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Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers
in the TACAS proceedings). Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way to participate in this exciting event, and that you will all
continue to submit to ETAPS and contribute to making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with
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� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.
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My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only
sequencing, conditionals, and while-loops over elementary instructions. Böhm
trees arose as a convenient data structure in Corrado’s milestone proof of the
decidability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.
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Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the
consolidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit
association founded under German law with the immediate purpose of sup-
porting the conference and the related activities. ETAPS e.V. was required for
practical reasons, e.g., the conference needed (to be represented by) a legal body
to better support authors, organisers and attendees by, e.g., signing contracts
with service providers such as publishers and professional meeting organisers.
Our ambition is however to make of ‘ETAPS the association’ more than just
the organisers of ‘ETAPS the conference’. We are working towards finding a
voice and developing a range of activities to support our scientific community, in
cooperation with the relevant existing associations, learned societies and inter-
est groups. The process of defining the structure, scope and strategy of ETAPS
e.V. is underway, as is its first ever membership campaign. For the time being,
ETAPS e.V. has started to support community-driven initiatives such as open
access publications (LMCS and EPTCS) and conference management systems
(Easychair), and to cooperate with cognate associations (European Forum for
ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed
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deadlines in the first week of October. We published a confidentiality policy to
set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and
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participants, i.e., to look like one large, coherent, well-integrated conference
rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President



Preface

This volume contains the proceedings of FASE 2013, the 16th International
Conference on Fundamental Approaches to Software Engineering, which was held
in Rome, Italy, in March 2013 as part of the annual European Joint Conference
on Theory and Practice of Software (ETAPS). As with previous editions of
FASE, this year papers presented foundational contributions to a broad range
of topics in software engineering, including verification and validation, model-
driven engineering, software comprehension and testing.

This year we received 112 submissions from 32 countries, of which 25 were
accepted by the Program Committee for presentation at the conference, resulting
in an acceptance rate of approximately 22.3%. The submissions comprise 110
research papers and two tool demonstration papers, and the Program Committee
accepted 23 of the research papers and the two tool papers. Each paper received
a minimum of three reviews, and acceptance decisions were reached through
online discussions among the members of the Program Committee and additional
reviewers.

We were honored to host Krzysztof Czarnecki from the University of Waterloo
(Canada) as the FASE keynote speaker at ETAPS 2013, who gave a talk entitled
“Variability in Software: State of the Art and Future Directions.” Krzysztof is an
internationally recognized researcher who has contributed to a broad spectrum
of research areas in the domain of software engineering. His pioneering work in
the field of feature modeling, traceability management, and software variability
has certainly opened new directions in these areas.

Many persons contributed to the success of FASE 2013. Authors of all sub-
mitted papers represent the core of such a conference, and we believe that the
accepted papers make significant steps ahead in the software engineering area.
However, this exciting program would not have been assembled without the
great effort of the Program Committee members in paper reviewing and dis-
cussing under a tight schedule: thanks a lot for your active participation! We
also express our full gratitude to the additional reviewers we involved in the
process in the last two weeks, who were available to revise papers and produce
high-quality reviews in a very short time. We thank Gabi Taentzer, the FASE
Steering Committee Chair, for her timely and accurate responses to our queries
about the whole process management. We also thank the ETAPS Steering and
Organizing Committees for their coordination work.

We sincerely hope you enjoy these proceedings!

January 2013 Vittorio Cortellessa
Dániel Varró
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Küster, Jochen
Lauder, Marius
Lengyel, László
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Change Propagation due to Uncertainty Change . . . . . . . . . . . . . . . . . . . . . 21
Rick Salay, Jan Gorzny, and Marsha Chechik

A Model-Based Synthesis Process for Choreography Realizability
Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Marco Autili, Davide Di Ruscio, Amleto Di Salle,
Paola Inverardi, and Massimo Tivoli

On Extracting Feature Models from Sets of Valid Feature
Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and
Alexander Egyed

Verification and Validation 1

On the Empirical Evaluation of Fault Localization Techniques
for Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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Variability is a fundamental aspect of software. It is the ability to create system
variants for different market segments or contexts of use. Variability has been
most extensively studied in software product lines [10], but is also relevant in
other areas, including software ecosystems [4] and context-aware software [15].
Virtually any successful software faces eventually the need to exist in multiple
variants.

Variability introduces essential complexity into all areas of software engineer-
ing, and calls for variability-aware methods and tools that can deal with this
complexity effectively. Engineering a variable system amounts to engineering
a set of systems simultaneously. As a result, requirements, architecture, code
and tests are inherently more complex than in single-system engineering. A de-
veloper wanting to understand a particular system variant has to identify the
relevant parts of requirements and code and ignore those that pertain solely to
other variants. A quality assurer verifying a variable system has to ensure that
all relevant variants are correct. Variability-aware methods and tools leverage
the commonalities among the system variants, while managing the differences
effectively.

This talk will analyze how variability affects the software lifecycle, focusing
on requirements, architecture and verification and validation, review the state
of the art of variability-aware methods and tools, and identify future directions.

Variability modeling at the requirements level helps explaining a variable sys-
tem and its evolution to all stakeholders, technical and nontechnical ones. A
popular technique is feature models [19,11], which are hierarchically composed
declarations of common and variable features and their dependencies. At the re-
quirements level, system features represent cohesive clusters of requirements [7,8],
providing convenient “mental chunks” to all stakeholders to understand the sys-
tem, its variability, and its evolution. For example, changes at the code level can
be explained as feature additions, removals, merges, or other kinds of modifi-
cations at the feature level [27]. As feature models provide only declarations of
features, an obvious direction is to enrich them with feature specifications, such
as behavioral ones (e.g., [30]). Feature models can also be enhanced with rich
forms of dependencies, such as representations of feature interactions (e.g., [24]),
and with quality attributes, such as performance (e.g., [2,26]). Feature-oriented
software development (FOSD) aims at treating features as first-class citizens,
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that is, modularizing them throughout the entire lifecycle [1]. Although promis-
ing, empirically quantifying the benefits of feature modularization is future work.

Variation points accommodate variability at the architectural level. They are
locations in software artifacts where variability occurs. Variability engineering
classifies variation points according to their variability type [29], such as value
parameters, optional elements, element substitution or repeated instantiation,
and their binding time. The Common Variability Language (CVL) [25], which is
an effort by the Object Management group to standardize variability modeling,
provides a comprehensive taxonomy of variation points. Many existing design
and architectural patterns [16,6] can be used to implement variation points, as
they are often about allowing certain system aspects to vary easily. For exam-
ple, the strategy pattern is used to vary algorithms within a system. Planning
and scoping variability can guide and ground architectural design: varying parts
need to be localized and hidden behind common interfaces. But variability also
impacts established modularity concepts. For example, variable modules need to
expose configuration interfaces and their functional interfaces may need to be
variable. This combination leads to the notion of variability-aware module sys-
tems [21], with implications on compositionality and type consistency. Tools and
languages using such module systems also need to support staged configuration
of such modules [12]. Further, variability affects other modularity topics, such
as cohesion, coupling, crosscutting, and tangling. Understanding the impact of
variability on modularity is a topic for future research.

Variability also affects verification and validation. Variability-aware methods
leverage commonalities to reduce time and effort to check variable systems. The
reduction is useful for product lines with large numbers of products, but is indis-
pensable for ecosystem platforms, whose users may decide to instantiate any
variant out of the exponential number of supported variants. Existing work
includes variability-aware forms of standard analysis techniques, such as type
checking (e.g., [20,13]), dataflow analyses (e.g., [5]) and model checking (e.g.,
[9]). In testing, variability engineering can be applied to tests in order to de-
rive test suits along with a variant. For example, the variability model and the
build system of the eCos operating system allow users to derive a system variant
along with suitable tests. Researchers have also proposed the concept of shared
execution of tests on multiple variants [23,22] and adapted combinatorial test-
ing to generate sets of variants covering certain feature-combination heuristics
for platform testing (e.g., [28]). However, testing variable systems offers plenty
opportunities to be explored in future research, including test selection, priori-
tization, and generation at unit, integration, and system levels, and potentially
in the context of specific changes.

Indisputably, variability has become a fundamental aspect of software engi-
neering. Variability engineering is practiced today both in open-source (e.g., see a
study of variability engineering in open-software systems software, including the
Linux kernel [3]) and industry (e.g., see the experiences of Danfoss [18], GM [14],
and Rolls-Royce [17]). Variability engineering also offers abundant opportunities
for software researchers to explore new directions in a wide range of areas within
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requirements, architecture, verification and validation, and beyond, including
reverse engineering, programming languages, performance, reliability, and secu-
rity. Today’s and future application domains pose new challenges to variability
engineering to be addressed in research. They include scaling variability to sys-
tems of systems in automotive and aerospace engineering and dealing effectively
with software ecosystems, cloud computing, and context-aware applications in
enterprise and consumer domains.
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Abstract. The rising impact of software development in globally distributed
teams strengthens the need for strategies that establish a clear separation of con-
cerns in software models. Dealing with large, weakly modularized models and
conflicting changes on interrelated models are typical obstacles to be witnessed.
This paper proposes a structured process for distributed modeling based on the
modularization technique provided by composite models with explicit interfaces.
It provides a splitting activity for decomposing large models, discusses asyn-
chronous and synchronous editing steps in relation to consistency management
and provides a merge activity allowing the reuse of code generators. All main
concepts of composite modeling are precisely defined based on category theory.

Keywords: distributed modeling, composite models, model transformation, EMF.

1 Introduction

Nowadays, model-driven development is a widely-spread paradigm to cope with the
growing complexity of software requirements. Reliable technologies have emerged that
allow specifying an application on a high level of abstraction using models. These mod-
els can then be transformed towards a running software system. Model-driven develop-
ment is based on modeling languages that are usually defined using meta-modeling: a
meta-model defines a language of individual models by predefining their structure. An
important meta-modeling architecture has been proposed by the Object Management
Group in terms of the Meta Object Facility (MOF) [18]. An essential subset of MOF
has been implemented by the Eclipse Modeling Framework (EMF) [8].

When lifting concepts and tools from model-driven development to a distributed en-
vironment, a couple of challenges arise: contributors at different locations might be
responsible for models that are interconnected in some sense. Thus, clear conditions
and conventions for the editing of models are required to avoid the emergence of in-
consistencies. Another drawback of existing tools is the sometimes monolithic nature
of large models. Large models are difficult to comprehend and maintain. Thus, well-
defined modularization strategies for models are required.

EMF models can be modularized using remote references between individual mod-
els. The targets of remote references are then temporarily represented by proxy elements
and on demand replaced by the actual model element. In consequence, logically, all in-
volved models constitute one big model. While this technique is sufficient for distribut-
ing a large model over a set of resources, it does not establish well-known engineering

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 6–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Towards a Distributed Modeling Process Based on Composite Models 7

principles such as encapsulation and information hiding. Hence, we refer to this ap-
proach as a physical modularization technique. In opposition, we propose composite
models [12] as a logical modularization technique that establishes information hiding
and allows for local consistency checks. A composite model comprises a set of com-
ponents that are interconnected by export and import interfaces. Possible topologies of
model components are predefined by meta-model components. We provide core tool
support for composite models and their transformation.

As central contribution of this paper, we show how to utilize composite models in
order to address three questions that arise when lifting model-driven development to a
distributed environment: (1) How can a model be decomposed for logical modulariza-
tion? (2) How can models be edited in a distributed way such that consistency between
model components is preserved? (3) How can model-to-code transformation be per-
formed when models are distributed?

Our solution to these questions is a process for distributed modeling. In order to
tackle question (1), a split activity is elaborated that decomposes a given model into
a set of components forming a composite model. As for question (2), we discuss how
editing steps can be specified and performed in a systematic way using composite model
transformation. As a tentative solution to question (3), a merge activity is introduced
that allows the reuse of existing code generation components.

The remainder of this paper is structured as follows: Sect. 2 provides the model-driven
development of simple web applications as a running example. Composite models are
recapitulated in Sect. 3. An overview of the process forming the main contribution of this
paper is given in Sect. 4. The activities constituting the process – split, edit, and merge
– are elaborated in Sects. 5, 6, and 7. We present an application scenario in Sect. 8 and
tool support in Sect. 9. Sect. 10 discusses related work. Sect. 11 concludes.

2 Scenario: Model-Driven Development of Web Applications

Web applications as a software domain have undergone domain analysis in visual web
modeling languages such as WebML [5] or UWE [15]. A common design decision
found in these modeling languages is their branching into a set of viewpoint-oriented
sub-languages – such as a structural data model, a presentation model and a navigation
model. When a web application is to be developed by a distributed team, it is likely that
the contributors obtain responsibilities for the different viewpoints, e.g. one contributor
acts as domain modeler and another one as presentation modeler. To provide a full
model-driven development infrastructure, domain-specific languages such as WebML
are supplemented with code generation facilities that define a language semantics.

As a running example, Fig. 1 provides the syntax for the Simple Web Application
Language (SWAL) as a modeling language for the specification of simple web appli-
cations1. SWAL is specified by means of an EMF meta-model, comprising attributed
model classes as nodes with directed references as edges. Classes may be abstract. Ref-
erences may be containment references that ensure a tree-like structure for models.

1 The development of SWAL was initiated by Manuel Wimmer and Philip Langer at the Tech-
nische Universität Wien and reimplemented for its use in modeling courses at the Philipps-
Universität Marburg.
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Fig. 1. SWAL meta-model

The class HypertextModel is used as root object of a web application to be spec-
ified. It contains a hypertext structure of interconnected pages and a DataModel for
the specification of structural models of persistent data. Persistent data is based on
distinct Entities which are charaterized by a number of Features, i.e. Attributes and
References. An attribute is typed over a primitive DataType, a reference over an entity.

Fig. 2. Poetry contest web application model

The hypertext structure is based on Pages
being interconnected through Links. De-
pending on its content, a page can either
be dynamic or static. A dynamic page
refers to an entity and can either be an
index page displaying a list of available
data records or a details page presenting
a detailed view for a specific record.

In Fig. 2, a poetry competition web ap-
plication is specified. Contest, poet, and
poem entities are to be displayed on in-
terlinked index and details pages. The
concrete syntax given in the presentation
facilitates convenient editing by hiding
the DataModel and HypertextModel classes: pages and entities are visualized as nodes
in different layouts. Hyperlinks, references, and links between pages and entities are
visualized as arrows.

3 Composite Models

This paper investigates a process for distributed modeling based on composite models.
Composite models provide a logical modularization technique for models by declaring
explicit export and import interfaces. Export and import interfaces identify model ele-
ments provided to and obtained from the environment, respectively. While an import is
assigned to exactly one export, an export can serve an arbitrary number of imports.

The core of a component is a conventional model called the body. Model elements
in export and import interfaces are identified with model elements in the body. Im-
port interface elements are also identified with export elements. An interface can hide
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Fig. 3. Composite model with explicit export and import interfaces (taken from [11])

structural complexity of its component body, e.g. flatten its inheritance hierarchy. The
interface structure of model components is predefined by meta-model components.

Consider Fig. 3 for a schematic representation of an example composite model.
The network level constitutes a topology of components comprising body, export, and
import nodes as well as interconnecting edges. The object level comprises a set of inter-
related models, each providing a refinement for one of the network nodes, with interre-
lating mappings. Dashed arrows indicate how interfaces are integrated in body models,
dotted arrows indicate an assignment between import and export interfaces. Mappings
on object level are compatible with network level arrows in the sense that source and
target nodes of mapped arrows are mapped to source and target of the image arrow.

Formalization. The internal representation of models can be well represented by graph
structures. Therefore, the basis of our formalization are typed graphs and graph mor-
phisms as defined in e.g., [6,13]. Graph morphisms are structure-preserving mappings
between graphs. Typed graphs and graph morphisms form the category GRAPHSTG.
Since the following definitions of composite graphs and graph morphisms are given
in a category-theoretical way, it is also possible to use other kinds of graphs and mor-
phisms as basic ingredients of composite graphs. For example, composite graphs over
typed graphs with inheritance and containment as well as inheritance and containment-
preserving graph morphisms are considered in [13].

Definition 1 (Composite network graph). A composite network graph is a graph G
typed over graph CNG (shown on the right) by a graph morphism t : G → CNG
such that the following constraints hold: (1) each export node is source of exactly
one network edge running to a body node
and (2) each import node is source of ex-
actly two network edges, one edge is run-
ning to a body node and the other to an
export node. If there are export nodes with-
out outgoing edges, corresponding compos-
ite network graphs are called weak.
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Definition 2 (Composite network graph morphism). Given two network graphs g :
G → CNG and h : H → CNG, an injective graph morphism f : G → H forms a
valid composite network graph morphism, short network morphism, if h ◦ f = g.

Composite network graphs and network graph morphisms form a category, called
COMPONETGRAPHS, that is co-complete [13]. Weak composite network graphs and
their morphisms also form a category; however, this one does not have pushouts.

Definition 3 (Composite graph). Given a (weak) composite network graph G,
a (weak) composite graph Ĝ over G is defined as Ĝ = (G,G(G),M(G)) with

– G(G) being a set of graphs, called local graphs, of category GRAPHS with each
graph uniquely refining a network node in GN : G(G) = {Ĝ(n)| Ĝ(n) is a graph
and n ∈ GN},

– M(G) being a set of graph morphisms, called local (graph) morphisms, each re-
fining a network edge in GE : M(G) = {Ĝ(e) : Ĝ(i) → Ĝ(j)|Ĝ(e) is a graph
morphism and e ∈ GE with s(e) = i and t(e) = j}, and

– for all paths Ĝ(x) ◦ Ĝ(y), Ĝ(z) : Ĝ(A) → Ĝ(B) we have Ĝ(x) ◦ Ĝ(y) = Ĝ(z)
with x, y, z ∈ GE . (commutative morphisms)

Definition 4 (Composite graph morphism). Given two (weak) composite graphs Ĝ
and Ĥ with composite network graphs G and H , resp., a (weak) composite (graph)
morphism, written f̂ : Ĝ→ Ĥ , is a pair f̂ = (f,m) where

– f : G → H is a composite network
graph morphism and

– m is a family of morphisms
{f̂(n) | n ∈ GN} such that
• for all nodes i ∈ GN :
f̂(i) : Ĝ(i) → Ĥ(fN(i)) is a
graph morphism and

• for all edges e : i → j ∈ GE :
Ĥ(fE(e))◦f̂(i) = f̂(j)◦Ĝ(e) (see
the illustration on the right).

i

e

��

Ĝ(i)
f̂(i) ��

Ĝ(e)

��

Ĥ(fN (i))

Ĥ(fE(e))

��
j Ĝ(j)

f̂(j) �� Ĥ(fN(j))

If morphism f and all morphisms in m are inclusions (injective), f̂ is called inclusion
(injective). Given a graph T̂G and a composite morphism t̂ : Ĝ → ˆTG is called typed
composite graph.

Composite graphs and graph morphisms form a category, called COMPGRAPHS, being
co-complete. Weak composite graphs and weak composite morphisms form category
COMPGRAPHSweak. COMPGRAPHSTG is the category of typed composite graphs and
their morphisms. (See [13].)

This formalization induces that composite graphs are consistent in a certain sense:
Since all morphisms have to be total, especially the ones between import and export
interfaces, inconsistencies between components in the sense of unsatisfied imports may
not occur. It is up to future work to adapt composite models such that temporary incon-
sistencies are tolerated, i.e., partial import mappings are allowed.
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4 Distributed Modeling Process: Overview

In this section, we give an overview on a modeling process that addresses three issues
to facilitate distributed model-driven development: (i) How can composite models be
used to structure models that lack an appropriate modularization? (ii) How can compos-
ite models be edited systematically so that inconsistencies are avoided? (iii) How can
composite models be used as a blueprint for code generation? We refer to this process
as a distributed process in terms of a collection of activities that enable a distributed
team to work on a logically modularized model.

Fig. 4. Distributed modeling process

Fig. 4 gives an outline of the process: When applying composite models to an exist-
ing software development project, a monolithic model may exist that is required to be
decomposed. In order to support this, we propose a splitting technique. In the distributed
modeling phase following up, editing steps are performed, involving asynchronous or
synchronous editing as well as changes of the network structure. Afterwards, in order
to support code generation, all components may be merged together. The resulting code
may have gaps to be filled in by the distributed team.

This overview refers to models on an arbitrary meta-level, e.g., models in applica-
tion development or language development. However, the full potential of the process
becomes evident when it is applied on two interrelated levels, e.g., application and
language development. For instance, a legacy meta-model may be split by language
developers. Conforming application models are then split according to the language
decomposition by application developers. This activity is elaborated further in Sect. 5.

5 Model Splitting

This section elaborates model splitting as a migration technique for introducing logical
modularization based on composite models to existing software development projects.
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Fig. 5. Result of splitting SWAL into meta-model components

Fig. 6. Result of splitting the poetry model along the SWAL component split

It assumes a monolithic model or a set of models interconnected by remote references.
It produces a composite model comprising a set of model components interconnected
by export and import interfaces. Meta-models as well as their conforming models may
be split. As we will prove for the special case of binary splitting, i.e., the decomposition
into two components, the split of a typed model can even be uniquely derived from
the split of its meta-model. Hence, our splitting strategy is especially suitable for a
language-oriented split along the main view-points on the system under construction.

Example 1. In Fig. 5, SWAL has been split in two meta-model components comprising
classes related to specific viewpoints: domain and hypertext modeling. Both resulting
components are self-contained units in the sense that all model references run between
classes within the same component. However, they are also interrelated as they are
equipped with interfaces. SwalHypertext’s import interface contains DataModel and
Entity classes mapped to the DataModel and Entity classes provided by SwalData’s
export which allows for the exchange of data models.

Finding a proper decomposition for meta-models is challenging since it can largely
benefit from automation, but on the other hand, may require some human intervention.
A heuristics may be used to recommend a reasonable decomposition to the stakeholder
based on some indicators of interrelation: e.g., as it is the case in the example, a high
coupling of references, especially of containments, indicates classes often instantiated
in combination. In turn, a stakeholder might consider it desirable to reveal more classes
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in interfaces than a minimal subset, e.g. he might want to provide the references running
between entities to support comprehension. In any case, the benefit from finding an ap-
propriate decomposition becomes evident considering the split of conforming models:

In Fig. 6, the poetry contest model was split towards the viewpoint meta-models in-
troduced in Fig. 5. Both meta-model components are instantiated by conforming model
components. Especially, export and import interfaces are instantiated and used for the
sharing of entities between both components. As the split follows the typing of model
elements and their assignment to meta-model components, it can be automatized.

Formalization. In the following, a formalization is provided for splitting a meta-model
in two meta-model components with intermediate export and import interfaces and,
furthermore, for splitting conforming models along that split. Any meta-model that can
be represented as a plain graph can be used as input, e.g., a single self-contained model
or a group of models interconnected by remote references.

Proposition 1 (Binary split of a composite graph). Given graph G and two sub-
graphs G1 and G2 with inclusions g1 : G1 → G and g2 : G2 → G, their intercon-
necting interfaces can be uniquely determined such that the resulting diagram forms a
valid composite graph with two components.

Proof idea. The import subgraph GI is constructed as pullback for the inclusions. The
export subgraph GE is constructed as epi-mono-factorization for the inclusion running
between GI and G2 (see [21] for the complete proof).

Proposition 2 (Binary split of a typed composite graph). Given a type graph TG
with a binary split and a graph G with its typing morphism t over TG. There is a
unique binary split of G being type compatible with the resulting composite type graph.

Proof idea. Graphs G1, G2, GI , GE , inclusion and typing morphisms result from suc-
cessive pullback constructions (see [21] for the complete proof).

Considering the view-oriented splitting of large meta-models as e.g. for UML, it makes
sense to iterate several binary splits. An example split scenario for UML can look like
this: (1) split the structure component from the behavioral component, (2) split the
structure component further into package and class structure components, (3) split the
behavioral component into a basic action component and a behavior diagrams compo-
nent, and (4) continue splitting this component until the well-known behavior diagrams
are each separated in model components. Of course, component interfaces have to be
continuously adapted during this splitting process.

6 Distributed Model Editing

A crucial challenge of collaborative editing is to preserve the consistency of mod-
els while keeping editing steps as independent as possible. Several approaches to the
handling of model inconsistency, being defined as the maintenance of contradictory in-
formation within a network of models, center on the detection and resolution of incon-
sistencies [9,17]. The liberal strategy of allowing arbitrary operations to be applied and
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using a reconciliation stage relies on facilities to perform a global consistency check.
However, these facilities may not always be available, e.g., for security or legal reasons.
Hence, we propose a complementary strategy of inconsistency avoidance, giving edit-
ing steps at hand that are classified as either safe or critical to the consistency of models.
We provide the notion of a relaxed consistency avoidance that allows performing crit-
ical steps if necessary. In contrast, a strict inconsistency avoidance may be an obstacle
to the natural evolution of a software project and is prone to dead-lock situations.

Existing collaborative model editors such as Papyrus [19] or MagicDraw [16] imple-
ment a strategy for inconsistency avoidance by locking selected model parts for mod-
ification. These editors follow an asynchronous approach to editing single models that
can be displayed and modified in multiple editors at once. As for the use of composite
models, the management of consistency is facilitated by the maintenance of interfaces.
It is desirable to support asynchronous and synchronous editing steps: For instance, two
components with related contents might be expanded by individual contributors or in
parallel by one contributor. Thus, this section discusses asynchronous as well as syn-
chronous editing steps and their formalization based on the transformation of composite
graphs. Using our basic implementation of composite model transformation comprising
a rule editor and interpreter engine suite, it is possible to deploy transformation rules as
editing steps, e.g. refactorings, within existing editors such as Papyrus.

Example 2. For the poetry contest application specified in the Fig. 6, new requirements
might be stated, e.g., the management of books. When domain and hypertext compo-
nents are developed independently, the first action done is that the domain modeler adds
this new entity to the body and export of the swaldata component. The hypertext mod-
eler then adds the entity to the import interface and body of the swalht component and
creates corresponding pages for the entity resulting in the model shown in Fig. 7. In
contrast, it might also be desirable to perform these changes in parallel: e.g., imagine
an editing command that adds an entity and corresponding pages to both components.
We distinguish these two kinds of editing as asynchronous and synchronous editing.

Formalization. Synchronous and asynchronous editing steps can be formalized a
model transformations on a composite model.

Fig. 7. Model components after editing. Thick borders indicate newly added elements.
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Definition 5 (Composite graph transformation).

Given a composite graph ˆTG, a composite graph rule p̂ = (L̂
l̂←↩ K̂

r̂
↪→ R̂, ˆtype) con-

sists of composite graphs L̂, K̂, and R̂ typed over ˆTG by the triple ˆtype = ( ˆtypeL̂ : L̂→
ˆTG, ˆtypeK̂ : K̂ → ˆTG, ˆtypeR̂ : R̂ → ˆTG) being composite morphisms and typed

composite morphisms l̂ : K̂ ↪→ L̂ and r̂ : K̂ ↪→ R̂ being inclusions such that ∀n ∈

KN : p̂(n) = (L̂(n)
l̂(n)
←↩ K̂(n)

r̂(n)
↪→ R̂(n), ˆtype(n)) is a graph rule (as defined in

e.g. [6]).

A composite IC-graph transformation (step) Ĝ
p̂,m̂
=⇒ Ĥ

of a typed composite graph Ĝ to Ĥ by a (weak) com-
posite graph rule p̂ and a typed injective composite mor-
phism m̂ : L̂ → Ĝ is given on the right, where (1) and
(2) are pushouts in the category of COMPGRAPHSTG

(COMPGRAPHSweak
TG ).

L̂

m̂

��

K̂�
�l̂��

d̂

��

� � r̂ �� R̂

n̂

��
(1) (2)

Ĝ D̂�
�ĝ�� � � ĥ �� Ĥ

A composite graph transformation is a sequence Ĝ0 ⇒ Ĝ1 ⇒ ... ⇒ Ĝn of direct
composite graph transformations, written Ĝ0

∗⇒ Ĝn.

A composite transformation can be performed component-wise, i.e., performing the
network transformation first and all local transformations for preserved network nodes

afterwards if all composite morphisms are injective. Transformation step Ĝ
p̂,m̂
=⇒ Ĥ

can be performed if m̂ fulfills the composite gluing condition: the resulting structure
must be a well-formed composite graph. Otherwise, it can happen that context edges
dangle afterwards. The gluing condition has to be checked on the network and all local
transformations. Moreover, for all network nodes that shall be deleted their local graphs
have to be fully determined by the match and local graph elements may be deleted only
if there are no preserved interface elements being mapped to them. Weak composite
rules are not allowed to change stand-alone exports and to produce stand-alone exports
by deleting their body graphs. (For more details see [11].)

Example 3. Two sample composite rules, shown in a compact representation, are pro-
vided in Fig. 8. Del and New tags indicate the containment of nodes in L̂−K̂ or R̂−K̂,
respectively. Rule a) is a synchronous rule specifying the addition of a new entity and
corresponding index and details pages to both components in parallel. Rule b) is an
asynchronous rule removing an entity from a body and an adjacent export. Applying
rule a) to the composite model in Fig. 6, nothing is deleted. Consequently, the com-
posite gluing condition is obviously fulfilled. To obtain the composite model in Fig. 7,
variable name has to be instantiated by ’book’. Additional references between book,
poem, and poet entities have to be added by another editing step.

Wrt. global consistency, a) is evidently neutral as an intact export/import relation is
introduced. The editing step specified by b) is to be considered a critical one since the
export interface being edited might be referred to from a remote import interface. A user
performing an editing step like this may be warned and suggested to clarify the editing
step to other team members. Vice versa, a) could be followed by a notification to the
other contributors stating that the exported class is available for other components.
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Fig. 8. Synchronous and asynchronous composite model transformation rules

7 Model Merging for Code Generation

Fig. 9. Merged application model

Aiming at providing a full life-cycle of
model-driven development, code genera-
tion as a semantics for composite models
is to be investigated. Our long-term goal
is to investigate a distributed code gener-
ation allowing the successive code gen-
eration for individual components. This
kind of code generation is highly de-
sirable, considering model components
that may be protected by law and there-
fore cannot be transmitted. However, it
is left to future work. As a tentative so-
lution, we elaborate a centralized code
generation instead. Our strategy is based
the reuse of existing code generators that
consume a single model. Hence, a technique to support the merge of a composite model
to a single model is required. We provide this technique utilizing the information pro-
vided by export and import relations.

Example 4. Fig. 9 shows the result of merging the model shown in Fig. 7: Based on
their participation in export and import relations, pairs of objects are identified as related
ones and glued together. The resulting model is well-typed because it conforms to the
pre-split meta-model. This strategy can also be applied for the merge of meta-models.

Formalization. Composite model merging can be formalized as a colimit construction.

Proposition 3 (Graph merge). Given a composite graph, there is a unique graph con-
taining its merge result.

Proof. Considering a composite graph C as a diagram in category GRAPHSTG, its col-
imit consists of a simple graph G and a family of graph mophisms from all local graphs
of C to G. The colimit construction is uniquely determined.
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Fig. 10. Scenario for the distributed modeling process

8 Application Scenario

This section provides a simple application scenario to show how the distributed process
is applied. The scenario, illustrated in Fig. 10, concerns with web application develop-
ment based on the SWAL web modeling language. We assume that the language has
been subject already to a split activity into domain and hypertext components that was
performed by the language developers.

The starting point is monolithic model M conforming to SWAL. M is logically
distributed when project manager Samantha performs a split along the given language-
level decomposition. The resulting composite model comprises domain model compo-
nent D and hypertext model component H being interconnected by means of export and
import interfaces. Samantha now assigns team members to viewpoints: Frank receives
responsibility for domain modeling. Mike becomes the hypertext modeler. The internal
details of remote components are hidden to both developers respectively: Frank’s scope
of visibility is restricted to his assigned component being D. Mike’s scope of visibility
comprises his assigned component being H, and remote component D’s export (cf. the
notion of weak composite graphs introduced in Sect. 3). From now on, Frank and Mike
perform asynchronous editing steps, reflected in increasing version numbers. Their first
steps are neutral to inter-model consistency and do not require conflict handling.

Eventually, the transformation from D2 to D3 is a critical editing step threatening
global consistency, e.g. the deletion of a model element being visible in the export.
Hence, when performing this editing step, Frank receives a warning. His options are: to
manually establish communication to Mike clarifying the change, to let a default mes-
sage be delivered to Mike, to take back the change or to do nothing. In the two former
cases, Mike can react by performing an editing step such that consistency is retained.
When doing nothing, consistency might be broken. Later on, Samantha performs a syn-
chronous editing step changing both components in parallel. Eventually, she decides
that the model components have accomplished a solid state and should be merged for
code generation. A global consistency check may be performed before the merge to
ensure a valid result. If at some later point in time new requirements are added, further
editing can be performed on the components in their state before the merge.
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To summarize, the maintenance of explicit export and import interfaces allows to
reason about a smart and relaxed conflict avoidance: at all times, developers are aware
whether their editing is either safe or critical to inter-model consistency. In the case
of critical steps, further intervention may become necessary. However, an automatized
conflict detection and resolution algorithm can be considered complementary and might
be applied at any time throughout the development process. Especially a conflict detec-
tion step right before the code generation step is highly desirable.

9 Tool Support

The core processing of composite models is supported by an existing editor environ-
ment based on the Eclipse Modeling Framework. For a set of individual models, wiz-
ard tools are provided allowing the derivation of export and import interfaces in order
to establish model interconnection. Export and import interfaces are implemented as
separate resources with special references, supported by a delegation mechanism that
replaces EMF’s proxy concept. Furthermore, we have implemented a model transfor-
mation language and tool set allowing the specification and execution of editing steps.
The transformation language can also be used for model-to-model transformation, e.g.,
to support a cleanup step before code generation. The tool set is open source being pro-
vided at http://www.uni-marburg.de/fb12/swt/forschung/software along
with examples and a tutorial. Automation of splitting and merging is left to future work.

10 Related Work

Basic forms of model splitting and joining are considered in [7] where a global model
view is split into two local ones with a common interface. The authors show that their
forms of model decomposition and integration are in bijective correspondence. In ad-
dition, they show that this result can be extended to views with a special form of con-
straints. While their model decomposition is a special case of our model splitting into
two components with identical import and export interfaces, we do not have taken con-
straints into account yet.

The extraction of sub-models from large models has been considered under the head-
ing of model slicing. [3] presents a tool that allows defining model slicers for domain-
specific languages by determining a selection of classes and features to extract. [14]
provides an elegant formalization of model slicing as it is shown that the sub-models
gained from slicing along particular references constitute a lattice. A linear-time al-
gorithm establishing this decomposition is elaborated. These approaches differ from
model splitting in so far as they aim at extracting sub-models conforming to the same
meta-model as the model to be sliced. In turn, model splitting is integrated into an over-
lying process: a meta-model is split in several components. Afterwards, models based
on these meta-models are split towards these components. The splitting of a model to-
wards components with export and import interfaces is specific to our approach. In [10],
model views are constructed along query patterns. The integration of query patterns into
our approach may be worthwhile in future.
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As for distributed editing, an elaborated strategy for inconsistency detection is pro-
vided by Macromodeling [20]. Macromodeling allows integrating multiple models of
different modeling languages on type and instance layers. A major objective of macro-
modeling is the check of global consistency conditions based on logical formulas.
However, it does neither envision a specific modeling process nor the use of explicit
interfaces. Moreover, explicit interfaces as established by composite models are orthog-
onal to the Connected Data Objects (CDO) [4] client-server framework for transparent
distributed modeling. An integration of composite models with CDO is current work.

The merge of models can be compared to model weaving that is implemented by
different tools, e.g., Atlas Model Weaver (AMW) [1]. AMW allows the weaving of a
set of models by constructing a weave model based on a weave meta-model. It sup-
ports the manual and semi-automatic weaving of models by means of heuristic-based
transformations. Model merging can also be compared to schema integration [2] where
similarities between database schemes are identified in order to merge these schemes
into one. Unlike model weaving or schema integration, our model merging does not
determine new interrelations but assumes a set of interrelations given by import/ex-
port relations. It can be fully automatized exploiting this information. A closely related
work to our kind of components and model merging are metamodel components and
their composition as presented in [22].

11 Conclusion and Outlook

The global distribution of software development spawns a need for new well-defined
software engineering methods. The process presented in this paper is our contribu-
tion towards model-driven distributed software development. It proposes split, edit, and
merge activities based on composite models being a formally sound modularization
mechanism that allows for local consistency checks and systematic transformation.

Future work is the enhancement of existing tool support towards a comprehensive
tool environment supporting all parts of the presented distributed modeling process.
Firstly, we aim at providing convenient editor support that allows editing components
equipped with interfaces at the right level of abstraction. Secondly, splitting and merg-
ing activities are to be automatized in adequate ways. It is of our particular interest
to find a heuristics that gives reasonable suggestions for splitting. Thirdly, distributed
code generation deserves further research. Having a suitable tool support at hand, we
are heading towards larger examples that show the scalability of this approach. We are
convinced that precisely defined basic operations on composite models are a clear basis
for a sound distributed modeling process.
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Abstract. Uncertainty is ubiquitous in software engineering; however, it has
been typically handled in adhoc and informal ways within software models. Au-
tomated change propagation is recognized as a key tool for managing the acci-
dental complexity that comes with multiple interrelated models. In this paper, we
address change propagation in the context of model uncertainty and consider the
case where changes in the level of uncertainty in a model can be propagated to
related models. We define such uncertainty change propagation using our ear-
lier formalization and develop automated propagation algorithms using an SMT
solver. A preliminary evaluation shows that the approach is feasible.

1 Introduction

Uncertainty is ubiquitous in software engineering. It has been studied in different
contexts including requirements engineering [3], software processes [7] and adaptive
systems [21]. An area that has not received much attention is the occurrence of uncer-
tainty in software models. Model uncertainty can be the result of incomplete informa-
tion about the problem domain [24], alternative design possibilities [22], stakeholder
conflicts [18], etc.

Despite its importance, uncertainty is typically not treated in a first-class way in mod-
eling languages and as a result, its treatment is adhoc, e.g., including informal notes in
the model. To illustrate what we mean by model uncertainty, consider Fig. 1 which
shows a UML class and sequence diagram that are part of a hypothetical automotive
design model that focuses on the control of the power windows. The sequence diagram
shows a scenario in which a security threat is detected and the car responds by closing
the windows. However, the modelers are uncertain about various facets of the design,
and their points of uncertainty are indicated using the notes attached to the model el-
ements. The top note in the sequence diagram indicates that they are not sure whether
to keep the threat detection functionality separate from the car or to put it into the car.
The bottom note expresses uncertainty about whether the windows should be disabled
after being closed. A corresponding note can be found for the disable() operation in
the class diagram since if the message is never sent, the operation may not be needed
either. Finally, the other note in the class diagram shows that other operations may be
needed.

Informal approaches such as the one we have described are adequate for capturing
uncertainty information as documentation but they do not lend themselves to automa-
tion and mechanisms such as change propagation. To help address this problem, in pre-
vious work we have proposed a language-independent approach for expressing model
uncertainty using model annotations with formal semantics [20].

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 21–36, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The change propagation problem [13] has been defined as follows: given a set of
primary changes that have been made to software, what additional, secondary, changes
are needed to maintain consistency within the system? Change propagation has been
proposed as a mechanism to help manage and automate model evolution. Existing ap-
proaches to change propagation focus exclusively on model content changes (e.g., [23],
[2],[15]); however, other aspects of a model may be subject to change as well: e.g.,
comprehensibility, completeness, etc. Model uncertainty is one such aspect. Changes
that increase or decrease the level of uncertainty as the model evolves can force fur-
ther model changes, both within the same model and across different related models –
thus, uncertainty change is another context in which an automated change propagation
mechanism could be used.

The key contribution of this paper is an automated approach to uncertainty change
propagation within models. More specifically, first we identify and distinguish the prob-
lem of model uncertainty change from model content change. Second, we define the
conditions for uncertainty reducing and uncertainty increasing change propagation, in-
dependently of how the uncertainty is expressed. Third, we instantiate these conditions
for our formal annotation method for expressing uncertainty and define generic algo-
rithms and tooling for computing uncertainty change propagations parameterized by a
modeling language.

The remainder of the paper is organized as follows. In Sec. 2, we develop and il-
lustrate a general approach for understanding uncertainty change and its propagation.
In Sec. 3, we review the foundations of our formal annotation method for expressing
model uncertainty and in Sec. 4, we apply the uncertainty change approach from Sec. 2
to this annotation method. In Sec. 5, the algorithms for uncertainty change propagation
are described. In Sec. 6, they are evaluated by varying the key problem characteristics
with randomly generated models. We discuss related work in Sec. 7 and make conclud-
ing remarks in Sec. 8.

2 Uncertainty Change Propagation

In this section, we develop the concept of uncertainty change propagation.

Meaning of Uncertainty. Uncertainty can be expressed as a set of possibilities. We can
apply this approach to expressing uncertainty within a model by saying that it corre-
sponds to the set of possible models, or concretizations, that are admissible given the
uncertainty. A natural way to define this set is to indicate points of uncertainty within a
model. Although we can do so using informal notes, as in the models EX1 and EX2 of
Fig. 1 (this example was described in the introduction), we present a precise, formal ap-
proach in Sec. 3. A point of uncertainty can be viewed as a constraint whose satisfaction
we are unsure about, so that not all of the concretizations satisfy it. For example, the
note “not sure we need the operation disable()” corresponds to the constraint “class
PowerWindow has the operation disable()” which may not hold in all possible models
corresponding to EX1. The points of uncertainty of model EX1 in Fig. 1 suggest that the
set of concretizations of EX1, denoted by [EX1], contains all class diagrams that extend
EX1 by adding zero or more operations to classes Controller and/or PowerWindow
and may omit the operation disable(). Similarly, the notes attached to EX2 are its
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EX2

EX1
Car:ControllerMon1:Monitor

Not sure whether to keep the monitor
separate from the controller.

Not sure we want
to disable.

Driver:PowerWindow

threatResponse()
close()

disable()

Monitor Controller

threatResponse()

PowerWindow

open()
close()
disable()

Not sure what other
operations. Not sure we need

disable() operation.

Fig. 1. A pair of related models containing uncertainty

points of uncertainty, suggesting that [EX2] contains the variants in which Mon1 and
Car are merged or distinct as well as those in which the message disable() is omitted.

Uncertainty Change. A model change typically consists of additions, deletions and
changes to the elements of the model. When we consider a model with uncertainty, an
additional dimension of change becomes possible: the level of uncertainty may change.
For example, replacing the name of the object Mon1 to MyMonitor in EX2 changes
the model content but does not affect the uncertainty. However, removing the note on
the message disable() reduces the uncertainty in the model, because we no longer
consider concretizations that omit this message, but does not change the content of the
model. Another way to change uncertainty is to increase it. For example, adding a note
to say that we are not sure we need the close() message increases uncertainty without
changing the content of the model.

These examples suggest that an uncertainty reducing (increasing) change to a model
corresponds to reducing (increasing) the number of points of uncertainty. However,
when the constraints represented by points of uncertainty depend on each other, a
change at one point of uncertainty can force a corresponding change at other points
of uncertainty, both within the same model and in related models. We call this process
uncertainty change propagation. For example, suppose that EX1 and EX2 are subject to
the following well-formedness constraints:

wff1 Every message in a sequence diagram must begin on a lifeline.
wff2 Every message in a sequence diagram must correspond to an operation of the

message target object’s class.

Assume that we perform an uncertainty reducing change in EX2, denoted by EX2 →
EX2′. Specifically, we remove the note attached to the message disable() (i.e., we
become sure that disable() occurs), resulting in the model EX2′. This message is con-
tained in every concretization of EX2′, and, by wff2, the only well-formed concretiza-
tions of EX1 are those containing the operation disable(), i.e., the presence of this
operation is forced by the change to EX2 and the constraint wff2. However, now the
note attached to the operation disable() no longer describes a point of uncertainty
because there are no concretizations that omit this operation. To repair this violation
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a1 a2

b

Fig. 2. Example used to show non-uniqueness of uncertainty increasing change propagation

without undoing the original change in EX2, we propagate the change in EX1, denoted
by EX1 ��� EX1′, by removing this note. Thus, dependencies between points of uncer-
tainty may mean that the removal of some may force the removal of others. This process
is called uncertainty change propagation due to uncertainty reduction.

Now assume we make an uncertainty increasing change, EX2→ EX2′, for the model
EX2 in Fig. 1. The change adds a point of uncertainty as a note saying that we are not
sure whether Mon1 is needed. The well-formedness constraint wff1 implies that any
concretization that omits Mon1 must also omit the message threatResponse(); how-
ever, this is not possible because there is no uncertainty indicated about the presence
of this message. That is, unless the presence of this message is also made uncertain,
wff1 “invalidates” our newly added point of uncertainty. In order to repair this viola-
tion and retain the new point of uncertainty, we make a further, propagated, change,
EX2′ ��� EX2′′, by adding a note to the message threatResponse() indicating that
its presence is now uncertain. Thus, when an added point of uncertainty is invalidated
by dependencies on existing constraints (e.g., well-formedness), we may need to relax
these constraints by adding (a minimal set of) further points of uncertainty. This process
is called uncertainty change propagation due to uncertainty increase.

Unlike the case of uncertainty reducing change propagation, here the required prop-
agated change may not be unique, i.e., there may be multiple suitable minimal sets of
uncertainty points that can be added and user input is required to decide among these.
For example, consider the directed graph in Fig. 2 and let one of the well-formedness
constraints for this graph be “if there is a path between two nodes then there is a di-
rect link between them”. Assume we add a point of uncertainty to indicate that we are
unsure whether edge b exists. The well-formedness constraint forces this edge to exist
due to the presence of the path a1a2, and so this new point of uncertainty is invalidated.
This can be repaired minimally in two distinct ways: saying that we are uncertain either
about the existence of edge a1 or edge a2, requiring a user decision.

In the next two sections, we instantiate these concepts for a particular type of model
with uncertainty called MAVO.

3 Background

In this section, we briefly review the concepts of a formal approach, introduced in
[20], for defining a model with uncertainty called MAVO. A MAVO model is a conven-
tional model whose elements are marked with special annotations representing points of
uncertainty.
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Fig. 3. (a) The models from Fig. 1 expressed using MAVO annotations. (b) A simplified meta-
model of the UML class diagram language.

Definition 1. A MAVO model M consists of a base model, denoted bs(M), and a set of
annotations on the base model. Let T be the metamodel of bs(M). Then, [M ] denotes
the set of T models called the concretizations of M . M is called consistent iff [M ] �= ∅.

For example, Fig. 3(a) shows the uncertainty expressed using notes in Fig. 1 via MAVO
annotations. The base model bs(EX1) of model EX1 is the class diagram that remains
when the annotations are stripped away.

MAVO provides four types of annotations, each adding support for a different type
of uncertainty in a model: Annotating an element with M indicates that we are unsure
about whether it should exist in the model; otherwise, the element does exist. Thus, in
EX1, the M-annotation on the operation disable() indicates that it may or may not exist
in a concretization. Annotating an element with S indicates that we are unsure whether
it should actually be a collection of elements; otherwise, it is just one element. This is
illustrated by the S-annotation on operation otherCOp() in EX1. This annotation repre-
sents a set of operations in a concretization. The fact that it also has an M annotation
means that this set could be empty. Annotating an element with V indicates that we are
unsure about whether it should actually be merged with other elements; otherwise, it is
distinct. Thus, we use the V-annotated object Mon1 to consider concretizations in which
it is merged with other objects such as Car. Finally, annotating the entire model with
INC indicates that we are unsure about whether it is complete. For our simple example
in Fig. 3(a), both models are assumed to be complete, and so we omit this annotation.

Formalizing MAVO Annotations. A central benefit of using MAVO annotations is that
they have formal semantics and thus, the set of concretizations for any MAVO model is
precisely defined. In this section, we describe this semantics.

A metamodel represents a set of models and can be expressed as a First Order Logic
(FOL) theory.

Definition 2 (Metamodel). A metamodel is an FOL theory T = 〈Σ,Φ〉, where Σ is
the signature with sorts and predicates representing the element types, and Φ is a set
of sentences representing the well-formedness constraints. The models that conform to
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ΣB1 has unary predicates Ct(Class), TR(Operation)), . . . ,
and binary predicates CtOwnsTR(Class, Operation), . . .

ΦB1 contains the following sentences:
(Complete) (∀x : Class · Ct(x) ∨ Mn(x) ∨ PW(x))∧
(∀x : Class, y : Operation · ownedOperation(x, y) ⇒ (CtOwnsTR(x, y) ∨ . . .)) ∧ . . .

Ct:
(ExistsCt) ∃x : Class · Ct(x) Ct = Controller
(UniqueCt) ∀x, x′ : Class · Ct(x) ∧ Ct(x′)⇒ x = x′ TR = threatResponse
(DistinctCt−Mn) ∀x : Class · Ct(x)⇒ ¬Mn(x) Mn = Monitor
(DistinctCt−PW) ∀x : Class · Ct(x)⇒ ¬PW(x) PW = PowerWindow

Fig. 4. The FO encoding of MB1

T are the finite FO Σ-structures that satisfy Φ according to the usual FO satisfaction
relation. We denote the set of models with metamodel T by Mod(T ).

The simple class diagram metamodel in Fig. 3(b) fits this definition if we interpret boxes
as sorts and edges as predicates comprising ΣCD (where CD stands for “class diagram”)
and take the multiplicity constraints (translated to FOL) as comprising ΦCD.

Like a metamodel, a MAVO model represents a set of models (i.e., its concretizations)
and thus can also be expressed as an FOL theory. Specifically, for a MAVO model M ,
we construct a theory FO(M) s.t. Mod(FO(M)) = [M ]. We proceed as follows. (1)
Let B = bs(M) be the base model of a MAVO model M . We define a new MAVO model
MB which has B as its base model and its sole concretization, i.e., bs(MB) = B and
[MB] = {B}. We call MB the ground model of M . (2) To construct the FOL encoding
of MB , FO(MB), we extend T to include a unary predicate for each element in B and
a binary predicate for each relation instance between elements in B. Then, we add con-
straints to ensure that the only first order structure that satisfies the resulting theory is B
itself. (3) We construct FO(M) from FO(MB) by removing constraints correspond-
ing to the annotations in M . This constraint relaxation allows more concretizations and
thus represents increasing uncertainty. For example, if an element e in M is annotated
with S then the constraint that forces e to occur at most once in every concretization is
removed.

We illustrate the above construction using the MAVO class diagram EX1 in Fig. 3(a).
(1) Let B1 = bs(EX1) be the base model of EX1 and MB1 be the corresponding ground
MAVO model.

(2) We have: FO(MB1) = 〈ΣCD ∪ΣB1, ΦCD∪ΦB1〉 (see Definition 2), where ΣB1 and
ΦB1 are model B1-specific predicates and constraints, defined in Fig. 4. They extend the
signature and constraints for CD models described in Fig. 3(b). For conciseness, we
abbreviate element names in Fig. 4, e.g., Controller becomes Ct, threatResponse
becomes TR, etc. We refer to ΣB1 and ΦB1 as the MAVO predicates and constraints,
respectively.

Since FO(MB1) extends CD, the FO structures that satisfy FO(MB1) are the class
diagrams that satisfy the constraint set ΦB1 in Fig. 4. Assume N is such a class dia-
gram. The MAVO constraint Complete ensures that N contains no more elements or
relation instances than B1. Now consider the class Ct in B1. ExistsCt says that N con-
tains at least one class Ct, UniqueCt – that it contains no more than one class Ct, and the
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clauses DistinctCt−∗ – that the class Ct is different from all the other classes. Similar
MAVO constraints are given for all other elements and relation instances in EX1. These
constraints ensure that FO(MB1) has exactly one concretization and thus N = B1.

(3) Relaxing the MAVO constraints ΦB1 allows additional concretizations and repre-
sents a type of uncertainty indicated by an annotation. For example, if we use the INC

annotation to indicate that B1 is incomplete, we can express this by removing the Com-
plete clause from ΦB1 and thereby allow concretizations to be class diagrams that extend
B1. Similarly, expressing the effect of the M, S and V annotations for an element E
correspond to relaxing ΦB1 by removing ExistsE , UniqueE and DistinctE−∗ clauses,
respectively. For example, removing the DistinctCt−∗ clauses is equivalent to marking
the class Ct with V (i.e., Controller may or may not be distinct from another class).

Thus, for each pair (a, e) of model M , where a is a MAVO annotation and e is a
model element, let ϕ(a,e) be the corresponding MAVO constraint that is removed from
the FO encoding of M . For the above example, ϕ(V,Ct) = DistinctCt−∗.

4 Formalizing Uncertainty Change Propagation

In this section, we formalize the notion of uncertainty change propagation between
models with uncertainty expressed using MAVO. We then define algorithms for uncer-
tainty reducing/increasing change propagation based on this formalization.

In Sec. 2, we argued that a point of uncertainty corresponds to a constraint which we
are not sure holds. That is, there must exist a concretization for which it doesn’t hold,
otherwise we would be certain about the constraint and it couldn’t represent a point of
uncertainty. Thus, a validity requirement for a point of uncertainty is that there should
be some concretization in which it does not hold.

In the FO encoding for a MAVO model, we attempt to guarantee this validity require-
ment by explicitly omitting the constraint ϕ(a,e) corresponding to each annotation a of
an element e. However, this may not always be sufficient since the constraint may still
be implied by others (e.g., well-formedness), making the annotation an invalid point
of uncertainty. When all annotations satisfy the validity requirement, we say that the
MAVO model is in reduced normal form (RNF).

Definition 3 (Reduced Normal Form (RNF)). Let M be a MAVO model with
FO(M) = 〈Σ,Φ〉 and let ΦA be the set of MAVO constraints corresponding to the an-
notations in M . M is in reduced normal form (RNF) iff ∀ϕ(a,e) ∈ ΦA · ¬(Φ⇒ ϕ(a,e)).

When a model is in RNF, the validity requirement holds for all of its annotations: if the
MAVO constraint ϕ(a,e) for an annotation a of an element e does not follow from Φ,
there must be a concretization that does not satisfy ϕ(a,e). We now use RNF as a way to
formally define the notion of uncertainty reducing and increasing change propagation
for MAVO models.

Definition 4. Let M and M ′ be MAVO models. M ��� M ′ is an uncertainty reducing
propagated change if [M ] = [M ′], and M ′ is obtained by removing annotations so that
M ′ is in RNF.
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Definition 5. Let M and M ′ be MAVO models. M ��� M ′ is an uncertainty increasing
propagated change if [M ] ⊂ [M ′], and M ′ is obtained by adding a minimal number of
annotations to M so that M ′ is in RNF.

To illustrate the application of these definitions, we recast the uncertainty change prop-
agation examples of Sec. 2 in terms of MAVO annotations. To be able to express cross-
model propagation in the FO encoding, we treat both diagrams in Fig. 3(a) as part of
a single bigger model. We resolve naming conflicts by appending the model name to
the element name, e.g., disable_EX1. In the first example, we perform an uncertainty
reducing change EX2 → EX2′ by removing the M annotation attached to the message
disable() and thus ΦEX2′ contains the additional MAVO constraint Existsdisable_EX2.
Together, Existsdisable_EX2 and wff2 imply the constraint Existsdisable_EX1, forcing the
existence of the operation disable() in EX1. However, this operation has an M an-
notation on the operation disable(), so EX1 is not in RNF. We repair the problem by
performing a change propagation EX1 ��� EX1′ (Definition 4), removing the annotation
on the operation disable().

In the second example, assume that an uncertainty increasing change EX2 → EX2′

is made by adding an M annotation to Mon1 to indicate that we are not sure whether
it exists. However, since the message threatResponse() has no M annotation, ΦEX2′

contains the constraint ExiststhreatResponse and together with wff1, this implies the con-
straint ExistsMon1. Thus, EX2′ is not in RNF. Definition 5 says that to repair this, we
should propagate the change, EX2′ ��� EX2′′, by adding a minimal set of annotations
that put EX2′′ into RNF. In this case, it is sufficient to add an M annotation to the
message threatResponse() so that the above implication with wff1 does not happen.
While this solution is unique and minimal, this is not the case in general (recall the
example in Fig. 2).

5 Uncertainty Change Propagation Algorithms

Definitions 4 and 5 provide a specification for uncertainty change propagation. We now
describe algorithms for these. Recall that MAVO constraints in a FO encoding of a
model M correspond to missing annotations in M , so adding an annotation a to an
element e in M is equivalent to removing the corresponding MAVO constraint ϕ(a,e)

from the encoding, and vice versa.

5.1 Uncertainty Reducing Change Propagation

Fig. 5(a) shows Algorithm URCP for computing the change propagation due to an un-
certainty reducing change. The objective of this algorithm is to put the input model
M with FO(M) = 〈Σ,Φ〉 into RNF (see Definition 3). The main loop in lines 3-16
achieves this by iterating through all annotations (a, e) of M . It then checks whether
Φ ⇒ ϕ(a,e), where ϕ(a,e) is the MAVO constraint corresponding to this annotation. If
so, the annotation can be removed.

First, a satisfiability check is made in line 4 to find a satisfying instance I of (Φ ∪
{¬ϕ(a,e)}). If one is not found, it means that Φ ⇒ ϕ(a,e) and so the annotation a for
an element e in the output model M ′ can be removed (line 13). Otherwise, I is used
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to find other annotations that can also be removed (lines 5-11). For each annotation
(a′, e′), we check whether I is also a counter-example to the corresponding MAVO con-
straint ϕ(a′,e′). For example, if (a′, e′) is an M-annotation on some element e′, the call
NotExists(e′, I) checks whether e′ is missing in I . If so, then Φ �⇒ ϕ(a′,e′), and the
annotation can be removed from further consideration (line 9). Conditions for annota-
tions S and V are checked similarly. The strategy of using a satisfying instance to more
quickly eliminate annotations is inspired by a similar strategy used for computing the
backbone of a propositional formula (i.e., the set of propositional variables that follow
from the formula) with a SAT solver [11].

Correctness. Originally, M ′ is equal to M (line 1). An annotation a is removed from
the element e in M ′ (line 13) only if the condition Φ ∪ {¬ϕ(a,e)} is not satisfiable (line
4). Furthermore, every annotation that passes this condition is removed from consider-
ation (set A) either on line 9 or line 15. Thus, M ′ is in RNF, and the algorithm correctly
implements Definition 4.

For example, consider the first scenario illustrated in Sec. 4. After the first uncertainty
reducing change, the annotation set A is {(otherCOp_EX1, M), (otherCOp_EX1, S),
(Mon1_EX2, V), (disable_EX1, M) }. Checking (disable_EX1, M) results in UNSAT,
so the M annotation is removed from the element disable_EX1, and the tuple
(disable_EX1, M) is removed from A. Checking all other pairs in A returns SAT, so
the corresponding annotations are not removed.

Complexity. A MAVO model restricted only to M annotations (a.k.a. a May model)
can be seen as equivalent to a propositional formula where the M-annotated elements
are the propositional variables [5]. In this case, the RNF corresponds to removing the
elements in the backbone of this formula. Thus, the complexity of Algorithm URCP
is at least that of computing the backbone of a propositional formula, which is NP-
hard [8]. Furthermore, all other computations in the algorithm are polynomial time, so
we can conclude that URCP is also NP-hard. Algorithm URCP uses a SAT solver (with
that complexity). Since the outer loop is bounded by the number of annotations nA, the
SAT solver is not called more than nA times.

5.2 Uncertainty Increasing Change Propagation

The algorithm utilizes a solver for the partial maximum satisfiability (MAXSAT) prob-
lem (e.g., see [6]). The partial MAXSAT problem takes a set of hard clauses ΦH and
a set of soft clauses ΦS and finds a maximal subset ΦS′ ⊆ ΦS such that ΦH ∪ ΦS′ is
satisfiable. Thus, a solution (which may not be unique) represents a minimal relaxation
of the soft constraints that with the hard constraints will allow satisfiability.

Fig. 5(b) gives an algorithm for computing the change propagation due to an uncer-
tainty increasing change using partial MAXSAT. The input is a MAVO model M with
FO(M) = 〈Σ,ΦT ∪ΦM 〉 and a subset New of annotations of M identified as new due
to an uncertainty increasing change. ΦT are the well-formedness rules for M from its
metamodel T and ΦM are the MAVO constraints for the annotations missing from M .
We assume that M was in RNF prior to adding annotations New but now may not be –
this assumption is used in the discussion about correctness below.

Since M is not necessarily in RNF, it may be that ΦT ∪ ΦM ⇒ ϕ(a,e) for some
annotations (a, e) ∈ New. Thus, according to Definition 5, we must add a minimal set
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(a)
Algorithm: URCP
Input: MAVO model M with FO encoding

FO(M) = 〈Σ,Φ〉
Output: MAVO model M ′ satisfying Def. 4

1: M ′ ←M
2: A← Annotations(M )
3: for (a, e) ∈ A do
4: if SAT(〈Σ,Φ ∪ {¬ϕ(e,a)}〉, I) then

// I is a satisfying instance
5: for (a′, e′) ∈ A do
6: if (a′ is M and NotExists(e′, I))
7: or (a′ is S and NotUnique(e′, I))
8: or (a′ is V and NotDistinct(e′, I)) then
9: A← A \ {(a′, e′)}
10: endif
11: endfor
12: else
13: remove annotation a from e in M ′

14: endif
15: A← A \ {(a, e)}
16: endfor
17: return M ′

(b)
Algorithm: UICP
Input: MAVO model M with FO encoding

FO(M) = 〈Σ,ΦT ∪ ΦM 〉,
a subset New of Annotations(M )

identified as new
Output: MAVO model M ′ satisfying Def. 5

1: Φsoft ← ΦM

2: Φhard ← ΦT ∪ {¬ϕ(a,e)|(a, e) ∈ New}
3: if MAXSAT(Φsoft, Φhard, Φrelax) then
4: return M ′ ←M ∪ {(a, e)|ϕ(a,e)∈Φrelax

}
5: else
6: return ERROR
7: endif

Fig. 5. Algorithms to compute the change propagation of MAVO model M ��� M ′: (a) due to an
uncertainty reducing change; (b) due to an uncertainty increasing change

of annotations from M so that this implication no longer holds for any New annotation.
We accomplish this by using MAXSAT to minimally relax ΦM .

In line 1, the MAVO constraints ΦM are set as the soft constraints since our objective
is to find a minimal set of these to relax. The hard constraints, set in line 2, consist
of the well-formedness rules and the negations of the MAVO constraints for the New
annotations. Line 3 makes the MAXSAT call, and the output M ′ is constructed in line
4 by adding the annotations corresponding to the relaxed clauses. If no possible relax-
ation exists, the algorithm ends in error (line 6). This means that some of the MAVO
constraints for new annotations are implied directly by the well-formedness constraints
and so removing some new annotations is unavoidable in order for M to be in RNF.

Correctness and complexity. Since MAXSAT is guaranteed to find a relaxation (if
one exists), the MAVO constraints for the annotations in New will not be implied by
FO(M ′). Furthermore since we assumed that M was already in RNF prior to adding
the new annotations, none of the MAVO constraints for the remaining annotations (i.e.,
other than the new annotations) will be implied by FO(M ′). Thus, M ′ is in RNF, and
the UICP correctly produces the result as specified by Definition 5.

For example, consider the second scenario illustrated in Sec. 4. After the first
uncertainty increasing change, Φsoft is {ExistsMonitor, UniqueMonitor, DistinctMonitor,
ExistsController, ... }, and Φhard is (¬ExistsMon1 ∪ ΦT ). MAXSAT shows that the
constraint for (Mon1, M) is implied, so one fix could be setting M ′ to M with
(threatResponse, M) since ExiststhreatResponse would be in Φrelax.
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UICP consists of single call to a partial MAXSAT algorithm and thus its complexity
is equivalent to MAXSAT. For example, the implementation reported in [6] calls a SAT
solver is called at most (3n− nA) + 1 times, where n is the number of elements in M
and nA is the number of annotations in M .

6 Experiments

We performed a series of experiments to investigate the following research questions
related to the scalability of automated uncertainty change propagation:

RQ1. How is uncertainty change propagation affected by how constrained the model
is?

RQ2. How is uncertainty change propagation affected by the level of uncertainty in the
model?

RQ1 helps us understand the impact of well-formedness constraints while RQ2 is re-
lated to the number of annotations.

Experimental Design. We conducted four experiments, to study each of RQ1 and RQ2
with uncertainty reducing or increasing change propagation. In our experiments, we
assumed that our models are untyped randomly generated graphs. This is a reasonable
simplification since typing information can be seen as a form of constraint. We dis-
cretized the space of random models into four size categories defined by the following
ranges for the number of nodes: (0, 25], (25, 50], (50, 75], (75, 100] (the same categories
have been used in experiments in [17]).

In the RQ1 experiments, we assumed a fixed graph density1 of 0.11. We also as-
sumed that a fixed percentage of model elements, 36%, are MAVO-annotated. Of the
annotations, 48% were M, 33% were S and 43% were V (the numbers add up to greater
than 100% because some elements are multiply annotated). The values of these param-
eters correspond to the average percentages of the corresponding annotations that we
have observed in the existing case studies using MAVO [20,19].

To vary the degree to which the model is constrained, for each randomly generated
model we computed a set of constraints that guaranteed that k% of the annotations
would either be removed (for uncertainty reducing change propagation) or added (for
uncertainty increasing change propagation). We considered the values of k in the set
{0, 25, 50, 75, 100}.

To understand how the constraints for uncertainty reducing change propagation were
generated, assume that a randomly generated MAVO model has n annotations. We first
choose n′ = n ∗ k/100 of the annotations arbitrarily. Then we generate a new well-
formedness constraint ϕ0 ⇒ ϕ1 ⇒ . . .⇒ ϕn′ , where ϕ0 is the MAVO constraint for an
arbitrarily chosen missing annotation and the remainder are the MAVO constraints for
the n′ annotations. Since ϕ0 is the MAVO constraint for a missing annotation, it must
therefore hold, and so all the remaining sentences are implied. This causes the uncer-
tainty reducing change propagation algorithm to remove the corresponding annotations.

1 Graph density is the ratio of the number of edges to the square of the number of nodes.
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For uncertainty increasing change propagation, assume that the randomly generated
MAVO model has n missing annotations. We first choose n′ = n∗k/100 of the missing
annotations arbitrarily. Then we create a new constraint (ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn′) ⇒
ϕ0, where ϕ0 is the MAVO constraint for an arbitrarily chosen new annotation and the
remaining are the MAVO constraints for the n′ annotations. Since these n′ annotations
are missing, all of the constraints ϕi, for 1 ≤ i ≤ n′, must hold. Furthermore, each
implies ϕ0. Thus, the uncertainty increasing change propagation algorithm is forced to
add all n′ annotations in order to achieve RNF.

In the RQ2 experiments, we used the same graph density (0.11) as for RQ1 but
varied the total percentage of annotations using values in the set {25, 50, 75, 100} 2

while keeping the same relative percentages of each annotation type as for RQ1. In
addition, we fixed how the model is constrained, at k = 50%.

Overall, for each RQ1 experiment, we produced 20 test configurations (four sizes
times five constraint levels). For each RQ2 experiment, we had 16 test configurations
(four sizes times four uncertainty levels). Each test configuration was run up to 20 times
– fewer if the average time of processing converged to a desired 95% confidence interval
(using the Student’s t-distribution).

Implementation. We used the Z3 SMT solver3 for both algorithms. The built-in theory
of uninterpreted functions and support for quantifiers made it convenient for expressing
the MAVO FO encoding. In addition, Z3 provides an implementation of MAXSAT based
on Fu and Malik [6]. Z3 v.4.1 was used for URCP while Z3 v.3.2 was used for UICP
because v.4.1 had bugs in the MAXSAT implementation.

Each randomly generated model was generated in eCore4 and then translated to
SMTLib5 using Python as input to Z3. All tests were run on a laptop with an Intel
Core i7 2.8GHz processor and 8GB of RAM.

Results. Figs. 6 and 7 summarize the obtained results for the RQ1 and RQ2 experi-
ments, respectively. The RQ1 experiment for uncertainty reduction in Fig. 6(a) shows a
surprising result: the time does not seem to be significantly affected by how constrained
the model is. An analysis of the URCP algorithm in Fig. 5 suggests the reason for this.
Changing an annotation is much more expensive than not changing it because the for-
mer only happens when the SMT solver returns UNSAT (line 13) which requires it
to consider all concretizations. Thus, on the one hand, adding more constraints should
reduce the SMT solving time because it has fewer concretizations to consider. On the
other hand, our constraints are designed to increase the number of changes to annota-
tions, and so URCP is forced to perform the more expensive processing that offsets the
speed gain. The results for uncertainty increase in Fig. 6(b) are similar but slightly more
variable. In both uncertainty reducing and increasing cases, there seems to be consistent
(but small) dip in propagation time going from 0% to 25% constrainedness. This may
suggest that a small amount of constraint is optimal.

2 The case of 0% annotations is omitted because no propagation occurs.
3 http://research.microsoft.com/en-us/um/redmond/projects/z3/
4 http://www.eclipse.org/modeling/emf/?project=emf
5 http://www.smtlib.org/

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.eclipse.org/modeling/emf/?project=emf
http://www.smtlib.org/
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Fig. 6. RQ1 results for (a) uncertainty reducing change propagation, and (b) uncertainty increas-
ing change propagation experiments
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Fig. 7. RQ2 results for (a) uncertainty reducing change propagation, and (b) uncertainty increas-
ing change propagation experiments

Both of the RQ2 experiments in Fig. 7 exhibit a similar linear increase in propaga-
tion time with increasing uncertainty. Adding annotations increases the number of con-
cretizations so an increasing propagation time is to be expected. The linear relationship
is a desirable outcome given that the number of concretizations increases exponentially
relative to the number of annotations.

In summary, although in all four experiments the propagation time increased ex-
ponentially with model size, as is expected when using a SMT solver, the time was
relatively unaffected by degree of constrainedness and increases linearly with the de-
gree of uncertainty. Both of these positive results point to the feasibility of tool support
for uncertainty change propagation.

Threats to Validity. The use of randomly generated models in our experiments is a
threat to validity because they may not correctly reflect change propagation behaviour
on real models. Another threat to validity is our approach for generating constraints. We
used a method that guarantees particular levels of propagation, but such constraints may
not correspond to the actual well-formedness constraints used in modeling languages.

In order to help mitigate the first threat, we tuned the parameters for generating
random MAVO models so that the graph density and the frequencies of annotations cor-
responded to those we have observed with MAVO models created by hand for different
case studies.



34 R. Salay, J. Gorzny, and M. Chechik

7 Related Work

In this section, we review approaches to conventional change propagation and discuss
their relation to our method for MAVO uncertainty change propagation.

Change propagation can be seen as finding a “repair” to reinstate model consis-
tency after a change has made it inconsistent. The difference between the conventional
change propagation studied in the literature, and MAVO uncertainty change propagation
is the nature of the consistency constraint used. In the former, these are usually well-
formedness rules, either within a model or in the traceability relation between models.
In the latter, the constraint is that the model be in RNF.

Many approaches [9,2,15,14,23] focus on attempting to formulate a model repair
transformation as a set of repair rules representing various change scenarios where
specific repair actions are performed in response to detected changes. Such rules may
be expressed in a specialized constraint language, such as Beanbag [23] or EVL [9],
or using logic, such as Blanc et. al [2], triple graph grammars [14], the xLinkit frame-
work [15] or, more recently, Reder et. al. [16]. With the exception of xLinkit and Reder,
these approaches require that the repair rules be created by hand, and thus are modeling-
language specific. These approaches are inappropriate for use with MAVO as they go
against the language-independent spirit of MAVO. On the other hand, xLinkit defines a
higher order transformation that automatically generates the repair transformation from
from consistency constraints and thus is language-independent, although the constraints
are different from ours. [16] takes a similar approach but the rules organize the repairs
into trees to simplify user selection. In the future, we intend to investigate the feasibility
of automatically generating an uncertainty repair transformation for each language.

Another approach to conventional change propagation is to use a general constraint
solver to find possible repairs. For example, [4] expresses the consistency constraints
declaratively using Answer Set Programming (ASP) and then finds possible modifica-
tions to reinstate consistency using an ASP solver. Analysis of feature models often uses
constraint solvers as well, e.g., [1]. Feature models represent a set of products in a man-
ner similar to the MAVO model representation of a set of concretizations. Lopez [10]
uses a SAT solver on feature models to fix inconsistencies that allow feature configura-
tions which yield inconsistent products. Benavides [1] uses a solver for false optional
feature detection – finding cases in which a feature is marked as optional when the
constraints actually force it to occur in all products. This is similar to removing an
M annotation in a MAVO model as part of an RNF computation. Addressing S and V

annotations in addition to M , as we do in our work, extends this kind of analysis further.
Since the focus of this paper is uncertainty change propagation, we consider the work

related to expressing model uncertainty to be out of scope; see [19] for a recent survey.

8 Conclusion

The management of uncertainty and its negative impacts in software engineering is an
important problem. In this paper, we extend our earlier work on model uncertainty [20]
to address the issue of change propagation due to uncertainty change. We identified
two general cases of uncertainty change propagation for uncertainty reducing change
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and for uncertainty increasing change. We then formally specified these cases and de-
fined algorithms for computing the propagation. Although the cases appear to be sym-
metric, the uncertainty reducing case produces a unique solution while the uncertainty
increasing case might not, requiring user interaction. Furthermore, their solutions re-
quire different algorithms. We implemented both algorithms on top of the Z3 SMT
solver and performed scalability experiments using randomly generated models. Our
experiments revealed that although change propagation time increases exponentially
with model size, as is expected with the use of SMT solvers, it was unaffected by how
constrained the model is and only increases linearly with the degree of uncertainty in
the model. These positive results suggest the feasibility of tool support for uncertainty
change propagation.

Our experiences with the current work suggest some interesting future directions.
The generality of SAT/SMT solving comes at a cost of potentially exponential be-
haviour, and we found this to be the case for our experiments involving randomly
generated models. Of course, it is possible that “real” models avoid this bad behav-
ior – this has been reported to be the case with real feature models [12]. We intend
to conduct studies with real MAVO models to investigate this hypothesis. Another di-
rection to improve performance is to exploit more efficient algorithms in specialized
cases. For example, there may be classes of well-formedness constraints for which we
can automatically generate efficient change propagation rules as a repair transformation
in a manner similar to the approach used by xLinkit for conventional change propaga-
tion [15]. Finally, we intend to investigate how conventional change propagation can
be combined with uncertainty change propagation to provide a more comprehensive
change propagation solution. This will be an important step toward a general approach
for managing model uncertainty across the software development lifecycle.

Acknowledgements. We thank Alessio Di Sandro, Vivien Suen, Michalis Famelis,
Pooya SaadatPanah and Nathan Robinson for their help with developing the model gen-
eration framework used in this paper. We would also like to thank Aws Albarghouthi
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Abstract. The near future in service-oriented system development envisions a
ubiquitous world of available services that collaborate to fit users’ needs. Mod-
ern service-oriented applications are often built by reusing and assembling dis-
tributed services. This can be done by considering a global specification of the
interactions between the participant services, namely the choreography. In this
paper, we propose a synthesis approach to automatically synthesize a choreogra-
phy out of a specification of it and a set of services discovered as suitable par-
ticipants. The synthesis is model-based in the sense that it works by assuming a
finite state model of the services’s protocol and a BPMN model for the choreog-
raphy specification. The result of the synthesis is a set of distributed components,
called coordination delegates, that coordinate the services’ interaction in order
to realize the specified choreography. The work advances the state-of-the-art in
two directions: (i) we provide a solution to the problem of choreography realiz-
ability enforcement, and (ii) we provide a model-based tool chain to support the
development of choreography-based systems.

Keywords: Service Choreographies, Model Driven Engineering, Service
Oriented Architectures, Choreography Realizability Enforcement.

1 Introduction

The near future in service-oriented system development envisions a ubiquitous world
of available services that collaborate to fit users’ needs [7]. The trend is to build modern
applications by reusing and assembling distributed services rather than realize stand-
alone and monolithic programs. When building a service-based system, a possible
Service Engineering (SE) approach is to compose together distributed services by con-
sidering a global specification, called choreography, of the interactions between the
participant services. To this extent, the following two problems are usually considered:
(i) realizability check - check whether the choreography can be realized by implement-
ing/discovering each participant service so as it conforms to the played role; and (ii)
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FP7/2007-2013 under grant agreement number 257178 (project CHOReOS - Large Scale
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V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 37–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.choreos.eu


38 M. Autili et al.

conformance check - check whether the set of services satisfies the choreography spec-
ification or not. In the literature many approaches have been proposed to address these
problems (e.g., see [2,5,11] just to mention a few). However, by moving a step forward
with respect to the state-of-the-art, a further problem worth considering concerns real-
izability enforcement. That is, given a choreography specification and a set of existing
services discovered as suitable participants, restrict the interaction among them so to
fulfill the collaboration prescribed by the choreography specification.

Contribution. In this direction, we propose a solution for realizability enforcement
in the context of the CHOReOS EU project1. The core objective of CHOReOS is to
leverage model-based methodologies and relevant SOA standards, while making chore-
ography development a systematic process to the reuse and the assembling of services
discovered within the Internet. CHOReOS revisits the concept of choreography-based
service-oriented systems, and introduces a model-based development process and as-
sociated methods, tools, and middleware for coordinating services in the Internet. In
particular, we describe how to automatically synthesize a choreography out of a spec-
ification of it and a set of discovered services. Since a choreography is a network of
collaborating services, the notion of coordination protocol becomes crucial. In fact, it
might be the case that the collaborating services, although potentially suitable in isola-
tion, when interacting together can lead to undesired interactions. That is interactions
that do not belong to the set of interactions modeled by the choreography specification.
To prevent undesired interactions, we automatically synthesize additional software en-
tities, called Coordination Delegates (CDs), and interpose them among the participant
services. CDs coordinate the services’ interaction in a way that the resulting collabora-
tion realizes the specified choreography. This is done by exchanging suitable coordina-
tion information that is automatically generated out of the choreography specification.
It is worth mentioning that, dealing with black-box services, it is not always be possi-
ble to synthesize suitable CDs. That is if all the behaviours produced by composing in
parallel the participant services represent undesired interactions, then there is nothing
to do in order to enforce the specified choreography.

Progress beyond state-of-the art. As already anticipated, on the one hand, we tackle
the problem of realizability enforcement, which so far has been receiving little attention
by the SE community. On the other hand, the definition of the CHOReOS process and
its synthesis sub-process required the exploitation of state-of-the-art languages, sys-
tems, and techniques that have emerged in different contexts including SOA, model-
transformations, and distributed coordination. Their integration and interoperability
within the same technical space present the opportunity to harness the power and in-
dividual capabilities of different tools as part of a tool chain to support the systematic
development of choreography-based systems which has thus far been largely missed.

Structure of the work. The paper is structured as follows. Section 2 describes the
choreography synthesis process by means of an explanatory example, in the domain of
travel agency systems. It gives an intuition of how CDs can be generated and used to
enforce choreography realizability. In Section 3, we discuss the distributed coordination
algorithm that characterizes the coordination logic performed by a synthesized CD.
Furthermore, we provide details about the correctness of the algorithm with respect

1 See at www.choreos.eu.

www.choreos.eu
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Fig. 1. The Choreography Synthesis process

to choreography enforcement, and we discuss the overhead due to the exchange of
coordination information. Related works are discussed in Section 4. Section 5 concludes
the paper and discusses future directions.

2 The Choreography Synthesis Process

The choreography synthesis process described in this section, and shown in Figure 1,
is part of the overall CHOReOS development process [6]. The CHOReOS process
leverages activities that range from requirement specification to service discovery, to
choreography synthesis, to choreography deployment and execution, and to design and
run-time analysis. As mentioned in Section 1, choreography synthesis is the main con-
tribution of the work described in this paper and it aims at automatically generating
CDs that correctly coordinate the discovered services in a distributed way.

For illustrative purposes we describe the synthesis process, by means of an explana-
tory example that concerns the development of a choreography-based travel agency
system. Indeed, within CHOReOS, we applied our process to a real-scale case study,
namely the passenger-friendly airport scenario. For space reasons, in this paper, we
cannot show our approach at work on this scenario. However, the interested reader can
refer to a demo publically available at the CHOReOS web-site2.

Choreography Model. We use BPMN2 Choreography Diagrams as notation to specify
choreographies. As shown in Figure 2, BPMN2 diagrams uses rounded-corner boxes to
denote choreography tasks. Each of them is labeled with the roles of the two participants
involved in the task, and the name of the service operation performed by the initiating
participant and provided by the other one. A role contained in a light-gray filled box
denotes the initiating participant. The diagram specifies that the travel agency system
can be realized by choreographing four services: a Booking Agency service (ba),
two Flight Booking services (fb1 and (fb2)), and a Hotel Booking service
(hb). In particular, (i) the booking of the flight has to be performed before the booking
of the hotel and (ii) only the answer from one of the two flight booking services is taken
into account (see the exclusive gateway represented as a rhombus in Figure 2).

2 See at http://www.choreos.eu/bin/Discover/videos. The related development
code is available at http://www.choreos.eu/bin/Download/Software.

http://www.choreos.eu/bin/Discover/videos
http://www.choreos.eu/bin/Download/Software
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Fig. 2. BPMN2 choreography diagram for a Flight-Hotel Booking choreography

The choreography synthesis process generates the CDs required to realize a speci-
fied choreography. The generation process consists of three model transformations as
discussed in the following.

BPMN-to-CLTS. By means of transformation rules implemented through the ATLAS
Transformation Language [8] (ATL), the BPMN2 specification is transformed into an
equivalent Choreography Labeled Transition System (CLTS) specification. Figure 3
shows the CLTS model for the BPMN2 choreography diagram in Figure 2. This model
has been drawn by means of the developed GMF-based editor3.

Fig. 3. CLTS model of the Flight-Hotel Booking choreography

Informally, a CLTS is a Labeled Transition System (LTS) that, for coordination pur-
poses, is suitably extended to model choreography behavior, e.g., by considering con-
ditional branching and multiplicities on participant instances. The transformation takes
into account the main gateways found in BPMN2 Choreography Diagrams: exclusive
gateways (decision, alternative paths), inclusive gateways (inclusive decision, alterna-
tive but also parallel paths), parallel gateways (creation and merging of parallel flows),
and event-based gateways (choice based on events, i.e., message reception or timeout).
For instance, the exclusive gateway in the BPMN2 diagram shown in Figure 2 has been

3 See at http://code.google.com/p/choreos-mde/

http://code.google.com/p/choreos-mde/
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Fig. 4. LTSs for the services of the travel agency system

transformed to the exclusive branching in the CLTS diagram shown in Figure 3, hence
generating two alternative paths outgoing from state 2.

Although this transformation is indispensable for the realization of the CHOReOS
process, it does not represent an advance on the state-of-the-art per se. In fact, in the
literature, there exist other similar attempts to transform business process models to
automata-based models [3,17] (just to mention a few). For this reason, in the sequel, we
do not further discuss this transformation.

Before describing the other two transformations, let us continue our example by
discussing the problem underlying the notion of undesired interactions introduced in
Section 1. The CLTS model in Figure 3 applies to the roles ba, fb1, fb2, and hb
that, after discovery, are played by the Booking Agency, Flight Booking 1,
Flight Booking 2, and Hotel Booking services, respectively. Figure 4 shows
the interaction protocol of these services by using LTSs. The exclamation “!” and
the question “?” marks denote required and provided operations, respectively. The
Booking Agency service searches for a flight by exploiting two different flight
booking services (see !getFlight1 and !getFlight2). As soon as one of the
two booking services answers by sending flight information (see !flightInfo1 or
!flightInfo2), the agency cancels the search on the other booking service (see
!cancel1 or !cancel2).

Fig. 5. A possible undesired interaction with respect to the Flight-Hotel Booking choreography

The above services have been discovered as suitable participants (i.e., each service
conforms the role to be played) for the specified choreography4. However, this does not
necessarily mean that the “uncontrolled” collaboration of the participant services is free

4 Discovery issues and the problem of checking whether a service is a suitable participant for a
choreography (conformance check) are out of the scope of this paper.



42 M. Autili et al.

Fig. 6. Coord model for the Flight Booking 1 service

from undesired interactions. In fact, Figure 5 shows a possible trace resulting from the
parallel composition of the service protocols. This trace represents an undesired inter-
action, that is it is not included in the CLTS model shown in Figure 3, since both fb1
and fb2 proceed while only one of them should be allowed according to the exclusive
branching in state 2. To prevent undesired interactions, the automatic synthesis of the
CDs is carried out according to the CLTS-to-Coord and Coord-to-Java model
transformations discussed below. It is worth mentioning that the kind of exclusive be-
haviour our running example is based on does not represent the only property that our
approach is able to guarantee. In fact, in general, an undesired interaction in our ap-
proach can be represented as (the negation of) a safety property expressing what should
not happen in the system composed by the participant services plus the CDs synthesized
according to the specified CLTS.

CLTS-to-Coord. An ATL transformation is defined to automatically distribute the
CLTS into a set of models, whose metamodel is denoted as Coord in Figure 1. A
Coord model MCDi , for a coordination delegate CDi, specifies the information that
CDi needs to know in order to properly cooperate with the other CDs in the system.
The aim of this cooperation is to prevent undesired interactions in the global collab-
oration of the participant services, hence enforcing choreography realizability. Essen-
tially, the developed ATL transformation consists of a number of rules each devoted
to the managament of specific source modeling elements. For instance, given a source
role name a target Coord instance is generated by a dedicated Role2Cord trans-
formation rule. Moreover, all the source Transition elements give place to target
Information elements.

Back to the example, Figure 6 shows the Coord model that represents the coordi-
nation information for the CD supervising Flight Booking 1. The Coord model
contains the following information: when in the state 2 of the CLTS shown in Figure 3,
fb1 is allowed to perform the operation flightInfo1 provided by ba, hence mov-
ing to the state 4; when in the state 2 also fb2 is allowed to perform an operation,
namely flightInfo2, provided by ba, hence moving to the state 3. However, since
state 2 models an exclusive branching, only one of fb1 and fb2 must be allowed to
proceed. Thus, concerning fb1, the CD supervising Flight Booking 1 needs to
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know that, when in the state 2, another service, i.e., Flight Booking 2, is allowed
to take a move, and hence it must be blocked in order to solve the possible concur-
rency problem. Symmetrically, the CD supervising Flight Booking 2 knows that
Flight Booking 1 must be blocked. As detailed in Section 3, the two CDs use
coordination information to “perform handshaking” and “elect a winner”. This infor-
mation is then exploited by the CDs to also keep track of the global state of the coordi-
nation protocol implied by the specified choreography, similarly to [2]. This means that
each delegate can deduce the global state from the observation of the communication
flow between the participant services.

Coord-to-Java. The Coord model specifies the logic that a CD has to perform in-
dependently from any target technology. To validate our approach in practical con-
texts, we chose Java as a possible target language of our Acceleo5-based model-to-code
transformation. The Java code of a delegate CDi exploits the information contained in
its Coord model MCDi . Briefly, for each Coord model a Java class is generated by
means of dedicated templates consisting of static and variable parts. The latter are fixed
by means of the information retrieve from the source Coord model. The generated
class implements an operation for each required operation of the supervised service.

Back to the example, from the cdfb1 Coord model, a proxy web service is gener-
ated as a wrapper for the operations required by Flight Booking 1. That is, the
corresponding Java class implements the operation flightInfo1, which wraps the
homonymous operation provided by Booking Agency and required by Flight
Booking 1. Listing 1.1 shows an excerpt of the generated code for the cdfb1
class. The fb1Coord class variable is used to store the cdfb1 Coord model. Such
a model is used to coordinate the wrapped operations. For instance, after that the
CD for Flight Booking 1 verified that flightInfo1 is an allowed operation
with respect to the choreography global state (variable globalState), it establishes,
through handleRules and handleRule3, whether the request of flightInfo1
can be forwarded to Booking Agency (line 19) or not (line 28). The choreography
global state is tracked by means of the asynchronous exchange of coordination informa-
tion with the other CDs. Interestingly,handleRules and handleRule3 are generic
and do not depend on the information contained in cdfb1.

Listing 1.1. Fragment of the generated CD for fb1
1 @WebService ( serviceName="cdfb1" , targetNamespace="http://choreos.di.univaq.it"

↪→ , portName="fb1Port" )
2 p u b l i c c l a s s cdfb1 {
3

4 p r i v a t e s t a t i c CoordinationDelegate COORDINATION_DELEGATE = new
↪→CoordinationDelegate("cdfb1" ) ;

5 p r i v a t e s t a t i c f i n a l String REQUEST_FLIGHTINFO1 = "flightInfo1" ;
6 p r i v a t e s t a t i c Coord fb1Coord = CoordFactory . eINSTANCE . createCoord ( ) ;
7 p r i v a t e s t a t i c ChoreographyState globalState = new ChoreographyState (

↪→ChoreographyState . INITIAL_STATE ) ;
8

9 p u b l i c vo id cdfb1 ( ) {
10 . . .
11 }
12

13 @WebMethod ( operationName="flightInfo1" )

5 http://www.eclipse.org/acceleo/

http://www.eclipse.org/acceleo/
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14 //@Oneway
15 p u b l i c vo id flightInfo1 ( ) throws DiscardException {
16 CoordinationDelegateFacade facade = new CoordinationDelegateFacade ( ) ;
17 CoordinationResult result = facade . handleRules (REQUEST_FLIGHTINFO1 ,

↪→COORDINATION_DELEGATE , fb1coord , globalState ) ;
18

19 i f (result==CoordinationResult . FORWARD ) {
20

21 //Forward message to the BookingAgency Service
22 BookingAgency_Service bookingAgencyService = new BookingAgency_Service

↪→ ( ) ;
23 client .BookingAgency BookingAgencyPort = BookingAgencyService .

↪→getBookingAgencyPort ( ) ;
24 BookingAgencyPort . flightInfo1 ( ) ;
25

26 facade .handleRule3 (REQUEST_FLIGHTINFO1 , COORDINATION_DELEGATE , fb1coord
↪→ , globalState ) ;

27 }
28 i f (result==CoordinationResult . DISCARD ) {
29 //Discard message
30 throw new DiscardException ( ) ;
31 }
32 }
33 }

Once the implementation code has been generated for all the required CDs, services
and CDs are composed together. Figure 7 shows the architectural configuration of the
composition where ba, fb1, fb2, and hb are instances of Booking Agency, Flight
Booking 1, Flight Booking 2, and Hotel Booking, respectively; cdba,
cdfb1, cdfb2, , and cdhb are their respective CDs.

The required/provided interface bindings between a participant service and a CD are
realized by means of synchronous connectors. A CD is connected to all the other CDs
by means of asynchronous connectors (see the n-ary association shown in Figure 7 as
a rhombus). The latter serve to exchange coordination information. As better explained
in the next section, coordination information is exchanged only when synchronization
is needed, i.e., when there is more than one component that is allowed to perform some
action according to the current global state of the choreography model. For instance, in
our example, this happens when both fb1 and fb2 can move from the state 2. Note
that, dealing with the reuse of existing (black-box) services, this is the best we can do
in terms of the overhead due to the exchange of coordination information. In the next
section we discuss why this is overhead is acceptable.

3 Distributed Coordination Algorithm

In this section we provide an algorithmic description of the coordination logic that a
CD has to perform. The distributed coordination algorithm uses foundational notions as
happened-before relation, partial ordering, time-stamps, and total ordering. The reader
who is not fully familiar with such notions can refer to the work described in [9].

The standard time-stamp method is used in our approach to establish, at each CD, a
total order of dependent blocking and unblocking messages, hence addressing starvation
problems. Acknowledging messages are used to be sure that all the blocking messages
(a CD has sent) have been actually received. In order to solve concurrency problems
arising when two events associated with the same time-stamp must be compared, we
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Fig. 7. Overall architecture of the choreography-based travel agency system

assume a priority order among the services to be choreographed. Since problems arising
from network unreliability are out of scope, we assume that non-lossy, order-preserving
and non-duplicating communications, among the CDs, are guaranteed.

In the style of [9], the distributed coordination algorithm is defined by the following
rules that each delegate CDi follows in a distributed setting, when its supervised
service Si performs a request of α, without relying on any central synchronizing
entity or shared memory. These rules locally characterize the collaborative behavior
of the CDs at run-time from a one-to-many point of view. To this end, each CD
maintains its own BLOCK queue (i.e., the queue of blocking messages) that is
unknown to the other delegates. At the beginning, each CD has its own timestamp
variable set to 0 and, at each iteration of the algorithm, waits for either its supervised
service to make a request or another CD to forward a request. The actions defined
by each rule are assumed to form a single event (i.e., each rule has to be considered
as atomic). Within the rules, we denote with TSi the current timestamp for CDi,
and with s the current state of the CLTS model MC of the choreography. More-
over, we denote with Coordi[h] the h-th coordination information element in the
Coord model of CDi; Coordi[h][sourceState] (resp., Coordi[h][targetState])
is a state of MC that is a source (resp., target) state for the transition la-
beled with Coordi[h][allowedOperation]; Coordi[h][allowedOperation]
is the operation that can be performed by Si when MC is in the state
Coordi[h][sourceState]; Coordi[h][allowedServiceInSourceState] (resp.,
Coordi[h][allowedServiceInTargetState]) is the set of services (different from
Si) that, with respect to MC , are allowed to move from Coordi[h][sourceState]
(resp., Coordi[h][targetState]). Detailed explanation of these rules is given below.

Rule 1: Upon receiving, from Si, a request of α in the current state s of MC ,
1.1 if there exist h s.t. Coordi[h][sourceState] = s and

Coordi[h][allowedOperation] = α (i.e., α is allowed from s) then
1.1.1 CDi updates TSi to TSi + 1;
1.1.2 for every CDj s.t. j ∈ Coordi[h][allowedServiceInSourceState]:
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1.1.2.1 CDi sends BLOCK(s,TSi,from-CDi,to-CDj) to CDj;
1.1.2.2 CDi puts BLOCK(s,TSi,from-CDi,to-CDj) on its BLOCK queue;

1.2 if there exist h s.t. Coordi[h][sourceState] �= s and
Coordi[h][allowedOperation] = α (i.e., α is not allowed from s)
then CDi discards α;

1.3 if does not exist h s.t. Coordi[h][allowedOperation] = α (i.e., α is not in
the alphabet of MC ) then CDi forwards α (hence synchronizing with Si);

Rule 2: When a CDj receives a BLOCK(s,TSi,from-CDi,to-CDj) from some
CDi,
2.1 CDj places BLOCK(s,TSi,from-CDi,to-CDj) on its BLOCK queue;
2.2 if (TSj < TSi) or (TSi = TSj and Si ≺ Sj) then CDj updates TSj to

TSi + 1; else CDj updates TSj to TSj + 1;
2.3 CDj sends ACK(s,TSj,from-CDj) to CDi;

Rule 3: Once CDi has received all the expected ACK(s,TSj,from-CDj) from ev-
ery CDj (see Rule 2), and it is granted the privilege (according to Rule 5) to pro-
ceed from state s,
3.1 CDi forwards α;
3.2 CDi updates s to s′=Coordi[h][targetState];
3.3 CDi updates TSi to TSi + 1;
3.4 for every CDj s.t. j ∈ Coordi[h][allowedServiceInSourceState] or j ∈

Coordi[h][allowedServiceInTargetState]:
3.4.1 if s == s′ then CDi removes any BLOCK(s,TSi,from-CDi,to-CDj)

from its own BLOCK queue; else CDi empties its own BLOCK queue;
3.4.2 CDi sends UNBLOCK(s′,TSi,from-CDi) to CDj ;

Rule 4: When a CDj receives an UNBLOCK(s′,TSi,from-CDi) from some CDi,
4.1 CDj updates s to s′;
4.2 if (TSj < TSi) or (TSi = TSj and Si ≺ Sj) then CDj updates TSj to

TSi + 1; else CDj updates TSj to TSj + 1;
4.3 if s == s′ then CDj removes any BLOCK(s,TSi,from-CDi,to-CDj) from

its BLOCK queue; else CDj empties its own BLOCK queue;
4.4 CDj retries Rule 1 from the (updated) state s;

Rule 5: CDi is granted the privilege to proceed from the current state s of MC

when, ranging over j, for every pair of messages BLOCK(s,TSi,from-CDi,to-
CDj) and BLOCK(s,TSj,from-CDj,to-CDi) on its BLOCK queue: either (i)
TSi < TSj or (ii) TSi = TSj and Si ≺ Sj ;

If the conditions on Rule 1.2 hold (i.e., the conditions on Rules 1.1 and 1.3 fail), it
means that Si is trying to perform an operation that is in the alphabet of MC but is not
allowed from the current state of MC . In this case, CDi prevents Si to perform that
operation by discarding it. Indeed, one cannot always assume that the actual code of a
(black-box) service has been developed in a way that it is possible to discard a service
operation by the external environment. Actually, it can be done only if the developer
had preemptively foreseen it and, for instance, an exception handling logic was aptly
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Fig. 8. An excerpt of a possible execution of the distributed coordination algorithm

coded for such an operation. However, a service client can easily detect those opera-
tions that are controllable by the external environment, e.g., through the declaration of
thrown exceptions on interface operations, or of fault messages on WSDL operations,
or simply of error return values for class methods. Since in this paper we focus on the
automatic distribution of the choreography-based coordination logic, we avoid to ad-
dress controllability issues and we assume that all service operations are controllable.
However, the extension to account for controllability issues is straightforward.

Rule 1.3, allows CDs to be permissive on the operations that do not belong to the
alphabet of MC (i.e., operations “outside the scope” of the choreography). Note that
one could instead choose to be restrictive on those operations by disabling Rule 1.3
hence preventing the service to perform those operations by discarding them (as in the
case of a service trying to perform an operation that is in the alphabet of MC but is not
allowed from the current state).

Rule 4.4 resumes the execution of an unblocked CD by “restarting” from Rule 1. If
this CD is still trying to handle a request α that is pending from the previous iteration
of the algorithm (see the operation flightInfo2 in the coordination scenario shown
in Figure 8), retrying Rule 1 means to directly re-check the conditions of Rules 1.1, 1.2,
and 1.3 with the new updated state and the pending α. Otherwise, it means that the CD
retries Rule 1 from an updated choreography global state.
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It is worthwhile to observe that conditions (i) and (ii) of Rule 5 are tested locally by
a CD.

Correctness. The above algorithm satisfies three crucial conditions [9] for correct
distributed coordination: (1) a coordination delegate which has been granted the
privilege to proceed must proceed and unblock the other competing delegates before
the privilege to proceed can be granted to another delegate; (2) different block
messages for granting the privilege to proceed must be privileged in the order in which
they are made, excluding the ones “associated” to discarded operations; (3) if every
coordination delegate which is granted the privilege to proceed eventually proceeds
and unblocks the other competing delegates, then every block message for granting
the privilege to proceed is eventually privileged, excluding the ones “associated” to
discarded operations. In fact, condition (i) of Rule 5, together with the assumption that
the messages concerning coordination information are received in order, guarantees
that CDi knows all operation requests which preceded its current operation request.
Since Rules 3 and 4 are the only ones which remove messages from the BLOCK
queue, condition (1) trivially holds. Condition (2) follows from the fact that the total
ordering ≺ (happened-before relation plus component priority) extends the partial
ordering → (happened-before relation). Rule 2 guarantees that after CDi requests
the privilege to proceed (by sending BLOCK messages), condition (i) of Rule 5 will
eventually hold. Rules 3 and 4 imply that if each coordination delegate which is
granted the privilege to proceed eventually proceeds and unblocks the other competing
delegates, then condition (ii) of Rule 5 will eventually hold, thus ensuring condition (3).

Analysis of the overhead due to the exchange of coordination information. The
overhead due to the exchange of coordination information among the coordination
delegates is acceptable. First of all, note that BLOCK messages are exchanged only
when non-determinism occurs from the current state s of MC . In the worst case6, the
non-determinism degree is asymptotically bounded by the number n of components,
i.e., it is O(n). For each received BLOCK message an ACK message is exchanged.
UNBLOCK messages are instead exchanged at each state of MC and for a maximum
number that is O(n). Thus, if m is the number of states of MC then the maximum
number of coordination information messages (BLOCK, UNBLOCK, ACK) that are
exchanged is O(3 ∗m ∗n), i.e., O(m ∗n). However, very often, in the practice, n ≤ m
holds (m ≤ n is less frequent). This means that the maximum number of exchanged
coordination information messages can be considered as O(m2). We can, then,
conclude that the introduced overhead is polynomial in the number of states of MC

and, hence, acceptable further considering that the size of coordination information
messages is insignificant. Indeed, as also shown by the work described in [9], this is
the minimum that one can do to ensure correct distributed coordination.

By continuing the explanatory example introduced in Section 2, we better show how
CDs use, at run-time, the information in their Coord models to correctly and distribu-
tively interact with each other, hence enforcing the realizability of the choreography

6 Note that, in the practice, the worst case is unusual.
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specified by MC . By referring to Figure 3, we focus on the fact that only the answer
from one of the two flight booking services is taken into account. Following the rules
of the distributed coordination algorithm, Figure 8 shows how Flight Booking 2
is blocked whenever Flight Booking 1 is faster in collecting the information to
be provided to Booking Agency.

The shown scenario concerns an excerpt of a possible execution of the distributed
coordination algorithm. It starts when the two allowed operations flightInfo1
and flightInfo2, required by Flight Booking 1 and Flight Booking
2 respectively, concurrently occur while in the current state 2 of the CLTS model
of the choreography. At state 2, the timestamps for Flight Booking 1 and
Flight Booking 2 are 1 and 2, respectively. Furthermore, Flight Booking
1 ≺ Flight Booking 2.

4 Related Work

The approach to the automatic generation of CDs presented in this paper is related to a
number of other approaches that have been considered in the literature.

Many approaches have been proposed in the literature aiming at automatically com-
posing services by means of BPEL, WSCI, or WS-CDL choreographers [4,5,10,13,16].
The common idea underlying these approaches is to assume a high-level specification
of the requirements that the choreography has to fulfill and a behavioral specification
of the services participating in the choreography. From these two assumptions, by ap-
plying data- and control-flow analysis, the BPEL, WSCI or WS-CDL description of
a centralized choreographer specification is automatically derived. This description is
derived in order to satisfy the specified choreography requirements.

In particular, in [16], the authors propose an approach to automatically derive service
implementations from a choreography specification. In [13], the author strives towards
the same goal, however assuming that some services are reused. The proposed approach
exploits wrappers to make the reused services match the choreography.

Most of the previous approaches concern orchestration that is the most common
approach to service composition. Conversely, our approach is one of the few in the lit-
erature that consider choreography as a means for composing services. Despite the fact
that the works described in [13,16] focus on choreography, they consider the problem
of automatically checking whether a choreography can be realized by a set of interact-
ing services, each of them synthesized by simply projecting the choreography specifi-
cation on the role to be played. This problem is known as choreography realizability
check. Note that it is a fundamentally different problem with respect to the one consid-
ered in this paper, i.e., choreography realizability enforcement. In fact, our approach is
reuse-oriented and aims at restricting, by means of the automatically synthesized CDs,
the interaction behavior of the discovered (third-party) services in order to realize the
specified choreography. Differently, the approaches described in [13,16] are focused on
verifying whether the set of services, required to realize a given choreography, can be
easily implemented by simply considering the role-based local views of the specified
choreography. That is, this verification does not aim at synthesizing the coordination
logic, which is needed whenever the collaboration among the services leads to global
interactions that violate the choreography behavior.
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In [12] a game theoretic strategy is used for checking whether incompatible com-
ponent interfaces can be made compatible by inserting a converter between them. This
approach is able to automatically synthesize the converter. Contrarily to what we have
presented in this paper, the synthesized converter can be seen as a centralized CD.

In our previous work [1] a preliminary version of the coordination algorithm pre-
sented in Section 3 has been applied in a component-based setting, namely EJB com-
ponents for J2EE component-based systems, to support automated composition and
coordination of software components. In this paper, it has been completely revised to
deal with service-oriented systems and solve some open issues. For instance, differ-
ently from what is done in [1], we are able to prevent undesired interactions without
producing a centralized model of the coordinator.

In [14], the authors show how to monitor safety properties locally specified (to each
component). They observe the system behavior simply raising a warning message when
a violation of the specified property is detected. Our approach goes beyond simply de-
tecting properties (e.g., a choreography specification) by also allowing their enforce-
ment. In [14] the best thing that they can do is to reason about the global state that each
component is aware of. Note that, differently from what is done in our approach, such
a global state might not be the actual current one and, hence, the property could be
considered guaranteed in an “expired” state. Another work in the area of the synthesis
of runtime monitors from automata is described in [15]. Note that runtime monitoring
is mostly focused on the detection of undesired behaviours, while runtime enforcement
focuses on their prevention/solution.

5 Conclusions and Future Work

In this paper we presented a model-based synthesis process for automatically enforcing
choreography realizability. The main contributions of the presented work with respect to
the choreography generation research area are: (i) an automated solution to the problem
of choreography realizability enforcement, in contrast with the fundamentally different
problem of choreography realizability check; (ii) the formalization of a distributed algo-
rithm for choreography-based coordination; (iii) the definition of model transformations
capable to produce both the model and the actual implementation of a choreographer
distributed into a set of cooperating CDs - this is done without generating any central-
ized model, hence addressing state-explosion problems and scalability issues; and (iv)
the full automation and applicability of the approach to practical contexts, e.g., SOAP
Web-Services.

In Section 4, we related our approach to existing centralized solutions. Summing up,
the most relevant advantage of our approach with respect to these solutions is that the
degree of parallelism of the system is maintained despite the introduction of the coordi-
nator. Often, centralized approaches do not permit parallelism since the coordinator is
usually implemented as a centralized single-threaded component and the communica-
tion with it is synchronous. For space reasons, we cannot further detail this discussion
and the reader who is interested on it can refer to the CHOReOS web site.

The approach is viable and the automatically generated code allows for the
correct enforcement of the specified choreography. The proposed approach has
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already been applied to a large-scale realistic case study, namely the passenger-
friendly airport scenario and a public demo is available at the CHOReOS web-site
http://www.choreos.eu/bin/Download/Software. Currently, we are applying
the process at two other industrial case studies of CHOReOS in the domains of market-
ing and sales, and Internet of things. The results will also be publicly available by the
CHOReOS web site. The current implementation of the whole approach supports the
generation of Java code for coordinating SOAP-based Web-services. Considering the
general-purpose nature of the approach, other languages and application domains are
eligible, and other forms of wrapping can be easily realized.

An interesting future direction is the investigation of non-functional properties of
the choreography, e.g., by extending the choreography specification with performance
or reliability attributes and accounting for them in the CDs synthesis process.

As discussed in Section 3, our approach allows supervised services to perform an
operation that is outside the scope of the specified choreography. In this sense our ap-
proach is permissive. However, it can be parameterized to be either permissive or re-
strictive with respect to these operations. However, simply enabling or disabling the
execution of operations outside the scope of the choreography is a trivial strategy. In
the future we plan to investigate, and embed into the approach implementation, more
accurate strategies to suitably deal with these operations.

This paper has been mainly focused on describing the model-based and automatic
synthesis of CDs at work, within a choreographic static scenario. Thus, as further fu-
ture work, dynamic scenarios should be considered and our process should be revised
accordingly. For instance, such scenarios are related to contexts in which services may
change their behaviour according to the “global state” of the choreography.

The correctness of our coordination algorithm with respect to choreography enforce-
ment has been informally discussed in Section 3. For a rigorous assessment of our
method, as another future work, a formal proof of the algorithm is needed.
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Abstract. Rather than developing individual systems, Software Prod-
uct Line Engineering develops families of systems. The members of the
software family are distinguished by the features they implement and
Feature Models (FMs) are the de facto standard for defining which fea-
ture combinations are considered valid members. This paper presents an
algorithm to automatically extract a feature model from a set of valid
feature combinations, an essential development step when companies, for
instance, decide to convert their existing product variations portfolio into
a Software Product Line. We performed an evaluation on 168 publicly
available feature models, with 9 to 38 features and up to 147456 fea-
ture combinations. From the generated feature combinations of each of
these examples, we reverse engineered an equivalent feature model with
a median performance in the low milliseconds.

Keywords: Feature, Feature Models, Feature Set, Reverse Engineering,
Software Product Lines, Variability Modeling.

1 Introduction

Commercial software systems usually exist in different versions or variants, this
can be due, for instance, to requirement changes or different customer needs.
Variability is the capacity of software artifacts to change [1] and Software Prod-
uct Line Engineering (SPLE) is a software development paradigm which helps
to cope with the increasing variability in software products. In SPLE the engi-
neers develop families of products rather than designing the individual products
independently. SPLE practices have shown to significantly improve productivity
factors such as reducing costs and time to market [2]. At the core of SPLE is a
Software Product Line (SPL) [2], which represents a family of software systems.
These systems are distinguished by the set of features they support, where a fea-
ture is an increment in program functionality [3]. The de facto standard to model
the common and variable features of an SPL and their relationships are Feature
Models (FMs) [4], that express which feature combinations are considered valid
products (i.e. SPL members).
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However, companies typically do not start out building a feature model or SPL.
Rather they build products and, if successful, variations of that product for differ-
ent customers, environments, or other needs. A scenario, which is becoming more
pervasive and frequent in industry, is to reverse engineer such product variations
into an SPL. The first essential step in this process is obtaining a feature model
that correctly captures the set of valid feature combinations present in the SPL.
Constructing such feature model manually is time intensive and error prone. Our
work is a complement to the current research in this area which assumes the exis-
tence of artifacts with variability already embedded from which an FM could ex-
tracted. In our earlier work [5], we presented an algorithm to address this problem
on basic feature models. This paper extends this work by also considering feature
models that can contain basic Cross Tree Constraints (CTCs), that is, requires
and excludes CTCs [6]. Furthermore, we also performed a more comprehensive
evaluation. We used 168 publicly available feature models, with 9 to 38 features
and up to 147456 feature combinations. From the generated feature combinations
of each of these examples, we reverse engineered an equivalent feature model with
a median performance in the low milliseconds.

2 Background and Running Example

This section provides the required background information about variability
modeling with feature models and related basic technology.

2.1 Feature Models in a Nutshell

Feature models are commonly used in SPLE to define which feature combinations
are valid products within an SPL. The individual features are depicted as labeled
boxes and are arranged in a tree-like structure. There is always exactly one
root feature that is included in every valid program configuration. Each feature,
apart from root, has a single parent feature and every feature can have a set of
child features. These child-parent relationships are denoted via connecting lines.
Notice here that a child feature can only be included in a program configuration
if its parent is included as well. There are four different kinds of relations in
which a child (resp. a set of children) can interrelate with its parent:

– If a feature is optional (depicted with an empty circle at the child end of the
relation) it may or may not be selected if its parent feature is selected.

– If a feature is mandatory (depicted with a filled circle at the child end of the
relation) it has to be selected whenever its parent feature is selected.

– If a set of features forms an inclusive-or relation (depicted as filled arcs) at
least one feature of the set has to be selected if their parent is selected.

– If a set of features forms an exclusive-or relation (depicted as empty arcs)
exactly one feature of the set has to be selected if their parent is selected.

Besides the child-parent relations there are also so called cross-tree constraints
(CTC ), which capture arbitrary relations among features. Basic CTCs are the
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requires and excludes relation. If feature A requires feature B, then feature B has
to be included whenever feature A is included. If two features are in an excludes
relation then these two features cannot be selected together in any valid product
configuration. The requires and excludes CTCs are the most commonly used
in FMs; however, more complex CTCs can be expressed using propositional
expression, for further details see [7].

Fig. 1. Cell Phone SPL Feature Model

Table 1. Feature Sets of Cell
Phone Software Product Line
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P8 � � � � � � � �
p9 � � � � � � � � � �
p10 � � � � � � � � �
p11 � � � � � � � �
p12 � � � � � � � � � �
p13 � � � � � � � � �
p14 � � � � � � � � � �
p15 � � � � � � � � �
p16 � � � � � � � � � � �

Figure 1 shows the feature model of our running example, an SPL of cell
phones inspired by a model of the SPLOT homepage [8]. Feature Cell Phone is
the root feature of this feature model, hence it is selected in every program con-
figuration. It has three mandatory child features (i.e. the features Accu Cell,
Display and Games), which are also selected in every product configuration
as their parent is always included. The children of feature Accu Cell form an
exclusive-or relation, meaning that the programs of this SPL include exactly
one of the features Strong, Medium or Weak. The features Multi Player and
Single Player constitute an inclusive-or, which demands that at least one of
these two features is selected in any valid program configuration. Single Player

has Artificial Opponent as a mandatory child feature. Feature Wireless is
an optional child feature of root, hence it may or may not be selected. Its child
features Infrared and Bluetooth form an inclusive-or relation, meaning that
if a program includes feature Wireless then at least one of its two child fea-
tures has to be selected as well. The Cell Phone SPL also introduces three
CTCs. While feature Multi Player cannot be selected together (excludes)
with feature Weak, it cannot be selected without feature Wireless. Lastly feature
Bluetooth requires feature Strong.

2.2 Basic Definitions

Definition 1. Feature List (FL) is the list of features in a feature model.
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The FL for the Cell Phone FM is [Cell Phone, Infrared, Bluetooth,

Strong, Medium, Weak, Multi Player, Single Player, Display, Games,

Artificial Opponent, Accu Cell, Wireless].

Definition 2. Feature Set (FS) is a 2-tuple [sel,sel ] where sel and sel are re-
spectively the set of selected and not-selected features of a member product. Let
FL be a feature list, thus sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL.
The terms p.sel and p.sel respectively refer to the set of selected and not-selected
features of product p1.

Definition 3. Feature Sets Table (FST) is a set of feature sets, such that for
every product pi we have that pi .sel ∪ pi .sel=FL, where FL is a feature list of the
corresponding SPL. Let FSTFL′ denote the clipping of FST that only contains
features in feature list FL′, i.e. FSTFL′ = {FS | ∃FS ′ ∈ FST : FS ′.sel ∩ FL′ =
FS .sel ∧ FS ′.sel ∩ FL′ = FS .sel} and let FSTf denote the subset of FST that
contains only feature sets in which feature f is selected.

Table 1 shows the 16 valid feature sets defined by the feature model in Figure 1.
Throughout the paper we use as column labels the shortest distinguishable prefix
of the feature names (e.g. We for Weak). An example of a feature set is product
p1 =[{C, A, S, D, G, Si, Ar}, {W, I, M, We, Mu}]. p1 is a valid product
because none of the constraints imposed by the Cell Phone FM is violated.

Definition 4. Atomic set is a group of features that always appears together
in all products [6]. That is, features f1 and f2 belong to an atomic set if for all
products pi , f1 ∈pi .sel iff f2 ∈pi .sel and f1 ∈pi .sel iff f2 ∈pi .sel . Let atSet be an

atomic set, we denote atSet as an arbitrarily chosen representative feature of the

atomic set, and ãtSet the remaining non-representative features in atSet.

For example, in the feature sets of Table 1, features Si and Ar form an atomic

set atSet. A representative can be atSet =Si and ãtSet={Ar}. Both features
always appear together in the products of Table 1, e.g. while product p1 includes
features Si and Ar, product p15 does include neither of them.

Definition 5. Smallest Common Product. Let S be a set of feature sets. Product
pi ∈ S is a smallest common product of S iff ∀ pj ∈ S : |pi .sel | ≤ |pj .sel |.

Product p1 includes seven features, it is a smallest common product as there
exists no product in Table 1 that includes less features.

For our reverse engineering algorithm two different kinds of graphs are con-
structed to represent information contained in the input FST, the implication
and mutex graph, both are specializations of feature graphs.

Definition 6. A Feature Graph FG is an ordered pair (V,E) where V is a set
of features (i.e. V ⊆ FL) representing the vertices of the graph and E is a set of
tuples of the form (f1, f2) ∈ V × V , where (a, b) ∈ E denotes that there is an
edge from feature a to feature b.

1 Definition based on [6].
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We say feature f implies feature f’ in FST, whenever the proposition holds that
f’ is included whenever f is selected. An implication graph is used to summarize
which features imply which other features in the input FST.

Definition 7. Implication Graph IG. Let fst be an FST where all non-representa-
tive features have been removed and let fl be the feature list of fst. The IG of fst
and fl is a feature graph that contains an edge from feature f1 to feature f2 if
f1 implies f2 in FST, where IG does not contain any transitive connections be-
tween f1 and f2 i.e. ∀ f1, f2 ∈ fl : imp(f1, f2, fst) ∧ ¬path((f1 , f2), IG \ {(f1, f2)})
⇒ (f1, f2) ∈ IG holds for IG, where:

– imp((t1, t2), fst) ≡ ∀ fs ∈ fst : t1 �∈ fs .sel ∨ t1 ∈ fs .sel ∧ t2 ∈ fs .sel
– path((x , y),G) ≡ (x , y) ∈ G ∨ (∃ x ′ : (x , x ′) ∈ G ∧ path((x ′, y),G).

The mutex graph stores which features are not selected together in any valid
product configuration of the input FST. Section 3 provides algorithms to extract
the mutex and implication graph from an FST.

Definition 8. Mutex Graph. Let fst be an FST and let fl be the FL of fst.
A Mutex Graph MG of fst and fl is a feature graph that contains an edge from
feature f1 to feature f2 iff all feature sets in fst select at most one of these features
i.e. ∀ f1, f2 ∈ fl : (∀ fs ∈ fst : ¬f1 ∈ fs .sel ∨ ¬f2 ∈ fs .sel) ⇔ (f1, f2) ∈ MG holds
for MG.

Definition 9. A feature map M ⊆ FL×P(FL) maps a single feature to a set of
features, i.e. ∀(f1, features1), (f2, features2) ∈ M : f1 = f2 ⇒ features1 = features2
holds. Let f be a feature, M.f denotes the set of features that f maps to.

3 Reverse Engineering Algorithm

This section describes our reverse engineering algorithm that extracts from an
input FST and its FL the corresponding feature model. We start by outlining the
challenges introduced by also considering CTCs then we proceed by describing
the overall procedure of our algorithm and its core auxiliary function buildFM.

3.1 Challenges Created by Considering CTCs

Our previous work proposed an algorithm to reverse engineer feature models
without CTCs (i.e. basic feature models) from FSTs [5]. By also considering
CTCs the extraction process gets more complex, because many of the observa-
tions used for extracting basic feature models no longer hold. The reason being
that CTCs do not introduce new valid feature combinations, but instead they
reduce their number.

Essentially there are three core issues that need to be resolved. While the IG of
an FST that corresponds to a basic feature model always yields the correct child
parent relations, this is not necessarily the case for an FST that corresponds to
a feature model with basic CTCs. Also the extraction of exclusive-or relations
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gets more complex, because two sibling features that are never selected together
in any valid product configuration can either be in an exclusive-or relation or
in an excludes CTC. The third challenge is the extraction of optional features.
Previously, we used the observation that all features that are not selected in any
of the smallest common products formed by features with the same parent in IG
are optional. This observation is not strong enough as soon as requires CTCs are
considered, because a feature that is not selected in any of the smallest common
products might be optional but it could as well be a feature that is just in a
requires CTC with its parent in IG.

Algorithm 1. Feature Model Extraction

1: Input: A Feature Sets Table (FST),
and Feature List (FL).

2: Output: A feature model FM.
3:
4: {Start building FM from common fea-

tures}
5: splCF := splWideCommon(FST )
6: f ∈ splCF
7: root := [f , splCF − {root}, {}, {}, {}]
8: FM := [root , {}, {}]
9:
10: {Prunes FST by removing common

features}
11: FL′ := FL− splCF
12: FST ′ := FSTFL′

13:
14: {Computes atomic sets}
15: atSets := compAtomicSets(FST ′,FL′)

16: {Prunes FST by removing atomic
sets}

17: FL′′ := FL′ − ãtSets
18: FST ′′ := FST ′

FL′′
19:
20: {Build Mutex and Implication

Graph}
21: IG := buildImplGraph(FST ′′,FL′′)
22: MG := buildMutexGraph(FST ′′ ,FL′′)

23:
24: {Build Feature Model}
25: FL′′′ := FL′′ − {root}
26: FST ′′′ := FST ′′

FL′′′
27: buildFM (FST ′′′,FL′′′, atSets,

root ,FM , IG,MG)
28:
29: {Extract EXCLUDES CTCs}
30: excludes = extractExclCTC (

FM ,MG)
31: addConstraints(FM , excludes)
32: return FM

3.2 Overall Procedure

Algorithm 1 shows the overall procedure to extract feature models from an input
FST and its corresponding FL. The data structure used to store the extracted
model is a three-tuple of the form [root, requires, excludes], where root

is a feature model node, and requires and excludes are feature maps that
respectively represent requires and excludes CTCs.

Definition 10. A feature model node is a five-tuple of the form [f, mand,

opt, or, xor], where f is the feature represented by the node, mand is the set
of mandatory child features of f, opt is a set of feature model nodes representing
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the optional child features of f and or (resp. xor) is a set of sets of feature
model nodes representing the inclusive-or (resp. exclusive-or) relations among
child features of feature f.

Auxiliary Function 1. splWideCommon(fst) computes from a Feature Sets
Table the set of features that are common to all the members of the product line,
i.e. features f such that for all products pi∈fst, f∈pi.sel holds.

Line 5 calls splWideCommon(fst)which yields for our example the features C,
D, A and G, as they are selected in every single product of Table 1. Subsequently
Line 6 arbitrarily selects one of these features to be the root feature. Then
Lines 7 to 8 initialize the feature model data structure.

Auxiliary Function 2. compAtomicSets(fl, fst) computes the atomic sets
in the feature sets of Feature Sets Table fst involving features in Feature List
fl.

Fig. 2. Implication Graph of Cell Phone
SPL

Fig. 3. Mutex Graph of Cell Phone SPL

For our running example atSet =Si and ãtSet={Ar} is extracted as atomic set
in Line 15. Lines 21 and 22 extract the implication and mutex graph as they are
shown in Figure 2 and 3. To build up the implication graph the auxiliary function
buildImplGraph(fst, fl) is used (see Algorithm 2). This function takes an
FST where all non-representative features have been removed and its FL. Using
these two inputs it extracts an implication graph as defined in Definition 7. The
two auxiliary functions used by Algorithm 2 are defined as follows.

Auxiliary Function 3. independent(fst,fl) returns all features in FL fl

that do not imply any other feature in FST fst.

Auxiliary Function 4. imply(fst,fl, f) returns all features in FL fl that
imply feature f in FST fst.

The function buildMutexGraph(fst, fl), that is described in Algorithm 3,
extracts the mutex graph corresponding to an FST and its FL as defined in
Definition 8.

Function buildFM, shown in Algorithm 4, traverses the implication graph IG

from bottom to top and determines the types of relationships among sibling
features, at the same time it also extracts the requires CTCs and inserts them
into FM. Section 3.3 describes this function in more detail.

Auxiliary Function 5. extractExclCTC(FM, MG) returns a feature map repre-
senting the excludes CTC. The function traverses the feature model FM to extract
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Algorithm 2. Build Implication Graph
buildImplGraph(FST, FL)

1: Input: A Feature Sets Table (FST),
and Feature List (FL).

2: Output: An Implication Graph IG.
3:
4: IG := {}
5: f ∈ splWideCommon(FST )
6: FL′ = FL − {f }
7: FST ′ = (FSTf )FL

8: directChildren =
independent(FST ′,FL′)

9:
10: for fin in directChildren do
11: IG = IG ∪ {[fin , f ]}
12: descendants = imply(FST ′,FL′, f )
13: FST ′′ = (FST ′

f )descendants
14: IG = IG ∪ buildImplGraph(FST ′′,

descendants)
15: end for
16: return IG

Algorithm 3. Build Mutex Graph
buildMutexGraph(FST,FL)

1: Input: A Feature Sets Table (FST),
and Feature List (FL).

2: Output: A Mutex Graph MG.
3:
4: MG = {}
5: for f in FL do
6: mutex =

⋂
fs∈FST∧f∈fs.sel fs.sel

7: if | mutex |> 0 then
8: MG = MG ∪ ({f } ×mutex)
9: end if
10: end for
11:
12: return MG

a mutex graph MG’. Tuples that are elements of MG (which has been extracted from
the input FST) but not element of MG’ are extracted as excludes CTCs.

The last step of our reverse engineering algorithm is to extract the excludes
CTCs (see Lines 30 to 31 in Algorithm 1). Consider Figure 7, it depicts the FM
that has been extracted by buildFM and that is shown in the bottom part of Fig-
ure 7. Feature Strong is in an exclusive-or relation with Medium and Weak, hence
the tuples {(Strong, Medium), (Strong, Weak)} are added to MG’. Also re-
quires CTCs have to be considered while MG’ is built up, i.e. ”Bluetooth requires
Strong” in FM as Strong excludes Medium and Weak, feature Bluetooth cannot be
selected together with these two features either. Figure 4 shows the complete mu-
tex graph MG’ extracted by extractExclCTC(FM, MG). (Multi Player, Weak)

is an element of MG (see Figure 3) but not of MG’, therefore the excludes CTC
Multi Player excludes Weak is added to FM. Figure 5 shows the final feature
model that has been extracted by our reverse engineering algorithm. Notice that
in this case the extracted FM is different from the one used as our running ex-
ample in Figure 1. Nonetheless they are both equivalent in the sense that both
denote the same set of feature sets.

3.3 Build Feature Model

Algorithm 4 builds up the feature model tree using the extracted graphs (i.e.
the implication and mutex graph), the atomic sets and an FST. The implication
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Fig. 4. Mutex Graph extracted from the
FM shown in Figure 7

Fig. 5. Extracted FM

graph IG gives hints on the tree-structure of the feature model to extract, i.e. a
feature is guaranteed to reach its parent in the implication graph, it is not guar-
anteed though that a feature is directly connected with its parent. For instance
feature Multi Player has a direct connection to feature Wireless (which is
not its parent feature) in IG due to the CTC Multi Player requires Wireless.
BuildFM traverses IG from bottom to top (see Lines 5 to 11).

Algorithm 4. Build Feature Model buildFM

1: Input: A Feature Sets Table (FST),
a Feature List (FL), atomic sets (at-
Sets), a feature (parent), a feature
model (FM) and two graphs (IG and
MG).

2: Output: The modified feature model
(FM).

3:
4: {Bottom to top traversal of implica-

tion graph}
5: for f in directChildren(parent , IG)

do
6: if | descendants(f , IG) |> 0 then
7: FST ′ := (FSTnode.f )descendants(f ,IG)

8: stack .push(f )
9: buildFM (FST ′,

descendants(f , IG), atSets,
f ,FM , IG,MG)

10: end if
11: end for
12:
13: {Keep only columns that are direct

children of parent}
14: FL′ = directChildren(parent , IG)

15: FST ′ := FSTFL′

16:
17: {Add XOR relations and compute re-

duced FST}
18: xors = insertXors(FST ′,FL′, parent ,

FM )
19: FL′′ = FL′ − xors
20: FST ′′ := getSmallestProduct(FST ′

FL′′ )

21:
22: {Add optional relations and compute

reduced FST}
23: opts = insertOptionals(FST ′′,FL′′,

parent ,FM , IG)
24: FL′′′ = FL′′ − opts
25: FST ′′′ := getSmallestProduct

(FSTFL′′′)
26:
27: {Add OR relations}
28: insertOrs(FST ′′′,FST ′,FL, parent ,

FM , IG)
29:
30: stack .pop()
31: return
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The feature list FL contains all features that are descendants of parent in
IG, meaning that these features are either descendants of parent in the feature
model to extract or they are in a requires CTC with parent.

Auxiliary Function 6. descendants(f, IG) returns all features f’ that can
reach feature f in IG, i.e. path((f ’,f), IG) holds.

Auxiliary Function 7. directChildren(f, IG) returns all features f’ that
are connected to feature f in IG i.e. (f ′, f ) ∈ IG.

One of our core observations is that the relationships among sibling features
can be extracted by only considering the valid combinations among them, these
combinations are calculated in Line 15. Next the exclusive-or relations are ex-
tracted (see Line 18) using the auxiliary function insertXors.

Auxiliary Function 8. insertXors(FST, FL, MG, parent, FM, IG) inserts
distinct subsets xori ⊆ FL as to be in an exclusive-or relation for which holds
that all members of xori exclude each other and at least one of them is selected
in every feature set of FST, i.e.: ∀ f1 ∈ xori , f2 ∈ xori : (f1, f2) ∈ MG ∧ ∀ fs ∈
FST : xori ∩ fs .sel �= {}.

Notice here that the proposition xori ∩ fs .sel �= {} in Auxiliary Function 8
ensures that two features that are only in an excludes CTC are not extracted as
to form an exclusive-or relation.

Auxiliary Function 9. getSmallestProducts (FST) returns an FST’ that
contains only the smallest common products of FST.

An example of the use of this function is in Line 20 of Algorithm 4.

Auxiliary Function 10. insertOptionals(FST, FL, parent, FM, IG) pro-
cesses possible optional features, i.e. all features f that are not selected in any
FS of FST and do not imply their sibling feature or descendant, i.e. (∀ fs ∈
FST : f ∈ fs .sel ) ∧ descendants(parent , IG) ∩ FM .requires .f = ∅ holds, where
FST contains only smallest common products. If f is a true optional feature it
is inserted as such, otherwise it is pushed one level upwards in IG.

Connections between two features exist in IG either due to requires CTC or
child-parent relations. Features that do only have a connection in IG to the
current parent due to a requires CTC are possible optional features. For a
true optional feature f holds that each valid feature combination containing f

is still valid if f is deselected not considering any features that imply f, i.e.
∀ fs ∈ fst : f ∈ fs .sel ⇒ ∃ fs ′ ∈ fst : (fs .sel \ {f }) \ implies = fs ′.sel \ implies ,
where implies is the set of features that imply feature f in the input FST.
Function insertOptionals checks this property and is used in Line 23, note
here that this is the only auxiliary function that operates on the complete input
FST of Algorithm 1. The last kind of relation that need to be extracted are
inclusive-or relations. Before we do this we again change the considered clipping
of the input FST (see Lines 24 to 25).

Auxiliary Function 11. insertOrs(FST, FST’, FL, parent, FM, IG) ex-
tracts disjoint subsets of FL as to form inclusive-or relations and inserts them
into feature model FM.

Let n be the number of included features in a smallest common product (fs ∈
FST , n = |fs .sel |), then n yields the number of inclusive-or relations to extract.
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Features that are selected together in the products of FST have to be in different
inclusive-or relations. The features in FL that are selected in the products of FST,
are grouped into n disjoint subsets, where two features that are selected together
in any of the products in FST are put into different subsets.2 Each of these subsets
ssi represents a possible inclusive-or relation, but only those ssi are inserted as
to be in an inclusive-or relation for which holds: ∀ fs ∈ FST ′ : fs .sel ∩ ssi �= ∅.3

The remainder of this section describes how buildFM proceeds on the running
example. During the first call of buildFM the variable parent is equal to C,
Line 5 yields the set {M, Si, S, W} as direct children of C in IG. Lets choose
feature W as the first direct child that is processed by the loop in Line 5 As
the direct children of W (i.e. I, B and Mu) do not have descendants there are no
further recursive calls for these features.

Line 15 reduces the input FST, in our example the set of descendants of W is
equal to its direct children, hence FST is equal to FST’. The features I, B and
Mu do not exclude each other, hence Line 18 does not extract any exclusive-
or relations. Line 20 extracts the smallest common products in FST’ yielding
FST’’= {[{B}, {I ,Mu}], [{I }, {B ,Mu}]}. Line 23 pushes feature Mu one level
upwards in IG inserting the CTC ”Multi Player requires Wireless”. Mu is a pos-
sible optional feature, i.e. it is not selected in any of the products in FST’’

and there exists no requires CTC with any of its sibling features, but Mu is not
a true optional feature. Consider for instance product p11 in Table 1, p11.sel
= {C, W, I, A, Me, D, G, Mu}. If W was an optional feature then a product
p11′.sel = p11.sel \ {Mu} should also exist in Table 1 as this is not the case W

cannot be optional.
Auxiliary function insertOrs extracts features I and B as to be in an inclusive-

or relation. Figure 6 depicts the extracted Feature Model and the modified fea-
ture graph IG after the first recursive call of buildFM.

The second recursive call is performed for feature Si and its descendant feature
We. Once again auxiliary function insertOptionals yields that We is not a true
optional feature, hence it pushes We one level upwards in IG and inserts the
requires CTC ”Weak requires Single Player”.

As no further recursive calls are required, buildFM now extracts the relations
among the direct children of root, i.e. features W, Si, Mu, S, M and We.

Function insertXor extracts the features S, M and We as to form an exclusive-
or relation. Subsequently Line 20 calculates FST’’= {[{Si}, {W ,Mu}]} that
contains only the smallest common products formed by features W, Mu and Si.

Feature W is extracted as optional feature because it is neither selected in
any of the products in FST’’ nor does it require one of its sibling features. As
feature Mu implies feature W it cannot be an optional feature. FST’’’ is equal to

2 Please refer to [9] for an explanation how we deal with features that are not selected
in any of the products in FST.

3 If there are features that could not be inserted, this means that possibly no equivalent
model is extracted. Features for which the correct place in the feature model could
not be found will be pushed one level upwards in the implication graph, if the current
parent is the root feature then these features are inserted as optional child features.
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Fig. 6. IG and FM after first recursive call
of buildFM

Fig. 7. IG and FM after call of buildFM

{[{Si} , {Mu}] , [{Mu} , {Ri}]}, it contains the smallest common products formed
by Mu and Si. Using FST’’’ insertOrs inserts an inclusive-or relation among
these two features. Figure 7 shows the extracted feature model and the modified
implication graph after the call of buildFM.

4 Evaluation

We evaluated our approach with 168 FMs publicly available from the SPLOT
Homepage [8], for which the FAMA tool suite [10] was able to generate the
corresponding FSTs that were then used as input to our reverse engineering
algorithm4. The size of the FSTs described by one of these models ranges from 1
to 147456 products with an average of 1862.2 and a median of 62 products. The
number of features is between 9 and 38. Of these 168 models, 69 have requires
or excludes CTCs. The average number of CTCs of these 69 models is 3.12, the
median is 2. The model with the most CTCs has 6 excludes and 11 requires
CTCs and describes 1042 products. We executed our examples on a Windows 7
Pro system, running at 3.2Ghz, and with 8 GB of RAM. Figure 8 depicts the
execution times of this evaluation. Our timing analysis shows that the average
execution time is 1862.2ms and the median is 62ms, for the largest FST the
execution of our reverse engineering algorithm takes only 12s. In each of these
168 cases our reverse engineering algorithm generated an equivalent model. To
determine the equivalence of the input model and the reverse engineered model
we used a procedure very similar to the one presented in [11].

4 The code and feature models samples are available at:
http://www.jku.at/sea/content/e139529/e126342/e188736/

http://www.jku.at/sea/content/e139529/e126342/e188736/
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Fig. 8. Execution times of test runs

4.1 Algorithm Limitations

Each additional non-redundant CTC reduces the set of valid product configura-
tions, however at some point it may no longer be possible to extract the hierarchy
of the FM tree as too much information may be missing. Our algorithm does not
cover circular requires CTCs, (e.g. if a feature A requires feature B and feature
B requires feature A) or structural feature constructs which are equivalent to
them [9]. In such case our reverse engineering algorithm produces an FM that
is not equivalent to the input FST. However, we argue that such cases may in-
dicate potential design flaws in the feature models that the software engineers
should address. Our algorithm assumes that the input FST is complete, that is
it contains all possible product configurations the FM should denote. Dealing
with incomplete FSTs and incremental adaptation of existing FMs is part of our
future work.

5 Related Work

This section outlines other approaches to reverse engineer feature models. Lopez-
Herrejon et. al published an exploratory study on reverse engineering feature
models using evolutionary algorithms [12], where ETHOM (Evolutionary algo-
riTHm for Optimized feature Models) was used for their implementation. Like
our approach they also use a set of valid program configurations as an input to
their algorithm. We see the advantage that they are theoretically able to reverse
engineer more than one feature model that represents the input FST, which
makes it possible to choose the model that contains the most meaningful feature
hierarchy. Their evaluation showed though that they extracted in most cases
feature models that are not equivalent to the input FST.
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Acher et. al proposed a procedure to extract feature models from product de-
scriptions [13]. Their reverse engineering algorithm operates on a slightly differ-
ent perspective than ours does. They use semi-structured product descriptions
instead of the mere set of valid feature combinations. These product descriptions
are given in the form of tables where they produce a feature model for every row
in the input tables. This is done through interpreting the values of the individ-
ual cells, e.g. if a cell contains the value ”Plugin” then the corresponding feature
is extracted as optional. Subsequently they merge the extracted feature models
into a single model that their algorithm returns as output. Weston et. al intro-
duce a framework that supports SPL engineers in constructing FMs from natural
language requirements [14]. Their framework is used to determine the features of
the SPL, to extract the tree structure among the extracted features and to differ-
entiate between mandatory and variant features. She et. al present procedure to
simplify the reverse engineering process of feature models [15]. To do this they use
logic formulas as well as textual descriptions to make proposals to the user who
then guides the extraction process. To extract the hierarchy of the FM tree they
use an implication graph obtained from the logic formulas and similarity measures
among the features of the SPL that have been extracted from the textual descrip-
tions. Andersen et. al propose algorithms to reverse engineer feature models from
propositional logic formulas, these formulas are either in disjunctive normal form
(DNF) or conjunctive normal form (CNF) [16]. Note here that while an FST can
be viewed as a propositional logic formula in DNF, our approach is very different
fromAndersen et. al’s.While we use set operations to reverse engineer an FM from
an FST their algorithms heavily rely on BDDs or rather SAT solvers.Moreover we
want to emphasize here that Andersen et. al extracted for their evaluation feature
graphs which need to be converted into feature models at a later time, either with
the help of user input or an automated procedure described in their paper.

6 Conclusions and Future Work

Our evaluation shows that the proposed algorithm is able to reverse engineer
feature models from input FSTs with a median execution time in the order of
milliseconds. Our future work will address the following three issues. First, our
current algorithm does not support circular requires CTCs. We plan to assess
in practice if this scenario can indeed be characterized as a design error. Alter-
natively, we would extend the algorithm to cope with such cases. The second
issue is a thorough scalability assessment. Our current evaluation is limited by
FAMA’s capability to generate feature sets. We expect to overcome this limita-
tion with an approach sketched in [9]. FMs are not canonical, so there might be
several non-identical FMs that represent the same FST. The third issue we plan
to address is assessing the understandability of our reverse engineered models.
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Abstract. Spreadsheets are by far the most prominent example of end-
user programs of ample size and substantial structural complexity. In
addition, spreadsheets are usually not tested very rigorously and thus
comprise faults. Locating faults is a hard task due to the size and
the structure, which is usually not directly visible to the user, i.e.,
the functions are hidden behind the cells and only the computed val-
ues are presented. Hence, there is a strong need for debugging support.
In this paper, we adapt three program-debugging approaches that have
been designed for more traditional procedural or object-oriented pro-
gramming languages. These techniques are Spectrum-based Fault Lo-
calization, Spectrum-Enhanced Dynamic Slicing, and Constraint-based
Debugging. Beside the theoretical foundations, we present a more sophis-
ticated empirical evaluation including a comparison of these approaches.
The empirical evaluation shows that Sfl (Spectrum-based Fault Lo-
calization) and Sendys (Spectrum ENhanced Dynamic Slicing) are the
most promising techniques.

Keywords: End-User debugging, spreadsheets, spectrum-based fault
localization, model-based debugging.

1 Introduction

Spreadsheet tools, such as Microsoft Excel, iWork’s Numbers, and OpenOffice’s
Calc, can be viewed as programming environments for non-professional pro-
grammers [1]. In fact, these so-called “end-user” programmers vastly outnumber
professional ones: the US Bureau of Labor and Statistics estimates that more
than 55 million people use spreadsheets and databases at work on a daily ba-
sis [1]. Despite this trend, as a programming language, spreadsheets lack support
for abstraction, testing, encapsulation, or structured programming. As a conse-
quence, spreadsheets are error-prone. Numerous studies have shown that existing
spreadsheets contain redundancy and errors at an alarmingly high rate [2].
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Furthermore, spreadsheets are applications created by single end-users with-
out planning ahead of time for maintainability or scalability. Still, after their
initial creation, many spreadsheets turn out to be used for storing and process-
ing increasing amounts of data as well as supporting increasing numbers of users
over long periods of time. Therefore, debugging (i.e., locating the cell(s) that are
responsible for the wrong output in a given cell) can be a rather cumbersome
task, requiring substantial time and effort.

In spite of having the potential to benefit from recent developments in the
software engineering domain, the truth is that only a few attempts have been
made to adapt software engineering techniques to the spreadsheet world. The
objective of this paper is to advance the state of the art in spreadsheet debugging
by applying popular, mature techniques developed to analyze software systems.
Such techniques will have a positive impact in the overall quality of spreadsheets.

In this paper, we adapt three program-debugging approaches that have been
designed for more traditional procedural or object-oriented programming lan-
guages. In particular, we describe how to modify traditional fault localization
techniques in order to render them applicable to the spreadsheet world. We con-
sider the following techniques in our study: Spectrum-based Fault Localization
(Sfl) [3], Spectrum-enhanced dynamic slicing (Sendys) [4], and Constraint-
based Debugging (ConBug) [5]. We evaluate the efficiency of the approaches
using real spreadsheets taken from the EUSES Spreadsheet Corpus [6].

The remainder of the paper is organized as follows: Section 2 deals with the
related work. In addition, existing spreadsheet debugging and testing techniques
are discussed. Section 3 deals with the syntax and semantics of spreadsheets.
Furthermore, the Spreadsheet Debugging problem is defined. Section 4 explains
the changes that have to be made in order to use the existing debugging tech-
niques for debugging of spreadsheets. Three traditional debugging techniques
are explained in detail. Section 5 deals with the setup and the results of the
empirical evaluation. Finally, Section 6 concludes this paper and presents ideas
for future empirical evaluations.

2 Related Work

Since spreadsheet developers are typically end-users without significant back-
ground in computer science, there has been considerable effort to adapt software
engineering principles to form a spreadsheet engineering discipline (e.g., [7–11]).

Some of the work presented in this paper is based on model-based diagno-
sis [12], namely its application to (semi-)automatic debugging (e.g., [13]). In con-
trast to previous work, the work presented in this paper does not use logic-based
models of programs but instead uses a generic model which can be automatically
computed from the spreadsheet. A similar approach has been presented recently
to aid debuggers in pinpointing software failures [14]. Moreover, Jannach and
Engler presented a model-based approach [15] to calculate possible error causes
in spreadsheets. This approach uses an extended hitting-set algorithm and user-
specified or historical test cases and assertions.



70 B. Hofer et al.

GoalDebug [16, 17] is a spreadsheet debugger for end users. Whenever the
computed output of a cell is incorrect, the user can supply an expected value for
a cell, which is employed by the system to generate a list of change suggestions for
formulas that, when applied, would result in the user-specified output. In [16] a
thorough evaluation of the tool is given. GoalDebug employs an approach similar
to the constraint-based approach presented in this paper.

Spreadsheet testing is closely related to debugging. In the WYSIWYT system
users can indicate incorrect output values by placing a faulty token in the cell.
Similarly, they can indicate that the value in a cell is correct by placing a correct
token [18]. When a user indicates one or more program failures during this testing
process, fault localization techniques direct the user’s attention to the possible
faulty cells. However, WYSIWYT does not provide any suggestions for how to
change erroneous formulas.

3 Basic Definitions

A spreadsheet is a matrix comprising cells. Each cell is unique and can be ac-
cessed using its corresponding column and row number. For simplicity, we assume
a function ϕ that maps the cell names from a set CELLS to their correspond-
ing position (x, y) in the matrix where x represents the column and y the row
number. The functions ϕx and ϕy return the column and row number of a cell
respectively.

Aside from a position, each cell c ∈ CELLS has a value ν(c) and an expres-
sion 	(c). The value of a cell can be either undefined ε, an error⊥, or any number,
boolean or string value. The expression of a cell 	(c) can either be empty or an
expression written in the language L. The value of a cell c is determined by its
expression. If no expression is explicitly declared for a cell, the function 	 returns
the value ε.

Areas are another important basic element of spreadsheets. An area is a set
consisting of all cells that are within the area that is spanned by the cells c1, c2 ∈
CELLS . Formally, we define an area as follows:

c1:c2≡def

{
c ∈ CELLS

∣∣∣∣ϕx(c1) ≤ ϕx(c) ≤ ϕx(c2) &
ϕy(c1) ≤ ϕy(c) ≤ ϕy(c2)

}
Obviously, every area is a subset of the set of cells (c1:c2 ⊆ CELLS ). After
defining the basic elements of spreadsheets, we introduce the language L for
representing expressions that are used to compute values for cells. For reasons
of simplicity, we do not introduce all available functions in today’s spreadsheet
implementations. Instead and without restricting generality, we make use of
simple operators on cells and areas. Extending the used operators with new ones
is straightforward.

The introduced language takes the values of cells and constants together with
operators and conditionals to compute values for other cells. The language is a
functional language, i.e., only one value is computed for a specific cell. Moreover,
we do not allow recursive functions. First, we define the syntax of L.
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Definition 1 (Syntax of L). We define the syntax of L recursively as follows:

– Constants k representing ε, number, boolean, or string values are elements
of L (i.e., k ∈ L).

– All cell names are elements of L (i.e., CELLS ⊂ L).
– If e1, e2, e3 are elements of the language (e1, e2, e3 ∈ L), then the following

expressions are also elements of L:
• (e1) is an element of L.
• If o is an operator (o ∈ {+, -,*,/, <,=, >}), then e1 o e2 is an element
of L.

• if(e1; e2; e3) is an element of L.
– If c1:c2 is an area, then sum(c1:c2) is an element of L.

Second, we define the semantics of L by introducing an interpretation function
�·� that maps an expression e ∈ L to a value. The value is ε if no value can
be determined or ⊥ if a type error occurs. Otherwise it is either a number, a
boolean, or a string.

Definition 2 (Semantics of L). Let e be an expression from L and ν a func-
tion mapping cell names to values. We define the semantic of L recursively as
follows:

– If e is a constant k, then the constant is given back as result, i.e., �e� = k.
– If e denotes a cell name c, then its value is returned, i.e., �e� = ν(c).
– If e is of the form (e1), then �e� = �e1�.
– If e is of the form e1 o e2, then its execution is defined as follows:

• If either �e1� = ⊥ or �e2� = ⊥, then �e1 o e2� = ⊥.
• else if either �e1� = ε or �e2� = ε, then �e1 o e2� = ε.
• else if o ∈ {+, -,*,/, <,=, >}, then

�e1 o e2� =

{
�e1� o �e2� if all sub-expressions evaluate to a number
⊥ otherwise

– If e is of the form if(e1; e2; e3), then

�e� =

⎧⎪⎪⎨⎪⎪⎩
�e2� if �e1� = true
�e3� if �e1� = false
ε if �e1� = ε
⊥ otherwise

– If e is of the form sum(c1:c2), then

�e� =

{ ∑
c∈c1:c2

�c� if all cells in c1:c2 have a number or ε (treated as 0) as value

⊥ otherwise

Frequently, we require information about cells that are used as input in an
expression. We call such cells referenced cells.
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Definition 3 (Referenced cell). A cell c is said to be referenced by an expres-
sion e ∈ L, if and only if c is used in e.

We furthermore introduce a function ρ : L �→ 2CELLS that returns the set of
referenced cells. Formally, we define ρ as follows:

Definition 4 (The function ρ). Let e ∈ L be an expression. We define the
referenced cells function ρ recursively as follows:

– If e is a constant, then ρ(e) = ∅.
– If e is a cell c, then ρ(e) = {c}.
– If e = (e1), then ρ(e) = ρ(e1).
– If e = e1 o e2, then ρ(e) = ρ(e1) ∪ ρ(e2).
– If e = if(e1; e2; e3), then ρ(e) = ρ(e1) ∪ ρ(e2) ∪ ρ(e3).
– If e = sum(c1:c2), then ρ(e) = c1:c2.

A spreadsheet is a matrix of cells comprising values and expressions written in
a language L. In addition, we know that the values of cells are determined by
their expressions. Hence, we can state that ∀c ∈ CELLS : ν(c) = �	(c)� must
hold. Unfortunately, we face two challenges: (1) In all of the previous definitions,
the set of cells need not be of finite size. (2) There might be a loop in the
computation of values, e.g. a cell c with 	(c) = c+1. In this case, we are not able
to determine a value for cell c. In order to solve the first challenge, we formally
restrict spreadsheets to comprise only a finite number of cells.

Definition 5 (Spreadsheet). A countable set of cells Π ⊆ CELLS is a spread-
sheet if all cells in Π have a non empty corresponding expression or are refer-
enced in an expression, i.e., ∀c ∈ Π : (	(c) �= ε)∨ (∃c′ ∈ Π : c ∈ ρ(	(c′))).

In order to solve the second challenge, we have to limit spreadsheets to loop-free
spreadsheets. For this purpose, we first introduce the notation of data depen-
dence between cells, and furthermore the data dependence graph, which repre-
sents all dependencies occurring in a spreadsheet.

Definition 6 (Direct dependence). Let c1, c2 be cells of a spreadsheet Π. The
cell c2 depends directly on cell c1 if and only if c1 is used in c2’s corresponding
expression, i.e., dd(c1, c2)↔ (c1 ∈ ρ(	(c2))).

The direct dependence definition states the data dependence between two cells.
This definition can be extended to the general case in order to specify indirect
dependence. In addition, this dependence definition immediately leads to the
definition of a graph that can be extracted from a spreadsheet.

Definition 7 (Data dependence graph (DDG)). Let Π be a spreadsheet.
The data dependence graph (DDG) of Π is a tuple (V,A) with:

– V as a set of vertices comprising exactly one vertex nc for each cell c ∈ Π
– A as a set comprising arcs (nc1 , nc2) if and only if there is a direct de-

pendence between the corresponding cells c1 and c2 respectively, i.e. A =⋃
(nc1 , nc2) where nc1 , nc2 ∈ V ∧ dd(c1, c2).
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From this definition, we are able to define general dependence between cells. Two
cells of a spreadsheet are dependent if and only if there exists a path between the
corresponding vertices in the DDG. In addition, we are able to further restrict
spreadsheets to face the second challenge.

Definition 8 (Feasible spreadsheet). A spreadsheet Π is feasible if and only
if its DDG is acyclic.

From here on, we assume that all spreadsheets of interest are feasible. Hence,
we use the terms spreadsheet and feasible spreadsheet synonymously. Standard
spreadsheet programs like Excel rely on loop-free computations.

In this paper, we focus on testing and debugging of spreadsheets. In ordinary
sequential programs, a test case comprises input values and expected output
values. If we want to rely on similar definitions, we have to clarify the terms input,
output and test case. Defining the input and output of feasible spreadsheets is
straightforward by means of the DDG.

Definition 9 (Input, output). Given a feasible spreadsheet Π and its DDG
(V,A), then the input cells of Π (or short: inputs) comprise all cells that have
no incoming edges in the corresponding vertex of Π’s DDG. The output cells of
Π (or short: outputs) comprise all cells where the corresponding vertex of the
DDG has no outgoing vertex.

inputs(Π) = {c|�(nc′ , nc) ∈ A}
outputs(Π) = {c|�(nc, nc′) ∈ A}

All cells of a spreadsheet that serve neither as input nor as output are called
intermediate cells. With this definition of input and output cells we are able to
define a test case for a spreadsheet and its evaluation.

Definition 10 (Test case). Given a spreadsheet Π, then a tuple (I, O) is a
test case for Π if and only if:

– I is a set of tuples (c, e) specifying input cells and their values. For each
c ∈ inputs(Π) there must be a tuple (c, e) in I where e ∈ L is a constant.

– O is a set of tuples (c, e) specifying expected output values. The expected
output values must be constants of L.

In our setting, test case evaluation works as follows: First, the functions 	(c) of
the input cells are set to the constant values specified in the test case. Subse-
quently, the spreadsheet is evaluated. Afterwards, the computed output values
are compared with the expected values stated in the test case. If at least one
computed output value is not equivalent to the expected value, the spreadsheet
fails the test case. Otherwise, the spreadsheet passes the test case.

In traditional programming languages, test cases are separated from the source
code. Usually, there are several test cases for one function under test. Each of
the test cases calls the function with different parameters and checks the cor-
rectness of the returned values. However, test cases are only implicitly encoded
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into spreadsheets. This means, that test cases are not explicitly separated from
the formulas under test. If the user wants to add an additional test case, he or
she has to duplicate the spreadsheet. A duplication of a spreadsheet for test-
ing purposes is unpractical since the duplicates have to be updated when the
spreadsheet is modified or extended. Therefore, usually only one failing test case
exists. Hence, we reduce the debugging problem for spreadsheets to handle only
one test case.

Definition 11 (Spreadsheet debugging problem). Given a spreadsheet Π
and a failing test case (I, O), then the debugging problem is to find a root cause
for the mismatch between the expected output values and the computed ones.

We define the spreadsheet debugging problem as a fault localization problem.
This definition implies that the following debugging approaches pinpoint certain
cells of a spreadsheet as possible root causes of faults. However, the approaches
do not make any suggestions how to change these parts. Alternatively, the de-
bugging problem can be defined as a fault correction problem.

4 Debugging Approaches

Traditional procedural and object-oriented program-debugging techniques can-
not be directly transferred to spreadsheets for the following reasons: In a spread-
sheet paradigm, the concept of code coverage does not exist since there are no
explicit lines of code like in traditional programming paradigms. Moreover, there
is no concept of test execution.

Therefore, in order to use traditional program-debugging techniques on
spreadsheets, we have to perform some modifications: the lines of code in a
traditional programming paradigm are mapped to the cells of a spreadsheet.
There are cells designed to receive user input, cells to process data (using spread-
sheet formulas), and cells intended to display the results. As an alternative to
the code coverage of traditional programming paradigms, we compute so-called
cones (data dependencies of each cell).

Definition 12 (The function CONE). Given a spreadsheet Π and a cell c ∈
Π, then we define the function cone recursively as follows:

cone(c) = c ∪
⋃

c′∈ρ(c)

cone(c′)

The correctness of the output cells is determined either by the user, by comparing
the results of the current spreadsheet Π with another spreadsheet considered
correct, or by applying techniques to automatically detect “bad smells” [19].

With these modifications, we are able to apply three traditional fault localiza-
tion techniques on spreadsheets. In the following subsections, we explain these
debugging techniques.
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4.1 Spreadsheets Spectrum-Based Fault Localization

In traditional programming paradigms, Spectrum-based fault localization
(Sfl) [3] uses code coverage data and the pass/fail result of each test execu-
tion of a given system under test (SUT) as input. The code coverage data [20]
is collected from test cases by means of an instrumentation approach. This data
is collected at runtime and is used to build a so-called hit-spectra matrix. A hit-
spectra matrix A is a binary matrix where each column i represents a system
component and each row j represents a test case. The content of the matrix
aij represents whether component i was used (true) or not (false) during test
execution j. The results of the test executions (pass/fail) are stored in an error
vector E. The error vector is a binary array where each position i represents a
test execution. The value of the error vector e at position i is true if the test
case i failed, otherwise false.

Sfl uses similarity coefficients to estimate the likelihood of a given software
component being faulty. Similarity coefficients compute the relationship between
each column of the matrix (representing a system component) and the error
vector. This similarity coefficient and the failure probability of the corresponding
system component are directly related [21]. The coefficients are used to create
rankings of system components [22] or to create interactive visualizations of the
SUT, revealing the most suspicious parts of the application’s source code [23].

In the spreadsheet paradigm, we cannot use the coverage data of test exe-
cutions. Instead, we use the cones of the output cells (see Definition 12). From
the cones, the hit-spectra matrix can be generated (each row of the matrix has
the dependencies of one output cell). The error vector represents the correct-
ness of the output cells. The hit-spectra matrix and the error vector allow the
use of any Sfl algorithm to compute the failure probability of each spreadsheet
cell. In the empirical evaluation, we use the Ochiai similarity coefficient, since
Ochiai is known to be one of the most efficient similarity coefficients used in Sfl

techniques [21].

4.2 Spectrum-Enhanced Dynamic Slicing Approach

Spectrum-Enhanced Dynamic Slicing (Sendys) [4] is a technique that combines
Sflwith a lightweightmodel-based software debugging (Mbsd) technique [24]. In
traditional programming paradigms, similar to Sfl, Sendys uses coverage data
and the result of each test execution (pass/fail) of a given SUT as input. In addi-
tion, the slices of the negative test cases are required. Sendys works as follows:
the similarity coefficients computed by means of Sfl act as a priori probabilities
in the Mbsd approach. Each statement gets assigned its similarity coefficient as
the initial fault probability. The slices of the faulty variables are treated as con-
flict sets and the minimal hitting sets (i.e. the diagnoses) are computed. A set h
is a hitting set for set of conflict sets CO if and only if for all c ∈ CO, there ex-
ists a non-empty intersection between c and h (i.e., ∀c ∈ CO : c ∩ h �= ∅). From
the initial statement fault probabilities, the fault probabilities of the diagnoses are
computed. Therefore, the probabilities of the statements contained in the diagno-
sis are multiplied with the counter-probabilities of the statements not contained
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in the diagnosis. Afterwards, the probabilities are mapped back to the statements.
For each statement, the probabilities of the diagnoses containing that statement
are summed up. Finally, the statements are ranked according to their probabili-
ties. The statement with the highest probability is ranked at the first position.

In order to apply Sendys to the spreadsheet paradigm, we propose to make
the same modifications as described in the section about the Sfl technique.
In addition, we have to use cones instead of slices for the Mbsd part. The
major difference between cones and slices are the used dependencies. For slices,
control- and data dependencies are used. In contrast, cones only make use of
data dependencies.

4.3 Constraint-Based Debugging

There exist several model-based software debugging (Mbsd) techniques which
use constraints as part of their debugging strategy, e.g. [14, 25]. In these tech-
niques, program statements are converted into their constraint representation.
Each converted statement is connected with a variable representing the health
status of the statement: a statement either behaves as specified or the statement
has the health status ‘abnormal’. A constraint solver is used to compute all
possible solutions for the health states of all statements so that the constraints
of the program are feasible. All statements with the health status ‘abnormal’
are explanations for an observed misbehavior. Some solutions of the constraint
solver contain several ‘abnormal’ statements. In this case, all ‘abnormal’ state-
ments must be changed in order to correct the faulty program. The result of
applying a constraint-based debugging technique on a faulty program is a set of
’abnormal’ variables representing the health status of the corresponding state-
ments. There is no conclusion which of the statements is more likely to be faulty.
Unlike Sfl and Sendys, this method can not generate a likelihood-ranking of
possibly faulty statements.

In the context of spreadsheet debugging, cells are used instead of statements:
for each cell, the contained formula is converted into a set of constraints. Con-

Bug [5] is a technique that is based on the above described technique, but is
designed for debugging spreadsheets.

5 Empirical Evaluation

In this section, we are evaluating the previously described approaches by means
of the Euses spreadsheet corpus [6]. In the first part, we are evaluating the
ranking of the faulty statements for Sfl and Sendys. In the second part, we
are evaluating the size of the result set of ConBug in comparison to the union
and intersection of the slices. However, first of all we are going the explain the
experimental setup.

In a first filtering step, we skipped around 240 Excel 5.0 spreadsheets that are
not compatible with our implementation, since our implementation is build on
Apache POI (http://poi.apache.org/) and POI does not support Excel 5.0.

http://poi.apache.org/
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In a second filtering step, we removed all spreadsheets containing less than five
formulas (about 2,300 files). We have performed this filtering step because auto-
matic fault localization only makes sense for larger spreadsheets. A small spread-
sheet is still manageable and thus fault localization can be easily performed
manually. For small spreadsheets, a fault correction approach makes more sense
than just a fault localization approach. Finally, around 1,400 spreadsheets re-
main for our case study.

For each spreadsheet, we automatically created up to five first-order mutants.
A mutant of a spreadsheet is created by randomly choosing a formula cell of the
spreadsheet and applying a mutation operator on it. According to the classifi-
cation of spreadsheet mutation operators of Abraham and Erwig [26], we used
the following mutation operators:

– Continuous Range Shrinking (CRS): We randomly choose whether to incre-
ment the index of the first column/row or decrement the index of the last
column/row in area references.

– Reference Replacement (RFR): We randomly choose whether to increment
the row or the column index of references. We do not explicitly differentiate
between single references and references in non-contiguous ranges. For this, a
mutation can change a single reference in a non-contiguous range, but never
changes the amount of elements in the range.

– Arithmetic Operator Replacement (AOR): We replace ‘+’ with ‘-’ and vice
versa and ‘*’ with ‘/’.

– Relational Operator Replacement (ROR): We replace the operators ‘=’, ‘<’,
‘<=’, ‘>’, ‘>=’, and ‘<>’ with one another.

– Constants Replacement (CRP):

• For integer values, we add a random number between 0 and 1000.
• For real values, we add a random number between 0.0 and 1.0.
• For Boolean values, we replace ‘true’ with ‘false’ and vice versa.

– Constants for Reference Replacement (CRR): We replace a reference within
a formula through a constant.

– Formula Replacement with Constant (FRC): We replace a whole formula
with a constant.

– Formula Function Replacement (FFR): We replace ‘SUM’ with ‘AVERAGE’
and ‘COUNT’ and vice versa. We replace ‘MIN’ with ‘MAX’ and vice versa.

For each mutant, we check whether the following two conditions are satisfied:
(1) The mutant must be valid, i.e. it does not contain any circular references.
(2) The inserted fault must be revealed, i.e. at least for one output cell, the
computed value of the mutant must differ from the value of the original spread-
sheet. If one of these conditions is violated, we discard the mutant and generate
new mutants until we obtain a mutant that satisfies both conditions. We failed
to create mutants for some of the spreadsheets because in many spreadsheets,
input values are absent. For this reason, the spreadsheets lack values for output
variables. Please note, that the creation of test cases is out of the focus of this
paper. We only rely on existing input-output pairs.
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We automatically created 622 mutants. Table 1 gives an overview of the char-
acteristic of the created mutants. The number of formulas contained in the
spreadsheets ranges from 6 to more than 4,000. This indicates that the eval-
uated approaches are able to handle large spreadsheets.

Table 1. Characteristics of the created mutants

Characteristic Avg Min Max Std.dev Median

Number of formulas 225.0 6 4,170 384.9 104.5

Number of incorrect output cells 1.7 1 22 1.9 1

Number of correct output cells 64.9 0 2,962 162.5 24

In the first part of the empirical evaluation, we compared the fault localization
capabilities of Sfl and Sendys by applying them to the generated mutants. In
addition, we contrast these techniques with two primitive techniques, namely the
union and intersection of the faulty cones. Table 2 summarizes the results of this
comparison. The evaluation was performed on an Intel Core2 Duo processor (2.67
GHz) with 4 GB RAM with Windows 7 Enterprise (64-bit) as operating system
and Java 7 as runtime environment. Sendys performs slightly better than Sfl

and the intersection of the cones. Since we only created first-order mutants, the
intersection of the slices always contains the faulty cell. Please note that in case
of higher-order mutants, the faulty cell could be absent in the intersection of
the cones. This happens when two independent faults are contained in the same
spreadsheet and both faults are revealed by different output cells. Therefore,
the intersection of the cones is not the best choice. Concerning the computation
time, Sfl has only a small overhead compared to the union and intersection of
the cones. Sendys requires nearly five times longer for the computations.

Table 2. Average ranking and computation time of union, intersection, Sfl, and
Sendys. The column ‘Avg. relative ranking’ shows the average ranking of the faulty cell
normalized to the number of formula cells per spreadsheet. This evaluation comprises
622 spreadsheets.

Technique
Avg. absolute Avg. relative Avg. comp.

ranking ranking time (in ms)

Union (cones of faulty output) 41.1 27.3 % 15.6

Intersection (cones of faulty output) 30.8 22.0 % 15.6

Sfl 26.3 20.3 % 16.9

Sendys 24.3 19.7 % 79.6

Figure 1 graphically compares the fault localization capabilities of the ap-
proaches for the 622 investigated faulty program versions. The x-axis represents
the percentage of formula cells that is investigated. The y-axis represents the
percentage of faults that are localized within that amount of cells. This figure
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reads as follows: if you investigate the top 40% ranked cells in all of the 622
faulty spreadsheets, Sfl and Sendys find the fault in 80% of the Spreadsheets.
It can be seen that Sfl and Sendys perform slightly better than the intersection
and marginally better than the union of the cones. This means that faults can
be detected earlier than when using the intersection or the union.
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Fig. 1. Comparison of the Sfl, Sendys, the Union and Intersection of the cones in
terms of the amount of formula cells that must be investigated

In the second part of the empirical evaluation, we investigate the debugging
capabilities of ConBug. We separated the evaluation of ConBug from the
evaluation of Sfl and Sendys because the prototype implementation of Con-

Bug does not support all available mathematical operations available in Excel.
Therefore, we filter out all spreadsheets which contain unsupported operations.
Subsequently, 227 mutants remain for the evaluation of ConBug. These mu-
tants contain on average 219.8 formula cells. The largest mutant contains 2564
formula cells. Table 3 compares ConBug to the union and the intersection of
the cones. For completeness reasons, we add the data of Sfl and Sendys for the
227 spreadsheets. ConBug performs better than the union, but worse than the
intersection. However, ConBug guarantees to contain the faulty cell even in the

Table 3. Average ranking and computation time of union, intersection, Sfl, Sendys,
and ConBug. The column ‘Avg. relative ranking’ shows the average ranking of the
faulty cell normalized to the number of formula cells per spreadsheet. This evaluation
comprises 227 spreadsheets.

Technique
Avg. absolute Avg. relative Avg. comp.

ranking ranking time (in ms)

Union (cones of faulty output) 34.8 29.3 % 14.0

Intersection (cones of faulty output) 33.6 27.5 % 13.9

Sfl 32.9 27.1 % 15.0

Sendys 31.9 27.0 % 63.9

ConBug 33.9 27.9 % 631.7
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case of multiple faults. However, the faulty cell can be absent in the intersection
of the cones. From Table 3 we see that the differences of the obtained results are
small and might not be statistical significant.

Why are the results of Table 3 so close? One explanation might be the struc-
ture of the used spreadsheets. In particular, the 227 spreadsheets used for ob-
taining the results of Table 3 have 1.2 faulty output variables on average whereas
the remaining 395 spreadsheets used in Table 2 have on average 2 faulty out-
put variables. The low number of faulty output variables might be a reason for
poor performance of ConBug. Further investigations are necessary to clarify
the relationship of the structure of the spreadsheets and the performance of
the approaches. Moreover, the debugging performance in case of multiple faults
in spreadsheets is also an open research question. We expect better results for
ConBug in case of multiple faults, similar as in constraint-based approaches for
traditional programming paradigms [27].

6 Conclusion

While spreadsheets are used by a considerable number of people, there is little
support for automatic spreadsheet debugging. In this paper, we addressed this
gap. In particular, we adapted and applied to spreadsheets three popular de-
bugging techniques designed for more traditional procedural or object-oriented
programming languages. To this end, we formally defined the basic elements
of spreadsheets and formalized fault localization in spreadsheets as spreadsheet
debugging problem. In addition, we explained what modifications to the tradi-
tional debugging techniques are necessary. The main modification is to use cones
instead of execution traces and slices.

We evaluated the fault localization capabilities of the proposed techniques,
Sfl, Sendys, and ConBug, using the well-known Euses spreadsheet corpus [6].
The evaluation showed that Sfl and Sendys are the most promising techniques.
However, the evaluation needs to be extended in several aspects: (1) It is nec-
essary to evaluate higher-order mutants. (2) The discussed techniques are only
a small selection of the available traditional debugging techniques. Thus, other
debugging techniques should be adapted to spreadsheets. We plan to make the
mutants used in this evaluation as well as higher-order mutants publicly avail-
able. This will ensure that new spreadsheet debugging techniques can be com-
pared to the techniques discussed in this paper. Furthermore, the acceptance of
such debugging techniques must be evaluated throw a user study.

Sfl and Sendys are debugging techniques which rank cells according to their
likelihood of containing the fault. In contrast, ConBug is a debugging technique
that filters out cells which cannot explain the observed faulty values. Therefore,
ConBug can be used to filter out statements from the rankings of Sfl and
Sendys. We plan to evaluate this filter mechanism in future work.
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Abstract. In this paper, we consider the problem of refactoring related software
products specified in UML into annotative product line representations. Our ap-
proach relies on identifying commonalities and variabilities in existing products
and further merging those into product line representations which reduce duplica-
tions and facilitate reuse. Varying merge strategies can lead to producing several
semantically correct, yet syntactically different refactoring results. Depending on
the goal of the refactoring, one result can be preferred to another. We thus pro-
pose to capture the goal using a syntactic quality function and use that function
to guide the merge strategy. We define and implement a quality-based merge-
refactoring framework for UML models containing class and statechart diagrams
and report on our experience applying it on three case-studies.

1 Introduction

A software product line (SPL) is a set of software-intensive products sharing a common,
managed set of features that satisfy the specific needs of a particular market segment [4].
SPL engineering practices capitalize on identifying and managing commonalities and
variabilities across the whole product portfolio and promote systematic software reuse.
SPL commonalities represent artifacts that are part of each product of the product line,
while SPL variabilities – those specific to some but not all products. Benefits of apply-
ing SPL engineering practices include improved time-to-market and quality, reduced
portfolio size, engineering costs and more [4,9]. Numerous works, e.g., [9], promote
the use of SPL practices for model-based development of complex embedded systems.
Often, variants of such systems are developed for different customers and are repre-
sented and implemented using visual structural and behavioral models.

In reality, however, SPLs often emerge ad-hoc, when companies have to release
a new product that is similar, yet not identical, to existing ones. Under tight project
scheduling constraints, development teams resort to copying artifacts from one of the
existing products and later modifying them independently from the original version
[15,18] (the clone-and-own approach).

Cloned artifacts require synchronization: changes in one artifact might need to be re-
peated for all variants. In addition, it is difficult to propagate a new feature implemented
in one variant into another or to define a new product by selectively “picking” some,
but not all, features from the existing variants. As the result, when product variants are
realized via cloning, development and maintenance efforts increase as the number of
products grows. To deal with the complexity of SPL development, some approaches,
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© Springer-Verlag Berlin Heidelberg 2013



84 J. Rubin and M. Chechik

e.g., [2], advocate refactoring legacy cloned products into “single-copy” representa-
tions, eliminating duplications and explicating variabilities.

Numerous works provide guidelines and methodologies for building product line
representations out of legacy systems, e.g., [14,8]. Most of such approaches, however,
involve a manual review of code, design and documentation of the system aiming at
identifying the set of product line features, as well as the set of components which
implement these features. This manual step is time-consuming, and, in many cases,
impedes adoption of SPL techniques by organizations.

Automated approaches for mining legacy product lines and refactoring them into
feature-oriented product line representations have also been proposed [7,18,30,25]. In
our earlier work [22,24], we focused on refactoring model-level cloned product vari-
ants and proposed a configurable merge-refactoring algorithm, merge-in, applicable to
refactoring models of different types (e.g., UML, EMF and Matlab/Simulink). Our al-
gorithm identifies similar and different elements of the input models using parameter-
izable compare and match operators, and then constructs a refactored model using a
merge operator. The resulting product line model contains reusable elements represent-
ing corresponding merged elements of the original models. In [24], we formally proved
that merge-in produces semantically correct refactorings for any set of input models and
parameters: a refactored model can derive exactly the set of original products, regard-
less of particular parameters chosen and implementations of compare / match / merge
used, if they satisfy well-defined correctness properties (e.g., “each element produced
by merge originates from an element of at least one input model”).

Varying merge-in parameters allows producing different syntactic representations
of the resulting product line due to different possible ways to match input model ele-
ments. All these representations are semantically equivalent and derive the same set of
products. However, not all possible syntactic representations are desirable. Moreover,
depending on the goal of the refactoring, one representation might be preferable to an-
other. For example, a goal of the refactoring can be to highlight the variability points
between the products, eliminating the “unnecessary” variability and creating a more ho-
mogeneous product portfolio. Another can be to maximize the comprehensibility of the
resulting model by minimizing variability annotations for elements of a certain type.
Yet another can be to reduce the size of the resulting refactoring – this might happen
if the models are used for execution or code generation rather than human inspection.
These different goals induce different product line representations.

Example. Consider the UML model fragments in Fig. 1(a,b) depicting two representa-
tive parts of real-life products developed by an industrial partner (since partner-specific
details are confidential, we move the problem into a familiar domain of washing ma-
chines). Fig. 1(a) shows the Controller, Washer and Dryer classes of a washing
machine, together with snippets of Controller’s and Dryer’s behaviors specified by
UML statechart models. The wtrLevel attribute of Controller is used to specify
the desired water level. When the water is filled to that level and heated to 30oC, the
washing machine controller notifies Washer that it can start operating and transitions
from the Locking to the Washing state. After finishing washing, the controller initiates
Dryer and transitions to the Drying state. Dryer operates for 45 minutes and returns
the control to the Controller’s statechart (by sending an appropriate signal which is
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(a) An Original Model with Dryer. (b) An Original Model with Beeper.

(c) Refactoring #1. (d) Refactoring #2.

(e) Controller statechart Refactoring #1. (f) Controller statechart Refactoring #2.

(g) Dryer and Beeper Refactoring #1. (h) Dryer and Beeper Refactoring #2.

Fig. 1. Fragments of Washing Machine models and some of their refactorings

omitted from the picture to save space). Then, the washing machine is unlocked, and
the wash cycle stops. Fig. 1(b) shows a similar washing machine model which lacks the
dryer but has a beeping function indicating the end of the wash cycle by signalling for
1 minute. In addition, in this model, the temp and waterLevel attributes control the
desired water temperature and water level, respectively.

These two products have a large degree of similarity and can be refactored into an-
notative SPL representations, where duplications are eliminated and variabilities are
explicated. We consider only those refactorings that preserve the behavior of existing
products rather than allowing novel feature combinations (e.g., a product with both
the dryer and the beeper). Even with this simplification, several choices emerge. For



86 J. Rubin and M. Chechik

example, the two input models in Fig. 1(a, b) can be combined as shown in Fig. 1(c)
where the Controller classes of both input models are matched and merged together,
while the Dryer and the Beeper classes are unmatched and thus both copied to the
result “as is”, together with their corresponding statecharts. Another choice is shown in
Fig. 1(d) where these two classes are matched and merged together, producing either a
representation in Fig. 1(g) or in (h). Combining statecharts of Controller classes can
also result in two possible representations, as shown in Fig. 1(e) and (f). That is, there
are six possible refactoring options: Fig 1(c,e), (c,f), (d,e,g), (d,e,h), (d,f,g) and (d,f,h).

In each of the cases, the created models are controlled by a set of features, depicted
in the middle upper part of each figure. Since the refactored product line in our exam-
ple encapsulates only the original input products, we have just two alternative features
representing these products – fA and fB. Product line model elements are annotated
by these features, as shown in a table on the left-hand side of each figure. The set of an-
notations specifies elements to be selected given a particular feature selection: selecting
fA filters out all elements annotated with fB , which derives the original input model
shown in Fig. 1(a) from each of the refactorings. Likewise, selecting feature fB derives
the original model shown in Fig. 1(b). For a refactoring that aims at maximizing the
comprehensibility of the resulting model, the best representation is the one shown in
Fig. 1(c, e) since it has the least number of classes and states with variable names and
the least number of variable statecharts. However, for a refactoring that aims at reducing
the size of the result, the best representation is the one in Fig. 1(d, f, h), as it contains
three classes and six states only, compared to the refactoring in Fig. 1(c, e) which has
four classes and nine states.

Contributions. We consider the problem of integrating several distinct products spec-
ified in UML into an annotative product line representation using merge-refactorings.
(1) We argue that there can be multiple syntactically different product line models that
represent the same set of products. All such models are valid, but not all are desired.
Explicating the goal of the refactoring can help produce those that better fit the user in-
tention. (2) We propose to capture the goal of the refactoring using a quantitative quality
function, comprised of a set of measurable syntactic metrics. This function is used to
evaluate the produced refactorings and to guide the merge-refactorings process towards
a desired result. (3) We present an approach for exploring the set of different refac-
torings with the goal of identifying the one that maximizes the value of a given qual-
ity function. (4) We report on an implementation of a quality-based merge-refactoring
framework for UML models containing class and statechart diagrams, which realizes
the merge-in algorithm introduced in our earlier work [24]. We use the implemented
framework for evaluating the effectiveness of our approach using several example prod-
uct lines specified in UML, including one contributed by an industrial partner.

The remainder of this paper is organized as follows. The details on annotative product
line representations and the merge-in refactoring algorithm are given in Sec. 2. Our
quality-based merge-refactoring framework is described in Sec. 3. In Sec. 4, we present
an implementation of the framework. We describe our experience applying it to three
case studies in Sec. 5. A discussion and a description of related work are given in Sec. 6.
Sec. 7 concludes the paper and outlines future research directions.
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2 Refactoring Software Product Lines

In this section, we describe software product line models annotated by features. We also
give the necessary background on model merging, used as a foundation of our merge-in
product line refactoring algorithm, and summarize the merge-in algorithm itself.

Software Product Lines. SPL approaches can largely be divided into two types: com-
positional which implement product features as distinct fragments and allow generat-
ing specific products by composing a set of fragments, and annotative which assume
that there is one “maximal” representation in which annotations indicate the product
features that a particular fragment realizes [11,3]. A specific product is obtained by re-
moving fragments corresponding to discarded features. Similarly to [3], our experience
is that the annotative approach, which reminds code-level #ifdef statements, is eas-
ier to adopt in practice, as it does not require a paradigm shift in the way software is
being commonly developed, especially in the embedded domain. We thus follow this
approach here.

A feature model is a set of elements that describe product line features and a propo-
sitional formula defined over these features to describe relationships between them. A
feature configuration, defining a product of a product line, is a sub-set of features from
the feature model that respect the given relationships. An annotative product line is a
triple consisting of a feature model, a domain model (e.g., a set of UML classes and
statecharts), and a set of relationships that annotate elements of the domain model by
the features of the feature model. Fig. 1(c-h) present snippets of domain models (right-
hand side of each figure) whose elements are connected to features from a feature model
(top-middle part of each figure) using annotation relationships (left-hand side of each
figure). In this case, features fA and fB are alternative to each other, i.e., the proposi-
tional formula that specifies their relationship is (fA ∨ fB) ∧ ¬(fA ∧ fB). Thus, the
only two valid feature configurations are {fA} and {fB}.

A specific product derived from a product line under a particular configuration is the
set of elements annotated by features from this configuration. For example, the class
diagrams in Fig. 1(a) and Fig. 1(b) can be derived from the product line in Fig. 1(d)
under the configurations {fA} and {fB}, respectively.

Model Merging. Model merging consists of three steps: compare, match and merge.
Compare is a heuristic function that calculates the similarity degree, a number between
0 and 1, for each pair of input elements. It receives models M1, M2 and a set of empir-
ically assigned weights which represent the contribution of model sub-elements to the
overall similarity of their owning elements. For example, a similarity degree between
two classes is calculated as a weighted sum of the similarity degrees of their names, at-
tributes, operations, etc. Comparing Washer classes in Fig. 1(a, b) to each other yields 1,
as these classes are identical in the presented model fragment. Comparing Controller
classes yields a lower number, e.g., 0.8, as the classes have different owned properties
and behaviors.

Match is a heuristic function that receives pairs of elements together with their sim-
ilarity degree and returns those pairs of model elements that are considered similar.
Match uses empirically assigned similarity thresholds to decide such similarity. Con-
sider the above example, where Washing classes had a calculated similarity degree of 1
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and Controller classes had a similarity degree of 0.8: setting class similarity thresh-
old to 0.75 results in matching both pairs of classes, while setting it to 0.85 results in
matching only the Washing classes.

Finally, merge is a function that receives two models together with pairs of their
matched elements and returns a merged model that contains all elements of the input,
such that matched elements are unified and present in the result only once. For exam-
ple, Controller classes in Fig. 1(a, b) can be unified as shown on the right-hand side
of Fig. 1(e): matched states Locking, Washing and Unlocking are unified, while un-
matched states Drying and Beeping are just copied to the result together with their
corresponding transitions. While the compare and match functions rely on heuristically
determined weights and similarity degrees, merge is not heuristic: its output is uniquely
defined by the input set of matched elements.

Merging-in Product Lines. We now describe the merge-in refactoring algorithm [24]
that puts together input products into an annotative product-line representation. Con-
structing an annotative product line model consists of three steps: creating a domain
model, creating a feature model, and specifying annotation relationships between the
features and the domain model elements. For creation of a domain model, merge-in re-
lies on model merging, described above. Feature models are created using an approach
where features represent the original input products and are defined as alternatives to
each other, so only the original products can be derived from the constructed product
line model. Domain model elements are annotated by these features according to the
product(s) that contributed them. For the example in Fig. 1(e), state Drying is anno-
tated by feature fA while state Beeping is annotated by fB . State Washing is common
(it exists in both input models) and thus is annotated by both features. Annotations of
common elements are not shown in the figure to save space.

Any input product M can be seen as a “primitive” product line with only one feature
fM , one feature configuration {fM}, and a set of annotations that relate all model ele-
ments to that feature. This representation can derive exactly one product – M . Thus, the
most generic form of the merge-in operator obtains as input two (already constructed)
product lines, each of which can be a “primitive” product line representing one input
model. For example, when combining the two products in Fig. 1(a, b), we implicitly
convert each of them into a product line and then merge-in them together. One possi-
ble outcome of that process is shown in Fig. 1(c, e), where the features representing
the original models are denoted by fA and fB and defined as alternatives. In this case,
Dryer and Beeper classes are unmatched.

Varying compare and match parameters, as well as varying the order in which input
models are combined, defines the exact shape of the refactoring outcome. Two products
in Fig. 1(a, b) can also be combined as shown in Fig. 1(d, f), where a lower class
similarity threshold results in Dryer and Beeper classes being matched and merged.

All possible refactorings constructed by the algorithm are semantically “correct”,
each deriving the exact set of input models, regardless of the parameters chosen and
regardless of the order in which input products are merged-in. The correctness of the
merge-in operator relies on “reasonable” behavior of model compare, match and merge
algorithms. Formal correctness properties of those algorithms are specified in [24].
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3 Quality-Based Merge-Refactoring Framework

Even though all refactorings produced by the merge-in algorithm are semantically
equivalent and correct, not all refactorings are desirable: depending on the goal of the
refactoring, one representation can be preferred to another. The main objectives of our
quality-based product line merge-refactoring framework are thus to (1) allow the user
to explicate the goal of the refactoring process and (2) drive the refactoring process to-
wards the result that best fits the user intention. We depict our approach in Fig. 2 and
describe it below.

3.1 Explicating the Refactoring Goal

M M Mn...
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1
q
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v
1
v
m

1 m

Q

Fig. 2. Merge-Refactoring Framework

We explicitly capture the goal of the
refactoring using a quantitative qual-
ity function. Since in our work we fo-
cus on syntactic properties of merge-
refactorings, the quality function is built
from a set of metrics – syntactically mea-
surable indicators representing specific
refactoring objectives (see Fig. 2). Typ-
ically, such metrics can assess the size of the resulting model, determine the degree
of object coupling, cohesion in methods, weighted number of methods per class and
more [17]. The metrics can be reused across different organizations and domains. Each
concrete quality function Q assigns weights q1 . . . qm to different metrics v1 . . . vm, in-
dicating their “importance” in the context of a specific application domain and allows
the user to specify the desired outcome of the refactoring in an explicit manner.

More formally, given a product line modelPL, the quality function returns a number
between 0 and 1, representing PL’s “quality”:

quality(PL,V,Q) =
∑

i=1...n

qi ∗ vi(PL),
where V = v1, . . . , vn is a set of measurable metrics that, given PL, produce a number
between 0 and 1, and Q = q1, . . . , qn is a set of metrics’ weights.

Examples of Possible Quality Functions. We discuss two specific quality functions.
The goal of the first one, Q1, is to minimize the size of the resulting model. Since we
assume that there is a large degree of similarity between input models that represent
related products of a product line, aiming to reduce the total number of elements in
the result leads to a reduction of duplications which, in turn, helps avoid repeating
modifications for all variants.

We define our notion of model size using the number of classes, attributes, states
and transitions. Specifically, the metrics v1-v4 listed in the first four rows of Table 1
measure the overall reduction of the size of the produced model when compared to
the inputs. To construct Q1, we assign these metrics equal weights, considering them
equally important, as specified in the second to last column of Table 1. Q1 prefers
models that are as compact as possible, e.g., the refactoring in Fig. 1(d, f, h).

Our second goal is to produce refactorings that are the easiest for the user to compre-
hend. The work of [6,5] makes an argument that an increase in the size of UML models
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Table 1. Quality metrics

Metric Objective Weight
Q1 Q2

v1 % of reduction Reduce the number of classes. 0.25 0.125
in # of classes (out of the total number of classes in input.)

v2 % of reduction Reduce the number of class attributes. 0.25 0.125
in # of attributes (out of the total number of attributes in input.)

v3 % of reduction Reduce the number of states. 0.25 0.125
in # of states (out of the total number of states in input.)

v4 % of reduction Reduce the number of transitions. 0.25 0.125
in # of transitions (out of the total number of transitions in input.)

v5 % of common Reduce the percentage of variable class attributes 0.0 0.17
attributes (out of the total number of the class attributes.)

v6 % of common Reduce an average percentage of variable states 0.0 0.17
states (out of the total number of states in a statechart.)

v7 % of common Reduce an average percentage of variable transitions 0.0 0.16
transitions (out of the total number of transitions in a statechart.)

(specifically, the number of classes, aggregations, states and transitions) leads to an
increase of cognitive complexity. The authors validate this claim using controlled ex-
periments involving human subjects. However, neither these experiments nor our early
work [22] considered variability aspects of the annotative product line representations.
For example, while they minimize the size of the model, both possible merges of the
Dryer and the Beeper classes in Figures 1(g) and (h) contain 66% and 50% variable
states (i.e., states annotated by features), respectively. The merge of the Controller

classes in Fig. 1(f) contains 50% variable states as well.
We believe that the higher is the number of common elements in a merged model,

the easier it is to understand. We thus define a second quality function, Q2, to combine
size minimization with encouraging those refactorings which result in models with a
high degree of commonalities: classes with a significant number of common attributes
and statecharts with a significant number of common states and transitions. The metrics
v5-v7 of Table 1 are designed for that purpose. They are calculated by counting the
percentage of common sub-elements for a certain element in the model, i.e., those sub-
elements that are annotated by all product line features. To achieve a reasonable degree
of merging while discouraging too much variability, Q2 gives the combination of four
size-based metrics v1-v4 and the combination of three variability-based metrics v5-v7
equal importance (see the last column of Table 1). This quality function prefers the
refactoring in Fig. 1 (c, e).

We use both Q1 and Q2 to evaluate refactorings of our case-study models in Sec. 5.

3.2 Constructing the Desired Refactorings

Since a quality function captures the criteria that are to be used when performing the
merge-refactoring process, it could also be used to guide the process towards the desired
result. As stated in Sec. 2, refactorings produced by the merge-in algorithm differ by the
way input model elements are matched and merged, which is controlled by the merge-
in configuration parameters. Modifying these parameters, e.g., increasing weight of



Quality of Merge-Refactorings for Product Lines 91

state name similarities during compare, can result in the refactoring shown in Fig. 1(e).
Instead, if we give more weight to the structural similarity of states, i.e., their distance to
the initial and the final states and, recursively, the similarity of their neighbors [19], we
get the result in Fig. 1(f). Likewise, lowering the class similarity threshold can result in a
refactoring where the Dryer and the Beeper classes are matched and merged together,
in addition to merging the Controller classes, as shown in Fig. 1(d).

Obviously, merge-in parameters cannot be decided universally because their values
depend on the nature of the refactored product line and the objective of the quality func-
tion. It is also unreasonable to assume that the user can set and adjust these parameters
manually. Moreover, generating all possible refactorings and evaluating them based on
the given quality function is not a feasible approach as it does not scale well.

We thus need a systematic way for identifying those values of merge-in parameters
that result in an optimal refactoring w.r.t. the given quality function Q. In our work,
we propose doing so by treating parameter selection as a classical optimization prob-
lem [21], using the chosen quality function as an objective function for an optimization
technique. The process (1) uses an optimization heuristic to set values of merge-in pa-
rameters, (2) produces the corresponding refactoring, subject to these parameters, (3)
evaluates it using Q, and repeats until a result of the desired quality is reached (or a
certain fixed number of iterations is performed). That is, different refactorings are gen-
erated by the merge-in algorithm based on the values of compare weights and similarity
thresholds that are set using an optimization algorithm aimed to maximize the value
of Q. Only the resulting “optimal” refactoring is returned to the user. The overall ef-
ficiency of the approach is as good as the chosen optimization algorithm because the
latter selects the values of parameters for the next iteration.

4 Implementation

In this section, we describe our implementation of the merge-in algorithm, used as a
foundation of the merge-refactoring framework, as well as our approach for setting the
merge-in parameters. We focus our work on systems represented and implemented with
UML models containing class and statechart diagrams – a common choice in automo-
tive, aerospace & defense, and consumer electronics domains, where such models are
often used for full behavioral code generation (e.g., using IBM Rhapsody1).

The core part of the merge-in algorithm is the compare function which receives two
UML elements of the same type and returns their similarity degree – a number between
0 and 1. To implement compare, we started with existing comparison algorithms for
UML classes [29,13] and statecharts [19]. These algorithms calculate the similarity
degree recursively, using formulas that assign empirically defined weights to similarity
degrees of appropriately chosen sub-elements.

None of the existing algorithms combined information obtained by analyzing both
structural and behavior models together: comparing classes did not take into account
information about similarity of their corresponding statecharts. We thus extended class
comparison by considering behavior information, obtained by comparing statecharts to
each other, and combining it with structural information by giving them equal weights.

1 http://www-01.ibm.com/software/awdtools/rhapsody/

http://www-01.ibm.com/software/awdtools/rhapsody/
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We also extended the statechart comparison algorithm proposed in [19] to consider state
entry and exit actions, state do activities and actions on transitions, as those were
used in the real-life model provided by the industrial partner.

Based on elements’ similarity degrees generated by compare, our implementation
of match “greedily” selects similar elements that are above a given threshold. Merge
further combines elements deemed similar while explicating variabilities. We use the
union-merge [26] approach to implement the merge function. It unifies matched ele-
ments and copies unmatched elements “as is” to the result. Our merge implementation
is an adaptation of static union merge of TReMer+2, extended to deal with annotations
of domain model elements by features, as discussed in Sec. 2. We use IBM Rational
Software Architect3 (RSA) as our modeling environment, allowing us to reuse existing
Java-based algorithms. Rhapsody models supplied by our industrial partner were first
exported into UML 2.0 XMI format and then imported into RSA.

For adjusting merge-in parameters, we have implemented a version of the local
search optimization technique [21] where the space of possible refactorings is explored
by changing one parameter value at a time (hill-climbing). After evaluating the result-
ing refactoring and adjusting this value, we move to the next one, until all values are
set. While this algorithm can miss the best result (global maximum) because it does not
revisit the decisions that were already made, it is shown to be quite effective in practice
for finding a “good” result (local maximum) in an efficient manner. We demonstrate the
effect of adjusting the class similarity threshold in Sec. 5.

We merge-in the most similar models first: similarity degrees of all inputs – models
of individual products or already constructed intermediate product lines – are evaluated,
and those with the highest similarity degrees are combined first. Intuitively, merging
more similar models first helps decrease the size and the number of variable elements
in the result.

During our experiments, we noted that different values of compare weights and sim-
ilarity thresholds can produce the same refactoring and thus the same quality measure-
ments. Since our goal is to maximize a given quality function, any of the assignments
that produce the desired result is appropriate.

5 Experience

In this section, we report on our experience applying the quality-based merge-refac-
torings. Our goal is to validate the feasibility of the approach for UML models in the
embedded domain. In particular, we are interested in demonstrating the applicability
and effectiveness of the proposed methodology for adjusting merge-in parameters for
realistic models containing UML class and statechart diagrams, based on a given quality
function. In what follows, we describe our subject product lines and present our results.

Subjects. We applied our refactoring approach to three sets of related products. The
first is the Washing Machine example, built by us to mimic a partner’s model and to
highlight its characteristics. A snippet of this example is presented in Fig. 1 and the full

2 http://se.cs.toronto.edu/index.php/TReMer+
3 http://www-01.ibm.com/software/awdtools/swarchitect/

http://se.cs.toronto.edu/index.php/TReMer+
http://www-01.ibm.com/software/awdtools/swarchitect/
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Table 2. Varying Class Similarity Threshold SClass

Washing Machine Microwave Oven CE Product Line
metrics orig. 0.7 0.75 0.78 0.8 0.85 0.9 orig. 0.7 0.75-0.85 0.9 orig. 0.6 0.65 0.7 0.75 0.8

v1 #classes 18 6 7 8 9 11 12 8 2 3 5 45 14 15 17 20 27
v2 #attributes 25 10 12 14 20 25 25 4 1 2 4 104 56 56 75 84 80
v5 #var.attributes - 3 4 5 6 4 0 - 0 2 4 - 43 43 26 32 8
v3 #states 43 18 20 22 28 38 43 18 7 9 18 448 177 151 211 374 412
v6 #var.states - 6 6 5 4 0 0 - 1 0 0 - 56 64 31 13 4
v4 #transitions 56 28 31 34 40 51 56 44 16 24 44 944 245 260 402 573 640
v7 #var.transitions - 19 19 18 12 0 0 - 2 4 0 - 77 85 31 19 8

Q1 - 0.587 0.528 0.469 0.333 0.148 0.083 - 0.686 0.505 0.065 - 0.646 0.635 0.496 0.351 0.284
Q2 - 0.565 0.560 0.572 0.533 0.523 0.541 - 0.797 0.561 0.372 - 0.640 0.650 0.678 0.601 0.623

version is available in [23]. The Washing Machine product line contains three different
products, with a high degree of overlap in the set of classes comprising them. Specif-
ically, each product has six classes, out of which three are identical across products
(Motor, Faucet and Detergent Supplier), two are similar to each other in all three
products (Controller and Washer), and one class in each product carries a unique
product-specific functionality (either Dryer, Beeper or Timer). Also, statecharts of
similar classes have similar structures.

The second example, Microwave Oven, has been introduced by Gomaa in [9]. It
includes four different, although very similar, variants of the timer control class and
their corresponding statecharts.

The final example comes from the Consumer Electronics (CE) space, contributed by
an industrial partner. Here, we focus on seven behavior-intensive product components
which together contain 45 classes, 104 attributes, 448 states and 944 transitions. The
number of classes implementing each component ranges between 2 and 14. The number
of statecharts in each component ranges between 1 and 3, with the number of states and
transitions for a statechart ranging between 20 and 66 states, and 31 and 81 transitions,
respectively. Of the seven components, three have a similar structure and a similar set
of elements; another pair of components also contains elements that are similar to each
other (but less similar to the components of the first cluster), and the remaining two
components are not similar to the rest.

Space limitations and verbosity of UML models do not allow us to include pictorial
illustrations of the examples. Thus, we limit the presentation to the statistical data about
the case studies. The complete models for the first two examples are available in [23].
Since we cannot share details of the CE model, we built our first example, the Washing
Machine, to be similar.

Results. To evaluate the effectiveness of our quality-based merge-refactoring approach,
we analyzed different refactorings produced by varying compare weights and similarity
thresholds, and evaluated them using quality functions Q1 and Q2 introduced in Sec. 3.
As a starting point, we used empirically determined weights specified in [29,13,19]. We
updated the weights to combine structural and behavior information when comparing
classes and to take into account additional statechart elements, as described in Sec. 4.
For the similarity thresholds, we started with the assumption that elements with the
similarity degree lower than 0.5 are significantly different and should not be combined.
For statecharts, we refined these estimates using the thresholds empirically determined
in [19]. The values of weights and thresholds that we used are summarized in [23].
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For illustration purposes, in this section we vary the class similarity threshold be-
tween 0.4 and 1, iteratively incrementing its value by 0.01, and evaluate the produced
results using our quality functions. Table 2 presents the total number of elements as
well as the number of variable elements of each type in the resulting refactoring. To
save space, we show only distinct refactorings, omitting those that are equivalent to the
presented ones. For example, in the Washing Machine case, all refactorings produced
with class similarity thresholds between 0.4 and 0.7 are identical, and we only show
the latest. In addition, the orig column reports the total number of input elements for
each of the case studies. It is used to compare the result of the refactoring to the orig-
inal models and to normalize the collected metrics during quality computation. A full
description of the refactored product line models that were produced for each step of
the first two case-studies is available in [23].

The results demonstrate that increasing the value of the class similarity threshold
results in decreasing the value of Q1 in all case studies because this function prefers
refactorings that are as compact as possible: as the class similarity threshold increases,
fewer classes are matched and merged, and the number of elements in the result grows.
Q2, however, does not exemplify such linear behavior because it balances the reduction
in size with the goal of merging only those elements that are indeed similar. For exam-
ple, when refactoring the Washing Machine, the result preferred by Q1 is obtained by
setting the class similarity threshold to 0.7 or lower, which causes merging of as many
classes as possible, including those that are dissimilar (e.g., the one in Fig. 1(d)). This
produces state machines with a large percentage of variable states and transitions. Q2

prefers the solution produced when the similarity threshold is set to 0.78, which merges
only elements with a high degree of commonality (e.g., see Fig. 1(c)). When the class
similarity threshold is high (0.9), only identical classes got merged. A large number of
classes, states and transition in the resulting model is captured by a low calculated value
for both Q1 and Q2, since both of them are designed to minimize the size of the result.

For the Microwave Oven example, both Q1 and Q2 prefer the solution found when
the class similarity threshold is set to 0.7 or lower (see Table 2). Since all four variants
of the timer control class in this example are very similar, these classes are all merged
together in the resulting refactoring. The percentage of variable states and transitions in
this solution remains small, and the overall reduction in their total number is significant.

Recall that our third example had two clusters of similar components (and two other
components, different from the rest). The refactoring that identifies and merges compo-
nents in these clusters is produced when the class similarity threshold is set to 0.7. This
refactoring also maximizes the value of Q2. Similarly to the Washing Machine case,
lower threshold values produce more merges resulting in a high number of variable at-
tributes, states and transitions (and thus, lower values of Q2), while higher thresholds
result in a large number of elements in the resulting model (and thus, lower values of
both Q1 and Q2).

In summary, we found that in all of the above cases, quality functions were able to
distinguish between different refactorings as desired and thus were appropriate to help
“drive” the refactoring process towards the preferable result. Our third case study also
showed that differences in the computed quality values became more pronounced as
models got bigger. Furthermore, the refactorings that were produced in our examples
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under the strategy that maximizes the value of Q2 were identical to those constructed
manually by a domain expert. This encouraging result makes us believe that our quality-
based merge-refactorings approach is effective for the creation of annotative product
line representations from a set of existing systems.

Threats to Validity. Threats to external validity are most significant for our work. These
arise when the observed results cannot generalize to other case studies. Because we used
a limited number of subjects and quality functions, our results might not generalize
without an appropriate tuning. However, we attempted to mitigate this threat by using
a real-life case study of considerable size as one of our examples. Thus, even though
preliminary, our results show that the approach, perhaps with some additional tuning, is
effective for finding good refactorings of large-scale systems.

In addition, we limit the scope of our work to physical systems in the embedded
domain, where number of product variants usually does not exceed tens. The approach
might not scale well to other domains, where hundreds of product variants are possible.
However, we believe that the scalability issue mostly relates to the annotative product
line representation itself, rather than to our attempt to distinguish between different
representations.

6 Discussion and Related Work

Product Line Refactoring Approaches. Several existing approaches aim at build-
ing product lines out of legacy artifacts, e.g., [8]. These approaches mainly provide
guidelines and methodologies for identifying features and their related implementation
components rather than build tool-supported analysis mechanisms. Some works also re-
port on successful experience in manual re-engineering of legacy systems into feature-
oriented product lines, e.g., [14].

Koschke et al. [15] present an automated technique for comparing software variants
at the architectural level and reconstructing the system’s static architectural view which
describes system components, interfaces and dependencies, as well their grouping into
subsystems. Ryssel et al. [25] introduce an automatic approach to re-organize Matlab
model variants into annotative representations while identifying variation points and
their dependencies. Yoshimura et al. [30] detect variability in a software product line
from its change history. None of the above approaches, however, takes into account
quality attributes of the constructed results nor attempt to distinguish between the dif-
ferent refactorings based on the refactoring goal.

Product Line Quality. Oliveira et al. [20] propose a metric suite to support evaluation
of product line architectures based on McCabe’s cyclomatic complexity of their core
components, which is computed using the control flow graph of the program and mea-
sures the number of linearly independent paths through a program’s source code. Her
et al. [10] suggest a metric to measure reusability of product line core assets based on
their ability to provide functionality to many products of the same SPL, the number of
SPL variation points that are realized by an asset, the number of replaceable compo-
nents in a core asset and more. Hoek et al. [28] describe metrics for measuring service
utilization of SPL components based on the percentage of provided and required ser-
vices of a component. While these works allow measuring reusability, extensibility and
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implementation-level complexity of product line core assets, they do not discuss the
structural complexity of annotative SPL models nor allow comparing different anno-
tative product line models and distinguishing between them based on their representa-
tion properties. Trendowicz and Punter [27] investigate to which extend existing quality
modeling approaches facilitate high quality product lines and define requirements for an
appropriate quality model. They propose a goal-oriented method for modeling quality
during the SPL development lifecycle, but do not propose any concrete metrics.

Numerous works, e.g., [6,5], propose software metrics for evaluating quality of UML
models. While we base our approach on some of these works, they are not designed for
UML models that represent software product lines and do not take variability aspects
into account.

Finally, some works discuss characteristics of feature implementations in code, such
as feature cohesion and coupling [1] or granularity, frequency and structure of prepro-
cessor annotations [12,16]. However, these works are not easily generalizable to address
the issue of structural complexity of models.

7 Conclusions and Future Work

Understanding and refactoring existing legacy systems can promote product line adop-
tion by industrial organizations which have made a significant investment in building
and maintaining these systems, and are not ready to abandon them for “starting from
scratch”. Since these systems are usually very large, automation becomes a necessity.

In this paper, we focused on integrating distinct products specified in UML into an
annotative product line representation. We argued that multiple syntactically different
yet semantically equivalent representations of the same product line model are possi-
ble, and the goal of the refactoring induces which one is preferable. We suggested an
approach for guiding the refactoring process towards a result that fits best the user’s
intention, as captured by a syntactic quality function. We implemented a refactoring al-
gorithm based on model merging and used it as the foundation of our merge-refactoring
framework. We evaluated the proposed quality-based merge-refactoring approach on a
set of case-studies, including a large-scale example contributed by an industrial partner.
We believe that our work promotes automation of product line refactoring and reasoning
about refactoring alternatives.

For future work, we are interested in enhancing our understanding of product line
quality considerations which can help with assessing different product line model rep-
resentations, produced either automatically or manually. The quality functions can be
extended to consider additional quality attributes, allow the user to set and/or interac-
tively choose different quality goals for different regions within the model, incorporate
user feedback and more. Performing user studies for evaluating quality of annotative
product line models can also be a subject of future work.

In addition, we are interested in exploring more sophisticated refactoring techniques
that are able to detect fine-grained features in the combined products. This will allow
creating new products in the product line by “mixing” features from different original
products, e.g., the dryer and the beeper features from the models in Fig. 1. We also plan
to further improve our match algorithms by allowing the user to affect results of this
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function, e.g., by setting negative matches. Exploring the use of more advanced opti-
mization techniques, such as cross-entropy for adjusting compare and match parameters
is also a subject for possible future work.
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Abstract. We propose an approach to characterize the behavior of
classes using dynamic coupling distributions. To this end, we propose
a general framework for modeling execution possibilities of a program
by defining a probabilistic model over the inputs that drive the pro-
gram. Because specifying inputs determines a particular execution, this
model defines implicitly a probability distribution over the set of exe-
cutions, and also over the coupling values calculated from them. Our
approach is illustrated through two case studies representing two cate-
gories of programs. In the first case, the number of inputs is fixed (batch
and command line programs) whereas, in the second case, the number
of inputs is variable (interactive programs).
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1 Introduction

Program comprehension is an essential phase in software maintenance [7]. To
implement new changes, software engineers have to acquire abstract knowledge
on, among others, the program structure and the behavior, and the relationships
among its elements [4]. This abstract knowledge helps relating a program im-
plementation to conceptual knowledge about the application domain and, hence
locates the elements affected by a change request. Understanding a complex
program is similar to exploring a large city 1. In both cases, having good maps
(abstractions) facilitates considerably the comprehension. For cities, there is a
good knowledge on what kind of useful information should be abstracted on maps
such as streets, transportation indications, landmarks, etc. Landmarks (monu-
ments, important buildings, train stations), for example, are used as references
to quickly situate secondary elements. For software comprehension, the idea of
landmarks was also used. Indeed in [11] and [13], key classes are identified to
serve as starting points for program comprehension.

The identification of comprehension starting points is often based on cou-
pling [11,13]. The rationale behind this decision is that elements that are tightly

1 Leon Moonen, Building a Better Map: Wayfinding in Software Systems. Keynote
talk, ICPC 2011.
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coupled to other elements are likely to implement the most important concepts of
a program. Coupling can be estimated from a static analysis of the source code,
independently of any execution, i.e., static coupling. However, this method could
significantly over or under-estimate the coupling due to dynamic features such
as polymorphism or dynamic class loading [1].

On the other hand, actual coupling between software elements could be cap-
tured at run time by a dynamic analysis, i.e., considering what actually hap-
pens during the execution [2,12]. Thus, different executions of the same program
usually lead to different values of the dynamic coupling. But then, from which
execution(s) should the metric be computed? To circumvent the generalization
issue, Arisholm et al. [2], pick an arbitrary set of executions and take the average
of the coupling value over these executions. Similarly, Yacoub et al. [12] assign
probabilities to a finite set of execution scenarios, compute the dynamic coupling
for each scenario, and take the weighted average across scenarios as their final
measure, where the weights are the probabilities. This represents the mathemat-
ical expectation of the metric under a probabilistic model where the number of
possible realizations is finite. Such derivation methods certainly make sense if
the set of chosen executions (and weights in the case of [12]) are representative
of the variety of executions likely to be encountered when running the program.
However, in practice, the number of possible executions is often extremely large,
even infinite, and it may be difficult to directly assign a probability to each one.
Moreover, perhaps more importantly, considering only a single value (or average)
of coupling (static or dynamic) can hide a large amount of useful information
on the variability of a class’s behavior.

The purpose of this paper is to describe an approach for characterizing class
behavior using dynamic coupling distributions. To this end, we propose a general
framework to model execution possibilities by defining a probabilistic model over
the inputs that drive the program. Because specifying the inputs determines a
particular execution, this model defines implicitly a probability distribution over
the set of executions, and also over the set of coupling values. In such a model,
the distribution of the coupling values is in general too complicated to be closely
approximated numerically, but it can be estimated via Monte Carlo simulation.
Our approach is illustrated through two case studies representing two categories
of programs. In the first case, the number of inputs is fixed (batch and command
line programs) whereas, in the second case, the number of inputs is variable
(interactive programs).

The remainder of this paper is organized as follows. In Section 2, we define
how the probabilistic model is used to derive class coupling distributions over the
executions. Then, Section 3 explains how a coupling distribution can be used to
give insights of a class’s behavior. In section 4, we illustrate our approach using
two case studies corresponding to two categories of programs. Our approach is
discussed and contrasted with the related work in Section 5. Finally, concluding
remarks are given in Section 6.
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2 Portraying Class Coupling

2.1 Approach Overview

When using deterministic algorithms, computer programs are driven by a set of
external inputs that normally determine the entire execution sequence. We con-
sider a computer program made up of several classes, say in Java for example,
and a dynamic coupling metric at the class level whose value depends on the
realizations of the input variables given to the program (see Figure 1). The total
number of possibilities for these inputs (and then for the possible executions) is
typically much too large to allow an explicit enumeration. Here we propose to
define a probability distribution over the space of possible inputs. Once this dis-
tribution is determined, it can be used to generate representative sets of inputs.
The coupling values corresponding to these inputs represent then the basis for
the estimation of the coupling distribution of a class over the possible executions.

Input 
generatorInput distribution

Program

Input values 1 Input values n…

Execution 1 Execution n
…

Metric value 1 Metric value n…

Metric-
distribution  
estimation

Metric distribution

Fig. 1. Approach overview

2.2 Probabilistic Models for Input Data Generation

We consider two cases for how these input variables are defined or specified
depending on the nature of programs:

(a) The number of inputs is fixed to d (a positive integer) and these inputs are
represented by a random vector X = (X1, . . . , Xd). This case of inputs is
found generally in batch and command-line programs where a set of param-
eters are specified for each execution.

(b) The number of inputs is variable (random) and the successive inputs can be
seen as functions of the successive states of a Markov chain. This is the case
of programs with interactions with a user or with the outside environment,
where the probability distribution of the next input (and whether there is
a next input or not) often depends on the values of the inputs that have
already been given to the program so far.
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Inputs Defined as a Random Vector. In the case of a random vector X =
(X1, . . . , Xd) ∈ Rd, the input values can be given to the program before it starts
its execution. In this model, we assume that X is a random vector with an
arbitrary multivariate distribution over Rd. This distribution could be discrete,
continuous, or mixed, in the sense that for example some coordinates of X might
have a normal or exponential distribution while others might take only integer
values, or perhaps only binary values (0 and 1). The inputs, i.e., coordinates of
X, are not assumed to be independent in general, but the situation where they
are independent is a possibility; this is the simplest special case.

The multivariate random vector X has distribution F if for any x =
(x1, . . . , xd) ∈ Rd, we have F (x) = P[X ≤ x] = P[X1 ≤ x1, . . . , Xd ≤ xd].
The jth marginal distribution function is defined by Fj(xj) = P[Xj ≤ xj ]. The
random variables X1, . . . , Xd are independent if and only if F (X1, . . . , Xd) =
F1(x1) . . . Fd(xd) for all x ∈ Rd. When X1, . . . , Xd are not independent, a gen-
eral way of specifying their joint (multivariate) distribution is via a copula [3].

A copula consists in specifying first a d-dimensional distribution whose
marginals are uniform over the interval (0, 1), but not independent in general.
This distribution is called a copula (or dependence function). IfU = (U1, . . . , Ud)
denotes a random variable having this distribution, then for each j, we define

Xj = F−1
j (Uj) = inf{x : Fj(x) ≥ Uj}.

The vector X = (X1, . . . , Xd) then has a multivariate distribution with the
required marginals Fj , and a dependence structure determined by the choice
of copula. That is, the marginal distributions are specified separately from the
marginals. It is well known that any multivariate distribution can be specified
in this way. Specific techniques for selecting a copula and generating random
vectors from it are explained in [3,6], for example.

This case of input variables is found generally in batch and command-line
programs where a set of parameters are specified for each execution. For example,
when running lpr command in Linux, one should specify the printer name, the
username, the number of copies, etc. When a parameter is not specified, e.g.,
the printer name, this does not mean that one input is missing. It simply means
that the default value will be used, here the default printer. Thus, the size of the
input vector is always the same.

Inputs Modeled by a Markov Chain. The majority of programs nowadays
do not have a fixed number of inputs, but the number of inputs (and their types)
are themselves random variables. Consider for example, a program with a set
of functions, each performed in a number of steps. Each step requires a certain
number of parameters. The state of the execution (function and step) impacts
the probability that a particular parameter is required, and if yes, the probability
that this parameter takes a specific value. This is particularly true for programs
that interact with a user or with the outside environment, where the probability
distribution of the next input (and whether there is a next input or not) often
depends on the values of the inputs that have already been given to the program
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so far. In this type of situation, the input process can be modeled naturally as
a discrete-time Markov chain.

A naive way of specifying such a discrete-time Markov chain model would be
to assume that {Xj , j ≥ 0} is a Markov chain over the set of real numbers (or a
subset thereof), whereXj represents the jth input to the program. However, this
is not realistic, because the next input Xj+1 usually depends not only on Xj ,
but also on the values of the previous inputs. Therefore, the process {Xj, j ≥ 0}
thus defined would not be a Markov chain.

A proper way to get around this problem is to model the input process by a
Markov chain {Sj, j ≥ 0} whose state Sj at step j contains more information
than just Xj . Such a Markov chain can be defined by a stochastic recurrence of
the form Sj = γj(Sj−1, Xj), for some transition functions γj , and the jth input
Xj is assumed to have a probability distribution that depends on Sj−1, and to
be independent of X0, . . . , Xj−1 conditional on Sj−1. This assumption ensures
that {Sj, j ≥ 0} is a Markov chain, which means that whenever we know the
state Sj , knowing also S0, . . . , Sj−1 brings no additional useful information for
predicting the behavior of any X� or S� for 	 > j. We also assume that this
Markov chain has a random stopping time τ defined as the first time when the
chain hits a given set of states Δ: τ = inf{j ≥ 0 : Sj ∈ Δ}. This τ represents
the (random) number of inputs that the program requires.

Another interesting example where Markov chains are used to model the in-
puts of a software is described in [14]. In this work, the interaction with a web
site is defined as a set of mouse clicks on links corresponding to the URLs of
Web-site pages. The probability that a particular page is accessed depends on
the other pages already accessed, i.e., previous inputs. The Markov-chain model
is used to measure the navigability of Web sites.

2.3 Dynamic-Coupling Distribution Estimation

Case of Random Vector. A dynamic metric ϕ can be seen as a function
that assigns a real number to any possible execution of the program. But since
the realized execution depends only on the realization of X, we can view the
metric as a function of X, and write ϕ : Rd → R. Then, Y = ϕ(X) is a real-
valued random variable whose distribution depends on the distribution of X,
perhaps in a complicated way. Thus, the distribution of Y will not be known
explicitly in general. However, we can use Monte Carlo simulation to estimate
this distribution. It consists in generating n independent realizations of X, say
X1, . . . ,Xn, and then computing the n corresponding realizations of Y , say
Y1, . . . , Yn. Then the empirical distribution of Y1, . . . , Yn is used to estimate
the true distribution of Y . As a byproduct, it permits one to estimate certain
summary characteristics of this distribution, such as the mean, the variance,
etc., and to compute confidence intervals on these numbers [9].

For example, one can estimate μ = E[Y ], the mean of Y , by the sample average
Ȳn =
∑n

i=1 Yi. To assess the accuracy of this estimator, one can also compute a
confidence interval on μ, which is a random interval of the form [I1, I2] where I1
and I2 are two random borders defined so that
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P[I1 ≤ μ ≤ I2] ≈ 1 − α where 1 − α is a preselected confidence level. For
example, if we assume that Ȳn has a normal distribution (which is practically
never exactly true but can be a good approximation when n is large, thanks to
the central limit theorem), then the confidence interval has the form

[Ȳn − z1−α/2Sn/
√
n, Ȳn + z1−α/2Sn/

√
n] (1)

where Sn is the sample standard deviation of Y1, . . . , Yn and z1−α/2 satisfies
P[Z ≤ z1−α/2] = 1−α/2, where Z is a standard normal random variable. Other
techniques, such as bootstrap methods, for example, can be used when we think
that the distribution of Ȳn might not be close to normal. Confidence intervals on
other quantities than the mean (for example, the variance of Y , or the correlation
between two different metrics), can be computed in similar ways.

Of course, the whole empirical distribution itself always conveys more infor-
mation for behavior understanding than the estimates of any of these statistics.
For this reason, it is generally better in our opinion to study this distribution (for
example in the form of a histogram) rather than (or in addition to) interprete,
say, the average Ȳn = (Y1 + · · · + Yn)/n together with a confidence interval on
the mathematical expectation E[Y ].

Case of Markov Chain. A dynamic metric here is defined as a function ϕ
which assigns a real number Y = ϕ(S0, S1, . . . , Sτ , τ) ∈ R to each realization
(S0, S1, . . . , Sτ , τ).

Again, if the Markov chain model is fully specified, we can simulate it and
estimate the distribution of Y by the empirical distribution of n independent
realizations Y1, . . . , Yn, in the same way as in the random vector case.

2.4 Examples of Coupling Distributions

When considering dynamic coupling, different executions, corresponding to dif-
ferent inputs, could lead to different interactions between the considered class
and the other elements of a program. Consequently, each execution results in a
particular coupling value. After performing a relatively large sample of execu-
tions defined by the distribution of the inputs, those executions could be grouped
according to their coupling values, which defines a distribution.

We conjecture that there is a causality chain between the input, the behav-
ior, and the coupling value. Indeed, the input values may impact the execution
control flow, i.e., the class’s behavior, which may lead to variations in the in-
teractions between objects, and then in the class’s coupling value. Note that
variations in the interactions do not necessarily mean changes in the coupling
value. The same value could be the result of different interaction sets. In the
following paragraphs, we show examples of regular distributions that could be
obtained. We discuss them in the basis of our conjecture. The relationship be-
tween the coupling values and the behavior will be discussed in Section 3.

Single-Bar Distribution This situation occurs when the class has
the same coupling regardless of the inputs.
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Exponential-like Distribution In this distribution, the lowest cou-
pling value is obtained by the highest number of executions. Then the frequency
of executions decreases as the coupling increases.

Normal-like Distribution This is another variation of the previous
distributions. The distribution mode corresponds to a middle coupling value.
The frequency of execution decreases gradually as the coupling value increases
or decreases.

Multimodal Distribution Classes having this kind of distribution
do not have a clear pattern for the frequency change with respect to the coupling
change. When the coupling values have equal or close frequencies, the distribu-
tion takes the shape of a uniform distribution.

3 Understanding a Class’s Behavior

3.1 Class Behavior

In the object-oriented programming paradigm, objects interact together in order
to achieve different functionalities of a given program. Typically, the behavior of
a program corresponds to the set of the implemented use cases. Each use case
could have different scenarios depending on the inputs. Consider, for example,
the use case of borrowing books in a library loan management system. The fre-
quent and main scenario is to identify the reader, check his record, and register
the loan. This scenario could be extended (extend relationship) by renewing the
membership prior to the loan, for example, or truncated if the borrower ex-
ceeds the allowed number of books or if the concerned book cannot be borrowed
(violation of use-case scenario preconditions).

These variations at the program level are reflected at the class level. As classes
implement services that contribute to use cases. An alternative use-case scenario
could require an additional service, do not use a service or use a variation of a
service with respect to the main scenario. For example, when the loan is not
registered, class Book will not decrease the number of available book copies.
Therefore, a class could offer one or more services, each with possible variations.
For a particular use case, the main scenario is the most frequently executed which
in turn define a main and frequent contribution of a given class in this scenario.
This contribution could vary according to the use case alternative scenarios.

3.2 Relating Coupling Distributions to Class Behavior

As mentioned earlier, we conjecture that there is a causality chain between the
inputs, the class’s behavior and the class’s dynamic coupling. According to our
probabilistic setting defined in Section 2, a set of representative executions is
defined by the set of representative inputs. The execution sample produces a
practical coupling distribution for each class of the program. The goal of our
work is to use this distribution to understand the behavior of a class. Under-
standing a class’s behavior in our setting means that we could identify the main
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behavior and its variations by looking at its coupling distribution. Relating the
coupling distribution to the behavior is only valid if we accept the three following
hypothesis:

H1: the same behavior results in the same coupling value and con-
versely : A class that executes one or many services in different executions cor-
responding to the same use-case scenarios will produce the same, or very close,
coupling values. Conversely, two equal or very close coupling values correspond-
ing to two executions indicate that these executions are likely to trigger the same
class behavior.

H2: an extended behavior generates more or equal coupling than the
original one: When an alternative scenario AS extends a main scenario MS,
the coupling value corresponding to AS is at least equal to the one of MS.
This means that (almost) all the interactions in MS remain in AS and that the
extension could add new interactions.

H3: a truncated behavior generates less or equal coupling than the
original one: When an alternative scenario AS is executed because of a pre-
condition violation of the main scenario, the coupling value corresponding to AS
is at most equal to the one of MS. This could be explained by the fact that most
of the behavior of MS is not performed, which may cancel many interactions.

The above-mentioned hypotheses could be assessed automatically for any
studied system. It is possible to check if executions belonging to the same block,
i.e., having the same coupling value, trigger the same set of method calls 2. It
is also possible to evaluate the similarity between executions belonging to con-
tiguous blocks, corresponding to two successive coupling values. In the following
paragraphs, we propose intra and inter-block similarity measures to group exe-
cutions by behavior based on coupling.

Intra-block similarity or internal similarity is measured by evaluating the
diversity of method calls inside the block. Formally, for a block b of executions
having a coupling value cb, the internal similarity is defined as IS(b) = cb/nb,
where nb is the number of different method calls observed in all the executions of
b. The ideal situation (IS(b) = 1) is that all the executions in b trigger the same
set of method calls. In that case, cb = nb. The more the values are close to 1, the
more we consider that executions reflect the same behavior. If we assume that
executions belonging to the same block concern the same behavior, the next
step is to identify if contiguous blocks have the same behavior, thus forming
a behavior region, or if an important modification is observed. Modifications
include transitions from a truncated scenario to the main scenario within the
same use case, main-scenario extension, and use case change.

Inter-block similarity or external similarity allows to measure the difference
in behavior between execution blocks. In a first step, it is important to identify
methods calls that are relevant in an execution block to exclude marginal calls
that represent non significant behavior variations. Relevant method calls are

2 For the sake of simplicity, we consider in this section that coupling between classes is
the total of different afferent and efferent method calls. The similarity measures of the
following paragraphs could be easily adapted to other dynamic coupling measures.
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those that appear in the majority of the executions of a block b. A method
call a is said to be relevant for a block b if it appears in at least n percent of
the executions in b. n is a threshold parameter, usually set to 50% (half of the
block executions). Once the set Rel(b) of relevant method calls are identified
for each block b, the following step is to determine the behavior regions by
comparing contiguous blocks recursively. The first block b1 (the one with the
lowest coupling value) is automatically included in the first region R1. Then for
each block bi, i > 1, we evaluate its similarity with the region Rj containing
the previous blocks. If the similarity is above a given threshold value, then bi
is assigned to the same region Rj , if not, it forms a new region Rj+1. External
similarity is calculated as follows:

ES(Rj , bi) =
|Rel(Rj) ∩Rel(bi)|
|Rel(Rj) ∪Rel(bi)|

(2)

where Rel(Rj) =
⋂

bk∈Rj
Rel(bk).

When relating the coupling distributions to the behavior, the distribution
examples given in Section 2.4, could be used as behavioral patterns. Single-Bar
distribution defines an Assembly-chain pattern as the concerned class behaves
in the same way regardless of the inputs. Exponential-like distribution is seen as
a Clerk pattern. Like a clerk in an office, the class has one common behavior
(main scenario of a use case), and this common behavior is gradually extended
to deal with exceptional situations (alternative scenarios with extensions within
the same use case). A third pattern plumber corresponds to the Normal-like
distribution. Like for the Clerk, the common behavior is extended in some cases,
but like for a plumber, some interventions do not require to perform this common
behavior. This situation occurs when the main use-case scenario has precondi-
tions that, for some executions, are not satisfied, which results in a truncated
behavior, and then a lower coupling. Finally, we view a Multimodal distribution
as a Secretary pattern. Classes having this kind of distribution are generally
involved in different use cases. The choice of the behavior depends on the inputs,
e.g., utility classes. When the use cases have equal probabilities to be performed,
the coupling distribution is uniform-like.

4 Illustrative Case Studies

4.1 General Setting and Implementation

To illustrate our approach, we present in this section the cases of two small Java
programs: Sudoku (13 classes) and Elevator (eight classes) having inputs that are
modeled by respectively a random vector and a Markov chain. For each program,
we built a probabilistic input model according to the framework of Section 2.
To simulate the inputs from the obtained input models, we have used the Java
library SSJ [5], which stands for Stochastic Simulation in Java, and provides a
wide range of facilities for Monte Carlo simulation in general. For each program,
our simulation generated the input data for a sample of 1000 executions. For
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each execution, the inputs were given using a class Robot that simulates the
interaction with the GUI, and a trace was produced using the tool JTracert3.
These traces were then used to calculate the class coupling metrics. For the
sake of generality, we considered a different coupling metric for each program,
IC OM (c) (Import Coupling of a class c for Objects with distinct Methods) for
Sudoku and IC CM (c) (Import Coupling of a class c for Classes with distinct
Methods). The definitions of these dynamic metrics are given in [2]. SSJ was
also used to produce the distribution histograms.

4.2 Case 1: Sudoku Grid Generator

System Description and Input Probabilistic Model. Sudoku grid gener-
ator has 10 inputs. Nine of them are positions in the grid (fixed spots) where
the digits 1 to 9 should be placed. We assume a 9× 9 grid with cells numbered
from 1 (top-left) to 81 (bottom-right). The tenth input is the level of difficulty
of the grid to be generated, in a scale from 1 to 5. Starting from the first nine
inputs, the program generates a grid by filling the remaining 72 cells to produce
a correct solution if one exists. If not, it displays a message indicating that no
solution was found for this input. When a solution is found, the level of difficulty
is used to determine the number of cells to hide when displaying the puzzle.

With respect to our framework, the input vector is X = (X1, . . . , X10)
where X1, . . . , X9 ∈ {1, 2, . . . , 81}, with Xi �= Xj whenever i �= j, and X10 ∈
{1, 2, . . . , 5}. Given this space of inputs, the number of possible executions (or
realizations of the input vector) is N = 81×80× . . .×73×5 ≈ 4.73354887×1017.
In our model, we assume that each of those input vector realizations has the same
probability 1/N . This means that the positions of the 9 fixed digits are selected
at random, uniformly and independently, without replacement (so they are all
distinct), and that the level of difficulty is also selected at random, uniformly and
independently of the other inputs. The distribution of the input vector is then
F (X1, . . . , X10) = F1(x1) . . . F10(x10). All F1(x1), . . . , F9(x9) are considered as
uniform. We can reasonably consider that the five levels of difficulty have also
equal chances to be selected (F10(x10) is a uniform distribution).

Distributions and Interpretation. Table 1 summarizes the main findings re-
lated to the coupling distributions. The first observation is that for all classes of
the Sudoku program, the similarity in behavior is very high between executions
producing the same coupling value (average IS per class ranging from 82% to
100%). This indicates that our first hypothesis about the correlation between the
coupling and the behavior is true in this case. Regarding the distributions, we
found that the 13 classes are instances of the patterns described in Section 3. All
exponential-like distributions include three regions, except for GridConfigura-
tion with two regions. In all cases, the first, which contains the higher number of
executions corresponds to the main scenario of a use case and the other regions
highlight successive extensions. For example, the first region of the class Solver

3 http://code.google.com/p/jtracert/

http://code.google.com/p/jtracert/


Towards Understanding the Behavior of Classes Using Probabilistic Models 109

Table 1. Statistics about Sudoku program.

Class Name IS(%) Distribution Regions

Solver 88.71 Exponential-like {b5, b6, b7}, {b8, b9, b11}, {b12, b13,
b14}

Sudoku (main) 96.38 Exponential-like {b4, b5}, {b6, b7, b8}, {b9, b10}
Util 100 Uniform-like {b1}, {b2}, {b3}, {b4}
Valid 90.66 Normal-like {b1, b2}, {b3, b4, b5, b6}, {b7, b8}
GridGenerator 90.67 Exponential-like {b4}, {b5, b6, b7}, {b8, b9, b11}
GridFrame 100 Single Bar {b3}
GridConfiguration 85.20 Exponential-like {b4}, {b5, b6}
Grid 93.42 Normal-like {b1}, {b2, b3, b4}, {b5}
Case 87.25 Uniform-like {b1, b2, b3}
BoxPanel 100 Single Bar {b1}
ButtonPanel 82.66 Exponential-like {b2}, {b3, b4, b5}
InitSquare 100 Single Bar {b3}
GridPanel 88.27 Single Bar {b3, b4}

corresponds to the standard process of searching for a solution when the user
initializes the grid and asks for a valid solution (see Figure 2-left). This behavior
is very frequent because in most of the cases, a solution is easy to find. The sec-
ond region corresponds to an extended behavior of the first one. Indeed, when
a solution is difficult to find or may not exist, the solver uses another resolution
strategy based on back-tracking, and then calls other methods, especially those
of the class Valid. The third region that we identified for the Solver class, corre-
sponds to a surprisingly less-frequent case where the solver checks if an existing
solution is unique or not. This task requires that from the Solver class to use new
interactions with classes Sudoku, Grid and Valid. The two normal-like distribu-
tions also have three regions with the first (lower values) indicating a truncated
behavior due to precondition violations, the second (middle values) representing
the common behavior, and the third (highest values) including common behav-
ior extensions. The two uniform-like distributions were not similar in behavior.
Whereas Util with four different coupling values, defines clearly four different
services (regions) with almost equal frequencies, Case, with three coupling val-
ues includes only marginal variations of the same behavior which lead to a single
region. Finally, single-bar distributions have a unique coupling value defining a
unique behavior. The only case with two coupling values exhibits unbalanced
frequencies but with similar behavior.

4.3 Case 2 : Elevator System

System Description and Input Probabilistic Model. The second program
that we considered in this study is a simple elevator operating system. To run
the program, the user has to give the number of elevators and the number of
floors. Then it is possible to enter as many times as desired the events calling
elevators from a particular floor to go up or down, and selecting the destination
floors. The program ends when the user enters the event stop. Obviously, the
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Fig. 2. Coupling distributions of classes Solver (left) and ElevatorGroup (right)

number of inputs cannot be fixed a priori. In that case, we model the program
inputs by a Markov chain. We consider that there is an arbitrary number of
subjects that use the elevators. Subject arrivals are random and mutually inde-
pendent. Times between two successive arrivals are independent and identically
distributed, and exponential with mean 1/λ. In our simulation program, we took
λ = 1/2. Each subject is modeled by a Markov chain that is triggered when he
enters the building, and is stopped when he leaves it. The subjects’ Markov
chains are independent. A transition probability matrix is assigned to each sub-
ject. It defines the probabilities to travel between pairs of floors or to stay within
the same floor. We also supposed that these Markov chains are homogenous, (i.e.
the transition matrix doesn’t change over time).

Distributions and Interpretation. Like for the first case, the average of
internal similarities of all the classes are above 83% as shown in Table 2. Seven
over the eight classes have average similarities of 93% or more. This confirms
once again our intuition about the correlation between the coupling and the
behavior uniformity. For the distributions, we observed some differences with
the first case. One of them is a non regular distribution observed for the class
ArrivalSensor. This distribution includes three blocks corresponding to three
small coupling values, respectively 3 (for 20% of the executions), 4 (for 40%),
and 5 (for 40%). This distribution could be considered, to some extent, as a
single-bar one before the behavior in the three blocks is very similar. However,
as we do not have a block that contains a clearly majority of executions, we
classified it as “non regular”. Another difference is that except for this marginal
case, we did not observe single-bar distributions. This could be explained by the
fact that the considered program is more complex than the one of Sudoku. This
complexity introduces many variations in behavior.

The most frequent distribution is the exponential-like one, found for half of
the classes. For example, class Elevator has three regions. The first region with
the lower coupling values corresponds to the common elevator behavior with
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Table 2. Statistics about Elevator program

Class Name IS(%) Distribution Regions

ArrivalSensor 83.72 - {b3, b4, b5}
Elevator (main) 95.24 Exponential-like {b9, b10, b11, b12}, {b13, b14, b15, b16,

b17}, {b18, b19, b21, b23, b24}
ElevatorGroup 95.67 Normal-like {b9, b10, b11, b12}, {b13, b14, b15, b16,

b17, b18, b20, b21}, {b23, b24, b25, b26, b29}
ElevatorControl 93.90 Exponential-like {b4, b5, b6, b7},

{b8, b9, b10, b11, b12, b13, b14}, {b15, b16}
ElevatorInterface 96.57 Normal-like {b10, b12, b13, b14}, {b15, b16, b18,

b19, b20, b22, b23, b24}, {b25, b26, b27, b28}
Floor 98.11 Exponential-like {b12, b13, b14}, {b15, b16, b17, b19, b20},

{b21, b23, b25, b27}
FloorControl 96.24 Uniform-like {b6, b8, b10} {b12, b14, b16},

{b18, b20, b22}, {b24, b26, b28}
FloorInterface 92.99 Exponential-like {b2, b3, b4}, {b5, b6, b7, b8}, {b9, b11}

interactions mainly with Floor and ArrivalSensor. The coupling increases to
deal with exceptional situations such as considering a new elevator call during
the movement, and less frequently to manage a high level of calls, which requires
to create a queue and to start a new thread to manage the behavior concurrency.

The three remaining distributions are normal-like (two classes) and uniform-
like ones. To illustrate how two distributions could be impacted by the same
variation in a use case, consider the distribution of class ElevatorGroup (normal-
like) shown in Figure 2-right. We identified three regions and three blocks that
were not included in any region. This is a variation of our algorithm that consists
in not creating regions for single blocks that have low similarities with previous
and following blocks together with a very low number of executions. The first
region corresponds to a minimal behavior that results from the violation of
preconditions during the creating of the elevators. Indeed, during the creation,
ElevatorGroup checks if the number of elevators and the number of floors are
within a certain range. Then, it checks if the number of elevators is consistent
with the number of floors. The second region that we identified corresponds to
the common behavior of assigning calls to elevators, etc. Finally, the third region
corresponds to an exceptional situation related to one of the class Elevator in
the previous paragraph. This situation concerns the management of busy periods
with a high number of calls.

5 Related Work and Discussion

The work proposed in this paper crosscuts several research areas. Compared to
contributions in dynamic coupling calculations, our approach allows to select a
representative set of executions. Indeed, Arisholm et al. [2] pick an arbitrary set
of executions and take the average of the metric value over these executions. Ya-
coub et al. [12] assign probabilities to a finite set of execution scenarios, compute
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the dynamic metric for each scenario, and take the weighted average across sce-
narios. Although assigning probabilities to executions is close to our approach,
in practice, the number of possible executions is extremely large, which limits
the applicability.

Our work defines probabilistic models for inputs that are used to generate
representative samples of executions and then to better characterize the dy-
namic coupling. Stochastic simulation was used in software engineering, mainly
to understand the development process (e.g., [8]) or to characterize the evolu-
tion of a given program (e.g., [10]). In both cases, the simulation is related to
requirements and change request, but does not involve program inputs or class
dependencies. The work of Zhou et al. [14] is maybe more or less closely related
to our contribution. They propose a navigation model that abstracts the user
Web surfing behavior as a Markov model. This model is used to quantify naviga-
bility. Modeling inputs as a Markov chain seems natural here because the inputs
for Web sites are different from ones of classical software. Indeed, in this work,
only mouse clicks on links are considered but not inputs using forms.

The work presented in this paper is an initial initiative to propose a frame-
work for understanding the relationship between the coupling and the behavior
of a class. Although the first findings are very encouraging, there are many open
issues that need to be addressed. Firstly, in practice, it is difficult to define input
distributions. When the program is in use, it is possible to record the inputs as
the users provide them and after a certain period, estimate the distribution from
the collected data. However, when the program is under development, i.e., not
released yet, these data are not available. Of course, one could decide theoret-
ically that an input should have a particular distribution (say normal). Still,
there is a need for estimating the distribution parameters (mean and variance
in the case of normal distribution). Another problem concerns the nature of the
input data. In our study, we considered inputs that take values in a finite set.
In most of the programs, inputs could be strings with theoretically an infinite
set of values such as person names, files, etc. The random generation of strings
according to a particular distribution could be modeled easily. However, random
generation of files, such as source code for compilers, is not an obvious task.

6 Conclusion

In this paper, we proposed a framework for modeling program inputs using a
probabilistic setting. These models allow to derive class coupling metric distri-
butions. We showed how these distributions could be used to understand the
behavior of classes. We illustrated our approach with two small case studies.
The first has a finite set of inputs, which are modeled by a random vector.
In contrary, the second program has an infinite set of inputs that are modeled
by a (homogenous) Markov chain. We observed in these cases that recurrent
distribution patterns correspond to regular behavior schemes.

Our future work will be mainly dedicated to make our framework more effec-
tive. The issues to be addressed include scalability and support for input model
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definition. We additionally intend to assess more dynamic coupling metrics, so
that to improve the generalizability of our approach.
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Abstract. Process mining is a family of techniques to discover business
process models and other knowledge of business processes from event
logs. Existing process mining techniques are geared towards discovering
models that capture the order of execution of tasks, but not the condi-
tions under which tasks are executed – also called branching conditions.
One existing process mining technique, namely ProM’s Decision Miner,
applies decision tree learning techniques to discover branching conditions
composed of atoms of the form “v op c” where “v” is a variable, “op”
is a comparison predicate and “c” is a constant. This paper puts for-
ward a more general technique to discover branching conditions where
the atoms are linear equations or inequalities involving multiple variables
and arithmetic operators. The proposed technique combine invariant dis-
covery techniques embodied in the Daikon system with decision tree
learning techniques.

1 Introduction

The use of business process models to analyze and automate business operations
is a widespread practice. Traditionally, business process models are obtained
from interviews and workshops with domain experts and workers. Studies have
shown however that models obtained in this way may deviate significantly from
the way processes are actually conducted on a daily basis [1]. Workers tend to
take shortcuts or workarounds in order to deal with special cases or to simplify
their work. At the same time, contemporary enterprise systems maintain detailed
records of transactions performed by workers, which can be exploited to discover
models that more faithfully reflect the way processes are actually performed.

This observation has spawned a research area known as process mining [1],
which is concerned with the automated discovery of process models and other
knowledge of business processes from event logs. Several algorithms for auto-
mated process discovery have been developed, which strike different tradeoffs
between accuracy and comprehensibility of the discovered models.

To illustrate the capabilities and limitations of these algorithms, we consider
a process for handling loan applications (cf. Figure 1). This process starts when
a loan application is made. First, the loan application details are entered into
a system – in particular the amount and length of the loan which are hereby
treated as variables of the process. Next, data about the applicant (e.g. age and
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≤

Fig. 1. Running example: loan application process model (in BPMN notation)

salary) are retrieved from the customer database. In parallel, the amount of
each installment is calculated and stored as a variable. The request is eligible
if the applicant’s salary is more than twice the amount of the installment and
they would finish paying installments by the age of 70. If the applicant is not
eligible, the application is rejected. If eligible, the applicant is notified and their
application is forwarded for approval. If the requested amount is less that 10000,
a simple approval suffices; otherwise, a more complex approval is required.

The bulk of automated process discovery algorithms are focused on extracting
control-flow relations between events or tasks in a process. In the working example,
these algorithms would discover the sequence relations in the model, the parallel
execution relations (the “+” gateways in Figure 1) and the conditional branching
points where a choice is made between alternative branches (the “X” gateways in
Figure 1). However, they do not discover the conditions attached to the outgoing
branches of these branching points – also called branching conditions.

An attempt to address this limitation is the Decision Miner [2] embodied in
the ProM toolset [1]. The Decision Miner applies decision tree learning to infer
conditions composed of atoms of the form “v op c” where “v” is a variable, “op”
is a comparison predicate and “c” is a constant. In the running example, the
Decision Miner can discover the condition amount ≥ 10000 (and its dual), but
not the conditions attached to the leftmost branching point in the model.

This paper tackles the problem of discovering branching conditions where the
atoms are equalities or inequalities involving arithmetic expressions on multiple
variables. The starting point is the invariant detection technique embodied in the
Daikon system [3]. A direct application of Daikon allows us to discover invariants
that hold before (or after) a task is executed. The discovered invariants are of
the form “v1 op c” or “v1 op v2” where v1 and v2 are variables and c is a constant.
By combining these invariants via conjunction, we can discover conditions that
hold at the start of each branch. However, this approach has three limitations:

L1. Many of the invariants detected by Daikon are not suitable for inclusion in
a branching condition. A branching condition should discriminate between
the cases when one branch is taken and those when it is not taken, while an
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invariant that holds in one branch may equally well hold in the alternative
branch. In the running example, Daikon may detect that invariants age ≤ 70
or salary ≤ amount hold just before task Notify Rejection, but these are
clearly not relevant for inclusion in the corresponding branching condition.

L2. Daikon does not discover conditions that include disjunctions.
L3. Daikon does not discover inequalities where the atoms involve more than

two variables combined via arithmetic operators.

To overcome these limitations, we combine Daikon with decision tree learning. In
particular, we use the notion of information gain from decision tree learning to
determine which invariants should be combined into branching conditions. Three
techniques of increasing degree of sophistication are proposed, which overcome
each of the above three limitations in turn. The techniques have been validated
on a set of test cases covering branching conditions with different structures.

The paper is structured as follows. Section 2 introduces ProM’s Decision Miner
and Daikon and discusses other related work. Section 3 presents the techniques
for branching condition discovery while Section 4 documents their validation.
Section 5 discusses some remaining limitations and directions for future work.

2 Background and Related Work

2.1 ProM Decision Miner

ProM’s Decision Miner allows one to discover branching conditions for a given
branching point in a process model. These conditions depend on the value of
the variables of the process when the point is reached. Accordingly, the input of
ProM’s Decision Miner consists of an event log where each event contains: (i) a
timestamp; (ii) an event type that allows to link the event to a task; and (iii) a
set of 〈 variable, value 〉 pairs, representing the new values of variables modified
by the event in question. The events in the log are grouped into traces, where
each trace is a temporally-ordered sequence of events representing one execution
of a process from start to end (also called a case). The mechanism used to group
events in a log into traces is not relevant for this paper (see e.g. [1]).

ProM’s Decision Miner assumes that a process model has been discovered
from the event log prior to discovering the branching conditions. This process
model can be obtained using one of the existing process discovery algorithms.

Given the event log, the discovered process model, and one of the branching
points P in the model, ProM’s Decision Miner first calculates, for each enable-
ment of P in a trace (i.e. each traversal of P when replaying the trace against
the model), the following: (i) the values of each variable in the process when P
is enabled; and (ii) the identifier of the branch that was taken after the branch-
ing point was traversed (the outcome). A variable assignment and its associated
outcome for a given enablement of P is called an observation instance. The set
of observation instances of P is used to mine a decision tree. This decision tree is
transformed into a disjunction of conjunctions of atomic expressions as follows:
Each path from the root to a leaf labelled with outcome ti becomes a conjunctive
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expression associated to branch ti. The branching condition of a branch ti is the
disjunction of the conjunctive expressions derived from the paths leading to ti.

ProM’s original Decision Miner [2] cannot handle process models with cycles
or with invisible (“skip”) tasks. These limitations however are addressed in [4].

Since the internal nodes of a decision tree are labeled with expressions of the
form variable-op-constant, the Decision Miner only discovers conditions consist-
ing of atoms of this form. In the running example, the Decision Miner cannot
discover the conditions associated with Notify Rejection and Notify Eligibility.

The Decision Miner assumes that the branches of a branching point are exclu-
sive, i.e. exactly one of the branches is selected. Process modeling languages also
support inclusive branching points where more than one branch can be taken
in parallel. However, an inclusive branching point can be transformed into an
exclusive branching point and one or more parallel gateways.

2.2 Invariant Discovery and Specification Mining

Daikon [5] is a dynamic analysis tool for inferring likely value-based invariants
from a collection of execution traces. It operates by instantiating a set of invariant
templates with the variables in the logs, and trying to match each instantiated
template against the variable assignments recorded in the traces. It outputs a
set of invariants with sufficient statistical support.

Daikon relies on code instrumentation tools that expose the value of variables at
points of interest in a program. For example, Java bytecode can be instrumented
so as to monitor actual parameters used in method calls. In this way, Daikon dis-
covers method pre- and postconditions, and derives object-level invariants.

Daikon comes with a large set of invariant templates, ranging from simple
relational expressions on variable/value or variable/variable pairs (e.g., x < y)
to sophisticated templates of linear relations over multiple variables (e.g., x−3∗
y = 115). Daikon usually discovers interesting invariants but it may also report
irrelevant invariants. In our running example, for instance, Daikon may discover
the invariant length < salary, assuming that both variables length and salary
have integer values. To cope with this problem, Daikon uses static analysis of the
target program source code to identify meaningful combinations of variables [6].
Such analysis may reveal, for instance, that variables salary and installment
are used together in arithmetic expressions while variables salary and length are
not. Daikon then avoids instantiating templates that combine variables salary
and length, thus improving the relevance of the discovered invariants. In our
setting, however, static analysis is not possible as no source code is available.

For the problem at hand, we can use Daikon to discover invariants for each
task that follows a branching point in the target process model. These invariants
could be put into conjunctive expressions, that would be then used as branching
conditions. This approach has been explored in [7, 8]. However, Daikon may
discover invariants that are not necessarily branching conditions. For example,
amount > 0 holds for all activities in the process model in Figure 1. This atom
may appear in all the branching conditions in the process model, even if it is not
directly involved in the decision in question.



118 M. de Leoni, M. Dumas, and L. Garćıa-Bañuelos

Several extensions of Daikon have been proposed. One of them [9] discovers
object-level invariants including disjunctions (limitation L2 in Section 1). How-
ever, this extension requires the source code to be analyzed and in our problem
setting no source code is available. Other related work includes alternative oracles
for discovering potential invariants, such as the one proposed by [10], which pro-
duces higher-order polynomial invariants as opposed to only linear invariants as
Daikon.

Daikon is an exemplar of a broader class of so-called specification mining
techniques [11–13]. Specification mining is concerned with discovering temporal
and data-dependent knowledge about a program or protocol. The discovered
knowledge is represented, for example, as state machines. A distinctive feature
of process mining compared to specification mining is that process mining is con-
cerned with discovering concurrent behavior in addition to sequential behavior.
Also, in process mining, no source code is assumed to be available.

3 From Invariants to Branching Conditions

This section proposes three techniques to address the limitations of Daikon high-
lighted in Section 1. Section 3.1 addresses L1. Section 3.2 extends the technique
of Section 3.1 to address L2. Finally, Section 3.3 extends further to overcome L3.
Section 3.4 discusses the case of N-ary branching points.

A binary branching point is denoted by a set {t1, t2} where t1 and t2 are the
first tasks of the two branches. For convenience, we associate each branching
condition with the first task of the respective branch, i.e. with t1 or t2.

Daikon is trained on a set of observation instances relative to a task. Here, an ob-
servation instance is a function i : V → U that assigns a value i(v) to each variable
v ∈ V . Given a set I of observation instances, we abstract Daikon as a function
DiscoverInvariantsWithDaikon(I) that returns a conjunctive expression of
atoms that are invariants with respect to instances in I. Sometimes, Daikon is not
able to discover invariants; in these cases, the special value ⊥ is returned. Obser-
vation instances relative to a task are extracted from an event log as follows:

Definition 1 (Event Log). Let T and V be a set of tasks and variables, re-
spectively. Let U be the set of values that can be assigned to every variable v ∈ V .
Let Φ be the set of all functions V �→ U that define an assignment of values to
a subset of variables in V . An event log L over T , V and U is a multiset of
traces where each trace is a sequence of events of the form (t, φ), where t ∈ T
is a task and φ ∈ Φ is an assignment of values to a subset of variables in V In
other words, L ∈ B((T × Φ)∗).1

The observation instance relative to an execution of a task t in a given case (i.e.
a process execution) consists of the values of the variables in the case prior to
the execution of t. Algorithm 1 shows how observation instances are constructed
from an event log. The output is a function I that associates each task t ∈ T with

1 B(X) the set of all multisets over X.
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Algorithm 1. generateObservationInstances

Data: L – An event log over T and V
Result: A function I that associated each task in T with a set of observation

instances

Let I be a function whose domain is T and ∀t ∈ T. I(t) = ∅.1

foreach trace 〈(t1, φ1), . . . , (tn, φn)〉 ∈ L do2

Let M be a function whose domain is V and ∀v ∈ V. M(v) = ⊥3

for i ← 1 to n do4

I(t1) ← I(t1) ∪M5

foreach variable v in the domain of φi do M(v) ← φi(v)6

end7

end8

return I9

Algorithm 2. discoverConjuntiveConditionsWithDaikon (CD+IG)

Data: L – An event log, P – A process model
Result: A map that associates some transitions with the corresponding

branching conditions

I ← generateObservationInstances(L)1

foreach {t1, t2} ∈ branchingPoints(P ) do2

C(t1) ← DiscoverInvariantsWithDaikon(I(t1))3

C(t2) ← DiscoverInvariantsWithDaikon(I(t2))4

C(t1) ← BuildConjuntiveExpr(I(t1), I(t2), C(t1))5

C(t2) ← BuildConjuntiveExpr(I(t1), I(t2), C(t2))6

adjustConditions(I(t1), I(t2), C(t1), C(t2))7

end8

return C9

a set of observation instances relative to t. The algorithm is based on the principle
of replay. Each trace is associated with a function M : V → U that keeps the
assignment of values to variables. After an event is replayed, function M is
rewritten according to the event’s value assignments. Initially, for each v ∈ V ,
M(v) = ⊥, where ⊥ is a special value that identifies an undefined assignment.
Before replaying an event e for a certain task t, a new observation instance is
created and added to the set of instances for task t (line 5). Afterwards, e is
replayed and function M is rewritten accordingly (line 6).

For convenience, we will say that the observation instances of a branch are
the observation instances relative to the first task of that branch.

3.1 Discovery of Conjunctive Conditions

In order to construct the branching conditions from the invariants discovered
by Daikon, we leverage on the concept of information gain. In data mining, the
concept of information gain captures how well a given predicate distinguishes
between two or more possible outcomes (tasks in our case). In our context, the
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Algorithm 3. BuildConjuntiveExpr

Data: I1, I2 – Two sets of observation instances, P – A conjunctive expression
Result: A conjunction of a subset of the atoms in P that maximizes the

information gain

if P =⊥ then return ⊥1

S ← {p1, p2, . . . , pn} s.t. P = p1 ∧ p2 ∧ . . . ∧ pn2

Pick q ∈ S s.t. ∀q′ ∈ S. IG(I1, I2, q
′) ≤ IG(I1, I2, q)3

P ← q4

S ← S \ {q}5

while S 
= ∅ do6

Pick q ∈ S s.t. ∀q′ ∈ S. IG(I1, I2, P ∧ q′) ≤ IG(I1, I2, P ∧ q)7

if IG(I1, I2, P ∧ q) > IG(I1, I2, P ) then P ← P ∧ q S ← S \ {q}8

end9

return P10

information gain of a predicate P relative to a binary decision point leading
to tasks T1 and T2, is a measure of how well predicate P distinguishes the
observations instances where task T1 is executed from those where task T2 is
executed. A predicate that holds iff T1 is executed or a predicate that holds iff
T2 is executed has maximum information gain. A predicate that does not give
any gain (beyond random choice) when it comes to determining whether task
T1 or T2 is executed has zero information gain. Given a two sets of observation
instances leading to two tasks, the maximum possible value of the information
gain is called the entropy, as formally defined below.

Definition 2 (Entropy). Let I ′ and I ′′ be two sets of observation instances
that lead to the execution of to task t′ and task t′′, respectively. Moreover, let
p(t) denote the probability of executing the task t. Then, the entropy of I ′ and
I ′′ is defined as H(I ′, I ′′) = −p(t′) · log2(p(t′)) − p(t′′) · log2(p(t′′)). Since p(t′)
can be expressed as |I ′|/(|I ′|+ |I ′′|), we reformulate entropy as:

H(I ′, I ′′) = −
(

|I ′|
|I ′|+ |I ′′| · log2

|I ′|
|I ′|+ |I ′′|

)
−
(

|I ′′|
|I ′|+ |I ′′| · log2

|I ′′|
|I ′|+ |I ′′|

)
Entropy is 1 if sets I ′ and I ′′ are of the same size. It becomes close to 0 if

the sets are of very different sizes. It is 0 if either I ′ or I ′′ is empty (taking
0 log2 0 = 0). The intuition is that if we partition a set into a large subset
and a small one, this partition has little information, as the smaller set can be
encoded with few bits. Meanwhile, if we partition a set into equal-sized subsets,
more information is required to distinguish between the two subsets. Given two
disjoint sets of observation instances, our goal is to identify a predicate that
comes as close as possible to perfectly classifying instances between these two
sets and thus fully capturing the information in this partition of observation
instances. In other words, we seek a predicate that reduces as much as possible
the partition’s entropy.



Discovering Branching Conditions from Business Process Execution Logs 121

The information gain of a predicate P with respect to a set of instances is
a measure that quantifies how much entropy is reduced by partitioning the set
according to predicate P . A predicate that perfectly determines whether or not
a given instance belongs to the set has an information gain equal to the entropy.

Definition 3 (Information Gain). Let I ′ and I ′′ be a set of observation in-
stances for two tasks. The information gain of a predicate P with respect to I ′

and I ′′ is defined as follows:2

IG(I ′, I ′′, P ) = H(I ′, I ′′)− (|I′
P |+|I′′

P |)·H(I′
P ,I′′

P )
|I′|+|I′′| − (|I′

¬P |+|I′′
¬P |)·H(I′

¬P ,I′′
¬P )

|I′|+|I′′|

Algorithm 2 describes the technique to discover conjunctive branching condi-
tions. Initially, we generate the observation instances through Algorithm 1. Af-
terwards, the algorithm iterates on each branching point {t1, t2}. Conditions
C(t1) and C(t2) are computed by Daikon using the observation instances rela-
tive to tasks {t1, t2}. Then, function BuildConjuntiveExpr is called to build
a conjunctive condition by combining the invariants discovered by Daikon in
a conjunction that maximizes the IG relative to the outcomes of the branch-
ing point. The conditions are then adjusted to ensure that C(t1) = ¬C(t2).

X1 X2 X3

3 4 true
7 12 true
9 34 true
12 44 true

(a) t1

X1 X2 X3

10 4 true
14 4 true
17 4 true
20 4 true

(b) t2

Fig. 2. Examples of observation in-
stances relative to two tasks t1 and
t2 of a binary branching point.

Algorithm 3 shows how function Build-

ConjuntiveExpr is implemented. In order
to simplify the manipulation of conditions,
we assume that the invariants discovered by
Daikon are given as a conjunctive expression,
i.e.

P = p1 ∧ p2 ∧ . . . ∧ pn. Let S =
{p1, p2, . . . , pn} be the set of atoms of P . If P
is undefined (no invariant was discovered by
Daikon) the algorithm returns ⊥. Otherwise,
the algorithm starts by picking the atom q with highest IG (line 6). This atom
becomes the first conjunct in the result P (line 4). The algorithm continues by
greedily adding a new atom q to the conjunctive expression P (line 9), provided
that the conjunction P ∧ q increases the IG. The loop stops when all the atoms
in P have been considered. The resulting expression P is then returned (line 13).

Once the conditions are built for the two branches, they are adjusted so as
to ensure that C(t1) = ¬C(t2) (function adjustConditions). The adjustment
is performed as follows. If Daikon was unable to discover C(t1) (or C(t2)), we
set C(t1) = ¬C(t2) (or vice versa). Otherwise, if the IG of C(t1) is higher (resp.
lower) than that of C(t2), we set C(t2) = ¬C(t1) (resp. C(t1) = ¬C(t2)).

As an example, let us suppose to have an event log and a process model with
a branching point {t1, t2}. Using the event log as input, we apply Algorithm 1
to build the observation instances I ′, I ′′ relative to t1 and t2. Then, we em-
ploy Daikon with input I ′ and input I ′′, thus discovering invariant C(t1) and

2 Given a set I of observation instances and a predicate P , IP and I¬P denote the sub
set of instances of I for which predicate P evaluates to true and to false, respectively.
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Algorithm 4. discoverDisjunctiveExpressionWithDaikon (DD+IG)

Data: A – A set of alignments, P – Process Model
Result: A map that associates some transitions with the corresponding

branching conditions

I ← GenerateInstanceTuple(A)1

foreach {t1, t2} ∈ BranchingPoints(P ) do2

C(t1) ← false3

C(t2) ← false4

DT ← BuildDecisionTree(I(t1), I(t2))5

foreach (t, I) ∈ EnumeratePartitions(DT ) do6

J ← DiscoverInvariantsWithDaikon(I)7

J ← BuildConjuntiveExpr(I(t1), I(t2), J)8

C(t) ← C(t) ∨ J9

end10

C(t1) ← BuildDisjuntiveExpr(I(t1), I(t2), C(t1))11

C(t2) ← BuildDisjuntiveExpr(I(t1), I(t2), C(t2))12

adjustConditions(I(t1), I(t2), C(t1), C(t2))13

end14

return C15

C(t2) for t1 and t2, respectively. Daikon may discover the following invariants:
C(t1) is (x1 < x2 ∧ x3 = true) and C(t2) is (x1 > 0 ∧ x2 = 4 ∧ x3 = true).
Some atoms may be irrelevant as they do not discriminate the branch. E.g.,
to discover if any atom in C(t1) is irrelevant, we compute the IG of every
atom: IG(I ′, I ′′, (x1 < x2)) = 1 and IG(I ′, I ′′, (x3 = true)) = 0. We retain
the atom with the highest IG, i.e. x1 < x2. Afterward, we pick (x3 = true);
since IG(I ′, I ′′, (x1 < x2 ∧ x3 = true)) = IG(I ′, I ′′, (x1 < x2)), we discard atom
(x3 = true), so that C(t1) becomes the single atom (x1 < x2). Similarly, atom
(x3 = true) is discarded from C(t2): C(t2) is simplified as (x1 > 0 ∧ x2 = 4). To
finally obtain the branching conditions to associate with t1 and t2, we compute
the IG of the simplified conditions C(t1) and C(t2): IG(I ′, I ′′, C(t1)) = 1 and
IG(I ′, I ′′, C(t2)) = 0.90. Since the IG of C(t1) is higher, we set C(t2) = ¬C(t1),
i.e. C(t2) becomes (x1 ≥ x2).

3.2 Discovery of Disjunctive Conditions

Algorithm 4 (DD+IG) describes the technique for discovering disjunctive branch-
ing conditions. For each branching point {t1, t2}, we build a decision tree using
the observation instances relative to tasks t1 and t2. In a decision tree, each
path from the root to a leaf corresponds to an expression that is a conjunction
of atoms of the form v op c. Such expressions are then used to partition the
observation instances. In line 6, the invocation EnumeratePartitions(DT) re-
turns a set of pairs, one for each leaf node of the decision tree. In particular, if a
pair (t, I) is in the set, there exists a tree path to a leaf node associated with a
classification attribute value t and I is the set of instances associated with that
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leaf. Note that there might be several leaves for each task t (t stands for t1 or
t2). For each pair (t, I), Daikon is used to discover the set of invariants J for
partition I. From J we build a conjunctive expression that maximizes the IG.
The resulting conjunction is stored in C(t). Once all partitions induced by the
decision tree are analyzed, we proceed to combine the conjunctions into a dis-
junction. This is done by function BuildDisjuntiveExpr. The latter is similar
to function BuildConjuntiveExpr except that atoms (in this case conjunc-
tions) are combined in disjunctions, looking at maximizing the IG. Finally, we
adjust C(t1) and C(t2) to ensure C(t1) = ¬C(t2).

3.3 Extensions for Arithmetic Operators

Daikon includes invariant templates to discover linear equalities with 2 or 3 vari-
ables and an optional constant. However, there are no equivalent templates for
inequalities. In process models, inequalities are common and leaving these aside is
a major restriction. For instance, the running example involves inequalities with
2 variables and a constant (length+ age ≤ 70 and salary/installment≥ 2).

To cope with this limitation, we propose to enrich the original log with so-
called latent variables. A latent variable is defined as a variable derived by com-
bining multiple variables in the original log by means of one arithmetic opera-
tor (+, −, * or /). In the running example, an example of a latent variable is
“salary div by installment” = salary/installment.

We extend CD+IG and DD+IG with latent variables as follows. We identify
the set of numerical variables and generate all combinations of N variables with
one arithmetic operator (for each of the four arithmetic operators). Then, we
augment the log by adding the latent variables and give it as input to Daikon.
Daikon treats each latent variable as a regular variable. Thus, it discovers in-
variants involving one latent variable and one constant or one latent variable on
one or both sides of an equality or inequality (e.g., a+ b ≤ c ∗ d). The invariants
thereby discovered are post-processed with either CD+IG and DD+IG. The ex-
tended techniques with latent variables are called CD+IG+LV and DD+IG+LV.

Importantly, invariants involving latent variables compete with invariants in-
volving observed variables when CD+IG or DD+IG construct a branching con-
dition out of the invariants returned by Daikon. Consider for example a situation
where there are two numeric variables in the log (x1 and x2) and we seek to dis-
cover a branching condition x1 ≤ 8000 ∧ x2 ≤ 8000. Daikon naturally discovers
invariant x1 + x2 ≤ 16000 in addition to x1 ≤ 8000 and x2 ≤ 8000. Invariant
x1 + x2 ≤ 16000 may have a higher IG than each of the two other atoms taken
separately. Thus, x1 + x2 ≤ 16000 is integrated in the discovered condition and
the other two invariants may then be left out if they do not increase the RIG.
We observed this behavior when conducting preliminary tests. Accordingly, we
adopt a two-step approach. In the case of CD+IG+LV, first, CD+IG (without
latent variables) is run. If the result is not satisfactory (i.e., RIG below a thresh-
old), CD+IG+LV is run again with all latent variables involving N terms (N is
a tunable parameter). The same applies for DD+IG+LV.
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(a)

’

’

’

’

(b)

Fig. 3. N-ary to binary transformation

The complexity of CD+IG+LV and DD+IG+LV is combinatorial on N , since
one latent variable is generated for each subset of size N of the variables in
the log, and for each arithmetic operator. Thus these techniques are practical
only for small values of N . Another limitation of CD+IG+LV and DD+IG+LV
is that they only discover equalities or inequalities where each side involves a
single type of arithmetic operator (only + or − or * or /). Introducing latent
variables combining multiple types of arithmetic operators would lead to a higher
combinatorial explosion when N > 2.

3.4 Extension to N-ary Branching Points

Hitherto, we have assumed that every branching point is binary. The technique
can be extended to N-ary branching points as follows. Given an N-ary branching
point, we rewrite this point into a number of of binary branching points by
leaving one branch intact, collapsing the remainingN−1 branches into a separate
branching point and so on recursively. For instance, the quaternary branching
point in Figure 3(a) is rewritten into binary branching points in Figure 3(b). The
transformed model has 2 new (black-filled) tasks (I1 and I2). These dummy (τ)
tasks are introduced purely for the purpose of the branching condition discovery.

Any of the above techniques (CD+IG, DD+IG or their extensions with latent
variables) can be applied to each binary branching point using the extended
log. In the example, this allows us to discover the 6 conditions C(t) – t ∈
{T ′

1, T
′
2, T

′
3, T

′
4, I1, I2}. Having discovered the conditions for each binary branch-

ing point, the branching condition C(Ti) of the i
th branch of the N-ary branching

point is then defined as the conjunction of C(T ′
i ) and each of the C(Ij) where

task Ij is on the path from the first binary branching point to T ′
i in the rewritten

model. In the example, this means that: C(T1) = C(T ′
1), C(T2) = C′(I1)∧C(T ′

2),
C(T3) = C′(I1) ∧C′(I2) ∧C(T ′

3) and C(T4) = C′(I1) ∧ C′(I2) ∧ C(T ′
4).

An N-ary branching point can be rewritten into binary ones in multiple ways
depending on the order in which the N branches are refactored. Each rewriting
leads to different branching conditions. Since we seek to maximize information
gain, we perform the rewriting as follows. First we run CD+IG (or an extension)
on each of the N original branches. We then select the branch for which the
discovered condition has the highest Relative Information Gain (RIG). The RIG
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of a branching condition is the IG of the condition divided by the entropy of the
observation instances of the branch in question and the union of the observation
instances of all other branches. RIG is equal to 1 when the IG is equal to the
entropy. This normalization of information gain relative to the entropy allows us
to compare the gain of conditions in different branches (which may have different
entropies). Having selected the branch with the highest RIG, we refactor this
branch and apply the procedure recursively on the remaining branches.

4 Evaluation

The proposed techniques have been prototyped in Java using Daikon3 for in-
variant detection and Weka4 for decision tree learning. The prototype and the
testbed presented below are available at http://sep.cs.ut.ee/Main/Branch

Miner.

4.1 Testbed

We designed a battery of test cases covering different types of conditions. Daikon
supports three primitive data types (integer, float and string) and sequences
these primitive types. The testbed includes branching conditions with integers
and strings. Strings are used to encode categorical (unordered) domains (i.e. enu-
merated types). Floats are not included in the testbed because Daikon handles
integers and floats in the same way, and thus testing for both is redundant. We
also left out sequences, because we consider they deserve a separate study.

The testbed includes conditions composed of atoms including variables with
either categorical domain or numerical domain as follows. We defined 3 variables
(c1, c2 and c2p) with categorical domains. Each domain includes 3 values: C11,
C12. C13 for c1 and C21, C22. C23 for c2 and c2p. Since categorical domains
are treated as unordered, we created atoms of the form variable-equals-constant
and variable-equals-variable over the 3 variables. Thus two types of atoms were
defined for categorical domains. We defined 4 variables (x1 to x4) over a nu-
merical domain ([1000, 15000])5. With these variables, we created atoms of the
form variable-operator-variable and variable-operator-constant, where the opera-
tor can be =, ≤ and ≥. We did not produce atoms for operators< and > because
these operators appear anyway in the negations of ≤ and ≥ and each test case
includes a condition and its negation. Thus 3 types of atoms are defined over
numerical variables. Test cases for ≥ and = are omitted for the sake of brevity.

Given these atom types, we designed test cases covering 4 types of expressions:
(i) single-atom; (ii) conjunctions of two atoms; (iii) disjunctions of two atoms;
and (iv) disjunction of a conjunction and an atom. These test case design princi-
ples led us to 6 test cases for categorical domains and 15 for numerical domains

3 http://groups.csail.mit.edu/pag/daikon/dist/
4 http://www.cs.waikato.ac.nz/ml/weka/
5 Daikon was configured to discover invariants of upper and lower bound for numerical
variables in the range of their corresponding domain, the default being [−1 . . . 2].

http://sep.cs.ut.ee/Main/BranchMiner
http://sep.cs.ut.ee/Main/BranchMiner
http://groups.csail.mit.edu/pag/daikon/dist/
http://www.cs.waikato.ac.nz/ml/weka/
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of which only 5 are shown below for brevity. To test branching conditions with
arithmetic operators, we introduced 2 additional variables (x5 and x6) and 3 ad-
ditional cases (one single-atom, one disjunctive and one conjunctive) containing
atoms with ≤, > and ≥. The test cases are presented in Tables 1 and 2.

For each test case, we generated an event log of 200 execution traces via
simulation using CPNTools6. The simulation model is a Coloured Petri net with
three transitions. The first transition randomly assigns a value to each of the
9 variables (c1, c2, c2p, x1-x6) according to a uniform distribution. The other
two transitions correspond to the branches of a branching point. One of these
two transitions is labelled with the branching condition corresponding to the test
case and the other with its negation. In the case of conditions xi = c and xi = xj

where xi and xj are numeric variables, we adjusted the random assignment so
that these conditions hold in 50% of the cases. If we simply used a uniform
distribution for these variables the probability of xi = c would be too low to
generate enough traces that take the corresponding branch.

4.2 Results

Branching Conditions without Arithmetic Operators. Table 1 presents
the original and the discovered conditions for the test cases without arithmetic
operators. The table also shows the RIG (cf. Section 3.4) for each discovered
condition. We observe that DD+IG discovered each of the original conditions
in this category and the corresponding RIG is exactly one, indicating that the
discovered conditions have perfect discriminative power. Meanwhile, CD+IG
failed in case 11 with very low RIG, discovered alternative (equivalent) conditions
in cases 3 and 6, and a similar (non-equivalent) condition in case 9. In these
three latter cases, the original condition included a disjunction of atoms, which
is equivalent to a conjunction of negations of the original atoms. This conjunction
is discovered by the conjunctive approach with the caveat that the negated atoms
involve the duals of the comparison operators of the original conditions. Thus,
c2 = c2p is discovered as ¬(c2 �= c2p) in case 6, while c1 = C12 is discovered as
¬(c1 ∈ {C11,C13}). For case 9, atom x1 ≤ 8000 was discovered as ¬(x1 ≥ 9000)
because Daikon does not discover invariants of the form “x < C” but instead
it finds invariants with ≤. CD+IG failed in case 11 because both the original
expression and its dual contain a disjunction.

Branching Conditions with Arithmetic Operators. Table 2 show the re-
sults of test cases for branching conditions with arithmetic operators. In all
three cases, CD+IG+LV and DD+IG+LV succeeded to discover either the orig-
inal condition, an alternative (equivalent) one or a similar (non-equivalent) one.
In spite of having a RIG of 1.0, the solution to case 14 given by DD+IG+LV
is unnecessarily elaborated, in addition to being non-equivalent to the origi-
nal condition. It is clear that the presence of two disjoints comes from the

6 http://cpntools.org

http://cpntools.org
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partitioning induced by the decision tree used in Algorithm 4. Not shown in the
table is that CD+IG and DD+IG (without latent variables) failed in all these
cases, as expected. They returned conditions with very low RIG.

Table 1. Test suite with no arithmetic operator

Case Original CD+IG RIG DD+IG RIG

1 c1=C12 c1=C12 1.0 c1=C12 1.0

2 c1=C12∧ c2=C22 c1=C12 ∧ c2=C22 1.0 c1=C12∧ c2=C22 1.0

3 c1=C12∨ c2=C22
¬(c2∈{C23,C21} ∧
c1∈{C11,C13}) 1.0 c2=C22∨ c1=C12 1.0

4 c2=c2p c2=c2p 1.0 c2=c2p 1.0

5 c2=c2p∧ c1=C12 c2=c2p ∧ c1=C12 1.0 c1=C12∧ c2=c2p 1.0

6 c2=c2p∨ c1=C12 ¬(c2�=c2p∧ c1∈{C11,C13}) 1.0 c2=c2p∨ c1=C12 1.0

7 x1≤8000 x1≤8000 1.0 x1≤8000 1.0

8 x1≤8000 ∧ x2≤8000 x2≤8000 ∧ x1≤8000 1.0 x2≤8000 ∧ x1≤8000 1.0

9 x1≤8000 ∨ x2≤8000 ¬(x2≥9000 ∧ x1≥9000) 1.0 x2≤8000 ∨ x1≤8000 1.0

10 x1≤x2 x1≤x2 1.0 x1≤x2 1.0

11
x1≤8000 ∨
c2=C22∧ x3≤x4

¬(x1 ≥ 9000) 0.39
x1≤8000 ∨
c2=C22∧ x3≤x4

1.0

Table 2. Test suite with arithmetic operators

Case Original CD+IG+LV RIG DD+IG+LV RIG

12 x1≤x2 ∧ x3+x4>15000 x1≤x2 ∧ x3+x4≥16000 1.0 x1≤x2 ∧ x3+x4≥16000 1.0

13 x1≤x2 ∨ x3+x4>15000 ¬(x1>x2 ∧ x3+x4≤15000) 1.0 ¬(x1>x2 ∧ x3+x4≤15000) 1.0

14 x5∗x6≥49 x5∗x6≥49 1.0
x5∗x6≥50 ∨
x5∗x6 ∈ [49 . . . 56]

1.0

Execution Times. The experiments were conducted on a laptop, using a Java
VM 1.7 on a 64 bit operating system. To gather the execution times, we ran every
test case five times and took the average time of these runs. For the Conjunctive
approach, the times had an average of 2 s, with 0.1 s of standard deviation, and
a maximum of 2.18 s. For the Disjunctive approach, the average execution times
was 11.2 s, with 0.8 s of standard deviation, and a maximum of 35.8 s.

Discussion. The results show that the proposed techniques have increased lev-
els of precision (pecentage of correctly discovered conditions) but also decreas-
ing performance. The results also show that the RIG of a discovered condition
is a useful indicator of whether or not this condition has sufficient discrimina-
tive power. Thus, the techniques can be applied in a “trial-and-error” manner.
Given a branching point, we can first apply CD+IG. If the RIG is less than a
given threshold, we can apply DD+IG. If the resulting RIG is still low, we can
introduce latent variables with the aim of maximizing the RIG of the discovered
condition.
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5 Conclusion

We have shown that a combination of invariant detection and decision tree learn-
ing techniques allow us to discover a wide spectrum of branching conditions from
business process execution logs, thereby allowing us to enhance the output of
existing automated process discovery techniques. Specifically, we proposed three
branching condition discovery techniques of increased level of complexity. The
proposed techniques have been validated on synthetically-generated logs cover-
ing branching conditions with varying structures. The test results show that the
techniques discover non-trivial branching conditions in a few seconds (for the
simpler technique) and in less than a minute for the more complex technique.
In the future, we plan to apply the proposed techniques in practice on real-life
event logs for example in the field of insurance where complex decisions are often
involved when classifying claims, and similarly in the field of healthcare.

The approach to discover inequalities with more than two variables suffers
from two key limitations. First, it is only possible to discover inequalities where
each side has at most N variables (with N fixed) and where only one type of
arithmetic operator appears in each side of the inequality. Second, the complexity
of the approach increases combinatorially with N . Recent work [10] has put
forward a technique to discover invariants consisting of equalities and inequalities
among nonlinear polynomials. Adapting this technique for branching condition
discovery is a direction for future work.
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7. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. of ICSE 2008, pp. 501–510. IEEE (2008)

8. Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better to-
gether. Autom. Softw. Eng. 19, 423–458 (2012)



Discovering Branching Conditions from Business Process Execution Logs 129

9. Kuzmina, N., Paul, J., Gamboa, R., Caldwell, J.: Extending dynamic constraint
detection with disjunctive constraints. In: Proc. of WODA 2008, pp. 57–63. ACM
(2008)

10. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: Proc. of ICSE 2012, pp. 683–693. IEEE (2012)

11. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proc. of POLP
2002, pp. 4–16. ACM (2002)

12. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: Proc. of ISSTA 2007, pp. 174–184. ACM (2007)

13. Lo, D., Khoo, S.C., Han, J., Liu, C. (eds.): Mining Software Specifications: Method-
ologies and applications. CRC Press (2011)



Exposing Behavioral Differences in Cross-Language
API Mapping Relations

Hao Zhong1, Suresh Thummalapenta2, and Tao Xie3

1 Laboratory for Internet Software Technologies, Institute of Software, CAS, Beijing, China
2 IBM Research, Bangalore, India

3 Department of Computer Science, North Carolina State University, Raleigh, USA
zhonghao@itechs.iscas.ac.cn, surthumm@in.ibm.com,

xie@csc.ncsu.edu

Abstract. Due to various considerations, software vendors often translate their
applications from one programming language to another, either manually or with
the support of translation tools. Both these scenarios require translation of many
call sites of API elements (i.e., classes, methods, and fields of API libraries). API
mapping relations, either acquired by experienced programmers or already incor-
porated in translation tools, are much valuable in the translation process, since
they describe mapping relations between source API elements and their equiv-
alent target API elements. However, in an API mapping relation, a source API
element and its target API elements may have behavioral differences, and such
differences could lead to defects in the translated code. So far, to the best of our
knowledge, there exists no previous study for exposing or understanding such
differences. In this paper, we make the first attempt to expose and analyze be-
havioral differences in cross-language API mapping relations. From our result,
we summarize eight findings and their implications that can improve effective-
ness of translation tools, and also assist programmers in understanding the differ-
ences between mapped API elements of different languages during the translation
process. Some exposed behavioral differences can indicate defects in translation
tools, and four such new defects were confirmed by the developers of those tools.

1 Introduction
Since the inception of computer science, many programming languages (e.g., COBOL,
C#, and Java) have been introduced. To survive in competing markets and to address
various business requirements, software companies or open source organizations of-
ten release variants of their applications in different languages. In total, as stated by
Jones [12], nearly one third of the existing applications have versions in more than
one language. There are three major factors for such phenomenon of having appli-
cation variants in multiple languages. First, Application Programming Interface (API)
libraries or engines are often released in more than one language to attract programmers
in diverse backgrounds. Second, stand-alone applications are released in more than one
language to acquire specific features of different programming languages. Finally, the
market of mobile platforms is highly competitive, and different mobile platforms typi-
cally support different programming languages (e.g., Andriod supports Java, iOS sup-
ports Objective C, and Windows Mobile supports C#). To survive in the competitive
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market, mobile application vendors tend to release variants of applications in different
languages for multiple platforms.

State of the Art. To reduce development effort, a natural way to implement an ap-
plication in a different language is to translate from an existing application. During
the translation, programmers need to resolve many differences across two languages.
Comparing with limited keywords and code structures, two languages typically have
many API elements. As reported by El-Ramly et al. [7], it is critical to translate API
elements correctly during the translation process. To translate API elements, program-
mers need to replace call sites of source API elements in one programming language
systematically with their target API elements in another programming language, based
on their known mapping relations. In practice, many programmers rely on their own
understandings to translate API elements, but some experienced programmers also in-
corporate their understandings in translation tools. For example, programmers of db4o1

developed a translation tool, call Sharpen, for translating db4o from Java to C#. To re-
duce the effort of translating API elements, they incorporated hundreds of API mapping
relations inside Sharpen. Furthermore, to translate more API elements, researchers [27]
proposed various approaches that mine API mapping relations automatically.

Given an entity E1 (such as API classes, methods, and fields) in a language L1, and
another entity E2 in another other language L2, a mapping relation m is a triple 〈E1,
E2, f〉 and describes that E1 and E2 have the same functionality f . API mapping rela-
tions are valuable to translate call sites of API elements, but they can introduce defects
in the translated code silently. In an API mapping relation, E1 and E2 may have behav-
ioral differences, and such differences can lead to defects. For a mapping relation m,
a behavioral difference occurs, when translating between E1 and E2 leads to different
output values or exceptions given the same input values and method sequences. For
example, when translating Lucene.NET2 from its Java version, a programmer, named
Chrisopher Currens, expressed his concerns in an email:3

“It could, also, hide bugs, since it’s possible, however unlikely, something could port
perfectly, but not behave the same way. A class that has many calls to string.Substring
is a good example of this. If the name of the function is changed to the .Net version
(.substring to .Substring), it would compile no problems, but they are very different.”

The following code of Lucene.NET explains the behavioral difference.

Java code
01: protected String add_escapes(String str) {...
02: String s = "0000" + Integer.toString(ch, 16);
03: ret = s.substring(s.length() - 4, s.length());
Translated C# code
04: protected internal String Add_escapes(String str){...
05: String s = "0000" + System.Convert.ToString(ch, 16);
06: ret = s.Substring(s.Length - 4, 4);

In this example, the second parameter of the substring(int,int)method in Line 03
denotes the end index of a return substring, whereas the second parameter of the Sub-
string(int,int) method in Line 06 denotes the number of characters in a

1 http://www.db4o.com
2 https://cwiki.apache.org/LUCENENET/
3 http://tinyurl.com/88xnf26
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return substring. To resolve this difference, programmers of Lucene.NET changed the
arguments accordingly during the translation. Due to a large number of API mapping
relations, where some relations are quite complex [19], it is difficult for programmers
to know all such behavioral differences of API mapping relations in advance. If pro-
grammers translate applications without realizing such behavioral differences, they can
introduce defects in the translated code. If developers of translation tools are not aware
of such behavioral differences, they may introduce defects in translation tools, and these
defects could lead to further defects in the code translated by these tools.

Existing approaches [2, 3, 19, 21] cannot expose behavioral differences in cross-
language API mapping relations effectively. For example, our previous work [19] com-
pared API documents for behavioral differences when the APIs evolve, and cannot
analyze behavioral differences for cross-language API mapping relations since their
documents are fundamentally different. Srivastava et al. [21] compared API implemen-
tations for their behavioral differences, and their approach cannot analyze many API
libraries whose code is not available. Bartolomei et al. [2, 3] list challenges to fix be-
havioral differences between Swing and SWT in the same programming language, but
do not handle source code in different languages. To the best of our knowledge, many
questions are still open. For example, are such behavioral differences pervasive? What
types of behavioral differences are there? Which types of behavioral differences are
more common than others? Are behavioral differences easy to be resolved?

Challenges. To answer the preceding questions, we need many API mapping relations
for analysis, but it could take much effort for programmers to write them down man-
ually. Instead, we choose to extract mapping relations that are already incorporated in
translation tools. To achieve this goal, we have to overcome the following challenges.

Challenge 1. It is challenging to extract API mapping relations from translation tools,
since developers of translation tools either use different formats for specifying API
mapping relations, or hardcode API mapping relations in their tools’ source code.

To address this challenge, instead of extracting API mapping relations directly from
translation tools, we analyze translated results for extracting API mapping relations.

Challenge 2. Collected applications under translation may not cover some interesting
API elements. In addition, it is difficult to align source API elements and their target
API elements for complex mapping relations in collected applications.

To address the challenge, we synthesize the code under translation as test cases
generated for all API elements of an API library. To generate test cases, we leverage
two state-of-the-art techniques: random testing [17] and dynamic-symbolic-execution-
based testing [9, 14, 24]. We generate test cases with simple code structures and mini-
mum API elements, so that if a translated test case fails, it is easy to locate the behavioral
difference of the API mapping relation in the failed test case.

Challenge 3. Translated code typically has compilation errors (e.g., due to the API
elements that do not fall into the scope of translatable API elements for the translation
tool), so it is not feasible to expose behavioral differences via testing directly.

To address the challenge, we extract translatable API elements for a translation tool,
and try to generate test cases that use only translatable API elements. For those gener-
ated test cases with compilation errors, we filter them out automatically.

Our Contribution. This paper makes the following major contributions:
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– A tool chain, called TeMAPI, that detects behavioral differences among API map-
ping relations. With its support, we conduct the first empirical study on behavioral
differences of mapped API elements between the J2SE and the .NET frameworks.

– Empirical results showing that behavioral differences are pervasive. We summarize
exposed behavioral differences into eight findings, and discuss their implications
that are valuable to vendors of translation tools for improving their tools, program-
mers who use these translation tools, and developers of API libraries for imple-
menting more translatable APIs.

– Empirical results showing that some behavioral differences indicate defects in
translation tools, and four defects were confirmed by the developers of translation
tools.

Although we focus on cross-language API mapping relations in this paper, our process
is general and can be applied to other software engineering problems where an API
needs to be replaced with another API without changing the behavior of an applica-
tion (e.g., upgrading client code with the latest library [10], migrating to alternative
APIs [16], or migrating to efficient APIs [13]).

2 Study Setup

Our process has three steps, and is not symmetry across the two languages under transla-
tion, since capabilities of translation tools are not symmetry and existing test-generation
tools typically work for a single language rather than both languages under translation.

Step 1: Synthesizing and Analyzing Wrappers. For a translation tool that translates
one language (L1) to the other language (L2), TeMAPI generates wrappers for API
elements in L1. In the synthesized code below, “|f.name|” denotes the name of a field
f; “|m.name|” denotes the name of a method m; and “|no|” denotes the id of the
synthesized wrapper method.

Static fields. TeMAPI synthesizes a getter for a public static field T f of a class C:

public T testGet|f.name||no|sfg(){ return C.f; }

If f is not a constant, TeMAPI synthesizes a setter wrapper as well for that field:

public void testSet|f.name||no|sfs(T p){ C.f = p; }

Static methods. Given a public static method Tr m(T1 p1,..., Tn pn) of a class C,
TeMAPI synthesizes a wrapper method as follows:

public Tr test|m.name||no|sm(T1 p1,..., Tn pn){return C.m(p1,..., pn);}

When synthesizing wrapper methods for non-static fields or methods, TeMAPI takes
constructors into considerations.
Non-static fields. Given a public non-static field T f of a class C, TeMAPI synthesizes
a getter using each constructor C(C1 c1,..., Cn cn) of C as follows:

public T testGet|f.name||no|nfg(C1 c1,..., Cn cn){
C obj = new C(c1,..., cn);
return obj.f; }
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If f is not a constant, TeMAPI synthesizes a setter wrapper as well for that field.

public void testSet|f.name||no|nfs(T p, C1 c1,...,Cn cn){
C obj = new C(c1,..., cn);
obj.f = p; }

Non-static methods. Given a public non-static method Tr m(T1 p1,...,Tn pn) of
a class C, TeMAPI synthesizes a wrapper method using each constructor C(C1 c1,

..., Cn cn) of C as follows:

public Tr test|m.name||no|nm(T1 p1,...,Tn pn,C1 c1,...,Cn cn){
C obj = new C(c1,..., cn);
return obj.m(p1,..., pn); }

For example, for JLCA, TeMAPI synthesizes a wrapper method in Java for the Byte-
ArrayInputStream.skip(long)method in Java as follows:

public long testskip24nm(byte c1[], long p1){
ByteArrayInputStream obj = new ByteArrayInputStream(c1);
return obj.skip(p1);}

TeMAPI groups all synthesized wrapper methods for one API class C to one synthe-
sized class. After TeMAPI synthesizes wrapper methods, we use the translation tool
under analysis to translate wrapper methods to the other language. For example, JLCA
translates the preceding testskip24nm method into C# as follows:

public virtual long testskip24nm(sbyte[] c1, long p1){
MemoryStream obj = new MemoryStream(SupportClass.ToByteArray(c1));
MemoryStream temp_BufferedStream = obj;
Int64 temp_Int64 = temp_BufferedStream.Position;
temp_Int64=temp_BufferedStream.Seek(p1,System.IO.SeekOrigin.Current)-temp_Int64;
return temp_Int64;}

TeMAPI extends existing compilers to find wrappers that are translated into the other
language without compilation errors (referred to as safe wrappers in this paper). In par-
ticular, TeMAPI extends Visual Studio for C# code and Eclipse’s Java compiler for Java
code. From our experiences, translation tools are typically able to translate the simple
code structures of synthesized wrappers, and all compilation errors are caused by un-
translatable API elements in synthesized wrappers. TeMAPI compares safe wrappers
with synthesized wrappers to extract the following two facts:

(1) The one-to-one mapping relations of API elements for the translation tool under
analysis. For example, by comparing the first statements of the two testskip24nm

methods in Java and in C#, TeMAPI extracts the mapping relation between the Byte-
ArrayInputStream class in Java and the MemoryStream class in C# defined by
JLCA, since the two methods declare two local variables with the same name, obj.
Since translation tools typically do not modify names of variables, TeMAPI extracts
such relations by using names. In Step 2, TeMAPI uses such relations to generate test
cases in Java when leveraging Pex.

(2) The list of translatable API elements for the translation tool under analysis. For
example, by comparing the first statements of the two testskip24nm methods in Java
and in C#, TeMAPI adds the ByteArrayInputStream(InputStream) constructor
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and the skip(long) method in Java to translatable API methods of JLCA, since their
corresponding wrapper methods are translated without compilation errors. In Step 3,
we use the list to limit the search scope of Randoop.

Step 2: Generating Test Cases with Pex. Pex [24] uses dynamic symbolic execu-
tion [9, 14] for generating test cases that exercise various paths in the code under test.
Pex requires adding annotations (e.g., [TestClass()]) to code under test for test gen-
eration. We use Pex to generate test cases for wrapper methods. In particular, for C#-to-
Java translation tools, we use Pex to generate test cases in C# for synthesized wrapper
methods in C# that are translated to Java without compilation errors, and for Java-to-C#
translation tools, we use Pex to generate test cases in C# for translated wrapper meth-
ods in C# without compilation errors. When Pex generates test cases in C#, we set its
parameters to allow it to exercise paths in API libraries.

TeMAPI uses the extracted mapping relations of API elements to translate generated
test cases from C# into Java. Since test cases generated by Pex typically have lim-
ited API elements, extracted one-to-one mapping relations are adequate to translate test
cases generated by Pex. Here, an alternative way is to use C#-to-Java translation tools
to translate generated test cases. We do not choose this way, since we find that existing
C#-to-Java translation tools cannot translate many API elements, and these tools do not
support user-defined API mapping relations. Java and C# have different bounds for their
literals. For example, the long m0 = 2147483648 statement compiles well in C#, but
it causes a compilation error: “The literal 2147483648 of type int is out of range”. To
resolve this difference, TeMAPI considers literals in C# as strings, and gets their values
by corresponding API methods in Java.

To expose behavioral differences, TeMAPI uses two mechanisms for generating test
oracles. First, TeMAPI inserts assert statements based on values of public fields or re-
turn values of public methods. For example, TeMAPI records that given an empty ob-
ject, the testappend175nm wrapper method in C# returns a StringBuilder object
whose Capacity is 16 and Length is 13, so TeMAPI derives a test case for the corre-
sponding wrapper method in Java:

public void testappend175nm122(){
Test_java_lang_StringBuffer obj = new Test_java_lang_StringBuffer();
Object m0 = new Object();
StringBuffer out = obj.testappend175nm(m0);
Assert.assertEquals(16, out.capacity());
Assert.assertEquals(13, out.length());}

This test case fails, since the capacity()method returns 34 and the length()method
returns 24, so TeMAPI detects two behavioral differences. Here, TeMAPI ignores non-
primitive or non-public fields of return objects, and thus may miss some behavioral
differences that are not easy to be observed.

Second, TeMAPI uses expected assertions as test oracles. For example, when Pex
explores a path, the method under exploration could throw exceptions. TeMAPI gener-
ates the following test case in Java based on inputs generated by Pex for one feasible
path (in the C# wrapper method) that throws exceptions.

public void testskip24nm36(){
try{
Test_java_io_ByteArrayInputStream obj = new Test_java_io_ByteArrayInputStream();
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long m0 = java.lang.Long.valueOf("2147483648").longValue();
byte[] c0 = new byte[0];
obj.testskip24nm(m0,c0);
Assert.assertTrue(false);

}catch(java.lang.Exception e){Assert.assertTrue(true);}}

This test case in Java fails, since given the preceding inputs, the skip(long) method
in Java does not throw any exceptions, whereas the translated C# code does. Thus,
TeMAPI detects a behavioral difference between the skip(long) method in Java and
its translated C# code by JLCA.

Step 3: Generating Test Cases with Randoop. Randoop [17] randomly generates test
cases based on already generated test cases in a feedback-directed manner. A wrapper
method cannot help effectively generate method sequences in generated test cases, since
it has fixed method sequences. To detect behavioral differences with method sequences
of a translation tool, instead of generating test cases for wrapper methods, we use Ran-
doop for API elements directly. Randoop generates test cases for arbitrary methods by
default. To generate useful test cases for our purpose, we configure Randoop so that
it generates method sequences only for the translatable API methods of the translation
tool. Here, in Step 1, TeMAPI extracts translatable API methods of the translation tool
with the support of synthesized wrappers.

Passing test cases are much useful to detect behavioral differences. If a passing test
case fails after it is translated, it is easy to identify a behavioral difference, since the
translated code should have the same behavior. If a translated failing test case fails, it
is difficult to infer informative results, since the translation may and may not introduce
more defects for causing the failure. Our preliminary study shows that Java-to-C# tools
can translate many API elements. After TeMAPI removes all failing test cases, we use
the translation tool under analysis to translate generated test cases from Java to C#. For
example, TeMAPI generates a test case in Java as follows:

public void test413() throws Throwable {
ByteArrayInputStream var2 = new ByteArrayInputStream(...);
var2.close();
int var5 = var2.available();
assertTrue(var5 == 1);}

JLCA translates the generated test case from Java to C# as follows:

public void test413() throws Throwable{
MemoryStream var2 = new MemoryStream(...);
var2.close();
long available = var2.Length - var2.Position;
int var5 = (int) available;
AssertTrue(var5 == 1);}

The preceding test case in Java passes, but the test case in C# fails. We thus detect a
behavioral difference with method sequences.

In our tool chain, wrapper methods play an important role. First, some test genera-
tion tools need to instrument code under test. For example, Pex needs to add annotations
to code under test. For those API libraries whose code is not available, our tool chain
allows test generation tools to instrument wrapper methods for test generation. Second,
by comparing translated wrappers with original wrappers, we implement a single tech-
nique to extract useful facts by comparing translated code, while different techniques
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Table 1. Subject tools

Name Version Provider Description

Java2CSharp 1.3.4 IBM (ILOG) Java-to-C#
JLCA 3.0 Microsoft Java-to-C#
Sharpen 1.4.6 db4o Java-to-C#
Net2Java 1.0 NetBean C#-to-Java
Converter 1.6 Tangible C#-to-Java

are needed to extract such facts from different translation tools directly. Finally, wrap-
per methods expose a common interface for all the API elements, and thus help expose
behavioral differences of API elements.

3 Empirical Results
In this section, we address the following research questions:

– Are behavioral differences pervasive in cross-language API mapping relations?
– What are the characteristics of behavioral differences concerning inputs and out-

puts?
– What are the characteristics of behavioral differences concerning method sequences?

In our study, we choose the translation tools in Table 1 as our subjects, since they are
popular and many programmers recommend these tools in various forums. For Java-
to-C# tools, TeMAPI synthesizes wrapper methods for J2SE 6.04, and ignores methods
that include generics, since many translation tools cannot handle generics. For C#-to-
Java tools, TeMAPI synthesizes wrapper methods for the .NET 4.0 framework clients5,
and ignores unsafe, delegate, and generic methods, and also the methods whose pa-
rameters are marked as out or ref. Java does not have these corresponding keywords,
so existing translation tools typically do not translate the preceding methods. More de-
tails of our empirical results are available at http://sites.google.com/site/
asergrp/projects/temapi.

Pervasiveness of Behavioral Differences. Table 2 shows the overall result. For Pex,
column “Name” lists the names of translation tools, and column “Number” lists the
number of generated test cases in Java. These number largely reflect how many API
elements can be translated by corresponding tools. Columns “E-Tests” and “A-Tests”
list the number of exception-causing and assertion-failing test cases, respectively. For
the two columns, sub-columns “M” and “%” list the number and percentage of these
test cases, respectively. For Randoop, column “Method” lists the number of translat-
able API methods; column “Java” lists the number of passing test cases in Java; and
column “C#” lists the number of translated test cases in C# without compilation errors.
Here, many test cases are translated with compilation errors for two factors, which are

4 http://java.sun.com/javase/6/docs/api/
5 http://msdn.microsoft.com/en-us/library/ff462634.aspx

http://sites.google.com/site/asergrp/projects/temapi
http://sites.google.com/site/asergrp/projects/temapi
http://java.sun.com/javase/6/docs/api/
http://msdn.microsoft.com/en-us/library/ff462634.aspx
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Table 2. Overall testing result

Pex Randoop

Name Number
E-Tests A-Tests

Method Java C#
A-Tests

M % M % M %

Java2CSharp 15,458 5,248 34.0% 3,261 21.1% 1,996 15,385 2,971 2,151 72.4%
JLCA 33,034 8,901 26.9% 6,944 21.0% 7,060 16,630 1,067 295 27.6%
Sharpen 2,730 662 24.2% 451 16.5% 586 13,532 936 456 48.7%
Net2Java 352 40 11.4% 261 74.1% n/a n/a n/a n/a n/a
Converter 762 302 39.6% 182 23.9% n/a n/a n/a n/a n/a

Total 52,336 15,153 29.0% 11,099 21.2% 9,642 45,547 4,974 2,902 58.3%

not general or not related with API translation: (1) to prepare input values of trans-
latable API methods, Randoop introduces API elements that are not translatable; (2)
the number of compilation errors increases since Randoop produces many redundant
code portions. We did not use Randoop to generate test cases for Net2Java and Con-
verter, since the two tools translate too few API elements in C# to generate meaningful
method sequences. In total, about half of the generated test cases fail, and the result
shows that behavioral differences are pervasive in API mapping relations between Java
and C#. The pervasive behavioral differences highlight the importance of our study.

Behavioral Differences Concerning Inputs and Outputs. TeMAPI leverages Pex to
detect behavioral differences concerning inputs and outputs. As shown in Table 2, when
leveraging Pex, more than 20,000 test cases failed. Given this large number of failures,
we inspected 3,759 failing test cases selected as follows. For Net2Java and Converter,
we inspected all the failing test cases, and for Java2CSharp, JLCA, and Sharpen, we
inspected test cases of the java.lang package. We selected this package, since it is
widely used in Java applications. Our findings are as follows:

Finding 1. 36.8% test cases show behavioral differences with respect to the handling
of null inputs.

We found that many API methods in Java and their translated API methods in C#
have behavioral differences when null values are passed as inputs. For example, JLCA
translates the java.lang.Integer.parseInt(String,int)method in Java to the
System.Convert.ToInt32(string,int) in C#. Given null and 10 as inputs, the
method in Java throws NumberFormatException, but the method in C# returns 0. We
notice that translation tools resolve some of these behavioral differences by providing
custom functions. For example, java.lang.String.valueOf(Object) method in
Java and the System.Object.ToString() in C# behave differently when a null

value is passed as input. To resolve this difference, Sharpen translates the method in
Java to its own implemented method in C#.

Implication 1. For implementers of API libraries, behaviors for null inputs are largely
controversial. We suggest that implementers clearly define behaviors of null inputs.
Our result shows that many such differences are left to programmers. When program-
mers translate API methods, they should handle null inputs carefully.
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Finding 2. 22.3% test cases show differences among returned string values.
We found that two mapped methods typically return different string values. For

example, each class in Java has a toString() method, and each class in C# has a
ToString() method. Many translation tools map the two API methods, but the return
values of the two methods are different in most cases. Besides the preceding two meth-
ods, many API classes declare methods such as getName or getMessage, and these
methods also return string values that are quite different. Overall, we found that none
of the five tools resolves this category of behavioral differences.

Implication 2. Although a method in Java and a method in C# have the same func-
tionality, the two methods can return different string values. Programmers should be
cautious while using these values, since they are typically different across languages.

Finding 3. 11.5% test cases show the behavioral differences of input domains.
We found that API methods in Java and their mapped API methods in C# can

have different input domains. For example, the java.lang.Double.shortValue()
method in Java accepts values that are larger than 32,767. JLCA translates the Java
method to the Convert.ToInt16(double) method in C#. The C# method throws
OverflowException when values are larger than 32,767 since it checks whether in-
puts are too large. As another example, the java.lang.Boolean.parseBoolean

(String) method in Java does not check for illegal inputs, and returns false given
an illegal input such as “test”. Java2CSharp translates the method in Java to the
System.Boolean.Parse(String) method in C#. The C# method throws Format-
Exception given the same input since it checks for illegal inputs.

Implication 3. Programmers should be cautious while dealing with methods whose
arguments are close to minimum or maximum values of respective data types, since the
ranges of these values can be different between different languages. Cook and Dage [5]
pointed out that an updated API method in a single programming language can also
have different input domains. Adopting their approach may help deal with different
input domains across languages.

Finding 4. 10.7% test cases show behavioral differences with respect to implementa-
tions.

We found that API libraries in different languages may have different implementa-
tions of the same functionalities. For example, we found that, unlike C#, Java considers
“\” as an existing directory. Such differences can also indicate defects in translation
tools. For example, Java2CSharp translates the Character.isJavaIdentifierPart
(char) method in Java to the ILOG.J2CsMapping.Util.Character.IsCSharp-

IdentifierPart(char)method in C#. Given an input “\0”, the Java method returns
true, but the C# method returns false. As another example, Java2CSharp translates
the java.lang.Integer.toHexString(int)method in Java to the ILOG.J2CsMap-
ping.Util.IlNumber.ToString(int,16) method in C#. Given -2147483648
as input, the method in Java returns “80000000”, but the method in C# returns
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“\080000000”.Four behavioral differences including the preceding two were confirmed
as defects by developers of Java2CSharp6.

Implication 4. Implementers of API libraries can have different understandings on
functionalities of specific methods. Some of such differences reflect different natures
of different languages, and some other differences indicate defects in translation tools.
Programmers should learn the natures of different programming languages (e.g., differ-
ent definitions of paths and files) to figure out such differences.

Finding 5. 7.9% test cases show behavioral differences with respect to handling of
exceptions.

We found that some mapped API methods throw unmapped exceptions. For ex-
ample, the java.lang.StringBuffer.insert(int,char)method in Java throws
ArrayIndexOutofBoundsException, when indexes are out of bounds. Java2CSharp
translates the method in Java to the System.Text.StringBuilder.Insert(int,

char) method that throws ArgumentOutOfRangeException when indexes are out
of bounds. Java2CSharp translates ArrayIndexOutofBoundsException in Java to
IndexOutOfRangeException in C#. As Java and C# both allow unchecked excep-
tions, translated code can fail to catch corresponding exceptions.

Implication 5. Implementers of API libraries may design different exception handling
mechanisms. This category of differences is quite challenging to be resolved for transla-
tion tools. When programmers translate try-catch statements, they should be aware
of these differences. Otherwise, exception handling code may not be invoked in the
translated version or may even become a dead code.

Finding 6. 2.9% test cases show the behavioral differences caused by constants.
We found that mapped constants may have different values. For example, the java.

lang.reflect.Modifier class in Java has many constants to represent modifiers
(e.g., FINAL, PRIVATE, and PROTECTED). Java2CSharp translates these constants to the
constants of the ILOG.J2CsMapping.Reflect class in C#. Between the two classes,
constants such as VOLATILE and TRANSIENT are of different values. Sometimes dif-
ferent values reflect different settings of two languages. For example, translation tools
often translate the java.lang.Double.MAX VALUE field in Java to System.Double.
MaxValue field in C#. The value of the former is 1.7976931348623157E+308, and the
value of the latter is 1.79769313486232E+308.

Implication 6. Implementers of API libraries may store different values in constants,
even if two constants have the same name. The different values sometimes reflect differ-
ent settings such as different bounds of data types between two languages. Programmers
should be aware of these differences while using constants.

The remaining 7.9% failing test cases are related to the API methods that return
random values or values that depend on time. For example, the java.util.Random.
nextInt() method returns random values, and the java.util.Date.getTime()

method returns the number of milliseconds since Jan. 1st, 1970, 00:00:00 GMT. As
another example, each Java class has a hashCode()method, and each C# class has also
a GetHashCode() method. Translation tools often map the two methods. Since each

6 http://tinyurl.com/3z45c5c

http://tinyurl.com/3z45c5c
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object has a unique hash code, the two methods of two receiver objects return different
values. Since these exposed behavioral differences are false, they can be considered as
false positives or limitations of our work.

Behavioral Differences Concerning Method Sequences. TeMAPI leverages Randoop
to detect behavioral differences concerning method sequences. After browsing trans-
lated test cases, we notice that some translated test cases have compilation errors, even
if these test cases use only translatable API elements.

Finding 7. API classes in Java and API classes in C# can have different inheritance
hierarchies, and the difference can lead to compilation errors.

We found that API classes in Java can have different inheritance hierarchies with API
classes in C#, and thus introduce compilation errors. For example, many compilation
errors are introduced by type-cast statements, and one such example is as follows:

public void test87() throws Throwable{
...
StringBufferInputStream var4 = ...;
InputStreamReader var10 = new InputStreamReader((InputStream)var4, var8);}

Since the preceding two API classes in Java are related through inheritance, the test case
has no compilation errors. JLCA translates the test case from Java to C# as follows:

public void test87() throws Throwable{
...
StringReader var4 = ...;
StreamReader var10 = new StreamReader((Stream)var4, var8);}

Since the two translated C# classes do not have the inheritance relation, the translated
test case in C# has compilation errors.

Implication 7. A source API library and its target API library can design different
inheritance hierarchies of classes. It is quite difficult for translation tools to resolve this
category of behavioral differences. When programmers translate code, they should be
aware of such differences. For example, when they translate cast statements, they should
double check whether the target API elements have a similar inheritance hierarchy.

TeMAPI removed those translated test cases with compilation errors. Among re-
maining test cases, for each translation tool, we investigated only the first 100 failing
test cases. The percentages are as follows:

Finding 8. 3.4% test cases fail for method sequences.
We found that random method sequences can violate specifications of API libraries.

One category of such specification is described in our previous work [28]: closed re-
sources should not be manipulated. Java sometimes allows programmers to violate such
specifications although return values can be meaningless. Besides method sequences
that are related to specifications, we found that field accessibility also leads to failures
of test cases. For example, a generated test case in Java is as follows:

public void test423() throws Throwable{
...
DateFormatSymbols var0 = new DateFormatSymbols();
String[] var16 = new String[]...;
var0.setShortMonths(var16);}
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JLCA translates it to C# as follows:

public void test423() throws Throwable{
...
DateTimeFormatInfo var0 = System.Globalization.DateTimeFormatInfo.CurrentInfo;
String[] var16 = new String[]...;
var0.AbbreviatedMonthNames = var16;}

In the translated test case, the last statement throws InvalidOperationException
since a constant value is already assigned to var0 in the previous line.

Implication 8. Legal method sequences can become illegal after translation, since the
target language may be more strict to check method sequences, and other factors such
as field accessibility can also cause behavioral differences. In most of such cases, pro-
grammers should deal with these differences themselves.

Remaining test cases failed for the following reasons: 45.0% for input
domains, 34.0% for string values, 5.3% for different implementations, 4.0% for ex-
ception handling, 3.0% for null inputs, 2.0% for values of constants, and 0.3% for
random values. The remaining 3.0% test cases fail, due to that translation tools trans-
late API elements in Java to C# API elements that are not implemented yet. For exam-
ple, Java2CSharp translates the java.io.ObjectOutputStream class in Java to the
ILOG.J2CsMapping.IO.IlObjectOutputStream class in C# that is not yet imple-
mented, and such translations lead to NotImplementException.

When generating test cases, Pex generates one test case for each feasible path, whereas
Randoop uses a feedback-guided random strategy. As a result, the category distribution
revealed by Pex more reflects the category distribution of unique behavioral differences
than the category distribution revealed by Randoop, since each test case generated by
Pex typically reflects a unique behavior.

Threats to Validity. The threats to internal validity include human factors for inspecting
behavioral differences. To reduce these threats, we re-ran those failing test cases, and
inspected those test cases carefully. This threat could be further reduced by involving
more third-party members for inspecting the detected differences.

The threats to external validity of our evaluation include the representativeness of
the subject translation tools, selected programming languages (Java and C#), and the
selected package for inspection. In future work, this threat could be reduced by includ-
ing more translation tools and inspecting test cases that are related to other packages.
The threats to external validity of our evaluation also include unexplored behaviors of
APIs. Taneja et al. [22] proposed an approach that generates test cases for database
applications via mock objects. Thummalapenta et al. [23] proposed an approach that
mines method sequences from real code for test generation. In future work, we plan to
leverage their approaches and to integrate more testing tools (e.g., JPF [25]), so that our
work can detect more behavioral differences.

4 Discussion and Future Work

Improving Translation Tools and Detecting Related Defects. Our previous work [27]
mines unknown mapping relations from existing projects with variants in different lan-
guages. In future work, we plan to extend our previous work [27] to resolve some
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detected behavioral differences. In addition, when programmers write code in an un-
familiar language, they may follow idioms of their familiar languages. This practice
can lead to defects, since our findings show that differences between two programming
languages can be subtle. In future work, we plan to propose approaches that leverage
our findings to detect such defects as well.

Surveying Programmers with Language-Migration Experiences. When migrating
legacy systems, many programmers choose to translate applications manually from
scratch. Although they know many API mapping relations, they may not develop any
translation tools, and our process cannot detect behavioral differences in their known
mapping relations residing in their minds. In future work, we plan to conduct a survey
to collect API mapping relations from those experienced programmers. In addition, we
plan to conduct a survey to investigate whether these programmers are aware of behav-
ioral differences exposed by us, and if they are, how they deal with such differences.

Analyzing Translation of More Programming Languages. To improve the potential
impact of our work, we could analyze translation of more programming languages.
Ravitch et al. [18] proposed an approach that generates bindings to expose low-level
languages to high-level languages. In future work, we plan to adapt their wrappers,
so that we can analyze translation of more programming languages, even if the two
languages under analysis are fundamentally different.

5 Related Work

API Translation. API translation is an important aspect of language migration. (1)
Language-to-language migration. Song and Tilevich [20] proposed an enhanced spec-
ification to improve source-to-source translation approaches. Zhong et al. [27] mined
API mapping relations from existing applications in different languages to improve API
translation. (2) Library update migration. Henkel and Diwan [10] proposed an approach
that captures API refactoring actions to update client code with the latest APIs. Xing
and Stroulia [26] proposed an approach that recognizes the changes of APIs by com-
paring the differences between two versions of libraries. Meng et al. [15] proposed an
approach that mines API mapping relations from revision histories of API libraries.
Balaban et al. [1] proposed an approach to migrate code when mapping relations of
libraries are available. (3) Migrating from one API library to alternative libraries. Dig
et al. [6] proposed CONCURRENCER that translates sequential API elements to con-
current API elements in Java. Nita and Notkin [16] proposed twinning to automate
the process given that API mapping is specified. (4) Migrating to more efficient APIs.
Kawrykow et al. [13] proposed an approach that compares client code with API imple-
mentation code, and thus allows programmers to choose more efficient APIs. Our work
detects behavioral differences between mapped API elements, and the results can also
help the preceding approaches translate applications resulting in fewer defects.

API Comparison. Shi et al. [19] compared API documents for behavioral differences
when APIs evolve. Their approach is not suitable to compare API libraries in differ-
ent languages, where API documents are typically fundamentally different. Hou and
Yao [11] analyzed such behavioral differences for the intents behind API evolution.
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Srivastava et al. [21] proposed an approach that compares API implementations for
their behavioral differences, and cannot analyze the .NET frameworks whose code is
not available. Bartolomei et al. [2,3] reported their experiences on implementing wrap-
pers between SWT and Swing. The preceding approaches compare APIs in a single
language. Our work complements the preceding approaches by exposing behavioral
differences of API elements in different languages.

Language Comparison. Researchers conducted various empirical comparisons on
languages. Garcia et al. [8] presented a comparison study on six languages to reveal
differences with respect to generics. Cabral and Marques [4] compared exception han-
dling mechanisms between Java and .NET programs. To the best of our knowledge, no
previous work systematically compares behavioral differences of API elements from
different languages. Our work enables us to produce such a comparison study, comple-
menting the preceding empirical comparisons.

6 Concluding Remarks

Behavioral differences among API elements of different languages are pervasive and
could introduce defects in the translated code. Often, programmers are not aware of
these differences either due to a large number of mapping relations or due to the fact
that differences happen only for specific input values. In this paper, we presented the
first empirical study that exposes behavioral differences among API elements between
Java and C#. Our results can help improve existing translation tools and also assist pro-
grammers to better understand API behavioral differences between different languages.
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Based on CEGAR and Interpolation�
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Abstract. Abstraction, counterexample-guided refinement, and interpolation are
techniques that are essential to the success of predicate-based program analysis.
These techniques have not yet been applied together to explicit-value program
analysis. We present an approach that integrates abstraction and interpolation-
based refinement into an explicit-value analysis, i.e., a program analysis that
tracks explicit values for a specified set of variables (the precision). The algorithm
uses an abstract reachability graph as central data structure and a path-sensitive
dynamic approach for precision adjustment. We evaluate our algorithm on the
benchmark set of the Competition on Software Verification 2012 (SV-COMP’12)
to show that our new approach is highly competitive. We also show that com-
bining our new approach with an auxiliary predicate analysis scores significantly
higher than the SV-COMP’12 winner.

1 Introduction

Abstraction is one of the most important techniques to successfully verify industrial-
scale program code, because the abstract model omits details about the concrete
semantics of the program that are not necessary to prove or disprove the program’s cor-
rectness. Counterexample-guided abstraction refinement (CEGAR) [13] is a technique
that iteratively refines an abstract model using counterexamples. A counterexample is a
witness of a property violation. In software verification, the counterexamples are error
paths, i.e., paths through the program that violate the property. CEGAR starts with the
most abstract model and checks if an error path can be found. If the analysis of the
abstract model does not find an error path, the analysis terminates, reporting that no
violation exists. If the analysis finds an error path, the path is checked for feasibility,
i.e., if the path is executable according to the concrete program semantics. If the error
path is feasible, the analysis terminates, reporting the violation of the property, together
with the feasible error path as witness. If the error path is infeasible, the violation is
due to a too coarse abstract model and the infeasible error path is used to automatically
refine the current abstraction. Then the analysis proceeds. Several successful software
verifiers are based on abstraction and CEGAR (e.g., [4, 6, 9, 14]). Craig interpolation is
a technique from logics that yields for two contradicting formulas an interpolant that
contains less information than the first formula, but still enough to contradict the sec-
ond formula [15]. In software verification, interpolation can be used to extract informa-
tion from infeasible error paths [19], where the resulting interpolants are used to refine

� An extended version of this article appeared as Tech. Report MIP-1205, University of Passau,
2012 [11].
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1 extern i n t s y s t e m c a l l ( ) ;
2 i n t main ( i n t x ) {
3 i n t f l a g = 0 , t i c k s = 0 , r e s u l t ;
4 whi l e ( 1 ) {
5 t i c k s = t i c k s + 1 ; r e s u l t = s y s t e m c a l l ( ) ;
6 i f ( r e s u l t == 0 | | t i c k s > x ) { break ; }
7 }
8 i f ( f l a g > 0) { ERROR: re tu rn 1 ; }
9 }

Listing 1.1. Example to illustrate the effectiveness of CEGAR-based explicit-value analysis

the abstract model. Predicate abstraction is a successful abstraction technique for soft-
ware model checking [16], because its symbolic state representation blends well with
strongest post-conditions, and abstractions can be computed efficiently with solvers for
satisfiability modulo theories (SMT) [3]. CEGAR and lazy refinement [20] together
with interpolation [19] effectively refine abstract models in the predicate domain. The
competition on software verification (SV-COMP’12 [5], Table 3) shows that these ad-
vancements had a strong impact on the success of participating tools (e.g., [6, 9, 23]).

Despite the success of abstraction, CEGAR, and interpolation in the field of predicate
analysis, these techniques have not yet been combined and applied together to explicit-
value analysis. We integrate these three techniques into an explicit-value analysis, a
rather unsophisticated analysis that tracks for each program variable its current value
explicitly (like constant propagation [1], but without join). First, we have to define the
notion of abstraction for the explicit-value domain, and the precision of the analysis
(i.e., the level of abstraction) by a set of program variables that the analysis has to track.
Second, in order to automatically determine the necessary precision (i.e., a small set of
program variables that need to be tracked) we use CEGAR iterations to discover finer
precisions from infeasible error paths. Third, we define interpolation for the explicit-
value domain and use this idea to construct an algorithm that efficiently extracts such a
parsimonious precision that is sufficient to eliminate infeasible error paths.

Example. Consider the simple example program in Listing 1.1. This program contains
a while loop in which a system call occurs. The loop exits if either the system call
returns 0 or a previously specified number of iterations x was performed. Because the
body of the function system call is unknown, the value of result is unknown. Also,
the assumption [ticks > x] cannot be evaluated to true, because x is unknown. This
program is correct, i.e., the error location in line 10 is not reachable. However, a simple
explicit-value model checker that always tracks every variable would unroll the loop,
always discovering new states, as the expression ticks = ticks+ 1 repeatedly assigns
new values to variable ticks. Thus, due to extreme resource consumptions, the analysis
would not terminate within practical time and memory limits, and is bound to give up
on proving the safety property, eventually.

The new approach for explicit-value analysis that we propose can efficiently prove
this program safe, because it tracks only those variables that are necessary to refute
the infeasible error paths. In the first CEGAR iteration, the precision of the analysis is
empty, i.e., no variable is tracked. Thus, the error location will be reached. Now, using
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our interpolation-inspired method to discover precisions from counterexample paths,
the algorithm identifies that the variable flag (more precisely, the constraint flag = 0)
has to be tracked. The analysis is re-started after this refinement. Because ticks is not in
the precision (the variable is not tracked), the assignment ticks = ticks+1 will not add
new information. Hence, no new successors are added, and the analysis stops unrolling
the loop. The assume operation [flag > 0] is evaluated to false , thus, the error label is
not reachable. Finally, the analysis terminates, proving the program correct.

In summary, the crucial effect of this approach is that only relevant variables are
tracked in the analysis, while unimportant information is ignored. This greatly reduces
the number of abstract states to be visited.

Contributions. We make the following contributions:

• We integrate the concepts of abstraction, CEGAR, and lazy abstraction refinement
into explicit-value analysis.

• Inspired by Craig interpolation for predicate analysis, we define a novel
interpolation-like approach for discovering relevant variables for the explicit-value
domain. This refinement algorithm is completely self-contained, i.e., independent
from external libraries such as SMT solvers.

• To further improve the effectiveness and efficiency of the analysis, we design a
combination with a predicate analysis based on dynamic precision adjustment [8].

• We provide an open-source implementation of all our concepts and give evidence
of the significant improvements by evaluating several approaches on benchmark
verification tasks (C programs) from SV-COMP’12.

Related Work. The explicit-state model checker SPIN [21] can verify models of pro-
grams written in a language called Promela. For the verification of C programs, tools
like MODEX can extract Promela models from C source code. This process requires to
give a specification of the abstraction level (user-defined extraction rules), i.e., the infor-
mation of what should be included in the Promela model. SPIN does not provide lazy-
refinement-based CEGAR. JAVA PATHFINDER [18] is an explicit-state model checker for
Java programs. There has been work [22] on integrating CEGAR into JAVA PATHFINDER,
using an approach different from interpolation.

Dynamic precision adjustment [8] is an approach to fine-tune the precision of com-
bined analyses on-the-fly, i.e., during the analysis run; the precision of one analysis
can be increased based on a current situation in another analysis. For example, if an
explicit-value analysis stores too many different values for a variable, then the dynamic
precision adjustment can remove that variable from the precision of the explicit-value
analysis and add a predicate about that variable to the precision of a predicate analysis.
This means that the tracking of the variable is “moved” from the explicit to the symbolic
domain. One configuration that we present later in Section 3 uses this approach.

The tool DAGGER [17] improves the verification of C programs by applying
interpolation-based refinement to octagon and polyhedra domains. To avoid impreci-
sion due to widening in the join-based data-flow analysis, DAGGER replaces the standard
widen operator by a so called interpolated-widen operator, which increases the preci-
sion of the data-flow analysis and thus avoids false alarms. The algorithm VINTA [2]
applies interpolation-based refinement to interval-like abstract domains. If the state
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exploration finds an error path, then VINTA performs a feasibility check using bounded
model checking (BMC), and if the error path is infeasible, it computes interpolants. The
interpolants are used to refine the invariants that the abstract domain operates on. VINTA

requires an SMT solver for feasibility checks and interpolation.
More tools are mentioned in our evaluation section, where we compare (in terms of

precision and efficiency) our verifier with verifiers of SV-COMP’12. There is, to the best
of our knowledge, no work that integrates abstraction, CEGAR, lazy refinement, and
interpolation into explicit-state model checking. We make those techniques available
for the explicit-value domain.

2 Background

We use several existing concepts; this section reminds the reader of basic definitions.

Programs, Control-Flow Automata, States. We restrict the presentation to a simple
imperative programming language, where all operations are either assignments or as-
sume operations, and all variables range over integers 1. The following definitions are
taken from previous work [10]: A program is represented by a control-flow automaton
(CFA). A CFA A = (L, G) consists of a set L of program locations, which model the
program counter, and a set G ⊆ L × Ops × L of control-flow edges, which model
the operations that are executed when control flows from one program location to an-
other. The set of program variables that occur in operations from Ops is denoted by X .
A verification problem P = (A, l0, le) consists of a CFA A, representing the program,
an initial program location l0 ∈ L, representing the program entry, and a target program
location le ∈ L, which represents the error.

A concrete data state of a program is a variable assignment cd : X → Z, which
assigns to each program variable an integer value. A concrete state of a program is a
pair (l, cd), where l ∈ L is a program location and cd is a concrete data state. The set
of all concrete states of a program is denoted by C, a subset r ⊆ C is called region.
Each edge g ∈ G defines a labeled transition relation

g→ ⊆ C × {g} × C. The complete
transition relation → is the union over all control-flow edges: → =

⋃
g∈G

g→. We write
c

g→c′ if (c, g, c′) ∈ →, and c→c′ if there exists an edge g with c
g→c′.

An abstract data state represents a region of concrete data states, formally de-
fined as abstract variable assignment. An abstract variable assignment is a partial
function v : X → Z ∪ {�,⊥}, which maps variables in the definition range of func-
tion v to integer values or � or ⊥. The special value � is used to represent an
unknown value, e.g., resulting from an uninitialized variable or an external func-
tion call, and the special value ⊥ is used to represent no value, i.e., a contradict-
ing variable assignment. We denote the definition range for a partial function f as
def(f) = {x | ∃y : (x, y) ∈ f}, and the restriction of a partial function f to a new def-
inition range Y as f|Y = f ∩ (Y × (Z ∪ {�,⊥})). An abstract variable assignment v
represents the region [[v]] of all concrete data states cd for which v is valid, formally:

1 The framework CPACHECKER operates on C programs; non-recursive function calls are sup-
ported.
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[[v]] = {cd | ∀x ∈ def(v) : cd(x) = v(x) or v(x) = �}. An abstract state of a program
is a pair (l, v), representing the following set of concrete states: {(l, cd) | cd ∈ [[v]]}.

Configurable Program Analysis with Dynamic Precision Adjustment. We use
the framework of configurable program analysis (CPA) [7], extended by the con-
cept of dynamic precision adjustment [8]. Such a CPA supports adjusting the pre-
cision of an analysis during the exploration of the program’s abstract state space.
A composite CPA can control the precision of its component analyses during the ver-
ification process, i.e., it can make a component analysis more abstract, and thus more
efficient, or it can make a component analysis more precise, and thus more expen-
sive. A CPA D = (D,Π,�,merge, stop, prec) consists of (1) an abstract domain D,
(2) a set Π of precisions, (3) a transfer relation �, (4) a merge operator merge,
(5) a termination check stop, and (6) a precision adjustment function prec. Based on
these components and operators, we can formulate a flexible and customizable reacha-
bility algorithm, which is adapted from previous work [7, 12].

Explicit-Value Analysis as CPA. We now define a component CPA that tracks ex-
plicit values for program variables. In order to obtain a complete analysis, a composite
CPA is constructed that consists of the component CPA for explicit values and another
component CPA for tracking the program locations (CPA for location analysis, as pre-
viously described [8]). For the composite CPA, the general definitions of the abstract
domain, the transfer relation, and the other operators are given in previous work [8]; the
composition is done automatically by the framework implementation CPACHECKER.

The CPA for explicit-value analysis, which tracks integer values for the variables
of a program explicitly, is defined as C = (DC, ΠC,�C,mergeC, stopC, precC) and
consists of the following components [8]:

1. The abstract domain DC = (C,V , [[·]]) contains the set C of concrete data states, and
uses the semi-lattice V = (V,�,⊥,�, ), which consists of the set V = (X → Z)
of abstract variable assignments, where Z = Z ∪ {�Z ,⊥Z} induces the flat lattice
over the integer values (we write Z to denote the set of integer values). The top element
� ∈ V , with �(x) = �Z for all x ∈ X , is the abstract variable assignment that holds
no specific value for any variable, and the bottom element ⊥ ∈ V , with ⊥(x) = ⊥Z
for all x ∈ X , is the abstract variable assignment which models that there is no value
assignment possible, i.e., a state that cannot be reached in an execution of the program.
The partial order� ⊆ V ×V is defined as v � v′ if for all x ∈ X , we have v(x) = v′(x)
or v(x) = ⊥Z or v′(x) = �Z . The join  : V × V → V yields the least upper bound
for two variable assignments. The concretization function [[·]] : V → 2C assigns to each
abstract data state v its meaning, i.e., the set of concrete data states that it represents.

2. The set of precisions ΠC = 2X is the set of subsets of program variables. A preci-
sion π ∈ ΠC specifies a set of variables to be tracked. For example, π = ∅ means that
not a single program variable is tracked, and π = X means that each and every program
variable is tracked.
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3. The transfer relation �C has the transfer v
g�(v′, π) if

(1) g = (·, assume(p), ·) and for all x ∈ X :

v′(x) =

⎧⎨⎩
⊥Z if (y,⊥Z) ∈ v for some y ∈ X or the predicate p/v is unsatisfiable
c if c is the only satisfying assignment of the predicate p/v for variable x
�Z otherwise

where p/v denotes the interpretation of p over variables from X for an abstract variable
assignment v, that is, p/v = p ∧

∧
x∈def(v),v(x)∈Z

x = v(x) ∧ ¬∃x ∈ def(v) : v(x) = ⊥Z

or

(2) g = (·, w := exp, ·) and for all x ∈ X : v′(x) =

⎧⎨⎩
exp/v if x = w

v(x) if x ∈ def(v)
�Z otherwise

where exp/v denotes the interpretation of an expression exp over variables from X for
an abstract value assignment v:

exp/v =

⎧⎪⎪⎨⎪⎪⎩
⊥Z if (y,⊥Z) ∈ v for some y ∈ X
�Z if (y,�Z) ∈ v or y �∈ def(v) for some y ∈ X that occurs in exp
c otherwise, where expression exp evaluates to c after replacing each

occurrence of variable x with x ∈ def(v) by v(x) in exp

4. The merge does not combine states when control flow meets: mergeC(v, v
′, π) = v′.

5. The stop operator checks states individually: stopC(v,R, π) = (∃v′ ∈ R : v � v′).

6. The precision adjustment function computes a new abstract state with precision,
based on the abstract state v and the precision π, by restricting the variable assign-
ment v to those variables that appear in π, formally: prec(v, π,R) = (v|π, π).

The precision of the analysis controls which program variables are tracked in an abstract
state. In other approaches, this information is hard-wired in either the abstract-domain
elements or the algorithm itself. The concept of CPA supports different precisions for
different abstract states. A simple analysis can start with an initial precision and prop-
agate it to new abstract states, such that the overall analysis uses a globally uniform
precision. It is also possible to specify a precision individually per program location,
instead of using one global precision. Our refinement approach in the next section will
be based on location-specific precisions.

Predicate Analysis as CPA. In a predicate analysis [16], the precision is defined as
a set of predicates, and the abstract states track the strongest set of predicates that are
fulfilled (cartesian predicate abstraction) or the strongest boolean combination of predi-
cates that is fulfilled (boolean predicate abstraction). This means, the abstraction level of
the abstract model is determined by predicates that are tracked in the analysis. Predicate
analysis is also implemented as a CPA in the framework CPACHECKER, and a detailed
description is available [10]. The precision is freely adjustable [8] also in the predicate
analysis; we use this feature later in this article for composing a combined analysis.

Lazy Abstraction. The concept of lazy abstraction [20] proposes to refine the abstract
states only where necessary along infeasible error paths in order to eliminate those
paths. We implemented this using CPAs with dynamic precision adjustment, where
the refinement procedure operates on location-specific precisions and the precision-
adjustment operator always removes unnecessary information from abstract states.



152 D. Beyer and S. Löwe

Algorithm 1. CPA(D, R0,W0), adapted from [8]
Input: CPA D = (D,Π,�,merge, stop, prec),

set R0 ⊆ (E ×Π) of abstract states with precision,
subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the set of elements of the semi-lattice of D

Output: set of reachable abstract states with precision,
subset of frontier abstract states with precision

Variables: sets reached and waitlist of elements of E ×Π
reached := R0; waitlist := W0;
while waitlist 
= ∅ do

choose (e, π) from waitlist; remove (e, π) from waitlist;
for each e′ with e�(e′, π) do

(ê, π̂) := prec(e′, π, reached); // precision adjustment
if isTargetState(ê) then

return
(
reached ∪ {(ê, π̂)},waitlist ∪ {(ê, π̂)});

for each (e′′, π′′) ∈ reached do
enew := merge(ê, e′′, π̂); // combine with existing abstract state
if enew 
= e′′ then
waitlist :=

(
waitlist ∪ {(enew , π̂)}

) \ {(e′′, π′′)};
reached :=

(
reached ∪ {(enew , π̂)}

) \ {(e′′, π′′)};
if ¬ stop

(
ê,
{
e | (e, ·) ∈ reached

}
, π̂

)
then // add new abstract state?

waitlist := waitlist ∪ {(ê, π̂)}; reached := reached ∪ {(ê, π̂)}
return (reached, ∅);

Reachability Algorithm for CPA. Algorithm 1 keeps updating two sets of abstract
states with precision: the set reached stores all abstract states with precision that are
found to be reachable, and the set waitlist stores all abstract states with precision that
are not yet processed, i.e., the frontier. The state exploration starts with choosing and
removing an abstract state with precision from the waitlist, and the algorithm consid-
ers each abstract successor according to the transfer relation. Next, for the successor,
the algorithm adjusts the precision of the successor using the precision adjustment func-
tion prec. If the successor is a target state (i.e., a violation of the property is found), then
the algorithm terminates, returning the current sets reached and waitlist — possibly as
input for a subsequent precision refinement, as shown below (cf. Alg. 2). Otherwise, us-
ing the given operatormerge, the abstract successor state is combined with each existing
abstract state from reached. If the operator merge results in a new abstract state with
information added from the new successor (the old abstract state is subsumed) then the
old abstract state with precision is replaced by the new abstract state with precision in
the sets reached and waitlist. If after the merge step the resulting new abstract state with
precision is covered by the set reached, then further exploration of this abstract state is
stopped. Otherwise, the abstract state with its precision is added to the set reached and
to the set waitlist. Finally, once the set waitlist is empty, the set reached is returned.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR [13] is a
technique for automatic stepwise refinement of an abstract model. CEGAR is based
on three concepts: (1) a precision, which determines the current level of abstraction,
(2) a feasibility check, deciding if an abstract error path is feasible, i.e., if there exists a
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Algorithm 2. CEGAR(D, e0, π0)
Input: CPA with dynamic precision adjustment D = (D,Π,�,merge, stop, prec),

initial abstract state e0 ∈ E with precision π0 ∈ Π ,
where E denotes the set of elements of the semi-lattice of D

Output: verification result safe or unsafe
Variables: set reached ⊆ E×Π , set waitlist ⊆ E×Π , error path σ = 〈(op1, l1), ..., (opn, ln)〉
reached := {(e0, π0)}; waitlist := {(e0, π0)}; π := π0;
while true do
(reached,waitlist) := CPA(D, reached,waitlist);
if waitlist = ∅ then

return safe
else

σ := extractErrorPath(reached);
if isFeasible(σ) then // error path is feasible: report bug

return unsafe
else // error path is not feasible: refine and restart

π := π ∪ Refine(σ);
reached := (e0, π); waitlist := (e0, π);

corresponding concrete error path, and (3) a refinement procedure, which takes as input
an infeasible error path and extracts a precision that suffices to instruct the exploration
algorithm to not explore the same path again later. Algorithm 2 shows an outline of a
generic and simple CEGAR algorithm. The algorithm starts checking a program using
a coarse initial precision π0. It uses Alg. 1 for computing the reachable abstract state
space, returning the sets reached and waitlist. If the analysis has exhaustively checked
all program states and did not reach the error, indicated by an empty set waitlist, then
the algorithm terminates and reports that the program is safe. If the algorithm finds an
error in the abstract state space, i.e., a counterexample for the given specification, then
the exploration algorithm stops and returns the unfinished, incomplete sets reached and
waitlist. Now the according abstract error path is extracted from the set reached using
procedure extractErrorPath and analyzed for feasibility using the procedure isFeasible
as feasibility check. If the abstract error path is feasible, meaning there exists a corre-
sponding concrete error path, then this error path represents a violation of the specifica-
tion and the algorithm terminates, reporting a bug. If the error path is infeasible, i.e., not
corresponding to a concrete program path, then the precision was too coarse and needs
to be refined. The algorithm extracts certain information from the error path in order
to refine the precision based on that information using the procedure Refine for refine-
ment, which returns a precision π that makes the analysis strong enough to refute the
present infeasible error path in further state-space explorations. The current precision is
extended using the precision returned by the refinement procedure and the analysis is
restarted with this refined precision. Instead of restarting from the initial sets for reached
and waitlist, we can also prune those parts of the abstract reachability graph (ARG) that
need to be rediscovered with new precisions, and replace the precision of the leaf nodes
in the ARG with the refined precision, and then restart the exploration on the pruned
sets (cf. [11] for more details). Our contribution in the next section is to introduce new
implementations for the feasibility check as well as for the refinement procedure.
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Interpolation. For a pair of formulas ϕ− and ϕ+ such that ϕ− ∧ ϕ+ is unsatisfiable,
a Craig interpolant ψ is a formula that fulfills the following requirements [15]: (1) the
implication ϕ− ⇒ ψ holds, (2) the conjunction ψ ∧ ϕ+ is unsatisfiable, and (3) ψ only
contains symbols that occur in both ϕ− and ϕ+. Such a Craig interpolant is guaranteed
to exist for many useful theories, e.g., the theory of linear arithmetic (implemented in
SMT solvers). Interpolation-based CEGAR has been proven successful in the predicate
domain. However, interpolants from the predicate domain, which consist of formulas,
are not useful for the explicit domain. Hence, we need to develop a procedure to com-
pute interpolants for the explicit domain, which we introduce in the following.

3 Refinement-Based Explicit-Value Analysis

The level of abstraction in our explicit-value analysis is determined by the precisions
for abstract variable assignments over program variables. The CEGAR-based iterative
refinement needs an extraction method to obtain the necessary precision from infeasible
error paths. Our novel notion of interpolation for the explicit domain achieves this goal.

Explicit-Value Abstraction. We now introduce some necessary operations on abstract
variable assignments, the semantics of operations and paths, and the precision for ab-
stract variable assignments and programs, in order to be able to concisely discuss inter-
polation for abstract variable assignments and constraint sequences.

The operations implication and conjunction for abstract variable assignments are
defined as follows: implication for v and v′: v ⇒ v′ if def(v′) ⊆ def(v) and for each
variable x ∈ def(v) ∩ def(v′) we have v(x) = v′(x) or v(x) = ⊥ or v′(x) = �;
conjunction for v and v′: for each variable x ∈ def(v) ∪ def(v′) we have

(v ∧ v′)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v(x) if x ∈ def(v) and x �∈ def(v′)
v′(x) if x �∈ def(v) and x ∈ def(v′)
v(x) if v(x) = v′(x)
⊥ if � �= v(x) �= v′(x) �= �
� otherwise (v(x) = � or v′(x) = �)

Furthermore we define contradiction for an abstract variable assignment v: v is contra-
dicting if there is a variable x ∈ def(v) such that v(x) = ⊥ (which implies [[v]] = ∅);
and renaming for v: the abstract variable assignment vx �→y , with y �∈ def(v), results
from v by renaming variable x to y: vx �→y = (v \ {(x, v(x))}) ∪ {(y, v(x))}.

The semantics of an operation op ∈ Ops is defined by the strongest post-
operator SPop(·) for abstract variable assignments: given an abstract variable assign-
ment v, SPop(v) represents the set of data states that are reachable from any of the
states in the region represented by v after the execution of op. Formally, given a set X
of program variables, an abstract variable assignment v, and an assignment opera-
tion s := exp, we have SPs:=exp(v) = v|X\{s} ∧ vs:=exp with vs:=exp = {(s, exp/v)},
where exp/v denotes the interpretation of expression exp for the abstract variable as-
signment v (cf. definition of exp/v in Section 2). That is, the value of variable s is the
result of the arithmetic evaluation of expression exp, or� if not all values in the expres-
sion are known, or ⊥ if no value is possible (an abstract data state in which a variable
is assigned to ⊥ does not represent any concrete data state). Given an abstract variable
assignment v and an assume operation [p], we have SP[p](v) = v′ with for all x ∈ X



Explicit-State Software Model Checking Based on CEGAR and Interpolation 155

we have v′(x) = ⊥ if (y,⊥) ∈ v for some variable x ∈ X or the formula p/v is
unsatisfiable, or v′(x) = c if c is the only satisfying assignment of the formula p/v for
variable x, or v′(x) = � in all other cases; the formula p/v is defined as in Section 2.

A path σ is a sequence 〈(op1, l1), ..., (opn, ln)〉 of pairs of an operation and a
location. The path σ is called program path if for every i with 1 ≤ i ≤ n there ex-
ists a CFA edge g = (li−1, opi, li) and l0 is the initial program location, i.e., σ rep-
resents a syntactic walk through the CFA. Every path σ = 〈(op1, l1), ..., (opn, ln)〉
defines a constraint sequence γσ = 〈op1, ..., opn〉. The semantics of a program
path σ = 〈(op1, l1), ..., (opn, ln)〉 is defined as the successive application of the
strongest post-operator to each operation of the corresponding constraint sequence γσ:
SPγσ (v) = SPopn

(...SPopi
(..SPop1

(v)..)...). The set of concrete program states that
result from running σ is represented by the pair (ln, SPγσ (v0)), where v0 = {} is the
initial abstract variable assignment that does not map any variable to a value. A pro-
gram path σ is feasible if SPγσ(v0) is not contradicting, i.e., SPγσ(v0)(x) �= ⊥ for
all variables x in def(SPγσ(v0)). A concrete state (ln, cdn) is reachable from a re-
gion r, denoted by (ln, cdn) ∈ Reach(r), if there exists a feasible program path
σ = 〈(op1, l1), ..., (opn, ln)〉 with (l0, v0) ∈ r and cdn ∈ [[SPγσ (v0)]]. A location l
is reachable if there exists a concrete state c such that (l, c) is reachable. A program is
SAFE if le is not reachable.

The precision for an abstract variable assignment is a set π of variables. The explicit-
value abstraction for an abstract variable assignment is an abstract variable assignment
that is defined only on variables that are in the precision π. For example, the explicit-
value abstraction for the variable assignment v = {x �→ 2, y �→ 5} and the precision
π = {x} is the abstract variable assignment vπ = {x �→ 2}.

The precision for a program is a function Π : L → 2X , which assigns to each
program location a precision for an abstract variable assignment, i.e., a set of variables
for which the analysis is instructed to track values. A lazy explicit-value abstraction
of a program uses different precisions for different abstract states on different program
paths in the abstract reachability graph. The explicit-value abstraction for a variable
assignment at location l is computed using the precision Π(l).

CEGAR for Explicit-Value Model Checking. We now instantiate the three compo-
nents of the CEGAR technique, i.e., precision, feasibility check, and refinement, for our
explicit-value analysis. The precisions that our CEGAR instance uses are the above in-
troduced precisions for a program (which assign to each program location a set of vari-
ables), and we start the CEGAR iteration with the empty precision, i.e., Πinit(l) = ∅
for each l ∈ L, such that no variable will be tracked.

The feasibility check for a path σ is performed by executing an explicit-value analy-
sis of the path σ using the full precision Π(l) = X for all locations l, i.e., all variables
will be tracked. This is equivalent to computing SPγσ(v0) and check if the result is
contradicting, i.e., if there is a variable for which the resulting abstract variable assign-
ment is ⊥. This feasibility check is extremely efficient, because the path is finite and
the strongest post-operations for abstract variable assignments are simple arithmetic
evaluations. If the feasibility check reaches the error location le, then this error can
be reported. If the check does not reach the error location, because of a contradicting
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Algorithm 3. Interpolate(γ−, γ+)
Input: two constraint sequences γ− and γ+, with γ− ∧ γ+ is contradicting
Output: a constraint sequence Γ , which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v
v := SPγ− (∅);
for each x ∈ def(v) do

if SPγ+ (v|def(v)\{x}) is contradicting then
v := v|def(v)\{x}; // x is not relevant and should not occur in the interpolant

Γ := 〈〉; // start assembling the interpolating constraint sequence
for each x ∈ def(v) do
Γ := Γ ∧ 〈[x = v(x)]〉; // construct an assume constraint for x

return Γ

abstract variable assignment, then a refinement is necessary because at least one con-
straint depends on a variable that was not yet tracked.

We define the last component of the CEGAR technique, the refinement, after we in-
troduced the notion of interpolation for variable assignments and constraint sequences.

Interpolation for Variable Assignments. For each infeasible error path in the above
mentioned refinement operation, we need to determine a precision that assigns to each
program location on that path the set of program variables that the explicit-value analy-
sis needs to track in order to eliminate that infeasible error path in future explorations.
Therefore, we define an interpolant for abstract variable assignments.

An interpolant for a pair of abstract variable assignments v− and v+, such that
v− ∧ v+ is contradicting, is an abstract variable assignment V that fulfills the follow-
ing requirements: (1) the implication v− ⇒ V holds, (2) the conjunction V ∧ v+ is
contradicting, and (3) V only contains variables in its definition range which are in the
definition ranges of both v− and v+ (def(V) ⊆ def(v−) ∩ def(v+)).

Lemma. For a given pair (v−, v+) of abstract variable assignments, such that v− ∧ v+

is contradicting, an interpolant exists. Such an interpolant can be computed in time
O(m+ n), where m and n are the sizes of v− and v+, respectively.

Proof. The variable assignment v−|def(v+) is an interpolant for the pair (v−, v+).

The above-mentioned interpolant that simply results from restricting v− to the def-
inition range of v+ (common definition range) is of course not the best interpolant.
Interpolation for assignments is a first idea to approach the problem, but since we need
to extract interpolants for paths, we next define interpolation for constraint sequences.

Interpolation for Constraint Sequences. A more expressive interpolation is achieved
by considering constraint sequences. The conjunction γ ∧ γ′ of two constraint se-
quences γ = 〈op1, ..., opn〉 and γ′ = 〈op ′

1, ..., op
′
m〉 is defined as their concatenation,

i.e., γ ∧ γ′ = 〈op1, ..., opn, op
′
1, ..., op

′
m〉, the implication of γ and γ′ (denoted by

γ⇒γ′) as SPγ(v0)⇒ SPγ′(v0), and γ is contradicting if [[SPγ(v0)]] = ∅, with v0 = {}.
An interpolant for a pair of constraint sequences γ− and γ+, such that γ− ∧ γ+ is

contradicting, is a constraint sequence Γ that fulfills the three requirements: (1) the
implication γ− ⇒ Γ holds, (2) the conjunction Γ ∧ γ+ is contradicting, and (3) Γ
contains in its constraints only variables that occur in the constraints of both γ− and γ+.
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Algorithm 4. Refine(σ)
Input: infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: precision Π
Variables: interpolating constraint sequence Γ

Γ := 〈〉; Π(l) := ∅, for all program locations l ;
for i := 1 to n− 1 do
γ+ := 〈opi+1, ..., opn〉
Γ := Interpolate(Γ ∧ opi, γ

+) // inductive interpolation
// extract variables from variable assignment that results from Γ
Π(li) :=

{
x
∣∣(x, z) ∈ SPΓ (∅) and ⊥ 
= z 
= �}

return Π

Lemma. For a given pair (γ−, γ+) of constraint sequences, such that γ− ∧ γ+ is con-
tradicting, an interpolant exists. Such an interpolant is computable in time O(m · n),
where m and n are the sizes of γ− and γ+, respectively.

Proof. Algorithm Interpolate (Alg. 3) returns an interpolant for two constraint se-
quences γ− and γ+. The algorithm starts with computing the strongest post-condition
for γ− and assigns the result to the abstract variable assignment v, which then may
contain up to m variables. Per definition, the strongest post-condition for γ+ of variable
assignment v is contradicting. Next we try to eliminate each variable from v, by test-
ing if removing it from v makes the strongest post-condition for γ+ of v contradicting
(each such test takes n SP steps). If it is contradicting, the variable can be removed. If
not, the variable is necessary to prove the contradiction of the two constraint sequences,
and thus, should occur in the interpolant. Note that this keeps only variables in v that
occur in γ+ as well. The rest of the algorithm constructs a constraint sequence from
the variable assignment, in order to return an interpolating constraint sequence, which
fulfills the three requirements of an interpolant. A naive implementation can compute
such an interpolant in O((m+ n)3).

Refinement Based on Explicit-Interpolation. The goal of our interpolation-based re-
finement for explicit-value analysis is to determine a location-specific precision that is
strong enough to eliminate an infeasible error path in future explorations. This criterion
is fulfilled by the property of interpolants. A second goal is to have a precision that is
as weak as possible, by creating interpolants that have a definition range as small as
possible, in order to be parsimonious in tracking variables and creating abstract states.

We apply the idea of interpolation for constraint sequences to assemble a precision-
extraction algorithm: Algorithm Refine (Alg. 4) takes as input an infeasible program
path, and returns a precision for a program. A further requirement is that the proce-
dure computes inductive interpolants [6], i.e., each interpolant along the path contains
enough information to prove the remaining path infeasible. This is needed in order to
ensure that the interpolants at the different locations achieve the goal of providing a
precision that eliminates the infeasible error path from further explorations. For every
program location li along an infeasible error path σ, starting at l0, we split the constraint
sequence of the path into a constraint prefix γ−, which consists of the constraints from
the start location l0 to li, and a constraint suffix γ+, which consists of the path from the
location li to le. For computing inductive interpolants, we replace the constraint prefix
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Fig. 1. Illustration of one refinement iteration; simple example CFA, infeasible error path with
the abstract states annotated in the nodes (precision empty; nothing tracked), interpolants (i.e.,
variable assignments), precision extracted from interpolants, abstract states according to new
precision after error path is refuted

by the conjunction of the last interpolant and the current constraint. The precision is
extracted by computing the abstract variable assignment for the interpolating constraint
sequence and assigning the relevant variables as precision for the current location li, i.e.,
the set of all variables that are necessary to be tracked in order to eliminate the error
path from future exploration of the state space. This algorithm can be directly plugged-
in as refinement routine of the CEGAR algorithm (cf. Alg. 2). Figure 1 illustrates the
interpolation process on a simple example.

Auxiliary Predicate Analysis. As an optional further improvement, we implemented
a combination with a predicate analysis (cf. [8]): If the explicit-value analysis finds an
error path, this path is checked for feasibility in the predicate domain. If feasible, the
result is unsafe and the error path is reported; if infeasible, the explicit-value domain is
not expressive enough to analyze that program path (e.g., due to inequalities). We then
ask the predicate analysis to refine its abstraction along that path, which yields a refined
predicate precision that eliminates the error path but considering the facts along that
path in the (more precise, and more expensive) predicate domain. We need to parsimo-
niously use this feature because the post-operations of the predicate analysis are much
more expensive than the post-operations of the explicit-value analysis. In general, after
a refinement step, either the explicit-value precision is refined (preferred) or the pred-
icate precision is refined (only if explicit does not succeed). We also remove variables
from the precision in the explicit-value domain if the number of different values on a
path exceeds a certain threshold. A later refinement will then add predicates about such
variables to the precision in the predicate domain. Note that this refinement-based, par-
allel composition of explicit-value and predicate analysis is strictly more powerful than
a mere parallel product of the two analyses, because the explicit domain tracks exactly
what it can efficiently analyze, while the predicate domain takes care of everything else.

4 Experiments

In order to demonstrate that our approach yields a significant improvement of verifi-
cation efficiency and effectiveness, we implemented our algorithms and compared our
new techniques to existing tools for software verification. We show that the application
of abstraction, CEGAR, and interpolation to the explicit-value domain considerably
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improves the number of solved instances and the run time. Combinations of the new
explicit-value analysis with a predicate-based analysis can further increase the number
of solved instances. All experiments were performed using rules and hardware identical
to SV-COMP’12 [5], restricting each verification task to the same run time and memory
limits (900 s, 15 GB), such that our results are comparable to all results obtained there.

Compared Verification Approaches. For presentation, we restrict the comparison of
our new approach to the SV-COMP’12 participants BLAST [6], SATABS [14], and the
competition winner CPA-MEMO [23], all of which are based on predicate abstraction
and CEGAR. Furthermore, to investigate performance differences in the same tool
environment, we also compare with different configurations of CPACHECKER. BLAST

won the category “DeviceDrivers64” in the SV-COMP’12, and got bronze in another
category. SATABS got silver in the categories “SystemC” and “Concurrency”, and
bronze in another category. CPA-MEMO won the category “Overall”, got silver in two
more categories, and bronze in another category. We implemented our new concepts
in CPACHECKER [9], a software-verification framework based on CPA. We compare
with the existing explicit-value analysis (without abstraction, CEGAR, and interpo-
lation) and with the existing predicate analysis [10]. We used the trunk version of
CPACHECKER2 in revision 6615.

Verification Tasks. For the evaluation of our approach, we use all SV-COMP’12 3 veri-
fication tasks that do not involve concurrency properties (all categories except category
“Concurrency”). All obtained experimental data as well as the tool implementation are
available at http://www.sosy-lab.org/∼dbeyer/cpa-explicit.

Quality Measures. We compare the verification results of all verification approaches
based on three measures for verification quality: First, we take the run time, in seconds,
of the verification runs to measure the efficiency of an approach. Obviously, the lower
the run time, the better the tool. Second, we use the number of correctly solved instances
of verification tasks to measure the effectiveness of an approach. The more instances a
tool can solve, the more powerful the analysis is. Third, and most importantly, we use
the scoring schema of the SV-COMP’12 as indicator for the quality of an approach. The
scoring schema implements a community-agreed weighting schema, namely, that it is
more difficult to prove a program correct compared to finding a bug and that a wrong
answer should be penalized with double the scores that a correct answer would have
achieved. For a full discussion of the official rules and benchmarks of the SV-COMP’12,
we refer to the competition report [5]. Besides the data tables, we use plots of quantile
functions [5] for visualizing the number of solved instances and the verification time.
The quantile function for one approach contains all pairs (x, y) such that the maximum
run time of the x fastest results is y. We use a logarithmic scale for the time range from
1 s to 1000 s and a linear scale for the time range between 0 s and 1 s.

Improvements of Explicit-Value Analysis. In the first evaluation, we compare two dif-
ferent configurations of the explicit-value analysis: CPA-EXPL refers to the existing im-
plementation of a standard explicit-value analysis without abstraction and refinement,
and CPA-EXPLitp refers to the new approach, which implements abstraction, CEGAR, and

2 http://cpachecker.sosy-lab.org
3 http://sv-comp.sosy-lab.org/2012

http://www.sosy-lab.org/~dbeyer/cpa-explicit/
http://cpachecker.sosy-lab.org
http://sv-comp.sosy-lab.org/2012
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Table 1. Comparison with purely explicit, non-CEGAR
approach

Category CPA-EXPL CPA-EXPLitp

points solved time points solved time
ControlFlowInt 124 81 8400 123 79 780
DeviceDrivers 53 37 63 53 37 69
DeviceDrivers64 5 5 660 33 19 200
HeapManipul 1 3 5.5 1 3 5.8
SystemC 34 26 1600 34 26 1500
Overall 217 152 11000 244 164 2500

Fig. 2. Purely explicit analyses

Table 2. Comparison with predicate-based configurations

Category CPA-PRED CPA-EXPLitp CPA-EXPL-PRED CPA-EXPLitp-PRED
score solved time score solved time score solved time score solved time

ControlFlowInt 103 70 2500 123 79 780 131 85 2600 141 91 830
DeviceDrivers 71 46 80 53 37 69 71 46 82 71 46 87
DeviceDrivers64 33 24 2700 33 19 200 10 11 1100 37 24 980
HeapManipul 8 6 12 1 3 5.8 6 5 11 8 6 12
SystemC 22 17 1900 34 26 1500 62 45 1500 61 44 3700
Overall 237 163 7100 244 164 2500 280 192 5300 318 211 5600

Table 3. Comparison with three existing tools

Category BLAST SATABS CPA-MEMO CPA-EXPLitp-PRED
score solved time score solved time score solved time score solved time

ControlFlowInt 71 51 9900 75 47 5400 140 91 3200 141 91 830
DeviceDrivers 72 51 30 71 43 140 51 46 93 71 46 87
DeviceDrivers64 55 33 1400 32 17 3200 49 33 500 37 24 980
HeapManipul – – – – – – 4 9 16 8 6 12
SystemC 33 23 4000 57 40 5000 36 30 450 61 44 3700
Overall 231 158 15000 235 147 14000 280 209 4300 318 211 5600

interpolation. Table 1 and Fig. 2 show that the new approach uses less time, solves more
instances, and obtains more points in the SV-COMP’12 scoring schema.

Improvements of Combination with Predicate Analysis. In the second evaluation, we
compare the refinement-based explicit analysis against a standard predicate analysis and
to a combination of predicate analysis with CPA-EXPL and CPA-EXPLitp, respectively: CPA-
PRED refers to a standard predicate analysis that CPACHECKER offers (ABE-lf, [10]),
CPA-EXPL-PRED refers to the combination of CPA-EXPL and CPA-PRED, and CPA-EXPLitp-
PRED refers to the combination of CPA-EXPLitp and CPA-PRED. Table 2 and Fig. 3 show that
the new combination approach outperforms the approaches CPA-PRED and CPA-EXPLitp

in terms of solved instances and score. The comparison with column CPA-EXPL-PRED is
interesting because it shows that the combination of the two analyses is an improvement
even without refinement in the explicit-value analysis, but switching on the refinement
in both domains makes the new combination significantly more effective.
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Fig. 3. Comparison with predicate-based configs Fig. 4. Comparison with three existing tools

Comparison with State-of-the-Art Verifiers. In the third evaluation, we compare our
new combination approach with three established tools: BLAST refers to the standard
BLAST configuration that participated in the SV-COMP’12, SATABS also refers to the
respective standard configuration, CPA-MEMO refers to a special predicate abstraction
that is based on block-abstraction memoization, and CPA-EXPLitp-PRED refers to our novel
approach, which combines a predicate analysis (CPA-PRED) with the new explicit-value
analysis that is based on abstraction, CEGAR, and interpolation (CPA-EXPLitp). Table 3
and Fig. 4 show that the new approach outperforms BLAST and SATABS by consuming
considerably less verification time, more solved instances, and a better score. Even
compared to the SV-COMP’12 winner, CPA-MEMO, our new approach scores higher. It is
interesting to observe that the difference in scores is much higher than the difference in
solved instances: this means CPA-MEMO had many incorrect verification results, which
in turn shows that our new combination is significantly more precise.

5 Conclusion
The surprising insight of this work is that it is possible to achieve —without using
sophisticated SMT-solvers during the abstraction refinement— a performance and pre-
cision that can compete with the world’s leading symbolic model checkers, which are
based on SMT-based predicate abstraction. We achieved this by incorporating the ideas
of abstraction, CEGAR, lazy abstraction refinement, and interpolation into a simple,
standard explicit-value analysis. We further improved the performance and precision
by combining our refinement-based explicit-value analysis with a predicate analysis,
in order to benefit from the complementary advantages of the methods. The combina-
tion analysis dynamically adjusts the precision [8] for an optimal trade-off between the
precision of the explicit analysis and the precision of the auxiliary predicate analysis.
This combination out-performs state-of-the-art model checkers, witnessed by a thor-
ough comparison on a standardized set of benchmarks.
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Abstract. We present a technique for automatically weaving structural
invariant checks into an existing collection of classes. Using variations on
existing design patterns, we use a concise specification to generate from
this collection a new set of classes that implement the interfaces of the
originals, but with the addition of user-specified class invariant checks.
Our work is notable in the scarcity of assumptions made. Unlike previous
design pattern approaches to this problem, our technique requires no
modification of the original source code, relies only on single inheritance,
and does not require that the attributes used in the checks be publicly
visible. We are able to instrument a wide variety of class hierarchies,
including those with pure interfaces, abstract classes and classes with
type parameters. We have implemented the construction as an Eclipse
plug-in for Java development.

1 Introduction

Several, if not most, mainstream languages include features to support object-
oriented programming, yet most of these (C++, C#, Java, Python, etc.) lack
any native language support for the specification and runtime checking of class
invariants. While it is usually easy enough to implement the invariant predicates
themselves, manual addition imposes further requirements in order to implement
the operational requirements of invariant checking and to handle the interplay of
invariant specification and inheritance. Class invariants are further troublesome
in that they involve direct access to an object’s attributes. This makes manual
addition particularly unappealing, as the available choices are invasive with re-
spect to the original interface and implementation (to which we may not have
access), compromise encapsulation, and are error-prone if done manually.

This paper presents a lightweight, non-invasive technique for automatically
extending a collection of class definitions with a corresponding collection of struc-
tural invariant checks. The invariants are given as a stand- alone specification,
which is woven together with the original source files to produce a new collection
of drop- in replacement classes that are behaviorally indistinguishable from the
originals in the absence of invariant- related faults but will expose such faults in
a way that the original classes do not. Each replacement is defined to be a sub-
class (indeed, a subtype [1]) of the original class whose functionality it extends,
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and it can thus be substituted in any context in which the original occurs. The
generation is itself completely automatic, and the incorporation into a test har-
ness or other program is nearly seamless. We focus here on the Java language,
a choice that complicates the overall strategy in some ways while simplifying it
in others.

2 Background and Related Work

A class invariant is a conjunction of predicates defined on the values of an
object’s individual attributes and on the relationships between them. It char-
acterizes an object’s “legal” states, giving the predicates that must hold if the
object is to represent an instance of that abstraction. Usually, a class invariant
is given in conjunction with the contracts for each publicly-visible method of
a class, i.e., the preconditions that must hold on arguments to each method
call and the consequent guarantees that are made as postconditions upon the
method’s return. Unlike the contracts, however, a class invariant is a property
concerning only an object’s data values, even (especially) when those values are
not publicly visible. An invariant must hold at every point between the object’s
observable actions, i.e. upon creation of any object that is an instance of this
class and both before and after every publicly-visible method call [2,3]. At other
points, including non-visible method calls, it need not hold, and runtime checks
are disabled in this case. Further, since runtime invariant checks can impose a
non-trivial performance penalty on a system, in general, it is desirable to have a
mechanism for leaving the checks in place during testing, while removing them
from a final, production system. Finally, there is an important interplay between
the subtype relation (which determines when one object can safely be substi-
tuted in a context calling for another [1]) and class invariants: if B is a subtype
of A (as well as a subclass) then the invariant for B must include all of the
constraints in A’s invariant [2,3].

Some languages offer native support for invariant checking, but for Java and
other languages that lack this, including such checks is challenging. A common
approach is to make use of the language’s assertion mechanism, by including
assertions of the invariant at the end of each constructor body and at the begin-
ning and end of the body of each public method [2]. If the language’s assertions
mechanism is used, disabling the checking functionality after testing is usually
quite easy. However, this approach carries the disadvantage of requiring the class
designer to code not only the predicates themselves but also an explicit handling
of the inheritance requirements and the full execution model, discussed above.
Both of these tasks must be implemented for each invariant definition, in each
class.

To avoid the implementation burden of the assertions approach, we can use a
tool that generates the invariant checks from either specialized annotations of the
source code [4,5,6] or reserved method signatures [7,8,9]. Essentially, such tools
offer language extensions to resemble native support for invariant definitions.
In comparison to assertion-based approaches, they eliminate the requirement of
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implementing the execution model, a clear advantage. As with the assertions
approach, annotation approaches are invasive, in that they require modification
of the original source code. More substantially, the approach generally requires
the use of a specialized, nonstandard compiler, whose development may not keep
up with that of the language1.

Instead, we can view the addition of runtime invariant checking across a class
hierarchy as a kind of cross-cutting concern, i.e. code that is defined across sev-
eral classes and hence resists encapsulation. Under this view, it is natural to
approach this problem as one of aspect-oriented programming (AOP) [11], in
which we can use a tool such as AspectJ [12] to define the checks separately
as aspects. The entry and exit points of each method become the join points,
the point cuts are inferred from a class’s method signatures, and the invariant
check itself becomes the advice [13,14]. Unlike annotation-based approaches, as-
pect weaving can be done without the need for a non-standard compiler, either
through source code transformation or byte code instrumentation [15]. However,
the AOP approach also presents several difficulties. For example, Balzer et al.
note that mainstream tools such as AspectJ lack a mechanism to enforce the
requirement that the definition of a class’s invariant include the invariant of its
parent class [16]. It is possible to write invariant checking “advice” so that it
correctly calls the parent class’s invariant check, but this must be done manu-
ally (e.g. [13]). A similar problem occurs in implementing the correct disabling
of checks on non-public calls. Lastly, because aspects cannot in general be pre-
vented from changing an object’s state, the weaving of additional aspects may
compose poorly with the aspect that provides the invariant check [17,16,18]. It
is possible that another aspect could break the class invariant, and since inter-
leaving of multiple aspects is difficult to control, it is possible the two aspects
could interleave in such a way as to make the invariant failure go undetected.

The work closest in spirit to our own is the design pattern approach of Gibbs,
Malloy, and Power ([19,20]. Targeting development in the C++ language, they
present a choice of two patterns for weaving a separate specification of invari-
ant checks into a class hierarchy, based on the well known decorator and visitor
patterns [21]. However, the decorator approach involves a fairly substantial refac-
toring of the original source code. Moreover, the authors note that this technique
interacts poorly with the need to structure invariant checks across a full class
hierarchy. The refactoring in this case is complex, and it requires the use of
multiple inheritance to relate the decorated classes appropriately, making it un-
suitable for languages such as Java, which support only single inheritance. Their
alternative is an application of the visitor pattern, in which the invariant checks
are implemented as the visit methods in a single Visitor class. This pattern usu-
ally requires that the classes on the “data side” implement an accept method,
which is used to dispatch the appropriate visit method, but in their use of it,
only the top of the class hierarchy is modified to be a subclass of an “invari-
ant facilitator”, which handles all accept implementations. However, successful

1 For example, JML has not seen active development since version 1.4 of the Java
language [10].
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implementation of the visit methods rests on the assumption that all fields are
either publicly visible or have their values readily available through the existence
of accessor (“getter”) methods. Unless the language simply lacks a mechanism
to hide this representation (e.g. Python), such exposure is unlikely to be the
case, as it violates encapsulation, permitting uncontrolled manipulation of an
object’s parts, either directly or through aliasing [2].

The central thesis of our work is that, under assumptions common to Java
and other statically-typed OO languages, these limitations—source code modi-
fication, multiple inheritance, and public accessibility of fields—are unnecessary
for a design-pattern approach. The remainder of the present paper shows how
to relax them.

3 Weaving Invariant Checking from Specifications

Our approach draws from the Gibbs/Malloy/Power design pattern efforts and
from ideas in AOP in the treatment of invariant specifications as a cross-cutting
concern. We begin with an assumption that the class invariants are given in
a single specification file, separate from classes that they document. Each con-
straint is a boolean- valued Java expression, with the invariant taken to be the
conjunction of these expressions. We assume (though do not hope to enforce)
that these expressions are free of side effects, and that the invariant given for a
child class does not contradict any predicates in inherited invariants. Otherwise,
the particulars of the specification format are unimportant. The current version
of our tool uses JSON [22], but any format for semi-structured data will do.

We focus on the Java programming language, which means that we assume a
statically-typed, object-oriented language, with introspective reflection capabil-
ities, support for type parameters in class definitions, single inheritance (though
implementation of multiple interfaces is possible), and a uniform model of virtual
method dispatch. We make some simplifications of the full problem. Specifically,
we work only with synchronization- free, single-threaded, non-final class defini-
tions, and we consider only instance methods of a class that admit overriding,
i.e., non-static, non-final2 method definitions. We do not consider anonymous in-
ner class constructs nor the lambda expressions planned for Java 8 [23]. Finally,
we assume a class’s field visibility grants at least access through inheritance (i.e.
protected accessbility or higher). This last is made purely for the sake of simpli-
fying the technical presentation, since, as discussed in section 5, introspection
makes it easy to handle variables of any accessibility.

3.1 An Inheritance-Based Approach

As a first effort, we will try an approach that leverages the mechanism of in-
heritance and the redefinition of inherited method signatures through subtyping

2 The final keyword has two uses in Java: to declare single-assignment, read-only
variables and to prohibit extension of classes or overriding of methods. The latter
form is equivalent to the sealed keyword in C#, and it is this usage we avoid here.
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public class A′<TA′> extends A<SA′> {
private int δ = 0;

public A(−−−→τA x) {
super(−→x );
δ = δ + 1;
φ2();

}
public τfA fA(−−−−→σfA

y) {
φ1(); τfA χ = super.fA(−→y ); φ2();

return χ;
}
private boolean inv() { return ρA; }
private void φ1() {

if (δ == 0 && !inv())
〈 handle invariant failure 〉

δ = δ + 1;
}
private void φ2() {

δ = δ - 1;
if (δ == 0 && !inv())

〈 handle invariant failure 〉
}

}

Fig. 1. Inheritance-based generation of invariant checks

polymorphism. The idea is to derive from a class and its invariant a subclass,
in which we wrap the invariant in a new, non-public method (perhaps with ad-
ditional error reporting features), similar to the “repOK” approach advocated
by Liskov and Guttag [2]. To this new subclass, we also add methods φ1 and
φ2 to handle the checking tasks at (respectively) method entry and exit points,
and we use these to define constructors and overridden versions of every public
method.

Let A be a class, with parametric type expression TA defined on type parame-
ters SA, field declarations −→τ a, invariant ρA, constructor definition A(−−→τA y) and
public method τf f(−−→σf z).

public class A<TA> {
−−→τ a;

public A(−−→τA x) { . . . }
public τfA fA(−−−−→σfA

y) { . . . }
}

We extend A with runtime checking of ρA by generating the subclass in Fig. 1,
where TA′ and SA′ are identical to TA and SA (respectively), except perhaps for
renaming of type parameters (i.e., they are α-equivalent).

For each constructor in A′, the body executes the “real” statements of the
corresponding superclass constructor, followed by a check of ρA, whose execution
is itself controlled by the φ2 method. Likewise, the body of each public method
fA wraps a call to the superclass’s version between checks of ρA, with execution
controlled by the φ1 and φ2 methods. If fA returns a value, then this value
is captured in the overridden version in a “result” variable, χ. A method or
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constructor call is publicly-visible precisely when the call stack depth on a given
A′ object is 0, and this value is tracked by the additional integer-valued field δ.
The φ1 and φ2 methods increment/decrement δ as appropriate, evaluating ρA
only if δ = 0.3

The inheritance-based approach suggests an easy mechanism for reusing code
while adding the necessary invariant checks and capturing the distinction be-
tween publicly-visible and inner method calls. For the user, the burden consists
of replacing constructor calls to A with the corresponding calls for A′. This may
be an excessive requirement when A objects are used in production-level code,
but in many settings where invariant checking is desirable, such constructor calls
are limited to only a handful of sites. In the JUnit framework, for example, in-
tegration of A′ objects into unit tests for A is likely quite simple, as object
construction occurs mainly in the body of a single method, setUp.

Note the assumptions of uniform polymorphic dispatch and non-final decla-
rations here. If a class cannot be extended (e.g. String and other objects in the
java.lang package), then construction of a subclass that implements the invariant
checks is obviously impossible. Similarly, a method whose dispatch is statically
determined cannot be transparently overridden, and if declared final, it cannot
be overridden at all. In many languages (notably, C# and C++) the default
convention is static dispatch, with dynamic binding requiring an explicit virtual
designation; in such cases, the inheritance construction is far less convenient and
may be impossible without some refactoring of the original source code.

Unfortunately, our first attempt fails in two critical ways, which becomes
apparent when we attempt to construct the invariant-checking extension across a
hierarchy of class definitions. First of all, the inheritance hierarchy of a collection
of objects requires a corresponding structure in the composition of invariant
checks. This problem is very similar to the one encountered in the “decorator”
approach of [20], but the multiple-inheritance solution given there is unavailable
in a single-inheritance language such as Java. Consider a classB that is a subtype
of A (written B <: A):

public class B<TB> extends A<SB>{
−→
τ b

public B(−−→τB y) { . . . }
public τgB g(−−−−→σgB

z) { . . . }
}

Figure 2 depicts the problem4. The invariant for a B object, invB, must include
the A invariant—i.e., invB = invA∧ρB . However, a B′ object cannot access the
fields of its associated B object through inheritance and also reuse the function-
ality of the invA method. We might choose to have B′ descend from A′ instead,

3 In the presence of concurrency, we would need a more sophisticated mechanism;
keeping track of the call stack depth on an object for each thread, synchronizing all
method calls on the object’s monitor lock, and so on.

4 There and throughout this paper, we write [S/τ ]T to denote the substitution of
type expression τ for the type parameter S in expression T , and use the shorthand
[S1/τ1, S2/τ2]T to denote the composition of type expressions [S1/τ1] [S2/τ2]T .
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τ a

τfA  f
A
 (σfA  y)

B<TB>

τ b

τgB
  g

B
 (σgB

  z)

A'<TA' >

boolean invA ()

B'<TB' >

boolean invB ()

<<bind>>

[SA / SB] TA     

<<bind>>

[ SA /SA' ] TA

?

<<bind>>

[SA' / ?] TA'
?

<<bind>>

[SB / SB'] TB

Fig. 2. Design flaw in the naive inheritance approach

but this only works if all fields in B are publicly accessible. As discussed above,
this is unlikely to be the case.

The second, related failure is that inheritance does not facilitate a correct
binding of the type parameters. Again, this is clear from Fig. 2. An instantiation
of B supplies a type τ to the parameters SB, which is used in turn to bind
the parameters SA with argument [SB/τ, SA/SB]TA. When we instantiate B′

instead, this same τ binds the parameters SB′ , with the resulting chain of ar-
guments binding A’s parameters SA as [SB′/τ, SB/SB′ , SA/SB]TA. For correct
use of the A′ invariant check in this B′〈τ〉 object, we would need to bind the
type parameter of A′, SA′ , in the same way we do A’s parameter, SA; i.e. with
argument [SB′/τ, SA′/SB′ , SA/SA′ ]TA, a binding that cannot be ensured, unless
B′ is a subclass of A′.

3.2 Exposing the Representation

Though unsuccessful on its own, we can use the inheritance approach of Section
3.1 as the basis for an auxiliary pattern, which we call an exposure pattern. The
idea is to construct from the original hierarchy a corresponding set of classes that
offers the interface of the original collection and in addition, a controlled exposure
of each object’s representation. The machinery for checking the invariants is
factored into separate classes, as discussed in Section 3.3, below.
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Consider a class definition

public class A<TA> {
τ1 a1; . . . τk ak;

public A(−−→τA y) { . . . }
public τfA fA(−−−→σfA

z) { . . . }
}

We derive the exposure interface

public interface IAE<TA′′> {
τ1 γa1();

. . .

τm γam();

}

and exposed class

public class AE<TA′> extends A<SA′> implements IAE<SA′> {
private int δ = 0;

private void φ1() { . . . }
private void φ2() { . . . }
protected boolean inv(InvV v) { . . . }

public AE(−−−→τA y) {
super(−→y ); δ = δ + 1; φ2();

}
public τfA fA(−−−−→σfA

y) {
φ1(); τfA χ = super.fA(−→y ); φ2();

return χ;
}

public τ1 γa1(){ return a1; }
. . .

public τm γam(){ return am; }
}

where TA′ , TA′′ and SA′ , SA′′ are α-equivalent to TA and SA, as above. Note
that the fields a1 . . . am include all of the original a1 . . . ak and perhaps others,
as discussed on page 171, below. The constructors and public methods in AE

are overridden in exactly the same manner as in the A′ class of Section 3.1, and
likewise the implementation of the φ1() and φ2() methods. The representation
exposure happens through the γai(), a set of raw “getter” methods that expose
each of the object’s fields. In the presence of inheritance, the corresponding
structure is realized not in the derived class but in the derived interfaces. Thus,
for example,

public class B<TB> extends A<SB>{
τ1 b1; . . . τl bl;

public B(−−→τB y) { . . . }
public τgB f(−−−−→σgB

z) { . . . }
}
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A<TA>

B<TB>

IAE<TA'''>

IBE<TB''>

<<bind>>

[SA / SB] TA

BE < TB' >

AE < TA' >

A<TA>

B<TB>

<<bind>>

[SA / SB] TA

<<bind>>

[SB / SB'] TB

<<bind>>

[SA'' / SA'] TA''

<<bind>>

[SB'' / SB'] TB''

<<bind>>

[SA / SA'] TA

<<bind>>

[SA'' / SB''] TA''

Fig. 3. Exposure pattern construction

gives rise to the interface and class definitions

public interface IBE<TB′′> extends IAE<SB′′> {
τ1 γb1

();

. . .

τn γbn();

}
public class BE<TB′> extends B<SB′> implements IBE<SB′> { . . . }

The construction is illustrated in Fig. 3.

Correctness. Since the type expressions in a class definition are copied to its
exposed class and interface (perhaps with α-renaming of the parameters), it is
easy to see that

Proposition 3.1. For any type expression τ , an instance of a class A has type
A<T (τ)> if and only if AE and IAE have types AE<T (τ)> and IAE<T (τ)>,
respectively. ! 

The construction of the accessor methods is less obvious. While we construct
γai() for each of the fields {a1, . . . , ak}, we may need to construct others, as
well, in case the invariant ρA makes reference to any inherited fields for which
we have not already constructed an interface. This can happen in the case of an
incomplete specification of the class hierarchy and invariants. The simplest way
to handle this is to include in the interface a γai() for each declared field in the
corresponding A classes and also for each variable that occurs without explicit
declaration in the the predicate ρA. However, we can leverage the inheritance of
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interfaces to eliminate redundant declarations (though not implementations, as
discussed below).

To make the construction precise, we denote the free variables of the predicate
ρA by FV (ρA), i.e. those variables that occur in ρA without being explicitly
declared in ρA. Conversely, the bound variables in a class A, BV (A), are the
instance fields declared in A. The following definition captures the notion of
variables that are “free” in A through inheritance:

Definition 3.2. Let P be a specification of a collection of classes and their
associated invariants. For a class A, the set of fields exposed through inheritance
in A, I(A), is defined by

I(A) =
{
∅ , if A has no superclass specified in P

I(C) ∪BV (C) ∪ FV (ρC) , if A <: C and C is specified in P

We use this to define the necessary method signatures in each exposure interface.

Definition 3.3. Given class A and invariant ρA, the body of IAE consists of
the the signatures

IAE = {τaiγai(); | ai ∈ BV (A) ∪ FV (ρA) \ I(A)}

where each τai is the declared type of ai.

Definition 3.4. For a field, τai ai, either declared in or inherited by a class A,
we say that ai is successfully exposed for A if either

– there is an interface IAE and subclass
class AE extends A implements IAE

such that IAE includes a method interface
τ γai

();

and for every AE object o, o.γai()== o.ai
– A is a subclass of C, and ai is successfully exposed for C.

Given A and ρA, the construction for IAE in Definition 3.3 and the accompany-
ing implementation AE combine to give us the representation exposure we need
for ρA. In particular,

Proposition 3.5. If x ∈ FV (ρA), then x is successfully exposed for A. ! 

Space Requirements. The primary difference between the exposure pattern
construction and the inheritance-based effort of Section 3.1 lies in the construc-
tion of the exposure interfaces, whose inheritance structure is congruent to that
of the original collection of classes. Like the earlier attempt, however, the collec-
tion of exposed classes does not share this same relation, and as a consequence,
both approaches are subject to some unfortunate redundancy consequences. In
particular, we cannot reuse code between distinct exposed classes, even when
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the classes they expose are related by inheritance. For example, if a class A con-
tains fields a1 and a2 and public method f() then the exposed class AE must
override f(), and it must include exposure methods γa1 and γa2 , according to
the interface IAE . If B <: A contains fields b1, b2, and method g(), then it must
override not only g() but also f(), with the body of the overridden f() identical
to that in AE . Likewise, it must implement not only the γb1 and γb2 methods
from the IBE interface, but also γa1 and γa2 .

Happily, all of this is easily automated, and it is reasonable to suppose the
space overhead manageable. Note first that, with the exception of classes at the
top of a specified hierarchy, the size of the interface generated for a class is
proportional to the number of fields in that class. Recalling Definitions 3.2 and
3.3, we can see that this is so because

Proposition 3.6. Let C be a class included in a specification P . For every class
A <: C, FV (ρA) \ I(A) = BV (A).

In other words, only for classes specified at the top of an inheritance hierarchy
will we ever need to generate additional γ declarations in the corresponding in-
terfaces. In all other cases, the accessor interfaces for inherited fields are inherited
from the corresponding parent interfaces. Hence, the space required to extend a
collection of classes depends only on the size of each class and the depth of the
inheritance relationship in the collection. Specifically, if we assume a bound of
n new field and method definitions on each class and an inheritance depth of h,
then the overall space growth is given by

h∑
i=1

⎛⎝ i∑
j=1

n

⎞⎠ =

(
h∑

i=1

i

)
n =

(
h(h+ 1)

2

)
n ∈ O(h2n)

It is difficult to give a general characterization of either n or h, but there is reason
to suspect that both are manageable values in practice. McConnell recommends
a limit of 7 new method definitions in a class [24]. Shatnawi’s study [25] finds
no significant threshold value for h. Classes in the JDK’s java.* and javax.*
libraries implement anywhere from less than 10 to over 100 new methods, while
the largest depth of any inheritance tree is 8.

3.3 Adding the Invariant Checks

As in Gibbs/Malloy/Power [20], we implement the runtime invariant checks
themselves through an application of the visitor pattern [21], in which the meth-
ods implementing the invariant checks are aggregated into a single class (the “vis-
itor”), with the appropriate method called from within the class being checked
(the “acceptor”). Unlike their approach, however, our exposure pattern allows
us to do this without modification of any part of the original source files, not
even at the top of the inheritance hierarchy.

Suppose we have a class A<TA>, with invariant ρA. From these, we generate
the exposed class AE<TA′> and the exposure interface IAE<TA′′>, as in Section
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3.2. The specification of ρA and the access methods defined for IAE are used to
generate an invariant checking “visitor” class:

public class InvV {
public <TAI

> void vA(IAE<SAI
> obj) {

τ1 a1 = obj.γ1();
. . .

τn an = obj.γn();

〈〈 compute ρA and return the result 〉〉
}

}

where TAI and SAI are equivalent to TA and its parameters SA, as above.
Runtime checking of ρA is invoked in the AE methods through calls to that

class’s inv method, which serves as the “accept” method, handling dispatch of
the appropriate invariant check:

public class AE<SA′> extends A<SA′> implements IAE<SA′> {
private int δ = 0;

private void φ1() { . . . }
private void φ2() { . . . } // (as defined in Section 3.1)

private boolean inv(InvV v) {
v.vA(this);
return v.valid();

}
. . .

}

Note that each vA() method in InvV takes an argument of type IAE and not
AE . This is necessary, because of the need to compose an invariant check with
that of the object’s superclass in each invariant method. For example, if we have
B <: A, we define vB() as

public <TB> void vB(IBE<SB> obj) {
vA( (IAE<SB>) obj);

〈〈 compute ρB, as above 〉〉
}

Since AE and BE are not related by inheritance, it would not be possible to
directly cast obj to its superclass’s exposed version. Fortunately, the interface is
all we need.

Finally, although we structure our solution here according to the traditional
visitor pattern conventions, we do not really need the full generality of that
pattern. In particular, it is unnecessary to support full double dispatch, as we
only need one instance of InvV , and no vi() method will ever invoke a call
back to the inv() method of an object (not even indirectly, since the φ1 and
φ2 methods in a class prevent a call to inv() if one is already running). Our
implementation of this approach as an Eclipse plugin instead drops the InvV
parameter from every inv method, relying instead on a single, static instance of
the invariant visitor:
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private boolean inv() {
InvV v = InvV .getInstance();
. . .

}

4 Example: Unit Testing

Method contracts and class invariants are particularly useful in testing. In com-
bination with test oracles, the use of runtime invariant and pre/post-conditions
checks improves the exposure of faults as well as the diagnosability of faults when
they are detected [26,27]. Our implementation as an Eclipse plug has proven use-
ful in diagnosing invariant-related faults.

For example, a simple List interface provides an abstraction for the list data
type. A standard way to implement this is with an underlying doubly-linked list,
in which we keep a pair of “sentinel” head and tail nodes, with the “real” nodes
in the list linked in between:

public abstract class AbstractList<T> implements List<T> {
protected int size;
...

}

public class DLinkedList<T> extends AbstractList<T> implements List<T> {
// inherited from AbstractList: int size
protected DNode<T> head, tail; ...

}

Among other predicates, the invariant for DLinkedList requires that ∀n �= tail,
n.next.prev = n.

This was given as part of a project for the first author’s data structures
course, and among the student submissions received was this implementation of
remove(), in which the cur.prev pointer is not correctly updated:

public boolean remove(T v) {
DNode<T> cur = head.next;
while (cur != tail) {

if (cur.data.equals(v)) {
DNode<T> prev = cur.prev; cur = cur.next; prev.next = cur;
size--;
return true;

} else
cur = cur.next;

}
return false;

}

A JUnit test suite failed to uncover this fault, passing this and the tests for
12 other methods:

public void testRemove() {
ls.add("a"); ls.add("b"); ls.add("c"); ls.add("d"); ls.add("a"); ls.add("d");
int sz = ls.size();
assertTrue(ls.remove("a")); assertTrue(ls.size() == sz - 1);
sz = ls.size();
assertTrue(!ls.remove("**")); assertTrue(ls.size() == sz);

}
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From the original source code and a specification of invariants our tool gen-
erates the classes and interfaces

public interface IExposedAbstractList<T> {
int _getSize();

}
public interface IExposedDLinkedList<T> extends IExposedAbstractList<T> {

DNode<T> _getHead();
DNode<T> _getTail();

}

public abstract class ExposedAbstractList<T>
extends AbstractList<T> implements IExposedAbstractList<T> { ... }

public class ExposedDLinkedList<T>
extends DLinkedList<T> implements IExposedDLinkedList<T> { ... }

public class RepOKVisitor {
...
public <T> void visit(IExposedAbstractList<T> _inst) { ... }
public <T> void visit(IExposedDLinkedList<T> _inst) { ... }
...

}

Objects in a JUnit test suite are constructed in the setUp()method, and a simple
modification was all that was needed to cause testRemove() to fail appropriately:

protected void setUp() {
// ls = new DLinkedList<String>();

ls = new ExposedDLinkedList<String>();
}

5 Conclusion and Future Work

The design pattern given here provides a fairly seamless approach for adding
correct runtime invariant checking to a class hierarchy, through the construction
of drop-in replacements that can be removed as easily as inserted. In addition
to the core material presented here, there are a number of extensions possible.

For example, the presentation in this paper relies on the assumption above
that all fields in a class are accessible through inheritance. Happily, this is an
easy if tedious limitation to overcome. If instead the field is declared with only
intra-object or intra-class access (e.g. Java’s “private”), we can use the intro-
spective capabilities of the language to manufacture a locally-visible get method.
To access a private field x, for example, our implementation generates a γx that
handles the unwieldy details of Java introspection:

private τ getX() {
Class klass = this.getClass(); Field field = null;
while (field == null) {

try {
field = klass.getDeclaredField("x"); field.setAccessible(true);

} catch (NoSuchFieldException e) {
klass = klass.getSuperclass();

}
}
τ x = null;
try {

x = (τ) field.get(this);
} catch (IllegalAccessException e) { e.printStackTrace(); throw new Error(); }
return x;

}
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Other extensions, such as the inclusion of anonymous inner classes, concur-
rency, or final classes/methods, remain as open challenges.

Finally, the work described here incorporates only the invariant checks, rather
than full contracts, and it would clearly be useful to extend our design pattern
to support this. While we conjecture that our technique is easily extendable to
this purpose, the invariant checks present the most interesting problems, owing
to their need for attribute access and hierarchical definition. Philosophically,
ordinary unit testing already performs at least the behavioral components of
contract checking, i.e. the checks of pre and post-conditions. What unit testing
cannot do is determine whether the invariant continues to hold, as it is often
impossible to access an object’s fields. The difference lies in the fact that both
pre and post conditions are inherently extensional specifications. They impose
requirements on method arguments and return values, but on the object itself,
all constraints are made upon the abstraction of the object, not the concrete
implementation. That implementation— whose consistency with the abstraction
is the core assertion of a class invariant—is by definition opaque to an object’s
user.
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Abstract. Sequence enumeration is a method for deriving a system
model based on informal requirements. Under sequence enumeration,
stimulus (input) sequences are considered in a breadth-first manner, with
the expected system response to each sequence given. Not all sequences
of stimuli are considered since a sequence need not be extended if either
it is illegal (it cannot be applied in practice) or it can be reduced to
another sequence previously considered (the sequences take the system
to the same state). Sequence enumeration is mostly a manual process,
which leads to a model that can be used as the basis for automation.
This paper describes a method, based on string-rewriting, that auto-
mates parts of sequence enumeration. This automation has the potential
to reduce both the cost and time involved in sequence enumeration but
also to reduce the scope for human error. In addition to outlining this
method, we discuss our experiences in applying it to four case studies.

Keywords: software specification, sequence-based specification,
sequence enumeration, string-rewriting, requirements engineering.

1 Introduction

Software development often starts with all sorts of functional requirements. They
are generally written in a natural language, and contain ambiguities, omissions,
inconsistencies, and errors. All these problems need to be resolved and the re-
quirements need to be converted into a precise specification at an early stage
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in the development life cycle. The specification is important for later phases
including code development, testing, as well as functional formal verification.

The sequence-based specificationmethod [12,19–21] was developed for this pur-
pose, providing a systematic way to convert imprecise and informal requirements
into precise software specifications, through sequence enumeration. In this pro-
cess, the developer or domain expert considers sequences of stimuli in a breadth-
first manner, where sequences of a given length are examined in lexicographic
order. For each such sequence, the developer gives the last output produced in
response to the sequence. There are two situations in which a sequence need not
be further extended: either it is illegal (it cannot be applied in practice) or it
reaches a system state equivalent to one reached by a shorter or lexicographi-
cally earlier sequence. Sequence enumeration stops when no sequence needs to
be extended and results in a table of sequences that defines a Mealy machine.

A significant benefit of sequence enumeration is that it results in a formal
specification but without requiring the developer to use a formal notation. This
specification can form the basis for other activities, such as automated (model-
based) testing. The specification can also be automatically analyzed to determine
whether it has certain expected, or desirable properties; this can result in require-
ments errors being found. The number of sequences considered is also equal to
the number of transitions of the Mealy machine that represents the requirements
and so the cost of sequence enumeration can be seen as being linear in terms of
the complexity of the requirements. However, automation has the potential to
allow sequence enumeration to scale further. This paper describes a method in
which string-rewriting rules are used in order to automate the analysis of some
sequences. This reduces the number of sequences that have to be considered,
and thus can reduce both the cost of sequence enumeration and the potential for
human error. We also explain how possible rules can be deduced from previous
reductions; potentially these might be provided to the developer who can choose
to accept or reject them. The overall approach has been implemented in our
enumeration tool [18] and we describe the result of applying this tool to four
case studies.

This work was motivated by the various observed patterns in analyzing enu-
merated sequences in field applications [2, 4, 10, 21]. With the new theory and
accompanying tool support, more equivalence declarations can be handled au-
tomatically and consistently leading to fewer human errors. The result is an
enhanced enumeration process. The method treats discrete systems, and sys-
tems modeled as discrete based on abstractions of events.

This paper is structured as follows. In Section 2 we describe sequence enu-
meration and a running example. Section 3 describes the proposed method that
uses string-rewriting in sequence enumeration, while Section 4 outlines our expe-
rience in using this method with four case studies. Section 5 summarizes related
work. Finally, Section 6 draws conclusions and discusses future work.
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2 Developing a Behavioral Specification through
Sequence Enumeration

Sequence-based specification [12, 19–21] uses a technique called sequence enu-
meration to discover the behavior of the software. The resulting specification
can be converted to a state machine for implementation and testing.

To apply the method, one first identifies a system boundary that defines what
is inside and outside the software-intensive system. This usually consists of a list
of interfaces between the system and the environment of the software.

Throughout the paper we will use an automobile mirror electronic control unit
(ECU) as a running example. The example was taken from [2] and modified to
fit the page limit. The original requirements are collected in Table 1, with each
sentence numbered (tagged) for easy reference.

Table 1. Requirements for the driver side car mirror ECU

Trace Tag Requirement

1 There is a switch that toggles for adjustment of either the driver side or
the passenger side mirror.

2 The driver side electronic control unit (ECU) initializes when the car
key is in start position.

3 The driver side ECU processes inputs from position sensors and users.
4 The driver side ECU produces outputs to actuators and sends messages

to other ECUs.
5 Control area network (CAN) bus used for communication among ECUs.
6 Signals for the passenger side mirror are put on the CAN bus and sent

to the passenger side ECU.
7 Each mirror can be adjusted vertically and has extreme up and down

positions.
8 Each mirror can be adjusted horizontally and has extreme inward and

outward positions.
9 If requested movement cannot be made because the mirror is already

in an extreme position, an error message is generated and sent via the
CAN bus.

We identify a system boundary in Figure 1, and list the interfaces in Table 2
with traces to the tagged requirements. From the interfaces one further collects
stimuli and responses. Stimuli refer to events (inputs, interrupts, invocations)
in the environment that can affect system behavior. Responses refer to system
behaviors observable in the environment. The stimuli and responses for the car
mirror ECU are identified in Table 3 and Table 4.

We use S and R to denote the stimulus set and the response set, respec-
tively. As the name “sequence enumeration” suggests, one explicitly enumerates
all finite stimulus sequences from S∗ (representing scenarios of use), first in in-
creasing order of length, and within the same length lexicographically. We use λ
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Actuator

CAN
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Fig. 1. A system boundary for the driver side car mirror ECU

Table 2. Interfaces for the driver side car mirror ECU

Interface Description Trace

Actuator The actuators 4
CAN The CAN bus 4, 5, 6
Human The human users 3
Power The power 2
Sensor The position sensors 3

Table 3. Stimuli for the driver side car mirror ECU

Stimulus Long Name Description Interface Trace
MHI Mirror horizontal

inward
Horizontal inward movement of selected
mirror

Human 8

MHO Mirror horizontal
outward

Horizontal outward movement of selected
mirror

Human 8

MVD Mirror vertical
down

Vertical down movement of selected
mirror

Human 7

MVU Mirror vertical up Vertical up movement of selected mirror Human 7
PHEI Position horizontal

extreme inward
Horizontal position report of driver side
mirror indicating the extreme inward
position is reached

Sensor 8

PHEO Position horizontal
extreme outward

Horizontal position report of driver side
mirror indicating the extreme outward
position is reached

Sensor 8

PHNE Position horizontal
no extreme

Horizontal position report of driver side
mirror indicating no extreme position is
reached

Sensor 8

PVED Position vertical
extreme down

Vertical position report of driver side
mirror indicating the extreme down
position is reached

Sensor 7

PVEU Position vertical
extreme up

Vertical position report of driver side
mirror indicating the extreme up posi-
tion is reached

Sensor 7

PVNE Position vertical no
extreme

Vertical position report of driver side
mirror indicating no extreme position is
reached

Sensor 7

SM Switch mirror The switch toggled for selection of driver
side or passenger side mirror

Human 1

START Start Car key in start position Power 2
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Table 4. Responses for the driver side car mirror ECU

Response Long Name Description Interface Trace
CERR CAN mirror movement

failure
Error message generated and put on
CAN bus when mirror is already in
extreme position and cannot make
requested movement.

CAN 9

CMHI CAN mirror horizontal
inward

Message is generated and put on CAN
bus for passenger side ECU for hori-
zontal inward movement of passenger
side mirror.

CAN 6, 8

CMHO CAN mirror horizontal
outward

Message is generated and put on CAN
bus for passenger side ECU for hori-
zontal outward movement of passenger
side mirror.

CAN 6, 8

CMVD CAN mirror vertical
down

Message is generated and put on CAN
bus for passenger side ECU for vertical
down movement of passenger side
mirror.

CAN 6, 7

CMVU CAN mirror vertical up Message is generated and put on CAN
bus for passenger side ECU for vertical
up movement of passenger side mirror.

CAN 6, 7

HI Horizontal inward move-
ment

Horizontal inward movement of driver
side mirror

Actuator 8

HO Horizontal outward
movement

Horizontal outward movement of
driver side mirror

Actuator 8

VD Vertical down movement Vertical down movement of driver side
mirror

Actuator 7

VU Vertical up movement Vertical up movement of driver side
mirror

Actuator 7

to denote the empty sequence. For our example, the stimuli are alphabetically
ordered in Table 3. We concatenate stimuli to string prefixes with periods.

For each sequence one identifies a unique response based on the requirements.
For instance, START.PHEI.MHO corresponds to: car key in start position, fol-
lowed by a horizontal position report indicating that the driver side mirror has
reached the extreme inward position, followed by a human command to move
the driver side mirror outward. By Requirement 8, the software should produce
response HO to make a horizontal outward movement.

When mapping stimulus sequences to responses, there are two special sit-
uations. In one case, a sequence generates no externally observable behavior,
represented by null (denoted 0) in R. In the other case, a sequence is physically
unrealizable (the sequence cannot happen in practice), hence we introduce an-
other special response illegal (denoted ω) into R. Therefore, R always contains
0 and ω. A sequence is illegal when it maps to ω; otherwise, it is legal.

For each enumerated sequence v, one checks whether v takes the system to
a situation encountered with a previous sequence u. This is the case if u and
v, when further extended by any non-empty stimulus sequence w, will always
generate the same response. For instance, START.MHI and START are two
such sequences because we assume (by derived requirement D3 in Table 5; “de-
rived” because there is no justification in the original requirements and hence
we document and tag our assumption as a derived requirement) that any mirror
adjustment command is ignored before receiving the position report. Two such
sequences areMealy equivalent, as they lead to the same state when the system is
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modeled as a Mealy machine [9]. Note that two Mealy equivalent sequences need
not be mapped to the same response but their responses with respect to future
extensions always agree. If a sequence is not Mealy equivalent to any previously
enumerated sequence, it is unreduced; otherwise, it is reduced to the previously
enumerated (Mealy equivalent) sequence that is itself unreduced.

Table 5. Derived requirements for the driver side car mirror ECU

Tag Derived Requirement

D1 It is physically impossible for the ECU to experience an input without power.
D2 There is no externally observable response across the system boundary when

ignition is turned on.
D3 Mirror adjustment commands ignored unless position signal has been received.
D4 No externally observable response when mirror position signal is received.
D5 No externally observable response when the mirror selection switch toggles.
D6 Re-powering on makes previous history irrelevant.
D7 When ignition is turned on, default mirror selection is on the driver side.
D8 When mirror selection switch goes to passenger side, any received or to-be-

received driver side mirror position report will be ignored. Updated position
signals are expected once switch goes back to the driver side.

One starts with the empty sequence. To get all sequences of length n + 1
(integer n ≥ 0) one extends all sequences of length n by every stimulus in S, and
considers the extensions in lexicographic order. This inherently combinatorial
process can be controlled by two observations:

- If sequence u is reduced to a prior sequence v, there is no need to extend u,
as the behaviors of the extensions are defined by the same extensions of v.

- If sequence u is illegal, there is no need to extend u by any stimulus, as all
of the extensions must be illegal (i.e., physically unrealizable).

Therefore, only legal and unreduced (also called extensible) sequences of length
n get extended by every stimulus for consideration at length n+1. The process
continues until all sequences of a certain length are either illegal or reduced to
prior sequences. The enumeration becomes complete. This terminating length is
discovered in enumeration, and varies from application to application.

Excerpts of an enumeration for the mirror controller is in Table 6 (for the
complete enumeration table see [8]). Columns are for sequences, their responses,
reductions, and traces to requirements. An unreduced sequence (highlighted)
repeats itself in the “Equivalence” column. In constructing the enumeration,
we found that supplemental information was needed for enumeration decisions
regarding responses and equivalences. We include such information as “derived
requirements” in Table 5. They are subject to validation by domain experts. This
illustrates one benefit of sequence-based specification, that is, the identification of
missing, inconsistent, and incorrect requirements through explicit enumeration.

Application of the method is facilitated with a prototype enumeration tool de-
veloped by the Software Quality Research Laboratory (SQRL) at the University



Augmenting Sequence Enumeration 185

Table 6. Excerpts of an enumeration without applying string-rewriting

Sequence Response Equivalence Trace

λ 0 λ Method

MHI ω MHI D1

· · ·
SM ω MHI D1

START 0 START 2, D2

START.MHI 0 START D3

START.MHO 0 START D3

START.MVD 0 START D3

START.MVU 0 START D3

START.PHEI 0 START.PHEI D4

· · ·
START.PVNE 0 START.PVNE D4

START.SM 0 START.SM D5

START.START 0 START 2, D2, D6

START.PHEI.MHI CERR START.PHEI 8, 9

START.PHEI.MHO HO START 8

START.PHEI.MVD 0 START.PHEI D3

· · ·
START.PHNE.PVNE.PVNE 0 START.PHNE.PVNE D4

START.PHNE.PVNE.SM 0 START.SM D5, D7, D8

START.PHNE.PVNE.START 0 START 2, D2, D6

of Tennessee [18]. To produce a specification in the tool, one only needs to give
stimuli and responses short names to facilitate enumeration; no other notation
or syntax is required. The tool enforces enumeration rules by the recommended
workflow and maintains internal files (XML format) current with every action.
The mirror control example was produced using the tool.

3 Applying String-Rewriting to Sequence Enumeration

Deciding that two sequences are Mealy equivalent is not always easy. If one could
document any observed patterns (for instance, some pairs of inputs commute;
some are idempotent), and automatically apply these patterns when they are
seen again, it would reduce human effort and also enforce consistent decisions
throughout. We find that string-rewriting theory can be applied for this purpose.

3.1 Assumptions

By “enumeration” we refer to a, possibly partial, enumeration work product
following the process described in Section 2. It corresponds to a table mapping
stimulus sequences to responses, equivalent sequences, and traces. Sequences are
listed in increasing order of length, and within the same length lexicographically.
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All rows are completely filled in. Table 6 shows excerpts of a complete enumer-
ation table with 217 sequences. If the sequences have rows labeled 0 to 216, any
subtable with the rows from 0 to i, 0 ≤ i ≤ 216, is an enumeration.

We assume that we are always working with a minimal enumeration: no equiv-
alence declarations have been missed. This is quite a strong assumption, but a
starting point for our theoretical framework. We have also developed a theory
that removes this assumption but it is outside of the scope of this paper.

3.2 Prefix Rewrite Rules

An enumeration is a possibly partial specification product. The reductions among
enumerated sequences automatically define a set of prefix rewrite rules. If se-
quence u is reduced to prior sequence v, then u and v take the system to the
same state from the initial state. For any w ∈ S∗, the state reached by uw is the
same as that reached by vw. Hence we rewrite uw to the smaller sequence vw
in length-lexicographic order representing the same state. We denote this prefix
rewrite rule by u |= v, where |= denotes the prefix-rewriting relation.

The first illegal sequence u, if there are any, also defines prefix rewrite rules.
If we extend u by any stimulus x ∈ S, ux and u must take the system to the
same state. We can rewrite any sequence that contains ux as a prefix to a shorter
sequence by replacing ux with u. We have one such prefix rewrite rule for each
stimulus x in S, denoted by ux |= u. To summarize, the following prefix rewrite
rules are defined for an enumeration with stimulus set S:

- If sequence u reduces to a prior sequence v, then u |= v.
- If sequence u is the first illegal sequence, then ux |= u for all x in S. (1)

As an example, if we enumerate as in Table 6 and stop at Length 2, the following
are defined: x |=MHI, where x is any stimulus except MHI; START.v |= START,
where v is any stimulus in {MHI, MHO, MVD, MVU, START}; MHI.x |= MHI,
where x is any stimulus in Table 3.

A reduction system has two parts, a set and a binary relation called the re-
duction relation on that set [3]. An enumeration with stimulus set S and prefix
rewrite rules defined by (1) implies a reduction system: S∗ is the set, and the
reduction relation→ on S∗ is defined by u→ v if and only if there exists w ∈ S∗

such that u = lw, v = rw and l |= r is a prefix rewrite rule. If no prefix rewrite
rules apply to sequence u then u is said to be a normal form and we showed
in [8] (all the conclusions that follow in this paragraph) that otherwise u prefix-
rewrites to a Mealy equivalent sequence, and that rewriting continues until finally
we get to a normal form. Rewriting is guaranteed to terminate, and a unique
normal form is obtained for any stimulus sequence. With a completed enumer-
ation, the normal form for every stimulus sequence is the smallest sequence in
length-lexicographic order that takes the system to the same state. All sequences
that rewrite to the same normal form sequence are Mealy equivalent.
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3.3 String Rewrite Rules

A complete enumeration encodes a finite state automaton with Mealy outputs
(a Mealy machine). Unreduced sequences represent system states and each row
in the enumeration table defines the response and ending state for the transi-
tion with a particular stimulus and starting state. For instance, in Table 6 the
sequence START.MHI is mapped to 0 and reduced to START. This indicates
that from the state represented by unreduced sequence START, the outgoing
arc triggered by MHI outputs 0 and loops back into the same state.

The process of deriving an incomplete enumeration could lead to string rewrite
rules that reflect general structures of the state machine being identified. These
could be exploited later to infer reductions. For example, one might decide that
when two position reports in the same axis (horizontal/vertical) are received in
a row, the more recent overrides the other. PHEI.PHNE " PHNE is such a rule
with " denoting the string rewrite relation. In any sequence one may replace
substring PHEI.PHNE (not necessarily as a prefix), with PHNE (hence a string
rewrite rule). String rewrite rules can be generalized from already identified
sequence reductions. We consider two situations:

- A single reduction suggests a string rewrite rule. Suppose sequence u reduces
to the prior sequence v. If u = w1lw2, and v = w1rw2 for some w1, w2 ∈ S∗,
then l " r is a potential string rewrite rule.

- Two reductions suggest a string rewrite rule. Suppose sequences u and v
both reduce to prior sequence w (w is prior to both u and v) and u = w1lw2,
v = w1rw2 for some w1, w2 ∈ S∗, then l " r is a potential string rewrite rule.

We require r be length-lexicographically smaller than l for any string rewrite
rule l " r, so that rewriting is always towards a smaller sequence in length-
lexicographic order for deriving sequence reductions. Also for any u in S∗, ul
and ur must be Mealy equivalent. To summarize, a string rewrite rule can be
defined for an enumeration with stimulus set S as follows:

If the following hold:
- either sequence u reduces to sequence v, or sequences u and v reduce to
the common prior sequence w. In both cases u = w1lw2, and v = w1rw2

for some w1, w2 ∈ S∗,
- r is length-lexicographically smaller than l,
- ul and ur are Mealy equivalent to each other for all u in S∗,

then l " r. (2)

We have seen one rule, PHEI.PHNE " PHNE. Another is PHEI.MHI " PHEI
identified when one reduces START.PHEI.MHI to START.PHEI.

An enumeration with string rewrite rules implies a reduction system: S∗ is the
set, and → on S∗ is defined by u→ v if and only if there exist w1, w2 ∈ S∗ such
that u = w1lw2, v = w1rw2, and l " r is a string rewrite rule. We showed in [8]
(all the conclusions that follow in this paragraph) that every stimulus sequence to
which string rewrite rules apply string-rewrites to a Mealy equivalent sequence.
Rewriting continues until a normal form is reached. Rewriting is guaranteed to
terminate, but there may be more than one normal form for a sequence.
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3.4 Combining Prefix String-Rewriting with String-Rewriting

When enumerating stimulus sequences we may have prefix rewrite rules defined
by (1) and string rewrite rules defined by (2). We can combine these rules in
a mixed reduction system as follows. Reduction relation → on S∗ is defined by
u → v if and only if one or both of the two conditions hold: there exists w and
prefix rewrite rule l |= r such that u = lw and v = rw; or there exists w1, w2 ∈ S∗

and string rewrite rule l " r such that u = w1lw2 and v = w1rw2. If (prefix or
string) rewrite rules apply to a sequence u then u rewrites to a Mealy equivalent
sequence [8]. Rewriting continues until a normal form is derived. As with string-
rewriting, rewriting is guaranteed to terminate, and more than one normal form
might be obtained. For an incomplete enumeration, the next sequence to be
enumerated in length-lexicographic order must have a unique normal form [8].

The reduction system can be used to predict the reduction of the next sequence
to be enumerated based on the prefix and string rewrite rules. If the unique
normal form is different than the sequence itself, it suggests a sequence reduction.
If the sequence itself and the derived unique normal form are identical, the human
specifier takes over and considers possible reduction. This suggests that we can
develop enumerations and reduction systems concurrently through the process
in Table 7, until a complete enumeration is constructed.

Table 7. Major steps of enumeration process with string-rewriting support

1: Let the enumeration with the stimulus set S contain only the empty sequence λ,
mapped to 0 and unreduced. No rules are defined. The reduction system has an
empty set as the reduction relation.

2: Repeat the steps below until the enumeration is complete.
3: Derive the (unique) normal form (say v) of the next sequence (say u) to be enu-

merated in length-lexicographic order in the current enumeration, using the current
reduction system.

4: The human specifier defines the response (say r) of u.
5: If v = u, then the human specifier redefines v such that u is reduced to v by

Mealy equivalence and the enumeration rules. If u cannot be reduced to any prior
sequence, let u be unreduced.

6: Let the enumeration contain the sequence u. u is mapped to r and is either unre-
duced, or reduced to v by Step 5.

7: If the response mapping and the equivalence declaration for u define a prefix rewrite
rule l |= r by (1), then add to the reduction relation (ly, ry) for all y ∈ S∗.

8: If the human specifier identifies string rewrite rule l � r by (2) given the equivalence
declaration of u, then add to the reduction relation (xly, xry) for all x, y ∈ S∗.

Suppose we apply the process to the mirror controller (for the complete enu-
meration see [8]). We continue discovering rewrite rules as we enumerate, extend-
ing a reduction system while we extend an enumeration. The rules accumulate
until they determine another reduction, then string-rewriting is applied automat-
ically. In this example over half of the reductions for the length-four sequences
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(69 of 108) were through automatic string-rewriting. This accounts for almost a
third of reductions (69/217) needed for a complete enumeration.

4 Case Studies

We implemented the theory in our specification tool [18], and used it to construct
the car door mirror example. We observe that once the rewrite rules are discov-
ered, they can be checked against the requirements to see if correct decisions
have been made, and against each other to see if such decisions have been made
consistently. Table 8 shows the rules grouped by rule structures and semantics.

Table 8. Grouping rewrite rules based on structures and semantics

I
S6: PHEI.MHI � PHEI S16: PHEO.MHO � PHEO
S35: PVED.MVD � PVED S48: PVEU.MVU � PVEU

II

S10: PHEI.PHEI � PHEI S11: PHEI.PHEO � PHEO
S12: PHEI.PHNE � PHNE S19: PHEO.PHEI � PHEI
S20: PHEO.PHEO � PHEO S21: PHEO.PHNE � PHNE
S28: PHNE.PHEI � PHEI S29: PHNE.PHEO � PHEO
S30: PHNE.PHNE � PHNE S40: PVED.PVED � PVED
S41: PVED.PVEU � PVEU S42: PVED.PVNE � PVNE
S52: PVEU.PVED � PVED S53: PVEU.PVEU � PVEU
S54: PVEU.PVNE � PVNE S64: PVNE.PVED � PVED
S65: PVNE.PVEU � PVEU S66: PVNE.PVNE � PVNE
x.y � y, where x, y ∈ {PHEI, PHEO, PHNE}
x.y � y, where x, y ∈ {PVED, PVEU, PVNE}

III

S13: PHEI.SM � SM S22: PHEO.SM � SM
S31: PHNE.SM � SM S43: PVED.SM � SM
S55: PVEU.SM � SM S67: PVNE.SM � SM
x.SM � SM, where x ∈ {PHEI, PHEO, PHNE, PVED, PVEU, PVNE}

IV

S37: PVED.PHEI � PHEI.PVED S38: PVED.PHEO � PHEO.PVED
S39: PVED.PHNE � PHNE.PVED S49: PVEU.PHEI � PHEI.PVEU
S50: PVEU.PHEO � PHEO.PVEU S51: PVEU.PHNE � PHNE.PVEU
S61: PVNE.PHEI � PHEI.PVNE S62: PVNE.PHEO � PHEO.PVNE
S63: PVNE.PHNE � PHNE.PVNE
x.y � y.x, where x ∈ {PVED, PVEU, PVNE}, y ∈ {PHEI, PHEO, PHNE}

V
S69: SM.MHI � SM S70: SM.MHO � SM
S71: SM.MVD � SM S72: SM.MVU � SM
SM.x � SM, where x ∈ {MHI, MHO, MVD, MVU}

One might further identify patterns. For example, Group II shows a decision
regarding receiving consecutive position reports in the same axis (horizontal or
vertical). Only the latest report is important (this can be validated by domain
experts). Since there are three reports for each axis, the number of such rules is
3 × 3 × 2 = 18. The fact that Group II contains all the 18 rules demonstrates
that this decision has been made consistently throughout the enumeration.
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We can also augment our theory and discover more string rewrite rules by
taking into consideration sequences that do not show up in the enumeration
table, or sequences with specific patterns. Details are not discussed here due
to the page limit (interested readers should see [8]). With these observations
almost 90% of the length-four sequences and half of the total reductions would
be derived automatically by string-rewriting. Table 9 shows the statistics.

Table 9. Percentages of automatic sequence reductions by applying rewriting

With presented theory With presented theory
and observations

Length-four sequences only 69/108 ≈ 63.9% 96/108 ≈ 88.9%
All sequences in the enumeration 69/217 ≈ 31.8% 103/217 ≈ 47.5%

Table 10 shows for the car mirror ECU and each enumeration length: the num-
ber of sequences extended from the previous length, the number of sequences ana-
lyzed, as well as the potential number of sequences to be considered. For analyzed
sequences we also record how many reductions are handled by string-rewriting
and by humans. This shows the effectiveness of enumeration in controlling the
combinatorial growth of the number of sequences to be examined.

Table 10. Sequences analyzed in the car mirror ECU enumeration

Length Sequences
Extended

Sequences
Analyzed

Reductions
by String-
Rewriting

Reductions
by

Humans

Potential
Sequences

0 0 1 0 1 1
1 1 12 0 12 12
2 1 12 0 12 144
3 7 84 7 77 1,728
4 9 108 96 12 20,736

total 18 217 103 114 22,621

We also applied the enumeration process to three published applications:

- Satellite Operations Software (SOS): software component of a space vehicle
that processes commands from the ground control system and supplies com-
munications between an uplink ground site and a downlink ground site [21]

- Mine Pump Controller Software (MPCS): control software of a mine pump
that detects the water level, monitors carbon monoxide, methane and airflow
levels, and operates the pump with assistance from human operators [11]

- Weigh-In-Motion Data Acquisition Processor (WIMDAP): software for data
acquisition used in a weigh-in-motion distributed system that acquires and
processes data from load cells, performs real-time monitoring of the analog
weight signal, and communicates asynchronously with the host computer [25]
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We summarize the result in Table 11 (for the enumerations see [16,22,26]). The
benefit of applying string-rewriting depends on the application and the skill of
the analyst. For instance, the small number of automatic reduction derivations
for the satellite operations software is because the state machine is essentially a
chain with little branching. In any case the discovered rewrite rules help articu-
late unstated patterns or facts that are implicit in the requirements and provide
additional criteria for validating specification decisions to requirements.

Table 11. Sequences analyzed in the three published applications

Application SOS MPCS WIMDAP

Number of stimuli 23 10 14
Terminating enumeration length 9 5 4
Sequences extended 11 22 13
Sequences analyzed 254 265 219
Reductions by string-rewriting 17 47 58
Reductions by humans 237 218 161
Potential sequences 1,883,023,236,984 111,111 41,371

5 Related Work

Sequence-based specification emerged from the functional treatment of software
described by Mills [13–15]. The development was most directly influenced by
the trace assertion method of Parnas [1, 17] and the algebraic treatment of reg-
ular expressions by Brzozowski [5]. One primary distinction of sequence-based
specification is the constructive process used to discover a state machine model.

Rewriting systems were studied for deterministic versions of the trace asser-
tion method [6,7,23,24]. The free choice of canonical traces in [23,24] (as repre-
sentatives of equivalence classes), and a prefix-closed set of unreduced sequences
by construction for any sequence-based specification manifest in the respective
applications of rewriting.

In [23, 24] a general trace rewriting relation is used and modified to address
possibly non-terminating rewriting sequences. “Smart trace rewriting” was in-
troduced to avoid unfruitful rewriting steps, resulting in a constrained prefix
string-rewriting system that guarantees a unique normal form for every string.

Trace rewriting systems [6, 7] algorithmically transform any word of a con-
nected semiautomaton to its canonical form. It is shown that if one imposes
prefix-continuity on the set of canonical words, the constructed prefix string-
rewriting system is well-behaved. Prefix-continuous sets include prefix-closed
sets as a special case. In a sequence-based specification the set of unreduced
sequences is prefix-closed by construction.

Our work differs from the previous work in that rewriting techniques are ap-
plied to assist in the discovery of a state machine from requirements, and to
augment the enumeration process with increased automation. We used uncondi-
tional forms of string-rewriting and prefix string-rewriting, and combined them
in a mixed reduction system.
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6 Conclusion

This paper described a method that used string-rewriting to automate parts of
sequence enumeration. Two types of rewrite rules were outlined. Prefix rewrite
rules are of the form l |= r for sequences l and r. Such a rule says that l
and r take the system to Mealy equivalent states when applied in the initial
state. Thus, we can rewrite a sequence of the form u = lw to v = rw. String
rewrite rules generalised this by not requiring the rewriting to occur at the
beginning of a sequence. Such a rule l " r allows one to rewrite a sequence of
the form u = w1lw2 to v = w1rw2. Given a set of rewrite rules, it is possible
to automatically determine whether a sequence u, being considered in sequence
enumeration, rewrites to a sequence v previously considered. If this is the case
then there is no need to extend u: we know that it reduces to v.

The prefix and string rewrite rules initially used will depend on domain knowl-
edge. However, we also discussed heuristics that allow the developer to identify
potential additional rules. Automation has the potential to both reduce the cost
and time involved in sequence enumeration but also to reduce the scope for hu-
man error. In addition to outlining this method, we discussed four case studies.
Our results are promising, although the degree to which application of these
rewrite rules will expedite the enumeration process will vary with the applica-
tion. The tool enforces the mathematics but hides the details. The proposed
method also provides an opportunity for validation of specification decisions to
requirements. This is valuable in offering a new insight or articulating an impor-
tant fact about the requirements that was unstated.

Current research is focused on other practical matters relevant to the appli-
cation and development of sequence-based specification. For instance, we expect
a thorough treatment of abstractions and abstraction management to produce
benefits. As application is usually facilitated by separation of inputs that do not
interact (to reduce the size of the input alphabet in an enumeration), composi-
tion of sequence-based specifications is also of interest.
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Abstract. This work considers implementation of requirements
expressed as High-level Message Sequence Charts (HMSCs). All HM-
SCs are not implementable, but a particular subclass called local HM-
SCs can be implemented using a simple projection operation. This paper
proposes a new technique to transform an arbitrary HMSC specification
into a local HMSC, hence allowing implementation. We show that this
transformation can be automated as a constraint optimization problem.
The impact of modifications brought to the original specification can
be minimized w.r.t. a cost function. The approach was evaluated on a
large number of randomly generated HMSCs. The results show an av-
erage runtime of a few seconds, which demonstrates applicability of the
technique.

1 Introduction

In many system development methodologies, the user first specifies the system’s
use cases. Some specific instantiations of each use case are then aggregated and
described using a formal language. In the context of distributed applications we
consider, high-level message sequence charts (HMSCs) and their variants are very
popular. They are standardized by the ITU [9], and a variant called sequence
diagrams is part of the UML notation. HMSCs are particularly useful in early
stages of development to describe interactions between processes (or objects).

In a later modeling step of the development, state diagrams (i.e. automata)
prescribe a behavior for each of the processes. Finally, the processes are im-
plemented as code in a specific programming language. Parts of this design
flow can be automated. We consider here the automated transformation of
HMSCs into the model of communicating finite state machines (CFSMs), which
will serve as a skeleton for the development of future code. The produced CFSM
model is called the implementation of the HMSC.

However, HMSCs are not always implementable. HMSCs are automata la-
belled by communication patterns involving several processes. When a choice
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between two patterns exists, all processes are assumed to behave according to
the same pattern. However, in CFSM, processes are independent, and the global
coordination of HMSCs might be lost in implementations when the HMSC is
not local. A non-local HMSC contains a choice between two patterns in which
the first events to be executed occur on distinct processes. Implementations of
non-local HMSCs may exhibit more behaviors than the original specification,
and can even deadlock. Non-local HMSCs can be considered as too incomplete
or too abstract to be implemented. On the other hand, local HMSCs avoid the
global coordination problem, and can always be implemented.

This paper proposes to extend the possibility of automated production of
CFSMs by the use of a localization procedure that transforms any non-local
HMSC into a local one. It guarantees that every choice in the transformed local
HMSC has a leader process, which chooses one scenario and communicates its
choice to the other processes. This can be achieved by adding new messages
and processes in scenarios. Trivial but uninteresting solutions to the localization
problem exist (force all processes to participate in all interactions, and choose
the same leader for every choice). We are thus interested in finding solutions
with the minimal number of added messages because they correspond to the
less disturbing transformation of the specification. In our work, we propose to
address the localization problem with a constraint optimization technique. We
build a constraint model where variables represent leader processes or processes
contributing to a scenario and constraints capture the localization properties
of HMSCs. A cost function is then proposed to minimize the number of added
messages. The experiments we ran on a large class of randomly generated HMSCs
show that localization takes in general a few seconds on ordinary machines.

Several works address automatic synthesis from scenario models. We refer
interested reader to [10] for a survey on synthesis algorithms. The question of
whether an HMSC specification can be implemented by an equivalent CFSM was
shown undecidable in general [2,11], so the key issue is to rely on implementable
classes of HMSCs. Several CFSM implementation techniques have been proposed
for local HMSCs [7,8,1], or regular HMSC [3]. A variant of HMSCs, where com-
munication patterns label shared high-level actions of a network of automata is
translated to Petri nets in [14]. Up to our knowledge, no algorithm was proposed
so far to transform non-local specifications into local ones.

This paper is organized as follows: Section 2 gives the basic formal defini-
tions on HMSCs. Section 3 defines localization of HMSCs. Section 4 proposes
an encoding of localization as a constraint optimization problem, and shows the
correctness of the approach. Section 5 evaluates the performance of our local-
ization procedure with an experimentation, and comments the results. Section 6
concludes this work. For space reasons, proof of theorems are omitted, but can
be found in a full version available at: http://hal.inria.fr/hal-00769656.

2 Basic Definitions

Message Sequence Charts (MSCs for short) describe the behavior of entities
of a system called instances. It is frequently assumed that instances represent
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processes of a distributed system. MSCs have a graphical and textual notation,
but are also equipped with a standardized semantics [13]. The language is com-
posed of two kinds of diagrams. At the lowest level, basic MSCs (or bMSCs
for short) describe interactions among instances. The communications are asyn-
chronous. A second layer of formalism, namely High-level MSCs (HMSCs for
short), is used to compose these basic diagrams. Roughly speaking, an HMSC is
an automaton which transitions are labeled by bMSCs, or by references to other
HMSCs. However, in the paper, we will consider without loss of generality that
our specifications are given by only two layers of formalism: a set of bMSCs, and
an HMSC with transitions labeled by these bMSCs.

Definition 1 (bMSCs). A bMSC defined over a set of instances P is a tuple
M = (E,≤, λ, φ, μ) where E is a finite set of events, φ : E −→ P localizes each
event on one instance. λ : E −→ Σ is a labeling function that associates a type of
action to each event. The label attached to a sending event is of the form p!q(m)
denoting a sending of message m from p to q. Similarly, the label attached to
a reception is of the form p?q(m) denoting a reception on p of a message m
sent by q. Last, events labeled by p(a) represent a local action a of process p.
Labeling defines a partition of E into sets of sending events, reception events,
and local actions, respectively denoted by ES,ER and EL. μ : ES −→ ER is a
bijection that maps sending events with a corresponding reception. If μ(e) = f ,
then λ(e) = p!q(m) for some p, q,m and λ(f) = q?p(m). ≤ ⊆ E2 is a partial
order relation called the causal order.

It is required that events of the same instance are totally ordered: ∀(e1, e2) ∈
E2, φ(e1) = φ(e2) =⇒ (e1 ≤ e2)∨ (e2 ≤ e1). For an instance p, let us call ≤p this
total order. ≤ must also reflect the causality induced by the message exchanges,
i.e. ≤= (

⋃
p∈P

≤p ∪ μ)∗. The graphical representation of bMSCs defines instances

as vertical lines. All events executed by an instance are ordered from top to
bottom. Horizontal arrows represent messages from one instance to another.
Figure 1-a) is an example of bMSC, with three instances A,B,C, exchanging
two messages m1,m2. The events e1 and e3 are sending events, and the events
e2 and e4 are the corresponding receptions.

Fig. 1. An example bMSC and an example HMSC
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For a bMSC M , we will denote by min(M) = {e ∈ E | ∀e′ ∈ E, e′ ≤ e ⇒
e′ = e}, the set of minimal events of M . Intuitively, each event in min(M) can
be the first event executed in M . An instance is called minimal if it carries a
minimal event. A minimal instance (i.e. a process in φ(min(M))) is an instance
that can execute the first events in M . In other words, it can decide to start
executing M rather than another scenario. A bMSC is local if it has a single
minimal instance.

The semantics of a bMSC M is denoted by Lin(M), and defined as the lin-
earizations of M , that is sequences of actions that follow the causal ordering
imposed by M . We refer interested readers to the full version for details. Basic
MSCs only describe finite interactions. They have been extended with HMSCs
to allow iteration, choices, and parallel composition. For simplicity, we restrict
to HMSCs without parallel frames, and with only one hierarchical level. With
these assumptions, HMSCs can be seen as automata labeled by bMSCs.

Definition 2 (HMSCs). An HMSC is a graph H = (I,N,→,M, n0), where
I is a finite set of instances, N is a finite set of nodes, n0 ∈ N is the initial
node of H, M is a finite set of bMSCs, defined over disjoint set of events, and
→⊆ N ×M×N is the transition relation.

In the rest of the paper, we consider without loss of generality that all nodes,
except possibly the initial node and sink nodes, are choice nodes ( i.e. have several
successors by the transition relation). We will denote by Pi the set of active
processes that interacts within a bMSC Mi ∈M. HMSCs also have a graphical
representation: Nodes are represented by circles, references to bMSCs by boxes.
The initial node of an HMSC is connected to a downward pointing triangle, and
final nodes to an upward pointing triangle. The example of Figure 1-b) shows
an example of HMSC, with two nodes n0, n1. Intuitively, this HMSC depicts a
protocol in which three processes exchange data, before closing a session. This
very simple HMSC allows for the definition of iterations: bMSC M1 can be
repeated several times before the execution of bMSC M2. Note however that
even if a bMSC M1 is seen before a bMSC M2 along a path of H , this does not
mean that all events of M1 are executed before M2 starts. The semantics of an
HMSC is defined using sequential composition of bMSCs.

We do not define formally sequential composition of bMSCs, and refer inter-
ested readers to the full version. Intuitively, composing sequentially two bMSCs
M1 and M2 consists in drawing M2 below M1 to obtain a new bMSC. The se-
quential composition is denoted by M1 ◦ M2. From this intuitive definition, we
can immediately notice that if some events in min(M2) are located on processes
that do not appear in M1, then they are also minimal in M1 ◦M2. This raises two
important remarks: first, executing M1 ◦M2 does not mean executing M1 then
M2, but rather executing the bMSC obtained by concatenation of M1 and M2,
and then minimal events in a concatenationM1 ◦ . . .Mk are not all located inM1.

A path of H is a sequence of transitions ρ = (n1,M1, n
′
1) . . . (nk,M1, n

′
k) such

that n′
i = ni+1. A path is called initial if it starts from node n0. Each path

ρ = (n1,M1, n
′
1) . . . (nk,M1, n

′
k) defines a unique bMSC Mρ = M1 ◦M2 · · · ◦Mk.

The semantics L(H) of a HMSC H is defined as the set of linearizations of all
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bMSCs Mρ such that ρ is an initial path of H . With this semantics, HMSCs are
very expressive. They are more expressive than finite state machines (they can
describe non-regular behaviors, as shown by the example of Figure 1-b)).

The implementation problem consists in building a set of communicating ma-
chines A = {A1, . . . Ak} (one frequently uses as model the Communicating Finite
State Machines (CFSM) proposed by [5]) such that L(A) = L(H). It is frequently
assumed that these communicating machines are obtained by simple projection
of the original HMSC on each instance. The realizability problem consists in de-
ciding whether there exists an implementation A such that L(A) = L(H). Re-
alizability was shown undecidable in general [2,11]. On the other hand, several
papers have shown automatic and correct synthesis techniques for subclasses of
HMSCs [7,8,3,1]. The largest known subclass is that of local HMSCs [4]. These
results clearly show that automatic implementation can not apply in general
to HMSC. However, non-local HMSCs can be considered as too abstract to be
implemented, and need some refinement to be implementable. In the rest of
the paper, we hence focus on a transformation mechanism that transforms an
arbitrary HMSC into a local (and hence implementable) HMSC.

Let us consider the example of Figure 1-b). Node n0 is a choice node, depicting
a choice between two behaviors: either continue to send data (bMSC M1), or
close the data transmission (bMSC M2). However, the deciding instance in M1 is
the Client, while the deciding instance in M2 is the Server. At implementation
time, this may result in a situation where Client decides to perform M1 and
Server decide concurrently to performM2, leading to a deadlock of the protocol.
Such situation is called a non-local choice, and obviously causes implementation
problems. It is then safer to implement HMSCs without non-local choices. At
each choice, a single deciding instance chooses to perform one scenario, and all
other non-deciding instances must conform to this choice.

Definition 3 (Local choice node). Let H = (I,N,→,M, n0) be an HMSC.
Let c ∈ N , c is a local choice if and only if for every pair of (non necessarily
distinct) paths ρ = (c,M1, n1)(n1,M2, n2) . . . (nk,Mk, nk+1) and
ρ′ = (c,M ′

1, n
′
1)(n

′
1,M

′
2, n

′
2) . . . (n

′
q,M

′
k, n

′
q+1) there is a single minimal instance

in Mρ and in Mρ′
(i.e. φ(min(Mρ)) = φ(min(Mρ′

)) and |φ(min(Mρ))| = 1).
H is called a local HMSC if all its nodes are local.

Due to the semantics of concatenation, non-locality can not be checked on a pair
of bMSCs leaving node c, but has to be checked for pairs of paths. Intuitively,
locality of an HMSC H guarantees that every choice in H is controlled by a
unique deciding instance. Checking whether an HMSC is local is decidable [8],
and one can show that this question is in co-NP [1]. It was shown in [7] that
for a local HMSC H = (I,N,→,M, n0), if for every Mi ∈ M we have Pi = I,
then there exists a CFSM A such that L(A) = L(H). A solution was proposed
to leverage this restriction in [1], and allow implementation of any local HMSC.

An immediate question that arises is: how to implement non-local HMSCs?
In the rest of the paper, we propose a solution that transforms any non-local
HMSC into a local one, hence allowing its implementation. This results in slight
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modifications of the original specification. We allow additional active instances
and new messages in bMSCs, but do not change the structure of the HMSC.
Consider the example of Figure 1-b). Replacing M1 by the bMSC M3 of Figure 2
solves the non-local choice problem. Similarly, replacing M1 and M2 respectively
by M4 and M5 solves the the non-locality problem, but needs more messages.

Fig. 2. Solutions for localization of HMSC in Figure 1-b)

This example raises several remarks. First, the proposed transformations are
purely syntactic, and modifying the set of minimal instances does not always
produce a meaningful specification. For this reason, the examples exhibit changes
involving a single message type m. A meaning for additional message has to
be chosen adequately by the designer once an HMSC is localized. The second
remark is that there are several possibilities for localization. The first solution
proposed adds one message in bMSC M1 to obtain M3. The second solution
adds one message to M1 and two to M2, and one can notice that in M5, the
message between Store and Client is useless. Indeed, there exists an infinite
number of transformations to localize an HMSC. This calls for the following
solutions: we want to restrict to cheapest solutions (for instance solutions with
a minimal number of added messages). As we will show later, once a deciding
instance for a choice is fixed, one can compute the minimal number of messages
needed to localize this choice. As a consequence, the solutions to a localization
problem can be given in terms of choosing a deciding instances at each choice,
and instances participating to bMSCs. Then, the localization can be easily tuned
using different cost functions.

3 Localization of HMSCs

In this section, we show how to transform a non-local HMSC into a local one.
This procedure called localization consists in choosing a single deciding instance
for each bMSC M in the HMSC so that all choices become local, and then ensure
that all other instances execute their minimal events only after the first event
(the choice) of the deciding instance. This is done by adding messages, as in the
examples of Fig. 2.

Definition 4. Let M be a bMSC over a set of events E and processes P , with
minimal events e1, . . . , ek. A localized extension of M is a bMSC M ′ over a
set of events E′ ⊇ E and over P ′ ⊇ P , such that there exists a minimal event
emin ∈ E′ and for every e ≤ f ∈ E, we have e ≤′ f . The unique minimal
instance in a localized bMSC M is called the leader of M .
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Note that as there exists an infinite number of extensions for a bMSC M , choos-
ing extensions that are as close as possible to the original model is desirable.
The impact of localization can be simply measured as the number of added
messages. A more generic approach is to associate a cost to communications be-
tween processes, and to choose extensions with minimal cost. This makes sense,
as for instance the cost and delays for communications via satellite are higher
than with ground networks. Similarly, the configuration of a system may pre-
vent two processes p and q from exchanging messages. To avoid solutions with
communications between p and q, one can design a cost function that associates
a redhibitory (or even infinite) cost to such communications.

For a given bMSC M with k minimal events, there exists a localized extension
over the same set of processes that contains exactly k − 1 additional messages.
This localized extension is built when one picks up a deciding instance among the
d the minimal instances of M , and create causal dependencies from the minimal
event on instance d to all other minimal events with additional messages. Only
k− 1 messages are necessary in this case, regardless to their respective ordering
and place of insertion in the orginal bMSC. Another possibility is to pick up
another non-minimal process among those of M that do not carry a minimal
event as a leader, or even add a new process to M . In such cases, a localized
extension can always be built with exactly k additional messages.

Localization of HMSCs is more complex than localization of bMSCs. For each
non-local choice c, we have to ensure that every branch leaving c has the same
leader. Hence, this is not a property purely local to bMSCs. As for bMSCs, we
can define a notion of localized extension of a HMSC as follows:

Definition 5. Let H = (I,N,−→,M, n0) be an HMSC. H ′ = (I,N,−→′,M′,
n0) is a localized extension of H iff there is a bijection f : M→M′ such that
∀M ∈ M, f(M) is a localized extension of M , −→′= f(−→), and H ′ is a local
HMSC.

Localizing an HMSC H consists in finding M′ and the bijection f . As men-
tionned above, as there exists a (potentially) infinite number of solutions, we
consider the solutions with the smallest number of changes to the original model.
We propose to address this problem with a cost function F that evaluates the
cost of each possible transformation of H . The goal of our localization algorithm
is thus to minimize F . For the sake of simplicity in this paper, F counts the total
number of messages and instances added in M′. As localization transforms M
into M′, F is defined as a sum of individual costs of modifications. Formally,

F(H,H ′) �
∑

M∈M
cM,f(M)

where cM,M ′ is the individual cost to transformM intoM ′. When H is clear from
the context, we will write F(H ′) instead of F(H,H ′). Let Mi ∈ M be a bMSC,
M ′

i = f(Mi), IMi , IM ′
i
be the set of instances in Mi and M ′

i . Let k = |min(Mi)|
be the number of minimal instances in Mi, l be the leader instance of M ′

i , and
x = |IM ′

i
| − |IMi | be the number of new instances in Mi. We choose a constant

θ ∈ [0, 1] and define the cost cMi,M ′
i
for transforming Mi into M ′

i as follows:



Scenario Realizability with Constraint Optimization 201

cMi,M ′
i
�
{
x ∗ θ + (k + x− 1) ∗ (1− θ) if l ∈ φ(min(Mi)) or l /∈ IMi

x ∗ θ + (k + x) ∗ (1− θ) otherwise

Intuitively, cMi,M ′
i
is the barycenter between the number of added messages,

and the number of added instances, weighted by θ. We already know that the
number of messages to add is at most k − 1 if we have k minimal instances.
Adding x instances to Mi hence yields adding (k+ x− 1) messages if l is chosen
among the minimal instances of Mi or among the new instances. Similarly, if the
leader instance is chosen among instances that are not minimal w.r.t the causal
ordering, one need to add k+x messages to localize Mi. The value θ is chosen to
penalize more the number of added processes or the number of added messages.

Let us illustrate the computation of F on an example. Let Hc be the HMSC
on the right of Figure 3, and let H ′

c be a localization of Hc. As mentionned
above, F(Hc, H

′
c) = cM1,M ′

1
+ cM2,M ′

2
+ cM3,M ′

3
. The leader of M ′

1 is C and, as
C ∈ min(M1) = {A,C}, then cM ′

1
= 1 − θ (there is a single message added

in M ′
1). The leader of M ′

2 is also C, but C is not an instance of M2, so cM ′
2
=

θ+(1−θ) = 1 (there is a single message and a single instance added in M ′
2). The

leader of M ′
3 is again C. As C is an instance of M3 but not a minimal instance we

have cM ′
3
= 2∗ (1−θ). As a result, F(Hc, H

′
c) = 1−θ+1+2∗ (1−θ) = 4−3∗θ.

One can easily notice thatH ′
c is local. If we compareHc with another localization

H ′′
c , depicted at the right of Figure 3, we get that cM1,M ′′

1
= 2− θ, cM2,M ′′

2
= 1,

cM3,M ′′
3
= 1−θ and finally, F(Hc, H

′′
c ) = 4−2∗θ. Then F(Hc, H

′
c) ≤ F(Hc, H

′′
c )

and thus, localization H ′
c shoud be preferred to H ′′

c . This example shows that
the cost funtion influences the choice of a particular localization solution.

Fig. 3. localizing the HMSC Hc

The cost function F defined above that counts the number of new messages
and processes in bMSCs is only an example, and other functions can be consid-
ered. For instance, a cost function can consider concurrency among events as an
important property to preserve, and thus impose a penality everytime a pair of
events e, e′ is causally ordered in f(M), but not in M .
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Note also that several localization solutions can have the same cost. For in-
stance, if F is used, the order in which messages are exchanged to obtain localized
bMSCs is ignored. Considering that the cost function is influenced only by the
number of added messages and added processes, we define F(H, {(IM ′ , lM ′)}M∈M)
as being the cost of a localization of H that satisfies IM ′ = If(M), where f(M)
has lM ′ as leader for every M ∈ M. The localization problem can be formally
defined as follows:

Definition 6. Let H = (I,N,−→,M, n0) be a non-local HMSC, and F be a
cost function. The localization problem for H,F consists in returning solu-
tions s1, . . . , sk, where each si is of the form si = {(I ′M , l′M )}M∈M such that
F(H, {(IM ′ , lM ′)}M∈M) is minimal, and where for each M ∈ M, IM ′ ⊆ I is a
set of instances appearing in M ′ = f(M) and lM ′ ∈ IM ′ is the leader of M ′.

4 Localization as a Constraint Optimization Problem

This section explains how a finite domain constraint optimization model is con-
structed from a given HMSC, to minimize the cost of the localization.

4.1 Constraint Solving over Finite Domains

A constraint solving problem is composed of a finite set of variables X1, . . . , Xn,
where each variable Xi ranges over a finite domain, noted D(Xi). An assign-
ment of a variable is a choice of a value from its domain. A set of constraints
C1, . . . , Cm is defined over the variables and the goal in a constraint solving
problem is to find solutions, i.e., assignments for all variables, that satisfy all
constraints. A constraint solving problem is satisfiable if it allows at least one
solution. When a cost function F is associated to each assignment, the problem
becomes a constraint optimization problem (COP) where the goal is to find a
solution that optimizes the cost. Such a solution is called an optimal solution.

Constraint solving frequently uses filtering and propagation. Roughly speak-
ing, the underlying idea is to consider each constraint in isolation, as a filter over
the domains. Filtering a domain means eliminating inconsistent values w.r.t. a
given a constraint. For example, if D(X) = {1, 3, 4} and D(Y ) = {2, 3, 4, 5}, the
constraint X > Y filters D(X) to {3, 4} and D(Y ) to {2, 3}. Once a reduction is
performed on the domain of a variable, constraint propagation awakes the other
constraints that hold on this variable, in order to propagate the reduction. Con-
straint propagation is a polynomial process: it takes O(n ∗ m ∗ d) where n is
the number of variables, m is the number of constraints and d is the maximum
number of possible values in the domains.

Constraint propagation and filtering alone do not guarantee satisfiability, and
just prune the domains without trying to instantiate variables. For example,
considering the constraint system shown above, the constraint X > Y prunes
the domains D(X) to {3, 4} and D(Y ) to {2, 3} but (3, 3) is not a solution
of the constraint. The constraint system may even be unsatisfiable, while con-
straint propagation and filtering does not detect it (i.e., they ensure only partial
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satisfiability). Hence, an additional step called labeling search is needed to ex-
hibit solutions. Labeling search consists in exploring the search space composed
of the domains of uninstantiated variables. Interestingly, a labeling procedure
can awake constraint propagation and filtering, allowing an early pruning of the
search space. In the previous example, if X is labeled by 3 then the constraint
X > Y is awoken and automatically reduces the domain of Y to {2}. A labeling
search procedure is complete when the whole search space is explored. Complete
labeling search can eventually determine satisfiability (or unsatisfiability) of a
constraint solving problem over finite domains. However, it is an exponential
procedure in the worst case. This is not surprising as determining satisfiability
of a constraint problem over finite domains is NP-hard [15].

During labeling search, when a solution s is found, the value m = F(s) of
the cost function can be recorded, and backtracking can then be enforced by
adding the constraint F(...) < m to the set of constraints (or F(...) ≤ m if one
wants to explore all optimal solutions). If another solution is found, then the
cost function F will necessarily have a cost smaller than m. This procedure,
called branch&bound [12], can be controlled by a timeout that interrupts the
search when a given time threshold is reached. Of course, the current value of F
in this case may not be a global minimum, but it is already an interesting value
for the cost function, something that we call a quasi-optimum. For localization
of HMSCs, selecting the local HMSC with the smallest cost is desirable but not
always essential. On the other hand, mastering the time spent for localization is
essential to scale to real-size problems.

4.2 From HMSC to COP

Variables. Localizing an HMSC H consists in selecting a set of participating
instances and a minimal process for each bMSC appearing in H , such that every
choice in the HMSC becomes a local choice. As this selection is not unique,
we use constraint optimization techniques to provide characteristics of localized
HMSCs with minimal cost. We propose to transform any HMSC into a constraint
optimization problem, as follows: a couple of variables (Xi, Yi) is associated to
each bMSC Mi ∈ M, where Xi represents the set of instances chosen for the
bMSC f(Mi), and Yi represents the leader in f(Mi). If I is the set of instances
of H , every Xi takes its possible values in 2I while Yi takes a value in I.
Constraints. Our constraint model is composed of domain, equality and in-
clusion constraints. Domain constraints, noted DOM , are used to specify the
domains of Xi and Yi. Obviously, if a bMSC Mi is defined over a set of pro-
cesses Pi, we have Pi ⊆ Xi ⊆ I. Equality constraints, noted EQU , enforce the
locality property. For two bMSCs Mi,Mj such that there exists two transitions
(n,Mi, n1) and (n,Mj, n2) in → originating from the same node n, f(Mi) and
f(Mj) must have the same leader, i.e., Yi = Yj . We write Mi ⊗Mj , when such
choice between Mi and Mj exists in H . Locality of HMSCs is also enforced
by using inclusion constraints, noted INCL. Let Mi,Mj ∈ M be two bMSCs.
We write Mi � Mj when there exists a path (n,Mi, n

′)(n′,Mj , n
′′), i.e., when

Mi is the predecessor of Mj in H . In such case, in any localization of H , the
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minimal instance of f(Mj), represented by variable Yj , must appear in the set
of instances of f(Mi), represented by variable Xi. In our constraint model, this
is expressed by the constraint Yj ∈ Xi. Similarly, the leader of a bMSC in the
localized solution can only be one of its instances, so we have Yi ∈ Xi for every
Mi ∈ M.

It is worth noticing that the localization problem is always satisfiable, as
there exists at least one trivial solution: select an instance in I as leader for all
bMSCs, then add this instance if needed to every bMSC, and messages from this
instance to all other instances. However, this trivial and uninteresting solution is
not necessarily minimal w.r.t. the chosen cost function. We can now prove that
our approach is sound and complete by considering the following definition:

Definition 7. Let H = (I,N,→,M, n0) be an HMSC, the constraint optimiza-
tion model associated to H is CPH = (X ,Y, C) where X = {X1, . . . , X|M|}
associates a variable to the set of instances appearing in each bMSC of f(M),
Y = {Y1, . . . , Y|M|} associates a variable to the leader selected for each bMSC of
f(M), and C = DOM ∪EQU ∪ INCL is a set of constraints defined as follows:

– DOM =
∧

i∈1...|M|
Xi ∈ 2I ∧ Pi ⊆ Xi ∧ Yi ∈ I ;

– EQU =
∧

Mi,Mj |Mi⊗Mj

Yi = Yj

– INCL =
∧

Mi,Mj |Mi�Mj

Yj ∈ Xi ∧
∧

i∈1...|M|
Yi ∈ Xi

Then, solving the localization problem for an HMSC H amounts to find an
optimal solution for CPH , w.r.t. cost function F . We have:

Theorem 1. Computing solutions for a localization problem using an optimal
solution search for the corresponding COP is a sound and complete algorithm.

This result is not really surprising, as CPH represents what is needed for an
HMSC to become local. A proof of this theorem can be found in the full version
of the paper.

5 Implementation and Experimental Results

To evaluate the approach proposed in the paper, we implemented a systematic
transformation from HMSC descriptions to COPs and conducted an experimen-
tal analysis over a large number of randomly generated HMSCs. Our implemen-
tation contains three main components G,A and S and is described in Figure 4.
G is a random HMSC generator, A is an analyzer that transforms a localization
problem for a given HMSC into a COP , as described in the previous section.
Finally S is a constraint optimization solver: we used the clpfd library of SIC-
Stus Prolog [6]. The generator G takes an expected number of distinct HMSCs
to generate (nbH), a number of bMSCs in each HMSC(nbB), and a number of
active processes in each HMSC (nbP ) as inputs. As output, it produces an xml
file containing nbH randomly generated HMSCs.
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Fig. 4. The input and outputs of the generator, the analyser and the solver

The analyser A takes Th, the parameter θ of the cost function F , a set of
heuristics R, and a sequence of time-out values T , as inputs. These values can be
considered as internal parameters for the constraint optimization solver: They
allow us to evaluate different strategies. In the experiments, we considered sev-
eral labeling heuristics to choose the variable and the value to enumerate first,
e.g., leftmost, first-fail, ffc, step or bisect. Leftmost is a variable-choice heuristic
that selects the first unassigned variable from a statically ordered list. First-
fail is a dynamic variable-choice heuristic that selects first the variable with the
current smallest domain. Ffc is an extension of first-fail that uses the number
of constraints on a given variable as a tie-break when two variables have the
same domain size. Step is choice-value heuristic that consists in traversing incre-
mentally the variation domain of the current variable. Finally, bisect implements
domain splitting which consists in dividing a domain into two subdomains and
propagating the subdomain informations. For example, if x takes a value in an
interval [a, b], then bisect will propagate first x ∈ [a, a+b

2 ], and then x ∈ [a+b
2 , b]

upon backtracking. For each generated HMSC H and each heuristic hi ∈ R, the
analyser creates a prolog file that contains the corresponding COP. For efficiency
reasons, a special attention has been paid to the encoding of variation domains
and constraints. Subset domains were encoded using a binary representation and
sets inclusion using efficient div/mod operations. The prolog file is then used as
input of the solver. The sequence T represents the various instants at which the
optimization process must temporarily stop, and returns the current value of
the cost function. These values are quasi-optima, representing approximations
of the global optimum. The combination between heuristics and time-out values
is useful to compare different labeling strategies. Finally, the analyser A collects
all the results returned by the solver with the time needed to provide a solution,
and stores them for a systematic comparison.

The first step of the experiment consisted in a systematic evaluation of the
performance of several heuristics to guide the solver. During this step, we con-
sidered several heuristics and time-outs. We do not report here all the results,
but show only the results for one illustrative model. Figure 5 shows the time-
aware minimization of the cost value with 12 different heuristics and time-outs
between 1s and 14s for a chosen localization problem. Heuristics descriptions
use the following syntax: [b — u] / [left — ff — ffc] / [bisect — step] / [XYC
— YXC — CXY — CYX], where b and u stand resp. for bounded costs and
unbounded costs. The heuristic bounded cost evaluates a lower bound on the cost
of a solution that can be reached from a given state. Left, ff and ffc stand for
a variable-choice heuristic, bisect and step stand for value-choice heuristic, and
XYC, etc. stand for the static order in which variables are fed to the solver. Bold
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heuristics \ runtime 1 s 2 s 3 s 4 s 5 s 6 s 7 s 12 s 13 s 14 s

0 u/left/step/XYC 23 23 22 22 22 22 19 19 19 19
1 u /left/step/YXC 19 19
2 b/left/step/XYC 19 19
3 b/left/step/YXC 19
4 b/left/step/CYX - - - - - - - - 21 19
5 b/ff/step/XYC 22 19 19 19 19 19
6 b/ff/step/YXC 30 19 19 19 19 19
7 b/ff/step/CYX 30 19 19 19 19 19
8 b/ffc/step/CYX 27 22 19 19 19 19 19
9 b/left/bisect/XYC 19
10 b/left/bisect/YXC 19
11 b/left/bisect/CYX - - - - 21 19

Fig. 5. Comparing heuristics with one representative example

values indicate proved global minima, non-bold values indicate quasi-optima, –
indicates absence of result in the given time contract.

In Figure 5, heuristics 3,9,10 give the best results. The series of experiment
that we run shows that heuristics with an estimation of cost, and a static ordering
of variable evaluations have the best performance. Overall, the heuristics number
10 combining bisect (domain splitting), left (static variable ordering), and a cost
evaluation exhibited the best results and was selected for the next steps of the
experiment.

As next steps, we generated 11 groups of 100 random HMSCs, with 10 bMSCs,
which is a reasonably large number, according to the existing literature on HM-
SCs. We then let the number of processes grow from 4 to 14. We also generated
12 groups of 100 HMSCs, containing exactly 8 processes, and let the number of
bMSCs grow from 4 to 15. The goal of these series of experiments was to evaluate
the influence of both the number of processes and the number of bMSCs on the

Fig. 6. The influence of the number of processes on the runtime execution
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Fig. 7. The influence of the number of bMSCs on the runtime execution

runtime of our localization approach. We expected these parameters to influence
the performance of localization, as increasing the number of bMSCs increases
the number of variables, and increasing the number of processes increases the
size of variables’ domains. However, we have obtained solutions for all HMSCs,
which allowed us to evaluate the impact of both parameters. The evaluation was
performed on a machine equipped with INTEL P9600 core2 Duo at 2, 53 Ghz,
with 4Go of RAM. Results of both experiences are given in Figures 6 and 7,
using box-and-whiskers plots to show the statistical distribution of datasets.

Both plots use logarithmic scales to tackle the big variance between runtime
measurements. As expected, the plots show exponential curves but the runtime
for each group remains quite low. For randomly generated HMSCs of reasonable
size (such as the ones found in the literature), our experimental results show that
localization using constraint optimization takes a few minutes in the worst cases,
and an average duration of a few seconds. Actually, even for the largest cases
(15 bMSCs with 14 processes), the runtime of our localization approach did not
exceed 40 minutes. Although solving COPs over finite domains is NP-hard [15],
as examples of existing HMSCs usually contain less than 15 bMSCs, our local-
ization process appears to be of practical interest. Our results are encouraging,
and show that the approach is fast enough to be used in practice. However, they
have been obtained on random instances only, and thus further experiments on
non-random instances are necessary to confirm this judgment.

6 Conclusion and Future Work

This paper has proposed a sound and complete method to transform arbitrary
HMSCs into implementable ones. Our approach transforms an HMSC in a con-
straint optimization problem. The solution returned by a solver can be used to
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build an optimal localized version of the original specification, without changing
the overall architecture of the HMSC. Once an HMSC is localized by addition
of messages and processes in bMSCs, automatic implementation techniques can
generate code for communicating processes. Our approach has been implemented
and tested on a benchmark of 2300 randomly generated HMSCs. The experimen-
tal results show that our approach is of practical interest: it usually takes less
than a few minutes to localize an HMSC.

There are four foreseen extensions of this work. First, other cost functions
can be considered as our approach does not depend on the choice of a particular
cost function. For instance, we plan to study localization with functions that
accounts for the cost of communications between instances. Second, we plan to
allow modifications of the HMSC, in addition to those brought to the bMSCs
of the specification. Considering architectural constraints that disallow commu-
nications between some processes is another challenging issue, as in this case
existence of a solution is not guaranteed. Finally, noticing that localization is a
rather syntactic procedure, the question of designating a process as a leader or
adding messages should also be addressed in more semantics terms.

Further work also includes the experimentation of our approach on indus-
trial case studies, to evaluate its performance on non-random HMSCs. We have
started a collaboration with a company that develops communicating systems
and wants to generate test cases based on requirement design. Our approach
will be useful to derive automatically test cases from HMSCs that were designed
without any requirement on implementability.
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Abstract. Security auditing of industry-scale software systems mandates au-
tomation. Static taint analysis enables deep and exhaustive tracking of suspi-
cious data flows for detection of potential leakage and integrity violations, such
as cross-site scripting (XSS), SQL injection (SQLi) and log forging. Research
in this area has taken two directions: program slicing and type systems. Both of
these approaches suffer from a high rate of false findings, which limits the usabil-
ity of analysis tools based on these techniques. Attempts to reduce the number
of false findings have resulted in analyses that are either (i) unsound, suffering
from the dual problem of false negatives, or (ii) too expensive due to their high
precision, thereby failing to scale to real-world applications.

In this paper, we investigate a novel approach for enabling precise yet scalable
static taint analysis. The key observation informing our approach is that taint anal-
ysis is a demand-driven problem, which enables lazy computation of vulnerable
information flows, instead of eagerly computing a complete data-flow solution,
which is the reason for the traditional dichotomy between scalability and preci-
sion. We have implemented our approach in ANDROMEDA, an analysis tool that
computes data-flow propagations on demand, in an efficient and accurate man-
ner, and additionally features incremental analysis capabilities. ANDROMEDA is
currently in use in a commercial product. It supports applications written in Java,
.NET and JavaScript. Our extensive evaluation of ANDROMEDA on a suite of 16
production-level benchmarks shows ANDROMEDA to achieve high accuracy and
compare favorably to a state-of-the-art tool that trades soundness for precision.

Keywords: Security, Static Analysis, Taint Analysis, Information Flow,
Integrity, Abstract Interpretation.

1 Introduction

Web-application security is an ever-growing concern. By design, Web applications feed
on inputs whose source is untrusted, perform numerous security-sensitive operations
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(such as database accesses and transfers of Web content to remote machines), and ex-
pose data to potentially malicious observers. It is not surprising, then, that six out of
the ten most critical Web-application vulnerabilities1 are information-flow violations,
which can break integrity (whereby untrusted inputs flow into security-sensitive compu-
tations) or confidentiality (whereby private information is revealed to public observers).

During the last decade, there has been intensive research on methods and algorithms
for automatically detecting information-flow violations in Web applications. However,
many of the published approaches are not readily applicable to industrial Web appli-
cations. Solutions based on type systems tend to be overly complex and conserva-
tive [34,20,27], and are therefore unlikely to enjoy broad adoption, whereas those based
on program slicing are often unsound [33] or limited in scalability [14,28].

Our Approach. In this paper, we present ANDROMEDA, a sound and highly accu-
rate static security scanner, which also scales to large code bases, being designed for
commercial needs as part of a product offering, IBM Security AppScan Source.2 AN-
DROMEDA performs a form of abstract interpretation [6] known as taint analysis [25]:
It statically detects data flows wherein information returned by a “source” reaches the
parameters of a “sink” without being properly endorsed by a “downgrader”. Depending
on whether the problem being solved is related to integrity or confidentiality, a source
is a method that injects untrusted or secret input into a program, a sink is a method that
performs a security-sensitive computation or exposes information to public observers,
and a downgrader is a method that sanitizes untrusted data or declassifies confidential
data, respectively. ANDROMEDA is equipped with a thorough configuration of triples
of sources, sinks and downgraders for all known integrity and confidentiality problems,
partitioned into security rules, such as XSS and SQLi.

The key idea behind ANDROMEDA is to track vulnerable information flows (emanat-
ing from sources) in a demand-driven manner, without eagerly building any complete
representation of the subject application. ANDROMEDA builds a call-graph representa-
tion of the program based on intraprocedural type inference. Furthermore, when there
is a need to compute an aliasing relationship, stemming from flow of vulnerable in-
formation into the heap, ANDROMEDA issues a granular aliasing query focused on the
flow at hand, thereby obviating the need for whole-program pointer analysis. This en-
ables (i) sound and efficient scanning of large applications, where typically only a small
portion of the application requires modeling, and (ii) incremental-analysis capabilities,
which allow to preserve valid parts of the old solution when rescanning the applica-
tion following code changes. Both of these characteristics are enabled by the fact that
ANDROMEDA does not need to build any form of whole-program representation.

In another view, ANDROMEDA can be thought of as an extended type system, where
a fully automated context-sensitive, interprocedural, incremental inference engine au-
tomatically attaches security annotations to program locations and propagates them.
ANDROMEDA enforces the following two properties:

1. The inference process is fully automated, and thus no complex, non-standard type
system is forced on the developer.

1 http://owasp.org.
2 http://ibm.com/software/rational/products/appscan/source/.

http://owasp.org
http://ibm.com/software/rational/products/appscan/source/
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2. The analysis is infinitely context sensitive (up to recursion), and consequently, it
does not produce overly conservative results.

These properties lift the two most significant barriers that have so far prevented type
systems from enjoying broad industrial adoption.

To our knowledge, ANDROMEDA is the first taint-analysis algorithm that performs
demand-driven analysis from the bottom up, including representing the program’s type
hierarchy, call graph and data-flow propagation graph. This is the key to achieving both
accuracy and scalability without sacrificing soundness. We are also not aware of any
other security analysis featuring incremental scanning capabilities.

Contributions. This paper makes the following specific contributions:

– Demand-driven taint analysis. We present a demand-driven security analysis algo-
rithm that is sound (even in the presence of multi threading), accurate and scalable.
We describe the design of the entire analysis stack in support of this feature.

– Incremental analysis. ANDROMEDA enables efficient rescanning of the subject ap-
plication following code changes. This is thanks to its ability to track vulnerable
flows in a “local”, on-demand fashion, which facilitates invalidation of only parts of
the previous data-flow solution. We describe the data structures ANDROMEDA im-
plements for efficient incremental analysis.

– Framework and library support. Beyond the core analysis, we describe novel ex-
tensions enabling effective modeling of framework and library code. These exten-
sions are important for an analysis targeting real-world Web applications, which are
built atop reusable frameworks.

– Implementation and evaluation. ANDROMEDA has been fully implemented. It sup-
ports Java, .NET and JavaScript programs, and is currently used in a commercial
product. We present an extensive evaluation of ANDROMEDA, comparing it to a state-
of-the-art security scanner [33] on a suite of 16 real-world Java benchmarks, which
shows ANDROMEDA to be superior.

2 Motivation and Overview

To illustrate some of the unique features of ANDROMEDA, we use the Aliasing5
benchmark from the Stanford SecuriBench Micro suite.3 Designed for expository pur-
poses, this example shows a Java Web application reading untrusted data from servlet
parameters. Specifically, this example highlights the importance of tracking aliasing re-
lationships between program variables and fields for sound security analysis, with buf
flowing into two formal arguments of method foo (line 6).

The flow of the entire program is as follows: The doGet handler of the Aliasing5
servlet first initializes a fresh StringBuffer object, buf, with the string "abc"
(line 5). It then invokes method foo, such that its first two formal arguments (buf and
buf2) are aliased. Next, foo assigns the content of an untrusted parameter, "name",
to variable name, in the source statement at line 10. This untrusted value subsequently

3 http://suif.stanford.edu/˜livshits/work/securibench-micro.

http://suif.stanford.edu/~livshits/work/securibench-micro
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taints the buffer pointed-to by buf (line 11). Because of the aliasing relationship be-
tween buf and buf2, the security-sensitive operation at line 13, which renders the
content of buf2 to the response HTML, becomes vulnerable.

1: public class Aliasing5 extends HttpServlet {
2: protected void doGet(HttpServletRequest req,
3: HttpServletResponse resp)
4: throws ServletException, IOException {
5: StringBuffer buf = new StringBuffer("abc");
6: foo(buf, buf, resp, req); }
7: void foo(StringBuffer buf,
8: StringBuffer buf2, ServletResponse resp,
9: ServletRequest req) throws IOException {
10: String name = req.getParameter("name");
11: buf.append(name);
12: PrintWriter writer = resp.getWriter();
13: writer.println(buf2.toString()); /* BAD */ } }

Fig. 1. The Aliasing5 Benchmark from the SecuriBench Micro Suite

To detect the vulnerability in this program, the security scanner must account for the
aliasing between buf and buf2 in foo. Existing approaches have all addressed this
requirement by applying a preliminary whole-program pointer analysis, such as An-
dersen’s flow-insensitive analysis [1], to eagerly compute an aliasing solution before
starting the security analysis [33]. Perfoming a global aliasing analysis places a sig-
nificant limitation on the scalability of the client security analysis, which is mitigated
(but not lifted) if the aliasing analysis is coarse (i.e., context insensitive, flow insensi-
tive, etc). In that case, however, the ensuing security analysis becomes imprecise, often
yielding an excess of false reports due to spurious data flows.

ANDROMEDA, instead, performs on-demand alias resolution. It tracks symbolic rep-
resentations of security facts, known as “access paths”, and augments the set of tracked
representations to account for aliases of tracked objects. Loosely speaking, an access
path is a sequence of field identifiers, rooted at a local variable, such as x.f.g. This
access path evaluates to the object o reached by dereferencing field f of the object
pointed-to by x, and then dereferencing field g of o (or⊥ if no such object exists). (We
provide a formal definition of an access path later, in Section 3.)

ANDROMEDA starts by modeling the effect of the source statement at line 10 as the
seeding data-flow fact name.*. The * notation simply represents the fact that all ob-
jects reachable through variable name are to be considered untrusted. Then, the flow
at line 11 leads the analysis to track both name.* and buf.content.*. However,
because there is a flow into the heap at line 11, the analysis further issues an on-demand
interprocedural aliasing query, which establishes that buf.content is aliased with
buf2.content. Therefore, the analysis additionally tracksbuf2.content.*. This
exposes the vulnerability at line 13, where the toString call rendersbuf2.content
to the response HTML.
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3 Core Taint Analysis

The ANDROMEDA algorithm takes as input a Web application, along with its set of
supporting libraries, and validates it with respect to a specification in the form of a set
of “security rules”. A security rule is a triple 〈Src,Dwn, Snk〉, where Src, Dwn and
Snk are patterns for matching sources, downgraders and sinks in the subject program,
respectively. A pattern match is either a method call or a field dereference. A vulnera-
bility is reported for flows extending between a source and a sink belonging to the same
rule, without a downgrader from the rule’s Dwn set mediating the flow.

The ANDROMEDA algorithm interleaves call-graph construction with tracking of
vulnerable information flows. This is to avoid building eager whole-program represen-
tations. Both the call graph and the data-flow solution computed atop the call graph are
expanded on demand, ensuring scalability while retaining a high degree of accuracy.

3.1 Type-Hierarchy and Call-Graph Construction

As mentioned earlier, ANDROMEDA refrains from building global program represen-
tations. Instead, it computes its supporting type hierarchy on demand. For this, AN-
DROMEDA utilizes lazy data structures, which provide sophisticated mechanisms for
caching and demand evaluation of type information at the granularity of individual
methods and class fields.

Call-graph construction is also performed lazily. The call graph is built based on local
reasoning, by resolving virtual calls according to an intra-procedural type-inference
algorithm [3]. Call sites are not necessarily expanded eagerly (i.e., before the data-
flow analysis stage). Rather, an oracle is used to determine whether any given call site
may lead to the discovery of source statements. Our oracle is sound, and is based on
control-flow reachability between the calling method and source methods within the
type-hierarchy graph [7].

3.2 Data-Flow Analysis

For a formal description of ANDROMEDA’s data-flow analysis algorithm, we use a stan-
dard description of the program’s state, based on the following domains:

V arId Program variables V al = Loc ∪ {null} Values
F ldId Field identifiers Env : V arId → V al Environment

Loc Unbounded set of objects Heap : Loc× F ldId → V al Heap

A program state, σ = 〈E,H〉 ∈ States = Env ×Heap, maintains the pointing from
variables to their values, as well as from object fields to their values.

To describe the algorithm we use the following syntactic structures:

Statement Meaning
x = new Object() [[x = new Object()]]σ = σ[x �→ o ∈ Loc. o is fresh]
x = y [[x = y]]σ = σ[E(x) �→ E(y)]
x.f = y [[x.f = y]]σ = σ[H(〈E(x), f〉) �→ E(y)]
x = y.f [[x = y.f]]σ = σ[E(x) �→ H(〈E(y), f〉)]
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These are kept to a minimum to simplify the description of the analysis. Extending
the core language to contain procedure calls is straightforward [5].

Instrumented Concrete Semantics. To track security facts, we instrument the concrete
semantics to further maintain untrusted (or tainted) access paths. Informally, an ac-
cess path is a symbolic representation of a heap location. For example, access path x.g
denotes the heap location pointed-to by field g of the object pointed-to by variable x.
Security analysis over access paths tracks the set of paths evaluating to untrusted values.

More formally, an access path is a (possibly empty) sequence of field identifiers
rooted at a local variable; i.e., an element in V arId×(FldId)∗. The meaning of access
path x.f1 . . .fn is the unique value o ∈ V al reached by first dereferencing x using E,
and then following the references through f1 . . . fn in H, or ⊥ if there are intermediate
null dereferences in the path. This is defined inductively as follows:

[[x.ε]]σ =

{
E(x) x ∈ dom(E)
⊥ otherwise

[[x.f1 . . . fn]]σ =

⎧⎨
⎩

H(〈[[x.f1 . . . fn−1]], fn〉) [[x.f1 . . . fn−1]]σ 
= ⊥,
〈[[x.f1 . . . fn−1]], fn〉 ∈ dom(H)

⊥ otherwise

An instrumented concrete state is a triple, σ = 〈E,H,T〉, where T is a set of tainted
access paths. We assume a security specification, S, which seeds the set T when eval-
uating certain assignment and field-read statements (according to the Src set of the
provided security rules). The semantic rules for updating T appear in Figure 2.

T
x=new ...;→ T

T
x=y;→ T ∪ {x.f1 . . . fn : y.f1 . . . fn ∈ T}

T
x=y.f;→ T ∪ {x.f1 . . . fn : y.f f1 . . . fn ∈ T}

T
x.f=y;→ T ∪ {A(x).f f1 . . . fn : y.f1 . . . fn ∈ T}

Fig. 2. Forward Data-flow Equations

A
x=new ...;→ A

A
x=y;→ A ∪ {y.f1 . . . fn : x.f1 . . . fn ∈ A}

A
x=y.f;→ A ∪ {y.f f1 . . . fn : x.f1 . . . fn ∈ A} ∪ {x.f1 . . . fn : y.f f1 . . . fn ∈ A}

A
x.f=y;→ A ∪ {y.f1 . . . fn : x.f f1 . . . fn ∈ A} ∪ {x.f f1 . . . fn : y.f1 . . . fn ∈ A}

Fig. 3. Backward Data-flow Equations

Access-path Widening. The key difficulty in using the symbolic access-path representa-
tion for static security analysis is that this representation of the heap, which is known as
storeless [10], is unbounded. This problem manifests when dealing with recursive data
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structures, such as linked lists. To deal with this problem, we apply widening by intro-
ducing a special symbol, ∗. An access path now has either the concrete form x.f1 . . .fn,
or the widened form x.f1 . . . fn ∗, where

[[x.f1 . . . fn ∗]]σ = {o : ∃fn+1 . . . fk ∈ (F ldId)∗. o = [[x.f1 . . . fn fn+1 . . . fk]]σ}
That is, a widened access path potentially points to more than one object.

In this way, the analysis can track a bounded number of access paths in a sound
manner by restricting the length of an access path to some constant c, and allowing for
insertion of ∗ at the end of a path of length c instead of extending it when accounting
for the effect of a field-assignment statement.

On-demand Aliasing. As mentioned earlier, ANDROMEDA features the ability to
soundly track symbolic security facts. The key idea is to perform alias analysis on de-
mand, when an untrusted value flows into an object field (i.e., untrusted data flows into
the heap). We first illustrate this situation through a simple example, where we assume
that initially there is a single taint fact, T = {z.g}, and the last statement—assigning a
value to o.sinkfld—is a sink, and as such must not be assigned an untrusted value:

x = y.f

[2] y.f.h

��
[2] y.f.h

��

T = {z.g}

x.h = z.g

[1] x.h

��

T = {z.g, x.h, y.f h}

w = y.f.h

[3] w

��

T = {z.g, x.h, y.f h, w}

o.sinkfld = w T = {z.g, x.h, y.f h, w}

We highlight in red the access paths that would be missed by a forward data-flow
analysis without on-demand alias-analysis capabilities, such as the IFDS framework [24].
Such an analysis would ignore the assignment x = y.f because it is not affected by T,
thereby missing the aliasing relation between x.h and y.f.h at the point when it becomes
relevant, which is the following two statements: The first, x.h = z.g, contaminates x.h,
and thus also y.f.h, and the second dereferences y.f.h into w.

In constrast, ANDROMEDA is fully sound, as we prove in Theorem 1. ANDROMEDA

handles cases such as the above by performing on-demand alias analysis. Upon encoun-
tering the field-assignment statement x.h = z.g, ANDROMEDA traverses the control-
flow graph backwards seeking aliases of x.h. It then finds that y.f.h is an alias of x.h,
and propagates this additional security fact forward, which ensures that the security
vulnerability is discovered. The ANDROMEDA propagation steps are visualized above
using labeled edges, the label consisting of the step index (in square brackets) followed
by the learned taint fact.

Formally, ANDROMEDA computes a fixpoint solution for the equations in Figure 3
while traversing the control flow backwards from the statement performing the heap
update. The seeding value for A in our example is the singleton set {x}.
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Theorem 1. The ANDROMEDA data-flow analysis algorithm is sound. That is, in the
fixpoint solution F computed by ANDROMEDA for program P with respect to specifi-
cation S, for every control location c in the program and set A of access paths arising
in F c, γ A ⊇ A′, where A′ is the set of all concrete access paths that may arise in c in
an execution of P .

Proof (Sketch). First, we make the observation that our transformers (in Figure 2) are
distributive (i.e., τ X ∪ Y ≡ τ X ∪ τ Y ). This simplifies the proof by letting us con-
sider singleton sets of access paths [24], making it clear that all the transformers not
modifying the heap (i.e., all transformers except x.f=y) are trivially sound. Finally,
for field assignment, the backward equations (in Figure 3) guarantee that all aliases of
x due to preceding statements (according to the control-flow order) are accounted for.
The equations handle all possible cases, including forward and backward propagation
due to field accesses, and thus result in a complete aliasing solution.

3.3 Extensions: Library and Framework Modeling

Modern Web applications are often built atop one or more frameworks, such as Struts,
Spring and JSF [29,35]. Frameworks typically invoke application code using reflective
constructs, based on information provided in external configuration files, which com-
plicates static analysis of Web applications.

To address this concern, ANDROMEDA is fully integrated with Framework For
Frameworks (F4F), a recent solution augmenting taint-analysis engines with precise
framework support [29]. F4F automatically generates Web Application Framework
Language (WAFL) static-analysis artifacts, which can be integrated into a taint-analysis
engine to ensure that the interaction of a Web application with the frameworks it uses
is modeled soundly and accurately.

ANDROMEDA’s integration with F4F exploits the fact that static analysis can operate
on non-executable yet legal Java code. We transform the F4F output into synthetic code
that soundly models data flows involving framework code. This choice has several ad-
vantages compared to direct modeling of frameworks within the ANDROMEDA engine,
being (i) more lightweight (no need to directly generate Intermediate-Representation
(IR) code), (ii) more portable and reusable (the synthetic Java code generated from the
WAFL specification can be plugged into any existing analysis), as well as (iii) more
intelligible to the developer (being presented with simple Java code instead of IR code).

Before statically analyzing an application, ANDROMEDA takes the WAFL output of
F4F and transforms it as follows. Each call replacement has a synthetic method associ-
ated with it. This is the method that ANDROMEDA should consider in place of the one
specified in the application source code. For every synthetic method, ANDROMEDA

creates Java code corresponding to the instructions for that synthetic method that are
specified in the output of F4F. In most cases, this can be done straightforwardly. How-
ever, there were several interesting problems that we had to address.

One case is simulating method invocations from synthetic methods. Such invoca-
tions are on uninitialized variables, which causes ANDROMEDA’s intra-procedural type
inference to ignore them. Solving this by initializing the variables is problematic: Some



218 O. Tripp et al.

declared types are abstract, and some do not have a default constructor. Instead, AN-
DROMEDA solves this problem by adding a level of indirection via a method call that
returnsnull. Since the assignment to null is performed in a different procedure, AN-
DROMEDA’s type inference accepts the call as valid, with a result sufficient to model
taint propagation faithfully.

Another problem arises when synthetic methods invoke default-scope or protected
methods in a class of another package. Since these methods can only be invoked from
classes in the same package, ANDROMEDA extends that package with an additional
public synthetic class containing a public synthetic method that calls the default-scope
or protected method, and returns its return value. Being public and in the same package
as the restricted method, this synthetic method can be invoked without restrictions.

4 Incremental Security Analysis

A key feature of ANDROMEDA is its ability to update the scan report incrementally
following code changes. For industry-scale Web applications, this feature is of crucial
importance. Without it, long waiting times need be spent on reanalysis of the entire
application following any code change, which complicates the integration of security
scanning into the development lifecycle. Moreover, incremental scanning allows verifi-
cation of fixes on the spot, which makes for a fluent and rapid remediation process.

The design of ANDROMEDA, emphasizing local and demand-driven representation
of the subject program, is geared toward incremental scanning. We have implemented
this feature such that neither the soundness nor the accuracy of the analysis are lost in
rescanning, which leaves responsiveness as the main challenge. We address this con-
cern by combining several optimizations and algorithms, which are described in the
remainder of this section.

4.1 Change Impact Analysis

ANDROMEDA’s ability to respond to code changes efficiently is founded on a change-
impact analysis (CIA) algorithm spanning all the layers of data structures comprising
ANDROMEDA, from the type hierarchy, through the call graph, and up to the prop-
agation graph. Upon receiving a notification that a given compilation unit (CU) has
changed, the CIA algorithm compares its new version to the previous one, which it
caches exactly for this purpose. By the end of the comparison, CUs where differences
were found are marked as either modified or deleted or added.

ANDROMEDA then localizes the changes to determine what the bottommost layer
they affect is. For example, if a class is marked as modified due to a change made
in one of its methods, then ANDROMEDA will reason only about that method in the
ensuing stages of the update process. Moreover, if the method has changed in a way that
affects neither the call sites it declares nor the (intraprocedural) type-inference solution
computed for it, then there are no implications with respect to the call graph, and the
notification can immediately flow to the highest layer of the hierarchy, which is the
propagation graph. This focusing strategy translates into a major optimization, whereby
lower layers of the hierarchy can often be skipped.
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4.2 Efficient Data Structures

Since the type hierarchy and call graph of ANDROMEDA are built in a local fashion,
using intra-procedural type inference (cf. Section 3.1), change notifications arriving at
these data structures can be handled efficiently. For example, if the call graph is notified
that method m has changed, then only the subgraph rooted at m needs to be modified.
Furthermore, call sites in m where the type-inference solution for the receiver remains
unchanged can safely be preserved throughout the update process. The challenge is with
the propagation graph, which records transitive information flows.

Following a code change, certain parts of the propagation graph are invalidated, but
detecting the obsolete data-flow edges is difficult without additional bookkeeping, be-
cause they are due to transitive flow of information. To this end, similarly to [26], we use
a support graph, which is an auxiliary graph structure documenting how edges in the
propagation graph, henceforth referred to as taint facts, were formed. Similarly to [24],
we distinguish between two types of edges in the propagation graph: path edges and
summary edges. Path edges correspond to normal intraprocedural flow, whereas sum-
mary edges bridge across call sites. This implies two types of edges in the support
graph:

– Normal edges are of the form tf1 → tf2, where tfi denotes a taint fact.
– Summary edges are of the form 〈tf1,1, tf1,2〉 → 〈tf2,1, tf2,2〉, with the interpre-

tation that summary edge tf2,1 → tf2,2 in the caller was learned based on edge
tf1,1 → tf1,2 in the callee.

When the propagation graph is notified of a change in a particular method, it establishes
the set I of taint facts that can immediately be discarded based on the change. It then
consults the support graph, which computes the transitive closure of the facts in I .
Corresponding edges are then removed from the propagation graph, and the fixpoint
iteration process is renewed by updating the IR of every changed method, and then
searching for new seeds and extending existing path edges.

5 Empirical Evaluation

In this section, we describe the experiments we conducted to measure ANDROMEDA’s
accuracy, performance and incremental capabilities.

5.1 Experimental Setup

ANDROMEDA is a client of the WALA framework.4 It is written in Java and imple-
mented as an Eclipse plugin. We have conducted two sets of experiments to evaluate
ANDROMEDA:

1. Standard Analysis. We measure ANDROMEDA’s performance and accuracy by
applying it to a suite of 16 benchmarks, including applications appearing in [33]
and [17], as well as several contemporary commercial applications. Benchmark

4 http://wala.sf.net.

http://wala.sf.net


220 O. Tripp et al.

characteristics are provided at the leftmost columns of Figure 4. We compare AN-
DROMEDA with Taint Analysis for Java (TAJ) [33] on 8 common benchmarks.
TAJ, which is the most recent and advanced work on industrial taint analysis,
is also a WALA client. The main difference is that TAJ utilizes whole-program
pointer analysis, ensuring accuracy and scalability by enforcing unsound bounds.
For scalability, TAJ uses a preset budget for call-graph and pointer-analysis con-
struction. Similar bounds are used for accuracy (e.g., filtering out witness flows
beyond a given length).

2. Incremental Scanning. We measure average response time for reanalysis of two
applications following several common code changes, such as deleting or adding a
statement or a method.

We performed the experiments on a MacBook Pro laptop computer with a 2.66-GHz
processor and 8 GB of RAM, running OS X V10.8 and Java Standard Edition Runtime
Environment (JRE) V1.6.0 35 with 2.6GB of heap space.5

5.2 Standard Analysis

The results of the first experiment appear in Figure 4. To assess the accuracy of AN-
DROMEDA, a security expert sampled at random 10 findings per benchmark, and clas-
sified them as either true positive (TP), false positive (FP) or unknown. A finding was
classified as unknown if there was missing source code (e.g., if the flow goes through
library code), or the flow was valid but of low exploitability. The TAJ data comes from
the original TAJ paper [33].

The experimental data gives a clear indication of ANDROMEDA’s high accuracy.
Compared to TAJ (on 8 of the benchmarks), ANDROMEDA finds substantially more
issues, reporting 578 findings compared to a total of 280 findings reported by TAJ.
Moreover, ANDROMEDA’s findings are more accurate on 4 of the 5 benchmarks where
accuracy data is available for TAJ, the only exception being Webgoat. The accuracy
statistics are summarized in Figure 6. For performance, ANDROMEDA’s average run-
ning time (on the common benchmarks) is 114 seconds, whereas the average scanning
time of TAJ is 112 seconds, which is almost identical.

Our analysis of the findings suggests that the combination of soundness and frame-
work modeling allows ANDROMEDA to find more application entrypoints, as well as
follow data flows through more parts of the application, compared to TAJ. These ac-
count for ANDROMEDA’s ability to find more quality findings than TAJ while retaining
a better signal-to-noise ratio.

For the entire suite, ANDROMEDA’s accuracy statistics show an average of 53% TPs,
11% FPs and 36% unknowns. ANDROMEDA’s average running time is 298 seconds
(AppA being an outlier). These numbers point to ANDROMEDA’s high precision, which
comes at the reasonable cost of 5 minutes on average per scan.

5 The running times reported for TAJ are drawn from the original paper [33], where another
execution environment, involving a Windows desktop machine, was used. Running-time com-
parisons should thus be considered with a grain of salt.
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Benchmark Characteristics TAJ ANDROMEDA

Version Class Count Line Count Findings Time (s) TP FP Findings Time (s) TP FP

AjaxChat 0.8.3 29 4147 - - - - 14 30 70% 30%
AltoroJ 1.0 43 746 37 23 80% 20% 35 4 90% 10%
AppA N/A 250 N/A - - - - 301 2555 20% 0%
Blojsom 3.1 254 19984 123 207 - - 139 494 60% 30%
BlueBlog 1.0 38 650 12 6 50% 50% 13 16 100% 0%
Contineo 2.2.3 79 65744 - - - - 228 573 90% 0%
Dlog 3.0-BETA-2 268 17229 6 221 - - 30 51 60% 20%
Friki 2.1.1-58 35 2339 7 9 70% 20% 81 3 100% 0%
GestCV 1.0 124 107494 7 209 50% 50% 89 10 60% 10%
Ginp 1.0 73 387 49 28 - - 122 62 40% 0%
JBoard 0.3 185 17500 - - - - 74 330 10% 0%
JPetstore 2.5.6 116 25820 - - - - 179 73 10% 0%
JugJobs 1.0 30 4815 - - - - 39 32 60% 40%
Photov 2.1 239 210304 - - - - 178 229 10% 0%
StrutsArticle 1.1 45 7897 - - - - 25 35 10% 0%
Webgoat 5.1-20080213 192 17656 39 193 90% 10% 69 275 60% 40%

Fig. 4. Performance and Accuracy Results for TAJ and ANDROMEDA in Standard Scanning

Change Type
Response Time (s)

AltoroJ Webgoat
Deletion Addition Deletion Addition

Taint-propagator statement 2 2.2 1.9 2.2
Security sink 0.5 2 1.9 2.5
Security source 2.1 2.1 1.8 3.2
Irrelevant statement 1.9 2 2.5 2.8
Relevant method 2.2 1.9 1.8 2.7
Irrelevant method 2.2 1.7 1.7 1.7

Fig. 5. Response Times for Various Incremental Changes

ANDROMEDA TAJ
Average TPs 82% 68%
Average FPs 12% 30%
Average Unknowns 6% 2%

Fig. 6. Accuracy Statistics

5.3 Incremental Scanning

To measure ANDROMEDA’s incremental features, we considered a set of common edit-
ing operations, including addition and deletion of statements and methods, which we
classified according to the relevance of the statement or method to the solution com-
puted by ANDROMEDA. A statement may either be a source, a sink, a taint propagator
(participating in a vulnerable flow), or an operation lying oustide the ANDROMEDA

data-flow solution. Similarly, a method may or may not participate in the solution.
We examined the effect of either adding or deleting a syntactic construct chosen

from each of these 6 categories, which yielded 12 kinds of possible changes. For each
change type, and each of the two benchmarks we used for this experiment, we applied
the change 10 times. For each round, we chose a target at random from a pool of suitable
candidates that we prepared in advance. The reported numbers are the average (in wall-
clock seconds) across these 10 rounds.

The results of this evaluation are listed in Figure 5. Response times are largely within
the range of 2-3 seconds per change, whereas the overall scanning time of Webgoat is
275 seconds. For AltoroJ, incremental scanning is less motivated, because analysis from
scratch takes 4 seconds to complete. Still, the average response time for an incremen-
tal change in AltoroJ is 1.9 seconds, which is less than half of the time required for
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complete reanalysis. For Webgoat, a response is obtained after 2.2 seconds on average,
which is less than 1% of the time needed for a fresh scan of this benchmark.

6 Related Work

There is a rich body of work on taint analysis. We here concentrate on static taint analy-
sis, and refer the reader to [4,22] for a survey of dynamic taint-analysis techniques. An
detailed overview of works on program slicing is given in [30] and references therein.

The notion of tainted variables became known with the Perl language. Typically, the
data manipulated by a program can be tagged with security levels [9], which assume a
poset structure. Under certain conditions, this poset is a lattice [8]. Given a program, the
principle of noninterference dictates that low-security behavior of the program be not
affected by any high-security data, unless that high-security data has been previously
downgraded [12]. Taint analysis is an information-flow problem in which high data is
the untrusted output of a source, low-security operations are those performed by sinks,
and untrusted data is downgraded by sanitizers.

Volpano et al. [34] show a type-based algorithm that certifies implicit and explicit
flows and also guarantees noninterference. Shankar et al. present a taint analysis for
C using a constraint-based type-inference engine based on cqual [27]. Similarly to
the propagation graph built by ANDROMEDA, a constraint graph is constructed for a
cqual program, and paths from tainted nodes to untainted nodes are flagged.

Myers’ Java Information Flow (Jif) [20] uses type-based static analysis to track infor-
mation flow. Based on the Decentralized Label Model [21], Jif considers all memory as
a channel of information, which requires that every variable, field, and parameter used
in the program be statically labeled. Labels can either be declared or inferred. Ashcraft
and Engler [2] also use taint analysis to detect software attacks due to tainted variables.
Their approach provides user-defined sanity checks to untaint potentially tainted vari-
ables. Pistoia et al. [23] present a static analysis to detect tainted variables in privilege-
asserting code in access-control systems based on stack inspection.

Snelting et al. [28] make the observation that Program Dependence Graphs (PDGs)
and noninterference are related in that dom(s1) �� dom(s2) implies s1 /∈ backslice(s2),
where backslice is maps each statement s to its static backwards slice. Based on this
observation, Hammer et al. [14] present an algorithm for verifying noninterference: For
output statement s, backslice(s) must contain only statements whose security label is
lower than s. Though promising, this approach has not been shown to scale.

Livshits and Lam [17] analyze Java EE applications by tracking taint through
heap-allocated objects. Their solution requires prior computation of Whaley and Lam’s
flow-insensitive, context-sensitive may-points-to analysis, based on Binary Decision
Diagrams (BDDs) [38], which limits the scalability of the analysis [16]. The points-
to relation is the same for the entire program ignoring control flow. By contrast, the
PDG-based algorithm in [14] handles heap updates in a flow-sensitive manner, albeit
at a much higher cost. Livshits and Lam’s analysis requires programmer-supplied de-
scriptors for sources, sinks and library methods dealing with taint carriers. Guarnieri et
al. [13] present a taint analysis for JavaScript. Their work relies on Andersen’s whole-
program analysis [1]. While being sound, the analysis is not incremental, and has not
been shown to scale to large programs.
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Wassermann and Su extend Minamide’s string-analysis algorithm [19] to syntacti-
cally isolate tainted substrings from untainted substrings in PHP applications. They la-
bel nonterminals in a context-free grammar with annotations reflecting taintedness and
untaintedness. Their expensive yet elegant mechanism is applied to detect both SQLi
[36] and XSS [37] vulnerabilities. Subsequent work by Tateishi et al. [32] enhances
taint-analysis precision through a string analysis that automatically detects and classi-
fies downgraders in the application scope.

McCamant and Ernst [18] take a quantitative approach to information flow: Instead
of using taint analysis, they cast information-flow security to a network-flow-capacity
problem, and describe a dynamic technique for measuring the amount of secret data
that leaks to public observers.

ANDROMEDA’s scalability stems from its demand-driven analysis strategy. Demand-
driven pointer analysis was originally introduced by Heintze and Tardieu [15]. Since
there have been several works on demand-driven points-to analysis via context-free-
language reachability [31,40,39]. For taint analysis, our empirical data suggests that
only a small fraction of a large program is expected to be influenced by source state-
ments. Fuhrer at al. [11] take a demand-driven approach in replacing raw references
to generic library classes with parameterized references. At a high level, this analysis
resembles the alias analysis performed by ANDROMEDA, as constraints on type param-
eters are first propagated backwards to allocation sites and declarations, and from there
they are propagated forward.

7 Conclusion

We have presented ANDROMEDA, a security-analysis algorithm featuring local, demand-
driven tracking of vulnerable information flows. Thanks to this design choice, AN-
DROMEDA scales to large codes while being highly accurate, and additionally features
incremental scanning capabilities. ANDROMEDA is part of a commercial product. Our
experimental evaluation of ANDROMEDA, comparing it to a state-of-the-art scanner that
sacrifices soundness for accuracy, shows ANDROMEDA to be favorable.
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1 Introduction

Nowadays, modern applications are often constructed by reusing and assembling
distributed and collaborating entities, e.g., software components, Web services,
or Software as a Service in cloud computing environments. In order to facilitate
the integration of independently developed components (i.e., peers) that may
reside in different organizations, it is necessary to provide a global contract to
which the peers participating in a service composition should adhere. Such a
contract is called choreography, and specifies interactions among a set of services
from a global point of view. This contract is the reference for the further devel-
opment steps (service selection, code generation, maintenance, reconfiguration,
etc.). The specification and formal analysis of this contract is therefore crucial
and must be handled carefully by the designer to avoid an erroneous design,
which would be very costly if discovered lately in the development process. Un-
fortunately, only limited effort, e.g. [3,6,1], has been spent to develop formal
verification tools, which can automatically detect issues such as deadlocks or
erroneous behaviours in the choreography specification.

In this paper, we propose a modular framework for performing automatically
a number of crucial verification tasks on choreography specifications. Our frame-
work accepts as input the following interaction-based choreography description
languages: (i) XML-based languages (WS-CDL), (ii) graphical notations (BPMN
2.0 choreographies), and (iii) formal description models (Chor, conversation pro-
tocols). In order to favour extensibility and reusability of our framework, we

propose an intermediate format (CIF) for representing choreography description
languages. This intermediate format allows to accept several existing languages
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as input. It can also serve as an expressive standalone specification language for
choreographies and can be easily extended with new choreography constructs.
Another advantage is that it makes possible to use jointly several formal veri-
fication tools and techniques as back-end, provided that a connection to those
tools exist. We have already developed a connection to the CADP verification
toolbox [2] via a translation to the LNT process algebra, one of the CADP
input specification languages. This enables the automated verification of some
key choreography analysis tasks (repairability, realizability, conformance, etc.).
Our framework is extensible with other front-end and back-end connections to,
respectively, other choreography languages and formal verification tools.

2 Verification

This section presents some key properties, which are of utmost importance when
designing choreography-based distributed system. They can be verified automat-
ically in our framework using model and equivalence checking techniques.

peer models
choreography 
specification

synchronous
peer composition

asynchronous
peer composition

generate
peers

2
compute 

composition

3

check
equivalence

4

check
repairability

1

REPAIRABILITY

REALIZABILITY

2+3+4

1

check
equivalence

5

SYNCHRONIZABILITY
2+3+5

generate 
controllers

6

controllers

CONTROL

6

CONFORMANCE

3+4

Repairability. A choreography is not repairable when at some point in its
behaviour there is a non-deterministic choice between interactions involving dif-
ferent sending peers. Such a design is erroneous because there is no way to
make the corresponding distributed implementation respect the choreography
requirements. Detecting automatically (non-)repairable choreographies is diffi-
cult, because there are situations where such a non-deterministic choice actually
corresponds to the initial part of an interleaving of several interactions, and in
that case, the choreography is repairable.

Synchronizability. Synchronizability analyzes a set of peers and checks that
all interaction sequences in the asynchronous system are also possible in the
synchronous one. This property is necessary for ensuring the realizability and
conformance of possibly infinite systems (choreographies with loops). A recent
result [1] that we reuse here proves that checking synchronizability is decidable
and proposes a decision procedure for verifying this property.
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Realizability. This property checks whether the distributed version of the sys-
tem behaves exactly as specified in the choreography. This is crucial in a top-
down development process, where peers are obtained via projection [6] from the
choreography, in order to ensure that the implementation perfectly matches the
global specification. In our framework, we can check equivalence-based notions
of realizability, as those used in [1,5,6].

Conformance. In a bottom-up development process, peers are being reused
and integrated into a new composition. The choreography serves as a contract
that the implementation under construction must respect. From a verification
point of view, it can be checked exactly as realizability, except that projection is
not necessary. Conformance checking takes as input a choreography and a set of
peers, whereas realizability checking only requires a choreography specification.

Control for Enforcing Realizability. If a choreography is not realizable (or
conformant wrt. a set of peers) yet repairable, we can enforce the distributed
system to respect the (synchronizability and) realizability of a choreography
by generating distributed controllers. They act locally by interacting with their
peer and the rest of the system in order to make the peers respect the choreogra-
phy requirements. These controllers are generated through an iterative process,
automatically refining their behaviours, as presented in [4].

3 Tool Support

We use Eclipse Indigo and the BPMN2 modeler as front-end for BPMN, and
XML for describing our intermediate format. The connection from our inter-
mediate format to CADP, that we use here for verifying the properties intro-
duced in Section 2, is achieved through a translation to the LNT process algebra
(see [5] for encoding patterns). CADP model and equivalence checking tools are
used here for verifying automatically all the properties presented in Section 2.
Verification of the properties is fully automated thanks to verification scripts
generated by our translator. The encoding into LNT also enables other kinds
of formal analysis with CADP, such as deadlock search, simulation, or checking
temporal properties written in MCL using the Evaluator 4.0 model checker.

Experiments.We show experimental results on some examples of our database,
which contains more than 200 choreographies (many of them are real-world ex-
amples found in the literature). It is worth observing that translation time (from
the input languages to CIF and LNT) is negligible even for huge examples. For
each experiment, the table gives the number of peers (P), interactions (Inter.),
and selection operators (Sel.). Then, we give the size of the corresponding LTS
and the size of the largest intermediate state space for generating the asyn-
chronous version of the distributed system (number of states and transitions),
and the overall time for checking whether the choreography is repairable (Rp),
generating all LTSs (synchronous and asynchronous versions of the distributed
system), and verifying synchronizability (Sc) and realizability (R).

We can see that BPMN choreographies can result in huge LTSs (see ex-
ample 7), because BPMN parallel operators are expanded in all the possible
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Ex. Lang. |P| |Inter.| |Sel.| |S|/|T | Async. parallel
Time

Verif.
compo. |S|/|T | Rp | Sc | R

1 Chor 3 10 1 21 / 29 127 / 200 48s
√ | √ | √

2 BPMN 6 19 1 580 / 1,828 4,054 / 12,814 1m43s
√ | √ | √

3 BPMN 6 19 1 18 / 20 750 / 3,298 1m40s
√ | √ | √

4 BPMN 6 19 1 580 / 1,842 16,129 / 51,317 1m45s
√ | √ | √

5 CP 7 11 1 11 / 11 158,741 / 853,559 5m47s
√ | × | ×

6 BPMN 12 25 4 577 / 2,499 ∼1*106 / ∼7*106 8m43s
√ | √ | √

7 BPMN 15 31 5 65,556 / 573,479 ∼2*106 / ∼18*106 1h34m
√ | × | ×

interleaved behaviours when the corresponding LTS is generated. We note that
the overall time for generating LTSs for choreography and both distributed sys-
tems (synchronous and asynchronous) as well as for verifying properties Rp,
Sc, and R is reasonable for medium-size choreographies, see for instance exam-
ples 2, 3, 4, 6 in the table. It is most costly to check realizable examples because
it deserves an exhaustive exploration of all cases, whereas if the choreography
is not realizable, the analysis stops when a violation is found. The two causes
of explosion are the number of peers (e.g., 15 peers in example 7) and the de-
gree of parallelism, that is the number of branches and interactions executed in
concurrent branches of the choreography. If the choreography is not realizable,
we generate local controllers which synchronize together in order to enforce the
distributed system to respect the order of messages as specified in the global
contract. For instance, example 5 presents several ordering issues if peers are
generated using projection. In that case, our process requires 6 iterations to
construct these controllers, meaning that 6 additional synchronization messages
are necessary to make the system realizable. It takes about 20 minutes for this
example to successively check synchronizability/realizability using equivalence
checking and exploit the resulting counterexample to refine controllers, until
completion of the process.

Acknowledgements. This work is supported by the Personal Information Man-
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Abstract. JavaScript ranks among the most popular programming languages for
the web, yet its highly dynamic type system and occasionally unintuitive seman-
tics make programming particularly error-prone. This paper presents Javanni, a
verifier for JavaScript programs that can statically detect many common program-
ming errors. Javanni checks the absence of standard type-related errors (such as
accessing undefined fields) without requiring user-written annotations, and it can
also verify full functional-correctness specifications. Several experiments with
JavaScript applications reported in the paper demonstrate that Javanni is flexi-
bly usable on programs with non-trivial specifications. Javanni is available online
within the CloudStudio web integrated environment.

1 Introduction

Originally developed by Netscape as a scripting language for lightweight web program-
ming, JavaScript has rapidly become one of the most widely used programming lan-
guages1 for the web. Its popularity has greatly exceeded its primary target—client-side
web programming for nonprofessionals—and the language is now routinely used to de-
velop large applications, such as Google Docs and Google Maps, and even some critical
software such as on-line banking. Unfortunately, the original language design includes a
number of quirks2 which, combined with a highly dynamic and weakly-typed type sys-
tem that mixes heterogeneous programming paradigms, make JavaScript programming
particularly error-prone. Simple errors such as accessing undefined fields, invoking un-
defined functions, or calling functions with the wrong number of actual parameters are
workaday in JavaScript programming. Even if programming frameworks exist (such as
the Google Web Toolkit) that automatically translate from a higher-level language, a
large part of JavaScript applications are still written by hand, with consequent risks in
terms of reliability and security.

This paper describes Javanni, a static verifier for JavaScript programs that can detect
many of these frustrating errors. Javanni translates JavaScript programs into Boogie [4],
and then uses the Boogie verifier to check correctness properties on the translated pro-
gram. Javanni is completely automatic, does not require user-written annotations, and
can detect common type-related errors including: (1) invocation of undefined functions;
(2) writing of undeclared variables; (3) reading of undefined values (e.g. undeclared or

1 http://www.tiobe.com
2 https://www.destroyallsoftware.com/talks/wat
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uninitialized variables or fields); (4) incorrect number of actual parameters in function
calls.

The focus of most related approaches to JavaScript verification [1,3] is restricted to
standard type analysis. In contrast, Javanni supports full functional correctness prop-
erties; to our knowledge, this kind of support is available only in another quite recent
work based on separation logic [2].

In the translation to Boogie, Javanni automatically introduces a specification of cor-
rect typing behavior in the form of pre- and postconditions of functions; on top of these,
users may add custom assertions to the input programs and verify arbitrary functional
properties of their JavaScript applications. The specification generated automatically
by Javanni frames good programming practices, such as some discipline in field dec-
laration and initialization, and hence Javanni may report false positive; in most cases,
however, the reported errors are at least indicative of poor programming practices. The
translation also applies method inlining and loop unrolling to improve verification ac-
curacy without requiring extra annotations.

Javanni is a component of the CloudStudio [5] web-based multi-language integrated
development environment, available online at http://cloudstudio.ethz.ch/.
Section 3 presents a set of JavaScript programs that have been verified using Javanni,
against both the automatically generated specification and more complex functional
properties. Javanni is implemented in Java using the Rhino JavaScript framework. For
a demo video, see http://www.youtube.com/watch?v=K8yboTQZ9p0.

2 Verifying JavaScript

For each JavaScript input program J, Javanni creates a Boogie file BJ containing an
encoding of the source J annotated with assertions that formalize correctness proper-
ties. The translation also introduces some specification functions and axioms, used to
enforce the semantics of the original JavaScript source in the Boogie language. This
section succinctly illustrates the main features of the translation.

Type boxing and unboxing. To accommodate JavaScript’s dynamically-typed vari-
ables within Boogie’s static type system, Javanni includes boxing and unboxing func-
tions in the translation. JavaScript variables (and fields) get a generic reference type ref
in Boogie. Whenever we need to use some variable x according to its actual dynamic
type (e.g., int or bool), we unbox it: unbox(x) in Boogie returns the value attached to
x. Boxing works conversely; e.g., box(42) returns a reference attached to the integer
42. Additional axioms declare the behavior of arithmetic and Boolean operations with
respect to boxing and unboxing primitive (e.g., unbox(box(i )+box(j ) )=i+j).

Object creation. JavaScript supports field initialization with the prototype key-
word: C.prototype.a = v sets field a of class C to value v whenever an instance of
C is created. Javanni introduces initializer predicates to encode the semantics of field
initialization in Boogie. Javanni defines a predicate init .C( this : ref , h: Heap) for
each class C that holds for references this attached to objects whose fields satisfy
the initializations (in a given model h of the heap). For example, a class Student ini-
tialized with Student .prototype.age = 18 determines a predicate initializer with body
init . Student ( this , h) { h[ this , age] = 18 }. Initializers also keep track of which

http://cloudstudio.ethz.ch/
http://www.youtube.com/watch?v=K8yboTQZ9p0
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member functions are defined. For each function f member of C, init .C( this , h)
specifies that h[ this , func$f] �= undef, where func$f is a fictitious field of C added
to represent f in Boogie. Creations of an object o of class C become two assump-
tions in Boogie: assume allocated [o , h] (reference o is not undefined or null) and
assume init .C(o, h) (the initializations hold); Boogie’s assume statements are used as
postulated facts in the reasoning.

Type correctness assertions. Javanni automatically generates Boogie
assertion statements that encode the type correctness of invocations and readings of
functions, variables, and fields. If Boogie can discharge all the assert statements, there
are no type errors of these kinds. For example, every field access of the form x .a de-
termines two assertions in Boogie: the target is defined (assert allocated [x , h]); and
the field is defined (assert Heap[x,a] �= undef). More complex assertions encode type
conformance and correctness of function invocations.

Contracts. To verify full functional correctness properties in JavaScript programs,
Javanni supports preconditions, postconditions, and assume and assert instructions a
la Boogie. While JavaScript does not natively support assertions, Javanni recognizes
method calls with the special names requires (preconditions), ensures (postcondi-
tions), and assume and assert . These methods directly translate to the corresponding
requires, ensures, assume and assert instructions in Boogie.

Inlining and loop unrolling. Boogie is a modular verifier: it reasons about function
invocations using only the pre- and postconditions of the callees. This means that if
function foo calls bar but the latter has no postcondition, Boogie will be oblivious
of the effects of bar when reasoning about foo. To reduce the amount of user-written
annotations required to reason modularly in Boogie, Javanni features inlining: replace
a call to bar within foo with a copy of bar’s code, so that its effects within foo can be
evaluated directly. A similar feature is loop unrolling, useful to reason inductively about
loops without loop invariants. Unrolling replaces a loop by a sequence (of finite length)
of conditional executions of its body; the depth of the unrolling can be set by users to
find the best trade-off between scalability and annotation burden.

3 Case Study

Table 1 lists a set of examples verified using Javanni. For each example, it shows the
length (in LOC) of the JavaScript source, the length of the specification added manually,
the length of the Boogie source generated by Javanni without and with inlining and loop
unrolling, and the time taken to check the Boogie program (on a Windows 7 machine
with a 3.1 GHz dual core Intel Pentium processor and 4GB of RAM). The examples are
available at http://se.inf.ethz.ch/people/nordio/javanni/.

Programs 1–2 only include standard type correctness properties generated automati-
cally by Javanni. Program 1 is a collection of small JavaScript applets from
http://www.jsworkshop.com; program 2 is one single larger application, a poker
game, from the same source. Programs 3–6 are JavaScript implementations of object-
oriented standard examples also used in previous work of ours [7,6], each equipped with
functional specifications (pre- and postcondition) for each method. In this case, verifi-
cation also required intermediate assertions, but these were much fewer than in [7,6]

http://se.inf.ethz.ch/people/nordio/javanni/
http://www.jsworkshop.com
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Table 1. JavaScript programs automatically verified with Javanni

NAME
LOC

JS
LOC
SPEC

LOC
BOOGIE

LOC
INLINED

TIME [S] FEATURE

1. JS workshop 237 0 2448 3400 3.3 Type Correctness
2. Poker game 320 0 1139 12240 11.0 Type Correctness
3. Cell / Recell 130 21 580 1372 0.6 Functional
4. Counter 42 6 325 431 0.5 Functional
5. Expression 79 2 381 595 0.5 Functional
6. Sequence 102 3 440 1216 0.6 Functional

Total 910 32 5313 19254 16.5

thanks to Javanni’s inlining and unrolling. Programs 3–4 use object-oriented features to
model: cells that store integer values (3); and a counter (4). Program 5 features non-
negative integer expression objects which can be evaluated. Program 6 models integer
sequences including monotone, strict, arithmetic, and Fibonacci sequences.

4 Conclusions

This paper presented the essential features of Javanni, a verifier for JavaScript pro-
grams. Javanni works by automatically transforming JavaScript programs into the Boo-
gie verification language; it then uses the Boogie verifier to determine if the original
JavaScript program is correct. Verifying standard type correctness properties does not
require special annotations; functional properties, on the other hand, are also supported
and specified by means of standard pre- and postconditions, which define the expected
behavior of methods. To improve verification accuracy without requiring extra annota-
tions, Javanni’s translation applies method inlining and loop unrolling. The case study
suggests that these techniques can be instrumental in reducing the annotation burden
required to automatically verify programs in practice.
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Abstract. One of the main challenges in the design of real-time systems
is how to derive correct and efficient implementations from platform-
independent specifications.

We present a general implementation method in which the application
is represented by an abstract model consisting of a set of interacting com-
ponents. The abstract model executes sequentially components interac-
tions atomically and instantaneously. We transform abstract models into
physical models representing their execution on a platform. Physical mod-
els take into account execution times of interactions and allow their par-
allel execution. They are obtained by breaking atomicity of interactions
using a notion of partial state. We provide safety conditions guarantee-
ing that the semantics of abstract models is preserved by physical models.
These provide bases for implementing a parallel execution engine coordi-
nating the execution of the components. The implementation has been val-
idated on a real robotic application. Benchmarks show net improvement
of its performance compared to a sequential implementation.

1 Introduction

Model-based design allows deriving correct implementations from formal speci-
fications of the application. It involves successive transformations from abstract
models, i.e. platform-independent representations of the application software, to
concrete system models taking into account platform properties such as hard-
ware architecture constraints and execution times.

A model-based design flow for real-time systems seeks satisfaction of two types
of properties. Correctness, that is preservation of the essential properties of the
application software. This is usually established under the assumption that the
available resources are sufficient for running the application. Efficiency, that is
the available resources such as memory, time, and energy are used in an optimized
manner. A key issue in this context is the efficient use of the parallelism offered
by the platform, e.g. by multi-core architectures.
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Existing model-based implementation techniques use specific programming
models. Synchronous programs can be considered as a network of strongly syn-
chronized components. Their execution is a sequence of non-interruptible steps
that define a logical notion of time. In a step each component performs a quan-
tum of computation. An implementation is correct if the worst-case execution
times (WCET) for steps are less than the requested response time for the sys-
tem. For asynchronous real-time programs e.g. Ada programs, there is no notion
of execution step. Components are driven by events. Fixed priority scheduling
policies are used for sharing resources between components. Scheduling theory
allows to estimate system response times for known periods and time budgets.

Recent implementation techniques consider more general programming mod-
els [1–3]. The proposed approaches rely on a notion of logical execution time
(LET) which corresponds to the difference between the release time and the due
time of an action, defined in the program using an abstract notion of time. To
cope with uncertainty of the underlying platform, a program behaves as if its
actions consume exactly their LET: even if they start after their release time
and complete before their due time, their effect is visible exactly at these times.
This is achieved by reading for each action its input exactly at its release time
and its output exactly at its due time. Time-safety is violated if an action takes
more than its LET to execute.

We present a general implementation method for real-time systems based on
an abstract timed model. In this model, the application software is a set of com-
ponents whose behavior is defined by timed automata [4]. As shown in [5], using
timed automata allows more general timing constraints than LET used in [1–3],
such as lower bounds, upper bounds, and time non-determinism. Components
can synchronize their actions and communicate through (multiparty) interac-
tions. In addition to interactions, we also consider priorities which are partial
order relations between interactions. Priorities are essential for building correct
real-time systems. They allow direct expression of real-time scheduling policies
used for meeting the timing constraints of the application. Very often these poli-
cies also enforce determinism, which is necessary to have reproducible execution.
The operational semantics of the abstract model assumes a sequential, atomic
and instantaneous execution of the interactions. Following the approach in [5]
physical models can be automatically built from the abstract model. A physical
model represents the execution of the corresponding abstract model on a given
platform. It takes into account (non zero) execution times of actions by breaking
the atomicity of their execution. In this paper, we show how to build physical
models allowing parallel execution of interaction by extending the approach pre-
sented in [6] for untimed models. In such physical models, interactions can be
executed even from partial states, that is, even if one or more components are
still executing. We prove that the semantics of abstract models is preserved by
physical models when considering additional conditions characterizing safe exe-
cution. We explain how to compute these conditions using approximations of the
reachable states of the system. The correctness of the physical models requires
also that the platform is sufficiently fast for running the application.
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We define an execution engine that implements the operational semantics of
physical models. When a component completes its computation, it sends to the
engine its current state. The engine uses a scheduler that can execute component
interactions based on the partial knowledge of the state of the system. From an
initial state of the system, it proceeds as follows.

1. Compute the set of interactions enabled by the non-executing components,
i.e. the ones whose state is known. Some of the enabled interactions may be
unsafe to execute as they are potentially in conflict with other interactions
that may be enabled when the execution of busy components completes.

2. Among the enabled interactions, determine the subset of enabled interac-
tions that are safe to execute. Safe interactions preserve the semantics of
the application software. If all components have completed, the state of the
system is fully known and all the enabled interactions are safe.

3. If the set of safe interactions is empty, wait for more components to complete
their execution and go to 1. Otherwise, select a safe interaction according to
a real-time scheduling policy (e.g. Earliest Deadline First) and execute it.

The rest of the paper is structured as follows. Section 2 explains how to build
physical models and discusses the problem of their correctness. Section 3 defines
the implementation method in terms of an execution engine. It also provides ex-
perimental results for a robotic case study showing the interest of the approach.
The last section concludes the paper.

2 Modeling Parallel Real-Time Systems

2.1 Preliminaries

We consider discrete-time models, that is, time is represented using the set of
non-negative integers denoted by N. We assume that time progress is measured
by clocks. Clocks are non-negative integer variables increasing synchronously. A
clock can be reset (i.e. set to 0) independently of other clocks. Given a set of
clocks X, a valuation v : X → N is a function associating with each clock x its
value v(x). Given a subset of clocks X′ ⊆ X and a clock value l ∈ N, we denote
by v[X′ �→ l] the valuation that coincides with v for all clocks x ∈ X \ X′, and
that associates l to all clocks x ∈ X′. It is defined by:

v[X′ �→ l](x) =

{
l if x ∈ X′

v(x) otherwise.

Guards are used to specify when actions are enabled. We consider simple con-
straints on clocks X which are atomic formulas of the form x ∼ k, where x ∈ X,
k ∈ N, and ∼ is a comparison operator such that ∼∈ {≤,≥}. They are used to
build general constraints defined by the following grammar:

c := true | false | x ≤ k | x ≥ k | c ∧ c | c ∨ c | ¬c.

We simplify ¬(x ≤ k) into x ≥ k + 1, and ¬(x ≥ k) into x ≤ k − 1 This allows
putting any constraint c into the following disjunctive form: c = c1∨ c2∨ . . .∨ cn
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such that expressions ci are conjunctions of simple constraints. The evaluation
of a clock constraint c for a valuation v of clocks X denoted by c(v), is obtained
by replacing each clock x by its value v(x).

A guard g is a clock constraint c with an urgency type τ ∈ { l, d, e }, denoted
by g = [c]τ . Urgency types are used to specify the need for an action to progress
when it is enabled (i.e. when its clock constraint is true) [7]. Lazy actions (i.e.
non-urgent) are denoted by l, delayable actions (i.e. urgent just before they
become disabled) are denoted by d, and eager actions (i.e. urgent whenever they
are enabled) are denoted by e.

The predicate urg[g] that characterizes the valuations of clocks for which the
guard g = [c]τ is urgent is defined by:

urg[g](v) ⇐⇒

⎧⎪⎨⎪⎩
false if g is lazy, i.e. if τ = l

c(v) ∧ ¬c(v + 1) if g is delayable, i.e. if τ = d

c(v) if g is eager, i.e. if τ = e.

We denote by G(X) the set of guards over a set of clocks X.
Given guards g1 = [c1]

τ1 and g2 = [c2]
τ2 , the conjunction of g1 and g2 is

denoted by g1 ∧ g2 and is defined by g1 ∧ g2 = [c1 ∧ c2]
max τ1,τ2 , considering

that urgency types are ordered as follows: l < d < e. Henceforth, given a guard
g = [c]τ and a valuation v, we also write g(v) for the expression c(v).

2.2 Abstract Models

Definition 1 (abstract model). An abstract model is a timed automaton
M = (A,Q,X,−→) such that:

– A is a finite set of (observable) actions. In addition to actions A, we consider
internal action β. We denote by Aβ the set of actions A ∪ {β}

– Q is a finite set of control locations
– X is a finite set of clocks
– −→⊆ Q×(Aβ×G(X)×2X)×Q is a finite set of labeled transitions. A transition

is a tuple (q, a, g, r, q′) where a is an action executed by the transition, g is
a guard over X and r is a subset of clocks that are reset by the transition.

We write q
a,g,r−→ q′ for (q, a, g, r, q′) ∈−→.

An abstract model describes the platform-independent behavior of the system.
Timing constraints, that is, guards of transitions, take into account only user
requirements (e.g. deadlines, periodicity, etc.). The semantics assumes timeless
execution of actions.

Definition 2 (abstract model semantics). An abstract model M =
(A,Q,X,−→) defines a transition system TS. States of TS are pairs (q, v), where
q is a control location of M and v is a valuation of the clocks X.

– Actions. We have (q, v)
a−→ (q′, v[r �→ 0]) if q

a,g,r−→ q′ in M and g(v) is true.

– Time steps. For a waiting time δ ∈ N, δ > 0, we have (q, v)
δ−→ (q, v + δ) if

for all transitions q
a,g,r−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v + δ′).
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In an abstract model, time can progress only if no transition is urgent. Urgency
corresponds to priorities induced by the timing constraints: urgent transitions
have priority over time progress. We denote by wait(q, v) the maximal waiting
time allowed at (q, v). Notice that it satisfies wait(q, v + δ) = wait(q, v) − δ for
all δ ∈ [0,wait(q, v)], and is formally defined as follows:

wait(q, v) = min
({

δ ≥ 0
∣∣∣ ∨
q
ai,gi,ri−→ qi

urg[gi](v + δ)
}
∪ { +∞ }

)
.

Given an abstract model M = (A,Q,X,−→), a finite (resp. an infinite) execution
sequence of M from an initial state (q0, v0) is a maximal sequence of observable

actions and time-steps (qi, vi)
σi
� (qi+1, vi+1), σi ∈ A∪N and i ∈ { 0, 1, 2, . . . , n }

(resp. i ∈ N), such that � is the transitive closure of −→ for β-transitions, that

is, (qi, vi)
σi
� (qi+1, vi+1) if (qi, vi)

β

−→∗ (q′i, v
′
i)

σi−→ (q′′i , v
′′
i )

β

−→∗ (qi+1, vi+1).

Example 1. Consider an abstract model M = (A,Q, {x},−→) with two actions
A = {sync1, p}, two states Q = {q1, q2}, a single clock x, and two transitions
−→= { (q1, sync1, ∅, {x}, q2), (q2, p, [10 ≤ x ≤ 20]d, ∅, q1)} (see Figure 1). It
can be easily shown that the execution sequences of M from the initial state

(q2, 0) are infinite repetitions of the sequence (q2, 0)
δ1−→ (q2, δ1)

p−→ (q1, δ1)
δ2−→

(q1, δ1 + δ2)
sync1−→ (q2, 0), where 10 ≤ δ1 ≤ 20.

q2q1

{x}sync1

p [10 ≤ x ≤ 20]d

Fig. 1. Example of abstract model

Definition 3 (composition of abstract models). Let Mi = (Ai,Qi,Xi,−→i

), 1 ≤ i ≤ n, be a set of abstract models. We assume that their sets of actions
and clocks are disjoint, i.e. for all i �= j we have Ai ∩ Aj = ∅ and Xi ∩ Xj = ∅.
A set of interactions γ is a subset of 2A, where A =

⋃n
i=1 Ai, such that any

interaction a ∈ γ contains at most one action of each component Mi, that is,
a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. The composition of
the abstract models Mi, 1 ≤ i ≤ n, by using a set of interactions γ, denoted by
γ(M1, . . . ,Mn), is the composite abstract model M = (γ,Q,X,−→γ) such that
Q = Q1 × Q2 × . . .× Qn, X =

⋃n
i=1 Xi, and −→γ is defined by the rules:

a = {ai}i∈I ∈ γ

g =
∧
i∈I

gi r =
⋃
i∈I

ri ∀i ∈ I . qi
ai,gi,ri−→i q′i ∀i �∈ I . q′i = qi

(q1, . . . , qn)
a,g,r−→γ (q′1, . . . , q

′
n)
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∃i ∈ {1, . . . , n} . qi
β,gi,ri−→i q′i ∀j �= i . q′j = qj

(q1, . . . , qn)
β,gi,ri−→γ (q′1, . . . , q

′
n)

A composition M = γ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, can
execute two type of transitions: interactions a = {ai}i∈I ∈ γ which corresponds
to synchronizations of actions ai of models Mi, i ∈ I, and internal actions β of
the models Mi. An interaction a = {ai}i∈I ∈ γ is enabled from a state of M if
all actions ai are enabled.

In a composite model M = γ(M1, . . . ,Mn), many interactions can be enabled
at the same time introducing a degree of non-determinism in the behavior of
M . In order to restrict non-determinism, we introduce priorities that specify
which interaction should be executed among the enabled ones. A priority on
M = γ (M1, . . . ,Mn) is a relation π ⊆ γ ×Q× γ such that for all q the relation
πq = { (a, a′) | (a, q, a′) ∈ π } is a partial order. We write aπqa

′ for (a, q, a′) ∈ π
to express the fact that a has weaker priority than a′ at state q. That is, if both
a and a′ are enabled at state q, only the action a′ can be executed. Thus, priority
aπqa

′ is applied only when the conjunction of the guards of a and a′ is true. Let

q
a,g,r−→γ q′ and q

a′,g′,r′−→γ q′′ be transitions of M such that g = [c]τ and g′ = [c′]τ
′
.

Applying priority aπqa
′ boils down to transforming the guard g of a into the

guard gπ = [c ∧ ¬c′]τ and leaving the guard g′ of a′ unchanged.
Henceforth, we denote by enq(a) the predicate characterizing the valuations

of clocks for which an interaction a is enabled at state q. It is defined by:

enq(a) =

⎧⎪⎨⎪⎩
false if �(q, a, g, r, q′) ∈−→γ∨

(q,a,[c]τ ,r,q′)∈−→γ

c otherwise.

Definition 4 (priority). Given a composite model M = (γ,Q,X,−→γ), the
application of a priority π to M defines a new model πM = (γ,Q,X,−→π) such
that −→π is defined by the rule:

q
a,g,r−→γ q′ g = [c]τ gπ =

[
c ∧ ¬

∨
aπqa′

enq(a
′)
]τ

q
a,gπ ,r−→ π q′

Example 2. Consider an abstract model M = πγ(M1,M2,M3) such that:

– abstract models M1, M2, and M3 are provided by Figure 2,
– interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 =
{p, q} and a3 = {r, s},

– priority π is such that a2πqa3 for any control location q of M .

From the initial state (q11 , q
1
2 , q

1
3 , 0), it can be easily shown that the execution se-

quences of M have the following form: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((q21 , q
2
2 , q

2
3), 0)

5−→
((q21 , q

2
2 , q

2
3), 5)

a3−→ ((q21 , q
3
2 , q

1
3), 5)

δ2−→ ((q21 , q
3
2 , q

1
3), 5 + δ2)

a2−→ ((q11 , q
1
2 , q

1
3), 5 +

δ2)
a1−→ ((q21 , q

2
2 , q

2
3), 0), where 5 ≤ δ2 ≤ 15. Notice that control location err can-

not be reached in M2 due to the application of priority a2πqa3 for q = (q21 , q
2
2 , q

2
3).
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q11 q12 q13

a2πa3

γ = {a1 = {sync1, sync2, sync3}, a2 = {p, q}, a3 = {r, s}}

M3
M1

sync1
{x}

p

[10 ≤ x ≤ 20]d
sync2

err

M2

q32

q

r q22
q

sync3{y}
s

[y ≥ 5]e

q21 q23

Fig. 2. Example of composition of abstract models with priorities

2.3 Building Physical Models

Abstract models are platform-agnostic representations of applications in which
action execution is atomic and instantaneous. Physical models represent the be-
havior of the application software running on a platform. They take into account
the fact that action execution may take non-zero time. To this purpose we break
atomicity of actions and introduce execution times. The transition of an action
a of an abstract model is replaced by a sequence of two consecutive transitions
of the corresponding physical model (see Figure 3). The first transition marks
the beginning of the execution of action a, and the second transition marks its
completion. These transitions are separated by a partial state denoted by ⊥.
The execution time of the action corresponds to the waiting time at state ⊥.

q q′
a rg ⊥t−→ q ⊥t q′

βa g r

Transition
t = (q, a, g, r, q′) in M .

Corresponding sequence of
transitions in M⊥.

Fig. 3. Transformation of transitions of the abstract model

Definition 5 (physical model). Let M = (A,Q,X,−→) be an abstract model.
We define the associated physical model as the timed automaton M⊥ = (A,Q ∪
Q⊥,X,−→⊥) such that:

– Q⊥ is the set of partial states such that there is one partial state for each
transition of M , that is, Q⊥ = { ⊥t | t ∈−→ }

– −→⊥ is defined by the rule:

q
a,g,r−→ q′ t = (q, a, g, r, q′)

q
a,g,r−→⊥ ⊥t ⊥t

β,[true]l,∅−→⊥ q′

In the physical model M⊥, we assume arbitrary execution times for actions,
ranging from 0 to +∞, which is modeled by the guard [true]l for β-transitions.
Notice that M⊥ can be further constrained if bounds of the execution times
of actions are known. For instance, if we know an estimate WCET (a) of the
worst-case execution time [8] of an action a, the associated timing constraint is
[xa ≤ WCET (a)]d instead of [true]l, where xa is a clock that is reset whenever



242 A. Triki et al.

a is started. This allows us to statically check the correctness of the application
running on the platform, but this is beyond the scope of this paper.

In a physical model M⊥, the execution of an action a by a transition t =
(q, a, g, r, q′) is followed by a lapse of time δ(a) ∈ N at the partial state ⊥t,
before a β-transition is executed:

(q, v)
a
� (⊥t, v[r �→ 0])

δ(a)
� (q′, v[r �→ 0] + δ(a)). (1)

This corresponds to the following execution sequence in the abstract model M ,
if such a sequence is feasible:

(q, v)
a
� (q′, v[r �→ 0])

δ(a)
� (q′, v[r �→ 0] + δ(a)). (2)

Notice that the time step δ(a) of M⊥ in (1) may not be a time step of M in (2)
if δ(a) > wait(q′, v[r �→ 0]), meaning that the physical model violates timing
constraints defined in the corresponding abstract model. In this case, we say
that the considered execution sequence is not time-safe. We compare execution
sequences of abstract and physical models based on the usual notion of weak
simulation [9]. It can be shown that if all execution sequences of M⊥ are time-
safe, then M⊥ is weakly simulated by M , considering that a state of the form
(⊥t, v) of M

⊥, t = (q, a, g, r, q′), is simulated by the state (q′, v) of M .
A correct implementation must execute only time-safe sequences. Time-safety

violations occur in a physical model when the execution time of an action is larger
than what is allowed by the timing constraints of the corresponding abstract
model. Correct implementations are obtained for platforms that are sufficiently
fast for executing the application without violating time-safety. In this case, the
physical model preserves the semantics of the abstract model as shown in [5].
When this cannot be ensured for a given platform, we propose to detect time-
safety violations at run-time and to stop the system in order to prevent the
application from incorrect executions.

Composition. In Definition 5, physical models M⊥ represent the behavior of
a single abstract model M running on a platform. In [5] the physical model of a
composition M = πγ(M1, . . . ,Mn) of abstract models Mi is M

⊥. That is, each
execution of an interaction a = {ai}i∈I ∈ γ is split into two transitions executed
sequentially, one for the beginning of the execution of a, and the other one
for its completion. The time elapsed between the execution of these transitions
corresponds to the execution time of a. Notice that during this time all the
components M1, . . . , Mn are waiting for the completion of interaction a, even
the ones that are not participating to a (i.e. components Mi, i /∈ I), that is, in
M⊥ interactions are executed sequentially. We propose a different definition for
physical models that can execute interactions in parallel.

Given a composition πγ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, the
physical model M‖ = πγ(M⊥

1 , . . . ,M⊥
n ) is computed in two steps.

1. For each component Mi we compute its corresponding physical model M⊥
i

representing the execution of Mi on a dedicated execution platform.
2. The physical model M‖ is obtained by composing physical models M⊥

i ,
1 ≤ i ≤ n, with respect to interactions γ and priority π.
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In the physical model M‖, the execution of an interaction a = {ai}i∈I of the
abstract model M can be decomposed as follows. First, the beginning of the
execution of a is represented by a single transition in M‖, as in M⊥. Second,
each componentM⊥

i completes by executing its internal β-transition. In contrast
to M⊥ in which the completion of a corresponds to a single β-transition, in M‖

components complete asynchronously and independently. This allows to start
new interactions even if one or more components are still executing.

Example 3. Consider the abstract model M = πγ(M1,M2,M3) of Example 2.
Figure 4 shows the corresponding physical modelM‖ = πγ(M⊥

1 ,M⊥
2 ,M⊥

3 ). Con-
sider that execution times for actions sync1, sync2, and sync3, are respectively
4, 7, and 12. Consider also that the execution time is 5 for actions p, q, r, and s.

It can be easily shown that M‖ admits the single execution se-

quence: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((⊥t121
,⊥t122

,⊥t123
), 0)

4−→ ((q12 ,⊥t121
,⊥t123

), 4)
3−→

((q21 , q
2
2 ,⊥t123

), 7)
a2−→ ((⊥t211

,⊥t2e2
,⊥t123

), 7)
5−→ ((q11 , err, q

1
3), 12). Notice that

this execution sequence leads to a state that is not reachable in M due to prior-
ity a2πqa3. Since a3 is disabled at partial state (q21 , q

2
2 ,⊥t123

), the priority cannot

apply to a2 which is executed. That is, the physical model M‖ is not correctly
implementing the semantics of the abstract model M .

q11

q21

β

⊥
t21
1

β

p

M⊥
1

{x}

γ = {a1, a2, a3}

a2πa3

β

q23

q13
β sync3

⊥
t123⊥

t21
3

{y}

M⊥
3

[10 ≤ x ≤ 20]d ⊥
t2e2

β

M⊥
2

sync1

⊥
t121

q12
β

qr

err⊥
t122

⊥
t23
2

q

⊥
t31
2

sync2

q32

β

q22

β
s

[y ≥ 5]e

Fig. 4. Physical model of Example 2

Correctness. Consider a compositionM‖ = πγ(M⊥
1 , . . . ,M⊥

n ) of physical mod-
els M⊥

i = (Ai,Qi ∪ Q⊥
i ,Xi,−→i), i ∈ {1, . . . , n} and the corresponding abstract

model M = πγ(M1, . . . ,Mn). Given a state (q, v) of M‖, q = (q1, . . . , qn), a
component Mi is busy at (q, v) if it is in a partial state qi ∈ Q⊥

i . Otherwise, Mi

is said to be ready. We say that a state (q, v) is partial if at least one component
is busy, otherwise (q, v) is said to be global.

As shown in Example 3, the physical model M‖ may violate the semantics
of M due to incorrect execution from partial states. From global states, the
transitions executed in M and M‖ are the same. We consider that M‖ is correct
if it can be weakly simulated by M , considering that partial states (q, v) of M‖

are related through the simulation relation to global states (qg, v) of M , such
that qg is the control location reached from q after all busy components complete.
Notice that the uniqueness of qg comes from the fact that the execution of β-
transitions is deterministic and confluent [6].
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Consider the execution of an interaction a inM‖ = πγ(M⊥
1 , . . . ,M⊥

n ) from the
partial state (q, v), and the corresponding global state (qg, v) in M . As explained
in [6], if a is enabled at (q, v), it is also enabled at (qg, v). However, in order to
respect the semantics of the abstract model M , a should be disabled due to
priority π if there exists an interaction b enabled at state (qg, v) such that aπqg b.
The priority π is defined only on global states qg. Thus, a should be blocked
if enabledness of interaction b cannot be decided at (q, v). Notice also that the
application of priority aπqgb depends on the global state qg.

Similarly, a time step δ enabled in M‖ at partial state (q, v) can be disal-
lowed in M at the corresponding global state (qg, v) if δ > wait(qg, v), i.e. if an
interaction a involving busy components is urgent at state (qg, v+ δ′) s.t. δ′ < δ.

To prevent M‖ from incorrect execution, we define the predicate safe(q,v)(σ)
characterizing the states from which execution of an interaction σ ∈ γ or of a
time step σ ∈ N will not violate global state semantics. Clearly, for global states
(q, v) we have safe(q,v)(σ) = true (i.e. the behavior of M‖ is already safe for
global states). For an interaction a, a partial state (q, v) and its corresponding
global state (qg, v), the predicate safe must satisfy:

safe(q,v)(a) ⇒ �b ∈ γ . aπqg b ∧ (qg, v)
b
� (q′, v′). (3)

For a time step δ, safe must also satisfy:
safe(q,v)(δ) ⇒ δ ≤ wait(qg, v). (4)

Any predicate safe satisfying the conditions (3) and (4) ensures correct exe-
cution in M‖. Ideally, safe should be obtained by using equivalence instead of
implication in (3) and (4), corresponding to the less restrictive predicate allow-
ing the maximal parallelism in the system. However, its computation requires
the knowledge of the reachable global state (qg, v) from any partial state (q, v),
which cannot be obtained in practice for real systems. The next section explains
how to over-approximate safe, i.e. compute safe∗ such that safe∗ ⇒ safe.

3 Parallel Real-Time Implementation

We use concepts presented in the previous section to implement a parallel real-
time execution engine for BIP programs. The BIP—Behavior / Interaction /
Priority—framework [10] is intended for the design and analysis of complex,
heterogeneous embedded applications. BIP is a highly expressive, component-
based framework with rigorous semantics. It allows the construction of complex,
hierarchically structured models from atomic components characterized by their
behavior and their interfaces (communication ports). Such components are ab-
stract models extended with variables. Transitions are labeled by ports, boolean
guards on variables, and timing constraints that may involve expressions on
variables. Transition execution may assign new values to variables, computed
by user-defined functions (in C). Atomic components are composed by layered
application of interactions and priorities. Interactions express synchronization
constraints and define the transfer of data between the interacting components.
Priorities are used to filter amongst possible interactions and to steer system
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evolution so as to meet performance requirements e.g., to express scheduling
policies. Priorities define partial orders between interactions that can change
dynamically. They are provided as sets of rules including boolean guards on
components variables.

3.1 Computing Timing Constraints of Interactions

The execution engine which is responsible for the coordination between compo-
nents, computes enabled interactions on-line. To decide which interactions are
enabled at a given state, it expresses their guards based on a single global clock t.
This clock measures the absolute time elapsed since the system has been started
and is never reset. It is used to express timing constraints on local clocks of
components in the following manner. It uses a valuation w : X → N in order
to store the absolute time w(x) of the last reset of a clock x with respect to
the clock t. The valuation v of the clocks X can be computed from the current
value of t and w by using the equality v = t − w. Henceforth, states (q, v) are
represented as tuples (q, w, t), where w : X → N is a clock valuation giving the
most recent reset times and t ∈ N is the value of the current (absolute) time.

Given a state s = (q, w, t), the engine computes guards g = [cτ ] of interactions
a as follows. It rewrites simple constraints x ∼ k, ∼∈ {≤,≥}, involved in c
using the global time t and reset times w, i.e. x ∼ k ≡ t ∼ k + w(x). This
allows reducing any conjunction of simple constraints into an interval constraint
l ≤ t ≤ u. By using the disjunctive form defined in Section 2.1 we can put c in
the following form:

c =

n∨
i=1

li ≤ t ≤ ui, (5)

such that ui+1 < li for all i ∈ {1, . . . , n−1}. We associate to a its next activation
time nexts(a) which is the next value of the global time for which a is enabled,
and its next urgency time deadlines(a) which is the next value of the global time
for which a is urgent. They are computed from (5) as follows:

nexts(a) = min1≤i≤n nexts([li ≤ t ≤ ui]
τ )

deadlines(a) = min1≤i≤n deadlines([li ≤ t ≤ ui]
τ ),

such that for gi = [li ≤ t ≤ ui]
τ , nexts(gi) and deadlines(gi) are defined by:

nexts(gi) =

{
max { t, li } if t ≤ ui

+∞ otherwise,
deadlines(gi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if t ≤ ui ∧ τ = d

li if t < li ∧ τ = e

t if t ∈ [li, ui] ∧ τ = e

+∞ otherwise.

We denote by γq the set of interactions enabled at control location q. The function
wait defined in Section 2.2 satisfies t+ wait(s) = mina∈γq deadlines(a).

3.2 Execution Engine Algorithm

The execution engine behaves as a controller for the application (see Figure 5).
It detects time-safety violation during the execution and allows execution of safe
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interactions only, based on the predicate safe of Section 2.3. As explained in Sec-
tion 2.3, given the current control location q the evaluation of safe depends on
the guards of interactions enabled at global control location qg reachable from q.
It also depends on the priority πqg that applies at qg. This requires knowing what
will be the validated guards after the completion of the busy components. This is
not possible in general, since they may depend on the values of the variables of
the busy components. Hence, when necessary they are over-approximated in the
following way. Clock constraints x ∼ k are approximated to true whenever k can-
not be evaluated statically (e.g. if k is an expression involving non-constant vari-
ables). Boolean guards are also approximated to true if they involve expressions
that cannot be evaluated statically. For given state s = (q, w, t), the execution
engine computes the next interaction to be executed as follows.

2. Compute

enabled safe interactions
Restrict 3.Check

Time-safety t = trfor notify

1.Wait

time-safety violated for partial state

4.Update 5.Schedule

interactions

for global statetime-safety violatedstop

notify when one Parallel Real-Time Execution Engine notify
components

Platform

component completes

no safe interaction

actual time tr

. . .
Application Software M⊥

nM⊥
2M⊥

1

Fig. 5. Architecture of parallel real-time engine

1. It waits for notification from components finishing their execution. Compo-
nents send their enabled ports (transitions), on which they are willing to
interact, with their guards.

2. Based on the received notifications, it computes the set of interactions γq en-
abled at q. Notice that they involve only ready components. They correspond
to the application of the operational semantics of interactions γ.
It restricts guards of enabled interactions to enable only safe execution. This
is achieved by applying the operational semantics of priority π, using the
approximated guards for the priority rules and for the interactions involving
busy components, which guarantees equation (3) of Section 2.3.

3. It checks if time-safety is violated, i.e. if tr > deadlines(a) for an interaction
a, where tr is the current value of the actual time. Notice that for interac-
tions involving busy components, to guarantee equation (4) of Section 2.3 we
compute deadlines based on approximated guards and considering delayable
guards as eager.

If time-safety is violated for some enabled interaction a ∈ γq the execution
is stopped1. If time-safety is violated for an interaction involving busy com-

1 Actually, instead of stopping the application any recovery policy can be considered
when time-safety is violated.
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ponents, the engine goes to 1 to wait for the completion of more components
in order to determine whether time-safety is actually violated or not.

4. It updates the global time t with the actual time tr, i.e. t := tr.
5. It chooses an enabled interaction a among the safe ones, that is, such that

nexts(a) < +∞ and nexts(a) ≤ mina′∈γ deadlines(a
′). The choice of a can

be based on a given real-time scheduling policy (e.g. EDF). The chosen
interaction a is executed as soon as possible, i.e. at the global time nexts(a).
If no such interaction exists, either s is a global state and there is a deadlock,
or s is a partial state and the engine goes to 1.

3.3 Use Case: A Robotic Application

We made experiments on the marXbot platform [11], a miniature mobile robot
composed of 3 main modules. The base module providing rough-terrain mo-
bility thanks to treels (combination of tracks and wheels). It embeds also 16
infrared proximity sensors for detection of obstacles. The rotating distance scan-
ner module including 4 infrared long range sensors is used to build 2D map of its
environment. And finally, the module of the main processor which is an ARM11
running Linux-based operating system and communicating through CAN bus
with 10 micro-controllers (dsPIC33) managing sensors and actuators.

We consider an experimental setup for an obstacle avoidance scenario. Ini-
tially, the robot moves straight and turns whenever it detects an obstacle. We
used BIP to implement the application, which is composed of (see Figure 6):
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Fig. 6. The obstacle avoidance application

– Components AvoidObstProxy and AvoidObstLRang responsible for reading
the values of the proximity and long range sensors. If one of these components
detects the presence of an obstacle, it transmits its direction to component
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Arbiter through interaction obs. Otherwise, it sends message free indicating
the absence of obstacle.

– From messages received from AvoidObstProxy and AvoidObstLRang,
Arbiter computes the new direction of the robot, which is sent to com-
ponents CtrlMotorLeft and CtrlMototRight which are the controllers of
the motors

– CtrlMotorLeft and CtrlMototRight determine the speed to apply to the
left and right treels, based on the direction received from Arbiter.

To avoid collisions, we give priority to obstacles detected by AvoidObstProxy
over the ones detected by AvoidObstLRang, which is implemented by rule obsL
π obsP . We also give priority to presence of obstacles over than their absence,
corresponding to rules freeP π obsL and freeL π obsP .

Using BIP, we generated C++ code for the main processor. We compared
the application running with the parallel engine proposed in Section 3, with the
same application running with the sequential engine of [5]. Its performance is
measured by varying the period used for reading sensors in AvoidObstProxy and
AvoidObstLRang. For each tested period, we ran the application 5 times under
similar conditions. As shown in Figure 7, with the sequential engine the minimal
period for a correct operation of the robot is 130 ms. For smaller periods time-
safety may be violated which stops the application. The minimal period with the
parallel engine is 60 ms, which drastically improved the reactivity of the robot.
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Fig. 7. Time-safety violations for sequential and parallel executions

The parallel engine executes each component using a thread, allowing
AvoidObstProxy and AvoidObstLRang to wait in parallel for new values of the
sensors sent by the microcontrollers. In contrast, the sequential engine treats the
interaction with the microcontrollers sequentially leading to the addition of the
waiting times.

4 Conclusion

We have presented an implementation method for real-time applications. It
is based on a general abstract timed model, a platform-independent repre-
sentation in which the application is a set of components subject to timing
constraints, multi-party interactions, and priorities. Abstract models assume se-
quential, atomic and instantaneous execution of interactions between the compo-
nents. We formally defined physical models describing the execution of abstract
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models on a given platform. They take into account (non zero) execution times
of interactions, and allow their parallel execution by breaking their atomicity.

In real-time systems, priorities are essential for the expression of scheduling
policies and resource management. We show that special care should be taken to
preserve global state semantics when executing interactions subject to priorities
in parallel. Global state semantics assumes a perfect knowledge of the system
state. In parallel execution, the execution engine has only a partial knowledge of
the system’s state. We provide a condition for safe parallel execution of enabled
interactions. The condition guarantees that despite partial state knowledge, if an
interaction is enabled at a partial state then it will remain enabled in the global
state reached after all the executing components have completed their execution.
We have implemented a parallel execution engine that correctly schedules the
execution of interactions based on an approximation of the safety condition.
The approach has been validated on a real robotic application for which we
generated C++ code. We provided benchmarks for this application showing net
improvement of performance with respect to a sequential implementation.
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Abstract. As the mobile platform continues to pervade all aspects of
human activity, and mobile applications, or mobile apps for short, on
this platform tend to be faulty just like other types of software, there is
a growing need for automated testing techniques for mobile apps. Model-
based testing is a popular and important testing approach that operates
on a model of an app’s behavior. However, such a model is often not avail-
able or of insufficient quality. To address this issue, we present a novel
grey-box approach for automatically extracting a model of a given mobile
app. In our approach, static analysis extracts the set of events supported
by the Graphical User Interface (GUI) of the app. Then dynamic crawl-
ing reverse-engineers a model of the app, by systematically exercising
these events on the running app. We also present a tool implementing
this approach for the Android platform. Our empirical evaluation of this
tool on several Android apps demonstrates that it can efficiently extract
compact yet reasonably comprehensive models of high quality for such
apps.

1 Introduction

The mobile platform is projected to overtake the desktop platform as the global
Internet platform of choice in the very near future [1]. There has been a deci-
sive shift to mobile devices in numerous application areas such as email, social
networking, entertainment, and e-commerce [1, 2]. This trend has prompted an
explosive growth in the number and variety of mobile apps being developed.
As of June 2012, Android’s Google Play had over 600,000 apps that had been
downloaded more than 10 billion times in total [3]! Users typically have a choice
between several apps with similar functionality. Thus developers are required to
develop high quality apps in order to be competitive. On the other hand, mobile
apps are usually developed in relatively small-scale projects, which may not be
able to support extensive and expensive manual testing. Thus, it is particularly
important to develop automated testing tools for mobile apps.
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For the purpose of this research, we use Android apps as a representative of
mobile apps in general. Most tools and frameworks [4–8] currently available for
testing Android apps are simply aids for (manual) test-case authoring, deploy-
ment, debugging, and visualization. There are no effective industrial products for
automated test-case generation per se. Recognizing this inadequacy, researchers
have very recently begun to develop such techniques [9–13]. This paper attempts
to build on this fairly nascent body of research.

Mobile apps are a subset of the more general class of event-driven applications
and specifically event-driven Graphical User Interface (GUI) applications. How-
ever, they have the following characteristics that make them suitable for specific
automated testing techniques.

– Small size. Mobile apps are typically much smaller and simpler than desk-
top applications, both in terms of the physical footprint as well as behavior.
Desktop applications can be large, feature-rich, and computationally intensive.
However, a significant fraction of mobile apps are designed as “micro-apps” to
solve small and specific tasks [14]. Furthermore, the size of mobile apps is con-
strained by the limited processing, storage, and display resources of the mobile
device. The small size of mobile apps enables automatic testing techniques to
be feasible and applicable to real-world apps.

– Event-centric. Mobile devices have evolved to be small-screen devices with-
out a keyboard. Since typing is onerous on such devices, mobile apps are
designed around a rich set of user gestures as input events. Thus, on the one
hand, the role of typed data is somewhat diminished in mobile apps in contrast
to desktop applications. On the other hand, the richer set of user gestures in
mobile apps needs to be incorporated into any testing process.

– Simple & Intuitive GUI. Users of desktop GUI applications might be ex-
pected to refer to documentation or tutorials to fully comprehend how to use
the applications. In contrast, mobile apps are expected to have a simple and
intuitive user interface where most, if not all, usage scenarios of an app should
be evident to average users, from the GUI.

Model-based testing [15] is a popular and important type of testing that uses a
model of the application under test as a basis for constructing test cases. Au-
tomated model-generation techniques that dynamically analyze the GUI of the
application have been previously developed for desktop GUI applications [16]
and for Ajax web applications [17]. However, the limited degree of automation
of these tools and the incompleteness of the resulting models have posed bar-
riers for their industrial adoption. Such limitations can be attributed, in part,
to the nature of their target application domains. For example, the GUIs of
feature-rich desktop applications or web applications can have a large, poten-
tially unlimited, number of states. Thus, techniques such as Crawljax [17] either
bound their exploration or require user-specified state abstractions to extract a
finite model. Techniques such as GUITAR [16], on the other hand, resort to more
imprecise event-based models. By contrast, as observed above, mobile apps have
substantially smaller and simpler GUIs. This characteristic raises the possibility
of more complete and automated GUI state-space exploration in mobile apps.
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Second, automated crawling techniques typically require knowledge of the set
of GUI widgets supporting actions (e.g, clicks) and precisely what actions are
supported on each such widget. For web applications, much of this information
is represented in client-side JavaScript code, which is notoriously difficult to an-
alyze. Thus, this information needs to be manually specified. For desktop GUI
applications, this analysis is not that important since user actions are mostly
simple mouse clicks. However, as noted above, supporting a rich array of user
gestures is an integral part of mobile-app design. Further, as we demonstrate
in this work, mobile app development frameworks are quite amenable to auto-
matic analysis and extraction of this information. The objective of this work is to
build a novel, customized and more efficacious automated GUI-model generator
for mobile apps, particularly Andriod apps, by exploiting these observations.

Our approach uses static analysis of the app source code to extract the actions
supported by the GUI of the app. This information is typically not available to a
purely black-box analysis and is far more expensive to extract through a dynamic
white-box approach [9]. Next, we use dynamic crawling to build a model of the
app by systematically exercising the extracted events on the live app. We concur
with the view of previous work [16, 17] that a dynamic analysis is far simpler
and more precise than static analysis for analyzing GUIs. However, we exploit
the smaller, simpler, and highly event-centric interface of mobile apps to build
a more efficient and automated crawler.

Specifically, this paper makes the following main contributions:

– A dynamic, grey-box GUI reverse-engineering approach for mobile apps, which
we identify as a specialized type of event-driven GUI apps.

– A novel static analysis to support the dynamic GUI crawling.

– A tool implementing this grey-box approach of automated model extraction
for Android apps.

– An evaluation of this tool on several real-world Android apps for demonstrat-
ing its efficacy at generating high-quality GUI models.

2 Background and Problem Definition

Model-based testing [15] is an approach for software testing orchestrated around
a model of the application under test. The model is typically an abstract rep-
resentation of the application behavior and may be constructed either manu-
ally [18] or using automatic techniques [16]. This model is used to construct a
suite of test cases to test the application. Various techniques of model-based
testing have been proposed in the literature [19, 20].

One of the crucial steps in model-based testing is the creation of the model
itself. When performed manually, it is usually a laborious and error-prone pro-
cess. There is a body of work [11, 16, 17] that tries to partially or completely
automate the process of extracting models from GUI applications. The general
approach is to automatically and systematically interact with the GUI of the
live, running application, in an attempt to extract and record a model of the
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usage scenarios supported by it. GUI applications are a subset of general event-
driven applications and include types of applications such as web applications
and desktop GUI applications as well as mobile apps.

As discussed in Section 1, mobile apps have special characteristics that distin-
guish them from other types of event-driven applications. This paper addresses
the problem of automated GUI-model generation for mobile apps.

Problem Definition. Given a mobile app, efficiently generate a high-quality
model representing the valid input event sequences accepted by the app, where
quality is measured by the following criteria:

1. Coverage. Every reachable program statement of the app should be executed
by running at least one of the event sequences included in the model.

2. Precision. The model should not include invalid events, i.e., events that are
not supported by widgets on a given screen.

3. Compactness. The size of the model, in relation to the number of event
sequences that it represents, should be as small as possible.

Note that the above problem definition uses statement coverage as the coverage
criterion. However, the approach presented here would be equally applicable to
any other suitable code coverage criteria.

3 Related Work

Automated Model Extraction. Our work falls under the broad category of
automated model-generation techniques. The GUITAR [16] tool by Memon et al.
is one of the earliest and most prominent representatives of this category. GUI-
TAR reverse-engineers a model of a GUI application directly from the executing
GUI. A recent extension of the tool, Android-GUITAR [21] supports Android
apps. GUITAR uses formalisms of GUI forests and event-flow graphs to repre-
sent the structure and execution behavior of the GUI, respectively. However, the
event-flow graph representation typically includes many false event sequences,
which may need to be weeded out later.

The Crawljax [17] tool by Mesbah et al. is an automatic model extractor
targeted to Ajax web applications. In contrast to GUITAR, it uses a state-
machine representation to capture the model because of the stateful nature of
Ajax user-interfaces. However, Ajax applications present particularly challeng-
ing targets for automatic model extraction because of their large (sometimes
unbounded) state space. Therefore, in practice, manually specified state abstrac-
tions are required to extract a model with high coverage but manageable size.
WebMate [22] is another, more recent, model extractor for web applications.
The iCrawler [13] tool by Joorbachi et al. is a reverse-engineering tool for iOS
mobile apps and such tool also uses a state-machine model. The emphasis there
is on dealing with the idiosyncrasies of the iOS platform. All of the above tools
have no means of deducing actionable GUI elements and supported actions on
each screen. This information typically needs to be supplied to the tools. Some
tools, such as Android-GUITAR, exercise only the default tap action on widgets.
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However, doing so provides less than optimal coverage of the behavior. Our pro-
posed approach is unique in that it uses an efficient static analysis to automate
and solve this aspect of model discovery for the Android platform.

Automated Testing of Mobile Apps. Hu and Neamtiu [23] propose an ap-
proach that exercises the app under pseudo-random event sequences produced
by the Android Monkey tool and analyzes the log files of this execution for cer-
tain kinds of faults. The AndroidRipper [11] tool also performs stress testing of
an Android app but by systematically crawling its GUI. These approaches can
sometimes reveal unexpected and interesting faults. However, their objective is
to stress-test the app rather than to create a reusable model for use in future
testing, as in our case. Takala et al. [18] present a case study of applying model-
based testing for testing Android apps. The M[agi]C [10] tool is used to generate
test cases for apps using a combination of model-based testing and combinato-
rial testing. Previous approaches [10, 18] work off a GUI model of the app and
such model could potentially be generated using our proposed approach. More
recently, Anand et al. [9] have applied concolic execution to generate feasible
event sequences for Android apps. However, the computation-intensive nature
of symbolic analysis coupled with an explosion in the sheer number of event se-
quences being enumerated limits their approach to fairly short event sequences.
Our approach, by contrast, can efficiently exercise fairly deep event sequences.
Mirzaei et al. [12] use static analysis to deduce the set of feasible event sequences
and represent them using a context-free grammar (CFG). The deduced event se-
quences are then analyzed through symbolic execution. Their proposed static
analysis is conceptually a generalization of our proposed action-inference analy-
sis. However, the lack of algorithmic details and limited evaluation there makes
a direct comparison with our approach difficult.

4 A Motivating Example

We use an Android app called SimpleTipper as an example to illustrate our ap-
proach. SimpleTipper is a simplified version of the open-source app, TippyTipper
(http://code.google.com/p/tippytipper/), used to calculate the tip amount for
a meal. Figure 1 illustrates its functionality. It consists of five screens. On the
opening (Input) screen, the user enters the meal bill amount through a numeric
keypad. The DEL button erases one digit. The CLEAR button or a longClick on
DEL clears the textfield. Clicking the Calculate button takes the user to the
second (Result) screen, which shows the total cost including the calculated tip.
The third screen is the Menu screen. It is opened by clicking the Menu button on
either the Input or the Result screen. The About option on the menu leads to the
fourth screen, About, with information about the app. The Settings option on
the menu directs the user to the fifth screen, Settings with two setting options.
Checking either of them on or off influences the tip calculation.



A Grey-Box Approach for Automated GUI-Model Generation 255

Fig. 1. Overview of SimpleTipper(a) and its state graph(b)

5 Proposed Approach

We propose a grey-box approach for automatically extracting a model of a given
mobile app. First, we use static analysis of the app’s source code to extract
the set of user actions supported by each widget in the GUI. Next, a dynamic
crawler is used to reverse-engineer a model of the app, by systematically exercis-
ing extracted actions on the live app. Our model has been designed to provide
sufficient state abstraction for compactness, without unduly compromising its
precision. The following sections describe these elements of our approach.

5.1 Action Inference Using Static Analysis

As explained earlier, supporting a wide array of user gestures is an integral aspect
of mobile app design. A model representing only the default click action would
miss a significant portion of the app’s behavior. For example, in Figure 1(a), the
longClick behavior of the DEL button on screen (1) would be omitted. Further,
the Settings and About screens of the app cannot be accessed without the
Menu button. These states constitute much of the app’s state space, as shown
in Figure 1(b). On the other hand, simply firing all possible actions on each
widget would bring in invalid actions into the model and lower its precision.
Thus, knowledge of the precise set of GUI actions is essential to generating a
high-quality model.

Our approach uses static analysis to infer these actions. We make the ob-
servation that in the Android framework a user action is defined by either (a)
registering an appropriate event listener for it or, (b) by inheriting the event-
handling method of an Android-framework component. We term the former as
registered action and the latter inherited action. For both these categories, iden-
tifying an action involves three basic steps: (1) identify the place where an action
is instantiated or registered; (2) locate the component on which the action would
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Fig. 2. An illustration of using static analysis for action inference

Algorithm 1. registeredactiondetection
Input : A: app source code
Output: E: action map

1 begin
2 ActionSet ← getAllActions()
3 EntryPoints ← getAllEntryPoints()
4 foreach P ∈ EntryPoints do
5 CG ← makeCallGraph(A,P)
6 foreach X ∈ ActionSet do
7 L ← getEventRegMethod(X )
8 PNodeSet ← getParentNode(CG,L) // Get all L’s callers
9 foreach PNode ∈ PNodeSet do

10 s ← findCallTo(PNode,L)
11 v ← getCallingObject(s)
12 i ← backLocate(v,A)
13 ID ← getParameter(i)
14 E.add(ID,X )

15 end

16 end

17 end

18 end

be fired; (3) extract an identifier of the component that the crawler can later use
to recognize the corresponding object and fire the action.

Algorithm 1 presents the analysis to detect registered actions. It essentially
iterates over all program-entry points (EntryPoints) and all actions (ActionSet)
supported by the mobile framework (Lines 6-16). For each entry point P and
action X , it extracts the call graph of the app (Line 5) and locates a set of
statements PNodeSet (Line 8) containing instances of a valid event-listener reg-
istering statement L for action X . Finally, for each statement PNode in PNodeSet
it performs a backward slice on PNode to locate an initialization statement of
the widget on which the instance of L was called (Lines 10-12). The backward
slice is used to get an identifier ID of the component (Line 13) that is registered
in the action map E with the action X . Figure 2 shows a code snippet where the
developer defines click as well as longClick actions on the button DEL shown
on screen (1) in Figure 1(a). To identify components on which to fire longClick,
we first use the call graph to find the methods where setOnLongClickListener
is called. It happens to be called in method onCreate of activity SimpleTipper.
Then we locate the statement calling setOnLongClickListener in onCreate and
get object btn delete that the listener is registered to. Finally we backslice to
get the initialization statement of btn delete, get its ID btn delete, and add
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Algorithm 2. inheritedActionDetection
Input : A: app source code
Output: E: action map

1 begin
2 ActionSet ← getAllActions()
3 CH ← getClassHierarchy(A)
4 Klass ← getUserClass(CH) // Get user defined classes
5 foreach Class ∈ Klass do
6 foreach X ∈ ActionSet do
7 L ← getActionHandlMethod(X )
8 M ← getDeclaredMethod(Class,L)
9 if L ∈ M then

10 ID ← getNameOrID(L,M)
11 E.add(ID,X )

12 end

13 end

14 end

15 end

the ID-action pair to the action mapping used by the crawler. Thus, when the
crawler encounters a screen with component btn delete, it fires a longClick

on it.
Algorithm 2 describes the inherited action detection. We first get class hi-

erarchy CH of the whole app (Line 3). Then, we use app’s namespace to filter
non-user-defined classes (Line 4). For each of the user-defined classes, if the class
overrides the action handling method L (Line 8), we regard the action X as valid,
then we extract the Activity name or registered ID of the class (Line 10), and
add the ID-action pair in the action mapping (Line 11).

5.2 Model Definition

We model the GUI behavior of an Android app as a finite-state machine. As
noted by others [16, 17], GUI apps in general could have a large, potentially
infinite number of UI states. However, our aim is to exploit the simple and
intuitive GUI design of mobile apps to derive a compact yet high-quality model.

The model design is inspired by the UI-design principles espoused by the
Android team. The Android User Experience Team [4] suggests that developers
should “make places in the app look distinct” to give users confidence that they
know their way around the app. In other words, different screens of the app
should and typically do have stark structural differences not just minor stylistic
ones. In addition, we would like to capture and reflect important differences
such as a button being enabled or disabled. Such differences are reflected in the
attributes of GUI components that support user actions. Finally, to keep the
model compact, we ignore differences in the UI state resulting from different
data values input by the user.

We use these principles to define a UI state, which we term as a visual observ-
able state. Our model is a finite-state machine over these states with the user
actions constituting the transitions between these states. The structure of a GUI
screen in Android is represented by a tree of different GUI components, called
a hierarchy tree. Further, we classify GUI components as executable components
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and display components. The former support user actions (which are detected
by our static analysis) while the latter are just for display purposes. Thus, a
visual observable state in our model is composed of the hierarchy tree of the UI
screen, as well as a vector of attribute values of each of the executable compo-
nents. The chosen attributes are ones that result in an observable change to the
GUI component but excluding ones bearing user-supplied text values or values
derived from them. It is fairly easy to manually identify the relevant attributes
for each type of UI component, once, for all apps.

Figure 1(b) shows the state model of SimpleTipper. Each of screens (1) and
(2) correspond to a unique state. Note that different values of the bill amount,
input by the user in screen (1) do not give rise to different states. Further the
pop-up dialog box launched by hitting the Menu button corresponds to state (3),
irrespective of whether it is launched from states (1) or (2). For screen (5), the
Settings screen, the two checkboxes are executable components. Their state
changes give rise to the four different states 5a-5d for the app.

5.3 Crawling Algorithm

The objective of the crawling algorithm is to exhaustively explore all the app’s
states by firing open actions, i.e., actions that have previously not been exercised
by the crawler, on each observed state. The crawling process ends if the model
has no open states, i.e., states that have open actions to be fired. This process can
potentially be done through a simple depth-first search (DFS) on the UI states.
However, the key challenge here is the backtracking step, i.e., undoing the most
recent action done by DFS, on reaching a previously seen state. Crawljax [17]
solves this issue, in the case of web applications, by re-loading the initial state and
replaying all but the last action leading up to the current state. This strategy is
possible in our case too, but can be fairly expensive, as shown in our evaluation.
We refer to this strategy as standard DFS in the sequel.

Algorithm 3. crawlapp
Input : A: app under test, E: action map
Output: M: crawled model

1 begin
2 M ← ∅; s ← getOpeningScreen(A)
3 while s �= null do
4 s ← forwardCrawlFromState(s,A,M, E) // forward crawl from s
5 s ← backtrack(s,A)
6 if isInitialState(s) then s ← findNewOpenState(s,M,A)

7 end

8 end

Mobile platforms, such as Android, provide a Back button to undo actions.
But this button is designed for app navigation and is context-sensitive. Thus, it
is not a reliable mechanism for backtracking to precisely the previous state. For
example, on state 5d of Figure 1, pressing the Back button will not lead us back
to previous state 5b or 5c, not even to the previous screen (3), but to the screen
(1) or (2) from where it was reached. Thus, the Back button need not take the
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navigation back to the immediately preceding state but to any of its ancestors.
Hitting Back a finite number of times will eventually take the app to the initial
screen. Our crawler uses a modified depth-first search, which tries to crawl only
“forward” as much as possible using the Back button to backtrack when needed.

Algorithm 3 describes this strategy. It repeats a sequence of three steps till
it can make no further progress at which point it terminates. The first step
is a forward-crawling step implemented by function forwardCrawlFromState()
(Line 4). In this step the algorithm recursively visits states with open actions. It
fires an open action and continues crawling till it reaches a state with no open
actions. At this point function backtrack() (Line 5) is called to backtrack from
the current state till another open state is found or one of the initial states of
the crawl model is reached. In the former case forward crawling is resumed from
this open state. In the latter case the function findNewOpenState() (Line 6) is
used to find and crawl to a new open state and forward crawling is continued
from there.

Algorithm 4. forwardCrawlFromState
Input : sc: state to crawl forward from, A: app under test

M: crawled model being generated, E: action map
Output: s: current state at the end of crawling

1 begin
2 sx ← sc
3 while sx �= null do
4 s ← sx
5 if isNewState(s) then
6 initActions(s, E,A)
7 addToModel(s,M)

8 end
9 e ← getNextOpenAction(s)

10 if e = null then sx ← null
11 else
12 sx ← execute(s, e,A)
13 updateOpenActions(s, e)
14 addToModel(s,e, sx,M)

15 end

16 end
17 return s

18 end

Algorithm 4 implements the function forwardCrawlFromsState() for forward
crawling from a given state sc. It iterates Lines 4-15 on the current state s,
obtaining an open action e on s (getNextOpenAction(), Line 9) and executing it,
to potentially reach another open state (function execute() on Line 12). The set of
open actions of s is accordingly updated by function updateOpenActions() (Line

13) to reflect the changes. Further, the executed transition s
e−→ sx is added to the

modelM by function addToModel() on Line 14. As an illustration, to completely
crawl the sub-graph formed by states 5a-5d in Figure 1(b), the standard DFS
would need to backtrack several times whereas our algorithm would cover it in a
single forward crawl through the sequence Menu → Settings → a1 → a2 →
a1 → a2 → a2 → a1 → a2 → a1 , by continuing to fire open actions.
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6 Tool Implementation

We have implemented our reverse-engineering approach in a tool called ORBIT.
It is composed the action detector and the dynamic crawler. Figure 3 shows an
overview of ORBIT.

Fig. 3. Overview of the ORBIT tool

Action Detector. The action detector is implemented using the WALA
static-analysis framework [24]. Android apps are event-driven and therefore or-
ganized as a set of event-handler callback methods. Thus, static analysis of just
the app code gives a set of partial, disconnected sub call-graphs. The remain-
ing behavior resides in the Android SDK, which we do not explicitly analyze.
However, our tool incorporates an intent-passing logic module, created based
on our knowldege of the Android SDK. For a given app, this module automati-
cally builds a mapping of intent-sending methods and intent filters by analyzing
the app’s source code and manifest file. This mapping essentially connects the
sub call graphs into a partial connected call graph. It is partial because for some
intent-passing mechanisms like intent broadcasting whose behavior is affected by
the runtime state of the Android system, we are unable to infer this information
statically. Then we apply the action-inference algorithm described in Section 5.1
on the partial connected call graph to generate the action mapping.

Dynamic Crawler. Our crawler is built on top of the Robotium [5] An-
droid test framework and implements the algorithms explained in Section 5.3.
Although the crawler gets the list of actions from the Action Detector, it im-
plements special handling for certain components such as dynamically-created
GUI components and system-generated GUI components that are not statically
declared.

Dynamically-created GUI components typically appear in Android containers
like ListView, as a list of dynamically-created child components. Each child
has the identical behavior, defined by the container. In such cases, the crawler
represents the container as one of the two abstract states: an empty list and a
non-empty list. Further, it randomly chooses only one of the child components
to crawl further, by firing actions defined in the container.

System-generated GUI components typically have system-defined IDs and pre-
defined actions. For example, the system-generated context menu is a ListView
object, with ID select dialog listview and different menu options as child compo-
nents, each with different behaviors. The crawler identifies such components at
runtime and systematically crawls each child, rather than treating it as a generic
container.



A Grey-Box Approach for Automated GUI-Model Generation 261

7 Evaluation

To assess the efficacy of our automated model extraction, we conducted a study
addressing the following research questions:

RQ1: Is the proposed GUI crawling algorithm more efficient than a standard
depth-first state-traversal algorithm?

RQ2: Are the widget and screen actions inferred by static analysis effective in
enhancing the behavior covered by the generated model?

RQ3: Can our tool generate a higher-quality model, more efficiently, compared
to other state-of-the-art techniques?

Subjects. For our study, we use eight open-source Android apps that have
also been used by other work on automated testing of mobile apps [10, 11, 21].
They are mostly small to medium-sized apps spanning a variety of application
categories and are listed in Table 1.
Results. To address the three research questions, we carry out a corresponding
experiment for each of the questions on all subjects. Among the subjects, Notepad
can be started with multiple notes (Notepad2) or no note (Notepad0), which will
substantially change the initial state of the crawling. To eliminate bias, we carry
out every experiment on Notepad for both scenarios.

To address R1, we record the time spent, the coverage as well as the counts of
forward actions (any actions other than back) and back actions exercised during
both DFS traversing and our crawling (FwdCrawl) in Table 2. As shown in the
Table, although both DFS and FwdCrawl can cover most of an app’s behavior,
DFS takes 70% more time to traverse all 9 subjects together.

The second experiment is to run our traversal algorithm with click actions only
instead of inferred actions. To address R2, we record the coverage and counts

Table 1. Test subjects used in the evaluation

Subject #LOCs #Activities Category Purpose
TippyTipper 2238 5 Tool Dining tip calculator
OpenManager 1595 6 Business File manager for Android
Notepad 332 3 Productivity Note creation and management
TomDroid 3711 3 Business Online note reading
Aarddict 4518 4 Books & Reference Aard Dictionary for Android
HelloAUT 234 1 Entertainment Shape drawing & coloring
ContactManager 497 2 Productivity Contacts manager
ToDoManager 323 2 Productivity Task-list creation and management

Table 2. Comparison of standard DFS-based crawling vs. proposed forward crawling

Subject
FwdCrawl DFS

Time(sec) Coverage(%) #Fwd #Back Time(sec) Coverage (%) #Fwd #Back

TippyTipper 198 78 61 15 512 82 134 52
OpenManager 480 63 92 18 822 56 209 29
Notepad2 102 82 25 4 147 83 39 12
Notepad0 80 78 18 2 75 71 15 2
TomDroid 340 70 78 23 459 58 61 8
AardDict 173 65 15 2 397 60 20 8
HelloAUT 156 86 46 0 278 85 61 0
ContactManager 125 91 20 1 137 92 22 2
ToDoManager 178 75 60 2 294 74 84 4
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Table 3. Comparison of Crawling with and without Action Inference

Subject
#clicks #longClicks #menu #States Coverage(%)
C C+I C C+I C C+I C C+I C C+I

TippyTipper 21 55 – 2 – 4 3 9 47 78
OpenManager 50 67 – 19 – 4 10 20 39 63
Notepad2 2 13 – 3 – 9 2 7 39 82
Notepad0 0 8 – 1 – 9 0 7 14 78
TomDroid 3 52 – 0 – 26 2 9 36 70
AardDict 4 15 – 0 – 7 3 7 43 64
HelloAUT 15 34 – 0 – 12 4 8 53 86
ContactManager 20 20 – 0 – 0 5 5 92 92
ToDoManager 60 60 – 0 – 0 7 7 76 76

of clicks, longClicks, and menu, the three most common actions fired during
crawling. The results show that non-click actions constitute only 22% of the
total actions but firing these actions during crawling increases the coverage by
34% on average. The low proportion of these actions also supports the argument
made in Section 5 that blindly firing all supported actions will produce a large
number of invalid edges in our model. Table 3 also shows that our crawling
produces fairly compact models with a few states.

We also compare ORBIT with other existing Android GUI ripping tools to
address R3. In Table 4, we compare ORBIT with Android GUITAR [21], Android
GUI Ripper [11] and Android’s Monkey tool. As Android GUI Ripper takes
substantially long time to run, we use the runs of its generated test cases to
do the comparison. The time of each run was recorded from the start of the
AUT (App Under Testing) to the generation of coverage report. The time along
with coverage shows that our crawler is 32%-75% faster while constructing a 5%-
140% more complete model than Android GUITAR and Android GUI Ripper.

Table 4. Comparison of ORBIT with other tools

Subject
Monkey

Android Android
ORBIT

GUITAR GUI Ripper
Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%) Time(sec) Cov.(%)

TippyTipper 83 41 322 47 - - 198 78
OpenManager 90 29 - - - - 480 63
Notepad2 127 60 - - - - 102 82
Notepad0 122 59 - - - - 80 78
TomDroid 69 46 - - 529 40 340 70
AardDict 124 51 - - 694 27 173 65
HelloAUT 98 71 117 51 - - 79 98
ContactManager 90 53 247 61 - - 125 91
ToDoManager 115 71 194 71 - - 121 75

For illustration purposes, we also compare our tool against the Android Mon-
key tool. Monkey fires a pseudo-randomly-generated action sequence, of a spec-
ified length, on the app. For our subjects, we found that the maximum coverage
achieved by Monkey tended to saturate at around 1200 events. For our exper-
iment, we ran Monkey 10 times with a 1500 event count on each app, and
report the median of the coverage achieved in these 10 runs in Table 4. Indeed,
for the given event count, Monkey is much faster than ORBIT but achieves
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substantially lower coverage. This result underscores the benefit of the system-
atic crawling performed by ORBIT.

8 Discussion

Crawling algorithm. Our crawling algorithm is faster than DFS for every
subject except Notepad0. By examining the execution log, we found that our
algorithm had traversed two more states than DFS, accounting for the difference.
Such result is due to the randomness in the choice of the next action to explore
and to the side effects of execution. When crawling by DFS, the crawler happened
to click the delete note button first before clicking the open note button. Since
there are no notes left after deletion, the crawler cannot visit the edit note screen.
Our crawling happened to click the edit button before delete, so we are able to
traverse the editing screen. The randomness can be mitigated by carrying out
multiple runs. We also plan to consider controlling the order of event sequences
as part of future work.

Selection of subjects. Our evaluation is based on subjects drawn from
existing related tools, and we try to avoid bias by including all subjects used to
evaluate Android GUITAR and GUI Ripper in previous work. However, we do
see a preference in the choice of subjects made by these tools. Both of the tools
seemed to select subjects with few non-click actions. For GUI Ripper, both the
subjects do not have longClick actions, although we did find a later version of
TomDroid that has longClicks. For GUITAR, because GUITAR does not support
non-click actions, two of its subjects, ContactManager and ToDoManager, do not
support non-click actions at all. In general, Android apps have a wide variety of
actions, and we apply our methodology against on apps with multiple actions
and those with only one or two kinds of actions. The both results show that our
methodology is effective on both of the cases.

ORBIT vs Android GUITAR. As Android GUITAR can fire only click
actions, it seems unfair to use our results with action inference for comparison.
If we compare our click-only runs with GUITAR, we observe that for most of
the subjects, Android GUITAR’s coverage rate in Table 4 is comparable to
our click-only coverage in Table 3. So we infer that our advantage in model
completeness is largely attributable to the action-detection technique. Another
difference between the two tools is that GUITAR was initially created for desktop
applications and its event-flow model typically contains many invalid paths,
while ORBIT is designed specifically for mobile apps, and uses a more precise
state-based model, which would also integrate well with other state-based testing
techniques.

Manual effort. The only manual work in our approach is to manually se-
lect attributes of executable components to compose the visual observable states
for the GUI. This effort is a one-time effort for a mobile platform. As we have
already performed this exercise for Android apps, additional effort will be re-
quired only when applying our technique on other mobile platforms to make
minor adjustments or revisions for Android.
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9 Conclusion

In this paper, we have proposed an approach for automatically reverse-engineering
GUI models of mobile apps.We described our tool called ORBIT that implements
our approach for Android, and presented the results of our empirical evaluation of
this tool on several Android apps. The results showed that for these apps, ORBIT
efficiently extracted high-quality models fully automatically.
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Abstract. Formal reasoning on Peer-to-Peer (P2P) systems is an in-
timidating task. This paper focuses on broadcast algorithms for Content
Addressable Network (CAN). Since these algorithms run on top of com-
plex P2P systems, finding the right level of abstraction in order to prove
their functional correctness is difficult. This paper presents a mecha-
nized model for both CAN and broadcast protocols over those networks.
We demonstrate that our approach is practical by identifying sufficient
conditions for a protocol to be correct and efficient. We also prove the
existence of a protocol verifying those properties.

Keywords: Structured P2P, CAN, broadcast algorithm, theorem
proving.

1 Introduction

Structured Overlay Networks (SONs) are a class of P2P systems that emerged in
the last decade to provide an abstraction of a lookup service over a large number
of distributed nodes. These technologies are widespread and can be found at the
heart of companies such as Amazon, Facebook and Twitter [4, 9].

Distributed applications operate now at a very large scale, and interactions
between computers are no longer limited to one-to-one communications. Broad-
cast communication primitives simplify the application development by avoiding
to explicitly write code for dissemination. In the context of a P2P system, com-
munication primitives can be designed to take advantage of the logical topol-
ogy to communicate efficiently. More important, such generic primitives can be
proved to be correct, which increases the confidence the programmer and the
user have in the system. In this article we are particularly interested in a broad-
cast algorithm running on top of the Content Addressable Network (CAN) [14]
in which the broadcasted message is received exactly once by each node; we say
that such a broadcast algorithm is efficient. Previous works such as M-CAN [15]
and Meghdoot [6] also attempt to leverage CAN in order to build an efficient
dissemination infrastructure that can be used by distributed applications.

However, there is no free lunch. Building high-assurance distributed applica-
tions which are correct remains a very difficult challenge but various methods
have emerged over the years to tackle it [1,2,5,11,19]. Theorem proving seems to
be among the best method to prove generic properties on distributed systems of
arbitrary size; in particular verification techniques based on model-checking are,
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in general, limited to systems of a predefined size and suffer from combinatorial
explosion. This article promotes the use of theorem proving in the safe design of
distributed systems, more particularly concerning the CAN overlay network.

We present here a mechanized model of CAN that will help the design of com-
munication primitives and the formal proof of their properties. We use this model
to define the characteristics and the properties of broadcast primitives. Our first
contribution is thus a set of abstractions, properties, and theorems regarding
the topological and the communication aspects of CAN. We formalize the CAN
network, the messages over such a network, and a notion of connectivity: a zone
is connected if any two nodes of this zone can communicate, possibly indirectly.
Some of these proven abstractions can be reused with resembling topologies such
as the Delaunay triangulation protocol (DT protocol) [10] and the Voronoi-based
Overlay Network (VON) [8], widely used in online games. Our second contribu-
tion is to use our framework to characterize broadcast protocols and prove the
existence of an efficient broadcast protocol by presenting a naive yet efficient
correct-by-construction protocol and which directly leverage the topology of the
structure; we do not build and maintain an extra layer on top of CAN (such as a
broadcast tree) but rather make use of locally available information. Knowledge
of the entire network is necessary for proving intermediary lemmas, but we show
that such a knowledge is not used by the protocol itself.

We are interested in the proofs of functional correctness of broadcast algo-
rithms for CAN, and of the fact that there is a protocol for which each node
receives a message exactly once. We present selected Isabelle/HOL definitions
and theorems to give an overview on how to reason about such algorithms and
prove their properties. Our model is general and flexible enough to study CAN
networks, as it provides the formalization of basic building blocks composing it.
However, we are not interested in formalizing the full CAN protocol but rather
on the minimal set of abstractions needed to reason about communication pro-
tocols for CANs. Overall, not only this paper proves that it is possible to design
an efficient broadcast protocol for CAN but also that we can formally prove its
correctness and efficiency. Compared to a realistic P2P network, we do not con-
sider node churn in this study. Also we assume that reliability of point-to-point
communication is an orthogonal concern that should be studied independently.

In �2, we present the CAN overlay network, the existing broadcast primitives
for CAN, and the objectives of this paper. In �3 we present a mechanized model
of CAN along with the proven abstractions making up the model. Broadcast
algorithms are presented in �4. Finally we compare our study to other related
work in �5.

2 Background and Motivation

A CAN [14] is a structured P2P network based on a d -dimensional Cartesian
coordinate space, labelled D. This space is dynamically partitioned among all
nodes in the system such that each node is responsible for storing data, in the
form of (key, value) pairs, in a sub-zone of D. Each node is responsible for
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a zone, and the set of zones is disjoint and covers the whole space. To store
(k, v)-pairs, the key k is deterministically mapped onto a point in D, using
consistent hash functions, and the value v is stored by the node responsible
for the zone containing this point. The search for the value corresponding to a
key k is achieved by applying the same hash function on k in order to find the
node responsible for storing the value. The routing process starts at the query
originator and traverses iteratively its neighbors (a node only knows its adjacent
neighbors), until the zone responsible for the key to store/retrieve is reached.

To limit the load on the network, we want to minimize the number of messages
necessary to perform a broadcast. We first define precisely the hypotheses on the
network topology to know exactly on which kind of networks our algorithms are
valid. There are several ways to construct a broadcast algorithm depending on
the structure of the CAN:

– The appendix of the seminal paper [14] suggests to build a construction tree,
where a node is child of another if it joined this other node. This construction
tree can be used to perform an efficient broadcast but the root of the tree
would be overloaded. The main drawback of this approach is that keeping the
tree structure when nodes leave leads to strong constraints (only a leaf node
can take the place of a leaving node) and may require huge data transfers.

– In M-CAN [15] and Meghdoot [6], a CAN is defined as a structure where each
node is responsible for an hyperrectangle: when a node leaves the network,
its neighbour(s) can, for example, extend their own zone with the zone left
by the leaving node. The only structure that can be exploited by a broadcast
protocol is the graph of neighbors. Maintaining a spanning tree on such a
structure with nodes joining and/or leaving the network is far from trivial.

– A CAN can be defined as a structure where each node is responsible for an
area with no particular shape. This structure fits with the protocol described
in [14] (Sec. 2.3): when a node leaves the network, its neighbour becomes
responsible for its area. This is the most general case (it encompasses the two
previous ones), and the one used here. Even in this unconstrained setting,
we prove that an efficient broadcast algorithm exists.

Thus, we represent the network as a graph and provide an efficient algorithm on
such a graph; computing a minimum spanning tree on this potentially evolving
graph without global knowledge of the graph seems impossible. However, in a
CAN, geometrical information can be exploited to avoid any two nodes from
sending the same information to the same node. In this paper, our objective
is to rely on a notion: “is a set of points connected?” which can be computed
locally and to prove that, from this notion, we can design an efficient broadcast
algorithm. The algorithm we propose here does not tolerate changes in the net-
work during the broadcast, but it does support changes in the network between
two broadcasts. Considering the case where a peer joins or leaves the CAN, i.e.
node churn, is left for future work.

Figure 1 shows an efficient broadcast as ensured by M-CAN [15], the protocol
sends messages first vertically (to a single neighbor above or below) and then
horizontally, avoiding duplicates by sending only to the node that touches the
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Fig. 1. M-CAN: Efficient flooding in 2 dimensional CAN

lower corner. Unfortunately, this algorithm does not eliminate all duplicates if
the dimension is greater than two. In a publish/subscribe context, Meghdoot [6],
built atop CAN, also proposes a mechanism to avoid duplicates but requires the
broadcast to originate from one corner of the zone to be covered. We underline
here that no broadcast algorithm atop CAN has been actually formally specified.

Using an interactive theorem prover such as Isabelle/HOL [13] and its higher-
order logic provides us the expressiveness needed to formalize distributed
algorithms and reason about them. A higher order logic naturally supports the
formalization of the data structures of the algorithms; it also provides the rea-
soning tools to prove properties on those algorithms and structures. The expres-
siveness of Isabelle’s logic allows us to reason about an abstraction of the system
we design, meaning that we can abstract away some details of the CAN overlay
and focus on the aspects ensuring the properties of the broadcast algorithm.

Our motivation is to put forward abstractions for proving correctness proper-
ties of distributed algorithms on top of CAN, and to promote the development
of distributed algorithms proven correct. CAN is a difficult setting for proofs,
because the structure entails a geometrical structure, which is more difficult to
handle in Isabelle than inductive structures. We abstract away most of the geo-
metrical notions, and rely on the notion of connection between nodes, expressed
as a neighbor relation. We focus on two properties of broadcast protocols:

– Efficiency: a node receives only one message during a broadcast.
– Coverage: all the nodes receive the message (correctness property).

We write our specification in such a way that an external reader familiar with
basic logic and mathematics can understand it. Indeed, our purpose is to make
our results accessible and convincing for the community of distributed systems,
including people not familiar with formal methods.

Efficiency vs. Robustness. One can easily argue that duplicating messages can
actually increase the robustness of the broadcast in case of communication fail-
ures. However, the redundancy provided by a non-efficient broadcast algorithm
is not satisfactory. Indeed with an inefficient algorithm, as shown in Figure 1,
some nodes receive the message once, while other can receive it more than twice.
Relying on an efficient algorithm is a better starting point in order to design
robust algorithms in a smarter way. For example, to increase robustness, one
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could perform two efficient broadcasts in parallel from two different places in
the network and reversing the dimensions of the CAN (considering the first one
as the last one); this would ensure that each node receives each message exactly
twice, most of the time coming from two different directions.

3 Reasoning about a CAN-Like Structure

This section presents the formalization of CAN written in Isabelle/HOL1. We
present below the most important definitions and lemmas, expressed in math-
ematical style; some notions will be defined informally but most of the details
are omitted; instead we prefer to give some insights regarding the principles of
the formalization. For manipulating structures we use the following notations: !
accesses an element of a list; # adds an element at the beginning of the list; @
appends two lists; fst and snd access the elements of a pair.

A first crucial question when formalizing a complex structure like a CAN is
which level of abstraction should be used, and which notions of Isabelle/HOL
should represent basic notions of CAN networks. We chose to represent a CAN
by a set of nodes, a zone for each node, and a neighboring relationship, stating
whether any two nodes are neighbors. More precisely, a CAN is a set of integers
identifying the different nodes. A function CZ matches each node to a Zone;
a zone is simply a set of points, where each point is represented by a tuple of
integers: CZ N is the zone under the responsibility of the node N. Also we require
that the set of nodes is finite and the set of their zones partitions the whole space
into disjoint zones covering the whole space. Each node is responsible for a zone
that never changes and is called the zone of a node; note that our broadcast
algorithm will also rely on some zones, i.e. sets of points.

Definition 1 (CAN). The set of valid CANs is defined as follows:

CAN ≡{(Nodes,CZ,Neighbours).Nodes∈P(N)∧CZ∈N→Zone∧Neighbours∈P(N×N)
∧ symbNodes is finite ∧Neighbours is finite
∧ ∀x, y. (x, y) ∈ Neighbours ⇒ (y, x) ∈ Neighbours ∧ ∀x. (x, x) /∈ Neighbours
∧ ∀tup.∃N ∈ Nodes. tup ∈ CZ(N)
∧ ∀N,N ′ ∈ Nodes.CZ(N) 
= ∅ ∧N 
= N ′ ⇒ ¬(CZ(N) intersects CZ(N ′)) }

We also define three auxiliary functions Nodes, Zones, and Neighbour returning
each part of a CAN. We adopt a formalization more general and flexible than
the strict CAN protocol, more precisely:

– As discussed in Section 2, each node is responsible for a zone of any shape,
whereas in most CANs, each node should always be responsible for a single
hyperrectangle. We believe that this formalization is better adapted to model
a dynamic CAN with nodes joining/leaving the network.

– We do not relate zones with the concept of neighbor. This alleviates us from
geometric reasoning: we mainly rely on two relationships: “is a node neighbor
of another?” and “do two zones intersect?” This allows us to reason at a
topological level rather than a geometrical level.

1 see: www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/misc.

www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/misc
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We thus define a predicate Z intersects Z’ that checks whether a zone Z
intersects a zone Z’ : it is true if Z and Z’ have at least one point (tuple) in
common. In the following, we say that “a node intersects a zone Z” if the zone
of the node intersects Z. Then we define NodesInZone C Z, the set of nodes
whose zones intersect the zone Z :

NodesInZone C Z = {N ∈ Nodes(C).Zones(C,N) intersects Z}
We define the size of a zone ZoneSize C Z as the number of nodes it contains.
Then we define the connectivity of a CAN zone. This notion is close to the
geometrical notion of path connectivity but dedicated to the CAN networks.
The idea is that a zone is connected if a message can go between any two nodes
in the zone passing only through nodes intersecting the zone. In the context of a
broadcast algorithm, we will know that in such a zone the broadcast is possible;
this notion will also give us a criteria that we have to follow when dividing
the area to be covered into smaller zones. We state that a zone is connected if
between any two nodes intersecting the zone, there is a path of nodes intersecting
the zone where two consecutive nodes of the path are neighbors.

Definition 2 (Connected).

Connected C Z ⇔ ∀N,N ′ ∈ NodesInZone C Z.
∃NL a list of distinct nodes starting by N and finishing by N ′.
∀i< length(NL)−1.NL!i∈NodesInZone C Z ∧Neighbour(C,NL!i,NL!(i+1))

Lemmas. To reason about CAN structures, we define several generic lemmas
related to topology. These lemmas ease the reasoning on connectivity, intersec-
tion and nodes. Some typical lemmas prove generic properties on connectivity
or intersection on the union or the intersection of zones. These small lemmas
will reveal particularly useful for proving the properties of broadcast protocols.

Lemma 1, for instance, states that the union of two connected zones is con-
nected if two nodes of the two zones are neighbors.

Lemma 1 (Connected-union).

Connected C Z Connected C Z′

N ∈NodesInZone C Z N ′∈NodesInZone C Z′ Neighbour(C,N,N ′)

Connected C Z ∪ Z′

We also prove a symmetric lemma, allowing us to find neighboring nodes in two
zones, provided those two zones and their union are connected (and the union
contains at least two nodes).

Reasoning by Induction on a Zone. We also provide induction principles that
allow one to prove a property related to a zone by induction on the size of
the zone. A trivial induction lemma expresses directly induction on the number
of nodes in the zone on which the property is verified. More interestingly, one
can prove a property by adding one by one the nodes belonging to the zone of
interest; this allows some form of structural induction on a CAN zone.
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Theorem 1 (induct-node-zone2).

P (∅)

∀Z. P (Z) ⇒ ∀N∈Nodes(C).N/∈NodesInZone C Z ⇒ ∀Z′
.NodesInZone C Z

′
={N} ⇒ P (Z∪Z

′
)

P (Z)

This theorem states that, if (1) we prove that a property P is true for an empty
zone, and (2) we prove that if P is true for a zone then it is true for a zone
intersecting one more node; then the property is true for all zones. The proof of
this induction principle mainly relies on the fact that the set of all nodes of the
CAN C must cover the entire space.

Messages and Message Paths. Once the network is defined, we define messages
and paths followed by messages. As we will use messages to perform a broadcast
towards a zone, a message is made of four parts: an identifier for the message m
(which could represent also its payload), a source node x, a destination node y,
and the zone Z to which it must be transmitted. We also define an abbreviation
<m|x,y,Z> for defining a Message. Message-source, Message-dest, and Message-
zone are functions accessing the last three fields.

We believe it is important to provide tools to reason about the path followed
by a message. Indeed, communication inside CAN heavily relies on the notion of
paths. For this, we define a path as a set of consecutive messages, and provide
tools to reason inductively on those path.

Definition 3 (valid-path). valid-path is a predicate that checks whether the message
path ML is valid, i.e. each message is sent from the destination of the previous message.

valid-path msgs ML ⇔ ML 
= [] ∧ distinct(ML) ∧ ∀i < length(ML).ML!i ∈ msgs)
∀i< length(ML)−1.Message-dest(ML!i) = Message-source(ML!(i+1))

For a path to be valid, we additionally require that no two messages are the
same; indeed, we will only consider paths of messages among a finite set msgs
and we would like to consider only paths of finite length, this allows us to reason
about the longest path in a zone. We provide various lemmas for building (valid)
paths and reasoning about them.

4 Broadcast Algorithms over a CAN

Defining a broadcast in a natural way using Isabelle/HOL is not trivial; here we
decide to put an emphasis on the way messages are processed. Our formalization
is centered around the specification of messages which are the consequences of
a given message and on the specification of the set of messages used to broad-
cast the original message. Then we define the way messages are broadcasted by
an inductive definition, where messages are “processed” one message after the
other sequentially. In our formalization, Broadcasts are triple made of a CAN, a
message set, and an initiator node constrained by several well-formedness rules.

Definition 4 (Broadcast).

Broadcast ≡ {
(C,msgs, init). init ∈ Nodes(C)

∧ ∀m,x, y, Z,m′, Z′. <m|x, y, Z>∈msgs∧ <m′|x, y, Z′>∈msgs ⇒ (m=m′ ∧ Z=Z′)
∧ ∀ <m|s, d,Z>∈msgs.

(
s ∈ Nodes(C) ∧ d ∈ Nodes(C) ∧ Neighbour(C, s, d)∧(

s= init ∨ ∃ML.(valid-path msgs ML ∧ destination(ML)=s ∧ source(ML)= init)
))}
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The constraints expressed in the definition state that: (1) There is a sin-
gle message between any 2 nodes. (2) The initiator is a node of the CAN. (3)
All messages are exchanged between neighbor nodes of the CAN, and thus the
broadcast pattern respects the CAN protocol. (4) All messages must be sent
by a node that has been reached by a list of messages MsgL originating from
the initiator. The existence of such a valid path ensures that a broadcast only
relies on messages transmitted from nodes to nodes, and no message is sponta-
neously created (except for the initiator of course). Note that it is not sufficient
to require that each message source is the destination of another message, be-
cause that would allow loops of messages not passing by the initiator. We denote
<C,M,n> a Broadcast, and define functions BC-CAN, BC-msgs, and BC-init to
access its fields. We can then define a predicate checking whether a broadcast
covers the whole CAN, i.e., whether each node of the CAN is either the initiator
or the destination of a message:

Definition 5 (Coverage).

Coverage (C,msgs, init) ⇔ ∀N ∈Nodes(C).N= init∨ ∃m,s, Z. <m|s,N,Z>∈msgs

We decided to rely on the notion of zone to be covered to define a broadcast
algorithm because this seems quite adapted to the structure of the CAN. This
zone to be covered can have two purposes depending on the algorithm. First it
allows the specification of broadcast protocols where only the nodes in a given
zone have to receive the message. Also, since we are interested in an efficient
algorithm that minimizes the number of messages necessary to broadcast the
information, it seems reasonable to split efficiently the zone to be covered in
order to avoid sending a message to the same node twice. A broadcast algorithm
can be entirely characterized by a function that, given a node N receiving a
message and the zone Z to be covered by the message, returns a list of pairs
(Zone, Node), that we call ZNL (Zone-Node list). Each pair (Zi, Ni) of the ZNL
consists of Zi, a sub-zone of Z, and Ni a neighbour of N belonging to Zi: the
message is forwarded to Ni that is now responsible for covering Zi. The zone Zi

must be connected (as defined above) otherwise it would be impossible to cover
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it while staying inside Zi. Figure 4 illustrates the notion of ZNL for the first step
of the broadcast: the message to be broadcasted is sent from the initiator to its
neigbhors belonging to three different zones to be covered, which in turn, will
be responsible for broadcasting the message to the zone they received.

Definition 6 defines an optimal ZNL, which underpins an efficient broadcast.
To guarantee efficiency, we require that the zones of the list form a partition of
the original zone, and that each node belong to the zone it receives. A broadcast
will be efficient if every message generates an optimal ZNL.

Definition 6 (Set-of-Optimal-ZNL).

Set-of-Optimal-ZNL C N Z ≡ {
ZNL.

⋃
i<length(ZNL)

fst(ZNL!i) = Z

∧ (∀i< length(ZNL).Neighbour(C,N, snd(ZNL!i)) ∧ Connected C fst(ZNL!i)
∧ snd(ZNL!i) ∈ NodesInZone C fst(ZNL!i)
∧ ∀j< length(ZNL).

(
j 
= i ⇒ snd(ZNL!i) 
= snd(ZNL!j)∧

NoNodeInBothZones fst(ZNL!i) fst(ZNL!j)
))}

Definition 7 specifies the set of messages of a broadcast algorithm based on
ZNLmap, which is a function that, given a node and zone, returns an optimal
ZNL. The set of messages of the broadcast is defined by induction rules ex-
pressing how messages are processed. The inductive definition is of the form
ZNL-BC-msgs C Mid init znlmap msgs ML where C is the CAN network, Mid
is the message identifier, init is the initiator node, and znlmap is the ZNLmap
used by this instance of the algorithm.

Definition 7 (ZNL-BC-msgs).

ZNL-BC-msgs C Mid init znlmap ∅ [<Mid|init, init,Entire-Space\Zones(C, init)>]

ZNL-BC-msgs C Mid init znlmap msgs <Mid′|s, d, Z>#ML
ML′ = map (λZN. <Mid′|d, snd(ZN), fst(ZN)\Zones(C, snd(ZN))>) (znlmap(Z, d))

ZNL-BC-msgs C Mid init znlmap (msgs ∪{<Mid′|s, d, Z>}) ML@ML’

The inductive definition works as follows: it takes one by one messages in ML,
called the list of messages to be treated, processes them and put them in the set
of treated messages, msgs. Processing a message consists in using the function
znlmap to compute the consequences of this message: for each couple (Zi, Ni)
returned by (znlmap(Z, d)), a new message with destination Ni and zone Zi

minus the zone of Ni which we just covered is created and put in the new ML
list. The original message that has been processed is then put in msgs. The rules
of Definition 7 are applied iteratively treating one message after the other. At
the end, ML, the list of messages to be treated is empty, and msgs, the set of
treated messages contains the list of messages of the broadcast.

Relying on a znlmap function is important here because it ensures that the
broadcast algorithm is built without the knowledge of the messages already sent
by the protocol. This ensures that only the knowledge of the current node and
the zone to be covered is used to decide which message to send. We will see in
the definition of the efficient broadcast how the znlmap function can be modified
to take into account local information (i.e., neighbors and their zones).
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Some design choices have been made in the way messages are actually pro-
cessed in our formalization. Messages are treated sequentially, but this of course
does not correspond to the parallelism that occur in a real system. However this
classical simplification has no consequence on the properties of interest here.
More important is the fact that the messages to be treated (ML) are represented
as a list, this total ordering is artificial and one could improve the representation
by defining an equivalence relation allowing reordering of messages. However,
the list is a good structure to reason inductively on the messages and to allow
rules to be applied iteratively. Concerning treated messages (msgs), as we do
not perform any further computation on them, a list was not necessary and we
considered them to be a set; a multiset is not necessary because it is easy to
prevent the same message to be sent twice between the same nodes.

We prove that the set of messages generated by an optimal ZNL constitutes
a valid broadcast that covers the entire network:

Theorem 2 (ZNL-BC).

ZNL-BC-msgs C Mid init znlmap Finalmsg [] init ∈ Nodes(C)
∀(Z,N)∈History(C, init,Finalmsg, []).znlmap(Z,N)∈(Set-of-Valid-ZNL C N Z)

(C,Finalmsg, init) ∈ Broadcast

Theorem 3 (coverage-ZNL).

ZNL-BC-msgs C Mid init znlmap Finalmsg [] N, init ∈ Nodes(C)
∀(Z,N)∈History(C, init,Finalmsg, []).znlmap(Z,N)∈(Set-of-Valid-ZNL C N Z)

∃s, Z. <Mid|s, N,Z>∈ Finalmsg
In these two theorems, we consider the last step of induction, when the list of
messages to be treated is empty ([]). Also, we require that for each zone and node
of History, znlmap verifies set-of-Optimal-ZNL. History(. . .) is the set of pairs
(zone, destination node) that influenced the previous treatment of messages, and
will influence the processing of the next message if there is one. In other words, it
is the set of pairs (zone,destination node) for the set of treated messages (msgs),
and the next message to be treated (head ofML), plus the couple (initiator node,
entire space). We also proved additional lemmas ensuring correctness and easing
further proofs, e.g. that the message content is unchanged during the process.

The theorems presented above are not sufficient to prove that the final step
of the induction (where no more message is to be treated) is reachable. That is
why we proved that ensuring ∀Z N. znlmap(Z,N) ∈ Set-of-Optimal-ZNL C N Z
is sufficient to ensure progress from each step. However, this is still not sufficient
to ensure reachability of the final step while we do not ensure that the broadcast
process is finite. Also, the approach presented above requires to compute, from
the beginning, the function znlmap, which is unrealistic. Below, we prove the
existence of an efficient broadcast, built step by step, which ensures reachability
of the final step.

AnEfficient Broadcast Algorithm A simple but efficient algorithm can be designed
by constructing ZNLs as follows: suppose a nodeN receives a message with a given
zone Z to cover, where Z ∪ CAN -Zones(C,N) is connected. We split this zone
into several zones Zi, where each zone is connected, no zone touches another (i �=
j ⇒ Zi ∪ Zj is not connected), and each zone contains a node Ni neighbour of
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N . We first prove that such a decomposition necessarily exists (Lemma 2). The
decomposition is optimal if the same node does not belong to two zones, which is
true because, for any two zones, Zi∪Zj is not connected. We can thus prove that
under the conditions mentioned above (Z ∪ CAN -Zones(C,N) is connected),
an optimal decomposition exists (Lemma 3).

Lemma 2 (Zone-decomposition).

∃zl.
⋃

i<length(zl)

zl !i=Z ∧ ∀i<length(zl).Connected C zl !i ∧ ∀i, j<length(zl).i �=j⇒¬Connected C zl !i∪zl !j

Lemma 3 (OptimalZNL-existence).

N ∈ Nodes(C) Connected C (Z∪Zones(C,N)) N /∈ NodesInZone C Z

∃ZNL.ZNL ∈ Set-of-Optimal-ZNL C N Z

Then, we forward the message to each of the neighbour Ni, delegating to it the
zone Zi minus the zone of Ni; note that this new zone verifies the hypothesis
above, and thus the decomposition mechanism can be applied recursively until
each node receives the message. The drawback of the decomposition lemma is
that it seems to require the knowledge of C. More precisely we need to know C
to decide whether a zone Z is connected or not. In a real CAN, geometrical con-
nectedness is sufficient to ensure network connectedness, and thus connectedness
can be computed without knowing the exact network topology. Consequently, in
a real CAN, the decomposition can be computed locally at the node that needs
to forward the information.

Remember that, to reason about the whole algorithm, we parametrized ZNL-
BC by the znlmap, supposed to be known originally, not computed at each step.
To prove that our algorithm works, we need to compute the optimal znlmap at
each step with local information. This issue can be resolved in two steps. First,
we show that the messages of the broadcast are only sensitive to the values of
znlmap for the history History(. . . ). Second, we show that, provided the history
is optimal, we can treat one more message and provide an extended znlmap that
is still optimal for the new history. Additionally, we prove side conditions on the
set of messages treated and to be treated so that, e.g., we can prove that the
algorithm terminates.

Theorem 4 (Progress-ZNL).

ZNL-BC-msgs C Mid init znlmap msgs MList init ∈ Nodes(C)
MList �= [] ∀(Z,N)∈History(C, init,msgs,MList).znlmap(Z,N)∈ (Set-of-Valid-ZNL C N Z)

∃Mlist′, znlmap′.msgs∪set(Mlist)⊆msgs∪{MList!0}∪set(MList’)∧(
Message-zone(MList!0)=∅ ∨⋃

i<length(MList′)
NodesInZone C Message-zone(MList

′
!i) ⊂

⋃

i<length(MList)

NodesInZone C Message-zone(MList!i)
)∧

∀(Z,N)∈History(C, init,msgs ∪ {MList′!0},MList′).znlmap(Z,N)∈ (Set-of-Valid-ZNL C N Z)

The consequences of those last steps are twofold. First, they allow us to build
the znlmap at each step by finding, each time we treat a message, the new
zone-node-list corresponding to the new message. Also, the specification above
ensures that our algorithm terminates: it can always progress (because of the
optimality of the ZNL) and we exhibited a well-founded order along which the
set of messages to be treated decreases: at each step, the size of the zone to be
covered by all the messages to be treated decreases strictly (i.e. the number of
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nodes intersecting it), or it stays the same and the number of messages to be
treated decreases strictly.

Finally, we prove the two following theorems stating that the same node is not
reached twice. More precisely, at each step, if a node received a message (it is the
destination of a message treated or to be treated) then it is not the destination
of another message, and it is not in a zone to be covered. Several intermediate
lemmas guarantee the fact that zones to be covered are well-separated and finally,
we prove that, at the last step of the broadcast protocol, no two nodes receive
the message. Overall, we have proved that there is a broadcast protocol that do
not send twice the message to the same node.

Theorem 5 (Efficiency-final-step).
ZNL-BC-msgs C Mid init znlmap Finalmsg [] init ∈ Nodes(C) M,M ′ ∈ Finalmsg

M �= M ′ ∀(Z,N)∈History(C, init,Finalmsg, []).znlmap(Z,N)∈ (Set-of-Valid-ZNL C N Z)

Message-dest(M) �= Message-dest(M ′)

Theorem 6 (Efficiency-existence).
init ∈ Nodes(C)

∃Finalmsg, znlmap.ZNL-BC-msgs C Mid init znlmap Finalmsg []
∧ ∀M,M ′ ∈ Finalmsg. (M 
= M ′ ⇒ Message-dest(M) 
= Message-dest(M ′)

All the steps shown above ensure that the znlmap function can be built iteratively
from local information, and that no knowledge of the message history is necessary
to build it. Concerning locality, we rely on the local decidability of the predicate
“Connected C Z”, which can be evaluated without the knowledge of the whole
network in the case of a real CAN thanks to geometrical considerations. Relying
only on local knowledge is crucial for a P2P algorithm but we cannot prove it
formally here. To solve this issue the solution would be to prove that the Lemma 3
is true in a n-dimensional space without knowledge of the whole network; such a
proof would require the geometrical formalization of a CAN which is out of the
scope of this study.

Concluding Remarks. It is important for us to have a formalism for express-
ing the CAN broadcast that is easy to understand. Although the specification
we showed here is inductive and thus not in a classical form for a broadcast
algorithm, we think it is clear enough to be convincing, and that it is easy to
implement the program corresponding to our definitions. This way of expressing
a broadcast algorithm is not as natural as one would expect because a form of
event-based formulation of the algorithm “when a message M is received, send
messages M1, M2, and M3” would be more adapted. However, such an event-
like formulation is not well supported in Isabelle/HOL, even if we could try to
provide new abbreviations for expressing message transmission more easily. In
fact, the definition of ZNL-BC distinguishes the messages for which the con-
sequence have already been computed from the others, which is crucial in our
proofs, changing this definition to a more implicit set-oriented one would make
the proofs even more complex or unfeasible.

In our proofs, we rely on a single axiom that states that the entire space is
connected, which is a necessary prerequisite that we are not able to prove since
we do not relate neighborhood with any geometrical notion.
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The current specification and proofs consist of almost 5000 lines of Isabelle,
for more than 150 lemmas and theorems. The length of the proofs is however
not uniform: simple properties on the network or the connectivity could take a
couple of lines, whether advanced properties on connectivity, and most of the
properties of the broadcast algorithm require dealing with a lot of cases, or rely
on complex inductions, they necessitate several hundreds of lines.

5 Related Work

A fair amount of work has been done on the verification of distributed systems.
This section presents representative works that use theorem provers for reasoning
on distributed algorithms, or discuss the formalization of DHT protocols.

Chou [18] proposes a reasoning infrastructure using HOL to formalize and
verify distributed algorithms and validates his approach on a propagation of
information with feedback algorithm. In the same line of direction, the work
done by Qiao Haiyan [7] reports experiences in verifying distributed algorithms
in constructive type theory using the Agda/Alfa proof assistant and provides a
methodology mixing testing and verification of distributed algorithms. Ridge, in
his work [17], takes an operational approach to distributed systems verification.
His goal is to demonstrate, through a combination of symbolic evaluation and
invariant checking, that the verification of distributed system is feasible down
to the executable code level. His work relies on previous notable efforts, such
as a rigorous approach to describe network protocols [16], a formal model of
the OCaml programming language, and an operational verification of OCaml
code. Charron-Bost and Merz [3] formally verified a modified version of the
Paxos consensus algorithm using Isabelle/HOL. They modeled the consensus
algorithm using the Heard-Of model (HO), a round-based computational model
for fault-tolerant distributed systems. Their abstractions and proven properties
as well as the formalization of the HO model can be used to study a large class
of distributed algorithms; however the formalization does not embed any topo-
logical aspects of the underlying topology. Contrary to “classical” distributed al-
gorithms such as consensus, distributed algorithms running on top of structured
P2P systems, can not abstract away the underlying infrastructure, particularly
if the algorithm relies on it. A formalization of an efficient broadcast algorithm
on top of CAN has to rely on the needed abstractions and proofs regarding the
topological aspects of CAN in order to prove the efficiency of the algorithm. The
closest works on distributed algorithms for P2P systems are Meghdoot [6] and
M-CAN [15] which are broadcast/multicast algorithms atop CAN which claim
partial efficiency in terms of number of exchanged messages; they were briefly
described in Section 2. Unfortunately no formalization nor any proofs were pre-
sented in these works. On the contrary, our objective is to use formal methods
to prove with high confidence the correctness and efficiency of dissemination
protocols.

Borgström et al. [2] were interested in the verification of DHT protocols. They
formalized and verified a variant of Chord in static settings (i.e. no churn) using
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CCS, a process algebra. In a subsequent work, Bakshi et al. [1] used π-calculus to
prove the correctness properties of Chord in the pure-join model of the protocol.
Zave, in her work [19] proved the Chord protocol in its two models: the pure-join
and full, using the Alloy analyzer. By providing a rigorous correctness proof of
the pure-join model and that the full model of the protocol she proved that the
original Chord protocol is indeed not correct.

Pastry was also the subject of a recent verification effort [11], which focus was
to ensure the correctness of Pastry’s algorithms. The join and lookup protocols
were specified using TLA+ and the properties verified using the TLC model
checker and the TLAPS proof assistant. Compared to the model-checking in
general, theorem proving requires the help of the programmer to prove properties
that are valid on an arbitrary number of processes. We focused in this paper on
the pure use of Isabelle/HOL because most of our reasoning were about topology
and induction, but we do not exclude the use of a proof assistant in conjunction
with SMT solvers [12] in the future to ease reasoning, or reason more deeply
about liveness properties for example.

6 Conclusion

To the best of our knowledge, we are the first ones to formalize an abstraction
of the CAN overlay network using a theorem prover, and provide a framework
to reason about those networks. This formalization efforts should increase the
understanding of distributed algorithms for structured P2P networks, and the
confidence one has in their correctness. We define formally all the constructs
necessary to specify and prove properties of a broadcast algorithm on top of
CAN. This paper presented the most important notions and support lemmas
we designed in order to provide a convenient level of abstraction for reasoning
on communication algorithms while abstracting away the geometrical concerns.
The structured network represented is more general than a CAN: in a CAN,
zones are necessarily hyperrectangles, whereas ours could be any tuple set. We
prefer relying on a less restrictive definition of the structure to see which prop-
erties of our algorithm are verified in those conditions and also to lay down the
groundwork for future challenges such as node churn. Later, requirements on
the structure can be added to prove further properties, e.g. an algorithm may
only be efficient if the zones are hyperrectangles. Difficult parts of the formal-
ization concern reasoning by induction on a set that is finite but not inductively
defined. To ease this kind of reasoning when dealing with zones, we developed
an induction principle based on the number of nodes inside a zone (theorem
induct-node-zone-2, Section 3). The reasoning relies on the topology of the net-
work, defined by a neighbor relation, and related lemmas deal with the notion of
connected zone, i.e. a node where any two nodes can (indirectly) communicate.
We used this framework to describe a class of broadcast algorithms that relies
on the notion of “zone to be covered”. We proved that there exists an algorithm
that covers the whole network without sending twice a message to the same node.
This development also shows the capabilities of our framework.
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In the future, we plan to formalize an algorithm that sends more messages in
parallel than the one we exhibited here. Also, a next logical step would be to see
how we can take churns, i.e. nodes joining/leaving the network, into considera-
tion in our formalization since P2P systems exhibit dynamic behaviors and we
can not overlook this feature.
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Enforcing QVT-R with mu-Calculus and Games
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Abstract. QVT-R is the standard Object Management Group bidi-
rectional transformation language. In previous work, we gave a precise
game-theoretic semantics for the checkonly semantics of QVT-R trans-
formations, including the recursive invocation of relations which is al-
lowed and used, but not defined, by the QVT standard. In this paper,
we take up the problem of enforce semantics, where the standard at-
tempts formality, but at crucial points lapses into English. We show that
our previous semantics can be extended to enforce mode, giving a precise
semantics taking the standard into account.

1 Introduction

QVT-R is the OMG standard bidirectional model transformation language [8].
It is bidirectional in the sense that, rather than simply permitting one model
to be built from others, it permits changes to be propagated in any direction,
something which seems to be essential in much real-world model-driven devel-
opment. The same transformation can be read as specifying the circumstances
under which models are consistent (checkonly mode) or as specifying exactly
how one model should be modified so as to restore consistency that has been
lost (enforce mode). This dual use of the same transformation text is beneficial
in engineering terms; separate texts for checkonly and enforce transformations
would be a maintenance nightmare. In earlier work [3,12] we gave formal se-
mantics for QVT-R in checkonly mode, including transformations in which a
relation may recursively invoke itself; this feature is used even in the example
in [8], and presents interesting complications which we tackled using the modal
mu calculus. A thorough understanding of checkonly mode is prerequisite to
understanding enforce mode, because of the requirement (hippocraticness) that
running a transformation in enforce mode should not modify models which are
already consistent.

In this paper, we go on to give a formal semantics for QVT-R in enforce mode.
Unlike previous work, we do not restrict to the case where the target model is
created afresh from the source model; we work with the general case in which
there is an existing target model which must be taken into account when produc-
ing a new version. This, the typical case of bidirectional transformation arising in
model-driven development, is more complex – even when the transformation is
not recursive – because there will usually be many different target models that
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are consistent with the given source model, and the preexisting target model
influences which one is produced.

As an illustrative example, consider the following transformation (given in
ModelMorf’s QVT-R syntax), which operates on models that have two kinds of
model elements MEtop and MEchild. Both kinds have names; MEtop elements
can also have children which are of type MEchild. We represent such models
in the obvious way as forests, and notate them using the names of elements,
e.g. {N → {child1, child2, child2}} represents a model containing one element
of type MEtop with name “N”, having three children of type MEchild whose
names are “child1”, “child2”, “child2”. Notice that there is nothing to prevent
two model elements having the same name (no key declaration, for example).

transformation NonTopEnforce (m1 : TwoLayerMM1 ; m2 : TwoLayerMM2) {

top relation R {

n : String;

firstchild : TwoLayerMM1::MEchild;

secondchild : TwoLayerMM2::MEchild;

enforce domain m1 me1:MEtop {name = n, child = firstchild};

enforce domain m2 me2:MEtop {name = n, child = secondchild};

where { S(firstchild,secondchild); }}

relation S {

n : String;

enforce domain m1 me1:MEchild {name = n};

enforce domain m2 me2:MEchild {name = n};}}

Models are consistent according to this transformation provided that two
directional checks succeed. For every MEtop element me1 in m1, there must be an
MEtop element me2 of the same name in m2, such that the name of every child

of me1 occurs as the name of a child of me2. The check in the m2 direction is
symmetric.

Running this transformation in checkonly mode in ModelMorf, consulting
[8], yields no surprises. Running it in enforce mode lets us illustrate semantic
choices that [8] has made and some odd behaviour of ModelMorf. Let m1 be {N →
{child1, child2, child3}} throughout. If m2 is identical, of course it is not modified
(except that ModelMorf, for some reason, rewrites all the xmi:ids): check-before-
enforce ensures that, since the models are already consistent, no change is made.
Next, let m2 be the empty model, and enforce so that a new m2 is created from
m1. ModelMorf produces {N → {child1}, {N → {child2}, {N → {child3}} (not
the copy of m1 that some might intuitively expect). This is consistent with (our
reading of) [8]; it arises because each valid binding to variables in R is checked
independently. Thus for each binding to me1, (n and) firstchild for which no
matching binding is found, new objects are created for me2 and secondchild

and the child property of me2 is set to secondchild.
Next consider m2 = {N → {child1, child2, cuckoo}}. Interpreting this as the

name of the third child being wrong, we would intuitively expect the least change
modification to be made, i.e. for the name “cuckoo” to be changed to “child3”.
By the same argument as above, however, we see that ModelMorf is in accord
with [8] in actually returning {N → {child1, child2}, {N → {child3}}}. Rather
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than modify an existing child, a whole new binding is created to be the match.
Here we have the first obvious use of the delete phase: the child named “cuckoo”
has been removed. Why is this? We may argue: because if it had been left alone
– if ModelMorf had returned {N → {child1, child2, cuckoo}, {N → {child3}}} –
the resulting version of m2 would not have been consistent with m1 when checked
in the direction of m1. Even though any run of ModelMorf has a direction (in con-
trast to [8] in which a transformation being evaluated in checkonly mode involves
checks in all directions, as explained in detail in [12]), ModelMorf does ensure
that the result of an enforce transformation passes the checkonly transformation
in all directions, not just in the same direction as the enforce.

Finally, however, consider m2 = {N → {child1, child2, child2}}. In this case,
the checkonly transformation run in the direction of m1 will already succeed;
the only problem is when running the checkonly transformation in the direc-
tion of m2, as there is no valid match for valid binding of me1 to the unique
MEtop and firstchild to the MEchild with name “child3”. We would expect
{N → {child1, child2, child2}, {N → {child3}}} as the result of enforcement.
In fact, however, ModelMorf unnecessarily deletes one of the “child2” MEchilds,
giving exactly the same result as in the “cuckoo” case. As we shall discuss, the
interpretation of element deletion in [8] is problematic and so it is not very sur-
prising that ModelMorf sometimes gives odd results. We discuss this further in
section 4.3.
We will return to these examples after presenting our semantics.

2 Related Work

The first crucial feature of QVT-R enforce mode with which this paper is con-
cerned is its true bidirectional nature. That is, the model which is computed as
the result of a QVT-R transformation in enforce mode depends on two (or in
general, more) models: the “source” model(s) and the existing “target” model.
The second feature we emphasise is the possibility of recursion, in which one
relation may invoke another, or even itself, on different or the same arguments.
Both of these features are important to practical usability of QVT-R, as we
argued more fully in [3] for recursion and in [11] for bidirectionality.

Most previous work on model transformations, and to our knowledge all pre-
vious work on QVT-R enforce mode, does not address either of these features.
Rather, it formalises only the special case in which the original target model is
empty, so that the QVT-R transformation simply produces the target model from
the source model (we will call this “unidirectional QVT-R”); and it assumes that
the when-where graph, the “call graph” of QVT-R relations, is acyclic (“acyclic
QVT-R”).

Triple graph grammars [10] do have this property of modifying an existing
target model in the light of a source model. This works, roughly, by jointly pars-
ing the input graph models, making use of (or constructing) a correspondence
graph that connects them, so that a hypothetical source model consistent with
the current target model, together with a sequence of rules that would lead from
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the hypothetical to the current source model, is known. Then this sequence of
rules is applied to the current target model to give the result target model. By
placing careful restrictions, it is possible to ensure that the process succeeds and
gives a uniquely defined result [7]. Greenyer and Kindler [6] gave a translation
from QVT Core to Triple Graph Grammars (TGGs), and informally discuss
trying to extend the approach to QVT-R, although they do not provide a se-
mantics for QVT-R. Unfortunately, as discussed at length in [12], the claim in
[8] that QVT-R can be translated in a semantics-preserving way to QVT Core
is not sustainable (QVT Core is insufficiently expressive), so this approach does
not lead to a semantics for QVT-R. The same problem may apply to [4] which a
semantics for QVT-R enforce mode (with both unidirectional and acyclic restric-
tions) using coloured petri nets; it states that it is consistent with [8]’s incorrect
translation to QVT Core. Another paper in this tradition is [14] which discusses
using CPN theory as implemented in a model transformation framework called
TROPIC to provide debugging facilities for QVT-R transformations. Again, the
paper addresses only the unidirectional use of QVT-R.

Romeikat and others [9] translated QVT-R transformations, restricted to the
acyclic case, to QVT Operational. The focus is on unidirectional use of QVT-
R. The bidirectional case is discussed briefly, but not in detail; it seems to be
considered only where all model elements are identified by key expressions. A
different approach is to give semantics to QVT-R using algebraic specification,
as exemplified by [1], which describes the MOMENT-QVT tool. This work, too,
addressed only the unidirectional use of QVT-R. Recursive relation invocations
are not discussed and do not seem to be allowed for.

The two extant tools addressing QVT-R are Medini and ModelMorf. As dis-
cussed in [12], Medini deliberately departs from [8]. ModelMorf is thus the most
reliable (although not infallible) implementation and the one we compare our
semantics with.

3 Preliminaries

3.1 QVT-R

A transformation T is defined over a finite set of (usually two)metamodels (types
for the input models) and, when executed in enforce mode, can be thought of as a
function from tuples of models, each conforming to the appropriate metamodel,
to an updated model (or failure). In any execution there is a direction, that is,
a distinguished model which is being checked/enforced. The argument models
are also known as domains and we will be discussing transformation execution
in the direction of the kth domain. That is, the kth argument model is being
checked/enforced against the others. See [12] for further discussion; here we
assume some familiarity with QVT-R.

We use the notions of variables, values, typing, bindings and expressions. In
QVT-R these matters are prescribed, building on the MOF metamodelling dis-
cipline and OCL. The available types are the metaclasses from any of the meta-
models, together with a set of base types (defined in OCL) such as booleans,
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strings and integers, and collections. Values are instances of these. The expres-
sion language is an extension of OCL over the metamodels. QVT-R is a typed
language, with some type inference expected.

In this paper, as in the previous work, we do not depend on QVT-R’s partic-
ular choices in these matters, but provide a framework applicable to any similar
language. We assume given sets Var of typed variables, Val of values and Expr
of typed expressions over variables. We write fv(e) for the set of free variables
in e ∈ Expr. Constraint is the subset of Expr consisting of expressions of type
Boolean. A (partial) set of bindings B for a set V ⊆ Var of variables will be a
(partial) function B : V ⇀ Val satisfying the typing discipline. We write B′ ( B
when dom(B′) ⊇ dom(B) and B′ and B agree on dom(B). We assume given an
evaluation partial function eval : Expr × Binding ⇀ Val defined on any (e, b)
where fv(e) ⊆ dom(b). Like [8] we will assume all transformations we consider
are statically well-typed.

A transformation T is structured as a finite set of relations R1 . . . Rn, one or
more of which are designated as top relations. A QVT-R relation is not (just) a
mathematical relation – it consists of: a unique name; for each domain a typed
domain variable and a pattern; and optional when and where clauses. We allow
when or where clauses to contain arbitrary boolean combinations of relation
invocations and boolean constraints (from Constraint). A relation invocation
consists of the name of a relation together with an ordered list of argument
expressions. Evaluating these expressions yields values for the domain variables
of the invoked relation. We write rel(T ) for the set of names of relations in T
and top(T ) ⊆ rel(T ) for the names of relations designated top. A pattern is a set
of typed variables together with a constraint (“domain-local constraint”) over
these variables and the domain variable. A variable may occur in more than one
pattern, provided that its type is the same in all.

The set of all variables used (in QVT-R declarations can be implicit) in a
relation R will be denoted vars(R). The subset of vars(R) mentioned in the when
clause of R is denoted whenvars(R). The subset mentioned in the domains other
than the kth domain is denoted nonkvars(R). The set containing the domain
variables is denoted domainvars(R). These subsets of vars(R) may overlap.

3.2 Game/mu-Calculus Semantics for QVT-R

In [3], we gave our semantics both in terms of a game and in terms of a modal
mu-calculus formula, the two presentations being equivalent. Although the game
version is easier to understand, the logical version is more concise and easier to
adapt; so for reasons of space, we here give details only in the logical form.

The meta-logic for our semantics is modal mu-calculus. We refer to [3] for
a fuller explanation of the logic and its relation to the game. Here we recap
briefly the key points. The structures for the logic are transition systems – i.e.
edge-labelled graphs – and formulae are true or false at states (nodes) in the
systems. The formula [a]φ is true at s iff φ is true at every state reached from
s by a single a-transition (‘a-successor’); 〈a〉φ is true iff φ is true at some a-
successor. The greatest and least fixpoints νZ.φ(Z) and μZ.φ(Z) are formally
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co-inductive and inductive definitions, but are best understood as allowing the
specification of looping behaviour – infinite loops for greatest fixpoints, and finite
(but unbounded) loops for least fixpoints. Establishing a formula corresponds to
constructing a winning strategy in the game for Verifier where she chooses at ∨
and 〈〉, and Refuter chooses at ∧ and []. See [2] for a detailed explanation of the
relation between modal mu-calculus, parity automata, and parity games.

Our semantics translates a QVT-R checkonly transformation instance into
a modal mu calculus model-checking instance. Again, we refer to [3] for a full
explanation. The key points are that we build a transition system encoding all
the non-logical information about the models and the transformation, and we
build a formula encoding the purely logical aspects.

Apart from a distinguished initial node, nodes of the transition system we
construct each consist of a pair (R,B) whereR ∈ rel(T ) and B : vars(R) ⇀ Val is
a set of (well-typed, as always) bindings. In order to be able to handle cases where
the same relation may be invoked more than once in the when or where clause
of another relation, we begin by labelling each relation invocation in the static
transformation text with a natural number, so that an invocation R(e1, . . . , en)
is replaced by Ri(e1, . . . , en) for an i unique within the transformation; invoking
the relation at invocation i will be modelled by a transition labelled invokei.
Figure 1 defines the LTS formally. Note that the direction parameter k affects
the meaning of nonkvars.

The boolean flag is needed to handle negation, and in particular the negation
implicit in when clauses. When the flag is true, the players have their usual roles;
when the flag is false, they swap turns, so that Verifier handles [] and so on.

The mu calculus formula does not represent the domain variables, the patterns
or the arguments to the relation invocations: all that information is represented
in the transition system, and the invokei transitions and modalities connect the
LTS and formula appropriately. Figure 1 defines the translation process formally.

Note that tr2 is used to translate when and where clauses, building an envi-
ronment that maps relations to mu variables in the process. Relation invocations
are translated using the environment if the relation has been seen before, and
otherwise, using a new fixpoint.

As discussed in [3], the possibility of recursive relation invocations in when
clauses leads to potential undefined results. We adopt the well-formedness re-
quirement defined and justified in [3], that there must be an even number of
negations and whens between two invocations of a relation.

4 Enforcement

The description of enforcement semantics in [8], as with its description of check-
only semantics, does not address how to treat relations that are called in the
when and where clauses of other relations. The “formal” semantics in Annex B
uses a predicate logic formula, although it is actually understood as an impera-
tive program. The only way to interpret this, is that relation invocations other
than at top level are treated as pure predicates. Consequently, object creation
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Input: Transformation T defined over metamodels Mi, models mi : Mi, direction k.
Output: Labelled transition system lts(T,mi, k) = (Initial, A, S,−→)
Nodes:
S = {Initial} ∪ {(R,B) : R ∈ rel(T ),B : vars(R) ⇀ Val}
Labels:
A = {challenge, response, ext1, ext2} ∪ {invokei : i ∈ N}
Transitions:
Initial

challenge−→ (R,B) if R ∈ top(T ) and dom(B) = whenvars(R) ∪
nonkvars(R)

(R,B)
response−→ (R,B′) if dom(B) = whenvars(R)∪nonkvars(R) andB′ � B

and dom(B′) = vars(R)

(R,B)
ext1−→ (R,B′) if dom(B) = domainvars(R) and B′ � B

and dom(B′) = domainvars(R) ∪ whenvars(R) ∪
nonkvars(R)

(R,B)
ext2−→ (R,B′) if dom(B) = domainvars(R) ∪ whenvars(R) ∪

nonkvars(R) and B′ � B and dom(B′) = vars(R)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

where clause of R with arguments ei, dom(B) =
vars(R) and dom(B′) = domainvars(S) with ∀i ∈
domainvars(S).B′ : vi �→ eval(ei, B)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

when clause of R, with arguments ei, dom(B) ⊇
whenvars(R) and dom(B′) = domainvars(S) with
∀i ∈ domainvars(S).B′ : vi �→ eval(ei, B)

LTS definition

Input: Transformation T . Output: tr(T ) given by:
tr(T ) =

∧
Ri∈top(T ) tr1(Ri)

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true)∨
tr2∅(when(Ri), false))

tr2E(φ, true) = φ
tr2E(φ, false) = ¬φ
tr2E(e and e′, true) = tr2E(e, true) ∧ tr2E(e

′, true)
tr2E(e and e′, false) = tr2E(e, false) ∨ tr2E(e

′, false)
tr2E(e or e′, true) = tr2E(e, true) ∨ tr2E(e

′, true)
tr2E(e or e′, false) = tr2E(e, false) ∧ tr2E(e

′, false)
tr2E(not e, b) = tr2E(e,¬b)
tr2E(R

i(e1 . . . en), true) = 〈invokei〉E[R] if R ∈ domE
tr2E(R

i(e1 . . . en), true) = 〈invokei〉νX. ([ext1]
(〈ext2〉tr2E[R �→X](where(R), true)∨
tr2E[R �→X](when(R), false))

otherwise

tr2E(R
i(e1 . . . en), false) = [invokei] (¬E[R]) if R ∈ domE

tr2E(R
i(e1 . . . en), false) = [invokei]μX. (〈ext1〉

([ext2] tr2E[R �→¬X](where(R), false)∧
tr2E[R �→¬X](when(R), true))

otherwise

Mu calculus formula definition

Fig. 1. Definition of the checkonly translation
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or update happens only in top level relation calls. As we saw in the introduc-
tion, this leads to the creation of many new objects in top level bindings, where a
smaller change could be achieved by recursively enforcing the lower level relation.
In this paper we present only semantics following the approach of [8].

The [8, Annex B] enforcement specification breaks into two steps: first, cre-
ate (or modify) any objects in the target required to satisfy the transformation;
secondly, delete certain objects in the target not required to exist by the trans-
formation. We use the same phases.

4.1 Extending the QVT Game/Logic for Enforcement

Determining that two models are consistent, in our semantics, amounts to finding
a winning strategy for Verifier, or alternatively establishing the truth of a formula
expressed in mu-calculus. To play an enforcement game, we need to give Verifier
additional moves: if she is unable to win the checkonly game at a certain point,
she has the option to change the model and try again. In mu-calculus terms,
this amounts to adding disjunctions at appropriate places in the formula, with
formulae involving a model-changing transition.

The model-changing is encoded thus: the states of the transition system in
Fig. 1 are extended to be of the form (Initial,M) or (R,B,M) so that they carry
the (entire) target model M as part of the state, and the transitions defined
there leave it untouched. For technical reasons, the models M also include a
‘modification record’ for each model element, saying whether a given property
has been changed.

4.2 The Object Creation/Update Phase

The first extension to our previous semantics is to force the re-start of check-
ing/enforcement after a model update. While Annex B does not discuss this, it
is obvious that after a model update, all top relations may need to be checked
again. (Of course a tool might optimise.) Therefore we wrap the entire top level
formula in a least fixpoint, so that the first line of Fig. 1 ‘formula definition’ is
changed to

tr(T ) = μW.
∧

Ri∈top(T )

tr1(Ri)

where the variable W will appear later in the translation, and the fixpoint has to
be minimal because for enforcement to succeed, only a finite number of updates
can be done.

Per Annex B, object creation (or update) occurs if, after source and when
bindings are chosen, there is no binding to the target variables that satisfies
the domain pattern. In our game, this occurs at the point following a challenge
transition taken by Refuter. If Verifier is unable to choose bindings that let her
win, or to win by challenging the when clause, she has the possibility to update
the model, so line 2 of Fig. 1 ‘formula definition’ becomes

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true))
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∨ tr2∅(when(Ri), false)
∨ 〈update〉W )

and the update transitions are defined by

(R,B,M)
update−→ (Initial,M ′) if (*)

where the side-condition property (*) must capture when changing the model
to M ′ is legal. (*) depends on whether the kth domain variable, say me:ME, is
already in dom(B) (which will be the case if me ∈ whenvars(R)), and whether a
key constraint is specified for ME. If me �∈ dom(B) and ME has no key constraint,
then M ′ is a model formed from M by creating a new object, say o, of type
ME, with properties set according to the kth domain pattern of R with bindings
from B.

However, the domain pattern does not (usually) specify all properties of o and,
for enforcement to succeed, properties that are not specified may nevertheless
matter, as they may have to take values which will cause a where clause to
succeed – note that the actual point in the transformation at which the values
of these properties of o matter could be arbitrarily many invocations away from
R. [8] does not specify how such properties are to be set, but a useful tool must
find correct values as often as possible (not “if they exist”, because it is clear
that the problem in general is noncomputable, given a constraint language as
powerful as OCL). In our semantics, we model an update transition for every
legal choice of the properties. A choice is legal if it obeys the metamodel and
domain pattern (including domain-local constraints). Note that our transition
system already contained infinite branching because of the potentially infinite
choices for bindings; we will shortly discuss how a transformation engine could
ensure determinacy by searching systematically for a winning strategy (and thus
always finding the same one, even if there are many).

If a new object o cannot be created because me was already bound (say to o′)
in B, then (*) must permit no update transition unless there is a key specification
for ME, because only then will it be legal to modify properties of o′.

Now consider the case where there is a key specification for ME such that the
bindings in B determine an object (say o′) in M (regardless of whether this is
because B includes a binding of me to o′ itself, or because it includes bindings
for key properties that determine o′). Then (*) is adjusted to make M ′ the result
of modifying properties of o′, that have not already been marked ‘modified’ to a
different value, in any way which is valid according to the metamodel, domain
pattern, and domain local constraint as before, and setting the modification flag
on the object’s modified properties. (The reason for the modification flag is that
enforcement is required to fail if an object is modified in inconsistent ways.)

Corresponding moves are added to the game presentation, allowing Verifier a
move modifying the target model if she cannot win by either providing bindings
from the current model or challenging the when clause. (Details are elided as,
although simple, they do become long-winded: if Verifier tries to choose an up-
date move when in fact she could have won by one of the other move types –
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that is, if she makes an unnecessary change to the model – we need to let Re-
futer win by demonstrating that her update was unnecessary. This corresponds
to the inverting of Boolean flags in the short circuit evaluation version of the mu
formula below.)

A logical formula has no order of evaluation built in, whereas the imperative
interpretation of Annex B does. It is possible to impose an order of evaluation
externally upon the model-checker; it is also possible to modify the formula
to simulate it. This makes no difference to whether our enforcement formula
succeeds, but it does affect the model that results from evaluating whether en-
forcement succeeds. If our formula is to do updates only when needed, we can
simulate short-circuit evaluation by modifying the new formula thus:

tr1(Ri) = [challenge] ((〈response〉(tr2∅(where(Ri), true)))
∨tr2∅(when(Ri), false)
∨(([response] tr2∅(where(Ri), false))
∧tr2∅(when(Ri), true) ∧ 〈update〉W ))

so that Verifier can only successfully choose the update branch if the other
branches fail. (Here we use [3, Lemma 1].)

There is one issue that is best dealt with by the evaluation/model-checking
procedure, rather than in the formula or game. There is, in general, nothing to
stop Verifier from making unnecessary updates, by choosing an update transi-
tion that does not in fact satisfy the where clause; she will then re-start, and
update again. With sufficient additional book-keeping in the model and formula,
this could be avoided; however, it is simpler to invoke the notions of ‘canonical
tableau’ or ‘optimal progress measures’ from the theory of mu-calculus model-
checking, so that the model-checker constructs the strategy with the smallest
number of updates. (So-called bottom-up model-checkers do this automatically;
top-down model-checkers do not. See [2].)

At this point, our semantics matches that of Annex B after the create phase.
Showing that the formula is true amounts to constructing a winning strategy
for Verifier in the game, and the constructed model is extracted by examining
the update transitions in the winning strategy (or, in practice, by examining the
trace of updates taken during construction).

Enforcement may involve creating and choosing properties for many new ob-
jects. It is also possible that an object created by one update may be used (e.g.
with modification) by a subsequent update. It is therefore possible in general
that the constructed model depends on the order of transition choices in modal-
ities, which in turn depends on the order in which source bindings are checked
– in our terms, on the order in which Refuter makes choices when challenging.
While this is also the case in Annex B, it is desirable that an enforcement algo-
rithm should be deterministic, which requires fixing the order of all choices. It
is not feasible or sensible to encode this into the logic; rather it is appropriately
done by specifying how the mu-calculus model-checking algorithm proceeds, or
equivalently how the construction of a winning strategy proceeds. While all real
model-checkers make such choices, they do not normally expose them; if the
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result of enforcement is to be unique, the choices must be explicit. For example,
we might specify that formulae are checked left to right, and that when choos-
ing a transition, the possible transitions are ordered according to their internal
representations and the lowest in the order is taken.

4.3 The Deletion Phase

Here we need to be cautious because a literal reading of [8] (sections 7.10.2 and
Annex B) gives behaviour that is clearly undesirable and contradicts Model-
Morf’s behaviour. [8] specifies that certain elements of the target model, that
constitute valid bindings of domain k variables, are deleted if they are not ‘re-
quired to exist’ by the relation. For example, if model m1 contains an E1type

with name ’foo’, and m2 contains no E2type called ’foo’, then enforcing the
relation

top relation Zap {

n : String;

domain m1 e1:E1type { name=n };

domain m2 e2:E2type { name=n };

when { n = ’foo’; } }

on m2 would, in addition to creating a new E2type called ’foo’, delete all E2type
elements in the old m2, because they are not required to exist by the relation. It
is hard to believe that this is the desired result, and indeed ModelMorf does not
do this (it sensibly creates a new ’foo’ E2type, leaving other E2types alone).

To see what is probably intended, consider the same relation without the when
clause, which ought to embody a more stringent consistency check:

top relation Matchname {

n : String;

domain m1 e1:E1type { name=n };

domain m2 e2:E2type { name=n };}

Bidirectionally, this says every E1type element in one domain has a (not neces-
sarily unique) matching-named element in the other. Suppose we enforce on m2,
and there is an element e called ’foo’ in m2 with no match in m1. We expect
it to be deleted. [8] will delete it because it is ‘not required’. However, the real
reason for deleting is surely that it fails the relation in the direction m1; it is not
that e is not required, it is that its absence is required for Matchname to check
in the m1 direction (as we are not allowed to create an element in m1).

Deciding that we should delete objects whose absence is required, we can
implement the deletion phase more easily: for each checked (source) domain j
(e.g. m1 above), we set up the transition system and formula for checking in the
direction of the jth domain, and then modify the formula exactly as before, but
replacing update by delete, and add transitions

(R,B,M)
delete−→ (Initial,M ′) if (**)
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where property (**) is: M ′ is the model formed from M by deleting the object
bound in B to the top level domain variable of the kth domain (which is now
a source domain for the checkonly formula). In the typical case of two domains,
we only need run the delete step once; where there are k > 2 checked domains
and we are enforcing on the kth, we must run the deletion step for each of the
domains j = 1, . . . , k − 1.

If this formula evaluates to true, the resulting model is read off from the
winning strategy as before.

4.4 Putting It together

Enforcement now amounts to first evaluating the creation formula; if it is true,
read off the model and evaluate the deletion formula. If that is true, read off
the model. If either stage fails, then enforcement fails, either because there is no
way to restore consistency, or because the simple-minded update strategy is not
powerful enough to do so.

There is one further check needed: the resulting model must be checked (in
checkonly mode) ab initio, as it is possible that inconsistency in the transfor-
mation arises from the combination of creation and deletion – for example, an
object might be required to exist by checking in direction k, but required not to
exist by checking in the direction k′.

This procedure can be coded up to produce a single giant transition sys-
tem and formula, but the process is not enlightening, and does not simplify
correctness.

5 Example

Consider the example NonTopEnforcewith m1= {N → {child1, child2, child3}},
from Section 1, enforcing against an empty model m2. We demonstrate a “best”
winning strategy (canonical tableau) for Verifier: as discussed this avoids unnes-
sary updates. Refuter will challenge in R by binding {n �→ ’N’, f irstchild �→ c1}
where c1 is one of the three children, say the one with name ’child1’. (In mu
calculus terms, we pass through [challenge] and along a challenge transition
to a game position with this binding.) Verifier will be unable to find matching
bindings and there is no when clause so she will update the model. (In mu cal-
culus terms, the first two disjuncts of the short-circuiting formula are false so
model checking proceeds to the 〈update〉 disjunct.) There are no key expres-
sions and me2 is not bound, so Verifier creates a new MEtop element and sets
its properties according to the domain pattern: that is, its name will be ’N’. She
must also create a MEchild element to bind to secondchild but is not con-
strained as to its properties: all of the infinitely many choices are legal game
moves and correspond to infinitely many update transitions each to a different
modified model. Playing a best strategy, however, she creates an MEchild with
name ’child1’. Play now restarts at the initial position with the modified model.
If Refuter were to make the same challenge this time, he would lose because
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Verifier now has bindings with which to match. If, instead, he challenges with
one of the other children, say with binding {n �→ ’N’, f irstchild �→ c2} where
c2’s name is ’child2’, exactly the same thing will happen. Although Verifier could
this time choose matching bindings, she could not win by doing so (in mu cal-
culus terms, although 〈response〉tt is true, 〈response〉(tr2∅(where(Ri), true)) is
false) and so she will choose to create a new MEtop element, again with name
’N’, and a new MEchild to be the value of its child property and to bind to
secondchild. Repeating once more we find that the result of the create phase
of the game (playing with a best strategy so that no junk has been created)
is {N → {child1}, {N → {child2}, {N → {child3}}. (In mu calculus terms we
have unwound the fixpoint W three times, once for each update; no fewer un-
windings would lead to success.) The checkonly game in direction m1 is won by
Verifier already so no deletions are required.

6 Properties of Transformations

In [11] we formalised properties that, we argued, should hold of bidirectional
transformations; other work in this direction includes [5,13]. Now that we have
formal semantics for QVT-R in both checkonly and enforce mode, it makes
sense to ask whether it has properties of interest. Recall that a bidirectional
transformation R : M ↔ N can be modelled by a triple R ⊆ M × N (slight

abuse of notation),
−→
R : M × N → N ,

←−
R : M × N → M . In QVT-R, R(m,n)

should be true iffR returns true when run in checkonly mode (either direction) on

models m and n, while
−→
R (m,n) returns n′ if R run in enforce mode with source

m and target n, i.e. in the direction of n, modifies n to n′. Because enforcement
is not guaranteed to succeed in our setting (whether because of inconsistency

or uncomputability), we must modify the framework to make
−→
R and

←−
R partial

functions, which may return ⊥.
Relatively uncontroversial properties are (partial) correctness and hippocratic-

ness. We prove that these both hold of every well-defined QVT-R transformation,
interpreted according to our checkonly and enforce semantics.

Theorem 1. Given our semantics, QVT-R is (partially) correct: that is, for

any well-defined transformation R and models m and n, if
−→
R (m,n) �= ⊥, then

R(m,
−→
R (m,n)), and dually.

Proof. By construction, our enforcement semantics ensures that any transfor-
mation execution finishes with a full checkonly evaluation, and fails if this is not
satisfied.

Theorem 2. Given our semantics, QVT-R is hippocratic: that is, for any well-

defined transformation R and models m and n, R(m,n) ⇒ −→
R (m,n) = n and

dually.

Proof. Our enforcement semantics is the evaluation of a formula which (via the
simulation of short-circuit evaluation) only proceeds into a branch containing
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model-changing transitions if the models do not already satisfy the checkonly
formula (proved correct in [3]).

Undoability, the third property discussed in [11], is more problematic. As is now
well-understood, although theoretically desirable because it gives good algebraic
properties, it is in practice too strong. It is straightforward to construct an exam-
ple in which both our semantics and ModelMorf fail undoability: deleting, and
then recreating, a piece of information on one side results in the loss of anything
on the other side that was “stuck” to the deleted and recreated information.
Thus we cannot expect QVT-R transformations to be undoable.

7 Conclusions and Future Work

By giving formal semantics to QVT-R enforce mode, we have clarified issues, par-
ticularly with object deletion, in the standard, and we have brought this hard
problem into the much studied and well understood domain of model-checking.
Our semantics relies on model-checking algorithms that can compute the canon-
ical tableau or best winning strategy; in the case of finite models, this is routine,
and in the case of infinite models there is an extensive body of work on algo-
rithms for well-behaved families of infinite models. Our semantics, like our earlier
checkonly semantics [3], has two equivalent formulations. We translate an enforce
problem into a modified mu calculus model checking problem – the model check-
ing process computes the changes needed to a model, and these changes are then
verified by model checking. This presentation is convenient for proofs, because it
enables us to exploit properties of mu calculus. The alternative, equivalent for-
mulation, in terms of simple two-player games, is more convenient for direct use.

We hope that our semantics work may help to inform designers of future
bidirectional languages. One lesson, we suggest, is that while the syntax of QVT-
R is appealing in the intuitiveness of individual relations, the way in which
QVT-R connects relations is probably not optimal.

In future, aiming to define a QVT-R-like language with semantics that better
support MDD, we will consider semantic variations, including those (such as the
bisimulation-like game [12], and reducing the special treatment of top relations
[3]) that we considered in previous work on checkonly but for space reasons
have not explored here. Variations specific to enforce mode include specifying
deterministic update transitions, making use of information gathered in previous
steps of the evaluation. More fundamentally we will explore allowing updates in
recursive relation invocations, corresponding to on-the-fly enforcement of lower
level relations. The present semantics, like [8], ensures that each change to the
target model, considered locally, is necessary, and also that the minimum number
of distinct updates is done. However, as we have seen, updates can be larger than
necessary. Understanding what precise senses of minimal change are desirable,
achievable and supportable by tools is a challenging and interesting problem.
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Abstract. QVT Relations (QVT-R) is the standard language proposed
by the OMG to specify bidirectional model transformations. Unfortu-
nately, in part due to ambiguities and omissions in the original seman-
tics, acceptance and development of effective tool support has been slow.
Recently, the checking semantics of QVT-R has been clarified and for-
malized. In this paper we propose a QVT-R tool that complies to such
semantics. Unlike any other existing tool, it also supports meta-models
enriched with OCL constraints (thus avoiding returning ill-formed mod-
els), and proposes an alternative enforcement semantics that works ac-
cording to the simple and predictable “principle of least change”. The
implementation is based on an embedding of both QVT-R transfor-
mations and UML class diagrams (annotated with OCL) in Alloy, a
lightweight formal specification language with support for automatic
model finding via SAT solving.

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development that
focuses on models as the primary development artifact. In MDE different models
may capture different views of the same system (typically different models are
used to specify structural and dynamic issues) or may be used at different lev-
els of abstraction (code is obtained by refining platform-independent models to
platform-specific ones). All these (possibly overlapping) models should be kept
somehow consistent, and changes to one model should be propagated to all the
others in a consistent manner. Ideally, specifications of transformations between
models should be bidirectional, in the sense that a single artifact denotes trans-
formations that can be used in both directions. Moreover, these transformations
cannot just map a source to a target model and vice-versa: if some source in-
formation is discarded by the transformation, to propagate an update in the
target back to a new consistent source access to the original source model is also
required, so that discarded information can be recovered.

To support the MDE approach the Object Management Group (OMG) has
launched the Model-Driven Architecture (MDA) initiative, which prescribed the
usage of UML [16] and OCL [17] for the specification of (object oriented) models
and constraints over them. To specify transformations between models, the OMG
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proposed the Query/View/Transformation (QVT) standard [15]. While QVT
provides three different languages for the specification of transformations, the
most relevant to MDE is the QVT Relations (QVT-R) language, that allows the
specification of a bidirectional transformation by defining a single declarative
consistency relation between two (or more) meta-models. Given this specification
the transformation can be run in two modes: checkonly, to test if two models are
consistent according to the specified relation; or enforce, that given two models
and an execution direction (picking one of them as the target) updates the target
model in order to recover consistency. The standard prescribes a “check-before-
enforce” semantics, that is, enforce mode cannot modify the target if the models
happen to be already consistent according to checking semantics.

Effective tool support for QVT-R has been slow to emerge, which hinders the
universal adoption of this standard. In part, this is due to the incomplete and
ambiguous semantics defined in [15]. While the checking semantics has recently
been clarified and formalized [19,3,9], the enforcement semantics still remains
largely obscure and even incompatible with other OMG standards. Namely, it
completely ignores possible OCL constraints over the meta-models, thus allowing
updates that can lead to ill-formed target models. Likewise, none of the existing
QVT-Rmodel transformation tools supports such constraints, which makes them
unusable in most realistic scenarios. Unfortunately, there are other problems
that affect them. Some do not even comply to the standard syntax and support
only a “QVT-like” language (including not providing both running modes as
required by the standard). Others support only a subset of QVT-R that is not
expressive enough to support truly non-bijective bidirectional transformations
(for example, ignoring the original target model in the enforce mode). Some
purposely disregard QVT-R intended semantics (including checking semantics)
and implementing a new (still unclear and ambiguous) one. In most cases it is
not clear if the supported checking semantics is equivalent to the one formalized
in [19,3,9]. And finally, none clarify the problems and ambiguities in the standard
concerning enforcement semantics, and none presents a simple enough alternative
for this mode that makes its behavior predictable to the user.

In this paper, we propose a QVT-R bidirectional model transformation tool
that addresses all these issues. Both the meta-models and transformation spec-
ifications may be annotated with OCL, and it supports a large subset of the
standard QVT-R language, including execution of both modes independently as
prescribed. The main restriction is that recursion must be non-circular (or well-
founded), which is satisfied in most of the interesting case-studies. The checking
semantics closely follows the one specified in the standard, being equivalent to
the one formalized in [19,3,9]. Finally, instead of the ambiguous (and OCL in-
compatible) enforcement semantics proposed in the standard, our tool follows
the clear and predictable principle of least change [13], and restores consistency
by simply returning target models that are at a minimal distance from the
original. In particular, the“check-before-enforce” policy required by QVT-R is
trivially satisfied by this semantics. Our tool supports two different mechanisms
to measure the distance between two models: the graph edit distance (GED) [21],
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that just counts insertions and deletions of nodes and edges in the graph that
corresponds to a model; and a variation where the user is allowed to parame-
terize which operations should count as valid edits, by attaching them to the
meta-model and specifying their pre- and post-conditions in OCL.

To achieve this, we propose an embedding of both QVT-R transformations and
UML class diagrams (annotated with OCL) in Alloy [11], a lightweight formal
specification language with support for automatic model finding via SAT solving.
Alloy is based on relational logic, which has been shown to be very effective
to validate and verify object-oriented models. Its relation with the MDA has
also been explored before. In particular, tools to translate UML class diagrams
annotated with OCL to Alloy have been proposed [1,6], on top of which we
build our embedding. The proposed tool already proved effective in debugging
existing transformations, namely helping us unveiling several errors in the well-
known object-relational mapping that illustrates the QVT-R specification [15].

Section 2 introduces the QVT-R language, describes the standard checking
semantics, presents some of the problems with the enforcement semantics, and
proposes and formalizes a simpler alternative based one the principle of least
change. Section 3 presents our embedding of UML class diagrams (annotated
with OCL) and QVT-R transformations in Alloy. Finally, Section 4 analyzes
some related work, while Section 5 draws conclusions and points to future work.

2 QVT Relations

In this section we introduce the basic concepts and the semantics of the QVT-R
language. A more detailed presentation can be found in the standard [15].

2.1 Basic Concepts

A QVT-R specification consists of a transformation T between a set of models
that states under which conditions they are considered consistent. For the re-
mainder of this paper, we will restrict ourselves to transformations between two
meta-models for simplicity purposes, although most concepts could be general-
ized to n-directional transformations. From T , QVT-R requires the inference of
three artifacts: a relationT ⊆ M×N that tests if two models m ∈ M and n ∈ N
are consistent and transformations

−→
T :M ×N → N and

←−
T :M ×N → M that

propagate changes on a source model to a target model, restoring consistency be-
tween the two. Transformations can be executed in two modes: checkonly mode,
where the models are simply checked for consistency, denoted as T (m, n); and

enforce mode, where
−→
T or

←−
T is applied to inconsistent models in order to restore

consistency, depending on which of the two models should be updated. Note that
both transformations take as extra argument the original model: if we originally

had consistent models m ∈ M and n ∈ N , and m is updated to m ′,
−→
T takes as

input both m ′ and n to produce the new consistent n ′. This way we are able to
retrieve from n information discarded in the transformation. This formalization
of QVT-R is inspired by the concept of maintainer [13], and was first proposed
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Fig. 1. Class diagrams of the UML and RDBMS meta-models

in [18]. Naturally, when the transformations propagate an update the result is
expected to be consistent. Formally, we say that the transformation is correct if:

∀ m ∈ M , n ∈ N :T (m,
−→
T (m, n)) ∧T (

←−
T (m, n), n)

The transformations are also required to follow the “check-before-enforce” policy
(also known as hippocraticness [18]), that can be formalized as follows:

∀ m ∈ M , n ∈ N :T (m, n)⇒ −→
T (m, n) = n ∧←−T (m, n) = m

A QVT-R transformation is defined by a set of relations. A relation consists of
a domain pattern for each meta-model of the transformation, that defines which
objects of the model it relates by pattern matching. It also may include when
and where constraints, that act as a kind of pre- and post-conditions for the
relation application, respectively. These constraints may contain arbitrary OCL
expressions. The abstract syntax of a relation is the following:

[���] �������	 R { [variable declarations]

����	 M a : A { πM }


����	 N b : B { πN }

[�
�	 { ψ }] [�
��� { φ }] }

In relation R, the domain pattern for meta-model M consists of a domain vari-
able a and a template πM for its properties, which candidate objects of type A
must match. Likewise for the domain pattern πN for meta-model N . To simplify
the presentation, the above syntax restricts relations to have exactly one domain
variable per meta-model. In a pattern template, an equality denotes an inclu-
sion test if the multiplicity of the property is different from one. Templates can
be complemented with arbitrary OCL constraints. Relations can optionally be
marked as top, in which case they must hold for all objects of the specified class.
Otherwise, they are only required to hold for particular objects when invoked in
a where clause.

As an example, we will define a simplified version of the classic object-
relational mapping transformation that illustrates the QVT-R specification [15].
Although simplified, this version still exhibits some of the problems of the orig-
inal version, which we will describe in the next section. Figure 1 depicts a
simplified version of the object and relational meta-models, including possi-
ble edit operations. Figure 2 defines a transformation Uml2Rdbms, whose goal
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���	���������	 Uml2Rdbms

(uml:UML,rdbms:RDBMS) {

// PackageToSchema

��� �������	 P2S {

n:String;


����	 UML p:Package {

name=n };


����	 RDBMS s:Schema {

name=n }; }

// ClassToTable

��� �������	 C2T {

n:String;


����	 UML c:Class {

persistent=����,

namespace=p:Package,

name=n };


����	 RDBMS t:Table {

schema=s:Schema,

name=n };

�
�	 { P2S(p,s); }

�
��� { A2C(c,t); } }

// AttributeToColumn

�������	 A2C {


����	 UML c:Class {};


����	 RDBMS t:Table {};

�
��� { PA2C(c,t);

SA2C(c,t); } }

// PrimitiveAttributeToColumn

�������	 PA2C {

n:String;


����	 UML c:Class {

attribute=a:Attribute {

name=n } };


����	 RDBMS t:Table {

column=cl:Column {

name=n } }; }

// SuperAttributeToColumn

�������	 SA2C {


����	 UML c:Class {

general=g:Class {}};


����	 RDBMS t:Table {};

�
��� { A2C(g,t); } } }

Fig. 2. Simplified version of the Uml2Rdbms QVT-R transformation

is to map every persistent class in a package to a table in a scheme with
the same name. Each table should contain a column for each attribute (in-
cluding inherited ones) of the corresponding class. A constraint of the UML

meta-model that cannot be captured by class diagrams, neither QVT-R key
constraints, is the requirement that the association general should be acyclic.
One must resort to OCL to express it, for example by adding the invariant
������� Class ���: ��� self.�	�
���(general)->���	�
�
(self).

There are two top relations: P2S that maps each package to a schema with
the same name, and C2T that maps each class to a table with the same name. To
ensure that classes are only mapped to tables if they belong to related packages
and schemas, the relation C2T invokes P2S (with concrete domain variables) in
the when clause. For a concrete class c and table t, C2T also calls relation A2C in
the where clause, that will be responsible to map the attributes of c to columns
of t. A2C directly calls PA2C, that translates the attributes directly declared in
c to columns on table t, and SA2C, that recursively calls A2C on the generals
of c, so that inherited attributes are also translated to columns of t.

2.2 Checking Semantics

QVT-R’s checking semantics assesses if two models are consistent according to
the specified transformation. Although the consistency test is by itself important,
it is also an essential feature in enforce mode since it must “check-before-enforce”.
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The semantics of a relation differs whether it is invoked at the top-level or with
concrete domain variables. The specified top-level semantics is directional. As
such, from each relation R two consistency relations R� :M ×N and R� :M ×N
must be derived, to check if m : M is R-consistent with n : N and if n : N is
R-consistent with m : M , respectively. The former can be formalized as follows:

R� (m :M , n :N ) ≡ ∀ xs | ψ� ∧ πM ⇒ (∃ ys | πN ∧ φ�)
where xs = fv(ψ ∧ πM ) ∪ {a :A}, ys = (fv(πN ∧ φ) ∪ {b : B })− xs

Here fv(e) retrieves the set of free variables from the expression e, so xs denotes
the set of variables used in the when constraint and the source pattern, while
ys is the set of variables used exclusively in the where constraint and in the
target pattern. Given a formula ψ, ψ� denotes the same formula with all rela-
tion invocations replaced by the respective directional version. This semantics
is rather straightforward: essentially, for every element a : A that satisfies the
when condition and matches the M domain pattern, there must exist an element
b :B that satisfies the where condition and matches the N domain pattern. The
semantics in the opposite direction is dual. Two models are consistent according
to a QVT-R transformation T if they are consistent for all top relations in both
directions. Assuming that TopT is the set of all top level relations we have:

T (m :M , n :N ) ≡ ∀ R : TopT | R� (m, n) ∧ R� (m, n)

The QVT-R standard [15] defines rather precisely the top-level semantics, but is
omissive about the semantics of relations invoked with concrete domain variables.
Recent works on the formalization of QVT-R check semantics [19,3,9] clarify
that it is essentially the same as the top-level – still directional, but defined over
specific meta-model classes by fixing the domain variables. As such, from each
relation R with domain variables of type A and B , two consistency relations
R� : A× B and R� :A× B are inferred, to check if two concrete objects a and
b are consistent:

R� (a : A, b : B) ≡ ∀ xs | ψ� ∧ πM ⇒ (∃ ys | πN ∧ φ�)
where xs = fv(ψ ∧ πM ), ys = fv(πN ∧ φ)− xs

Although it may be tempting (and probably more intuitive) to define R� in
terms of R�, that is R� (m, n) ≡ ∀ a : A | ∃ b : B | R� (a, b), this definition
is not semantically equivalent to the one presented above, as already discussed
in [3]. For instance, consider the semantics (in the direction of UML) of relation
PA2C from the Uml2Rdbms transformation:

PA2C� (m : UML, n : RDBMS) ≡
∀ t : Table, cl : Column, n : String | cl ∈ t .column∧ cl .name = n ⇒
∃ c : Class, a : Attribute | a ∈ c.attribute∧ a.name = n

PA2C� (c : Class, t : Table) ≡
∀ cl : Column, n : String | cl ∈ t .column∧ cl .name = n ⇒
∃ a : Attribute | a ∈ c.attribute∧ a.name = n
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Consider a simple UML model where a Class a with an Attribute x extends
a Class b with an Attribute y. Consider also a RDBMS with a Table a with
Columns x and y. While PA2C� holds for this pair of instances, PA2C� returns
false for every pair of Class and Table.

Due to this asymmetry and the directionality of the semantics, the behavior of
QVT-R transformations may not be the expected one. In particular, Uml2Rdbms
as defined in the standard does not have a bidirectional semantics, in the sense
that the only pairs of consistent and valid finite models are ones where all classes
are non-persistent and there are no tables. To see why this happens, consider the
relations A2C and SA2C when checked in the direction of Class. These relations
call each other recursively, and their non top-level semantics is:

A2C� (c : Class, t : Table) ≡ PA2C� (c, t) ∧ SA2C� (c, t)
SA2C� (c : Class, t : Table) ≡ ∃ g : Class | g ∈ c.general∧ A2C� (g, t)

Assuming the transformation takes into account the OCL constraint requiring
general to be acyclic, A2C� (c, t) never holds in a finite model, since c will
be required to have an infinite ascending chain of generals. This is due to the
under-restrictive SA2C domain pattern in the RDBMS side (empty in this case),
that requires every Table to have a matching Class with a general, which, due
to recursion, is also required to have a general, and so on. This is but one of the
problems that occur in the original specification of this transformation, and is
another example of the ambiguities that prevail in the QVT standard [15]: while
it requires consistency to be checked in both directions, the case-study used to
illustrate it was clearly not developed with bidirectionality in mind. Note that
checking consistency only in the direction of RDBMS does not suffice, since, for
example, it will not prevent spurious tables to appear in the target schema.

Concerning recursion we can distinguish two situations: one is well-founded
recursion, where the call graph of the transformation contains a loop, but in any
evaluation it is traversed only finitely many times; another is cyclic (or infinite)
recursion, where such a loop may actually be traversed infinitely many times
(e.g., when a relation directly or indirectly calls itself with the same arguments).
The semantics of well-founded recursion is not problematic, but the standard is
omissive about what should happen when infinite recursion occurs. A possible
interpretation is that it should not be allowed, although in general it is undecid-
able to detect it. Similarly to some QVT-R formalizations [19,9], the embedding
presented in this paper is not well-defined when infinite recursion occurs.

Recently, a formal semantics of QVT-R was proposed [3] that is well-defined
even in presence of infinite recursion, by resorting to the modal mu calculus. To
see why taking OCL constraints into account is fundamental, a transformation
conforming to this semantics, but that ignores the requirement that general is
acyclic, would consider a (ill-formed) UML model with a single persistent Class
a that generalizes itself consistent with a RDBMS model with a Table a.

To prevent the above described problem in the Uml2Rdbms transformation, one
could tag columns with the path to the particular general they originated from,
and then refine the RDBMS domain pattern to prevent problematic recursive calls.
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A simpler alternative is to resort to the transitive closure operation (recently
added to OCL [17]), and just map at once all declared or inherited attributes of
a given class to columns of the respective table. In this new version of Uml2Rdbms
(that will be considered in the remainder of the paper), A2C, PA2C and SA2C are
replaced just by the following alternative definition of A2C:

�������	 A2C { cn:String; a:Attribute; g:Class;


����	 UML c:Class {} { (c->�������(general)->�	���
��(g) �� g=c) �	


g.attributes->�	���
��(a) �	
 a.name=cn };


����	 RDBMS t:Table { column=cl:Column { name=cn } }; }

The OCL constraint in the UML domain pattern acts as a pre-condition when
applying the transformation in the direction of RDBMS, and as a post-condition
in the other direction. As such, it could not be specified in the when clause, since
it would act as (an undesired) pre-condition for both scenarios.

2.3 Enforcement Semantics

Unlike the checking semantics, and as far as we know, no attempt has been made
to completely formalize the enforcement semantics described in the standard [15].
Although it has many ambiguities and omissions, due to the reasons presented
next, we believe that the intended semantics for this mode is quite undesirable.
Instead, we propose an alternative that is easy to formalize, more flexible, and
more predictable to the end-user.

In the QVT-R standard, update propagation is required to be determinis-
tic. This is a desirable property, since it makes its behavior more predictable.
However, to ensure determinism, every transformation is required to follow very
stringent syntactic rules that reduce update translation to a trivial imperative
procedure. Namely, it should be possible to order all constraints in a relation
(except for the target domain pattern), such that the value of every free variable
is fixed by a previous constraint. Although not clarified in the standard, this
means that relations that are invoked in when and where constraints are either
invoked with previously bound variables, or are required to also be determin-
istic, even if the intention was to only make update propagation deterministic.
For example, in transformation Uml2Rdbms, update propagation in the direction
of RDBMS will only be deterministic for relation C2T if at most one s is consistent
with p according to relation P2S (note that s is still free in the when clause). In
this particular example that happens to be true, but in general such determinism
is undesirable since it forces relations to be one-to-one mappings, limiting the
expressiveness of the language. Moreover, it defeats the purpose of a declarative
transformation language, since one is forced to think in terms of imperative exe-
cution and write more verbose transformations. For example, our simpler version
of A2C using transitive closure would not be allowed, since the value of g is not
known a priori when enforcing consistency in the direction of UML.

Another problem is the predictability of update propagation. Being determin-
istic is just part of the story – it should be clear to the user why some particular
element was chosen to be updated instead of another. The only mechanism pro-
posed by QVT-R to control updatability are keys. For example, we could add
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the command ��� Table (name, schema); to our running example to assert
that tables are uniquely identified by the pair of properties name and schema. If
an update is required on a table to restore consistency (for example, when an
attribute is added to a class), such key is used to find a matching table. When
found, an update is performed, otherwise a new table is created. This works well
when all domains involved in relations have natural keys, which again points
to have only one-to-one mappings, but fails if such keys do not exist. In those
cases, the standard prescribes that update propagation should always be made
by means of creation of new elements, even if sometimes a simple update to an
existing element would suffice. Since creation requires defaults for mandatory
(multiplicity one) properties, this would result in models with little resemblance
with the original (which would basically be discarded).

Our alternative enforcement semantics is based on the principle of least change,
first proposed in the context of maintainers [13], and that enforces predictability
by requiring updates to be as small as possible. QVT-R “check-before-enforce”
policy is just a particular case of this more general principle. LetΔM :M×M → N
be an operation that computes the update distance between elements of M .
Then, the principle of least change states that the models returned by the trans-

formations
−→
T and

←−
T are just the consistent models closest to the original. For-

mally, we have:

∀ m ∈ M , n, n ′ ∈ N :T (m, n ′)⇒ ΔN (
−→
T (m, n), n) � ΔN (n ′, n)

∀ m, n ′ ∈ M , n ∈ N :T (m ′, n)⇒ ΔM (
←−
T (m, n),m) � ΔM (m ′,m)

Assuming that the distance is only null when the model is unchanged (i.e.,
Δ (n, n ′) = 0 ≡ n = n ′), it is trivial to show that these properties reduce to
hippocraticness when the models m and n are already consistent. Note, that this
principle by itself does not ensure determinism, although it reduces substantially
the set of possible results. If among the returned models the user further wishes
to favor a particular subset, keys or OCL constraints can be added to the meta-
model to guide the transformation engine. In the next section we will describe
the implementation of the proposed semantics. We will also propose two different
techniques to measure update distance between models. In one of them, the user
is allowed to parameterize which operations should count as valid edits, thus
providing an extra mechanism to achieve determinism if the user so desires.

3 Embedding QVT-R in Alloy

In this section we present our embedding of QVT-R in Alloy [11]. Due to space
limitations some knowledge of Alloy will be assumed, although we believe most
definitions will be clear from context.

3.1 UML Class Diagrams Annotated with OCL

The models upon which our transformations are defined consist of UML class
diagrams annotated with OCL constraints. Some translations have been
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proposed to embed such models in Alloy, namely [1,6]. We will base our embed-
ding on the translation proposed in [6], since, unlike other proposals, it covers
an expressive OCL subset that includes closure and operation specification via
pre- and pos-conditions. Here, we will just briefly present this translation.

Classes and associations (including attributes) can be directly translated to
signatures and relations in Alloy. Likewise for the inheritance relationship, that
Alloy also supports. Since Alloy instances are built from immutable atoms, we
resort to the well-known local state idiom [11] to capture updates to a given
model. This means that a special signature will be introduced to represent each
meta-model, whose atoms will denote different models (or evolutions of a given
model). To each relation (representing an association or an attribute) an extra
column of this type is added, to allow its value to change in different models.
We also extend the translation proposed in [6] to allow classes to have different
elements in different models: for each class a special binary relation with the same
name will capture the objects of that class that belong to each model. Boolean
attributes are encoded similarly: a binary relation captures which objects have
the attribute set to true in each model. For example, the Class class of our UML
meta-model is translated to the following signature declaration.

��� Class { class : ��� UML, attribute : Attribute -> UML,

general : Class -> UML, namespace : Package -> UML,

name : String -> UML, persistent : ��� UML }

The binary relation class captures the Class objects that exist in each UML

model. The remaining relations model the respective Class associations and
attributes. With the relational composition operator we can access the values of
these relations for a given UML model m. For example, general.m is a relation
that maps each Class to its general in model m, and persistent.m is the set
of Classes that have the attribute persistent set to true in that model.

Constraints must also be generated to ensure the correct multiplicities, and
that relations only relate elements in the same model (inclusion dependencies).
For example, fact �		 m:UML | namespace.m �� class.m -> ��� package.m

is generated to capture the cardinality constraints of association namespace,
and to force it, for each UML model m, to be a subset of the cartesian prod-
uct between class.m and package.m (respectively, the sets of Classes and
Packages of model m). OCL invariants are also automatically translated to
Alloy facts, resulting in universal quantifications over the given type. For ex-
ample, the OCL invariant stating that general is acyclic is translated to Al-
loy as �		 m:UML, self:class.m | self ��� �� self.^(general.m), where
^(general.m) is the transitive closure of relation general projected over m.

3.2 QVT-R Transformations

For each relation R we declare two Alloy predicates to specify R� and R�.
Besides the respective domains elements, these are also parameterized by the
models they are being applied to. Since in Alloy predicates cannot call each
other recursively, predicates R� and R� are defined in terms of auxiliary rela-
tions specified by comprehension. Top relations R� and R� are also specified
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by predicates, which are only parameterized by the models. The definition of all
these predicates follows closely the formalization of Section 2.2. For example,
C2T� is specified as follows:

���
 When_C2T_RDBMS [m:UML, n:RDBMS, p:Package, s:Schema] {

P2S_RDBMS[m,n,p,s] }

���
 Pattern_C2T_UML [m:UML, c:Class, n:String, p:Package] {

n �	 c.name.m && c �	 persistent.m && p �	 c.namespace.m }

. . .
���
 Top_C2T_RDBMS [m:UML,n:RDBMS] {

��� c:class.m, n:String, p:package.m, s:schema.n |

When_C2T_RDBMS[m,n,p,s] && Pattern_C2T_UML[m,c,n,p] =>

���� t:table.n |

Pattern_C2T_RDBMS[n,t,n,s] && Where_A2C_RDBMS[m,n,c,t] }

Predicates are used to specify the when and where clauses, and the domain pat-
terns of each relation. Note that predicate P2S RDBMS is the predicate specifying
P2S�. Note also how, in the specification of C2T�, quantifications are restricted
to range over the respective models.

The checking semantics of the transformation is a predicate that checks all
top relations in both directions. In our running example we have:

���
 Uml2Rdbms [m:UML,n:RDBMS]{ Top_P2S_RDBMS[m,n] && Top_P2S_UML[m,n]

&& Top_C2T_RDBMS[m,n] && Top_C2T_UML[m,n] }

Regarding enforcement semantics, as described in Section 2.3, we implement the
principle of least change, which requires the measurement of the update distance
between two models. We propose two different mechanisms for measuring such
distance. The first one is the graph edit distance (GED) [21], which counts the
distance between two graphs as the number of node and edge insertions and
deletions needed to obtain one from the other. Note that an Alloy instance is
isomorphic to a labelled graph whose nodes are the atoms, and whose edges are
tuples in relations. With this mechanism, ΔUML can be computed as follows:

��	 Delta_UML [m,m’:UML] : �	� {

(#((class.m - class.m’) + (class.m’ - class.m))).����[

(#((name.m - name.m’) + (name.m’ - name.m))).����[. . .]] }

Assuming m’ represents an updated version of m, this function sums up, for every
signature and relation, the size of their symmetric difference in both models.
To avoid Alloy’s standard wrap around semantics for integers, model finding is
executed with option Forbid Overflow [14].

This simple definition for distance assumes a fixed repertoire of edit operations
which may not be desirable. In particular, there is no control over the “cost” of
complex operations. For example, changing the name of a class will have a cost
of 2, since it requires deleting the current name edge and inserting a new one,
while adding a new attribute to a class will cost 3, since it requires creating a
new attribute, setting its name, and adding it to the class. One may wish both
these operations to be atomic edits and have the same unitary cost. Also, one
may wish to allow only particular edits in order to control non-determinism.
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As such, we propose an alternative measure, where the user is allowed to spec-
ify in the meta-model which edit operations that are allowed for each class. We
require them to be specified using pre- and post-conditions defined in (a subset
of) OCL, to be automatically converted to Alloy using the translation procedure
defined in [6]. Essentially, each operation will originate an Alloy predicate that
checks if it holds between given pre- and post-models. For example, Figure 1
defines the interface of possible edit operations for our running example.

Given the specifications of operations, we constrain models to form an order-
ing, where each step corresponds to the application of an edit operation.

���	 util/ordering[UML]

���
 setName [p:Package, n:String, m,m’:UML] { . . . }

���
 addClass [p:Package, n:String, m,m’:UML] { . . . }

. . .
���� { ��� m:UML, m’:m.next | {

���� p:package.m, n:String | setName[p,n,m,m’] ��

���� p:package.m, n:String | addClass[p,n,m,m’] �� . . . } }

In this case, ΔUML will be the number of models (intermediate steps) required to
achieve a consistent target, which, as we will see next, will be determined by the
scope of the signature denoting the respective meta-model.

3.3 Executing the Semantics

Executing the transformation in checkonly mode is fairly simple: we just need
to check the consistency predicate for a pair of concrete models. To represent
a concrete model, we use singleton signatures to denote specific objects and
facts to fix the interpretation of relations. For example, a UML model M with two
classes A and B with no attributes in a single package P, where A is persistent
and extends the non-persistent B, can be specified as follows:

�	� ��� M ����	
� UML {}

�	� ��� P ����	
� Package {}

�	� ��� A,B ����	
� Class {}

���� { class.M = A + B && package.M = P && namespace.M = A->P + B->P &&

general.M = A->B && 	� attribute.M && persistent.M = A && . . . }

To check if UML model M is consistent with RDBMS model N the command
����� { Uml2Rdbms[M,N] } is issued, with the scope of each signature be-
ing set to the number of elements of the respective class in each of the two
models. Regarding enforce mode with GED minimization, in order to deter-
mine a new UML model M’ consistent with RDBMS model N, with original model
M, the command ��� { Uml2Rdbms[M’,N] && Delta_UML[M,M’]=Δ } is issued
with increasing values Δ (starting at 0). In this case, the scope of each sig-
nature is set to the number of elements of the respective class plus Δ, to al-
low complete freedom in the choice of edit operations. The calculation and
increment of both Δ and the scope is performed automatically by our tool.
To execute the enforce mode with user-specified edit operations the command
��� { Uml2Rdbms[M’,N] && M=first && M’=last } is issued with increasing



Implementing QVT-R Bidirectional Model Transformations Using Alloy 309

scopes Δ (plus one) for signature UML. The original and target models are con-
strained to be the first and last in the model ordering, respectively. Determining
the scope for the remaining signatures is not straightforward in this case, since
edits can be arbitrary operations. For the moment we are using a rough ap-
proximation, that assumes creation of new objects to be specified via existential
quantification: for every increment of Δ, the scope of a signature is increased by
the maximum number of such quantifications over all edit operations.

The user is required to specify an upper-bound for Δ that limits the search
for consistent targets. If several consistent models are found at the minimum
distance our tool warns the user and allows him to see the different alternatives.
If the user then desires to reduce such non-determinism, he can, for example,
add extra OCL constraints to the meta-model or narrow the set of allowed edit
operations to target a specific class of models.

4 Related Work

Regarding tools support for QVT-R transformations, Medini and ModelMorf are
the main existing functional tools. Medini [10] is an Eclipse plugin for a subset
of the QVT-R language. Although popular, its (unknown) semantics admittedly
disregards the semantics from the QVT standard (it does not have a checkonly
mode for instance). ModelMorf [20] allegedly follows the QVT standard closely
(although once again the concrete semantics are unknown), since its development
team was involved in the specification of the standard. However, the development
of the tool seems to have stopped. None of these tools has support for OCL con-
straints on the meta-models. Other prototype tools have been proposed but once
again the implemented semantics are not completely clear. Moment-QVT [2] is
an Eclipse plug-in for the execution of QVT-R transformations by resorting to
the Maude rewriting system; [12] proposes the embedding of QVT-R in Colored
Petri Nets; [8] discusses the possible implementation of QVT-R transformations
in TGGs. All these tools support only unidirectional transformations, in the
sense that they ignore the original target model. As such, they are not able to
retrieve information not present in the source, leading to the generation of com-
pletely new models every time the transformation is applied. Once again, none
supports OCL constraints on the meta-model.

A technique that follows an approach similar to ours is the JTL tool [5],
although it does not support QVT-R, but rather a restricted QVT-like language.
Like ours, JTL generates models by resorting to a solver (the DLV solver), which
is able to retrieve some information from the original target. However, it is
not clear how the solver chooses which information to retrieve or how the new
model is generated. It also forces the totality of the transformation, returning
inconsistent models in case there is no consistent one.

Regarding the validation of QVT-R transformations two approaches have been
proposed that also rely on solvers. In [7] the authors use Alloy to verify the cor-
rectness of QVT-R specifications, in order to guarantee the well-formedness of
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the output and avoid run-time errors. In [4] OCL invariants of the shape “forall-
there-exist” are inferred from QVT-R transformations (much like the checking
semantics), that allow the validation of QVT-R specifications under a set of
properties. It supports OCL constraints in the meta-model and recursive calls
are translated to recursive OCL specifications. However, both these approaches
are not focused on enforce mode and its semantics, and do not analyze the
behavior of the transformation for concrete input models. Using our embedding
we can do so, and also support the validation of similar properties, like checking
if a transformation is injective or that all consistent models are well-formed.

5 Conclusions and Future Work

This paper proposed a QVT-R bidirectional model transformation tool, support-
ing both the standard checking semantics and a clear and precise enforcement
semantics based on the principle of least change. It also supports meta-models
annotated with OCL constraints and specification of allowed edit operations,
which allows its applicability to non-trivial domains and provides a fine-grained
control over non-determinism. The implementation is based on an embedding in
Alloy, taking advantage of its model finding abilities. Although we only described
the support for bidirectional transformations, our embedding can trivially be
generalized to the multi-directional scenario, where updates on multiple models
are propagated to a designated target, another feature not currently offered by
any existing QVT-R tool.

Being solver-based, the main drawback of the proposed tool is performance.
Improving it is the main goal of our future work: we intend to explore incremen-
tal solving techniques to speed-up the execution of successive commands with
increasing scope, and to define mechanisms to infer which parts of target model
can be fixed a priori in order to speed-up solving. However, even in its present
status the tool is already fully functional and can be used to perform trans-
formations of medium-sized models. In particular, it already proved effective in
debugging existing transformations, namely helping us unveiling several errors in
the well-known object-relational mapping that illustrates QVT-R specification.
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Abstract. Simulation of stochastic graph transformation systems
(SGTS) allows us to analyse the model’s behaviour. However, complex-
ity of models limits our capability for analysis. In this paper, we aim to
simplify models by abstraction while preserving relevant trends in their
global behaviour. Based on a hierarchical graph model inspired by mem-
brane systems, structural abstraction is achieved by “zooming out” of
membranes, hiding their internal state. We use Bayesian networks repre-
senting dependencies on stochastic (input) parameters, as well as causal
relationships between rules, for parameter learning and inference. We
demonstrate and evaluate this process via two case studies, immunolog-
ical response to a viral attack and reconfiguration in P2P networks.

Keywords: stochastic graph transformation, abstraction, Bayesian net-
works, membrane systems.

1 Introduction

Graph transformation systems (GTS) are a rule-based approach to modelling
processes of structural change. Rules capture local behaviour in terms of pre-
conditions and effects of atomic operations. In stochastic graph transformation
systems (SGTS), each rule is assigned a probability distribution dictating the
delay in its application, once enabled [10]. Such stochastic models allow us to
observe emergent, global behaviour through simulation. For example, in a model
of a peer-to-peer (P2P) network, we may specify operations of peers joining and
leaving the network, making connections, etc. while being interested in a global
property such as the probability of the overall network to be connected. Simi-
larly for a study of viral attack and immunological response on cell tissue, the
probability of tissue recovery or death will be of interest. This requires a detailed
model of reactions such as virus multiplication, immune reaction, cell death and
regeneration.

In any realistic scenario, such models will be large and complex. Detailed state
representations lead to large state spaces with a high rate of low-level change
and a large set of rules, creating scalability issues for analysis. Raising the level
of abstraction, a model can be reduced to improve scalability, but for the price
of potentially distorting analysis results. Related to the level of representation is
the choice of delay distributions for rules. For example in an abstract version of
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the immunological response model, a rule for a cell to be damaged beyond repair
specifies an operation that takes several steps in the concrete version. The delay
of the abstract rule should therefore correspond to the combined delays of the
steps required at the concrete level.

In this paper, we address the interconnected problems of structural abstrac-
tion and the choice of delay distributions and their parameters. Structural ab-
straction is based on a hierarchical graph model inspired by membrane sys-
tems [20], where details of the lower level of the hierarchy can be hidden. As a
result, the model becomes smaller in terms of the number of rules, the number
of graph elements in each graph, and therefore the number of matches per rule.
This increases the scalability of stochastic simulation, i.e., larger populations can
be simulated over longer periods of simulated time.

The abstraction problem arises when comparing model with reality as well
as between models at different levels of detail. We focus on the latter, which is
easier to experiment with using stochastic simulation. Referring to the concrete
and abstract models as SGTS1 and SGTS2, resp., the approach is based on
three key ideas: Structural abstraction at the type level induces instance level
projections of graphs and rules allowing us to relate concrete and abstract states
and operations. Dynamic, quantitative analysis of conflicts and dependencies
between operations allows us to discover cases where rules in SGTS2 fail to re-
produce the causal relationships between rules SGTS1, or vice versa, potentially
leading to the need to refine the abstract model. A Bayesian Network (BN) [21],
constructed as a result of the dependency analysis of SGTS2, allows us to in-
fer stochastic parameters by training. In particular, training aims to match the
throughputs (number of applications / time) of the rules of the two models. Our
hypothesis is that by matching behaviour at this local level, we preserve the
trends (if not absolute values) in the global properties of the models.

This leads to the following process, with steps being iterated as required.

1. Derive SGTS2 as projection of SGTS1 to a sub-type graph TG2 of TG1.

2. Simulating SGTS1, perform dynamic dependency analysis over SGTS2.

3. Define a Bayesian network representing the dependencies of SGTS2.

4. Use parameter sweep of simulations of SGTS2 to create training data for
the BN. This process is known as learning in a BN.

5. Enter throughput data of SGTS1 as evidence into the network and infer the
stochastic parameters of SGTS2 needed to replicate SGTS1’s throughputs.
This process is known as inference in a BN.

6. Test the parameters by running stochastic simulations of SGTS2.

We demonstrate and evaluate this process via two case studies based on models
of a P2P network and immunological response introduced in Sect. 3, full details
of which are given in [4] and [3] respectively. Background on SGTS and BN is
given in Sects. 2 and 4, resp. Sect. 4 also introduces the derivation of a BN from a
SGTS and describes stochastic parameter training. Sect. 5 evaluates the results
of the case studies, and Sect. 7 concludes the paper.
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2 Stochastic Graph Transformation

A typed graph transformation system G = (TG, P, π) consists of a type graph TG,
defining node/edge types and attributes, a set of rule names P and a function π
defining for each name p ∈ P a rule π(p) = L→ R consisting of TG-typed graphs
L,R whose intersection L ∩ R is called the interface of the rule. The left-hand
side L represents the precondition and the right-hand side R the postcondition
of the rule, whose applications transform instance graphs, also typed over TG.
Rules can be equipped with negative application conditions (NACs) specifying

forbidden context. Formally, the application G
p,m
=⇒ H of rule p at a match m :

L→ G subject to NACs, is defined by the single-pushout (SPO) approach [16].

Fig. 1. Rule R2 for viral attack on last maintainer of a living cell (concrete model)

An example rule is shown in Fig. 1. It models the reaction in which a virus
destroys the last maintainer in a cell (as indicated by the NAC), changing its
status to dying. Fig. 2 shows the type graph for the viral attack model, defining
a hierarchy of tissues, cells and organelles. Rules like those of Fig. 1 are defined
over this type graph.

A stochastic graph transformation system SG = (TG, P, π, F ) consists of a
graph transformation system G = (TG, P, π) and a function F : P → [0, 1]R+

associating to each rule name in P a probability distribution function F (p) :
R+ → [0, 1]. Generalised SGTS, based on semi-Markov processes, allow the
specification of arbitrary distributions of delays as opposed to just exponential
distributions [14]. Exponential distributions model processes which depend on
occurrences of random events, such as the collision between virus and immuno
in a cell. They are characterised by a rate, i.e., the inverse of the average delay
between two such events, if enabled. For operations with defined start and end
points, such as the death of a cell once all maintainers are removed by viruses,
normal (or lognormal) distributions are appropriate, given by mean and variance.
Once started, there is an expected waiting time for the process to finish.

Given a start graph G0, the behaviour of SG can be explored by simulation.
For this purpose, the simulation tool GraSS [24] has been developed. The simula-
tion works as follows. For a graph G, events E(G) are pairs (p,m) of a rule p and
an enabling match m. States (G, t, w) of the simulation are given by the current
graphG, the simulation time t, and the schedule w : E(G)→ R+ mapping events
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to their scheduled times. Initially, the current graph is the start graph G = G0,
the time is set to t = 0 and the scheduled time w(p,m) = RNF (p) for each
enabled event (p,m) is selected randomly based on p’s probability distribution.
Then, for each simulation step

1. the first event e = (p,m) is identified and rule p applied at match m to the

current graph G producing the new current graph H via G
p,m
=⇒ H .

2. the simulation time is advanced to t = w(e)
3. the new schedule w′, based on an updated set of enabled events E(H), is

defined by removing from the schedule all events in E(G)\E(H) and adding
new events (p′,m′) ∈ E(H) \ E(G) with time w′(p′,m′) = RNF (p′) selected
randomly based on p′’s distribution.

The result is a (simulation) run s = (G0, t0)
p1,m1
=⇒ · · · pn,mn

=⇒ (Gn, tn), i.e., a
transformation sequence where graphs labelled by time stamps t0, . . . , tn ∈ R+

with ti < ti+1 for all i ∈ {0, . . . , n− 1}.
Graph transformation rules describe immunological response at a cellular

level, as well as auxiliary operations such as virus replication, cell death and
regeneration. Stochastic simulation allows us to determine the probability of tis-
sue death once invaded by a set number of viruses. The average time taken for a
tissue to come to either eliminate the viruses or suffering death can also be ex-
tracted. These are examples of global properties, as opposed to more local ones
such as the throughput, i.e., the number of applications over time, of particular
rules of the system.

3 Structural Abstraction

Since stochastic simulation is resource intensive, we aim to simplify hierarchical
models, such as the one discussed above, by hiding details at the lowest level
of the hierarchy. Formally, an abstraction relation f : SG1 → SG2 between
the concrete SGTS SG1 = (TG1, P1, π1, F1) and the abstract SGTS SG2 =
(TG2, P2, π2, F2) is given by an inclusion of the type graphs TG2 ⊆ TG1 and
a surjective mapping f : P1 → P2 of rule names that is compatible with the
projection of rules of SG1 to TG2.

Fig. 2 shows the abstract type graph, forgetting about the contents of cells but
retaining viruses, which can also exist in the tissue between cells. Attributes alive,
dying, virusCount provide a boolean or numerical representation of information
that is held in graphical form in the concrete model, but lost in the abstract one.
These aggregating attributes are redundant in the concrete model, as expressed
by invariants such as The number of Virus nodes connected to a Cell node by
par edges equals the value of the virusCount attribute of that Cell node. Such
invariants can be expressed in OCL or using a graphical constraint and either
tested during the simulation or verified statically.

For an instance graph G of TG1 such as in the top right of Fig. 2, G|TG2

denotes its projection to the abstract type graph via a pullback, as shown in the
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Fig. 2. Type and instance graphs for immunological response

Fig. 3. Rule A IR2 for viral attack on last maintainer of a living cell (abstract model)

bottom right. The contents of cells are hidden in the abstraction. In a similar way,
rules in the concrete model are projected to the abstract type graph to create
the set of abstract rules. The result is shown in Fig. 3 for the rule in Fig. 1, where
the aggregating attributes retain aspects of the structural details (e.g., dying).
Formally, for all p ∈ P1, π2(f(p)) = π1(p)|TG, i.e., the rule associated to concrete
p equals that of abstract f(p) upon projection to the abstract type graph [11]. If
a concrete rule does not have any effect on cells or aggregating attributes (i.e.,
elements typed in TG2), but is only concerned with manipulating elements lost
in the abstraction (i.e., those typed in TG1 \ TG2), the result of the projection
is a rule with no effect at all. We call such rules idle. Applications of idle rules as
part of a sequence can be skipped because they do not change the graph. Thus,
the abstract system may have less (non-idle) rules and abstract sequences may
be shorter than their concrete counterparts. While idle rules can be disregarded,
NACs in non-idle rules either have to be preserved entirely (no negative elements
are lost under projection) or completely removed (at least one negative element
is lost) by the projection [2].

Figure 3 shows the result of projecting the rule depicted in Figure 1, the virus
destroying the last maintainer of a Cell, onto the abstract type graph. In this
case, the rule is not idle and the single NAC is lost entirely. Abstraction leads
to a smaller set of rules, and a smaller number of graph elements for each rule
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application and graph, making simulation less resource-intensive (see Section 5).
The full set of concrete and abstract rules can be found at [3].

Given a transformation sequence s1 = (G0
p1,m1
=⇒ · · · pn,mn

=⇒ Gn) in SG1, there

exists a corresponding sequence f ∗ (s1) = (G0|TG2

f(p1),m1|TG2=⇒ · · ·
f(pn),mn|TG2=⇒

Gn|TG2) in SG2. That means, under the assumptions above, mapping f∗ : G∗
1 →

G∗
2 provides us with an abstraction not just of states and operations, but also of

transformation sequences: Behaviour is preserved under abstraction [11].
We continue deriving the abstract model by defining its rules’ probability

distributions. After determining the type of distribution to be used, we create
a Baysian network based on the causal relationships between rules, from which
the distributions are inferred.

4 From SGTS to Bayesian Networks

In general, abstract rules may follow different types of distributions than their
concrete counterparts. In particular, a rule representing an entire sequence of
concrete steps could be normally distributed even if each concrete rule has an
exponential distribution. Simulating the concrete model, we can detect matches
for abstract rules and so measure the delays between the enabling and application
of the rule. Plotting this data allows us to decide the shape of the distribution.

Having determined the types of the distributions, we use Bayesian networks to
derive their parameters. The structure of the network is defined by the conflicts
and dependencies of abstract rules. We say that rule p enables p′ if there exists

a sequence G
p,m
=⇒ X

p′,m′
=⇒ H such that the match m′ for p′ in X cannot be

extended to G, i.e., the second step is dependent on the first. This is the case if
p creates elements required for p′s application, or deletes elements that violate

a negative application condition of p′. Dually, given H
p,m⇐= G

p′,m′
=⇒ H ′, rule p

disables p′ if the match m′ for p′ is not preserved in H , i.e., the application of
p is in conflict with the subsequent application of p′. This happens if p deletes
elements needed for p′s application or creates elements violating p′s NAC.

While conflicts and dependencies can be analysed statically, like with many
static methods this often results in an over approximation of the actual de-
pendencies and conflicts occurring in simulation runs. A dynamic approach can
take into account reachability, i.e., only report cases where the steps concerned
are reachable from the start state. It can also provide statistics on how many
matches for p′ are generated or destroyed on average per application of p, thus
allowing us to judge the significance of a dependency or conflict.

Since we are not able to simulate the abstract system before defining its
stochastic parameters, we execute the concrete model and use our abstraction
function f : SG∗

1 → SG∗
2 to derive abstract runs to record what we call diagonal

conflicts and dependencies between concrete and abstract rules: According to
our notion of abstraction, abstract rules f(p) arise from concrete ones p that are
not idle under projection to the abstract type graph TG2. At the same time,
each abstract rule, being typed over TG2 ⊆ TG1, is also implicitly typed over
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TG1. Therefore, it is possible to check for conflicts and dependencies between
concrete and abstract steps while simulating the concrete system. Since overlaps
of concrete and abstract rules can only be based on elements that are preserved
in the abstraction, a dependency between a concrete rule p non-idle under pro-
jection and an abstract rule f(p′) is also a dependency between the abstract
counterpart f(p) and f(p′), and vice versa. The same is true for conflict. That
means, diagonal conflicts and dependencies can be used in place of abstract ones.

The result of the analysis is recorded in the dynamic incidence matrix
DIM : P × P2 → R where P ⊆ P1 is the subset of concrete rules with non-
idle projections. For each rule p ∈ P the matrix describes the average change
in the number of matches for rules in P1 caused by p’s application. The run-
time conflicts and dependencies recorded here provide the information needed
to derive the structure of the BN.

A BN is an acyclic graph GB = (V,E, src, tg, λ). V is a set of vertices such
that each v ∈ V represents a variable (discrete or continuous). E is a set of
directed edges such that each e ∈ E has a source and target vertex src(e) and
tg(e) in V , respectively. The function λ : V → [0, 1]R+ assigns to each vertex a
probability distribution such that for all v ∈ V , λ(v) = Q(v|Vin(v)) where Vin(v)
is the set of nodes with edges towards v. Q represents a probability distribution
for the value of v given the values of all variables on which v is conditionally
dependent. The foundations of BNs in Bayes’ Theorem are discussed in [12].

We use the BN’s vertices to represent parameters of abstract rules’ probability
distributions as well as average rule throughputs. For exponential distributions,
this parameter is the rate. For lognormal distributions, we represent the mean
only. The variance is inherited from corresponding rules in the concrete model
and confirmed via plotting the distributions of delays for abstract rules measured
in concrete simulations. We therefore have a BN consisting of two distinct sets of
nodes: input nodes representing stochastic parameters and output nodes repre-
senting the average throughput for each rule. For each rule an edge connects its
parameter and throughput node, modelling the dependency of the throughput on
the rule’s distribution. In addition, conflicts and dependencies are represented
as edges between throughput nodes. Because of the way data is propagated
through the network by the training algorithm, the direction of edges between
throughput nodes is irrelevant. We can therefore avoid cyclic networks, even if
dependency and conflict relations are cyclic, by choosing a total order on rule
names to direct edges in the network from “smaller” to “larger” names.

Definition 1 (BN of SGTS). Assume SG = (TG, P, π, F ) with arbitrary total
order < on P . The BN representing SG is a graph B = (V,E, src, tg, λ) with
functions

– fin : P → V assigning to each rule a vertex representing its stochastic param-
eter (rate or mean for exponentially or lognormal distributions, respectively);

– fout : P → V assigning to each rule a vertex representing its throughput;

such that

– for every p ∈ P , there is exactly one edge in B from fout(p) to fin(p);
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– for all p1, p2 ∈ P such that p1 disables or enables p2, there is exactly one
edge in B between their respective output nodes, from fout(p1) to fout(p2) if
p1 < p2, or from fout(p2) to fout(p1) if p2 < p1.

To generate the DIM, while running the stochastic simulation of the concrete
model we trace matches for abstract rules, their creation and destruction by con-
crete rule applications. The matrix records the average change in the number of
matches over the entire simulation time. The results are given in Table 1, with a
negative number indicating a net conflict between two rules (more matches being
destroyed than created), and a positive entry a net dependency. The resulting
BN is shown in Fig. 4.

Table 1. Dynamic incidence matrix for abstract rules over concrete model (aggregate
of diagonal conflicts and dependencies)

Applied Concrete Rule

Abstract rule VC IR VA2 CD TD CR VT VM SM

A VC 0 -0.408 -1.0 0 0 0 0.44 0.943 0

A IR 0 -0.408 -1.0 0 0 0 0.44 0.943 0

A VA2 0 -0.408 -1.0 0 0 0 0.44 0.943 0

A CD 0 0 1.0 -1.0 0 0 0 0 0

A TD 0 0 0 0.0347 -1.0 0 0 0 0

A CR 0 0 0 0.544 0 -1.45 0 0 0

A VT 0 0 3.8 -1.83 0 0.0744 -0.642 0 0

A VM 0 0 -0.0548 0 0 0.0208 0 -1.0 0.00755

A SM 0 0 0 5.82 -78.8 0 0 -4.70 -0.00708

While the structure of the net is fixed by the dependencies and conflicts, the
net itself is not complete without a probability distribution λ at each node.
Tools, such as Bayes Server [1], are able to learn these distributions if sufficient
training data is available for every variable. The data must be varied enough
so that the network can learn the effect of changes in values of one variable on
another. Each row of training data includes stochastic parameters and resulting
throughputs for all abstract rules, as measured by a batch of simulations.

The purpose of training is to match the throughputs measured for the abstract
model with those of the concrete one. Once the probability distributions are
learnt for every abstract variable in the network, we enter the known through-
puts from the concrete model as evidence, i.e., fixing the values of the nodes
representing outputs. The probability distributions at the remaining unknown
variables, the stochastic parameters, will be perturbed as a result of this evi-
dence, giving us their most likely values given the required throughput. This
process is iterated, starting with a broad sweep of abstract stochastic parame-
ters and refining their choices successively to sample the vicinity of parameters
derived in the previous iteration. Thus, subsequent rounds of learning more and
more precisely replicate the throughputs of the concrete model by the abstract
one.
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Fig. 4. BN representing dependencies and conflicts in the abstract model

In order to decide when to stop the process, we have to assess how closely
concrete and abstract throughputs are matched with a given set of parameters.
This is done by simulating the abstract model, measuring its throughputs, and
calculating the distance between these and the concrete model’s by the formula
below as the product of the differences between average throughputs for each
rule. If yc(p) and ya(f(p)) are the average throughputs for non-idle concrete rule
p and its abstract counterpart, respectively:

M =
∏
p∈P

yc(p)− ya(f(p))

yc(p)

A value closer to zero indicates a better match between concrete and abstract
throughputs. However, M also gives an intuitive judgement of distance. For
example, for a set of 9 abstract rules as with our case study, a value of M at
10−9 indicates that on average the throughput for each rule is within 10% of
that measured in the concrete model.

5 Evaluation

The BN in Fig. 4 was implemented in Bayes Server. A sample tissue consisting
of 18 cells with 5 initial viruses was created as a start graph for simulation,
using 12271 different sets of stochastic parameters with 50 simulation runs of
each. The global behaviour variables measured were total percentage of tissue
deaths (as opposed to complete virus eliminations), and average simulated time
to complete tissue death or virus elimination. Once learning and inference were
completed, in each iteration the extracted stochastic parameters were used to
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run 6 stochastic simulation batches on the abstract model, each of 100 runs, to
measure its throughputs and determine the distance with the concrete model.
The abstract immunological response model underwent 3 iterations of parameter
training before termination criteria were met. The resulting average throughputs
of each iteration along with the associated distances M are shown in Table 2.
The minimum value of M achieved was 2.71× 10−8 for the second iteration.

Table 2. Throughputs (TP) in concrete and abstract immunological response models

Concrete
Model

Abstract
Model

Iteration 1

Abstract
Model

Iteration 2

Abstract
Model

Iteration 3
A IR TP average 1.041 0.750 0.763 0.809
A VA2 TP average 0.333 0.406 0.371 0.381
A VM TP average 0.333 0.415 0.407 0.408
A VC TP average 0.996 0.748 0.720 0.776
A VT TP average 1.066 0.798 0.771 0.819
A SM TP average 20.443 21.743 20.313 21.005
A CD TP average 0.333 0.406 0.371 0.381
A CR TP average 0.125 0.101 0.097 0.105
A TD TP average 0.012 0.017 0.015 0.015

Distance Measure, M 1.15 × 10−6 2.71 × 10−8 7.60 × 10−8

The throughputs show a good congruence between concrete and abstract
model. Perturbation of any of the parameters in the abstract model increases
the distance measure M , indicating that training was successful in finding a
minimum distance of local behaviours. With the second iteration as the final pa-
rameter set for the abstract model, the global behaviours deviate significantly.
For example, the average percentage of tissue death in the abstract model (Itera-
tion 2) was measured as 42.7%, as opposed to 30.2% in the concrete model. This
is not unexpected since not all rules in the concrete model are also present as ab-
stract rules. Hence, the distributions of abstract rules have to account for delays
of rules lost in the abstraction. For example, the reaction rule in Fig. 1 depends
on rules, hidden in the abstract view, of creating the immunos from A resources,
an auxiliary species in each cell. The delay of the immunological response reac-
tion rule has to encompass this preliminary process. At the same time, immune
reaction is in conflict with, for example, the multiplication of viruses. Increasing
the delay will therefore change the balance of the corresponding race condition,
thus limiting the ability of delay to compensate for rules missing in the abstract
model.

It should be pointed out that the model could easily be trained to replicate
global rather than local behaviour, but this would limit its use significantly,
making it too specific on the particular property of interest. Alternatively, to
ensure a closer match of the functional behaviour, aggregating attributes could
be introduced to Cell as counters for all of the remaining types that are hidden.
However, bringing the abstract model closer to the concrete one would of course
counter our original objective of simplifying the model.
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While global properties are not reproduced with their absolute values, trends
and dependencies are preserved. Fig. 5 shows the result of a sensitivity analysis
where we alter the delay of the Cell Regeneration rule to monitor its effect on the
percentage of tissue death occurring before simulation time reaches 200 arbitrary
units. We alter the mean parameter of the lognormal distributions proportion-
ately. The graph shows a similar trend in both models, with an increase in tissue
death, subject to fluctuations due to variance in simulation runs, followed by a de-
cline as cell regeneration slows down. While the maxima do not agree, they occur
at approximately similar points. This shows that while global properties may not
be deduced from simulations of an abstract model, we can still infer patterns and
trends of global behaviour. This in itself is a useful insight into a model.

Fig. 5. Sensitivity of % Tissue Death on Cell Regeneration (concrete vs abstract)

Running a simulation of 100 runs on a 64bit Intel Core i5 2.53GHz CPU with
6GB of memory, using the 32bit Eclipse plug-in version of the software resulted
in a 72% saving in runtime for the abstract model over the concrete one.

To evaluate the results on another example, a second case study was created,
based on the model of a P2P VoIP network. Full details are given in [4], but
the objective was for concrete and abstract models to be functionally bisimilar
[13], no rules become idle upon abstraction and conflicts and dependencies are
preserved and reflected. All distributions are exponential. However, the models
still differ in their stochastic behaviour, due to different numbers of matches for
corresponding rules at both levels caused by the projection. Parameter training
took 3 iterations, the best results being produced during the second iteration at
a distance M of 2.94× 10−10. The global behaviour matches more closely than
in the immune response model: Percentage of disconnected super peer pairs is
11.4 in the concrete model vs. 12.8 in the abstract one, and that of connected
clients only varies between 60.4 and 60.3.

Fig. 6 shows the dependency of the percentage of disconnected super pairs on
the rate of the CreateShortcut rule, which creates redundant links to reduce the
probability of loss of connectivity. Just as in the immune response case, there is
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Table 3. Throughputs (TP) measured in concrete and abstract VoIP models

Concrete
Model

Abstract
Model

Iteration 1

Abstract
Model

Iteration 2

Abstract
Model

Iteration 3
A NC TP average 1.230 1.080 1.197 1.198
A LC TP average 1.250 1.154 1.251 1.228
A NS TP average 0.902 0.897 0.821 0.874
A PC TP average 0.016 0.020 0.030 0.024
A TL TP average 0.729 0.763 0.796 0.782
A TS TP average 0.909 0.907 0.841 0.888
A TU TP average 0.472 0.285 0.358 0.379
A CS TP average 0.623 0.963 0.780 0.876

Distance Measure, M 3.93 × 10−9 2.94 × 10−10 1.10 × 10−9

a very good match of the trends in both models, even if absolute values are not
exactly replicated throughout. Again, there is a significant gain in performance
on abstraction, with a 66% reduction in runtime for 20 simulation runs.

Fig. 6. Sensitivity of % Disconnected Super Pairs on CreateShortcut rate (concrete vs
abstract)

Summarising, we were able to show that

– abstraction by projection, with aggregating attributes replacing some of the
graphical structure lost, provides a simple and effective way of reducing the
complexity of the model, increasing scalability;

– our approach to parameter training using Bayesian networks, defined on the
basis of dynamic dependency and conflict analysis, allows us to find a good
match of the local behaviours of concrete and abstract models as given by
the throughputs of corresponding rules;

– absolute values of global properties are only replicated closely where the
models are functionally (but not stochastically) bisimilar;

– trends in global properties, as expressed by their sensitivity with respect to
the parameters of essential rules, are reproduced faithfully even if models
are not bisimilar;
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Before turning to related work, let us discuss possible threats to the validity of the
evaluation. During training, variances of lognormal distributions for abstract rules
are inherited from the corresponding concrete rules. For the Bayesian network,
these variances are therefore not variables, but constants. Mean and rate param-
eters are inferred so as to replicate the concrete model’s throughputs as closely as
possible, given these variances. Fixing the variances obviously limits the flexibility
of training and thus leads to larger deviations of abstract from concrete through-
puts. However, while being one reason for not matching throughputs perfectly,
this limitation of training does not affect the validity of the experiments, which
are aimed at showing the match of global properties or trends.

The quality of the fit between concrete and abstract throughputs also depends
on the distance measure used to control the iteration of training and simulation.
The measure M introduced in Sect. 4 has been chosen for its ability to cope
with smaller datasets, and its linear variation, over more elaborate notions such
as Student’s t-test and Mahalanobis distance [8]. Again, this choice could affect
the quality of the match between concrete and abstract throughputs, but not
the experiments themselves.

Obvious threats to the validity of the experiments are the selection of the
experiments themselves as well as the limited number of simulation runs. As to
the former, we have chosen case studies from two different domains, focussing
on different global properties (probability of global outcomes vs. number of oc-
currences of certain patterns) and considering different degrees of abstraction.
A larger number of simulation runs, especially for the sensitivity analysis, was
beyond the available resources.

6 Related Work

Work on abstraction in graph transformation has followed a variety of motiva-
tions. In [19], it is a means to improve comprehensibility of complex GTS by
hiding and retrieving substructures as required. To enable analysis of models,
many approaches aim at reducing the state space or behaviour representation. [5]
uses neighbourhood abstraction to group graph elements via an equivalence rela-
tion up to some radius defining a node’s neighbourhood. This allows the level of
precision to be adjusted if the current abstraction does not allow the verification
of properties. [25] uses a similar approach, but abstracted nodes are characterised
by satisfaction of temporal logic formulae representing some behavioural prop-
erty of the concrete system. In [22], based on shape graphs introduced in [23],
nodes are grouped by structural similarity with multiplicities to capture concrete
representations of an abstract shape. Several states are therefore combined into
a single structure. In counterexample-guided abstraction refinement based on
unfoldings [15], the behaviour of a GTS is represented by a Petri graph repre-
senting an approximated unfolding. In all approaches, abstraction works at the
level of the state space or unfolding, or requires a different notion of GTS at the
abstract level. Our approach is based on abstraction of standard typed GTS.
We simplify type graph, start graph and rules, but the graph transformation ap-
proach is unchanged. Analogous to the use of aggregating attributes to increase
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precision, many approaches provide means to fine-tune the level of abstraction to
the properties of interest. In our case these are based on preserving or reflecting
essential conflicts and dependencies, rather than reachability.

While this work focuses on a non-deterministic, discrete, stochastic approach to
modelling reactions, [7] is a similarly rule-based technique that aims to formulate a
reduced, deterministic system of differential equations (ODEs) for a reaction sys-
tem. This is achieved by framing the dynamics in terms of functionally distinct
patterns known as fragments (rather than traditionally disjoint species), followed
by methods derived from abstract interpretation to further reduce the number of
ODEs. Also from a continuous, deterministic paradigm, [6] derives a refinement
from a more abstract representation of a reaction system, both by replacing reac-
tants with subtypes, or by adding possible reactivity. The resulting system pre-
serves numerical properties (analogous to global trends in our work) without hav-
ing to perform expensive model-fitting for each subsequent refinement.

With an aim related to our training of stochastic parameters, [17] presents
an algorithm known as PEGG (Parameter Estimation for Graph Grammars)
which can extract parameters for rules in context-free graph grammars from
sequences of graphs resulting from the application of rules. This is useful for
modelling based on observations of a system that is executable but with unknown
parameters, where parameter estimation aims to determine these parameters.
While conceptually close, the limitation to context-free graph grammars means
that the approach is not applicable to general graph transformation systems.

7 Conclusion

We have demonstrated a methodology for abstraction of GTS and training their
stochastic parameters. Evaluating the approach in two case studies we found
that, while absolute values of global properties are not always preserved, the
abstract model replicates faithfully trends and dependencies of the concrete one.
In future work we plan to explore the relation between the number of matches
of concrete and abstract rules and their stochastic parameters as well as the
possibility of scaling systems by enlarging or reducing their start graphs.
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20. Păun, G.: Introduction to membrane computing. Applications of Membrane Com-
puting, 1–42 (2006)
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Abstract. In today’s API-rich world, programmer productivity depends
heavily on the programmer’s ability to discover the required APIs. In this
paper, we present a technique and tool, called MathFinder, to discover
APIs for mathematical computations by mining unit tests of API meth-
ods. Given a math expression, MathFinder synthesizes pseudo-code to
compute the expression by mapping its subexpressions to API method
calls. For each subexpression, MathFinder searches for a method such
that there is a mapping between method inputs and variables of the
subexpression. The subexpression, when evaluated on the test inputs
of the method under this mapping, should produce results that match
the method output on a large number of tests. We implemented Math-

Finder as an Eclipse plugin for discovery of third-party Java APIs and
performed a user study to evaluate its effectiveness. In the study, the
use of MathFinder resulted in a 2x improvement in programmer pro-
ductivity. In 96% of the subexpressions queried for in the study, Math-

Finder retrieved the desired API methods as the top-most result. The
top-most pseudo-code snippet to implement the entire expression was
correct in 93% of the cases. Since the number of methods and unit tests
to mine could be large in practice, we also implement MathFinder in a
MapReduce framework and evaluate its scalability and response time.

1 Introduction

In today’s API-rich world, programmer productivity depends heavily on the
programmer’s ability to discover the required APIs and to learn to use them
quickly and correctly. Significant research efforts are therefore targeted at aid-
ing programmers in API discovery. A programmer can search for APIs using a
wide spectrum of techniques. They range from keywords [15, 3], types [16, 24],
tests [11, 13], and code snippets [17], to formal specifications [29] or combinations
of the above [21]. These approaches try to address the problem of API discovery
in a general programming context and may face challenges in terms of precision
of results or require programmers to invest too much effort in formulating the
query (e.g., require a first-order logic specification).

In this paper, we address the problem of API discovery for mathematical com-
putations. Mathematical computations are at the heart of numerous application
domains such as statistics, machine learning, image processing, engineering or
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scientific computations, and financial applications. Compared to general pro-
gramming tasks, mathematical computations can be specified more easily and
rigorously, using mathematical notation with well-defined semantics. Many inter-
preted languages like Matlab, Octave, R, and Scilab, are available for prototyping
mathematical computations. It is a common practice to include prototype code
to formalize math algorithms (e.g., in [25, 4]). The language interpreter gives
a precise executable semantics to mathematical computations. Unfortunately,
interpreted languages are not always suitable for integration into larger soft-
ware systems of which the mathematical computations are a component. This
is because of commercial and technical issues involving performance overheads,
portability, and maintainability. In such cases, the programmer implements the
mathematical computations in a general-purpose language.

General-purpose programming languages usually support only basic math op-
erations. For example, Java.lang.Math supports elementary functions for expo-
nentiation, logarithm, square root, and trigonometry. Advanced math domains
are supported by third-party libraries. Availability of a number of competing
libraries, their API sizes, and varying support for primitive operations make it
difficult for programmers to select appropriate libraries. We present an approach
for discovering math APIs to compute a given (set of) math expression(s). A
programmer can pose expressions from the algorithm she wants to implement
as queries. For example, suppose she asks for API methods to compute v = v ./
normf(v) (where v is a matrix of doubles). Here, normf stands for the Frobenius
norm, and ./ is matrix-scalar division.

Our technique, called MathFinder, returns pseudo-code to compute the ex-
pression bymapping subexpressions to method calls of individual libraries. For ex-
ample,MathFinder identifies a method double DoubleMatrix.norm2() from a
third party library as suitable for computing the subexpression normf(v). It iden-
tifies that v should be mapped to this and the result is available in the return
value of the method call. MathFinder uses this mapping between variables in
the subexpression and method parameters to emit an appropriate method call. In
the synthesized pseudo-code, it declares an object v of type DoubleMatrix. This
object corresponds to the variable v used in the expression. MathFinder emits
double T1 = v.norm2() in the pseudo-code to implement normf(v). Here T1 is a
temporary variable. MathFinder also discovers if a method is likely to modify
the input parameters (i.e. it discovers likely side-effects of methods). In this ex-
ample, norm2() does not modify the receiver.

Discovering APIs and the information about setting up of parameters and
determining side-effects automatically is a challenging problem. Formal specifi-
cations of semantics of methods may help us solve this problem. Specification
languages like JML [12] are designed for annotating Java code with specifica-
tions. However, their use is not widespread yet. On the other hand, it is easy
to get an under-approximate operational specification of a method in the form
of unit tests. Unit testing is well-adopted in practice, supported by tools like
JUnit1. We therefore use (the set of input/output objects in) unit tests as a

1 junit.org

junit.org
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description of method semantics. While we chose Java as the target program-
ming language, our technique can work with other languages.

The key insight in MathFinder is to use an interpreter for a math language
(such as Scilab2 ) to evaluate subexpressions on unit tests of library methods.
The result of the interpretation on inputs of a test can be compared to the out-
put of the test. Our hypothesis is that if a subexpression results in the same
value as the output of a method on a large number of tests, the method can
be used for computing the subexpression. The subexpression cannot directly be
evaluated on data from unit tests because the math types used in the expression
are independent from the datatypes used in library APIs. We therefore require
the library developer to provide code to convert library datatypes to types of the
math interpreter. Thus, any library developer can hook her library into Math-

Finder. In our running example, the library developer provides code to map
objects of the type DoubleMatrix to double matrices used by the math inter-
preter. Writing code to convert library objects to data values of the interpreter
is a one time task and was fairly straight-forward in our case.

Given an expression, MathFinder extracts subexpressions from it. Given a
subexpression and a method, MathFinder computes the set of all candidate
mappings between variables of the subexpression and method parameters, called
actuals-to-formals mappings. The mappings should respect the correspondence
between library datatypes and math types provided by the library developer.
MathFinder then searches for a mapping that maximizes the number of unit
tests on which the subexpression gives results equivalent to the method outputs.
For example, there is only one possible actuals-to-formals map, (v, this), be-
tween the subexpression normf(v) and the method norm2(). We use the library
developer’s code to assign values contained in this to v. Then, normf(v) evalu-
ates to a value equal to the return value of norm2() on every test of norm2() in
a test-suite with 10 tests. Alongside, MathFinder also infers likely side-effects
of a method call by comparing the input-output values of method parameters.

Our approach falls in the category of specification-driven API discovery [29,
21]. Unlike logical specifications used as queries in these approaches, the queries
to MathFinder are executable and succinct. On the library developer’s front,
the specifications are easy to obtain – just the unit tests and a programmatic
mapping from library datatypes to the math types. In contrast, in test-driven
API discovery approaches [20, 8, 11, 21, 13], the programmer query is itself in
the form of unit tests specific to a library. The unit tests are evaluated on library
methods. Thus, the programmer has to know about library datatypes and invest
time in writing unit tests. In our approach, the programmer query is independent
of library datatypes (it uses mathematical types of the interpreted language).
The same query applies to all libraries that are hooked intoMathFinder. Other
approaches cited above target API discovery for general programming tasks,
whereas, we present a more specific approach for mathematical computations.

We have implemented MathFinder as an Eclipse plugin for discover-
ing third-party Java APIs. We performed a user study to evaluate whether

2 scilab.org

scilab.org
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MathFinder improves programmer productivity, when compared to standard
practices such as the use of Javadoc, Eclipse code completion, and keyword-
driven web or code search. All participants were permitted to use any of these
techniques. On the same programming tasks, the participants who used Math-

Finder were twice as fast on average as those who did not use MathFinder.
MathFinders’s results were quite precise across multiple libraries. The API

method retrieved as the top-most result against a subexpression query was cor-
rect 96% of the time. The top-most pseudo-code snippet to implement the en-
tire expression was correct in 93% of the cases. During the course of evaluating
MathFinder, we found discrepancies between MathFinder’s output and the
Javadoc of JBlas library. While MathFinder indicated no side-effect on some
methods, their Javadoc explicitly states that they perform computations “in-
place”3. We studied the method implementations and found that the documen-
tation was indeed inaccurate and the methods had no side-effects.

Our technique is inherently data-parallel. Since the test suite collection can
be quite large in practice, we also implemented it in the Hadoop4MapReduce
framework. It scaled to a large collection of unit tests consisting of over 200K
tests and returned results in average 80.5s on an 8-core machine. These results
are cached for real-time retrieval using the plugin.

We present an overview of MathFinder in the next section. We discuss the
technique in Sections 3–4 and evaluate it in Section 5. We survey related ap-
proaches in Section 6. We sketch future directions and conclude in Section 7.

2 Overview

1 % input: matrix W of doubles, and
2 % double scalars d, v error
3 pagerank(W, d, v error)
4 N = size(W, 2);
5 v = rand(N, 1);
6 v = v./normf(v);
7 last v = ones(N, 1)∗INF;
8 M hat = d∗W + (1−d)/N∗ones(N, N);
9 cur = normf(v−last v);

10 while( cur > v error)
11 last v = v;
12 v = M hat∗v;
13 v = v./normf(v);
14 cur = normf(v−last v);
15 end

Fig. 1. Scilab code for PageRank
(adapted from Wikipedia)

In this section, we illustrate the
MathFinder technique with an ex-
ample. Consider the Scilab code in
Fig. 1 for the PageRank algorithm
[18], a ranking algorithm used by
Google.

Even this reasonably small
algorithm requires 9 matrix opera-
tors that are not supported by the
standard Java library. The exact
meaning of these operators is not
critical for the present discussion.
Selecting a third-party library that
supports all of them is a tedious and
time-consuming task. The four open-
source Java libraries that we sur-
veyed, namely, Colt, EJML, Jama,

3 jblas.org/javadoc/index.html, e.g., the add method.
4 hadoop.apache.org

jblas.org/javadoc/index.html
hadoop.apache.org
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and JBlas5 contain over 400 methods in the classes implementing double matri-
ces. Of these, only JBlas (containing over 250 methods for matrix operations)
supports all the required operators. The programmer must identify that JBlas
is the right library. Further, the programmer must select appropriate methods
and learn how to set up method parameters, and about side-effects of method
calls, if any.

The programmer can use MathFinder to query for APIs to implement each
expression in the algorithm. MathFinder gives an aggregate score to the li-
braries indicating how many of the required subexpressions can be implemented
using methods from each library. The programmer can then easily identify JBlas
as the only functionally complete library to implement PageRank.

Suppose the programmer wants to find out how to implement the assignment
in line 6, v = v ./ normf(v) (discussed earlier in Section 1). In this paper, we
use the math types double standing for double scalars, and double M , for double
matrices. The variable v is given the type double M in the query

double M v; v = v ./ normf(v);

The expression form “LHS = RHS” indicates that the programmer wants meth-
ods to implement the RHS, and the types of the result and the LHS should
be the same. Though many interpreted math languages perform dynamic type
inferencing, we need type declarations to make the query unambiguous because
operators used in these languages can be polymorphic. For example, ./ denotes

Table 1. Library classes for the
math type double M

Library Class

Colt DenseDoubleMatrix2D

EJML DenseMatrix64F

Jama DoubleMatrix

JBlas Matrix

both matrix-scalar division and element-wise
division of matrices. For each library, its devel-
oper provides a mapping between math types
and classes used in her library (like in Ta-
ble 1), and code for converting values from the
library’s objects to values of the math type.
This helps us translate type signatures and
data between library types and math types.
Thus, the queries themselves are independent
of the target libraries.

MathFinder then parses the math expression and decomposes it into subex-
pressions (similar to three-address code generation in compilers [1]). The subex-
pressions have a single operator on the RHS by default. v = v ./ normf(v) is
decomposed as

double T1; double M v; T1 = normf(v); v = v ./ T1;

Operator precedence enforces the sequential ordering of computation and tem-
porary variables like T1 are used to explicate data flow. Since the types of the
operators are fixed by the chosen interpreted language, the types of the tempo-
raries can be inferred. Here, MathFinder infers that T1 is a double. Our tech-
nique also permits the programmer to guide the search at a granularity other

5 respectively, acs.lbl.gov/software/colt/, code.google.com/p/efficient-java-
matrix-library/, math.nist.gov/javanumerics/jama/ , jblas.org

acs.lbl.gov/software/colt/
math.nist.gov/javanumerics/jama/
jblas.org
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Table 2. Results obtained against the subexpression T1 = normf(v)

Method Actuals-to-formals Map Score

double Algebra.normF(DoubleMatrix2D) (v, arg1), (T1, return) 1.0
static double NormOps.normF(D1Matrix64F) (v, arg1), (T1, return) 1.0
static double NormOps.fastNormF(D1Matrix64F) (v, arg1), (T1, return) 1.0
double Matrix.normF() (v, this), (T1, return) 1.0
double DoubleMatrix.norm2() (v, this), (T1, return) 1.0
static double NormOps.fastElementP(D1Matrix64F,double) (v, arg1), (T1, return) 0.3

than individual operators in order to find a single API method to implement a
larger subexpression, or even the entire expression.

MathFinder now picks each subexpression and mines unit tests of library
methods to find the methods to implement it, along with the map from subex-
pression variables to the formal parameters of the method. The method param-
eters must range over library datatypes (or their supertypes) corresponding to
the math types of the subexpression variables. The results obtained against the
subexpression T1 = normf(v) are shown in Table 2. In the actuals-to-formals
maps in Table 2, arg1 stands for the first argument. MathFinder can also
search for methods inherited from a superclass of a class identified by the li-
brary developer as implementing a math type. In this example, methods over
DoubleMatrix2D and D1Matrix64F of the Colt and EJML libraries are also
discovered. These are, respectively, supertypes of DenseDoubleMatrix2D and
DenseMatrix64F identified in Table 1.

Recall our hypothesis that the relevance of a method to implement a subex-
pression is proportional to how often its unit tests match the subexpression on
interpretation. We assign scores to methods based on this observation and rank
them in decreasing order of their scores. As an example of a low-ranked method,
we show the NormOps.fastElementP method of EJML in Table 2. It computes
the p-norm and coincides with normf only on those tests that initialize its second
parameter to 2. Its score (0.3) is much lower than the score of the methods that
compute normf exclusively.

MathFinder then uses the results mined against each subexpression to issue
a pseudo-code snippet. The snippet takes a set of input objects, returns an output
object, and performs the computation queried for. The input objects correspond
to variables from the RHS of the query and the output object, to the LHS
variable. By convention, objects are given the same name as the variables they
correspond to. A sequence of API method calls, with a call corresponding to
every operator used in the query, is used to generate the output object. In this
sequence, if the return value of a method is passed as an argument to another,
then their library types should be compatible, and the output object is the return
value of the last method. MathFinder suggests this snippet from JBlas

DoubleMatrix v; double T1; T1 = v.norm2(); v = v.div(T1);

where div is discovered to implement v = v ./ T1.



Discovering Math APIs by Mining Unit Tests 333

MathFinder can thus automate the process of API discovery and compre-
hension to a large extent. The programmer will still have to verify the validity
of the results and translate the pseudo-code to Java code by introducing object
instantiations as necessary. The programmer can use snippets from different li-
braries for different (sub)expressions in her algorithm, provided she writes code
to convert between datatypes of the different libraries.

3 Problem Statement

In this section, we define the problem of math API discovery formally. Con-
sider a query Q which is decomposed into sub-queries. A sub-query has type-
declarations of variables, followed by a subexpression x = e, such that there is
exactly one operator in e. We denote a sub-query by q. Given q, our objective is
to find methods that can be used to implement e. Let m be a method such that
there is a non-empty set Λ(q,m) of actuals-to-formals maps, based on the type
mapping given by the library developer.

Let λ ∈ Λ(q,m) be an actuals-to-formals map . It maps variables in e to input
parameters of m and maps the variable x to an output variable of m (either the
return value or a parameter modified by side-effect). Let a unit test σ of m
map m’s input/output variables to Java objects. Let f be a function from Java
objects to data values of the interpreter. The library developer programatically
encodes f . Given a unit test σ of a method m and an actuals-to-formals map
λ, for a subexpression x = e, σ′ gives the values of variables occurring in x = e.
For a variable y,

σ′(y) = f(σ(y′)), where y′ = λ(y).

The mapping σ′ can be extended to expressions in a natural way. For exam-
ple, σ′(normf(v)) = normf(σ′(v)), where the interpreter computes normf. The
subexpression x = e evaluates to true on a unit test σ, under an actuals-to-
formals map λ, if σ′(x) = σ′(e). A sub-query evaluates to true on a unit test
if its subexpression does. Let N be the total number of unit tests of m, and k
the number of tests on which q evaluates to true, under a particular actuals-to-
formals map λ. The problem is then to find an actuals-to-formals map λ∗ that
maximizes k/N . We call λ∗ the maximizing actuals-to-formals map (MAFM)
and the corresponding value of k/N , the maximal test frequency (MTF).

Ranking API Methods against Sub-query q. The MTF quantifies the rel-
evance of the method. Since the same number of unit tests may not be available
for every method, the confidence in a retrieved method does not depend on its
MTF alone. For example, if two methods match a query on all their tests, but
one has only 1 test while the other has 10, intuitively, the confidence in the
latter is higher. We therefore normalize the number of tests per method using a
constant c, by scaling the MTF by the minimum of N/c and 1. We consider a
method with side-effects more difficult to use than one without, and impose a
side-effect penalty, sep, on it. We set sep to a small positive constant for methods
with side-effects and to 0 otherwise. We assign scores to methods according to:



334 A. Santhiar, O. Pandita, and A. Kanade

Score(q,m) � min(Nc , 1).
k
N . 1

1+sep

We then rank (sort) the methods in the decreasing order of their scores (e.g. see
Table 2).

Generating Pseudo-code for Expressions. In general, a math expression
may have many operators, with multiple candidate methods available to imple-
ment each. Consider a query Q and a set of candidate methods {m1, . . . ,mn}
to implement it. These are obtained by decomposing the query into sub-queries
{q1, . . . , qn}, and matching them as outlined earlier. The decomposition is type-
correct (by construction) in the math language; however, a pseudo-code snippet
to implement it must respect the type-constraints imposed by the map between
library types and math types as well.

The problem is then to filter the set of all possible candidate-method sets
to only those that are type-consistent, and then generate pseudo-code snippets.
This can be done with an exhaustive search over the ranked lists of methods
retrieved against the sub-queries. The snippets are ranked by taking the average
of the scores of the methods:

Score(Q, {m1, . . . ,mn}) � 1
n .
∑n

i=1 Score(qi,mi)

4 Unit Test Mining

In this section, we present an algorithm to compute scores of API methods
against a (sub)expression containing a single operator on the RHS.

Sequential Algorithm. We first present a sequential algorithm for mining unit
tests (See Fig. 2).

Input: Query q ≡ x = e, unit tests of method m
Output: The MAFM and MTF for m
1: Σ ← set of unit tests of m
2: for each σ ∈ Σ do
3: Look for side-effects in σ
4: for each λ ∈ Λ(q,m) do
5: Let σ′ be obtained from σ, f and λ
6: if σ′(x) = σ′(e) then
7: Count(λ)← Count(λ) + 1
8: end if
9: end for

10: end for
11: Let λ∗ be such that Count(λ∗) is maximum
12: MTF ← Count(λ∗)/|Σ|

Fig. 2. Sequential Mining Algorithm

As input, the algorithmtakes
the query q, with query ex-
pression x = e, and a
method m (together with
its unit tests). Its goal is
to compute the number of
unit tests that match q un-
der every actuals-to-formals
map of m. For each unit
test of m (line 2), the algo-
rithm iterates over the space
of actuals-to-formals maps
Λ(q,m), and constructs a
map σ′ from query variables
to values (in terms of the in-
terpreter data-types, line 5).
If under a particular actuals-

to-formals map, the query evaluates to true (line 6) we increment a counter (the
counter is initially set to 0). Finally, the algorithm returns the maximal actuals-
to-formals map λ∗ and the maximum test frequency. This algorithm also detects
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side-effects; it identifies side-effects on each method parameter (line 3) by equat-
ing the input/output values of the parameter. If there exists a test where they do
not match, it sets sep to a small positive constant (not shown in Fig. 2).

MapReduce Version. We can easily parallelize our mining algorithm. In par-
ticular, the innermost loop (over λ, line 4) can be executed over different unit
tests in parallel. We exploit this data-parallelism to obtain a scalable MapReduce
version of the mining algorithm.

In the MapReduce programming model [5], the input data to a mapper is a set
of key-value pairs. The mapper’s computation is applied to each key-value pair
independently. It can thus be distributed over multiple nodes. After processing
a key-value pair, the mapper can emit an arbitrary number of intermediate key-
value pairs. These pairs represent partial results. The framework then performs a
distributed group-by operation on the intermediate key, and accumulates all the
values associated with it in a list. The reducer gets as its input the intermediate
keys and the corresponding lists. It typically goes over the list of values associated
with a key to compute a final result (aggregate). In a MapReduce framework,
the user only has to provide implementations of the mapper and the reducer;
the framework handles distribution, fault-tolerance, scheduling etc.

Our MapReduce algorithm is supported by a distributed index of unit tests.
We omit details of the index organization in the interest of space. Unit tests are
read from the index as the mapper’s input. The mapper evaluates the subex-
pression on a test under every actuals-to-formals map, emitting an intermediate
key-value pair 〈λ, true〉 or 〈λ, false〉 for each. This partial result says whether
the subexpression evaluated to true or false under a particular λ. After the run-
time performs a distributed group-by operation, a key-value pair arriving at a
reducer contains an actuals-to-formals map λ (key) and a list of booleans (value).
Every entry in this list was generated by evaluating λ on some unit test. Val-
ues of k and N are calculated for a particular λ by iterating over this list. λ∗

(the maximizing actuals-to-formals map) is the key that maximizes k/N over all
key-value pairs. In our implementation, we lift this algorithm to work on indices
containing unit tests of multiple methods from across libraries.

5 Implementation and Evaluation

Implementation. We implemented the MapReduce version of the mining al-
gorithm in the Apache Hadoop framework, with Scilab as the interpreter. We
ran the mining algorithm on a unit test index containing unit tests from our
target libraries, that we wrote using JUnit. We used Serialysis6to serialize
input/output values from the unit tests, and provided hooks in our framework
for specifying the mapping between library and math types. As an optimization,
we cached the top k methods retrieved against every operator in the interpreted
language in an operator index, which is a Java HashMap, serialized to disk.

6 weblogs.java.net/blog/emcmanus/serialysis.zip

weblogs.java.net/blog/emcmanus/serialysis.zip
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We implementedMathFinder as anEclipse plugin that interfaces Eclipse with
the API discovery and snippet-generation engines. In Eclipse, the MathFinder

view offers a search bar to type math expressions in. We parse, type-check and
decompose expressions into subexpressions using the Antlr37 framework. Subex-
pressions are answered in real-time by looking up the operator index.

User Study. We conducted a user study to measure whether MathFinder im-
proves programmer productivity on mathematical programming tasks when com-
pared to reading Javadoc, using Eclipse code-completion, and keyword-driven
web or code search. To measure this, we picked a set of four mathematical pro-
gramming tasks (see Table 3 for a summary) that required third-party libraries
to complete. Only the first task could be implemented using any target library,
while the others required a careful evaluation of the APIs to find a function-
ally complete target library. We presented the algorithms to the participants as
method stubs in Eclipse.

Table 3. Summary of the tasks used in the user study

Task Algorithm Name Description

1 Conjugate Gradient Linear Equation Solving
2 Chebyshev Polynomial Interpolation
3 PageRank Webpage Ranking
4 Rayleigh Iteration Eigenvalue Computation

We deemed participants
to have completed a task
when their program passed
all our unit tests. The
main barrier to imple-
mentation was the lack
of direct Java support,
rather than algorithmic
subtleties. We chose small tasks, expecting the participants to finish them within
two hours. There were 16 unique operators across the tasks, and 5 to 8 queries
in each task whose implementation required method composition. The target
libraries were Colt, EJML, Jama and JBlas.

Our participants were 5 industry professionals and 3 graduate students not
affiliated to our research group. Two participants attempted every task, one
without MathFinder and one with MathFinder. Those in the control group
were allowed to use Javadoc, Eclipse code completion, and web or code search
engines; in addition, those in the experimental group were allowed to use Math-

Finder. We gave the participants handouts describing the operators used in the
tasks, and a mapping between library types and math types (similar to Table 1).

Timing Results. Table 4 shows the timing results of the user study. All times are

Table 4. Task completion times

Task
Control Experimental
group group(speed-up)

1 95m 51m(1.86x)
2 93m 64m(1.45x)
3 97m 39m(2.49x)
4 75m 30m(2.50x)

in minutes. MathFinder users finished
1.96 times as fast as the control-group par-
ticipants on average. Though the study
is not large enough to measure the dif-
ference with statistical significance, these
results suggest that MathFinder helps im-
prove productivity.

Control group participants reported that
they found selecting an API that best

7 antlr.org

antlr.org
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supported their task difficult, often requiring a search over Javadoc pages of
multiple libraries. We expected participants to pick keywords out of operator
descriptions in the handout (e.g., “matrix multiplication”) and use Google or
code search engines, but surprisingly, only one participant did so. This may be
due to the difficulty of analyzing a number of independent search results, per-
taining to individual operators in the task. Almost all control group users relied
on Eclipse code completion. This proved unhelpful at times, given the sheer
number of methods in some relevant API classes, similar names, and because
the required functionality was spread across multiple classes. For example, there
are at least 16 methods in the CommonOps class of EJML with a prefix “mult”,
and all have something to do with matrix multiplication. JBlas has 19 such
methods in the DoubleMatrix class. Although we did not provide type-based
API discovery tools [16, 24] to aid participants, we believe that these would not
have altered the outcome significantly. Type-based queries can result in many
spurious results for math APIs because a large number of methods operate over
the same types. For example, the JBlas library has over 60 methods that take
two DoubleMatrix objects as input and return a DoubleMatrix object. Search-
ing by method signatures cannot distinguish, say, matrix addition from matrix
multiplication.

MathFinder users, on the other hand, were able to formulate queries di-
rectly from the tasks, and all of them reported that the tool was easy to use.
With the tool, they were able to quickly gauge the extent of library support for
their task across libraries, and zero-in on the right library. The queries returned
precise results, and usually, the participants did not have to look beyond the top
ranked snippet. They copied the suggested snippets into the workspace and com-
pleted them, consulting the Javadocs only to find appropriate constructors. This
experience leads us to believe that MathFinder will deliver larger productivity
gains with more complex tasks and diverse API requirements.

Precision and Recall We evaluate the precision of our approach on both API dis-
covery and synthesis of pseudo-code snippets. To evaluate precision of API dis-
covery, we picked the set of unique operators from across the tasks; there were 16.

Table 5. Precision of API
Discovery

Library
#correct@rank-1

#supported-operators

Colt 6/ 7( 86%)
EJML 13/13(100%)
Jama 13/13(100%)
JBlas 13/14( 93%)

Total 45/47( 96%)

Of these, Colt supports 7, EJML 13, Jama
13 and JBlas 14. For unsupported operators,
MathFinder returns empty results, since it
picks only results with a score above a thresh-
old (0.75). The precision on operators sup-
ported by individual libraries is given in Ta-
ble 5. The precision is high (96% on aver-
age), despite the fact that these libraries use
different class definitions, calling conventions,
etc. Also, MathFinder retrieved all relevant
methods from all libraries (recall 1), with two
exceptions. One was the eyes operator, used to
generate identity matrices. The corresponding
JBlas method eyes was not retrieved. This
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method takes only one argument (equal to both the number of rows and
columns), whereas the eyes operator in Scilab takes two integer arguments (rows
and columns) separately. A relaxed type matching may help us identify methods
like eyes that take fewer parameters than the subexpression variables. The other
exception was the transpose operator. MathFinder mapped it to an incorrect
method of Colt. Later, we were able to attribute it to having missed a special
case in mapping library datatypes to interpreter datatypes. This implementation
issue was easy to fix, but we only report results prior to the fix.

Table 6. Precision of synthe-
sized pseudo-code snippets

Library
#correct-snippet
#expressions

Colt 2/ 6( 33%)
EJML 17/17(100%)
Jama 15/15(100%)
JBlas 16/16(100%)

Total 50/54( 93%)

There were 24 expressions in total in all the
tasks. The operators used in these expressions
were not supported by every library. Therefore,
to measure the precision of pseudo-code snippet
synthesis on a library, we only considered expres-
sions that could be implemented fully using it.
With this restriction, Colt supports 6 expressions,
EJML 17, Jama 15, and JBlas 17. For the expres-
sions that could be implemented, we evaluated,
for each library, whether the top-most code snip-
pet MathFinder returned was correct. The re-
sults are given in Table 6. The precision across
libraries is 93% on average. Our technique is able
to mine operator to method maps as well as maps from actuals to formals ac-
curately, which in turn means that the synthesized pseudo-code snippets are
precise. Colt’s precision was low because 4/6 expressions used transpose (which
was mapped to an incorrect method).

Threats to Validity Threats to internal validity include selection bias where the
control and experimental groups may not be equivalent at the beginning of the
study, and testing bias where pre-test activities may affect post-test outcomes.
To prevent selection bias, we conducted a survey before the study and paired
programmers with similar levels of Java expertise. We then assigned them the
same task, but chose their group (control or experimental) randomly. To mitigate
testing bias, we gave the experimental group participants a 20 minute presenta-
tion on the tool instead of a hands-on tutorial. Threats to external validity arise
because our results may not generalize to other groups of programmers and
programming tasks. To ensure a level playing field, we made sure none of our
participants had prior exposure to the target APIs. But this meant that we had
to leave out expert users of the target APIs. Therefore, the study does not assess
the benefits of MathFinder to domain experts and whether selecting another
candidate library is as difficult for them as for programmers with no experience
with any of the libraries. As target APIs, we picked popular open-source third-
party libraries which we believe are representative. However, further studies are
needed to validate the findings for other APIs in the math domain.

Scalability and Response Time.Our retrieval target collection had 406 meth-
ods: 41 methods from Colt, 70 from EJML, 45 from Jama, and 250 from JBlas.
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We obtain the time for API discovery using 10, 200 and 500 tests/method against
queries involving operators used in the tasks. With 10 tests/method, the experi-
ments were performed on a desktop running Ubuntu 10.04 with an Intel i5 CPU
(3.20GHz, 4GB RAM). We used a single mapper and reducer to run the MapRe-
duce implementation of the mining algorithm. With 200 and 500 tests/method,
the experiments were carried out on a machine running CentOS 5.3, with 8 Xeon
quad-core processors (2.66GHz, 16GB RAM). The machine could run up to 7
mappers and 2 reducers. For computing scores, we set the side-effect-penalty to
0.2. The processing time per query was 3.7s on average with 10 tests/method
(desktop), 56.7s with 200 tests/method and 80.5s with 500 tests/method (multi-
core processor). The precision of results did not vary significantly with 200 or
500 tests/method, suggesting that for the domain we considered, our technique
is able to achieve high precision with only a few tests/method. The study shows
that our implementation scales to an index with over 200K test records.

Limitations. Our ranking function does not take into account performance
or efficiency of API implementations. It does not rank an API method that is
a specialization of the math operator lower. We cannot discover compositions
of API methods to implement a single operator. Our approach, in its current
form, cannot discover APIs that take function objects as parameters, e.g., one
of our target libraries, Colt, has a set of functions available through a function
assign which takes function objects as input. The equality between query and
method outcomes is relaxed, in that, double precision numbers computed by
the interpreter and by an API method are said to be equal if they are within
ε = .001 of each other. The incompleteness or errors in data (unit tests) can
affect precision of results. This is true of any data mining approach.

6 Related Work

In text search, the popularity of web search engines shows that keyword-driven
queries are used extensively. In programming, the main utility of web search
engines seems to be to retrieve library documentation. Commercial code search
engines (e.g. Codase, Google code search, Koders, Krugle, etc.)8 retrieve declara-
tions and reference examples given library and method names. These approaches
are difficult to use if the programmer does not know the suitable libraries or
methods to begin with. Some research tools like Assieme [9], Codifier [2], and
Sourcerer [14] can perform syntactic search using richer program structure. The
MathFinder approach is purely semantic and does not use keywords or pro-
gram structure for search.

Several approaches [22, 28, 16, 24] use types for API discovery. These ap-
proaches discover API call sequences to go from an input type to an output
type by mining API declarations and in some cases, client source code. A dy-
namic analysis approach, MatchMaker [27], discovers API sequences by mining
program traces. In our experience, the objects set up using math APIs are easy

8 respectively, codease.com, code.google.com/hosting, koders.com, krugle.org

codease.com
code.google.com/hosting
koders.com
krugle.org


340 A. Santhiar, O. Pandita, and A. Kanade

to initialize and do not require a sequence of calls to set up state before they
may be used. Since types alone may not be enough for accurate API discovery,
some techniques combine them with structural contexts including comments,
field/method names, inheritance relations, and method-parameter, return-type,
and subtype relations [26, 10, 23, 6]. Types are also combined with keywords in
Keyword Programming [15] and SNIFF [3]. Apart from APIs, type-based code
completion approaches such as InSynth [7] and the work of Perelman et al. [19]
also search over variables in the typing context.

The main limitations of type-driven approaches include (i) the assumption
that the programmer has (partial) knowledge of the types and (ii) the lack of
precise semantic information in the queries. In MathFinder, the programmer
formulates queries over mathematical types (of the interpreted language used)
and not over library types. Thus, the same query is enough to discover APIs
across multiple libraries. Our queries are math expressions over interpreted op-
erators and can accurately identify methods for the operators in the query ex-
pression.

Prime [17] queries are partial programs, from which it mines partial tempo-
ral specifications and matches them against an index of temporal specifications
built from example code from the web. We have already compared our work, in
Section 1, with more closely related approaches like specification-driven [29, 21]
and test-driven [20, 8, 11, 21, 13] techniques for API discovery.

7 Conclusions and Future Work

This paper presents a novel technique to search for math APIs. A programmer
submits a math expression directly as a query to MathFinder which returns
pseudo-code for computing it by composing library methods. The approach com-
bines executable semantics of math expressions with unit tests of methods to
mine a mapping from expression variables to method parameters and detects
likely side-effects of methods. We show that the approach improves programmer
productivity, gives precise results, and scales to large datasets.

The availability of rigorous specifications make mathematical computations an
attractive choice for automated code synthesis. The existence of mature libraries
makes the synthesis problem in this domain more about API discovery than
algorithm discovery. Our work is a step toward API-driven synthesis.

Some methods may take more parameters than the corresponding math oper-
ator. Mining initializations to these parameters from unit tests is an interesting
future direction. We also plan to explore more general queries involving predi-
cates. API migration is a potential application of our unit test mining approach.
The semantics of APIs to be migrated can be specified in math notation, to
obtain matching APIs from other libraries using MathFinder.
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Abstract. Web applications are complex; they consist of many subsys-
tems and run on various browsers and platforms. This makes it difficult to
conduct adequate integration testing to detect faults in the connections
between subsystems or in the specific environments. Therefore, establish-
ing an efficient integration testing method with the proper test adequacy
criteria and tools is an important issue.

In this paper, we propose a new test coverage called template variable
coverage. We also propose a novel technique for generating skeleton test
code that includes accessor methods and improves the template variable
coverage criterion, using a tool that we developed called POGen. Our
experiments show that template variable coverage correlates highly with
the capability to detect faults, and that POGen can reduce testing costs.

Keywords: software testing, web application, test coverage, test code
generation, template engine.

1 Introduction

The importance of web applications has grown immensely with the popular-
ization of the Internet. Web applications are based on the client-server model,
and require collaboration among client and server programs. This indicates that
web applications consist of various subsystems such as web servers, authenti-
cation servers and database servers. Moreover, client programs run on various
browsers and platforms. Some faults might occur in the connections between
the subsystems or in the specific environments [1]. Therefore, an efficient and
comprehensive testing method is required to eliminate these faults.

Software testing methods can be roughly classified by their level and tech-
nique. There are four levels of testing during the development process: unit
testing, which verifies the functionality of a specific section of the code; integra-
tion testing, which verifies the interfaces between components; system testing,

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 343–358, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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which verifies that the entire software meets its requirements; and acceptance
testing, which verifies that the requirements are met from the user’s perspective.
For simplicity, we consider any testing except unit testing as integration test-
ing in this paper. Testing methods can also be classified into three techniques:
white-box testing (a.k.a. structure based testing), which utilizes knowledge of
how the code is implemented; black-box testing (a.k.a. specification based test-
ing), which tests the functionality of the code without any knowledge of how the
code is implemented; and gray-box testing, which utilizes partial knowledge of
the internal data structures and algorithms.

Testing frameworks such as JUnit automate the testing process by writing test
code. Test code constitutes an executable program including test cases. A test
case consists of a test scenario, which invokes functions of the production code,
and a test oracle, which determines whether the program works as expected by
observing the program state as the test scenario is executed.

Template engines are typically introduced during web application develop-
ment as part of the web framework, such as Struts and Ruby on Rails. There are
two types of template engines: those that run on the server side, such as ejs [2]
and JSF [3], and those that run on the client side, such as Closure Templates [4].
A template engine generates an HTML document by embedding string represen-
tations of variables or expressions referring to the states of executable programs
into the HTML template. Therefore, web applications must be able to handle
both the static content of the HTML document and the dynamic content that
changes as the program is executed. Finding faults related to the static content is
relatively easy, whereas finding faults related to the dynamic content is difficult
because whether the faults are exposed or not depends on the execution path.

In this paper, we propose a new test coverage criterion called template variable
coverage. Template variable coverage focuses on the variables and expressions
for embedding in HTML templates (hereafter referred to as template variables),
which are important for testing a web application’s functionality related to the
dynamic content of an HTML document. To improve the template variable cov-
erage criterion, we also propose a gray-box integration testing method using a
tool that we developed called POGen. POGen generates skeleton test code with
accessor methods for template variables by analyzing HTML templates.

The contributions of this paper are as follows:

– Template variable coverage, a new criterion of test adequacy to verify the
dynamic content corresponding to the execution results of web applications,

– POGen, a novel test code generator for improving template variable coverage
criterion,

– An evaluation of the correlation between template variable coverage and the
capability to detect faults and

– An evaluation of POGen with respect to its ability to reduce writing and
maintenance costs.

POGen is released as open source software on http://code.google.com/p/

pageobjectgenerator/.

http://code.google.com/p/pageobjectgenerator/
http://code.google.com/p/pageobjectgenerator/
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2 Motivating Example

Fig. 1. White-box unit testing (left) and black-box integration testing (right) for a
sample web application

List 1.1. An HTML template of the input page using Closure Templates

1 {template .addition }
2 <form action="result">
3 <input type="text" name="left"> + <input type="text" name="right">
4 <input type="submit" name="calc" value="Calculate">
5 </form >
6 {/template }

List 1.2. An HTML template of the result page using Closure Templates

1 {template .result }
2 <p>{$left }+{$right}=<div >{$answer }</div ></p>
3 <ul >{call .items }{param list: $histories /}{/call}</ul>
4 {/template }
5 {template .items}
6 {foreach $item in $list} <li >{$item}</li> {/foreach }
7 {/template }

In this section, we present an example to demonstrate our technique. We shall
consider a web application for a simple calculator supporting addition. The calcu-
lator has two additional features for translating string representations of numbers
such as ”fourteen” and for recording and showing past inputs. Figure 1 shows
the architecture of the web application. The web application consists of three
servers: a web server for handling web pages with a template engine, a transla-
tion server for handling number strings and a database server for managing the
input history.

The web application consists of two web pages: an input page for inputting
numbers to add and a result page for showing the result of the calculation.
Lists 1.1 and 1.2 show the HTML templates of the input and result pages using
Closure Templates. The result page shows the translated numbers, the addition
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result and the history of the given numbers and results. We discuss three testing
methods regarding this web application.

2.1 White-Box Unit Testing

White-box testing is usually used for the unit testing of web applications and
not for integration testing because it is difficult to consider implementations
of all subsystems and the relations between these implementations due to ex-
tremely large subsystems. White-box unit testing is less dependent on the tester
than black-box testing because it is based on the implementation, including test
coverage. Although white-box unit testing exhaustively verifies features, it con-
centrates on only one module at a time, so the connections between the modules
are not tested. For example, white-box unit testing cannot find mismatches be-
tween variable names in the HTML templates and in the server program, or
the invocation of an inappropriate function from the server program. Therefore,
faults that can be found with white-box unit testing are limited.

2.2 Black-Box Integration Testing

Black-box testing is usually used for the integration testing of web applications
as opposed to white-box testing. Black-box testing only requires the testers to
know what the web application is supposed to do, and the testers can easily try to
manipulate the web application on a web browser. Black-box integration testing
can be done at a low cost, and can find faults between connections of modules
on the real environment. However, it is hard to exhaustively verify the dynamic
content of the HTML document because the testers have no information on
how the application is implemented. Black-box integration testing also depends
heavily on the tester. For example, a tester of our sample web application may
only concentrate on the answer value and not test the left and right values to
verify the calculation feature. As another example, a tester may leave out the
translation feature. Therefore, black-box integration testing may overlook faults
due to its dependency on the tester and the lack of test adequacy criteria.

2.3 Gray-Box Integration Testing

To find faults that can be overlooked by both white-box unit testing and black-
box integration testing, we propose a gray-box integration testing method for
verifying web applications. This method makes use of information gathered from
the HTML templates and the application’s specifications.

List 1.2 contains four template variables: {$left}, {$right}, {$answer} and
{$item}. Note that $histories and $list are not template variables because
they are not inserted into the HTML document replacing them with their values
during execution. The template variables indicate the dynamic content of the
HTML document corresponding to the outputs from the server program of the
web application, and they can be used to verify the connections between subsys-
tems. For example, faults in the addition feature are exposed through {$answer},
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while those in the translation feature are exposed through {$left}, {$right}
and {$answer}, and those in the history feature are exposed through {$item}.
Therefore, gray-box integration testing allows testers to find faults efficiently and
exhaustively by exposing the dynamic content of the HTML document marked
by template variables.

3 Template Variable Coverage

Template engines replace template variables with the string representations of
the template variables’ values. We can extract the dynamic content of an HTML
document by analyzing HTML templates; template variables are marked by spe-
cial notations, such as {$answer} in List 1.2. Note that we make no distinction
between variables and expressions in template variables.

We propose a new coverage criterion called template variable coverage which
indicates test adequacy with respect to the dynamic content of the HTML docu-
ment. Template variable coverage allows testers to conduct exhaustive gray-box
integration testing. Moreover, it provides a quantitative measure for assessing
the quality of a set of test cases.

Definition 1. Let Ctmp be the template variable coverage, Vall the number
of all template variables, and Vtest the number of template variables which are
referred by test cases during testing. Ctmp is defined by formula (1). Note that
Vall ⊇ Vtest and 0 ≤ Ctmp ≤ 1 hold.

Ctmp =
Vtest

Vall
(1)

List 1.3. A test case with JUnit and Selenium for verifying the addition feature

1 WebDriver driver = new ChromeDriver();
2 // some code to initialize the driver
3 driver.findElementByName("left"). sendKeys ("1");
4 driver.findElementByName("right"). sendKeys ("two");
5 driver.findElementByName("calc"). submit ();
6 assertEquals("3", findElement(By.cssSelector("p > div")).getText ());

List 1.3 shows a conventional test case to verify the addition feature of the web
application. This test case only refers to one template variable, {$answer}, out of
the four template variables: {$left}, {$right}, {$answer} and {$item}. Thus,
the template variable coverage for this test case is 25%. It is 75% if a test case
refers to {$left}, {$right} and {$answer}.

Assumption 1. Template variable coverage is a test adequacy criterion that
indicates how exhaustively the test cases observe outputs from web applications.
We therefore assume that template variable coverage correlates positively with
the test quality, or the capability to find faults with the set of test cases.
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4 POGen: Test Code Generator to Improve the Coverage

We propose a novel technique to generate skeleton test code for improving the
template variable coverage criterion using POGen. POGen supports gray-box
integration testing based not only on the specifications of the web application
but also on the HTML templates.

Fig. 2. Gray-box integration testing for the sample web application (left) and the
architecture of POGen (right)

Fig. 3. Illustration of the role of POGen in gray-box integration testing

The left side of Figure 2 shows the relation between the sample web application
and gray-box integration testing based on the HTML template. To help conduct
gray-box integration testing, we developed a tool called POGen for analyzing
HTML templates and generating skeleton test code with Selenium and JUnit.
POGen extracts template variables which indicates the dynamic content and the
operable HTML elements such as <a>, <link>, <input>, <textarea>, <select>
and <button> elements. POGen also generates skeleton test code designed with
the PageObject design pattern [5], which has high maintainability and contains
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accessor methods for the template variables and the operable HTML elements.
POGen thus reduces the writing and maintenance costs.

The right side of Figure 2 shows the architecture of POGen. POGen con-
sists of three components: the HTML template analyzer, the HTML template
transformer and the test code generator. POGen generates accessor methods for
HTML elements containing template variables and operable HTML elements.
To increase maintainability, the methods depend not on the HTML structure
but on the names of template variables and operable HTML elements. POGen
transforms HTML templates for exposing HTML elements containing template
variables and operable HTML elements for test purposes only.

Figure 3 shows the process of gray-box integration testing with POGen.

1. Testers feed the HTML template files to be tested into POGen.
2. POGen analyzes and transforms the HTML templates by inserting unique

values into the specified attributes of the HTML elements containing tem-
plate variables and the operable HTML elements.

3. POGen generates skeleton test code with accessor methods for the HTML
elements by referring to the inserted attribute values.

4. Testers enhance the generated skeleton test code and write test cases.
5. The transformed HTML templates are deployed on the web server.
6. Gray-box integration testing is conducted by running the test cases.

4.1 HTML Template Analyzer

The POGen HTML template analyzer extracts the HTML elements by finding,
naming and then analyzing the template variables and operable HTML elements.
After these three steps, which are described below, the HTML template analyzer
passes the positions of the template variables and the operable HTML elements
into the HTML template transformer.

The HTML template analyzer first finds the template variables and the op-
erable HTML elements by parsing the HTML template, and records positions.
For the HTML template in List 1.1, the analyzer will find three operable ele-
ments of <input>. For the HTML template in List 1.2, the analyzer will find
four template variables: {$left}, {$right}, {$answer}, and {$item}.

In the next step, the analyzer determines the names of the extracted template
variables and the extracted operable HTML elements to generate accessor meth-
ods. The analyzer names the template variables with the texts of the template
variables removing the head and tail sign characters and replacing the other sign
characters with underscore characters ’ ’. The analyzer also names the operable
HTML by concatenating the types of the HTML elements with the id attribute
values, name attribute values or the texts. For the HTML template in List 1.1,
the analyzer will name the first operable elements "INPUT left". For the HTML
template in List 1.2, the analyzer will name {$left} "left".

In the analyzing step, the analyzer determines if the extracted HTML ele-
ments appear in loop statements, such as for and foreach statements. Depend-
ing on whether the template variables are repeated or not, POGen generates
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accessor methods returning a list of HTML elements or a single HTML element,
respectively. In List 1.2, {$item} is a repeated template variable.

POGen currently supports Closure Templates, ejs, erb and JSF. We can easily
extend POGen by adding parsers for other template engines.

4.2 HTML Template Transformer

The HTML template transformer inserts unique values for user-specified at-
tributes, such as id and class, into HTML elements containing template vari-
ables. This allows the generated accessor methods to depend on the names de-
termined by the analyzer and not on the structure of the HTML document.
If the targeted HTML element already contains a value for the specified at-
tribute, then the transformer uses the existing value, either as is for attributes
like id that only accept a single value, or by inserting another unique value into
the existing value for attributes like class that accept space-separated values.
Users can choose any attribute to be inserted by POGen to avoid changing a
web application’s behavior. In addition, the transformer inserts special HTML
comments into the HTML template so that accessor methods can acquire text
representations of the template variables.

List 1.4. An HTML template transformed by the POGen to generate accessor methods

1 {template .addition }
2 <!-- POGen ,left ,{$left} --><!-- POGen ,right ,{$right} -->
3 <p class="_pogen_1 ">{$left }+{$right }=
4 <!-- POGen ,answer ,{$answer } --><div class="_pogen_2 ">
5 {$answer }</div ></p>
6 <ul >{call .items }{param list: $histories /}{/call}</ul> {/template }
7 {template .items}
8 {foreach $item in $list}
9 <!-- POGen:item:{$item} --><li class="item _pogen_3 " >{$item}</li>

10 {/foreach }
11 {/template }

The HTML template in List 1.2 with values of class attributes and HTML
comments inserted by the transformer is shown in List 1.4. POGen backs up the
original HTML templates before they are transformed.

4.3 Test Code Generator

The test code generator generates skeleton test code containing accessor methods
for the extracted HTML elements. The test code is designed by the PageObjects
design pattern with JUnit and Selenium. The names of the accessor methods
consist of the texts, the types of the HTML elements and the attribute values.
The accessor methods can be invoked using only the names determined by the
analyzer. This makes the test code independent of the HTML structure.

The PageObjects design pattern modularizes test code in terms of page classes,
allowing testers to write test cases as if writing in a natural language by treating
page classes and their methods. The page class contains methods corresponding



POGen: A Test Code Generator 351

to features provided to the user by the web page, such as login and addition
features, as well as fields indicating HTML elements and accessor methods for
acquiring information on the page. The modularization improves the maintain-
ability of test code by reducing the amount of necessary code modifications
resulting from frequent updates to web applications. Web application updates
commonly result in changes to the structure of HTML documents, which ne-
cessitates modifications in the operations of DOM trees in the methods of page
classes. However, changes in web page features and information are rarely re-
quired. Therefore, modifications to test cases are rarely required.

For each web page, POGen generates page classes that have two accessor
methods for each HTML element containing template variables. One accessor
method returns the object indicating the HTML element. This method allows
testers to write various operations for the HTML element by providing methods
for simulating user manipulations from Selenium. The other accessor method
returns the string representation of the template variable. POGen also gener-
ates an accessor method for each operable HTML element because the operable
HTML elements are frequently referred in test code.

POGen requires users to enhance the generated skeleton test code by writing
feature methods such as login and add methods. Users can write test cases
after enhancing the page classes. The generated test code is distinguished from
the user-written code by the comments GENERATED CODE START and GENERATED

CODE END. When updating the test code to support changes in the web applica-
tions, only the generated test code is changed by POGen.

List 1.5. Skeleton test code generated by POGen for the result page template given
in List 1.2 for the sample web application

1 public class ResultPage extends AbstractPage {
2 /* -------------------- GENERATED CODE START -------------------- */
3 @FindBy (className = "_pogen_1 ") private WebElement _left , _right;
4 @FindBy (className = "_pogen_2 ") private WebElement _answer ;
5 @FindBy (className = "_pogen_3 ") private WebElement _item;
6 public WebElement getElementOfLeft () {/* abbrev.*/}
7 public WebElement getElementOfRight () {/* abbrev.*/}
8 public WebElement getElementOfAnswer () {/* abbrev.*/}
9 public List <WebElement > getElementsOfItem () {/* abbrev.*/}

10 public String getTextOfLeft () {/* abbrev.*/}
11 public String getTextOfRight () {/* abbrev.*/}
12 public String getTextOfAnswer () {/* abbrev.*/}
13 public List <String > getTextsOfItem() {/* abbrev.*/}
14 /* --------------------- GENERATED CODE END --------------------- */
15 }

List 1.5 shows the skeleton test code generated by POGen for the HTML tem-
plate in List 1.4. The getElementOfLeftmethod returns the WebElement object
indicating the <p> element containing {$left} by using the class attribute
value pogen 1. The WebElement object provides various operations such as
sendKeys, which simulates keyboard inputs, and click, which simulates mouse
clicks. The getTextOfLeft method returns the String object of {$left} by
parsing the HTML comment (e.g. <!-- POGen,left,{$left} -->) inserted by
POGen. The generated accessor methods are surrounded by GENERATED CODE
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START and GENERATED CODE END so that these methods will be updated accord-
ing to the changes made in the web applications.

List 1.6. Enhanced skeleton test code generated by POGen for the input page template
given in List 1.1 for the sample web application

1 public class InputPage {
2 /* -------------------- GENERATED CODE START -------------------- */
3 // Abbreviate generated skeleton test code
4 /* --------------------- GENERATED CODE END --------------------- */
5 public ResultPage add(String left , String right) {
6 getElementOfINPUT_left().sendKeys (left);
7 getElementOfINPUT_right().sendKeys (right);
8 getElementOfINPUT_calc().submit ();
9 return new ResultPage(driver );

10 }
11 }

List 1.7. A JUnit test case using the skeleton test code generated by POGen

1 public class ResultPageTest {
2 @Test public void add1And2 () {
3 WebDriver driver = new ChromeDriver();
4 // some code to initialize the driver
5 ResultPage resultPage = new InputPage(driver ).add(1, "two");
6 assertEquals(resultPage.getTextOfAnswer (), "3");
7 }
8 }

List 1.6 shows sample test code enhanced by testers to write test cases. List 1.7
shows a test case based on the generated test code in Lists 1.5 and 1.6. This
add1And2 test case asks the web application to add ”1” and ”two”. Then it
determines whether the text representation of the template variable {$answer}
equals the expected value of three. In summary, POGen reduces the writing and
maintenance costs of test code by introducing the PageObjects design pattern,
and by generating skeleton test code that contains accessor methods.

5 Evaluation

To assess the effectiveness of template variable coverage and POGen, we con-
ducted a set of experiments and compared the results against conventional meth-
ods. Specifically, we investigated the following research questions:

– RQ1: Is template variable coverage correlated with a test’s capability to
detect faults?

– RQ2: How can our approach improve a test’s capability to find faults?

– RQ3: How can our approach facilitate writing test code?

– RQ4: How can our approach facilitate maintaining test code?
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Table 1. The subject web application for Experiment 1

Name Pages Test cases LLOC of LLOC of Killed All
production code test code mutants mutants

booking 11 16 2282 634 58 248

Fig. 4. The graphs which illustrates the correlation with the template variable coverage
and the killed mutants for the subject web application with the different number of
the test cases (left) and with the same number of the two test cases (right)

5.1 Experiment 1

To verify Assumption 1 and investigate RQ1, we measured template vari-
able coverage and the number of killed mutants generated by SimpleJester
for the subject web applications. Note that the mutation testing tools such
as SimpleJester embed faults called mutants, and then measure the detected
faults called killed mutants by executing the test with targeted test code.
The subject web application was the Seam Framework example called booking
(https://github.com/seam/examples). Table 1 shows its name, the number of
pages and test cases, the logical lines of code (LLOC) of production code and
test code, and the number of killed mutants and all of the mutants. To measure
the correlation with the template variable coverage and the number of the killed
mutants, we randomly reduced test cases.

Figure 1 shows two graphs, whose vertical axis represents the ratio of the
killed mutants over all of the mutants, whose horizontal axis represents the tem-
plate variable coverage and whose labels represent the number of the remaining
test cases. Whereas the graph on the left side shows the correlation with the
different number of the test cases, the graph on the right side shows the cor-
relation with the same number of the two test cases. As the figure shows, the
template coverage correlates highly with the killed mutants, or the capability to
detect faults independently of the number of test cases. Therefore, we confirm
Assumption 1 is approved in this example.

https://github.com/seam/examples
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5.2 Experiment 2

To investigate RQ2 and RQ3, we conducted an empirical experiment on an open
source web application (https://github.com/TakenokoChocoHolic/almond-
choco), such as that found on TopCoder, which provides online compiling and
execution of source code to solve problems. Users can create, edit, delete and
solve problems on the web application. A problem consists of a title, a descrip-
tion, an input and an expected result. The web application determines whether
the submitted source code is correct by comparing the result from compiling
and executing the source code with the expected result. The web application
provides five pages: a page where users can see a list of the problems (index
page), a page where users can make a new problem (create page), a page where
users can edit an existing problem (edit page), a page where users can submit
their source code to solve a problem (solve page), and a page where users can
compare results (result page).

We measured the time to write two sets of test cases without test oracles and
counted the template variables referred by test cases which were enhanced with
test oracles within 20 minutes. We tested three bachelor’s and three master’s
degree students studying computer science (S1, S2 c and S6).

Table 2. The results of times to write test cases except for test oracles and the number
of template variables referred in test cases which are enhanced with test oracles within
20 minutes

A set of test cases S1 S2 S3 S4 S5 S6 Average

Test cases 1 13 mins 10 mins 14 mins - - - 12.3 mins
with POGen 9 vars 8 vars 7 vars - - - 8 vars

Test cases 1 - - - 29 mins 52 mins 34 mins 38.3 mins
without POGen - - - 4 vars 3 vars 5 vars 4 vars

Test cases 2 - - - 7 mins 13 mins 15 mins 8.3 mins
with POGen - - - 5 vars 6 vars 8 vars 6.3 vars

Test cases 2 14 mins 36 mins 59 mins - - - 36.3 mins
without POGen 4 vars 4 vars 3 vars - - - 3.6 vars

This experiment consists of two steps: writing test cases without test oracles
and writing test oracles to enhance written test cases within 20 minutes with
or without POGen. In the first step, the examinees wrote two sets of test cases
with the test specification written in natural language. The test cases 1 represent
a set of three test cases: updating a problem, solving a problem correctly and
wrongly with Python. The test cases 2 also represent a set of three test cases:
creating a problem, deleting a problem and solving a problem correctly with
Ruby. S1, S2 and S3 wrote the test cases 1 with POGen and then wrote the test
cases 2 without POGen. On the other hand, S4, S5 and S6 wrote test cases 1
without POGen and then wrote the test cases 2 with POGen. In the next step,
they wrote test oracles for each own test cases within 20 minutes in the same
flow.

https://github.com/TakenokoChocoHolic/almond-choco
https://github.com/TakenokoChocoHolic/almond-choco
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Table 2 shows the result of this experiment. As the table shows, POGen
reduced the writing time of the test cases by approximately 66%. Moreover,
the template variables referred by the enhanced test cases with POGen are
more than ones without POGen. POGen helps testers to write test code which
observes more template variables to detect more faults. Therefore, POGen can
reduce costs of writing test code and improve the template variable coverages.

5.3 Experiment 3

Table 3. The LLOC values of skeleton test code generated by POGen, actually used
test code in manually written test code and manually written test code for the web
application in Experiment 2

Index Create Edit Solve Result Test cases Sum

Actually used 82 47 88 44 43 0 304
(Generated by POGen) (164) (54) (164) (65) (49) (0) (496)

Manually written 12 7 13 6 0 105 143

Table 3 shows LLOC values for the whole POGen-generated skeleton test
code, for the actually used section of the generated skeleton test code and for
a manually written test code for the web application in Experiment 2. There
are six LLOC values for page classes and test cases using page classes and the
sum in Table 3. The test code contains six test cases for creating problems,
editing problems, submitting a source code with Python and Ruby correctly
and submitting a source code with Python wrongly.

As the table shows, POGen reduced the writing cost of test cases by gener-
ating page classes with accessor methods for HTML elements containing tem-
plate variables and for operable HTML elements. Through POGen, the testers
were able to access HTML elements using only the names of the template vari-
ables or the operable HTML elements, without any knowledge of the XPath
or CSS selector. POGen successfully reduced the LLOC by about 68% in this
experiment.

5.4 Experiment 4

To evaluate the reduction of maintenance cost and investigate RQ4, we changed
the design of the web application in Experiment 3 to modify the DOM structure.
POGen makes manual changes to the test code unnecessary because the accessor
methods depend on the names of template variables and not on the structure of
the HTML document.



356 K. Sakamoto et al.

List 1.8. HTML templates of the result page with ejs before and after changing the
design of the web application

1 <!-- Before changing the HTML template of the result page -->
2 <div ><%= result %></div ><br />
3 actual = [<span ><%= out %></span >]<br />
4 expect = [<span ><%= ex %></span >]
5 <!-- After changing the HTML template of the result page -->
6 <p> Your answer is <b><%= result %></b>! </p>
7 <p> Your program ’s ouput is [<span ><%= out %></span >]. </p>
8 <p> Then , our expected ouput is [<span ><%= out %></span >]. </p>

List 1.8 shows the HTML template of the result page with ejs before (top)
and after (bottom) changing the design of the web application. The generated
skeleton test code provided the accessor methods with the same signatures. For
example, the getTextOfResultmethod returned the string representation of the
template variable result both before and after the change. If the names of the
template variables are changed, then the test code must be changed manually
due to changes in the names of the generated accessor methods. As we investi-
gated web applications in a company, template variable name changes, however,
occurred much less than structural changes to HTML documents. Roest et al.
also [6] claim XPath for selecting DOM elements causes fragile tests. Therefore,
POGen reduce maintainance costs by improving maintainability of test code.

6 Limitations

Dependency on template engines: Our technique cannot elucidate the dy-
namic components which are created using web frameworks or DOM API with-
out template engines. However, many web frameworks such as Struts and Ruby
on Rails have template engines, and developers typically use template engines.
Regeneration of accessor methods for template variables: When a tem-
plate variable occurs more than once in an HTML template, POGen names the
corresponding accessor methods differently with sequential numbers. Therefore,
the names of accessor methods are changed when the same template variables
are added into or removed from the HTML template, and the test code must be
changed manually.
Assessing input values for testing: Template variable coverage cannot as-
sess input values themselves. For example, template variable coverage does not
change when the value “2” is used instead of “two” for {$right}. However, this
limitation are common in structural test coverage criteria.

7 Related Works

Staats et al. [7] claim that one should not only refer to the test coverage but
also to the test oracles when discussing test quality. Schuler et al. [8] propose
a new coverage criterion called checked statement coverage, which enhances ex-
isting statement coverage for white-box testing in terms of test oracle quality.
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Template variable coverage also considers both test coverage and test oracles,
and therefore, our technique can enhance test quality for web applications.

Kodaka et al. [9] provide a tool for determining if the dynamic text generated
by JSP is equal to the text expected by users. In contrast, POGen generates
accessor methods for both HTML elements and texts containing template vari-
ables. Thus, our technique can test web applications with greater flexibly.

Mesbah et al. [10] propose a new technique for testing web applications with
invariants and their crawler which supports AJAX user interfaces. Roest et al.
also [6] propose a new technique for extracting patterns for invariants from dy-
namic contents such as tables and lists. Whereas their approaches generates
invariants, which are independent on test scenarios, our approach generates ac-
cessors for template variables, which are dependent on test scenarios.

There are many researches of model based testing for web applications and
GUI applications such as [11], [12] and [13]. Their approach only generate test
scenarios without test oracles and cannot treat the web pages which do not
appear in models. POGen, on the other hand, helps testers to write test code
including test oracles. Thus, our technique can work well with conventional meth-
ods and conduct test web applications flexibly and reasonably.

8 Summary and Future Works

In this paper, we elucidated the problems in existing testing methods through
motivating examples. We proposed a novel coverage criterion called template
variable coverage, as well as a novel technique to improve the template vari-
able coverage with a tool called POGen. POGen generates skeleton test code,
which includes accessor methods for the dynamic components of web applica-
tions, by analyzing HTML templates. Moreover, we evaluated the effectiveness
of the template variable coverage and POGen in empirical experiments.

In the future, we will evaluate our approach and template variable coverage
for real-world web applications with the mutation testing tools specific to web
applications. We will also propose a new set of coverage criteria based on existing
coverage criteria, which will target branches in HTML templates and production
code on the server side to evaluate test quality from various viewpoints.
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Abstract. This paper addresses refinement and testing based on CSP
models, when we distinguish input and output events. From a testing
perspective, there is an asymmetry: the tester (or the environment) con-
trols the inputs, and the system under test controls the outputs. The
standard models and refinement relations of CSP are, therefore, not en-
tirely suitable for testing. Here, we adapt the CSP stable-failures model,
resulting in the notion of input-output failures refinement. We compare
that with the ioco relation often used in testing.Finally, we adapt the
CSP testing theory, and show that some tests become unnecessary.

1 Introduction

As a process algebra, CSP [20] is a well established notation, with robust seman-
tics and tools; it has been in use for more than twenty years. The availability of
a powerful model checker has ensured the acceptance of CSP both in academia
and industry. In the public domain, we have reports on applications in hardware
and e-commerce [1,10]. In addition, CSP has been combined with data modelling
languages to cope with state-rich reactive systems [8,16,22,7,18].

Admittedly, model-based testing is not a traditional area of application for
CSP. It remains the case, however, that when a CSP model is available, the
possibility of using it for testing is attractive, especially in industry. In fact, a
testing theory is available for CSP [4], and more recently, the use of CSP as part
of testing techniques has been explored by a variety of researchers [15,21,5].

A difficulty, however, is the fact that CSP models do not distinguish between
input and output events: they are all synchronisations. In testing, though, there
is an asymmetry: the system under test (SUT) controls outputs, while the tester
controls inputs. In this paper, we follow a suggestion in [19] to define a stable-
failures model parameterised by sets I and O of input and output events. We call
it the input-output failures model, and define input-output failures refinement.

The stable-failures model is a suitable starting point for our work because,
as usual in testing, we assume that both models and systems are divergence
free. In models, divergence is regarded as a mistake, and when testing an SUT, a
divergence cannot be distinguished from a deadlock. On the other hand, we cater
for nondeterminism in the model and in the SUT; for that, we consider failures
and failures refinement, since the traces model does not capture nondeterminism.

In the software testing community, there has been much interest in input-
output labelled transition systems (IOLTSs) [2], and it is typically assumed that

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 359–374, 2013.
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it is possible to observe quiescence, a state in which all enabled events are inputs
and it is not possible to take an internal transition. Most approaches use the
ioco implementation relation [23]; observations are traces that include inputs,
outputs, and quiescence, the only type of refusal that can be observed.

For CSP, we define that, in the presence of inputs and outputs, a state is
stable if it is not divergent, that is, stable according to the standard model,
and no output is enabled. These are quiescent states, but we can observe the
inputs that are enabled: models need not be input enabled. This means that a
stable state in CSP is not necessarily a quiescent state in the sense adopted in
IOLTS: in the standard stable-failures model, there is no notion of input, and
here we do not enforce input-enabledness. We show that ioco and input-output
failures refinement are incomparable: there are processes P and Q such that P
conforms to Q under ioco but not under input-output failures refinement, and
vice-versa. For input-enabled processes, however, ioco is stronger.

Other lines of work are related to ours in that they investigated refusals for
inputs [11,3,2]. These, however, allow refusals to be observed in states from which
an output is possible. The traditional explanation regarding the observation of a
refusal set R is that, if the tester offers only events of R, we observe a refusal if
the composition of the tester and the SUT deadlocks. Usually a tester does not
block outputs from the SUT and so the composition of the SUT and the tester
cannot deadlock if an output is available. As a result, we do not consider a state
to be stable if an output is possible (since the SUT can change state) and so do
not allow the observation of refusals in such states.

The testing theory of CSP identifies (typically infinite) test sets that are
sufficient and necessary to establish (traces or failures) refinement with respect
to a given CSP specification. To take advantage of knowledge about inputs and
outputs, here we adapt that theory for input-output failures refinement.

In summary, we make the following contributions. First, we define input-
output failures, and show how they can be calculated. The existing failures
model of CSP does not cater for inputs and outputs. We also define input-output
failures refinement and prove that it is incomparable with ioco. This relates our
results to the extensive body of work on testing based on IOLTS. To obtain a
refinement relation that is stronger than ioco, we need to use the refusal-testing
model of CSP; we are exploring this issue in our current work. Finally, we adapt
the CSP testing theory to input-output failures refinement, and show that some
tests in the exhaustive test set for failures refinement become unnecessary.

Next, we present CSP and IOLTS. In Section 3, we present the new CSP
model that considers inputs and outputs, and its refinement notion. Section 4
discusses the relationship between input-output failures refinement and ioco.
Testing is addressed in Section 5. We conclude in Section 6.

2 Preliminaries

This section presents the notations and concepts that we use in this paper.
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2.1 CSP and Its Stable-Failures Model

In CSP, the set Σ includes all events of interest. In addition, a special event � is
used to indicate termination, and is included in the set Σ� = Σ ∪ {�}. Inputs
and outputs are not distinguished in Σ, and none of the CSP models caters for
this distinction in controllability. We address this issue in Section 3.

The process STOP represents a deadlock: a process that is not prepared to
engage in any synchronisation; its only trace is the empty sequence 〈 〉 of events.
SKIP , on the other hand, terminates without engaging in any event: its traces
are 〈 〉 and 〈�〉. A prefixing c → P is ready to engage in a communicationc,
and then behave like the process P . A communication may be a simple event on
which the process is prepared to synchronise, an input, or an output.

An external choice P �Q offers the environment the possibility of choosing P
or Q by synchronising on one of the events that they offer initially. For instance,
out .1 → SKIP � out .2 → STOP offers the choice to synchronise on out .1 (and
then terminate) or out .2 (and deadlock). If an event is available from both P
and Q , then the choice is internal: made by the process. In general P !Q is the
process that makes itself an internal choice to behave as P or Q .

An input communication is like in?x , for instance, in which a value is read
through a channel in and assigned to the variable x . Also, an output out !e
communicates the value of the expression e through the channel out . In CSP,
however, these are just modelling conventions that use events whose names are
composed of a channel name and a value. For example, if the type of the channel
in is T , then in?x → STOP is an abbreviation for an iterated external choice

� v : T • in.v → STOP , where the environment is offered a choice to synchro-
nise on any of the events in.v , where v is a value in T . Additionally, the output
out !1 is just an abbreviation for the synchronisation out .1.

Parallelism can be described by the operator P � X � Q , where P and Q are
executed in parallel, synchronising on the events in the set X . For instance, in
(in?x → out !x → SKIP) � {|in|} � (in!3 → STOP), the processes synchronise on
in.3, then in?x → out !x → SKIP independently offers to synchronise on out .3,
and terminates. Since in!3 → STOP deadlocks, the whole process deadlocks.
The set {|in|} contains all events in.v , where v is a value of the type of in.

The events on which the parallel processes synchronise are visible to the en-

vironment. To make them internal, we have the hiding operator: P \ X is the
process that behaves like P , except that occurrences of events in X are hidden.

If R is a renaming relation, that associates (old) event names to new names,
the process P [[R]] is that obtained by renaming the events in P according to R.
If an event e is related to two (or more) events in R, then every occurrence of e
in P gives rise to an external choice in P [[R]] based on the new events.

Stable failures. This semantic model of CSP characterises a process P by its set
traces(P) of traces and failures(P) of stable failures. The latter are pairs (s ,X ),
where s is a trace of P , after which P does not diverge, but may deadlock if only
the events in the refusal set X are offered. This model distinguishes external and
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internal choices (which define the same sets of traces) and can be used to reason
about liveness properties (which are related to absence of deadlock).

Failures refinement P �F Q of a process P by a process Q is defined as
traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P). So, the refined process Q
can only engage in sequences of synchronisations (traces) that are possible for
P , and can only deadlock when P can. Traces refinement P �T Q requires only
traces inclusion. It is not difficult to show that failures refinement can also be
characterised as the conjunction of traces refinement and conf , a conformance
relation used by the testing community [4]. It is defined as follows.

Q conf P =̂ ∀ t : traces(P) ∩ traces(Q) • Ref (Q , t) ⊆ Ref (P , t)
where Ref (P , t) =̂ {X | (t ,X ) ∈ failures(P) }

This is concerned only with traces allowed by both P and Q , but requires that
after those, Q can deadlock only if P can.

2.2 CSP Testing Theory

A testing theory identifies testability hypotheses, notions of test and test exper-
iment, the verdict of an experiment, and an exhaustive test set.

First of all, to reason formally about testing it is necessary to discuss formal
models and thus to assume that the SUT behaves like an unknown model de-
scribed using a given formalism. This is often called the minimum hypothesis [9].
The formalism is usually the language used for specifications. Both in [4] and
here, it is assumed that the SUT behaves like an unknown CSP process.

Secondly, nondeterminism in the SUT can cause problems since whether a test
leads to a failure being observed or not might depend on how nondeterminism
is resolved. The standard testability hypothesis used to overcome this is that
there is some known k such that the application of a test T a total of k times is
guaranteed to lead to all possible responses of the SUT to T . The implications
of this for testing from CSP specifications have been discussed [4].

An exhaustive test set is a (potentially infinite) set of tests that are necessary
and sufficient to establish conformance with respect to a given relation [9]. The
CSP testing theory identifies exhaustive test sets for traces refinement and conf .

Given a (specification) process P , for traces refinement, the CSP testing the-

ory considers tests for pairs (s , a) such that s is a trace of P , but s � 〈a〉 is not.
Given such a pair (s , a) we obtain TT (s , a) defined as follows [4].

TT (〈〉, a) = TT (〈�〉, a) = pass → a → fail → STOP
TT (〈b〉� s , a) = inc → b → TT (s , a)

We use verdict events inc, pass , and fail ; the last of these events observed before
a deadlock indicates the outcome of the test. If the trace s cannot be followed,
we have an inconclusive verdict. If s is executed, then we have a pass , but if
after that the forbidden event a occurs, then we have a failure.

Execution ExecutionP
Q (T ) of a test T for an SUT Q is described by the

process (Q � αP � T )\αP . In words, the processes Q and T are executed in
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parallel, synchronising on the set of events αP used in the specification, which
are hidden. The set αP ⊆ Σ contains all events that P might use; its definition
is a modelling decision. If the events of αP were visible, that is, not hidden,
then the environment could potentially interfere with the test execution. By
hiding them, we specify that they happen as soon as possible, that is, as soon as
available in Q . The verdict events establish the outcome of the test execution.

Example 1. For the specification Rep = in?x → out !x → Rep, and for the empty
trace, and forbidden continuation out .0, we have pass → out .0→ fail → STOP
as a test for traces refinement. Similar tests arise for all output events out .x .
With the trace 〈in.0〉, we choose the value 0 to provide as input and have a test
inc → in.0→ pass → out .1→ fail → STOP . �

Example 2. A very simple traffic light controller that can be terminated at any
point using an event end can be specified as follows.

Lights = red → (amber → (green → Lights � end → SKIP) � end → SKIP)
�
end → SKIP

Some of its tests for traces refinement are pass → amber → fail → STOP and
inc → red → inc → amber → inc → green → pass → green → fail → STOP . �

Using TT , we obtain the following exhaustive test for traces refinement [4].

ExhaustT (P) = {TT (s , a) | s ∈ traces(P) ∧ a �∈ initials(P/s)}

The process P/s characterises the behaviour of P after engaging in the trace s ,
and initials(P) gives the set of events initially available for interaction with P .

As defined above, Q conf P requires checking that after a trace of both P
and Q , the refusals of Q are refusals of P as well. For that, we check that after
a trace of P , Q cannot refuse all events in a minimal acceptance set A of P . An
acceptance set A is such that (s ,A) is not a failure of P ; it is minimal if it has
no acceptance set as a proper subset. Formally, testing for conf is performed
by proposing to Q the traces s in traces(P), and then an external choice over
the events a in a minimal acceptance set of P . For a trace s and a (minimal)
acceptance set A, the test process TF (s ,A) is defined as follows.

TF (〈 〉,A) = fail → (� a ∈ A • a → pass → STOP)

TF (〈 a 〉� s ,A) = inc → a → TF (s ,A)

As for traces-refinement tests, the last event before a deadlock gives the verdict.
The exhaustive test set for conformance to P is shown below; it contains all

TF (s ,A) formed from traces s ∈ traces(P), and minimal acceptance sets A [4].

Exhaustconf (P) = {TF (s ,A) | s ∈ traces(P) ∧ A ∈ As}

The set As = min⊆({A | (s ,A) �∈ failures(P) }) contains the minimal accep-
tances after s . As already indicated, for failures refinement, the exhaustive test
set is ExhaustT (P) ∪ Exhaustconf (P), covering traces refinement and conf .
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2.3 Input-Output Labelled Transition Systems

An input-output labelled transition system (IOLTS) is a labelled transition sys-
tem in which we distinguish between inputs and outputs. IOLTSs have received
much attention in the software testing literature, due to the asymmetry between
input and outputs in testing. Formally, IOLTSs can be defined as follows.

Definition 1. An input-output labelled transition system is defined by a tuple
P = (P , I,O, T , pin) in which P is a countable set of states, pin ∈ P is the
initial state, I is a countable set of inputs, O is a countable set of outputs,
and T ⊆ P × (I ∪ O ∪ {τ}) × P , where τ represents an internal action, is the
transition relation. The sets I and O are required to be disjoint and τ �∈ I ∪O.
A transition (p, a, p′) means that from p it is possible to move to p′ with action
a ∈ I ∪O ∪ {τ}. A state p ∈ P is quiescent if all transitions from p are labelled
with inputs. We represent quiescence by δ and extend T by adding the transition
(p, δ, p) for each quiescent p, calling the resulting relation Tδ. Further, P is input
enabled if for all p ∈ P and ?i ∈ I there is some p′ ∈ P such that (p, ?i , p′) ∈ T .

A sequence s = a1, . . . , an ∈ (I ∪ O ∪ {δ})∗ of actions is a trace of P if there
exists a sequence (p1, a1, p2), (p3, a2, p4), . . . , (pn , an , pn+1) of transitions in Tδ
such that P can move from pin to p1 through a sequence of internal transitions
(those with action τ) and for all 1 ≤ i ≤ n it is possible to move from p2i to
p2i+1 through internal transitions. Given an IOLTS P , we let tr io(P) denote the
set of traces of P . Roughly speaking, an IOLTS action corresponds to a CSP
event, except that δ is not a CSP event, and � is not an action in IOLTSs.

3 Failures with Inputs and Outputs

The traces of a process P are not affected by the controllability of the events.
Therefore, the distinction between inputs and outputs does not affect the trace
model of CSP. Controllability, however, affects the notion of failures.

We define the input-output stable failures IOfailures(I,O)(P) of a process in
a context where the disjoint sets I and O of events identify the inputs and the
outputs. Synchronisation events, which do require agreement from the environ-
ment, are regarded as inputs. Stability here is characterised by the unavailability
of outputs (as well as internal events). A process that is ready to output is not in
a stable state because we assume that outputs are under the sole control of the
process: they do not require synchronisation, and therefore cannot be refused by
the environment. A process that can output can, therefore, choose to output and
evolve to a new state before considering any interaction with the environment.

It is our assumption that the SUT need not be input enabled, but we implicitly
require the environment to be input enabled, since it cannot block outputs from
the SUT. It is clear that many systems are not input enabled since, for example,
they provide interfaces where certain fields or buttons may not be available
depending on the state. (Such an SUT might be regarded as input enabled if
we consider inputs at the level of events such as mouse clicks, but this level of
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abstraction is rarely suitable for modelling.) Such an SUT normally does not
provide the user with the option to refuse outputs, since it controls the user
interface: to block outputs the user has to close down the interface, a process
that may send an input to the SUT in any case.

Our definition of IOfailures(I,O)(P) in terms of the set failures(P) of failures

of P is as follows. (This definition is similar to that of a hiding P \ O, but the
output events are not removed from the trace.)

Definition 2. IOfailures(I,O)(P) = { (s ,X ) | (s ,X ∪ O) ∈ failures(P)}
As already said, the stable states are those in which the output events are not
available: those in which P can refuse all of them. They are characterised by a
failure (s ,X ∪ O). For each of them, we keep in IOfailures(I,O)(P) the failure
(s ,X ). Since refusals are downward closed, (s ,X ) is also a failure of P . By
considering just the failures for which (s ,X ∪ O) ∈ failures(P), we keep in
IOfailures(I,O)(P) just the failures of P in its stable states. For every process P
and disjoint sets I and O, the pair (traces(P), IOfailures(I,O)(P)) satisfies all
the healthiness conditions of the stable-failures model [20]. Proof of this and all
other results presented here can be found in an extended version of this paper [6].

Example 3. We present the input-output failures of the process E3 below, in the
context indicated in its definition; the events corresponding to communications
over the channels inA and inB are inputs, and those over outA and outB are
outputs. We have inputs in choice and an input in choice with an output.

E3 =

⎛⎝inA?x → STOP � inB?x →

⎛⎝ inA?x → outA!1→ STOP
�
outB !1→ outA!1→ STOP

⎞⎠⎞⎠
For conciseness, we omit below the parameter ({|inA, inB |}, {|outA, outB |}) of
IOfailures . Also, if the value x communicated in an event c.x does not mat-
ter, we write c?x in failures. For example, (〈inA?x 〉, {|inA, inB , outA, outB ,�|})
represents a set of failures: one for each of the possible values of x in inA.x .

IOfailures(E3) = { (〈〉, {|outA, outB ,�|}), . . .
(〈inA?x 〉, {|inA, inB , outA, outB ,�|}), . . . ,
(〈inB?x , inA?x , outA.1〉, {|inA, inB , outA, outB ,�|}), . . . ,
(〈inB?x , outB .1, outA.1〉, {|inA, inB , outA, outB ,�|}, . . .}

In the above description, we omit the failures that are obviously included due
to downward closure of refusals. For instance, the empty trace 〈 〉 is paired
with all subsets of {|outA, outB ,�|} in IOfailures(E3). We observe, however,
that there are no failures for traces 〈inB?x 〉 or for traces 〈inB?x , inA?x 〉 and
〈inB?x , outB .1〉, for any values of x . This is because, after each of them, an
output is available. So, the states after these traces are not stable. �

Example 4. For outputs in choice, we have the example below.

E4 = out !0→ inA?x → STOP � out !1→ inB?x → STOP
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IOfailures(E4) = { (〈out .0〉, {|out , inB ,�|}), . . . , (〈out .1〉, {|out , inA,�|}), . . . ,
(〈out .0, inA?x 〉, {|out , inA, inB ,�|}), . . . ,
(〈out .1, inB?x 〉, {|out , inB , inB ,�|}), . . .}

There are no failures for 〈〉, since outputs are immediately available. �

Input-output failures cannot distinguish between internal and external choice of
outputs. In the example above, for instance, the failures would not change if we
had an internal choice. This reflects the fact that, in reality, the environment
cannot interfere with outputs. As shown by the next example, however, input-
output failures can distinguish internal and external choice in other situations.

Example 5. We have a nondeterministic choice between an input and an output.

E5 = inp?x → STOP ! out !1→ STOP

Corresponding to the possibility of the (internal) choice of inp?x → STOP , we
have failures for 〈〉. They indicate that an input cannot be refused in this case.

IOfailures(E5) = { (〈 〉, {|out ,�|}), . . . ,
(〈inp?x 〉, {|inp, out ,�|}), . . . , (〈out .1, 〉, {|inp, out ,�|}), . . .}

If we were to use an external choice in E5, then its initial state would be unstable,
as out .1 would be possible, and there would be no failure for 〈〉. �

Calculating input-output failures. As illustrated, not all traces are included in an
input-output failure. This is also the case in the standard stable-failures model,
where missing traces are those that lead to a divergent state. Here, missing traces
lead to a state where either divergence or an output is possible.

Using Definition 2, we can calculate characterisations of input-output failures
for the various CSP processes. A summary is provided in Table 1; proof of all
these results is provided in [6]. To allow us to consider IOfailures(I,O)(P) as
characterising a semantics for CSP processes P with inputs and outputs, we
need to define some well formedness rules. First, as already indicated, the sets
I and O of inputs and outputs must form a partition of Σ.

Second, in a parallelism P � X � Q , the processes P and Q must have the
same inputs and outputs I and O, and X can only contain inputs (X ⊆ I).
If X contains an output, unstable states of P and Q in which outputs are
available may become deadlocked, and so stable, if P and Q cannot agree on
the output. This is a strong restriction, but we observe that it is necessary only
for the compositional calculation of input-output failures (and consequently for
the use of IOfailures(I,O)(P) as a semantic function). It is always possible to use
Definition 2 to calculate input-output failures directly.

Third, for renaming, we require that the controllability of events is not changed:
renamed inputs are still inputs, and similarly, renamed outputs are still outputs.
In this way, given the sets I and O of inputs and outputs of P [[R]], we charac-
terise its input-output failures in terms of those for P when its input and outputs
are the relational images of I and O under R−1, the inverse of R.
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Table 1. IOfailures(I,O)(P) semantics

Process P IOfailures(I,O)(P)

STOP { (〈〉,X ) | X ⊆ Σ� }
SKIP { (〈〉,X ) | X ⊆ Σ } ∪ { (〈�〉,X ) | X ⊆ Σ� }
a → P {(〈〉,X ) | a 
∈ O ∧ a 
∈X } ∪ {(〈a〉� s,X ) | (s,X ) ∈ IOfailures(I,O)(P)}
P �Q IOfailures(I,O)(P) ∪ IOfailures(I,O)(Q)

P � Q {(〈〉,X ) | (〈〉,X ) ∈ IOfailures(I,O)(P) ∩ IOfailures(I,O)(Q)}∪
{(s,X ) | (s,X ) ∈ IOfailures(I,O)(P) ∪ IOfailures(I,O)(Q) ∧ s 
= 〈〉}∪
{(〈〉,X ) | X ⊆ Σ ∧ 〈�〉 ∈ traces(P) ∪ traces(Q)}

P � X � Q {(u,R) | ∃Y ,Z •
Y ∪ Z ∪O = R ∪O ∧ (Y \ (X ∪ {�})) ∪O = (Z \ (X ∪ {�})) ∪ O ∧
∃ s, t • (s,Y ) ∈ IOfailures(I,O)(P) ∧ (t ,Z ) ∈ IOfailures(I,O)(Q) ∧
u ∈ s � X � t}

P \ X { (s \ X ,Y ) | (s,Y ∪X ) ∈ IOfailures(I,O)(P) }
P ; Q {(s,X ) | s ∈ Σ∗ ∧ (s,X ∪O ∪ {�}) ∈ IOfailures(I,O)(P) } ∪

{(t � u,X ) | t � 〈�〉 ∈ traces(P) ∧ (u,X ) ∈ IOfailures(I,O)(Q)}
P [[R]] { (s ′,X ) | ∃ s R s ′ ∧ (s,R−1(X )) ∈ IOfailures(R

−1(I),R−1(O))(P) }

The input-output failures of STOP and SKIP are the same as their standard
failures. For a → P , the characterisation is slightly different. Before a takes place,
it cannot be refused, but this is a stable state only if a is not an output. So, we
only include failures for 〈〉 if a is not an output. For internal and external choices,
parallelism, hiding and sequence, input-output failures can be calculated in much
the same way as standard failures. In the definition of IOfailures(I,O)(P [[R]]), we
write R−1(X ) for the relational image of the set X under R.

Input-output failures refinement. Having introduced a new notion of failure, we
can now introduce the corresponding definition of refinement.

Definition 3 (Input-output Failures Refinement).

P �(I,O)
IOF Q =̂ traces(Q) ⊆ traces(P) ∧

IOfailures(I,O)(Q) ⊆ IOfailures(I,O)(P)

This is a straightforward adaptation of the notion of failures refinement.
Chaos is the bottom of this relation (as well as of the standard failures-

refinement relation). This is the process that can nondeterministically choose to
deadlock, accept or reject any of the inputs, and produce any of the outputs. Its
set of failures includes all possible failures, and consequently, so does its set of
input-output failures: (s ,X ∪ O) ∈ failures(Chaos) for every s and X . Like in
the standard model, the top of the refinement relation is div, the process that
diverges immediately. Its set of (input-output) failures is empty, independently
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of which events are inputs and which are outputs. Recursion is handled as in the
standard failures model: as the least fixed point with respect to ⊆.

Reduction of nondeterminism and possible deadlocks is a way of achieving
input-output failures refinement. For example, we can refine the process E5 in
Example 5 to either inp?x → STOP or out !1→ STOP . We have the following.

Lemma 1. P !Q �(I,O)
IOF P and P !Q �(I,O)

IOF P � Q

This follows directly from the definitions; all proofs omitted here are in [6].

4 Input-Output Failures Refinement and ioco

As already mentioned, much of the work on testing is based on labelled-transition
systems, and to cater for inputs and outputs, IOLTSs have been widely explored.
In this context, the implementation relation ioco [23] is normally adopted. In the
context of CSP, on the other hand, the conformance relation is refinement, and

in the previous section we introduced input-output failures refinement (�(I,O)
IOF ).

In this section, we explore the relationship between ioco and �(I,O)
IOF .

First of all, we provide a definition of ioco. We use two functions: given a state
q and a trace s ∈ (Σ∪{δ})∗, q after s is the set of states reachable from q using
s . Furthermore, we have that out(q) is the set of a ∈ (O ∪ {δ}) such that, from
q, the next observable event could be a. This definition extends to sets of states
in the usual way: for a set P ′ of states we have that out(P ′) = ∪q∈P′ out(q).

Definition 4. If Q is input enabled, we say that Q conforms to P under ioco,
written Q ioco P , if out(Q after s) ⊆ out(P after s), for every s ∈ tr io(P).

As a simplifying assumption ioco requires implementations to be input enabled,
which is natural for some domains of application. This avoids, for example,
accepting an implementation that can initially either deadlock or behave like P
as a valid implementation of P (a feature, for instance, of the CSP traces model).

Input-enabled processes cannot have (reachable) termination states. This in-
dicates that ioco does not distinguish termination from deadlock, but that is
not all. Conformance under ioco does not guarantee refinement.

Theorem 1. There are Q and P such that Q ioco P , but not P �(I,O)
IOF Q .

The observation of input-output failures can provide additional observational
power, when compared to traces that include quiescence. For example, it is
possible to distinguish internal and external choice of inputs. So, it is no surprise

that Q ioco P does not imply that P �(I,O)
IOF Q . Proofs of the above theorem

and of all other theorems in the sequel can be found in [6].
On the other hand, under ioco it is possible to observe the failure to produce

output (quiescence) before the end of a trace, while under input-output failures
refinements we only observe refusal sets at the end of a trace.

Theorem 2. There are Q and P such that P �(I,O)
IOF Q , but not Q ioco P .

We observe that the above results are not specific to input-output failures.
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In summary, �(I,O)
IOF and ioco are generally incomparable. On the other hand,

if we consider only input-enabled processes then ioco is strictly stronger.

Theorem 3. If Q and P are input enabled and Q ioco P , then P �(I,O)
IOF Q . It

is possible, however, that P �(I,O)
IOF Q , but not Q ioco P .

These results do not reflect on the value of one or the other conformance relation.
In the context of CSP, refinement, rather than ioco is the natural notion of
conformance, and input-enabledness is not an adopted assumption, although it
is possible to define input-enabled processes in CSP.

5 Testing

This section explores testing; we adapt the work developed for stable failures
refinement [4] described in Section 2. As already said, the notion of a trace is
not affected by the distinction between inputs and outputs. We can therefore
reuse the previous approach for testing for traces refinement. Additionally, like

in [4], we define the relation confO that models the requirements, under �(I,O)
IOF ,

on the input-output failures. As expected, it is similar to conf .

Q confO P =̂ ∀ t : traces(P) ∩ traces(Q) • Ref O(Q , t) ⊆ Ref O(P , t)

where Ref O(P , t) =̂ {X | (t ,X ) ∈ IOfailures(I,O)(P)}

The following shows the relevance of confO.

Lemma 2. P �(I,O)
IOF Q ⇔ traces(Q) ⊆ traces(P) ∧ Q confO P

The proof is similar to that in [4] for �T and conf , and is in [6].
Since ExhaustT (P) is exhaustive with respect to traces refinement, it is suffi-

cient to show how an exhaustive test can be produced for confO. Like for conf ,
by definition, to check Q confO P it is sufficient to check the refusal sets in
states reached by traces in traces(P) ∩ traces(Q). Since Q is not known, we
introduce tests to check the refusal sets after traces of P .

We use an approach similar to that of [4], which is formalised in the definition
of TF as presented in Section 2.2. At the end of a trace of P , we give a verdict
fail , but propose a choice of events which, if accepted by Q , lead to a pass
verdict. In the case of confO, however, we observe that if a trace leads to a
state of P that is unstable because it may produce an output, then a potentially
non-conformant implementation might deadlock, produce an unexpected output,
or move to another stable state before producing an output. Deadlock is not
allowed, and our tests for confO check that. Unexpected outputs are checked
by the tests for traces refinement. Finally, moving to another stable state may
or may not be allowed (due to the presence of nondeterminism), and whether
the inputs then required are allowed or not is also checked by traces refinement.
We, therefore, do not need as many tests for confO as we needed for conf .
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Example 6. Consider the following example in which there is an internal choice
between an input and two possible outputs.

E8 = inp?x → STOP ! (out !1→ STOP � out !2→ STOP)

Under stable failures the maximal refusal sets after 〈〉 are {out .1, out .2,�} and
{|inp,�|}, and so the minimal acceptancesA〈〉 contains all sets that contain out .1
and one input and all sets that contain out .2 and one input. For each of these,
we have one test for conf . On the other hand, in the initial internal choice, only
the choice of inp?x corresponds to a stable state and in this state only outputs
are refused. In this case, as formalised below, the minimal acceptances is the set
of sets that contain only one input. So, we have fewer tests for confO. �

Formally, like for Exhaustconf , we consider pairs (s ,A) �∈ IOfailures(I,O)(P). We,
however, restrict ourselves to A ⊆ I. This is justified by the following lemma.

Lemma 3. For every P with output events O, set of events Y such that Y ⊆ O,
and (s ,X ) ∈ IOfailures(I,O)(P), we have (s ,X ∪ Y ) ∈ IOfailures(I,O)(P).

The proof of this lemma is in [6]. Due to its converse (s ,A∪Y )�∈IOfailures(I,O)(P)
implies (s ,A) �∈ IOfailures(I,O)(P). Therefore, since for the construction of tests
we are interested in minimal acceptances, it is enough to consider A ⊆ I. We
check that such an A is not a refusal set of a stable state of Q reached by s .

We check this by using a test based on s followed by an external choice of
the events in A ∪ O. The set O is included to ensure that we get verdict fail
only through the observation of a refusal of A in a stable state of Q , in which
outputs are not available. If the test deadlocks, then this means that (s ,A) is in
IOfailures(I,O)(Q) and so we return verdict fail . If an event from A ∪ O occurs
after s then we return verdict pass . In fact, if an output is produced, the state
reached by s was not stable, and an inc verdict would also be appropriate, but
this distinction is not necessary: what we want to ensure is that a deadlock is
not possible. Finally, if s is not followed, then the verdict is inc. This leads to
the test TF (s ,A ∪ O), using the previously defined function TF .

In conclusion, we obtain the following test set for input-output failures.

ExhaustOconf (P) = {TF (s ,A ∪ O) | s ∈ traces(P) ∧ A ∈ AO
s (P)}

AO
s (P) = min{A ⊆ I | (s ,A) �∈ IOfailures(I,O)(P)}

This test is exhaustive for confO.

Example 7. We consider E8 again. In IOfailures(I,O)(E8), the failures with trace
〈〉 have subsets of {out .1, out .2,�} as refusals, and so AO

〈〉(E8) is the set of sets
that contain only one input as already said. For each of these, we have one test
that also accepts all outputs. For example, TF (〈〉, {inp.1} ∪ O). �

Theorem 4. For Q and P such that traces(Q) ⊆ traces(P), Q confO P if, and
only, if there is no TF (s ,A∪O) ∈ ExhaustOconf (P) such that Q fails TF (s ,A∪O).
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It might appear that ExhaustOconf (P) does not check refusals after traces s that
cannot take P to a stable state. This is not the case: since s cannot reach a
stable state of P , for all A ⊆ I we have (s ,A) �∈ IOfailures(I,O)(P) and so
AO

s (P) = min{A ⊆ I | (s ,A) �∈ ∅} = min{A ⊆ I}. Thus, AO
s (P) = {∅}. As

required, the SUT Q fails the corresponding test TF (s ,O) if s can reach a stable
state of Q , in which case Ref (Q , s) is non-empty despite Ref (P , s) being empty.
The other special case is where s can reach a deadlock or terminating state of
P , in which case {A ⊆ I | (s ,A) �∈ IOfailures(I,O)(P)} is empty and so AO

s (P)
is empty. We therefore obtain no tests for input-output failures with s ; this is
what we expect since all refusal sets are allowed after s .

We now consider how ExhaustOconf (P) relates to the set Exhaustconf (P) for
testing for stable-failures refinement [4]. In the case of E8, we have already
noted that there are twice as many tests in Exhaustconf (E8). The traffic light
example is more extreme since under input-output failures the only stable states
are terminating states. Thus, ExhaustOconf (Lights) = {TF (〈〉,O),TF (〈red〉,O),
TF (〈red , amber〉,O), . . .}: these tests check that the SUT cannot deadlock or
terminate without first receiving end . In contrast, Exhaustconf (Lights) would
also include tests such as TF (〈red〉, {end}) and TF (〈red〉, {amber}), which check
that after red the process cannot refuse amber and also cannot refuse end . The
following shows how the sets As(P) and AO

s (P) relate, the proof being in [6].

Lemma 4. If (s ,A) ∈ AO
s (P) then there exists Y ⊆ O where (s ,A∪Y ) ∈ As(P).

Thus, for every test produced for input-output failures refinement there is a
corresponding test produced for stable failures refinement. This shows that
ExhaustOconf (P) contains no more tests than Exhaustconf (P). As we have seen

with E6 and Lights , ExhaustOconf (P) can contain fewer tests.

6 Conclusions

This paper has explored a model, a refinement relation, and a testing theory
for CSP where we distinguish between inputs and outputs. This distinction is
important for testing since the tester (that is, the environment) controls inputs
and the SUT controls outputs. It is normal to assume that the environment does
not block outputs and, as a result, the composition of a tester and the SUT can
only deadlock if the SUT is in a stable state where outputs are not available. We
have thus defined a notion of failures, called input-output stable failures, which
distinguish between inputs and outputs and only allow refusals to be observed
in stable states where no outputs are enabled. We have defined the notion of
input-output failures, showed how these can be calculated for (well-formed) CSP
processes and defined a corresponding notion of refinement. We have also showed
how this relates to ioco and adapted the CSP testing approach of [4].

Refusals in the presence of inputs have been studied in [11,3,2]. The key dif-
ference between these previous approaches and ours is that they allowed refusals
to be observed in states where outputs are enabled. One possible justification for
this approach is the symmetry between the SUT and the tester, neither of which
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need to be input enabled; such a tester can block outputs and so can observe
refusals in states where outputs are enabled. What we suggest is that there are
systems that are not input enabled but whose environment is input-enabled. It
seems likely that there will be classes of system for which we can observe refusals
in states in which outputs are enabled, and so we can use implementation rela-
tions previously defined for IOLTSs, but also classes of systems for which these
previous approaches are not suitable. For example, synchronous devices consti-
tute environments that are not input enabled, on the other hand, as previously
discussed, systems that write to the screen (or to any asynchronous device) and
basically control its interface have an environment that is input enabled.

In occam, a programming language based on CSP [14], for instance, inputs
are distinguished from outputs. (This is, of course, necessarily the case in a
programming language.) In that context, there are restrictions on the use of
outputs. It is not possible, for instance, to have two outputs offered in an external
choice, since in this case, we have a nondeterminism as to the choice of output
communication that is going to be carried out. In abstract models, on the other
hand, such nondeterminism is not a problem.

In [15], the lack of inputs and outputs in CSP is handled by defining a notion
of test execution that takes this issue into account. The direction of the events
is used to determine how to carry out the tests and determine a verdict. All this
is formally defined, but soundness cannot be justified in the framework of CSP.

There are several lines of future work. Recent work has extended ioco to the
case where there are distributed observations, leading to the dioco implementa-
tion relation [12]. Like ioco, the dioco implementation relation is only defined
for input-enabled implementations. In addition, most of the work in this area
has assumed that specifications are also input-enabled and the generalisations
to the case where the specification need not be input-enabled are rather com-
plex [12]. Observing refusal of inputs might help simplify treatment of an input
not being enabled, but only in quiescent states; this could lead to simpler and
more general implementation relations for distributed systems.

We have observed that input-output failures refinement does not imply con-
formance under ioco because ioco allows partial observation of refusals before
the end of a trace. TheRT model for CSP allows the observation of a sequence of
events and refusal sets, and so it should be possible to adapt it to the case where
we distinguish between inputs and outputs as well, and in this case produce a
refinement relation strictly stronger than ioco.

The testing theory of Circus [17], an algebra that combines Z [24] and CSP, is
similar to that of CSP. It is based on symbolic tests, and already takes advantage
of the conventions of CSP to represent inputs and outputs more compactly.
To leverage the results here to that context, though, we need an input-output
failures model in the UTP [13], the semantic framework of Circus.
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Güdemann, Matthias 226

Hamura, Daigo 343
Haslinger, Evelyn Nicole 53
Heckel, Reiko 312
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