
FESA: Fold- and Expand-Based Shape Analysis�

Holger Siegel and Axel Simon

Technische Universität München, Institut für Informatik II, Garching, Germany
firstname.lastname@in.tum.de

Abstract. A static shape analysis is presented that can prove the ab-
sence of NULL- and dangling pointer dereferences in standard algorithms
on lists, trees and graphs. It is conceptually simpler than other analyses
that use symbolically represented logic to describe the heap. Instead, it
represents the heap as a single graph and a Boolean formula. The key
idea is to summarize two nodes by calculating their common points-to in-
formation, which is done using the recently proposed fold and expand op-
erations. The force of this approach is that both, fold and expand , retain
relational information between points-to edges, thereby essentially infer-
ring new shape invariants. We show that highly precise shape invariants
can be inferred using off-the-shelf SAT-solvers. Cheaper approximations
may augment standard points-to analysis used in compiler optimisations.

1 Introduction

Performing a shape analysis can help optimizing compilers to perform certain
program specializations, such as inlining of virtual functions, partial evaluation
(e.g. for fusing producers and consumers in functional languages [4]), or simply
to eliminate NULL pointer tests.

In order to make shape analysis amenable for compilers, an analysis should be
flexible in its precision to allow tuning its scalability. In this work we present a
shape analysis whose performance depends on a numeric domain that can be im-
plemented using off-the-shelf convex approximations [20], although we represent
the state exactly using a SAT solver to illustrate its precision.

Our shape analysis can be seen as an instance of TVLA with one crucial sim-
plification: The logic inherent in our analysis avoids a recursive transitive closure
operator (RTC), as it is used in TVLA to encode reachability. For instance, a
linked list with head H and a summarized tail T starting in a stack variable x is
commonly encoded in TVLA as x(H) = tn(H,H) = tn(H,T) = 1∧tn(T, T) = 1

2 ,
meaning that x points to H , and from H we can reach H and T by following the
n field zero or more times, from T we may reach T by following the n field zero
or more times. The tn predicate models transitive reachability and is defined
using the RTC operator. Retaining this linked list invariant requires nontrivial
integrity constraints on tn, since the 1

2 value of the tn(T, T) predicate proliferates
during the evaluation of transfer functions. Rather than encoding reachability

� This work was supported by DFG Emmy Noether programme SI 1579/1.

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 82–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FESA: Fold- and Expand-Based Shape Analysis 83

a) x = y = new_node();
while(rnd()) {
*y = new_node();
y = *y;

}

b)
x

y

A

xA

yA
o
i

Fig. 1. allocating a linked list

a)
x y

A

xA yA

b) x y

A

B

xA

yB

AB

c)
x y

A

B

C

xA

yCAB

BC

Fig. 2. calculating the state in the while-loop

directly, we only encode node-local information: (1) the existence of nodes and
points-to edges, (2) the number of incoming nodes and (3) the number of out-
going edges. We show that these three properties suffice. In fact, we replace
the set of graphs and their three-valued interpretation used in TVLA by a set
of two-valued interpretations of a single graph. Thus, the omission of the RTC
operator allows us to define a property-based shape analysis where a state is
simply described by one graph and a single Boolean formula. The contribution
of our work lies in describing how to perform summarization and materializa-
tion of nodes using sets of two-valued interpretations. Specifically, the insight in
this paper is that invariant relations between neighboring nodes can be inferred
during summarization using a relational fold operation that was recently de-
fined for numeric domains [19]. A symmetric expand operation duplicates these
relations when a summary cell is materialized back into two heap cells, one of
which is a concrete non-summary cell. While the semantic information aggre-
gated and duplicated by these two functions is nontrivial, their implementation
is straightforward. This simplicity stands in contrast to previous work on using
Boolean formulae as interpretation in the context of predicate abstraction [15]
that requires sophisticated abstraction refinement techniques to obtain sufficient
precision. Although our analysis does not explicitly maintain the linked list in-
variant, by virtue of the inferred relations between these predicates, it is precise
enough to distinguish between lists, trees and graphs, which is not possible in
TVLA without defining specific properties. We now demonstrate how inference
of relational information replaces the validation of TVLA’s linked list invariants.

84 H. Siegel and A. Simon

a)
x y

A

B

C

xA yA

yB

yCAB

BC

b)
x y

A

B

C

xA yA

yB

yCAB

BC

c)
x y

A

B

C

xA yA

yB

yCAB

BC

d)
x y

A

B

C

xA yA

yB

yCAB

BC

Fig. 3. Joining states

Consider the C program in Fig. 1a) that constructs a singly linked list. We
will first show how the allocated cells can be summarized into a single summary
node A, resulting in the heap in Fig. 1b). For the sake of exposition, we only
show information pertaining to points-to edges.

Before the loop in Fig. 1a) is entered for the first time, x and y both point to a
single node allocated by new_node(). The corresponding heap in Fig. 2a) depicts
program variables as diamonds and heap-allocated cells as circles. Figure 2b)
shows the state after one iteration. Here, y points to the newly allocated heap
cell B. Figure 2c) shows the state after another iteration.

In order to represent the three states in a single abstract state, we represent
heaps using a points-to map (a graph) and a numeric state. The points-to map
takes each heap cell or program variable to a set of points-to edges and is shown
as a directed graph. Each points-to edge is then further qualified by a flag that
is mapped to zero or to one by the numeric domain. In particular, a flag fAB

maps to one iff the edge from node A to node B exists. For instance, the state
before the loop consists of the points-to map shown in Fig. 2a) and the numeric
state 〈fxA, fyA〉 ∈ {〈1, 1〉}. The state after one iteration consists of the points-to
map shown in Fig. 2b) and the numeric state 〈fxA, fyB, fAB〉 ∈ {〈1, 1, 1〉}. After
another iteration, the state consists of the points-to map in Fig. 2c) and the
numeric state 〈fxA, fyC , fAB, fBC〉 ∈ {〈1, 1, 1, 1〉}.

These three states cannot be merged directly, since their sets of edges and
nodes are different. We therefore make them compatible to each other by adding
missing edges and nodes. Figure 3a) shows how adding nodes B and C and edges
yB, yC, AB and BC to Fig. 2a) gives a compatible points-to graph with numeric
state 〈fxA, fyA, fyB, fyC , fAB, fBC〉 ∈ {〈1, 1, 0, 0, 0, 0〉}. Figure 3b) and c) show
how the states in Fig. 2b) and c) are made compatible with the corresponding
numeric states {〈1, 0, 1, 0, 1, 0〉} and {〈1, 0, 0, 1, 1, 1〉}, respectively. The merge of
these compatible states is completed by joining the three numeric states into
a single state b := {〈1, 1, 0, 0, 0, 0〉 〈1, 0, 1, 0, 1, 0〉 〈1, 0, 0, 1, 1, 1〉}. The benefit of
this representation is that the three heap configurations are all encoded by the
graph in Fig. 3d) and the numeric state b.

FESA: Fold- and Expand-Based Shape Analysis 85

a) do {
z = x;
x = *x;
free(z);

} while(x);

b)
x

z D

A
xA

zD

DA
o
i

Fig. 4. Deallocating a linked list

The latter graph and state b can now be transformed into a graph where all
list nodes are summarized into one node as shown in Fig. 1b). To this end, our
analysis uses the points-to graph to determine which edges to overlay and then
applies a relational fold operation from [19] in order to summarize the corre-
sponding dimensions. As a result, the dimensions 〈fxA, fyA, fyB, fyC , fAB, fBC〉
corresponding to Fig. 3d) are mapped to the dimensions 〈fxA, fyA, fi, fo〉 cor-
responding to Fig. 1b). This summary state represents the common points-to
properties of all nodes, where the edges fi and fo represent the in- and outgoing
edges connecting A with another instance of A. This instance is drawn with a
dotted circle and is henceforth called the ghost node of A.

Interestingly, if we were to summarize a list with up to four nodes, we would
obtain the same summarized state. Indeed, the summarized state is a fixpoint for
the loop. This, in turn, implies that the summary represents a singly linked list of
arbitrary size.Theanalysis has thus inferred that the loopconstructs a singly linked
list that commences in x and ends in the node pointed to by y. The numeric state of
the fixpoint is quite subtle and describes the various rôles the summary node can
take on: the list head A in Fig. 3a); the list head A in b), c); the unreachable nodes
B,C in a) andC in b); the final nodeB in b) andC in c); and the inner nodeB in c).
The key observation is that the relational fold is able to automatically synthesize
these rôles and that the Boolean function maintains the distinction between them,
thereby inferring very strong shape invariants. Note, though, that the invariant
does not state which roles of A are possible. Thus, it might be that A only occurs
in its role as a middle element of a list, thereby forming a cyclic list in the heap.
Only the fact that x points to A and the relational information on A forces A to
take on the role as list head and as list tail, thereby stating that it is an acyclic
list. The inference of a precise relational summary using fold therefore replaces the
verification of a linked-list invariant done by TVLA.

We now consider the loop in Fig. 4a) that deallocates a linked list. In our
analysis, a summary node is materialized each time it is accessed. Thus, all
modifications to heap nodes are performed on materialized nodes, which ensures
that the abstract transformers are easy to derive since they closely follow the
concrete transformers. Consider the assignment x = *x in the third line. Since
the dereference *x would access a summary node, our analysis materializes a
node D from the summary before executing the assignment. This materialization
results in a state with the points-to set depicted in Fig. 4b).

In this particular case it is possible to free the node D by simply removing
it from the graph. After z goes out of scope, the resulting graph is already
compatible with that at the loop head. A fixpoint for the numeric domain is
observed after one further iteration.

86 H. Siegel and A. Simon

When evaluating the expression *x, the analysis checks that the numeric do-
main maps at least one edge in the points-to set of x to one. If this is not the case,
a warning is emitted, stating that x can be NULL. In the example, our analysis
is precise enough to verify the absence of NULL-pointer dereferences. Indeed, it
can infer invariants that distinguish lists from trees from graphs. In contrast to
other analyses [7,12], no extra effort is needed to make our analysis robust with
respect to variations of these basic data structures (position of pointer fields, use
of sentinel nodes instead of NULL values or the use of back pointers).

Overall, our shape analysis lies at a sweet-point between precision and sim-
plicity by building on the following contributions presented in this work:

– a shape representation using points-to relations qualified by {0, 1}-vectors,
thus substituting the common approach of representing heaps using a logic
with simple transformers operating on a single graph and a numeric state

– a shape analysis for which transformers are easy to derive since they never
operate on summary nodes and thus directly follow the concrete transformers

– the use of relational fold and expand operators [19] to summarize and materi-
alize heap cells, allowing for a highly precise inference of new shapes; indeed,
we can synthesize the strongest invariant when summarizing two heap cells

– the observation that only two extra properties suffice to distinguish common
classes of data structures [21] as long as these are tracked with high precision;
allowing us to verify programs operating on lists, trees and graphs

We present the principles of our shape analysis before Sect. 3 formalizes it for a
C-like language. An analysis of trees is presented in Sect. 4 before Sect. 5 details
our implementation. Section 6 discusses related work before Sect. 7 concludes.

2 Shape Analysis Using Numeric Domains

A shape analysis finitely summarizes a set of potentially unbounded, concrete
shape graphs into an abstract representation. Before we define the abstract do-
main of points-to sets and numeric states, we consider concrete heap shapes.

Let A be a set of symbolic addresses. With each memory cell M we associate
a unique symbolic address AM ∈ A. A concrete shape graph is a partial map
c : A → ℘(A) that maps each allocated memory cell to its points-to set c(AM):
When c(AM) = {AN} and AN ∈ dom(c) then memory cell M contains a pointer
to memory cell N . When c(AM) = ∅ then the memory cell M contains NULL. A
points-to graph may also contain cells whose content does not represent a proper
pointer value: When |c(AM)| > 1 or c(AM) = {AN} with N �∈ dom(c) then M
contains an invalid pointer, namely, one that should not be dereferenced.

The remainder of the section presents the abstract states that represent sets of
concrete shape graphs; it discusses summarization and materialization of nodes
and addresses the correctness of these operations.

2.1 Abstract Shape Graphs

The building block of our shape analysis is a points-to set that is further quali-
fied by a set of {0, 1}-vectors. In particular, we define a flow-sensitive points-to

FESA: Fold- and Expand-Based Shape Analysis 87

analysis [11] by associating each memory cell M with a points-to set of the form
{〈f1, A1〉, . . . 〈fk, Ak〉} ⊆ X ×A where X is a set of flags. A numeric domain as-
sociates each flag with a value drawn from {0, 1}. The idea is that Ai ∈ c(AM)
if the flag fi is mapped to one [20]. Thus, a memory cell can be dereferenced if
exactly one flag in its points-to set is mapped to one by the numeric domain. In
order to define this combined domain, we first present the numeric domain.

The Numeric Domain. The possible configurations of flags are given by a nu-
meric domain Bn := ℘({0, 1}n) that holds sets of {0, 1}-vectors of dimension
n. As a numeric domain, Bn can be modified by removing, adding and swap-
ping dimensions or by restricting their values. The removal of dimension i from
b ∈ Bn is defined by dropi(b) = {〈v1, . . . , vi−1, vi+1, . . . , vn〉 | 〈v1, . . . vn〉 ∈ b}. We
write dropi1...ik

= dropi1 ◦ · · · ◦dropik
for ascending sequences i1 . . . ik of indices.

A dimension is added to b ∈ Bn using add i(b) = {〈v1, . . . , vi−1, v, vi, . . . , vn〉 |
〈v1, . . . , vn〉 ∈ b, v ∈ {0, 1}}. We write add i1...ik = add ik ◦ · · · ◦ add i1 for ascend-
ing sequences i1 . . . ik of indices. A swap of two dimensions i and j in b ∈ Bn is
denoted as swapi,j(b). It lifts naturally to two sequences of equal length.

For presentational purposes, we use flag names as synonyms of vector indices
and assume sequences of dimensions to be in ascending order wherever they
occur. Moreover, we write addf (b) to associate a new dimension with the flag
name f . We omit the number of dimensions of the numeric domain, as it is equal
to the number of stored flags. Using this convention, restricting a numeric state
b ∈ B is denoted by b[[expr]] = {b ∈ b | expr}. For instance, b[[f = 0]] denotes all
vectors b ∈ b in which the dimension associated with flag f maps to zero, and
addf2(b)[[f2 = 1− f1]] denotes an assignment of 1− f1 to a fresh dimension f2.

The Points-to Domain. A points-to state p : A → ℘(X ×A) maps (the address
of) each memory cell to its points-to set. The set of points-to states is denoted
by P . Writing a points-to set v to a memory cell at address A in state p ∈ P is
denoted by the update p[A �→ v]. We use a combined abstract state p� b ∈ PB

where PB is a new abstract points-to domain in which p is refined (qualified) by a
numeric domain b ∈ B. An operation on a state p�b adjusts p, thereby modifying
the set of flags in the points-to sets, which, in turn, requires adjustments to b ∈ B.

An abstract heap description must be able to represent concrete heaps c1, c2
with different numbers of cells, that is, dom(c1) �= dom(c2). For example, a heap
cell may be deallocated in one state but not in another. In order to ensure that
accessing a non-allocated region can be flagged as “dangling pointer” error, the
numeric domain tracks an additional flag f∃M for each heap-allocated cell M
that is one iff M is allocated, that is, if AM ∈ dom(c). For brevity, we generally
omit the f∃X flags in the presentation of the upcoming examples whenever they
are constant one in the numeric state b ∈ B, but we consider this example first:

Example 1. The points-to domain of the linked list in Fig. 5a) can be given
by p = [Ax �→ {〈fxA, AA〉}, AA �→ {〈fAB, AB〉}, AB �→ {〈fBC , AC〉}] where
Ax, AA, AB and AC are the addresses of memory cells x, A, B and C, respec-
tively. The numeric domain 〈fxA, fAB, fBC , f∃A, f∃B, f∃C〉 ∈ {〈1, 1, 1, 1, 1, 1〉}

88 H. Siegel and A. Simon

a) x A B CxA AB BC
b) x A BxA AB

Fig. 5. Two linked lists

assures that dereferencing the contents of x, A and B is safe since in each points-
to set exactly one flag has value one and all heap cells are allocated.

Lattice Operations on Abstract States. Whenever the control flow merges with
states p1 � b1 and p2 � b2, the analysis continues with the joined state p1 � b1 �
p2 � b2, which is p1 � b1 ∪ b2 if p1 = p2. Checking for fixpoints when analyzing
loops requires a subset test p1 � b1 � p2 � b2 that reduces to b1 ⊆ b2 if p1 = p2.
An analogous definition for � yields the complete lattice 〈PB,�,�,�〉.

In general, the points-to domains p1 and p2 may be different: Before they can
be joined or compared, they must be made compatible by adding edges and nodes
to p1, p2: When pi contains a node M that is not present in pj , the missing node
is added to pj using pj [AM �→ ∅] and f∃M = 0 is added to bj , indicating that M
is not allocated. When pi contains an edge from some node M to some node N
that is not present in pj , the edge is added to the points-to set of M in pj and
the corresponding numeric flag fMN is introduced in bj with value zero. Further
adjustments are necessary for summary nodes and instrumentation predicates
which are defined analogously. Consider again the lists in Fig. 5:

Example 2. Joining the heaps of Fig. 5a) and Fig. 5b) yields the points-to state
of Fig. 5a) with 〈fxA, fAB, fBC , f∃A, f∃B, f∃C〉 ∈ {〈1, 1, u, 1, 1, u〉 | u ∈ {0, 1}}.

2.2 Summarizing Nodes

This section illustrates how the previously defined operations are used to sum-
marize two heap cells, which is a three-step process: First, both nodes are made
compatible, then the edges between them are removed, and finally the numeric
flags of one cell have to be merged with those of the other cell. Materialization
applies the last two steps in reverse order. We consider each step in turn.

Making Nodes Compatible. Suppose that we summarize nodes A and B of the
three-element linked list in Fig. 5. In order to merge the numeric information
stored for the points-to information of A and B, both must have the same set of
incoming and outgoing edges. To this end, they are made compatible by comple-
menting the edge from x to A with a new edge from x to B and adding the flag
fxB = 0. Similarly, the edges from B to C and from A to B are complemented
with edges from A to C and from C to B, yielding the state in Fig. 6a).

Disconnecting the Nodes. The points-to information between A and B can no
longer be represented as edges between different nodes of the graph once they
are summarized. We therefore introduce a ghost node to which these edges point,
indicating that they point to a different instance of the summarized node. To

FESA: Fold- and Expand-Based Shape Analysis 89

a) nodes A and B are compatible b) nodes A and B are disconnected

x

A

B

C

xA

xB

AB

AC

BA

BC x

A

B

C

xA

xB

oA

iA

AC

iB

oB

BC

〈fxA, fxB , fAB , fBA, fAC , fBC〉 〈fxA, fxB , fAC , fiA, foA, fBC , fiB , foB〉
∈ {〈1, 0, 1, 0, 0, 1〉} ∈ {〈1, 0, 0, 0, 1, 1, 1, 0〉}

c) node B is folded onto node A d) nodes A and C are compatible

x A

C

xA

oA

iA

AC

x

A

C

xA

xC

oA

iA

AC

CA

〈fxA, fAC , fiA, foA〉 ∈ 〈fxA, fxC , fAC , fCA, fiA, foA〉 ∈
{〈x, 1− x, 1− x, x〉 | x ∈ {0, 1}} {〈x, 0, 1− x, 0, 1− x, x〉 | x ∈ {0, 1}}

e) nodes A and C are disconnected f) node C is folded onto node A

x

A

C

xA

xC

oA
iA

oC

iC

x AxA oA
iA

〈fxA, fxC , fiA, foA, fiC , foC〉 ∈ 〈fxA, fiA, foA〉 ∈
{〈y, 0, x, 1− x, 1− y, y〉 | x, y ∈ {0, 1}} {〈y, x, 1− x〉 | x, y ∈ {0, 1}}

Fig. 6. Folding and expanding a linked list

this end, we assign the value of fAB to the flag foA that represents the out-edge
from A to its ghost node and to flag fiB that represents the in-edge from its
ghost node to B. In the same way, we assign the value of fBA to fiA and to foB.
Finally the edges between A and B are discarded, giving the state in Fig. 6b).

Summarizing Numeric Information. Note that the points-to sets of A and B
now contain the same set of addresses, so that each flag associated with B can
be merged with the respective flag of A. Merging and duplication of flags is based
on fold and expand which is defined as follows [19]:

Definition 1. Given the k dimensions i1 . . . ik and k dimensions j1 . . . jk, define
fold i1...ik,j1...jk

: Bn+k → Bn and expand : Bn → Bn+k as follows:

fold i1...ik,j1...jk
(b) = dropj1...jk

(b ∪ swapi1...ik,j1...jk
(b))

expand i1...ik,j1...jk(b) = add j1...jk(b) ∩ swapi1...ik,j1...jk(add j1...jk(b))

Intuitively, the fold operation merges the information over j1 . . . jk with that
over i1 . . . ik and removes j1 . . . jk. This process discards all information between

90 H. Siegel and A. Simon

a)
x A

D

xA

xD

oA

iA
oA’

iA’

DA

AD

oD

iD

b)

x

A

D

xA

xD

oA

iA

AD

DA

〈fxA, fiA, foA, fxD, fAD, fDA〉 ∈
{〈y, x, 1− x, u, v, 1− v〉 | u, v, x, y ∈ {0, 1}}

Fig. 7. Materializing D from A, given the state of Fig. 6f)

i1 . . . ik and j1 . . . jk but retains any relational information that holds for both
i1 . . . ik and j1 . . . jk. Symmetrically, expand retains relations within i1 . . . ik when
duplicating them to j1 . . . jk but, unlike an assignment j1 := i1, induces no
equality between j1 and i1. In the example, the flags fxB, fBC , fiB, foB are folded
onto the flags fxA, fAC , fiA, foA by applying fold fxAfACfiAfoA,fxBfBCfiBfoB to the
numeric state. Note that this operation retains the relations that exist in each
group of flags as shown in Fig. 6c). Here, the summarized state retained that
the node that points to C is not the one pointed to by x since fxA �= fAC .

Summarizing Summaries. Now we merge the summary node A with node C
which has to be made compatible first as shown in Fig. 6d). Since A already
has a ghost node, the flags fiA, foA are already present in the numeric domain.
Therefore, the information of fiA, foA has to be merged with that of fAC , fCA.
The intuition is that after summarizing A and C, there is no distinction between
the edges from A to C and edges from A to nodes that have been previously
merged with A. On the numeric state, flags fiC , foC are introduced with fiC =
fAC , foC = fCA and flags fCA, fAC are folded onto fiA, foA by operation
foldfiAfoA,fCAfAC

, yielding the state in Fig. 6e). Now all flags of node C are
folded onto those of A by operation fold fxAfiAfoA,fxCfiCfoC , giving the state in
Fig. 6f).

2.3 Materializing Nodes from Summaries

In this section we discuss how to materialize a node from a summary node in two
steps: first, the summary node is duplicated by applying expand to its numeric
flags; second, the edges between the summary and the new node are synthesized
using the edges to the ghost node. Consider expanding D from node A in Fig. 6f).

The first step applies expandfxAfiAfoA,fxDfiDfoD to the numeric state, resulting
in 〈fxA, fiA, foA, fxD, fiD, foD〉 ∈ {〈y, x, 1 − x, u, v, 1 − v〉 | u, v, x, y ∈ {0, 1}}.
After that, it remains to reconstruct the edges between A and D: since node D is
concrete and node A is a summary, we may assume that the flags fDA, fAD are
equal to flags foD, fiD and also equal to flags that have been summarized with
fiA, foA in the process of summarization. Thus, we first add the edges between
A and D and their corresponding flags fAD, fDA by renaming flags fiD, foD in
Fig. 7a). In order to assert the equality with an instance of the edges fiA, foA, we
duplicate them to f ′

iA, f
′
oA using expandfiAfoA,f ′

iAf ′
oA

and enforcing the equality

FESA: Fold- and Expand-Based Shape Analysis 91

by restricting the numeric state b to b[[fAD = f ′
oA ∧ fDA = f ′

iA]]. The flags f ′
iA,

f ′
oA are removed using drop, resulting in the state shown in Fig. 7b).
In contrast to the initial state in Fig. 6a), in the materialized state variable

x may also contain NULL (since fxA = fxD = 0 is possible) or an invalid pointer
(since fxA = fxD = 1 is possible). This precision loss is caused by summarizing
the flags fxB and fxC onto fxA, which makes them indistinguishable. Sect. 4.1
details how the validity of pointers can be maintained despite summarization. We
conclude this section with an observation on the soundness of summarization.

2.4 Soundness of Summarization

We assume the existence of a function summarize that summarizes two nodes
and a function materialize that expands summary nodes as described above and
leaves non-summary nodes unchanged:

Definition 2. Define summarize : A × A × PB → PB such that in state
summarize(AM , AN , p� q) node M is a summary of M and N of state p� q.

Define materialize : A×PB → PB such that for p′� b′ = materialize(AN , p�
b), some new address AC ∈ dom(p′)\dom(p) points to the materialized concrete
node in state p′ � b′ if N is a summary in p� b, and p′ � b′ = p� b otherwise.

Note that we assume that materialize recognizes a node M as summary node
by observing the existence of the flags fiM , foM in the numeric domain. As
shown in [19], the pair (fold i1...ik,j1...jk , expand i1...ik,j1...jk) forms a Galois con-
nection, from which follows that folding dimensions j1 . . . jk onto dimensions
i1 . . . ik of a numeric state and then re-expanding dimensions j1 . . . jk yields an
over-approximation of the initial numeric state. The following observations states
that this extends to summarizing and then re-expanding a pair of nodes in the
abstract shape graph.

Observation 1. For all states p� b ∈ PB and addresses A1, A2 ∈ dom(p) there
is p � b � materialize(A1, summarize(A1, A2, p � b)) up to the renaming of the
materialized node.

We will allow our analysis to summarize nodes in one sequence and afterwards
materialize them in a different sequence. To ensure soundness, the result of
summarizing and expanding a set of nodes must therefore be independent of
the chosen sequence. It suffices that changing the order in which two nodes are
materialized does not change the result, which is asserted as follows:

Observation 2. For all states p � b ∈ PB and addresses A1, A2 ∈ dom(p),
materialize(A1,materialize(A2, p� b)) = materialize(A2,materialize(A1, p� b))
holds up to the renaming of the materialized nodes.

As a result, a shape analysis that relies on the operations summarize and
materialize may summarize heap cells at any point and re-expand them on de-
mand, namely when accessing the content of a summarized heap cell. The next
section puts this into practice by defining an abstract interpreter for a C-like
language which is later enriched to work on summaries.

92 H. Siegel and A. Simon

[[x=NULL]]�c = c[Ax �→ ∅]
[[x=y]]�c = c[Ax �→ c(Ay)]

[[x=&y]]�c = c[Ax �→ {Ay}]
[[x=malloc()]]�c = c[Ax �→ {AN}, AN �→ ∅] where AN fresh

[[x=*y]]�c = c[Ax �→ c(A)] where {A} = c(Ay)

[[*x=y]]�c = c[A �→ c(Ay)] where {A} = c(Ax)

[[free(x)]]�c = c \ A where {A} = c(Ax)

[[if (x==NULL) t else e]]�c =

{
[[t]]�c if c(Ax) = ∅
[[e]]�c otherwise

Fig. 8. Concrete semantics of a C-like language

3 Shape Analysis of a C-Like Language

We present a language with explicit memory management using malloc and free
which mimic their C counterparts. In contrast to C, we assume that program
variables and heap cells are initialized to NULL and that they hold only one value;
a simplification for the sake of clarity which is not present in our implementation.

The semantics of our language in Fig. 8 operates on concrete heap shapes as
defined in Sect. 2. In a heap c, a cell M is allocated iff AM ∈ dom(c). Thus
[[x=malloc()]]� adds a mapping for a new address AN to c and [[free(x)]]� re-
moves the mapping for A, denoted by c \A. Analogously, stack variables x,y,. . .
are stored at Ax, Ay, . . . where Ax ∈ dom(c) iff x is in scope. Note that a state
c containing an invalid pointer in cell M (with |c(AM)| > 1 or c(AM) = {AN}
with AN �∈ dom(c)) is not an error, only dereferencing M is. This is addressed
by the rules [[x=*y]]�, [[*x=y]]�, and [[free(x)]]� that are undefined if the derefer-
enced cell does not hold exactly one pointer or if the pointed-to cell at A is not
allocated, that is, if A /∈ dom(c). The goal of the analysis is to prove the absence
of undefined behavior. Note that invalid pointers cannot arise in the concrete
semantics, but may arise due to approximations in the abstract semantics, which
is presented next.

3.1 Abstract Semantics

An abstract interpretation is sound if the abstract semantics [[s]]� of each state-
ment s approximates its concrete semantics [[s]]�, that is, if [[s]]�◦γ ⊆ γ◦[[s]]� with
[[s]]�(C) := {[[s]]�(c) | c ∈ C} [9]. In order to derive this semantics, we first define
a concretization function γ0 that relates each abstract cell M to one concrete
memory cell if AM exists (that is, if its f∃M flag is one):

Definition 3. Function γ0 : PB → ℘(A → ℘(A)) is given by

γ0(p� b)=
{
[AM �→{Ai | 〈fi, Ai〉 ∈ p(AM) ∧ b(fi)=1}]AM∈dom(p)∧b(f∃M)=1 |b ∈ b

}

where b(fi) denotes dimension fi of a vector b.

FESA: Fold- and Expand-Based Shape Analysis 93

[[x=NULL]]�(p� b) = p[Ax �→ ∅]� drop{f |〈f,_〉∈p(x)}(b)
[[x=y]]�(p� b) = p[Ax �→ {〈fx1, A1〉, . . . , 〈fxn, An〉}]�

addfx1...fxn(drop{f |〈f,_〉∈p(x)}(b))[[fx1 = fy1, . . . , fxn = fyn]]

where x �= y and p(y) = {〈fy1, A1〉 . . . , 〈fyn, An〉}
[[x=&y]]�(p� b) = p[Ax �→ {〈fxy , Ay〉}]� addfxy (drop{f |〈f,_〉∈p(x)}(b))[[fxy = 1]]

[[x=malloc()]]�(p� b)=[[x=&N]]�(p[AN �→ ∅]� addf∃N
(b)[[f∃N =1]]) where AN fresh

[[*x=y]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ax,(p�b))[[z=y]]
�(p′ � b′)

[[x=*y]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ay ,(p�b))[[x=z]]
�(p′ � b′)

[[free(x)]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ax,(p�b)) p
′ � b′[f∃z �→ 0]

[[if (x==NULL) t else e]]�(p� b)= [[t]]�(p� b[[fx1 = 0 ∧ . . . ∧ fxn = 0]])

 [[e]]�(p� b[[fx1 = 1 ∨ . . . ∨ fxn = 1]])
where p(Ax) = {〈fx1, A1〉, . . . 〈fxk, Ak〉}

Fig. 9. Abstract semantics

The abstract semantics [[s]]� that lifts the concrete semantics [[s]]� of a state-
ment s to the abstract domain PB is shown in Figure 9. Here, [[x=NULL]]� removes
all previous flags f of the points-to set of x from b using drop and empties p(Ax).
These stale flags are also removed in [[x=y]]� before the new flags fx1, . . . fxn are
set to the values of fy1, . . . fyn of y. Analogously for [[x=&y]]�. Allocating heap
cells with [[x=malloc()]]� chooses a fresh address AN . The fact that AN is a valid
cell is stated by adding the flag f∃N with value one to b. The result x is set to
point to the new address AN using [[x=&N]]�.

The next three statements dereference pointers. Each statement dereferences
the pointer contents using function deref : A×PB → ℘(A×PB). This function
partitions the passed-in state depending on the address that is pointed to:

deref (A, p� b) =
⋃

(_, B)∈p(A)

φ(A,B, p� b) \ {warn}

Here, a call φ(A,B, p � b) to the auxiliary function φ : A × A × PB → ℘(A ×
PB) ∪ {warn} returns a state in which the cell at A points to the address B:

φ(A,B, p� b) = {(B, p� b[[f1 + . . .+ fn = 1 ∧ fAB = 1 ∧ f∃B = 1]])} (1)
∪ {warn | b[[f1 + . . .+ fn �= 1]] �= ∅} (2)
∪ {warn | b[[f1 + . . .+ fn = 1 ∧ fAB = 1 ∧ f∃B = 0]] �= ∅} (3)

where p(A) = {〈f1, A1〉, . . . , 〈fn, An〉}. Value warn indicates a possible run-time
error that has to be reported by the abstract interpreter: it is issued whenever a
points-to set may point to none or more than one memory cell (Eqn. 2), or when
the heap cell pointed to is not allocated due to, for instance, free() (Eqn. 3).

For each tuple 〈B, p′ � b′〉 returned by function deref , [[*x=y]]� writes y to
address B, [[x=*y]]� reads from address B, and [[free(x)]]� deallocates address B
in state p′ � b′, and the results are joined. Finally, the rule for the conditional
partitions the state p� b such that x is NULL and non-NULL.

We note that our abstract semantics fulfills the soundness condition from above:

94 H. Siegel and A. Simon

Observation 3. For any statement s, there is [[s]]� ◦ γ0 = γ0 ◦ [[s]]�. Given α0 :

℘(A → ℘(A)) → PB with α0(c) = �{a | c ⊆ γ(a)} there is α0 ◦ [[s]]� = [[s]]� ◦ α0.

Moreover, the observation states that the abstract semantics exactly mirrors
the concrete semantics. However, abstract states can grow arbitrarily large, and
therefore fixpoint computations must apply a widening to ensure termination,
as detailed in the next section.

3.2 Widening and Materialization on Access

An infinite growth of the abstract state space can be avoided by inserting a
widening operator into every loop of the program [9] which ensures that any
increasing sequence of states eventually stabilizes. We implement widening by
summarization. By materializing memory cells on access, we are able to retain
our abstract semantics as is. We detail both operations in turn.

Widening by Summarization. A challenge in analyzing loops is to ensure that
the set of heap cells remains finite. We address this by summarizing nodes that
are abstract reachable from the same program variables. This abstract reachabil-
ity only considers the points-to graph and not the information in the numeric
domain. For instance, the nodes A and B in Fig. 3a) are abstract reachable from
x and y, even though B is not reachable according to the numeric state.

Our widening consists of two steps and is applied to a single state. In the
first step, a partitioning of the heap-allocated nodes is calculated: nodes that are
abstract reachable from the same set of stack variables are put into one partition.
This ensures finiteness of fixpoint computation since the set of partitions is
determined by the number of stack variables in scope. In the second step, each
partition of heap nodes is collapsed into one summary node by summarizing all
its members with the oldest member. This ensures that the symbolic addresses
remain stable under the fixpoint calculations which enables the detection of a
fixpoint using �.

Materialization on Access. Materialization is performed as part of dereferencing
pointers. To this end, each use of deref in Fig. 9 is replaced by deref ′ (defined
below). For every summary node, deref ′ returns a state in which the node is
materialized and a state in which the node is turned into a concrete node by
simply removing the ghost node. The latter is necessary in case a summary node
represents only one concrete node. The two cases are reflected by two calls to φ:

deref ′(A, p� b) =
⋃

(f, B)∈p(A)

φ(A,B′, p1 � b1) ∪ φ(A,B, p2 � b2) \ {warn}

where p1 � b1 = materialize(B, p � b) is the result of materializing node B to
{B′} = dom(p1) \ dom(p) and p2 � b2 = p� dropfiB ,foB (b) is the state in which
B is no longer a summary node. Since the state p1 � b1 returned by function

FESA: Fold- and Expand-Based Shape Analysis 95

materialize is unchanged if B is not a summary, deref ′(A, p � b) is identical to
deref (A, p� b) when the points-to set of A only refers to concrete nodes.

We conclude this section by defining a concretization γ that takes an abstract
state in PB to concrete states in ℘(A → ℘(A)).

Definition 4. Concretization γ : PB → ℘(A → ℘(A)) is given by γ = γ0 ◦ τ
where τ : PB → PB is given by τ(s) = fix s(λt . t �

⊔
A∈A{u | A ∈ A, (_, u) ∈

materialize(A, t)})) where fix s(f) is the least fixpoint of f greater than s.

Here, function τ calculates the reflexive transitive closure of applying arbitrary
materializations. Note that for abstract states with at least one summary node, τ
returns a points-to domain with an infinite number of nodes paired with a numeric
domain with an infinite number of dimensions. Materialization on access retains
the following property which implies that all precision loss is incurred by widening:

Observation 4. For any statement s, there is [[s]]� ◦ γ = γ ◦ [[s]]�.
We now enhance this basic analysis by two predicates that are sufficient to
distinguish between list, trees and graphs.

4 Two Simple Instrumentations

For the sake of presentation, we generalize the numeric domain from {0, 1}-
vectors to N

n. We define two simple numeric instrumentation variables and de-
scribe how they can be approximated by {0, 1}-flags.

4.1 Counting Outgoing Edges

The shape graph in Fig. 7b) shows the result of materializing a heap cell D from
a summary A. The obtained numeric state is 〈fxA, fiA, foA, fxD, fAD, fDA〉 ∈
{〈y, x, 1 − x, u, v, 1 − v〉 | u, v, x, y ∈ {0, 1}}, which allows flags fxA and fxD
to be zero or one at the same time, indicating NULL or an invalid pointer value
in variable x. The reason for this precision loss is that when summarizing two
nodes M and N the flags fxM and fxN become indistinguishable due to folding.

We rectify this precision loss by tracking the number of outgoing edges of
each node N in a numeric counter coutN . As this counter reflects the number of
outgoing edges in the concrete graph, summarizing two nodes does not change
this counter. However, when summarizing node O onto P , the flags fNO and
fNP are merged into f ′

NP which may be smaller than fNO+fNP . Thus, the sum
sN := fN1+ · · ·+ fNk of N ’s points-to flags may be smaller than coutN . We apply
the information in coutN by adding the assertion sN = coutN = 1 to deref ′ and by
enforcing sM ≤ coutM whenever p(AM) receives new edges due to materialization.

Since the concrete semantics in Fig. 8 precludes points-to sets with more than
one element, the invariant coutN ≤ 1 can be enforced on the abstract state without
losing soundness. This reduction with respect to the concrete semantics has been
dubbed “hygiene condition” [18]. As a consequence, we implement only the lowest
bit of the coutN counter as {0, 1}-flag.

96 H. Siegel and A. Simon

a) while(a != NULL) {
tree * b = a->l;
if(b==NULL) {

b = a->r;
free(a);
a = b;

} else {
a->l = b->r;
b->r = a->r;
a->r = b; }}

b) c)
x

A.l A.r

A.l A.r

xA

oA.l iA.l oA.r iA.r

Fig. 10. Expanding a binary tree

4.2 Counting Incoming Edges

Fig. 10a) shows a C program that iteratively deallocates a binary tree pointed to
by variable a by tree rotation. It requires that a holds a tree, that is, neither cycles
nor diamond-shaped subgraphs as in Fig. 10b) are reachable from a, i.e., no heap
cell can be accessed via more than one path. We guarantee the latter by simple
reference counting: every memory cell M is equipped with a reference counter cinM
that counts the references coming from heap-allocated cells. Whenever an entry
〈fNM , AM 〉 is added to the points-to set of a node N , counter cinM is incremented
by the value of fNM . Analogously, the counter is decremented by the respective
flag when an entry is removed from the points-to set. We then assert cinM ≥ 0.

Our analysis is easily extended to compound memory cells like, for example,
the nodes of a binary tree: summarization is done by making the components
compatible one-by-one and then folding the compound cells onto each other.
Fig. 10c) shows the abstract representation of an arbitrary binary tree. Sum-
marization can infer the invariant that fxA = 1 − cinA ∈ {0, 1}, that is, every
heap cell has exactly one incoming edge. Indeed, this instrumentation is nearly
sufficient to prove the absence of double-free-errors for the algorithm in Fig. 10a).

Since the numeric domain of our implementation is restricted to {0, 1}-values,
we implement the counters cinN by a saturating binary 2-bit counter. We now show
how the analysis can be efficiently implemented using a SAT solver.

5 Implementation and Experimental Results

The numeric state b ∈ Bn can be represented by a Boolean formula over n
variables. We therefore implemented the functor domain p� b ∈ PBn as a tuple
consisting of a map for the points-to sets p ∈ P and a single formula ϕ for b ∈ Bn

that is either in conjunctive or in disjunctive normal form.
Since expand calculates an intersection of states, it can be straightforwardly

implemented on a CNF formula by duplicating clauses. Analogously, fold has a
straightforward implementation on a DNF formula. Join (resp. meet, in partic-
ular b[[·]]) is calculated by merging the DNF (resp. CNF) representations. The
semantics of most statements requires the removal of dimensions from the vector
set using dropfi , which corresponds to removing the quantifier in the formula

FESA: Fold- and Expand-Based Shape Analysis 97

Table 1. Evaluation of our implementation

instr. avg. size loop
pred. projections vars/clauses time mem iterations warnings

three-element list − 0 – 2 ms 10 MB - 1
+ 0 – 3 ms 10 MB - 0

singly linked list − 33 20 / 36 30 ms 12 MB 4 / 3 6
+ 42 36 / 55 132 ms 14 MB 5 / 3 0

doubly linked list − 12 23 / 37 13 ms 10 MB 2 / 2 7
+ 15 47 / 76 49 ms 13 MB 3 / 2 0

summarize tree − 0 – 2 ms 12 MB - 0
+ 0 – 2 ms 13 MB - 0

access tree − 38 15 / 15 48 ms 10 MB 3 6
+ 12 131 / 298 32 ms 17 MB 2 0

deallocate tree − 95 32 / 45 380 ms 25 MB 5 28
+ 80 52 / 95 1.511 ms 26 MB 5 1

deallocate graph − 96 34 / 51 375 ms 23 MB 5 44
+ 139 57 / 104 1.425 ms 26 MB 5 1

Table 2. Comparison with TVLA

TVLA predicates time mem iterations warnings
singly linked list 16 176 ms 14 MB 40 0
deallocate tree 19 3,391 ms 20 MB 66 26

∃fi . ϕ. Rather than removing each dimension using drop, fi is simply renamed
to a fresh variable. Unused variables are eventually removed during the conver-
sion between a CNF and a DNF formula. For the latter, we use the projection
method of Brauer et al. [5], which is based on SAT-solving and calculates a
minimal DNF representation from a CNF formula and vice versa.

Our implementation is written in Java using Minisat v2.2. Table 1 shows the
results for: summarizing a three-elemented list and accessing its first element as
described in Sect 2.2; allocating and then deallocating a singly linked list; dto. for
a doubly linked list of arbitrary length; summarizing a seven-element binary tree;
accessing the leftmost innermost element of a binary tree; running the algorithm
of Fig. 10a) on the summarized tree; running it on the summary of a diamond-
shaped graph as in Fig. 10b). Each task is shown with instrumentation flags
enabled (+) and disabled (−).

The columns show the number of calls to the projection function and the
average size of the formulae (number of variables / number of clauses) at each
projection. Running times and memory consumption on an Intel Core i7 with
2,66 GHz on Mac OS X 10.6 follow. The next two columns show how many
iterations are required to find a fixpoint for the loop(s) in the examples. A “-”
indicates that the example has no loop. For all examples except the last two,
we could verify the absence of NULL- and dangling pointer dereferences. The
warnings that occur in the deallocation examples arise when accessing a freed

98 H. Siegel and A. Simon

heap node N through a stack variable. In the tree deallocation example, cinN = 1
but no summary node M pointing to N can be materialized with fMN = 1. That
is, this state is contradictory in itself and could be removed by a reduction step.
Thus, while our analysis is expressive enough, an explicit reduction is required
to remove this spurious warning. Since this reduction is orthogonal to the shape
analysis itself, it has been omitted. Note that the warning in the last row of
Table 1 is a true error.

We compare our prototype implementation with the latest TVLA 3 analyzer.
Table 2 shows the running time of two of our examples when reformulated with
TVLA predicates. The verification of the list example is slightly slower. A TVLA
tree example that mimics our deletion algorithm for trees is shown in the second
row. Although TVLA provides predicates that can express the invariant, it is
unable to prove that a node is only freed once and, hence, emits warnings. This
is curious, since TVLA provides several tree invariants that are silently enforced
by integrity constraints.

6 Related Approaches to Shape Analysis

Using Boolean functions for analyzing points-to sets is a re-occurring theme in
the literature, although they are often represented as binary decision diagrams
rather than CNF formulae [3]. Our work shows how points-to analysis can be
enriched with summaries of heap structures, thereby giving a new answer to
the question of how to merge the regions created at call sites of malloc [14].
Moreover, our analysis could replace ad-hoc forms of shape analysis such as
summarizing all heap cells but the last one allocated [1]. The latter is used to
allow strong updates on heap cells that are allocated in a loop. By materializing
on access and summarizing through widening, our analysis refines this ad-hoc
strategy by a dynamic, semantics-driven strategy.

One peculiarity of our analysis is the ability to distinguish lists, trees, and
graphs using only relational information associated with each node. This de-
sign simplifies the abstract transfer functions in that they only have to update
information of the nodes that are actually accessed, we call this a node-local
analysis. One motivation for using separation logic for shape analysis is exactly
this ability, namely that an update in separation logic retains a so-called frame
that describes the part of the heap that is not being accessed. Moreover, the
inductively defined predicates of separation logic [17] are also local in that they
relate each node to a fixed number of neighboring nodes. Using these predicates,
a linked list is specified as list(x) ≡ emp ∨ (∃y . x �→ y • list(y)) where the
separating conjunction h1 • h2 expresses that heaps h1 and h2 do not overlap.
Interestingly, a summary node N and its ghost node live at different addresses
and, thus, they can be seen as being separated by the separating conjunction.

While automatic analysis using separation logic relies on a symbolic represen-
tation of heap shapes, our approach is based on a Boolean domain whose join
operation can infer new invariants. Inferring new invariants (predicates) in the
context of separation logic is in general not yet possible [8]. However, templates,

FESA: Fold- and Expand-Based Shape Analysis 99

namely higher-order predicates, have been automatically instantiated in order to
infer hierarchical data structures [2]. Since our current approach already infers
any node-local invariant, future work should address the inference of hierarchical
shapes, for instance, to verify operations on a list of independent circular lists.

A different approach to shape analysis is the TVLA framework [18] where
the shape of the heap is described by a set of core predicates such as n(x,C)
(indicating that x.n points to C). Other, so-called instrumentation predicates,
such as rx(C) (node C is reachable from x) are defined in terms of core predicates.
Transfer functions that describe the new value after a program statement must
be given at least for all core predicates. Two heap cells A1 and A2 are summarized
by merging the truth values of the predicates that mention them: for example,
if vi = n(x,Ai), then the merged value is v1 if v1 = v2 or 1

2 if v1 �= v2. Indeed,
TVLA’s three-valued interpretation approximates our set of Boolean vectors b
by using the value 1

2 for a predicate p iff b(p) is not constant for all b ∈ b. This
is troublesome when, for example, re-evaluating rx(C) after summarizing two
nodes that lie on a path from x to node C: although C is still reachable from x,
its re-evaluation on the core predicates yields 1

2 . Indeed, devising precise transfer
functions for instrumentation predicates in TVLA is considered a “black art” [16,
Sect. 4]. This triggered work on automatic synthesis of transfer function [16].

For certain predicates it is particularly challenging to define a precise trans-
fer function, one of them being rx(C). The reason is that these predicates use
a recursive, transitive closure operator, whose calculation in general requires
the whole heap state and, hence, incurs the imprecision of core predicates over
summary nodes. In contrast, our analysis only requires node-local information,
thereby eschewing the need to perform calculations using information in sum-
mary nodes. This strength comes at the cost of rather unintuitive invariants: For
instance, in TVLA a predicate would directly state that a summary node A rep-
resents an acyclic list, whereas in our analysis the relation foA �= fiA, fxA �= fiA
with [Ax �→ {〈fxA, AA〉}] states that A is a list which is acyclic if and only if x
is pointing to it (here fiA and foA decorate the edges to the ghost node of A).

The flag f∃N (node N is allocated) resembles the TVLA property present of
[13]. While our cinN counter can be seen as a generalization of TVLA’s is(N)
predicate (is shared, indicating that N has more than one incoming edge), it is
actually motivated by work on classifying data structures by Tsai [21]. Indeed,
our diamond-shaped subgraph in Fig. 10 can be classified as a shared, acyclic set
of heap nodes. We follow Tsai in using reference counting to detect this sharing.

The use of Boolean formulae for a TVLA-style shape analysis was also advo-
cated by Wies et al. [15]. Updates in their predicate abstraction approach are also
node-local. However, their analysis does not consider summary nodes. Further-
more, due to the lack of an adequate projection algorithm [5] they deliberately
destroy relational information using cartesian abstraction.

An interesting approach to shape analysis is given by Calcagno et al. [7]
who propose to perform a backward analysis using abduction. While it is well-
known [6] that Boolean functions lend themselves to this kind of task, future

100 H. Siegel and A. Simon

work has to address if the combined points-to and Boolean domain also allows
for abduction.

A natural extension is the use of a more generic numeric domain like polyhe-
dra [10] in which our instrumentation counters cinN and coutN require no special
encoding. This would also raise the question of how relational numeric invariants
between a summary and its ghost node can be inferred, for instance, to deduce
that a list is sorted [12,8]. Future work will address these challenges.

7 Conclusion

We proposed and formalized a fully automatic shape analysis that expresses the
heap shape using a single graph and a Boolean function. Our analysis is highly
precise by exploiting the ability of Boolean formulae to express relations between
heap properties. Due to this relational information, our analysis distinguishes
lists from trees from graphs by using only predicates pertaining to the existence
of nodes and edges and the number of incoming and outgoing edges.

The key insight is that this relational information can be precisely inferred
using a relational fold and expand [19] that we adapted to Boolean functions.
Using these operations, our shape analysis has the ability to infer new shape
invariants automatically. We have shown how an efficient implementation of the
analysis is possible using SAT solving.

References

1. Balakrishnan, G., Reps, T.: Recency-Abstraction for Heap-Allocated Storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape Analysis for Composite Data Structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. In: Programming Language Design and Implementation, pp. 103–
114. ACM, San Diego (2003)

4. Boquist, U., Johnsson, T.: The Grin Project: A Highly Optimising Back end for
Lazy Functional Languages. In: Kluge, W.E. (ed.) IFL 1996. LNCS, vol. 1268,
pp. 58–84. Springer, Heidelberg (1997)

5. Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

6. Brauer, J., Simon, A.: Inferring Definite Counterexamples through Under-
Approximation. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 54–69. Springer, Heidelberg (2012)

7. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional Shape Analysis
by means of Bi-Abduction. In: Principles of Programming Languages, Savannah,
Georgia, USA, ACM (2009)

8. Chang, B.-Y.E., Rival, X.: Relational Inductive Shape Analysis. In: Principles of
Programming Languages, pp. 247–260. ACM (2008)

FESA: Fold- and Expand-Based Shape Analysis 101

9. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Principles of Programming Languages, pp. 269–282. ACM, San Antonio (1979)

10. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Constraints among Vari-
ables of a Program. In: Principles of Programming Languages, Tucson, Arizona,
USA, pp. 84–97. ACM (1978)

11. Hind, M., Pioli, A.: Which Pointer Analysis Should I Use? In: International Sym-
posium on Software Testing and Analysis, Portland, Oregon, USA, pp. 113–123.
ACM (2000)

12. McCloskey, B., Reps, T., Sagiv, M.: Statically Inferring Complex Heap, Array, and
Numeric Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

13. McCloskey, B.: Practical Shape Analysis. PhD thesis, EECS Department, Univer-
sity of California, Berkeley (May 2010)

14. Nystrom, E.M., Kim, H.S., Hwu, W.W.: Importance of Heap Specialization in
Pointer Analysis. In: Flanagan, C., Zeller, A. (eds.) Program Analysis for Software
Tools and Engineering. ACM, Washington, DC (2004)

15. Podelski, A., Wies, T.: Boolean Heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

16. Reps, T., Sagiv, M., Loginov, A.: Finite Differencing of Logical Formulas for Static
Analysis. Transactions on Programming Languages and Systems 32, 24:1–24:55
(2010)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science, Copenhagen, Denmark, pp. 55–74. IEEE (2002)

18. Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic.
Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

19. Siegel, H., Simon, A.: Summarized Dimensions Revisited. In: Mauborgne, L. (ed.)
Workshop on Numeric and Symbolic Abstract Domains, ENTCS, Venice, Italy.
Springer (2011)

20. Simon, A.: Splitting the Control Flow with Boolean Flags. In: Alpuente, M., Vidal,
G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 315–331. Springer, Heidelberg (2008)

21. Tsai, M.-C.: Categorization and Analyzing Linked Structures. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, Champaign, Illinois, USA (1994)

	FESA: Fold- and Expand-Based Shape Analysis
	Introduction
	Shape Analysis Using Numeric Domains
	Abstract Shape Graphs
	Summarizing Nodes
	Materializing Nodes from Summaries
	Soundness of Summarization

	Shape Analysis of a C-Like Language
	Abstract Semantics
	Widening and Materialization on Access

	Two Simple Instrumentations
	Counting Outgoing Edges
	Counting Incoming Edges

	Implementation and Experimental Results
	Related Approaches to Shape Analysis
	Conclusion
	References

