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Abstract. Rather than developing individual systems, Software Prod-
uct Line Engineering develops families of systems. The members of the
software family are distinguished by the features they implement and
Feature Models (FMs) are the de facto standard for defining which fea-
ture combinations are considered valid members. This paper presents an
algorithm to automatically extract a feature model from a set of valid
feature combinations, an essential development step when companies, for
instance, decide to convert their existing product variations portfolio into
a Software Product Line. We performed an evaluation on 168 publicly
available feature models, with 9 to 38 features and up to 147456 fea-
ture combinations. From the generated feature combinations of each of
these examples, we reverse engineered an equivalent feature model with
a median performance in the low milliseconds.

Keywords: Feature, Feature Models, Feature Set, Reverse Engineering,
Software Product Lines, Variability Modeling.

1 Introduction

Commercial software systems usually exist in different versions or variants, this
can be due, for instance, to requirement changes or different customer needs.
Variability is the capacity of software artifacts to change [1] and Software Prod-
uct Line Engineering (SPLE) is a software development paradigm which helps
to cope with the increasing variability in software products. In SPLE the engi-
neers develop families of products rather than designing the individual products
independently. SPLE practices have shown to significantly improve productivity
factors such as reducing costs and time to market [2]. At the core of SPLE is a
Software Product Line (SPL) [2], which represents a family of software systems.
These systems are distinguished by the set of features they support, where a fea-
ture is an increment in program functionality [3]. The de facto standard to model
the common and variable features of an SPL and their relationships are Feature
Models (FMs) [4], that express which feature combinations are considered valid
products (i.e. SPL members).
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However, companies typically do not start out building a feature model or SPL.
Rather they build products and, if successful, variations of that product for differ-
ent customers, environments, or other needs. A scenario, which is becoming more
pervasive and frequent in industry, is to reverse engineer such product variations
into an SPL. The first essential step in this process is obtaining a feature model
that correctly captures the set of valid feature combinations present in the SPL.
Constructing such feature model manually is time intensive and error prone. Our
work is a complement to the current research in this area which assumes the exis-
tence of artifacts with variability already embedded from which an FM could ex-
tracted. In our earlier work [B], we presented an algorithm to address this problem
on basic feature models. This paper extends this work by also considering feature
models that can contain basic Cross Tree Constraints (CTCs), that is, requires
and excludes CTCs [6]. Furthermore, we also performed a more comprehensive
evaluation. We used 168 publicly available feature models, with 9 to 38 features
and up to 147456 feature combinations. From the generated feature combinations
of each of these examples, we reverse engineered an equivalent feature model with
a median performance in the low milliseconds.

2 Background and Running Example

This section provides the required background information about variability
modeling with feature models and related basic technology.

2.1 Feature Models in a Nutshell

Feature models are commonly used in SPLE to define which feature combinations
are valid products within an SPL. The individual features are depicted as labeled
boxes and are arranged in a tree-like structure. There is always exactly one
root feature that is included in every valid program configuration. Each feature,
apart from root, has a single parent feature and every feature can have a set of
child features. These child-parent relationships are denoted via connecting lines.
Notice here that a child feature can only be included in a program configuration
if its parent is included as well. There are four different kinds of relations in
which a child (resp. a set of children) can interrelate with its parent:

— If a feature is optional (depicted with an empty circle at the child end of the
relation) it may or may not be selected if its parent feature is selected.

— If a feature is mandatory (depicted with a filled circle at the child end of the
relation) it has to be selected whenever its parent feature is selected.

— If a set of features forms an inclusive-or relation (depicted as filled arcs) at
least one feature of the set has to be selected if their parent is selected.

— If a set of features forms an ezclusive-or relation (depicted as empty arcs)
exactly one feature of the set has to be selected if their parent is selected.

Besides the child-parent relations there are also so called cross-tree constraints
(CTC), which capture arbitrary relations among features. Basic CTCs are the
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requires and excludes relation. If feature A requires feature B, then feature B has
to be included whenever feature A is included. If two features are in an excludes
relation then these two features cannot be selected together in any valid product
configuration. The requires and excludes CTCs are the most commonly used
in FMs; however, more complex CTCs can be expressed using propositional
expression, for further details see [7].

Table 1. Feature Sets of Cell
Phone Software Product Line
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Figure [ shows the feature model of our running example, an SPL of cell
phones inspired by a model of the SPLOT homepage [8]. Feature Cell Phone is
the root feature of this feature model, hence it is selected in every program con-
figuration. It has three mandatory child features (i.e. the features Accu Cell,
Display and Games), which are also selected in every product configuration
as their parent is always included. The children of feature Accu Cell form an
exclusive-or relation, meaning that the programs of this SPL include exactly
one of the features Strong, Medium or Weak. The features Multi Player and
Single Player constitute an inclusive-or, which demands that at least one of
these two features is selected in any valid program configuration. Single Player
has Artificial Opponent as a mandatory child feature. Feature Wireless is
an optional child feature of root, hence it may or may not be selected. Its child
features Infrared and Bluetooth form an inclusive-or relation, meaning that
if a program includes feature Wireless then at least one of its two child fea-
tures has to be selected as well. The Cell Phone SPL also introduces three
CTCs. While feature Multi Player cannot be selected together (excludes)
with feature Weak, it cannot be selected without feature Wireless. Lastly feature
Bluetooth requires feature Strong.

2.2 Basic Definitions

Definition 1. Feature List (FL) is the list of features in a feature model.
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The FL for the Cell Phone FM is [Cell Phone, Infrared, Bluetooth,
Strong, Medium, Weak, Multi Player, Single Player, Display, Games,
Artificial Opponent, Accu Cell, Wireless].

Definition 2. Feature Set (FS) is a 2-tuple [sel,sel] where sel and sel are re-
spectively the set of selected and not-selected features of a member product. Let
FL be a feature list, thus sel, sel C FL, sel N sel = @&, and sel U sel = FL.

The terms p.sel and p.sel respectively refer to the set of selected and not-selected
features of product .

Definition 3. Feature Sets Table (FST) is a set of feature sets, such that for
every product p; we have that p;.sel U p;.sel =FL, where FL is a feature list of the
corresponding SPL. Let FSTrr, denote the clipping of FST that only contains
features in feature list FL', i.e. FSTpr, = {FS | 3FS’ € FST : FS".sel N FL' =
FS.sel N FS'.selN FL' = FS.sel} and let FSTy denote the subset of FST that
contains only feature sets in which feature f is selected.

Table [l shows the 16 valid feature sets defined by the feature model in Figure[dl
Throughout the paper we use as column labels the shortest distinguishable prefix
of the feature names (e.g. We for Weak). An example of a feature set is product
pl =[{C, A, S, D, G, Si, Ar}, {W, I, M, We, Mu}l. pl is a valid product
because none of the constraints imposed by the Cell Phone FM is violated.

Definition 4. Atomic set is a group of features that always appears together
in all products [6]. That is, features fi and fo belong to an atomic set if for all
products p;, fi €p;.sel iff fo €p;.sel and fi €p;.sel iff fo €p;.sel. Let atSet be an
atomic set, we denote atSet as an arbitrarily chosen representative feature of the
atomic set, and atSet the remaining non-representative features in atSet.

For example, in the feature sets of Table[Il features Si and Ar form an atomic
set atSet. A representative can be atSet =Si and atSet={Ar}. Both features
always appear together in the products of Table[ll e.g. while product p1 includes
features Si and Ar, product p15 does include neither of them.

Definition 5. Smallest Common Product. Let S be a set of feature sets. Product
pi € Sis a smallest common product of S iff Vp; € S |p;.sel| < |p;.sel.

Product p1 includes seven features, it is a smallest common product as there
exists no product in Table [I] that includes less features.

For our reverse engineering algorithm two different kinds of graphs are con-
structed to represent information contained in the input FST, the implication
and mutex graph, both are specializations of feature graphs.

Definition 6. A Feature Graph FG is an ordered pair (V,E) where V is a set
of features (i.e. V. C FL) representing the vertices of the graph and E is a set of
tuples of the form (fi,f2) € V x V, where (a,b) € E denotes that there is an
edge from feature a to feature b.

! Definition based on [6].
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We say feature f implies feature f’ in FST, whenever the proposition holds that
£’ is included whenever f is selected. An implication graph is used to summarize
which features imply which other features in the input FST.

Definition 7. Implication Graph IG. Let fst be an FST where all non-representa-
tive features have been removed and let fl be the feature list of fst. The IG of fst
and fl is a feature graph that contains an edge from feature fi to feature fo if
fi implies fo in FST, where IG does not contain any transitive connections be-

tween fi and fo i.e. Vi, fo € fl i imp(fi, fo, fst) A —path((fi, f2), IG \ {(fi,2)})
= (f1,f2) € IG holds for IG, where:

— imp((t1, t2), fst) =V fs € fst 1ty & fs.sel V 11 € fs.sel A ta € fs.sel
— path((z,y), G) = (z,y) € GV 3z : (z,2') € G A path((z',y), G).

The mutex graph stores which features are not selected together in any valid
product configuration of the input FST. Section [ provides algorithms to extract
the mutex and implication graph from an FST.

Definition 8. Mutexr Graph. Let fst be an FST and let fl be the FL of fst.
A Mutex Graph MG of fst and fl is a feature graph that contains an edge from
feature fi to feature fo iff all feature sets in fst select at most one of these features
ie. Vi, efl:(Vfs € fst:—fi € fs.sel V —fy € fs.sel) & (fi,2) € MG holds
for MG.

Definition 9. A feature map M C FL x P(FL) maps a single feature to a set of
features, i.e. Y(fi, featuresy), (fao, featuress) € M : fi = fo = features; = featuress
holds. Let f be a feature, M.f denotes the set of features that f maps to.

3 Reverse Engineering Algorithm

This section describes our reverse engineering algorithm that extracts from an
input FST and its FL the corresponding feature model. We start by outlining the
challenges introduced by also considering CTCs then we proceed by describing
the overall procedure of our algorithm and its core auxiliary function buildFM.

3.1 Challenges Created by Considering CTCs

Our previous work proposed an algorithm to reverse engineer feature models
without CTCs (i.e. basic feature models) from FSTs [5]. By also considering
CTCs the extraction process gets more complex, because many of the observa-
tions used for extracting basic feature models no longer hold. The reason being
that CTCs do not introduce new valid feature combinations, but instead they
reduce their number.

Essentially there are three core issues that need to be resolved. While the IG of
an FST that corresponds to a basic feature model always yields the correct child
parent relations, this is not necessarily the case for an FST that corresponds to
a feature model with basic CTCs. Also the extraction of exclusive-or relations
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gets more complex, because two sibling features that are never selected together
in any valid product configuration can either be in an exclusive-or relation or
in an ezcludes CTC. The third challenge is the extraction of optional features.
Previously, we used the observation that all features that are not selected in any
of the smallest common products formed by features with the same parent in 1G
are optional. This observation is not strong enough as soon as requires CTCs are
considered, because a feature that is not selected in any of the smallest common
products might be optional but it could as well be a feature that is just in a
requires CTC with its parent in IG.

Algorithm 1. Feature Model Extraction

1: Input: A Feature Sets Table (FST), 17: FL” := FL' — atSets

and Feature List (FL). 18: FST" := FSTpr.
2: Output: A feature model FM. 19:
3: 20: {Build Mutex and Implication
4: {Start building FM from common fea- Graph}
tures} 21: IG := buildImplGraph(FST", FL')
5: splCF := splWideCommon(FST) 22: MG := buildMutexGraph(FST" , FL")
6: f € splCF
7: root := [f, splCF — {root}, {},{}, {}] 23
8: FM := [root, {},{}] 24: {Build Feature Model}
9: 25: FL" := FL" — {root}
10: {Prunes FST by removing common 26: FST" := FST} .
features} 27 buildFM (FST"', FL'", atSets,
11: FL' := FL — spICF root, FM, IG, MG)
12: FST' := FSTpp 28:
13: 29: {Extract EXCLUDES CTCs}
14: {Computes atomic sets} 30: ezcludes = extractExclCTC|(
15: atSets := compAtomicSets(FST’, FL') FM, MG)

31: addConstraints(FM, excludes)
16: {Prunes FST by removing atomic 32: return FM
sets}

3.2 Overall Procedure

Algorithm [ shows the overall procedure to extract feature models from an input
FST and its corresponding FL. The data structure used to store the extracted
model is a three-tuple of the form [root, requires, excludes], where root
is a feature model node, and requires and excludes are feature maps that
respectively represent requires and excludes CTCs.

Definition 10. A feature model node is a five-tuple of the form [f, mand,
opt, or, zor], where fis the feature represented by the node, mand is the set
of mandatory child features of f, opt is a set of feature model nodes representing
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the optional child features of f and or (resp. mor) is a set of sets of feature
model nodes representing the inclusive-or (resp. exclusive-or) relations among
child features of feature f.

Auxiliary Function 1. splWideCommon(fst) computes from a Feature Sets
Table the set of features that are common to all the members of the product line,
i.e. features f such that for all products p;€fst, fE€p,;.sel holds.

Line[Hl calls splWideCommon (£st) which yields for our example the features C,
D, A and G, as they are selected in every single product of Table[Il Subsequently
Line [0 arbitrarily selects one of these features to be the root feature. Then
Lines [7 to B initialize the feature model data structure.

Auxiliary Function 2. compAtomicSets(fl, fst) computes the atomic sets
in the feature sets of Feature Sets Table fst involving features in Feature List

fi.
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Fig. 2. Implication Graph of Cell Phone Fig. 3. Mutex Graph of Cell Phone SPL
SPL

For our running example atSet =Si and a/tchﬂf={Ar} is extracted as atomic set
in Line Lines 21l and P2] extract the implication and mutex graph as they are
shown in FigureRland Bl To build up the implication graph the auxiliary function
buildImplGraph(fst, f1) is used (see Algorithm [J). This function takes an
FST where all non-representative features have been removed and its FL. Using
these two inputs it extracts an implication graph as defined in Definition [l The
two auxiliary functions used by Algorithm [2] are defined as follows.

Auxiliary Function 3. <independent (fst, fl) returns all features in FL f1
that do not imply any other feature in FST fst.

Auxiliary Function 4. <mply(fst,fl, f) returns all features in FL fl that
imply feature f in FST fst.

The function buildMutexGraph(fst, f1), that is described in Algorithm [3]
extracts the mutex graph corresponding to an FST and its FL as defined in
Definition B

Function buildFM, shown in Algorithm [, traverses the implication graph IG
from bottom to top and determines the types of relationships among sibling
features, at the same time it also extracts the requires CTCs and inserts them
into FM. Section [3.3] describes this function in more detail.

Auxiliary Function 5. eztractEzclCTC(FM, MG) returns a feature map repre-
senting the excludes CTC. The function traverses the feature model FM to extract
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Algorithm 2. Build Implication Graph Algorithm 3. Build Mutex Graph

buildImplGraph(FST, FL) buildMutexGraph(FST,FL)
1: Input: A Feature Sets Table (FST), 1: Input: A Feature Sets Table (FST),
and Feature List (FL). and Feature List (FL).

2: Output: An Implication Graph IG. 2: Output: A Mutex Graph MG.

3: 3:

4: IG :={} 4: MG = {}

5. f € splWideCommon(FST) 5: for f in FL do

6: FL' = FL—{f} 6:  muter = (sepsraress.sel f5-5€l

7. FST' = (FSTy)rL 7 if | mutez |> 0 then

8: directChildren = 8: MG = MG U ({f} x mutez)
independent(FST', FL') 9: end if

9: 10: end for

10: for fi, in directChildren do 11:

11: IG = IG U {[fin, 1} 12: return MG

12:  descendants = imply(FST', FL', f)

13: FST" = (FSTf/)descendantS

14:  IG = IG U buildImplGraph(FST"
descendants)

15: end for

16: return IG

a mutex graph MG’. Tuples that are elements of MG (which has been extracted from
the input FST) but not element of MG’ are extracted as excludes CTCs.

The last step of our reverse engineering algorithm is to extract the excludes
CTCs (see Lines B0 to Bl in Algorithm [II). Consider Figure [T it depicts the FM
that has been extracted by buildFM and that is shown in the bottom part of Fig-
ure[fl Feature Strong is in an exclusive-or relation with Medium and Weak, hence
the tuples {(Strong, Medium), (Strong, Weak)} are added to MG’. Also re-
quires CTCs have to be considered while MG’ is built up, i.e. ”Bluetooth requires
Strong” in FM as Strong excludes Medium and Weak, feature Bluetooth cannot be
selected together with these two features either. Figure[dshows the complete mu-
tex graph MG’ extracted by extractExclCTC(FM, MG). (Multi Player, Weak)
is an element of MG (see Figure Bl) but not of MG’, therefore the excludes CTC
Multi Player excludes Weak is added to FM. Figure [l shows the final feature
model that has been extracted by our reverse engineering algorithm. Notice that
in this case the extracted FM is different from the one used as our running ex-
ample in Figure[Il Nonetheless they are both equivalent in the sense that both
denote the same set of feature sets.

3.3 Build Feature Model

Algorithm @] builds up the feature model tree using the extracted graphs (i.e.
the implication and mutex graph), the atomic sets and an FST. The implication
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Fig. 4. Mutex Graph extracted from the
FM shown in Figure[T]

61

requires

excludes

requires

Fig. 5. Extracted FM

graph IG gives hints on the tree-structure of the feature model to extract, i.e. a
feature is guaranteed to reach its parent in the implication graph, it is not guar-
anteed though that a feature is directly connected with its parent. For instance
feature Multi Player has a direct connection to feature Wireless (which is
not its parent feature) in IG due to the CTC Multi Player requires Wireless.
BuildFM traverses IG from bottom to top (see Lines Bl to [IIJ).

w

10:
11:
12:
13:

14:

Algorithm 4. Build Feature Model buildFM

Input: A Feature Sets Table (FST),
a Feature List (FL), atomic sets (at-
Sets), a feature (parent), a feature
model (FM) and two graphs (IG and
MG).

Output: The modified feature model

{Bottom to top traversal of implica-
tion graph}
for f in directChildren(parent, IG)
do
if | descendants(f,IG) |> 0 then
FST' := (FSTnode.f)dsscendants(f,IG)
stack.push(f)
buildFM (FST',
descendants(f, IG), atSets,
£, FM,IG, MG)
end if
end for

{Keep only columns that are direct
children of parent}
FL' = directChildren(parent, IG)

15:
16:
17:

18:

19:
20:

21:
22:

23:
24:
25:
27:
28:
29:

30:
31:

FST/ = FSTFL/

{Add XOR relations and compute re-

duced FST}

zors = insertXors(FST', FL', parent,
FM)

FL" = FL' — zors

FST" := getSmallestProduct(FSTpy.)

{Add optional relations and compute

reduced FST}

opts = insertOptionals(FST", FL",
parent, FM | IG)

FL"' = FL" — opts

FST" := getSmallestProduct
(FSTFL/N)

{Add OR relations}
insertOrs(FST"', FST', FL, parent,
FM,IG)

stack.pop()
return
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The feature list FL contains all features that are descendants of parent in
IG, meaning that these features are either descendants of parent in the feature
model to extract or they are in a requires CTC with parent.

Auxiliary Function 6. descendants(f, IG) returns all features f’ that can
reach feature f in IG, i.e. path((f’f), IG) holds.
Auxiliary Function 7. directChildren(f, IG) returns all features f’ that
are connected to feature f in IG i.e. (f',f) € IG.

One of our core observations is that the relationships among sibling features

can be extracted by only considering the valid combinations among them, these
combinations are calculated in Line Next the exclusive-or relations are ex-
tracted (see Line [I8)) using the auxiliary function insertXors.
Auxiliary Function 8. <nsertXors(FST, FL, MG, parent, FM, IG) inserts
distinct subsets xor; C FL as to be in an exclusive-or relation for which holds
that all members of zor; exclude each other and at least one of them is selected
in every feature set of FST, i.e.: ¥V fi € xor;, fo € zor; : (fi,f2) € MG ANV [fs €
FST : zor; N fs.sel # {}.

Notice here that the proposition zor; N fs.sel # {} in Auxiliary Function [
ensures that two features that are only in an excludes CTC are not extracted as
to form an exclusive-or relation.

Auxiliary Function 9. getSmallestProducts (FST) returns an FST’ that
contains only the smallest common products of FST.

An example of the use of this function is in Line 20l of Algorithm [l
Auxiliary Function 10. <nsertOptionals(FST, FL, parent, FM, IG) pro-
cesses possible optional features, i.e. all features f that are not selected in any
FS of FST and do not imply their sibling feature or descendant, i.e. (Vfs €
FST : f € fs.sel) A descendants(parent, IG) N FM .requires.f = & holds, where
FST contains only smallest common products. If f is a true optional feature it
is inserted as such, otherwise it is pushed one level upwards in IG.

Connections between two features exist in IG either due to requires CTC or
child-parent relations. Features that do only have a connection in IG to the
current parent due to a requires CTC are possible optional features. For a
true optional feature f holds that each valid feature combination containing f
is still valid if f is deselected not considering any features that imply £, i.e.
Vis € fst:f € fs.sel = 3fs’ € fst: (fs.sel \ {f}) \ implies = fs'.sel \ implies,
where implies is the set of features that imply feature £ in the input FST.
Function insertOptionals checks this property and is used in Line 23] note
here that this is the only auxiliary function that operates on the complete input
FST of Algorithm [l The last kind of relation that need to be extracted are
inclusive-or relations. Before we do this we again change the considered clipping
of the input FST (see Lines 24 to 2H]).

Auxiliary Function 11. <nsertOrs(FST, FST’, FL, parent, FM, IG) ex-
tracts disjoint subsets of FL as to form inclusive-or relations and inserts them
into feature model FM.

Let n be the number of included features in a smallest common product (fs €
FST,n = |fs.sel|), then n yields the number of inclusive-or relations to extract.
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Features that are selected together in the products of FST have to be in different
inclusive-or relations. The features in FL that are selected in the products of FST,
are grouped into n disjoint subsets, where two features that are selected together
in any of the products in FST are put into different subsetsd Each of these subsets
ss; represents a possible inclusive-or relation, but only those ss; are inserted as
to be in an inclusive-or relation for which holds: V fs € FST' : fs.sel N ss; # B

The remainder of this section describes how buildFM proceeds on the running
example. During the first call of buildFM the variable parent is equal to C,
Line [ yields the set {M, Si, S, W} as direct children of C in IG. Lets choose
feature W as the first direct child that is processed by the loop in Line [l As
the direct children of W (i.e. I, B and Mu) do not have descendants there are no
further recursive calls for these features.

Line [[3 reduces the input FST, in our example the set of descendants of W is
equal to its direct children, hence FST is equal to FST’. The features I, B and
Mu do not exclude each other, hence Line does not extract any exclusive-
or relations. Line extracts the smallest common products in FST’ yielding
FST’’= {[{B},{I, Mu}],[{I},{B, Mu}]}. Line 23] pushes feature Mu one level
upwards in IG inserting the CTC ”Multi Player requires Wireless”. Mu is a pos-
sible optional feature, i.e. it is not selected in any of the products in FST’’
and there exists no requires CTC with any of its sibling features, but Mu is not
a true optional feature. Consider for instance product p11 in Table [ p11.sel
={C, W, I, A, Me, D, G, Mu}. If W was an optional feature then a product
pll’.sel = pll.sel \ {Mu} should also exist in Table [l as this is not the case W
cannot be optional.

Auxiliary function insert0Ors extracts features I and B as to be in an inclusive-
or relation. Figure [0 depicts the extracted Feature Model and the modified fea-
ture graph IG after the first recursive call of buildFM.

The second recursive call is performed for feature Si and its descendant feature
We. Once again auxiliary function insertOptionals yields that We is not a true
optional feature, hence it pushes We one level upwards in IG and inserts the
requires CTC ”Weak requires Single Player”.

As no further recursive calls are required, buildFM now extracts the relations
among the direct children of root, i.e. features W, Si, Mu, S, M and We.

Function insertXor extracts the features S, M and We as to form an exclusive-
or relation. Subsequently Line calculates FST? = {[{Si},{W, Mu}]} that
contains only the smallest common products formed by features W, Mu and Si.

Feature W is extracted as optional feature because it is neither selected in
any of the products in FST’’ nor does it require one of its sibling features. As
feature Mu implies feature W it cannot be an optional feature. FST’’’ is equal to

? Please refer to [0] for an explanation how we deal with features that are not selected
in any of the products in FST.

3 If there are features that could not be inserted, this means that possibly no equivalent
model is extracted. Features for which the correct place in the feature model could
not be found will be pushed one level upwards in the implication graph, if the current
parent is the root feature then these features are inserted as optional child features.
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{[{Si}, {Mu}],[{Mu},{Ri}]}, it contains the smallest common products formed
by Mu and Si. Using FST’’’ insertOrs inserts an inclusive-or relation among
these two features. Figure [[l shows the extracted feature model and the modified
implication graph after the call of buildFM.

4 FEvaluation

We evaluated our approach with 168 FMs publicly available from the SPLOT
Homepage [8], for which the FAMA tool suite [I0] was able to generate the
corresponding FSTs that were then used as input to our reverse engineering
algorithrrﬂ The size of the FSTs described by one of these models ranges from 1
to 147456 products with an average of 1862.2 and a median of 62 products. The
number of features is between 9 and 38. Of these 168 models, 69 have requires
or excludes CTCs. The average number of CTCs of these 69 models is 3.12, the
median is 2. The model with the most CTCs has 6 excludes and 11 requires
CTCs and describes 1042 products. We executed our examples on a Windows 7
Pro system, running at 3.2Ghz, and with 8 GB of RAM. Figure [] depicts the
execution times of this evaluation. Our timing analysis shows that the average
execution time is 1862.2ms and the median is 62ms, for the largest FST the
execution of our reverse engineering algorithm takes only 12s. In each of these
168 cases our reverse engineering algorithm generated an equivalent model. To
determine the equivalence of the input model and the reverse engineered model
we used a procedure very similar to the one presented in [I1].

4 The code and feature models samples are available at:
http://www.jku.at/sea/content/e139529/e126342/e188736/
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4.1 Algorithm Limitations

Each additional non-redundant CTC reduces the set of valid product configura-
tions, however at some point it may no longer be possible to extract the hierarchy
of the FM tree as too much information may be missing. Our algorithm does not
cover circular requires CTCs, (e.g. if a feature A requires feature B and feature
B requires feature A) or structural feature constructs which are equivalent to
them [9]. In such case our reverse engineering algorithm produces an FM that
is not equivalent to the input FST. However, we argue that such cases may in-
dicate potential design flaws in the feature models that the software engineers
should address. Our algorithm assumes that the input FST is complete, that is
it contains all possible product configurations the FM should denote. Dealing
with incomplete FSTs and incremental adaptation of existing FMs is part of our
future work.

5 Related Work

This section outlines other approaches to reverse engineer feature models. Lopez-
Herrejon et. al published an exploratory study on reverse engineering feature
models using evolutionary algorithms [12], where ETHOM (Evolutionary algo-
riTHm for Optimized feature Models) was used for their implementation. Like
our approach they also use a set of valid program configurations as an input to
their algorithm. We see the advantage that they are theoretically able to reverse
engineer more than one feature model that represents the input FST, which
makes it possible to choose the model that contains the most meaningful feature
hierarchy. Their evaluation showed though that they extracted in most cases
feature models that are not equivalent to the input FST.
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Acher et. al proposed a procedure to extract feature models from product de-
scriptions [I3]. Their reverse engineering algorithm operates on a slightly differ-
ent perspective than ours does. They use semi-structured product descriptions
instead of the mere set of valid feature combinations. These product descriptions
are given in the form of tables where they produce a feature model for every row
in the input tables. This is done through interpreting the values of the individ-
ual cells, e.g. if a cell contains the value ”"Plugin” then the corresponding feature
is extracted as optional. Subsequently they merge the extracted feature models
into a single model that their algorithm returns as output. Weston et. al intro-
duce a framework that supports SPL engineers in constructing FMs from natural
language requirements [14]. Their framework is used to determine the features of
the SPL, to extract the tree structure among the extracted features and to differ-
entiate between mandatory and variant features. She et. al present procedure to
simplify the reverse engineering process of feature models [15]. To do this they use
logic formulas as well as textual descriptions to make proposals to the user who
then guides the extraction process. To extract the hierarchy of the FM tree they
use an implication graph obtained from the logic formulas and similarity measures
among the features of the SPL that have been extracted from the textual descrip-
tions. Andersen et. al propose algorithms to reverse engineer feature models from
propositional logic formulas, these formulas are either in disjunctive normal form
(DNF) or conjunctive normal form (CNF) [16]. Note here that while an FST can
be viewed as a propositional logic formula in DNF, our approach is very different
from Andersen et. al’s. While we use set operations to reverse engineer an FM from
an FST their algorithms heavily rely on BDDs or rather SAT solvers. Moreover we
want to emphasize here that Andersen et. al extracted for their evaluation feature
graphs which need to be converted into feature models at a later time, either with
the help of user input or an automated procedure described in their paper.

6 Conclusions and Future Work

Our evaluation shows that the proposed algorithm is able to reverse engineer
feature models from input FSTs with a median execution time in the order of
milliseconds. Our future work will address the following three issues. First, our
current algorithm does not support circular requires CTCs. We plan to assess
in practice if this scenario can indeed be characterized as a design error. Alter-
natively, we would extend the algorithm to cope with such cases. The second
issue is a thorough scalability assessment. Our current evaluation is limited by
FAMA'’s capability to generate feature sets. We expect to overcome this limita-
tion with an approach sketched in [9]. FMs are not canonical, so there might be
several non-identical FMs that represent the same FST. The third issue we plan
to address is assessing the understandability of our reverse engineered models.
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