+g for short. A grafting is represented by a special
variable 〈L〉, called a g-variable, where L ⊆ TΔ. When L = L(A) where A is
a TA over Δ, we often write 〈A〉 instead of 〈L(A)〉. A g-variable can occur as a
symbol of rank 0 in the right-hand side of a rule. Let G(Δ) be the set of all the
g-variables 〈L〉 where L ⊆ TΔ. Let T̃Δ(Xi) denote the set of trees overΔ with Xi

and G(Δ). Note that for t̃ ∈ T̃Δ(Xi), var(t̃) does not contain any g-variable. For
t̃ ∈ T̃Δ(Xi), let S(t̃) be the set of trees in TΔ(Xi) obtained from t̃ by replacing
each g-variable 〈L〉 with a tree in L. Formally, a transduction rule of an xbot+g is
the form Cl[q1(x1), . . . , qk(xk)] → q(t̃r) where k ∈ N, Cl ∈ C̄Σ(Xk), t̃r ∈ T̃Δ(Xk),
and q, q1, . . . , qk are states. The move relation by a rule Cl[q1(x1), . . . , qk(xk)] →
q(t̃r) is as follows: if t|p = Cl[q1(t1), . . . , qk(tk)] where t1, . . . , tk ∈ TΔ, then t ⇒
t[q(tr[t1, . . . , tk])]p where tr ∈ S(t̃r). For an xbot+g, we write an xbot+g(R) when
L is regular for each g-variable 〈L〉. Also, we write an xbot+g(B(R)) when each g-
variable is in the form of 〈T (A)〉 for some bot T and TA A.

Example 5. Consider an l-xbot+g(R) T3.2 = ({q, qr}, Δ,Σ, {qr}, δ′) where

δ′ = { # → q(#), a(q(x1), q(x2)) → q(a(x1, x2)),

q(x1) → qr(r(x1, 〈A〉)), qr(x1) → qr(r(x1, 〈A〉))}

and A is a TA such that L(A) = TΣ−{r}. Then, T3.2 induces the inverse of T3.1.
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Steps 1 to 3 of the decision algorithm can be refined as follows.

Step 1: Inversion of sl-xbots. We provide a way to construct an l-xbot+g

representing the inverse of an sl-xbot. Intuitively, we just swap the input and
output of each rules. However, we must take care of variables occurring only in
the left-hand side, which mean deletions of subtrees. In swapping, g-variables
are added instead of the variables.

Let T = (Q,Σ,Δ,Qf , δ) be an l-xbot. The swapping procedure is as follows.

1. Construct a TA AT = (Q,Σ,Qf , γ) where
γ = {(q, Cl[q1, . . . , qk]) | Cl[q1(x1), . . . , qk(xk)] → q(Cr) ∈ δ}. Note that
L(AT ) = dom(T ).

2. Construct an l-xbot+g(R) T ′ = (Q,Δ,Σ,Qf , δ
′) such that δ′ is the smallest

set satisfying the following condition: Let Cl[q1(x1), . . . , qk(xk)] → q(Cr) be
an arbitrary rule in δ. Let θl be the substitution such that θl(xi) = qi(xi)
for each i ∈ [k], θr be the substitution such that θr(xi) = xi if xi ∈ var(Cr)
and θr(xi) = 〈AT (qi)〉 otherwise. Moreover, let θn be the substitution for
normalization, which is the bijective function from var(Cr) to Xk′ (k′ =
|var(Cr)|) making (Crθl)θn normalized. Then, (Crθl)θn → (Clθr)θn ∈ δ′.

Lemma 6. For any l-xbot T , an l-xbot+g(R) T inv such that [[T inv]] = [[T ]]−1 can
be constructed.

Step 2: Composition of l-xbot+g(R) and s-bot. This step constructs an
xbot+g equivalent with the composition of the l-xbot+g(R) T inv

1 followed by an
s-bot T2.

Lemma 7. For any l-xbot+g(R) T and bot T ′, an xbot+g(B(R)) T ′′ such that
[[T ′′]] = [[T ′]] ◦ [[T ]] can be constructed.

Proof. The lemma can be shown in a similar way to the proof of the closure
property of l-bots under the composition [3]. The difference is the existence of
g-variables. Recall that a tree t in L(A) is inserted at g-variable 〈A〉. On the
composition transducer, we just insert the image of t by T ′(q) where q is the
state at which T ′ processes t in the tree output by T . That is, we replace 〈A〉
with 〈T ′(q)(A)〉. ��

Step 3: Deciding single-valuedness of xbot+g(B(R)). This step decides
whether the xbot+g(B(R)) obtained in Step 2 is single-valued. It is known that
single-valuedness of bots is decidable in polynomial time [9]. However, the class
of transformations induced by xbot+gs is a proper superclass of the class induced
by bots.

Let T3 be the xbot+g(B(R)) obtained in Step 2. The overview of Step 3 is as
follows:

Step 3-1: Construct a reduced xbot T3.1 equivalent with T3 by eliminating
g-variables. If there is no xbot equivalent with T3, answer that T3 is not
single-valued and halt. Otherwise, go to 3-2.
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Step 3-2: Construct a reduced xbot−e T3.2 equivalent with T3.1. If there is no
xbot−e equivalent with T3.1, answer that T3 is not single-valued and halt.
Otherwise, go to 3-3.

Step 3-3: Decide whether T3.2 is single-valued or not.

We further refine the above sub-steps as follows.

Step 3-1: Eliminating g-variables. We show the following lemma for Step 3-1.

Lemma 8. Let T = (Q,Σ,Δ,Qf , δ) be a reduced xbot+g. If T has a rule whose
right-hand side has a state q ∈ Q−U(T ) and a g-variable 〈L〉 such that |L| ≥ 2,
then T is not single-valued.

For a bot T , a TA A and any k ∈ N, it can be checked whether |T (A)| ≥ k.
From the above lemma, Step 3-1 can be done as follows:

(i) For each rule with grafting 〈T (A)〉 of T3,
– if T (A) = ∅ then delete the rule, and
– if T (A) = {t} for some tree t then replace 〈T (A)〉 with t.

(ii) Construct an equivalent reduced xbot+g(B(R)) T3.1.
(iii) If T3.1 has a rule containing 〈T (A)〉 with |T (A)| ≥ 2, answer that T3 is not

single-valued and halt.

If the condition at (iii) does not hold, T3.1 is an xbot, without g-variables.

Step 3-2: Eliminating ε-rules. We show two lemmas before giving the procedure
of Step 3-2. We will use an idea similar to the proof of Proposition 10 of [4].

We say that a nonempty subset δe of ε-rules is repeatedly-producing at state q
if q(x∗) ⇒∗

δe
q(t) for some tree t ∈ T̄Δ({x∗})− {x∗}, where ⇒∗

δe
means zero ore

more applications of rules in δe.

Lemma 9. Let T = (Q,Σ,Δ,Qf , δ) be a reduced xbot. If there is a subset δe of
ε-rules in δ repeatedly-producing at some q ∈ Q − U(T ), then T is not single-
valued.

After the fashion of the reference [4], we call a state q ∈ Q an end state if
there exists an input-consuming rule whose left-hand side has q. The set of
all end states of Q is denoted by E(T ). For each input-consuming rule ρ =
(Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ, let rhs(ρ) = {q′(t) | q(tr) ⇒∗

T q′(t), q′ ∈
E(T )∪Qf}. Note that only ε-rules can be used in the derivation q(tr) ⇒∗

T q
′(t).

Lemma 10. Let T = (Q,Σ,Δ,Qf , δ) be a reduced xbot. If there is no subset δe
of ε-rules in δ repeatedly-producing at any q ∈ Q − U(T ), then rhs(ρ) is finite
for every rule ρ of T and an xbot−e equivalent with T can be constructed.

According to Lemmas 9 and 10, Step 3-2 consists of the following two substeps:

(i) Construct the weighted graph Grp = (Q−U(T3.1), Ee) from T3.1 = (Q,Σ,Δ,
Qf , δ) where Ee = {(q, q′) | q(x1) → q′(t) ∈ δ, t ∈ T̄Δ({x1})}, and the weight
of each (q, q′) is 1 if there is a rule q(x1) → q′(t) such that t includes at least
one output symbol, and otherwise 0. Find a cycle whose weight is at least
one. If such a cycle exists, answer that T3 is not single-valued and halt.

(ii) Construct an equivalent reduced xbot−e T3.2.
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Step 3-3: Deciding single-valuedness of xbot−e. In this substep, it is decided
whether T3.2 is single-valued or not. The idea of the proof is the same as that of
the proof of the decidability of k-valuedness of bottom-up tree transducers [10].
While the proof in [10] uses the Engelfriet’s property, we use a variant of the
property (Lemma 11) to prove the decidability of single-valuedness of xbot−es.

We give some notations for the property. Let TΣ [Xn] = T̄Σ(Xn)∪TΣ , that is,
every t ∈ TΣ [Xn] has all the variables in Xn or has no variable. For t, s ∈ TΣ [Xn],
ts is the tree obtained from t by replacing each variable with s. Note that ts = t
if t has no variable. For m ∈ [n], let T n,m

Σ [Xn] = T m−1
Σ × TΣ [Xn]× T n−m

Σ . For
t ∈ T n,m

Σ [Xn], we denote by t(i) the ith element of t, i.e., t = (t(1), . . . , t(n)).
For s ∈ TΣ [Xn] and t ∈ T n,m

Σ [Xn], st is the tree obtained from s by replacing
xi with t

(i) for all i ∈ [n]. Let tu = (t(1)u, . . . , t(n)u) for u ∈ T n,m
Σ [Xn]. Notice

that since t ∈ T n,m
Σ [Xn], so is tu. For t1, t2, t3, t4, t5 ∈ T n,m

Σ [Xn] and S =
{i1, . . . , i|S|} ⊆ [1, 5], let tS = ti1 · · · ti|S| where ij < ij+1 for j ∈ [|S| − 1].

Now, we give a variant of Engelfriet’s Property for tuples of trees.

Lemma 11. Let n, n′ be arbitrary positive integers, and m ∈ [n],m′ ∈ [n′]. Sup-
pose that t0 ∈ TΣ [Xn], t1, t2, t3, t4, t5 ∈ T n,m

Σ [Xn], t
′
0 ∈ TΣ [Xn′ ], t′1, t′2, t′3, t′4, t′5

∈ T n′,m′
Σ [Xn′ ]. If t0tS = t′0t

′
S for every S s.t. {5} ⊆ S ⊂ [1, 5], then t0t[1,5] =

t′0t
′
[1,5].

Next, in order to argue in a similar way to the proof of Theorem 2.2(i) in the
reference [10], we decompose the left-hand side of each rule into several rules
each of which has only one input symbol. Actually, we construct a multi bottom-
up tree transducer (mbot) [4] equivalent with a given xbot−e. An mbot is a
bot whose states might have ranks different from one. Intuitively, we decompose
each rule ρ of the xbot−e by adding a state for each intermediate position of
the left-hand side tree l of ρ. The added states might have rank different from
one to maintain two or more intermediate output trees until the obtained mbot
reaches the state corresponding to the root of l.

Example 12. Assume that an xbot−e T contains the transduction rule ρ =
a(b(q1(x1), q2(x2), q3(x3)), q4(x4)) → q(c(x1, x2, x4)). Then, the mbot Ta ob-
tained by decomposing T contains the rules b(q1(x1), q2(x2), q3(x3)) → qρ1(x1, x2)
and a(qρ1(x1, x2), q4(x4)) → q(c(x1, x2, x4)) (See Fig. 3). Note that qρ1 maintains
x1 and x2 but not x3 because x3 does not occur in the right-hand side of ρ.

Lemma 13. Let Ta = (Qa, Σ,Δ,Qf , δa) be the mbot obtained from an xbot−e

T = (Q,Σ,Δ,Qf , δ) by the above decomposition. Then, for every q ∈ Qa and

C ∈ C̄Σ({x∗}), if C[q(x1, . . . , xk)] ⇒+
Ta
q(t1, . . . , tk), then (t1, . . . , tk) ∈ T k,m

Δ [Xk]
for some m ∈ [k].

Henceforth, we denote q(t1, . . . , tk) by q(t) where t = (t1, . . . , tk).

Lemma 14. Let Ta = (Qa, Σ,Δ,Qf , δa) be the mbot obtained from an xbot−e

T by the above decomposition. Assume that Ta has n states and the maximum
arity of states is km. Ta is not single-valued if and only if there is a tree t of
depth less than 5 · (n · km)2 such that |[[Ta]](t)| > 1.
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Fig. 3. An example of decomposing an xbot−e to an mbot

Proof. The if part is trivial and so we prove the only if part. Assume that
t ∈ TΣ is a tree of minimal size such that there are two distinct derivations
t ⇒∗

Ta
qf1(to1) and t ⇒∗

Ta
qf2(to2) where qf1, qf2 ∈ Qf , and to1 �= to2. For a

contradiction, assume that the depth of t is greater than or equal to 5 · (n ·km)2.
Then, by Lemma 13, there are two states q1, q2 ∈ Qa with ranks n1 and n2
respectively, Cj ∈ C̄Σ({x∗}) (0 ≤ j ≤ 4), C5 ∈ TΣ , and for i ∈ {1, 2}, mi ∈ [ni],
ti0 ∈ TΔ[Xni ], and tij ∈ T ni,mi

Δ [Xni ] (j ∈ [5]) such that

t = C0C1C2C3C4C5 ⇒∗
Ta
C0C[1,4][qi(t

i
5)] ⇒∗

Ta
C0C[1,3][qi(t

i
[4,5])]

⇒∗
Ta

· · · ⇒∗
Ta
C0[qi(t

i
[1,5])] ⇒∗

Ta
qfi(t

i
0t

i
[1,5]).

By the minimality of t, we have t10t
1
S = t20t

2
S ∈ [[Ta]](C0CS) for every S s.t.

{5} ⊆ S ⊂ [1, 5]. From Lemma 11, to1 = t10t
1
[1,5] = t20t

2
[1,5] = to2. This is a

contradiction. ��

Theorem 15. It is decidable whether a given xbot−e is single-valued. It is also
decidable whether a given xbot+g(B(R)) is single-valued.

Theorem 16. Determinacy is decidable for (sl-xbots, s-bots).

3.2 Undecidability for Other Classes

We show that determinacy is undecidable for (non-linear) s-bots as the deter-
miner class. We prove the undecidability of determinacy for homomorphism tree
transducers (homs) [3], which is a proper subclass of not only s-bots but also
single-valued top-down tree transducers (s-top). Let id be the class of the iden-
tity transductions on TΣ for any alphabet Σ.

Theorem 17. Determinacy is undecidable for (homs, id).

Proof. It can be shown by reduction from injectivity of homs, which is known
to be undecidable [7]. Consider an arbitrary hom T . Then, it holds that [[T ]] is
injective if and only if T determines the identity transducer Tid. ��

Corollary 18. Determinacy is undecidable for (s-bots, id) and (s-tops, id).
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Moreover, we have the undecidability result for deterministic monadic second-
order logic defined tee transducers (dmsotts) [2,5], which is a proper superclass
of sl-xbots.

Theorem 19. Determinacy is undecidable for (dmsotts, idR) where idR is the
class of the identities whose domains are regular tree languages.

Proof. It can be shown by reduction from ambiguity of context-free grammars.
Consider an arbitrary context-free grammar G. Then, there is a dmsott TG
which transforms any derivation tree of each string s ∈ L(G) to s. Thus, G is
ambiguous if and only if TG determines the identity transducer Tid such that
dom(Tid) = dom(TG). ��

4 Subsumption

We show that subsumption is decidable for (sl-xbots, s-bots). As shown in Sec-
tion 3, given an sl-xbot T1 and an s-bot T2, if T1 determines T2, we can construct
a reduced s-xbot−e T3 such that [[T3]] = [[T2]]◦ [[T1]]−1. So, in order to decide sub-
sumption, we should decide whether there is a bot equivalent with T3. The next
lemma provides a necessary and sufficient condition for an s-xbot−e to have an
equivalent bot.

Lemma 20. Let T = (Q,Σ,Δ,Qf , δ) be a reduced s-xbot−e. An s-bot equivalent
with T can be constructed iff (X) for every rule Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ
and any three variables xi1 , xi2 , xi3 ∈ var(tr), if

(X1) rng(T (qij )) is infinite for all j ∈ [3], and
(X2) nca(p1, p2) 5 nca(p1, p3) where {pj} = posxij

(Cl) for j ∈ [3], then

(X3) the minimal suffix ts ∈ TΣ(Xk) such that tr = tpts for some
tp ∈ T̄Σ∪Xk−{xi1 ,xi2}({x∗}) does not contain xi3 .

Proof Sketch. Assume (X) does not hold and we can construct an s-bot T ′

equivalent with a given s-xbot−e T . Since (X) does not hold, there is a rule
Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ and xi1 , xi2 , xi3 ∈ var(tr) such that (X1)
and (X2) hold but (X3) does not. Let p12 = nca(p1, p2) in (X2), and ts be the
minimal suffix of tr in (X3). Since T ′ is an s-bot equivalent with T , T ′ must
have rules of which left-hand sides ‘cover’ the subtree Cl|p12 , which contains xi1
and xi2 and does not contain xi3 . Also, since Cl[x∗]p12 does not contain xi1 and
xi2 , some suffix t′s of tr in the right-hand side such that tr = t′pt

′
s for some

t′p ∈ T̄Σ∪Xk−{xi1 ,xi2}({x∗}) should be generated by T ′ corresponding to Cl|p12 .
However, the minimal suffix ts contains xi3 , and thus so does t′s. That is, t′s
including xi3 should be generated from Cl|p12 without xi3 , which leads a contra-
diction. Conversely, if (X) holds, we can divide each rule of T into non-extended
rules, each of which has exactly one symbol in the left-hand side. ��

For any xbot T , it can be decided whether rng(T ) is infinite. Thus, it is decidable
whether there is an s-bot equivalent with a given s-xbot−e.

Theorem 21. Subsumption is decidable for (sl-xbots, s-bots).
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5 Conclusion

We have shown that determinacy and subsumption are decidable for single-
valued linear extended bottom-up tree transducers as the determiner class and
single-valued bottom-up tree transducers as the determinee class. As for more
powerful classes, we have shown that determinacy is undecidable for single-valued
top-down/bottom-up tree transducers (s-tops/bots) and deterministic MSO tree
transducers (dmsotts) as the determiner class.

As future work, we will investigate whether subsumption for more powerful
classes, such as s-tops/bots and dmsotts, is decidable or not. Though determi-
nacy is undecidable for s-tops/bots and dmsotts, decidability of subsumption
for the classes is still open. We also consider whether, given two transducers
T1 and T2 in the classes such that T1 subsumes T2, a transducer T3 such that
[[T2]] = [[T3]] ◦ [[T1]] can be effectively constructed or not.
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Revealing vs. Concealing:

More Simulation Games for Büchi Inclusion

Milka Hutagalung, Martin Lange, and Etienne Lozes

School of Electr. Eng. and Computer Science, University of Kassel, Germany�

Abstract. We address the problem of deciding language inclusion be-
tween two non-deterministic Büchi automata. It is known to be PSPACE-
complete and finding techniques that are efficient in practice is still a
challenging problem. We introduce two new sequences of simulation rela-
tions, called multi-letter simulations, in which Verifier has to reproduce
Refuter’s moves taking advantage of a forecast. We compare these with
the multi-pebble games introduced by Etessami. We show that multi-
letter simulations, despite being more restrictive than multi-pebble ones,
have a greater potential for an incremental inclusion test, for their size
grows generally slower. We evaluate this idea experimentally and show
that incremental inclusion testing may outperform the most advanced
Ramsey-based algorithms by two orders of magnitude.

1 Introduction

Nondeterministic Büchi automata (NBA) are an important formalism and de-
facto standard for the specification and verification of reactive systems. In the
automata-theoretic approach to formal verification [18], problems about pro-
grams get translated into decision problems on automata, for instance NBA.
Satisfiability of a specification corresponds to language non-emptiness which
is NLOGSPACE-complete for NBA. Hence, it boils down to some reachability
questions which can be solved efficiently.

The step from wanted to unwanted (or vice-versa) program behaviour cor-
responds to the complementation problem for NBA. It is known that this is
inherently exponential. This explains why other decision problems on NBA are
harder than emptiness, for example inclusion—corresponding to the question of
whether one specification supersedes another—is PSPACE-complete. Note that
L(A) ⊆ L(B) iff L(A)∩L(B) = ∅. It is possible to construct an NBA recognising
L(A)∩L(B) which is in general exponentially larger than B and which can then
be tested for emptiness. This results in an NPSPACE procedure, and Savitch’s
Theorem [15] brings it down to PSPACE.

A large amount of work in the area of automata theory for verification is
devoted to avoiding explicit complementation because none of the existing com-
plementation procedures [14,17,12] is widely accepted to be good enough for
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practical purposes. Regarding the inclusion problem, there is for instance the so-
called Ramsey-based approach [7,1,2] which essentially uses the computational
content of Büchi’s original proof of complementability of NBA. It clearly does
not avoid PSPACE-hardness but it can sometimes outperform algorithms based
on explicit complementation.

Since the early works of Dill et al [4], there has also been an approach based on
simulation relations. The notion of simulation that reflects the Büchi acceptance
condition, called fair simulation [10], can be described in terms of a game be-
tween two players, Refuter and Verifier. Consider two NBA A and B over some
alphabet Σ. The game proceeds for possibly infinitely many rounds, starting
with two pebbles being placed on the initial states of A and B. In each round,
Refuter chooses some a ∈ Σ and moves the A-pebble along some a-transition.
Verifier responds by moving the B-pebble along some a-transition, too. Refuter
wins if the infinite sequence of states pebbled in A forms an accepting run, and
the one in B does not. A player loses as soon as he/she cannot move anymore.

There is a relatively simple encoding of this game as a parity game with 3
priorities. Thus, the winner in this game can be decided even in polynomial time.
This game entails language inclusion, in the sense that language inclusion holds
whenever Verifier has a winning strategy, but without surprise, the converse does
not hold in general (otherwise we would have PSPACE=PTIME!). It is therefore
reasonable to ask whether the fair simulation games can be refined in order to
obtain something that is “closer” to language inclusion. The answer is yes, and
it is helpful to consult some simple game-theoretic concepts for its explanation.

Fair simulation games are games of perfect information: at each time both
players have full knowledge about the state of the game. Language inclusion, on
the other hand, can be seen as a game of imperfect information, where refuter
cannot observe Verifier’s pebble, and Verifier can always revise his choice pro-
vided it remains consistent with all previous rounds. The anti-chain approach to
language inclusion [5] can be seen as solving such a game, and, like the Ramsey-
based approach, it is in general exponential but can outperform methods based
on explicit complementation.

This reading of the problem suggests that an approximation of language in-
clusion based on fair simulation can be obtained by introducing some form of
“opacity” in Verifier’s moves. Since an approximation is either complete or it is
not, it is useful to stratify the approximation based on some parameter k ∈ N,
such that smaller values of k, raising simpler games, can be tested first, yielding
an incremental algorithm for deciding language inclusion. Such a parameterized
opacity is obtained for the so-called k-pebble game [6]. This essentially gives Ver-
ifier a limited amount of resources in order to conceal information from Refuter.
He now has up to k pebbles that he moves along a-transitions in B in order to
respond to Refuter’s choice a. The fair simulation game becomes the same as
the 1-pebble fair simulation game, and with growing k, the k-pebble game gets
“closer” to language inclusion.

In this paper, we introduce another family of approximations for language
inclusion. That problem can be characterised by a simple one-round simulation
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game: first Refuter chooses an infinite word w ∈ L(A), then Verifier produces an
accepting run for it in B. This is not a game of imperfect information anymore
but it can be seen as a game with infinite forecast. A natural finite approximation
of this is to let Verifier have a finite forecast on Refuter’s moves. We call the
result the k-letter game. It works similar to the ordinary fair simulation game
but requires Refuter to always choose the next k letters of the infinite word to be
constructed. This makes Refuter reveal more information about his subsequent
choices to Verifier, whereas pebble games permit Verifier to conceal information
about his past choices.

The k-letter games provide a new approach to the NBA inclusion problem.
They can be used in order to devise an incremental language inclusion test. It
successively solves games for increasing parameters k. Each iteration – which
fixes k – can be done in polynomial time. The complexity grows exponentially
with k but the base of this exponential is only the fixed (and often small) size
of the underlying alphabet whereas, in the case of the k-pebble games, the base
is the variable and usually not so small size of one of the input automata.

The rest of the paper is organised as follows. Sect. 2 recalls the necessary back-
ground about NBA and simulation games. Sect. 3 defines and examines so-called
static multi-letters simulations. Sect. 4 refines them to dynamic multi-letters sim-
ulations which are theoretically better suited for approximating language inclu-
sion. Sect. 5 reports on experiments that compare incremental inclusion tests
based on multi-letter and multi-pebble games with one of the most advanced
version of the Ramsey-based inclusion test.

2 Background

Words and Büchi Automata. As usual, we use Σ to denote a finite alphabet
with |Σ| ≥ 2, ε for the empty word, Σ∗/Σ+/Σω for the sets of all finite / non-
empty finite / infinite words over Σ. For some k ∈ N, Σk (resp Σ≤k) denotes the
set of all words of length exactly (resp. at most) k. In the following, all language-
theoretic concept are to be understood with respect to some fixed alphabet.

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q, q0, Δ, F )
where Q is a finite set of states with q0 being a designated starting state, Δ ⊆
Q×Σ×Q is a transition relation, and F ⊆ Q is the set of accepting states. The
size of A is measured in terms of its state space: |A| := |Q|.

A run of A on a word w = a0a1 · · · ∈ Σω is an infinite sequence ρ = q0, q1, . . .
such that (qi, ai, qi+1) ∈ Δ for all i ≥ 0. Let inf (q0, q1, . . .) = {q | there are
infinitely many i with q = qi}. When using this notation we implicitly assume
that q0, q1, . . . is an infinite sequence. The run is accepting if inf (q0, q1, . . .)∩F �=
∅. The language of A is the set L(A) of infinite words for which there exists an
accepting run.

We write q
a−→ q′ when (q, a, q′) ∈ Δ assuming that the underlying NBA can

be inferred from the context.
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The language inclusion problem for NBA is the following. Given two NBA A
and B, decide whether or not L(A) ⊆ L(B) holds. We simply write A �incl B in
that case.

Fair Simulation. The fair simulation game Gfair [10] is played between Refuter
and Verifier on two NBA A = (QA, qAinit, ΔA, FA) and B = (QB, qBinit, ΔB, FB),
both controlling a pebble each, according to the following description.

Fair simulation game Gfair(A,B)

start: q0 := qAinit, q
′
0 := qBinit

round i: (1) Refuter chooses some a ∈ Σ
(i = 0, 1, . . .) (2) Refuter chooses qi+1 such that qi

a−→ qi+1

(3) Verifier chooses q′i+1 such that q′i
a−→ q′i+1

winner: Refuter wins if . . .
• Verifier cannot move anymore
• inf (q0, q1, . . .) ∩ FA �= ∅ and inf (q′0, q

′
1, . . .) ∩ FB = ∅

Verifier wins if . . .
• Refuter cannot move anymore
• inf (q0, q1, . . .) ∩ FA = ∅ or inf (q′0, q

′
1, . . .) ∩ FB �= ∅

We write A �fair B if Verifier has a winning strategy for Gfair(A,B). It is well-
known that fair simulation approximates language inclusion in the sense that
A �fair B implies A �incl B but not vice-versa. A counterexample for the converse
implication is the following.

Example 1. Consider the following two NBA A (left) and B (right) over the
alphabet Σ = {a, b, c}.

a
b

c

a, b, c

a, b, c

a

a

b
a, b, c

c
a, b, c

Clearly, we have A �incl B. On the other hand, Refuter can win Gfair(A,B)
because Verifier has to commit in the first round to some a-successor, and then
Refuter can choose a b- or a c-successor whereas Verifier only has one of these
choices.

The game Gfair(A,B) can be reduced to a parity game [9] on a graph of size
O(|A| · |B| · |Σ|). Thus, the winner of a fair simulation game is decidable. In the
vertices, we keep track of the current state of A, B, and the letter a chosen by
Refuter. The vertex reached by a move q′j

a−→ q′j+1 of Verifier has a priority 2

if q′j+1 is a final state, and the vertex reached by a move qj
a−→ qj+1 of Refuter

has a priority 1 if qj+1 is a final state. Other vertices have priority 0. It is not
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too hard to check that player 0 wins the parity game iff Verifier has a winning
strategy for Gfair(A,B). In fact, winning strategies in these two games can easily
be derived from one another.

Multi-Pebble Games. The k-pebble game for some k ≥ 1 is a refinement of
the fair simulation game [6]. Here we only give a brief sketch of its definition and
state some important properties. A detailed definition is not necessary in order
to follow the rest of this paper. The interested reader is referred to the literature
for that purpose [6,3].

In the k-pebble game Gk
peb(A,B) on two NBA A and B, Refuter controls and

moves a pebble on A as is done in the fair simulation game. Verifier now controls
k pebbles on B. In response to a letter a chosen by Refuter he chooses k (not
necessarily different) a-successors of the currently k pebbled states in B and
moves the pebbles there. The winning conditions for finite plays are the same
as above. An infinite play is won by Verifier if the constructed infinite run in A
is not accepting or if it can be guaranteed in some way that the pebbling in B
“contained an accepting run”. As an example, A �2

peb B holds for the two NBA
of Ex. 1: in the first round, Verifier pushes a pebble in each of the two branches,
and in the second round, he drops the irrelevant one, and continues like in the
standard fair simulation game. It is hard to determine whether a sequence of
pebblings contains an accepting run, roughly for the same reasons that make the
power set construction unsuitable for determinising Büchi automata. However,
since multi-pebble games only approximate language inclusion, it is possible
to relax the winning condition even further and check whether the sequence
of pebblings contains a run that is accepting w.r.t. a co-Büchi condition or,
equivalently, whether all runs contained in it are accepting w.r.t. the Büchi
condition. The determinisation problem for co-Büchi automata is conceptually
simpler [13], and using this together with the possibility to drop pebbles yields
a reasonable approximation and a direct reduction to finite parity games.

Example 2. For every k ≥ 1, the k-pebble game for the two automata

A 
 B 


a

b

b
a

b

a a

b

is won by Refuter. He wins by always playing a: Verifier must keep a pebble on
the first state of B to be ready for a possible b, i.e. he must not drop it at any
time. Since this pebble does not visit an accepting state infinitely often, Refuter
wins the game. Note that L(A) = L(B) nonetheless.

We write A �k
peb B if Verifier has a winning strategy for Gk

peb(A,B). Obviously,

we have �1
peb = �fair.

Proposition 3 ([6]). For every k ≥ 1 and NBA A,B over Σ there is a parity
game of size at most |A| · (2 · |B| + 1)k · (|Σ| + 1) and index 3 that is won by
player 0 iff A �k

peb B.
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Furthermore, these games give rise to the following hierarchy

�1
peb � �2

peb � �3
peb � . . . �

⋃
k≥1

�k
peb � �incl . (1)

3 The Static Multi-letter Games

We consider a new parametrised simulation game. In this game, Verifier moves
only one pebble, but benefits from Refuter being forced to reveal more informa-
tion to him/her in a single round.

Definition. Let k ≥ 1. The static k-letter game is played between Refuter and
Verifier on two NBA A = (QA, qAinit, ΔA, FA) and B = (QB, qBinit, ΔB, FB), similar
to the fair simulation game. However, in each round both players advance by
k moves through the NBA instead of just 1 as it is done in the fair simulation
game.

Static k-letters game Gk
stat(A,B)

start: q0 := qAinit, q
′
0 := qBinit, j := 0

round i: (1) Refuter chooses some w = a1 . . . ak ∈ Σk

(2) Refuter chooses qj+1, . . . , qj+k such that

qj
a1−−→ qj+1

a2−−→ qj+2
a3−−→ . . .

ak−−→ qj+k

(3) Verifier chooses q′j+1, . . . , q
′
j+k such that

q′j
a1−−→ q′j+1

a2−−→ q′j+2
a3−−→ . . .

ak−−→ q′j+k

(4) j := j + k

winner: same as in fair simulation game

We write A �k
stat B if Verifier has a winning strategy for Gk

stat(A,B).
The game Gk

stat(A,B) can be modeled by a parity game on a graph of size
O(|A| · |B| · (|Σ|k + 1)). In the vertices, we keep track the current state of A, B,
and the word w = a1 . . . ak chosen by Refuter. The vertex reached by a move
q′j

w−−→ q′j+k of Verifier has a priority 2 if a final state is seen along the move. The

vertex reached by a move qj
w−−→ qj+k of Refuter has priority 1 if a final state is

seen along the move. Other vertices have priority 0. We can use a suitable result
on parity games of index 3 [11], and obtain the following theorem.

Theorem 4. For every k ≥ 1 and NBA A and B, Gk
stat(A,B) is decidable in

time O((|A| · |B| · (|Σ|k + 1))3).

Properties. It is quite obvious to see that the 1-letter static game is the same
as the fair simulation game. Thus we have �1

stat = �fair. Furthermore, the static
games approximate language inclusion in the following sense.
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Theorem 5. For every k ≥ 1 and all NBA A, B we have: A �k
stat B implies

A �incl B.

Thus, static multi-letter games look like a good alternative to the multi-pebble
games for incrementally searching for a proof of language inclusion. Indeed, the
size of these games, while still growing exponentially, grows “only” as O(|Σ|k),
hence much slower than the multi-pebble games for typical inputs in which
Σ 6 |B| (see Prop. 3).

However, the static multi-letter games do not form a hierarchy, at least in the
same sense as the k-pebble games do: for instance, for every k ≥ 2, there are
NBA A, B such that A �k

stat B but A ��k+1
stat B. Indeed, the following two NBA

Ak (left) and Bk (right) are such a counter-example.

· · ·a a a
b

c

a, b, c

a, b, c

· · ·a a
a

a

b
a, b, c

c
a, b, ck k

Instead, the static multi-letter games form a lattice which is isomorphic to
the one of naturals numbers under the division ordering.

Theorem 6. For all k, k′ > 0:

�gcd(k,k′)
stat ⊆ �k

stat ∩ �k′
stat ⊆ �k

stat ∪ �k′
stat ⊆ �lcm(k,k′)

stat .

For the purpose of an algorithm that solves static multi-letter games incremen-
tally in k, this result tells that some sequences of values for k could introduce
more incompleteness, like e.g. iterating over the powers of 2. Of course, increasing
k by 1 in each step would alleviate this problem.

The lower complexity of the static multi-letter games with respect to the
multi-pebble games comes at the price of being more incomplete.

Theorem 7. The following holds.

1. For all k ≥ 1, there are NBA A, B such that A �2
peb B (and thus A �incl B),

but A ��k
stat B.

2.
⋃

k≥1 �k
stat �

⋃
k≥1 �k

peb.

Proof. (1) Consider NBA A′, B′ obtained by slightly modifying NBA A, B from
Ex. 1, by adding an a-loop in the initial state of A and B. Whatever k is, Refuter
can take the a-loop k−1 times and then the outgoing a-transition in A′’s initial
state. Verifier has to respond with a move that makes him/her commit to the
following b or c. In the next round, Refuter can choose cak−1 or bak−1 and
Verifier will be stuck. On the other hand, we have A′ �2

peb B′.
(2) Assume A �k

stat B. Then Verifier has a winning strategy with |B| pebbles,
since he can mimic a play of the static k-letters game by just pushing all pebbles
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following all available choices, except every k rounds in which he only keeps live
a single pebble on the state defined by his winning strategy for the k-letters
game. ��

Another drawback of the static multi-letter games in the perspective of an incre-
mental algorithm is that determining whether the search is hopeless is harder
than for the multi-pebble games: the latter are ensured to become stationary,
whereas for all k ≥ 1, it holds that |Gk

stat(A,B)| < |Gk+1
stat (A,B)|.

4 The Dynamic Multi-letter Games

In this section we consider a further refinement of the fair simulation game in
which, again, Refuter is forced to reveal more information to Verifier. Moreover,
Verifier is given additional power in this game which remedies the lack of a linear
hierarchy for static games.

Definition. Let k ≥ 1. The dynamic k-letter game is played between Refuter
and Verifier on two NBA A = (QA, qAinit, ΔA, FA) and B = (QB, qBinit, ΔB, FB),
similar to the static k-letter game. However, Verifier now can choose how far
both players need to advance in each round.

Dynamic k-letter game Gk
dyn(A,B)

start: q0 := qAinit, q
′
0 := qBinit, j := 0

round i: (1) Verifier chooses some h with 1 ≤ h ≤ k
(2) Refuter chooses some w = a1 . . . ah ∈ Σh

(3) Refuter chooses qj+1, . . . , qj+h such that

qj
a1−−→ qj+1

a2−−→ qj+2
a3−−→ . . .

ah−−→ qj+h

(4) Verifier chooses q′j+1, . . . , q
′
j+h such that

q′j
a1−−→ q′j+1

a1−−→ q′j+2
a2−−→ . . .

ah−−→ q′j+h

(5) j := j + h

winner: same as in fair simulation game

We write A �k
dyn B if Verifier has a winning strategy for Gk

dyn(A,B).
The game Gk

dyn(A,B) can be reduced—similar to the k-letter static game—to

a parity game of size O(|A| · |B| · (|Σ|k+1 + k)). In the vertices we keep track of
the current state of A, B, the h chosen by Verifier, and the word w = a1 . . . ah
chosen by Refuter. We use the same priority assignment as in the parity game
for the static k-letter game.

Theorem 8. For every k ≥ 1 and NBA A and B, A �k
dyn B is decidable in time

O((|A| · |B| · (|Σ|k+1 + k))3).
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Properties. It is quite obvious to see that the 1-letter dynamic game is the
same as the 1-letter static game, hence the same as the fair simulation game.
Therefore we also have �1

dyn = �fair. As with the static games, the dynamic
games approximate language inclusion. However, the dynamic games do form a
hierarchy similar to the k-pebble games.

Theorem 9. The following holds.

�1
dyn � �2

dyn � �3
dyn � . . . �

⋃
k≥1

�k
dyn � �incl

Proof. By definition it is clear that �k
dyn ⊆ �k+1

dyn for every k ≥ 1. However for

every k, there are NBA A, B with A �k+1
dyn B but A ��k

dyn B as we consider the
following two NBA A (left) and B (right).

· · ·a a a
b

c

a, b, c

a, b, c

· · ·

· · ·

a

a

a a b
a, b, c

a a c
a, b, ck

k

��

As mentioned above, for k = 1, the static and dynamic games coincide. For
larger parameters, the dynamic games are nonetheless more powerful than the
static ones.

Theorem 10. For k ≥ 2, we have �k
stat � �k

dyn.

Proof. By definition, �k
stat ⊆ �k

dyn. To show �k
dyn �⊆ �k

stat for k ≥ 3, consider any

NBA Ak and Bk for which Ak−1 ��k
stat Bk−1 but Ak−1 �k−1

stat Bk−1 holds. By the
inclusions �k−1

stat ⊆ �k−1
dyn ⊆ �k

dyn, it holds that Ak−1 �k
dyn Bk−1, which ends the

proof. The case k = 2 is similar. ��

Despite being better approximations of language inclusion than static games,
dynamic games suffer from the same drawbacks compared to multi-pebble games.

Theorem 11. The following holds.

1. For all k ≥ 1, there are NBA A, B such that A �2
peb B (and thus A �incl B),

but A ��k
dyn B.

2.
⋃

k≥1 �k
dyn �

⋃
k≥1 �k

peb.

Although the sequence of games is not stationary, there is an upper bound on
the indices k that are worth being tried while looking for a proof of language
inclusion.
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Theorem 12. For all NBA A,B, if there is k ≥ 0 such that A �k
dyn B, then

A �k0

dyn B for k0 := 2(|A|+|B|)3.

This result could be seen as the indication of a faster convergence of the multi-
pebble games towards a fixpoint (since the corresponding upper bound for pebble
games is “only” |B|). However, these upper bounds are often not tractable in
practice, and should be considered with some care.

To conclude, it may be noticed that typical examples are such that |Σ| 6 |B|.
In this context, the size of dynamic games, like the ones for static games, is
expected to grow much slower than those of multi-pebble games. Therefore, the
next section compares these games from an experimental point of view.

5 Experiments

We implemented the three incremental inclusion tests using OCaml and the
PGSolver library [8] with the recursive algorithm by Zielonka [19]. We evaluated
our implementation by comparing it to Rabit [2], a recent Java implementation
of optimized Ramsey-based methods (we used the options recommended by the
authors, namely -q -b -rd -fplus -SFS -qr -c -l). We ran experiments on
a machine with 16 Intel Xeon cores at 1.87GH, including experiments with Rabit
(note however that Java code naturally tends to run slower than OCaml code).
Due to the possible divergence of our algorithms, we fixed a timeout of 1 hour
for every incremental inclusion test and every pair of automata. The results as
well as the OCaml code are available online.1

For our experiments, we used the same benchmarks over which Rabit was
tested2, restricting to pairs of automata A,B for which language inclusion can be
expected (namely Rabit does not report that A ��incl B). Rabit benchmarks were
obtained from (1) several mutual exclusion protocols with possible errors injected
into the code, and (2) the Tabakov-Vardi randommodel [16], parametrized by the
number of states of the automata, the transition density (dtr), and the acceptance
density (dacc).

The results for the benchmarks on protocol verification are summarised in
Figure 1. The performances of all algorithms are unsurprisingly very similar for
the cases where fair simulation holds (k=1). For the cases where fair simulation
does not hold, Rabit tends to be the better tool. An exception is BakeryV2, for
which Rabit times out, whereas multi-letter simulations perform quite well.

The Tabakov-Vardi benchmarks consist of (1) 4000 pairs of automata with
15 states, dtr ranging from 1.5 to 3, and dacc from 0.1 to 1.0, (2) 100 pairs of
automata with 30 states each, dtr = 2, dacc = 0.1, and (3) 100 pairs of automata
with 50 states each, dtr = 3, dacc = 0.6. For these parameters one can expect
a substantial amount of positive instances for the language inclusion problem,
so-called “hard” inclusion in case (2) and easy but non-trivial inclusion in case
(3) [2]. We call a method successful on a pair of automata if it can show language

1 see http://carrick.fmv.informatik.uni-kassel.de/~milka/iit
2 see http://languageinclusion.org/CONCUR2011

http://carrick.fmv.informatik.uni-kassel.de/~milka/iit
http://languageinclusion.org/CONCUR2011
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mutual exclusion protocols

multi-letter multi-pebble
Rabit

k dynamic k static k pebble

Mcs 1 22.94s 1 23.48s 1 25.41s 39.00s

FischerV2 1 0.07s 1 0.07s 1 0.07s 0.09s

Peterson 1 0.01s 1 0.01s 1 0.01s 0.03s

Bakery 1 7.22s 1 7.16s 1 7.23s 4.43s

Phils 1 0.02s 1 0.02s 1 0.02s 0.11s

Fischer 1 40.80s 1 47.30s 1 47.37s 3.41s

FischerV3 - >1h - >1h - >1h 7.63s

FischerV4 - >1h - >1h - >1h 2136.70s

BakeryV2 2 36.01s 2 7.06s - >1h >1h

random NBA

size = 30, dacc = 0.1, dtr = 2 size = 50, dacc = 0.6, dtr = 3

dynamic static pebble Rabit dynamic static pebble Rabit

time 59.12s 52.78s 18.22s 1655.84s 0.55s 0.52s 2.09s 127.53s

success % 80% 82% 86% 58% 100% 100% 100% 100%

average k 3.66 4.33 1.93 - 1.01 1.01 1.01 -

Fig. 1. Experimental comparisons between multi-letter simulations and other methods

inclusion before the timeout, and for fixed size, dacc, and dtr, its percentage of
success is the rate of successful pairs of automata over all pairs for which one may
expect language inclusion. The results for sizes 30 and 50 are given in Figure 1,
too. Any incremental inclusion test is almost always two orders of magnitudes
faster than Rabit. Incremental inclusion tests are also more successful in general,
although the percentage of success of multi-letter games may fall to ∼ 50% for
automata of size 15 with timeout 10 minutes (see detailed benchmarks). The
pebble game typically explores smaller values of k only. It heavily depends on
the size of the automata, in contrast to the multi-letter game.

The experiments demonstrate that incremental inclusion testing is a very rea-
sonable heuristic for proving language inclusion. This heuristic, when it succeeds,
is still comparable to the recently optimised Ramsey-based approach, and may
perform well when simulation does not hold (k > 1).

In order to tackle the lack of completenes, it is tempting to try to combine incre-
mental inclusion and the Ramsey-based approach. It remains to be seen whether
or not the results of the multi-letter simulation tests can be used for quotienting.
We aim to develop a combination of the two approaches in the future.
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9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

10. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Com-
put. 173(1), 64–81 (2002)
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Abstract. Bounded context-free languages have been investigated for
nearly fifty years, yet they continue to generate interest as seen from
recent studies. Here, we present a number of results about bounded
context-free languages. First we give a new (simpler) proof that every
context-free language L ⊆ w∗

1w
∗
2 ...w

∗
n can be accepted by a PDA with

at most 2n − 3 reversals. We also introduce new collections of bounded
context-free languages and present some of their interesting properties.
Some of the properties are counter-intuitive and may point to some
deeper facts about bounded CFL’s. We present some results about semi-
linear sets and also present a generalization of the well-known result
that over a one-letter alphabet, the family of context-free and regular
languages coincide.

Keywords: context-free language (CFL), nondeterministic pushdown
automaton (NPDA), reversal-bounded, semilinear set, stratified linear
set.

1 Introduction

The class of context-free languages (CFL) is one of the most important families of
languages because of the nice mathematical properties they exhibit and because
of their wide-ranging applications. Bounded CFL’s [2] are interesting since they
admit faster parsing algorithms and many problems that are undecidable for
general CFL’s are decidable for the bounded CFL’s. Also many well-known ex-
amples and counter-examples for CFL’s are bounded, for example, the standard
example of an inherently ambiguous language is a bounded CFL [4]. Some recent
work on bounded CFL’s include [7], [6] etc. Here we present some properties of
bounded context-free languages.

We first show that every context-free language L ⊆ w∗
1w

∗
2 ...w

∗
n can be accepted

by a PDA with at most 2n− 3 reversals. This result was also recently shown by
[7], but our proof is simpler and is based on a PDA while their proof is based
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on context-free grammars. Then, we introduce a number of bounded languages
and present many of their properties. Some of these observations are unexpected.
For example, listed below are three languages:
B1 = {ar11 ar22 ar33 | r1 + r2 ≥ r3, r2 + r3 ≥ r1, r3 + r1 ≥ r2}.
B2 = {an1+n2

1 an2+n3
2 an3+n1

3 | n1, n2, n3 ≥ 0}.
B3 = {ar11 ar22 ar33 ar44 | r1 + r3 = r2 + r4}.

Which of the above languages and/or their complements are context-free? What
is the (minimum) number of reversals that are needed to accept them? The reader
can check their intuition by looking at Section 4 where several such languages
are introduced and their properties discussed.

In Section 5, we briefly study the class of semilinear languages and provide a
characterization for it in terms of reversal-bounded counter machines. In Section
6, we present a generalization of the well-known result that over a one-letter
alphabet, the family of context-free and regular languages coincide. We also
present some results about multitape NDPA’s with reversal bounded counters.
We conclude with some open problems in Section 7.

Due to page limit, most of the proofs are omitted here. A full version can be
requested from the authors.

2 Preliminaries

Let N be the set of natural numbers and n ≥ 1. Q ⊆ Nn is a linear set if
there is a vector c in Nn (the constant vector) and a set of periodic vectors V =
{v1, . . . , vr}, r ≥ 0, each vi in N

n such that Q = {c+t1v1+· · ·+trvr | t1, . . . , tr ∈
N}. We denote this set as Q(c, V ). A finite union of linear sets is called a semi-
linear set.

A linear set Q(c, V ) ⊆ Nn is said to be stratified if:

1. Every v ∈ V has at most two nonzero components, and
2. There exist no integers i, j, k, l with 1 ≤ i < j < k < l ≤ n and no vectors
u = (u1, . . . , un) and v = (v1, . . . , vn) in V such that uivjukvl �= 0.

A finite union of stratified linear sets is called a stratified semilinear set.

Let Σ = {a1, . . . , an}. For w ∈ Σ∗, let |w| be the number of letters (sym-
bols) in w, and |w|ai denote the number of occurrences of ai in w. The Parikh
map P (w) of w is the vector (|w|a1 , . . . , |w|an); similarly, the Parikh image of a
language L is defined as P (L) = {P (w) | w ∈ L}.

It is known that the Parikh map of a language L accepted by an NPDA (i.e.,
L is context-free) is an effectively computable semilinear set [8]. A useful gener-
alization of this result for showing the decidability of a wide-range of problems
is to extend this result to a larger class of machines. One such class is the class
of NPDA’s augmented with reversal-bounded counters. A machine M in this
class has a pushdown stack, together with a finite set of counters. Each counter
can store a single symbol a other than the bottom of the stack symbol. At each
move, based on the symbol read by the input head, and the symbol on the top of
stack, and counter status (being 0 or non-zero) of each counter, the machine can
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choose one of a finite number of choices and execute it. This involves applying
a move on the input tape (either stay or move right one position), change the
state, remove the top of the stack symbol and push a string on the stack, and
update each counter (by adding 0, +1 or -1 a’s). The fact that the counter is
reversal-bounded means that the number of times the counter can change from
increasing mode (during which the counter value never decreases) to decreasing
mode (during which the counter value never increases) is bounded by a constant,
independent of the input length. Note that we place no such restriction on the
pushdown stack.

The following result was shown in [5]:

Theorem 1.

1. If L ⊆ Σ∗ is accepted by an NPDA with reversal-bounded counters, then
P (L) is an effectively computable semilinear set.

2. If L ⊆ w∗
1 · · ·w∗

n is accepted by an NPDA with reversal-bounded counters
(where w1, . . . , wn are nonnull strings), then QL = {(i1, . . . , in) | wi1

1 · · ·win
n

∈ L} is an effectively computable semilinear set.

A language L is letter-bounded if it is a subset of a∗1 · · · a∗n for some distinct letters
(symbols) a1, . . . , an. L is bounded if it is a subset of w∗

1 · · ·w∗
n for some (not

necessarily distinct) nonnull strings w1, . . . , wn. The following characterizations
of letter-bounded context-free languages (CFLs) are from [2].

Theorem 2.

1. Let Σ = {a1, . . . , an}, n ≥ 3. Each CFL L ⊆ a∗1 · · · a∗n is a finite union of
sets of the following form:

M(D,E, F ) = {ai1xyajn | ai1ajn ∈ D, x ∈ E, y ∈ F},

where D ⊆ a∗1a
∗
n, E ⊆ a∗1 · · · a∗q, F ⊆ a∗q · · · a∗n, 1 < q < n, are CFLs.

Conversely, each finite union of sets of the form M(D,E, F ) is a CFL L ⊆
a∗1 · · · a∗n.

2. A language L ⊆ a∗1 · · · a∗n, n ≥ 2, is a CFL if and only if its Parikh map
P (L) ⊆ Nn is a stratified semilinear set (i.e., a finite union of stratified
linear sets).

3 Characterization of Bounded CFLs by
Reversal-Bounded NPDAs

We give two constructions to show that every CFL L ⊆ a∗1 · · · a∗n can be accepted
by a reversal-bounded NPDA. The first construction is simple, but yields an
upper bound of 2n − 1 on stack reversals. The second construction gives an
upper bound of 2n − 3 on the reversals and there are examples for which the
construction achieves this bound.

We begin with the following lemma which is easily verified (see Corollary 7
for a stronger result).
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Lemma 3. Every context-free language L ⊆ a∗1a
∗
2 can be accepted by a 1 reversal

NPDA.

Theorem 4. Every CFL L ⊆ a∗1...a
∗
n can be accepted by a 2n−1 − 1 reversal-

bounded NPDA.

We now give a construction that improves the upper bound on the stack reversals.

Theorem 5. Let L ⊆ a∗1 · · ·a∗n be a CFL. Then we can construct a 2n − 3
reversal-bounded NPDA accepting L. Moreover, there are examples for which
the construction achieves the bound 2n− 3 for every n ≥ 2.

Proof. From Theorem 2, part 2, L ⊆ a∗1 · · · a∗n is a CFL if and only if its Parikh
map P (L) is a stratified semilinear set (i.e., finite union of stratified linear sets.)
Since r-reversal bounded NPDA languages (for any r ≥ 0) are closed under
union, it is sufficient to show that a language L whose Parikh map is a stratified
linear set is accepted by a 2n− 3 reversal-bounded NPDA.

Let Q be a linear set generated by the constant vector c = (c1, . . . , cn) and
periodic vectors in the set V .

For 1 ≤ i ≤ n, let Vi = {v | v ∈ V , and v has only one non-zero component: the
ith component }.
For 1 ≤ i, j ≤ n, i �= j, let Vij = {v | v ∈ V , and v has two non-zero components:
the ith and jth components }.
We construct an NPDA M that accepts L = {ai11 · · · ainn | (i1, . . . , in) ∈ Q}. In
addition to the bottom of the stack symbol, M has a pushdown symbol Tij for
1 ≤ i < j ≤ n.

Given ai11 · · · ainn , M processes each ai-segment, for i = 1, . . . , n, as follows:

1. M reads ci ai’s on the input, where ci is the i
th component of the constant

vector c = (c1, . . . , cn) of Q.

2. If Vi = ∅, this step is skipped.

For each v ∈ Vi if v = (0, . . . , 0, di, 0, . . . , 0) (where di is the i
th component),

then for nondeterministically chosen tv ≥ 0, M does the following tv times:
reads di ai’s without changing the stack. (Thus, for each v ∈ Vi, M reads a
total of tvdi ai’s.)

3. If there are no vectors in V with nonzero components in position i and in
position less than i, this step is skipped. In particular, when i = 1, this step
is skipped.

Suppose Vj1i, . . . , Vjti are nonempty and 1 ≤ j1 < ... < jt < i. Then M does
the following for k = t, t− 1, . . . , 1 in this order:

For each v ∈ Vjki, if v = (0 . . . , 0, djk , 0, . . . , 0, di, 0, . . . , 0) (i.e., the nonzero
components are in the jthk and ith positions), then M pops the stack such
that for each Tjki it pops, it reads an ai. (Thus, for each v ∈ Vjki, M pops a
total of tvdjk Tjki’s that have been stored earlier and reads a total of tvdjk
ai’s.)
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4. If there are no vectors in V with nonzero components in position i and in
position greater than i, this step skipped.

Suppose Vij1 , . . . , Vijt are nonempty and i < j1 < ... < jt. Then M does the
following for k = t, t− 1, . . . , 1 in this order:

For each v ∈ Vijk , if v = (0 . . . , 0, di, 0, . . . , 0, djk , 0, . . . , 0) (i.e., the nonzero
components are in positions ith and jthk ), then for nondeterministically cho-
sen tv ≥ 0, M does the following: reads di ai’s and stack djk Tijk ’s on the
pushdown. (Thus, for each v ∈ Vijk , M reads a total of tvdi ai’s and stacks
a total of tvdjk Tijk ’s on the pushdown.)

After the four steps above, M has completed processing the ai-segment and
should be reading the first ai+1. (If not, M rejects the input and halts.) M
then proceeds to process the ai+1-segment. When all the ai-segments have been
processed successfully, M accepts the input and halts.

We will now sketch a proof that M accepts L. The basic idea is the following:
let w = ai11 a

i2
2 ...a

in
n be a string in L. Then (i1, i2, ..., in) = c+ p1v1 + ...+ pmvm,

where c is the constant vector and v1, . . . , vm are the periodic vectors. This
involves checking that ij = cj +

∑m
r=1 prvjr , where cr is the r-th component of c

and vjr is the r-th component of vj . Since V is stratified, there are at most two
non-zero components in any vector vj .
M verifies the above equation by guessing the numbers p1, ..., pm and keeping

the expression
∑m

r=1 prvjr on the stack while reading the first nonzero component
of the vectors whose second nonzero component is j, and matching this value
with the value ij by popping one symbol for each input symbol aj read. (The
vectors with only one non-zero component are handled using the finite-control.)

Next, let us determine the number of stack reversals M makes on an input
string in a∗1 · · · a∗n. For each ai-segment, 2 ≤ i ≤ n− 1, M may make a sequence
of pops followed by a sequence of pushes. Hence, the number of alternations from
popping to pushing and vice-versa for these n− 2 segments is 2n− 5. (Note that
if n = 2, the number is 0.) Now the a1-segment and the an segments contribute
a pushing sequence sequence and a popping sequence. Thus, in total, there can
be 2n− 5+2 = 2n− 3 alternations between popping and pushing and vice-versa
or, equivalently, M makes 2n− 3 stack reversals. ��

To see that the 2n−3 bound on the stack reversal is achievable, consider the CFL
Ln
cycle = {ai1+i2

1 ai2+i3
2 · · · ain−1+in

n−1 ai1+in
n | i1, . . . , in ≥ 0}. Clearly, the Parikh

map of Ln
cycle is a stratified linear set with constant vector c = (0, . . . , 0) and set

of periodic vectors V = {(1, 0, . . . , 0, 1), (1, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0),
(0, 0, 1, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1, 0), (0, . . . , 0, 1, 1)}. It is easy to verify that
the NPDA accepting Ln

cycle using the construction described above will make
2n− 3 reversals. In fact, later we will show that this bound cannot be improved
in general since there are n-bounded CFL’s that cannot be accepted by a PDA
with fewer than (2n− 3) reversals.

Corollary 6. Let L ⊆ w∗
1 · · ·w∗

n be a CFL, where w1, . . . , wn are nonnull strings.
Then L can be accepted by a 2n− 3 reversal-bounded NPDA, and this reversal-
bound is tight.
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For the case when n = 2, we have:

Corollary 7. Every CFL L ⊆ w∗
1w

∗
2 can be accepted by a 1-reversal counter

machine. (Here a counter machine refers to a NPDA in which the stack alphabet
consists of two symbols one of which is used only as the bottom of the stack
symbol.)

Malcher and Pighizzini [7] show that the 2n− 3 reversal-bound in Theorem 5 is
tight for a different candidate family Lk:

Theorem 8. For any k ≥ 1,

Lk = {ai1+i2
1 ai2+i3

2 · · · ain−1+in
n−1 ainn | i1 = 2k, i2, . . . , in ≥ 1}

cannot be accepted by any NPDA in less than 2n− 3 reversals.

We note that the result in [7] gave a lower bound of n − 1 turns which, when
using our definition of reversal-bound, corresponds to the lower bound of 2n− 3.
(Basically, they count only a down-turn as a reversal, while we count both up-
turns and down-turns as reversals.)

4 Ln
cycle and Related Languages

The language Ln
cycle = {ai1+i2

1 ai2+i3
2 ...a

in−1+in
n−1 ain+i1

n | i1, ..., in ≥ 0} has some
interesting characteristics, which we explore in this section. A related language
has been studied in [7].

We first introduce some notation. For an odd integer n ≥ 3, let C = (p1, . . . , pn),
and
C1 = (p1, p2, . . . , pn)
C2 = (p2, p3, . . . , pn, p1)
C3 = (p3, p4, . . . , pn, p1, p2)
....
Ci = (pi, pi+1, . . . , pn, p1, . . . , pi−1)

Thus, Ci is the i-th circular shift of C.

Suppose Ci = (pi1 , pi2 , . . . , pin), and the pij ’s are nonnegative integers. Denote
by S(Ci) = pi1 − pi2 + pi3 − · · ·+ pin−2 − pin−1 + pin . For example, S((3, 6, 7)) =
3 - 6 + 7 = 4. Consider the following four collections of languages:

1. Ln
cycle = {ai1+i2

1 ai2+i3
2 ...a

in−1+in
n−1 ain+i1

n | i1, ..., in ≥ 0}, for any n ≥ 3.

2. Ln
1 = {ap1

1 a
p2

2 ...a
pn
n | p1+...+pn is even, p1−p2+p3−...−pn−2+pn−1−pn = 0},

for any even n ≥ 2.
3. Ln

2 = {ap1

1 a
p2

2 ...a
pn
n | p1 + ...+ pn is even, S(Ci) ≥ 0 for 1 ≤ i ≤ n}, for any

odd n ≥ 3
4. Ln

3 = {ap1

1 a
p2

2 ...a
pn
n | S(Ci) ≥ 0 for 1 ≤ i ≤ n}, for any odd n ≥ 3 (note that

the the condition p1 + ...+ pn is even is no longer assumed in Ln
3 ).
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We will show the following in this section:

1. For n = 2 and 4: Ln
cycle = Ln

1 , and it and its complement can be accepted
by a 2n− 3 reversal-bounded deterministic counter machine.

2. For any even n ≥ 6, Ln
cycle �= Ln

1 . (Thus the equivalence Ln
cycle = Ln

1 holds
only for n = 2 and 4.)

3. For any odd n ≥ 3, Ln
cycle = Ln

2 , and it can be accepted by an unambiguous
NPDA (but not likely by any counter machine, even if it is allowed to be
ambiguous and there is no restriction on the reversals).

4. For any odd n ≥ 3, the complement of Ln
cycle (= complement of Ln

2 ) can be
accepted by a 2n− 3 reversal-bounded counter machine.

5. For any odd n ≥ 3, Ln
3 can be accepted by an unambiguous 2n− 3 reversal

bounded NPDA.

6. For any odd n ≥ 3, the complement of Ln
3 can be accepted by a 2n − 3

reversal-bounded counter machine.

First we consider even n and determine the connection between Ln
cycle and Ln

1 .

Lemma 9. For n = 2 and 4, Ln
cycle = Ln

1 .

For n = 2 and 4, Ln
cycle (= Ln

1 ) is context-free. The reason is that the construction
in the proof of Theorem 5 applies for both odd n and even n. In fact, it and its
complement can be accepted by 2n− 3 reversal-bounded deterministic counter
machines, as shown in the next theorem.

Theorem 10. For any even n ≥ 2, Ln
1 and Ln

1 can be accepted by 2n−3 reversal-
bounded deterministic counter machines.

For n = 6 (and larger n), the situation is different as the following shows.

Proposition 11. For any even n ≥ 6, Ln
cycle �= Ln

1 .

Now, we consider Ln
2 for odd n ≥ 3.

Lemma 12. For any odd n ≥ 3, Ln
cycle = Ln

2 .

From the above lemma, we have:

Theorem 13. For any odd n ≥ 3, Ln
2 (= Ln

cycle) can be accepted by a 2n − 3
reversal-bounded unambiguous NPDA.

Next, we show that the complement of Ln
cycle can be accepted by a reversal-

bounded counter machine.

Theorem 14. For odd n ≥ 3, Ln
2 (= Ln

cycle) can be accepted by a 2n−3 reversal-
bounded counter machine, M .
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Proof. We construct M to accept the complement of Ln
2 . Let w be an input to

M . Clearly, M ’s finite-control can check and accept if w is not in a∗1 · · ·a∗n or
if w = ap1

1 · · · apn
n but p1 + · · ·+ pn is not even. Now we describe the operation

of M when the input has the correct format, but is not in Ln
2 . Clearly, w is

not in Ln
2 if there exists an 1 ≤ i ≤ n such that S(Ci) < 0 where S(Ci) is

pi − pi+1 + ... + (−1)n−ipn + (−1)n−i+1p1 + ... + (−1)n−1pi−1. So M simply
guesses an i, which gives an expression of the pj’s with arithmetic operations
minus and plus, but can be rewritten so that p1, p2, . . . , pn appear in this order.
(For example, for n = 5, S(C3) = p3−p4+p5−p1+p2 = −p1+p2+p3−p4+p5.)
The sign vectors are built into the finite-control of M . So when M guesses
an i, it knows the associated vector, e.g., if it guesses S(C3), the sign vector
(−,+,+,−,+) indicates that the expression to evaluate is −p1+p2+p3−p4+p5.
Then M scans the input and evaluates the expression deterministically. In order
to compute the expression, the machine has to remember the status as either P
or N. P means Increment (Decrement) on seeing a term with positive (negative)
sign. For N, it is the opposite. When the counter becomes empty in the middle of
a block, switch from P to N (and N to P). We note that S(C1) is the only guess
that will require 2n− 3 reversals. All the others will require fewer reversals. ��

Finally, we consider the language Ln
3 :

Theorem 15. for any odd n ≥ 3:

1. Ln
3 can be accepted by a 2n− 3 reversal-bounded unambiguous NPDA.

2. Ln
3 can be accepted by a 2n− 3 reversal-bounded counter machine. Further,

for n = 3, the counter machine can be made unambiguous.

A natural question regarding the languages described in this section (namely,
Ln
cycle, L

n
1 , L

n
2 etc.) is if the upper-bound of 2n − 3 on number of reversals

presented in our construction above is tight. Recall Theorem 5 in which we pre-
sented the candidate language for which Malcher and Pighizzini [7] presented
a technique for showing a lower-bound on the number of reversals. They estab-
lished a tight-bound (matching the upper and lower-bounds) for Lk language
that closely resembles Ln

cycle. Recall that Lk is:

Lk = {ai1+i2
1 ai2+i3

2 · · · ain−1+in
n−1 ainn | i1 = 2k, i2, . . . , in ≥ 1}. Note that this

language is remarkably similar to Ln
cycle. The primary difference is that in the

former language (Lk), i1 takes a constant value 2k while in the latter language
(Ln

cycle) , i1 is arbitrary and that the count of the last block is in while in the
latter, it is the sum in + i1. Another (minor) difference is that in the former
language, the variables i2, ..., in are required to be greater than 0 while in the
latter case, the variables are allowed to take 0 value. In view of the similarity
between the two languages, one may guess that the lower-bound of 2n−3 carries
over to the latter language along with the proof technique.

However, the situation seems to be more subtle in that the proof technique of
Malcher and Pighizzini does not extend to Ln

cycle. In fact, the bound 2n− 3 does
not even hold for Ln

cycle. We will show this at least in the case of even n > 2. The
smallest such case is n = 4 for which the upper-bound presented in Theorem 5
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is 5. However, this is not tight. In the following, we will show that L4
cycle can be

accepted with three reversals.

Claim: Let L4
cycle= {an1+n2

1 an2+n3
2 an3+n4

3 an4+n1
4 |n1, n2, n3, n4 ≥ 0}. Then L4

cycle

can be accepted by a PDA with 3 reversals.
We next generalize the above claim and show the following:

Theorem 16. For any even n ≥ 2, Ln
1 = {ap1

1 a
p2

2 ...a
pn
n | p1 + ... + pn is even,

p1 − p2 + p3 − ...− pn−2 + pn−1 − pn = 0} can be accepted by a 3-reversal PDA.

Next we will show that three reversals are necessary for accepting Ln
1 for all

n > 2.
Since it can be assumed that a PDA always starts with a PUSH phase and

ends with a POP phase, the number of reversals is always an odd number and
hence, if we can show that Ln

1 is not linear then it follows that Ln
1 requires three

reversals. We need a lemma from [3].

Lemma 17. Let L ⊆ a+b+c+c+ be such that
(1) for all n, r ≥ 1, anbncrdr ∈ L.
(2) if anbncrds ∈ L, then r ≤ s and
(3) if there exist integers t1, t2 ≥ 1 such that anbmcrds ∈ L for some m < n,
then (n−m)t1 ≤ (r + s)t2.

Then, L is not a linear context-free language.

Theorem 18. For every n > 2, a PDA accepting Ln
1 requires three reversals.

Proof. As remarked above, it suffices to show that Ln
1 is not a linear CFL. We

will first show this for n = 4. We define M4
1 , a language closely related to L4

1 as
follows: M4

1 = {an1am2 ar3as4 | n,m, r, s ≥ 1, n+ r = m+ s}. It is easy to see that
L4
1 is a linear CFL if and only if M4

1 is. It is easy to check that M4
1 satisfies the

conditions of lemma 17. (The first two conditions are obvious. We can choose t1
= t2 = 1 so that condition (3) is satisfied.) This shows the claim for n = 4. To
show that Ln

1 is not linear for larger values n, it suffices to see that the PDA for
L4
1 can be written as an intersection of Ln

1 and a regular set. ��

Finally, we note that an analog of Ogden’s lemma for linear languages [1] can
be used to show that L3

cycle is not linear.

5 Semilinear Languages

A language L ⊆ w∗
1 · · ·w∗

n is called a semilinear language if the setQ = {(i1, . . . , in)
|wi1

1 · · ·win
n ∈ L} is a semilinear set.

Corollary 19. The class of semilinear languages over w∗
1 ...w

∗
n is the closure

under intersection of languages accepted by 2n− 3 reversal-bounded NPDAs.

Thus a language L ⊆ w∗
1 ...w

∗
n is semi-linear if and only if L = ∩m

j=1Lj for some
languages L1, ..., Lm such that each Lj can be accepted by 2n − 3 reversal-
bounded NPDA.

From Theorem 1, part 2 and the above corollary, we get:
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Theorem 20. The class of languages over w∗
1 · · ·w∗

n accepted by NPDAs with
reversal-bounded counters is the closure under intersection of languages accepted
by 2n− 3 reversal-bounded NPDAs.

A resetting NPDA is a special case of a two-way NPDA (with input end mark-
ers). The machine starts with the input head on the left end marker with stack
containing only a distinguished bottom of the stack symbol, which is never modi-
fied. The machine then computes like an NPDA but when the input head reaches
the right end marker, it either enters an accepting state eventually, or resets the
input head to the left end marker in some state (which need not be the initial
state) with stack again containing only the bottom of the stack symbol. THe
machine can then make another (one-way)sweep on the input like an NPDA.

Corollary 21. A language L ⊆ w∗
1 · · ·w∗

n is accepted by NPDA with reversal-
bounded counters if and only if it is accepted by a resetting NPDA, where the
machine makes no more than 2n− 3 stack reversals between resets.

6 Multitape NPDAs with Reversal-Bounded Counters

It is well-known that any unary language accepted by an NPDA (i.e., unary
CFL) is regular (i.e., accepted by an NFA). In this section, we generalize this
result.

A set of strings is 1-bounded if it is a subset of w∗ for some non-null string w.
In the following, we generalize the notion of a language to a collection of n-tuples
of strings. More precisely, we define a language L as L ⊆ w∗

1 × · · · × w∗
n. This

definition is common place in applications such as relational data modeling. Such
a n-tuple language can be recognized by a n-tape automatonM in which each of
the strings wj is stored on a read-only input tape. The input (w1, w2, ..., wn) ∈
L(M) if there is a sequence of moves leading to acceptance from a suitably
defined starting configuration.

Theorem 22. Let L ⊆ w∗
1 × · · · ×w∗

n be a set of n-tuples accepted by an n-tape
NPDA with reversal bounded counters, where w1, . . . , wn are nonnull strings.
(Thus, each input tape is over a 1-bounded set). Then L can be accepted by a
n-tape NFA.

Note that the above theorem does not hold when the tapes are no longer 1-
bounded. For example, L = {(aibi, aj) | i, j ≥ 1} is accepted by a 2-tape NPDA,
but it cannot be accepted by any 2-tape NFA; otherwise, the projection of L on
the first coordinate (which is not regular) could be accepted by a 1-tape NFA.

In the following, we consider a more general n-tuple language L in which each
component language is a bounded (rather than a unary) language.

Let B1 × · · · × Bn will denote a set of tuples, where each Bi = w∗
i1 · · ·w∗

iki

for some nonnull strings wi1, . . . , wiki . If L ⊆ B1 × · · · × Bn, define QL =

{(i11, . . . , i1k1 , . . . , in1, . . . , inkn) | (wi11
11 , . . . , w

i1k1
1k1

, . . . , win1
n1 , . . . , w

inkn

nkn
) ∈ L}.
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Corollary 23. Let L ⊆ B1 × · · · × Bn be accepted by an n-tape NPDA with
reversal-bounded counters. If QL is a stratified semilinear set, then L can be
accepted by a reversal-bounded n-tape NPDA (i.e., the stack is reversal-bounded
and there are no counters).

As stated in Theorem 1, part 2, the Parikh map, P (L), of a language L accepted
by an NPDA with reversal-bounded counters is a semilinear set. We will show
that this generalizes to multitape machines.

Let L ⊆ Σ∗
1 × · · · × Σ∗

n. For 1 ≤ i ≤ n, let Σi = {ai1, . . . , aiki}. Define the
Parikh map of L as P (L) = {(|w1|a11 , . . . , |w1|a1k1

, . . . , |wn|an1 , . . . , |wn|ankn
) |

(w1, . . . , wn) ∈ L}.

Theorem 24. If L ⊆ Σ∗
1 × · · · × Σ∗

n is accepted by an n-tape NPDA M with
reversal-bounded counters, then P(L) is a semilinear set.

Suppose there are r distinct symbols in Σ1 ∪ · · · ∪Σn : a1, · · · , ar. Define P (L)
as P (L) = {(i1, . . . , ir) | ij = |w1 · · ·wn|aj , (w1, . . . , wn) ∈ L, 1 ≤ j ≤ r}. Clearly
by a construction similar to the proof above, P (L) is also a semilinear set.

An n-tape 2NPDA is an NPDA with n two-way input tapes with left and right
end markers on each tape. An n-tuple (x1, . . . , xn) is accepted if the machine,
when started with its n input heads at the left end of their respective input
tapes, eventually enters an accepting state with all input heads at the right end
of their respective tapes. When there is no stack, we have an n-tape 2NFA. In the
deterministic versions we use ‘D’ instead of ‘N’. These models can be augmented
with reversal-bounded counters.

An n-tape machine (of a given type) is finite-turn if there is a nonnegative
integer c such that for any accepted n-tuple, there is an accepting computation
in which on any input tape, the head makes at most c turns (from left-to-right
or right-to-left). Note that if c = 0, the machine has one-way input tapes.

Proposition 25. There is a language L accepted by a 2-turn 2DPDA whose
Parikh map, P (L), is not semilinear.

Proof. Let a, b,# be new symbols, and

L = {a1ba5 · · · ba2n−1#a2n−2b · · · ba7ba3 | n ≥ 1}.

Clearly, L can be accepted by a 2-turn 2DPDA whose stack makes 3 reversals,
but P (L) is not semilinear. ��

However, for finite-turn 2NFAs, the following was shown in [5].

Theorem 26. If L ⊆ Σ∗ is accepted by a finite-turn 2NFA with reversal-bounded
counters, then P (L) is semilinear.

The above theorem does not hold for multitape machines, as the next proposition
shows.

Proposition 27. There is a language L accepted by a 2-turn 2-tape 2DFA such
that P (L) is not semilinear.
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Proof. Let L = {(a1b3 · · ·an−1, c2d4 · · · cn−2dn) | n = 2i, i ≥ 1}, where a, b, c, d
are distinct symbols. Clearly, L can be accepted by a 2-turn 2-tape DFA, but
P (L) is not semilinear, since the projection of P (L) on the first coordinate is
the set of squares (and semilinear sets are closed under projections). ��

In contrast to Proposition 25, for bounded languages, we have:

Theorem 28. Let L ⊆ a∗11 · · · a∗1k1
× · · · × a∗n1 · · · a∗nkn

(where the aij’s are dis-
tinct symbols) be accepted by a finite-turn n-tape NPDAM with reversal-bounded
counters. Then P(L) is a semilinear set.

Theorem 29. Let L ⊆ B1 × · · · ×Bn be accepted by a finite-turn n-tape NPDA
with reversal-bounded counters. Then L can be accepted by:

1. A finite-turn n-tape 2DFA with one reversal-bounded counter.
2. An n-tape (one-way) DFA with a finite number of reversal-bounded counters.

7 Conclusion

We conclude with the following open problems:

1. Show that Ln
cycle cannot be accepted by a counter machine for odd values of

n.
2. Show that L3

2 and L3
3 are not deterministic context-free languages.

3. Show that Ln
2 and Ln

3 are inherently ambiguous for n > 5.
4. Show that the number of reversals needed to accept Lm

cycle is (2m− 3) for all
m except m = 4. While it seems unusual for the optimum bound to exhibit
an exception like m = 4, Proposition 11 makes this conjecture plausible.
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Abstract. We introduce an extension of hedge automata called bidi-
mensional context-free hedge automata. The class of unranked ordered
tree languages they recognize is shown to be preserved by rewrite closure
with inverse-monadic rules. We also extend the parameterized rewriting
rules used for modeling the W3C XQuery Update Facility in previous
works, by the possibility to insert a new parent node above a given node.
We show that the rewrite closure of hedge automata languages with these
extended rewriting systems are context-free hedge languages.

Introduction

Hedge Automata (HA) are extensions of tree automata to manipulate unranked
ordered trees. They appeared as a natural tool to support document validation
since the number of children of a node is not fixed in XML documents and the
structural information (type) of an XML document can be specified by an HA.

A central problem in XML document processing is static typechecking. This
problem amounts to verifying at compile time that every output XML docu-
ment which is the result of a specified query or transformation applied to an
input document with a valid input type has a valid output type. However for
transformation languages such as the one provided by XQuery Update Facil-
ity (XQUF), the output type of (iterated) applications of update primitives are
not easy to predict. Another important issue for XML data processing is the
specification and enforcement of access policies. A large amount of work has
been devoted to secure XML querying. But most of the work focuses on read-
only rights, and very few have considered update rights for a model based on
XQUF operations [7,3,9]. These works have considered the sensitive problem of
access control policy inconsistency, that is, whether a forbidden operation can be
simulated through a sequence of allowed operations. For instance [9] presents a
hospital database example where it is forbidden to rename a patient name in a
medical file but the same effect can be obtained by deleting this file and inserting
a new one. This example illustrates a so-called local inconsistency problem and
its detection can be reduced to checking the emptiness of a HA language.
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In formal verification of infinite state systems several regular model checking
approaches represent sets of configurations by regular languages, transitions by
rewrite rules and (approximations of) reachable configurations as rewrite closure
of regular languages see e.g. [6,2]. Regular model checking [1] is extended from
tree to hedge rewriting and hedge automata in [15], which gives a procedure to
compute reachability sets approximations. Here we compute exact reachability
sets when the configuration sets are represented by context-free hedge automata,
hence beyond the regular (HA) ones. These results are interesting for automated
verification where reachability sets are not always regular.

To summarize, several XML validation or infinite-state verification problems
would benefit from procedures to compute rewrite-closure of hedge languages.
We also need decidable formalisms beyond regular tree languages to capture
rewrite closures.
Contributions. In [9] we have proposed a model for XML update primitives of
XQUF as parameterized rewriting rules of the form: ”insert an unranked tree
from a regular tree language L as the first child of a node labeled by a”. For
these rules, we give type inference algorithms, considering types defined by sev-
eral classes of unranked tree automata. In particular we have considered context-
free hedge automata (CFHA, e.g. [8]), a more general class than regular hedge
automata and obtained by requiring that the sequences of sibling states under
a node to be in a context-free language. In this submission we first introduce
a non-trivial extension of context-free hedge languages defined by what we call
bidimensional context-free hedge automata (Section 2). This class is more ex-
pressive as shown by examples. The class is also shown to be preserved by rewrite
closure when applying inverse-monadic rules that are more general than the rules
that were considered in [8](Section 3).

Then we extend the parameterized rewriting rules used for modeling XQUF
in [9] by the possibility to insert a new parent node above a given node. We
show in Section 4 how to compute the rewrite closure of HA languages with these
extended rewriting systems. Although the obtained results are more general than
[9] the proofs are somewhat simpler thanks to a new uniform representation of
vertical and horizontal steps of CFHA. A full version is available at [10].
Related work. [14] presents a static analysis of XML document adaptations,
expressed as sequences of XQUF primitives. The authors also use an automatic
inference method for deriving the type, expressed as a HA, of a sequence of
document updates. The type is computed starting from the original schema
and from the XQuery Updates formulated as rewriting rules as in [9]. However
differently from our case the updates are applied in parallel in one shot.

1 Preliminaries

We consider a finite alphabet Σ and an infinite set of variables X . The symbols
of Σ are generally denoted a, b, c . . . and the variables x, y. . . The sets of hedges
and trees over Σ and X , respectively denoted H(Σ,X ) and T (Σ,X ), are defined
recursively as the smallest sets such that: every x ∈ X is a tree, if t1, . . . , tn is
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a finite sequence of trees (possibly empty), then t1 . . . tn is a hedge and if h is a
hedge and a ∈ Σ, then a(h) is a tree. The empty hedge (case n ≥ 0 above) is
denoted ε and the tree a(ε) will be simply denoted by a. We use the operator . to
denote the concatenation of hedges. A root (resp. leaf) of a hedge h = (t1 . . . tn)
is a root node (resp. leaf node, i.e. node without child) of one of the trees t1, ..., tn.
The root node of a(h) is called the parent of every root of h and every root of h
is called a child of the root of a(h).

We will sometimes consider a tree as a hedge of length one, i.e. consider that
T (Σ,X ) ⊂ H(Σ,X ). The sets of ground trees (trees without variables) and
ground hedges are respectively denoted T (Σ) and H(Σ). The set of variables
occurring in a hedge h ∈ H(Σ,X ) is denoted var (h). A hedge h ∈ H(Σ,X ) is
called linear if every variable of var (h) occurs once in h. A substitution σ is
a mapping of finite domain from X into H(Σ,X ), whose application (written
with postfix notation) is extended homomorphically to H(Σ,X ). The set C(Σ)
of contexts over Σ contains the linear hedges of H

(
Σ, {x}

)
. The application of

a context C ∈ C(Σ) to a hedge h ∈ H(Σ,X ) is defined by C[h] := C{x �→ h}.
A hedge rewriting system (HRS) R over a finite unranked alphabet Σ is a set
of rewrite rules of the form � → r where � ∈ H(Σ,X ) \ X and r ∈ H(Σ,X ); �
and r are respectively called left- and right-hand-side (lhs and rhs) of the rule.
Note that we do not assume the cardinality of R to be finite. A HRS is called
ground, resp. linear, if all its lhs and rhs of rules are ground, resp. linear.

The rewrite relation −−→R of a HRS R is the smallest binary relation on
H(Σ,X ) containing R and closed by application of substitutions and contexts.
In other words, h −−→R h′, iff there exists a context C, a rule � → r in R and a
substitution σ such that h = C[�σ] and h′ = C[rσ]. The reflexive and transitive
closure of −−→R is denoted −−→∗R . Given L ⊆ H(Σ,X ) and a HRS R, we define the

rewrite closure of L under R as post∗R(L) := {h′ ∈ H(Σ,X ) | ∃h ∈ L, h −−→∗R h′}.

Example 1. Let us consider the following rewrite rules

R = {p0(x) → a.p1(x), p1(x) → p2(x).c, p2(x) → p0(b(x)), p2(x) → b(x)}.

Starting from p0 = p0(ε), we have the following rewrite sequence p0 → a.p1 →
a.p2.c → a.p0(b).c → a.a.p1(b).c → a.a.p2(b).c.c → a.a.p0(b(b)).c.c → . . . The
trees of the rewrite closure of p0 under R which do not contain the symbols p0,
p1, p2 is the set of T-patterns of the form a . . . a.b(. . . b(b)).c . . . c with the same
number of a, b and c.

2 Bidimensional Context-Free Hedge Automata

A bidimensional context-free hedge automaton (CF2HA) is a tuple A = 〈Σ,Q,Qf ,
Δ〉 where Σ is a finite unranked alphabet, Q is a finite set of states disjoint from
Σ, Qf ⊆ Q is a set of final states, and Δ is a set of rewrite rules of one of the
following form, where p1, . . . , pn ∈ Q ∪Σ, q ∈ Q and n ≥ 0

p1(x1) . . . pn(xn) → q(x1 . . . xn) called horizontal transitions,
p1

(
p2(x)

)
→ q(x) called vertical transitions.



374 F. Jacquemard and M. Rusinowitch

The move relation −−→A between ground hedges of H(Σ ∪ Q) is defined as the

rewrite relation defined by Δ. The language of a CF2HA A in one of its states q,
denoted by L(A, q), is the set of ground hedges h ∈ H(Σ) such that h −−→∗A q (we

recall that q stands for q(ε)). A hedge is accepted by A if there exists q ∈ Qf

such that h ∈ L(A, q). The language of A, denoted by L(A) is the set of hedges
accepted by A. We shall also consider below the following kind of transitions,
which have the same expressiveness as CF2HA.

p1(δ1) . . . pn(δn) → q(δ1 . . . δn)
p1(p2(δ1)) → q(δ1)

n > 0
every δi is either a variable xi or ε

Example 2. The language of T-patterns over Σ = {a, b, c}, see Example 1, is
recognized by 〈Σ, {q0, q1, q2}, {p0}, Δ〉 with Δ = {b(x1) → q0(x1), a.q0(x2) →
q1(x2), q1(x1).c→ q2(x1), q2(b(x)) → q0(x)}.

2.1 Related Models

The CF2HA capture the expressiveness of two models of automata on unranked
trees: the hedge automaton [11] and the lesser known extension of [12] that we
call CFHA. A hedge automaton (HA) resp. context-free hedge automaton (CFHA)
is a tuple A = 〈Σ,Q,Qf , Δ〉 where Σ, Q and Qf are as above, and the transitions
of Δ have the form a(L) → q where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular word
language (resp. a context-free word language). The language of hedges accepted
is defined as for CF2HA, using the rewrite relation of Δ.

The CFHA languages form a strict subclass of CF2HA languages. Indeed every
CFHA can be presented as a CF2HA with variable-free transitions of the form

p1 . . . pn → q a(q1) → q2 where a ∈ Σ and q1, q2 are states.

It can be shown that the set of T-patterns of Example 2 is not a CFHA language,
using a pumping argument on the paths labeled by b.

The HA languages, also called regular languages, also form a strict sub-
class of CF2HA languages. Every HA can indeed be presented as a CF2HA
A = (Σ,Q,Qf , Δ) with variable-free transitions constrained with a type dis-
cipline: Q = Qh "Qv and every transition of Δ has one of the forms

ε→ qh qh.qv → q′h a(qh) → qv where qh, q
′
h ∈ Qh, qv ∈ Qv, a ∈ Σ.

From now on, we shall always consider HA and CFHA presented as CF2HA.
The following example shows that CF2HA can capture some CF ranked tree
languages. Capturing the whole class of CF RTL would require however a further
generalization where permutations of variables are possible in the horizontal
transitions of CF2HA. Such a generalization is out of the scope of this paper.

Example 3. The language {hn(g(an(0), bn(0))) | n ≥ 1} is generated by the
CF ranked tree grammar [4] with non-terminals A and S (S is the axiom) and
productions A(x1, x2) → h

(
A(a(x1), b(x2))

)
, A(x1, x2) → g(x1, x2) and S →

A(0, 0). It is also recognized by the CF2HA with transition rules a(x1).b(x2) →
q(x1.x2), g(x1) → q0(x1), q0(q(x)) → q1(x), h(q1(x)) → q0(x) (q0 is final).
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2.2 Properties

The class of CF2HA language is closed under union (direct construction by dis-
joint union of automata) and not closed under intersection or complementation
(because CF word languages are defined by CF2HA without vertical transitions).

Property 4. The membership problem is decidable for CF2HA.

Proof. Let h ∈ H(Σ) be a given hedge and A be a given CF2HA. We assume
wlog that A is presented as a set Δ of transitions in the above alternative form
p1(δ1) . . . pn(δn) → q(δ1 . . . δn), with n > 0, and p1(p2(δ1)) → q(δ1).

Moreover, we assume that every transition of the form q1(x1) → q2(x1), where
q1 and q2 are states, has been removed, replacing arbitrarily q1 by q2 in the rhs of
the other transitions. Similarly, we remove q1 → q2, replacing arbitrarily rhs ’s of
the form q1 by q2. All these transformations increase the size of A polynomially.

Then all the horizontal transitions with n = 1 have the form a(δ1) → q(δ1),
with a ∈ Σ. It follows that the application of every rule of Δ strictly reduces
the measure on hedges defined as pair (# of occurrences of symbols of Σ, # of
occurrences of state symbols), ordered lexicographically. During a reduction of h
by Δ, each of the two components of the above measure is bounded by the size
of h. It follows that the membership h ∈ L(A) can be tested in PSPACE. ��

Property 5. The emptiness problem is decidable in PTIME for CF2HA.

Proof. Let A = 〈Σ,Q,Qf , Δ〉. We use a marking algorithm with two marks: h
and v. First, for technical convenience, we mark every symbol in Σ with v. Then
we iterate the following operations until no marking is possible (note that the
marking is not exclusive: some states may have 2 marks h and v).
For all transition p1(x1) . . . pn(xn) → q(x1 . . . xn) in Δ such that every pi is
marked, if at least one pi is marked with v, then mark q with v, otherwise mark
q with h.
For all transition p1

(
p2(x)

)
→ q(x) in Δ such that p1 is marked v, if p2 is marked

with v, then mark q with v, otherwise, if p2 is marked with h, then mark q with h.
The number of iterations is at most 2.|Q| and the cost of each iteration is linear

in the size of A. Then q ∈ Q is marked with h only iff there exists h ∈ H(Σ) such
that h −−→∗

Δ
q, and it is marked with v iff there exists C[ ] ∈ C(Σ) such that for

all h ∈ H(Σ), C[h] −−→∗
Δ

q(h). Hence L(A) = ∅ iff no state of Qf is marked. ��

For comparison, for both classes of HA and CFHA, the membership and empti-
ness problems are decidable in PTIME, the class of HA languages is closed under
Boolean operations and the class of CFHA languages is closed under union but
not closed under intersection and complementation, see [11,12,4].

3 Inverse Monadic Hedge Rewriting Systems

A rewrite rule � → r over Σ is called monadic (following [13,5]) if r = a(x)
with a ∈ Σ, x ∈ X , inverse-monadic if r → � is monadic and r /∈ X ∪ {ε}, and
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1-childvar if it contains at most one variable and this variable has no siblings
in � and r. Intuitively, every finite, linear, inverse-monadic, 1-childvar HRS can
be transformed into a HRS equivalent wrt reachability whose rules are inverse
of transitions of CF2HA. It follows that such HRS preserve CF2HA languages.

Example 6. The HRS of Example 1 is linear, inverse-monadic, and 1-childvar.
The closure of the language {p0} is the CF2HA language of T-patterns.

Theorem 7. Let L be the language of AL ∈ CF2HA, and R be a finite, linear,
inverse-monadic, 1-childvar HRS. There exists an effectively computable CF2HA
recognizing post∗R(L), of size polynomial in the size of R and AL.

Proof. Let AL = 〈Σ,QL, Q
f
L, ΔL〉, we construct a CF2HA A = 〈Σ,Q,Qf , Δ〉.

The state set Q contains all the states of QL, one state h for every non-variable
sub-hedge of a rhs of rule of R, one state a for each a ∈ Σ and one new state
q /∈ QL. For each p ∈ QL ∪Σ, we note p = a if p = a ∈ Σ and p = p otherwise.

Let Qf = Qf
L and let Δ0 contain the following transition rules, where a ∈ Σ,

t ∈ T (Σ, {x}) and h ∈ H(Σ, {x}) \ {ε}.

p1(x1) . . . pn(xn) → q(x1 . . . xn) if p1(x1) . . . pn(xn) → q(x1 . . . xn) ∈ ΔL

p1
(
p2(x)

)
→ q(x) if p1

(
p2(x)

)
→ q(x) ∈ ΔL

t(x).h→ t.h(x) if x ∈ var (t), t.h ∈ Q
t(x).h→ q(x) if x ∈ var (t), t.h /∈ Q
t.h(x) → t.h(x) if x /∈ var (t), t.h ∈ Q
t.h(x) → q(x) if x /∈ var (t), t.h /∈ Q

a(x) → a(x)
a(h(x)) → a(h)(x) if a(h) ∈ Q
a(h(x)) → a(x) if a(h) /∈ Q
a(q(x)) → a(x)

Finally let Δ = Δ0 ∪ {h(x) → a(x) | a(x) → h ∈ R}. Let � ∈ H(Σ) be such that
� −−→∗

Δ
s(u) ($), with s ∈ Q and u ∈ H(Q ∪ Σ). We show by induction on the

number N of applications of rules of Δ \Δ0 in ($) that there exists �′ ∈ H(Σ)
such that �′ −−→∗R � and moreover, if s = h, then h matches �′, if s = q then �′ is
not matched by a non-variable subhedge of rhs of rule of R and if s ∈ QL, then
�′ ∈ L(AL, s).

If N = 0, then the property holds with �′ = � (this can be shown by induction
on the length of ($)). If N > 0, we can assume that ($) has the following form.

� = C[k] −−→∗
Δ0

C[h(v)] −−−−→
Δ\Δ0

C[a(v)] −−→
Δ

s(u)

It follows that h matches k, i.e. there exists w such that k = h[w], and w −−→∗
Δ0

v.

Hence �′ = C[a(w)] −−→R �, and �′ −−→∗
Δ0

C[a(v)] −−→
Δ0

C[a(v)] −−→
Δ

s(u). We can

then apply the induction hypothesis to �′, and immediately conclude for �. ��
The following Example 8 illustrates the importance of the 1-childvar and condi-
tion in Theorem 7.

Example 8. With the following rewrite rule a(x) → c a(e x g) d we generate from
{a} the language {cna(engn) dn | n ≥ 1}, seemingly not CF2HA.

In [8] it is shown that the closure of a HA language under rewriting with a
monadic HRS is a HA language. It follows that the backward rewrite closure of
a HA language under an inverse-monadic HRS is HA.
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4 Update Hedge Rewriting Systems

In this section, we turn to our motivation of studying XQuery Update Facility
primitives modeled as parameterized rewriting rules.

Let A = 〈Σ,Q,Qf , Δ〉 be a HA. A hedge rewriting system over Σ parametri-
zed by A (PHRS) is given by a finite set, denoted R/A, of rewrite rules � → r
where � ∈ H(Σ,X ) and r ∈ H(Σ "Q,X ) and symbols of Q can only label leaves
of r (" stands for the disjoint union, hence we implicitly assume that Σ and
Q are disjoint sets). In this notation, A may be omitted when it is clear from
context or not necessary. The rewrite relation −−−−→R/A associated to a PHRS R/A
is defined as the rewrite relation −−−−→R[A]

where the HRS R[A] is the (possibly

infinite) set of all rewrite rules obtained from rules � → r in R/A by replacing
in r every state p ∈ Q by a ground hedge of L(A, p). Note that when there are
multiple occurrences of a state p in a rule, each occurrence of p is independently
replaced with a hedge in L(A, p), which can generally be different from one
another. Given a set L ⊆ H(Σ,X ), we define post∗R/A(L) to be post∗R[A](L).
We call updates parametrized rewrite rules of the following form

a(x) → b(x) node renaming (ren)
a(x) → a(u1 xu2) u1, u2 ∈ Q∗ addition of child nodes (ac)
a(x) → v1 a(x) v2 v1, v2 ∈ Q∗ addition of sibling nodes (as)
a(x) → b

(
a(x)

)
addition of parent node (ap)

a(x) → u u ∈ Q∗ node replacement/recursive deletion (rpl)
a(x) → x single node deletion (del)

Note that the particular case of (rpl) of rpl with u = ε corresponds to the
deletion of the whole subtree a(x). In the rest of the paper, a PHRS containing
only updates will be called update PHRS (uPHRS).

4.1 Loop-Free uPHRS

In order to simplify the proofs we can reduce to the case where there exists no
looping sequence of renaming. This motivates the following definition:

Definition 9. An uPHRS R/A is loopfree if there exists no sequence a1, . . . , an
(n > 1) such that for all 1 ≤ i < n, ai(x) → ai+1(x) ∈ R and a1 = an.

Given a uPHRS R/A, we consider the directed graph G whose set of nodes is Σ
and containing an edge 〈a, b〉 iff a(x) → b(x) is inR. For every strongly connected
component in G we select a representative. We denote by â the representative of
a in its component and more generally by ĥ the hedge obtained from h ∈ H(Σ)
by replacing every function symbol a by its representative â. We define R̂ to be
R where every rule � → r is replaced by �̂ → r̂ (if the two members get equal
we can remove the rule). We define Â analogously.

Lemma 10. Given an uPHRS R/A the uPHRS R̂/Â is loopfree and for all

h, h′ ∈ H(Σ) we have h −−−−→∗
R/A h′ iff ĥ −−−→∗

R̂/Â
ĥ′.

Proof. By induction on the length of derivations. ��
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4.2 Rewrite Closure

The rest of the section is devoted to the proof of the following theorem of con-
struction of CF2HA for the forward closure by updates.

Theorem 11. Let A be a HA over Σ, and L be the language of AL ∈ CFHA,
and R/A be a loop-free uPHRS. There exists an effectively computable CFHA
recognizing post∗R/A(L), of size polynomial in the size of R/A and AL and ex-
ponential in the size of the alphabet Σ.

The construction of the CFHA works in 2 steps: construction of an initial automa-
ton and completion loop. We shall use the following notion in order to simplify
the proof: a CFHA 〈Σ,Q,Qf , Δ〉 is called normalized if for all a ∈ Σ and q ∈ Q,
there exists one unique state of Q denoted qa such that a(qa) → q ∈ Δ, and
moreover, qa does neither occur in a left hand side of an horizontal transition
of Δ nor in a right hand side of a vertical transition of Δ. With some state re-
naming, every CFHA A can be transformed in PTIME into a normalized CFHA
A′, of size linear in the size of A, and such that L(A′) = L(A).

Initial automaton. Let A = 〈Σ,QA, Qf
A, ΔA〉 and AL = 〈Σ,QL, Q

f
L, ΔL〉. We

assume that the state sets QA and QL are disjoint. First, let us merge A and
AL into a CFHA B = 〈Σ,P, P f , Γ 〉 obtained by the normalization of 〈Σ,QA "
QL, Q

f
L, ΔA " ΔL〉. Below, the states of P will be denoted by the letters p or

q. Let Pin be the subset of states of P of the form qa (remember that qa is a
state of P uniquely characterized by a ∈ Σ, q ∈ P , since B is normalized). We
assume wlog that Pin and P f are disjoint and that B is clean, i.e. for all p ∈ P ,
L(B, p) �= ∅.

Next, in a preliminary construction step, we transform the initial automaton
B into a CFHA A0 = 〈Σ,Q,Qf , Δ0〉. Let us call renaming chain a sequence
a1, . . . , an of symbols of Σ such that n ≥ 1 for all 1 ≤ i < n, ai(x) → ai+1(x) ∈
R. Since R is loop-free, the length of every renaming chains is bounded by |Σ|.
The fresh state symbols of Q are defined as extensions of the symbols of P \ Pin

with renaming chains. We consider two modes for such states: the push and pop
modes, characterized by a chain respectively in superscript or subscript.

Q = P ∪ {qa | qa ∈ Pin} ∪
{
qa1...an

∣∣ q ∈ P \ Pin, n ≥ 2,
qa1...an

∣∣ a1, . . . , an is a renaming chain

}
Let Qf = P f be the subset of final states. Intuitively, in the state qa1...an , the
chain of Σ+ represents a sequence of renamings, with R/A, of the parent of the
current symbol, starting with a1 and ending with an. Note that the states of Pin

are particular cases of such states, with a chain of length one. A state qa1...an

will be used below to represent the tree an(q
a1...an).

The initial set of transitions Δ0 is defined as follows

Δ0 = Γh ∪ {qa1 → q | qa1 ∈ Q}
∪ {an

(
qa1...an

)
→ qa1...an | qa1...an , qa1...an ∈ Q,n ≥ 1}

where Γh is the subset of horizontal transitions of Γ . Note that A0 is not nor-
malized. The following lemma is immediate by construction of Γ and A0.
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Lemma 12. For all q ∈ QA (resp. q ∈ QL) L(A0, q) = L(A, q) (resp. L(AL, q)).

Proof. Every vertical transition in Γ has the form a(qa) → q and can be simu-
lated by the 2 steps a(qa) → qa → q. Moreover, all the states qa1...an and qa1...an

with n ≥ 2 are empty for A0. ��

For the construction of A′, we shall complete incrementally Δ0 into Δ1, Δ2,...
by adding some transition rules, according to a case analysis of the rules of R/A.
For each construction step i ≥ 0, we let Ai = 〈Σ,Q,Qf , Δi〉.

Automata completion. The construction of the sequence (Δi) works by iteration
of a case analysis of the rewrite rules of R/A, presented in Table 1. Assuming
that Δi is the last set built, we define its extension Δi+1 by application of the
first case in Table 1 such that Δi+1 �= Δi. In the rules of Table 1, a1, . . . , an, b
are symbols of Σ, and u, v are sequences of Q∗

A.

Table 1. CFHA Completion

R/A contains Δi+1 = Δi∪

(ren) an(x)→ b(x)
{qa1...an → qa1...anb | qa1...anb ∈ Q}

∪ {qa1...anb → qa1...an | qa1...anb ∈ Q}
(ac) an(x)→ an(ux v) {u qa1...an v → qa1...an | qa1...an ∈ Q}
(as) an(x)→ u an(x) v {u qa1...an v → qa1...an | qa1...an ∈ Q}
(ap) an(x)→ b

(
an(x)

)
{b
(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u→ qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

Only a bounded number of rules can be added to the Δi’s, hence eventually,
a fixpoint Δk is reached, that we will denote Δ′. We also write A′ for Ak.

The following Lemma 13 shows that the automata computations simulate the
rewrite steps, i.e. that L(A′) ⊆ post∗R/A(L). Let us abbreviate R/A by R. We

use the notation h −−−−−→R
a1...an h′, for a renaming chain a1, . . . , an (n ≥ 1), if there

exists h1, . . . hn ∈ H(Σ) such that

h = a1(h1) −−→∗R a1(h2) −−→ren
a2(h2) −−→∗R . . . −−→∗R an−1(hn) −−→ren an(hn) −−→∗R h′

where the reductions denoted −−→
ren

are rewrite steps with rules of R/A of type
(ren), applied at the positions of a1,. . . , an, and all the other rewrite steps
(denoted −−→∗R ) involve no rule of type (ren).

Lemma 13 (Correctness). For all h ∈ H(Σ),

i. if h −−→∗A′ qa1...an , with n ≥ 1, then there exists h1 ∈ H(Σ) such that

a1(h1) −→∗B q and a1(h1) −−−−−→R
a1...an h,
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ii. if h −−→∗A′ qa1...an , with n ≥ 1, then there exists h1 ∈ H(Σ) such that

h1 −→∗B qa1 , and a1(h1) −−−−−→R
a1...an an(h),

iii. if h −−→∗A′ q ∈ P \ Pin, then there exists h′ ∈ H(Σ) such that

h′ −→∗B q and h′ −−→∗R h.

Proof. (sketch) Let s ∈ Q be such that h −−→∗A′ s and let us call ρ this reduction.
With a commutation of transitions, we can assume that ρ has the following form,

ρ : h = t1 . . . tm −−→∗A′ s1 . . . sm −−→∗A′ s︸ ︷︷ ︸
ρ0

where t1, . . . , tm ∈ T (Σ), s1, . . . , sm ∈ Q, and for all 1 ≤ i ≤ m, ti −−→∗A′ si, and
the last step of this reduction involves a vertical transition a(qa1...an) → si or
b(qa1...an) → si. The proof is by induction on the length of ρ.

The shortest possible ρ has 2 steps: h = t1 = a(ε) −−→A0
a(qa) −−→A0

q = s and

(iii) holds immediately with h′ = h, by Lemma 12.

For the induction step, we consider the length of ρ0. If |ρ0| = 0, we have neces-
sarily m = 1, and the reduction ρ has one of the two following forms (v ∈ Q∗).

h = t1 = b(h′) −−→∗A′ b(v) −−→∗A′ b(qa1...an) −−→A′ qa1...an = s1 = s (1)

h = t1 = an(h
′) −−→∗A′ an(v) −−→∗A′ an(q

a1...an) −−→A0
qa1...an = s1 = s (2)

In the case (1), assume that the vertical transition b(qa1...an) → qa1...an has
been added to A′ because R/A contains a rule an(x) → b

(
an(x)

)
. By induction

hypothesis (i) applied to the sub-reduction h′ −−→∗A′ qa1...an , there exists h1 ∈
H(Σ) such that a1(h1) −→∗B q, and a1(h1) −−−−−→R

a1...an h′. It follows in particular

that there exists hn such that an(hn) −−→∗R h′, and using the above (ap) rewrite

rule, an(hn) −−→R b
(
an(hn)

)
−−→∗R b(h′) = h. Therefore, a1(h1) −−−−−→R

a1...an h and (i)
holds for h and s.

In the case (2), by induction hypothesis (ii) applied to the sub-reduction
h′ −−→∗A′ qa1...an , there exists h1 ∈ H(Σ) such that h1 −→∗B qa1 , hence a1(h1) −→∗B q,

and a1(h1) −−−−−→R
a1...an an(h

′) = h. Therefore (i) holds for h and s.

Assume now that |ρ0| > 0, and let us analyze the horizontal transition rule used
in the last step of ρ0. In order to comply with spaces restrictions, we will present
only one significant case in this extended abstract (see [10] for the other cases).

Case (ac). The last step of ρ0 uses u qa1...an v → qa1...an and this transition
has been added to Δ′ because R/A contains a rule an(x) → an(u x v), with
u, v ∈ Q∗

A. In this case, the reduction ρ has the following form,

h = � h′ r −−→∗A′ u qa1...an v −−→A′ qa1...an = s (3)

where � −−→∗A′ u, h′ −−→∗A′ qa1...an , and r −−→∗A′ v. By induction hypothesis (ii) ap-

plied to h′ −−→∗A′ qa1...an , there exists h1 such that h1 −→∗B qa1 and a1(h1) −−−−−→R
a1...an
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an(h
′), and by induction hypothesis (iii) applied to � −−→∗A′ u (resp. r −−→∗A′ v), and

by Lemma 12, there exists �′ ∈ H(Σ) (resp. r′ ∈ H(Σ)) such that �′ −−→∗A u (resp.

r′ −−→∗A v) and �′ −−→∗R � (resp. r′ −−→∗R r). It follows that an(h
′) −−→R an(�

′ h′ r′) −−→∗R
an(� h

′ r) = an(h). Hence a1(h1) −−−−−→R
a1...an an(h) and (ii) holds for h and s. ��

Corollary 14. L(A′) ⊆ post∗R/A(L)

Proof. By definition of Qf , h ∈ L(A′) iff h −−→∗A′ q ∈ P f = Qf
L, and P

f ⊆ P \ Pin.
By Lemma 13, case (iii), it follows that h ∈ post∗R/A(L(B, q)) ⊆ post∗R/A(L). ��

Lemma 15 (Completeness). For all h ∈ H(Σ) and s ∈ Q, if h −−→∗A0
s and

h −−→∗R h′, then h′ −−→∗A′ s.

The proof is by induction on the length of the rewrite sequence h −−→∗R h′

(see [10]). As another consequence of the result of [8] on the rewrite closure
of HA languages under monadic HRS, the backward closure of a HA language
under an uPHRS is HA.

The rules of type (ren), (as), (ap) and (rpl) can be easily simulated by the HRS
of Theorem 11. In particular, the parameters’ semantics can be simulated using
ground rewrite rules (with such rules, a symbol can generate a HA language).
The rules (ac) are not 1-childvar and the rules (del) is not inverse-monadic.

Example 8 shows the problems that can arise when combining in one single
rewrite rule two rules of the form (as) and (ac), forcing synchronization of two
updates. Note that the rule a(x) → c a(e x g) d of this example can be simulated
by the 2 rules a(x) → c a′(x) d and a′(x) → a(e x g). The former rule is of the
type of Theorem 11 (it combines types (as) and (ren)). The latter (which is not
1-varchild) combines types (ac) and (ren). This shows that such combinations
can also lead to the behavior exposed in Example 8.

5 Future Works

As for future works on CF2HA languages several directions deserve to be fol-
lowed. A first direction might be to derive pumping properties for these classes
of languages. A second direction would be to look for an analogous of Parikh
characterization for the number of different symbols occurring in the hedges of
given CF2HA languages. One may define and study HRS with counting con-
straints on horizontal and vertical paths.

Finally, it is worth investigating the parallel rewriting of [14], on all a-positions,
since it is closer to the semantics of XQUF, and trying to get an analogous of
Theorem 11 for the parallel rewrite closure.

Acknowledgements. The authors wish to thank the reviewers and Giorgio
Delzanno for interesting discussions on rewrite based models and verification
techniques for XQUF.
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Abstract. Stepan Holub (Discr. Math., 2009) gave the first polynomial
algorithm deciding whether a given word is a nontrivial fixed point of a
morphism. His algorithm works in quadratic time for large alphabets. We
improve the algorithm to work in linear time. Our improvement starts
with a careful choice of a subset of rules used in Holub’s algorithm that is
necessary to grant correctness of the algorithm. Afterwards we show how
to choose the order of applying the rules that allows to avoid unnecessary
operations on sets. We obtain linear time using efficient data structures
for implementation of the rules. Holub’s algorithm maintains connected
components of a graph corresponding to specially marked positions in a
word. This graph is of quadratic size for large alphabet. In our algorithm
only a linear number of edges of this conceptual graph is processed.

1 Introduction

We consider finite words that are fixed points of morphisms. A word w ∈ Σ∗ is
called a fixed point of a morphism h : Σ∗ → Σ∗ if h(w) = w. We say that w is a
trivial fixed point of h if h(a) = a for every letter actually occurring in w. The
problem of finding all fixed points of a morphism was already studied in [5,6,11].
A more difficult problem of finding for a given word w ∈ Σ∗ a morphism h
such that w is a non-trivial fixed point of h was first studied by Holub [8,7].
The problem turned out to have a polynomial-time solution although a similar
problem of finding for a given pair of words w, v a morphism such that h(w) = v
was shown to be NP-complete [2]. A word w is called morphically imprimitive if
there exists a morphism h such that w is a non-trivial fixed point of h. Otherwise,
w is called morphically primitive.
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Example 1. The word w = aeecbdebaabdebeec is morphically imprimitive; it is a
non-trivial fixed point of the following morphism h:

h : a→ a, b→ ε, c→ eec, d→ bdeb, e→ ε.

On the other hand, the word w′ = aeecbdebaabdebec is morphically primitive.

Let w be a word of length n over an alphabet Σ of size m. We assume that Σ
is an integer alphabet, i.e. each letter a ∈ Σ has a unique integer identifier of
magnitude nO(1). The main problem considered here is to decide, for the given
word w, whether it is morphically imprimitive and, if so, find a morphism h such
that w is a non-trivial fixed point of h.

Holub [8] presented an O((m+ logn) ·n) time algorithm for this problem and
more recently Matocha and Holub [10] slightly improved the time complexity
to O(m · n). Both solutions are potentially quadratic if m = Θ(n). We give an
algorithm which works in O(n) time for arbitrary integer alphabet.

The main components of Holub’s algorithm are two sets L,R ⊆ {0, . . . , n}.
The algorithm performs implicitly quadratically many insertions into those sets
in worst case. Each insertion can be either useless, when the inserted element is
already in the set, or useful, otherwise. The crucial improvements to the Holub’s
algorithm presented in this paper are:

1. Reduction of the number of insertions into L to O(n), this is obtained by
changing the logics of basic operations performed in Holub’s algorithm.

2. Reduction of the number of useless insertions into R to O(n) using efficient
data structures.

2 Preliminaries

By Occ(a, w) (or simply Occ(a)) we denote the set of positions in w where the
letter a occurs. We also denote |w|a = |Occ(a, w)|. The set of letters actually
occurring in w is denoted by alph(w).

Let F = (w1, . . . , wk) be a factorization of the word w, w = w1 . . . wk. We say
that e ∈ alph(w) is a key-letter if for each i, j ∈ {1, . . . , k} we have

|wi|e ≤ 1 and (|wi|e = |wj |e = 1 implies that wi = wj).

In other words, each factor contains exactly one occurrence of a key-letter and
factors are determined by the key-letters.

If e is a key-letter, let Fe = wi, where |wi|e = 1. We say that e is a standard
key-letter if no key-letter occurs in Fe before the occurrence of e.

We say that F is a morphic factorization if each factor wi contains a key-
letter. Let E be the set of standard key-letters of a morphic factorization F .
Then setting h(e) = Fe for e ∈ E and h(a) = ε for a �∈ E yields a morphism
h such that h(w) = w. A morphism obtained this way is called a standard
morphism of w. The elements of E are called expanding letters and the elements
of alph(w)\E are called mortal letters. Holub [8] proved the following equivalent
condition on when a word is morphically imprimitive:
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Lemma 2 (Theorem 1 in [8]). A word w is morphically imprimitive if and
only if it has a morphic factorization F which is nontrivial, that is, has less than
|w| factors.

Let w[i] denote the i-th letter of w (for 1 ≤ i ≤ n) and w[i, j] denote the word
w[i]w[i+1] . . .w[j]. Let {0, 1, . . . , n} be the set of inter-positions of w located in
the beginning of the word (i = 0), between any two letters of the word (1 ≤ i < n)
or at the end of the word (i = n).

For a letter a ∈ alph(w), we define the right range of a as a word ra such that
ara is the longest common prefix of all suffixes of w starting with a, and similarly
the left range la such that laa is the longest common suffix of all prefixes of w
ending with a. We denote na = laara. Let ra = |ra|, la = |la| and na = |na|.

a a c a b a a a a c a a c a b a a

h(c) h(c) h(c)h(b) h(b)

lc rc lb rb

Fig. 1. For this word na = a, nb = aacabaa and nc = aaca. This word is morphically
imprimitive due to the morphism h(a) = ε, h(b) = abaa, h(c) = aac.

Denote by ≺ an ordering of alph(w) according to |w|a: a ≺ b if and only
if |w|a < |w|b. For any 0 ≤ i < j ≤ n, define α(i, j) = min(alph(w[i + 1, j])),
where the minimum is taken according to the order ≺. If there are multiple equal
letters, we choose the one with the leftmost first occurrence within w[i, j].

Holub’s algorithm for testing morphic imprimitivity can be stated as follows.
The paper [8] provides a simple algorithm that recovers the morphism from the
sets E, L, R.

Algorithm Version1: Holub’s algorithm.

Maintain a triple of sets (E,L,R), initially equal to (∅, ∅, ∅), and use the
following set of rules (a)-(e) to extend these sets until E = alph(w) or
none of the actions alters the triple:

(a) L := L ∪ {0, n}; R := R ∪ {0, n}
(b) if w[i] ∈ E then L := L ∪ {i− 1}; R := R ∪ {i}
(c) if w[i, j] = na for some a ∈ E then R := R ∪ {i− 1}; L := L ∪ {j}
(d) if w[i, j] = w[i′, j′] = na for some a ∈ E then

– if i+ k ∈ R for some −1 ≤ k ≤ j − i then R := R ∪ {i′ + k}
– if i+ k ∈ L for some −1 ≤ k ≤ j − i then L := L ∪ {i′ + k}

(e) if i < j and i ∈ L and j ∈ R then E := E ∪ {α(i, j)}

if E �= alph(w) then return true else return false
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Let h be a standard morphism of w. Let Eh denote the set of expanding letters of
h. Moreover, let us define two subsets of inter-positions, Lh of left inter-positions
and Rh of right inter-positions:

Lh = {i : |h(w[1, i])| ≤ i}, Rh = {i : |h(w[1, i])| ≥ i}.

Definition 3. A triple (E,L,R) is called correct if E ⊆ Eh, L ⊆ Lh and R ⊆
Rh for any standard morphism h.

Lemmas 4, 6, 7 and 8 of [8] can be stated succinctly as the following fact:

Fact 4. Extending a correct triple using any of the rules (a)-(e) leads to a correct
triple. In particular, if any sequence of actions corresponding to (a)-(e) leads to
E = alph(w) then w is morphically primitive.

3 The Structure of Our Algorithm

Now we describe the set of rules used in our algorithm, which is a subset of rules
from Holub’s algorithm, and show that this set suffices to construct an algorithm
for testing morphic primitivity (see the following Lemma 6 and Theorem 7).

Let us introduce some notation. Let A be a set of integers. We define the
predecessor in A and successor in A in a standard way:

succA(x) = min{y : y ∈ A, y > x}, predA(x) = max{y : y ∈ A, y < x}.

We assume min ∅ = ∞, max ∅ = −∞.
Let Occ(E) = {i : w[i] ∈ E} be the set of occurrences of expanding letters

in w, we call them expanding occurrences. We slightly abuse the notation and
write succE and predE instead of succOcc(E) and predOcc(E).

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

Fig. 2. Illustration of the main notions of the algorithm.

The bottleneck of Holub’s algorithm is performing the rule (d). Our crucial
improvement, which makes linear time implementation possible, is twofold. First,
we shrink the ranges so that they never exceed other expanding positions. This
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way, each inter-position lies in at most two ranges — originating at the closest
expanding positions — and consequently propagation is simpler to control. We
introduce left and right functions, defined for i ∈ Occ(E):

left(i) = min(lw[i], i− predE(i)− 1), right(i) = min(rw[i], succE(i)− i− 1).

Secondly, we only propagate elements of R from selected inter-positions. For
i ∈ Occ(E), define:

γleft(i) = i− predR(i)− 1, γright(i) = predR(i + right(i) + 1)− i.

Less formally, γleft (i) shows the location of the rightmost element of R before
the position i, while γright (i) points to the rightmost R within the range of the
position i (see Fig. 2). We extend these definitions to expanding letters:

γleft (e) = min{γleft(i) : i ∈ Occ(e)}, γright (e) = max{γright (i) : i ∈ Occ(e)}.

Thus we arrive at the following Algorithm Version2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R R R R R R R R R R R R R R R

a c a a b a a c a a a c a a b a a c a a a c a a

h(c) h(b) h(c) h(c) h(b) h(c) h(c)

Fig. 3. In the above word na = a, nb = acaabaacaaacaa and nc = acaa. Let E = {b, c},
these letters are marked in the figure. We have γleft (b) = 0, γright (b) = 1, γleft (c) = 1,
γright (c) = 2. The morphic factorization is obtained by cutting the word at inter-
positions {i− 1− γleft (w[i]) : i ∈ Occ(E)}; thus h(b) = ba, h(c) = acaa, h(a) = ε.

Algorithm Version2

Perform, in any order, the following operations on a triple of sets
(E,L,R), initially equal to (∅, ∅, ∅), until none of the operations alters the
triple (note that the operations (b’), (c’), (d’), (e’) together perform only
a subset of actions from operations (b), (c), (d), (e) in Holub’s algorithm):

(a) L := L ∪ {0, n}; R := R ∪ {0, n}
(b’) if w[i] ∈ E then R := R ∪ {i}
(c’) if w[i] ∈ E then R := R ∪ {i− left(i)− 1}; L := L ∪ {i+ right(i)}
(d’) if w[i] ∈ E then R := R ∪ {i− 1− γleft(w[i]), i + γright (w[i])}
(e’) if i < j and succR(i) = j and predL(j) = i and

{w[i+ 1], . . . , w[j]} ∩ E = ∅ then
E := E ∪ {α(i, j)}

if E �= alph(w) then return true else return false
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In our Algorithm Version2 we use rules weaker than Holub’s, hence they satisfy
the same property as in Fact 4:

Fact 5. Extending a correct triple using any of the rules (a), (b’), (c’), (d’), (e’)
leads to a correct triple. In particular, if any sequence of actions corresponding
to these rules leads to E = alph(w) then w is morphically primitive.

Lemma 6. Assume the execution of Algorithm Version2 has finished with the
triple (E,L,R). Then for each 1 ≤ i < j ≤ n such that w[i] ∈ E and j = succE(i)
we have

i+ γright (w[i]) = j − 1− γleft (w[j]). (1)

Proof. First note that, under the conditions of the lemma, both γright(w[i]) and
γleft (w[j]) are finite. Indeed, the former is finite since i ∈ R and the latter is
finite since the left end of the range of j, that is, j − 1− left(j), belongs to R.

For a proof by contradiction assume that (1) does not hold for some i, j.
Assume first that i + γright (w[i]) < j − 1 − γleft(w[j]). We have two cases here.
Let u = i+ right(i) and v = j − 1− γleft(w[j]). If u < v then one could perform
the operation (e) on u ∈ L and v ∈ R. However, by taking u′ = predL(v) and
v′ = succR(u

′) we obtain a pair of positions u′, v′ ∈ [u, v] that would enable us
to perform the (e’) operation, hence the algorithm has not finished yet. In the
opposite case, if v ≤ u, the inter-position v ∈ R would contradict the definition
of γright (w[i]).

Now assume that i+ γright (w[i]) > j− 1− γleft (w[j]). Then the inter-position
i+ γright (w[i]) ∈ R contradicts the definition of γleft (w[j]). ��
Theorem 7. Algorithm Version2 correctly decides whether w is morphically
imprimitive. If so, the corresponding morphic factorization of w is described by
the following factors (see Fig. 3):

{w[i − γleft(w[i]), i + γright (w[i])] : w[i] ∈ E}. (2)

Proof. Assume that the triple (E,L,R) returned by our algorithm satisfies |E| <
|alph(w)|. Then, by Lemma 6, the factorization (2) is a nontrivial morphic fac-
torization of w that induces a morphism h such that h(w) = w.

Now assume that |E| = |alph(w)| in the final triple of the algorithm. Then,
by Fact 5, the word w is morphically primitive. ��

4 Efficient Version of the Algorithm

Algorithm Version2 is of a nondeterministic nature, inserting new elements to
L, R and E is performed in any order until the configuration stabilizes. Now
we proceed to efficient deterministic implementation, which is neighbour-driven:
the actions are performed locally between neighbours, new elements inserted to
R affect their E-neighbours which potentially generate new elements of R in
neighbourhoods (ranges) of occurrences of these E-neighbours. For a position i
its left/right E-neighbour is at position predE(i)/succE(i).

We say that an interval [i, j] is loose if the rule (e’) from Algorithm Version2
can be applied to (i, j). In other words, an interval is loose if it can generate a
new expanding letter α(i, j).
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Description of One Iteration of the Algorithm. In one main iteration
AlgorithmVersion3 adds a single new expanding letter e (the letter is generated
using the function ProcessInterval). We maintain the set of loose intervals, which
are potential generators of such letters, in IntervalsSet data structure. From now
only new inter-positions are inserted to R and L until the configuration stabilizes.
This phase corresponds to multiple application of the (most expensive) part (d’)
in Algorithm Version2. A new expanding letter e, by the rules (b’) and (c’),
generates a number of new elements of R and L. New elements of R by a chain-
reaction cause further insertions to R that are related to other letters e′, then
they affect others and so on. This chain-reaction is performed using the queue
LettersQueue. Each insertion of a new element to R can affect all occurrences
of its both E-neighbours (due to the rule (d’)); we insert these E-neighbours
into LettersQueue to be processed later. We successively dequeue a letter e from
LettersQueue and compute the set of new elements of R that occur due to the
rule (d’) applied for any w[i] = e. Each new insertion into R is processed by the
function Propagate(k). It is responsible for insertion into LettersQueue of the
E-neighbours of k and updating their γ-values.

We proceed now to a more detailed description of the whole algorithm. The
algorithm starts with L = R = {0, n}, E = ∅ and when it terminates none of the
operations (b’), (c’), (d’), (e’) can be performed. For each e ∈ E the values γleft(e)
and γright(e) are explicitly stored, whereas the values γleft (i), γright (i), left(i) and
right(i) for i ∈ Occ(E) are computed on demand using predecessor/successor
queries.

The following function ProcessInterval(i, j) performs the action (e’), and then
the actions (b’), (c’) from Algorithm Version2. The function also accounts for
the situation when the new expanding letter causes the right range of its E-
neighbour to decrease. It returns the set of newly inserted elements of R.

Function ProcessInterval(i, j)

e := α(i, j); E := E ∪ {e}; NewR := ∅
foreach p ∈ Occ(e) do

NewR := NewR ∪ {p, p− left(p)− 1}
L := L ∪ {p+ right(p)}

NewR := NewR \R; R := R ∪ NewR

compute γright (e), γleft (e); add e to LettersQueue

foreach p ∈ Occ(e) do
e′ := w[predE(p)]; {e′ is E-neighbour of position p}
if γright (e

′) > right(predE(p)) then
γright (e

′) := max{predR(p′ + right(p′) + 1)− p′ : p′ ∈ Occ(e′)}
return NewR

The function Propagate is called each time a new element is inserted to R. It is re-
sponsible for inserting into LettersQueue and updating the γ-values of expanding
letters.
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Function Propagate(i)

{we assume that i ∈ R}
e1 := w[predE(i + 1)]; e2 := w[succE(i)]

{e1, e1 are E-neighbours of inter-position i}
add e1, e2 to LettersQueue

update γright (e1) and γleft (e2) (if necessary)

For each letter e ∈ E, we store the set of its occurrences for which the rule (d’)
would insert a new inter-position to R:

ActiveSet(e) = {i ∈ Occ(e) : γright (i) < γright (e) ∨ γleft (i) > γleft (e)}.

The implementation of operations required to store these sets is provided in the
next section. We additionally need a queue LettersQueue that stores elements of
E. If any expanding letter e satisfies ActiveSet(e) �= ∅ then it is guaranteed to
be present in the queue.

Algorithm Version3

L := R := {0, n}; E := ∅
IntervalsSet := {[0, n]}
while IntervalsSet not empty do {Main Iteration}

let [i, j] be any element of IntervalsSet

NewR :=ProcessInterval(i, j)

{New expanding letter α(i, j) has been added to E}
foreach k ∈ NewR do Propagate(k)

while LettersQueue not empty do
e := dequeue(LettersQueue)

foreach i ∈ ActiveSet(e) do
NewR := {i+ γright (e), i− 1− γleft (e)} \R
R := R ∪NewR

foreach k ∈ NewR do Propagate(k)

if E �= alph(w) then return true else return false

Theorem 8. [Main Result]
The problem of morphic imprimitivity can be solved in linear time.

Proof. Correctness of Algorithm Version3 follows from correctness of Algo-
rithm Version2. It suffices to note that at the end of execution none of the
rules (a), (b’), (c’), (d’), (e’) can be applied. Clearly, we apply all the rules (a),
(b’), (c’) as soon as possible. As for the rules (d’) and (e’), if any of the rules can
be applied, LettersQueue and IntervalsSet is non-empty, respectively.

Let us investigate the time complexity of Algorithm Version3. In the next
section we show that, after O(n) preprocessing, predecessor/successor queries
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for L, R and E can be answered in O(1) time, ActiveSet-queries can be an-
swered in time proportional to the number of returned positions (plus one) and
IntervalsSet can be maintained to answer any-element-removal queries in O(1)
time. Moreover, we show there that the ranges la, ra can be precomputed in
O(n) time and the α(i, j) queries can be answered in O(1) time.

The main point, with respect to the time complexity, is that the work is
amortized by the number of occurrences of a newly inserted letter (this concerns
ProcessInterval calls and the steps of the main while-loop) and by the number of
newly inserted elements of R (this concerns Propagate calls and all the remaining
loops of the main algorithm). This yields O(n) time. ��

5 Auxiliary Data Structures

In this section we show how to implement the data structures which support
computing letter ranges and α(i, j), predecessor/successor queries and efficiently
maintain the sets IntervalsSet and ActiveSet(e) for each e ∈ E in the main
algorithm.

5.1 Applications of RMQ and LCP

We use two well-known data structures with O(n) preprocessing time and O(1)
query time.

Range Minimum Queries (RMQ). We are given an arrayA[1. . n] of integers.
This array is preprocessed to answer the following queries: for an interval [i, j]
(where 1 ≤ i ≤ j ≤ n), find any k0 ∈ [i, j] such that A[k0] = min{A[k] : k ∈
[i, j]}. The best known RMQ data structures have O(n) preprocessing time and
O(1) query time [4].

Longest Common Prefix Queries (LCP). Let w be a word of length n.
For a pair of indices i, j, 1 ≤ i, j ≤ n, we introduce lcp(i, j) as the length of
the longest common prefix between w[i. . n] and w[j. . n]. The lcp queries can be
performed in O(1) time after O(n) time preprocessing [1,9].

The RMQ data structure allows efficient computing of α(i, j).

Lemma 9. α(i, j) can be computed in O(1) time after O(n) preprocessing.

The following lemma follows easily by multiple application of lcp-queries to com-
pute ra, la for all a ∈ alph(w).

Lemma 10. The values ra, la for all a ∈ alph(w) can be computed in O(n)
time.

5.2 Answering Incremental Predecessor/Successor Queries

As a tool we use the following known problem.
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Marked Ancestor Problem: Let T be a rooted tree with n nodes, each of
which can be in two states: marked or unmarked. We are to process a sequence
of m operations of the following two types:

mark(v): mark node v;

firstmarked(v): return the first marked node on the path from v to the root.

This classical problem can be solved on-line in O(n + m) time, see [3]. This
implies an efficient algorithm for answering incremental predecessor/successor
queries.

Lemma 11. A sequence of O(n) predecessor/successor queries for the sets L,
R and Occ(E) can be handled in O(n) total time.

Proof. Note that each of the sets L, R, Occ(E) is a subset of {0, . . . , n} (initially
empty) and the only operation performed on these sets is insertion. Hence, a
sequence of m predecessor queries on these sets can be performed on-line in
O(n+m) time in total with the data structure for the Marked Ancestor Problem.
We use a tree T that is a single path of n + 1 nodes, insertion to the sets
corresponds to the operation mark and firstmarked returns the predecessor of a
node. Successor queries are handled analogously. ��

5.3 Computation of ActiveSets

All the operations performed on the respective ActiveSets are provided by the
following auxiliary data structure for dynamic storage of maxima.

Decremental-Maxima: We store an array t[1. .m] of integers, initially t[i] =
−∞ for all i. We support the following types of operations:

increasevalue(i, v): set t[i] := max(v, t[i]);

max(): return max{t[i] : i = 1, . . . ,m};
notmaximal(): return any i such that t[i] �= max() or nil if no such i exists;

reset(): set t[i] = −∞ for all i = 1, . . . ,m.

Lemma 12. The Decremental-Maxima data structure can be initialized in O(m)
time so that reset() operation is performed in O(m) time and every other oper-
ation is performed in O(1) time.

Proof. We store the array t, the current maximum M and two lists L and L′ of
elements from {1, . . . ,m}. Each element belongs to exactly one of the lists and
as p[i] we store the pointer to its current location in its list. The list L contains
all i for which t[i] =M and L′ contains the remaining elements of the domain.

The max() operation is performed by returning M . In increasevalue(i, v) we
update t[i] if v > t[i]. If v =M then i is moved from L′ to L and if v > M then
v becomes M , the list L is appended to L′ and L becomes the single element i.
Finally, notmaximal() returns any element of the list L′ if it is non-empty. ��
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Lemma 13. All the operations on all ActiveSets can be implemented in O(n)
total time.

Proof. For a given e ∈ E, all the elements i ∈ ActiveSet(e) can be divided into
those for which γright (i) > γright(e) and those for which γleft (i) < γleft (e). We
handle both cases separately. Now we show how to solve the former case with a
single instance of the Decremental-Maxima data structure with m = |Occ(e)|.

When a new letter e is inserted to E (in ProcessInterval(i, j)), we build the
data structure corresponding to e: we apply reset and increasevalue for all p ∈
Occ(e) using predR queries for the right endpoints of the ranges. This takes
O(|Occ(e)|) time for each new letter, O(n) time in total.

Updates of the data structure take place when γright (p) changes for any p ∈
Occ(e). Whenever a new element i is inserted to R, increasevalue may be called
only for predE(i) (if i is in its range). In total we have O(n) such calls.

Throughout the algorithm γright may occasionally decrease. This takes place
in the last for-all-loop of ProcessInterval(i, j), due to insertion of the new letter
e, γright (e

′) may decrease. In this case we recompute the data structure for e′

from scratch in O(|Occ(e′)|) time. Let e′1, . . . , e
′
l be all the letters for which γright

decreased because of the new letter e. Note that each occurrence of each e′i is a
predE element of the corresponding occurrence of e. Hence

l∑
i=1

|Occ(e′i)| ≤ |Occ(e)|.

Consequently, this yields a cost of O(|Occ(e)|) per a new letter which gives O(n)
time in total.

The only remaining operation on ActiveSets is the “foreach i ∈ ActiveSet(e)”
loop in the main algorithm. The total number of steps of this loop is O(n) —
since each step inserts a new element to R — and selecting any i ∈ ActiveSet(e)
is performed in O(1) time using the notmaximal operation.

The case of γleft is similar (we take minimum instead of maximum, also recom-
putation from scratch is never needed). In conclusion, all the necessary updates
and queries on ActiveSets take O(n) total time. ��

5.4 Implementation of IntervalsSet

IntervalsSet is needed to generate new expanding letters. It is maintained as a
linked list of pairs of integers.

Lemma 14. All operations on IntervalsSet can be implemented in O(n) total
time.

Proof. We implement the IntervalsSet as a linked list of loose intervals. We also
store an array that, for each element i ∈ {0, . . . , n}, points to the loose interval
in the list that has i as its endpoint (if there is any such loose interval).

At the beginning of the algorithm the list contains a single element [0, n]. Each
insert operation on sets L and R causes at most one insertion to and at most
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one deletion from the IntervalsSet, the new loose interval is computed using a
single predecessor/successor query. Similarly, each insertion of e ∈ E causes at
most one deletion from the IntervalsSet per each p ∈ Occ(e), that is, a deletion
of the formerly loose interval.

Consequently, we maintain up-to-date contents of the IntervalsSet after each
insertion to sets L, R and Occ(E) with O(1)-time overhead. ��

6 Conclusions

We presented a linear time algorithm for deciding if a word is morphically im-
primitive. We started from the original quadratic algorithm by Holub (Algorithm
Version1), transformed it by reducing the set of rules used by the algorithm
(Algorithm Version2) and finally provided several efficient data structures that
enabled linear-time implementation of the previous version if a specific order
of performing the rules is applied (Algorithm Version3). Algorithm Version3
tests if a word is morphically imprimitive. It can also provide a morphic factor-
ization (due to Theorem 7).
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Abstract. The word position automaton was introduced by Glushkov
and McNaughton in the early 1960. This automaton is homogeneous and
has (||E ||+1) states for an expression of alphabetic width ||E ||. In this
paper this type of automata is extended to regular tree expressions and
it is shown that the conversion of a regular tree expression of size |E |
and alphabetic width ||E || into its reduced tree automaton can be done
in O(|E | · ||E ||) time. The time complexity of the algorithm proposed
by Dietrich Kuske and Ingmar Meinecke is also proved in order to reach
an O(||E || · |E |) time complexity for the problem of the construction of
the equation automaton from a regular tree expression.

1 Introduction

In the case of words, it is agreed that each regular expression can be transformed
into a non-deterministic finite automaton. Computer scientists have been inter-
ested in designing efficient algorithms for the computation of the position au-
tomaton. First of all, three well-known algorithms for computing this automaton
exist. The first makes use of the notion of star normal form [2] of a regular ex-
pression. The second is based on a lazy computation technique [3]. The third is
built on the so-called ZPC-structure [10]. The complexity of these three algo-
rithms is quadratic w.r.t the size of the regular expression.

Finite Tree Automata constitute an efficient data structure used in various
application areas such as logic, rewriting, linguistic, verification [9], XML,. . .

This study is motivated by the development of a library of functions for han-
dling rational kernels [5] in the case of trees. The first problem consists in con-
verting a regular tree expression into a tree transducer (automaton).

Recently Dietrich and Meinecke [7] proposed for a regular tree expression E

an O(R ·|E |2) time Algorithm where |E | is the size of E and R is the maximal
rank appearing in the ranked alphabet, to construct its equation automaton [8],
[1]. This algorithm is an adaptation to trees of the one given by Champarnaud
and Ziadi in the case of words [10]. This generalization is interesting although
the adaptation of the word algorithm to trees is not obvious at all. Indeed the
Champarnaud and Ziadi Algorithm, for the construction of the set of transitions,
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is based on the computation of some function called ”Follow” which is not yet
defined on trees. The complexity of O(R ·|E |2) is proved in this paper. For this
reason the definition of this function in the case of trees is given in this paper
while an efficient algorithm for its computation is proposed. Therefore, in one
hand we prove the time complexity of the algorithm proposed by Dietrich and
Meinecke [7]. In the other hand we give an efficient algorithm to compute position
tree automaton.

The paper is organized as follows: Section 2 outlines finite tree automata and
regular tree expressions. Next the notion of linearized regular tree expressions
is given which allows the set of positions and the operators c−product list and
c−closure list to be defined. The functions First and Follow which are a gen-
eralization of the ones introduced by Glushkov [6] are then defined. Thus the
definition of position tree automaton and its reduced version associated to the
regular tree expression is obtained. Afterwards, the main steps of the computa-
tion of the Follow function is described. Finally, the different results described
in this paper are given in the conclusion.

2 Preliminaries

In this section the notions of tree languages, Finite Tree Automata (FTA),
c−product and c−closure will be reviewed. Let (Σ, ar) be a ranked alphabet,
where Σ is a finite set and ar represents the arity of Σ which is a mapping from
Σ into N. The set of letters of arity n is denoted by Σn. The elements of arity
0 are called constants. We denote by TΣ the set of trees over Σ respecting the
arity of each symbol. A tree language is a subset of TΣ.
Let Σ≥1 =

⋃
m≥1Σm = Σ\Σ0 denote the set of non-constant symbols from the

ranked alphabet Σ.
A Finite Tree Automaton (FTA) [7,4] A is the tuple (Q,Σ,QT , Δ) where Q
is the finite set of states, QT ⊆ Q is the set of final states and Δ ⊆ (Q ×
Σ0) ∪ ∪n≥1(Q × Σn × Qn) is the set of transition rules. A tree constant c is
accepted by A if and only if there exists a transition (q, c) ∈ Δ with q ∈ QT .
A tree t = f(t1, . . . , tn), n ≥ 1 is accepted by A iff there exists a transition
(q, f, q1, . . . , qn) ∈ Δ such that q ∈ QT and for 1 ≤ i ≤ n, the tree ti is accepted
by FTA (Q,Σ, {qi}, Δ).
The tree language L(A) recognized by A is the set of all trees accepted by A. A
tree language L is recognizable if there exists a FTA A such that L(A) = L.
Now we recall some notions of tree language operations. The tree substitution of
the constant c by the language L ∈ TΣ in the tree t ∈ TΣ, denoted by t{c← L},
is the tree language: i) L if t = c; ii) {d} if t = d where d ∈ Σ0 and (d �= c); iii)
f(t1{c ← L}, . . . , tn{c ← L}) if t = f(t1, . . . , tn). Notice that for L1, . . . , Ln ⊆
TΣ, f(L1, . . . , Ln) is the tree language {f(t1, . . . , tn) | ti ∈ Li for i = 1, . . . , n}.
Then the c−product language L1 ·c L2 of two languages L1, L2 ∈ TΣ can be
defined as:

L1 ·c L2 =
⋃
t∈L1

{t{c← L2}}
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The iterated c−product is defined for L ∈ TΣ as: L0c = {c} and L(n+1)c =
Lnc ∪ L ·c Lnc . The c−closure of L is defined as L∗c =

⋃
n≥0 L

nc , c is called the
symbol of the c−closure operator.

The writing of regular tree expressions over Σ respect the following syntax:
E = f(E,E, · · · ,E︸ ︷︷ ︸

n times

) | E+E | E ·c E | E∗c | c, with c ∈ Σ0 ∧ f ∈ Σ≥1.

The alphabetic width ||E || of E is the number of occurrences of symbols of Σ in
E. The size of E, |E | is the size of its syntax tree TE.
The language �E� denoted by the regular expression E is defined inductively as:

�c� = {c} for all c ∈ Σ0, �f(E1,E2, · · · ,En)� = f(�E1�, . . . , �En�),

�F+G� = �F� ∪ �G�, �F ·cG� = �F� ·c �G�, �F∗c� = �F�∗c

It is well known that a tree language is recognizable if and only if it can be
denoted by a tree regular expression [7,4].

3 Linearized Regular Tree Expression

In order to define the notion of linearized regular expression, we first intro-
duce two new regular operators: c−product list ·<c1,...,cn> and c−closure list
∗<c1,...,cn>, for tree languages L,L1, L2 ⊆ TΣ as follows:

L1 ·<c1> L2 = L1{c1 ← L2}, L1 ·<c1,··· ,cn> L2 = (L1 ·<c1,··· ,cn−1> L2) ·<cn> L2

L∗<c1···cn> : L0<c1···cn> = {c1}, Ln+1<c1···cn> = Ln<c1,··· ,cn>⋃
L ·<c1,··· ,cn> L

n<c1,··· ,cn> , L∗<c1···cn> =
⋃
i≥0

Li<c1···cn>

The marked form E
′
of a regular expression E is obtained from E by marking

differently all symbols (letters and closure symbols). The set of marked symbols
are called positions. A mapping h is defined from PosE (E) to Σ. It associates to
a marked symbol aj ∈ PosE (E) the symbol a = h(aj) ∈ Σ. We extend h from
TPosE(E) to TΣ by replacing every position aj by h(aj) in trees of TPosE(E).

For a subexpression F of E, we denote by PosE (F) the set of positions of E

appearing in F. For example if E = f(c, g(c)∗c)∗c then, E
′
= f1(c2, g3(c4)

∗c5 )∗c6

and PosE (E) = {f1, c2, g3, c4, c5, c6}. Let F be a subexpression of E and F
′
its

marked form in E. We denote by cF :=< ci1 , . . . , cin > with {ci1 , . . . , cin} is the

set of positions of F in E such that h(cij ) = c and ci1 = ck when F
′
= H∗ck .

The linearized regular expression E of E is obtained from E
′
by replacing each

subexpression (F
′
·cG

′
) (resp. H

′∗c) in E
′
by (F

′
·cFG

′
) (resp. H

′∗cH∗ . By F we
denote the subexpression associated to F in E.

In the following, we will denote by a the position associated to the symbol a
in E.

The semantic �E� of a regular expression E is defined inductively by:

E = c, �c� = {c}, E = F∗c , �F∗c� = �F�∗cF∗
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E = f(E1, . . . ,En), �f1(E1,E2, . . . ,En)� = f1(�E1�, . . . , �En�)

E = F+G, �F+G� = �F� ∪ �G�, E = F ·cG, �F ·cG� = �F� ·cF �G�

Example 1. Let E = ((c + a) + (g(c))∗c)∗c ·c f(a, h(c)). Then let E = F ·cG
such that: F = ((c + a) + (g(c))∗c)∗c , G = f(a, h(c)) and H = g(c). We have:

E
′
= ((c1+a2)+(g3(c4))

∗c5 )∗c6 ·cf7(a8, h9(c10)), PosE (E) = {c1, a2, g3, c4, c5, c6,
f7, a8, h9, c10}, cF∗ =< c6, c5, c4, c1 > and cH∗ =< c5, c4 >. The linearized form
of E is E = ((c1 + a2) + (g3(c4))

∗cH∗ )∗cF∗ ·cF∗ f7(a8, h9(c10)), G = f1(a2, h3(c4))

PosG (G) = {f1, a2, h3, c4}, G
E
= f7(a8, h9(c10)), PosE (G) = {f7, a8, h9, c10}.

The language denoted by E is: �E
E

� = { a2, f7(a8, h9(c10)), g3(f7(a8, h9(c10))),
g3(g3(f7(a8, h9(c10)))), g3(g3(g3(f7(a8, h9(c10))))), . . . }.

For a subexpression F of E we will denote by F the subexpression F
E
. As has

already been the case for words, the linearized expression E of E should verify
h(�E�) = �E�.

Proposition 2. Let E be a regular expression and E its linearized form. Then
we have:

h(�E�) = �E�

Proof. The proof of this Proposition is done by induction on the structure of
E. If E = a with a ∈ Σ0 and a ∈ PosE (E), we have h(a) = a and a ∈ �E�.
Supposing now that the property is true for subexpressions F, G,E1, . . . ,Em. It
should be proved that the property is true for the expressions F+G, F ·cG, F∗c

and f(E1, · · · ,Em). We have to prove that h(�E�) ⊆ �E� and �E� ⊆ h(�E�).
Here we only give the proof for the cases F+G and F ·cG.
Case E = F+G: Let t ∈ �F+G�. By the induction hypothesis, we have �F� =
h(�F�) and �G� = h(�G�). This means that t ∈ h(�F�) ∪ h(�G�). This also
means that a term t such that t ∈ �F� or t ∈ �G� with h(t) = t exists. Then
t ∈ �F� ∪ �G� = �F∪G�. Therefore t ∈ h(�F+G�).
Let t ∈ h(�F+G�). Thus t ∈ h(�F�) ∪ h(�G�). Which means that t ∈ h(�F�)
or t ∈ h(�G�). By induction hypothesis we have t ∈ �F� or t ∈ �G�. Therefore
t ∈ �F+G�.
Case E = F ·cG: Let t ∈ �F�·c�G�. In this case t is in a set tf ·c{tg1 , . . . , tgk} where
tf ∈ �F�, and tg1 , . . . , tgk ∈ �G�. Therefore tf ∈ h(�F�) and tgi ∈ h(�G�), 1 ≤
i ≤ k. Trees tf ∈ �F� and tgi ∈ �G�, 1 ≤ i ≤ k exist with h(tf ) = tf and
h(tgi) = tg, i = 1 . . . k.
Then cF =< ci1 , . . . , cik > exists with cij ∈ PosE (F), 1 ≤ j ≤ k with h(cij ) = c,

such that t ∈ (((�F�) ·ci1 (�G�)) ·ci2 ((�G�) . . . ) ·ik �G�). We have t ∈ �F� ·cF �G� =

�F ·cG�. By induction hypothesis, t ∈ (�F ·cG�). We also prove that for every
t ∈ h(�F ·cG�) it implies t ∈ �F ·cG�
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4 Position Tree Automaton

The set of positions associated to E are straightforwardly deduced from the
set of letters associated to E. In order to construct a non−deterministic finite
automaton associated to the tree expression E that recognizes �E�, we introduce
the following position sets: First(E), Last(E, f) and Follow(E, f).

Definition 3. Let E be a regular tree expression. The operator λc(E), with
c ∈ Σ0, is defined as follows:

λc(E) =

{
1 if c ∈ �E�
0 otherwise

The function λc(E) is a boolean, it values 0 or 1, depending on whether the
constant c belongs to the language �E� or not. In what follows, we propose a
method of computing λc(E).

Proposition 4. The computation of λc(E) is done inductively as follows:

λc(a) =

{
1 if a = c
0 otherwise

λc(F+G) = λc(F) ∨ λc(G)

λc(F ·xG) =
{
λc(F) ∧ λc(G) if x = c
λc(F) ∨ (λx(F) ∧ λc(G)) otherwise

λc(F
∗x) =

{
1 if x = c
λc(F) otherwise

λc(g(E1, · · · ,Em)) = 0

In the following we denote by f the position associated to the letter f in E.
We define Last(E, f) as the set of children of subtrees rooted at f in �E�.

Proposition 5. The function Last(E, f) is computed inductively as follows:

Last(a, f) = ∅
Last(F+G, f) = Last(F, f) " Last(G, f)

Last(F ·xG, f) =
{
Last(F, f) ·x (h(First(G)) ∩Σ0) if f ∈ PosE (F)

Last(G, f) if f ∈ PosE (G)

Last(F∗x , f) = Last(F, f) ·x (h(First(F∗x)) ∩Σ0)

Last(g(E1, · · · ,Em), f) =

{⋃
i=1...m(h(First(Ei)) ∩Σ0) if g = h(f)

Last(Ek, f) if f ∈ PosE (Ek)

For example Last(f(a, g(c), b)∗c , f1) = {a, b}.
To define the position tree automaton we need to define two sets, the set

First(E) and the set Follow(E, f).

Definition 6. The set First(E) contains the positions of the expression E which
begin at less one term of �E�.
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The set First(E) of positions is described in the following way. A symbol f ∈
PosE (E) belongs to the set First(E) if there exists t1, . . . , tm (m ≥ 0) such that
f(t1, · · · tm) ∈ �E�.

Let l be a set of tuples (f1, · · · , fm) ∈ (PosE (E))m and l
′
be a set of positions

in PosE (E). The operation l ·cF l
′
is the set obtained by all the substitution of

ci in the list cF in each tuple of l by elements of l
′
such that h(ci) = c.

Definition 7. The set Follow(E, f) is composed of m tuples (f1, . . . , fm) ∈
PosE (E)

m
such that there exists t1, · · · , tm ∈ TPosE(E) whose root of the term

ti(1 ≤ i ≤ m) is position fi and f(t1, · · · , tm) is a subtree of a tree in �E�.

After defining the sets First(E) and Follow(E, f), we now describe how to com-
pute these sets.

Proposition 8. Let H be a subexpression of E. The set of positions First(H)
can be computed inductively as follows:

First(a) = {a}
First(F+G) = First(F) ∪ First(G)

First(F ·c G) =
{
First(F) ·cF First(G) if λc(F) = 1
First(F) otherwise

First(F∗c) = First(F) ·cF∗ {c∗} ∪ {c∗}
First(f(E1, · · · ,Em)) = {f}

Proposition 9. The set of tuples Follow(E, f) can be computed inductively as
follows:

Follow(E, f) = ∅
Follow(F+G, f) = Follow(F, f) " Follow(G, f)

Follow(F ·cG, f) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Follow(F, f) if f ∈ PosE (F)∧
c /∈ Last(F, f)

Follow(F, f) ·cF First(G) if

c ∈ Last(F, f) ∧ f ∈ PosE (F)

Follow(G, f) if f ∈ PosE (G) .

Follow(F∗c , f) = Follow(F, f) ·cF∗ First(F∗c)

Follow(f(E1, . . . ,Em), f) = First(E1)× · · · × First(Em)

Note that the above Proposition 8 and Proposition 9 proof that allow the com-
putation of functions First and Follow were made by induction on the structure
of the regular tree expression E.
Now that we have defined the functions First and Follow. First the position tree
automaton PE associated with E is introduced and we show that it recognizes the
language �E�. Next, its image by the mapping h, PE associated to the expression
E, recognizes the language �E� is shown.
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Definition 10. Let E be a regular expression and E its linearized form. The
automaton PE = (Q,Σ,QT , Δ) is defined using First(E) and Follow(E, f):

– Q = {qα | α ∈ PosE (E)}: the set of states,
– QT = {qα | α ∈ First(E)}: the set of final states,
– Δ = { {(qf , f , qf1 , . . . , qfm) | (f1, . . . , fm) ∈ Follow(E, f),

h(f) ∈ Σm} ∪ {(qx, x) | h(x) ∈ Σ0} }: the set of transition rules.

Theorem 11. Let E be a regular expression and E its linearized form. The
automaton PE recognizes �E�.

Proof. The proof of this theorem (L(PE) = �E�) is done by induction on the
structure of E.
Case E = a: we have a ∈ �E�. On the other hand, First(E) = {a}, Q = QT =
{qa} are the set of states and final states and Δ = {(a, qa)} the set of transition
rules. Therefore a is recognized by the language associated to the automaton
PE = (Q,QT , {a}, Δ). The theorem is true for the base case. If we assume that
it is true for the expressions F, G i.e we have L(PF) = �F�, L(PG) = �G�, and
prove it for the expressions E = F+G and E = F ·cG.
Case E = F+G: Let t ∈ �E�. We have by definition, �E� = �F+G� = �F� ∪ �G�.
Since E is linear, we have t ∈ �F� or t ∈ �G�.
If t ∈ �F�, then by induction hypothesis we have t ∈ �F� if the term t is in
L(PF). Therefore a path exists in the automaton PF composed of transition
rules that recognizes the term t. The set of transition rules of the automaton
PF denoted by ΔF = {(qf , f , qh1 , · · · , qhm) | (h1, · · · , hm) ∈ Follow(F, f), f ∈
PosE (F) ∧ h(f) ∈ Σ≥1} ∪ {(qx, x) | h(x) ∈ Σ0}} ⊆ {(qf , f , qh1 , · · · , qhm) |
(h1, · · · , hm) ∈ Follow(E, f), f ∈ PosE (E)∧h(f) ∈ Σ≥1}∪{(qx, x) | h(x) ∈ Σ0}}
and a sequence First(F) ⊆ First(E), then there exists a path in PE labeled by t.
Whereas, t ∈ L(PE).
If t ∈ �G�, t ∈ �G� if and only if t ∈ L(PG). The term t is recognized by
the automaton PG. Then a path exists in PF that recognizes t. We have ΔG =
{(qf , f , qh1, · · · , qhm) | (h1, · · · , hm) ∈ Follow(G, f), f ∈ PosE (G)∧h(f) ∈ Σ≥1}
∪ {(qx, x) | h(x) ∈ Σ0}} ⊆ {(qf , f , qh1, · · · , qhm) | (h1, · · · , hm) ∈ Follow(E, f),

f ∈ PosE (E) ∧ h(f) ∈ Σ≥1} ∪ {(qx, x) | h(x) ∈ Σ0}}. We have First(G) ⊆
First(E). Then a path exists in PE labeled by t. Therefore t ∈ L(PE).
Case E = F ·cG and G �= c: We have �E� = �F ·cG� = �F� ·<c1,··· ,cn> �G�. Let

t ∈ �F ·cG� so t ∈ �F� ·<c1,··· ,cn> �G�. Then a term tF ∈ �F� exists and a set of
terms t1G, . . . t

m
G ∈ �G� such that the term t ∈ {tF} ·<c1,··· ,cn> {t1G, . . . tmG}. Three

cases are possible.
Case 1: The leaves of tF are all different from the positions ci for i = 1, . . . ,m.
In this case, the term t belongs necessarily to the language �F�. By induction
hypothesis, we have t ∈ L(PF). For any transition rule of the form (qx, x)
such that x ∈ PosE (F)} in the automaton PF, (qx, x) is a transition rule in
the automaton PE. Indeed, {(qx, x)|x ∈ PosE (F)} ⊆ {(qx, x)|x ∈ PosE (E)}.
Let (qf , f , qh1 , . . . , qhn) a transition rule in the automaton PF that recognizes
the term t. Then, there exists a path in PF labeled by t. This means that
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(h1, . . . , hm) ∈ Follow(F, f). As Follow(E, f) = Follow(F, f) ·<c1,··· ,cn> First(G)
" Follow(G, f), we have Follow(E, f) = Follow(F, f) (because we have t ∈ �F�)
and (h1, . . . , hm) ∈ Follow(E, f) from the fact that hi �= cj for 1 ≤ i ≤ m and
1 ≤ j ≤ k. Therefore (qf , f , qh1 , . . . , qhn) is a transition rule in the automaton
PE. Then we have proved that t ∈ L(PE).
Case 2: the term t ∈ �G� this means that tF = ci. It is obvious to show that
t ∈ �E�. By induction hypothesis we have t ∈ L(PE).
Case 3: The term t ∈ {tF} ·<c1,··· ,cn> {t1G, . . . tmG}. The root of the term tF is of
arity strictly greater than 0 and tF contains at least one position ci ∈ PosE (F).
Let (qf , f, qh1 , · · · , qhm) be a transition rule in the path recognizing the term tF
in the automaton PF. This means that there exist a tuple (h1, . . . , ci, . . . , hm) ∈
Follow(F, f). The term t is constructed from tF by substituting each ci by an
element of the set {t1G, . . . tmG}. Thus, (h1, . . . , root (tciG) , . . . , root

(
t
cj
G

)
, . . . hm) ∈

Follow(E, f) with root (tciG) is the root of the term obtained by substituting ci
by one term of {t1G, . . . tmG}. Then we show that there exist a transition rule
(ql, l, qh1, . . . , qroot(tciG ), . . . , qroot(t

cj
G ), . . . qhm) in the automaton PE. Therefore,

the term t ∈ L(PE).
One can prove in the similar way that if t is accepted by PE then t is in �E�.

The automaton PE is obtained from the automaton PE by remplacing each
position x by the letter h(x) = x. Positions of the expression E are the states of
the position tree automaton of PE.

Definition 12. Let E be a regular tree expression. The position tree automaton
PE = (Q,Σ,QT , Δ) associated to the tree expression E is defined as follows:

– Q = {qα | α ∈ PosE (E)}: the set of states,
– QT = {qα | α ∈ First(E)}: the set of final states,
– Δ = {{(qf , h(f), qf1 , . . . , qfm) | (f1, . . . , fm) ∈ Follow(E, f),

h(f) ∈ Σm} ∪ {(qx, h(x)) | h(x) ∈ Σ0}}: the set of transition rules.

Example 13. Let E = ((c + a) + (g(c))∗c)∗c ·c f(a, h(c)) the expression of the
example 1. We have

First (E) = {a2, g3, f7}
Follow (E, g3)={(g3), (f7)} Follow (E, h9)={(c10)} Follow (E, f7)={(a8, h9)}

The set of states is Q = {qc1, qa2 , qg3 , qc4 , qc5 , qc6 , qf7 , qa8 , qh9 , qc10}.
The set of final states is QT = {qa2 , qg3 , qf7}
The set of transition rules consists of

c→ qc1 a→ qa2 c→ qc4 c→ qc5
c→ qc6 a→ qa8 c→ qc10 h(qc10) → qh9

g(qg3) → qg3 g(qf7) → qg3 f(qa8 , qh9) → qf7

Corollary 14. Let E be a regular tree expression, E its linearized form and PE

the automaton associated to E, then:

L(h(PE)) = h(�E�)
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The construction of the position tree automaton PE from a regular tree ex-
pression as it has been defined in this article complies with the properties of
the position automaton proposed by Glushkov. It is homogeneous (for all state
q ∈ Q, all transitions entering in q are labeled by the same symbol). This is the
generalization of the position automaton from words to trees. The number of
transition rules of this automaton is exponential. This is due to the Formula 9 in
Proposition 9. In order to reduce the number of these transition rules, we propose
an equivalent automaton RE of the position tree automaton PE associated to E.
The idea is to modify the set of transition rules associated to the subexpressions
of the form f(E1, . . . ,Em) and replace computation of the set Follow(E, f) =
First(E1)×· · ·×First(Em) by Follow(E, f) = {(First(E1), . . . ,First(Em))}. Thus,
the following equivalent reduced automaton RE is proposed.

Definition 15. Let E be a regular tree expression. We can compute the reduced
automaton RE = (Q,Σ,QT , Δ) associated to the expression E as follows:

– Q = {q{α} | α ∈ First(E)} ∪ {qFirst(Ek) | g(E1, . . . ,En), is the subexpression
of E and 1 ≤ k ≤ n}:the set of states,

– QT = {q{α} | α ∈ First(E)}: the set of final states,

– Δ = {(qI , h(f), qJ1 , . . . , qJl
) | (J1, . . . , Jl) ∈ Follow(E, f) and f ∈ I,

h(f) ∈ Σ≥1}∪{(qI , h(x)) | x ∈ I and h(x) ∈ Σ0}: the set of transition rules.

It is proved that L(RE) = �E� and that the number of transition rules
|Δ| is less than or equal to |E |2.

Example 16. Let E = f(a+ b, c+ d). We have: E = f1(a2 + b3, c4 + d5),
First(E) = {f1}, Follow(E, f1) = {(a2, c4), (a2, d5), (b3, c4), (b3, d5)}.
The automaton PE associated to E is defined as follows:
The set of states is

QP = {qf1 , qa2 , qb3 , qc4 , qd5}
The set of final states is

QTP = {qf1}
The set of transition rules is

a→ qa2 b→ qb3
c→ qc4 d→ qd5

f(qa2 , qc4) → qf1 f(qa2 , qd5) → qf1
f(qb3 , qc4) → qf1 f(qb3 , qd5) → qf1}

We have the size |QP | = 5 and the number of transion is |ΔP | = 8.

The modified Follow(E, f1) is equal to {({a2, b3}, {c4, d5})}.
The reduced automaton RE associated to E is defined as follows:
The set of states is

QR = {q{f1}, q{a2,b3}, q{c4,d5}}
The set of final states is

QTR = {q{f1}}
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The set of rules consists of

a→ q{a2,b3} b→ q{a2,b3}
c→ q{c4,d5} d→ q{c4,d5}
f(q{a2,b3}, q{c4,d5}) → q{f1}

The number of states |QR| = 3 and the number of transition rules is |ΔR| = 5.

5 Algorithm and Complexity

An implicit construction of the position automaton, the so-called ZPC-structure,
has been developed by Ziadi et al. [10]. Algorithm 1 extends this construction
to the regular tree expressions. It constructs a forest of trees where every tree
rooted at a node νF represents the set First(F).

Algorithm 1. ZPC structure construction

for each subexpression F∗c of E do
replace it by (F+c)∗c ;
end for
Construct the syntax tree TE of E;
for each constant a ∈ Σ0 do

for each node νF on TE do
Compute the values λa(F)

end for
end for
# The construct of First Forest
for each node νF ·cG in TE do

if λc(F) = 0 then
Remove the link (νF ·cG, νG)
Set c as label of the edge (νF ·cG, νF)

end if
end for
for each node labeled f ∈ Σ≥1 do

Compute Last(E, f)
end for
for each node νF ·cG in TE do create a follow link from νF to νG
end for
for each node νF∗c in TE do create a link from νF to νF∗c
end for

The ZPC-structure constructed by Algorithm 1 allows us to efficiently com-
pute the sets Follow(E, f) for f ∈ Σ≥1.
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Algorithm 2. Transition rules Computation

for each f ∈ Σ≥1 such that f(E1, . . . ,En) is a subexpression of E do
Let Γ (f) = {(a1, νR1), (a2, νR2), . . . (am, νRm)}
for i = 1 to n do

Xi := ((((First(Ei) ·a1 e(νR1)) ·a2 e(νR2)) ·a3 · · · ) ·am e(νRm))
end for
Follow(E, f) := {(X1, . . . , Xn)}

end for

First(Ei) is the set of positions beginning terms of �Ei�, such that Ei is marked
in E.
Γ (f) is the set of Follow Links induced by a c-product ·c or c-closure ∗c operator,
in the path from the node νf associated with the symbol f to the root of TE.
The set e(νRi) is the First set of some subexpression of E. For a subexpression
F ·cG, e(νF ·cG) is defined as e(νF ·cG) := e(νF)\{ci | h(ci) = c} ∪ e(νG).

The time and space complexities of the computation of the sets Last(E, f),
First(E) and Follow(E, f) are the following.
The formula Xi := ((((First(Ei) ·a1 e(νR1)) ·a2 e(νR2)) ·a3 · · · ) ·am e(νRm)) can
be seen as the union. The complexity of computing of the set Follow(E, f) is
equal to the complexity of the computation of the formula
Xi := ((((First(Ei) ·a1 e(νR1)) ·a2 e(νR2)) ·a3 · · · ) ·am e(νRm)). This union is not
necessarily disjointed and can be done in time O(|E | · ||E ||). Therefore, the
time complexity of the computation of Follow(E, f) for all symbols f ∈ Σ≥1 is
O(|Σ0| · |E | · ||E ||). However, by using the algorithm for deleting redundant links
[8], the formula

Xi := ((((First(Ei) ·a1 e(νR1)) ·a2 e(νR2)) ·a3 · · · ) ·am e(νRm)) (1)

can be computed in O(|E |). Since, this is equivalent to perform disjoint unions.
Thus, the set Follow(E, f) can be computed in time O(|Σ0| · |E |). Therefore, the
set of transition rules can be computed in O(|Σ0| · |E | · ||E ||).

From this algorithm the following theorem is obtained.

Theorem 17. Let E be a tree regular expression. The tree automaton RE asso-
ciated to E is computed in O(|Σ0| · |E | · ||E ||) time and space complexity.

The time complexity of the Algorithm proposed by Dietrich and Meinecke [7] to
convert a regular tree expression to its equation automaton is the time complex-
ity of the computation of the sets of Follow(E, f) for f ∈ Σ. As the computation
of Follow sets can be performed in O(|E | · ||E ||) time, we get the following
Corollary.

Corollary 18. The equation tree automaton of regular tree expression can be
computed in O(R · |E | · ||E ||) time and space complexity.
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6 Conclusion

In this paper the notion of position tree automaton associated with the regular
tree expression has been defined. It is shown that this automaton is the general-
ization of position automaton introduced by Glushkov. We proved that a regular
tree expression E can be converted into a reduced position tree automaton in
O(|E | · ||E ||) time.

By the use of the Algorithm 2 we also proved the time complexity of the Algo-
rithm proposed by Dietrich and Meinecke to construct the equation automaton.
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Abstract. We give a lower bound on the speed at which Newton’s
method (as defined in [5,6]) converges over arbitrary ω-continuous com-
mutative semirings. From this result, we deduce that Newton’s method
converges within a finite number of iterations over any semiring which is
“collapsed at some k ∈ N” (i.e. k = k + 1 holds) in the sense of [1]. We
apply these results to (1) obtain a generalization of Parikh’s theorem,
(2) to compute the provenance of Datalog queries, and (3) to analyze
weighted pushdown systems. We further show how to compute Newton’s
method over any ω-continuous semiring.

1 Introduction

Fixed-point iteration is a standard approach for solving equation systems of the
formX = F (X): The naive approach is to compute the sequenceXi+1 = F (X i)
given some suitable initial approximation X0. In calculus Banach’s fixed-point
theorem guarantees that the constructed sequence converges to a solution if F
is a contraction over a complete metric space. In computer science, Kleene’s
fixed-point theorem1 guarantees convergence if F is an ω-continuous map over a
complete partial order. In reference to Kleene’s fixed-point theorem, we will call
the naive application of fixed-point iteration “Kleene’s method” in the following.
It is well-known that Kleene’s method converges only very slowly in general.
Consider the equationX = 1/2X2+1/2 over the reals. Kleene’s method κ(h+1) =
1/2(κ(h))2 + 1/2 converges from below to the only solution x = 1 starting from
the initial approximation κ(0) = 0. However, it takes 2h−3 iterations to gain h

bits of precision, i.e. 1− κ(2h−3) ≤ 2−h [8].
Therefore, many approximation schemes do not apply Kleene’s method, in-

stead they construct from F a new map G to which fixed-point iteration is
then applied: Newton’s method, for instance, obtains G from a nonlinear func-
tion F by linearization. In above example, F (X) = 1/2X2 + 1/2 is replaced
by G(X) = 1/2X + 1/2 yielding the sequence ν(h+1) = G(ν(h)) = 1 − 2−h for
ν(0) = 0, i.e. we get one bit of precision with each iteration.

� This work was partially funded by the DFG project “Polynomial Systems on Semi-
rings: Foundations, Algorithms, Applications”.

1 Depending on literature, this result is also attributed to Tarski.
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A system X = F (X) where F is given in terms of polynomials over a semi-
ring is called algebraic. In computer science, algebraic systems arise e.g. in the
analysis of procedural programs where their least solution describes the set of
runs of the program (possibly evaluated under a suitable abstraction). Motivated
by the fast convergence of Newton’s method over the reals, in [5,6] (see [7] for
an updated version) Newton’s method was extended to algebraic systems over
ω-continuous semirings: It was shown there that Newton’s method always con-
verges monotonically from below to the least solution at least as fast as Kleene’s
method. In particular, there are semirings where Newton’s method converges
within a finite number of iterations while Kleene’s method does not. This ex-
tension of Newton’s method found several applications in verification (see e.g.
[7,4,11]). Independent of the mentioned work, the same extension of Newton’s
method has been proposed in [17] in the setting of combinatorics which led to
new efficient algorithms for random generation of objects.

In this article we give a lower bound on the speed at which Newton’s method
converges over arbitrary commutative ω-continuous semirings. We measure the
speed by essentially looking at the number of terms evaluated by Newton’s
method. To make this more precise, consider the equation X = aX2 + c in the
formal parameters a, c (e.g. over the semiring of formal power series). Its least
solution is the series B =

∑
n∈N

Cna
ncn+1 with Cn the n-th Catalan number.

The Kleene approximations κ(h+1) := aκ(h)κ(h) + c of B are always poly-
nomials and one can show that the number of correctly computed coefficients
increases by one in each iteration, e.g. κ(3) = c + ac2 + 2a2c3 + a3c4. By con-
trast, the Newton approximations ν(h) are (infinite) power series. It follows easily
from the characterization [5] of the Newton approximations by “tree-dimension”
(see Sec. 3), that the coefficient of ancn+1 in ν(h) has converged to Cn if and
only if n + 1 < 2h, i.e. the number of coefficients which have converged is now
roughly doubled in each iteration. In [17] this property is called quadratic con-
vergence (see also Ex. 5) and is used there to argue that Newton’s method allows
to efficiently compute a finite number of coefficients of the formal power series
representing a generating function.

In programs analysis, monomials correspond to runs of a program and we are
in general not only interested in the coefficients of a finite number of monomials.
We show in Theorem 6 for any monomialm that either its coefficient in ν(n+k+1)

has already converged or it is bounded from below by 22
k

(where n is the number
of variables of the given algebraic system). In particular, if the coefficient of m is

less than 22
k

in ν(n+k+1), then we know that it has converged. Using this theorem,
we extend Parikh’s theorem2 to multiplicities bounded by a given k ∈ N (see
Sec. 5.1). From this it follows that the set of monomials whose coefficients have
converged in the h-th Newton approximation is Presburger definable. In Sec. 5.2
we apply these results to the problem of computing the provenance of a Datalog
query improving on the algorithms proposed in [12]. As a further application
of our results, we show in Sec. 5.3 how Newton’s method by virtue of Theorem

2 Parikh’s theorem states that the commutative image of a context-free grammar is a
semilinear set, i.e. definable by means of a Presburger formula.
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6 can be used to speed up the computation of predecessors and successors in
weighted pushdown-systems [18] which has applications e.g. in the analysis of
procedural programs or generalized authorization problems in SPKI/SDSI. As a
side result, we also show how to compute Newton’s method for algebraic systems
over arbitrary, also noncommutative, ω-continuous semirings (Sec. 3, Definition
2). Due to the page limit, we refer the reader to the technical report [13] for the
missing proofs.

2 Preliminaries

N denotes the nonnegative integers (natural numbers). N∞ are the natural num-
bers extended by a greatest element ∞. For k ∈ N let Nk = {0, 1, . . . , k}. A∗

(A⊕) denotes the free (commutative) monoid generated by A. Elements of A⊕

are usually written as monomials (in the variables A). N∞〈〈A∗〉〉 denotes the set
of all total functions from A∗ to N∞. These functions are commonly represented
a formal power series (in noncommuting variables A and coefficients in N∞).
Analogously for N∞〈〈A⊕〉〉 with now commuting variables.

A context-free grammar is a tripleG = (X ,A, R) with variables (nonterminals)
X , alphabet (formal parameters) A, and (rewrite) rules R. We do not assume a
specific start symbol. G is nonexpansive if no variable X ∈ X can be rewritten
into a sentential form in which X occurs at least twice (see e.g. [19]). G is
in quadratic normal form if any rule X → u0X1u1 . . . ur−1Xrur of G satisfies
u0u1 . . . ur ∈ A+, X1X2 . . .Xr ∈ X+, and r ∈ {0, 2}.

We slightly deviate from the standard representation of derivation trees: We
label the nodes of a derivation tree directly by the corresponding rule (see Ex-
ample 1). For X ∈ X , a derivation tree of G is an X-tree if its root is la-
beled by a rule rewriting X . The word represented by a derivation tree is called
its yield. The ambiguity of a context-free grammar G w.r.t. to X ∈ X is the
map ambX ∈ N∞〈〈A∗〉〉 which assigns to a word w ∈ A∗ the number of X-
trees of G which yield w. Analogously, we define the commutative ambiguity
cambX ∈ N∞〈〈A⊕〉〉 which assigns to each monomial m ∈ A⊕ the number of X-
trees of G which yield a permutation of m. G is unambiguous w.r.t. X if every
word has a unique X-tree, i.e. if ambX takes only values in {0, 1}.

The family amb = (ambX | X ∈ X ) can equally be characterized as the least
solution of the algebraic system X = FG(X) over N∞〈〈A∗〉〉 consisting of the
equations X =

∑
(X,γ)∈P γ. In particular, for any interpretation ι : A → S of the

alphabet symbols as elements of some ω-continuous semiring 〈S,+, ·〉 it is known
[3,7] that amb evaluates under (the ω-continuous homomorphism induced by) ι
to the least solution of the algebraic system X = F ι(X) over S where F ι is
obtained from F by substituting every occurrence of a ∈ A by ι(a). Similarly,
any approximation scheme for amb translates to an approximation scheme for
ι(amb) over S. As we can associate with any algebraic system X = F (X) over
〈S,+, ·〉 a context-free grammar (in the restricted from defined above) such that
X = FG(X) has the same least solution, it suffices to study how to approximate
amb. Analogously for a commutative semiring 〈S,+, ·〉 and camb. We therefore
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do not introduce ω-continuous semirings and algebraic systems formally, but
refer the reader to e.g. [19].

Example 1. Consider the grammar GL : X → aXX | c. The language L(GL)
generated by GL is known as Lukasiewicz language of all proper3 binary trees
with binary nodes labeled by a, and leaves labeled by c represented as a word
using Polish notation. Below on the left the common depiction of the derivation
tree of acacc is shown; the middle tree is the representation used in the following
which is isomorphic to the binary tree represented by acacc shown on the right:

X

a X X

c a X X

c c

(X, aXX)

(X, c) (X, aXX)

(X, c) (X, c)

a

c a

c c

As GL is unambiguous, amb enumerates all proper binary trees. camb on the
other hand is the generating function of proper binary trees, i.e. camb(ancn+1)
is the n-th Catalan number Cn.

camb = c+ac2+2a2c3+5a3c4+14a4c5+42a5c6+132a6c7+429a7c8+1430a8c9+. . .

3 Newton’s Method for Context-Free Grammars

The Kleene approximation κ(h) of amb (κ(h+1) = FG(κ
(h)) with κ(0) = 0) can

be characterized by means of the derivation trees evaluated by them (see e.g. [5]):

The X-component κ
(h)
X of κ(h) assigns to w ∈ A∗ the number of X-trees of height

less than h which yield w. In [6,5] the notion of dimension was introduced to give
a similar characterization of the Newton approximations ν(h): The dimension of
a (rooted) tree t is the maximal height of any perfect4 binary tree which is a
minor of t. The dimension is also known as Horton-Strahler number or register

number [9]. Then ν
(h)
X assigns to w ∈ A∗ the number of X-trees of dimension

less than h which yield w. Analogously for camb. We use this result to unfold any
context-free grammar G w.r.t. to the dimension into a new context-free grammar
G(h) so that the (commutative) ambiguity of G(h) is exactly the h-th Newton
approximation of the (commutative) ambiguity of G. One advantage of this new
definition is that it allows to effectively compute Newton’s method over any ω-
continuous semiring for which we can compute the semiring operations and the
Kleene star. By contrast, the algebraic definition in [6,5] requires the user to
find in every iteration step a certain semiring element. There, only for particular
semirings, e.g. when addition is idempotent, it was shown how to construct these
elements. For the unfolding we assume that G is in quadratic normal form. This
is no real restriction but simplifies the presentation.5

3 A binary tree is proper if every node is either binary or nullary.
4 A proper binary tree is perfect if every leaf has the same distance to the root.
5 See the technical report [13] for how to unfold arbitrary context-free grammars.
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Definition 2. Let G be a context-free grammar G = (X ,A, R). Set X ν :=
{X(d), X̂(d) | X ∈ X , d ∈ N}. The unfolding Gν = (X ν ,A, Rν) of G is:

– X(d) → X̂(e) for every d ∈ N, and every 0 ≤ e < d.
– If X → u0 in R, then X̂(0) → u0.
– If X →G u0X1u1X2u2 in R, then for every d ≥ 1:

X̂(d) → u0X
(d)u1X̂

(d)u2
X̂(d) → u0X̂

(d)u1X
(d)u2

X̂(d) → u0X̂
(d−1)u1X̂

(d−1)u2.

For any given h ∈ N let G(h) = (X (h),A, R(h)) be the context-free grammar

induced by the variables {X(h) | X ∈ X}. The h-th Newton approximation ν
(h)
X

of the (commutative) ambiguity of G w.r.t. X is the (commutative) ambiguity of
G(h) w.r.t. X(h).

Lemma 3. Every X̂(d)-tree (X(d)-tree) has dimension exactly (less than) d.
There is a yield-preserving bijection between the X̂(d)-trees (X(d)-trees) and the
X-trees of dimension exactly (less than) d.

Newton’s method is closely related to nonexpansive grammars and related no-
tions like quasi-rational languages:

Theorem 4. Let G = (X ,A, R) be a context-free grammar.

1. All Newton approximations of camb are rational in N∞〈〈A⊕〉〉.
2. Newton’s method converges to amb (camb) of G within a finite number of

iterations if and only if G is nonexpansive. If G is nonexpansive, then New-
ton’s method converges within |X | iterations.

If G is expansive, not much can be said regarding convergence speed in the
noncommutative setting as illustrated by any unambiguous grammar G: For a

given w ∈ L(G), the least h with ν
(h)
X (w) = ambX(w) is simply the dimension

of the unique X-tree yielding w. Thus, in the following section we focus on the
commutative setting and study the speed at which Newton’s method converges to
camb by means of a lower bound on all coefficients which have not yet converged.

Example 5. Unfolding GL (see Ex. 5) w.r.t. the dimension gives us X̂(0) → c,
X(1) → X̂(0) and for d > 0

X(d) → X̂(0) | X̂(1) | . . . | X̂(d−1)

X̂(d) → aX(d)X̂(d) | aX̂(d)X(d) | aX̂(d−1)X̂(d−1)

Modulo commutativity, we can deduce from this the following rational expres-
sions for the first few approximations of camb: ν(0) = 0, ν(1) = c,

ν(2) = (2ac)∗ac2 + c
= c+ ac2 + 2a2c3 + 4a3c4 + . . .

ν(3) = (2a((2ac)∗ac2 + c))∗a((2ac)∗ac2)2

= c+ ac2 + 2a2c3 + 5a3c4 + 14a4c5 + 42a5c6 + 132a6c7 + 428a7c8 + . . .
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We have expanded the series until the first coefficient which differs from camb
(see Ex. 1) to exemplify the notion of quadratic convergence introduced in [17]:
ν(h) differs from camb in the coefficient of ancn+1 if and only if n + 1 ≥ 2h as
any tree with less than 2h leaves can only have dimension at most h − 1. This
also shows that Newton’s method cannot converge faster than quadratic in this
sense. Note that although Newton’s method converges quadratically w.r.t. camb,
it only converges linearly over the reals: Consider GL interpreted as an algebraic
system over R with ι(a) = ι(c) = 1/2 yielding X = 1/2X2+1/2. By also reading
the unfolded grammar as an algebraic system and interpreting the alphabet by
the same ι we recover the Newton approximations over R: X(0) = 0, X̂(0) = 1/2,
and for d > 0:

X(d) = X(d−1) + X̂(d−1) and X̂(d) = (1 −X(d))−1 · 1/2
(
X̂(d−1)

)2

Induction shows that indeed ι(ν(h)) = X(h) = 1− 2−h.

4 Rate of Convergence Modulo Commutativity

Let G = (X ,A, R) be a context-free grammar. In the following n denotes |X |
and ν(h) denotes the h-th Newton approximation of camb of G, i.e. ν

(h)
X =

cambX(h−1) . We say that two X-trees (w.r.t. G) are Parikh-equivalent if they
yield the same word up to commutativity. We show that after n + 1 iterations

all coefficients which have not converged yet are bounded from below by 22
k

.

Theorem 6. For all k ≥ 0 and v ∈ A⊕: ν(n+k+1)
X (v) ≥ min(cambX(v), 22

k

).

Proof (sketch). Assume there is v ∈ A⊕ with ν
(n+k)
X (v) < cambX(v). This means

there exists some derivation tree t with dimension dim(t) ≥ n+ k + 1 and yield
v modulo commutativity. Essentially we show that t witnesses the existence of

at least 22
k

different, but Parikh-equivalent trees of lower dimension.
To make this more precise, we need to introduce l(t): Recall that we labeled

the nodes of derivation trees by rules of G. A variable Y is a label of t if there is
at least one node which is labeled by a rule rewriting Y . Then l(t) is the number
of variables labeling t. We prove by induction on the number of vertices of t that

if dim(t) ≥ l(t) + k + 1, then there exist at least 22
k

Parikh-equivalent trees of
dimension at most l(t) + k.

Assume that t has dimension l(t)+k+1 and exactly two subtrees t1, t2 having
dimension exactly l(t) + k and furthermore l(t1) = l(t2) = l(t) (all other cases
reduce to this one, or follow from the induction hypothesis). Since t1 has dimen-
sion l(t) + k it contains a perfect binary tree of height l(t) + k as a minor. The
set of nodes of this minor on level k define 2k (independent) subtrees of t1. Each
of these 2k subtrees has height at least l(t), and thus by the Pigeonhole principle
contains a path with two variables repeating. We call the partial derivation tree
defined by these two repeating variables a pump-tree. We relocate any subset
of these 2k pump-trees to t2 which is possible since l(t2) = l(t) = l(t1). See
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the following picture for an illustration of the relocation process (we have two
choices for the pump-tree on the left, yielding four possible “remainders”).

(X, a)

(X, a)

(X, a) (X, a)

(X, c) (X, c) (X, c) (X, c)

(X, a)

(X, c) (X, c)

�
(X, a)

(X, a)

(X, a) (X, c)

(X, c) (X, c)

(X, a)

(X, c) (X, a)

(X, c)(X, c)

Each of these 22
k

choices produces a different tree t̃—the trees differ in the
subtree t̃1. We now apply the following result from [6]: For every derivation tree
t there is a Parikh-equivalent tree t̃ of dimension at most l(t). Applying this result
to t̃2 allows us to reduce the dimension of each t̃ to at most dim(t1) = l(t) + k.

This way we obtain at least 22
k

different Parikh-equivalent trees of dimension at
most dim(t1) = l(t) + k.

Remark 7. As we can also choose t2 as the source and t1 as the destination of

the relocation process, we obtain in fact a lower bound of 21+2k , which is best
possible (in this form): Looking at Ex. 5 for k = 0 we obtain a lower bound
of ν(2)(v) ≥ 4 for all coefficients that have not converged yet – and indeed
ν(2)(a3c4) = 4.

It would be nice to have a non-uniform global bound on the coefficients
ν(n+1+k)(v) (i.e. some bound that depends on k and |v|). However, the follow-
ing grammar H shows that this cannot be done without taking into account
the structure of the grammar: H : Y → BY | BX,B → b,X → aXX | c.
This grammar contains GL, but any word produced by Y can have an arbi-
trarily long prefix of b’s and each such prefix has a unique derivation. Thus
cambY (b

mancn+1) = cambX(ancn+1) = Cn.

We say that a ω-continuous semiring S is collapsed at some positive integer k
if in S the identity k = k + 1 holds (see e.g. [1]). For instance, the semirings
Nk〈〈A∗〉〉 and Nk〈〈A⊕〉〉 are collapsed at k. For k = 1 the semiring is idempotent.

Corollary 8. Newton’s method converges within n+ log log k iterations for any
algebraic system with n variables over a commutative semiring collapsed at k.

5 Applications

5.1 Parikh’s Theorem for Bounded Multiplicities

Petre [15] defines a hierarchy of power series over N∞〈〈A⊕〉〉 and showed that
this hierarchy is strict. In particular he shows that Parikh’s Theorem does not
hold if multiplicities are considered. Here we combine our convergence result and
some identities for weighted rational expressions over commutative k-collapsed
semirings to show that moving from N∞〈〈A⊕〉〉 to Nk〈〈A⊕〉〉 allows us to prove a
Parikh-like theorem, i.e. we give a semilinear characterization of cambG.
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In the following, let k denote a fixed positive integer. By Theorem 4 and
Corollary 8 we know that cambG is rational modulo k = k+1. In the idempotent
setting (k = 1), see e.g. [16] the identities (i) (x∗)∗ = x∗, (ii) (x + y)∗ = x∗y∗,
and (iii) (xy∗)∗ = 1 + xx∗y∗ can be used to transform any regular expression
into a regular expression in “semilinear normal form”

∑r
i=1 wi,0w

∗
i,1 . . . w

∗
i,lr

with

wi,j ∈ A∗. It is not hard to deduce the following identities over Nk〈〈A⊕〉〉 where
x<r abbreviates the sum

∑r−1
i=0 x

i. By supp(x) we denote the characteristic series
of the support of x:

Lemma 9. The following identities hold over Nk〈〈A⊕〉〉:

(I1) kx = k supp(x)

(I2) (γx)∗ = (γx)<�logγ k� + kx�logγ k�x∗

(I3) (x∗)∗ = kx∗

(I4) (x+ y)∗ = (x+ y)<k + xkx∗ + yky∗ + kxy(x+ y)max(k−2,0)x∗y∗

(I5) (xy∗)∗ = 1 + xy∗ + x2x∗ + x2y
∑

0≤m,j<k−2

(
2+m+j
1+j

)
xmyj

+ kx2y(xmax(k−2,0) + ymax(k−2,0))x∗y∗

for γ any integer greater than one.

Consider a rational series r ∈ Nk〈〈A⊕〉〉 represented by the rational expression
ρ. The above identities, where (I3), (I4), (I5) generalizes (i), (ii), (iii), respec-
tively, allow us to reduce the star height of ρ to at most one by distributing the
Kleene stars over sums and products yielding a rational expression ρ′ of the form
ρ′ =

∑s
i=1 γiwi,0w

∗
i,1 . . . w

∗
i,li

(wi,j ∈ A∗, γi ∈ Nk) which still represents r over

Nk〈〈A⊕〉〉. By (I1) we know that, if γi,0 = k, we may replace wi,0w
∗
i,1 . . . w

∗
i,li

by

its support which is a linear set in NA.

Theorem 10. Every rational r ∈ Nk〈〈A⊕〉〉 can be represented as a finite sum of
weighted linear sets, i.e. r =

∑
i∈[s] γi supp(wi,0w

∗
i,1 . . . w

∗
i,l) with wi,j ∈ A∗ and

γi ∈ Nk.

Example 11. The rational expression ρ = (a + 2b)∗ represents the power series∑
i,j∈N

2jaibj in N∞〈〈A⊕〉〉. Computing over N2〈〈A⊕〉〉 we may transform ρ as
follows:

(a + 2b)∗
(I4)
= (a + 2b)<2 + a2a∗ + (2b)2(2b)∗ + 2a(2b)a∗(2b)∗ = a∗ + 2(bb∗ +

aba∗b∗) = a∗ + 2(bb∗a∗)
(I1)
= 1 supp(a∗) + 2 supp(bb∗a∗)

Corollary 12. For every k ∈ N∞ we can construct a formula of Presburger
arithmetic that represents the set {v ∈ NA | cambG,X(v) = k}.

This corollary can be applied to inclusion testing between two rational series
over Nk〈〈A⊕〉〉 which is relevant e.g. for detecting early convergence of Newton’s
method, i.e. if ν(h+1) = ν(h). Although we know that after n + log log k steps
the method has converged, in applications (see Sec. 5.2) n could be quite large
and the n+ log log k bound might be too pessimistic.
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5.2 Provenance Computation for Datalog

Roughly speaking, provenance is additional information attached to the results
of a database query explaining how said results were obtained from the current
facts in the database. Provenance information is important e.g. to implement up-
datable views [10]. Recently, commutative ω-continuous semirings were proposed
as provenance annotations where the provenance of unions or projections is mod-
elled by addition of the annotation and joins yield multiplications. Tagging the
tuples from the facts in the database allows us to trace back the provenance of
the results by solving an algebraic system [12].

For an example consider the binary relation E depicted below (first table).
The Datalog query T (x, y) : - E(x, y); T (x, y) : - E(x, z), E(z, y) computes its
transitive closure T = E∗ (second table).

X Y

a b e1
b b e2
b c e3
c d e4

X Y

a b X1 = e1 + X1X4

a c X2 = X1X5

a d X3 = X1X6 + X2X7

b b X4 = e2 + X4X4

b c X5 = e3 + X4X5

b d X6 = X4X6 + X5X7

c d X7 = e4

X1 = X∗
4 e1

X2 = (X∗
4 )

2e1e3
X3 = [(X∗

4 )
2 + (X∗

4 )
3]e1e3e4

X4 =
∑

n≥0 Cn(e2)
n+1

X5 = X∗
4 e3

X6 = (X∗
4 )

2e3e4
X7 = e4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1=1+1)
=

e1e
∗
2

e1e
∗
2e3

e1e
∗
2e3e4

e2e
∗
2

e3e
∗
2

e∗2e3e4
e4

To capture the so called “how-provenance” we tag every tuple in E by a letter
from Σ = {e1, e2, e3, e4}. The provenance of the k-th tuple in T is the value
of Xk in the (least) solution (over a suitable semiring) of the algebraic system
representing the query. In our example the solution overN〈〈A⊕〉〉 can be computed
by hand and we can also give a very short representation as rational expressions
if we assume idempotence of addition (1 = 1 + 1). From the result we can see
that the tuple (b, d) can be obtained by a join of (b, c) and (c, d), preceded by
any number of joins of (b, b) with itself 6.

Depending on our choice of the semiring we obtain a coarser or finer view on
the provenance. As N∞〈〈A⊕〉〉 is the commutative semiring, freely generated by
A, we can regard it as the universal provenance semiring [12]. However, N∞〈〈A⊕〉〉
is in some sense a bad choice for representing solutions, as we cannot do this
finitely. Green et al. [12] therefore resort to compute the complete provenance
series only if it is finite by enumerating all derivation trees using Kleene’s method
essentially; if the power series is an infinite sum they only compute the coefficient
for a given monomial.

For many applications, idempotent semirings suffice to capture interesting
provenance information. Useful examples are the tropical semiring 〈N∞,min,+〉,
or the Viterbi-semiring 〈[0, 1],max, ·〉 for probabilistic settings. [12] raised the
open question how to compute provenance over the tropical semiring, which can
be done by Newton’s method as already described in [6]. A useful generalization
which is not idempotent is the k-tropical semiring Tk [14] which was used there
for general k-shortest distance computations. This semiring satisfies the identity

6 More precisely, the operations are joins followed by projections.
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k = k+1, so by our results Newton’s method can be used to calculate provenance
series over Tk in n+ log log k steps.

As already remarked in [12], idempotent semirings are often too coarse an
abstraction in a database context where one often considers the so called bag-
semantics (i.e. we also care about the multiplicities of query results or provenance
information). The k-collapsed semirings Nk〈〈A⊕〉〉 are a possible way out of the
dilemma that we want to capture the bag-semantics to some extent but cannot
use the most general semiring N∞〈〈A⊕〉〉 since its elements are not finitely rep-
resentable in general. Suppose, we want to compute provenance for a recursive
query and are satisfied with a power series having coefficients less than k = 264

(i.e. standard 64-bit integers). By Theorem 6 we know that Newton’s method
converges after at most n+ 6 steps.

5.3 Analysis of Weighted Pushdown Systems

A Pushdown system (PDS) 〈Q,Γ,Δ〉 consists of a finite set of control states Q,
a finite set of stack symbols Γ , and a set of rewrite rules Δ ⊂ QΓ → QΓ≤2.
A PDS induces an infinite graph over the QΓ ∗ of configurations: there is an
edge from qγ to q′γ′ if there is a rule qA → q′ρ ∈ Δ such that γ′ = Aγ′′ and
γ′ = ργ′′. In a weighted PDS each rule carries also as weight an element of a
semiring 〈S,+, ·〉. The semiring multiplication is used to extend weights from
single rules to paths, while addition is used to combine the weight of several
paths. Such weighted graphs arise e.g. in the analysis of procedural programs
[18] or in authorization problems [20]. A central problem is: given a configuration
c of the graph, determine for any other configuration c′ the weight of all finite
paths leading from c to c′.

To solve this problem for arbitrary configurations, one builds a weighted finite
automaton whose transitions corresponds to particular runs starting in a con-
figuration pA with a single stack symbol and ending in a configuration qε with
empty stack. The total weight of these paths is the least solution of an algebraic
system over the given semiring S. In the standard approach [18] this algebraic
system is solved on the fly while constructing the automaton. For this a work
list variant of Kleene’s method is used. This approach therefore only works for
certain semirings and its running time is directly proportional to the number of
iterations needed by Kleene’s method to converge which depends on the given
semiring. Alternatively, as discussed in [2], one can first build the unweighted
automaton, and then solve the algebraic system explicitly. We give an example
how Newton’s method in combination with Theorem 6 allows to speed this up:

Consider the PDS pA
a−→ pAA, pA

b−→ q, and qA
c−→ p where we have assigned

a unique label (weight) to each rule. The PDS encodes a program which always
starts in the configuration pA, and we expect it to terminate in pε. Termination
in configuration qε is considered to be an error. To simplify debugging, we would
like to have, say the k paths from pa to qε, in particular, these paths should be
short. All paths from pa to pε resp. qε are described by the grammar

X → aXX | aY c and Y → aXY | b.
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We first determine the length of the k shortest paths. To this end, we can col-
lapse the alphabet to a singleton, say ι(a) = ι(b) = ι(c) = z, and compute the
commutative ambiguity of the resulting grammar modulo k = k + 1. The coef-
ficient of zi in cambX resp. cambY then tells us, how many paths (up to k) of
length i lead from pA to pε resp. qε. For simplicity, assume k = 4. By virtue of
Theorem 6 we know that at most n+ 1+ log log k = 4 Newton iterations suffice
to compute camb modulo k = k+1. (For comparison, Kleene’s method can take
up to O(k) iterations, consider e.g. pA → pAA, pA → qA, qA → qε.) This gives
us: cambX = z3 + 2z7 +2z11 +O(z12) and cambY = z + z5 +3z9 +O(z10). The
partial expansion of cambY tells us the four shortest paths from pA to qε consist
of one path of length 1, one path of length 5, and two paths of length 9 each.
For constructing the actual paths, these lengths allows us to early discard paths
which cannot contribute to the k shortest paths. For instance, we can now apply
Kleene’s method and discard after each iteration any path of length at least 10.
This will take 5 iterations until we have discovered enough paths.

On the other hand, by virtue of Theorem 6 we know that we discover a
sufficient number of paths of any given length l when considering only derivation
trees of low dimension. Consider e.g. the restriction of the grammar to derivation
trees of dimension at most one (see Def. 2). Dimension 0 gives us the shortest
path b from pA to qε. The unfolding of the grammar to dimension exactly 1 is:

X̂(1) → aX̂(1)abc | aabcX̂(1) | aabcabc | aŶ (1)c

Ŷ (1) → aX̂(1)b | aabcŶ (1) | aabcb

Applying Kleene iteration now to this unfolded grammar, we only enumerate
trees of dimension 1 with at most 9 leaves. Within two iterations we obtain
enough paths, namely aabcb, (aabc)2b, aaaabcbcb, and aaabcabcb, to answer the
query. Note that a path of the form (aabc)hb has a derivation tree of dimension
1, but of height h+1, i.e. it takes h+1 Kleene iterations on the original grammar
to discover this path. By increasing k, the gap between Newton’s method and
Kleene’s method can thus be made arbitrarily large.

6 Future Work

For proper binary trees, [9] provide a closed form for the number of trees with
n leaves and dimension less than h, i.e. for ν(h)(an−1cn). They show that the
expected dimension of a random binary tree with n leaves is tightly concentrated
around 1/2 log2 n. This implies a much faster convergence of Newton’s method
in the case of GL. We conjecture that a similar result can also be derived for
arbitrary context-free grammars.

In the idempotent case, we can use a result of [21] to obtain for a given
context-free grammar G a Presburger formula of size linear in |G| defining its
Parikh image. It would be interesting, if one could generalize this procedure to
semirings collapsed at k as the result of Sec. 5.1 in general leads to very large
expressions.
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Abstract. A result of Nicaud states that the number of distinct unary
regular string languages recognized by minimal deterministic finite au-
tomata (DFAs) with n states is asymptotically equal to n2n−1. We
consider the analogous question for symmetric difference automata (Z2-
NFAs), and show that precisely 22n−1 unary languages are recognized by
n-state minimal Z2-NFAs.

Keywords: weighted automata, succinctness, non-determinism.

1 Introduction

In contrast to (usual) non-deterministic finite automata (NFAs), which accept a
string if there is at least one path from an initial state of a NFA to a final state,
symmetric difference non-deterministic finite automata (Z2-NFAs) accept strings
which have an odd number of accepting paths. In more abstract terms, Z2-NFAs
are obtained when working over the semiring Z2 (i.e. the integers modulo 2 with
the usual addition and multiplication), instead of the Boolean semiring, as in
the case of (usual) NFAs. Alternatively, one may define Z2-NFAs just as one
defines NFAs, but rather use the symmetric difference set operation (instead
of set union), when determinizing. The language accepted by a Z2-NFA is then
defined to be the language accepted by the deterministic finite automaton (DFA)
obtained when determinizing the Z2-NFA under consideration.

In this paper, minimal Z2-NFAs refer to Z2-NFAs which are minimal in terms
of their number of states. When counting minimal DFAs with n states, one
usually considers only one of the possible n factorial DFAs that are obtained by
relabeling the states of a DFA. In the case of Z2-NFAs, we replace the concept
of relabeling of states by the more general notion of making a change of basis on
a Z2-NFA. Two Z2-NFAs related by a change of basis accept the same language.
It is also the case that if two minimal Z2-NFAs accept the same language, then
they are related by a change of basis. Also, two Z2-NFAs related by a change
of basis are either both or neither minimal. When we refer to counting minimal
n-state Z2-NFAs, we mean that we are counting equivalence classes of minimal
Z2-NFAs, where two Z2-NFAs are equivalent if they are related by a change of
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basis. This is thus equivalent to counting the number of languages recognized by
minimal Z2-NFAs with n states.

In contrast to (usual) NFAs, for which minimization is PSPACE complete,
it is shown in [3], [13] and in the chapter, Rational and Recognizable Power
Series, in [5], that Z2-NFAs can be minimized in cubic time in the number of
states of the Z2-NFA being minimized, or more precisely, in time proportional
to O(|Σ|n3), where Σ is the input alphabet and n is the number of states in the
Z2-NFA being minimized.

In [8], it is shown that minimal Z2-NFAs are closely linked to minimal DFAs,
since if a minimal Z2-NFA is determinized, a minimal DFA is obtained. Minimal
Z2-NFAs can thus be considered as compact representations of minimal DFAs.

In [2] it was shown that, similar to (minimal) DFAs, (minimal) Z2-NFAs can
be learned in polynomial time in the setting of Angluin learning. This is most
likely not the case for NFAs. Thus from the perspective of Angluin learning, it
is interesting to have an indication of how much more succinctly languages can
be represented with Z2-NFAs, compared to DFAs.

We show that the number of distinct unary regular string languages recog-
nized by n-state minimal Z2-NFAs is precisely equal to 22n−1. Thus n-state min-
imal Z2-NFAs recognize asymptotically a factor of 2n/n more languages than
n-state minimal DFAs. We also find that the number of nonempty unary regu-
lar languages recognized by n-state (not necessarily minimal) Z2-NFAs equals
1
3 (2

2n+1−2), which also represents an increase by an exponential factor over the
corresponding number in the DFA case.

The layout of this paper is as follows. In the next section we define Z2-NFAs
and related concepts, and also provide known results for minimal Z2-NFAs re-
quired in the remainder of the paper. Next, we give two normal forms for linearly
accessible (and, therefore, minimal) Z2-NFAs. This is followed by a section with
our results on counting unary Z2-NFAs. Finally we give our conclusions and
suggest avenues for future work.

2 Definitions and Basic Results

One may regard Z2-NFAs as weighted automata over the semiring Z2, but in
order to stay consistent with previous literature on the topic, we define Z2-NFAs
as NFAs for which the symmetric difference set operation is used instead of union
for determinization.

Definition 1. ([12]) A Z2-NFA N is a tuple (Q,Σ, δ, I, F ), where Q is a finite
nonempty set of states, Σ is a finite nonempty input alphabet, I ⊆ Q is a set
of initial states, F ⊆ Q a set of final states, and δ : Q × Σ → 2Q a transition
function.

The transition function δ is extended to δ : 2Q ×Σ → 2Q, by defining δ(P, a) =⊕
q∈P δ(q, a) , for any a ∈ Σ and P ∈ 2Q, where ⊕ denotes the symmetric

difference set operation. We define δ∗ : 2Q × Σ∗ → 2Q by δ∗(P, ε) = P and
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δ∗(P, aw) = δ∗(δ(P, a), w) for any a ∈ Σ, w ∈ Σ∗ and P ∈ 2Q. Through a
standard abuse of notation, we denote δ∗ by δ.

Let N = (Q,Σ, δ, I, F ) be a Z2-NFA and let w be a word in Σ∗. Then N
accepts w if and only if |F ∩ δ(I, w)| mod 2 �= 0, that is, if and only if there is
an odd number of paths for w from an initial state to a final state in N . Note
that this definition of acceptance for Z2-NFAs is equivalent to the definition of
acceptance for weighted automata, with weights from Z2. As usual, the language
recognized by N , denoted by L(N ), is the set of all words accepted by N .

By determinizing N , we get a complete DFA ND, which is defined next.

Definition 2. ([8]) Let N = (Q,Σ, δ, I, F ) be a Z2-NFA. Then the complete
DFA ND = (QD, Σ, δD, q0, F

D), obtained by determinizing N , is defined as
follows:

- QD = {δ(I, w) | w ∈ Σ∗};
- for J ∈ QD ⊆ 2Q, and a ∈ Σ, δD(J, a) = ⊕q∈Jδ(q, a), with δ

D(∅, a) = ∅ for
all a ∈ Σ, if ∅ ∈ QD;

- the start state q0 of ND is the set I;

- the set of final states FD of ND is {K ∈ QD | |K ∩ F | mod 2 �= 0}.

It follows directly from the definition of the function δ : 2Q × Σ∗ → 2Q, that
ND is equivalent to N . From the equivalence of ND and N , and from the fact
that the language recognized by a DFA do not change if we interpret the DFA
as a Z2-NFA, we have that the class of Z2-NFAs recognizes the class of regular
languages.

Example 3. In this example we consider a Z2-NFA N , given in Figure 1, for the
regular expression (a+b)∗b(a+b). By using the determinization procedure given
above, we obtain ND. If we change the Z2-NFA in Figure 1(a), so that q2 is also
an accept state, then the state labeled by {q1, q2, q3} in Figure 1(b) will no longer
be an accept state. In Figure 2 an unambiguous NFA, i.e. an NFA where each
string has at most one accepting path, is given for the language (a+ b)∗b(a+ b).
Note that we may interpret an unambiguous NFA as a Z2-NFA without changing
the language being recognized. It is straightforward to generalize this example
to the class of languages (a + b)∗b(a + b)k, where each positive integer k ≥ 1
gives another language in the class of languages under consideration. For this
class of examples, the minimal DFA for each language has exponentially more
states than a corresponding minimal Z2-NFA (or unambiguous NFA).

We encode the transition function of a unary Z2-NFA N (with Σ = {a}), as a
matrix m(δ(a)) with entries from Z2, as follows:

m(δ(a))ij =

{
1 if qj ∈ δ(qi, a)
0 otherwise,

and successive matrix multiplications over Z2 reflect the subset construction on
N .
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(a)

q1 q2 q3

a a a, b

b a, b

a a

a

(b)

{q1} {q2}

{q3}

{q1, q2, q3}

b

a

b
b

a

b a

a

Fig. 1. (a) Z2-NFA N for the regular expression (a + b)∗b(a + b), and (b) N D, for
Example 3

q1 q2 q3

a, b

b a, b

Fig. 2. an unambiguous NFA for (a+ b)∗b(a+ b), for Example 3

We refer to m(δ(a)) as the transition matrix of N , and the characteristic
polynomial of N is c(N ) = det(m(δ(a))−xI), where I is the identity matrix over
Z2 of the appropriate size.

Assume Q has n-states. By letting q1, q2, . . . , qn be an arbitrary but fixed
ordering on the elements of Q, we encode B ⊆ Q as an n-dimensional row vector
v(B) ∈ Zn

2 , by defining v(B)i = 1 if qi ∈ B, and v(B)i = 0 otherwise.
For any integer k ≥ 0, the matrix product v(I)m(δ(a))k encodes the states

reachable from the initial states after reading ak. From the definition of accep-
tance and standard linear algebra, we have that N accepts ak if and only if
v(I)m(δ(a))kv(F )T = 1, where v(F )T denotes the transpose of the row vector
v(F ). In the case of non-unary Z2-NFAs, we associate a matrix m(δ(a)) to each
symbol a ∈ Σ. Then a word w = a1 . . . ak, with ai ∈ Σ, is accepted if and only
if v(I)m(δ(a1)) . . . m(δ(ak))v(F )

T = 1.
The range of a Z2-NFA N = (Q,Σ, δ, I, F ) is defined as the linear subspace

of 2Q generated by subsets of the form δ(I, w). Recall that we denote by ⊕ the
symmetric difference set operation.

Definition 4. ([8]) The range R(N ) of a Z2-NFA N = (Q,Σ, δ, I, F ) is the set
of subsets of Q of the form δ(I, w1)⊕ . . .⊕δ(I, wk), with w1, . . . , wk ∈ Σ∗, k ≥ 0,
where we assume that for k = 0 we obtain the empty set.

Assume that |Q| = n. Alternatively we can define R(N ) to be the linear subspace
of the vector space Zn

2 generated by

{v(I)} ∪ {v(I)m(δ(w1)) . . .m(δ(wk)) | k ≥ 1 and wi ∈ Σ}.

Definition 5. ([8],[13]) A Z2-NFA N is linearly accessible if R(N ) = 2Q.
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If |Q| = n, then N is linearly accessible if

{v(I)} ∪ {v(I)m(δ(w1)) . . . m(δ(wk)) | k ≥ 1 and wi ∈ Σ}

spans Zn
2 . So if N is unary (with Σ = {a}), N is linearly accessible if (and only

if) {v(I)m(δ(a))k | k = 0, 1, . . . , n− 1} spans Zn
2 , or equivalently, if (and only if)

{v(I)m(δ(a))k | k = 0, 1, . . . , n− 1} is linearly independent.

Definition 6. The mirror image or reverse of a string w = a1 . . . an is the string
wR = an . . . a1. The reverse LR of a language L is defined to be {wR | w ∈ L}.
Definition 7. ([8]) Given a Z2-NFA, N = (Q,Σ, δ, I, F ), we define its reverse
as NR = (Q,Σ, δR, F, I), where q ∈ δR(p, a) if and only if p ∈ δ(q, a).
In terms of vectors and matrices, the initial and final vectors are exchanged, and
the transpose (that is, exchanging rows and columns) of the transition matrices
of N is taken, in order to obtain the initial and final vectors and transition
matrices of NR. Note that

v(I)m(δ(a1)) . . .m(δ(ak))v(F )
T = v(F )m(δ(ak))

T . . .m(δ(a1))
Tv(I)T.

Thus L(NR) = (L(N ))R. For unary Z2-NFAs, L(NR) = L(N ).

Theorem 8. ([13]) A Z2-NFA N is minimal if and only if N and NR are
linearly accessible.

Definition 9. ([7]) Let L be a (regular) language. The left quotient of L by a
word w ∈ Σ∗, is the language w−1L = {x ∈ Σ∗ | wx ∈ L}.
If D is a complete minimal DFA recognizing L, then the right language of every
state of D is a unique left quotient of L, and each left quotient is a right language
of one of the states of D. The index of a regular language L is the number of
states in the complete minimal DFA recognizing L.

The Hankel matrix ([3]) for L ⊆ Σ∗, denoted by H(L), is defined as follows.
Assume that w1, w2, . . . is a fixed ordering on Σ∗. Denote by H(L)i,j ∈ Z2

the entry in column i and row j of the Hankel matrix. Then H(L)i,j := 1 if
wiwj ∈ L, and H(L)i,j = 0 otherwise. Note that the Hankel matrix has infinitely
many rows and columns. The dimension of a language L, denoted by dim(L),
is defined to be the rank of H(L). The number of states in a minimal Z2-NFA
recognizing L, with L �= ∅, is equal to dim(L). The Hankel matrix for the empty
language is the matrix with 0’s in all entries. So since this matrix has rank 0,
we exclude the empty language from our discussions. From [13] we have the
following relationship between dim(L) and index(L):

log2(index(L)) ≤ dim(L) ≤ index(L) .

Definition 10. ([13]) Let N be a n-state Z2-NFA with initial vector v(I), final
vector v(F ), and transition matrices m(δ(a)), for all a ∈ Σ, and let A be an
n × n non-singular matrix with inverse A−1. Then we denote by NA the Z2-
NFA with initial vector v(I)A, final vector (A−1v(F )T)T, and transition matrices
A−1m(δ(a))A, for a ∈ Σ. NA is known as the Z2-NFA obtained from N by
making a change of basis with the non-singular matrix A.
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The Z2-NFAs N and NA are equivalent since:

v(I)m(δ(a1)) . . .m(δ(ak))v(F )
T

= v(I)AA−1m(δ(a1))A . . . A
−1m(δ(ak))AA

−1v(F )T.

It is shown in [13] that if N and N ′ are minimal Z2-NFAs for the same language
L, then we can find a non-singular matrix A such that N ′ = NA. It is important
to note that the properties of being linearly accessible and being minimal are
both preserved when making a change of basis.

3 Normal Forms for Unary Z2-NFAs

In this section, we give two normal forms for linearly accessible unary Z2-NFAs.
Any linearly accessible unary Z2-NFA can be changed into either of these two
normal forms by making an appropriate change of basis.

The companion matrix of the polynomial f(x) = a0 + a1x + a2x
2 + · · · +

an−1x
n−1 + xn ∈ Z2[x], is defined as

C(f) :=

⎡⎢⎢⎢⎢⎣
0 1 0 0 . . . 0
0 0 1 0 . . . 0
. . .
0 0 0 0 . . . 1
a0 a1 . . . an−1

⎤⎥⎥⎥⎥⎦ .

(Note for n = 1, this matrix is of the form [a0].)
We summarize some commonly known properties of such matrices as they

will be used in the sequel. For proofs we refer the reader to [6], in which the
transpose of our companion matrix form is used.

Theorem 11.

(a) The characteristic polynomial of the companion matrix C(f) is f , and this
is also the minimal polynomial of C(f).

(b) An n × n matrix B is similar to the companion matrix of its characteristic
polynomial, i.e. C−1BC, for some non-singular matrix C, is equal to the
companion matrix of the characteristic polynomial of B, if and only if the
characteristic polynomial of B equals the minimal polynomial of B.

(c) An n × n matrix B is similar to the companion matrix of its characteristic
polynomial if and only if {v, vB, vB2, . . . , vBn−1} is linearly independent for
some vector v.

In the first normal form, in Theorem 12 below, the initial state vector v(I) is of
the form e1 := [1, 0, 0, . . . , 0], and the transition matrix m(δ(a)) equals C(c(N )),
where c(N ) is the characteristic polynomial of the transition matrix of N . Writ-
ing c(N ) as a product of powers of distinct irreducible factors, pr11 p

r2
2 . . . prkk , then

Theorem 13 below gives a second normal form for a linearly accessible Z2-NFA
N as the disjoint union of k Z2-NFAs Ni, for i = 1, . . . , k, where each Ni has
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an initial state vector of the form [1, 0, 0, . . . , 0], and transition matrix equal to
C(prii ). It should be noted that the argument used in the proof of Theorem 12
below follows, among other places, from the algorithm given in [13] to obtain
an equivalent linearly accessible weighted automata (with weights from a field)
from any given weighted automaton. Although it is possible to extend the first
normal to the non-unary case, we will not present this more general case since
our main focus in the remainder of this paper is on unary Z2-NFAs.

Theorem 12. Any linearly accessible unary Z2-NFA N , is equivalent, under a
change of basis, to a Z2-NFA with initial state vector v(I) = e1 and transition
matrix C(c(N )), where c(N ) is the characteristic polynomial of the transition
matrix of N .

Proof. Given a linearly accessible n-state Z2-NFA N , we let A be a non-singular
matrix such that v(I)A = e1. Then NA, i.e. the Z2-NFA obtained by making
a change of basis using A, has initial state vector e1. Now consider the first
row [t11t12 . . . t1n] of the transition matrix of NA. Since this Z2-NFA is linearly
accessible, there must exist some largest index j1 > 1 for which t1j1 = 1. If j1 = 2
then do nothing; otherwise, for k = 1, . . . , j1 − 1, apply to the transition matrix
in succession the elementary column operation that replaces column k (which
we denote by Ck) with Ck + t1k · Cj1 . Now interchange Cj1 with C2 to obtain
a first row equal to e2. Observe that pre-multiplying the resulting transition
matrix by the inverse of the product of matrices resulting from these operations
does not affect row 1 since: a) pre-multiplying by the inverse of replacing Ck

with Ck + t1k · Cj1 is equivalent to replacing Rj1 with Rj1 + t1k · Rk, and b)
pre-multiplying by the inverse of interchanging Cj1 with C2 is equivalent to
interchanging row j1, Rj1 , with R2. If n = 2, we are done; otherwise consider
in succession, for i = 2 . . . n − 1, row i, given by [ti1ti2 . . . tin], of the resulting
transition matrix. By the linearly accessibility of the Z2-NFA, there must exist
some largest index ji > i for which tiji = 1. If ji = i + 1 then do nothing;
otherwise, for k = 1 . . . ji − 1, apply to the transition matrix in succession the
elementary column operation that replaces column k with Ck + tik · Cji . Now
interchange Cji with Ci+1 to obtain a transition matrix with row i equal to ei+1.
Observe that pre-multiplying the resulting transition matrix by the inverse of
the product of matrices resulting from these operations does not affect row i,
and that none of the elementary column operations used affects e1, so that the
result follows. ��

Since by making a change of basis on a Z2-NFA, we do not change the property of
being (or not being) linearly accessible, and since Z2-NFAs of the form specified
in the theorem above are linearly accessible, we have that a Z2-NFA N is linearly
accessible if and onlyNA, for some non-singular matrix A, is of the form specified
in the theorem above.

Note that the fact that for a linearly accessible unary Z2-NFA N , we can find
a non-singular matrix A such that the transition matrix of NA is a companion
matrix, follows directly from the definition of being linearly accessible and from
(c) in Theorem 11 above, but to ensure that both the initial state vector of NA
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is equal to e1 and the transition matrix of NA is a companion matrix, requires
more of an argument.

Theorem 13. Any linearly accessible n-state unary Z2-NFA, is equivalent, un-
der a change of basis, to a disjoint union of Z2-NFAs, each having an initial state
vector of the form [1, 0, 0, . . . , 0], and a transition matrix which is a companion
matrix of a polynomial that is a power of a different irreducible polynomial.

Proof. For square matrices A1, A2, . . . , Ak, each of size nl×nl, for l = 1, 2, . . . , k,
we denote by A1 ⊕ A2 ⊕ . . . ⊕ Ak the n × n matrix (n = n1 + n2 + . . . + nk),
with the matrices A1, A2, . . . , Ak as blocks on the diagonal of A, and all other
entries of A equal to 0. Let N be a linearly accessible Z2-NFA, and assume
that c(N ), the characteristic polynomial of N , factorizes into distinct irreducible
polynomials pi with exponents ri as follows: p

r1
1 p

r2
2 . . . prkk . Then from the Chinese

remainder theorem for companion matrices (Theorem 5.31 in [10]), it follows that
B−1C(f)B = C(pr11 ) ⊕ C(pr22 ) ⊕ . . . ⊕ C(prkk ), for some non-singular matrix B.
Thus NB has transition matrix C(pr11 ) ⊕ C(pr22 ) ⊕ . . . ⊕ C(prkk ), and we may
regard NB as the disjoint union of k Z2-NFAs, each having a characteristic
polynomial which is the power of a different irreducible polynomial in Z2[x].
Each of these k Z2-NFAs must be linearly accessible, otherwise N would not be
linearly accessible. Theorem 12 can now be used to put each of these k Z2-NFAs
in the normal form specified in Theorem 12. ��

Example 14. In this example we list all minimal (non-equivalent) unary Z2-NFAs
(over the alphabet {a}), in the normal forms given above, with one and with two
states. For this example, it is only the case where c(N ) = x(x + 1), in which
the normal form of Theorem 13 leads to more than one Z2-NFA in the disjoint
union, and where we thus have a difference between the two normal forms.

Minimal Z2-NFAs, in normal form, with one state:
Case 1: A single state, which is both an initial state and final state with no

transitions. This Z2-NFA recognizes {ε}.
Case 2: A single state, which is both an initial state and final state, with a

transition from the state to itself. This Z2-NFA recognizes Σ∗.
Next we consider 2-state minimal Z2-NFAs. To verify that these Z2-NFAs are

minimal, one can either verify that their Hankel matrices have rank 2, or one can
check that they do not recognize the empty language or any of the two languages
listed for the 1-state minimal Z2-NFAs above. Recall that for Z2-NFAs in the
normal form of Theorem 12, we assume that only state 1 is initial, and that the
transition matrices are of the form[

0 1
a0 a1

]
.

So for each possible choice of a0, a1, we have to check which of the 4 possible
choices of final states will lead to a minimal Z2-NFA. Since we have to pick at
least some final states (otherwise the empty language will be recognized), we
have in fact only three possible choices to consider.
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Let c(N ) = 1+ x+ x2, then we have 3 minimal Z2-NFAs. Number the states
as 1 and 2. With this choice of c(N ), a0 = 1, a1 = 1, and the Z2-NFAs under
consideration will have 1 as initial state, and transitions 1 → 2, 2 → 1, 2 → 2.
If only 1 is final, the language {ε, a2, a3, a5, a6, a8, . . .} is recognized. If only 2 is
final, the language {a, a2, a4, a5, a7, a8, . . .} is recognized. If 1 and 2 are final, the
language {ε, a, a3, a4, a6, a7, . . .} is recognized.

Now let c(N ) = 1 + x2 = (1 + x)2, then we have 2 minimal Z2-NFAs. Again
1 is initial, and given the choice of c(N ), we have transitions 1 → 2, 2 → 1. If
only 1 is final, the language {ε, a2, a4, a6, . . .} is recognized. If only 2 is final, the
language {a, a3, a5, . . .} is recognized. Note that if we make both 1 and 2 final,
Σ∗ is recognized, but this language can also be recognized by a 1-state Z2-NFA,
so this 2-state Z2-NFA, with both states final, is not minimal.

Now let c(N ) = x+x2 = x(1+x), then we have only one minimal automaton.
Again 1 is initial. Given c(N ), we have transitions 1 → 2, 2 → 2. It is only the
case where 2 is final (and 1 is not final), that we obtain a minimal Z2-NFA. This
minimal Z2-NFA recognizes {a, a2, a3, a4, . . .}. Note that the disjoint union of
the two 1-state minimal Z2-NFAs also recognizes this language.

Finally, let c(N ) = x2. In this case we have two minimal Z2-NFAs. Again 1
is initial. Given c(N ), we have a transition 1 → 2. If 2 is final, the language {a}
is recognized. If 1 and 2 are final, the language {ε, a} is recognized. If only 1 is
final, the language {ε} is recognized, but this language can also be recognized
by a 1-state Z2-NFA.

4 Results on Counting Unary NFAs

Denote by F	,Z2(n) the number of distinct languages on an alphabet of size �
recognized by minimal Z2-NFAs with n states. Similarly, denote by G	,Z2(n) the
number of distinct nonempty languages on an alphabet of size � recognized by
(not necessarily minimal) Z2-NFAs with n states. We show that F1,Z2(n) = 22n−1

and that, consequently, G1,Z2(n) =
1
3 (2

2n+1 − 2).
In this section, “normal form” refers to the normal form for linearly accessible

unary Z2-NFAs given in Theorem 12.
The next result is used in Theorem 16 to show that if two minimal unary

Z2-NFA have different normal forms, then they recognize different languages.
For a Z2-NFA N = (Q,Σ, δ, I, F ), we denote the Z2-NFA (Q,Σ, δ, I, F ′) by

NF ′

Proposition 15. LetN be a linearly accessible Z2-NFA. Then L(NF1) �= L(NF2)
for F1 �= F2.

Proof. SinceN is linearly accessible, there exists a wordw = w1 . . . wk ∈ Σ∗ such
that v(I)m(δ(w1)) . . .m(δ(wk))v(F1)

T �= v(I)m(δ(w1)) . . .m(δ(wk))v(F2)
T . ��

Theorem 16. Assume N and N ′ are different minimal unary Z2-NFAs in nor-
mal form. Then L(N ) �= L(N ′).
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Proof. We give a proof by contradiction. Assume N and N ′ are in normal form
with L(N ) = L(N ′). Since N and N ′ are minimal, and L(N ) = L(N ′), we
have from [13] that N ′ = NA, for some non-singular matrix A. But since the
characteristic polynomial of a matrix does not change if we make a change of
basis, we have that c(N ) = c(N ′), and thus from Theorem 11 (c), N and N ′

have equal transition matrices. Since Proposition 15 implies that N and N ′ must
also have equal final states, the result follows. ��
We now recall some concepts from ring and module theory that will be used
in the next theorem. Let R be an associative ring. Then we denote the set of
multiplicative units in R by U(R). In our case, R will be of the form Z2[x]/〈f〉,
the quotient ring of the polynomial ring Z2[x] modulo the ideal generated by a
polynomial f ∈ Z2[x]. Recall that 〈f〉 simply consists of all multiples of f by
elements of Z2[x] and that the elements of Z2[x]/〈f〉 are all cosets of the form
g + 〈f〉, where g can be taken to have degree less than the degree of f . The set
Z2[x]/〈f〉 has the structure of a ring when endowed, for g1, g2 ∈ Z2[x], with the
addition operation (g1+〈f〉) + (g2+〈f〉) = (g1+g2)+〈f〉 and the multiplication
operation (g1 + 〈f〉) ∗ (g2 + 〈f〉) = (g1g2) + 〈f〉, where g1g2 may be replaced by
the remainder of g1g2 upon division by f . Thus g1 + 〈f〉 is a unit of Z2[x]/〈f〉 if
there exists an element g2 + 〈f〉 for which the remainder of g1g2 upon division
by f is 1.

Given an associative ring R with identity 1R, an abelian group M is a right
R-module if there is a (scalar) multiplication map μ : M × R → M given via
(m, r)μ = mr and satisfying: for all m,n ∈ M and all r, s ∈ R, 1) (m + n)r =
mr + nr, 2) m(r + s) = mr +ms, 3) m(rs) = (mr)s, and 4) m1R = m. Similar
to the situation for rings, a quotient module M/S may be constructed for a
submodule S of M by defining multiplication and addition for the set of all
cosets of the form m + S, where m ∈ M , as follows: for r ∈ R, m,n ∈ M ,
(m+S) ·r = mr+S and (m+S)+(n+S) = (m+n)+S. The first isomorphism
theorem for modules states that, given a homomorphism φ : M → N between
right R-modules M and N , the image of φ is isomorphic to the quotient module
M/ ker(φ), where ker(φ) is the submodule of all elements of M sent to 0N by φ.
In particular, if φ is onto, N is isomorphic toM/ ker(φ). The reader may refer to
[1] for more basic information about rings, quotients, modules, and isomorphism
theorems.

In the next result we determine how many choices for final states in a unary
linearly accessible Z2-NFA will lead to a minimal Z2-NFA.

Theorem 17. Let N = (Q, {a}, δ, I, F ) be a linearly accessible unary Z2-NFA.
Then {NF ′ | F ′ ⊆ Q and NF ′ is minimal } and U(Z2[x]/〈c(N )〉) have the same
cardinality.

Proof. Since N is linearly accessible, the minimal polynomial of N is also equal
to c(N ). Also, from Theorem 8, NF ′ is minimal if and only if (NF ′)R is linearly
accessible. Note that (NF ′)R has initial states F ′ and transition matrixm(δ(a))T .
We have that (NF ′)R is linearly accessible if and only if the vectors

v(F ′), v(F ′)m(δ(a))T , v(F ′)(m(δ(a))T )2, . . . , v(F ′)(m(δ(a))T )n−1
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spans Zn
2 , or equivalently, if these vectors are linearly independent. Since a matrix

and its transpose have the same characteristic and minimal polynomial, the
characteristic and minimal polynomial of m(δ(a))T are also equal to c(N ). Thus
from Theorem 11 we can find at least one set F̂ ⊆ Q, such that

v(F̂ ), v(F̂ )m(δ(a))T , v(F̂ )(m(δ(a))T )2, . . . , v(F̂ )(m(δ(a))T )n−1

spans Zn
2 . Now consider (Z2)

n as a right Z2[x]-module, where v.r (v in (Z2)
n,

r in Z2[x]) is defined such that v.x = vm(δ(a))T . Thus since (Z2)
n is spanned

by the n vectors v(F̂ ), v(F̂ )m(δ(a))T , v(F̂ )(m(δ(a))T )2, . . . , v(F̂ )(m(δ(a))T )n−1,
the modules (Z2)

n and Z2[x]/〈c(N )〉 are isomorphic as right Z2[x]-modules.
Note that (NF ′)R is linearly accessible if and only if v(F ′) is a generator for the

Z2[x]-module Zn
2 . Thus the number of possible choices of F ′, such that (NF ′)R is

linearly accessible, is equal to the number of units in the factor ring Z2[x]/〈c(N )〉,
since g + 〈c(N )〉 is a generator for the right Z2[x]-module Z2[x]/〈c(N )〉 if and
only if g + 〈c(N )〉 is a unit in the factor ring Z2[x]/〈c(N )〉. ��

Theorem 18. For n ≥ 1, F1,Z2(n) = 22n−1. Thus G1,Z2(n) =
1
3 (2

2n+1 − 2).

Proof. By Theorem 16 we have that F1,Z2(n) equals the number of minimal
unary n-state Z2-NFAs in normal form. Let f ∈ Z2[x] be a polynomial of degree
n. Then from Theorem 17, the number of minimal Z2-NFAs with transition
matrix C(f), and thus the number of minimal unary n-state Z2-NFAs in normal
form with characteristic polynomial f , is equal to the cardinality of U(Z2[x]/〈f〉).
Thus F1,Z2(n) =

∑
deg(f)=n | U(Z2[x]/〈f〉) |. For a polynomial f of degree n,

define Φ(f) as the number of polynomials in Z2[x] of degree less than n that
are relatively prime to f . Then from the definition of being relatively prime, we
have that Φ(f) equals | U(Z2[x]/〈f〉) |. Observing that all nonzero polynomials
in Z2[x] are monic and taking q = 2 in Proposition 2.71 of [11] then yields
the result: F1,Z2(n) =

∑
deg(f)=n | U(Z2[x]/〈f〉) |=

∑
deg(f)=n Φ(f) = 22n−1. It

follows that G1,Z2(n) =

n∑
j=1

F1,Z2(j) =
1

3
(22n+1 − 2). ��

5 Conclusions and Future Work

Comparing our result with Nicaud’s result in [9], which shows the number of
distinct unary languages recognized by minimal DFAs with n states to be asymp-
totically equal to n2n−1, we find that n-state minimal Z2-NFAs recognize asymp-
totically a factor of 2n/n more unary languages than their n-state minimal DFA
counterparts. Since it is also shown in [4] that the number of distinct unary
languages recognized by n-state DFAs is asympotically equal to n2n, n-state
Z2-NFAs recognize an exponential factor more unary languages than their n-
state DFA counterparts. Also, if we denote by G	,B(n) the number of distinct
nonempty languages on an alphabet of size � recognized by (not necessarily

1 We would like to thank Stephan Wagner for pointing out this result from [11].
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minimal) NFAs (or, equivalently, weighted automata over the Boolean semiring)
with n states, we have from [4] that G1,B(1) = 2, G1,B(2) = 8, G1,B(3) = 28,
G1,B(4) = 87 and G1,B(5) = 268. It is interesting to compare these numbers
to G1,Z2(1), . . . , G1,Z2(5), since G1,Z2(1) = G1,B(1), and G1,Z2(n) > G1,B(n) for
n = 2, . . . , 5, with the ratios G1,Z2(n)/G1,B(n) also increasing for n = 1, . . . , 5.

We note that it is possible to extend our results to automata over any finite
field, though it is not clear how interesting it is to consider weighted automata
over other finite fields than Z2. Avenues for future investigations include extend-
ing our results to the non-unary case as well as to tree automata.
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Abstract. In the recent years, interval temporal logics are emerging as
a workable alternative to more standard point-based ones. In this paper,
we establish an original connection between these logics and ωB-regular
languages. First, we provide a logical characterization of regular (resp.,
ω-regular) languages in the interval logic ABB̄ of Allen’s relations meets,
begun by, and begins over finite linear orders (resp., N). Then, we lift
such a correspondence to ωB-regular languages by substituting ABB̄Ā
for ABB̄ (ABB̄Ā is obtained from ABB̄ by adding a modality for Allen’s
relation met by). In addition, we show that new classes of extended
(ω-)regular languages can be naturally defined in ABB̄Ā.

1 Introduction

In this paper, we establish an original connection between interval temporal log-
ics (ITLs) and various classes of regular languages of finite and infinite words.
In particular, we show that ω-regular languages extended with boundedness can
be defined in the interval logic ABB̄Ā. ITLs provide a general framework for
representing and reasoning about time, where standard (point-based) temporal
logics can be recovered as suitable syntactic fragments. ITLs are characterized
by high expressiveness and high computational complexity. One of the first ITLs
proposed in the literature is Moszkowski’s Propositional ITL (PITL), which has
been successfully applied to the specification and verification of hardware com-
ponents [14]. The application of interval-based formalisms to temporal reasoning
in AI was investigated in [1]. Allen’s Interval Algebra allows one to reason about
all possible temporal relations between two (non-point) intervals in a linear or-
der. A systematic logical study of interval reasoning started with Halpern and
Shoham’s work on the logic HS featuring one modality for each Allen’s relation
[9]. While decidability is a common feature of point-based temporal logics, un-
decidability rules over ITLs. The first such undecidability results were obtained
for PITL by Moszkowski in [14]. General undecidability results for HS are given
in [9] and further sharpened in [10]. For a long time, these results have discour-
aged the search for practical applications and further theoretical investigation
on ITLs. This bleak picture started lightening up in the last few years when
various non-trivial decidable fragments of HS have been identified [5–7, 11–13].

In this paper, we explore the relationships between ITLs and regular lan-
guages of finite and infinite words. While the consensus on what features regular

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 431–443, 2013.
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languages of finite words must exhibit is unanimous (it largely relies on Myhill-
Nerode characterization of these languages), the notion of regular ω-languages is
somehow controversial. Recent work by (among others) Bojańczyk and Colcom-
bet shows that ω-languages can be extended in various meaningful ways, pre-
serving their decidability and closure properties [2–4]. As an example, extended
ω-languages make it possible to constrain the distance consecutive occurrences
of a given symbol to be (un)bounded, a property of interest in the specification of
reactive systems. In the following, we provide a temporal logic characterization
of ω-regular languages with boundedness (ωB-regular languages) and of some
variants of them. We first show that regular (resp., ω-regular) languages can be
defined in the interval logic ABB̄ of Allen’s relations meets, begun by, and begins
over finite linear orders (resp., N). Then, we lift such a correspondence to ωB-
regular languages by adding a modality 〈Ā〉, corresponding to Allen’s relation
met by, to ABB̄. The distinctive feature of the proposed solution is that extended
ω-languages can be encoded in the resulting logic ABB̄Ā without resorting to
any counter, that is, checking the satisfaction of conditions like boundedness in
ABB̄Ā does not require the precision in length measurements given by counters.

The paper is organized as follows. Section 2 introduces syntax and semantics
of ABB̄ and ABB̄Ā, and we provide basic notation, tools, and results. Section
3 defines an encoding of finite and ω-regular languages into ABB̄ over finite
linear orders and N, respectively. Section 4 extends the encoding to ωB-regular
languages, and beyond, by replacing ABB̄ by ABB̄Ā. Section 5 shows that a
decidable fragment of ABB̄Ā suffices for checking (non)emptiness.

2 The Interval Temporal Logics ABB̄ and ABB̄Ā

In this section, we give syntax and semantics of ABB̄ and ABB̄Ā, and we sum-
marize known (un)decidability results for them. Then, we provide an alternative
interpretation of them over labeled grid-like structures.

Syntax and Semantics. ABB̄ features three modalities 〈A〉, 〈B〉, and 〈B̄〉
corresponding to Allen’s relations A (meets), B (begun by), and B̄ (begins), re-
spectively. Formally, given a set Prop of proposition letters, formulas of ABB̄
are built up from Prop using the Boolean connectives ¬ and ∨ and the
modalities 〈A〉, 〈B〉, 〈B̄〉. As usual, we make use of shorthands like ϕ;

1 ∧ ϕ2

for ¬(¬ϕ1 ∨ ¬ϕ2), [A]ϕ for ¬〈A〉¬ϕ, [B]ϕ for ¬〈B〉¬ϕ, [B̄]ϕ for ¬〈B̄〉¬ϕ, 7
for p ∨ ¬p, and ⊥ for p ∧ ¬p, with p ∈ Prop. We interpret formulas of ABB̄
in interval temporal structures over N endowed with the relations A, B, and B̄.
We identify any given ordinal N ≤ ω with the prefix of length N of N and we
accordingly define I(N) as the set of all closed intervals [i, j], with i, j ∈ N and
i ≤ j. A special role will be played by point-intervals (intervals [i, i], for each
i ∈ N) and unit-intervals (intervals [i, i+1]), which are captured by the formulas
π = [B]⊥ and unit = [B][B]⊥, respectively. For any pair [i, j], [i′, j′] ∈ I(N), A,
B, and B̄ are defined as follows (B̄ is the inverse relation of B): (i) [i, j] A [i′, j′]
iff j = i′, (ii) [i, j] B [i′, j′] iff i = i′ and j′ < j, and (iii) [i, j] B̄ [i′, j′] iff i = i′
and j < j′. The (non-strict) semantics of ABB̄ is given in terms of interval
models M = 〈I(N), A,B, B̄, V 〉, where V : I(N) → P(Prop) is the valuation
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function that assigns to every [i, j] ∈ I(N), the set of proposition letters V ([i, j])
that are true on it. The truth of an ABB̄-formula over [i, j] in M is defined as
follows:

(i) M, [i, j] |= p iff p ∈ V ([i, j]), for all p ∈ AP ;

(ii) M, [i, j] |= ¬ψ iff it is not the case that M, [i, j] |= ψ;

(iii) M, [i, j] |= ϕ ∨ ψ iff M, [i, j] |= ϕ or M, [i, j] |= ψ;

(iv) M, [i, j] |= 〈X〉ψ iff there exists an interval [i′, j′] such that [i, j] X [i′, j′], and
M, [i′, j′] |= ψ, for X ∈ {A,B, B̄}.

Given M = 〈I(N), A,B, B̄, V 〉 and ϕ, we say that M satisfies ϕ if there is [i, j]
in I(N) such thatM, [i, j] |= ϕ. Wlog, we may assume i = 0 (initial satisfiability).
We say that ϕ is satisfiable if there exists an interval model that satisfies it.
ABB̄ can be viewed as the join of two simpler HS fragments, namely, BB̄ and

A. Decidability of BB over N (and over finite linear orders) can be easily shown
by embedding it into the (point-based) temporal logic of linear time LTL[F, P ]
[8]; decidability of A follows from the expressive completeness of AA with respect
to the two-variable fragment of first-order logic for binary relational structures
over N (and over finite linear orders) [6]. ABB̄ retains the simplicity of its con-
stituents, but it improves a lot on their expressive power. ABB̄ is expressive
enough to model inherently interval-based conditions like accomplishments, to
encode the standard until operator of linear temporal logic LTL, and to con-
strain interval length [13]. Such an increase in expressiveness is achieved at the
cost of an increase in complexity: BB and A are respectively NP-complete and
NEXPTIME-complete, while ABB̄ is EXPSPACE-complete [13].

To cope with more expressive finite and ω-regular languages, we replace ABB̄
by ABB̄Ā, which features an additional modality 〈Ā〉 corresponding to Allen’s
relation met by. For every pair [i, j], [i′, j′] ∈ I(N), the relation Ā is defined as
follows: [i, j] Ā [i′, j′] iff j′ = i. The semantics is the same, but for the insertion of
{Ā} in {A,B, B̄} in clause (iv). The addition of 〈Ā〉 to ABB̄ drastically changes
the characteristics of the logic [12]. Decidability is preserved if it is interpreted
over finite linear orders, but the satisfiability problem is not primitive recursive
anymore, and the addition of any other modality from HS repository (except for
the modalities for Allen’s relations before and after, which are definable in AA)
yields undecidability. It becomes undecidable over N (in fact, over any class of
infinite Dedekind-complete linear orders).

Compass Structures. ABB̄Ā (and its fragment ABB̄) can be interpreted
over grid-like structures (the so-called compass structures [15]) by exploiting the
natural bijection between intervals I = [x, y] and points p = (x, y) of an N ×N
grid such that x ≤ y (octant). As an example, Figure 1 depicts four intervals
I0, .., I3, I4 such that I0 A I1, I0 Ā I2, I0 B I3, and I0 B̄ I4, together with
the corresponding points p0, .., p3, p4 of a discrete grid (relations A, Ā, B, and B̄
between pairs of intervals are mapped to corresponding spatial relations between
pairs of points; for the sake of readability, we name the latter as the former ones).

Let M be an interval model and ϕ be an ABB̄Ā formula. We pair intervals
in M with the sets of subformulas of ϕ they satisfy. Let the closure Cl(ϕ) of
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Fig. 1. A compass structure

ϕ be the set of all subformulas of ϕ and of their negations (we identify ¬¬α
with α, ¬〈A〉α with [A]¬α, etc.), and let the extended closure Cl+(ϕ) be Cl(ϕ)
extended with all formulas of the forms 〈R〉α and ¬〈R〉α, with R ∈ {A,B, B̄, Ā}
and α ∈ Cl(ϕ). A ϕ-atom is a nonempty set F ⊆ Cl+(ϕ) such that (i) for each
α ∈ Cl+(ϕ), α ∈ F iff ¬α �∈ F and (ii) for each γ = α ∨ β ∈ Cl+(ϕ), γ ∈ F iff
α ∈ F or β ∈ F . We denote by Aϕ the set of all ϕ-atoms. The cardinalities of
Cl(ϕ) and Cl+(ϕ) are linear in the number |ϕ| of subformulas of ϕ, while that
of Aϕ is at most exponential in |ϕ|. Let F ∈ Aϕ. For each R ∈ {A,B, B̄, Ā},
we denote by ReqR(F ) the set of all formulas α ∈ Cl+(ϕ) such that 〈R〉α ∈ F ;
moreover, we denote by Obs(F ) the set of all formulas α ∈ Cl+(ϕ) such that
α ∈ F . Making use of these sets, we define two basic relations between pairs of
atoms F and G: (i) F A−→G iff ReqA(F ) = Obs(G) ∪ ReqB(G) ∪ ReqB̄(G)
and Obs(F ) ⊆ ReqĀ(G), and (ii) F B−→G iff Obs(F ) ∪ Req B̄(F ) ⊆ Req B̄(G),
Req B̄(G) ⊆ Obs(F ) ∪ ReqB̄(F ) ∪ ReqB(F ), Obs(G) ∪ ReqB(G) ⊆ ReqB(F ),
and ReqB(F ) ⊆ Obs(G) ∪ ReqB(G) ∪ Req B̄(G).

Definition 1. Let ϕ be an ABB̄Ā formula. A (consistent and fulfilling) labeled
compass (ϕ-)structure of length N ≤ ω is a tuple G = (P(N), A,B, B̄, Ā,L),
where P(N) = {(x, y) : 0 ≤ x ≤ y < N} and L : P(N) �→ Aϕ such that (i) for
every p, q ∈ P(N) and R ∈ {A,B}, if p R q, then L(p) R−→L(q) ( consistency),
and (ii) for every p ∈ P(N), R ∈ {A, Ā, B, B̄}, and ϕ ∈ ReqR

(
L(p)

)
, there is

q ∈ P(N) such that p R q and ϕ ∈ Obs
(
L(q)

)
( fulfillment).

We say that a labeled compass structure G features a formula ϕ if there is
p ∈ P(N) such that ϕ ∈ L(p). The following theorem holds.

Theorem 2. An ABB̄Ā formula ϕ is satisfiable iff it is featured by some labeled
compass structure.

3 Encoding Finite and ω-Regular Languages in ABB̄

Given a finite alphabet Σ, regular expressions R over Σ are defined as follows:
R ::= a | R+R | R ·R | R∗, with a ∈ Σ. Each regular language can be captured
by a regular expression, and vice versa. Similarly, ω-regular expressions O over
Σ are defined as follows: O ::= O+O | R·O | Rω, where R is a regular expression.
Each ω-regular language can be expressed by an ω-regular expression, and vice
versa. To determine an ABB̄ counterpart ψR (resp., ψO) of a regular (resp., ω-
regular) expression R (resp., O), we add a proposition letter a to Prop for each
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a ∈ Σ (hereafter, we assume the empty word ε to be included in Σ). Then, we
force proposition letters in Σ to hold over unit-intervals only, and we constrain
each unit interval to satisfy one and only one proposition letter in Σ. These
conditions can be imposed by means of the following ABB̄ formula (where [G]ϕ
is a shorthand for [B]ϕ ∧ ϕ ∧ [B̄]ϕ ∧ [B][A]ϕ ∧ [A][A]ϕ–universal modality):

ψΣ = [G](( unit ↔
∨
a∈Σ

a) ∧
∧
a∈Σ

(a→
∧

a′∈Σ\{a}
¬a′)).

Let R be a regular expression and let L(R) be the language it defines. R can be
given a tree structure, whose leaves and internal nodes belong to Σ and {+, ·,∗ },
respectively. Each (sub)tree identifies a (sub)expression of R. Let e1, .., en be
the n distinct (sub)expressions of R, including elements in Σ. For each ei, we
introduce a distinct proposition letter expri. We assume {expr1, .., exprn}∩Σ =
∅. Unlike proposition letters inΣ, expr1, .., exprn are not constrained to hold over
unit-intervals only. In addition, for each ei, we introduce an auxiliary proposition
letter exprendi such that (i) exprendi holds only at point-intervals, and (ii) if expri
holds over an interval, then exprendi holds at the right endpoint of such an interval
and it does not hold at any point-interval strictly included in it. For i = 1, .., n,
the relationship between expri and expr

end
i is forced by the following formula:

ψend
expri = [G]((exprend

i → π) ∧ (expri → (〈A〉exprend
i ∧ ¬〈B〉〈A〉exprend

i ))).

Finally, for i = 1, .., n,, we constrain the relationships between expri-intervals
(intervals over which expri holds) by the following formula:

ψ �∩
expri = [G](expri → [B]¬expri ∧ ¬〈B〉〈A〉expri).

For any expri-interval [i, j], ψ
�∩
expri prevents any other expri-interval to start at

k, with i ≤ k < j. ψ �∩
expri will play a crucial role in the encoding of · and ∗.

Let us assume e1, .., en to be ordered according to their complexity (with
en = R). The formula ψR is built as follows. First, we state that exprn holds over
an initial interval [0, j]. Then, we encode the relationships between the various
(sub)expressions in terms of relationships between the corresponding proposition
letters. Such an encoding is inductively defined as follows.

Base case. If ei = a, for some a ∈ Σ, we put ψexpri = [G] (expri ↔ a).

Inductive case.
Let ei = ej + ek. We constrain the relationships between expri, exprj , and

exprk by means of the ABB̄-formula ψexpri = [G] (expri → exprj ∨ exprk).
Let ei = ej · ek. We distinguish among three cases, namely, (i) both strings

are equal to the empty string ε, (ii) ej may be equal to ε, while ek is not, and
(iii) ek is equal to ε. The three disjuncts of the consequent of the implication in
the following ABB̄-formula capture the three above cases:

ψexpri = [G](expri → (exprj ∧ exprk) ∨ 〈B〉(exprj ∧ 〈A〉(exprk ∧ 〈A〉exprend
i ))

∨(exprj ∧ 〈A〉(π ∧ exprk))).

Notice that, since a given ei may occur multiple times in R, the corresponding
proposition letter expri may be involved in more than one formula ψexprh . As a
consequence, expri can belong to the valuation of various intervals of the model.
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Formula ψ �∩
expri forces these intervals not to overlap: either they meet each other

or they are disjoint. Such a constraint guarantees that exprendi (in the second
disjunct of the consequent of the above implication) is correctly associated with
the right endpoint of the interval over which expri is interpreted.
Let ei = e∗j . We distinguish three cases depending on the number of occurrences
of ej , namely, zero, one, or more than one. The three disjuncts of the consequent
of the implication in the following ABB̄-formula capture the three above cases:

ψexpri = [G](expri → π ∨ exprj ∨ (〈B〉(¬π ∧ exprj) ∧
[B](〈A〉exprend

j → 〈A〉(¬π ∧ exprj)) ∧ 〈A〉exprend
j )).

Let us consider the third disjunct of the consequent of the outermost implication,
that deals with the case of sequences of two or more occurrences of ej . Since the
expri-interval [i, j] is finite and any (not punctual) exprj -interval starts at a
point k, with i ≤ k < j, finiteness of the sequence of exprj-intervals immediately
follows. The last conjunct, together with formula ψ �∩

exprj , constrains the last
element of the sequence to end at j.

Let ψR be the following formula:

ψR = exprn ∧ [A]⊥ ∧
∧

1≤i≤n

ψexpri ∧
∧

1≤i≤n

ψend
expri

∧
∧

1≤i≤n

ψ �∩
expri

.

Theorem 3. Let R be a regular expression over Σ. L(R) is equal to the set of
finite interval models of the ABB̄ formula ψR ∧ ψΣ restricted to unit-intervals
and proposition letters in Σ.

Proof. (sketch) Let M = 〈I(N), A,B, B̄, V 〉, with N < ω, be an interval model,
and let wΣ

M be the word obtained from M by restricting it to unit-intervals and
proposition letters in Σ, that is, ∀a ∈ Σ ∀i ≤ N(wΣ

M[i] = a↔ Σ∩V ([i, i+1]) =
{a}). We first show that M, [0, N ] |= ψR ∧ ψΣ iff wΣ

M ∈ L(R). Then, we show
that, for each w ∈ L(R), there exists an interval model M = 〈I(N), A,B, B̄, V 〉
such that M, [0, N ] |= ψR ∧ ψΣ and wΣ

M = w. ��

It immediately follows that ψR ∧ ψΣ is satisfiable iff L(R) �= ∅.
The encoding for regular expressions can be lifted to ω-regular ones. Let O be

an ω-regular expression and let L(O) be the language it defines. As it happens
with regular expressions, O can be given a finite tree structure. Each path from
the root to a leaf in such a tree can be split into a prefix, whose nodes are ω-
constructors in {+, ·,ω }, and a suffix, where internal nodes are constructors of
regular expressions from the set {+, ·,∗ } and the leaf belongs to Σ. The encoding
of ω-regular expressions O into ABB̄ formulas is inductively defined as follows.
The base case is that of regular subexpressions e1, .., en of O, that we already
worked out. We only need to specify how to handle ω-constructors.

Let ωi = ωj + ωk, with ωj , ωk ω-regular expressions. The ABB̄ formula ψωi

for ωi is obtained from those for ωj and ωk as follows: ψωi = ψωj ∨ ψωk .

Let ωi = ej · ωk, with ej regular expression and ωk ω-regular one. ψωi is
defined in terms of exprj and ψωk

as follows: ψωi = exprj ∧ 〈A〉ψωk .
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Let ωi = eωj , with ej regular expression. ψωi is obtained from exprj as follows:

ψωi = exprj ∧ 〈A〉(¬π ∧ exprj) ∧ [B̄](〈A〉exprend
j → 〈A〉(¬π ∧ exprj)).

Such a formula forces the existence of an infinite sequence of exprj-intervals.
Uniqueness of such a sequence immediately follows from ψ �∩

exprj .
Let ψO be the following formula:

ψO = exp(O) ∧
∧

1≤i≤n

ψexpri ∧
∧

1≤i≤n

ψend
expri ∧

∧
1≤i≤n

ψ �∩
expri ,

where exp(O) is the ABB̄ formula for O obtained by iterating the application of
the above-defined rules for the encoding of ω-constructors in ABB̄ until maximal
regular subexpressions of O are reached (a regular subexpression of O is maximal
if it is not a subexpression of any other regular subexpression).

Theorem 4. Let O be an ω-regular expression over Σ. L(O) is equal to the set
of interval models of the ABB̄ formula ψO ∧ ψΣ, interpreted over N, restricted
to unit-intervals and proposition letters in Σ.

Proof. (sketch) As in the case of Theorem 3, we first show that, for every interval
model M = 〈I(ω), A,B, B̄, V 〉, M, [0, N ] |= ψO ∧ ψΣ , for some N < ω, iff
wΣ

M ∈ L(O); then, we show that, for each w ∈ L(O), there exists an interval
model M such that M, [0, N ] |= ψO ∧ ψΣ, for some N < ω, and wΣ

M = w. ��

It immediately follows that ψO ∧ ψΣ is satisfiable iff L(O) �= ∅.

4 From ω-Regular to ωB-Regular Languages and beyond

In this section, we provide an encoding of ωB-regular expressions, that properly
extend ω-regular ones with boundedness [4], in ABB̄Ā. Moreover, we show that
some natural variants of boundedness can also be dealt with by ABB̄Ā.
ωB-regular expressions are obtained from ω-regular ones by introducing a

variant of Kleene star (.)∗, denoted by (.)B , to be used in the scope of the ω-
constructor (.)ω . The bounded exponent B allows one to constrain the argument
R of the regular expression RB to be repeated a bounded number of times in any
ω-iteration, where the bound is fixed for the whole ω-word. As an example [4], the
expression (aBb)ω denotes the language of ω-words for which there is an upper
bound on the number of consecutive occurrences of a. As the bound may vary
from word to word, the language is not ω-regular. ωB-regular expressions O over
Σ are defined as follows: O ::= B+B | R·B | R′ω, where R is a regular expression
and R′ is defined as follows: R′ ::= a | R′ +R′ | R′ ·R′ | R′∗ | R′B, with a ∈ Σ.
It is possible to show that each ωB-regular language L can be expressed by a
suitable ωB-regular expression, and vice versa.

Unlike the case of (ω-)regular expressions, we associate a distinct proposition
letter with each (sub)expression of O, apart from elements in Σ (if the same
non-atomic subexpression occurs multiple times, we associate a distinct letter
to each occurrence). Apart from that, the encoding of ωB-regular expressions
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Fig. 2. The interplay of bj- and pj-intervals

is the same as that of ω-regular ones, but for the case of subexpressions of the
form ei = eBj . Let O be an ωB-regular expression. Wlog, we assume that for

each subexpression ei(= eBj ) of O there is a subexpression eωk of O such that ei
is a proper subexpression of ek (it is trivial to check that (eBj )

ω is equivalent to

eωj ). The encoding of ei = eBj consists of two formulas. The first one (the local
one) is the same as that for ei = e∗j ; the second one (the global one) is:

ψB
exprj = 〈S〉(exprj ∧ [A]¬exprj ∧ [A][A]¬exprj) ∨ ([G](bj → π) ∧ [G](exprj →

(〈B̄〉pj ∧ [B̄](pj → [B̄]¬pj)) ∧ exprj → [B](¬π → [A]¬bj) ∧
pj → (〈B〉〈A〉bj ∧ [B](〈A〉bj → [B][A]¬bj)) ∧ pj → 〈A〉exprj ∧
(exprj ∧ 〈Ā〉〈Ā〉bj)→ 〈Ā〉pj ∧ pj → 〈B〉〈A〉exprk)),

where 〈S〉ϕ is a shorthand for ¬[G]¬ϕ. The first disjunct deals with ω-words with
a finite number of instances of the bounded subexpression ej , the second with ω-
words with an infinite number of instances of ej. In the latter case, it is possible to
select an infinite number of point-intervals, called break points, in such a way that,
for every i ≥ 1, the number of instances of ej in between the i-th and the (i+1)-th
break point (i-th bj-window) is greater than or equal to the number of instances
of ej in the (i + 1)-th bj-window. Proposition letter bj is used to label break
points. The first conjunct forces bj to hold at point-intervals only. The second
one suitably connects exprj -intervals belonging to consecutive bj-windows by
using proposition letter pj . It states that (i) each exprj -interval initiates one
and only one pj-interval; (ii) each exprj-interval does not (strictly) include any
bj-interval; (iii) each pj-interval includes one and only one bj-interval, i.e., its
endpoints belong to two consecutive bj-windows; (iv) each pj-interval meets an
exprj-interval, thus establishing a connection between the left endpoints of two
exprj-intervals belonging to two consecutive bj-windows; (v) each exprj-interval,
which is preceded by a bj-interval, i.e., it belongs to a bj-window, is met by a
p-interval; (vi) each pj-interval has a nonempty intersection with (at least) two
exprk-intervals (ω-iterations), i.e., the endpoints of any pj-interval belong to two
different exprk-intervals (ω-iterations).

The interplay of bj- and pj-intervals can be illustrated as follows (a graph-
ical account is given in Figure 2). For any pair of consecutive bj-windows
W,W ′, pj-intervals define a suitable mapping of the left endpoints of exprj-
intervals included in W to those of exprj-intervals included in W ′. More
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precisely, let [i, j], [j, k] be two consecutive bj-windows. Formula ψB
exprj forces

the existence of a total, surjective mapping f from the set {l : ∃l′(i ≤ l <
l′ ≤ j ∧ [l, l′] is an exprj -interval)} onto the set {l : ∃l′(j ≤ l < l′ ≤
k ∧ [l, l′] is an exprj-interval)}. Moreover, for every pj-interval [l, f(l)], there is
an exprk-interval [m,m

′] with l ≤ m < f(l). From surjectiveness of f , it follows
that the number of exprj-intervals does not increase moving from one bj-windows
to the next one. Boundedness is achieved by pairing such a condition with
that preventing f from connecting points belonging to the same exprk-interval
(ω-iteration).

Theorem 5. Let O be an ωB-regular expression over Σ and let SubB(O) be
the set of all subexpressions ej of O such that eBj occurs in O. L(O) is equal to

the set of interval models of the ABB̄ formula ψO ∧ ψΣ ∧
∧

ej∈SubB(O) ψ
B
exprj ,

interpreted over N, restricted to unit-intervals and proposition letters in Σ.

Proof. (⇒) Let O′ be the ω-regular expression obtained from O by replacing
each eB by e∗. For each ω-word w, w ∈ L(O) implies w ∈ L(O′). By Th. 4, there
is a model M such that M, [0, N ] |= ψO′ ∧ ψΣ , for some N < ω, and wΣ

M = w.
Since w ∈ L(O), for each ej ∈ SubB(O), where e

B
j is a proper subexpression of

some ek such that eωk is a (sub)expression of O, there is maxj ∈ N such that
the maximum number of exprj -intervals included in an exprk-interval is equal
to maxj . A model M′ for (ψO ∧ ψΣ∧)

∧
ej∈SubB(O) ψ

B
exprj can be obtained from

M by extending its valuation function V to bj and pj , for each ej ∈ SubB(O)
(we only consider the case of ω-words with an infinite number of instances of
ej). We select a point k such that there are exactly maxj points l before k such
that exprj ∈ V ([l,m]), for some m > l. Then, we take an infinite sequence of
points k0 = 0 < k1 = k < k2 < .. such that, for every i ≥ 0, |{l : ki < l <
ki+1 ∧ ∃l′(l′ > l ∧ exprj ∈ V ([l, l′]))}| = maxj and we insert bj into V ′([ki, ki]),
for every i ≥ 0. Now, for every i ≥ 0, let ki ≤ l1 < l2 < .. < lmaxj < ki+1 ≤
l̂1 < l̂2 < .. < l̂maxj < ki+2 be such that, for 1 ≤ m ≤ maxj , exprj ∈ V [lm, l

′],
for some l′ > lm, and exprj ∈ V [l̂m, l

′′], for some l′′ > l̂m. We insert pj into

V ([lm, l̂m]), for each 1 ≤ m ≤ maxj . To show that, for each 1 ≤ m ≤ maxj , the

endpoints of the pj-interval [lm, l̂m] belong to two different exprk-intervals, it
suffices to observe that there are exactly maxj distinct points in between lm and

l̂m that start an exprj-interval. Thus, assuming that both lm and l̂m belong to
the same exprk-interval would lead to the conclusion that such an exprk-interval
contains maxj + 1 exprj -intervals (contradiction).

(⇐) Let M be a model for ψO ∧ ψΣ ∧
∧

ej∈SubB(O) ψ
B
exprj . Since M satisfies

ψO ∧ ψΣ , by Th. 4, it follows that wΣ
M ∈ L(O′), where O′ is obtained from O

by replacing each eB by e∗. We must show that wΣ
M conforms to eBj as well, for

each ej ∈ SubB(O). We restrict our attention to the case in which there is an
infinite number of exprj-intervals, and thus of bj-intervals, in M (the other case
is trivial). SinceM satisfies

∧
ej∈SubB(O) ψ

B
exprj , for each ej ∈ SubB(O), there is a

least maxj ∈ N such that the number of exprj -intervals included in a bj-window
is less than or equal to it. Boundedness easily follows. Suppose, by contradiction,
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that this is not the case for some ej ∈ SubB(O) subexpression of eωk , i.e., for
every N ∈ N there are l,m such that exprk ∈ V ([l,m]) and the number of
exprj-intervals included in [l,m] is greater than N . Now, let N > 3 · maxj
and let [l,m] be an exprk-interval that includes more than N exprj-intervals.
By definition of maxj , there are n, n′, and n′′, with l ≤ n < n′ < n′′ ≤ m,
such that bj ∈ V ([n, n]) ∩ V ([n′, n′]) ∩ V ([n′′, n′′]). It follows that there are r, s,
with n ≤ r < n′ ≤ s < n′′, such that pj ∈ V ([r, s]). Now, exprk ∈ V ([l,m]) and
ψ �∩
exprk prevents any other exprk-interval to start at some t, with l ≤ t < m. Since
l ≤ r < s < m, this implies that the conjunct pj → 〈B〉〈A〉exprk is not satisfied
and thus M is not a model for ψO∧ψΣ ∧

∧
ej∈SubB(O) ψ

B
exprj (contradiction). ��

It directly follows that ψO ∧ ψΣ ∧
∧

ej∈SubB(O) ψ
B
exprj is satisfiable iff L(O) �= ∅.

We introduce now two variants of boundedness, namely, strict and weak mono-
tonicity. The latter one can be imposed to both regular and ω-regular languages,
the former to regular ones only. Strictly-monotonic regular (<-regular) languages
are obtained from regular ones by introducing a variant of Kleene star (.)∗, de-
noted by (.)<, to be used in the scope of (.)∗. By analogy with ωB-regular
languages, wlog we can assume that, for each subexpression of the form ei = e<j
of a given expression R, there is a (sub)expression e∗k of R such that ei is a proper
subexpression of ek ((e<j )

∗ is equivalent to e∗j ). For any pair of consecutive occur-

rences of ek, (.)
< constrains the number of occurrences of ej included in the first

one to be greater than the number of those included in the second one. Unlike
that of (.)B , the encoding of (.)< does not require the use of proposition letters
bj, as we can restrict our attention to pairs of consecutive occurrences of ek only.
Weakly-monotonic regular (≤-regular) languages are obtained by substituting
(.)≤ for (.)<. The only difference between (.)≤ and (.)< is the replacement of
condition ‘greater than’ by ‘greater than or equal to’. The encoding of ei = e<j
(resp., ei = e≤j ) consists of a local and a global formula. The former one is the

same as that for ei = e∗j ; the latter one is the formula ψ<
exprj (resp., ψ≤

exprj ):

ψ<
exprj = [G]((exprj ∧ 〈A〉exprj ∧ 〈A〉〈A〉exprk)→

((〈B̄〉pj ∧ [B̄](pj → [B̄]¬pj)) ∨ [A][A](exprk → [B][A]¬exprj))
∧ (exprj ∧ [A]¬exprj)→ [B̄]¬pj ∧ (exprj ∧ 〈Ā〉〈Ā〉exprk)→ 〈Ā〉pj
∧ pj → (〈B〉〈A〉exprk ∧ [B](〈A〉exprk → [B][A]¬exprk)));

ψ≤
exprj

= [G]((exprj ∧ 〈A〉〈A〉exprk)→ ((〈B̄〉pj ∧ [B̄](pj → [B̄]¬pj)) ∨
[A][A](exprk → [B][A]¬exprj)) ∧ (exprj ∧ 〈Ā〉〈Ā〉exprk) → 〈Ā〉pj
∧ pj → (〈B〉〈A〉exprk ∧ [B](〈A〉exprk → [B][A]¬exprk))).

Theorem 6. Let R be a <-regular (resp., ≤-regular) expression over Σ and let
Sub<(R) (resp., Sub≤(R)) be the set of all subexpressions ej of R such that

e<j (resp., e≤j ) occurs in R. L(R) is equal to the set of finite interval models

of the ABB̄ formula ψR ∧ ψΣ ∧
∧

ej∈Sub<(R) ψ
<
exprj (resp.,

∧
ej∈Sub≤(R) ψ

≤
exprj )

restricted to unit-intervals and proposition letters in Σ.
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Weakly-monotonic ω-regular (ω≤-regular) languages are obtained from ω-regular
ones by adding the operator (.)< to be used in the scope of (.)ω . The addition of
(.)≤ can be dealt with as in regular languages, the only difference being that the
second conjunct of subformula exprj ∧ 〈A〉〈A〉exprk of ψ≤

exprj can be removed.

Theorem 7. Let O be an ω≤-regular expression over Σ and let Sub≤(O) be

the set of all subexpressions ej of O such that e≤j occurs in O. L(O) is equal to

the set of interval models of the ABB̄ formula ψO ∧ ψΣ ∧
∧

ej∈Sub≤(O) ψ
≤
exprj ,

interpreted over N, restricted to unit-intervals and proposition letters in Σ.

5 A Decidable Fragment of ABB̄Ā over N

In this section, we show that (i) decidability over N can be recovered by re-
stricting the set of models (compass generators) over which ABB̄Ā formulas are
interpreted, and (ii) the resulting class of models is expressive enough to encode
the (non)emptiness problem for extended ω-regular languages.

Let ϕ be an ABB̄Ā formula and G = (P(N), A, Ā, B, B̄,L), with N ≤ ω, be a
compass structure. The notion of cover C and the counter functions Shading and
Count are defined as follows [12]. A cover C for G is a minimal subset of N such
that, for each 0 ≤ y ≤ N and ψ ∈ ReqA(L(y, y)), there is x ∈ C with ψ ∈ L(x, y).
For each F ∈ Aϕ and 0 ≤ y ≤ N , the functions Shading : Aϕ × N → N and
Count : Aϕ ×N → N return the values Shading (F, y) = |{x : L(x, y) = F}| and
Count(F, y) = |{x : L(x, y) = F ∧ x ∈ C}|, respectively.
Definition 8. Let ϕ be an ABB̄Ā formula, G = (P(N), A, Ā, B, B̄,L), with
N < ω, be a consistent (but not necessarily fulfilling) finite compass structure
that features ϕ, C be a cover for G, and y < N . We say that the triple G =
(G, y, C) is a compass generator iff (i) for each F ∈ Aϕ, Shading (F,N) > 0 iff
Shading(F, y) > 0 and Count(F, y) ≤ Shading (F,N), and (ii) for each 0 ≤ x ≤
y and each ψ ∈ ReqB(L(x, y)), there is y < y′ ≤ N such that ψ ∈ L(x, y′).

Theorem 9. An ABB̄Ā formula ϕ is satisfiable in N iff there is a compass
generator G = (G, y, C) for it.

One can (easily) build a consistent and fulfilling ultimately periodic compass
structure G′ = (P(ω), A, Ā, B, B̄,L′) for ϕ starting from a compass generator
G = (G, y, C) for it [12], thus showing that if ϕ has a model over N, then it has an
ultimately periodic one. Unfortunately, the problem of establishing the existence
of a compass generator for an ABB̄Ā formula ϕ is in general undecidable. We
now introduce a restricted class of compass generators.

Definition 10. Let ϕ be an ABB̄Ā formula and let G = (G, y, C), with G =
(P(N), A, Ā, B, B̄,L), be a compass generator for it. We say that G is contraction-
free if for every y, y′, with 0 < y < y′ < y or y < y < y′ < N , there is F ∈ Aϕ

such that Count(F, y) �≤ Count(F, y′).
We say that an ABB̄Ā formula is contraction-free satisfiable if there exists a
contraction-free compass generator G = (G, y, C) for it.
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Theorem 11. Let ϕ be an ABB̄Ā formula. The problem of establishing the
existence of a contraction-free compass generator G = (G, y, C) for it is decidable.

Theorem 12. Let O be an ωB-regular (resp., ω≤-regular) expression over Σ
and let SubB(O) (resp., Sub≤(O)) be the set of all subexpressions ej of O such

that eBj (resp., e≤i ) occurs in O. It holds that ψO∧ψΣ∧
∧

ej∈SubB(O) ψ
B
exprj (resp.,∧

ej∈Sub≤(O) ψ
≤
exprj ) is satisfiable iff it is contraction-free satisfiable.

6 Conclusions

In this paper, we built a bridge between interval temporal logics and (extended)
regular languages of finite and infinite words. Thanks to it, classical problems for
extended (ω-)regular languages, such as the (non)emptiness one, can be naturally
reformulated in logical terms, and new meaningful classes of languages can be
defined and studied. In a companion paper, we showed that ωS-regular languages,
as well as some natural variants of them, can be defined in ABB̄ extended with
an equivalence relation. We are working at a logical characterization of ωBS-
regular languages in ABB̄Ā extended with an equivalence relation.
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2. Bojańczyk, M.: A Bounding Quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)
CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)
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Abstract. This paper investigates two subjects in push-down automata
(PDAs) and linear indexed grammars (LIGs), which are extended PDAs,
focusing on eliminating the stack symbols. One of the subjects is con-
cerned with PI- (push-input-) PDA and PI-LIG without ε-transition rule,
in which only input symbols are pushed down to the stack. It is shown
that the class of languages of PI-LIGs is incomparable with that of PDAs,
which is the class of context-free languages (CFLs). The other subject is
a simple bottom-up parsing method for LIGs, in which the stack symbols
are eliminated at the first step of the parsing. The paper shows several
PI-LIGs, including PI-PDAs for fundamental context-free and context-
sensitive languages, which are synthesized by a grammatical inference
system LIG Learner.

Keywords: PDA, LIG, mildly context sensitive language, stack symbol,
grammatical inference, bottom-up parsing.

1 Introduction

Linear indexed grammar (LIG) was introduced by Duske [3] as a restricted in-
dexed grammar by Aho [1]. LIG in this paper is a subclass of tree-adjoining
grammars (TAGs) [6,8] and closely related to some other types of grammars in
a class known as mildly context-sensitive grammars [7]. These grammars have
the following common features: the class of the languages includes not only all
context-free languages, but also several fundamental context-sensitive languages;
and the parsing is within polynomial time.

Although LIG is called a grammar, it is essentially an extended push-down
automaton (PDA), which is also called right-linear right-indexed (RIR) gram-
mar in [1]. Generally, automata for accepting languages are distinguished from
grammars for deriving languages. However, we can define a language by a set of
rules, which can be used for not only accepting but also deriving strings of the
language. Therefore, we identify PDA with grammars.

In this paper, we investigate two subjects on PDAs and LIGs, focusing on
eliminating the stack symbols. One of the subjects is concerned with PI- (push-
input-) PDAs and LIGs without ε-transition rule, in which only input symbols
are pushed down to the stack. The other subject is the bottom-up parsing, in

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 444–455, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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which the stack symbols are eliminated at the first step of the parsing. This
parsing method is simpler than the other methods previously published such as
in [2,8].

The motivation for this work is derived from the grammatical inference of
LIGs. The rules in push-input form have no special stack symbols, reducing the
computation time to generate the rules and to search for any sets of rules for
a language. The simple bottom-up parsing is essential for incremental learning
using the bridging rule generation implemented in Synapse system [9], which is
based on the results of bottom-up parsing of positive samples.

There have been several works on extension and restriction of PDAs and their
relations to CFLs and mildly context-sensitive languages. Goldstine [5] showed
that two stack symbols in PDAs are sufficient to accept any context-free language
(CFL). Although the push-input type PDAs are used in many examples in most
textbooks on formal languages and automata, the generality or limitation of this
form have not been previously studied to the best of the authors knowledge.

This paper is organized as follows. Section 2 defines PDAs, LIGs, push-input
form and the derivation of languages of these grammars. Section 3 introduces
the notions of normalized LIGs and coded palindromes, and discusses the rela-
tionships between the language classes of PDAs, LIGs, PI-PDAs and PI-LIGs.
Section 4 presents the simple bottom-up parsing method for LIGs, which is spec-
ified by forward inference rules. Section 5 shows several PI-PDAs and PI-LIGs
for fundamental formal languages, synthesized by the grammatical inference sys-
tem LIG Learner. Finally, Section 6 concludes the paper and describes future
research subjects.

2 Push-Down Automata and Linear-Indexed Grammars

We represent the contents of a stack with a symbol x at the top by [x z], where
z is a substring in the rest of the stack, which may be the empty string ε.

A LIG is a system G = (K,Σ,X, P, s, F ), where:

– K,Σ and X are finite sets of states, input symbols and stack symbols, respec-
tively, with K ∩Σ = ∅;

– P is a finite set of rules of the forms either forward-input rule: p[x] → a q[τ ],
backward-input rule, p[x] → q[τ ] a or ε-transition rule: p[x] → q[τ ], where for
a, b ∈ Σ, τ ∈ X ∪ {ε} and x ∈ X ∪ {ε};

– s ∈ K is an initial state; and
– F ⊆ K is a set of final states.

A push-down automaton (PDA) is a LIG without backward-input rules. We
represent any term p[ ] = p[ε] in the rules simply by the state p, e.g., p[f ] → a q
is equivalent to p[f ] → a q[ ], and p → q a is p[ ] → q[ ]a. We call a state p the
pushing state, if the LIG has a rule of the form p→ aq[f ], the pop-up state, if it
has p[f ] → aq, and the simple state otherwise.

For any LIG G = (K,Σ,X, P, s, F ), the derivation relation “⇒G” over
{u p [z] v |u, v ∈ Σ∗, p ∈ K and z ∈ X∗} is defined by,
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– u p [x z] v ⇒G u a q [τ z] v, if (p [x] → a q [τ ]) ∈ P,
– u p [x z] v ⇒G u q [τ z] a v, if (p [x] → q [τ ] a) ∈ P,
– u p [ ] v ⇒G u v, if p ∈ F,

for all a, b,∈ Σ, τ ∈ X ∪ {ε} and u, v ∈ Σ∗. Note that the third derivation
is represented by the termination rule in other formalism. The language of the
grammar G is the set L (G) = {w ∈ Σ∗| s [ ] ⇒+

G w}, where ⇒+
G is the transitive

closure of ⇒G.
We represent a class of languages of a grammar class G by C(G). Aho [1] and

Duske [3] proved the following basic proposition.

Proposition 1. All the languages in C(LIG) are derived by LIGs with the rules
of the following forms (1) – (6), where p and q are states, a and b are input
symbols, and c is a stack symbol. All the languages in C(PDA) are derived by
LIGs (PDAs) with the forward-input rules of the forms (1), (2) and (3).

(1) p→ a q (2) p→ a q [c] (3) p [c] → a q
(4) p→ q a (5) p→ q[c] a (6) p [c] → q a

The push-input rule of the form p → aq [a] pushes down the input symbol a.
Any PDA and LIG are push-input, if all the pushing rules are push-input, and
hence all the stack symbols are the input symbols. PI-PDAs and PI-LIGs are
push-input PDAs and LIGs, respectively, that have no ε-transition rule.

2.1 Examples of LIGs

The following two PI-LIGs are for well-known non-context-free languages. They
were synthesized by LIG Learner described in Section 5.

Example 1: Copy Language: The copy language, i.e., the set of strings of a’s
and b’s with the form ww, is derived by the following six rules with the starting
symbol s and the final state p.

s→ a s[a], s→ b s [b], s [a] → p a, s [b] → p b, p [a] → p a, p [b] → p b.

String aabaab is derived by the derivation sequence,

s [ ] ⇒ a s [a] ⇒ aa s [a a] ⇒ aab s [b a a] ⇒ aab p [a a] b ⇒ aabp [a] ab

⇒ aab p [ ] aab ⇒ aabaab.

Example 2: Set {anbncn | n ≥ 1}: This language is derived by the following
four rules with the starting symbol s and the final state q.

s→ a p [a], s [a] → b q, p→ s c, q [a] → b q.

An example of derivation sequence is:

s [ ] ⇒ a p [a] ⇒ a s [a] c⇒ aa p [a a] c⇒ aa s [a a] cc ⇒ aab q [a] cc

⇒ aabb q [ ] cc ⇒ aabbcc.
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2.2 State Transition Diagrams

We represent LIGs by state transition diagrams to easily understand the struc-
tures. The diagrams are based on those for finite state automata, but extended
so that each edge has, at most, the following three labels depending on the types
of the rules:

– pop-up stack symbols [f ] for rules of the forms p[f ] → a q, or p[f ] → q a;
– an input symbol, a, ←−a or ε, for a forward-input rule, a backward-input rule

or an ε-rule, respectively; and
– a push-down stack symbol, g for rules p[σ] → aq[g] or p[σ] → ε q[g] .

For example, the labels of the edge for a rule p[f ] → a q are [f] and a, and the
labels for p→ q[g] a are ←−a and g . For the case of a push-input rule p→ a q[a],

we can simply write the label a instead of a a . Fig. 1 shows the state transition
diagrams for Example 1 and 2.

s p
[a] ←−a , [b]

←−
b

a, b [a] ←−a , [b]
←−
b

(a) Copy Language

s

p

q

a

[a] b

←−c
[a] b

(b) Set {anbncn|n ≥ 1}

Fig. 1. State Transition Diagrams of LIGs

3 PI-PDAs and PI-LIGs

The following lists shows the forms of rules in PI-LIGs, where p and q are states,
and a and c are input symbols.

(1) p→ a q (2) p→ a q [a] (3) p [c] → a q
(4) p→ q a (5) p→ q[a] a (6) p [c] → q a

The PI-PDA uses only forward-input rules of the forms (1), (2) and (3).
For any states p and q in a LIG G = (K,Σ,X, P, s, F ), q is a combinational

state of p, if p[x] ⇒∗
G u q[x] v for any u, v ∈ Σ+, x ∈ X∗, i.e., the transition from

the state p to q derives substrings u and v and that the stack at state q has, or
returned to, the same content x at p. For example, in the LIG for {anbncn|n ≥ 1}
in Example 2, s and q are combinational state of p and s, respectively.

3.1 Normalized LIGs

The merging of two strings w1 and w2 is the nondeterministic process to recur-
sively apply the following transformation rules to merge(w1, w2).



448 K. Nakamura and K. Imada

merge(ε, w) → w,merge(w, ε) → w.

merge(a1a2 · · · am, w) → a1 ·merge(a2 · · · am, w).
merge(w, b1b2 · · · bn) → b1 ·merge(w, b2 · · · bn).

for m,n ≥ 1, where “·” is the concatenation operator. For any string w =
a1a2 · · · an, the renamed string of w is the string w = a1a2 · · · an.

Let T (w) be the set of merged strings of w1 and the reversal of the renamed
string wR

2 with w = w1w2. Any string in T (w) can be converted to w. For a
string w = a1a2 · · · an, T (w) contains, for example, a1a2 · · ·ai an an−1 · · · ai+1

and a1an a2 an−1 · · · aiai+1.
Any LIG G = (K,Σ, I, P, s, F ) is transformed into the normalized LIG of G

that is the PDA G′ = (K,Σ ∪ {a|a ∈ Σ}, I, P ′, s, F ) by replacing each rule of
the forms p → q a, p → q [c] a and p [c] → q a in G by the rules of the forms
p→ a q, p→ a q [c], and p [c] → a q, respectively.

For example, the normalized LIG of Example 1 for the copy language derives
the merged string ab b a for abab, and aab b a a for aabaab, which are essentially
palindromes. The normalized LIG of Example 2 for the set {anbncn|n ≥ 1}
derives strings a c b, a c a c bb, a c a c a c bbb, · · · . It is obvious from the transfor-
mation that the normalized LIG satisfies the following proposition.

Proposition 2. For any LIG (or PI-LIG) G, let G′ be the normalized LIG (or
PI-LIG, respectively) of G. For any string w, we have w ∈ L(G), if and only if
there is a string w′ ∈ T (w) with w′ ∈ L(G′).

The normalized LIGs are used for investigating the characteristics of LIGs by
comparing the LIGs with the CFLs. For example, a normalized LIG is used to
show a derivation tree in Section 5.1.

3.2 Coded Palindromes and Coded Repetitions

LetD and E be two finite sets of strings such that there is a one-to-one correspon-
dence between two sets. A coded palindrome is the string d1d2 · · · dn en · · · e2e1
and a coded repetition is the string d1d2 · · · dn e1e2 · · · en (n ≥ 1), where d1d2 · · · dn
is in D+ and e1e2 · · · en is in E+; and for each i, ci corresponds to di.

The coded palindrome and the coded repetition are left-coded, if |di| > |ei| = 1
for all 1 ≤ i ≤ n. The both strings are left-right-coded, if either |di| > |ei| = 1
or |ei| > |di| = 1 for all 1 ≤ i ≤ n. If D and E are the same set of symbols, the
coded palindrome is a usual palindrome, and the coded repetition is the copy
language. In addition, for any sets D and E the set of the coded palindromes is
a CFL and that the set of the coded repetitions is a LIG language.

Example 3: Binary Coded Palindrome: The binary left-coded palindrome
is the language of the CFG with one nonterminal symbol s and the following
production rules,

s→ aas0, s→ abs1, s→ bas2, s→ bbs3, s→ ε.



Eliminating Stack Symbols in PDAs and LIGs 449

s

p

q

r

a

b

[0] 0, [1] 1,

[2] 2, [3] 3

a 0 , b 1

a 2 , b 3

[0] 0, [1] 1, [2] 2, [3] 3

s

p

q

r

a

b

[0]
←−
0 , [1]

←−
1 ,

[2]
←−
2 , [3]

←−
3

a 0 , b 1

a 2 , b 3

[0]
←−
0 , [1]

←−
1 , [2]

←−
2 , [3]

←−
3

Fig. 2. State Transition Diagrams of PDA MBCP for the Binary Coded Palindrome
(left) and a LIG for Binary Coded Repetition (right)

This language contains strings,

aa0, ab1, ba2, bb3, aaaa00, aaab01, aaba02, aabb03, abaa10, abab11, abbba12, · · · .

The language is derived by PDAMBCP with the state-transition diagram in Fig.
2 (left), in which all push-down rules are not in push-input form. The following
sequence shows an example derivation of a binary coded palindrome.

s[ ] ⇒ ap[ ] ⇒ abs [1] ⇒ abbq[1] ⇒ abbas [2 1] ⇒ abba2r[1] ⇒ abba21r[ ].

This PDA is transformed into a LIG for the binary coded repetition by changing
the eight left-input pop-up rules above into the backward-input pop-up rules
rules as shown in Fig. 2 (right).

Proposition 3. There is no PI-PDA G that derives the binary left-coded palin-
dromes.

This proposition implies that C(PI-PDA) � C(PDA) = C(CFG).

Proof. Suppose that there is a PI-PDA G that derives the binary-coded palin-
dromes in Example 3. Then, G has a derivation sequence,

s[ ] ⇒∗ d1d2 · · · dn p[x] ⇒∗ d1d2 · · · dn en · · · e2e1r[ ],

for a state p and a final state r, where di ∈ {aa, ab, ba, bb} and ei ∈ {0, 1, 2, 3}
for all 1 ≤ i ≤ n. As G has no ε-transition rule, and the stack is empty after G
derives the string e1e2 · · · en, the length of the stack is restricted to n. Hence,
as all the push-down rule in G are push-input, the stack can have at most the
strings in {a, b}n. Each of the symbols in the strings needs to correspond to
di, 1 ≤ i ≤ n. However, the size |{0, 1, 2, 3}n| increases by 4n, whereas the size
|{a, b}n| increases by 2n. This causes a contradiction. ��
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Note that any set of the reversals of the left-coded palindromes, i.e., the right-
coded palindromes, is a PI-PDA language. As C(PI-LIG) is closed under reversal,
the set of the binary left-coded palindromes is a PI-LIG language.

Proposition 4. C(PI-LIG) is incomparable with C(PDA).

In the proof of this proposition, we use the following two lemmas. Lemma 1 is
based on Theorem 2.8 by Duske [3], in which the PI-LIG and PI-PDA are simply
LIG and PDA (equivalently, CFG), respectively. The proof is similar to that of
this original theorem. Lemma 2 is a corollary of Proposition 3.

Lemma 1. For any alphabet Σ and a symbol c /∈ Σ, If L = X cY, X, Y ⊂ Σ∗

is PI-LIG language, then X or Y is a PI-PDA language.

Lemma 2. Any left-right-coded palindrome and its reversal are not PI-PDA
languages.

Proof (of Proposition 4). We prove this proposition by showing the following
two facts.

1. The copy language is in C(PI-LIG), but not in C(PDA).
2. Let Lx be the set of the left-right-coded palindromes. The language L =
LxcLx is in C(PDA) but not in C(PI-LIG), where c is an input symbol that
does not occur in Lx.

As the first fact has been shown in Example 1, and the set LxcLx is a CFL, the
remainder of the proof is to show that L is not a PI-LIG language. Suppose that
L ∈ C(PI-LIG), then by Lemma 1 Lx must be a PI-PDA language. However, by
Lemma 2 this cannot be, hence L is not a PI-LIG language. ��

3.3 Push-Input PDAs with ε- Transition Rule

By Proposition 3, there is no PI-PDA for the binary left-coded palindrome. On
the other hand, we can construct a push-input PDA with ε-transition pop-up
rules for this language. Fig. 3 shows a state transition diagram for a push-input-
PDA with ε-transition pop-up rules, which is transformed from PDA MBCP in
Example 3. The problem whether all PDAs, or LIGs, can be transformed into
push-input PDA, or LIGs respectively, with ε-transition rules is currently open.

4 Bottom-Up Parsing for LIGs

PDAs and LIGs are intrinsically top-down parsing procedures. These direct pro-
cedures are generally nondeterministic, and the parsing may require exponential
time. A bottom-up parsing method for LIGs shown in this section eliminates
stack symbols, thus saving computational cost. This method was implemented
in Prolog and tested for several LIGs.

Fig. 4 shows forward inference rues for bottom-up parsing. In parsing an
input string a1a2 · · · an, any intermediate results are saved in terms of the form
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s
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q

r1

r2

r0

r3

rx

a

b

[b] 1

[a] 2

[a] 0

[b] 3

a , b

a , b

[a] ε

[b] ε

[a] ε

[b] ε

[b] 1

[a] 2

[a] 0

[b] 3

Fig. 3. State Transition Diagram of the Push-Input PDA with ε-Transition Pop-up
Rules for Binary Coded Palindromes Transformed from MBCP in Fig. 2

d((i, i′), (j, j′), p − q), indicating that q is a combinational state of p and that
the transition from p to q derives a substring of ai · · · ai′ and aj′ · · · aj in the
reverse order of the input string. Only the rules 1, 3, 6 and 9 are sufficient
for parsing PDAs. The overlines indicates that input symbols are used in the
backward-input rules.

4.1 Example 4: Set {anbncn | n ≥ 1}
The following four parsing rules are transformed from the LIG in Section 2.

1. cj → d((i, i′), (j − 1, j), p− s), For rule p→ s c.
2. ai, bi′+1, d((i, i

′), (j, j′), p− s) → d((i − 1, i′ + 1), (j, j′)), s− q),
for rules s→ a p [a], s [a] → b q.

3. ai, bi′+1, d((i, i
′), (j, j′), p− s) → d((i − 1, i′ + 1), (j, j′)), p− q),

for rules s→ a p [a], q [a] → b q.
4. d((i, i′), (j, j′), p− s), d((i′, i′′), (j′, j′′), s− q) → ((i, i′′), (j, j′′), p− q).

The following sequence of terms is an example of bottom-up derivation for string
aabbcc.

{a1, a2, b3, b4, c5, c6}
⇒ {a1, a2, b3, b4, d((x, x′), (1, 2), p− s), d((y, y′), (0, 1), p− s)}
⇒ {a1d((1, 3), (1, 2), s− q), d((y, y′), (0, 1), p− s), b4, }
⇒ {a1, d((1, 3), (0, 2), p− q), b4, }
⇒ {d((0, 4), (0, 2), s− q)}.

The derivation tree in Fig. 5 represents the relation of this parsing, which is
based on the normalized LIG for {anbncn | n ≥ 1}.
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1. ai → d((i− 1, i), (y, y′), p− q) for each rule p→ ai q and for any y and y′.
2. aj → d((x, x), (j − 1, j), p− q) for each rule p→ q aj and for any x and x′.
3. ai, ai+1 → d((i− 1, i+ 1), (y, y′), p− r)

for rules p→ ai q[c] and q[c]→ ai+1 r and for any y and y′.
4. ai, aj → d((i− 1, i), (j − 1, j), p− r) for rules p→ ai q[c] and q[c]→ r aj .

5. aj , aj+1 → d((x, x′), (j− 1, j+1), p− r) for rules p→ q[c] aj+1 and q[c]→ r aj .

6. ai, ai′+1, d((i, i
′), (j, j′), q − q′)→ d((i− 1, i′ + 1), (j, j′), p− r)

for rules p→ ai q[c] and q′[c] → ai′+1r in G.

7. ai, aj , d((i, i
′), (j, j′), q − q′)→ d((i− 1, i′), (j − 1, j′), p− r)

for rules p→ ai q[c] and q′[c] → r aj in G.

8. aj , aj′+1, d((i, i
′), (j, j′), q − q′)→ d((i, i′), (j − 1, j′ + 1), p− r)

for rules p→ q[c] ai and q′[c] → r aj in G.

9. d((i, i′), (j, j′), p− q), d((i′, i′′), (j′, j′′), q − r)→ ((i, i′′), (j, j′′), p− r)
for any states p, q, r and for any i, j, i′, j,′ i′′, j′′.

Fig. 4. Forward Inference Rules for Bottom-up Parsing for LIGs (Only rules 1, 3, 6
and 9 are used for PDAs)

4.2 Computation Time of Bottom-Up Parsing

Let Nw be the number of the terms generated in the bottom-up parsing for a
string w. The computation time for parsing w is estimated by Nw ·Kw, where
Kw is the maximum number of steps required to generate a term from two terms
by Rule 9. The factor Kw depends on the indexing to select the terms, and the
maximum is not greater than |w| for PDAs and |w|2 for LIGs. Without any
restriction on Nw and Kw, the computation time required for the parsing PDAs
is O(n2 · n) = O(n3), where n is the length of input strings. The computation
time for parsing LIGs is O(n4 · n2) = O(n6), which is equal to the order of the
previously known upper bound for LIGs and TAGs [2,8]. However, the factor
Nw is much less than O(n2) for PDAs and O(n4) for LIGs in many cases: the
factor is not greater than O(n2) for the LIGs shown in the next section.
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Fig. 5. A Derivation Tree for aabbcc and the Normalized LIG for {anbncn|n ≥ 1}
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As this bottom-up parsing is a process of forward inference by the parsing
rules, we can use any efficient reasoning method for production systems such as
the Rete algorithm [4] in the parsing.

5 Synthesized PI-PDAs and PI-LIGs

PI-PDAs and PI-LIGs for several fundamental formal languages are synthesized
by a grammatical inference system LIG Learner written in Prolog as the first
step for learning LIGs. The system is composed of a top-down parser, rule gen-
eration and search for rule sets. The top-down parser is used to pre-process the
rule generation and to check any generated rule set against negative samples.
The number of rules in each synthesized grammar is minimized, as the system
searches for the rule sets by using iterative deepening. More details of the system
with earlier results are described in [10].

The LIG Learner synthesized PI-PDAs and PI-LIGs in the following list. The
LIGs (e) and (f) have been shown as examples in Section 2.1.

(a) the balanced parenthesis language: s [a] → b s, s→ a s [a]

(b) the set of palindromes over {a, b}:

s→ a s [a], s→ b s [b], s→ a p, s→ b p,

s [a] → a p, s [b] → b p, p [a] → a p, p [b] → b p.

(c) the set of strings with same number of a′s and b′s, {w | #a(w) = #b(w)}:

s [b] → a s, s→ b s [b], s [a] → b s, s→ a s [a].

(d) the set of strings with twice as many a′s as b′s, {w | #a(w) = 2 ·#b(w)}:

s → a p [a], s → b s[b], s [a] → b s, s [b] → a p,

p → b p[b], p → a s, p [a] → b p.

(e) copy language, {ww | w ∈ {a, b}}: the set of strings with the form ww.

p [b] → p b, p [a] → p a, s [b] → p b, s→ b s [a],

s [a] → p a, s→ a s [a].

(f) the set {anbncn | 1 ≤ n}: q [a] → b q, s [a] → b q, p→ s c, s→ a p [a].

(g) the set {anbncm | 0 ≤ m ≤ n}:

q [a] → b q, p→ a p[a], s [a] → b q, p→ s c, s→ a p [a].

(h) the set {aibjcidj | 1 ≤ i, j}:

s→ a p [a], s→ a s [a], p→ b p [b], p [b] → q d, q [a] → c q, q [b] → q d.
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The rules in (a) - (d) are PI-PDAs for CFLs, whereas the languages (e) – (h) are
non-context-free. The language (h) is related to pseudo-knots in RNA secondary
structure [11], where some basic pairs occur in crossed fashion. All the states are
final states in the LIGs except PDA (d), where s is the only final state.

The experimental results were obtained using an AMD Athlon(tm) 64 X2
Dual Core processor with a 2.2 GHz clock and SWI-Prolog for Windows. The
positive samples in the experiment are ordered strings within the length of eight
or nine, which are generated by the programs. Only the first parts of the strings,
generally less than 10 to 15 samples, are used for synthesizing the rules, and the
remainder of the strings is used for checking the correctness of the rule sets. The
system derives strings within the length of eight or nine from each generated rule
set for the consistency check. We also checked the correctness of the synthesized
grammars by enumerating the numbers of strings.

The computation time for learning each of PDAs (a), (b), (c) and the LIG (f)
was less than 0.1 second and the time for each of the other grammars is less than
3 seconds. Comparing with learning CFGs in Synapse system [9], the number
of rules in each PDA is 50-80 % less than that of an equivalent CFG in revised
Chomsky normal form, and the computational time of the PDA is generally less
than that of the CFG.

6 Concluding Remarks

In this paper, we discussed LIGs including PDAs, the push-input form and
bottom-up parsing of these grammars. The results are summarized as follows:

– The class of PI-LIG languages without ε-transition rule, C(PI-PDA), is in-
comparable with the class of PDA languages (or CFLs).

– A simple bottom-up parsing method for LIGs is presented, in which the
stack symbols are eliminated at the first step of the parsing. This method is
simpler than the other parsing methods for LIGs previously published.

– In spite of the restriction of the push-input form, C(PI-PDA) and C(PI-LIG)
includes fundamental context-free and context-sensitive languages, which are
synthesized by a grammatical inference system LIG Learner.

Based on the results in this paper, our current work is focused on incremental
learning of LIGs using bridging rule generation [9], which is based on incomplete
trees generated by the bottom-up parsing of positive samples. The experimental
results of first-step machine learning of PI-LIGs in Section 5 suggest that learning
PDAs in push-input form is more efficient than learning CFGs, and that machine
learning of LIGs has potentiality of synthesizing more complex and powerful
grammars.

The other subjects and problems for future research include:

– Clarification of the computational complexity of the bottom-up parsing and
improvement of the practical procedure.

– More detailed characterization of push-input PDA and LIG languages. Are
the classes of the languages push-input PDAs and LIGs with ε-transition
pop-up rules equal to C(PDA) and C(LIG), respectively ?
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Abstract. We introduce asynchronous variants of the PC systems of
pushdown automata of Csuhaj-Varjú et. al. These are obtained by using
a response symbol in addition to the usual query symbols. Our main result
states that centralized asynchronous PC systems of pushdown automata
of degree n that work in returning mode have exactly the same expressive
power as n-head pushdown automata. This holds in the nondeterministic
as well as in the deterministic case.

Keywords: PC system of pushdown automata, centralized PC system,
asynchronous PC system, multi-head pushdown automaton.

1 Introduction

Parallel communicating grammar systems, or PC grammar systems for short,
have been invented to realize the so-called class room model of cooperation [5].
Here a group of experts, modelled by grammars, work together in order to pro-
duce a document, that is, an output word. These experts work on their own, but
synchronously, and they exchange information on request.

In the literature many different types and variants of PC grammar systems
have been studied (see, e.g., [5,7]). The notion of PC system has also been carried
over to various types of automata. Here we are interested in the PC systems of
pushdown automata introduced in [6], which we will modify into asynchronous
PC systems of pushdown automata. In a PC system of pushdown automata, a
finite number n of pushdown automata, say A1, . . . , An, work in parallel in a
synchronous way, where the number n of components is called the degree of the
PC system. If one of these pushdown automata, say Ai, encounters a special
query symbol as the topmost symbol on its pushdown store, say Kj, then a
communication step takes place: the symbolKj on the top of the pushdown of Ai

is replaced by the complete pushdown contents of the pushdown automaton Aj ,
provided that the topmost symbol of it is not a query symbol. The PC system
is said to work in returning mode, if by this communication step the contents of
the pushdown of Aj is reset to its initial symbol Zj .

If there is only one component, called the master of the system, that can
use query symbols, then the PC system is called centralized. It is known that

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 456–467, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a centralized PC system of pushdown automata of degree n that is working
in returning mode can simulate an n-head pushdown automaton [6]. In [1], it
was claimed that also conversely, centralized PC systems of pushdown automata
of degree n working in returning mode can be simulated by n-head pushdown
automata, but it was shown in [8] that the proof given in [1] is incorrect. In
fact, it was established by Petersen that every recursively enumerable language
is accepted by a centralized PC system of pushdown automata of degree two that
is working in returning mode [9]. It follows that multi-head pushdown automata
are strictly weaker than centralized PC systems of pushdown automata that
work in returning mode.

As observed in [8] it is the inherent synchronization of the various components
of a PC system of pushdown automata that makes these systems so powerful.
This is further exemplified in [9], as the proofs given in that paper make use
of this synchronous behaviour in essential ways. Here we do away with this
synchronous behaviour by defining asynchronous PC systems of pushdown auto-
mata, abbreviated as APCPDA. These systems are obtained by introducing an
additional response symbol. Assume that M is an APCPDA of degree n with
components A1, . . . , An. If one of these pushdown automata, say Ai, encounters
a special query symbol as the topmost symbol on its pushdown store, say Kj,
then it wishes to perform a communication (see above). However, this is possible
only if the pushdown automaton Aj has the special response symbol R as the
topmost symbol on its pushdown. If this is the case, then the symbol Kj on the
top of the pushdown of Ai is replaced by the pushdown contents of Aj without
the response symbol R, and the contents of the pushdown of Aj is reset to its
initial symbol Zj ; otherwise, Ai will have to wait until the communication is
enabled. Symmetrically, if Aj has the special response symbol R as the topmost
symbol on its pushdown, then it has to wait until Ai is ready for the correspond-
ing communication. Thus, in this model the component, the pushdown contents
of which is sent to a requesting component, is fully aware of this fact and of
the time of this communication. Further, as the sending (the receiving) compo-
nent has to wait until the receiving (the sending) component is ready for the
communication, we see that the various components do not work in complete
synchronization anymore. That’s why we choose to call this model asynchronous.
As our main result we will show that the centralized asynchronous PC systems
of pushdown automata of degree n that work in returning mode correspond in
expressive power exactly to the multi-head pushdown automata of degree n. This
result also holds for the deterministic case.

The paper is structured as follows. In Section 2 we restate the definition of
PC systems of pushdown automata from [6] in short and recall some of their
properties, and we define the asynchronous PC systems of pushdown automata.
We also present a detailed example, and we prove that asynchronous PC systems
of pushdown automata working in returning mode can be simulated by PC
systems of the same type and degree working in nonreturning mode. In the
next section we recall the definition of the multi-head pushdown automaton and
derive our main results. Then in Section 4, we discuss centralized asynchronous
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PC systems of pushdown automata working in nonreturning mode. The paper
closes with a short summary and some open problems.

2 PC Systems of Pushdown Automata

First we restate the definition of the PC system of pushdown automata from [6].

Definition 1. A PC system of pushdown automata is given through a tuple
A = (Σ,Γ,A1, . . . , An,K), where

– Σ is a finite input alphabet and Γ is a finite pushdown alphabet,
– for each 1 ≤ i ≤ n, Ai = (Qi, Σ, Γ, c, δi, qi, Zi, Fi) is a nondeterministic

pushdown automaton with finite set of internal states Qi, initial state qi ∈ Qi

and set of final states Fi ⊆ Qi, input alphabet Σ, pushdown alphabet Γ , end
marker c �∈ Σ, initial pushdown symbol Zi ∈ Γ , and transition relation
δi : Qi × (Σ ∪ {c, ε})× Γ → 2Qi×Γ∗

,
– and K ⊆ {K1,K2, . . . ,Kn} ⊆ Γ is a set of query symbols.

Here the pushdown automata A1, . . . , An are the components of the system A,
and the integer n is called the degree of this PC system.

Definition 1 (cont.). A configuration of A is described by a 3n-tuple

(s1, x1c, α1, s2, x2c, α2, . . . , sn, xnc, αn),

where, for 1 ≤ i ≤ n,

– si ∈ Qi is the current state of component Ai,
– xi ∈ Σ∗ is the remaining part of the input which has not yet been read by

component Ai, and
– αi ∈ Γ ∗ is the current contents of the pushdown of Ai, where the first symbol

of αi is the topmost symbol on the pushdown.

On the set of configurations A induces a computation relation 4∗
A,r that is the

reflexive and transitive closure of the following relation 4A,r.

Definition 2. For configurations (s1, x1c, c1α1, . . . , sn, xnc, cnαn) and (p1, y1c,
β1, . . . , pn, ync, βn), where c1, . . . , cn ∈ Γ ,

(s1, x1c, c1α1, . . . , sn, xnc, cnαn) 4A,r (p1, y1c, β1, . . . , pn, ync, βn)

if and only if one of the following two conditions is satisfied:

(1) K ∩{c1, . . . , cn} = ∅, and for all 1 ≤ i ≤ n, xi = aiyi for some ai ∈ Σ ∪{ε},
(pi, γi) ∈ δi(si, ai, ci), and βi = γiαi, or xi = ε = yi, (pi, γi) ∈ δi(si, c, ci),
and βi = γiαi, or

(2) – K ∩ {c1, . . . , cn} �= ∅,
– for all i ∈ {1, . . . , n} such that ci = Kji and cji �∈ K, βi = cjiαjiαi and

βji = Zji ,
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– βr = crαr for all other values of r ∈ {1, . . . , n},
– yt = xt and pt = st for all t ∈ {1, . . . , n}.

The steps of form (1) are called local steps, as in them each component Ai

(1 ≤ i ≤ n) performs a local step, concurrently, but otherwise independently.
The steps of form (2) are called communication steps, as in them the topmost
symbol Kji on the pushdown of component Ai is replaced by the complete
contents cjiαji of the pushdown of component Aji , provided that the topmost
symbol cji is itself not a query symbol. At this time also the pushdown of Aji is
reset to its initial symbol Zji . Accordingly, it is said that A works in returning
mode. If the contents of the pushdown of Aji were to remain unchanged by the
communication step, thenA would work in nonreturning mode. The computation
relation for this mode is denoted by 4∗

A.

Definition 3. (a) The language Lr(A) that is accepted by A working in return-
ing mode is defined by

Lr(A) = {w ∈ Σ∗ | (q1, wc, Z1, . . . , qn, wc, Zn) 4∗
A,r (s1, c, α1, . . . , sn, c, αn)

for some si ∈ Fi and αi ∈ Γ ∗, 1 ≤ i ≤ n },

and the language L(A) that is accepted by A working in nonreturning mode
is defined by

L(A) = {w ∈ Σ∗ | (q1, wc, Z1, . . . , qn, wc, Zn) 4∗
A (s1, c, α1, . . . , sn, c, αn)

for some si ∈ Fi and αi ∈ Γ ∗, 1 ≤ i ≤ n }.

(b) By Lr(PCPDA(n)) we denote the class of languages that are accepted by PC
systems of pushdown automata of degree n working in returning mode, and
by L(PCPDA(n)) we denote the class of languages that are accepted by PC
systems of pushdown automata of degree n working in nonreturning mode.

(c) A PC system of pushdown automata A = (Σ,Γ,A1, . . . , An,K) is central-
ized if there is only a single component, say A1, that can use query symbols.
In this case, A1 is called the master of the system A. By Lr(CPCPDA(n))
we denote the class of languages that are accepted by centralized PC sys-
tems of pushdown automata of degree n working in returning mode, and by
L(CPCPDA(n)) we denote the class of languages that are accepted by central-
ized PC systems of pushdown automata of degree n working in nonreturning
mode.

The following result is known on the expressive power of PC systems of pushdown
automata.

Theorem 4. [6] The classes L(PCPDA(2)) and Lr(PCPDA(3)) coincide with
the class of all recursively enumerable languages.

Recently the result on PC systems of pushdown automata working in returning
mode has been improved as follows.
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Theorem 5. [9] The class Lr(CPCPDA(2)) coincides with the class of all recur-
sively enumerable languages.

Let A = (Σ,Γ,A1, . . . , An,K) be a centralized PC system of pushdown auto-
mata, and let

(s1, x1c,Kjα1, . . . , sj , xjc, αj , . . .) 4A,r (s1, x1c, αjα1, . . . , sj , xjc, Zj , . . .)

be a communication step of A. The component A1 is actively involved in this
communication step, while component Aj is only passively involved in it, that is,
it does not really know about its involvement in this step. It can at best realize
its involvement after the communication has taken place. On the other hand, A1

knows exactly how many local steps Aj has executed before the communication
step, as A1 and Aj perform their local steps strictly synchronously. We now

define a new variant of PC systems of pushdown automata, in which we use a
response symbol in addition to the query symbols. In this way we will

– enable the component Aj to become an active participant in the communi-
cation above, and

– break the strict synchronicity of local steps between the various components
of a PC system.

Definition 6. An asynchronous PC system of pushdown automata is given
through a tuple A = (Σ,Γ,A1, . . . , An,K,R), where

– Σ, Γ , A1, . . . , An, and K are defined as in Definition 1, and
– R ∈ Γ 
K is a special response symbol such that R �= Zi for all i = 1, . . . , n.

Configurations of these systems are defined in the same way as for PC systems
of pushdown automata. On the set of configurations A induces a computation
relation 4∗

A,r that is the reflexive and transitive closure of the following rela-
tion 4A,r.

Definition 7. For configurations (s1, x1c, c1α1, . . . , sn, xnc, cnαn) and (p1, y1c,
β1, . . . , pn, ync, βn), where c1, . . . , cn ∈ Γ ,

(s1, x1c, c1α1, . . . , sn, xnc, cnαn) 4A,r (p1, y1c, β1, . . . , pn, ync, βn)

if and only if one of the following two conditions is satisfied:

(1) if there are indices i, j ∈ {1, . . . , n} such that ci = Kj and cj = R, then a
communication step takes place:

– for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , n} such that ci = Kj and cj = R,
βi = αjαi and βj = Zj,

– βr = crαr for all other values of r ∈ {1, . . . , n}, and
– yt = xt and pt = st for all t ∈ {1, . . . , n}, or

(2) if there are no such indices i and j, then a local step takes place:



Asynchronous PC Systems of Pushdown Automata 461

– for all i ∈ {1, . . . , n} such that ci ∈ K ∪ {R}, βi = ciαi, yi = xi and
pi = si,

– for all other values of i ∈ {1, . . . , n}, xi = aiyi for some ai ∈ Σ ∪ {ε},
(pi, γi) ∈ δi(si, ai, ci), and βi = γiαi, or xi = ε = yi, (pi, γi) ∈ δi(si, c, ci),
and βi = γiαi.

Observe that a communication step is executed as soon as there are two com-
ponents, say Ai and Aj , such that the topmost symbol on the pushdown of Ai

is the query symbol Kj, and the topmost symbol on the pushdown of Aj is the
response symbol R. In this case, the symbol Kj is replaced by the pushdown
contents of Aj without the symbol R, and the pushdown contents of Aj is reset
to its initial symbol Zj . In fact, such communications are carried out for all com-
ponents that satisfy the above requirements. If no communication is possible,
then all components that have neither a query symbol nor a response symbol on
the top of their pushdowns execute a single step of a local computation, while all
those components that have a query symbol or a response symbol at the top of
their pushdowns just wait. As in a communication between Ai and Aj as above,
the pushdown contents of Aj is reset to the initial symbol Zj , we say that the
above definition describes the returning mode of operation for A. If we require
that in the above communication, just the response symbol R is deleted from
the pushdown of Aj , then we say that A works in the nonreturning mode, which
is denoted by 4∗

A.
The language Lr(A) that is accepted by A working in returning mode and the

language L(A) that is accepted by A working in nonreturning mode are defined
as in Definition 3. By Lr(APCPDA(n)) we denote the class of languages that
are accepted by asynchronous PC systems of pushdown automata of degree n
working in returning mode, and by L(APCPDA(n)) we denote the class of lan-
guages that are accepted by asynchronous PC systems of pushdown automata
of degree n working in nonreturning mode. An asynchronous PC system of push-
down automata A = (Σ,Γ,A1, . . . , An, K,R) is called centralized if there is only
a single component, say A1, that can use query symbols. By Lr(CAPCPDA(n))
we denote the class of languages that are accepted by centralized asynchronous
PC systems of pushdown automata of degree n working in returning mode, and
by L(CAPCPDA(n)) we denote the class of languages that are accepted by cen-
tralized asynchronous PC systems of pushdown automata of degree n working in
nonreturning mode. Finally, an asynchronous PC system of pushdown automata
A = (Σ,Γ,A1, . . . , An, K,R) is called deterministic, if all its components are
deterministic pushdown automata. By Lr(APCDPDA(n)) we denote the class of
languages that are accepted by asynchronous PC systems of deterministic push-
down automata of degree n working in returning mode, and by L(APCDPDA(n))
we denote the class of languages that are accepted by asynchronous PC systems
of deterministic pushdown automata of degree n working in nonreturning mode,
and analogously for centralized systems.

Next we present a simple example of an asynchronous PC system of pushdown
automata.
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Example 8. LetA = (Σ,Γ,A1, A2, {K2}, R) be the centralized asynchronous PC
system of degree 2 that contains the components A1 = (Q1, Σ, Γ, c, δ1, p1, Z1, F1)
and A2 = (Q2, Σ, Γ, c, δ2, q1, Z2, F2), where

– Q1 = {p1, p2, p3, p4} and Q2 = {q1, q2, q3},
– F1 = {p4} and F2 = {q3},
– Σ = {a, b, c} and Γ = {Z1, Z2, A,B,C,K2, R}, and
– the transition relations are defined as follows:

(1) δ1(p1, a, Z1) = {(p1, Z1)}, (9) δ2(q1, a, Z2) = {(q1, RAZ2)},
(2) δ1(p1, b, Z1) = {(p1, Z1)}, (10) δ2(q1, b, Z2) = {(q1, RBZ2)},
(3) δ1(p1, c, Z1) = {(p2,K2Z1)}, (11) δ2(q1, c, Z2) = {(q2, RCZ2)},
(4) δ1(p2, a, A) = {(p3, ε)}, (12) δ2(q2, a, Z2) = {(q2, Z2)},
(5) δ1(p2, b, B) = {(p3, ε)}, (13) δ2(q2, b, Z2) = {(q2, Z2)},
(6) δ1(p2, c, C) = {(p4, ε)}, (14) δ2(q2, c, Z2) = {(q3, Z2)},
(7) δ1(p3, ε, Z2) = {(p2,K2)}, (15) δ2(q3, c, Z2) = {(q3, Z2)}.
(8) δ1(p4, c, Z2) = {(p4, Z2)},

On input abcab, the system A executes the following computation:

(p1, abcabc, Z1, q1, abcabc, Z2) 4A,r (p1, bcabc, Z1, q1, bcabc, RAZ2)
4A,r (p1, cabc, Z1, q1, bcabc, RAZ2)
4A,r (p2, abc,K2Z1, q1, bcabc, RAZ2)
4A,r (p2, abc, AZ2Z1, q1, bcabc, Z2)
4A,r (p3, bc, Z2Z1, q1, cabc, RBZ2)
4A,r (p2, bc,K2Z1, q1, cabc, RBZ2)
4A,r (p2, bc, BZ2Z1, q1, cabc, Z2)
4A,r (p3, c, Z2Z1, q2, abc, RCZ2)
4A,r (p2, c,K2Z1, q2, abc, RCZ2)
4A,r (p2, c, CZ2Z1, q2, abc, Z2)
4A,r (p4, c, Z2Z1, q2, bc, Z2)
4A,r (p4, c, Z2Z1, q2, c, Z2)
4A,r (p4, c, Z2Z1, q3, c, Z2),

that is, abcab ∈ Lr(A). On the other hand, it is easily checked that A cannot
accept on input w, if w is not of the form w = ucu for any u ∈ {a, b}∗. It follows
that Lr(A) is the copy language Lcopy = { ucu | u ∈ {a, b}∗ }, which is not even
a growing context-sensitive language (see, e.g., [2]). Observe that A is in fact a
deterministic system.

In a computation of an asynchronous PC system of pushdown automata, each
component realizes its involvement in a communication step. If the system works
in nonreturning mode, then in a communication step in which the pushdown
contents of Aj is copied to Ai, the response symbol R is removed from the top
of the pushdown of the sending component Aj . Now by using additional internal
states, the component Aj can be forced to reset its pushdown to its bottom
marker Zj before it continues with its computation. This gives the following
result.
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Theorem 9. Let n ≥ 2, and let A ∈ APCPDA(n). Then one can effectively
construct a system A′ ∈ APCPDA(n) such that L(A′) = Lr(A). In addition,
if A is centralized and/or deterministic, then so is A′.

Thus, we have the following inclusions.

Corollary 10. For all n ≥ 2, (a) Lr(CAPCDPDA(n)) ⊆ L(CAPCDPDA(n)).
(b) Lr(CAPCPDA(n)) ⊆ L(CAPCPDA(n)).
(c) Lr(APCDPDA(n)) ⊆ L(APCDPDA(n)).
(d) Lr(APCPDA(n)) ⊆ L(APCPDA(n)).

3 Multi-head Pushdown Automata

Next we repeat in short the definition of the multi-head pushdown automaton,
where we follow the presentation in [6] (see also [3,4]).

Definition 11. For n ≥ 1, an n-head pushdown automaton is given through a
9-tuple B = (n,Q,Σ, Γ, c, δ, q0, Z0, F ), where Q is a finite set of internal states,
q0 ∈ Q is the initial state and F ⊆ Q is a set of final states, Σ is a finite
input alphabet and Γ is a finite pushdown alphabet with initial pushdown symbol
Z0 ∈ Γ , the symbol c �∈ Σ is a special end marker, and δ : Q×(Σ∪{c, ε})n×Γ →
2Q×Γ∗

is a transition relation. If (q′, α) ∈ δ(q, a1, . . . , an, X), then this means
that B, when in state q with X as the topmost symbol on its pushdown and
reading ai with its i-th head (1 ≤ i ≤ n), can change to state q′ and replace the
symbol X by the string α on the top of the pushdown. In addition, if ai ∈ Σ,
then head i moves one step to the right, and if ai = c or ai = ε, then head i
remains stationary.

A configuration of B is described by an (n+ 2)-tuple

(q, x1c, . . . , xnc, α) ∈ Q× (Σ∗ · {c})n × Γ ∗,

where q is the current internal state, xi is the remaining part of the input still
unread by head i (1 ≤ i ≤ n), and α is the current contents of the pushdown,
where the first symbol of α is the topmost symbol. By 4B we denote the single-
step computation relation that B induces on its set of configurations, and 4∗

B is
its reflexive and transitive closure. If δ is a function δ : Q× (Σ ∪{c, ε})n×Γ →
Q× Γ ∗ such that the induced transition relation on configurations of B is a
function, then B is a deterministic n-head pushdown automaton.

The language L(B) accepted by B is now defined as

L(B) = {w ∈ Σ∗ | (q0, wc, . . . , wc, Z0) 4∗
B (s, c, . . . , c, α)

for some s ∈ F and α ∈ Γ ∗ }.

In [6] it is shown that each language that is accepted by an n-head pushdown
automaton is also accepted by some centralized PC system of pushdown auto-
mata of degree n that is working in returning mode. Here we carry this result
over to asynchronous PC systems of pushdown automata.
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Theorem 12. If L is accepted by a (deterministic) n-head pushdown automaton,
then it is also accepted by a centralized asynchronous PC system of (determinis-
tic) pushdown automata of degree n that is working in returning mode.

Proof. Let B = (n,Q,Σ, Γ, c, δ, q0, Z1, F ) be an n-head (deterministic) push-
down automaton. If n = 1, then there is nothing to prove. So let n ≥ 2.

We construct a centralized asynchronous PC system of (deterministic) push-
down automata A = (Σ,Γ1, A1, A2, . . . , An,K,R) of degree n that simulates B.
This simulation will proceed as follows: first the master requests the symbols
from all the other components that are currently under their input heads, and
it stores this information within its finite-state control. Then based on this in-
formation, it can determine (deterministically) the next step of B that it must
simulate. In this way we will be able to simulate B by a centralized asynchronous
PC system of (deterministic) pushdown automata. Accordingly, the PC system
A is defined as follows:

– K = {K2, . . . ,Kn} and Γ1 = Γ ∪K ∪ {R} ∪ {Z2, . . . , Zn},
– A1 = (Q1, Σ, Γ1, c, δ1, q

(1)
0 , Z1, F1) and

– Ai = (Qi, Σ,Σ ∪ {Zi, R}, c, δi, q(i)0 , Zi, Fi), i = 2, . . . , n, where
• Q1 = {q0} ∪ { q[p,μ1,...,μn] | p ∈ Q,μ1, . . . , μn ∈ Σ ∪ {c,⊥,⊥′} }, and
• Qi = {q(i)0 } for i = 2, . . . , n,

• q
(1)
0 = q0, F1 = { q[p,c,...,c] | p ∈ F }, and Fi = {q(i)0 }, i = 2, . . . , n,

• the transition relation δ1 is given by the following description, where
p ∈ Q, a1, . . . , an ∈ Σ ∪ {c}, A ∈ Γ , i ≥ 2, and b1, . . . , bn ∈ Σ ∪ {c,⊥}:
(1) δ1(q0, a1, Z1) = {(q[q0,a1,⊥,...,⊥], Z1)},
(2) δ1(q[p,a1,...,ai−1,⊥,bi+1,...], ε, A) = {(q[p,a1,...,ai−1,⊥′,bi+1,...],KiA)},
(3) δ1(q[p,a1,...,ai−1,⊥′,bi+1,...], ε, ai) = {(q[p,a1,...,ai−1,ai,bi+1,...], ε)},
(4) δ1(q[p,a1,...,an], ε, A) = { (q[p′,b1,...,bn], α) | (p′, α) ∈ δ(p, c1, . . . , cn, A),

cj = aj and bj =⊥, or cj = ε and bj = aj , 1 ≤ j ≤ n },
• and the other transition relations are defined by

(5) δi(q
(i)
0 , a, Zi) = {(q(i)0 , Ra)} for all a ∈ Σ ∪ {c}, 2 ≤ i ≤ n.

In its finite-state control, A1 remembers the actual state of B and the symbols
that are currently under the heads of B. Based on this information and the
symbol on the top of its pushdown, A1 can determine the next step of B, which
it then simulates (see (4)). In this step B may consume only some of the sym-
bols a1, . . . , an, as some of its heads may just perform ε-steps. Accordingly, A1

consumes only those symbols ai that are consumed (read) by the corresponding
heads of B. These symbols are replaced by the symbol ⊥ within the finite-state
control of A1. Then using the rules (2) to (3), A1 requests the next symbols these
heads will read. After obtaining all the required symbols, A1 can simulate the
next step of B. It now follows easily that Lr(A) = L(B) holds, which completes
the proof of Theorem 12. ��

In fact, also the converse of Theorem 12 holds.
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Theorem 13. If L is accepted by a centralized asynchronous PC system of (de-
terministic) pushdown automata of degree n that is working in returning mode,
then L is also accepted by some (deterministic) n-head pushdown automaton.

Proof. Here we can follow the proof idea of Balan [1], which works correctly
now that centralized PC systems of pushdown automata are considered that are
asynchronous.

This simulation works as follows. Each of the n heads of the n-head pushdown
automaton B will simulate the input head of one of the components of the cen-
tralized asynchronous PC system A. First, using head 1, B simulates the master
A1 of the system A up to the point, where a query symbol Kj occurs as the top-
most symbol on the pushdown. Then using head j, B simulates the component
Aj using the pushdown of B. Thus, at the time of the communication step, the
pushdown contents of B will correspond exactly to the pushdown contents of the
master A1 after execution of the communication step. Now for the PC systems
of [6] the problem was that B cannot recognize this moment in time. However,
as we consider an asynchronous PC system, the component Aj puts the response
symbol R onto its pushdown, when it is ready for the communication to take
place. Thus, at this moment B can switch back to simulating the master com-
ponent A1. Once the simulation of A1 has been completed successfully, B can
simulate the other components, one by one, as no more communication steps
will occur. It follows that L(B) = Lr(A) holds. ��

In summary we obtain the following characterization.

Corollary 14. For all n ≥ 1,

Lr(CAPCPDA(n)) = L(n-PDA) and Lr(CAPCDPDA(n)) = L(n-DPDA),

that is, a language is accepted by a centralized asynchronous PC system of (de-
terministic) pushdown automata of degree n that is working in returning mode
if and only if it is accepted by a (deterministic) n-head pushdown automaton.

4 On Centralized Systems Working in Nonreturning
Mode

We have seen in Corollary 10 that asynchronous PC systems of pushdown auto-
mata working in returning mode can be simulated by asynchronous PC systems
of the same type and the same number of components working in nonreturn-
ing mode. However, in nonreturning mode, centralized APCPDA systems are
actually much more expressive than in returning mode. Here the following result
holds.

Theorem 15. Each recursively enumerable language is accepted by a centralized
asynchronous PC system of pushdown automata of degree two that is working in
nonreturning mode, that is, L(CAPCPDA(2)) = RE.
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It remains to determine the expressive power of centralized asynchronous PC
systems of deterministic pushdown automata that work in nonreturning mode.
We do not yet have a characterization for these systems, but we have the following
result.

Theorem 16. For all n ≥ 2, Lr(CAPCDPDA(n)) � L(CAPCDPDA(n)).

Proof. It remains to show that the inclusions above are proper. For n ≥ 2, let
Ln denote the following language on Σ = {0, 1,#, $}:

Ln = {w1# . . .#wn$wn# . . .#w1 | w1, . . . , wn ∈ {0, 1}∗ }.

It is known that the language Ln is accepted by a k-head pushdown automaton
if and only if n ≤

(
k
2

)
[3,4]. Because of Corollary 14, this means that Ln is

accepted by a centralized asynchronous PC system of pushdown automata of
degree k that is working in returning mode if and only if n ≤

(
k
2

)
. This implies

that the language

L∞ = {w1# . . .#wn$wn# . . .#w1 | n ≥ 1, w1, . . . , wn ∈ {0, 1}∗ }

is not accepted by any centralized asynchronous PC system of pushdown auto-
mata that is working in returning mode. The proof of Theorem 16 can now be
completed by establishing the following claim.

Claim. L∞ is accepted by a centralized asynchronous PC system of deterministic
pushdown automata of degree 2 that is working in nonreturning mode. ��

5 Concluding Remarks

We have introduced asynchronous variants of the PC systems of pushdown au-
tomata of [6] by using a special response symbol. In this way we obtained a
characterization of the language classes defined by n-head (deterministic and
nondeterministic) pushdown automata in terms of centralized asynchronous PC
systems of pushdown automata that work in returning mode. In the nondetermin-
istic case, these centralized systems accept all recursively enumerable languages,
when they work in nonreturning mode. In addition, we could show that also in
the deterministic case, centralized asynchronous PC systems of pushdown au-
tomata that work in nonreturning mode are more powerful than the systems
of the same type that work in returning mode. However, we did not succeed
in obtaining a characterization for the class of languages that are accepted by
centralized asynchronous PC systems of deterministic pushdown automata that
work in nonreturning mode. Given sufficiently many components, do these PC
systems accept all recursively enumerable languages?

Concerning non-centralized APCPDA systems, it can be shown that each
recursively enumerable language is accepted by an APCDPDA system of degree
two that is working in nonreturning mode as well as by an APCDPDA system of
degree three that is working in returning mode. These results have the following
consequences.
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Corollary 17. (a) L(APCDPDA(n)) = L(APCPDA(n)) = RE for all n ≥ 2.
(b) Lr(APCDPDA(n)) = Lr(APCPDA(n)) = RE for all n ≥ 3.

It remains to determine the expressive power of non-centralized asynchronous PC
systems of (deterministic and nondeterministic) pushdown automata of degree
two that work in returning mode.

In our definition a component of a PC system of pushdown automata sends
its pushdown contents to each and every component that has the corresponding
query symbol as the topmost symbol on its pushdown. It is, however, conceivable
that a component may want to choose to which other component it is willing to
send its pushdown contents. This could be achieved, for example, by using a set
of response symbols {R1, . . . , Rn} similar to the way in which communication is
realized in PC systems of restarting automata as defined in [10]: a communication
that sends the pushdown contents of component Aj to Ai can be executed only
if the topmost symbol on the pushdown of Ai is the query symbol Kj , and the
topmost symbol on the pushdown of Aj is the response symbol Ri. It appears,
however, that all our results extend to this type of PC systems.
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6. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V., Vaszil, G.: Parallel communicating
pushdown automata systems. Intern. J. Found. Comput. Sci. 11, 631–650 (2000)
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Abstract. We study the decidability status of the model checking prob-
lem for Metric Temporal Logic over models with one counter variable
whose value can increase and decrease. This includes 1-counter machines
with zero tests, 1-dimensional vector addition systems with states, and
weighted automata with weights in the integers. We show that model
checking of non-deterministic models is undecidable, even if we restrict
the intervals used in the logic to be of the form (−∞, 0] and [0,∞). On
the positive side, we show that model checking of deterministic models
is decidable.

1 Introduction

During the last decades, Metric Temporal Logic (MTL, for short), introduced by
Koymans [10], has become a prominent formalism for specifying the behaviour
of real-time systems, like timed automata [1] and its weighted variants [5]. MTL
extends Linear Temporal Logic (LTL, for short) by constraining the temporal
operators by intervals of the non-negative real numbers. For instance, the for-
mula p → �[2,3)q expresses that whenever p holds, q should finally hold after
2 and before 3 time units, or, using an alternative interpretation of the vari-
able, q should finally hold and the system’s energy consumption should be in
the interval [2, 3). Recent research work shows that MTL-model checking over
finite computations on models with continuous behaviour has non-primitive re-
cursive complexity [14,5], and it is undecidable if one considers infinite compu-
tations over continuous models [13] or models with additional resources [5]. For
conceptually simpler models with discrete behaviour, MTL-model checking is
EXPSPACE-complete [2,11]. Recently [12], this positive decidability result could
be generalized to MTL-model checking over weighted automata with weights
coming from a monotone ordered weight structure that is bounded locally finite.
Weight structures satisfying these properties comprise amongst others the set of
non-negative rational numbers with the usual addition operation, and the set of
rational numbers with the minimum operation; the set of integers with addition,
however, does not satisfy the required properties. It was left as an open question
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in [12] whether MTL-model checking over weighted automata with weights in
the integers is decidable or not.

In this paper, we answer this question negatively. We show by a reduction
from the state-reachability problem for 2-counter machines that MTL-model
checking over weighted automata with integer weights is undecidable. This is
the case even if we restrict the logic to formulas where the intervals occurring as
constraints at the temporal operators are of the form (−∞, 0] and [0,∞). The
undecidability result also applies to the related models of 1-counter machines
and 1-dimensional vector addition systems with states (VASS, for short). As
a second result, we show that MTL-model checking becomes decidable if we
restrict the models in consideration to be deterministic. For this, we generalize
a result of Demri et al. [6] on the decidability of model checking the logic Freeze
LTL over deterministic 1-counter machines.
Related work. It is folklore that LTL-model checking over deterministic 2-counter
machines is undecidable: the proof can be done by an easy reduction from the
halting problem for 2-counter machines. It is long known that LTL-model check-
ing over n-dimensional VASS and pushdown systems is decidable [8,3]. For the
recently established complexity results for 1-counter machines we refer the reader
to [9].

The above mentioned results refer to classical LTL, which does not allow
to express any properties about the value of the counter. In contrast to this,
MTL permits to express differences between the values of a counter between
two positions in a computation. This enables us to simulate zero tests and thus
the behaviour of a 2-counter machine: hence MTL-model checking over non-
deterministic 2-dimensional VASS and weighted automata over � with 2 weight
variables is undecidable.

Demri et al. [6] consider Freeze LTL, an extension of LTL that allows to test
the values of a counter at two different positions in a computation for identity
using a finite set of registers. Freeze LTL-model checking non-deterministic 1-
counter machines is undecidable [6]; the same holds for 2-dimensional VASS,
even for a restricted version of Freeze LTL [7]. To the best of our knowledge,
there is no (un)decidability result for 1-dimensional VASS known. From a result
by Bouyer et al. [4] it follows that MTL restricted to intervals of the form [0, 0]
and � is strictly less expressive than Freeze LTL; hence the undecidability results
for Freeze LTL do not automatically carry over to MTL.

On the positive side, model checking deterministic 1-counter machines against
formulas of Freeze LTL is proved to be decidable [6]. However, the logic in [6]
only allows to test whether the values of the counter at two different positions are
identical, whereas MTL allows to test whether the distance between the values
at two positions is in an arbitrary interval of �. Hence, the result in [6] cannot
immediately be applied to MTL.

2 Counter Machines and Weighted Automata

A 1-counter machine is a tuple M = (Q, q0, Δ), where Q is a finite set of states,
q0 ∈ Q is an initial state, and Δ ⊆ Q × Op × Q is a finite set of transitions
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labeled with an operation from the set Op := {++, --,= 0?}. A configuration of
M is a pair (q, c) ∈ Q × �. Between two configurations there is a step, denoted
by (q, c) → (q′, c′), if, and only if, there is some transition (q, op, q′), and either

– op is = 0? (zero test of the counter): c = c′ = 0, and d = d′, or
– op is -- (decrementation of the counter): c > 0, c′ = c− 1, and d′ = d, or
– op is ++ (incrementation of the counter): c′ = c+ 1, and d′ = d.

A finite computation of M is a sequence γ0 → γ1 → ... → γk of steps, where
γ0 = (q0, 0). An infinite computation of M is an infinite sequence γ0 → γ1 → . . .
of steps such that γ0 = (q0, 0). A 1-counter machine is deterministic if for each
reachable configuration γ there is at most one configuration γ′ such that γ → γ′

is a step. A 1-counter machine is a 1-dimensional vector addition system with
states (VASS, for short), if its transitions do not use any zero tests.

A weighted automaton is a tuple A = (S, s0, T, F ), where S is a finite set
of states, s0 ∈ S is the initial state, T ⊆ S × {0, 1,−1} × S is a finite set of
transitions, and F ⊆ S is a set of accepting states. A global state of a weighted
automaton is a pair (q, c) ∈ S × �. Note that - in contrast to the values of the
counters in counter machines - the value of the weight variable in a global state
may become negative. A finite run of a weighted automaton is a finite sequence
(s0, c0)(s1, c1) . . . (sk, ck) of global states such that for each i ∈ {0, . . . , k − 1}
there is a transition (si, ai, si+1) ∈ T such that ci + ai = ci+1. Infinite runs are
defined analogously. A weighted automaton A is deterministic, if for each s ∈ S
there is at most one transition (s, a, s′) ∈ T for some a ∈ {0, 1,−1} and s′ ∈ S.

3 Metric Temporal Logic

Given a finite set Q, the set of formulas of MTL is built up from Q by boolean
connectives and constraining versions of the next and until operator as follows:

ϕ ::= true | q | ¬ϕ | ϕ1 ∧ ϕ2 | �I ϕ | ϕ1UIϕ2

where q ∈ Q and I ⊆ � is an open, closed, or half-open interval with endpoints
in � ∪ {−∞,∞}. If I = �, then we omit the annotation I on �I and UI .

Note that in contrast to classical MTL [10], we allow for intervals containing
negative integers.

Formulas in MTL are interpreted over computations of 1-counter machines
and runs of weighted automata. Let γ = (q0, c0) → (q1, c1) → . . . be an infinite
computation of a 1-counter machine, and let i ∈ �. We define the satisfaction
relation for MTL, denoted by |=, inductively as follows:

(γ, i) |= true, (γ, i) |= q if q = qi,

(γ, i) |= ¬ϕ if (γ, i) �|= ϕ,

(γ, i) |= ϕ1 ∧ ϕ2 if (γ, i) |= ϕ1 and (γ, i) |= ϕ2,

(γ, i) |= �Iϕ if (γ, i+ 1) |= ϕ and ci+1 − ci ∈ I,

(γ, i) |= ϕ1UIϕ2 if ∃j ≥ i : (γ, j) |= ϕ2, cj − ci ∈ I, ∀i ≤ l < j : (γ, l) |= ϕ1.
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In the same way, we define the satisfaction relation for MTL for finite compu-
tations of 1-counter machines, as well as for finite and infinite runs of weighted
automata.

We use the following syntactical abbreviations: �Iϕ := trueUIϕ, �Iϕ :=
¬�I¬ϕ.

We are interested in MTL-model checking counter machines and weighted
automata; formally:

Infinitary Existential Model Checking Problem

INPUT: A 1-counter machineM (a weighted automatonA, respectively),
an MTL-formula ϕ.

QUESTION: Is there some infinite computation γ of M (infinite run γ of A,
respectively) such that (γ, 0) |= ϕ?

The Finitary Existential Model Checking Problem is defined in an analogous
manner for finite computations of M (finite runs of A, respectively).

4 Model Checking Non-deterministic Models

In this section, we present the undecidability result for MTL-model checking of
non-deterministic weighted automata, VASS and 1-counter machines.

Theorem 1. Finitary existential MTL-model checking of non-deterministic
weighted automata is undecidable.

Proof. The proof is by reduction from the undecidable state-reachability prob-
lem for deterministic 2-counter machines. A 2-counter machine is a tuple M =
(Q, q0, Δ), where Δ ⊆ Q×Op′×Q and Op′ = {C1, C2}×{++, --,= 0?}, i.e., the
machine operates on two counters C1 and C2 instead of just one. A configuration
of a 2-counter machine is thus a triple (q, c, d) ∈ Q×�2. The definitions of steps,
computations and determinism are analogous to those for 1-counter machines.

Let M = (Q, q0, Δ) be a deterministic 2-counter machine, and let qF ∈ Q.
We define a weighted automaton AM and an MTL-formula ψM such that M
has a computation that reaches qF if, and only if, there is a run γ of AM such
that (γ, 0) |= ψM . Next, we informally explain the idea of the reduction. A
configuration (q, c, d) of M together with a transition δ = (q, op, q′) ∈ Δ is
encoded by a run of AM of the form

(q, c+ d+ 1) → (δ−, c+ d) → (δ−, c+ d− 1) → · · · → (δ−, c) → ((q, δ), c),

i.e., the value of the weight variable in a state q corresponds to the sum of the
values of the two counters of M plus 1 before the transition δ is executed, and
the value of the weight variable in a state of the form (q, δ) represents the value
of the first counter before the transition δ is executed.

Without loss of generality, we assume that q0 has no ingoing transitions. We
define the weighted automaton AM = (S, s0, T, F ), where S = Q∪{s0}∪{(q, δ) |
δ ∈ Δ, q ∈ Q} ∪ {δ−, δ+ | δ ∈ Δ}, and F = {qF }. For initializing AM , we define
a transition (s0, 1, q0). For each δ = (q, op, q′) ∈ Δ, we define the transitions
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– (q,−1, δ−),
– (δ−, 0, (q, δ)),
– ((q, δ), 1, δ+),
– (δ+, 1, δ+),
– (δ+, 0, q′).

If q �= q0, we additionally define the transition (δ−,−1, δ−).
Next, we define the MTL-formula ψM to encode the correct semantics of the

operations inM . The formula ψM is supposed to be evaluated at the initial config-
uration of M . We start with defining two helpful macros. Let δ = (q, op, q′) ∈ Δ
and I be an interval. We define a macro ψ1(δ, I) that expresses that the differ-
ence between the value of the weight variable in a state of the form (q, δ) and
the very next state of the form (q′, δ′) for some δ′ is in I. Since the value of the
weight variable in a state (q, δ) represents the value of the first counter before
the transition δ is executed, this formula expresses that the difference of the first
counter after and before δ is executed is in I.

�
[
(q∧�δ−) →

∨
δ2=(q′,op,q′′)∈Δ

(
(q∨δ−)U

(
(q, δ)∧(�(δ+∨q′∨δ′−∨(q′, δ′))UI(q

′, δ2))
))]

.

Similarly, we define a macro ψ2(δ, I) that expresses that the difference between
the value of the weight variable in a state of the form q and the very next state
of the form q′ is in I. This refers to the difference of the sum of the values of the
first and second counter plus 1 after and before δ is executed.

�[(q ∧ �δ−) → ((q ∨ δ− ∨ (q, δ) ∨ δ+)UIq
′)].

The definition of ψM is as follows:

– The value of the weight variable in a state of the form (q, δ) represents the
value of the first counter, and thus should be non-negative. The following
formula expresses that whenever the formula (q, δ) is true, the value of the
weight variable is not in the interval (−∞,−1], i.e., it is greater than or
equal to 0:

ϕNonnegative :=
∧

δ=(q,−,−)∈Δ

�(−∞,−1]¬(q, δ)

– A transition δ = (q, C1 = 0?, q′) can be executed only if the value of the first
counter is zero. The value of the first counter is represented by the value of
the weight variable in state (q, δ). The formula ZeroTest1(δ) expresses that
the value in (q, δ) is less than or equal to 0:

ZeroTest1(δ) := �[1,∞)¬(q, δ).

Together with ϕNonnegative we obtain that the value in (q, δ) is equal to 0. We
set

ϕC1=0? :=
∧

δ=(q,C1=0?,q′)∈Δ

ZeroTest1(δ) ∧ NoChange1(δ) ∧ NoChange2(δ),
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where NoChange1(δ) := ψ1(δ, [0, 0]) and NoChange2(δ) := ψ2(δ, [0, 0]) (using
the above defined macros) express that the value of the first and second
counter are not changed by the execution of a zero test transition.

– A transition δ = (q, C2 = 0?, q′) can be executed only if the value of the
second counter is zero. The value of the second counter is represented by the
value of the weight variable in state q minus the value of the weight variable
in the very next state of the form (q, δ) minus 1. The formula ZeroTest2(δ)
expresses that the value of the weight variable in state q and the value of
the weight variable in state (q, δ) is exactly −1.

ZeroTest2(δ) := �[(q ∧ �δ−) → ((q ∨ δ−)U[−1,−1](q, δ))]

This implies that the value of the second counter equals 0. We set

ϕC2=0? :=
∧

δ=(q,C2=0?,q′)∈Δ

ZeroTest2(δ) ∧ NoChange1(δ) ∧ NoChange2(δ).

– A transition δ = (q, C1--, q
′) can be executed only if the value of the first

counter is positive. The value of the first counter is represented by the value
of the weight variable in state (q, δ). The following formula expresses that
the value of the weight variable in state (q, δ) is not 0:

Positive1(δ) := �[0,0]¬(q, δ)

This together with ϕNonnegative implies that the value is positive. As an effect
of the execution of δ, the value of the first counter has to be decreased by 1,
whereas the value of the second counter must not change. Since the value of
the first counter is represented in the weight values in both states of the form
q and (q, δ), we define Dec1(δ) := ψ1(δ, [−1,−1]) ∧ ψ2(δ, [−1,−1]). Finally
we set

ϕC1-- :=
∧

δ=(p,C1--,q)∈Δ

Positive1(δ) ∧ Dec1(δ).

– A transition δ = (q, C2--, q
′) can be executed only if the value of the second

counter is positive. The value of the second counter is represented by the
value of the weight variable in state q minus the value of the weight variable
in the very next state of the form (q, δ) minus 1. The formula Positive2(δ)
expresses that the value of the weight variable in state q and the value of
the weight variable in state (q, δ) is positive:

Positive2(δ) := �[(q ∧ �δ−) → ((q ∨ δ−)U(−∞,−2](q, δ))].

As an effect of the execution of δ, the value of the second counter has to be
decreased by 1, whereas the value of the first counter must not change. We
thus define Dec2(δ) := ψ2(δ, [−1,−1]), and set

ϕC2-- :=
∧

(p,C2--,q)∈Δ

Positive2(δ) ∧ NoChange1(δ) ∧Dec2(δ).



474 K. Quaas

– For incrementing transitions, the formulas have to express the increasing
effects on the corresponding values. We define

ϕc1++ :=
∧

(p,c1++,q)∈Δ

Inc1(δ),

where Inc1(δ) := ψ1(δ1, [1, 1]) ∧ ψ2(δ1, [1, 1]). Likewise, put

ϕC2++ :=
∧

(p,C2++,q)∈Δ

NoChange1(δ) ∧ Inc2(δ)

where Inc2(δ) := ψ2(δ1, [1, 1]).
– A run should satisfy ψM if, and only if, it finally reaches the state qF . Hence

set ϕF = �qF .

Finally we set

ψM := ϕNonnegative ∧ ϕC1=0? ∧ ϕC2=0? ∧ ϕC1-- ∧ ϕC2-- ∧ ϕC1++ ∧ ϕC2++ ∧ ϕF .

��

We can easily adapt the proof of Theorem 1 and use 1-counter machines (VASS,
respectively) to simulate the behaviour of a 2-counter machine:

Theorem 2. Finitary existential MTL-model checking of non-deterministic 1-
counter machines and VASS is undecidable.

Remark 3. The definition of AM and ψM in the proof of Theorem 1 can be
changed to prove that MTL-model checking of weighted automata is undecidable
even if the intervals I occurring in formulas �I and UI are restricted to be in
{[0,∞), (−∞, 0]}: For each transition δ = (q, op, q′) ∈ Δ, we add six new states
q1, q2, q3, (q1, δ), (q2, δ), (q3, δ), and define the transitions (q, 1, q1), (q1,−2, q2),
(q2, 1, q3), (q3,−1, δ−), (δ−,−1, δ−) (if q �= q0), (δ

−, 0, (q, δ)),((q, δ), 1, (q1, δ)),
((q1, δ),−2, (q2, δ)), ((q2, δ), 1, (q3, δ)), ((q3, δ), 1, δ+), (δ+, 1, δ+), (δ+, 0, q′). The
formulas in ψM are slightly changed, e.g., the formula ϕNonnegative is redefined as∧

δ∈Δ �(−∞,0]¬(q1, δ).

5 Model Checking Deterministic Models

In this section, we prove that MTL-model checking is decidable if we restrict the
considered models to be deterministic.

Theorem 4. Infinitary existential MTL-model checking of deterministic
1-counter machines is decidable.

The result immediately implies decidability of MTL-model checking of determin-
istic VASS and weighted automata.

The proof is based on a generalization of a result for model checking deter-
ministic 1-counter machines against formulas of the logic Freeze LTL [6], (LTL↓,
for short).
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Given a finite set Q and a finite set R of registers, the set of formulas of LTL↓

is defined as follows:

ϕ ::= true | q | r ∈ I | ¬ϕ | ϕ1 ∧ ϕ2 | � ϕ | ϕ1Uϕ2 | ↓ r.ϕ

where q ∈ Q, r ∈ R and I ⊆ Z is an interval. Note that this logic is a gener-
alization of the logic defined in [6], which allows for intervals of the form [0, 0]

only. We use LTL↓
0 to denote this logic. We use the syntactical abbreviation

ϕ1Rϕ2 := ¬(¬ϕ1U¬ϕ2).
Formulas in LTL↓ are interpreted over computations of 1-counter machines. A

register valuation ν is a function from R to �. Let γ = (q0, c0) → (q1, c1) → . . .
be a computation of a 1-counter machine, let ν be a register valuation, and let
i ∈ �. The satisfaction relation for LTL↓, denoted by |=↓, is inductively defined
as expected; we only give the definitions for the new formulas:

(γ, i, ν) |=↓ x ∈ I if ci − ν(r) ∈ I,

(γ, i, ν) |=↓↓ r.ϕ if (γ, ν[r �→ ci], i) |= ϕ.

Here, ν[r �→ ci] is the valuation that agrees with ν on all r ∈ R\{r}, and maps
r to ci.

The following result is analogous to a result for the real-time logics MTL and
TPTL [4].

Lemma 5. For each MTL-formula ϕ there is a LTL↓-formula ψ such that for
each computation γ = (q0, c0) → (q1, c1) → . . . of a 1-counter machine, the
empty valuation ν and i ∈ �, we have (γ, i) |= ϕ if, and only if, (γ, ν, i) |=↓ ψ.

Theorem 4 follows from Lemma 5 and the next theorem, which is a general-
ization of Theorem 13 in [6].

Theorem 6. Infinitary existential LTL↓-model checking of deterministic
1-counter machines is decidable.

In the rest of this section we explain the main ideas of the proof of Theorem 6.
Let M = (Q, q0, Δ) be a deterministic 1-counter machine. Note that M has

at most one accepting computation, denoted by γM . In the following, we assume
that γM is of the form (q0, c0) → (q1, c1) → . . . . The crucial point in the proof
of Theorem 6 is the fact that γM can be decomposed into a regular form.

Lemma 7 ([6]). There are K1,K2,K3 such that K1 + K2 ≤ |Q|3, K3 ≤ |Q|,
and for each i ≥ K1 we have (qi+K2 , ci+K2) = (qi, ci +K3).

Intuitively, γM consists of a finite prefix of length K1, followed by a sequence
of K2 steps that are repeated infinitely often, and where the counter values
increase in each iteration by K3. For the rest of this section we let K1,K2 and
K3 be the smallest natural numbers that satisfy the conditions of Lemma 7. The
interesting case is K3 > 0, when the number of different values occurring in the
computation is infinite. We assume in the following that K3 > 0.

Let ϕ ∈LTL↓. We use sub(ϕ) to denote the set of subformulas of ϕ, and we use
U(ϕ) to denote the set of Until-subformulas of ϕ. We say that ϕ is in negation
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normal form if for every subformula ¬ψ of ϕ either ψ = true, ψ = q for some
q ∈ Q or ψ = r ∈ I for some r ∈ regs(ϕ) and I ⊆ �, i.e.., negation is only
applied at the atomic level. Note that there is a LTL↓-formula ϕ′ in negation
normal form (using formulas of the form ϕ1Rϕ2) such that (γM , i, ν) |=↓ ϕ iff
(γM , i, ν) |=↓ ϕ′ for every i ≥ 0 and register valuation ν.

We define regs(ϕ) to be the set of registers that occur in ϕ. For r ∈ regs(ϕ),
define ints(r) to be the set of intervals I such that r ∈ I is a subformula of ϕ.
For technical reasons, we additionally require that ints(r) includes the interval
[0, 0].

Let i ≥ 0 and m ∈ �. We define offset(i,m) to be the set {j ∈ � | ci+j = m}.
A context of γM is a pair (i, ν), where i ≥ 0 and ν is a register valuation
ranging over {c0, . . . , ci}. Next, we define an equivalence relation ≡ over the
set of contexts. For (i, ν), (i′, ν′), we define (i, ν) ≡ (i′, ν′) if, and only if, the
following four conditions are satisfied.

– qi = qi′ ,
– qi+α = qi+β iff qi′+α = qi′+β for all α, β ≥ 0,
– ci+α = ci+β iff ci′+α = ci′+β for all α, β ≥ 0,
– offset(i, ν(r)) = offset(i′, ν′(r)) for each r ∈ regs(ϕ).

In [6], the main ingredients of the decidability result are:

1. If (i, ν) ≡ (i′, ν′) then (γM , i, ν) |=↓ ψ if, and only if, (γM , i′, ν′) |=↓ ψ for

every ψ ∈LTL↓
0.

2. The number of equivalence classes induced by ≡ is finite.
3. Each equivalence class can be finitely represented by a symbolic context. The

symbolic context of a context (i, ν) is a pair (i′, srv), where i′ = i if i < K1.
Otherwise, i′ is the unique element in {K1, . . . ,K1 + K2 − 1} such that i′

is congruent modulo K2 to i. Further, srv is a symbolic register valuation
that maps each register r to offset(i, ν(r)). Note that K3 > 0 implies that
offset(i, ν(r)) is finite.

With these results, it is possible to reduce the infinitary LTL↓
0-model checking

problem to a Büchi-acceptance problem for alternating Büchi automata. The
idea is to construct an alternating Büchi automaton AM,ϕ with states of the
form (〈i, ν〉, ψ), where 〈i, ν〉 is a symbolic context representing the equivalence
class of (i, ν), and ψ ∈ sub(ϕ). The automaton is constructed in such a way that
there is a Büchi-accepting run of AM,ϕ starting in the state (〈i, ν〉, ψ) if, and
only if, (γM , i, ν) |=↓ ψ.

In contrast to [6], we have to deal with arbitrary intervals I of �.
Let (i, ν) be a context, m ∈ � and let I ⊆ Z be an interval. We define

intoffset(i,m, I) to be the set {j ∈ � | ci+j −m ∈ I}. We note that offset(i,m) =
intoffset(i,m, [0, 0]). Now let r ∈ regs(ϕ) be a register such that ν(r) is defined.
Obviously, for intervals I ∈ {[a, a], [a, b], (−∞, a]}, intoffset(i, ν(r), I) is the union
of finitely many offsets; e.g., intoffset(i, ν(r), [a, b]) =

⋃
a≤α≤b offset(i, ν(r) + α).

For intervals of the form [a,∞) this is not the case. However, we prove that there
is some J ≥ i such that ci+k−ν(r) ∈ [a,∞) for all k > J . Further, we prove that
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there is a bound B for the values that the counter can take in positions i ≤ k ≤ J .
Thus, intoffset(i, ν(r), [a,∞)) =

⋃
a≤α≤B offset(i, ν(r) + α) ∪ {k | k ≥ J}, which

can be finitely represented.

Lemma 8. Let (i, ν) be a context, let r ∈ regs(ϕ) such that ν(r) is defined, let
I = [a,∞), and let k ≥ i.

1. If i < K1, then k ∈ intoffset(i, ν(r), I) if, and only if, k ∈ offset(i, ν(r) + α)
for some a ≤ α ≤ B, where B = K1 + K1K3 + aK3 + K2/2 + ci, or
k > K1 +K1K2 + aK2.

2. If i ≥ K1, then k ∈ intoffset(i, ν(r), I), if, and only if, k ∈ offset(i, ν(r) + α)
for some a ≤ α ≤ B, where B = K2K3+aK3+K2/2+ ci, or k > K2

2 +aK2.

This can be used to prove the next lemma.

Lemma 9. Let (i, ν), (i′, ν′) be two contexts. If (i, ν) ≡ (i′, ν′), then we have
intoffset(i, ν(r), I) = intoffset(i′, ν′(r), I) for each interval I ⊆ Z and r ∈ regs(ϕ)
such that ν(r), ν′(r) are defined.

We redefine the notion of symbolic register valuation. A symbolic register val-
uation is a mapping that maps each register r ∈ regs(ϕ) to a function from
the set ints(r) to a set of positions in γM . Given (i, ν), we define srv(r)(I) =
intoffset(i, ν(r), I) for every r ∈ regs(ϕ) and I ∈ ints(r). A context (i, ν) is repre-
sented by a symbolic context, which is a pair (i′, srv) defined as above, but using
our new definition of symbolic register valuations. We use 〈i, ν〉 to denote the
symbolic context of (i, ν).

Lemma 10. Let (i, ν), (i′, ν′) be two contexts. Then we have (i, ν) ≡ (i′, ν′) if,
and only if, 〈i, ν〉 = 〈i′, ν′〉.

Altogether, we can show the following:

1. If (i, ν) ≡ (i′, ν′) then (γM , i, ν) |=↓ ψ if, and only if, (γM , i′, ν′) |=↓ ψ for
every ψ ∈LTL↓. This can be proved using Lemma 9 and Lemma 9(I) in [6].

2. The number of equivalence classes induced by ≡ is finite.

3. Each equivalence class can be finitely represented by symbolic contexts. This
follows from Lemmas 8 and 10.

Without loss of generality, we may assume that ϕ is in negation normal form.
We define the alternating Büchi automaton AM,ϕ = (S, s0, δ, F ) as follows.

– S = {((i, srv), ψ) | (i, srv) is a symbolic context, ψ ∈ sub(ϕ)},
– s0 = {((0, srv0), ϕ)}, where srv0 is a symbolic register valuation representing

the empty register valuation,

– F = {((−,−), ψ) | ψ �∈ U(ϕ)},
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– and δ is defined as follows:

δ((i, srv), q) =

{
7 if qi = q

⊥ otherwise
δ((i, srv),¬q) =

{
⊥ if qi = q

7 otherwise

δ((i, srv), r ∈ I) =

{
7 if 0 ∈ srv(r)(I)

⊥ otherwise

δ((i, srv),¬r ∈ I) =

{
⊥ if 0 ∈ srv(r)(I)

7 otherwise

δ((i, srv), ψ ∧ ψ′) = δ((i, srv), ψ) ∧ δ((i, srv), ψ′)
δ((i, srv), ψ ∨ ψ′) = δ((i, srv), ψ) ∨ δ((i, srv), ψ′)
δ((i, srv),�ψ) = (next(i, srv), ψ)

δ((i, srv), ↓ r.ψ) = δ((i,
⋃

I∈ints(r)

srv(r)(I) �→ offset(i, ci, I)), ψ)

δ((i, srv), ψUψ′) = δ((i, srv), ψ′) ∨ [δ((i, srv), ψ) ∧ next((i, srv), ψUψ′)]
δ((i, srv), ψRψ′) = δ((i, srv), ψ′) ∧ [δ((i, srv), ψ) ∨ next((i, srv), ψRψ′)]

Here, like in [6], the function next takes as input a symbolic context (i, srv) and
returns the symbolic context (i′, srv′) satisfying the following conditions.

– If i < K1 +K2 − 1, then i′ = i− 1; otherwise i′ = K1.
– For every r ∈ {1, . . . , N} and I ∈ ints(r) we put srv′(r)(I) = {α − 1 | α ∈

srv(r)(I), α > 0}.

We can prove the following lemma similarly to Lemma 12 in [6], finishing the
proof of Theorem 6.

Lemma 11. Let (i, ν) be a context. For every ψ ∈ sub(ϕ), (γM , i, ν) |=↓ ψ if,
and only if, there is some Büchi-accepting run from (〈i, ν〉, ψ) in AM,ϕ.

6 Conclusion and Open Questions

In the first part of this paper, we have proved undecidability of MTL-model
checking of non-deterministic models. This together with Lemma 5 also im-
plies the undecidability of model checking Freeze LTL over non-deterministic
1-dimensional VASS, which, to the best of our knowledge, was unknown so far.
It is interesting to further investigate the differences between the logics MTL
and Freeze LTL; e.g., is MTL-model checking over non-deterministic 1-counter
machines still undecidable if we restrict the intervals to be of the form [0, 0], as
is done in original Freeze LTL [6]? In general, how can we restrict MTL in such a
way that model checking becomes decidable for the computationally less expres-
sive models of weighted automata and VASS? Concerning the decidability result
for model checking of deterministic models in the second part of this paper, one
may further investigate whether the complexity results for LTL↓

0 in [6] carry over
to LTL↓.
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Abstract. Language equivalence can be checked coinductively by estab-
lishing a bisimulation on suitable deterministic automata. We improve
and extend this technique with bisimulation-up-to, which is an enhance-
ment of the bisimulation proof method. First, we focus on the regular
operations of union, concatenation and Kleene star, and illustrate our
method with new proofs of classical results such as Arden’s rule. Then
we extend our enhanced proof method to incorporate language comple-
ment and intersection. Finally we define a general format of behavioural
differential equations, in which one can define operations on languages
for which bisimulation-up-to is a sound proof technique.

1 Introduction

The set of all languages over a given alphabet can be turned into an (infinite)
deterministic automaton. By the coinduction principle, any two languages that
are bisimilar as states in this automaton are in fact equal. The typical way to
show that two languages x and y are bisimilar is by exhibiting a bisimulation,
which in this setting is a relation on languages containing the pair (x, y) and
satisfying certain properties. Indeed, this is the basis of a practical coinductive
proof method for language equality [21], which has, for example, been applied in
effective procedures for checking equivalence of regular languages [12,21,13,6].

In this paper we present bisimulation up to congruence, in the context of lan-
guages and automata. This is an enhancement of bisimulation originally stem-
ming from process theory [24,18]. In order to prove bisimilarity of two languages,
instead of showing that they are related by a bisimulation, one can show that
they are related by a bisimulation-up-to, which in many cases yields smaller,
easier and more elegant proofs. As such, we introduce a proof method which
improves on the more classical coinductive approach based on bisimulations.

At first, we will focus on languages presented by the regular operations of
union, concatenation and Kleene star. We will exemplify our coinductive proof
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method based on bisimulation-up-to by novel proofs of several classical results
such as Arden’s rule and the soundness of the axioms of Kleene algebra. Then
we proceed to incorporate language intersection and complement and show the
usefulness and versatility of the techniques by giving a full coinductive proof
that two context-free languages defined in terms of language equations, that
of palindromes and that of non-palindromes, indeed form each others comple-
ment. Finally, in order to deal with other language operations, such as shuffle or
symmetric difference, we introduce a general format of behavioural differential
equations, for operations allowing proofs based on bisimulation-up-to.

The soundness of bisimulation-up-to, stating that whenever two languages are
related by a bisimulation-up-to they are equal, follows from abstract coalgebraic
theory [20,19]. The main contribution of this paper is the presentation of this
proof technique in the context of languages and automata, without explicitly
using any coalgebra or category theory. As witnessed by the many examples in
this paper, this yields a useful, elegant and efficient method for proving equality
of languages, enhancing the existing successful coinductive methods based on
establishing bisimulations. Moreover, from the perspective of coalgebraic theory
this can be regarded as an extensive concrete exercise in bisimulation-up-to. On
the technical side, the general format of operations for which bisimulation-up-to
is sound, can be considered a novel contribution.

The outline of this paper is as follows. In Section 2 we recall the notions of
bisimulation and coinduction in the context of languages and automata. Then in
Section 3 we present bisimulation-up-to for the regular operations. In Section 4
we extend our techniques to deal with complementation and intersection, and in
Section 5 we present a format for which bisimulation-up-to is guaranteed to be
sound. In Section 6 we place our work in the context of coalgebraic theory and
discuss related work, and finally in Section 7 we conclude.

2 Languages, Automata, Bisimulations and Coinduction

Throughout this paper we assume a fixed alphabet A, which is simply a (possibly
infinite) set. We denote by A∗ the set of words, i.e., finite concatenations of
elements of A; we denote the empty word by ε, and the concatenation of two
words w and v by wv. The set of languages over A is given by P(A∗), and ranged
over by x, y, z. We denote the empty language by 0 and the language {ε} by 1.
Moreover when no confusion is likely to arise, we write a to denote the language
{a}, for alphabet letters a ∈ A.

A (deterministic) automaton over A is a triple (S, o, δ) where S is a set of
states, o : S → {0, 1} is an output function, and δ : S × A → S is a transition
function. Notice that S is not necessarily finite, and there is no initial state. We
say a state s ∈ S is final or accepting if o(s) = 1. For each automaton (S, o, δ)
there is a function l : S → P(A∗) which assigns to each state s ∈ S a language, in-
ductively defined as follows: ε ∈ l(s) iff o(s) = 1 and aw ∈ l(s) iff w ∈ l(δ(s, a)).

The classical definition of bisimulation [14,17] applies to labelled transition
systems, which, in contrast to deterministic automata, do not feature output
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and may have a non-deterministic branching behaviour. We will base ourselves
on a different notion of bisimulation specific to deterministic automata, which
is an instantiation of general coalgebraic theory (see Section 6). A bisimulation
is a relation R ⊆ S × S such that for any (s, t) ∈ R: o(s) = o(t) and for all a ∈
A : (δ(s, a), δ(t, a)) ∈ R. Given a deterministic automaton, the union of all bisim-
ulations is again a bisimulation, is denoted by ∼ and is called bisimilarity; if
s ∼ t for two states s, t then we say these states are bisimilar. Notice that in
order to show that two states s and t are bisimilar, it suffices to construct a
bisimulation R such that (s, t) ∈ R. As it turns out, this gives a proof principle
for showing language equivalence of states:

Theorem 1 (Coinduction). For any two states s, t of a deterministic automa-
ton: if s ∼ t then l(s) = l(t).

This coinduction principle is easily proved by induction. The converse holds as
well, i.e., if l(s) = l(t) then s is related to t by some bisimulation R. Such a
relation R may well be infinite, but this is not necessarily a problem; in practice
one can often give a finite description of such an infinite relation.

In order to proceed we recall the notion of language derivatives : the a-derivative
of a language x is defined as xa = {w | aw ∈ x}. The set P(A∗) of all languages
can be turned into a deterministic automaton by defining the output function
and the transition function as follows: o(x) = 1 if ε ∈ x and o(x) = 0 other-
wise, and δ(x, a) = xa for all a ∈ A. One can check that for any language x,
the language accepted by the corresponding state in the automaton is precisely
x itself. A relation R on languages is a bisimulation on this automaton if for any
(x, y) ∈ R : o(x) = o(y) and for any a ∈ A : (xa, ya) ∈ R. By the coinduction
principle (Theorem 1), we now have the following method for checking equality
of languages x and y: if we can establish a bisimulation containing the pair (x, y),
then x ∼ y, so x = y.

We will be interested in the regular operations on languages, defined in a
standard way: union x + y = {w | w ∈ x or w ∈ y}, concatenation x · y =
{w | w = uv for some u ∈ x and v ∈ y} and Kleene star x∗ =

∑
i≥0 x

i, where

x0 = 1 and xi+1 = x · xi. We often write xy for x · y.
In order to prove equivalence of languages defined using the above operations

we may use bisimulations, but for this we need a characterization of the output
(acceptance of the empty word) and the derivatives of languages. Such a charac-
terization was given for regular expressions by Brzozowski [3]; we formulate this
in terms of languages (e.g., [5, page 41]):

Lemma 2. For any two languages x, y and for any a, b ∈ A:

0a = 0 o(0) = 0
1a = 0 o(1) = 1

ba =

{
1 if b = a

0 otherwise
o(b) = 0

(x+ y)a = xa + ya o(x+ y) = o(x) ∨ o(y)
(x · y)a = xa · y + o(x) · ya o(x · y) = o(x) ∧ o(y)
(x∗)a = xa · x∗ o(x∗) = 1
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Example 3. Let us prove that (a + b)∗ = (a∗b∗)∗ for some alphabet letters a, b
(for simplicity we assume that the alphabet does not contain any other letters).
To this end, we start with the relation R = {((a + b)∗, (a∗b∗)∗)} and try to
show it is a bisimulation. So we must show that the outputs of (a + b)∗ and
(a∗b∗)∗ coincide, and that their a-derivatives and their b-derivatives are related
by R. Using Lemma 2, we see that o((a+ b)∗) = 1 = o((a∗b∗)∗). Moreover, again
using Lemma 2, we have ((a + b)∗)a = (a + b)a(a + b)∗ = (1 + 0)(a + b)∗ =
(a + b)∗ and ((a∗b∗)∗)a = (a∗b∗)a(a∗b∗)∗ = ((a∗)ab∗ + o(a∗)(b∗)a)(a∗b∗)∗ =
(a∗b∗ + 0)(a∗b∗)∗ = (a∗b∗)∗, so the a-derivatives are again related (notice that
apart from Lemma 2, we have used some basic facts about the regular operations).
The b-derivative of (a+ b)∗ is (a+ b)∗ itself; however, the b-derivative of (a∗b∗)∗

is b∗(a∗b∗)∗. This means that R is not a bisimulation. However, we can consider
instead the relation R′ = R ∪ {((a + b)∗, b∗(a∗b∗)∗)}. As it turns out, the pair
((a + b)∗, b∗(a∗b∗)∗) satisfies the necessary conditions as well, turning R′ into a
bisimulation. We leave the details as an exercise for the reader, and conclude
(a+ b)∗ = (a∗b∗)∗ by coinduction.

Bisimulation proofs in general will follow the above pattern of using Lemma 2 to
compute outputs and to expand the derivatives, and then using some reasoning
to show that the outputs are equal and the derivatives related. In the sequel we
will sometimes use Lemma 2 without further reference to it. We note that the
above coinductive proof method applies to general languages, not only to regular
ones. However if one restricts to regular languages, then this technique give rise
to an effective algorithm for checking equivalence.

The axioms of Kleene algebra (KA) [11] constitute a complete axiomatisation
of language equivalence of regular expressions. We recall them here for the fol-
lowing two reasons. First, they provide a number of interesting examples for our
methods. Second, and more importantly, these axioms are often quite useful for
relating derivatives. We state the axioms in terms of languages and our concrete
operations:

x+ (y + z) = (x+ y) + z (1)

x+ y = y + x (2)

x+ x = x (3)

x+ 0 = x (4)

x(yz) = (xy)z (5)

x · 1 = 1 · x = x (6)

x · 0 = 0 · x = 0 (7)

(y + z)x = yx+ zx (8)

x(y + z) = xy + xz (9)

x∗x+ 1 = x∗ (10)

xx∗ + 1 = x∗ (11)

xy ⊆ x → xy∗ ⊆ x (12)

yx ⊆ x → y∗x ⊆ x (13)

Notice that x ⊆ y iff x + y = y. All of (1) through (9) follow easily from the
definition of the operations. The remaining axioms will be treated below.
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3 Bisimulation-up-to

In this section we will introduce an enhancement of the bisimulation proof
method. We first illustrate the need for such an enhancement with an exam-
ple. Consider the Kleene algebra axiom (11) (see Section 2). In order to prove
this identity coinductively, consider the relation R = {(xx∗+1, x∗) | x ∈ P(A∗)};
let us see if this is a bisimulation. Using Lemma 2, it is easy to show that for
any language x, the outputs of xx∗ + 1 and x∗ are equal. For any a ∈ A:

(xx∗ + 1)a = xax
∗ + o(x)xax

∗ + 0 = xax
∗ = (x∗)a

where the leftmost and rightmost equality are by Lemma 2, and in the second
step we use some of the KA identities which we know to hold. Now we have
shown that the derivatives are equal ; this does not allow us to conclude that R
is a bisimulation, since for that, the derivatives need to be related by R. Instead
we can consider the relation R′ = R∪{(y, y) | y ∈ P(A∗)}. Then the derivatives
of xx∗ + 1 and x∗ are related by R′; moreover, the diagonal is easily seen to
satisfy the properties of a bisimulation as well. This solves the problem, but is
obviously somewhat inconvenient.

Now consider the relation R = {(x∗x+ 1, x∗) | x ∈ P(A∗)} which we may try
to use to prove (10) by coinduction. The derivatives are (using Lemma 2):

(x∗x+ 1)a = xax
∗x+ xa + 0 = xa(x

∗x+ 1) and (x∗)a = xax
∗

Clearly xax
∗ can be obtained from xa(x

∗x + 1) by substituting x∗x + 1 for x∗,
and indeed the latter two languages are related by R. However, unfortunately
these derivatives are not related directly by R, and so R is not a bisimulation.
Extending R to a bisimulation is indeed a non-trivial task.

When proving identities over languages coinductively, situations such as in
the above examples occur very often. To deal with such cases in a better way,
we will introduce bisimulation-up-to. We need the notion of congruence closure.

Definition 4. For a relation R ⊆ P(A∗)×P(A∗), define the congruence closure
of R as the least relation ≡ satisfying the following rules:

xRy

x ≡ y x ≡ x

x ≡ y

y ≡ x

x ≡ y y ≡ z

x ≡ z

x1 ≡ y1 x2 ≡ y2
x1 + x2 ≡ y1 + y2

x1 ≡ y1 x2 ≡ y2
x1 · x2 ≡ y1 · y2

x ≡ y

x∗ ≡ y∗

In the sequel we denote the congruence closure of a given relation R by ≡R.

The upper left rule ensures R ⊆≡R. The three rules on the right in the first row
ensure that ≡R is an equivalence relation. Notice that the reflexivity rule has
as a consequence that languages which are equal, are also related by ≡R. The
transitivity rule allows to relate languages in multiple “proof steps”. Finally the
three rules on the second row ensure that ≡R is a congruence, which in particular
means that ≡R relates languages which are obtained by (syntactic) substitution
of languages related by R. For example, if x∗x+1 R x∗, then we can derive from
the above rules that xa(x

∗x+ 1) ≡R xax
∗.
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Definition 5. Let R ⊆ P(A∗)×P(A∗) be a relation on languages. We say R is
a bisimulation up to congruence, or simply a bisimulation-up-to, if for any pair
(x, y) ∈ R: o(x) = o(y) and for all a ∈ A : xa ≡R ya.

The idea of bisimulation-up-to is that now the derivatives are easier to relate,
since they can be related by the congruence ≡R instead of only the relation
R itself. Indeed, to prove that R is a bisimulation-up-to, the derivatives can
be related by equational reasoning. Of course such a bisimulation-up-to R is in
general not a bisimulation. As it turns out, showing that R is a bisimulation-
up-to is enough to ensure that ≡R is itself a bisimulation (this result is based
on general coalgebraic theory which we will shortly discuss in Section 6). This
means that in that case for any (x, y) ∈≡R we have x = y by coinduction. Since
R ⊆≡R this holds in particular for all pairs related by the bisimulation-up-to R.
So we have the following proof principle:

Theorem 6 (Coinduction-up-to). If R is a bisimulation-up-to then for any
(x, y) ∈ R : x = y.

Any bisimulation is also a bisimulation-up-to, so this generalizes Theorem 1 in
the case of languages. Consequently, the converse of the above principle holds as
well. We proceed with a number of proofs based on bisimulation-up-to.

Example 7. Recall the relation R = {(x∗x + 1, x∗) | x ∈ P(A∗)} from the be-
ginning of this section. As we have seen, the a-derivatives are xa(x

∗x + 1) and
xax

∗, which are not related by R; however they are related by ≡R. So R is
a bisimulation-up-to, and consequently x∗x + 1 = x∗. Moreover, the relation
{(xx∗ + 1, x∗) | x ∈ P(A∗)} from the beginning of this section is a bisimulation-
up-to as well; there, the derivatives are equal and thus related by ≡R.

We have covered coinductively the soundness of most of the axioms of Kleene al-
gebra; the only remaining ones are right and left star induction, i.e., (12) and (13).
Instead of proving these we will consider Arden’s rule below; the coinductive
proof of (12) and (13) is very similar (notice that we can treat an inclusion
x ⊆ y simply by showing x+ y = y). Finally, notice that instead of proving the
KA axioms one by one, we could consider the equivalence relation R induced by
all the KA axioms together, and show that this is a bisimulation-up-to.

Example 8. Arden’s rule states that if x = yx + z for some languages x, y and
z, and y does not contain the empty word, then x = y∗z. In order to prove its
validity coinductively, let x, y, z be languages such that ε �∈ y and x = yx+z, and
let R = {(x, y∗z)}. Then o(y) = 0, so o(x) = o(yx + z) = (o(y) ∧ o(x)) ∨ o(z) =
(0 ∧ o(x)) ∨ o(z) = o(z) = 1 ∧ o(z) = o(y∗) ∧ o(z) = o(y∗z) and for any a ∈ A:
xa = (yx+ z)a = yax+ o(y) · xa + za = yax+ za ≡R yay

∗z + za = (y∗z)a. So R
is a bisimulation-up-to, proving Arden’s rule.

While Arden’s rule is not extremely difficult to prove without coinduction either,
the textbook proofs are significantly longer and arguably more involved than the
above proof, which is not much more than taking derivatives combined with a
tiny bit of algebraic reasoning. Nevertheless this coinductive proof is completely
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precise. Giving a formal proof without our methods is not trivial at all; see,
e.g., [7] for the discussion of a proof within the theorem prover Isabelle.

In fact, [21] already contains a coinductive proof of Arden’s rule; however,
this is based on a bisimulation (in contrast to our proof which is based on a
bisimulation-up-to). Indeed, in [21] the infinite relation {(ux+v, uy∗z+v) | u, v ∈
P(A∗)} is used, requiring more work in checking the bisimulation conditions. In
that case one essentially closes the relation under (certain) contexts manually;
the coinduction-up-to principle does this in a general and systematic fashion.

Example 9. Let us prove that for any language x, we have xx = 1 → x = 1.
Assume xx = 1 and let R = {(x, 1)}. Since o(xx) = o(1) = 1 also o(x) = 1 = o(1).
We show that the derivatives of x and 1 are equal, turning R into a bisimulation-
up-to. For any a ∈ A: xax + xa = xax + o(x)xa = (xx)a = 1a = 0. One easily
proves that this implies xa = 0 (for example by showing that {(y, 0) | x+ y = 0}
is a bisimulation). Thus xa = 0 = 1a, so xa ≡R 1a.

Example 10. We prove the soundness of the axiom xx = x → x∗ = 1 + x, by
establishing a bisimulation-up-to. This axiom was used by Boffa in his complete
axiomatisation of equivalence of regular expressions. Let x be a language for
which xx = x and consider the relation R = {(x∗, 1 + x)}. Indeed, o(x∗) =
1 = o(1 + x), and for any a ∈ A: (x∗)a = xax

∗ ≡R xa(1 + x) = xa + xax =
xa + o(x)xa + xax = xa + (xx)a = xa + xa = xa.

In fact the above axiom can also easily be proved by induction. In practice, one
wants to combine inductive and coinductive methods.

4 Language Equations and Boolean Operators

Context-free languages can be expressed in terms of certain types of language
equations [8]. For example, the language {anbn | n ∈ N} is the unique language
x such that x = axb + 1. Our coinductive techniques can directly be applied to
languages defined in such a way, and so we are able to reason about (equivalence
of) context-free languages in a novel manner.

Example 11. Let x, y, z be languages such that x = ayzb+ 1, y = azxb+ 1 and
z = axyb + 1. Without thinking of what possible concrete descriptions of x, y
and z can be, let us show, by coinduction, that x = y = z. We use the relation
R = {(x, y), (y, z)}. Obviously o(x) = o(y) and o(y) = o(z). Moreover for any
alphabet letter b other than a, we have xb = 0 = yb and yb = 0 = zb. For the
a-derivatives we have xa = yzb ≡R zyb ≡R zxb = ya and similarly for (y, z); so
R is a bisimulation-up-to, proving that x = y = z.

So far we have considered the regular operations of union, concatenation and
Kleene star. We proceed to incorporate complement and intersection, defined as
x = {w | w �∈ x} and x ∧ y = {w | w ∈ x and w ∈ y} respectively. Language
equations including these additional operators can be used to give semantics to
conjunctive- and Boolean grammars [16]. Complement and intersection have a
known characterization in terms of outputs and derivatives as well [3]:
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Lemma 12. For any two languages x, y and for any a ∈ A:

o(x) = ¬o(x) xa = xa

o(x ∧ y) = o(x) ∧ o(y) (x ∧ y)a = xa ∧ ya

As a consequence, we have bisimulation and coinduction to our disposal to show
equivalence of languages defined in terms of systems of equations involving these
additional operators. In order to allow for proofs based on bisimulation-up-to,
we first need to extend the congruence closure to deal with intersection and
complement. The boolean congruence closure ≡B

R of a relation R is defined as the
least relation ≡ which satisfies the rules of the congruence closure (Definition 4)
plus the following two rules:

x1 ≡ y1 x2 ≡ y2
x1 ∧ x2 ≡ y1 ∧ y2

x ≡ y

x ≡ y

The associated definition of bisimulation-up-to is as expected. Fortunately, it is
also sound as a proof technique for language equality. We do not formally state
this here, but in Section 5 we will introduce a general coinduction-up-to theorem
which also applies to this case. In the sequel we will simply write ≡R for ≡B

R .
We have already seen that (P(A∗), 0, 1,+, ·, ∗) is a Kleene algebra; it is useful

to know that (P(A∗), 0, A∗,−,+,∧) is a Boolean algebra. Moreover, below we
will need the following property, which holds for any language x and a ∈ A:

xa = xa+
∑

b∈A\{a}
A∗b+ 1 (14)

For lack of space we do not include a proof; it can very well be shown coinductively.

Example 13. There are unique languages x and y such that

x = axa+ bxb+ a+ b+ 1 y = aya+ byb+ aA∗b+ bA∗a

x is the language of palindromes, i.e., words which are equal to their own reverse.
We claim that y must be the language of all non-palindromes, i.e., y = x. We
proceed to prove this formally by showing that the relation R = {(x, y)} is a
bisimulation-up-to. The outputs are easily seen to be equal: o(x) = ¬o(x) =
¬o(1) = 0 = o(y). We consider the a-derivatives; the b-derivatives are of course
similar. In the fourth step we use (14).

xa = xa = xa+ 1 = xa ∧ 1 = (xa+A∗b+ 1) ∧ 1

≡R (ya+A∗b+ 1) ∧ 1 = ya ∧ 1 +A∗b ∧ 1 + 1 ∧ 1 = ya+A∗b = ya

So R is a bisimulation-up-to, proving that y indeed is the complement of x.

5 Bisimulation-up-to for Other Operations

So far we have focused on the regular operations in Section 3 and added comple-
ment and intersection in Section 4. One may be interested in other operations
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on languages as well, such as shuffle or symmetric difference. In this section we
provide general conditions under which bisimulation-up-to can be applied.

A signature Σ is a collection of operator names σ ∈ Σ with associated arities
|σ| ∈ N. We define a general congruence closure with respect to a signature:

Definition 14. For a relation R ⊆ P(A∗) × P(A∗), define the Σ-congruence
closure ≡Σ

R of R as the least relation ≡ satisfying the following rules:

xRy

x ≡ y x ≡ x

x ≡ y

y ≡ x

x ≡ y y ≡ z

x ≡ z

x1 ≡ y1 . . . xn ≡ yn
σ(x1, . . . , xn) ≡ σ(y1, . . . , yn)

for each σ ∈ Σ,n = |σ|

The congruence closure for the regular operators (Definition 4) and the Boolean
congruence closure are special cases of the above definition. Given this general-
ized congruence closure, we define bisimulation-up-to with respect to a given sig-
nature, generalizing Definition 5: a relationR ⊆ P(A∗)×P(A∗) is a bisimulation-
up-to w.r.t. Σ, if for any (x, y) ∈ R: o(x) = o(y) and for any a ∈ A : xa ≡Σ

R ya.
We will give a general condition on the operations involved under which we

have an associated coinduction-up-to principle. In order to proceed we define the
set of terms TΣV over a signature Σ and a set of variables V by the grammar
t ::= v | σ(t1, . . . , tn) where v ranges over V , σ ranges over Σ and n = |σ|.

Definition 15. Assume given a signature Σ and for each σ ∈ Σ an interpre-
tation σ̂ : P(A∗)n → P(A∗), where n = |σ|. We say the semantics of Σ can be
given by behavioural differential equations if for all σ ∈ Σ there is:

– a function f : 2n → 2 (n is the arity of σ),
– a term t(v1, . . . , vm) ∈ TV for some set of variables V and some m ∈ N,
– for every a ∈ A, a function ga : P(A∗)n → P(A∗)m such that for each i ≤ m

there is j ≤ n s.t. either ga(x1, . . . , xn)(i) = xj, or ga(x1, . . . , xn)(i) = (xj)b
for some b ∈ A, or ga(x1, . . . , xn)(i) = o(xj),

such that o(σ̂(x1, . . . , xn)) = f(o(x1), . . . , o(xn)) and

σ̂(x1, . . . , xn)a = ̂t(ga(x1, . . . , xn)) for each a ∈ A

where ·̂ is the extension of the interpretation of the operators to terms.

Indeed Lemma 2 witnesses that the regular operations can be given by be-
havioural differential equations, and Lemma 12 shows this additionally for com-
plement and intersection (and see, e.g., [21] for a definition of the shuffle operator
by behavioural differential equations). So the following theorem generalizes the
coinduction-up-to principle of Theorem 6:

Theorem 16 (Coinduction-up-to). If the semantics of the operators of a sig-
nature Σ can be given by behavioural differential equations, then for any relation
R which is a bisimulation-up-to w.r.t Σ: if (x, y) ∈ R then x = y.
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In fact, the coinduction-up-to principle holds even if, in Definition 15, one allows
for a different term ta for every alphabet symbol a ∈ A, instead of a single term
t. We have chosen not to include this in the definition for readability reasons.

We conclude this section with an example, adapted from [18], showing that
bisimulation-up-to is in general not sound (for operations not given by be-
havioural differential equations), and as such illustrating the need for a restricted
format. Assume, for simplicity, a singleton alphabet {a}. Consider the constants
0 and a, and a unary function h, with the following interpretation in languages:
0 = 0, a = {a}, h(0) = 0 and h(x) = 1 for all languages x s.t. x �= 0. The
outputs of these two constants and this function are as follows: o(0) = o(a) = 0
and o(h(x)) = 0 iff x = 0. For the derivatives we have aa = h(a), 0a = h(0) and
h(x)a = 0. Now the relation R = {(0, a)} is a bisimulation-up-to, while 0 �= a; so
for these operations, there is no coinduction-up-to principle. Indeed, h can not
be given by behavioural differential equations, because of the case distinction on
its argument x rather than that it is based only on the output o(x).

6 Discussion and Related Work

The theory of bisimulation and bisimulation-up-to developed in this paper are
instantiations of the general theory of coalgebras. Coalgebra [22] is a general
mathematical theory for the uniform study of state-based systems including la-
belled transition systems but also stream systems, various kinds of (weighted
or probabilistic) automata, etc. Indeed, deterministic automata, as presented in
Section 2, are also a certain type of coalgebras. Bisimulation is the canonical no-
tion of equivalence of coalgebras, which, for labelled transition systems, coincides
with the classical notion introduced by Milner and Park [14,17]. In the case of de-
terministic automata, the associated instance of bisimulation is precisely the one
presented in Section 2. The material of that section is from [21], which contains
an extensive investigation of automata and languages as coalgebras.

Bisimulation-up-to classically is a family of enhancements of bisimulation for
labelled transition systems [24,18]; it is a rich theory which drastically improves
the bisimulation proof method for, e.g., CCS processes. One interesting result
based on bisimulation-up-to is the decidability result of [4], on equivalence of
context-free processes. Note that these notions of bisimulation-up-to do not di-
rectly apply to our case, since our notion of bisimulation for automata is dif-
ferent from the classical one for labelled transition systems. Recently the the-
ory of bisimulation-up-to was generalized from labelled transition systems to
a large class of coalgebras [20,19], yielding enhancements of the bisimulation
proof method for many different kinds of state-based systems. In the present
paper we have instantiated this general theory to deterministic automata and
certain operations on languages. All operations defined in this paper adhere to
specifications in terms of behavioural differential equations [23] (Definition 15).
These can easily be represented as so-called abstract GSOS specifications, which
are a way of defining operational semantics [25]. As a consequence, by the theory
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of [20,19] bisimulation up to congruence for all of these cases is sound, meaning
that any bisimulation-up-to can be extended to a bisimulation.

While we have introduced techniques which are much more widely applicable
(as we have shown) than only to regular languages, we proceed to recall some of
the related work on checking equivalence of regular expressions. There is a wide
range of different tools and techniques tailored towards doing this; we only recall
the ones most relevant to our work. CIRC [13] is a general coinductive theorem
prover, which can deal with regular expressions. Recently, various algorithms
based on Brzozowski derivatives and bisimulations have been implemented in
Isabelle [12] and formalized in type theory, yielding an implementation in Coq [6]
(while [6] does not mention bisimulations explicitly, their method is based on
constructing a bisimulation). An efficient algorithm for deciding equivalence in
Kleene algebra, based on automata but not on derivatives and bisimulations,
was recently implemented in Coq as well [2]. Of course, one can reason about
regular expressions in Kleene algebra; this is however a fundamentally different
approach than the coinductive techniques of the present paper. In [9] a proof
system for equivalence of regular expressions is presented, based on bisimulations
but not on bisimulation-up-to. In [10] a general coinductive axiomatization of
regular expression containment is given, based on an interpretation of regular
expressions as types. The authors of [10] instantiate their axiomatization with the
main coinductive rule from [9]. The focus of [10] is on constructive proofs based
on parse trees of regular expressions; instead, we base ourselves on bisimulations
between languages. Finally, the recent [1] introduces an efficient algorithm for
checking equivalence of non-deterministic automata, based on a different notion
of bisimulation up to congruence. One difference with the approach of [1], is that
we can deal with (quasi)-equations over arbitrary languages.

If one works with syntactic terms, such as regular expressions, rather than
with languages, the notion of bisimulation up to bisimilarity becomes relevant.
In the corresponding proof method, one can relate derivatives, which are then
terms, modulo bisimilarity. Since we work directly with languages, in our case
this is not necessary; but for dealing with terms our techniques can easily be
combined with up-to-bisimilarity (see [20,19]). Bisimulation up to bisimilarity
(alone, without context and equivalence closure) was originally introduced in [15],
and in the context of automata and languages in [21].

7 Conclusions

We presented a proof method for language equivalence, based on coinduction and
bisimulation-up-to. In particular we have considered (quasi-)equations over lan-
guages presented by the regular operations of union, concatenation and Kleene
star, and additionally by complement and intersection. We have exemplified our
approach with novel proofs of classical results.

The presented proof technique is very general, and it applies to undecidable
problems such as language equivalence of context-free grammars. Indeed, au-
tomation is not the aim of the present paper. Nevertheless, the present
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techniques can be seen as a foundation for novel interactive theorem provers,
and extensions of fully automated tools such as [12,13,6].
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Abstract. We show that the local period at position n in a characteris-
tic Sturmian word can be given in terms of the Ostrowski representation
for n+ 1.
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1 Introduction

We consider characteristic Sturmian words, which are infinite words over {0, 1}
such that the ith character is

.α(i + 1)/ − .αi/ − .α/

for some irrational α. We give an alternate definition later better suited to our
purposes. Let fw(n) denote the number of factors of length n in w, also known
as the subword complexity of w. It is well-known that fw(n) = n + 1 when w
is a Sturmian word. On the other hand, the Coven-Hedlund theorem [2] states
that fw(n) is either bounded or fw(n) ≥ n+ 1 for all n. In this sense, Sturmian
words are extremal with respect to subword complexity.

In a recent paper [3], Restivo and Mignosi show that characteristic Sturmian
words are also extremal with respect to local period, which we define shortly (as
part of Definition 2). Let pw(n) denote the local period of a word w at position
n. The critical factorization theorem states that either pw(n) is bounded or
pw(n) ≥ n+1 for infinitely many n. Restivo and Mignosi show that when w is a
characteristic Sturmian word, pw(n) is at most n+1 and pw(n) = n+1 infinitely
often. Hence, characteristic Sturmian words also have extremal local periods.

Unlike subword complexity, the local period function pw(n) is erratic. Consider
Table 1, which gives the local period at points in F , the Fibonacci word. Although
there are patterns in the table (for example, each pF (n) is a Fibonacci number),
it is not obvious how pF (n) is related to n in general. Shallit [4] showed that pF (n)
is easily computed from the Zeckendorf representation of n+1, and conjectured
that for a general characteristic Sturmian word w, pw(n) is a simple function of
the corresponding Ostrowski representation for n+ 1. In this paper, we confirm
Shallit’s conjecture by describing pw(n) in terms of the Ostrowski representation
for n+ 1.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 493–503, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. The local period function for the Fibonacci word

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pF (n) 1 2 3 1 5 2 2 8 1 3 3 1 13 2 2 5 1 5 2 2 21

2 Notation

Let Σ2 := {0, 1} for the rest of this paper. We write w[n] to denote the nth letter
of a word w (finite or infinite), and w[i..j] for the factor w[i]w[i+1] · · ·w[j−1]w[j].
We use the convention that the first character in w is w[0]. When w is finite we
let |w| denote its length.

2.1 Repetition Words

Definition 1. Let w be an infinite word over a finite alphabet Σ. A repetition
word in w at position i is a non-empty factor w[i..j] such that either w[i..j] is a
suffix of w[0..i − 1] or w[0..i − 1] is a suffix of w[i..j].

If the infinite word w is recurrent (i.e., every factor in w occurs more than once
in w) then every factor occurs infinitely many times. In particular, for every i
the prefix w[0..i− 1] occurs in w[i..∞], so there exists a repetition word at every
position in a recurrent word.

Definition 2. Let w be an infinite recurrent word over a finite alphabet Σ. Let
rw(i) denote the shortest repetition word in w at position i. The length of the
shortest repetition word, denoted by pw(i) := |rw(i)|, is called the local period in
w at position i.

We note that Sturmian words are recurrent, so pw(i) and rw(i) exist at every
position for a characteristic Sturmian word w. We omit further discussion of the
existence of pw(i) and rw(i).

For example, consider the Fibonacci word F shown in Figure 1. The factors
F [5..6] = 01, F [5..9] = 01001 and F [5..17] = 0100100101001 are examples of
repetition words in the Fibonacci word at position 5. The shortest repetition
word at position 5 is rF (5) = F [5..6] = 01 and therefore the local period at
position 5 is pF (5) = 2.

3 Characteristic Sturmian Words and the Ostrowski
Representation

We define characteristic Sturmian words and the Ostrowski representation based
on directive sequences of integers, defined below. For every directive sequence
there is a corresponding characteristic Sturmian word. Similarly, for each di-
rective sequence there is an Ostrowski representation associating nonnegative
integers with strings.
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F = 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 0 1

10010 0 1 0 0 1

1001010010010 0 1 0 0 1 0 0 1 0 1 0 0 1

Fig. 1. The Fibonacci word F and some repetition words at position 5

Definition 3. A directive sequence α = {ai}∞i=0 is a sequence of nonnegative
integers, where ai > 0 for all i > 0.

Directive sequences are in some sense infinite words over the natural numbers,
so we use the same indexing/factor notation. The notation α[i] indicates the ith
term, ai. We will frequently separate a directive sequence α into the first term,
α[0], and the rest of the sequence, α[1..∞].

Note that our definitions for characteristic Sturmian words and Ostrowski
representations deviate slightly from the definitions given in our references, [5]
and [1]. Specifically, there are two main differences between our definition
and [5]:

1. We start indexing the directive sequence at zero instead of one.
2. The first term is interpreted differently. For example, if the first term in the

directive sequence is a then our characteristic Sturmian word begins with
0a1, whereas the characteristic Sturmian word in [5] begins with 0a−11.

In other words, we are describing the same mathematical objects, but label them
with slightly different directive sequences. Any result that does not explicitly ref-
erence the terms of the directive sequence will be true for either set of definitions.
This includes our main result, Theorem 13.

3.1 Characteristic Sturmian Words

Consider the following collection of morphisms.

Definition 4. For each k ≥ 0, we define a morphism ϕk : Σ
∗
2 → Σ∗

2 such that

ϕk(0) = 0k1

ϕk(1) = 0

for all k ≥ 0.

Given a directive sequence, we use this collection of morphisms to construct a
sequence of words.

Definition 5. Let α be a directive sequence. We define a sequence of finite words
{Xi}∞i=0 over Σ2 where

Xn = (ϕα[0] ◦ · · · ◦ ϕα[n−1])(0).
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We call {Xi}∞i=0 the standard sequence, and we say Xi is the ith characteristic
block.

Sometimes the characteristic blocks are defined recursively as follows.

Proposition 6. Let α be a directive sequence and let {Xi}∞i=0 be the correspond-
ing directive sequence. Then

Xn =

⎧⎪⎨⎪⎩
0, if n = 0;

0α[0]1, if n = 1;

X
α[n−1]
n−1 Xn−2, if n ≥ 2.

Proof. See Theorem 9.1.8 in [5]. Note that due to a difference in definitions, the
authors number the directive sequence starting from one instead of zero, and
they treat the first term differently (i.e., they define X1 as 0a1−11 instead of
0α[0]1). ��
It follows from the proposition that Xn−1 is a prefix of Xn for each n ≥ 2, and
therefore the limit limn→∞ Xn exists. We define cα, the characteristic Sturmian
word corresponding to the directive sequence α, to be this limit.

cα := lim
n→∞Xn.

Then Xn is a prefix of cα for each n ≥ 2.
There is a simple relationship between cα, α[0] and cα[1..∞], given in the

following proposition.

Proposition 7. Let α be a directive sequence, and let β := α[1..∞]. Then

cα = ϕα[0] (cβ)

Proof. (Sketch) We factor ϕα[0] out of each Xi and then out of the limit. cα =

limn→∞(ϕα[0] ◦ · · · ◦ ϕα[n−1])(0) = ϕα[0]

(
limn→∞(ϕα[1] ◦ · · · ◦ ϕα[n−1])(0)

)
=

ϕα[0] (cβ) . Alternatively, see Theorem 9.1.8 in [5] for a similar result. ��
Notice that if α[0] = 0 then cα and cβ are the same infinite word up to per-
mutation of the alphabet, since ϕ0 swaps 0 and 1. Permuting the alphabet does
not affect the local period or repetition words, so henceforth we assume that
the first term of any directive sequence is positive (and therefore all terms are
positive). Consequently, all characteristic Sturmian words we consider will start
with 0 and avoid the factor 11.

Let us give an example of a characteristic Sturmian word. Consider the direc-
tive sequence α beginning 1, 3, 2, 2. Then we can compute the first five terms of
the standard sequence

X0 = 0

X1 = 01

X2 = 0101010

X3 = 0101010010101001

X4 = 010101001010100101010100101010010101010.
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We know X4 is a prefix of cα, so we can deduce the first |X4| = 39 characters of
cα. Thus,

cα = 010101001010100101010100101010010101010 · · ·

By Proposition 7, cα is equal to ϕ1(cα[1..∞]).

cα = 01 01 01 0 01 01 01 0 01 01 01 01 0 01 01 01 0 01 01 01 01 0 · · ·
= ϕ1(0001000100001000100001 · · ·).

3.2 Ostrowski Representation

For each directive sequence α, there is a corresponding characteristic Sturmian
word cα. For each characteristic Sturmian word there is a numeration system,
the Ostrowski representation, which is closely related to the standard sequence.
For example, if the directive sequence is α = 1, 1, 1, . . . then cα is F , the Fi-
bonacci word. The Ostrowski representation for α = 1, 1, 1, . . . is the Zeckendorf
representation, where we write an integer as a sum of Fibonacci numbers. See
chapter three in [5] for a description of these numeration systems, but note that
their definition of Ostrowski representation differs from our definition.

Definition 8. Let α be a directive sequence, and let {Xi}∞i=0 be the correspond-
ing standard sequence. Define an integer sequence {qi}∞i=0 where qi = |Xi| for all
i ≥ 0. Let n ≥ 0 be an integer. An α-Ostrowski representation (or simply Os-
trowski representation when α is understood) for n is a sequence of non-negative
integers {di}∞i=0 such that

1. Only finitely many di are nonzero.

2. n =
∑

i diqi
3. 0 ≤ di ≤ α[i] for all i ≥ 0.

4. If di = α[i] then di−1 = 0 for all i ≥ 1.

Note that by Proposition 6, we can also generate {qi}∞i=0 directly from α using
the following recurrence

qn =

⎧⎪⎨⎪⎩
1, if n = 0;

α[0] + 1, if n = 1;

qn−1α[n− 1] + qn−2, if n ≥ 2.

It is well-known that for any given directive sequence, there is a unique Ostrowski
representation, which we denote ORα(n), for every non-negative integer [5]. Also
note that formallyORα(n) is an infinite sequence {di}∞i=0, but we often write the
terms up to the last nonzero term, e.g., dkdk−1 · · · d1d0, with the understanding
that di = 0 for i > k. This is analogous to decimal representation of integers,
where we also write the least significant digit last and omit leading zeros.
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Theorem 9. Let α be a directive sequence. Let n ≥ 0 be an integer, and let
dkdk−1 · · · d1d0 be an Ostrowski representation for n. Then

w := Xdk

k X
dk−1

k−1 · · ·Xd1
1 Xd0

0

is a proper prefix of Xk+1, and therefore w is a prefix of cα. Since |w| =∑
i dk |Xi| = n, it follows that w = cα[0..n− 1].

Proof. This is essentially Theorem 9.1.13 in [5]. ��
The following technical lemma relatesOstrowski representations forα andα[1..∞],
in much the same way that Proposition 7 relates cα to cα[1..∞].

Lemma 10. Let α be a directive sequence and define β := α[1..∞]. Let n ≥ 0 be
an integer with Ostrowski representation ORα(n) = dk · · · d0. Then there exists
an integer m ≥ 0 such that ORβ(m) = dk · · · d1 and

cα[0..n− 1] = ϕα[0](cβ [0..m− 1])0d0 .

Furthermore, if d0 > 0 then cβ [m] = 0.

Proof. We leave it to the reader to show that if dk · · · d0 is an α-Ostrowski
representation then dk · · · d1 is a β-Ostrowski representation, and conversely, if
dk · · · d1 is a β-Ostrowski representation then dk · · · d10 is an α-Ostrowski repre-
sentation. Theorem 9 proves that

cα[0..n− 1] = Xdk

k X
dk−1

k−1 · · ·Xd1
1 Xd0

0 = cβ [0..m− 1]0d0.

Finally, suppose that d0 > 0 and cβ [m] = 1 for a contradiction. We consider the
integer n− d0 +1 and its Ostrowski representations. On the one hand, dk · · · d11
is a valid Ostrowski representation and d0 − 1 less than n. On the other hand,

cα[0..n− d0] = ϕα[0](cβ [0..m− 1])0 = ϕα[0](cβ [0..m]),

so ORβ(m+1) followed by 0 is another Ostrowski representation for n− d0 +1.
This contradicts the uniqueness of Ostrowski representations. ��
Let us continue our earlier example, where we had a directive sequence α begin-
ning 1, 3, 2, 2. We can compute the first five terms of {qi}∞i=0.

q0 = |X0| = 1

q1 = |X1| = 2

q2 = |X2| = 7

q3 = |X3| = 16

q4 = |X4| = 39.

In Table 2, we show Ostrowski representations for some small integers. By The-
orem 9, we should be able to decompose cα[0..20] as X3X

2
1X0 since ORα(21) =

1021.

cα[0..20] = 010101001010100101010

= (0101010010101001)(01)20

= X3X
2
1X0.
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Table 2. Ostrowski representations where α = 1, 3, 2, 2, · · ·

n ORα(n) n ORα(n) n ORα(n) n ORα(n)

0 0 15 201 30 1200 45 10030
1 1 16 1000 31 1201 46 10100
2 10 17 1001 32 2000 47 10101
3 11 18 1010 33 2001 48 10110
4 20 19 1011 34 2010 49 10111
5 21 20 1020 35 2011 50 10120
6 30 21 1021 36 2020 51 10121
7 100 22 1030 37 2021 52 10130
8 101 23 1100 38 2030 53 10200
9 110 24 1101 39 10000 54 10201
10 111 25 1110 40 10001 55 11000
11 120 26 1111 41 10010 56 11001
12 121 27 1120 42 10011 57 11010
13 130 28 1121 43 10020 58 11011
14 200 29 1130 44 10021 59 11020

4 Local Periods in Characteristic Sturmian Words

Let α be a directive sequence. Let pα(n) := pcα(n) and rα(n) := rcα
(n) be nota-

tion for the local period and shortest repetition word for characteristic Sturmian
words. In this section we discuss how pα(n) and rα(n) are related to ORα(n+1).

Definition 11. Let x, y be words in Σ∗. Then x is a conjugate of y if there
exist words u, v ∈ Σ∗ such that x = uv and y = vu.

Lemma 12. Let α be a directive sequence, let β := α[1..∞] and k := α[0].
Suppose we have integers m,n ≥ 0 such that cα[0..n] = ϕk(cβ [0..m]). Then

(i) If u is a repetition word in cβ at position m then there exists a repetition
word v in cα at position n such that ϕk(u) is a conjugate of v.

(ii) If v is a repetition word in cα at position n then there exists a repetition
word u in cβ at position m such that ϕk(u) is a conjugate of v.

In particular, rα(n) is a conjugate of ϕk(rβ(m)) when cα[0..n] = ϕk(cβ [0..m]).

Proof. We divide the proof into two cases based on whether cβ [m] is 0 or 1.
The situation when cβ [m] = 0 is shown in Figure 2, and cβ [m] = 1 is shown in
Figure 3. These figures, along with the more detailed diagrams in Figures 4 and
5 later in the proof, indicate how ϕk maps blocks in cβ to blocks in cα.

Case cβ[m] = 0:
Clearly cα[0..n] ends with 0k1 = ϕk(0) since cβ [m] = 0. This gives us
Figure 2.



500 L. Schaeffer

cβ = 0 . . .

cα = 0k1 . . .

cβ[0..m]

cα[0..n]

Fig. 2. Simple diagram for cβ [m] = 0

cβ = 0 1 . . .

cα = 0k1 0 . . .

cβ [0..m]

cα[0..n]

Fig. 3. Simple diagram for cβ [m] = 1

cβ = 0 u′ 0 u′ ? . . .

cα = 0k 1 v′ 0k 1 v′ 0k . . .

v v

u u

Fig. 4. Detailed diagram for cβ [m] = 0

(i) Let u be a repetition word in cβ at position m. If cβ[0..m− 1] is a suffix
of u then certainly cα[0..n− 1] = ϕk(cβ [0..m− 1]) is a suffix of ϕk(u).
Suppose that u is a suffix of cβ[0..m − 1]. Since cβ [m] = 0 we know u
begins with 0 and write u = 0u′. Since u′ is a prefix of cβ [m+1..∞], we see
that v′ := ϕk(u

′) is a prefix of cα[n+1..∞]. The prefix u′ in cβ [m+1..∞]
is followed by 00, 01 or 10. Since ϕk(00), ϕk(01) and ϕk(10) all start
with at least k zeros, we deduce that v′ (as it occurs at the beginning
of cα[n + 1..∞]) is followed by k zeros. Thus, v := 1v′0k is a prefix of
cα[n..∞]. From the other occurrence of u (as a suffix of cβ [0..m− 1]) we
deduce that 1v′0k is also a suffix of cα[0..n− 1]. We conclude that v is a
repetition word in cα at position, and note that v = 1v′0k is a conjugate
of 0k1v′ = ϕk(0u

′) = ϕk(u), as required.
(ii) Let v be a repetition word in cα at position n. The 1 at position n is

preceded by k zeros. Hence, cα[0..n − 1] ends in 0k, so v ends in 0k.
Clearly v begins with 1, let v′ be such that v = 1v′0k. We do not know
whether the trailing 0k is the beginning of ϕk(0) or ϕk(10), but in either
case v′ is ϕk(u

′) for u′ a factor of cβ .
If cα[0..n − 1] is a proper suffix of v then cα[0..n − k − 1] is a suffix of
v′. Then cβ [0..m− 1] is a suffix of u′, and hence u := 0u′ is a repetition
word in cβ at position m such that v is a conjugate of ϕk(u).
Otherwise, v is a suffix of cα[0..n−1]. The trailing 0k in this occurrence of
v is in the image of cβ[m] = 0. The remaining 1v′ must be preceded by 0k,
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and then 0k1v′ is the image of 0u′, which occurs as a suffix of cβ [0..m−1].
Now we have the situation in Figure 4. It follows that u := 0u′ is a
repetition word, and v = 1v′0k is a conjugate of ϕk(u) = 0k1v′.

Case cβ[m] = 1:
The characteristic Sturmian words we consider start with 0, so m �= 0. Since
cβ does not contain the factor 11, we know cβ [m−1] = 0. Therefore cα[0..n]
ends in ϕk(01) = 0k10, as shown in Figure 3.

cβ = 1 u′ 0 1 u′ 0 . . .

cα = 0 v′ 0k1 0 v′ 0k1 . . .

v v

u u

Fig. 5. Detailed diagram for cβ [m] = 1

(i) Suppose u is a repetition word in cβ at positionm, and let v := ϕk(u). We
know that ϕk(cβ [0..m− 1]) = cα[0..n− 1] and ϕk(cβ [m..∞]) = cα[n..∞].
Thus,
– v is a prefix of cα[n..∞] if u is a prefix of cβ [m..∞]
– v is a suffix of cα[0..n− 1] if u is a suffix of cβ [0..m− 1]
– cα[0..n− 1] is a suffix of v if cβ [0..m− 1] is a suffix of u.

It follows that v is a repetition word in cα at position n.
(ii) Suppose v is a repetition word in cα at position n. We know v starts

with 0 since cα[n] = 0, and v ends with 1 since cα[n− 1] = 1, therefore
v = 0v′0k1 for some v′. Then v′ = ϕk(u

′) for some u′, and we define
u := 1u′0 so that

ϕk(u) = ϕk(1u
′0) = 0v′0k1 = v.

It is also clear that
– u is a prefix of cβ [m..∞]
– u is a suffix of cβ[0..m− 1] if v is a suffix of cα[0..n− 1]
– cβ[0..m− 1] is a suffix of u if cα[0..n− 1] is a suffix of v,

so we conclude that u is a repetition word in cβ at position m.
��

Theorem 13. Let α be a directive sequence and let β := α[1..∞]. Let n ≥ 0 be
a nonnegative integer. Let t be the number of trailing zeros in ORα(n+1). Then
rα(n) is a conjugate of Xt, except when all of the following conditions are met:

– The last nonzero digit in ORα(n+ 1) is 1.
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– ORα(n+ 1) contains at least two nonzero digits.
– The last two nonzero digits of ORα(n+1) are separated by an even number

of zeros.

When ORα(n+ 1) meets these conditions, then rα(n) is a conjugate of Xt+1 .

Proof. Let dk · · · d0 = ORα(n + 1) be the Ostrowski representation of n + 1.
Let t be the number of trailing zeros in ORα(n + 1). We use induction on t to
prove that rα(n) is a conjugate of Xt, or under the conditions described above,
a conjugate of Xt+1.

Base case t = 0: Since n+ 1 > 0, we have d0 > 0. By Theorem 9, we have

cα[0..n] = Xdk

k · · ·Xd0
0 .

If d0 ≥ 2 then we are done since cα[0..n] ends in 00. Hence cα[n − 1] =
cα[n] = 0 and rα(n) = 0 = X0 is the shortest repetition word at position n.
Let us assume without loss of generality that d0 = 1.
According to the induction hypothesis, the second last nonzero digit in
ORα(n + 1) becomes relevant when the last nonzero digit is 1. If d0 is the
only nonzero digit, then n = 0 and rα(0) is clearly cα[0] = 0. Otherwise, pick
� > 0 minimal such that d
 �= 0. That is, let d
 be the second last nonzero
digit. Note that by Theorem 9, the word cα[0..n− 1] ends in X
.
If � is even then X
 ends in 0 (by a simple induction), so cα[n− 1] = 0 and
it follows that rα(n) = 0. When � is odd, the word X
 ends in X1 and X1

ends in 1. It follows that

cα[0..n− 1] = ϕα[0](cβ [0..m− 1])

for some m ≥ 0. We claim that cβ[m] = 0, since otherwise

ϕα[0](cβ [0..m]) = cα[0..n]

so Lemma 10 states that ORα(n+ 1) ends in 0, contradicting d0 = 1. Then
cα[n..∞] begins with ϕα[0](cα[m]) = X1, so rα(n) = X1.

Inductive step t > 0: We note that removing (or adding) trailing zeros from
ORα(n+ 1) does not change whether it satisfies all three conditions in the
theorem. We will assume that ORα(n + 1) does not meet the conditions,
since the proof is nearly identical if it does meet the conditions.
Let {Xi}∞i=0 and {Yi}∞i=0 be standard sequences corresponding to the di-
rective sequences α and β respectively. Lemma 10 states that cα[0..n] =
ϕα[0](cβ [0..m]) where m ≥ 0 is such that

ORβ(m+ 1) = dk · · · d1.

Note that dk · · · d1 has t − 1 trailing zeros, so rβ(m) is a conjugate of Yt−1

by induction. By Lemma 12, rα(n) is a conjugate of ϕα[0](Yt−1) = Xt, com-
pleting the proof. ��
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Let us continue our example with α = 1, 3, 2, 2, . . . as our directive sequence.
Recall that

cα = 01010 10010 10100 10101 01001 01010 01010 1010 · · ·
Consider the shortest repetition words at positions 23 through 26. These posi-
tions happen to give illustrative examples of the theorem.

rα(23) = 0 X0 = 0 ORα(24) = 1101

rα(24) = 1010100 X2 = 0101010 ORα(25) = 1110

rα(25) = 01 X1 = 01 ORα(26) = 1111

rα(26) = 10 X1 = 01 ORα(27) = 1120

When n = 23, there are no trailing zeros in ORα(24) = 1101 and we have an
odd number of zeros between the last two nonzero digits. Hence, rα(23) is a
conjugate of X0 = 0. Compare this to n = 25, where ORα(26) = 1111 also has
no trailing zeros, but the last two ones are adjacent, so rα(25) is a conjugate of
X1. We are in a similar situation for n = 24, but with an trailing zero so rα(24)
is a conjugate of X2. Finally, consider n = 26 where the last two nonzero digits
are adjacent and we have a trailing zero, like n = 24, but the last nonzero digit
is not a one. It follows that rα(26) is a conjugate of X1. Although rα(25) and
rα(26) are both conjugates of X1, they are not the same.

5 Open Problems and Further Work

It would be interesting to generalize the result to two-sided Sturmian words, with
an appropriate definition for local period in two-sided words. We might define a
repetition word in w ∈ ωΣω at position n as a word that is simultaneously a prefix
of w[n..∞] and a suffix of w[−∞..n− 1]. Note that if we extend a characteristic
Sturmian word cα to a two-sided word w, the local period at position n in w
may not be the same as the local period at position n in cα.

Our main result is about the local period and the shortest repetition word,
but Lemma 12 applies to all repetition words at a specific position. Is it possible
to extend our result to all repetition words, not just the shortest repetition word?
Patterns in the lengths of repetition words for the Fibonacci word suggest that
it is possible, but we do not have a specific conjecture.
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regular ω-languages and of regular aperiodic ω-languages, and show de-
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1 Introduction

Boolean algebras (BAs) are of principal importance for several branches of math-
ematics. Accordingly, characterization of naturally arising BA’s attracts atten-
tion of many researchers. As examples we mention characterizations of natural
BAs in logic and computability theory [4,5,12,11,13].

In formal language theory, people consider many classes of languages which
form BA’s but until recently there was no attempt to characterize those BA’s
up to isomorphism. To our knowledge, the first papers in this direction are
[6,10]. Such characterizations could be of some interest because they provide a
new kind information on the classes of languages. Due to Stone duality, this
could contribute to understanding of the corresponding Stone spaces which, for
the case of regular languages, are closely related to the important and intricate
profinite topologies [9,2].

In this note we characterize the Boolean algebras of regular ω-languages and
of regular aperiodic ω-languages. These characterizations are similar to the cor-
responding characterizations for languages of finite words in [10], though some
proofs are essentially different. The characterization in [10] turned out closely
related to the sparse regular languages [16,8,19]. The same applies to character-
izations of this paper (see Corollary 17).

If B is a BA and α an ordinal, let Fα(B) be the α-th iterated Fréchet ideal of
B, B(α) = B/Fα(B) is the α-th Fréchet quotient of B and B′ = B(1). (See [3] for
a detailed treatment, some definitions are recalled in the next section.)

For a finite alphabetΣ, let RΣ (resp. AΣ) denote the BA of all regular (resp. of
all regular aperiodic) languages over Σ. Moreover, let RΣ,ω (resp. AΣ,ω) denote
the BA of all regular (resp. of all regular aperiodic) ω-languages over Σ. These
two classes of regular ω-languages are certainly the most important objects in
the popular and useful theory of languages of infinite words. The main result of
this paper looks as follows:

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 504–515, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Theorem 1.

1. For any alphabet Σ with at least two symbols, RΣ,ω is an atomic BA with
infinitely many atoms, and R′

Σ is a countable atomless BA.
2. For any alphabet Σ with at least two symbols,

F0(AΣ,ω) ⊂ F1(AΣ,ω) ⊂ · · · ⊂ Fω(AΣ,ω) = Fω+1(AΣ,ω),

for each n < ω the BA A(n)
Σ,ω is atomic with infinitely many atoms, and A(ω)

Σ,ω

is a countable atomless BA.

From some well-known facts on BA’s (see e.g. Chapter 1 of [3]) it follows that
items 1,2 characterize the corresponding BA’s up to isomorphism. Moreover,
our proofs imply decidability of the classes of regular ω-languages related to the
main theorem. Note that the case of a unary alphabet (i.e., alphabet with only
one symbol) Σ is not interesting for the case of ω-languages because in this case
RΣ,ω and AΣ,ω are two-element BA’s.

As is well known (see e.g. [17]), the class of regular ω-languages (resp. aperiodic
ω-languages) coincides with the class of languages satisfying a given sentence of
monadic second order (resp. first order) logic of a certain signature. Thus, the
main result demonstrates a fundamental difference between the two classes of ω-
languages already on the level of the corresponding Tarski-Lindenbaum algebras.

The main result of this paper and the corresponding result about languages
of finite words in [10] imply the following

Corollary 2. For any alphabet Σ with at least two symbols, RΣ,ω : RΣ and
AΣ,ω : AΣ where : denotes the isomorphism relation.

Along with the languages of finite words and of infinite words, in automata
theory people investigate languages of (jointly) finite and infinite words which
are used to specify the behavior of systems which may terminate or not (see e.g.
[7]). Our results easily imply the following fact about such languages which we
call here ≤ ω-languages. Let RΣ,≤ω (resp. AΣ,≤ω) denote the BA of all regular
(resp. of all regular aperiodic) ≤ ω-languages over Σ.

Corollary 3. For any alphabet Σ with at least two symbols, RΣ,≤ω : RΣ,ω and
AΣ,≤ω : AΣ,ω where : denotes the isomorphism relation.

To prove the main result, we establish several other facts about regular ω-
languages which might be interesting in their own right. For instance, in Theorem
7 we show that, given a Muller automaton, one can effectively compute the car-
dinality of the corresponding regular ω-language. To our knowledge, this fact is
new, although its important particular case (the decidability of the class of finite
ω-languages) is well known.

In Sections 2 and 3 we provide the necessary background on BAs and on
regular languages, respectively. In Sections 4 and 5 we characterize the BAs
RΣ,ω and AΣ,ω, respectively.
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2 Preliminaries on Boolean Algebras

In this section we very briefly recall some notions and facts on BA’s used in the
sequel (more details are contained in [10]). We assume the reader to be familiar
with basic notions related to BA’s like ideal of a BA, quotient-algebra of a BA
modulo a given ideal, and canonical homomorphism of a BA onto its quotient-
algebra (for detailed treatments of BA’s we refer to [3,14]). BAs are considered
in the signature {∪,∩,̄ , 0, 1}. Any BA carries the induced partial order ≤ such
that x ≤ y iff x ∩ y = x.

Recall that element a of a BA an atom if a �= 0 and x < a implies x = 0. A BA
B is atomless if it has no atom, and it is atomic if below any non-zero element
there is an atom. The ideal of a BA B generated by atoms is called Fréchet ideal
of B. It consists of all finite unions (including the empty union which coincides
with 0) of atoms and it is denoted by F (B). The quotient-algebra B/F (B) is
called the Fréchet quotient of B denoted also by A′.

Define the transfinite sequence {Fα(B)} of iterated Fréchet ideals of a BA B
as follows:

F0(B) = {0}, Fβ+1(B) = {x | x/Fβ(B) ∈ F (B(β))}
where B(β) = B/Fβ(B), and Fα(B) =

⋃
β<α Fβ(B) for a limit ordinal α. This

sequence is ascending under inclusion, and Fα(B) = Fα+1(B) for some α; the
least ordinal α with this property is called the ordinal type of B and is denoted
σ(B). In this paper we use Fréchet ideals only for α ≤ ω.

3 Preliminaries on Regular Languages

Here we briefly recall some notation, notions and facts on regular languages used
in the sequel. For a systematic treatment see e.g. [15,7,17,19].

Let Σ∗ and Σω denote respectively the sets of all words and of all ω-words (i.e.
sequences α : ω → Σ) over a finite alphabet Σ. The empty word is denoted by ε.
Let Σ≤ω = Σ∗∪Σω and Σ+ = Σ∗ \{ε}. We use some almost standard notation
concerning words and ω-words, so we are not pedantic in reminding it here. For
w ∈ Σ∗ and ξ ∈ Σ≤ω, w � ξ means that w is a prefix of ξ, w · ξ = wξ denote the
concatenation, l = |w| is the length of w = w(0) · · ·w(l−1). For w ∈ Σ∗,W ⊆ Σ∗

and A ⊆ Σ≤ω, let w · A = {wξ : ξ ∈ A} and W · A = {wξ : w ∈ W, ξ ∈ A}. For
u ∈ Σ+, uω denotes the infinite concatenation uu · · · ∈ Σω. For each W ⊆ Σ+

let Wω = {w0w1 · · · | wi ∈ W}. Sometimes we use some other standard notation
related to regular expressions.

By an automaton (over Σ) we mean a triple M = (Q, f, q0) consisting of a
finite non-empty set Q of states, a transition function f : Q × Σ → Q and an
initial state q0 ∈ Q. The transition function is naturally extended to the function
f : Q× Σ∗ → Q defined by induction f(q, ε) = q and f(q, u · x) = f(f(q, u), x),
where u ∈ Σ∗ and x ∈ X . We often simplify f(q, u) to q · u.

Similarly, we may define the function f : Q × Σω → Qω by f(q, ξ)(n) =
f(q, ξ[n]) where ξ[n] = ξ(0) · · · ξ(n− 1) is the prefix of ξ of length n < ω. Relate
to any automaton M the set of Büchi macrostates CM = {fM(ξ) | ξ ∈ Σω}
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where fM(ξ) is the set of states which occur infinitely often in the sequence
f(q0, ξ) ∈ Qω. Note that in this paper we consider only deterministic finite
automata such that any state is reachable from q0.

Automata equipped with appropriate additional structures may be used as
acceptors (devices accepting words or ω-words). A word acceptor has the form
(M, F ) where M is an automaton and F ⊆ Q; it recognizes the set L(M, F ) =
{u ∈ Σ∗ | q0 · u ∈ F}. It is well known that word acceptors recognize exactly
the regular languages. The class RΣ of regular languages is closed under the
Boolean operations.

A Muller acceptor has the form (M,F) where M is an automaton and F ⊆
CM; it recognizes the set Lω(M,F) = {ξ ∈ Σω | fM(ξ) ∈ F}. It is well
known that Muller acceptors recognize exactly the regular ω-languages called
also regular sets in this paper. The class RΣ,ω of regular ω-languages is closed
under the Boolean operations. It coincides with the class of finite unions of sets
U ·Wω where U,W are regular languages.

For q ∈ Q and u ∈ Σ∗, let (q, u) denote the path in A along u started at q,
and let Q(q, u) = {q · v | v � u}. We say that a path (q, u) meets a set of states
G ⊆ Q if Q(q, u) ∩ G �= ∅. A path (q, u) is a cycle of M if u is nonempty and
q ·u = q. The cycle is simple if it has no repeated vertices other that the starting
and ending vertices. Note that the set CM of Büchi macrostates coincides with
the set of all Q(q, u) where (q, u) is a cycle of M.

Define the preorder ≤ on CM as follows: G ≤ H if there is a path of M
starting in G and ending in H . Let ≡ denote the equivalence relation on CM
induced by ≤. Note that if G ≡ H then K ≡ G for some K ⊇ G ∪ H , i.e. any
element [G] of the quotient-set CM/ ≡ has a greatest set under inclusion; these
greatest sets are called strongly connected components (SCC’s) of M and they
may serve as canonical representatives for the equivalence classes [G].

We recall the following classical facts of automata theory. An automaton M
is called counter-free if q · un = q implies q · u = q, for all q ∈ Q, u ∈ Σ+ and
n > 0.

Proposition 4. For any L ∈ RΣ the following conditions are equivalent:

1. There is n < ω such that xynz ∈ L iff xyn+1z ∈ L for all x, y, z ∈ Σ∗.
2. L is recognized by a counter-free word acceptor.

Languages satisfying the conditions in the last proposition are called aperiodic.
By aperiodicity index of an aperiodic language L we mean the least number n
satisfying the condition 1 above. The class AΣ of regular aperiodic languages is
closed under the Boolean operations.

Proposition 5. For any L ∈ RΣ,ω the following conditions are equivalent:

1. There is n < ω such that xunyzω ∈ L iff xun+1yzω ∈ L, and x(yunz)ω ∈ L
iff x(yun+1z)ω ∈ L for all x, u, y, z ∈ Σ∗.

2. L is a finite union of sets UWω
i where U ⊆ Σ∗ and ⊆ Σ+ are regular

aperiodic languages.
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3. L is recognized by a counter-free Muller acceptor.

Languages satisfying the conditions in the last proposition are called regular
aperiodic ω-languages. By aperiodicity index of a regular aperiodic ω-language
L we mean the least number n satisfying the condition 1 above. The class AΣ,ω

of regular aperiodic ω-languages is closed under the Boolean operations.
Finally, we recall [7] that an ≤ ω-language L ⊆ Σ≤ω is regular (resp. regular

aperiodic) iff L ∩Σ∗ is a regular (resp. regular aperiodic) language and L ∩Σω

is a regular (resp. regular aperiodic) ω-language. This immediately implies that
RΣ,≤ω : RΣ × RΣ,ω and AΣ,≤ω : AΣ × AΣ,ω.

4 Boolean Algebra RΣ,ω

First we characterize Muller automata (M,F) such that the corresponding set
Lω(M,F) has a given cardinality α ∈ ω∪{ω, 2ω}. Details of this characterization
will be used in subsequent characterizations of Boolean algebras.

We call a Büchi macrostate F of an automaton M branching if there are
at least two distinct loops marked by �-incomparable words and contained in
the macrostate. More formally and equivalently, there are incomparable words
v, w ∈ Σ∗ and a state q ∈ F such that q ·v = q = q ·w and Q(q, v) = F = Q(q, w).

Proposition 6. Let F be a Büchi macrostate of an automaton M. If F is
branching then |Lω(M, {F})| = 2ω, otherwise Lω(M, {F}) = L(M, {q}) ·uω for
some q ∈ F and u ∈ Σ+.

Proof. Let F be branching via q, v, w. Choose x ∈ Σ∗ with q0 · x = q, and relate
to any C ⊆ ω the ω-word ξC = xy0y1 · · · where yn = v for n ∈ C and yn = w
for n ∈ ω \ C. Clearly, ξC ∈ Lω(M, {F}) for each C ⊆ ω, hence it suffices to
check that ξC �= ξB for all distinct C,B ⊆ ω. Let n be the smallest number in
(C \B) ∪ (B \ C). Then

{ξC , ξB} = {xy0 · · · yn−1vη, xy0 · · · yn−1wζ}

for some η, ζ ∈ Σω. Since v, w are �-incomparable, ξC �= ξB.
Let now F be non-branching. Choose an arbitrary q ∈ F and a shortest word

u ∈ Σ+ such that q · u = q and Q(q, u) = F . We claim that Lω(M, {F}) =
L(M, {q}) · uω. The inclusion from right to left is obvious. For the converse, let
ξ ∈ Lω(M, {F}), then ξ = xζ for some x ∈ Σ∗ with q0 · x = q and ζ ∈ Σω with
Q(q, ζ) = F = fM(ξ). Then ζ = v0η0 for some v0 ∈ Σ+ with q · v0 = q and
Q(q, v0) = F . Since u is shortest and F is non-branching, u � v0, hence ζ = uζ1
for some ζ1 ∈ Σω with Q(q, ζ1) = F = fM(ξ). Then ζ1 = v1η1 for some v1 ∈ Σ+

with q · v1 = q and Q(q, v1) = F . Since u is shortest and F is non-branching,
u � v1 hence ζ1 = uζ2 for some ζ2 ∈ Σω with Q(q, ζ2) = F = fM(ξ). Continuing
in this manner, we obtain ξ = xuω ∈ L(M, {q}) · uω. ��
The next result might be of interest in its own right.

Theorem 7. Let (M,F) be a Muller acceptor.
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1. If there is a branching macrostate F ∈ F then |Lω(M,F)| = 2ω, otherwise
|Lω(M,F)| ≤ ω.

2. If all F ∈ F are non-branching and there is F ∈ F such that the SCC [F ] is
non-singleton then |Lω(M,F)| = ω.

3. If all F ∈ F are non-branching with singleton SCC’s [F ] and there is a path
from q0 to some F ∈ F that meets some Büchi macrostate G �= F then
|Lω(M,F)| = ω.

4. If all conditions in 1 — 3 are false then |Lω(M,F)| < ω.
5. The cardinality |Lω(M,F)| is computable.

Proof. 1. Follows from Proposition 6.
2. By item 1, |Lω(M,F)| ≤ ω. It suffices to check that there are x ∈ Σ∗

and y, u, v ∈ Σ+ such that xv∗yuω ⊆ Lω(M,F) and y, v are �-incomparable,
because then xvktyuω �= xvlyuω for k �= l.

Let F,G be distinct Büchi macrostates such that F ≡ G and F ∈ F . Assume
first that F �⊆ G, so there is q ∈ F \ G. Let u be the shortest word from the
previous proof. Let r be an arbitrary element of G. Since F ≡ G, r · y = q and
q ·z = r for some words y, z. Let w be a word satisfying r·w = r and Q(r, w) = G.
Since q ∈ F \ G, the words y, w are �-incomparable. Finally, let v = wyz and
let x be a word satisfying q0 · x = r. Then x, y, u, v have the desired properties.

It remains to consider the case F ⊂ G. Let q ∈ F and u be as in the previous
proof. and let v satisfy q · v = q and Q(q, v) = G. Clearly, v can be chosen to
be �-incomparable with u. Finally, let y = u and let x be a word satisfying
q0 · x = q. Then x, y, u, v have the desired properties.

3. Let F ∈ F and G be Büchi macrostates with the specified properties. Since
[F ] is singleton, F∩G = ∅. Let q ∈ F and u be as in the previous proof. Let r ∈ G
and let v satisfy q · v = q and Q(q, v) = G. Let y be a word with r · y = q, then
y and v are �-incomparable. Finally, let x be a word satisfying q0 · x = r. Then
x, y, u, v satisfy the condition in the proof of item 2, hence that proof applies.

4. For any F ∈ F , choose qF ∈ F and uF as in the proof of Proposition 6.
Then Lω(M,F) =

⋃
{L(M, {qF}) · uω

F | F ∈ F}. Since any path from q0 to qF
meets no Büchi macrostate distinct from F , all languages Lω(M, {F}), F ∈ F ,
are finite, hence Lω(M,F) is finite.

5. Given a Muller acceptor (M,F), one can compute which of the alternative
conditions in 1 — 4 holds. In cases 1 — 3 this returns |Lω(M,F)|. In case 4
one has additionally to count the cardinalities of the pairwise disjoint languages
L(M, {qF}) · uω

F which is clearly computable. ��

Corollary 8. Let L ∈ RΣ,ω be infinite. Then there are x ∈ Σ∗ and y, u, v ∈ Σ+

such that xv∗yuω ⊆ L and y, v are �-incomparable.

Proof. Choose a Muller acceptor (M,F) recognizing L. By Theorem 7, (M,F)
satisfies exactly one of the condition in items 1 — 3. By the proof of that
proposition, in any in these cases there are words x, y, u, v with the desired
properties. ��
We are now ready to prove item 1 of the main theorem from Introduction.



510 V. Selivanov and A. Konovalov

Theorem 9. For any alphabet Σ with at least two symbols, RΣ,ω is an atomic
BA with infinitely many atoms, and R′

Σ is a countable atomless BA.

Proof. Obviously, the atoms of RΣ,ω are exactly the singleton ω-languages of
the form {xuω}, hence the first assertion holds. For the second assertion, it
suffices to show that for any infinite set L ∈ RΣ,ω there is an infinite regular
ω-language M ⊆ L such that L \M is infinite. By Corollary 8, there are x ∈ Σ∗

and y, u, v ∈ Σ+ such that xv∗yuω ⊆ L and y, v are �-incomparable. Then the
regular ω-language M = x(vv)∗yuω has the desired properties. ��
As mentioned in the Introduction, Theorem 9 characterizes the BA RΣ up to
isomorphism. This implies the following fact:

Corollary 10. For any alphabet Σ, RΣ,≤ω : RΣ.

Proof. Considering the cases |Σ| ≥ 2 and |Σ| = 1 and using the remark RΣ,≤ω :
RΣ × RΣ,ω from the end of Section 3 one easily checks that BA RΣ,≤ω has the
properties specified in Theorem 9. Since BA RΣ has the same properties (see
[6,10]), RΣ,≤ω : RΣ. ��

5 Boolean Algebra AΣ,ω

For the sequel we need the following lemma which follows easily from Proposition
4 and Theorem 2.1 in [1]. A non-empty word u ∈ Σ+ is called primitive if, for
each v ∈ Σ+, vn = u implies n = 1 (and hence v = u).

Lemma 11. For any u ∈ Σ∗, u∗ ∈ AΣ iff u is either empty or primitive. For
any u ∈ Σ+, uω ∈ AΣ,ω.

The next two lemmas clarify the structure of Fréchet ideals of AΣ,ω.

Lemma 12. For any k < ω and x, yi, zi ∈ Σ∗ with y∗1 , · · · , y∗k ∈ AΣ and u ∈
Σ+, the element xy∗1z1 · · · y∗kzkuω/Fk(AΣ,ω) is either zero or an atom of the

BA A(k)
Σ,ω. If L is a finite union of such languages xy∗1z1 · · · y∗kzkuω then L ∈

Fk+1(AΣ,ω).

Proof. Since the second assertion follows from the first one, it suffices to check
the first assertion by induction on k. For k = 0 the assertion is obvious because

{xuω} is an atom of AΣ,ω = A(0)
Σ,ω.

Let k = 1. The case y1 = ε is trivial, so assume y1 to be non-empty (hence,
primitive by Lemma 11). Then L = xy∗1z1u

ω is infinite and we have to show that
if M ⊆ L is an infinite regular ω-aperiodic language then L \ M is finite. We
have xym1 z1u

ω ∈ M for infinitely many m. By Proposition 5, xym1 z1u
ω ∈ M for

all m ≥ n where n is the aperiodicity index of M . Therefore, L \M is finite.
Let now k ≥ 2. For any n < ω, set Ln = xyn1 y

∗
1z1 · · · ynky∗kzkuω, then L =

L0 ⊃ L1 ⊃ L2 ⊃ · · · where L = xy∗1z1 · · · y∗kzkuω. It suffices to show that for any
regular aperiodic ω-language M ⊆ L at least one of ω-languages M,L \M is in
Fk(AΣ). We distinguish two cases.
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Case 1. Ln ⊆ M for some n. Then M = L \ M ⊆ L \ Ln ∈ Fk(AΣ,ω) by
induction on k. Thus, M ∈ Fk(AΣ,ω).

Case 2. Ln �⊆ M for all n, i.e. for any n there are m1, . . . ,mk ≥ n such that
xym1

1 z1 · · · ymk

k zku
ω ∈ M . By Proposition 5, xym1

1 z1 · · · ymk

k zku
ω ∈ M for all

m1, . . . ,mk ≥ m where m is the aperiodicity index of M . Then Lm ⊆ M , hence
L \M ⊆ L \ Lm ∈ Fk(AΣ,ω), hence L \M ∈ Fk(AΣ,ω). ��

Lemma 13. Let x, y ∈ Σ∗ and u, v1, v2 ∈ Σ+ be such that the words u, v1, v2
are primitive and v1, v2 are �-incomparable. Then xv∗1v2yu

ω �∈ F1(AΣ,ω),

xv∗1v2v
∗
1v2yu

ω �∈ F2(AΣ,ω), xv
∗
1v2v

∗
1v2v

∗
1v2yu

ω �∈ F3(AΣ,ω)

and so on.

Proof. The assertion xv∗1v2yu
ω �∈ F1(AΣ,ω) is clear because the set xv∗1v2yu

ω is
infinite while F1(AΣ,ω) is the class of finite regular ω-languages.

The set xv∗1v2v∗1v2yuω is a disjoint union of sets Kn = xvn1 v2v
∗
1v2yu

ω, and,
for each n, Kn/F1(AΣ,ω) is an atom of A′

Σ by the previous lemma. Therefore,
xv∗1v2v

∗
1v2yu

ω �∈ F2(AΣ,ω). Continuing in this manner, we derive the desired
assertions. ��
We say that a Muller acceptor (M,F) has an ω-pattern (cf. with the corre-
sponding notion in [10]) if there are x, y ∈ Σ∗ and u, v1, v2 ∈ Σ+ such that
v1, v2 are �-incomparable, q0 · x = q0 · xv1 = q0 · xv2, q0 · xyu = q0 · xy, and
Q(q0 · xy, u) ∈ F .

Lemma 14. For any counter-free Muller acceptor (M,F), if Lω(M,F) is in
Fω(AΣ) then (M,F) has no ω-pattern.

Proof. By contraposition, suppose that (A,F) has an ω-pattern with some words
x, y, u, v1, v2 as above. By Proposition 5, the words v1, v2 are primitive. We have
to show that L �∈ Fω(AΣ). Since x(v1 + v2)

∗yuω ⊆ Lω(A,F), it suffices to show
that xv∗1v2yu

ω �∈ F1(AΣ,ω),

xv∗1v2v
∗
1v2yu

ω �∈ F2(AΣ,ω), xv
∗
1v2v

∗
1v2v

∗
1v2yu

ω �∈ F3(AΣ,ω)

and so on. But this holds by the previous lemma. ��
We are ready to provide useful characterizations of the iterated Fréchet ideals
of AΣ,ω.

Theorem 15. For any L ∈ AΣ,ω the following conditions are equivalent:

1. L ∈ Fω(AΣ,ω).
2. L is recognized by a counter-free Muller acceptor that has no ω-pattern.
3. L is a finite union of sets xy∗0z0 · · · y∗kzkuω where k < ω, x, yi, zi ∈ Σ∗,

u ∈ Σ+ and y∗0 , · · · , y∗k ∈ AΣ.

Proof. 1→2. Let (M,F) be a counter-free Muller acceptor recognizing L. By the
previous lemma, (M,F) has no ω-pattern.
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2→3. The acceptor (M,F) above cannot satisfy a condition of items 1,2 of
Proposition 7 because any of those conditions induces an ω-pattern for (M,F).
Hence, (M,F) satisfies the condition of either 3 or 4. In the last case L is
finite and we are done, so let (M,F) satisfy the condition of 3. For any Büchi
macrostate G from that condition the SCC [G] is singleton because otherwise
(M,F) has an ω-pattern.

Consider now all chains of Büchi macrostates F1 < · · · < Fm < F ∈ F of
maximal possible lengths m ≥ 0. As in Lemma 1 of [10], there exist x ∈ Σ∗,
u, yi, zi ∈ Σ+, q ∈ F and si ∈ Fi such that xy∗1z1 · · · y∗mzmuω ⊆ Lω(M, {F}),
Fi = Q(si, yi) for each 1 ≤ i ≤ m, (si, yi) is a simple cycle of M,

q0 · x = s1, s1 · z1 = s2, . . . , sm−1 · zm−1 = sm, sm · zm = q, Q(q, u) = F,

and yi(0) �= zi(0) for each 1 ≤ i ≤ m. Clearly, L is the union of all such
languages xy∗1z1 · · · y∗mzmuω. Since there are only finitely many such chains, L
has the desired representation.

3→1. Follows from Lemma 12. ��

Corollary 16. The class of regular ω-languages Fω(AΣ) is decidable.

The last theorem and the corresponding fact in [10] imply the following:

Corollary 17. The class Fω(AΣ) coincides with the class of finite unions of
ω-languages V · uω where V is a sparse aperiodic language over Σ and u ∈ Σ+

is a primitive word.

Comparing the last theorem with the invariants of the Wagner hierarchy in [18]
we immediately obtain the following

Corollary 18. The ω-languages in Fω(AΣ) occupy precisely the finite levels of
the Wagner hierarchy.

Next we characterize Fk(AΣ,ω) for any k < ω. Note that F0(AΣ,ω) = {∅} and
F1(AΣ,ω) is the class of finite regular ω-languages over Σ.

Theorem 19. For any k < ω and L ∈ AΣ,ω the following conditions are equiv-
alent:

1. L ∈ Fk+2(AΣ,ω).
2. L is recognized by a counter-free Muller acceptor that has neither ω-pattern

nor a chain F0 < · · · < Fk+1 < F ∈ F of Büchi macrostates.
3. L is a finite union of sets xy∗0z0 · · · y∗kzkuω where x, yi, zi ∈ Σ∗, u ∈ Σ+ and

y∗0 , · · · , y∗k ∈ AΣ.

Proof. 1→2. Let (M,F) be a counter-free Muller acceptor recognizing L. By
Lemma 14, (M,F) has no ω-pattern. Suppose for a contradiction that (M,F)
has a chain F0 < · · · < Fk+1 < F ∈ F of Büchi macrostates. In notation of the
previous proof, xy∗0z0 · · · y∗k+1zk+1u

ω ⊆ L. Since yi(0) �= zi(0) for each i ≤ k+1,
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xy∗0z0 · · · y∗k+1zk+1u
ω �∈ Fk+2(AΣ,ω) by Lemma 13, hence also L �∈ Fk+2(AΣ,ω).

A contradiction.
2→3. The desired representation of L follows from the proof of implication

2→3 in the previous theorem.
3→1. Follows from Lemma 12. ��

Corollary 20. For any k < ω, the class of regular ω-languages Fk(AΣ,ω) is
decidable.

Now we are able to prove the item 2 of the main theorem in Introduction.

Theorem 21. For any alphabet Σ with at least two symbols we have:

F0(AΣ,ω) ⊂ F1(AΣ,ω) ⊂ · · · ⊂ Fω(AΣ,ω) = Fω+1(AΣ,ω),

for each n < ω the BA A(n)
Σ,ω is atomic with infinitely many atoms, and A(ω)

Σ,ω is
a countable atomless BA.

Proof. First we check that Fk(AΣ,ω) ⊂ Fk+1(AΣ,ω) for each k < ω. For k = 0
the inclusion is trivial. Let a, b ∈ Σ, a �= b. It suffices to show that a∗baω ∈
F2(AΣ) \ F1(AΣ),

a∗ba∗baω ∈ F3(AΣ) \ F2(AΣ), a
∗ba∗ba∗baω ∈ F4(AΣ) \ F3(AΣ),

and so on. By Theorem 15 and Lemma 12,

a∗baω ∈ F2(AΣ), a
∗ba∗baω ∈ F3(AΣ), a

∗ba∗ba∗baω ∈ F4(AΣ),

and so on. By Lemma 13,

a∗baω �∈ F1(AΣ), a
∗ba∗baω �∈ F2(AΣ), a

∗ba∗ba∗baω �∈ F3(AΣ),

and so on.
By Lemmas 12 and 13, elements

a∗baω/F1(AΣ,ω), a
∗ba∗baω/F2(AΣ,ω), . . .

are atoms respectively in A(1)
Σ,ω,A

(2)
Σ,ω, . . ., and, for each n < ω, the same applies

to the elements

bna∗baω/F1(AΣ,ω), b
na∗ba∗baω/F2(AΣ,ω), . . . .

Since the languages bna∗baω (as well as the languages bna∗ba∗baω and so on)

are pairwise disjoint for distinct n, the BA’s A(1)
Σ,ω,A

(2)
Σ,ω, . . . have infinitely many

atoms (as well as the BA A(0)
Σ,ω = AΣ,ω).

Next we check that the BA A(k)
Σ,ω is atomic for each k < ω. For k < 2

this is again obvious, so it remains to show that for any k < ω and L ∈
AΣ,ω \ Fk+2(AΣ,ω) there is a regular aperiodic ω-language M ⊆ L such that
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M/Fk+2(AΣ,ω) is an atom of A(k+2)
Σ,ω . We distinguish the cases L �∈ Fω(AΣ,ω)

and L ∈ Fω(AΣ,ω). Let (M,F) be a counter-free Muller acceptor recognizing L.
In the first case, by Theorem 15 (M,F) has an ω-pattern, hence M exists by

the proofs of Lemmas 14 and 13. In the second case, by Theorem 19 there is a
chain F0 < · · · < Fk+1 < F ∈ F of Büchi macrostates and the words specified
there, so in particular zi(0) �= yi(0) for each i ≤ k + 1. Then the ω-language
M = xy∗0z0 · · · y∗k+1zk+1u

ω has the desired property.
It remains to show that for any L ∈ AΣ,ω \ Fω(AΣ,ω) there is a regular

aperiodic ω-language M ⊆ L such that M,L\M �∈ Fω(AΣ,ω). Let again (M,F)
be a counter-free Muller acceptor recognizing L. By Theorem 15, (M,F) has an
ω-pattern with the corresponding words x, v1, v2, w, u (see text before Lemma
14). Since (M,F) is counter-free, v∗1 , v

∗
2 ∈ MΣ . By the proof of Lemma 14, we

can take M = xv1(v1 + v2)
∗wuω . ��

Similarly to Corollary 10 we obtain

Corollary 22. For any alphabet Σ, AΣ,≤ω : AΣ.
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Pumping, Shrinking and Pronouns:
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Abstract. Pumping-shrinking operation is a useful tool in the study of
Formal Languages. A pump-shrink bound for Linear Indexed Grammars
is derived, depending only on the the number of auxiliary symbols of the
grammar. Observations are suggested on formal operations analogous to
shrinking of subordinate clauses.

Keywords: Formal Languages, pumping shrinking lemmas, Linear-In-
dex Grammars.

1 Introduction

The pumping “xuwvy Lemma” for Context-Free Language (CFL) turned out to
be the most popular result among many results about the CFL model proved in
the seminal 1961 article [2].

Several variants improving the Lemma were proved [9]. The Lemma gives a
useful tool to exhibit the limitations of the CFL model, showing it cannot tackle
cross copying and triple counts of symbols. It also serves to prove a variety of
results about inherent ambiguity of certain CFLs [11].

Actually, the shrinking of xuwvy to xwy suffices for several applications and
linguistically, makes more sense: long and complicated sentences contain subor-
dinate clauses which can be shrinked, thus revealing the skeleton structure of
the main sentence. However, in natural languages, a subordinate clause (say of
noun-phrase category) does not shrink to the empty string but to a pronoun or a
simple noun. In a similar vein, we call pro-shrinking an operation on derivation
trees which replaces a subtree with root labeled A by a smaller (or smallest)
tree with root A and generating a terminal string. A collection of such trees
(for various A’s) is obtained by running the bottom-up emptiness-checking algo-
rithm for G (see Section 2). Such a collection is a formal analogue of treebanks,
compiled in order to facilitate computer-aided parsing, even under mild context-
sensitivity [8].

A “mildly context sensitive” grammar model is required to satisfy certain
formal properties [16], some of which are related to, and proved by, pumping or
(pro-)shrinking. A particularly pleasant family of formal languages [15] has four
weakly equivalent grammar-models, including the Linear Index Grammar (LIG)
model.
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Section 3 is the technical section. We define the Indexed Grammar model,
but concentrate on the Linear IG model. We present proofs and bounds of the
pumping and shrinking in LIG, which are quite simpler than the existing proofs
for the alternative weakly equivalent “tree-adjoining” model.

A derivation in LIG has a context-free-like tree. Each node of the tree is
labeled by an index which behaves like a stack (pushdown) as one proceeds
along branches (or “fibers”) of the tree. In the linear (LIG) model the stack is
carried from a father node to just a single child node. This renders the stacks
along the fibers independent, unrelated, and facilitates the proof of the pumping
and shrinking results.

In section 4 we discuss the more powerful (non-linear) Index Grammar (IG) [1].
We comment on the complex statements and proofs of pumping and shrinking

Lemmas which were given. We argue pro-shrinking may be easier to apply if one
puts an Indexed grammar or a sub-model of it to practical use.

2 Context Free Pumping, Shrinking and Pro-Shrinking

We assume throughout a binary normal form for the productions (see also note
below).

A → BC for non-terminal productions,
A → a for terminating productions.

(1)

The pumping bound pumpsh(G) is the size of terminal strings beyond which
pumping and shrinking must appear. Indeed for n-state automaton, even non-
deterministic, this bound is≤ n. For context-freeG with n non-terminal symbols,
pumping and shrinking relies on the repetition of a non-terminal label A on
one branch of the derivation tree. So if the height of a tree generating z in
> n = |V (N)|, the number of non-terminals in G, then the z admits a CFG-
type pump-shrink, i.e., z = xuwvy and

z(k) = xukwvky ∈ L(G) for k = 0 (shrink), 1, 2, . . . . (2)

Since the full binary tree is possible (but rare in practice [10]), the bound for
pumpsh(G) is 2n. Pro-shrinking is clearly more drastic; presumably it can drive
sh(G)-the size of the smallest string in L(G) - below 2n, but no general proof
for all grammars is known.

A collection of small trees {pro(A), A in V (N)}, is traced while running the
bottom-up “algorithm for emptiness” of L(G):

N(0) = T ; N(i+ 1) = N(i) ∪ {all A where A → BC and B ,C ∈ N(i)}; (3)

termination occurs when N(i) stops growing, after ≤ n steps, where n = |V (N)|
the number of non-terminals in G. At the first time A enters N(i), its smallest
subtree - and terminal string it derives - is actually traced.

In grammar models extending CF, representation of derivation by labeled
trees is usually preserved, but the set of labels for the nodes is potentially un-
bounded. Hence the termination of the emptiness algorithm, bounding the set of
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labels used in a run, shrinking and pro-shrinking issues - are all intertwined, as
we shall see in detail for the Linear Index Grammar models in the next section.

Note: We add here a didactic note about isomorphism of pushdown machine
walks and leftmost generation in context free grammars.

Consider the following S-normal form (S for stack) of CF grammars which
unifies several known normal forms, and is easy to obtain. All productions of G
are of the form:

(i) A → a
(ii) A → aBC
(iii) A → BC

Capitals denote non-terminal symbols, lower case letters are terminals. At each
step of a leftmost derivation, the leftmost non-terminal is rewritten according to
one of the productions, until a string of terminal is obtained.

This corresponds to a step by step walk of a pushdown (stack) automation,
with capital letters as stack symbols. Namely:

(i) Upon reading the input symbol a, the top symbol A is popped.
(ii-iii) Upon reading the input symbol a (or the empty one is case of (iii)) the

stack symbols BC are pushed to the top instead of A.

The accepting walk of the pushdown automation starts with a stack containing
S alone and concludes when the stack is empty.

3 Pumping-Shrinking for Linear Indexed Grammars

The model of indexed grammars [IG] introduced by [1], replaces CF productions
by production schemes (4,5). In IG, the non-terminal symbols A,B,C, . . . ∈
V (N) carry an index which the productions treat and change in a stack (push-
down) manner, with stack symbols f, g, h, · · · ∈ V (I)∪{ε} (ε = the empty string).
Without loss of generality, production schemes are in binary normal form:

A(fγ] → B[ghγ]C[ghγ]; (4)

A[ ] → a {unary production to terminals a, b, c, · · · ∈ V (T )}, (5)

the brackets in (4) contains the stack, with top symbol on the left, γ, δ, · · · ∈
V (I)∗ denote strings of stack symbols, [ ] denotes an empty stack. If g = h =
ε, f �= ε then (4) is a “pop stack” production. If f, g, h all �= ε, (4) “pushes” gh
on top of stack instead of f , increasing stack-depth by 1.

Note that (A, f) is the enabling “state” for the scheme (4) to apply, for any γ.
The notion of a derivation (or generation) in Indexed Grammars in the same as
in CF: A sequence of sentential forms, starting from S[ ] to a terminal string on
V (T )∗. The same holds for the derivation tree, with nodes labeled by indexed
non-terminals (a potentially unbounded set).
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Note 1. It suffices to consider the binary tree from the root S[ ] to “pre-terminal”
leaves A[ ] which produce terminals only via (5).

The IG model has a considerable generative power, but difficult to apply and
study formally (see Section 4). The more restrictive model of Linear-Indexed-
Grammars (LIG), introduced in [3] turned out to be linguistically applicable, to
satisfy the features required from “mildly context-sensitive” model [16], and to
be weakly equivalent (in generation power) to three alternative grammar models
[15].

Instead of (4), the production schemes in LIG are

A[f, γ] → B[ghγ]C[ ], or → B[ ]C[ghγ]; (6)

i.e., the index passes (with due change) to only one child, the blue(blood) child.
The other, red child, gets an empty stack (which subsequently can grow in the
descendants). Linearity eliminates the rigid dependence between stacks evolu-
tions on distinct branches of the tree. This renders the linguistic application and
formal study of LIG much simpler: Polynomial time parsing algorithms [14]; and
shrink-pump (P-S) properties as we present in detail here - previous studies used
the weakly equivalent tree adjoining model [13].

Pump-shrink comes from certain repetitions on branches of the binary deriva-
tion tree.

Theorem 1 (The pump-shrink (P-S) Theorem for LIG). Let G be a LIG
grammar. If z ∈ L(G) is longer than the constant Pumpsh(G) (which is bounded
in (8) below), then z admits a pump-shrink which is either of CF-type (see (2))
or of trapezoid type (see (12) below).

Proof. Notice that if there is a suitable bound on blue segments in branches of
the derivation tree, then Lemma 1 provides a bound which assures a CF-type
P-S along a branch with enough red nodes.

Lemma 1. In a labeled binary tree where one child is blue and the other is red,
let Γ = max length of blue segment in a branch. If

‖T ‖ = the total number of nodes on the tree > 2rΓ r (7)

then there is a branch with > r red nodes.

Proof. We look for a branch (B∗R)r+1. The tree is peeled in stages:

Stage 0. Take the (longest) blue segment from the root.
Stage 2i-1. Take red children on nodes in stage 2i-2.
Stage 2i. Take red children and blue branch-segments below the red nodes of

stage 2i-1.

This peeling terminates when all nodes in a stage are leaves. Upon termination,
all nodes were peeled off (easy induction). Stages 2i-1 and 2i together multiply
n number of nodes by 2 · Γ at most. After 2r stages the bound is (2Γ )r. Once
we enter the 2r + 1 stage, a branch with (r + 1) reds appears.
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It remains to deal with too long blue branch. Lemma 2 (below) shows that stack-
depth along a blue branch which exceeds a constant |V |, defined in (9), implies
a trapezoid P-S. This depth bound implies a bound (exponential in |V |) on the
length of the branch, a bound which counts the number Δ of all full labels with
stack bounded by |V |. Indeed in branches longer than Δ the same full label will
occur twice, leading again to a CF-type pump-shrink.

Combining the bounds from the two Lemmas, we get the bound

Pumpsh(G) ≤ 2|V (N)||V (N)||V (I)||V (N)|3|V (I)|2 . (8)

To conclude the proof we state and prove Lemma 2.

Lemma 2. If the max stack depth along an (all) blue branch (starting and end-
ing in empty stack) exceeds

|V | = (|V (N)||V (I)|)2 = {total number of pairs of enabling states in (6)},
(9)

then this branch contains a “trapezoid” P-S configuration (explicated in the proof
below).

Proof of Lemma 2. Let t = 0, 1, 2, · · · parametrize the sequence of nodes
along the blue branch segment. A trapezoid configuration at t1 < t2 < t3 < t4 is
a quadruple of full labels

t1 : C[fγ] t4 : D(gγ)

t2 : C[fδγ] t3 : D[gδγ] (10)

Moreover the stack walk from t1 to t2, and from t3 to t4 does not touch the

stack bottom γ; the walk from t2 to t3 does not touch the bottom δγ. (11)

The condition (11) is clearly met if the stack depth behaves in a unimodal
manner, increasing to a maximum and then decreasing. In general (11) will hold
if we choose t1, · · · , t4 from a subsequence of t-values defined as follows: from
the max-depth value H , move t up and down to the closest values where the
depth is H − 1, then to closest values it assumes H − 2, and so on.

Now if the depth gap in stack walk exceeds |V | in (9), simple count shows that
a trapezoid configuration (10) exists, i.e. enabling states (C, f) upward paired
with (D, g) downword repeat at two different depth values (horizontal cuts) of
the depth graph. Now the shrink is obtained by dropping the up-depth segment
t1, . . . , t2 − 1 and the down-depth segment t3, . . . , t4 − 1, and dropping the side-
subtrees emanating from them via the red nodes on the left or right sides. It
is readily verified that the shrinked derivative (tree) is legal, and winds up in a
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shrinked terminal string z(0) = xw1ww2y, where z = z(1) = xuw1u
′wvw2v

′y is
the original string and

z(k) = xukw1u
′kwvkw2v

′ky k = 0, 1, 2, · · · (12)

For k-pump, instead of once, we loop k times:

(t1, . . . , t2 − 1)k and (t3, . . . , t4 − 1)k (13)

along with all the adjoining side branches. Again this is a perfectly legal
derivation. ��
As in the CFG case, (12) is used to prove the limitations of the LIG-model.

The derivation tree for LIG abounds with red nodes, with empty stack. For
any two of those with the same non-terminal, say B[ ], their subtrees can replace
each other, or be replaced by a standard minimal tree (proB[ ] ). Hence it is
very likely that sh(G) the shortest terminal string in L(G) is much smaller than
the bound we got for pumpsh(G), but it is not clear how to get a better estimate
valid for all LIGs.

The bottom up emptiness algorithm for LIG is essentially the same as for
CFG (see (3)). It traces the minimal trees and terminal strings not only for
A[ ], A ∈ V (N), but also for A[γ]. Termination of the Algorithm (but with
exponential time-bound) is assured by the |V | bound (9) on the stack depth.

4 Indexed Grammar (IG) and Pro-Shrinking

Shrinking for the IG model was dealt in [5] and [4]. The later one proves a strong
and elegant shrinking statement which implies linear growth of sizes in L(G) and
also the corresponding result for the Parikh map which counts terminal symbols
separately. But it is an existence proof for a particular G which uses the axiom
of choice and does not give any bound for the required size of terminal string in
terms of the parameters of G, as we did in section 3 for the linear IG model.

The earlier result [5] seems to rely on the algorithm in [1] for non-emptiness
and membership in L[G]. No estimates are given for the shrinking bound or the
pumping bound in terms of the parameters of the grammar.

We conjecture that in restricted models of IG, like the one presented in [7,12],
pump (G) and sh(G) will be bounded by the parameters of the grammar provided
these models admit an efficient emptiness and membership algorithm, efficient
in terms of the parameters of G.

It seems that strict shrinking (like [4],[5]) will not do it, but pro-shrinking
process is needed, in which a big subtree of long derivation will be replaced by
smaller subtree which also lead to terminals (this is the main difficulty).
Remark. In a grammar of IG type is put to practical use as CFG or LIG, one
can compile a tree-bank of “pronouns” for subtrees with roots labeled A[Index],
similar to tree-banks corpora compiled to facilitate the construction to parse
trees for the task of natural language syntactic analysis.



522 E. Shamir

References

1. Aho, A.V.: Indexed grammars. J. Assoc. Comput. Mach. 15, 647–671 (1968)
2. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple Phrase Struc-

ture Grammars. Z. Phonetik Sprachwiss. Kommunikat. 14, 143–172 (1961)
3. Gazdar, G.: Applicability of Indexed Grammars to Natural Languages. In: Reyle,

U., Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94
(1988)

4. Gilman, R.: A Shrinking Lemma for Indexed Languages. Theo. Comp. Sci. 16,
277–281 (1996)

5. Hayashi, T.: On Derivation Trees of Indexed Grammars: An extension of the
wvwxy-Theorem. Publ. RIMS Kyoto Univ. 9, 61–92 (1973)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

7. Keller, B., Weir, D.: A Tractable Extension of Linear Indexed Grammars. In: Proc.
EACL, pp. 75–82 (1995)

8. Maier, W., Sogaard, A.: Treebanks and Mild Context - Sensitivity. In: Proc. of
Conference on Formal Grammar (FG 2008), pp. 16–76 (2008)

9. Ogden, W.: Intercalation theorems for Stack Languages. In: Proc. First Annual
ACM Symposium of the Theory of Computing, pp. 31–42 (1969)

10. Saginer, Y.: Fast unsupervised Incremental Parsing. In: Proc. ACL, vol. 45, pp.
384–389 (2007)

11. Shamir, E.: Some Inherently ambiguous Context-Free Languages. Inf. and Con-
trol 18, 355–363 (1971)

12. Staudacher, P.: New frontiers beyond Context-Freeness: DI-grammars and DI-
automata. In: Proc. 6th EACL (1993)

13. Vijay-Shanker, K.: A study of Tree Adjoining Grammars. Ph.D. Thesis, U. Penn
(1988)

14. Vijay-Shanker, K., Weir, D.J.: Parsing some constrained grammar-formalisms.
Computational Linguistics 19, 591–636 (1993)

15. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of Context-Free
Grammars. Math. Sys. Theory 27, 511–546 (1994)

16. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proc. 25th ACL, pp. 104–111
(1987)



Online Matching of Multiple Regular Patterns

with Gaps and Character Classes�

Seppo Sippu and Eljas Soisalon-Soininen

Department of Computer Science and Engineering, Aalto University,
P.O. Box 15400, FI-00076 Aalto, Finland

{seppo.sippu,eljas.soisalon-soininen}@aalto.fi

Abstract. Given a dictionary D of regular expressions and a text T ,
the online regular-pattern-matching problem is to single out, for each
text position T [c], those expressions in D that have a match ending
at T [c], while processing T only once. This problem is considered in
the context of regular patterns over bounded-length gaps and keywords,
where the gaps are specified by wildcards and character classes and the
keywords are strings over the input alphabet. Our algorithm is based on
constructing the Aho–Corasick pattern-matching automaton for the set
of keywords, and representing as a bit vector the set of keywords that can
precede a given keyword in a regular-pattern instance. For a dictionary
D with r patterns and with ki keywords in pattern i, the preprocessing
takes time O(|D| +

∑r
i=1 k

2
i log ki/w), where w denotes the number of

bits in a memory word. When only fixed-length wildcard gaps without
character classes are allowed, the time spent by our matching algorithm
for each text character T [c] is at most O((log r + k/w)(Kc + 1)), where
k = max{k1, . . . , kr} and Kc is the number of keyword occurrences in D
matched at text position T [c].

Keywords: string processing algorithms, online dictionary matching,
regular pattern matching, variable-length gaps, character classes.

1 Introduction

Regular-expression matching means matching of the strings defined by the ex-
pression. In other words, given a regular expression R and a text T we want to
find those strings S that are substrings of T and belong to the language L(R).
This problem can be alternatively stated as finding those prefixes of T that are
defined by the expression Σ∗R, where Σ∗ is the reflexive transitive closure of
the alphabet Σ. Thus, in order to find efficient algorithms for regular expres-
sion matching it is necessary (and sufficient) to devise algorithms for efficient
recognition of regular languages.

Efficiency is required not only in the length n of text T , but also in the size m
of R. Thus it is not feasible to construct a deterministic finite automaton from R,
and to feed T to this automaton, because this solution—though efficient in n—is
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exponential in m. This is especially true in the case in which there is a large
dictionary of regular patterns to be matched, and an online solution is required
for multi-pattern matching, so that all the patterns in the dictionary are matched
in a single scan of text T . Such a scenario is typical in many applications such
as XML quering and filtering, and in internet traffic analysis.

A nondeterministic finite automaton can be constructed from regular
expression R of size m in time O(m) using the standard textbook solution orig-
inally presented by Thompson [11]. Using the nondeterministic automaton the
language-recognition problem can be solved in time O(mn) and space O(m) with
preprocessing (automaton construction) in time O(m) only.

Several improvements upon the bounds by Thompson [11] have been pre-
sented [2, 3, 5, 6, 8]. In a recent article by Bille and Thorup [6] the time bound
obtained is

O(n
k logw

w
+m), (1)

where k is the number of keywords, that is, maximal substrings of the pattern
that contain only input characters, and w is the number of bits in a memory
word. (In this paper we assume a fixed-sized alphabet, and we thus simplified
the bound by Bille and Thorup [6] accordingly.)

The contribution of Bille and Thorup [6] is two-fold. First, using multi-string
matching of Aho–Corasick [1] together with the simulation of the nondetermin-
istic automaton with keyword numbers instead of characters, they managed to
get the bound O(nk +m). Second, they applied to this algorithm the strategy
of Bille [2] to decompose the nondeterministic automaton into micro automata
each of which contains only w states, thus yielding the bound (1).

In the present paper we devise a regular-expression matching algorithm that
directly uses the Aho–Corasick multi-string matching automaton constructed
from the keywords. The idea is to collect matches of prefixes of instances of regu-
lar patterns found in the text. Whenever a new keyword occurrence is recognized
the algorithm checks whether or not this occurrence forms a legal continuation
of an instance prefix found thus far; and if so, inserts the keyword with the in-
formation of the position into the collection. To make this checking possible we
precompute for each keyword in a pattern the set of keywords that may precede
that keyword in an instance of the pattern; each such set is stored as a bit vector
of k bits, for a pattern with k keywords.

In the case of one pattern only, after preprocessing in time O(m+k2 log k/w),
our algorithm spends for each text character T [c] at most time

O(
k

w
(Kc + 1)),

where Kc is the number of keywords matched at text position T [c]. An upper
bound for Kc is the maximal number of suffixes of a single keyword that are also
keywords.

The algorithm of Bille and Thorup [6] spends time O(k logw/w) per charac-
ter, and thus our algorithm is better if Kc < logw (assuming that there is no
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significant difference in the hidden constants in the complexity bounds). For ex-
ample, consider the following regular expression used to detect a Gnutella data
download signature in a stream [10]:

(Server:|User-Agent:)( |\t)*(LimeWire|

BearShare|Gnucleus|Morpheus|XoloX|

gtk-gnutella|Mutella|MyNapster|Qtella|

AquaLime|NapShare|Comback|PHEX|SwapNut|

FreeWire|Openext|Toadnode)

In this expression no keyword is a suffix of another, and thus Kc ≤ 1 at all text
positions T [c], but for w = 64, logw = 6.

However, the main advantage of our algorithm is that it solves the more
general problem of online dictionary matching of regular patterns, where, given
a dictionary D of patterns and a text T , the text T is scanned only once and,
at each text position T [c], exactly the patterns in D that have a match ending
at T [c] are reported. Moreover, besides keywords composed of characters in the
input alphabet we allow the patterns to contain bounded-length gaps specified
by wildcards and character classes. The gaps may be of varying length, but any
character classes contained in a gap must be in fixed positions in the instances
of the gap.

For a dictionary D with r patterns and with ki keywords in pattern i, i =
1, . . . , r, the preprocessing phase of our algorithm takes time

O(|D|+
r∑

i=1

k2i log ki/w).

When only fixed-length wildcard gaps without character classes are allowed, the
time spent by our matching algorithm for each text character T [c] is at most

O(log r +
k

w
)(Kc + 1)),

where k = max{k1, . . . , kr} andKc is the number of keywords (the same keyword
string counted as many times it occurs in D) matched at text position T [c].
When wildcard gaps of variable length and character-class gaps of fixed-length
are allowed, then in the above bound the factor log r+ k/w must be replaced by
(d1 + 1)(log r + k/w) + d2, where d1 is the maximal difference of the maximum
and minimum lengths of a gap and d2 is the maximal number of character classes
in a gap.

2 Regular Patterns with Gaps

Assume that we are given a string T of length |T | = n (called the text) over
a character alphabet Σ, whose size is assumed to be fixed, and a finite set D
(called the dictionary) of patterns. Each pattern Pi is a regular expression over
strings gw, where g is a wildcard gap of the form “.{l, h}” and w is a keyword
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in Σ∗. For integers h ≥ l ≥ 0, the gap “.{l, h}” matches any string of length l
to h in Σ∗. The gap “.{0, 0}” can also be denoted by the empty string (ε), the
gap “.{1, 1} by “.”, the gap “.{2, 2} by “..”, etc. The regular operators allowed
in the patterns are concatenation, union (|), and iteration (∗), and parentheses
can be used to enclose subexpressions, as usual.

For example, the pattern ..ab.{1, 3}c.d is of the form g1w1g2w2g3w3, where
the gaps are g1 = .., g2 = .{1, 3}, g3 = ., and the keywords are w1 = ab,
w2 = c, w3 = d. This pattern matches with, say, the input text eeeabeecedeee.
The pattern aa(bb|.{1, 3}c)∗d = g1w1(g2w2|g3w3)

∗g4w4 has the same gaps and
keywords as the pattern .{0, 0}aa(.{0, 0}bb|.{1, 3}c)∗.{0, 0}d, namely the gaps
g1 = .{0, 0}, g2 = .{0, 0}, g3 = .{1, 3}, g4 = .{0, 0}, and the keywords w1 = aa,
w2 = bb, w3 = c, w4 = d. The pattern a.∗c = g1w1(g2w2)

∗g3w3 has the gaps
g1 = ε, g2 = ., g3 = ε, and the keywords w1 = a, w2 = ε, w3 = c.

Our task is to determine all occurrences of all patterns Pi ∈ D in text T . We
report a pattern occurrence by a pair of a pattern number and the character
position in T of the last character of the occurrence. A pattern may have many
occurrences that end at the same character position; all these occurrences are
reported once by the same pair of pattern number and character position.

For each pattern Pi, we number the occurrences of its gaps and keywords, so
that gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth keyword, that
is, the keyword following gap(i, j), i = 1, 2, . . . , ki. Strings that appear as the
jth keyword for some j are called keyword strings. This distinction is necessary
because the same keyword string can appear in many positions, and thus the
number of keyword strings in a pattern can be less than ki.

For pattern Pi, we denote by mingap(i, j) and maxgap(i, j), respectively, the
minimum and maximum lengths of strings inΣ∗ that can be matched by gap(i, j).
The length of the jth keyword of pattern Pi is denoted by length(i, j). For ex-
ample, for the pattern Pi = aa(bb|.{1, 3}c)∗d we have:

mingap(i, 1) = 0, maxgap(i, 1) = 0, length(i, 1) = 2,
mingap(i, 2) = 0, maxgap(i, 2) = 0, length(i, 2) = 2,
mingap(i, 3) = 1, maxgap(i, 3) = 3, length(i, 3) = 1,
mingap(i, 4) = 0, maxgap(i, 4) = 0, length(i, 4) = 1.

For each pattern Pi we define the set begins(i) to contain all j such that an in-
stance of gap(i, j)keyword(i, j) appears as a prefix of some instance of Pi, and the
set ends(i) to contain all j such that an instance of gap(i, j)keyword(i, j) appears
as a suffix of some instance of Pi. Furthermore, for each j = 1, . . . , ki, we define
the set precedes(i, j) to contain all l such that an instance of gap(i, l)keyword(i, l)
immediately precedes an instance of gap(i, j)keyword(i, j) in some instance of Pi.
For example, for the pattern Pi = aa(bb|.{1, 3}c)∗d we have:

begins(i) = {1}, ends(i) = {4},
precedes(i, 1) = ∅, precedes(i, 2) = precedes(i, 3) = precedes(i, 4) = {1, 2, 3}.

Each of the sets begins(i), ends(i), and precedes(i, j) can be computed from
pattern Pi in linear time. If Pi contains union or iteration, the combined size of
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the sets may be quadratic in the number of keyword occurrences in Pi, as is the
case with the pattern (a1|ε)(a2|ε) . . . (ak|ε), for example. However, it is possible
to construct from a general nondeterministic finite automaton (NFA) of size m
an equivalent ε-free NFA in time O(m logm), as shown by Schnitger [9]. Thus,
it is possible to construct a representation of all sets precedes(i, j) for pattern
Pi in time O(ki log ki), such that these can be stored in bit vectors of ki bits in
time O(k2i log ki/w), where w is the number of bits in a memory word.

3 Multi-string Matching

For the set of all keywords in the dictionary D of regular patterns, we construct
an Aho–Corasick pattern-matching automaton (PMA) [1] with an output func-
tion, represented by sets output(q) containing output tuples of the form (i, j),
where q = state(keyword(i, j)), the state reached from the initial state upon
reading the jth keyword of pattern Pi. Note that there may be several pairs
(i, j) in one set output(q), because one keyword string may equal many different
keyword occurrences in D.

The current character position, that is, the number of characters scanned from
the input text is maintained in the global variable character-count. The operat-
ing cycle of the PMA is given as Alg. 1. The procedure scan-next(character)
returns the next character from the input text. The functions goto and fail
are the goto and fail functions of the standard Aho–Corasick PMA, so that
goto(state(y), a) = state(ya), where ya is a prefix of some keyword and a is in Σ,
and that fail(state(uv)) = state(v), where uv is a prefix of some keyword and v
is the longest proper suffix of uv such that v is also a prefix of some keyword.

Algorithm 1. Operating cycle of the PMA.

state ← initial-state
character-count ← 0
traverse-output-path(state)
scan-next(character)
while character was found do

character-count ← character-count + 1
prefix-matches[(character-count − 1) mod maxdist+ 1]← ∅
while goto(state, character) = fail do

state ← fail(state)
end while
state ← goto(state, character)
traverse-output-path(state)
scan-next(character)

end while

The procedure call traverse-output-path(state) traverses all states q such that
string(q), the unique string y with state(y) = q, is a keyword and a suffix of
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string(state). The function output-fail(q) that determines these states is defined
by: output-fail(q) = failk(q), where k is the greatest integer less than or equal to
the length of string(q) such that for all m = 1, . . . , k − 1, the current output of
failm(q) is empty. Here failm denotes the fail function applied m times. Thus,
the output path for state q includes those states in the fail path from q for which
the output set is nonempty. The array prefix-matches is used to collect matches
of pattern prefixes, as will be explained below.

4 Matching for Regular Patterns with Gaps

Let D be a dictionary of size m of patterns that are regular expressions over
strings gw, where g is a bounded-length gap and w is a keyword, as defined
above. In this section we give an algorithm that finds all occurrences of patterns
in D in given text T .

As a preprocessing task we construct an Aho–Corasick pattern matching au-
tomaton from all keywords in dictionary D in time O(m), and compute the sets
begins(i), ends(i), and precedes(i, j), for all pairs gap(i, j)keyword(i, j). As ex-
plained above in Section 2, for each pattern Pi these sets can be computed and
stored as bit vectors of length ki in time O(k2i log ki/w), where ki is the number
of keywords (i, j) and w is the number of bits in a memory word.

Matches of prefixes of instances of the patterns found in the text are collected
into an array prefix-matches, which has

maxdist = max{maxgap(i, j) + length(i, j) | i ≥ 1, j ≥ 1} (2)

entries and stores matches found at the last maxdist character positions scanned
from the text. The pattern-instance prefixes found at character position c are
stored in the array entry

prefix-matches[(c− 1) mod maxdist + 1],

which is initialized as empty in Alg. 1 whenever character-count reaches c. As
the matching proceeds, the entry will contain a set of pairs (i, v), where i is a
pattern number and v is a set of keyword numbers j of pattern Pi such that a
match of some prefix of an instance of pattern Pi ending at keyword j has been
found at position c in the text. The set of pairs (i, v) in an entry of prefix-matches
is implemented as a balanced binary search tree indexed by i and the set v is
implemented as a bit vector of ki bits.

Given pattern number i and character position c, the function

prefix-matches(i, c)

searches the binary search tree at entry prefix-matches[(c− 1) mod maxdist+ 1]
for i, and, if (i, v) is found, returns v; otherwise, the function returns the null
bit vector of length ki.

Given pattern number i, keyword number j and character position c, the
procedure

insert-prefix-match(i, j, c)



Matching of Multiple Regular Patterns 529

searches the binary search tree at entry prefix-matches[(c− 1) mod maxdist+ 1]
for i, and, if (i, v) is found, inserts j into v; otherwise, the procedure inserts
(i, {j}) into the search tree.

The standard traversal of the Aho–Corasick pattern matching automaton can
now be augmented to solve our matching problem for regular patterns with
bounded-length gaps, as presented in Alg. 2. The while loop in the algorithm
traverses—using the output-fail function as defined in Section 2—all states q at
which a match of a keyword at T [c] can be found. Within the while loop the
for loop traverses all pairs (i, j) found in output(q), and checks whether or not
some keyword (i, j′) in the set prefix-matches [(c − 1) mod maxdist + 1], where
character position c is within a correct distance from character-count, precedes
keyword (i, j).

This checking is implemented by first performing a bitwise “or” of the bit
vectors returned by the function calls prefix-matches(i, c), c = b, . . . , e, where b
and e are the earliest and latest possible starting positions of gap(i, j), and then
performing a bitwise “and” of the result and precedes(i, j). By the bitwise “or”
we get all those keywords (i, j′) that represent prefix matches already found and
are in the correct distance from the current character position. The bitwise “and”
finally computes from these keywords those that precede (i, j).

The function call classes-match(i, j, e) (to be explained in the next section)
checks if the character classes in gap(i, j) (if any) match. The call returns true
if the gap contains no character classes.

Algorithm 2. Procedure traverse-output-path(state).
q ← state
traversed ← false
while not traversed do

for all elements (i, j) ∈ output(q) do
b← max{1, character-count −maxgap(i, j)− length(i, j)}
e← character-count −mingap(i, j)− length(i, j)
if e ≥ 1 then

if (j ∈ begins(i) or precedes(i, j) ∩ (∪e
c=bprefix-matches(i, c)) 
= ∅)

and classes-match(i, j, e) then
insert-prefix-match(i, j, character-count)
if j ∈ ends(i) then

report a match of pattern Pi at character-count
end if

end if
end if

end for
if q = initial-state then

traversed ← true
else

q ← output-fail(q)
end if

end while
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5 Matching for Patterns with Gaps and Character
Classes

We now assume that the gaps in the regular patterns can also contain character
classes such as in the gap “.[B−H ]..[AB]”, which matches any string abcde,
where a, c and d are any characters, b is one of the characters B to H , and e
is A or B. However, we require that the character classes, if any, appear in a
fixed number of times and are in fixed positions in the gap, more specifically,
in a fixed distance from the start of a minimum-length instance of the gap.
This is always the case with a fixed-length gap, as with “.[B−H ]..[AB]”, where
mingap(i, j) = maxgap(i, j) = 5 and the positions of the character classes are 2
and 5.

Gaps such as [AB].{l, h} or [AB]{l, h} with l < h are not allowed, whereas a
gap such as .{l, h}[AB] is allowed (the position of [AB] in the minimum-length
gap instance is l+1). However, [AB].{l, h} is a valid regular pattern of the form
g1w1g2w2 with g1 = [AB], w1 = ε, g2 = .{l, h}, w2 = ε.

We store all the character classes appearing in the patterns as bit vectors
containing as many bits as there are characters in the entire character alphabet.
Each distinct set is stored only once.

For each pattern Pi and each keyword number j we store a list classes(i, j)
containing pairs (c, C), where c is a character position in gap(i, j) that contains
a character class and C is a pointer to the bit vector representing the character
class. The lists classes(i, j) are arranged in an array of r entries, where r is the
number of patterns in D. The entry for i is an array of ki entries, where ki is the
number of keywords in pattern Pi. The entire array structure is of size O(|D|)
and, given (i, j), the beginning of the list classes(i, j) can be accessed in constant
time.

For example, if the gap-keyword pair (i, j) is .[B−H ]..[AB]w, where w is
the keyword, we have classes(i, j) = {(2, C1), (5, C2)}, where C1 points to the
class [B−H ] and C2 points to the class [AB]. The character classes in the gap
[AB]{3, 3} are represented by {(1, C), (2, C), (3, C)}, where C points to [AB].

Given a matched keyword (i, j) and a character position e, the function
classes-match(i, j, e) (Alg. 3) tests whether or not the character classes in
gap(i, j) match with the gap starting at character position e.

Algorithm 3. Function classes-match(i, j, e).

for all (c, C) ∈ classes(i, j) do
if the input character at position e+ c− 1 does not belong to class C then

return false
end if

end for
return true
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6 Correctness and Complexity

The correctness of the algorithm follows from correct maintenance of the pattern-
instance prefixes. We always create a new prefix, when a keyword (with a pre-
scribed gap) starting a pattern is found, and whenever we find a new key-
word (i, j) which correctly follows an already stored instance prefix (checked
by precedes(i, j)), then a new instance prefix (i, j) is stored. If the newly found
keyword (i, j) that correctly follows some instance prefix can also be the last
keyword of an instance of pattern Pi, then we report a match.

The time needed for preprocessing was already discussed in Section 2. The
main concern in the complexity analysis is the question of how many steps
are performed for each scanned input character. For each new character the
procedure traverse-output-path (Alg. 2) is executed, and thus we need to analyze
how many times the outer while loop and the inner for loop are executed within
one traverse-output-path call.

First notice that the number of iterations of the while loop in a call traverse-
output-path(q) equals the length of the output path from state q. It is easy to
see that this length equals the number of suffixes of string(q) that are keyword
strings. When the for loop iterations will additionally be counted, we observe
that the total number of their executions at character position c of the text T
will be the number of keywords (i, j) that match at T [c].

Checking whether or not j ∈ begins(i) or j ∈ ends(i) takes only time O(1).
Performing the bitwise “or” of the bit vectors returned by the function calls
prefix-matches(i, c), c = b, . . . , e takes time O((e − b + 1)(ki/w)), and perform-
ing the bitwise “and” of the result and the bit vector precedes(i, j) takes time
O(ki/w). Checking the character-class matches in the function call
classes-match(i, j, character-count) takes time O(d), where d is the number of
character classes in gap(i, j). Each of the procedure calls prefix-matches(i, c) and
insert-prefix-match(i, j, character-count) takes time O(log r), for a dictionary of
r patterns, because of the need to traverse the binary search tree for i. Thus we
have:

Theorem 1. Let D be a dictionary of size m containing r patterns that are reg-
ular expressions with bounded-length gaps and character classes in fixed positions
in the gaps, and let T be a text of length n to be matched. After preprocessing in
time O(m+

∑r
i=1 k

2
i log ki/w) and space O(m+

∑r
i=1 ki log ki), where ki denotes

the number of keywords in pattern Pi and w the number of bits in one memory
word, the matching algorithm finds all occurrences in T of the patterns in D in
time

O(((d1 + 1)(log r +
k

w
) + d2) ·

n∑
c=1

(Kc + 1)),

where k = max{k1, . . . , kr}, Kc is the number of keywords (i, j) matched at text
position T [c], d1 is the maximal difference of the maximum and minimum lengths
of a gap, and d2 is the maximal number of character classes in a gap.

The workspace complexity of the algorithm is

O(maxdist ·K),
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where maxdist is as defined in formula (2) and K = max{Kc | c = 1, . . . , n}.

Proof. The time bound follows from the above discussion. The workspace com-
plexity simply follows from the fact that at most K new pairs (i, j) are inserted
into the array prefix-matches at each character position, and that maxdist is
the length of the array prefix-matches. As in the operating cycle (Alg. 1) prefix-
matches [(c− 1) mod maxdist+ 1] is set to empty, we conclude the space bound
O(maxdist ·K). ��

The complexity bound of Theorem 1 is most interesting when only fixed-
length wildcard gaps are present without any character classes, because then
d1 = d2 = 0. Moreover, one may be willing to see an upper bound for Kc which
is independent of text T and easy to determine from D.

For a keyword string y in D define

closure(y) = {z | z is a keyword string and a suffix of y},

and for a set Y of keyword strings define

occ-dictionary(Y ) = |{(i, j) | y ∈ Y, y = keyword(i, j)}|.

Using these definitions we replace Kc by an upper bound which only depends
on D:

Corollary 2. Let D be a dictionary of size m containing r regular-expression
patterns with fixed-length wildcard gaps without character classes, and let T be a
text of length n to be matched. After preprocessing in time O(m+

∑r
i=1 k

2
i log ki/w)

and space O(m+
∑r

i=1 ki log ki) the matching algorithm finds all occurrences in
T of the patterns in D in time

O(n(log r +
k

w
)KD),

where KD = max{occ-dictionary(closure(y)) | y is a keyword string in D}. The
workspace complexity of the algorithm is O(maxdist ·KD). ��

7 The Case of a Single Pattern

From Corollary 2 we can conclude that in the case of a single regular-expression
pattern P (with fixed-length wildcard gaps without character classes) we obtain
for the matching algorithm the bound

O(n(
k

w
+KD)),

where k is the number of keywords in P and KD is as defined in Corollary 2 for
D = {P}. This bound is better than what is obtained by Bille and Thorup [6]
in the case KD < logw. This holds when for each keyword with number j in
pattern P the number of keywords j′ that are suffixes of keyword j is smaller
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than logw. Recall the example given in the introduction suggesting that this
condition often holds in practice.

In this section we will present an improvement upon the algorithm such that
KD can be replaced by a better upper bound. In the current algorithm the set
precedes(i, j), denoted precedes(j) in the case of a single pattern, is computed
as a preprocessing task separately for each j. In the for loop of Alg. 2 all
keywords j in output(q) are separately checked as a candidate for continuing the
already obtained matches of pattern prefixes. However, this checking could be
done in one operation for all keywords in output(q) that are of the same length,
provided that we would have computed the union of all precedes sets for these
keywords. Let ji, j2, . . . , jl be different keyword numbers such that keyword(j1) =
keyword(j2) = . . . = keyword(jl). During preprocessing we can easily construct,
say, precedes(j1) such that it contains the union precedes(j1) ∪ · · · ∪ precedes(jl),
and delete from the output sets all numbers j2, . . . , jl. After this change our
algorithm will still work correctly, but now the time bound becomes

O(n(
k

w
+K ′

D)),

where K ′
D = max{|closure(y)| | y is a keyword in D} for D = {P}. Notice that

K ′
D ≤ KD and K ′

D can be considerably smaller than KD because now the
different occurrences of the same keyword string are counted only once.

8 Discussion

Our new method for regular-expression-pattern matching can be considered as
a generalization of some previous algorithms for string-pattern matching with
gaps [4, 7]. In these algorithms—as in the algorithm of the present paper—the
keywords in the patterns are recognized by using the Aho–Corasick automaton
for multi-string matching. Our algorithm checks for the already found prefix
matches of regular expression patterns whether or not the newly found keyword
can be a legal continuation. The algorithm of Bille and Thorup [6] for regular
expression matching is different from ours—though it also uses the keywords ob-
tained from the expression and applies to keyword matching the Aho–Corasick
automaton—in the sense that it still uses the simulation of a nondeterminis-
tic automaton, now constructed using the keyword numbers instead of single
characters.

Although the algorithm of Bille and Thorup [6] has a good worst-case upper
bound, it is hardly useful in our scenario of a possibly large number of regular
expressions to be matched at the same time. If such a set is treated as a single
regular expression, then the number k of different keyword occurrences in the
expression, being a multiplier in the time bound, becomes very large compared
to max{k1, . . . , kr}, which is a multiplier in our time bound, where ki is the
number of keyword occurrences in the ith expression.

Another possibility of using the algorithm of Bille and Thorup [6] in our
scenario would be to apply the input text separately to all regular expression
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patterns. But then the Aho–Corasick automaton should be constructed for all
expressions separately, and instead of feeding the input text once to one automa-
ton it should be fed to r different automata, where r is the number of regular
expression patterns. This would mean that the time bound of Bille and Tho-
rup [6] would have an extra term nr instead of the term n log r in our bound.
Using parallel computation the term nr could be made somewhat smaller, but
not very much in the case of many thousands of expressions, as is typical in the
applications.

Our aim in the near future is to perform experimental analysis of our algo-
rithm. Preliminary experiments have already been conducted with the algorithm
that was a direct extension of our algorithm for string-pattern matching with
gaps [7]. These were very promising, even though that extension was not at all
as good as the present one as regards the worst-case time complexity.
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Abstract. We investigate the boundary between finiteness and infinite-
ness in three types of L systems: 0L, DT0L, and T0L. We establish
necessary and sufficient conditions for 0L, DT0L, and T0L systems to
be infinite, and characterize the boundedness of finite classes of such sys-
tems. First, we give a pumping lemma for these systems, proving that the
language of a system is infinite iff the system is pumpable. Next, we show
that the number of steps needed to derive any string in any finite 0L or
DT0L system is bounded by a function depending only on the size of the
alphabet, and not on the production rules or start string. This alphabet
boundedness does not hold for finite T0L systems in general. Finally, we
show that every infinite 0L system has an infinite D0L subsystem.

1 Introduction

L systems are parallel rewriting systems which were originally introduced to
model growth in simple multicellular organisms. With applications in biological
modelling, fractal generation, and artificial life, L systems have given rise to a
rich body of research [6,2]. L systems can be restricted and generalized in various
ways, yielding a hierarchy of language classes.

The simplest L systems are D0L systems (deterministic Lindenmayer systems
with 0 symbols of context), in which a morphism is successively applied to a
start string or “axiom”. In [7], Vitányi gives a necessary and sufficient condition
under which a D0L system is finite, and gives an upper bound on the size of a
finite D0L language in terms of the size of the alphabet.

Two well-studied generalizations of D0L systems are 0L systems, which in-
troduce nondeterminism by changing the morphism to a finite substitution, and
DT0L systems, in which the morphism is replaced by a set of morphisms or
“tables”. Generalizing in both directions at once yields the class of T0L systems.
Figure 1 depicts the inclusions among these classes. We extend Vitányi’s work
to these systems.

First, we provide a necessary and sufficient condition under which a T0L
system is infinite, in the form of a pumping lemma. In getting this result, we
adapt a proof technique used in [5] to obtain a pumping lemma for ET0L systems.
It follows from our pumping lemma that every infinite T0L language has an
infinite D0L subset.
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Next, we look for upper bounds on finite 0L, DT0L, and T0L systems in terms
of alphabet size. In contrast to D0L systems, there is no upper bound on the
size of a finite 0L or DT0L language in terms of the size of the alphabet alone.
However, we show that there is such a bound on the number of steps needed
to derive a string in any finite 0L or DT0L system. For finite T0L systems in
general, a counterexample shows that no such alphabet-only bound holds. Figure
2 summarizes these results.

Finally, we consider the notion of a D0L subsystem of a 0L system, formed
by choosing a single production for each symbol from the finite substitution. We
show that every infinite 0L system has an infinite D0L subsystem; this constitutes
a necessary and sufficient condition for a 0L system to be infinite. We also
consider the notion of a D0L subsystem of a DT0L system, formed by choosing
a single table from the set of tables. A simple counterexample shows that not
every infinite DT0L system has an infinite D0L subsystem.

D0L

0L DT0L

T0L

Fig. 1. Inclusion diagram. Arrows indicate
proper inclusion of the lower class by the up-
per class; the dashed line indicates incompara-
bility.

alphabet
size-bounded?

alphabet
step-bounded?

D0L yes yes
0L no yes

DT0L no yes
T0L no no

Fig. 2. Alphabet boundedness of finite
D0L, 0L, DT0L, and T0L systems

Related Work. Finiteness of all the L systems considered in this paper is
decidable from Theorem 4.1 of [2]. That the size of the alphabet bounds the
number of steps needed to derive λ in a 0L system was known from Lemma 1.3
of [6]; for finite 0L systems, our Theorem 15 generalizes this result to include
non-empty strings.

Nishida [3] investigated “quasi-deterministic” 0L systems, those for which
there is an integer C such that the cardinality of the set of strings generated in
exactly n steps is less than C for every n. Nishida and Salomaa [4] investigated
“slender” 0L languages, those for which there is a constant k such that the
language has at most k strings of any given length.

Corollary 5, which states our pumping lemma for DT0L systems, can also
be proved via a connection with non-negative integer matrices. Each table in
a DT0L system can be associated with a “growth matrix” indicating for each
production, how many times each symbol appears on the righthand side of that
production. Jungers et al. [1] consider the “joint spectral radius” ρ of a finite set
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of such matrices, distinguishing four cases. In cases (1) and (2) (ρ = 0 or ρ = 1
with bounded products), the associated DT0L system is finite, whereas in cases
(3) and (4) (ρ > 1 or ρ = 1 with unbounded products), by their Corollary 1 and
Proposition 2, assuming every symbol is reachable, the system is pumpable.

Outline of Paper. The paper is organized as follows. Section 2 gives prelimi-
nary definitions. Section 3 presents our pumping lemma for T0L systems. Section
4 examines alphabet boundedness for finite 0L, DT0L, and T0L systems. Sec-
tion 5 studies D0L subsystems of 0L and DT0L systems. Section 6 gives our
conclusions.

2 Definitions

An alphabet A is a finite set of symbols. A string is an element of A∗. λ denotes
the empty string. A language is a subset of A∗. A morphism on A is a map
h from A∗ to A∗ such that for all x, y ∈ A∗, h(xy) = h(x)h(y). Notice that
h(λ) = λ. h is nonerasing if for every c ∈ A, h(c) �= λ. A finite substitution
on A is a map σ from A∗ to 2A

∗
such that (1) for all x ∈ A∗, σ(x) is finite and

nonempty, and (2) for all x, y ∈ A∗, σ(xy) = {x′y′ | x′ is in σ(x) and y′ is in
σ(y)}. Notice that σ(λ) = {λ}. For a language L, we define σ(L) = {x′ | x′ is in
σ(x) for some x ∈ L}.

A D0L system is a tuple G = (A, h,w) where A is an alphabet, h is a

morphism on A, and w is in A∗. For x, y ∈ A∗ and i ≥ 0, we write x
i−→ y iff

hi(x) = y.
A 0L system is a tuple G = (A, σ, w) where A is an alphabet, σ is a finite

substitution on A, and w is in A∗. For x, y ∈ A∗ and i ≥ 0, we write x
i−→ y iff

σi(x) = y.
A DT0L system is a tuple G = (A,H,w) where A is an alphabet, H is a

finite nonempty set of morphisms on A (called “tables”), and w is in A∗. For
x, y ∈ A∗ and i ≥ 0, we write x

i−→ y iff hk · · ·h1(x) = y for some h1, . . . , hk ∈ H .
A T0L system is a tuple G = (A, T,w) where A is an alphabet, T is a finite

nonempty set of finite substitutions on A (called “tables”), and w is in A∗. For
x, y ∈ A∗ and i ≥ 0, we write x

i−→ y iff σk · · ·σ1(x) = y for some σ1, . . . , σk ∈ T .
For any of the above systems G, w is called the “axiom” or “start string”. The

language of G is L(G) = {s | w i−→ s for some i ≥ 0}. Call G finite iff L(G) is
finite. Intuitively, a derivation in G means a sequence of steps, starting with w
unless otherwise specified, each consisting of a string together with the precise
table and/or productions used to derive it from the previous step. For formal
definitions, see [6]. D0L, 0L, DT0L, and T0L are the classes of D0L, 0L, DT0L,
and T0L languages, respectively. Clearly D0L ⊆ 0L ⊆ T0L and D0L ⊆ DT0L
⊆ T0L. In fact, 0L and DT0L are incomparable, making all of these inclusions
proper [6].

A D0L (0L, DT0L, T0L) system G with axiom w is step-bounded by n iff

for every s ∈ L(G), there is an m ≤ n such that w
m−→ s. Let C be any class
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of D0L (0L, DT0L, T0L) systems. C is alphabet size-bounded iff for every
alphabet A, there is an n ≥ 0 such that for every G ∈ C for which the alphabet
of G is A, |L(G)| ≤ n. C is alphabet step-bounded iff for every alphabet A,
there is an n ≥ 0 such that for every G ∈ C for which the alphabet of G is A, G
is step-bounded by n. Clearly if C is alphabet-size bounded, then C is alphabet
step-bounded, since the same n will suffice.

3 Pumping Lemma for T0L Systems

A T0L system G = (A, T,w) is pumpable iff there are x, y ∈ A such that (1)
some s0 ∈ L(G) contains x, and (2) for some composition t of tables from T , t(x)
includes a string s1 containing distinct occurrences of x and y and t(y) includes
a string s2 containing y.

Lemma 1. Suppose the T0L system G = (A, T,w) is pumpable. Then L(G) is
infinite.

Proof. Since s0 is in L(G) and t is a composition of tables from T , ti(s0) ⊆ L(G)
for every i ≥ 0. A simple induction shows that for all i ≥ 0, ti(s0) includes a
string containing x and at least i copies of y. Hence L(G) is infinite. ��

Lemma 2. Suppose the T0L systemG = (A, T,w) is infinite. ThenG is pumpable.

Proof. We assume a familiarity with [5], particularly the notions of an ET0L
system, derivation tree, marked node, and branch node. G can be treated as
an ET0L system in which the alphabet and terminal alphabet are identical.
Following the proof of Theorem 15 in [5], for any node in a derivation tree,
consider the “marked set”, or set of marked symbols which appear on the same
level of the tree. As shown in that proof, since G is infinite, there is an x ∈ A
such that some derivation tree in G of a string in which every position is marked
has a path with two branch nodes labelled by x, with one an ancestor of the
other, with the same marked set. Call the strings in which the ancestor and
descendant nodes appear w1 and w2, respectively. Let t be the composition of
tables which was applied to w1 to derive w2.

Since the ancestor node labelled by x in w1 is a branch node, its descendant
string in w2 contains, in addition to the descendant node labelled by x, a marked
node labelled by some e ∈ A. Now, since w1 and w2 have the same marked set,
every c ∈ A which labels a marked node in w2 also labels a marked node in
w1. By definition, every marked node in w1 has a marked descendant in w2. A
simple induction then shows that for every i ≥ 0, there is a c ∈ A such that w2

contains a marked node labelled by c, and some s ∈ ti(e) contains c. Hence for
every i ≥ 0, ti(e) contains a non-empty string. So there are j ≥ 0, k ≥ 1 and
y ∈ A such that tj(e) includes a string containing y and tk(y) includes a string
containing y. Then since t(x) includes a string containing distinct occurrences
of x and e, tj+1(x) includes a string containing distinct occurrences of x and y.
Then tk(j+1)(x) includes a string containing distinct occurrences of x and y and
tk(j+1)(y) includes a string containing y. So G is pumpable. ��
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Theorem 3. A T0L system is infinite iff it is pumpable.

Proof. Immediate from Lemmas 1 and 2. ��

Corollary 4. A 0L system G = (A, σ, w) is infinite iff there are x, y ∈ A such
that (1) some s ∈ L(G) contains x, and (2) for some i ≥ 0, σi(x) includes
a string containing distinct occurrences of x and y and σi(y) includes a string
containing y.

Corollary 5. A DT0L system G = (A,H,w) is infinite iff there are x, y ∈
A such that (1) some s ∈ L(G) contains x, and (2) for some composition h
of morphisms from H, h(x) contains distinct occurrences of x and y and h(y)
contains y.

Corollary 6. Every infinite T0L language has an infinite D0L subset.

Proof. Take any infinite T0L language L with T0L system G = (A, T,w). By
Theorem 3, G is pumpable. Let h be a morphism on A such that h(x) = s1,
h(y) = s2 unless x = y, and for every other c ∈ A, h(c) = s for some s ∈ t(c).
Then the language of the D0L system (A, h, s0) is an infinite subset of L. ��

4 Alphabet Boundedness

In this section we examine the alphabet size-boundedness and step-boundedness
of 0L, DT0L, and T0L systems. For D0L, Corollary 4 of [7] implies the following.

Theorem 7 (Vitányi). The class of finite D0L systems is alphabet size-
bounded and alphabet step-bounded.

4.1 0L

We first give a simple counterexample to show that the class of finite 0L systems
is not alphabet size-bounded.

Theorem 8. The class of finite 0L systems is not alphabet size-bounded.

Proof. Let A = {a, b} and take any n ≥ 0. Let w = a. Let σ be a finite substitu-
tion onA such that σ(a) = {b, bb, bbb, . . . , bn} and σ(b) = {b}. LetG = (A, σ, w).
Then L(G) = {a, b, bb, bbb, . . . , bn}. So L(G) is finite, but |L(G)| > n. So the
class of finite 0L systems is not alphabet size-bounded. ��

Next we will show that the class of finite 0L systems is alphabet step-bounded.
We begin with some definitions. Take any 0L system (A, σ, w) and any c ∈ A.
For any s ∈ A∗, c is reachable from s iff for some i ≥ 0, σi(s) includes a
string which contains c. c is reachable iff c is reachable from w. Let L(s) be the
language of the 0L system (A, σ, s). c is mortal (c is in M) iff σi(c) = {λ} for
some i ≥ 0. c is vital (c is in V ) iff c is not in M . c is recursive (c is in R) iff c
is reachable from some s ∈ σ(c). c is monorecursive (c is in MR) iff for every
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s such that for some i ≥ 0, σi(c) includes s and s contains c, s is in M∗cM∗. For
each i ≥ 0, let reachc(i) = {s ∈ σi(c) | c is reachable from s}.

We now build up a series of lemmas toward our result that the class of finite
0L systems is alphabet step-bounded. Lemmas 9 and 10 are given without proof
but are not difficult to verify.

Lemma 9. Suppose c is in R−MR. Then L(c) is infinite.

Lemma 10. For all c ∈ M , σ|M|(c) = {λ}.

Lemma 11. Suppose c is in MR and s is in reachc(i) for some i. Then s is in
M∗dM∗ for some d ∈ MR.

Proof. Since c is reachable from s, s must contain at least one symbol in V . s
cannot contain more than one symbol in V , otherwise c would not be in MR.
So s contains exactly one symbol d in V . Since c is reachable from d and d is
reachable from c, d is in R. Now suppose d is in R−MR. Then L(d) contains a
string s′ which includes d and a symbol in V . Since c is reachable from d, L(s′)
contains a string which includes c and a symbol in V . Then L(d) contains such
a string. But then L(c) contains such a string, a contradiction, since c is in MR.
So d is in MR. Then s is in M∗dM∗. ��

Lemma 12. Suppose c is in MR. Then there is a k such that 1 ≤ k ≤ |MR|
and some string in σk(c) contains c.

Proof. Since c is in MR, there is a k ≥ 1 such that some string in σk(c) contains
c. Take the smallest such k. Then there is an s in M∗cM∗ and derivation D of
s from c in k steps. Suppose k > |MR|. Then the c in s has > |MR| ancestors
in D. Take any such ancestor d. c is reachable from d, so by Lemma 11, since
d is not in M , d is in MR. So every ancestor of the c in s is in MR. But then
one such ancestor must repeat, and the derivation could have been shortened to
yield a k′ such that 1 ≤ k′ < k. Therefore k ≤ |MR|. ��

Lemma 13. Suppose c is in A and L(c) is finite. Then there is a k such that
1 ≤ k ≤ |A| and reachc(|A|2) = reachc(|A|2 + k).

Proof. Suppose c is not in MR. Then by Lemma 9, c is not in R. So c is not
reachable from any s in σ(c). Then for every i ≥ 1, reachc(i) = {}. So say c is in
MR. From Lemma 12, there is a k such that 1 ≤ k ≤ |MR| and some s ∈ σk(c)
contains c. Then s is in reachc(k). Let Set(i) = {a ∈ MR | some string in
reachc(i) includes a}. Take any i ≥ 0 and a ∈ Set(ki). Some s′ ∈ reachc(ki)
includes a. Then s′ is in σki(c). Since s contains c, s′ is a substring of some s′′

in σki(s). s′′ is in σk(i+1)(c). Since c is reachable from s′, c is reachable from
s′′. So s′′ is in reachc(k(i + 1)). Hence a is in Set(k(i + 1). So for all i ≥ 0,
Set(ki) is a subset of Set(k(i + 1)). Hence there is an i < |MR| such that
Set(ki) = Set(k(i+1)). Let m = ki+ |M | and n = k(i+1)+ |M |. We will show
that reachc(m) = reachc(n).

Take any s ∈ reachc(m). There is some s′ ∈ σki(c) such that s is in σ|M|(s′).
Then s′ is in reachc(ki), so by Lemma 11, s′ is in M∗dM∗ for some d ∈ MR.
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Then by Lemma 10, σ|M|(d) includes s. Now d is in Set(ki), hence in Set(k(i+1)).
Then by Lemma 11, reachc(k(i + 1)) contains an s′′ ∈ M∗dM∗. So s is in
σ|M|(s′′), hence in σk(i+1)+|M|(c), hence in reachc(n).

Now take any s ∈ reachc(n). There is some s′ ∈ σk(i+1)(c) such that s is in
σ|M|(s′). Then s′ is in reachc(k(i + 1)), so by Lemma 11, s′ is in M∗dM∗ for
some d ∈ MR. Then by Lemma 10, σ|M|(d) includes s. Now d is in Set(k(i+1)),
hence in Set(ki). Then by Lemma 11, reachc(ki) contains an s′′ ∈ M∗dM∗. So
s is in σ|M|(s′′), hence in σki+|M|(c), hence in reachc(m).

Therefore reachc(m) = reachc(n). Then for all i ≥ m, reachc(i) = reachc(i+
k). Then since m ≤ |MR| ·(|MR|−1)+ |M | ≤ |A|2, reachc(|A|2) = reachc(|A|2+
k). ��

Theorem 14. For every alphabet A, there are f ≥ 1, g ≥ 0 such that for every
finite 0L system (A, σ, w), σg(w) = σg+f (w).

Proof. Let f(0) = 1 and for every x ≥ 1, f(x) = x!f(x−1). Let g(0) = 0 and for
every x ≥ 1, g(x) = x2+g(x−1)+f(x). Take any finite 0L system G = (A, σ, w).
We will show by induction on |A| that σg(|A|)(w) = σg(|A|)+f(|A|)(w).

Take the base case of |A| = 0. Then w = λ. Then for all i ≥ 0, σi(w) = {λ}.
So σg(0)(w) = σg(0)+f(0)(w).

So say |A| ≥ 1 and w �= λ. Suppose for induction that for every finite 0L
system (A′, σ′, w′) such that |A′| < |A|, σ′g(|A′|)(w′) = σ′g(|A′|)+f(|A′|)(w′). Take
any c in w. By Lemma 13, there is a k′ such that 1 ≤ k′ ≤ |A| and reachc(|A|2) =
reachc(|A|2 + k′). Let k = |A!| and t = |A|2. Then since k is divisible by k′,
reachc(t) = reachc(t+ k). Let x = f(|A| − 1) and y = g(|A| − 1). We will show
that σt+y+kx(c) = σt+y+2kx(c).

Take any s ∈ σt+y+kx(c). Then there is an r ∈ σt(c) such that s is in
σy+kx(r). Suppose c is reachable from r. Then r is in reachc(t). Since reachc(t) =
reachc(t + kx), r is in σt+kx(c). Then s is in σt+y+2kx(c). So say c is not
reachable from r. Then by the induction hypothesis, σy(r) = σy+x(r). Hence
σy+kx(r) = σy+2kx(r). Then s is in σy+2kx(r). So s is in σt+y+2kx(c).

Now take any s ∈ σt+y+2kx(c). Then there is an r ∈ σt+kx(c) such that s is
in σy+kx(r). Suppose c is reachable from r. Then r is in reachc(t + kx). Since
reachc(t+ kx) = reachc(t), r is in σt(c). Then s is in σt+y+kx(c). So say c is not
reachable from r. Then by the induction hypothesis, σy(r) = σy+x(r). Hence
σy(r) = σy+kx(r). Then s is in σy(r). So s is in σt+y+kx(c).

So for all c in w, σt+y+kx(c) = σt+y+2kx(c). Hence σt+y+kx(w) = σt+y+2kx(w).
Now t+ y + kx = g(|A|) and kx = f(|A|), completing the induction. ��

Theorem 15. The class of finite 0L systems is alphabet step-bounded.

Proof. Take any alphabet A. Take any f, g meeting the conditions of Theorem 14
for A. Let n = f + g. Take any finite 0L system G = (A, σ, w) and any s ∈
L(G). Then there is a lowest i ≥ 0 such that s is in σi(w). Suppose i > n. By
Theorem 14, σg(w) = σg+f (w). Then σi(w) = σi−f (w). Then s is in σi−f (w), a
contradiction. So G is step-bounded by n. Hence the class of finite 0L systems
is alphabet step-bounded. ��
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4.2 DT0L

In this subsection, we first give a simple counterexample to show that the class
of finite DT0L systems is not alphabet size-bounded. We then show that this
class is alphabet step-bounded, first proving a lemma about a more restricted
class of systems.

Theorem 16. The class of finite DT0L systems is not alphabet size-bounded.

Proof. Let A = {a, b} and take any n ≥ 0. Let w = a. For every 1 ≤ i ≤ n, let hi

be a morphism on A such that hi(a) = bi and hi(b) = b. Let H = {h1, . . . , hn}.
Let G = (A,H,w). Then L(G) = {a, b, bb, bbb, . . . , bn}. So L(G) is finite, but
|L(G)| > n. So the class of finite DT0L systems is not alphabet size-bounded.

��

Take any DT0L system G = (A,H,w). For any s ∈ A∗, let L(s) be the language
of the DT0L system (A,H, s). If for every h ∈ H , h is nonerasing, G is called a
propagating DT0L system or PDT0L system [2].

Lemma 17. For every alphabet A, there is an m ≥ 0 such that for every finite
PDT0L system G = (A,H,w), for any h1, . . . , hn ∈ H such that n > m, there
are j, k such that 0 ≤ j < k ≤ n and hj · · ·h1(w) = hk · · ·h1(w).

Proof. Take any alphabet A. Take any m > (1 + (|A| + 1)!) · |A||A|. Take any
finite PDT0L system G = (A,H,w). For any A′ ⊆ A, call S = {s0, s1, s2, . . . , sn}
relevant to A′ if every si is in A′∗, L(s0) is finite, and for every 1 ≤ i ≤ n, there
is an h ∈ H such that h(si−1) = si. Notice that since G is a PDT0L system, for
every i, |si| ≤ |si+1|. Let Jumps(A′, S) = |{i | |si| < |si+1|}|. We will show by
induction on |A| that for every S relevant to A, Jumps(A,S) ≤ (|A|+1)!. Take
any S = {s0, s1, s2, . . . , sn} relevant to A.

For the base case, suppose |A| = 0. Then for every si ∈ S, si = λ. So
Jumps(A,S) = 0.

Now suppose for induction that for every A′ � A, for every S′ relevant to
A′, Jumps(A′, S′) ≤ (|A′| + 1)!. If s0 = λ, clearly Jumps(A,S) = 0. So say
s0 �= λ. Take any c in s0. Let S′ = {s′0, s′1, s′2, . . . , s′n}, where s′0 = c and each
s′i is the descendant string in si of the c in s0. We will show that Jumps(A,S′)
≤ 1 + |A|!. If there is no j such that |s′j | < |s′j+1|, then Jumps(A,S′) = 0. So
say there is such a j. Take the first such j. Then s′j = d for some d ∈ A, since
|s′0| = 1. Suppose there is a k > j such that s′k contains d. Then there is a
composition h of morphisms from H such that h(d) contains d and |h(d)| > 1.
Then for every i ≥ 0, |hi(d)| > i. But then L(d) is infinite, hence L(s0) is
infinite, a contradiction. So for every k > j, s′k does not contain d. Let S′′ =
{s′j+1, s

′
j+2, . . . , s

′
n}. Then Jumps(A,S′) = 1 + Jumps(A − d, S′′). So by the

induction hypothesis, Jumps(A,S′) ≤ 1+(|A|− 1+1)! ≤ 1+ |A|!. Now for each
c in s0, there will be some S′ constructed in this way. For any two occurrences
of the same c, S′ will be the same. Then there are at most |A| distinct S′s.
Therefore Jumps(A,S) ≤ |A| · (1 + |A|!) ≤ (|A| + 1)!, completing the induction.
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Now take any h1, . . . , hn ∈ H such that n > m. For each 0 ≤ i ≤ n, let
si = hi · · ·h1(w). Then s0 = w. So S = {s0, s1, s2, . . . , sn} is relevant to A.
Hence Jumps(A,S) ≤ (|A| + 1)!. Then since n > m, there are j′, k′ such that
|sj′ | = |sk′ | and j′ + |A||A| ≤ k. Then every si between sj′ and sk′ has the same
length. But at most |A||A| such si are distinct, since each c in sj′ has only one
descendant in each si, and any two occurrences of the same c have the same
descendant. So there are j, k such that 0 ≤ j′ ≤ j < k ≤ k′ ≤ n and sj = sk,
which was to be shown. ��

Theorem 18. For every alphabet A, there is a b ≥ 0 such that for every finite
DT0L system G = (A,H,w), for any h1, . . . , hn ∈ H such that n > b, there are
p, q such that 1 ≤ p ≤ q ≤ n and hn · · ·hq+1hp−1 · · ·h1(w) = hn · · ·h1(w).

Proof. Take any alphabet A. Take any m meeting the conditions of Lemma 17
for A. Take any b > m · 2|A|. Take any finite DT0L system G = (A,H,w).
Take any h1, . . . , hn ∈ H such that n > b. Let s = hn · · ·h1(w). For each
0 ≤ i ≤ n, let si = hi · · ·h1(w). Then s0 = w and sn = s. For each 0 ≤ i < n,
let fi = hn · · ·hi+1 and let Stayi = {c ∈ A | fi(c) �= λ}. Each Stayi is one
of 2|A| possible sets. Then since n > m · 2|A|, there is a subset Stay of A and
0 ≤ z0 < z1 < z2 < · · · < zm < n such that for every 0 ≤ i ≤ m, Stayzi = Stay.
Let Gone = A− Stay. Notice that for every c ∈ Gone and 1 ≤ i ≤ n, hi(c) is in
Gone∗. For each x ∈ A∗, let Core(x) be the string obtained from x by erasing
all occurrences of symbols in Gone.

We now construct a finite PDT0L system G′. Let A′ = Stay and w′ =
Core(sz0). For each 1 ≤ i ≤ m and c ∈ Stay, let h′

i(c) = Core(hzi · · ·hzi−1+1(c)).
Let H ′ = {h′

1, . . . , h
′
m}. Now, for any c ∈ Stay and any h′

i ∈ H ′, clearly h′
i(c) is

in Stay∗. Further, since fzi−1(c) �= λ, h′
i(c) �= λ. Therefore G′ = (A′, H ′, w′) is

a PDT0L system. Further, since L(G) is finite, and w′ was obtained by erasing
letters from a string in L(G), and each h′

i was obtained by composing tables
from H and erasing letters from the result, L(G′) is finite.

Now for each 0 ≤ i ≤ m, let s′i = t′i · · · t′1(w). Then by Lemma 17, there are
j, k such that 0 ≤ j < k ≤ m and s′j = s′k. Notice that for each 0 ≤ i ≤ m,
s′i = Core(szi). Then Core(szj ) = Core(szk) = s′j = s′k. Now fzk(szk) = s.
Therefore fzk(Core(szk )) = s. Then fzk(Core(szj )) = s. So then fzk(szj ) = s.
So set p = zj + 1 and q = zk. Then hn · · ·hq+1hp−1 · · ·h1(w) = hn · · ·hq+1(szj )
= fzk(szj ) = s, as desired. ��

Theorem 19. The class of finite DT0L systems is alphabet step-bounded.

Proof. Take any alphabet A. Take any b meeting the conditions of Theorem 18
for A. Take any finite DT0L system G = (A,H,w). Then by Theorem 18, any
derivation in G with more than b steps can be shortened. So G is step-bounded
by b. Hence the class of finite DT0L systems is alphabet step-bounded. ��

4.3 T0L

Theorem 20. The class of finite T0L systems is not alphabet step-bounded.



544 T. Smith

Proof. Let A = {a, b, x} and take any n ≥ 0. Let w = (ax)n+1. For every
1 ≤ i ≤ n + 1, let σi be a finite substitution on A such that σi(a) = {a, bi},
σi(b) = {b}, and σi(x) = {x}. Let T = {σ1, . . . , σn+1}. Let G = (A, T,w).
Clearly G is finite. Let s = bxbbxbbbx · · ·bn+1x. Then s can be derived from
w in n + 1 steps, by applying each table in turn to replace an a by bs. In
any derivation of s from w, at each step, at most one a can be replaced by bs,
otherwise s would become unreachable. So at least n + 1 steps are needed to
derive s. Hence G is not step-bounded by n. So the class of finite T0L systems
is not alphabet step-bounded. ��

Corollary 21. The class of finite T0L systems is not alphabet size-bounded.

5 D0L Subsystems

By Corollary 6, every infinite T0L language has an infinite D0L subset. In this
section, we consider a related notion, that of a D0L subsystem of a 0L or DT0L
system. Such a subsystem not only generates a subset of the original language,
but also shares structural characteristics with the original system.

5.1 0L

Let G = (A, σ, w) be a 0L system. A D0L subsystem of G is a D0L system
G′ = (A, h,w) such that for every c ∈ A, h(c) is in σ(c). Notice that L(G′) ⊆
L(G).

Lemma 22. Take any 0L system G = (A, σ, w) with mortal symbols M and
vital symbols V . Take any D0L subsystem G′ = (A, h,w) of G such that for
every c ∈ V , h(c) contains some d ∈ V . Let G′ have mortal symbols M ′ and
vital symbols V ′. Then M ′ = M and V ′ = V .

Proof. Take any c ∈ M . Then σi(c) = {λ} for some i ≥ 0. Then since G′ is a
D0L subsystem of G, hi(c) = λ. So c is in M ′. Now take any c ∈ V . We will show
that c is in V ′ by induction on the number n of symbols which are reachable
from c under h.

For the base case, suppose n = 1. Then only c is reachable from c under h.
Then since c is in V , h(c) must contain c. Then c is recursive under h, so c is in
V ′.

So say n ≥ 1. Suppose for induction that for every c′ in V and n′ < n such
that n′ is the number of symbols reachable from c′ under h, c′ is in V ′. Since
c is in V , h(c) contains some d ∈ V . Suppose c is reachable from d. Then c is
recursive under h, so c is in V ′. So say c is not reachable from d. Then since every
symbol reachable from d is reachable from c, the number of symbols reachable
from d is at most n− 1. So by the induction hypothesis, d is in V ′. Then c is in
V ′, completing the induction.

So M ⊆ M ′ and V ⊆ V ′. Then since M ∪V = M ′∪V ′ = A and M ′∩V ′ = {},
M ′ = M and V ′ = V . ��
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Theorem 23. Every infinite 0L system has an infinite D0L subsystem.

Proof. Take any infinite 0L systemG = (A, σ, w). By Corollary 4, there is a deriva-
tion D : s0 → · · · → sk → · · · → sn such that 0 ≤ k < n, s0 = w, sk contains
a c ∈ A whose descendant string in sn contains distinct occurrences of c and a
vital symbol d, and no shorter derivation has these properties. The c in sn has an
ancestor symbol ci in each si, and each ci generates a string xi contained in si+1,
for 0 ≤ i < n. Similarly, the d in sn has an ancestor symbol di in each si, for
0 ≤ i < n. Letm be the highest i such that k ≤ i < n and the d in sn is descended
from ci. Intuitively, m designates the string containing the last common ancestor
of the c and d in sn. Let h be a morphism on A constructed as follows. First, for i
from n − 1 down to 0, set h(ci) = xi unless h(ci) has already been set. Then for
all e ∈ A for which h(e) has not been set, if some s ∈ σ(e) contains a vital symbol,
set h(e) to any such s, otherwise set h(e) to any s ∈ σ(e). Then G′ = (A, h,w) is
a D0L subsystem of G. We will show that G′ is infinite.

First we show that c is reachable from w under h. Take any i such that
0 ≤ i < n. We will show by induction that c is reachable from ci under h. For
the base case, suppose i = n− 1. Clearly c is reachable from cn−1 under h, since
h(cn−1) = xn−1, which contains c. So say i < n− 1. Suppose for induction that
for all j such that i < j < n, c is reachable from cj under h. Suppose there is a j
such that i < j < n and cj = ci. Then by the induction hypothesis, c is reachable
from cj = ci under h. So say there is no such j. Then h(ci) = xi, which contains
ci+1. By the induction hypothesis, c is reachable from ci+1 under h, hence c is
reachable from ci under h, completing the induction. So c is reachable from c0
under h, hence c is reachable from w under h.

Next we show that there are no i, j such that k ≤ i < j < n and ci = cj .
Suppose there are such i, j. Suppose k ≤ i < j ≤ m. Then cm could be derived
from ci in m− j steps instead ofm− i steps, soD is not minimal, a contradiction.
So suppose m < i < j < n. Then the steps from i to j could be skipped, so that
at step n − (j − i), ci would reach c and di would reach dn−(j−i), which is vital.
But then D is not minimal. So suppose k ≤ i ≤ m < j < n. Then the descendant
string in sj of the ci in si contains distinct occurrences of ci and dj . But then D
could be shortened from length n to length j. So there are no such i, j.

So for all k ≤ i < n, h(ci) = xi. Hence cm is reachable from c under h and
c is reachable from cm+1 under h. Now h(cm) = xm, which contains distinct
occurrences of cm+1 and dm+1. By Lemma 22, dm+1 is vital under h. Then some
string s containing distinct occurrences of c and a vital symbol can be derived
from xm under h. Then some string containing s can be derived from c under h.
Hence c is recursive under h, and not monorecursive under h.

Then since c is reachable, recursive, and not monorecursive in G′, G′ is infinite
by Lemma 9. Therefore every infinite 0L system has an infinite D0L subsystem.

��

5.2 DT0L

Let G = (A,H,w) be a DT0L system. A D0L subsystem of G is a D0L system
G′ = (A, h,w) such that h is in H . Notice that L(G′) ⊆ L(G).
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Theorem 24. There is an infinite DT0L system with no infinite D0L
subsystem.

Proof. Let A = {a, b}. Let h1 and h2 be morphisms on A such that h1(a) = ab,
h1(b) = λ, h2(a) = λ, and h2(b) = bb. Let H = {h1, h2}. Let w = a. Then the
DT0L system (A,H,w) is infinite but has no infinite D0L subsystem. ��

6 Conclusion

In this paper we have extended to 0L, DT0L, and T0L systems the work of
Vitányi [7] on infiniteness and boundedness of D0L systems. In doing so, we
relaxed the condition of alphabet size-boundedness (which holds for the class
of finite D0L systems) to one of alphabet step-boundedness (which holds also
for the classes of finite 0L and DT0L systems). One direction for further work
would be to find a related boundedness condition which holds for the class of
finite T0L systems. We have also shown that every infinite T0L language has
an infinite D0L subset, and that every infinite 0L system has an infinite D0L
subsystem. It would be interesting to see whether in classes of L systems beyond
the ones studied here, infiniteness is similarly characterized by the presence of
notable infinite subsets and subsystems.
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Abstract. We show that every relation realised by a nondeterminis-
tic two-way transducer contains a function with equal domain which
can be realised by a sequential two-way transducer. Our proof is built
on three structural constructions with automata: a variant of Shepherd-
son’s method to convert a two-way automaton into an equivalent one-way
automaton, which we call the folding of a two-way automaton; the con-
struction of an unambiguous automaton for a rational language based
on covering of automata; a simulation of an unambiguous automaton by
a deterministic two-way one due to Hopcroft and Ullman. It follows a
new proof for the fact (due to Engelfriet and Hoogeboom) that every
functional two-way transducer can be converted into a sequential one,
together with a clear estimation for the underlying complexity.

Keywords: two-way transducer, determinisation, uniformisation.

1 Introduction

How nondeterminism can be more powerful than determinism is a recurrent
question in Automata Theory and has been established for plenty of models
of computation. Unlike classical automata, finite-state transducers, or two-tape
automata which realise relations between words, cannot be determinised: a deep
result of Choffrut [1] shows that the word-to-word functions which can be realised
by a sequential1 transducer form a strict subset of the rational functions (= the
behaviour of functional, or single-valued, transducers). One of our purposes is to
give a new proof for a result of Engelfriet and Hoogeboom (Theorem 22 in [5])
which settles the matter for another importante model, the two-way transducers :

Theorem 1 (Engelfriet-Hoogeboom 2001). Functional two-way transduc-
ers can be effectively turned into equivalent sequential two-way transducers.

A two-way transducer is a two-way automaton with outputs on the transitions,
that is: the reading of the input word is a sequence of left or right moves, the re-
sulting output word is the one-way concatenation of the corresponding outputs;
a two-way transducer is said to be sequential if its underlying input automaton
is deterministic. Two-way automata have been introduced in the seminal paper

� Supported by Fundação de Amparo à Ciência do Estado de Pernambuco (FACEPE).
1 Or input-deterministic. As in [10] (see Remark 5), we prefer to call such transducers
sequential, avoiding the traditional term subsequential.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 547–558, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of Rabin and Scott [11] together with the proof that they have the same recog-
nition power of one-way automata; a more accessible proof has been given by
Shepherdson [16]. For transducers however the two-way model is more powerful,
and one can find very simple functions, such as the mirror function, which can
be realised by a two-way transducer but are not rational. Theorem 1 states that
the sequential two-way transducers encompass all the functions which can be
realised by a (one or two-way) transducer.

Actually, our main result (Theorem 3) is a language-theoretical property of
two-way transducers from which Theorem 1 is a direct consequence. It recalls a
classical property of transducers, the fact that for every rational relation τ there
exists a rational function which “chooses” for every word in the domain of τ
exactly one word in its image. It is what we call a rational uniformisation of τ :

Theorem 2 (Rational Uniformisation Theorem). Every relation realised
by a (one-way) transducer can be uniformised by a functional transducer.

The first proof of Theorem 2 dates back to 1969 [9] together with one of its
remarkable consequences: every rational function can be realised by an unam-
biguous transducer (= distinct successful computations have distinct labels). It
is an old result, but the topic is far from being closed: at least two new proofs
followed and the property has been investigated within other contexts (trees
and infinite words) [2]. In our main result, we lift the Rational Uniformisation
Theorem to the two-way transducers with a more precise statement:

Theorem 3. Every relation realised by a two-way transducer can be uniformised
by a function realised by a sequential two-way transducer.

Our proof of Theorem 3 bears some similarities to Elgot and Mezei’s classical
representation of a rational function as the composition of a left and a right se-
quential ones [4]. Starting from a two-way transducer T , we define two sequential
two-way transducers, a left and a right pathfinder in our terminology (Sect. 4).
Left pathfinders have been implicitly defined by Hopcroft and Ullman to prove
that languages realised by certain automata are closed under inverse determin-
istic gsm mappings (Theorem 5 in [7]). Here, they are used to find, for every
input word u, the sequence of moves of a successful computation of T reading
u. At each step, if the next move is a left one, the transition is discovered by the
right pathfinder, and vice-versa. This task is an involved routine: the pathfinder
scans a specific part of u and then has to come back to the original position.

But before we need to select, for every input word, the successful computation,
among all those reading the word, which is going to be simulated. To this end,
we use two distinct constructions to define an unambiguous one-way automaton
B having exactly one successful computation for every word in the domain of
T (Theorem 4). The first construction is a variant of Shepherdson’s method to
turn a two-way automaton into an equivalent one-way automaton, which we call
the folding of a two-way automaton. Applied to the underlying (two-way) input
automaton of T , it yields a one-way automaton S, whose successful computations
are a kind of folding of the computations of T . Next, we use in S the lexicographic
covering construction we defined in [15] to decompose a k-valued transducer into
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a union of k functional ones. It yields a new automaton which “covers” S, in the
sense that its successful computations project bijectively into those of S – this
is what we call a covering of automata. Then, we can extract from the covering
the unambiguous B to be used in pathfinder’s construction (Sect. 3). The whole
process is summarised in Fig. 1. The proof of Theorem 1 and an application to
the equivalence problem are discussed in Sect. 6.

T A S B

L R

U = T ×L×R

Fig. 1. Construction of a sequential two-way transducer U which uniformises the two-
way transducer T : A is the underlying input automaton of T ; S is the folding of A;
B is an unambiguous automaton given by a lexicographic covering of S ; L and R are
respectively a left and a right pathfinder built over B; U is a product of T , L and R.

The original proof of Theorem 1 in [5] appears within a logical framework
developed for string and graph transducers; it is based on operations between
certain monadic second-order logic definable graph relations. The main feature of
our proof is that it is built on constructions which depend directly on the struc-
ture of the involved transducers. It follows a clear estimation for the complexity
of the resulting algorithm (whereas no bound is given in [5]): four exponentials on
the size of T . Indeed, foldings and lexicographic coverings have exponential size,
the pathfinder construction provokes two exponentials. We hope that a better
understanding of these constructions will provide a more precise estimation.

2 Automata and Transducers, One and Two-Way

As far as classical (one-way) automata and transducers are concerned, we adopt
the notation2 in [14]; for two-way machines, our terminology is close to [8].

One-way automata, or simply automata, are acceptors which read the input
tape from left to right; in one-way transducers the reading is made in two tapes,
also from left to right, and pairs of words are accepted. Both consist of a finite
set Q of states, sets I, T ⊆ Q of initial and final states, respectively, and the set
E of transitions. In an automaton over the alphabet A, E ⊆ Q×A×Q, that is,
transitions are labelled by letters; in a transducer over the alphabets A and B,
the labels are pairs in A×B∗: a letter in the first tape and a word in the second.3

2 In particular, the set of words over a finite alphabet A (the free monoid over A) is
denoted by A∗ and the empty word by 1.

3 In general, transducers are labelled by pairs of words, elements of the product monoid
A∗×B∗; but for the finitely-valued transducers we are dealing with, it is not restrictive
to impose that the first component is always a letter [14]. Such a transducer is called
a nondeterministic generalised sequential machine in some references.
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The behaviour of an automaton A is the subset of A∗ consisting of the labels
of the successful computations of4 A. A computation represents the reading of
a word: it is a sequence of consecutive transitions, c : p0

a1−−→ p1
a2−−→ . . .

a�−−→ p
;
its label is a1 . . . a
, and c is successful if p0 ∈ I and p
 ∈ T . For transducers, the
label of a computation is the pair obtained by the componentwise concatenation
of the labels of the transitions, and the behaviour is a subset of A∗×B∗.

From a “dynamic” point of view, the behaviour of a transducer is a relation
from A∗ to B∗ which sends every word u ∈ A∗ to the set of words x ∈ B∗ such
that (u, x) is the label of some successful computation — the image of u. In this
setting, we say that a computation labelled by (u, x) reads u and writes x, and
that u is its input and x its output. The transducer is called k-valued, where k
is a positive integer, if the image of every input word has at most k words. It
is functional if k = 1. Transducers realise what we call rational relations : those
whose graph is a rational subset of A∗×B∗. See an example in Fig. 2(a).

Two-way automata are the same as automata, except that the transitions
are labelled by letters “decorated” by a left or a right arrow, and the input
word is surrounded by endmarkers: a left endmarker, �, and a right one, �,
which do not belong to the alphabet A (thus, transitions are taken from the set
Q×(A ∪ {�, �})×{←,→}×Q). At each step of the reading the tape head can
move left as well as right (we do not permit stationary moves), according to the
arrow of the corresponding transition. A successful computation starts at the
left endmarker, wanders around the word, possibly visiting the endmarkers, and
eventually walks off the right edge of the tape, ending in a final state. Whenever
the left endmarker is visited, the automaton makes a right move, and moves left
when scanning the right endmarker (except for the last move). A word u ∈ A∗ is
accepted by the automaton if there is a successful computation labelled by �u�.

Formally, a computation in a two-way automaton is a sequence of words in
�A∗QA∗�, which intend to record the current configuration of the automaton. A
configuration xqy means that xy is the input string (including the endmarkers),
q is the current state and the input head is scanning the first letter of y (or
has moved off the right edge if y = 1). A pair of consecutive configurations
represent a move of the input head: a right move from xpay (a ∈ A) to xaqy if
the automaton has a transition from p to q labelled by −→a , a left move from xpay
to zqbay if x = zb (b ∈ A) and there is a transition from p to q labelled by ←−a .

In a two-way transducer, the reading of the first tape has the same rules of
a two-way automaton, but the output tape is one-way: at each move a word is
concatenated at the right of the output written so far. Thus, a two-way trans-
ducer is simply a two-way automaton with an output word in the transitions.
An example is depicted in Fig. 2(b), together with two computations drawn as
a zigzag walk in the plane. In this drawing, configurations where T is reading
the same position in the input word are column-aligned. A two-way transducer
is sequential if its underlying input automaton is deterministic.

A classical construction due to Shepherdson shows that the behaviour of a
two-way automaton is rational [16]. But for transducers the two-way ones are

4 A rational subset of A∗.
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Fig. 2. In 2(a), a functional and unambiguous transducer, F , which reads words of
form uban and writes ub. In 2(b), a two-way transducer, T , which sends every word
u having at least one b to the set {xbu | xb is prefix of u}. In 2(c), two successful
computations of T labelled by �aabab�, depicted in such a way that every configuration
xsy is represented solely by the state s in the column below the first letter of y (gray
rectangle). Initial states are represented by a small ingoing edge, and final states with
an outgoing edge. A transition in a transducer labelled by a pair (a, x) is denoted by
a|x. In T , we do not exhibit the unique initial state i and the final state t; they are
implicitly represented by the ingoing arrow in p and the outgoing one in r, respectively.

more powerful, by far: the image of a rational set by a two-way transducer may
not even be context-free [12] (for one-way tranducers it is always rational).

A loop in a computation c labelled by u = a0a1a2 . . . a
a
+1 (a0 = �, a
+1 = �,
aj ∈ A for 1 ≤ j ≤ �) is a segment of c which starts and ends at the same
configuration; it represents a sequence of moves which starts and comes back
to the same position of u. The fact that two-way automata can exhibit erratic
behaviour and loop indefinitely will not be an issue for the suppression of a
loop yields a legitimate new successful computation with the same label. Thus,
every word accepted by the automaton is the label of some loop-free successful
computation. For transducers, the suppression of a loop yields a computation
with the same input and possibly a shorter output; but in the uniformisation
construction we are going to present the outputs play no role. From now on the
term “computation” is a shorthand for “loop-free successful computation”.

3 From Two-Way to Unambiguous One-Way

The first step of our proof of Theorem 3 is the construction of the one-way
automaton S and from it the equivalent one-way and unambiguous automaton B
in Fig. 1. The two-way transducer T and S are related by means of an operation
between computations which we call the folding of a computation; we explain
it below. The unambiguous B is obtained from S via the lexicographic covering
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construction we defined in [15], and its computations project injectively in those
of S. The constructions together provide a proof for the following:

Theorem 4. For every two-way automaton A, there exists an equivalent and
unambiguous one-way automaton B such that every successful computation of B
is the folding of a (successful and loop-free) computation of A.

Intuitively, every computation of S is a folding of a zigzag walking of A into a
straight sequence of column vectors of states. These vectors represent, for every
position j of the input word, the states of the walking where the head is scanning
j. This is depicted in Fig. 2(c), where a gray rectangle, read from top to bottom,
is a tuple of states where A is scanning the same position.5

Let us explain this folding operation formally before proceed to the definition
of S. Let c be a computation of A labelled by u = a0a1a2 . . . a
a
+1 (a0 = �,
a
+1 = �, aj ∈ A for 1 ≤ j ≤ �). First, we need to define for every position j the
column of c at j, or simply j-column: let xq1y, xq2y, . . . , xqhy be the subsequence
of configurations of c such that x = a0 . . . aj−1 (that is, the head is at position j),
and d1, d2, . . . , dh ∈ {←,→} be the respective directions of the next moves (that
is, di =← if, in c, xqiy goes to a configuration of form a0 . . . aj−2paj−1 . . . a
+1,
di =→ otherwise); the j-column is the tuple ((q1, d1), (q2, d2), . . . , (qh, dh)), aj).
The reason why the letter aj is also recorded will be explained below, and the
arrows indicating the direction of the next moves will be useful in the pathfinder
construction (next section). Notice that, as c is loop-free, the states q1, . . . , qh are
pairwise distinct. Now, the folding of c is the sequence of columns at positions
0, 1, 2, . . . , �+ 1, and we can state the main property of the automaton S:

Proposition 5. The folding operation puts a one–to–one correspondence be-
tween the (successful and loop-free) computations of A and the successful com-
putations of S. That is: every successful computation of S is the folding of some
computation of A; for every computation of A, its folding is a computation of
S; the folding operation is injective.

Let us finally define S. The states are the set of all possible columns. A state
Q = ((q1d1), . . . , (qh, dh), a) is initial if: q1 is initial; d1, . . . , dh are all equal to
the right arrow; a = �. It is final if d1, . . . , dh−1 are all equal to the left arrow,
dh =→ and there is a transition from qh to a final state labelled by −→� in S. The
transitions are the more elaborate part, for a transition from Q to the column
P = ((p1, e1), . . . , (pk, ek), b) represents the relation between the states q1, . . . , qh
and p1, . . . , pk in a computation of A. First of all, all the transitions which start
at Q are labelled by a (the letter recorded in the column). Next, let α be the
number of forward states in Q, that is, the pairs (qi, di) such that di =→, and
β be the number of backward states in P (ei =←). There is a transition from Q
to P if the following hold: d1 =→ and there is a transition from q1 to p1 labelled

5 There is a clear resemblance between these tuples and the concept of crossing se-
quence in Shepherdson’s two-way to one-way construction [16]. Actually the original
concept is slightly different. A crossing sequence is formed by states which “crosses”
the “boundary” between two consecutive positions. For more details see [8].
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by −→a in A; for every k, 2 ≤ k ≤ α, there is a transition labelled by −→a from the
k-th forward state of Q to the state which follows the (k− 1)-th backward state

of P ; for every �, 1 ≤ � ≤ β, there is a transition labelled by
←−
b from the �-th

backward state of P to the state which follows the �-th forward state in Q.
Let us sketch the proof that the computations of S are precisely the foldings

of the computations of A — Proposition 5. That the folding of a computation of
A forms a computation of S comes from the analysis of consecutive columns in
the folding: the moves between the corresponding configurations match exactly
the conditions which define the transitions of S. Next, one can show that every
computation of S can be “unfolded” into a computation of A. This unfolding
operation yields a graph where the vertices are the several configurations asso-
ciated with the columns, and the arcs are given by the conditions which define
the transitions of S. Such a graph is precisely a computation of A.

We obtain the unambiguous automaton B with the construction of a covering
over S. Covering of automata have been introduced in [13] and since then are
used systematically to tackle several problems in automata and transducers.
Intuitively, starting from an automaton A, an expansion of A is performed and
yields a larger automaton C, which is a covering of A; this means that the
computations of C and those of A are in a 1 − 1 correspondence and that they
have, roughly speaking, the same “structure”. In the larger C, it is so to say easier
to distinguish between the computations and the proof of the property aimed at
by the construction amounts to an adequate choice within these computations.
The formal definition can be seen in [14]. To construct the unambiguous B which
establishes Theorem 4, the lexicographic covering we used in [15] to decompose
bounded-valued transducers come at hand. This is illustrated in Fig. 3.

4 From Unambiguous One-Way to Sequential Two-Way

Every nondeterministic automaton A can be converted into a deterministic one
Adet by means of the subset construction.6 But let us suppose that A is un-
ambiguous (no two distinct successful computations with the same label) and
besides the deterministic reading of the input word, we want to know precisely
the successful computation of A labelled by this word. Hopcroft and Ullman’s
proof that languages realised by two-way balloon automata are closed by inverse
gsm mappings [7] amounts to the construction of a two-way automaton which
performs such a deterministic reading, and fits perfectly to the deterministic sim-
ulation of computations we need to establish Theorem 3. This is what we call a
pathfinder automaton: a sequential two-way automaton which finds successively
the transitions of the successful computation labelled by the input word.

Roughly speaking, when scanning the position j of the word �a1 . . . a
� (where
every aj is a letter of A, the alphabet of A), the configuration of the pathfinder
stores the j-th state of the unique successful computation of A labelled by
a1 . . . a
. Then, the pathfinder performs a round of two sequence of moves: first,

6 In our notation, Adet is the accessible part of the subset construction.
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Fig. 3. At left, the folding S of the underlying input automaton of the two-way trans-
ducer T in Fig. 2(b) (the initial columns are not explicitly drawn, but are represented
by the ingoing edges labelled by �); at right, the unambiguous automaton extracted
from a lexicographic covering of S . See [15] for a detailed explanation of the covering
construction. The ordering of the transitions is: dashed < solid < double.

it moves the head forward further enough – possibly the end of the word – until
it finds a configuration where it can be “seen” the way to the next state of the
computation; then, it comes back to the position j. But the pathfinder cannot
store this position: it has to find it again. It does it by means of a trick involving
the computations of the automaton A�

det obtained by reversing A and applying
the subset construction. We shall explain this construction in a context close to
the matter of this paper by describing a proof for the following:

Theorem 6. Sequential two-way transducers realise all the rational functions.

That is, for every unambiguous and one-way functional transducer7 F one can
build an equivalent sequential two-way transducer. The pathfinder for F does
this task: for every input word u, it finds successively the transitions of the
unique successful computation of F reading u and writes their outputs.

We need some notation. Let A be the underlying input automaton of F .
For every deterministic automaton used in this text, we denote by a dot the
extended transition function (which is a right action of A∗ over the states of
the automaton). E.g. the state reached from the initial state I of Adet with the
reading of the word x is I · x. Symmetrically, see A�

det as an automaton which
reads from right to left8 starting at its initial state J , and for every y ∈ A∗

denote by y · J the state of A�
det reached with the reading of the reversal of y.

7 Recall that the rational functions are unambiguous [14].
8 Although A�

det is a legitimate one-way automaton, which recognises the reverse of
the words accepted by A.
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For readability, we split the states of a pathfinder into three sets, which we call
modes : B, the booting mode, or B-mode; S, the scanning mode, or S-mode; D, the
discovering mode, or D-mode (we also say D-states, etc.). Let us at first describe
the S-mode, the starting of every round of moves allowing to find the next state
of the computation of A being simulated. It consists simply of states of the
Cartesian product of automata Adet×A�

det. Its relevant property is an invariant:
whenever the pathfinder is in an S-state (R,S) and scanning the position j
of the input word u = a1 . . . a
, R is the state I · (a1 . . . aj−1) and S the state
(aj . . . a
)·J . It follows that R∩S contains an unique state: indeed, I ·(a1 . . . aj−1)
is the set of states that A can reach from some initial state with a computation
reading a1 . . . aj−1; (aj . . . a
) · J is the set of states which can reach some final
state with a computation reading aj . . . a
; distinct states in R ∩ S would then
imply distinct successful computations reading u; but A is unambiguous. The
unique state p in R∩S is precisely the j-th state of the computation of A reading
u. For simplicity, we denote I · (a1 . . . aj−1) by I〈j−1〉 and (aj . . . a
) ·J by 〈j〉J .
The computation of the pathfinder starts at the B-mode, which simply reads the
entire u from left to right, and next from right to left simulating A�

det (starting
at the initial J), to find the S-state (I, 〈1〉J).

The crucial task of the pathfinder is to pass from the S-state (I〈j − 1〉, 〈j〉J)
to (I〈j〉, 〈j +1〉J), for every position j. In the first component, it simply follows
the transition in the deterministic Adet labelled by aj , that is, I〈j〉 is I〈j−1〉·aj .
In the second component, it may happen that there is exactly one transition in

A�
det of form X

aj−−→ 〈j〉J . In this easy case, X is 〈j + 1〉J and the next state of
the computation of F reading u is the unique element q in (I〈j − 1〉 · aj) ∩X .
The pathfinder goes to the new S-state (I〈j − 1〉 · aj , X), moves the head to the
right and writes the output of the transition of F from p to q reading aj .

But it may happen as well that there exists in A�
det two or more transitions

X1
aj−−→ 〈j〉J, . . . , Xt

aj−−→ 〈j〉J . Here, exactly one of the Xi’s is 〈j + 1〉J . In
order to discover it, the pathfinder enters the D-mode. There are two kinds of
D-states, the forward states and the backwards ones; the pathfinder at first uses
the former to perform a sequence of forward moves, and next the latter for a
sequence of backward moves. Let us at first explain the moves of the forward
states. They are based on the automaton C obtained by reversing A�

det again
and applying the subset construction.9 For every Xi, 1 ≤ i ≤ t, denote by C(Xi)
the part of C accessible from Xi; the forward D-states are the states of the
product of automata C(X1)× . . .×C(Xt) (actually, they also store the current
S-state (I〈j − 1〉, 〈j〉J), but we do not write it explicitly to avoid a clumsier
notation). Starting from the forward D-state X1×. . .Xt and the position j, the
pathfinder simulates the deterministic10 C(X1)× . . .×C(Xt), that is: it scans
successively the positions j + 1, j + 2, . . . of the input word u and visits the
states (X1 · aj+1)× . . .×(Xt · aj+1), (X1 · aj+1aj+2)× . . .×(Xt · aj+1aj+2), . . . .
Here we can state the main property which allows to discover 〈j+1〉J : either at
9 Let us remark that what we have done for C is Brozozowski’s double reversal con-
struction of the minimal automaton for a rational language.

10 The product of deterministic automata is also a deterministic automaton.
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some position k > j exactly one of the sets (Xi · aj+1 . . . ak) is nonempty, or the
reading reaches (X1 · aj+1 . . . a
)× . . .×(Xt · aj+1 . . . a
) (at the end of u), and
J , the initial state of A�

det, is contained in exactly one set Xi · aj+1 . . . a
. This
fact is a consequence of the unambiguity of A�

det. We call such a set the target
set; its states are precisely the ones which reach 〈j + 1〉J after the right to left
reading from the current position to j in the automaton A�

det. In either case, the
pathfinder goes to a backward D-state. These backwards states belong to the
product A�

det×A�
det, and every pair (Y, Z) in the deterministic backward reading

is such that: Y comes from an arbitrary fixed state belonging to the target set; Z
comes from an arbitrary fixed state belonging to some other set (among the ones
reached by the forward moves). We have that Y �= Z for every position greater
than j, and Y = Z in position j — this allows to find the position j again. In
this position, 〈j + 1〉J is known — it is the state reached from the target set
— and the pathfinder writes the output of the transition of F from the unique
state in I〈j − 1〉 ∩ 〈j〉J to the unique one in I〈j〉 ∩ 〈j + 1〉J . The D-mode ends,
the pathfinder moves the head to the right (position j +1) and enters again the
S-mode, with state (I〈j〉, 〈j + 1〉J). An example is depicted in Fig. 4.

A�
cod

�

−→a |1

−→
b |1

←−a |1

←−
b |1

←−a |1
←−
b |1

←−� |1

�

−→� |1

−→a |a

−→a |1

−→a |1
−→
b |1

←−
b |1

←−� |1

←−a |1

←−a |1

−→
b |b

−→
b |b

Fig. 4. The (left) pathfinder L for the functional transducer F depicted in Fig. 2(a).
The gray rectangles show the states of the three modes of L. Note that the underlying
input automaton A of F is co-deterministic, so A = Acod.

The pathfinder we have just explained is a left-to-right one. In the same
manner we can define its dual, the right pathfinder, which for every computation

p0
a1|x1−−−−→ p1

a2|x2−−−−→ . . .
an|xn−−−−→ pn of F starts the reading at right, and finds

successively the transitions labelled by an, an−1, etc. It is the combination of a
left and a right pathfinder which will allow the bidirectionality needed to find
successful computations in a two-way nondeterministic transducer.
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5 Constructing the Uniformisation

Now we explain how the constructions we have just presented can be combined
in order to construct a sequential two-way transducer which realises the uni-
formisation of a two-way transducer — Theorem 3. Let us recall the involved
automata (see Fig. 1): T is the original nondeterministic two-way transducer; L
and R are respectively the left and right pathfinders for the unambiguous au-
tomaton B. The uniformisation is realised by the sequential two-way transducer
U , which is a kind of product of T , L and R. Intuitively, during the reading of
the input word u = a1 . . . a
, U performs the moves represented by the unique
computation of B labelled by u, which is the folding of a computation of T . It
“calls” the discovering mode of L andR alternatively, depending on the direction
indicated by the states of T in the columns which form this computation.

The transducer U has also an S-mode, which is formed from the states of Bdet

(the subset construction applied to B) and B�
det together with an state of T . For

every position j of u, if U is in the S-state (I〈j− 1〉, 〈j〉J, p), then I〈j− 1〉∩ 〈j〉J
has exactly one element, the j-th column of the computation of B labelled by u,
and p is an state of this column.11 The arrow attached to p points the direction
of the next move. If it is a right arrow, U enters the D-mode of L to find the
next S-state (I〈j〉, 〈j+1〉J, q), where q is the end of some transition of T from p
to q with input −→aj ; the pathfinder goes to position j + 1 and writes the output
of this transition. Symmetrically, if the arrow is left, U enters the D-mode of R,
finds the previous S-state (I〈j − 2〉, 〈j − 1〉J, q) and goes to the position j − 1.

6 Applications

Theorem 3 implies that for two-way transducers nondeterminism is not more
powerful than sequentiality — Theorem 1. Indeed, our construction applied to
a functional two-way transducer yields an equivalent sequential transducer, for
the uniformisation of a function is exactly the same function.

We also note that our proof for Theorem 1 points to a new, more structural
proof for the equivalence problem for functional two-way transducers :

Theorem 7 (Culik–Karhumäki 1987 [3]). The equivalence problem for non-
deterministic functional two-way transducers is decidable.

The realm of Culik and Karhumäki’s proof is language theory: it is based on a
compactness property of systems of word equations known as Ehrenfeucht Con-
jecture. Our machinery helps in reducing the problem to a (hopefully) simpler
one: the equivalence for sequential two-way transducers, which is known to be
decidable as shown by Gurari with complexity theory arguments [6].

Acknowledgements. We thank one of the referees for the careful reading of
the manuscript and for bringing the work of Engelfriet and Hoogeboom to our
attention.
11 To be more precise, the states of B are not columns, but each one projects to some

column of S — this is a property of the lexicographic covering.
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A Conditional Superpolynomial Lower Bound

for Extended Resolution
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Abstract. Extended resolution is a propositional proof system that sim-
ulates polynomially very powerful proof systems such as Frege systems
and extended Frege systems. Feasible interpolation has been one of the
most promising approaches for proving lower bounds for propositional
proof systems and for bounded arithmetic. We show that an extended res-
olution refutation of an unsatisfiable CNF representing the clique-graph
colouring principle admits feasible interpolation. It gives us a conditional
result: If there is a superpolynomial lower bound on the non-monotone
circuit size for this class of formulas then extended resolution has a su-
perpolynomial lower bound.

1 Introduction

One of the most important questions in propositional proof complexity is to show
that there is a family of propositional tautologies requiring superpolynomial size
proofs in a strong proof system such as a Frege or extended Frege proof system.
It is an open problem to understand which methods can be used to prove lower
bounds for these systems.

In recent years the feasible interpolation method had been one of the promis-
ing approaches for proving lower bounds for propositional proof systems. Kraj́ıcek
defined in [9] the connection between proof systems having feasible interpolation
and the circuit complexity. The idea behind the methods is as follows. We say
that a proof system P admits feasible interpolation if whenever P has a polyno-
mial size refutation of a formula ϕ, an interpolation function associated with ϕ
has a polynomial size circuit. It is still unknown whether this approach works for
strong propositional proof systems such as Frege systems.

There are conditional results stating that feasible interpolation cannot be used
for proving lower bounds for powerful proof systems. Kraj́ıcek and Pudlák con-
sidered formulas based on the RSA cryptographic scheme and showed that unless
RSA is not secure, extended Frege systems do not have the feasible interpola-
tion property. Bonet, Pitassi and Raz showed that unless factoring is computable
by polynomial-size circuits neither Frege nor TC0 Frege systems admit feasible
interpolation [2]. Bonet et al. considered formulas based on the Diffie-Hellman
secret key exchange scheme [8] and proved that if TC0 Frege systems admit
feasible interpolation, all bits of the secret key exchanged by the Diffie-Hellman
protocol can be broken using a polynomial-size circuit.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 559–569, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The listed above results are conditional, and, therefore, it is still an open
problem whether feasible interpolation can be applied to prove lower bounds for
strong proof systems.

Extended resolution is a very powerful proof system that can simulate most
of the standard proof systems including Frege and extended Frege systems. It
has also exponential speed-up in comparison with weaker systems [3,4,5]. Thus,
a lower bound on resolution refutations of pigeonhole principle is of exponen-
tial size, while there is a refutation of these class of formulas with extended
resolution of polynomial size. Extended resolution involves a simple addition to
the resolution system: It allows to add arbitrary lemmas to the formula being
considered. At present no family of instances has been shown to be hard for
extended resolution.

This paper demonstrates that an extended resolution refutation of CNFs rep-
resenting the clique-graph colouring principle admits feasible interpolation. Since
currently there are no results on the non-monotone circuit complexity, the main
result of the paper is conditional : If there is a superpolynomial lower bound on
the size of circuits interpolating the clique-graph colouring CNFs, then there is
also a superpolynomial lower bound on extended resolution refutation for this
class of formulas.

2 Background on Propositional Proof Systems

2.1 Preliminaries

Formulas in Conjunctive Normal Form (CNFs) are built from propositional vari-
ables from a set Var. A literal l is either a variable x or its negation ¬x, with
Var(l) = x being the variable of l. A clause is a disjunction of literals, and a
CNF is a conjunction of clauses.

We denote variables by x, y, z, literals by l, clauses by C,D and CNFs by ϕ, ψ.
We use ⊥ to refer to the empty clause and 7 to refer to the empty CNF. We
denote a set of CNFs by CNF, a set of clauses by Cls, and a set of literals by Lit.
We define Cls(ϕ) to be the set of clauses, Lit(ϕ) the set of literals, and Var(ϕ)
the set of variables contained in ϕ.

An assignment is a function α : Var → {1, 0}. We write α |= ϕ if ϕ evaluates
to 1 for the assignment α, and we call α an assignment satisfying ϕ. We write
α �|= ϕ if ϕ evaluates to 0 for the assignment α, and we call α an assignment
falsifying ϕ. A formula ϕ is satisfiable if there is an assignment satisfying it, and
unsatisfiable otherwise. Given two formulas ϕ and ψ, we use ϕ ∼ ψ to denote
that for each assignment α, α |= ϕ if and only if α |= ψ.

2.2 Resolution and Extended Resolution

The resolution proof system, due to Robinson [12], consists of a single resolution
rule that derives from two clauses containing a complementary literal a new
clause as follows. Suppose we have C ∨p and D∨¬p, where C and D are clauses
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and p is a propositional variable. The resolution rule allows us to deduce a new
clause C ∨D.

Resolution is complete for propositional logic. A refutation of an unsatisfiable
CNF ϕ starts with the clauses of ϕ and derives new clauses until a contradiction,
represented by the empty clause, is obtained.

Definition 1 (Resolution refutation). A resolution refutation of an unsat-
isfiable CNF ϕ = C1 ∧ · · · ∧ Cn is a sequence of clauses D1, . . . , Dm with the
following properties.

– Di a resolvent of two clauses from Cls(ϕ ∧
∧

j≤i−1 Dj).

– Dm = ⊥ and Di �= ⊥ for i = 0, . . . ,m− 1.

We say that m is the size of the resolution refutation.

Tseitin introduced the extension rule for the resolution calculus [13] as follows:
If x, y and z are variables and x and ¬x do not occur in any disjunction of a
formula ϕ then ϕ can be extended with the clauses x∨y, x∨z and ¬x∨¬y∨¬z.

In general, a new propositional variable y such that y �∈ Var(ϕ), can be intro-
duced by the extension rule as being equivalent to an arbitrary formula ψ such
that Var(ψ) ⊆ Var(ϕ).

Now (y ↔ ψ) can be converted to a CNF ϕext by De Morgan’s laws (or by
the Tseitin transformation), where ϕext ∼ (y ↔ ψ). Subsequently ϕ is replaced
with a new formula ϕ∧ϕext. The rule can be applied consecutively an arbitrary
number of times.

Definition 2 (Extension rule). Let ϕ = ϕy(x,y) ∧ ϕz(x, z) be a CNF. The
extension rule replaces ϕ with ϕ ∧ ϕext, where ϕext is a CNF such that ϕext ∼∧

i≤n(vi ↔ ψi) for some natural n and the following holds.

– vi ∈ Var\Var(ϕ ∧
∧

j≤i−1(vj ↔ ψj)).

– ψi is an arbitrary formula such that Var(ψi) ⊆ Var(ϕ ∧
∧

j≤i−1(vj ↔ ψj)).

We say that ϕext extends ϕ. The set of variables {v1, . . . , vn} is denoted by
Varext(ϕ).

In general, this rule trivially preserves satisfiability, but it does not preserve the
validity, i.e. ϕ is unsatisfiable if and only if ϕ ∧ ϕext is unsatisfiable.

Definition 3 (Extended resolution refutation). We assume an unsatisfi-
able CNF ϕ. We say that a sequence of clauses Dext

1 , . . . , Dext
l , Dres

1 , . . . , Dres
m is

an extended resolution refutation of ϕ if the following holds.

–
∧

i≤l D
ext
i extends ϕ.

– Dres
1 , . . . , Dres

m is a resolution refutation of ϕ ∧
∧

i≤l D
ext
i .

We say that l +m is the size of the refutation.
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3 Feasible Interpolation

Feasible interpolation has been one of the most promising approaches for proving
lower bounds for propositional proof systems and for bounded arithmetic using
circuit lower bounds [9].

Craig’s interpolation theorem for propositional logic states that if ϕ1 → ϕ2 is
valid, where ϕ1 and ϕ2 are propositional formulas then there is a formula ψ, an
interpolant, such that both ϕ1 → ψ and ψ → ϕ2 are valid [6,7].

Mundici [10] considered the question whether the interpolant of two proposi-
tional formulas of the form ϕ1 → ϕ2 can always have a short circuit description,
and showed that if this is the case then every problem in NP∩co-NP would have
polynomial size circuits.

Let ϕy(x,y) and ϕz(x, z) be two propositional formulas having the occur-
rences of variables from the tuples x = (x1, . . . , xn), y = (y1, . . . , ys) and
z = (z1, . . . , zt). We assume that ϕy(x,y)∧ϕz(x, z) is an unsatisfiable formula.
It implies that ϕy(x,y) → ¬ϕz(x, z) is valid, and an interpolation function can
be defined as follows.

Definition 4 (Interpolation function). An interpolation function associated
with a propositional formula ϕ(x,y, z) = ϕy(x,y) ∧ ϕz(x, z) is a Boolean func-
tion that outputs 0 only if ϕy(α,y) is unsatisfiable, and outputs 1 only if ϕz(α, z)
is unsatisfiable for an assignment α of the variables x.

As it is mentioned above, interpolation functions are not always computable in
polynomial time unless P = NP ∩ co-NP [10]. Now we define a feasible interpo-
lation property.

Definition 5 (Feasible interpolation property). A proof system P admits
feasible interpolation if whenever P has a polynomial-size refutation of a for-
mula ϕ, there is an interpolation function associated with ϕ such that it has a
polynomial-size circuit.

The idea of feasible interpolation works as follows [9]. We establish for a
given proof an upper bound on the computational complexity of an interpolant
of ϕy(x,y) and ϕz(x, z) in terms of the size of a proof of the unsatisfiability
of ϕy(x,y) ∧ ϕz(x, z). Then any pair ϕy(x,y) and ϕz(x, z) which is hard to
interpolate yields a formula that must have large proofs of the unsatisfiability
in the proof system P . Since lower bounds on a circuit size are known only
for the monotone case, we obtain unconditional lower bounds by considering a
monotone version of the above idea.

4 The Karchmer-Wigderson Game

In the following we use a notion of communication complexity introduced by Yao
[14]. We consider two disjoint sets Un and Vn of n-bit strings and two players. The
U -player receives an n-bit string u ∈ Un and the V -player another n-bit string
v ∈ Vn. Then the Karchmer-Wigderson game corresponding to a nonconstant
Boolean function f : {0, 1}n → {0, 1} is as follows.
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– U -player gets an input u ∈ {0, 1}n such that f(u) = 1.
– V -player gets an input v ∈ {0, 1}n such that f(v) = 0.
– The goal of the game is for the U -player and the V -player to agree on an

index i ∈ [n] such that ui �= vi.

Before the game starts, the players agree on a protocol for exchanging messages.
They have to minimize over all protocols the number of bits they have to commu-
nicate in the worst case. This minimum is called the communication complexity
of the game.

We define protocol for the Karchmer-Wigderson game on Un and Vn formally
as in [9]. It consists of the following components.

1. A directed acyclic graph G = (Nodes,Edges), where Nodes is a set of nodes
and Edges is a set of edges.

2. A strategy function, Str, which takes as an input a triple (p,u,v), where
p ∈ Nodes, u ∈ U and v ∈ V and outputs a node q ∈ Nodes such that
(p, q) ∈ Edges.

3. A subset of Nodes called the consistency condition for (u,v) and denoted by
Cons(u,v).

These components satisfy the following conditions.

1. G has one node with in-degree 0, called the source and labeled by ∅. There
are two kinds of nodes. The nodes with the out-degree 0 are leaves and other
nodes are inner nodes.

2. Each leaf is labeled either by ui = 1 ∧ vi = 0 or by ui = 0 ∧ vi = 1 for
1 ≤ i ≤ n.

3. For every pair u ∈ Un, v ∈ Vn, the consistency condition Cons(u,v) has the
properties that it contains the source node and the labels of the leaves in
Cons(u,v) are valid for (u, v).

4. For each p ∈ Cons(u,v), the path Πp
u,v in G, which starts at p and is

determined by the strategy function Str with input (u,v), is contained in
Cons(u,v).

A protocol is called monotone if every leaf in it is labeled by one of the formulas
ui = 1 ∧ vi = 0 for 1 ≤ i ≤ n.

The communication complexity of G = (Nodes,Edges) is the minimal number
θ such that for every p ∈ Nodes the players decide whether p ∈ Cons(u,v) and
compute Str(p,u,v) with at most θ bits exchanged in the worst case.

The following theorem can be used to determine an upper bound on the size
of a circuit-interpolant.

Theorem 6 (Razborov [11], Kraj́ıček [9]). Let U, V ⊆ {0, 1}n be two dis-
joint sets. Let G be a protocol for the Karchmer-Wigderson game on U and V
which has k nodes and the communication complexity θ. Then there is a circuit
C of size k2O(θ) separating U from V . Moreover, if G is monotone so is C.
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5 Clique-Colouring Principle

In order to prove a superpolynomial lower bound one needs two CNFs that are
hard to interpolate. We use unsatisfiable CNFs based on the clique-colouring
principle. This principle expresses the fact that if there is a graph with a clique
of size k, then any colouring of it requires at least k colours. The clique-colouring
principle can be seen as a form of the pigeonhole principle since it represents
that the vertices in a clique must all have distinct colours.

Definition 7 (Clique-colouring principle). Let n, s, t be natural numbers
and let

(
n
2

)
to denote the set of two-element subsets of {1, 2, . . . , n}.

1. The set Cliquen,s(x,y) is a set of the formulas in the variables xij, {i, j} ∈(
n
2

)
, and ykl for 1 ≤ k ≤ s, 1 ≤ l ≤ n.

(1a)
∨

l≤n ykl for all k ≤ s.

(1b) ¬ykl ∨ ¬yk′l for k < k′ ≤ s and 1 ≤ l ≤ n.

(1c) ¬yki ∨ ¬yk′j ∨ xij for k < k′ ≤ s and {i, j} ∈
(
n
2

)
.

2. The set Colourn,t(x, z) is a set of the formulas in the variables xij , {i, j} ∈(
n
2

)
, and zil for 1 ≤ i ≤ n and 1 ≤ l ≤ t.

(2a)
∨

l≤t zil for all i ≤ n.

(2b) ¬zil ∨ ¬zil′ for l < l′ ≤ t and 1 ≤ i ≤ n.

(2c) ¬zil ∨ ¬zjl ∨ ¬xij for all l ≤ t and {i, j} ∈
(
n
2

)
.

The formula Cliquen,s(x,y) consists of all formulas in 1a− 1c, and the formula
Colourn,t(x, z) consists of all formulas in 2a − 2c. In the following we will use
CliqueColourn,s,t(x,y, z) as a shortcut for Cliquen,s(x,y) ∧ Colourn,t(x, z). The
formula CliqueColourn,s,t(x,y, z) is trivially unsatisfiable for s > t.

Given CliqueColourn,s,t(x,y, z), we denote by X the set of x variables, and by
ñ, s̃ and t̃ the number of x, y and z variables correspondingly.

Let Cls = {C1, . . . , Cñ} be a subset of the set of clauses of Cliquen,s(x,y) and
it is defined as follows.

1. For any C ∈ Cls there is x ∈ X such that x ∈ Lit(C).
2. Var(Ci) ∩ Var(Cj) ∩ X = ∅ for distinct Ci, Cj ∈ Cls.

Note that Cls is not unique in general. In the following we assume that the players
agree on some unique choice of Cls before they start constructing a protocol for
the Karchmer-Wigderson game.

6 Interpolation Theorem

Now we show that an extended resolution refutation of CliqueColourn,s,t(x,y, z)
admits a form of feasible interpolation. The proof of the theorem is based on
constructing a protocol for the Karchmer-Wigderson game. The main difference
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with the standard approach that we construct the game for a restricted set of
pairs (u,v), where (u, q) is an assignment satisfying Cliquen,s(x,y) for some
q, and (v, r) is an assignment satisfying Colourn,t(x, z) for some r. Later we
demonstrate that this restriction is eligible.

We consider the following sets of assignments of variables contained in CNFs
Cliquen,s(x,y) and Colourn,t(x, z).

Un = {u ∈ {0, 1}ñ | ∃q ∈ {0, 1}s̃ : (u, q) |= Cliquen,s(x,y)} and

Vn = {v ∈ {0, 1}ñ | ∃r ∈ {0, 1}t̃ : (v, r) |= Colourn,t(x, z)} .

Now we define Un,Un ⊆ Un, and Vn,Vn ⊆ Vn as follows.

1. Un ∪ Un = Un and Vn ∪ Vn = Vn.
2.

∑
x∈X α(x) = 2k + 1, k ∈ N, for each α ∈ Un.

3.
∑

x∈X α(x) = 2k, k ∈ N ∪ {0}, for each α ∈ Un.

4.
∑

x∈X α(x) = 2k + 1, k ∈ N, for each α ∈ Vn.

5.
∑

x∈X α(x) = 2k, k ∈ N ∪ {0}, for each α ∈ Vn.

We continue with a combinatorial lemma we need to prove Theorem 9.

Lemma 8. Let S = {s1, . . . , sk} be a set and P : S → {1, 0} be a predicate.
Suppose St = {s ∈ S | P (s) = 1} and Sf = {s ∈ S | P (s) = 0}. If |St| > |Sf |
then for arbitrary sets S1 and S2 such that S = S1 ∪S2 and S1 ∩S2 = ∅ at least
one of the following holds.

1. |St
1| > |Sf

1 |.
2. |St

2| > |Sf
2 |.

Proof. By contradiction. Assume that |St
1| ≤ |Sf

1 | and |St
2| ≤ |Sf

2 |. Then

|St| = St
1|+ St

2| ≤ Sf
1 |+ Sf

2 | = |Sf | ,

and we obtain a contradiction. ��

In general a choice of S1 and S2 in Lemma 8 is not unique. When we need to
apply the lemma, we assume that an order on clauses is defined and based on
this order a unique choice of S1 and S2 can be made.

Now we prove a theorem showing a kind of feasible interpolation for each
extended resolution refutation of CliqueColourn,s,t(x,y, z). Theorem 9 in combi-
nation with Lemma 11 in Section 7 implies that feasible interpolation holds for
these derivations.

Theorem 9. Suppose D = Dext
1 , . . . , Dext

L , Dres
1 , . . . , Dres

K is an extended resolu-
tion refutation of CliqueColourn,s,t(x,y, z) for n ∈ N and t < s. Then there is a

circuit separating the sets Un and Vn (resp. the sets Un and Vn) of size at most
KnO(1).
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Proof. Let the U -player know u = (u1, . . . , un) ∈ Un and the V -player know v =

(v1, . . . , vn) ∈ Vn. The players agree on a unique choice of Cls before they start a
game. They compute a label L(C) for each C ∈ D recursively and independently
according the protocol defined before the game. The labels are subsets of clauses
from the set Cls satisfying the following.

1. L(Dres
K ) = Cls.

2. If C is derived from C1 and C2 and L(C) = G then L(C1), L(C2) ⊆ G,
L(C1) ∪ L(C2) = G and L(C1) ∩ L(C2) = ∅.

It is trivially possible to define a protocol for choosing unique labels if to intro-
duce an order on clauses. The players can compute the labels independently, i.e.
without sending bits of information each other.

Predicates Pu,Pv : D → {1, 0} are defined as follows. Let L(C) = G. Then
Pu(C) = 1 (resp. Pv(C) = 1) if for W = {i ∈ N | ∃D ∈ G : xi ∈ Var(D)}∑

i∈W

ui >
∑
i∈W

vi

(resp.
∑

i∈W ui <
∑

i∈W vi). Otherwise Pu(C) = 0 (resp. Pv(C) = 0).

By definition of Un and Vn,
∑

1≤i≤n ui �=
∑

1≤i≤n vi for u = (u1, . . . , un) ∈
Un and v = (v1, . . . , vn) ∈ Vn. Hence either Pu(Dres

K ) = 1 or Pv(Dres
K ) = 1. By

Lemma 8, if C is derived from C1 and C2 and Pu(L(C)) = 1 then Pu(L(C1)) ∨
Pu(Label(C2)) = 1. The same property holds for Pv.

Now we estimate the computational complexity of computing Pu(C) and
Pv(C) for each C. We observe that ñ = O(n2) and hence |Cls| = O(n2) and∑

i∈W ui ≤ O(n2),
∑

i∈W vi ≤ O(n2). Thus it is sufficient for the players to
send each other O(log n2) bits.

The players construct a path π = π0, . . . , πl through the given refutation such
that the following holds.

1. π0 = Dres
K .

2. πa+1 is one of two clauses which are the hypotheses of the inference yielding
πa for 1 ≤ a ≤ K.

3. πa ∈ {Dres
1 , . . . , Dres

K } for 1 ≤ a < l.

4. l ≤ K + 1.

By the definition of sets Un and Vn either Pu(Dres
K ) = 1 or Pv(Dres

K ) = 1. Let
πa = C was inferred from C1 and C2. Then the following outcomes are possible.

1. Pu(C) ∧ Pu(C1) = 1 or Pv(C) ∧ Pv(C1) = 1.

2. Pu(C) ∧ Pu(C2) = 1 or Pv(C) ∧ Pv(C2) = 1.

In the first case the players choose πa+1 = C1, otherwise they choose πa+1 = C2.
Note that we have chosen Cls as a subset of clauses in Cliquen,s(x,y). If πa ∈ Cls
the players stop to construct the path and find i ≤ n such that ui �= vi. By
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construction either Pu(πa) = 1 or Pv(πa) = 1. It means that is an i such that
xi ∈ Var(C) and ui �= vi.

Now we define the protocol formally as follows.

1. G has K+2ñ nodes, where K is the number of clauses in the refutation and
2ñ nodes labeled with ui = 1 ∧ vi = 0 and ui = 0 ∧ vi = 1 for 1 ≤ i ≤ ñ.

2. The consistency condition Cons(u,v) contains a clause D ∈ {Dres
1 , . . . , Dres

K }
if Pu(D) = 1 or Pv(D) = 1.

3. The strategy function Str is defined as follows.
(a) If Pu(D) = 1 and D is inferred from C1 and C2 then

Str(u,v, D) =

{
C1, if P

u(C1) = 1
C2, otherwise

(b) If Pv(D) = 1 and D is inferred from C1 and C2 then

Str(u,v, D) =

{
C1, if P

v(C1) = 1
C2, otherwise

(c) If πa ∈ Cls the players find i ≤ ñ such that ui �= vi. In this case
Str(u,v, Dj) is one of the nodes labeled with ui = 1 ∧ vi = 0 and
ui = 0 ∧ vi = 1.

As the protocol has K + 2ñ nodes and for each node the players exchange at

most log(n2) bits, Theorem 6 yields that circuits separating Un and Vn have
size at most KnO(1). Analogously we obtain the same upper bound on the size

of circuits separating the sets Un and Vn. ��

7 Main Result

The main result is that the existence of a superpolynomial lower bound on the
size of a non-monotone circuit for clique functions implies a superpolynomial
lower bound on the size of extended resolution refutations of CNFs representing
the clique-colouring principle.

The clique function is NP-complete. Hence we suppose that circuits for com-
puting it cannot have polynomial size. For monotone circuits we can prove an
exponential lower bound. Thus Alon and Boppana [1] have proved exponential
lower bounds on the size of monotone circuits which separate the clique-colouring
pair.

Theorem 10 (Alon-Boppana [1]). Assume that t = (
√
n ) and s = t + 1.

Then CliqueColourn,s,t(x,y, z) has a monotone interpolation circuit of size at

least 2Ω(n1/4) for sufficiently large n.

Atpresent there are no results on superpolynomial lower bounds for non-monotone
circuits.

Now we define the relation between the complexity of circuits interpolating

Un and Vn and the complexity of circuits interpolating Un and Vn.
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Lemma 11. Let t = ( √n ) and s = t+1. Assume that CliqueColourn,s,t(x,y, z)
has no interpolation circuit smaller than Ω(f(n)) for a superpolynomial function

f : N → N. Then there is no interpolation circuit for Un and Vn smaller than
f(n)Ω(1).

Proof. The size of the smallest interpolation circuit for CliqueColourn,s,t(x,y, z)

is polynomial in the size of the smallest interpolation circuit for Un and Vn.

This implies that if there is an interpolation circuit for Un and Vn smaller
than f(n)Ω(1) then there is an interpolation circuit for CliqueColourn,s,t(x,y, z)
smaller than Ω(f(n)). This is a contradiction, and there is no interpolation

circuit for Un and Vn smaller than f(n)Ω(1).
��

Now we can derive a conditional lower bound on extended resolution refutation
for a clique-colouring principle.

Theorem 12. Let t = ( √
n ) and s = t+ 1. Suppose CliqueColourn,s,t(x,y, z)

has no interpolation circuit smaller than Ω(f(n)) for a superpolynomial function
f(n) : N → N. Then there is a superpolynomial function g : N → N such
that CliqueColourn,s,t(x,y, z) has no extended resolution refutation smaller than
Ω(g(n)).

Proof. Suppose there is an extended resolution refutation of the clique-colouring
principle CliqueColourn,s,t(x,y, z) of size K. By Theorem 9 there is a circuit

interpolating the sets Un and Vn of size at most KnO(1). By Lemma 11 and
the theorem assumptions we have KnO(1) ≥ f(n)Ω(1)) and therefore there is a
superpolynomial function g : N → N such that K ≥ Ω(g(n)).

��

8 Conclusions

Extended resolution is a powerful proof system which is polynomially equivalent
to Frege systems and extended Frege systems. It is still unknown whether the
most powerful proof systems have superpolynomial lower bounds. Another ma-
jor open problem is to understand which methods can be used to prove lower
bounds for these systems. One of the prominent approaches for proving lower
bounds is based on feasible interpolation. There are some attempts to clarify
its suitability for strong proof systems but only conditional results are known
so far. However, the non-applicability of feasible interpolation for proving lower
bounds for strong proof systems does not follow immediately from disproving
this property in general. What we need, in fact, is just a class of formulas hard
to interpolate and for which extended resolution refutations admit feasible in-
terpolation. This paper investigates the applicability of feasible interpolation for
proving lower bounds and it demonstrates the following.

1. An extended resolution refutation of CNFs representing the clique-colouring
principle admits the feasible interpolation property.
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2. The existence of a superpolynomial lower bound on the size of an interpo-
lation circuit for the clique-colouring pair implies a superpolynomial lower
bound on the size of an extended resolution refutation for this class of for-
mulas.

Since the clique function is NP-complete, it is expected that circuits for com-
puting it cannot have polynomial size, but currently there are no results on
superpolynomial lower bounds for non-monotone circuits.

It remains an open problem whether an extended resolution refutation of the
clique-colouring principle admits the monotone version of feasible interpolation.
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Abstract. We introduce a new so-called distance complexity measure
for Turing machine computations which is sensitive to long-distance
transfers of information on the worktape. An important special case of
this measure can be interpreted as a kind of buffering complexity which
counts the number of necessary block uploads into a virtual buffer on
top of the worktape. Thus, the distance measure can be used for inves-
tigating the buffering aspects of Turing computations. In this paper, we
start this study by proving a tight separation and hierarchy result. In
particular, we show that a very small increase in the distance complexity
bound (roughly from c(n) to c(n+ 1) + constant) brings provably more
computational power to both deterministic and nondeterministic Turing
machines. For this purpose, we formulate a very general diagonalization
method for Blum-like complexity measures. We also obtain a hierarchy
of the distance complexity classes.

Keywords: Turing machine, hierarchy, distance complexity, diagonal-
ization

1 Introduction

The theory of computational complexity is one of the major attempts to under-
stand the phenomenon of computation. One of the key tasks of the theory is to
find out how an increase or decrease of limits set on the computational resources
can influence the computational power of different types of computational de-
vices. In history, the efforts to answer questions of this type led to a long sequence
of various separation and hierarchy results for particular computational devices
and complexity measures, e.g. chronologically [3,6,7,8,9,1,4,5].

The present paper follows this direction of research. A new nontraditional
complexity measure is introduced for both deterministic and nondeterministic
Turing machines (TM) with one worktape (Section 2). This so-called distance
complexity (Section 6) is sensitive to long transfers of information on the work-
tape of a Turing machine while the short transfers are not counted.
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In particular, the distance complexity of a given computation, which can be
understood as a sequence of TM configurations, is the length of its certain subse-
quence defined as follows. The subsequence starts with the initial configuration
c0. The next element ci+1 is defined to be the first configuration c after ci such
that the distance (measured in the number of tape cells) between the worktape
head position of c and the worktape head position of some configuration that
precedes c and succeeds or is equal to ci, reaches a given bound d(n) where
d(n) is a parameter of the distance measure depending on the input length n. In
other words, ci+1 is the first configuration along the computation such that its
worktape head position is exactly at distance d(n) from that of some preceding
configuration taken from the segment of computation starting with ci.

A special case of this distance complexity in which the distance is measured
from the head position of previous-element configuration ci (i.e. the worktape
head position of ci+1 is at distance d(n) from that of ci), can be interpreted as a
kind of buffering complexity of Turing computations. In particular, the worktape
is divided into blocks of the same number d(n) of cells and the control unit has a
virtual buffer memory whose capacity is two blocks, the concatenated so-called
left-hand and right-hand side buffers, respectively. The worktape head position
has to be within this buffer and the buffering complexity measures the number
of necessary block uploads into the buffer. Namely, if the worktape head finds
itself at the right end of the right-hand side buffer containing the (k+1)st block
of the worktape (while the left-hand side buffer stores the kth worktape block),
and has to move further to the right worktape cell (k + 1)d(n) + 1 outside the
buffer, then the content of the right-hand side buffer is copied to the left-hand
side one and the (k + 2)nd block of the worktape is uploaded to the right-hand
side buffer while the worktape head ends up at the left end of the right-hand
side buffer. In other words, the virtual buffer moves to the right by d(n) cells
which is reminiscent of a super-head reading the whole block as a super-cell of
length d(n). Similarly, for the worktape head at the left end of the left-hand side
buffer which moves to the left. In this way, the distance measure can be used for
investigating the buffering aspects of Turing computations.

We start our study by separation (Section 6) and hierarchy (Section 7) results
for the distance complexity which are surprisingly very tight. This indicates that
the new complexity measure is an appropriate tool for classifying the computa-
tions. The tightness in the results requires that the worktape alphabet is fixed
and the measure is not applied to TM computations directly but instead to their
simulations on a fixed universal Turing machine. The results are of the form that
a shift by one in the argument of the complexity bound (and of parameter d plus
an additive constant) leads to a strictly greater computational power. In the case
of a linear complexity bound, the increase in the bound by an additive constant
is sufficient to gain more power. For the hierarchy of complete languages the
increase in the bound is slightly larger (Section 7). The main tool of the proof is
the general diagonalization method introduced in [9] (Section 3) which is applied
(Section 5) to arbitrary Blum-like complexity measures (Section 4).
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2 Technical Preliminaries

We denote by N the set of natural numbers (including 0). By a complexity
bound we mean any mapping c, c : N → N . In the notation of complexity
classes, c(n + 1) stands for complexity bound c′ such that, for each n ∈ N ,
c′(n) =df c(n + 1). By a language we mean any L, L ⊆ {0, 1}∗. Moreover, ε
denotes the empty word.

By a Turing machine we mean any machine with two-way read-only input
tape and with one semi-infinite worktape (infinite to the right) with worktape
alphabet 0, 1, b and with endmarker # at the left end side (at the 0-th cell of
the tape), allowing for both the deterministic or nondeterministic versions. Any
computation of a Turing machine on an input word can be understood as a
sequence of its configurations.

The programs are words from {0, 1}+ and we suppose that there is a machine
which, having any word p on its worktape, is able to decide whether p is a
program without any use of the cells outside of p. If p is a program, then Mp

is the corresponding machine. For any machine M , by L(M) we denote the
language accepted by M , and by pM we mean the program of M .

On any input u, the universal machine starts its computation with some
program p at the left end side of the worktape and it simulates machine Mp on
u. We implicitly assume that the universal machine shifts program p along its
worktape in order to follow the shifts of the head of the simulated machine Mp.

Let S be a set of programs and let C = {Lp | p ∈ S} be a class of languages.
We say that C is uniformly recursive iff there is a machine M such that for each
p ∈ S and for each u ∈ {0, 1}∗, computing on the input pu, M decides whether
u ∈ Lp or not.

3 The Diagonalization Theorem

In the sequel we use the diagonalization method which is based on the theorem
from [9]. This theorem is formulated without any notion concerning computabil-
ity nor complexity. It is formulated only in terms of languages, functions and
relations. Due to this property the method is largely applicable towards the
world of computational complexity.

We say that two languages L,L′ are equivalent L ∼ L′ iff they differ only on a
finite number of words. For a class C of languages we define E(C) =df {L′ | ∃L ∈
C (L ∼ L′)}. Then the fact L /∈ E(C) implies that L differs from any language
of E(C) on infinitely many words.

Now we are ready to introduce our diagonalization theorem.

Theorem 1. Let L be a language and let C be a class of languages indexed by
a set S, that is C = {Lp | p ∈ S}. Let R be a language and let F be a mapping,
F : R → S, such that (∀ p ∈ S)(∃∞ r ∈ R)(F (r) = p). Let z be a mapping,
z : R → N , such that for each r ∈ R, z(r) satisfies the following two conditions:
a) r1z(r) ∈ L ↔ r /∈ LF (r),
b) (∀ j, 0 ≤ j < z(r))(r1j ∈ L ↔ r1j+1 ∈ LF (r)).
Then L /∈ E(C).
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The idea of the proof by contradiction is as follows. From the assumption L ∈
E(C) we derive an appropriate r such that L = LF (r). Then conditions (a), (b)
produce a contradiction immediately.

The idea of the application to the complexity world is as follows. The decision
whether r ∈ LF (r) or not is achieved during the computation on the word r1z(r)

where z(r) is a very large function. While from the point of length |r| this
decision requires very large amount of the source in question (e. g. space, time
etc.), especially in the case of nondeterministic computations, from the point of
length |r1z(r)| this amount is negligible. The main consumption of the sources
is now concentrated in the simulation on the input of length n+ 1. Even in the
case of nondeterministic computations the respective increase of complexity is
moderate.

For the sake of completeness we add the complete proof of the theorem [9].

Proof. By contradiction. Let L ∈ E(C). Hence, L ∼ Lp for some p ∈ S. Moreover,
there is r ∈ R such that F (r) = p and the languages L and LF (r)(= Lp) differ
only on words shorter than r. In particular, for each j ∈ N , r1j ∈ LF (r) iff

r1j ∈ L. Hence by condition (b), r ∈ L ↔ r1z(r) ∈ L, and further by condition
(a), r1z(r) ∈ L ↔ r /∈ L, which is a contradiction. ��

4 Complexity Measures and Classes

Inspired by Blum axioms [2], by a complexity measure we mean any (partial)
mapping m : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → N . Informally, the first argument is
intended to be the input word, the second one corresponds to a program, and
the third one represents the initial content of the worktape.

Let S, S ⊆ {0, 1}+, be the set of programs of the machines in question. For
any p ∈ S and for any complexity bound c : N → N we define Lm,p,c =df

{u ∈ {0, 1}∗|m(u, p, ε) ≤ c(|u|)} where ε is the empty word. We say that Mp

accepts its language within m-complexity c iff L(Mp) = Lm,p,c.
Let m be a complexity measure, U be a universal machine, and pU be the

program of U . By the complexity measure mU we mean the mapping mU :
{0, 1}∗ × {0, 1}∗ → N , mU (u, p) =df m(u, pU , p).

For any p ∈ S and for any c : N → N we define language LmU ,p,c =df

{u ∈ {0, 1}∗ |mU (u, p) ≤ c(|u|)}. We say that Mp accepts its language within
mU -complexity c iff L(Mp) = LmU ,p,c. We also say that L(Mp) is an (mU , c)-
complete language.

We define the complexity class Cm,c =df {Lm,p,c | p ∈ S}. Similarly for m =
mU , CmU ,c =df {LmU ,p,c | p ∈ S} . We say that Mp accepts its language within
m-complexity c iff L(Mp) = Lm,p,c.

Let Ccomp,mU ,c =df {L | (∃p ∈ S) L = L(Mp) = LmU ,p,c} be a class composed
of all (mU , c)-complete languages which we call an (mU , c)-complete (or shortly
complete) class.
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5 The Diagonalization Result

The following definition forms the first step in the process of implementing our
diagonalization theorem (Theorem 1) in the milieu of computations and complex-
ity measures. The complexity measure is still not specified, so the constructed
diagonalizer can possibly be applied to any Blum-like measure.

Definition 2. Let S be a recursive set of programs (of machines in question).
Let R be the set of program codes, R =df {1k0l | k, l ∈ N ; k, l > 0; bin(k) ∈
S} (where bin(k) is the binary code of k). Let F be a mapping, F : R → S,
F (1k0l) = bin(k). For any p ∈ S, let Lp be a uniformly recursive part of L(Mp).

Then by diagonalizer M we mean the machine that works on the input of
length n as follows: M first checks whether the input is of the form 1k0l1j,
k, l, j ∈ N , k, l > 0, and j ≥ 0. Then M constructs the initial segment of its
worktape of length logn, n = k+ l+ j. Within this segment, M constructs bin(k)
and tries to verify that bin(k) ∈ S. If bin(k) = p ∈ S then 1k0l = r ∈ R and
M tries further to decide whether 1k0l ∈ Lp (i.e. whether r ∈ LF (r)) using
only the initial segment of the worktape of length logn constructed previously
by M . If M accomplishes this decision, then M accepts if f 1k0l /∈ Lp (r /∈
LF (r)). Otherwise, M simulates p on longer input 1k0l1j+1 in the same manner
as universal machine U can do. (This simulation is not limited in the amount
of used tape.)

Moreover, for r ∈ R we define z(r) to be the minimal j such that working on
r1j, diagonalizer M decides whether r ∈ LF (r) or not.

This definition has introduced a diagonalizer which is appropriate for language
separation tasks. A similar diagonalizer can be defined which is appropriate for
proving separation results for unary languages. The following theorem translates
Theorem 1 into the world of computations and Blum-like complexity measures.

Theorem 3. Let m be a measure and c be a complexity bound. Let S,R, F, Lp,M ,
z be as in Definition 2, and C =df {Lp | p ∈ S}. For each r ∈ R, let the following
two conditions hold:
a) r1z(r) ∈ Lm,pM ,c(n+1) ↔ r /∈ LF (r),
b) for each j < z(r) (r1j ∈ Lm,pM ,c(n+1) ↔ r1j+1 ∈ LF (r)).
Then Lm,pM ,c(n+1) /∈ E(C).

Proof. S,R, F, C satisfy the assumptions of Theorem 1. It is clear that also z
and L = Lm,pM ,c(n+1) satisfy the assumptions of Theorem 1 and especially its
conditions (a) and (b). The statement follows immediately. ��

6 The Separation Result for the Distance Measure

We introduce a new complexity measure which we call the distance complexity.
Let d, d : N → N , be a positive function. For any machine, we define the
d-subsequence {ci} of its computation on a word u in question as follows:
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1. c0 is the initial configuration.

2. Given ci, the next configuration ci+1 is defined to be the first configuration
c after ci such that there is a configuration c′ in between ci and c (along
the computation) or c′ = ci, and the distance between the worktape head
positions of c and c′ equals d(|u|).

The distance complexity measure md is defined as follows. For u ∈ {0, 1}∗ and
for p ∈ S, define md(u, p, ε) to be the minimum length of the d-subsequences
over all accepting computations of Mp on u. Clearly, the buffering complexity is
obtained as a special case of the distance measure when we demand c′ = ci in
part 2 of the definition of d-subsequence above.

Note that by means of the length of subsequences one can also define the
classical time or space complexity measures. The subsequence is simply the whole
computation for the time complexity while the space complexity is obtained when
the subsequence contains exactly each configuration ck such that the worktape
head position of any previous configuration ci, i < k, is to the left of the worktape
head position of ck.

Lemma 4. Let d be a function, U be the universal machine, and u be an input

word. Then md(u, pM , ε) = m
d+|pM |
U (u, pM ).

Proof. Hint. On the worktape of the universal machine U the key property of
the simulation of M is that the program pM is being shifted along the tape
following the shifts of the head of M . The distance d(n) on the worktape of M
is transformed to the distance d(n) + |pM | on the worktape of U . ��

Now we prove the separation result for the distance complexity measure.

Theorem 5. Let U be a fixed universal machine, c be a recursive complexity
bound, and d, d : N → N , be a recursive nondecreasing function satisfying
d > log2. Then there is a language L ∈ C

m
d(n+1)+K
U ,c(n+1)

(where K is a constant)

which is not in the class E(Cmd
U ,c).

Proof. Let S,R, F, Lp,M, z be as in Definition 2 and Lp =df Lmd
U ,p,c. Let C

be also as in Definition 2, C = Cmd
U ,c, and m =df md(n+1). We define L =df

Lmd(n+1),pM ,c(n+1).
We will prove that L /∈ E(C). It suffices to verify conditions (a) and (b) of

Theorem 3. For r ∈ R, machineM , working on r1z(r), uses only logn < d(n) cells
of its worktape. Hence, M decides, whether r ∈ LF (r) or not, within the com-
plexity bound 1 corresponding to the initial configuration in the d-subsequence
(log n < d(n)) under the measure m = md(n+1). Thus, condition (a) is satisfied.

For j < z(r), let us verify that r1j ∈ Lmd(n+1),pM ,c(n+1) ↔ r1j+1 ∈ Lmd
U ,F (r),c

= LF (r). This is true since from the definition of M , it follows that, in this case,
M works as U does. Hence, condition (b) of Theorem 3 holds. According to
Theorem 3, we have L /∈ E(C).
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Furthermore,

L = Lmd(n+1),pM ,c(n+1)

=
{
u ∈ {0, 1}∗

∣∣∣md(n+1)(u, pM , ε) ≤ c(|u|+ 1)
}

=
{
u ∈ {0, 1}∗

∣∣∣md(n+1)+|pM |
U (u, pM ) ≤ c(|u|+ 1)

}
(according to Lemma 4)

= L
m

d(n+1)+|pM |
U ,pM ,c(n+1)

∈ C
m

d(n+1)+|pM |
U ,c(n+1)

. ��

7 The Hierarchy

In order to prove the hierarchy theorem, we first show the folowing lemma.

Lemma 6. Let c1, c2 be complexity bounds and d1, d2 be functions, d1 : N → N ,
d2 : N → N . If c1 ≤ c2 and d1 ≤ d2, then C

comp,m
d1
U ,c1

⊆ C
comp,m

d2
U ,c2

.

Proof. Let L ∈ C
comp,m

d1
U ,c1

. Then there is a program p ∈ S such that L =

L
m

d1
U ,p,c1

= L(Mp). It suffices to prove that L
m

d1
U ,p,c1

⊆ L
m

d2
U ,p,c2

which implies

L = L
m

d2
U ,p,c2

= L(Mp), and consequently L ∈ C
comp,m

d2
U ,c2

. Suppose u ∈
L
m

d1
U ,p,c1

.

For i = 1, 2, let cij be the j-th configuration of di-subsequence of a computation
of U on the input u with p given on the worktape of the starting configuration.
For our purposes, it suffices to prove that for each j, c1j is not later in the

computation than c2j . We know that c10 = c20. We continue by contradiction.

Let j be the first number that the configuration c1j is not after c2j but c1j+1

is after c2j+1. Thus in the sequence of configurations between c2j and c2j+1 we
find a configuration whose worktape head position is within the distance of
d2(n) ≥ d1(n) from the worktape head position of c2j+1 which contradicts the

assumption that c1j+1 is after c2j+1. Hence, u ∈ L
m

d2
U ,p,c2

. ��

We see that for the language L from Theorem 5, L /∈ E(Cmd
U ,c) ⊇ C =df

E(Ccomp,md
U ,c) holds. In order to obtain a hierarchy we search for d1 ≥ d and

c1 ≥ c such that L ∈ C1 =df C
comp,m

d1
U ,c1

. According to Lemma 6, this will give

C ⊆ C1 for complete classes C and C1, which together with L ∈ C1 \ C will
provide the desired hierarchy.

Recall from the proof of Theorem 5 that L = Lmd(n+1),pM ,c(n+1). We will de-
fine machine M ′ such that L(M ′) = L. We will first describe the main ideas of
how M ′ computes. At the beginning of its computation, M ′ constructs on its
worktape two segments of lengths 4 log(d(n+1)) and log(c(n+1)), respectively.
Then M ′ simulates M so that M ′ shifts the two segments along the worktape
together with the worktape head ofM . The first segment of length 4 log(d(n+1))
serves for identifying the time instant at which the current configuration of M
belongs to the d(n + 1)-subsequence. For this purpose, it suffices to keep and
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update the current head position, the minimum and maximum head positions—
all these three positions measured as a (possibly oriented) distance from the head
position of the previous-element configuration from the d(n + 1)-subsequence.
In addition, this includes a test whether a current maximum distance between
two head positions equals d(n + 1) which requires the value d(n + 1) to be
precomputed and shifted within this first segment. Hence, the length of the first
segment follows. Similarly, the second segment of length log(c(n+ 1)) serves for
halting the computation after c(n+1) configurations of the d(n+1)-subsequence.

In fact, the implementation of the ideas above requires a slightly longer seg-
ments due to the fact that the worktape alphabet of M ′ is restricted to {0, 1}
according to our definition of Turing machine. In particular, it suffices to replace
each bit by a pair of bits. The first bit of this pair indicates ”marked/non-marked”
which is used e.g. for comparing two parts of segments, and the second one rep-
resents the value of the original bit. So, the introduced segments must be twice
as long as above.

Obviously, L(M ′) = L. Moreover, L(M ′) ∈ Ccomp,md′
U ,c′ for

d′ = d(n+ 1) + 8 log(d(n+ 1)) + 2 log(c(n+ 1)) +K , (1)

c′ = c(n+ 1) +D (2)

where K = |pM ′ | is a constant and D : N → N is a function of n which
compensates for the consumption of the source for constructing the segments
and computing the values of d(n+ 1) and c(n+ 1).

The hierarchy result is summarized in the following theorem.

Theorem 7. Let U be a fixed universal machine, c be a recursive complexity
bound, and d, d : N → N , be a recursive nondecreasing function satisfying
d > log2. Let functions c′ : N → N and d′ : N → N be defined by formula (2)
and (1), respectively. Then Ccomp,md

U ,c � Ccomp,md′
U ,c′ .

8 Conclusions

In this paper we have introduced a new distance complexity measure for com-
putations on Turing machines with one worktape. This measure can be used
for investigating the buffering aspects of Turing computations. As a first step
along this direction, we have proven quite strong separation and hierarchy re-
sults. The presented theorems can even be strengthened to unary languages (by
modifications in Definition 2 of diagonalizer M). Many questions concerning
e.g. the comparison to other complexity measures, reductions, completeness and
complexity classes remain open for further research.

We have also formulated our diagonalization method for general Blum-like
complexity measures which is interesting by its own. Analogous theorems can
possibly be proven for other types of machines such as those with auxiliary
pushdown or counter, or with oracle etc.
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Friis Nielsen, Bo 128
Fujiwara, Toru 335

Gauwin, Olivier 190
Geldenhuys, Jaco 419
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Waleń, Tomasz 383
W ↪asowski, Andrzej 128

Yuan, Yifei 44
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