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Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers
in the TACAS proceedings). Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way to participate in this exciting event, and that you will all
continue to submit to ETAPS and contribute to making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with
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� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.
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My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only
sequencing, conditionals, and while-loops over elementary instructions. Böhm
trees arose as a convenient data structure in Corrado’s milestone proof of the
decidability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.
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Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the
consolidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit
association founded under German law with the immediate purpose of sup-
porting the conference and the related activities. ETAPS e.V. was required for
practical reasons, e.g., the conference needed (to be represented by) a legal body
to better support authors, organisers and attendees by, e.g., signing contracts
with service providers such as publishers and professional meeting organisers.
Our ambition is however to make of ‘ETAPS the association’ more than just
the organisers of ‘ETAPS the conference’. We are working towards finding a
voice and developing a range of activities to support our scientific community, in
cooperation with the relevant existing associations, learned societies and inter-
est groups. The process of defining the structure, scope and strategy of ETAPS
e.V. is underway, as is its first ever membership campaign. For the time being,
ETAPS e.V. has started to support community-driven initiatives such as open
access publications (LMCS and EPTCS) and conference management systems
(Easychair), and to cooperate with cognate associations (European Forum for
ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed
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deadlines in the first week of October. We published a confidentiality policy to
set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and
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participants, i.e., to look like one large, coherent, well-integrated conference
rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President



Preface

This volume contains the proceedings of the 22nd International Conference on
Compiler Construction (CC) held during March 21–22, 2013, in Rome, Italy
as part of the European Joint Conferences on Theory and Practice of Software
(ETAPS 2013).

CC is a forum for the presentation of the latest research on processing pro-
grams in the most general sense, that is, in analyzing, transforming, or executing
any description of how a computing system operates, which includes traditional
compiler construction as a special case. Papers were solicited on a broad range of
topics, including compilation and interpretation techniques, including program
representation and analysis, code generation and code optimization; run-time
techniques, including memory management and dynamic and just-in-time com-
pilation; programming tools, from refactoring editors to checkers to compilers to
virtual machines to debuggers; techniques for specific domains, such as secure,
parallel, distributed, embedded or mobile environments; design of novel language
constructs and their implementation.

This year, 53 papers were submitted to CC. Each submission was reviewed
by three or more Program Committee members. After evaluating the quality
and pertinence of each paper, the committee chose to accept 13 papers for pre-
sentation at the conference. This year’s program also included an invited talk
by a distinguished researcher:

– Emery Berger (University of Massachusetts, Amherst) on “Programming
with People: Integrating Human-Based and Digital Computation”

The success of the conference is due to the unstinting efforts of several people.
First, the authors for carrying out and submitting high-quality research to CC.
Second, the Program Committee and subreviewers for their perspicacious and
timely reviews, which ensured the high quality of the proceedings. Third, the
ETAPS organizers and Steering Committee for hosting ETAPS and for the lo-
cal co-ordination and organization. Finally, we are grateful to Andrei Voronkov
whose EasyChair system eased the processes of submission, paper selection, and
proceedings compilation.

January 2013 Koen De Bosschere
Ranjit Jhala
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Programming with People: Integrating

Human-Based and Digital Computation
(Invited Talk)

Emery Berger

University of Massachusetts, Amherst (USA)

emery@cs.umass.edu

Humans can perform many tasks with ease that remain difficult or impossible
for computers. Crowdsourcing platforms like Amazon’s Mechanical Turk make
it possible to harness human-based computational power on an unprecedented
scale. However, their utility as a general-purpose computational platform re-
mains limited. The lack of complete automation makes it difficult to orchestrate
complex or interrelated tasks. Scheduling human workers to reduce latency costs
real money, and jobs must be monitored and rescheduled when workers fail to
complete their tasks. Furthermore, it is often difficult to predict the length of
time and payment that should be budgeted for a given task. Finally, the results
of human-based computations are not necessarily reliable, both because human
skills and accuracy vary widely, and because workers have a financial incentive
to minimize their effort.

This talk presents AutoMan, the first fully automatic crowd programming
system. AutoMan integrates human-based computations into a standard pro-
gramming language as ordinary function calls, which can be intermixed freely
with traditional functions. This abstraction allows AutoMan programmers to fo-
cus on their programming logic. An AutoMan program specifies a confidence level
for the overall computation and a budget. The AutoMan runtime system then
transparently manages all details necessary for scheduling, pricing, and quality
control. AutoMan automatically schedules human tasks for each computation
until it achieves the desired confidence level; monitors, reprices, and restarts hu-
man tasks as necessary; and maximizes parallelism across human workers while
staying under budget.

AutoMan is available for download at www.automan-lang.org
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Gergö Barany and Andreas Krall

Session II: Pointer Analysis

Efficient and Effective Handling of Exceptions in Java Points-to
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

George Kastrinis and Yannis Smaragdakis

An Incremental Points-to Analysis with CFL-Reachability . . . . . . . . . . . . . 61
Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue

FESA: Fold- and Expand-Based Shape Analysis . . . . . . . . . . . . . . . . . . . . . 82
Holger Siegel and Axel Simon

Session III: Data and Information Flow

Simple and Efficient Construction of Static Single Assignment Form . . . . 102
Matthias Braun, Sebastian Buchwald, Sebastian Hack,
Roland Leißa, Christoph Mallon, and Andreas Zwinkau

PolyGLoT: A Polyhedral Loop Transformation Framework
for a Graphical Dataflow Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Somashekaracharya G. Bhaskaracharya and Uday Bondhugula

Architecture-Independent Dynamic Information Flow Tracking . . . . . . . . 144
Ryan Whelan, Tim Leek, and David Kaeli



XVIII Table of Contents

Session IV: Machine Learning

On the Determination of Inlining Vectors for Program Optimization . . . 164
Rosario Cammarota, Alexandru Nicolau, Alexander V. Veidenbaum,
Arun Kejariwal, Debora Donato, and Mukund Madhugiri

Automatic Generation of Program Affinity Policies Using Machine
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Ryan W. Moore and Bruce R. Childers

Session V: Refactoring

Compiler-Guided Identification of Critical Sections in Parallel Code . . . . 204
Stefan Kempf, Ronald Veldema, and Michael Philippsen

Refactoring MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Soroush Radpour, Laurie Hendren, and Max Schäfer
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Optimal Register Allocation in Polynomial Time

Philipp Klaus Krause

Goethe-Universität, Frankfurt am Main

Abstract. A graph-coloring register allocator that optimally allocates
registers for structured programs in polynomial time is presented. It can
handle register aliasing. The assignment of registers is optimal with re-
spect to spill and rematerialization costs, register preferences and coa-
lescing. The register allocator is not restricted to programs in SSA form
or chordal interference graphs. It assumes the number of registers is to
be fixed and requires the input program to be structured, which is auto-
matically true for many programming languages and for others, such as
C, is equivalent to a bound on the number of goto labels per function.
Non-structured programs can be handled at the cost of either a loss of
optimality or an increase in runtime. This is the first optimal approach
that has polynomial runtime and works for such a huge class of programs.

An implementation is already the default register allocator in most
backends of a mainstream cross-compiler for embedded systems.

Keywords: register allocation, tree-decomposition, structured program.

1 Introduction

Compilers map variables to physical storage space in a computer. The problem
of deciding which variables to store into which registers or into memory is called
register allocation. Register allocation is one of the most important stages in a
compiler. Due to the ever-widening gap in speed between registers and memory
the minimization of spill costs is of utmost importance. For CISC architectures,
such as ubiquitous x86, register aliasing (i. e. multiple register names mapping
to the same physical hardware and thus not being able to be used at the same
time) and register preferences (e. g. due to certain instructions taking a different
amount of time depending on which registers the operands reside in) have to
be handled to generate good code. Coalescing (eliminating moves by assigning
variables to the same registers, if they do not interfere, but are related by a copy
instruction) is another aspect, where register allocation can have a significant
impact on code size and speed.

Our approach is based on graph coloring and assumes the number of registers
to be fixed. It can handle arbitrarily complex register layouts, including all kinds
of register aliasing. Register preferences, coalescing and spilling are handled using
a cost function. Different optimization goals, such as code size, speed, energy
consumption, or some aggregate of them can be handled by choice of the cost
function. The approach is particularly well-suited for embedded systems, which
often have a small number of registers, and where optimization is of utmost

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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importance due to constraints on energy consumption, monetary cost, etc. We
have implemented a prototype of our approach, and it has become the default
register allocator in most backends of sdcc [12], a mainstream C cross-compiler
for architectures commonly found in embedded systems. Virtually all programs
are structured, and for these the register allocator has polynomial runtime. This
is the first optimal approach that has polynomial runtime and works for such a
huge class of programs.

Chaitin’s classic approach to register allocation [7] uses graph coloring. The ap-
proach assumes r identical registers, identical spill cost for all variables, and does
not handle register preferences or coalescing. Solving this problem optimally is
equivalent to finding a maximal r-colorable induced subgraph in the interference
graph of the variables and coloring it. In general this is NP-hard [8]. Even when it
is known that a graph is r-colorable it is NP-hard to find a r-coloring compatible
with a fraction of 1− 1

33r of the edges [18]. Thus Chaitin’s approach uses heuristics
instead of optimally solving the problem. It has been generalized to more com-
plex architectures [31]. The maximum r-colorable induced subgraph problem for
fixed r can be solved optimally in polynomial time for chordal interference graphs
[27,35], which can be obtained when the input programs are in static single as-
signment (SSA) form [20]. Recent approaches have modeled register allocation as
an integer linear programming (ILP) problem, resulting in optimal register allo-
cation for all programs [17,15]. However ILP is NP-hard, and the ILP-based ap-
proaches tend to have far worse runtime compared to graph coloring. There are
also approaches modeling register allocation as a partitioned boolean quadratic
programming (PBQP) problem [30,22]. They can handle some irregularities in the
architecture in a more natural way than older graph-coloring approaches, but do
not handle coalescing and other interactions that can arise out of irregularities in
the instruction set. PBQP is NP-hard, but heuristic solvers seem to perform well
formany, but not all practical cases. Linear scan register allocation [28] has become
popular for just in time compilation [13]; it is typically faster than approaches based
on graph coloring, but the assignment is further away fromoptimality.Kannanand
Proebsting [23] were able to approximate a simplified version of the register allo-
cation problem within a factor of 2 for programs that have series-parallel control-
flow graphs (a subclass of 2-structured programs). Thorup [32] uses the bounded
tree-width of structured programs to approximate an optimal coloring of the inter-
section graph by a constant factor. Bodlaender et alii [4] present an algorithm that
decides in linear time if it is possible to allocate registers for a structured program
without spilling.

Section 2 introduces the basic concepts, including structured programs. Sec-
tion 3 presents the register allocator in its generality and shows its polynomial
runtime. Section 4 discusses further aspects of the allocator, including ways
to reduce the practical runtime and how to handle non-structured programs.
Section 5 discusses the complexity of register allocation and why certain NP-
hardness results do not apply in our setting. Section 6 presents the prototype
implementation, followed by the experimental results in Section 7. Section 8
concludes and proposes possible directions for future work.
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2 Structured Programs

Compilers transform their input into an intermediate representation, on which
they do many optimizations. At the time when register allocation is done, we
deal with such an intermediate representation. We also have the control-flow
graph (CFG) (Π,K), with node set Π and edge set K ⊆ Π2 which represents
the control flow between the instructions in the intermediate representation.
For the code written in the C programming language from Figure 1, the sdcc
compiler [12] generates the CFG in Figure 2(a). In this figure, the nodes of the
the CFG are numbered, and annotated with the set of variables alive there, and
the intermediate representation. As can be seen, sdcc introduced two temporary
variables, which make up the whole set of variables V = {a, b} to be handled by
the register allocator for this code.

#include <stdint.h>

#include <stdbool.h>

bool get_pixel(uint_fast8_t x, uint_fast8_t y);

void set_pixel(uint_fast8_t x, uint_fast8_t y);

void fill_line_left(uint_fast8_t x, const uint_fast8_t y)

{

for(;; x--)

{

if(get_pixel(x, y))

return;

set_pixel(x, y);

}

}

Fig. 1. C code example

Let r be the number of registers. Let [r] := {0, . . . , r − 1} be the the set of
registers.

Definition 1. Let V be a set of variables. An assignment of variables V to
registers [r] is a function f : U → [r], U ⊆ V . The assignment is valid if it is
possible to generate correct code for it, which implies that no conflicting variables
are assigned to the same register.

Variables in V �U are to be placed in memory (spilt) or removed and their value
recalculated as needed (rematerialized).

Definition 2 (Register Allocation). Let the number of available registers be
fixed. Given an input program containing variables and their live-ranges and a
cost function, that gives costs for register assignments, the problem of register
allocation is to find an assignment of variables to the registers that minimizes
the total cost.
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0 {}: _entry($8) :

1 {}: proc _fill_line_left{void fun(unsigned char, const unsigned char)}

3 {a}: _forbody_0($4) :

2 {a}: a{unsigned char} := x{unsigned char}

4 {a}: push y{const unsigned char}

5 {a}: push a{unsigned char}

6 {a, b}: b{_Bool} = call _get_pixel{_Bool fun(unsigned char, unsigned char)}

7 {a, b}: if b{_Bool} == 0 goto _iffalse_0($2)

8 {}: ret 9 {a}: _iffalse_0($2) :

15 {}: _return($7) :

10 {a}: push y{const unsigned char}

11 {a}: push a{unsigned char}

12 {a}: call _set_pixel{void fun(unsigned char, unsigned char)}

13 {a}: a{unsigned char} = a{unsigned char} - 0x1

14 {a}: goto _forbody_0($4)

16 {}: eproc _fill_line_left{void fun(unsigned char, const unsigned char)}

(a) Control-flow graph

{}, {}

{3, 7, 14}, {a, b}

{15, 16}, {}

{3, 15}, {a}

{15}, {}

{3, 7, 15}, {a, b}

{3, 7, 15}, {a, b} {3, 7, 15}, {a, b}

{3, 7, 14}, {a, b}

{3, 7, 14}, {a, b}

{7, 13, 14}, {a, b}

{7, 13}, {a, b}

{7, 12, 13}, {a, b}

{7, 12}, {a, b}

{7, 11, 12}, {a, b}

{7, 11}, {a, b}

{7, 10, 11}, {a, b}

{7, 10}, {a, b}

{7, 9, 10}, {a, b}

{7, 8, 15}, {a, b}

{7, 15}, {a, b}

{3, 6, 7}, {a, b}

{3, 6}, {a, b}

{3, 5, 6}, {a, b}

{3, 5}, {a}

{3, 4, 5}, {a}

{3}, {a}

{2, 3}, {a}

{2}, {a}

{1, 2}, {a}

{1}, {}

{0, 1}, {}

{7, 14}, {a, b}

{3, 7}, {a, b}

{3, 7}, {a, b}

{3, 7, 15}, {a, b}

{}, {}

(b) Nice tree-decomposition

Fig. 2. CFG and decomposition example

Our approach is based on tree decompositions. Tree decompositions [21] have
commonly been used to find polynomial algorithms on restricted graph classes
for many problems that are hard on general graphs, since their rediscovery by
Robertson and Seymour [29]. This includes well known problems such as graph
coloring and vertex cover.

Definition 3 (Tree Decomposition). Given a graph G = (Π,K) a tree de-
composition of G is a pair (T,X ) of a tree T and a family X = {Xi | i node of T }
of subsets of Π with the following properties:
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–
⋃

i node of T Xi = Π,
– For each edge {x, y} ∈ K, there is an i node of T , such that x, y ∈ Xi,
– For each node x ∈ Π the subgraph of T induced by {i node of T | x ∈ Xi}

is connected.

The width of a tree decomposition (T,X ) is max{|Xi| | i node of T } − 1. The
tree-width tw(G) of a graph G is the minimum width of all tree decompositions
of G.

Intuitively, tree-width indicates how tree-like a graph is. Nontrivial trees have
tree-width 1. Cliques on n ≥ 1 nodes have tree-width n − 1. Series-parallel
graphs have tree-width at most 2. Tree-decompositions are usually defined for
undirected graphs, and our definition of a tree-decomposition for a directed graph
is equivalent to the tree-decomposition of the graph interpreted as undirected.

Definition 4 (Structured Program). Let k ∈ N be fixed. A program is called
k-structured, iff its control-flow graph has tree-width at most k.

Programs written in Algol or Pascal are 2-structured, Modula-2 programs are
5-structured [32]. Programs written in C are (7 + g)-structured if the number
of labels targeted by gotos per function does not exceed g. Similarly, Java pro-
grams are (6 + g)-structured if the number of loops targeted by labeled breaks
and labeled continues per function does not exceed g [19]. Ada programs are
(6 + g)-structured if the number of labels targeted by gotos and labeled loops
per function does not exceed g [6]. Coding standards tend to place further re-
strictions, resulting e. g. in C programs being 5-structured when adhering to the
widely adopted MISRA-C:2004 [2] standard. A survey of 12522 Java methods
from applications and the standard library found tree-width above 3 to be very
rare. With one exception of tree-width 5, all methods had tree-width 4 or lower
[19].

Often proofs and algorithms on tree-decompositions are easier to describe,
understand and implement when using nice tree-decompositions:

Definition 5 (Nice Tree Decomposition). A tree decomposition (T,X ) of a
graph G is called nice, iff

– T is oriented, with root t, Xt = ∅.
– Each node i of T is of one of the following types:

• Leaf node, no children
• Introduce node, has one child j,Xj � Xi

• Forget node, has one child j,Xj � Xi

• Join node, has two children j1, j2, Xi = Xj1 = Xj2

Given a tree-decomposition, a nice tree-decomposition of the same width can
be found easily. Figure 2(b) shows a nice tree-decomposition of width 2 for the
CFG in Figure 2(a). At each node i in the figure, the left set is Xi.

From now on let G = (Π,K) be the control flow graph of the program, let
I = (V,E) be the corresponding conflict graph of the variables of the program
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(i. e. the intersection graph of the variables’ live-ranges). The live-ranges are
connected subgraphs of G. Let (T,X ) be a nice tree decomposition of minimum
width of G with root t. For π ∈ Π let Vπ be the set of all variables v ∈ V ,
that are alive at π (in the example CFG in figure 2(a) this is the set directly
after the node number). Let V := maxπ∈Π{Vπ} be the maximum number of
variables alive at the same node. For each i ∈ T let Vi :=

⋃
π∈Xi

Vπ be the set
of variables alive at any of the corresponding nodes from the CFG (in the nice
tree-decomposition in figure 2(b) this is the right one of the sets at each node).

3 Optimal Polynomial Time Register Allocation

The goal in register allocation is to minimize costs, including spill and remate-
rialization costs, costs from not respecting register preferences, costs from not
coalescing, etc. These costs are modeled by a cost function that gives costs for
an instruction π under register assignment f :

c : {(π, f) | f : U → [r], U ⊆ Vπ , π ∈ Π} → [0,∞]

Different optimization goals, such as speed or code size can be implemented by
choosing c. E. g. when optimizing for code size c could give the code size for π
under assignment f , or when optimizing for speed c could give the number of
cycles π needs to execute multiplied by an execution probability obtained from
a profiler. We assume that c can be evaluated in constant time. The goal is thus
finding an f for which

∑
π∈Π c(π, f |Vπ) is minimal.

Let S be the function that gives the minimum possible costs for instructions
in the subtree rooted at i ∈ T , excluding instructions in Xi when assigning
variables alive in the subtree rooted at i ∈ T when choosing f : U → [r], U ⊆ V
as the assignment of variables alive at instructions i ⊆ Π to registers, i. e.

S : {(i, f) | i ∈ T, f : U → [r], U ⊆ Vi} → [0,∞].

S(i, f) := min
g|Vi

=f |Vi

{
∑

π∈Ti

c(π, g|Vπ)

}
.

Where Ti is the set of instructions in the subtree of T rooted at i ∈ T , excluding
instructions in Xi. This function at the root t ∈ T , and the corresponding
assignment that results in the minimum is what we want:

S(t, f) = min
g|Vt=f |Vt

{
∑

π∈Tt

c(π, g|Vπ )

}
=

= min
g|∅=f |∅

{
∑

π∈Π

c(π, g|Vπ)

}
= min

g

{
∑

π∈Π

c(π, g|Vπ )

}
.
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To get S, we first define a function s, and then show that S = s and that s can
be calculated in polynomial time. We define s inductively, and depending on the
type of i:

– Leaf: s(i, f) := 0
– Introduce with child j: s(i, f) := s(j, f |Vj )
– Forget with child j: s(i, f) := min{∑π∈Xj�Xi

c(π, g|Vπ ) + s(j, g) | g|Vi = f}
– Join with children j1 and j2: s(i, f) := s(j1, f) + s(j2, f)

By calculating all the s(i, f) and recording which g gave the minimum we can
obtain an optimal assignment. We will show that s correctly gives the minimum
possible cost and that it can be calculated in polynomial time.

Lemma 1. For each i ∈ T, f : U → [r], U ⊆ Vi the value s(i, f) is the minimum
possible cost for instructions in the subtree rooted at i ∈ T , excluding instruc-
tions in Xi when assigning variables alive in the subtree rooted at i ∈ T when
choosing f as the assignment of variables alive at instructions i ⊆ Π to registers,
i. e. s = S. Using standard bookkeeping techniques we obtain the corresponding
assignments for the subtree.

Proof. By induction we can assume that the lemma is true for all children of
i. Let Ti be the set of instructions in the subtree rooted at i ∈ T , excluding
instructions in Xi.

Case 1: i is a leaf. There are no instructions in Ti = Xi � Xi = ∅, thus the
cost is zero: s(i, f) = 0 = S(i, f).

Case 2: i is an introduce node with child j. Ti = Tj, since Xi ⊇ Xj, thus the
cost remains the same: s(i, f) = s(j, f) = S(j, f) = S(i, f)

Case 3: i is a forget node with child j. Ti = Tj ∪ (Xj � Xi), the union is
disjoint. Thus we get the correct result by adding the costs for the instructions
in Xj �Xi:

s(i, f) = min
g|Vi

=f

⎧
⎨
⎩

∑

π∈Xj�Xi

c(π, f |Vπ ) + s(j, g)

⎫
⎬
⎭ =

min
g|Vi

=f

⎧
⎨

⎩
∑

π∈Xj�Xi

c(π, f |Vπ ) + S(j, g)

⎫
⎬

⎭ =

min
g|Vi

=f |Vi

⎧
⎨

⎩
∑

π∈Xj�Xi

c(π, f |Vπ ) +
∑

π∈Tj

c(π, g|Vπ )

⎫
⎬

⎭ =

min
g|Vi

=f |Vi

{
∑

π∈Ti

c(π, g|Vπ )

}
= S(i, f).

Case 4: i is a join node with children j1 and j2. Ti = Tj1 ∪Tj2 , since Xi = Xj1 =
Xj2 . The union is disjoint. Thus we get the correct result by adding the costs
from both subtrees: s(i, f) = s(j1, f) + s(j2, f) = S(j1, f) + S(j2, f) = S(i, f).



8 P.K. Krause

Lemma 2. Given the tree-decomposition of minimum width, s can be calculated
in polynomial time.

Proof. Each Vπ , π ∈ Π is the union of two cliques, each of size at most V : The
variables alive at the start of the instruction form the clique, and so do the
variables alive at the end of the instruction. Thus Vi, i ∈ T is the union of at
most 2(tw(G) + 1) cliques. From each clique at most r variables can be placed
in registers.

At each node i of the tree decomposition time O(V2(tw(G)+1)r) is sufficient:
Case 1: i is a leaf. There are at most O(V2|Xi|r) ⊆ (V2(tw(G)+1)r) possible f ,

and for each one we do a constant number of calculations.
Case 2: i is an introduce node with child j. The reasoning from case 1 holds.
Case 3: i is a forget node. There are at mostO(V2|Xi|r) possible f . For each one

we need to consider at most O(V2|Xj�Xi|r) different g. Thus time O(V2|Xi|r) ·
(V2|Xj�Xi|r) ⊆ O(V2|Xi|r+2|Xj�Xi|r) = O(V2|Xj |r) ⊆ O(V2(tw(G)+1)r) is suffi-
cient.

Case 4: i is a join node with children j1 and j2. The reasoning from case 1
holds.

The tree decomposition has at most |T | nodes, thus the total time is in
O(|T |V2(tw(G)+1)r) = O(|T |Vc) for a constant c and thus polynomial.

Theorem 1. The register allocation problem can be solved in polynomial time
for structured programs.

Proof. Given an input program of bounded tree-width we can calculate a tree-
decomposition of minimum width in linear time [3]. We can then transform
this tree-decomposition into a nice one of the same width. The linear time for
these steps implies that |T | is linear in |G|. Using this nice tree decomposi-
tion s is calculated in polynomial time as above. The total runtime is thus in
O(|G|V2(tw(G)+1)r) = O(|G|Vc) for a constant c.

4 Remarks

Remark 1. The runtime bound is reduced by a factor of Vtw(G)r, if the interme-
diate representation is three-address code.

Proof. In that case there is at most one variable alive at the end of an instruction
that was not alive at the start of the instruction, so in the proof of Lemma 2,
we can replace O(V2(tw(G)+1)r) by O(V(tw(G)+2)r).

Remark 2. Bodlaender’s algorithm [3] used in the proof above is not a practical
option. However there are other, more practical alternatives, including a linear-
time algorithm that is not guaranteed to give decompositions of minimal width,
but will do so for many programming languages [32,10].

Remark 3. Implementations of the algorithm can be massively parallel, resulting
in linear runtime.
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Proof. At each i ∈ T the individual s(i, f) do not depend on each other. They
can be calculated in parallel. By requiring that |Xj | = |Xi|+ 1 at forget nodes,
we can assume that the number of different g to consider is at most V2r, resulting
in time O(r) for calculating the minimum over the s(j, g). Thus given enough
processing elements the runtime of the algorithm can be reduced to O(|G|r).
Remark 4. Doing live-range splitting as a preprocessing step is cheap.

The runtime bound proved above only depends on V , not |V |. Thus splitting
of non-connected live-ranges before doing register allocation doesn’t affect the
bound. When the splitting is done to allowmore fine-grained control over spilling,
then the additional cost is small (even the extreme case of inserting permutation
instructions between any two original nodes in the CFG, and splitting all live-
ranges there would only double Π and V).
Remark 5. Non-structured programs can be handled at the cost of either a loss
of optimality or an increase in runtime.

Programs of high tree-width are extremely uncommon (none have been found so
far, with the exception of artificially constructed examples). Nevertheless they
should be handled correctly by compilers. One approach would be to handle these
programs like the others. Since tw(G) is no longer constant, the algorithm is no
longer guaranteed to have polynomial runtime. Where polynomial runtime is
essential, a preprocessing step can be used. This preprocessing stage would spill
some variables (or allocate them using one of the existing heuristic approaches).
Edges of G, at which no variables are alive, can be removed. Once enough edges
have been removed, tw(G) ≤ k and our approach can be applied to allocate the
remaining variables. Another option is the heuristic limit used in our prototype
as mentioned in Section 6.

Remark 6. The runtime of the polynomial time algorithm can be reduced by a
factor of more than (2(tw(G)+ 1)r)!, if there is no register aliasing and registers
are interchangeable within each class. Furthermore r can then be chosen as the
maximum number of registers that can be used at the same time instead of the
total number of registers, which gives a further runtime reduction in case of
register aliasing.

Proof. Instead of using f : U → [r] we can directly use U .

– Leaf: s(i, U) := 0
– Introduce with child j: s(i, U) := s(j, U ∪ Vj)
– Forget with child j: s(i, U) :=

∑
π∈Xj�Xi

c(π, U) + min{s(j,W ) | W ∩ Vi =

U}
– Join with children j1 and j2: s(i, U) := s(j1, U) + s(j2, U)

Most of the proofs of the lemmata are still valid. However instead of the number
of possible f we now look at the number of possible U , which is at most

( V
2(tw(G) + 1)r

)
.
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Remark 7. Using a suitable cost function and r = 1 we get a polynomial time
algorithm for maximum independent set on intersection graphs of connected
subgraphs of graphs of bounded tree-width.

Remark 8. The allocator is easy to re-target, since the cost function is the only
architecture-specific part.

5 Complexity of Register Allocation

The complexity of register allocation in different variations has been studied for
a long time and there are many NP-hardness results.

Publication Difference to our setting

Register allocation via coloring [8] tw(G) unbounded
On the Complexity of Register Coalescing [5] tw(G) unbounded
The complexity of coloring circular arcs and chords [16] r is part of input
Aliased register allocation for straight line programs is
NP-complete [26]

r is part of input

On Local Register Allocation [14] r is part of input

Given a graph I a program can be written, such that the program has conflict
graph I [8]. Since 3-colorability is NP-hard [24], this proves the NP-hardness
of register allocation, as a decision problem for r = 3. However the result does
not hold for structured programs. Coalescing is NP-hard even for programs in
SSA-form [5]. Again this result does not hold for structured programs. Register
allocation, as a decision problem, is NP-hard, even for series-parallel control flow
graphs, i. e. for tw(G) ≤ 2 and thus for structured programs, when the number
of registers is part of the input [16]. Register allocation, as a decision problem, is
NP-hard when register aliasing is possible, even for straight-line programs, i. e.
tw(G) = 1 and thus for structured programs, when the number of registers is
part of the input [26]. Minimizing spill costs is NP-hard, even for straight-line
programs, i. e. tw(G) = 1 and thus for structured programs, when the number
of registers is part of the input [14].

It is thus fundamental to our polynomial time optimal approach, which han-
dles register aliasing, register preferences, coalescing and spilling, that the input
program is structured and the number of registers is fixed.

The runtime bound of our approach proven above is exponential in the num-
ber of registers r. However, even a substantially simplified version of the register
allocation problem is W[SAT]- and co-W[SAT]-hard when parametrized by the
number of registers even for tw(G) = 2 [25]. Thus doing optimal register allo-
cation in time faster than VO(r) would imply a collapse the parametrized com-
plexity hierarchy. Such a collapse is considered highly unlikely in parametrized
complexity theory. This means that not only we cannot get rid of the r in the
exponent, but we can’t even separate it from the V either.
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6 Prototype Implementation

We have implemented a prototype of the allocator in C++ for the HC08, S08,
Z80, Z180, Rabbit 2000/3000, Rabbit 3000A and LR35902 ports of sdcc [12], a
C compiler for embedded systems. It is the default register allocator for these
architectures as of the sdcc 3.2.0 release in mid-2012 and can be found in the
public source code repository of the sdcc project.

S08 is the architecture of the current main line of Freescale microcontrollers,
a role previously filled by the HC08 architecture. Both architectures have three
8-bit registers, which are assigned by the allocator. The Z80 architecture is a clas-
sic architecture designed by Zilog, which was once common in general-purpose
computers. It currently is mostly used in embedded systems. The Z180, Rab-
bit 2000/3000 and Rabbit 3000A are newer architectures derived from the Z80,
which are also mostly used in embedded systems. The differences are in the
instruction set, not in the register set. The Z80 architecture is simple enough
to be easily understood, yet has many of the typical features of complex CISC
architectures. Nine 8-bit registers are assigned by the allocator (A, B, C, D,
E, H, L, IYL, IYH). IYL and IYH can only be used together as 16-bit register
IY; there are instructions that treat BC, DE or HL as 16-bit registers; many
8-bit instructions can only use A as the left operand, while many 16-bit instruc-
tions can only use HL as the left operand. There are some complex instructions,
like djnz, a decrement-and-jump-if-not-zero instruction that always uses B as its
operand, or ldir, which essentially implements memcpy() with the pointer to the
destination in DE, source pointer in HL and number of bytes to copy in BC.
All these architectural quirks are captured by the cost function. The LR35902
is the CPU used in the Game Boy video game system. It is inspired by the Z80
architecture, but has a more restricted instruction set and fewer registers. Five
8-bit registers are assigned by the allocator.

The prototype still has some limitations, e. g. current code generation does
not allow the A or IY registers to hold parts of a bigger variable in the Z80 port.
Code size was used as the cost function, due to its importance in embedded sys-
tems and relative ease of implementation (optimal speed or energy optimization
would require profiler-guided optimization). We obtain the tree decomposition
using Thorup’s method [32], and then transform it into a nice tree decomposi-
tion. The implementation of the allocator essentially follows Section 3, and is
neither very optimized for speed nor parallelized. However a configurable limit
on the number of assignments considered at each node of the tree decompo-
sition has been introduced. When this limit is reached, some assignments are
discarded heuristically. The heuristic mostly relies on the s(i, f) to discard those
assignments that have the highest cost so far first, but takes other aspects into
account to increase the chance that compatible assignments will exist at join
nodes. When the limit is reached, and the heuristic applied, the assignment is
no longer provably optimal. This limit essentially provides a trade-off between
runtime and quality of the assignment.

The prototype was compared to the current version of the old sdcc register
allocator, which has been improved over years of use in sdcc. The old allocator
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is basically an improved linear scan [28,13] algorithm extended to take the ar-
chitecture into account, e.g. preferring to use registers HL and A, since accesses
to them typically are faster than those to other registers and taking coalescing,
register aliasing and some other preferences into account. This comparison was
done using the Z80 architecture, which has been around for a long time, so there
is a large number of programs available for it.

Furthermore we did a comparison between the different architectures, which
shows the impact of the number of registers on the performance of the allocator.

7 Experimental Results

Six benchmarks considered representative of typical applications for embedded
systems have been used to evaluate the register allocator, by compiling them
with sdcc 3.2.1 #8085:

– The Dhrystone benchmark [33], version 2 [34]. An ANSI-C version was used,
since sdcc does not support K&R C.

– A set of source files taken from real-world applications and used by the sdcc
project to track code size changes over sdcc revisions and to compare sdcc
to other compilers.

– The Coremark benchmark [1], version 1.0.
– The FatFS implementation of the FAT filesystem [9], version R0.09.
– Source code from two games for the ColecoVision video game console. All

C source code has been included, while assembler source files and C source
files that only contain data have been omitted.

– The Contiki operating system [11], version 2.5.

We first discuss the results of compiling the benchmarks for the Z80 architecture.
Figure 3 shows the code size with the peephole optimizer (a post code-generation
optimization stage not taken into account by the cost function) enabled, Figure
4 with the peephole optimizer disabled. Furthermore, Figure 3 shows the com-
pilation time, and Figure 4 shows the fraction of provably optimally allocated
functions (i. e. those functions for which the heuristic never was applied); the
former is little affected by enabling the peephole optimizer and the latter not at
all.

The dhrystone benchmark is rather small. At 108 assignments per node we
find a provably optimal assignment for 83.3% of the functions. This also results
in a moderate reduction in code size of 6.0% before and 4.9% after the peephole
optimizer when compared to the old allocator. The sdcc benchmark, even though
small, contains more complex functions; at 108 assignments per node we find
a provably optimal assignment for 93.9% of the functions. However code size
seems to be stable from 6× 107 onwards. We get a code size reduction of 16.9%
before and 17.3% after the peephole optimizer. For Coremark, we find an optimal
assignment for 77% of the functions at 108 assignments per node. We get a code
size reduction of 7.8% before and 6.9% after the peephole optimizer.
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FatFS is the benchmark which is the most problematic for our allocator; it
contains large functions with complex control flow, some containing nearly a
kilobyte of local variables. Even at 4.5 × 107 assignments per node (we did not
run compilations at higher values due to lack of time) only 45% of the functions
are provably optimally allocated. We get a reduction in code size of 9.8% before
and 11.4% after the peephole optimizer. Due to the low fraction of provably
optimally allocated functions the code size reduction and compilation time are
likely to be much higher for a higher number of assignments per node.

In the games benchmark, about 73% of the functions are provably optimally
allocated at 4.5 × 107 assignments per node; at that value the code size is re-
duced by 11.2% before and 12.3% after the peephole optimizer. This result is
consistent with the previous two: The source code contains both complex and
simple functions (and some data, since only source files containing data only
were excluded, while those that contain both code and data were included).

For Contiki, about 76% of the functions are provably optimally allocated at
4.5×106 assignments per node (we did not run compilations at higher values due
to lack of time); at that value the code size is reduced by 9.1% before and 8.2%
after the peephole optimizer. Contiki contains some complex control flow, but it
tends to use global instead of local variables; where there are local variables they
are often 32-bit variables, of which neither the optimal nor the old allocator can
place more than one in registers at a given time (due to the restriction in code
generation that allows the use of IY for 16-bit variables only).

We also did a comparison of the different architectures (except for the Rabbit
3000A, since it is very similar to the Rabbit2000/3000). Figure 5 shows the code
size with the peephole optimizer enabled, Figure 6 with the peephole optimizer
disabled. Furthermore, Figure 5 shows the compilation time, and Figure 6 shows
the fraction of provably optimally allocated functions.

The results clearly show that for the runtime of the register allocator and
the fraction of provably optimally allocated function the number of registers
is much more important than the architecture: For the architectures with 3
registers, code size is stable from 3.8 × 103 (for HC08) and 4.0 × 103 (for S08)
assignments, and all functions are provably optimally allocated from 2.5 × 104

assignments onwards. The effect of the register allocator on compiler runtime
is mostly lost in noise. For the architecture with 5 registers (LR35902), code
size is stable from 9.0× 103 assignments onwards, and all functions are provably
optimally allocated from 1.4 × 105 assignments onwards. For the architectures
with 9 registers, there are still functions for which a provably optimal assignment
is not found at 1.0 × 108 assignments. Architectural differences other than the
number of registers have a substantial impact on code size, but only a negligible
one on the performance of the register allocator.

We also see that the improvement in code size compared to the old allocator
was the most substantial for architectures that have just three registers: For the
HC08 17.6% before and 18% after the peephole optimizer, for the S08 20.1%
before and 21.1% after the peephole optimizer. This has substantially reduced,
but not completely eliminated the gap in generated code size between sdcc and
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Fig. 3. Experimental Results (Z80, with peephole optimizer)
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Fig. 4. Experimental Results (Z80, without peephole optimizer)
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Fig. 5. Experimental Results (sdcc benchmark, with peephole optimizer)
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Fig. 6. Experimental Results (sdcc benchmark, without peephole optimizer)
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the competing Code Warrior and Cosmic C compilers. The Z180 and Rabbit
2000/3000 behave similar to the Z80, which was already discussed above. Our
register allocator makes sdcc substantially better in generated code size than the
competing z88dk, HITECH-C and CROSS-C compilers for these architectures.
The LR35902 backend had been unmaintained in sdcc for some time, and was
brought back to life after the 3.1.0 release, at which time it was not considered
worth the effort to make the old register allocator work with it. There is no other
current compiler for the LR35902.

8 Conclusion

We presented an optimal register allocator, that has polynomial runtime. Reg-
ister allocation is one of the most important stages of a compiler. Thus the
allocator is a major step towards improving compilers. The allocator can handle
a variety of spill and rematerialization costs, register preferences and coalescing.

A prototype implementation shows the feasibility of the approach, and is al-
ready in use in a major cross-compiler targeting architectures found in embedded
systems. Experiments show that it performs excellently for architectures with a
small number of registers, as common in embedded systems.

Future research could go towards improving the runtime further, completing
the prototype and creating a massive parallel implementation. This should make
the approach feasible for a broader range of architectures.
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Llamośı, A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 78–90.
Springer, Heidelberg (2004)

7. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: SIGPLAN
1982: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
pp. 98–105. Association for Computing Machinery (1982)

8. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

9. ChaN. Fatfs, http://elm-chan.org/fsw/ff/00index_e.html

http://www.coremark.org
http://elm-chan.org/fsw/ff/00index_e.html


Optimal Register Allocation in Polynomial Time 19

10. Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs
and related parameters. Theoretical Computer Science 172(1-2), 233–254 (1997)

11. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In: Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I) (November 2004)

12. Dutta, S.: Anatomy of a Compiler. Circuit Cellar 121, 30–35 (2000)
13. Evlogimenos, A.: Improvements to Linear Scan register allocation, Technical re-

port, University of Illinois, Urbana-Champaign (2004)
14. Farach, M., Liberatore, V.: On local register allocation. In: Proceedings of the

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1998, pp.
564–573. Society for Industrial and Applied Mathematics (1998)

15. Fu, C., Wilken, K.: A Faster Optimal Register Allocator. In: MICRO 35: Proceed-
ings of the 35th Annual ACM/IEEE International Symposium on Microarchitec-
ture, pp. 245–256. IEEE Computer Society Press (2002)

16. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The Complexity
of Coloring Circular Arcs and Chords. SIAM Journal on Algebraic Discrete Meth-
ods 1(2), 216–227 (1980)

17. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register allo-
cations using 0–1 integer programming. Software Practice & Experience 26(8),
929–965 (1996)

18. Guruswami, V., Sinop, A.K.: Improved Inapproximability Results for Maximum k-
Colorable Subgraph. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX
and RANDOM 2009. LNCS, vol. 5687, pp. 163–176. Springer, Heidelberg (2009)

19. Gustedt, J., Mæhle, O.A., Telle, J.A.: The Treewidth of Java Programs. In: Mount,
D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer,
Heidelberg (2002)

20. Hack, S., Grund, D., Goos, G.: Register Allocation for Programs in SSA-Form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

21. Halin, R.: Zur Klassifikation der endlichen Graphen nach H. Hadwiger und K.
Wagner. Mathematische Annalen 172(1), 46–78 (1967)

22. Hames, L., Scholz, B.: Nearly Optimal Register Allocation with PBQP. In: Light-
foot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 346–361. Springer,
Heidelberg (2006)

23. Kannan, S., Proebsting, T.: Register Allocation in Structured Programs. In: Pro-
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1995, pp. 360–368. Society for Industrial and Applied Mathematics (1995)

24. Karp, R.M.: On the Computational Complexity of Combinatorial Problems. Net-
works 5, 45–68 (1975)

25. Krause, P.K.: The Complexity of Register Allocation. To appear in the GROW
2011 special issue of Discrete Applied Mathematics (2011)

26. Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation for straight-line
programs is NP-complete. Theoretical Computer Science 407(1-3), 258–273 (2008)

27. Pereira, F.M.Q.: Register Allocation Via Coloring of Chordal Graphs. In: Yi, K.
(ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg (2005)

28. Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 21(5), 895–913 (1999)

29. Robertson, N., Seymour, P.D.: Graph Minors. I. Excluding a Forest. Journal of
Combinatorial Theory, Series B 35(1), 39–61 (1983)

30. Scholz, B., Eckstein, E.: Register Allocation for Irregular Architectures. SIGPLAN
Notices 37(7), 139–148 (2002)



20 P.K. Krause

31. Smith, M.D., Ramsey, N., Holloway, G.: A Generalized Algorithm for Graph-
Coloring Register Allocation. In: PLDI 2004: Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implementation,
pp. 277–288. Association for Computing Machinery (2004)

32. Thorup, M.: All Structured Programs Have Small Tree Width and Good Register
Allocation. Information and Computation 142(2), 159–181 (1998)

33. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commu-
nications of the ACM 27, 1013–1030 (1984)

34. Weicker, R.P.: Dhrystone Benchmark: Rationale for Version 2 and Measurement
Rules. SIGPLAN Notices 23, 49–62 (1988)

35. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters 24(2), 133–137 (1987)



Optimal and Heuristic Global Code Motion
for Minimal Spilling
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Abstract. The interaction of register allocation and instruction schedul-
ing is a well-studied problem: Certain ways of arranging instructions
within basic blocks reduce overlaps of live ranges, leading to the inser-
tion of less costly spill code. However, there is little previous research
on the extension of this problem to global code motion, i .e., the motion
of instructions between blocks. We present an algorithm that models
global code motion as an optimization problem with the goal of mini-
mizing overlaps between live ranges in order to minimize spill code.

Our approach analyzes the program to identify the live range over-
laps for all possible placements of instructions in basic blocks and all
orderings of instructions within blocks. Using this information, we for-
mulate an optimization problem to determine code motions and partial
local schedules that minimize the overall cost of live range overlaps. We
evaluate solutions of this optimization problem using integer linear pro-
gramming, where feasible, and a simple greedy heuristic.

We conclude that global code motion with the sole goal of avoiding
spills rarely leads to performance improvements because code is placed
too conservatively. On the other hand, purely local optimal instruction
scheduling for minimal spilling is effective at improving performance
when compared to a heuristic scheduler for minimal register use.

1 Introduction

In an optimizing compiler’s backend, various code generation passes apply code
transformations with different, conflicting goals in mind. The register allocator
attempts to assign the values used by the program to CPU registers, which are
usually scarce. Where there are not enough registers, spilling must be performed:
Excess values must be stored to memory and reloaded before they can be used.
Memory accesses are slower than most other instructions, so avoiding spill code
is usually beneficial on modern architectures [GYA+03]. This paper investigates
the applicability of this result to global code motion directed at minimizing live
range overlaps.
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start:
i0 := 0
a := read()

loop:
i1 := φ(i0, i2)
b := a + 1
c := f(a)
i2 := i1 + b
d := i2 × 2
compare i2 < c
blt loop

end:
return d

(a) Original function

start:
i0 := 0
a := read()
b := a + 1

loop:
i1 := φ(i0, i2)
c := f(a)
i2 := i1 + b
compare i2 < c
blt loop

end:
d := i2 × 2
return d

(b) After GCM

start:
i0 := 0
a := read()

loop:
i1 := φ(i0, i2)
b := a + 1
i2 := i1 + b
c := f(a)
compare i2 < c
blt loop

end:
d := i2 × 2
return d

(c) GCMS for 3 registers

Fig. 1. Optimization using GCM and GCMS for a three-register processor

Register allocation and spilling conflict with transformations that lengthen
a value’s live range, the set of all program points between the value’s defini-
tion and a subsequent use: Instruction scheduling arranges instructions within
basic blocks. To maximize pipeline utilization, definitions and uses of values
can be moved apart by scheduling other instructions between them, but this
lengthens live ranges and can lead to more overlaps between them, which can in
turn lead to excessive register demands and insertion of spill code. Similarly, code
motion techniques that move instructions between basic blocks can increase per-
formance, but may also lead to live range overlaps. In particular, loop-invariant
code motion moves instructions out of loops if their values do not need to be
computed repeatedly. However, for a value defined outside a loop but used inside
the loop, this extends its live range across the entire loop, leading to an overlap
with all of the live ranges inside the loop.

This paper introduces our GCMS (global code motion with spilling) algorithm
for integrating the code motion, instruction scheduling, and spilling problems in
one formalism. The algorithm is ‘global’ in the sense that it considers the entire
function at once and allows code motion into and out of loops. We describe both
heuristic GCMS and an integer linear programming formulation for an optimal
solution of the problem.

Our algorithm is based on Click’s aggressive Global Code Motion (GCM)
algorithm [Cli95]. We use an example to illustrate the differences between GCM
and GCMS. Figure 1(a) shows a small program in SSA form adapted from the
original paper on GCM. It is easy to see that the computation of variable b
is loop-invariant and can be hoisted out of the loop; further, the computation
for d is not needed until after the loop. Since the value of its operand i2 is
available at the end of the loop, we can sink this multiplication to the end
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block. Figure 1(b) illustrates both of these code motions, which are automatically
performed by GCM. The resulting program contains less code in the loop, which
means it can be expected to run faster than the original.

This expectation fails, however, if there are not enough registers available in
the target processor. Since after GCM variable b is live through the loop, it con-
flicts with a, c, and all of {i0, i1, i2}. Both a and c conflict with each other and
with at least one of the i variables, so after GCM we need four CPU registers
for a spill-free allocation. If the target only has three registers available for allo-
cation of this program fragment, costly spill code must be inserted into the loop.
As memory accesses are considerably more expensive than simple arithmetic,
GCM would trade off a small gain through loop invariant code motion against
a larger loss due to spilling.

Compare this to Figure 1(c), which shows the result of applying our GCMS al-
gorithm for a three-register CPU. To avoid the overlap of b with all the variables
in the loop, GCMS leaves its definition inside the loop. It also applies another
change to the original program: The overlap between the live ranges of b and c is
avoided by changing the instruction schedule such that c’s definition is after b’s
last use. This ensures that a register limit of 3 can be met. However, GCMS is
not fully conservative: Sinking d out of the loop can be done without adversely
affecting the register needs, so this code motion is performed by GCMS. Note,
however, that this result is specific to the limit of three registers: If four or more
registers were available, GCMS would detect that unrestricted code motion is
possible, and it would produce the same results as GCM in Figure 1(b).

The idea of GCMS is thus to perform GCM in a way that is more sensitive to
the needs of the spiller. As illustrated in the example, code motion is restricted
by the spilling choices of the register allocator, but only where this is necessary.
In functions (or parts of functions) where there are enough registers available,
GCMS performs unrestricted GCM. Where there is higher register need, GCMS
serializes live ranges to avoid overlaps and spill fewer values. In contrast to most
other work in this area, GCMS does not attempt to estimate the register needs of
the program before or during scheduling. Instead, it computes a set of promising
code motions that could reduce register needs if necessary. An appropriately
encoded register allocation problem ensures that the spiller chooses which code
motions are actually performed. Code motions that are not needed to avoid
spilling are not performed.

The rest of this paper is organized as follows. Section 2 discusses related work
in the areas of optimal instruction scheduling, optimal spilling, and integrated
scheduling and register allocation techniques. Section 3 gives an overview of our
GCMS algorithm. Section 4 describes our analysis for identifying all possible live
range overlaps, and how to apply code motion and scheduling to avoid them.
Section 5 discusses the problem of selecting a subset of possible overlaps to
avoid and shows our integer linear programming (ILP) model for computing
an optimal solution. Section 6 evaluates our implementation and compares the
effects of heuristic and optimal GCMS to simpler existing heuristics implemented
in the LLVM compiler suite. Section 7 concludes.
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2 Related Work

Instruction scheduling for pipelined architectures was an early target for optimal
approaches [EK91, WLH00]. The goal of such models was usually to optimize for
minimal total schedule length only. However, both the increasing complexity of
modern hardware and the increasing gap between processor and memory speeds
made it necessary to consider register needs as well. An optimal integrated for-
mulation was given by Chang et al.[CCK97]. More recently, Govindarajan et al.
[GYA+03] concluded that on modern out-of-order superscalar processors, schedul-
ing to minimize spilling appears to be the most profitable instruction scheduling
target. Various optimal spillers for a given arrangement of instructions have also
been proposed. Colombet et al. [CBD11] summarize and generalize this work.

A large body of early work in integrated instruction scheduling and regis-
ter allocation [GH88, NP93, Pin93, AEBK94] aimed at balancing scheduling
for instruction level parallelism against register allocation, with some spilling
typically allowed. As with optimal schedulers, this trend also shifted towards
work that attempted to avoid live range overlaps entirely, typically by adding
sequencing arcs to basic block dependence graphs, as our GCMS algorithm also
does [Tou01, XT07, Bar11].

All of the work mentioned above considers only local instruction scheduling
within basic blocks, but no global code motion. At an intermediate level between
local and global approaches, software pipelining [Lam88] schedules small loop
kernels for optimal execution on explicitly parallel processors. Here, too, careful
integration of register allocation has proved important over time [CSG01, EK12].

RASER [NP95b] performs register allocation sensitive region scheduling by
first using rematerialization (duplication of computations) to reduce register
pressure where needed, and then only applying global code motion operations
(such as loop-invariant code motion) that do not increase register pressure be-
yond the number of available registers. No attempt is made to reduce register
pressure by serializing registers as in our approach. RASER gives impressive im-
provements on machines with artificially few registers; later results on a machine
with 16 registers look similar to ours [NP95a].

Johnson and Mycroft [JM03] describe an elegant combined global code motion
and register allocation method based on the Value State Dependence Graph
(VSDG). The VSDG is similar to our acyclic global dependence graph, but it
represents control flow by using special nodes for conditionals and reducible
loops (their approach does not handle irreducible loops) rather than our lists of
legal blocks for each instruction. The graph is traversed bottom-up in a greedy
manner, measuring ‘liveness width’, the number of registers needed at each level.
Excessive register pressure is reduced by adding dependence arcs, by spilling
values, or by duplicating computations. Unfortunately, we are not aware of any
data on the performance of this allocator, nor the quality of the generated code.

The concept of liveness width is similar to Touati’s ‘register saturation’, which
is only formulated for basic blocks and pipelined loops. It is natural to try to
adapt this concept to general control flow graphs, but this is difficult to do if
instructions may move between blocks and into and out of loops. It appears that
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to compute saturation, we would need to build a detailed model of where each
value may be live, and this might quickly lead to combinatorial explosion. Our
method is simpler because it tries to minimize spills without having to take a
concrete number of available registers into account.

Many authors have worked on what they usually refer to as global instruc-
tion scheduling problems, but their solutions are almost invariably confined
to acyclic program regions, i. e., they do not perform loop invariant code mo-
tion [BR91, ZJC03]. The notable exception is work by Winkel [Win07] on ‘real’
global scheduling including moving code into and out of loops, as our algorithm
does. Crucially, Winkel’s optimal scheduler runs in two phases, the second of
which has the explicit goal of limiting code motion to avoid lengthening live
ranges too much. Besides considerable improvements in schedule length, Winkel
reports reducing spills by 75 % relative to a heuristic global scheduler. In con-
trast to our work, Winkel compiled for the explicitly parallel Itanium processor,
so his reported speedups of 10 % cannot be meaningfully compared to our results
on our out-of-order target architecture (ARM Cortex-A9).

3 Global Code Motion for Minimal Spilling

As an extension of GCM, our GCMS algorithm is also based on a program rep-
resentation in SSA form and a global dependence graph. In SSA form [CFR+91],
every value in the program has exactly one definition. Definitions from different
program paths, such as in loops, are merged using special φ pseudo-instructions
that are later replaced by register copies if necessary.

Like GCM, we build a global dependence graph with instructions as nodes and
data dependences as arcs. We also add arcs to capture any ordering dependences
due to side effects on memory, such as store instructions and function calls,
and any instructions that explicitly access processor registers, such as moves to
and from argument registers around calls. Because we will use this dependence
graph to find a linear arrangement of instructions within basic blocks, we must
impose an important restriction: The graph must always be acyclic to ensure
that a topological ordering exists. Conveniently, in SSA form the only cyclic data
dependences arise from values that travel along loop backedges to φ instructions.
We can safely ignore these dependences as long as we ensure that the definitions
of such values are never sunk out of their loops.

Our dependence graph is also used for code motion. We associate each in-
struction with a set of legal basic blocks as follows: Function calls, any other in-
structions that access memory or explicit CPU registers, and φ instructions are
not movable, their only legal block is the block in which they originally appear.
For all other blocks, we employ the concept of dominance: A block a dominates
a block b iff any path from the function’s unique entry block to b must pass
through a. Following Click [Cli95], we say that an instruction is legally placed
in a block b if all of its predecessors in the dependence graph are based in blocks
that dominate b, and all of its successors are in blocks dominated by b. The set
of legal blocks for every instruction is computed in a forward and a backward
pass over the dependence graph.
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Fig. 2. Global dependence graph for example program

Figure 2 shows the global dependence graph for the example program from
Figure 1. Data dependences are annotated with the name of the corresponding
value. Note that the cyclic dependence of the φ instruction on i2 is not shown; it
is implicit, and our analysis keeps track of the fact that i2 is live out of the loop
block and live across the loop’s backedge.

Recall that function calls, φ instructions, and branches are not movable in
our model. Due to dependence arcs, other instructions become unmovable, too:
Instructions 4 and 6 are ‘stuck’ between the unmovable φ and the branch. This
leaves only instructions 3 and 7 movable into and out of the loop, but as we have
seen before, this is enough to illustrate interesting interactions between global
code motion and spilling.

Given the dependence graph and legal blocks for each instruction, GCMS
proceeds in the following steps:

Overlap analysis determines for every pair of values whether their live ranges
might overlap. The goal of this analysis is similar to traditional liveness
analysis for register allocation, but with the crucial difference that in GCMS,
instructions may move. Our overlap analysis must therefore take every legal
placement and every legal ordering of instructions within blocks into account.
For every pair, the analysis determines whether the ranges definitely overlap
in all schedules, never overlap in any schedule, or whether they might overlap
for some arrangements of instructions. In the latter case, GCMS computes
a set of code placement restrictions and extra arcs that can be added to the
global dependence graph. Such restrictions ensure that the live ranges do
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not overlap in any schedule of the new graph, i. e., they enable reuse of the
same processor register for both values.

Candidate selection chooses a subset of the avoidable overlaps identified in
the previous phase. Not all avoidable overlaps identified by the analysis are
avoidable at the same time: If avoiding overlaps for two register pairs leads
to conflicting code motion restrictions, such as moving an instruction to two
different blocks, or adding arcs that would cause a cycle in the dependence
graph, at least one of the pairs cannot be chosen for reuse. GCMS must
therefore choose a promising set of candidates among all avoidable overlaps.
Only these candidate pairs will be considered for actual overlap avoidance
by code motion and instruction scheduling.

Since our goal is to avoid expensive spilling as far as possible, we try to
find a candidate set that maximizes the sum of the spill costs of every pair
of values selected for reuse.

Spilling and code motion use the results of the candidate selection phase by
building a register allocation problem in which the live ranges of reuse can-
didates are treated as non-conflicting. The solution computed by the register
allocator is then used to guide code motion: For any selected candidate whose
live ranges were allocated to the same CPU register, we apply its code motion
restrictions to the dependence graph. The result of this phase is a restricted
graph on which we can perform standard GCM, with the guarantee that
code motion will not introduce excessive overlaps between live ranges.

Each of these phases is discussed in more depth in the following sections.

4 Overlap Analysis

An optimal solution to GCMS requires us to consider all possible ways in which
a pair of values might overlap. That is, we must consider all possible placements
and orderings of all of the instructions defining or using either value. To keep
this code simple, we implemented this part of the analysis in Prolog. This allows
us to give simple declarative specifications of when values overlap, and Prolog’s
built-in backtracking takes care of actually enumerating all configurations.

The core of the overlap analysis, simplified from our actual implementation,
is sketched in Figure 3. The Figure shows the three most important cases in the
analysis: The first clause deals with the case where values (‘virtual registers’) A
and B might overlap because A’s use is in the same block as B’s definition, but
there is no dependence ensuring that A’s live range ends before B’s definition.
The second clause applies when A is defined and used in different blocks, and B’s
definition might be placed in an intervening block between A’s definition and
use. The third clause handles the case where A and B are live at the end of the
same block because they are both defined there and used elsewhere.

The code uses three important auxiliary predicates for its checks:

cfg_forward_path(A, B) succeeds if there is a path in the control flow graph
from block A to block B using only forward edges, i. e., not taking loop
backedges into account.
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overlapping_virtreg_pair(virtreg(A), virtreg(B)) :−
% B is defined by instruction BDef in BDefBlock, A has a use in
% the same block.
virtreg_def_in(B, BDef, BDefBlock),
virtreg_use(A, AUse, BDefBlock),
% A’s use is not identical to B’s def , and there is no existing
% dependence from B’s def to A’s use. That is, B’s def might be
% between A’s def and use.
AUse \= BDef,
no_dependence(BDef, AUse),
% There is an overlap that might be avoided if B’s def were
% scheduled after A’s use by adding an arc.
Placement = [AUse−BDefBlock, BDef−BDefBlock],
record_blame(A, B, blame(placement(Placement), no_arc([BDef−AUse]))).

overlapping_virtreg_pair(virtreg(A), virtreg(B)) :−
% A and B have defs ADef and BDef in blocks ADefBlock and
% BDefBlock, respectively.
virtreg_def_in(A, ADef, ADefBlock),
virtreg_def_in(B, BDef, BDefBlock),
% A has a use in a block different from its def .
virtreg_use(A, AUse, AUseBlock),
ADefBlock \= AUseBlock,
% There is a non−empty path from A’s def to B’s def...
ADefBlock \= BDefBlock,
cfg_forward_path(ADefBlock, BDefBlock),
% ... and a path from B’s def to A’s use that does not pass
% through a redefinition of A. That is, B is on a path from A’s
% def to its use.
cfg_loopypath_notvia(BDefBlock, AUseBlock, ADefBlock),
% There is an overlap that might be avoided if at least one of
% these instructions were in a different block .
Placement = [ADef−ADefBlock, BDef−BDefBlock, AUse−AUseBlock],
record_blame(A, B, blame(placement(Placement))).

overlapping_virtreg_pair(virtreg(A), virtreg(B)) :−
% A and B are defined in the same block.
virtreg_def_in(A, ADef, DefBlock),
virtreg_def_in(B, BDef, DefBlock),
% A has a use in a different block , so it is live out of
% its defining block .
virtreg_use(virtreg(A), AUse, AUseBlock),
AUseBlock \= DefBlock,
% B is also live out.
virtreg_use(virtreg(B), BUse, BUseBlock),
BUseBlock \= DefBlock,
% There is an overlap that might be avoided if at least
% one of these instructions were in a different block .
Placement = [ADef−DefBlock, BDef−DefBlock,

AUse−AUseBlock, BUse−BUseBlock],
record_blame(A, B, blame(placement(Placement))).

Fig. 3. Overlap analysis for virtual registers A and B
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cfg_loopypath_notvia(A, B, C) succeeds if there is a path, possibly includ-
ing loops, from A to B, but not including C. We use this to check for paths
lacking a redefinition of values.

no_dependence(A, B) succeeds if there is no existing arc in the dependence
graph from instruction A to B, but it could be added without causing a cycle
in the graph.

If all of the conditions in the clause bodies are satisfied, a possible overlap be-
tween the values is recorded. Such overlaps are associated with ‘blame terms’,
data structures that capture the reason for the overlap. For any given pair of
values, there might be several different causes for overlap, each associated with
its own blame. An overlap can be avoided if all of the circumstances captured
by the blame terms can be avoided.

There are two kinds of blame. First, there are those blames that record arcs
missing from the dependence graph, computed as in the first clause in Figure 3.
If this arc can be added to the dependence graph, B’s definition will be after A’s
use, avoiding this overlap. Alternatively, if these two instructions are not placed
in the same block, the overlap is also avoided. The second kind of blame concerns
only the placement of instructions in basic blocks, as in the second and third
clauses in Figure 3. If all of the instructions are placed in the blocks listed in
the blame term, there is an overlap between the live ranges. If at least one of
them is placed in another block, there is no overlap—at least, not due to this
placement.

As mentioned before, we use Prolog’s backtracking to enumerate all invalid
placements and missing dependence arcs. We collect the associated blame terms
and check them for validity: If any of the collected arcs to put a value v before w
can not be added to the dependence graph because it would introduce a cycle,
then the other arcs for putting v before w are useless, so all of these blames are
deleted. Blames for the reversed ordering, scheduling w before v, are retained
because they might still be valid.

Even after this cleanup we might end up with an overlap that cannot be
avoided. For example, for the pair a and b in the example program, the analysis
computes that instruction 3 defining b may not be placed in the start block
because it would then be live out of that block and overlap with a’s live-out
definition; but neither may instruction 3 be placed in the loop block because it
would be on a path from a’s definition to its repeated use in the loop. As these
two blocks are the only ones where instruction 3 may be placed, the analysis
of all blames for this pair determines that an overlap between a and b cannot
be avoided. Table 1 shows the blame terms computed for the example program
after these checks and some cleanup (removal of unmovable instructions from
placement blames). Each blame is accompanied by a brief explanation of why
the live ranges would overlap if placed and arranged as stated. Pairs not listed
here are found to be either non-overlapping or definitely overlapping.
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Table 1. Blame terms computed for the example program, listing instruction place-
ments and missing dependence arcs that may cause overlaps

Pair Invalid placements Missing arcs Explanation

a, d 7 in loop a live through loop
b, d 3 in start, 7 in loop b live through loop if defined in start
b, i0 3 in start b live out of start if defined in start
b, i2 3 in start b live through loop if defined in start
c, d 7 in loop 7 → 6 order d’s definition after c’s last use
c, i1 5 → 4 order c’s definition after i1’s last use
d, i2 7 in loop i2 live out of loop (across backedge)

The analysis discussed so far only considers pairs of values in SSA form. How-
ever, we must also consider overlaps between SSA values and explicitly named
CPU registers, such as argument registers referenced in copy instructions before
function calls. As such copies can occur in several places in a function, these
physical registers are not in SSA form. We assume a representation in which all
uses of such registers are in the same block as their definition; this allows us to
treat each of these short live ranges separately, and the analysis becomes similar
to the case for virtual registers.

5 Reuse Candidate Selection

After performing overlap analysis and computing all blames, a subset of reuse
candidates must be selected for reuse.

5.1 Integer Linear Programming Formulation

The optimization problem we must solve is finding a nonconflicting set of reuse
candidates with maximal weight, where the weight is the sum of the spill costs
of the two values. That is, of all possible overlaps, we want to avoid those that
would lead to the largest total spill costs. We model this as an integer linear
program and use an off-the-shelf solver (CPLEX) to compute an optimum.

Variables. The variables in the problem are:

– a binary variable selectc for each reuse candidate c; this is 1 iff the candidate
is selected

– a binary variable place i,b for each legal block b for any instruction i occurring
in a placement constraint in any blame; this is 1 iff it is legal to place i in b
in the optimal solution

– a binary variable arci,j for any dependence arc i → j occurring in any blame;
this is 1 iff the arc must be present in the optimal solution

– a variable instr i for each instruction in the program, constrained to the range
0 ≤ instr i < N where N is the total number of instructions; these are used to
ensure that the dependence graph for the optimal solution does not contain
cycles
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Objective Function. We want to maximize the weight of the selected candidates;
as a secondary optimization goal, we want to preserve as much freedom of code
motion as possible for a given candidate selection. The objective function is
therefore

maximize
∑

c

wcselectc +
∑

i

∑

b

place i,b

where the first sum ranges over all candidates c, wc is the weight of candidate c,
and the second sum ranges over all placement variables for instructions i and
their legal blocks b. In our problem instances, there are typically considerably
more candidate selection variables than placement variables, and the candidate
weights are larger than 1. Thus the first sum dominates the second, and this
objective function really treats freedom of code motion as secondary to the
avoidance of overlaps. However, adding weights to the second sum would easily
enable us to investigate trade-offs between avoiding spills and more aggressive
code motion. We intend to investigate this trade-off in future work.

Constraints. The constraints in equations (1)–(7) ensure a valid selection. First,
we give the constraints that model the structure of the existing dependence
graph. We need this to detect possible cycles that would arise from selecting
an invalid set of arcs. Therefore, we give a partial ordering of instructions that
corresponds to dependences in the graph. For each instruction i with a direct
predecessor p, the following must hold:

instr i > instrp (1)

Next, we require that all instructions must be placed in some legal block. For
each such instruction i: ∑

placei,b ≥ 1 (2)

where the sum ranges over all valid blocks b for instruction i.
We can now proceed to give the constraints related to selecting a reuse can-

didate. For a candidate c and each of the arcs i → j associated with it, require

selectc + place i,b + placej,b ≤ 2 + arci,j (3)

to model that if c is selected and both i and j are placed in some common
block b, the arc must be selected as well. For each invalid placement constraint
(instr i1 in b1, . . . , instr in in bn), require:

selectc +
∑

placei,b ≤ n (4)

This ensures that if c is selected, at least one of these placements is not selected.
If an arc is to be selected due to one of the candidates that requires it, ensure

that it can be added to the dependence graph without causing a cycle. That is,
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we want to formulate the condition arci,j ⇒ instr i > instr j . If N is the total
number of instructions, this constraint can be written as:

instr i − instr j > N · arci,j −N (5)

If arci,j is selected, this reduces to instr i− instrj > 0, i. e., instr i > instrj . Oth-
erwise, it is instr i−instrj > −N , which is always true for 0 ≤ instr i, instrj < N .
These constraints ensure that the instructions along every path in the depen-
dence graph are always topologically ordered, i. e., there is no cycle in the graph.

Finally, we must take interactions between dependence arcs and instruction
placement into account. An arc instr i → instr j means that instrj may not be
executed after instr i along a program path, so it is not valid to place instrj into
a later block than instr i. Therefore, for all arcs instr i → instrj in the original
dependence graph where instr i may be placed in some block bi, instr j may be
placed in block bj , and there is a non-empty forward path from bj to bi, require

place i,bi + placej,bj ≤ 1 (6)

to ensure that such a placement is not selected.
Similarly, for every selectable arc arci,j and an analogous invalid path:

arci,j + place i,bi + placej,bj ≤ 2 (7)

That is, selecting an arc means that we also ensure that the placement of in-
structions respects the intended ordering.

5.2 Greedy Heuristic Solution

Solving integer linear programming problems is NP-hard. While very power-
ful solvers exist, many problems cannot be solved optimally within reasonable
time limits. We therefore complement our optimal solver with a greedy heuristic
solver. This solver inspects reuse candidates one by one and commits to any can-
didate that it determines to be an avoidable overlap. Committing to a candidate
means immediately applying its instruction placement constraints and depen-
dence arcs; this ensures that the candidate will definitely remain avoidable, but
it restricts freedom of code motion for subsequent candidates.

Due to this greedy behavior, it is important to process candidates in an order
that maximizes the chance to pick useful candidates early on. Since a live range’s
spill weight is a measure of how beneficial it is to keep the live range in a register,
we want to avoid as many overlaps between live ranges with large weights as
possible. We therefore order our candidates by decreasing weight before applying
the greedy solver. As a small exception, we have found it useful to identify very
short live ranges with a single use in the same block as the definition in the
original program. We order these after all the other ranges because we have found
that committing to such a very short range too early often destroys profitable
code motion possibilities.
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5.3 Spilling and Code Motion

Regardless of whether candidate selection was performed optimally or heuris-
tically, GCMS finally moves on to the actual spilling phase. We use a spiller
based on the PBQP formalism [SE02, HS06]. For the purposes of this paper,
PBQP is simply a generalization of graph coloring register allocators [Cha82].
The difference is that nodes and edges in the conflict graph are annotated with
weights modeling spill costs and register use constraints such as register pairing
or aliasing.

We build a conflict graph with conflict edges both for register pairs whose live
ranges definitely overlap as well as register pairs that were not selected by the
candidate selection process. Conversely, any pair that was selected for reuse can
be treated as non-conflicting, so we need not insert conflict edges for these. In
fact, we want to ensure that any overlap that can be avoided actually is avoided
by the register allocator. Using PBQP’s edge cost matrices, we can ensure this
by adding an edge with costs of some very small ε value between any pair of
registers that we want to be allocated to different registers. The PBQP problem
solver then tries to find an allocation respecting all of these constraints.

If the solver does not find a valid allocation, it returns some values to spill
or rematerialize; we perform these actions and then rerun the entire algorithm
on the modified function. When an allocation is found, we perform our actual
code motion: In the final schedule, live ranges selected for reuse may not overlap.
We therefore inspect all selected candidate pairs to see if they were allocated to
the same CPU register. If so, we must restrict code motion and add ordering
arcs to the dependence graph as specified by the pair’s blame term. For selected
candidate pairs that were not allocated to the same register, we do not need
to do anything. Thus, GCMS balances the needs of the spiller with aggressive
global code motion: The freedom to move code is only restricted if this is really
needed to avoid spills, but not otherwise.

After applying all the needed constraints, we simply perform unmodified GCM
on the resulting restricted dependence graph: Instructions are placed in their
latest possible blocks in the shallowest loop nest. This keeps instructions out of
loops as far as possible, but prefers to shift them into conditionally executed
blocks.

6 Experimental Evaluation

We have implemented optimal and heuristic GCMS in the LLVM compiler frame-
work’s backend. Since LLVM’s native frontend, Clang, only handles C and C++,
we use GCC as our frontend and the Dragonegg GCC plugin to generate LLVM
intermediate code from GCC’s internal representation. This allows us to apply
our optimization to Fortran programs from the SPEC CPU 2000 benchmark
suite as well. Unfortunately, our version of Dragonegg miscompiles six of the
SPEC benchmarks, but this still leaves us with 20 benchmarks to evaluate. We
generate code for the ARM Cortex-A9 architecture with VFP3 hardware floating
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point support and use the -O3 optimization flag to apply aggressive optimiza-
tions both at the intermediate code level and in the backend.

The overlap analysis was implemented using SWI-Prolog, and we use CPLEX
as our ILP solver. Whenever CPLEX times out on a problem, we inspect the
best solution it has found up to that point; if its overlap weight is lower than
the weight in the prepass schedule, we use this approximation, and otherwise
fall back to the prepass schedule.

The greedy heuristic solver could in principle be based on the Prolog analysis
as well, but we simply continue using our old C++ implementation. However,
comparing it to the Prolog implementation of essentially the same analysis helped
us considerably in finding bugs in both.

6.1 Solver Time

We ran our compiler on the SPEC CPU 2000 benchmark suite, applying the
optimal GCMS algorithm on all functions of 1000 or fewer instructions (this
includes more than 97 % of all functions in the suite). CPLEX was set to run with
a time limit of 60 seconds of wall clock time per problem. CPLEX automatically
runs as many parallel threads as is appropriate for the hardware platform and can
almost fully utilize the 8 cores on our Xeon CPU, so the timeout corresponds
to typically about 6 to 8 minutes of CPU time. The entire build of our 20
benchmarks with optimal GCMS takes 18 hours of wall clock time.

Figure 4 shows a scatterplot of CPLEX solver times relative to the number
of instructions. Marks at or very near the 60 second line are cases where the
solver reached its time limit and did not return a provably optimal result. We
can see that the majority of problems is solved very quickly. It is difficult to
pinpoint a general trend, although obviously solving the optimization problem
for larger functions tends to take longer. Note, however, that there are some
quite small functions, some even with fewer than 100 instructions, where CPLEX
does not terminate within the time limit. Inspection of such cases shows that this
typically happens in functions containing relatively large basic blocks with much
scheduling freedom. In the ILP problems for such functions, there are many arc
variables to consider. These affect the values of the instr variables, which have
large domains, and we believe that this may be one of the reasons CPLEX is
having difficulties in exploring the search space efficiently. Nevertheless, we are
able to solve 5287 of 5506 instances (96 %) optimally, and 4472 of these (81 %
overall) even within a single second.

We do not report times for the Prolog overlap analysis separately, but the
overall distribution is very similar to the one in Figure 4. All blames for almost
all of the functions are computed within a few seconds. Functions with a large
number of basic blocks and many paths in the CFG may take longer due to the
combinatorial explosion of taking all instruction placements into account. We
run the overlap analysis with a 60 second time limit and fall back to the C++
heuristics if the limit is exceeded, but this only happens rarely.
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Fig. 4. Scatterplot of CPLEX solver times relative to function size

6.2 Execution Time Statistics

Table 2 shows a comparison of the execution times of our benchmark programs,
compiled using five different code generation methods. Baseline is the configura-
tion using LLVM’s code motion pass which attempts to perform loop invariant
code motion without exceeding a heuristically determined register usage limit.
Within blocks, instructions are scheduled using a list scheduler that attempts to
minimize live range lengths. The Baseline configuration is thus a good represen-
tative of modern optimizing compilers.

Heuristic GCMS is our GCMS algorithm, always using the greedy heuristic
solver described in Section 5.2. Optimal GCMS uses the optimal ILP formulation
for functions of up to 1000 instructions with a solver time timit of 60 seconds, as
discussed above. All three configurations use the same spiller based on a PBQP
formulation and using LLVM’s near-optimal PBQP solver.

The ‘Local’ variants are also GCMS, but restricted by treating every instruc-
tion as unmovable. Thus the Local algorithm only performs instruction schedul-
ing within the blocks LLVM chose for each instruction. We evaluate two Local
variants, one with the greedy heuristic scheduler and one with the optimal ILP
formulation of the candidate selection problem, as before. Each time shown in
the table is CPU time, obtained as the minimum of timing five runs of each
benchmark in each configuration. Additionally, the GCMS and Local variants
are shown normalized to Baseline.
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Table 2. Execution time statistics for SPEC CPU 2000 benchmark programs, in sec-
onds and relative to Baseline

Benchmark Baseline GCMS Local
Heuristic Optimal Heuristic Optimal

164.gzip 62.82 60.25 0.96 60.31 0.96 60.66 0.97 60.68 0.97
168.wupwise 60.25 59.96 1.00 60.18 1.00 60.30 1.00 60.03 1.00
171.swim 31.84 31.89 1.00 31.85 1.00 31.49 0.99 31.76 1.00
172.mgrid 50.87 52.85 1.04 52.25 1.03 53.08 1.04 51.58 1.01
173.applu 31.00 31.31 1.01 31.24 1.01 31.35 1.01 31.21 1.01
175.vpr 40.72 40.80 1.00 40.71 1.00 40.71 1.00 40.47 0.99
177.mesa 58.89 59.26 1.01 58.15 0.99 58.78 1.00 58.74 1.00
178.galgel 54.07 54.21 1.00 54.33 1.00 53.62 0.99 53.49 0.99
179.art 9.42 9.59 1.02 9.59 1.02 9.69 1.03 9.18 0.97
181.mcf 56.82 57.58 1.01 57.54 1.01 58.29 1.03 57.05 1.00
183.equake 40.81 41.42 1.01 41.14 1.01 42.42 1.04 40.72 1.00
187.facerec 80.42 81.99 1.02 85.91 1.07 82.71 1.03 80.80 1.00
189.lucas 79.48 79.35 1.00 79.24 1.00 79.14 1.00 78.88 0.99
197.parser 13.50 13.46 1.00 13.43 0.99 13.55 1.00 13.50 1.00
252.eon 13.63 13.34 0.98 13.64 1.00 13.80 1.01 13.47 0.99
253.perlbmk 25.12 24.42 0.97 24.27 0.97 26.28 1.05 24.64 0.98
255.vortex 15.32 15.42 1.01 15.68 1.02 15.35 1.00 15.45 1.01
256.bzip2 56.20 56.56 1.01 56.59 1.01 56.53 1.01 56.63 1.01
300.twolf 25.09 25.60 1.02 25.35 1.01 26.19 1.04 24.79 0.99
301.apsi 20.46 20.36 1.00 20.41 1.00 20.42 1.00 20.35 0.99

geometric mean 1.003 1.004 1.011 0.995

The results show interesting effects due to the comparison of global code mo-
tion and local scheduling. Our original research goal was to investigate whether
the effect observed by Govindarajan et al. [GYA+03], that scheduling for min-
imal register use improves performance, also holds true for global code motion
for minimial spilling. While we see performance improvements due to reduced
spilling and more aggressive code motion in a few cases, in other cases perfor-
mance degrades. These regressions are due to code motions that do reduce spills
but at the same time move instructions to unfavorable basic blocks. We conclude
that although GCMS is careful to restrict the schedule only where this is abso-
lutely necessary to avoid spilling, such restrictions can still have an unfavorable
impact on overall performance in a number of cases. On average, both heuris-
tic and optimal GCMS produce code with comparable performance to LLVM’s
simpler heuristics.

This is different for purely local scheduling for minimal spilling: Here, our
optimal variant is often better than LLVM’s scheduling heuristic, which also has
the goal of reducing spills by shortening live ranges. On average, we achieve an
improvement of about 0.5 %. This local result shows that while LLVM is already
close to optimal, there is still potential to improve the code produced by its
state-of-the-art heuristics, and we believe that more careful global code motion
operations can be even more beneficial. We noted in Section 5 that our optimal
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Fig. 5. Distribution of selected candidates by weight

algorithm’s objective function can easily be extended to balance avoidance of
spills against freedom of code motion. As future work, we intend to evaluate this
design space to find a better tradeoff between global code motion and scheduling
to optimize program performance.

6.3 Comparison of Optimal Selection vs. Greedy Heuristics

The quality of our greedy heuristic solution depends on the ordering of register
pairs. If we managed to select an ordering in which all the reuse candidates in
the optimal solution come first, applying the greedy algorithm would produce
the optimal solution. The idea behind our ordering by decreasing weight is to
select the most expensive pairs, which make the biggest difference in spilling
quality, as early as possible.

To gain insight into whether this is a good idea, we look at the distribution of
candidates actually selected by the optimal solver. If this distribution is skewed
towards candidates of larger weight, this could be a hint that our ordering by
decreasing weight is a sound approach; otherwise, analyzing the distribution
might suggest better alternatives.

Figure 5 shows a histogram representing the distribution of reuse candidates
in the optimal solutions we found. We obtained this figure by producing a 0-1
‘selection vector’ for each set of candidates ordered by decreasing weight, where
a 0 entry represents ‘not selected’, and a 1 represents ‘selected’. We divided each
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selection vector into 100 buckets of equal size and computed the population
count (number of 1s) normalized by bucket size for each bucket. The histogram
is the sum of all of these normalized vectors.

Apart from the small peak towards the lower end of the weight scale, the
distribution of the selected candidates is quite even. Thus this analysis does not
suggest a good weight-based ordering for the greedy analysis, although starting
with a certain subset of lower-weight pairs might result in a slightly better overall
selection than with our current ordering by decreasing weight.

7 Summary and Conclusions

In this paper we presented GCMS, a global code motion algorithm for minimal
spilling. In GCMS, we consider all possible overlaps between live ranges in a
function, taking all possible placements of instructions and schedules within
basic blocks into account. From all overlaps that can be avoided, we select a
profitable candidate set to avoid. These candidates can be removed from the
register allocation problem’s conflict set; if a candidate is chosen for reuse of a
processor register, we apply the associated changes to the dependence graph that
models all code motion and scheduling possibilities. However, if enough registers
are available for an allocation without spilling, we do not restrict scheduling or
code motion and can aggressively move code out of loops.

We evaluate both optimal and greedy heuristic solutions of the candidate
selection problem. Our evaluation shows that global code motion can reduce
spilling and occasionally improve program performance, but it often performs
code motions that can lead to an overall performance regression. On the other
hand, restricting our optimal algorithm to perform only local instruction schedul-
ing leads to consistent improvements in performance over a state-of-the art
heuristic scheduler. Finding a restricted form of GCMS that more carefully bal-
ances the needs of the spiller against aggressive code motion is future work.
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Abstract. A joint points-to and exception analysis has been shown to yield ben-
efits in both precision and performance. Treating exceptions as regular objects,
however, incurs significant and rather unexpected overhead. We show that in a
typical joint analysis most of the objects computed to flow in and out of a method
are due to exceptional control-flow and not normal call-return control-flow. For
instance, a context-insensitive analysis of the Antlr benchmark from the DaCapo
suite computes 4-5 times more objects going in or out of a method due to ex-
ceptional control-flow than due to normal control-flow. As a consequence, the
analysis spends a large amount of its time considering exceptions.

We show that the problem can be addressed both effectively and elegantly by
coarsening the representation of exception objects. An interesting find is that, in-
stead of recording each distinct exception object, we can collapse all exceptions
of the same type, and use one representative object per type, to yield nearly iden-
tical precision (loss of less than 0.1%) but with a boost in performance of at least
50% for most analyses and benchmarks and large space savings (usually 40% or
more).

1 Introduction

Points-to analysis is a fundamental static program analysis. It consists of computing a
static abstraction of all the data that a pointer variable (and, by extension, any pointer
expression) can point to during program execution. Points-to analysis is often the basis
of most other higher-level client analyses (e.g., may-happen-in-parallel, static cast elim-
ination, escape analysis, and more). It is also inter-related with call-graph construction,
since the values of a pointer determine the target of dynamically resolved calls, such as
object-oriented dynamically dispatched method calls or functional lambda applications.

An important question regarding points-to analysis (as well as client analyses based
on it) concerns the handling of exceptions, in languages that support exception-based
control flow. The emphasis of our work is on Java—a common target of points-to anal-
ysis work—but similar ideas are likely to apply to other languages, such as C# and
C++. This is an important topic because exceptional control flow cannot be ignored for
several client analysis (e.g., information leak or other security analyses) and if handled
crudely it can destroy the precision of the base points-to analysis.

In the past, most practical points-to analysis algorithms have relied on conservative
approximations of exception handling [19, 20]. The well-known points-to analysis li-
braries Spark [19] and Paddle [18] both model exception throwing as an assignment
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to a single global variable for all exceptions thrown in a program. The variable is then
read at the site of an exception catch. This approach is sound but highly imprecise be-
cause it ignores the information about what exceptions can propagate to a catch site.
For clients that care about exception objects specifically (e.g., computing which throw
statement can reach which catch clause), precise exception handling has been added on
top of a base points-to analysis [7–9]. Fu and Ryder’s “exception-chain analysis” [8] is
representative. It works on top of Spark, with its conservative modeling of exceptions,
but then performs a very precise analysis of the flow of exception objects. However,
this approach has a high computational overhead. Furthermore, the approach does not
recover the precision lost for the base points-to results for objects that do not represent
exceptions.

Based on the above, the Doop framework [2] (which is also the context of our work)
has introduced a joint points-to and exception analysis [1]. Doop expresses exception-
analysis logic in modular rules, mutually recursive with the points-to analysis logic:
Exception handling can cause variables to point to objects (of an exception type), can
make code reachable, etc. Points-to results are, in turn, used to compute what objects
are thrown at a throw statement. The exception analysis logic on its own is “as precise
as can be” as it fully models the Java semantics for exceptions. Approximation is only
introduced due to the static abstractions used for contexts and objects in the points-to
analysis. Thus, exception analysis is specified in a form that applies to points-to analy-
ses of varying precision, and the exception analysis transparently inherits the points-to
analysis precision. The result is an analysis that achieves very high precision and perfor-
mance for points-to results, while also matching the precision of techniques specifically
for exception-related queries, as in the Fu and Ryder exception-chain analysis.

The motivation for our work is that, despite the benefits of the Doop approach, there
is significant room for improvement. The joint points-to and exception analysis per-
forms heavy work for exception objects alone. An indicative metric is the following:
Consider the number of objects pointed to by method parameters or its return value vs.
the objects thrown and not caught by the current method or by methods called by it.
The former number represents the objects that flow into or out of each method due to
normal control-flow, while the latter shows the objects that flow out of the method due
to exceptions. Our experiments show that the latter number is often several times larger
than the former. (We present full results later.) This is counterintuitive and suggests that
the analysis performs unexpectedly much work on exceptions alone.

To address this issue we observe that most client analyses do not care about exception
objects specifically. They do, however, care about the impact of exceptions to the rest of
the points-to and call-graph facts. For instance, the effectiveness of a client analysis such
as static cast elimination is not impacted in practice by the few optimization opportuni-
ties that lie inside exception handlers or that involve objects of an exception type. But
the analysis is impacted by code possibly executed only because of exception handling,
or variables that point to extra objects as a result of an exception handler’s execution. In
other words, we would like precise handling of exceptions only to the extent that they
impact the precision of the base points-to analysis, even if the information over excep-
tion objects themselves is less precise. (Note that this is very different from the Spark or
Paddle handling of all exceptions through a single global variable: That approach does
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adversely impact the precision and performance of the base analysis—e.g., it more than
doubles the number of edges of a context-sensitive call-graph [1, Fig.12]).

Therefore, our approach consists of coarsening the representation of exception ob-
jects in two ways. First, we treat exception objects context-insensitively, even for an
otherwise context-sensitive analysis.1 Second, we merge exception objects and repre-
sent them as a single object per-dynamic-type. The per-type treatment is important for
maintaining precision, since the main purpose of an exception object is to trigger ap-
propriate exception handling code (i.e., a catch clause keyed on the type of the object
caught).

We find that this approach is both easy to specify and implement, as well as highly ef-
fective. For instance, for a 1-object-sensitive analysis we obtain a 60% average speedup
for the “antlr” benchmark and a 225% average speedup for the “eclipse” benchmark
of the DaCapo suite (with similar speedups for other benchmarks) just by employing
the “merge exception objects per-type” idea. This speedup is accompanied by signifi-
cant space savings in the analysis. Crucially, the performance increase does not entail
any loss of precision for results unrelated to exception objects. All precision metrics of
the analysis remain virtually identical. Namely, the numbers of call-graph nodes and
edges, methods that can be successfully devirtualized, and casts that can be statically
eliminated remain the same up to at least three significant digits.

In summary, the contributions of our work are as follows:

• We give a concise and general model of flow-insensitive, context- and field-sensitive
points-to analyses and call-graph construction for a language with exceptions. Al-
though a joint exception and points-to analysis has been formulated before [1], it was
expressed by-example. In contrast, we give a small, closed set of rules and definitions
of input domains. That is, we present all the relevant detail of the analysis in a closed
form, assuming a simplified intermediate language as input.
• We present measurements demonstrating that the impact of exceptions on points-to

analysis performance metrics is significant. A points-to analysis that tries to model
exceptions precisely ends up spending much of its time and space computing results
for exception-based control-flow.
• We define on top of our model two simple ways to coarsen the representation of ex-

ception objects without affecting any other aspect of the points-to or exception logic.
• We show that our approach is very effective in practice, yielding both significant

speedup and space savings. Our technique is the default in the upcoming version of
the Doop framework as it gains performance without adversely impacting precision.

In the following sections we define an abstraction of context-sensitive points-to analysis
and enhance it with exception handling logic (Section 2), present our technique in this
abstract model (Section 3), detail its performance in a series of experiments (Section 4),
and discuss related work in more detail (Section 5).

1 Context-sensitivity is a general approach that achieves tractable and usefully high precision in
points-to analyis. It consists of qualifying local program variables, and possibly (heap) object
abstractions, with context information: the analysis collapses information (e.g., “what objects
this method argument can point to”) over all possible executions that result in the same context,
while separating all information for different contexts.
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2 Background: Model of Points-to Analysis

We next present a model of context-sensitive, flow-insensitive points-to analysis algo-
rithms, as well as the enhancement of the model for computing exception information
in mutual recursion with the analysis. Interestingly, the logical formalism that we use
in our model is quite close to the actual implementation of the analysis in the Doop
framework, under simplifications and omissions that we describe.

2.1 Base Points-to Analysis

We model a wide range of flow-insensitive points-to analyses together with the asso-
ciated call-graph computation as a set of customizable Datalog rules, i.e., monotonic
logical inferences that repeatedly apply to infer more facts until fixpoint. Our rules do
not use negation in a recursive cycle, or other non-monotonic logic constructs, resulting
in a declarative specification: the order of evaluation of rules or examination of clauses
cannot affect the final result. The same abstract model applies to a wealth of analy-
ses. We use it to model a context-insensitive Andersen-style analysis, as well as several
context-sensitive analyses, both call-site-sensitive [25, 26] and object-sensitive [23].

The input language is a simplified intermediate language with a) a “new” instruction
for allocating an object; b) a “move” instruction for copying between local variables;
c) “store” and “load” instructions for writing to the heap (i.e., to object fields); d) a
“virtual method call” instruction that calls the method of the appropriate signature that
is defined in the dynamic class of the receiver object. This language models well the
Java bytecode representation, but also other high-level intermediate languages. (It does
not, however, model languages such as C or C++ that can create pointers through an
address-of operator. The techniques used in that space are fairly different—e.g., [12,
13].) The specification of our points-to analysis as well as the input language are in line
with those in the work of others [10, 21], although we also integrate elements such as
on-the-fly call-graph construction and field-sensitivity.

Specifying the analysis logically as Datalog rules has the advantage that the specifi-
cation is close to the actual implementation. Datalog has been the basis of several imple-
mentations of program analyses, both low-level [2,17,24,29,30] and high-level [5,11].
Indeed, the analysis we show is a faithful model of the implementation in the Doop
framework [2]. Our specification of the analysis (Figures 1-2) is an abstraction of the
actual implementation in the following ways:

– The implementation has many more rules. It covers the full complexity of the lan-
guage, including rules for handling reflection, native methods, static calls and fields,
string constants, implicit initialization, threads, and a lot more. The Doop imple-
mentation currently contains over 600 rules in the common core of all analyses,
as opposed to the dozen-or-so rules we examine here. (Note, however, that these
dozen rules are the most crucial for points-to analysis. They also correspond fairly
closely to the algorithms specified in other formalizations of points-to analyses in
the literature [22, 28].)

– The implementation also reflects considerations for efficient execution. The most
important is that of defining indexes for the key relations of the evaluation. Further-
more, it designates some relations as functions, defines storage models for relations
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V is a set of variables H is a set of heap abstractions
M is a set of methods S is a set of method signatures (including name)
F is a set of fields I is a set of instructions (e.g., invocation sites)
T is a set of class types N is the set of natural numbers
HC is a set of heap contexts C is a set of contexts
Alloc (var : V, heap : H, meth : M) FormalArg (meth : M, i : N, arg : V)
Move (to : V, from : V) ActualArg (invo : I, i : N, arg : V)
Load (to : V, base : V, fld : F) FormalReturn (meth : M, ret : V)
Store (base : V, fld : F, from : V) ActualReturn (invo : I, var : V)
VCall (base : V, sig : S, invo : I) ThisVar (meth : M, this : V)
HeapType (heap : H, type : T) LookUp (type : T, sig : S, meth : M)
InMethod (instr : I, meth : M) Subtype (type : T, superT : T)
VarPointsTo (var : V, ctx : C, heap : H, hctx : HC)
CallGraph (invo : I, callerCtx : C, meth : M, calleeCtx : C)
FldPointsTo (baseH : H, baseHCtx : HC, fld : F, heap : H, hctx : HC)
InterProcAssign (to : V, toCtx : C, from : V, fromCtx : C)
Reachable (meth : M, ctx : C)
Record (heap : H, ctx : C) = newHCtx : HC
Merge (heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C

Fig. 1. Our domain, input relations, output relations, and constructors of contexts

(e.g., how many bits each variable uses), designates intermediate relations as “ma-
terialized views” or not, etc.

Figure 1 shows the domain of our analysis (i.e., the different sets that comprise the
space of our computation), its input relations, the intermediate and output relations, as
well as two constructor functions, responsible for producing new objects that represent
contexts. We explain some of these components below:

• The input relations are standard and correspond to the intermediate language for our
analysis. For instance, the Alloc relation represents every instruction that allocates a
new heap object, heap, and assigns it to local variable var inside method meth. (Note
that every local variable is defined in a unique method, hence the meth argument is also
implied by var but included for conciseness of later rules.) There are input relations
for each instruction type (Move, Load, Store and VCall) as well as input relations en-
coding the type system and symbol table information. For instance, LookUp matches
a method signature to the actual method definition inside a type.
• The main output relations of our points-to analysis and call-graph computation are

VarPointsTo and CallGraph. The VarPointsTo relation links a variable (var) to a
heap object (heap). (A heap object is identified by its allocation site.) Both the variable
and the heap object are qualified by “context” elements in our analysis: a plain context
for the variable and a heap context for the heap object. Similarly, the CallGraph
relation qualifies both its source (an invocation site) and its target (a method) with
contexts. Other intermediate relations (FldPointsTo, InterProcAssign, Reachable)
correspond to standard concepts and are introduced for conciseness and readability.
• The base rules are not concerned with what kind of context-sensitivity is used. The

same rules can be used for a context-insensitive analysis (by only ever creating a single
context object), for a call-site-sensitive analysis, or for an object-sensitive analysis, for
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any context depth. These aspects are completely hidden behind constructor functions
Record and Merge, following the usage and naming convention of earlier work [28].
Record takes all available information at the allocation site of an object and combines
it to produce a new heap context, while Merge takes all available information at the call
site of a method and combines it to create a new context. (Hence, the name “Merge”
refers to merging contexts and is unrelated to the idea of merging exception objects per-
type, which we discuss later in this paper.) These functions are sufficient for modeling a
very large variety of context-sensitive analyses.2 Note that the use of such constructors
is not part of regular Datalog and can result in infinite structures (e.g., one can express
unbounded call-site sensitivity) if care is not taken.

InterProcAssign (to, calleeCtx, from, callerCtx)←
CallGraph (invo, callerCtx, meth, calleeCtx),
FormalArg (meth, i, to), ActualArg (invo, i, from).

InterProcAssign (to, callerCtx, from, calleeCtx)←
CallGraph (invo, callerCtx, meth, calleeCtx),
FormalReturn (meth, from), ActualReturn (invo, to).

Record (heap, ctx) = hctx,
VarPointsTo (var, ctx, heap, hctx)←

Reachable (meth, ctx), Alloc (var, heap, meth).
VarPointsTo (to, ctx, heap, hctx)←

Move (to, from), VarPointsTo (from, ctx, heap, hctx).
VarPointsTo (to, toCtx, heap, hctx)←

InterProcAssign (to, toCtx, from, fromCtx),
VarPointsTo (from, fromCtx, heap, hctx).

VarPointsTo (to, ctx, heap, hctx)←
Load (to, base, fld), VarPointsTo (base, ctx, baseH, baseHCtx),
FldPointsTo (baseH, baseHCtx, fld, heap, hctx).

FldPointsTo (baseH, baseHCtx, fld, heap, hctx)←
Store (base, fld, from), VarPointsTo (base, ctx, baseH, baseHCtx),
VarPointsTo (from, ctx, heap, hctx).

Merge (heap, hctx, invo, callerCtx) = calleeCtx,
Reachable (toMeth, calleeCtx),
VarPointsTo (this, calleeCtx, heap, hctx),
CallGraph (invo, callerCtx, toMeth, calleeCtx)←

VCall (base, sig, invo),
VarPointsTo (base, callerCtx, heap, hctx), HeapType (heap, heapT),
Lookup (heapT, sig, toMeth), ThisVar (toMeth, this).

Fig. 2. Datalog rules for the points-to analysis and call-graph construction
2 Explaining the different kinds of context-sensitivity produced by varying Record and Merge

is beyond the scope of this paper but is fully covered in past literature [28]. To give a single
example, however, a 1-call-site-sensitive analysis with a context-sensitive heap has C = HC =
I (i.e., both the context and the heap context are a single instruction), Record (heap, ctx) =
ctx and Merge (heap, hctx, invo, callerCtx) = invo. That is, when an object is allocated, its
(heap) context is that of the allocating method, and when a method is called, its context is its
call-site.
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Figure 2 shows the points-to analysis and call-graph computation. The rule syntax is
simple: the left arrow symbol (←) separates the inferred fact (i.e., the head of the rule)
from the previously established facts (i.e., the body of the rule). For instance, the very
last rule says that if the original program has an instruction making a virtual method call
over local variable base (this is an input fact), and the computation so far has established
that base can point to heap object heap, then the called method is looked up inside
the type of heap and several further facts are inferred: that the looked up method is
reachable, that it has an edge in the call-graph from the current invocation site, and that
its this variable can point to heap. Additionally, the Merge function is used to possibly
create (or look up) the right context for the current invocation.

2.2 Adding Exceptions

We can now easily add exception handling to our input language and express a precise
exception analysis via rules that are mutually recursive with the base points-to analysis
rules. The algorithm is essentially that of [1] but stated more concisely: we hide excep-
tion handler lookup details by assuming a more sophisticated input relation Catch.

Throw (instr : I, e : V) Catch (heapT : T, instr : I, arg : V)
ThrowPointsTo (meth : M, ctx : C, heap : H, hctx : HC)

Fig. 3. Datalog input and output relations for the exception analysis

ThrowPointsTo (meth, ctx, heap, hctx)←
Throw (instr, e), VarPointsTo (e, ctx, heap, hctx),
HeapType (heap, heapT), ¬Catch (heapT, instr, ), InMethod (instr, meth).

ThrowPointsTo (meth, callerCtx, heap, hctx)←
CallGraph (invo, callerCtx, toMeth, calleeCtx),
ThrowPointsTo (toMeth, calleeCtx, heap, hctx),
HeapType (heap, heapT), ¬Catch (heapT, invo, ), InMethod (invo, meth).

VarPointsTo (arg, ctx, heap, hctx)←
Throw (instr, e), VarPointsTo (e, ctx, heap, hctx),
HeapType (heap, heapT), Catch (heapT, instr, arg).

VarPointsTo (arg, callerCtx, heap, hctx)←
CallGraph (invo, callerCtx, toMeth, calleeCtx),
ThrowPointsTo (toMeth, calleeCtx, heap, hctx),
HeapType (heap, heapT), Catch (heapT, invo, arg).

Fig. 4. Datalog rules for the Exception analysis

Figure 3 presents the input and output relations for our analysis. The input relations
enhance the language-under-analysis with catch and throw instructions, with Java-like
semantics. The Throw (i,e) relation captures throwing at instruction i an expression
object that is referenced by local variable e. The Catch (t,i,a) relation connects an in-
struction i that throws an exception of dynamic type t with the local variable a that will
be assigned the exception object at the appropriate catch-site. Although Catch does not
directly map to intermediate language instructions, one can compute it easily from such
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low-level input. Furthermore, hiding the definition of Catch allows modeling of excep-
tion handlers at different degrees of precision—e.g., a definition of Catch may or may
not consider exception handlers in-order.

Figure 4 shows the exception computation, in mutual recursion with the points-
to analysis. Two syntactic constructs we have not seen before are “ ”, meaning “any
value”, and “¬”, signifying negation. The relation we want to compute is Throw-
PointsTo, which captures what exception objects a method may throw at its callers. As
can be seen, VarPointsTo is used in the definition of ThrowPointsTo and vice versa.

3 Coarsening the Representation of Exceptions

Although a precise joint points-to and exception analysis algorithm offers significant
benefits [1], we next show that there is large room for improvement. The analysis ends
up spending much of its time and space computing exception flow. We propose ideas
for coarsening the representation of exception objects to address this issue and yield
more efficient analyses, without sacrificing precision.

3.1 Motivation

Consider the size of the ThrowPointsTo relation for an analysis. This represents the
total flow of objects out of methods due to exceptions. For a context-sensitive analysis,
this number is a good metric of the work performed by the analysis internally for rea-
soning about exceptions. It is interesting to compare this number with a similar metric
over the VarPointsTo relation, namely the subset of VarPointsTo facts that concern
variables that are either method arguments or return values. This represents the total
flow of objects in and out of methods due to normal call and return sequences.

Table 1 shows the results of comparing these two measures for several different
analyses: insensitive, call-site sensitive, object-sensitive, and type-sensitive [28], with
a context-sensitive heap. The results are over five of the benchmarks in the DaCapo
benchmark suite, analyzed with Oracle JDK 1.6. (A full description of our experimen-
tal setting can be found in the next section.) Entries with a dash instead of a number did
not terminate within the time allotted (90mins).

For the context-insensitive analysis (first results column), the ratio can be understood
in intuitive terms: the antlr ratio of 0.22, for instance, means that, on average, 4.5 times
more objects are possibly thrown out of a method than passed into it or returned through
regular call and return sequences. This is a counterintuitive result. Human reasoning
about how a method interacts with its callers is certainly not dominated by exception
objects. Therefore, we see that the joint points-to and exception analysis perhaps pays
a disproportionate amount of attention (and expends much effort) on exceptions.

3.2 Coarse Exceptions

To reduce the cost of reasoning about exception objects, we propose two simple ap-
proaches for coarsening the representation of exception objects. The first is to represent
exception objects context-insensitively. This is a rather straightforward idea—even in
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Table 1. Objects on method boundaries compared to exception objects thrown by a method (mea-
sured in thousands)

insens 1obj+H 2obj+H 1type+H 1call+H

an
tl

r objs passed 697 - 10,440 3,955 17,486
objs thrown 3,123 - 164,392 20,783 44,118

ratio .22 - .06 .19 .40
bl

oa
t objs passed 829 - - 5,681 46,952

objs thrown 4,112 - - 32,905 78,593
ratio .20 - - .17 .60

ec
li

ps
e objs passed 637 15,750 - 6,570 18,690

objs thrown 4,064 138,361 - 37,634 42,140
ratio .16 .11 - .17 .44

lu
in

de
x objs passed 383 8,473 - 3,328 8,413

objs thrown 2,544 60,897 - 18,928 25,297
ratio .15 .14 - .17 .33

xa
la

n objs passed 668 - - 7,480 18,895
objs thrown 3,876 - - 41,351 43,376

ratio .17 - - .18 .44

context-sensitive analyses, several different kinds of objects (e.g., string constants) are
more profitably represented context-insensitively. Even before our current work, the
Doop framework had the ability to represent exceptions context-insensitively with the
right choice of flags. The second approach consists of not just omitting context for ex-
ception objects, but also merging the objects themselves, remembering only a single
representative per (dynamic) type. That is, all points-to information concerning excep-
tion objects is merged “at the source”—all objects of the same type become one.

This is a fitting approach for exception objects because it relies upon intuition on how
exception objects are used in practice. Specifically, the intuition is that exception objects
have mostly control-flow significance (i.e., they are used as type labels determining
what exception handler is to be executed) and little data-flow impact (i.e., the data stored
in exception objects’ fields do not affect the precision of an overall points-to analysis).
In other words, an exception object’s dynamic type alone is an excellent approximation
of the object itself. Our measurements of the next section show that this is the case.

Figure 5 shows the changes to earlier rules required to implement the two ap-
proaches. The original logic of allocating an object is removed and replaced with two
cases: if the allocated object is not an instance of an exception type, then the original
allocation logic applies. If it is, then the object is allocated context-insensitively (by
using a constant context instead of calling the Record function to create a new one).
Furthermore, in the case of merging exception objects, the object itself is replaced by
a representative object of its type (arbitrarily chosen to be the object of the same type
with the minimum internal identifier). Note that the definition of an exception type con-
sists of merely looking up all types used in catch clauses—the definition could also be
replaced by the weaker condition of whether a type is a subtype of Throwable.

There are some desirable properties of replacing objects with per-type representa-
tives at their creation site. Most importantly, this approach leaves the rest of the analysis
unchanged and can maintain all its precision features. Compared to past approaches to
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Commmon core of coarsening logic: object allocation rule is replaced by refined version

CHContext (”ConstantHeapCtx”)← True.
ExceptionType (t)← Catch (superT, , ), Subtype (t, superT).

������������������

Record (heap, ctx) = hctx,
VarPointsTo (var, ctx, heap, hctx)←

Reachable (meth, ctx), Alloc (var, heap, meth).������������������

Record (heap, ctx) = hctx,
VarPointsTo (var, ctx, heap, hctx)←

Reachable (meth, ctx), Alloc (var, heap, meth),
HeapType (heap, heapT), ¬ExceptionType (heapT).

Additional Rule (over common core) for Context-insensitive treatment

VarPointsTo (var, ctx, heap, hctx)←
Reachable (meth, ctx), Alloc (var, heap, meth), HeapType (heap, heapT),
ExceptionType (heapT), CHContext (hctx).

Additional Rules (over common core) for merging exceptions by use of representative
objects

Representative (heap, reprH)←
HeapType (heap, heapT), reprHeap = min<HeapType (?, heapT)>.

VarPointsTo (var, ctx, reprH, hctx)←
Reachable (meth, ctx), Alloc (var, heap, meth), HeapType (heap, heapT),
ExceptionType (heapT), CHContext (hctx), Representative (heap, reprH).

Fig. 5. Changes over the rules of Figures 2 and 4 for the two treatments that coarsen the
representation of exception objects. The object allocation rule is shown striken out to indicate
that it is replaced by a new, conditional version, immediately below. The rules introduce a
constant heap context, CHContext, as well as auxiliary relations ExceptionType (t : T) and
Representative (heap : H, reprH : H).

merging exceptions (e.g., the single-global-variable assignment of Spark or Paddle) we
can maintain all the precision resulting from considering exception handlers in order,
filtering caught exceptions, and taking into account the specific instructions under the
scope of an exception handler. These have been shown to be important features for the
precision and performance of the underlying points-to analysis. Ignoring the order of
exception handlers, for instance, results in a much less precise context-sensitive call-
graph, with 50% more edges [1, Fig.13].

4 Experiments

We next present the results of our experiments with the two ideas for coarsening the
representation of exception objects. As we will see, our approach yields substantial
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performance improvements without sacrificing virtually any precision. This is a rather
surprising result. Given how crucial the handling of exceptions has been for the preci-
sion of the joint points-to and exception analysis, one would expect that representing
exception objects crudely (by merging them per-type) would have serious precision
implications. For comparison, Bravenboer and Smaragdakis attempted a different ap-
proximation: they represented the ThrowPointsTo relation context-insensitively (i.e.,
by dropping the ctx argument) and found this to significantly hurt the precision of the
points-to analysis [1, Sec.5.2], e.g., increasing points-to sets by 10%.3

Our implementation is in the Doop framework and was run on the LogicBlox Datalog
engine, v.3.9.0. We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz CPU
(only one thread was active at a time) and 24GB of RAM. We analyzed the DaCapo
benchmark programs, v.2006-10-MR2 with JDK 1.6.0 30. The choice of JDK is highly
significant for Java static analysis. Earlier published Doop results [1, 2, 28] were for
JDK 1.4. We chose to present JDK 1.6 results since it is recent, much larger, and more
representative of actual use. However, results for JDK 1.4 can also be found in the first
author’s M.Sc. thesis, available at http://cgi.di.uoa.gr/˜gkast/MSc_Thesis.pdf.

There are three primary questions we would like to answer with our experiments:

1. Can we reduce the cost of points-to and exception analysis by coarsening the rep-
resentation of exception objects, without sacrificing precision?

2. Is the “simple” coarsening approach of treating exceptions context-insensitively
sufficient or do we get significant extra benefit from merging exception objects per-
type?

3. Do our techniques address the motivation of Table 1, i.e., produce results that
roughly match human expectations when reasoning about objects that flow in and
out of methods due to exceptions vs. normal call-returns?

Tables 2 and 3 show the time and space savings of the coarsening techniques over a large
set of analyses, ranging from context-insensitive to a highly-precise 2-object-sensitive
with a 2-context-sensitive heap (2obj+2H). The analysis variety includes a mix of call-
site-, type-, and object-sensitive analyses. Entries with a dash instead of a number are
due to analyses that did not terminate within 90 mins. Entries with neither a number nor
a dash mean that we did not run the corresponding experiment. (This only happened for
experiments on the full-sensitive treatment of exceptions, which we omitted because
the main trends were already clear from a smaller subset of our measurements—those
for benchmarks and analyses also shown earlier in Table 1.)

As can be seen, the results demonstrate a substantial benefit in the “bottom-line”
performance of the joint analysis from representing exception objects coarsely. Further-
more, the simple approach of dealing with exceptions context-insensitively is clearly in-
sufficient. The advantage of merging objects over merely eliding context can be as high
as a 3.4x boost in performance, and rarely falls below a 50% speedup. Space savings
tell a similar story, to a lesser but still large extent.

The major question we are addressing next is whether these significant performance
improvements entail sacrifices in precision. This requires us to first state the question

3 We repeated several experiments from [1] in our setting for validation but do not report them
here since the results are effectively the same as in that publication.

http://cgi.di.uoa.gr/~gkast/MSc_Thesis.pdf


52 G. Kastrinis and Y. Smaragdakis

Table 2. Execution time (seconds) for a variety of analyses on various benchmarks

insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H

an
tl

r

sens 120 338 - 3207 - 543 400 245 975
insens 111 319 1089 574 2785 334 209 238 543
merge 75 199 899 249 2313 217 121 128 420
sen/ins 1.08 1.06 - 5.58 - 1.62 1.91 1.02 1.79
ins/mer 1.48 1.60 1.21 2.30 1.20 1.53 1.72 1.85 1.29

bl
oa

t

sens 120 1065 - - - 826 1921 426 3403
insens 120 1057 2337 - - 483 553 429 1795
merge 68 432 1727 - - 292 162 208 1496
sen/ins 1.00 1.00 - - - 1.71 3.47 1.00 1.79
ins/mer 1.76 2.44 1.35 - - 1.65 3.41 2.06 1.19

ch
ar

t

sens
insens 240 2932 - - - 1597 699 591 1334
merge 138 1434 - 999 - 1253 256 319 1115
sen/ins
ins/mer 1.73 2.04 - - - 1.27 2.73 1.85 1.19

ec
li

ps
e

sens 91 314 2243 - - 892 800 230 1099
insens 90 315 800 1059 - 508 348 231 642
merge 52 140 634 623 - 269 187 90 500
sen/ins 1.00 1.00 2.80 - - 1.75 2.30 1.00 1.71
ins/mer 1.73 2.25 1.26 1.69 - 1.88 1.86 2.56 1.28

jy
th

on

sens
insens 96 636 2023 - - - - 237 613
merge 60 129 944 - - 258 768 98 429
sen/ins
ins/mer 1.60 4.93 2.14 - - - - 2.42 1.43

lu
in

de
x

sens 71 838 411 524
insens 67 168 395 391 2247 239 168 133 288
merge 45 86 281 153 1982 142 86 67 195
sen/ins 1.06 2.12 1.82
ins/mer 1.48 1.95 1.40 2.55 1.13 1.68 1.95 1.98 1.47

lu
se

ar
ch

sens
insens 69 185 428 459 3024 262 169 145 302
merge 45 97 299 214 2723 158 87 71 210
sen/ins
ins/mer 1.53 1.90 1.43 2.14 1.11 1.66 1.94 2.04 1.43

pm
d

sens
insens 105 274 567 427 2330 327 213 181 392
merge 66 153 379 188 2076 207 129 100 280
sen/ins
ins/mer 1.59 1.79 1.49 2.27 1.12 1.57 1.65 1.81 1.40

xa
la

n

sens 116 - - - 1091 1214
insens 118 463 1139 - - 579 349 249 672
merge 70 219 836 - - 470 200 126 521
sen/ins 1.00 - 1.88 - - 1.80
ins/mer 1.68 2.11 1.36 - - 1.23 1.74 1.97 1.29
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Table 3. Disk footprint (MB) for a variety of analyses on various benchmarks

insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H

an
tl

r

sens 649 996 - 4608 - 1433 1228 945 3174
insens 649 996 2560 1536 3686 963 735 945 1740
merge 544 683 2048 978 3072 675 518 661 1433
sen/ins 1.00 1.00 - 3.00 - 1.48 1.67 1.00 1.82
ins/mer 1.19 1.45 1.25 1.57 1.19 1.42 1.41 1.42 1.21

bl
oa

t

sens 460 1126 - - - 1433 2150 1228 5120
insens 461 1126 2457 - - 923 992 1228 3379
merge 363 663 1843 - - 586 505 773 2969
sen/ins 1.00 1.00 - - - 1.55 2.16 1.00 1.51
ins/mer 1.26 1.69 1.33 - - 1.57 1.96 1.58 1.13

ch
ar

t

sens
insens 968 3072 - - - 2764 1536 1945 3276
merge 653 1740 - - - 1945 811 1331 2560
sen/ins
ins/mer 1.48 1.76 - - - 1.42 1.89 1.46 1.27

ec
li

ps
e

sens 428 748 4505 - - 2048 1945 694 2867
insens 429 748 2048 2252 - 1433 1012 694 1638
merge 300 405 1433 1536 - 679 602 444 1433
sen/ins 1.00 1.00 2.20 - - 1.43 1.92 1.00 1.75
ins/mer 1.43 1.84 1.42 1.46 - 2.11 1.68 1.56 1.14

jy
th

on

sens
insens 604 1228 3584 - - - - 980 1740
merge 472 609 2355 - - 798 1740 601 1331
sen/ins
ins/mer 1.27 2.01 1.52 - - - - 1.63 1.30

lu
in

de
x

sens 346 2252 - - 929 1638
insens 346 496 1126 1126 2764 645 549 508 874
merge 265 317 716 565 2150 399 327 349 684
sen/ins 1.00 2.00 - - 1.87
ins/mer 1.30 1.56 1.57 1.99 1.28 1.62 1.67 1.45 1.27

lu
se

ar
ch

sens
insens 367 517 1228 1228 3379 681 550 548 926
merge 277 334 723 690 2867 424 327 370 722
sen/ins
ins/mer 1.32 1.54 1.69 1.77 1.17 1.60 1.68 1.48 1.28

pm
d

sens
insens 602 817 1536 1331 2969 948 785 814 1331
merge 505 585 1017 839 2457 647 560 631 1126
sen/ins
ins/mer 1.19 1.39 1.51 1.58 1.20 1.46 1.40 1.29 1.18

xa
la

n

sens 614 - - - 2457 2969
insens 614 1331 3174 - - 1638 1126 940 1843
merge 487 710 2252 - - 823 684 659 1536
sen/ins 1.00 - - - 1.50 1.61
ins/mer 1.26 1.87 1.41 - - 2.00 1.64 1.42 1.20
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Table 4. Metrics concerning precision for a variety of analyses. Jython omitted for space.

edges meths v-calls poly v-calls casts fail casts

an
tl

r
1o

bj+
H sens - - - - - -

insens 59075 8886 33467 1924 1767 985
merge 59075 8886 33467 1924 1767 985

2o
bj+

H sens 55445 8714 32976 1712 1709 611
insens 55445 8714 32976 1712 1709 611
merge 55445 8714 32976 1712 1709 611

1ty
pe
+
H sens 59738 8916 33507 1948 1770 1070

insens 59738 8916 33507 1948 1770 1070
merge 59738 8916 33507 1948 1770 1070

1c
all
+
H sens 60797 8961 33631 1985 1778 1037

insens 60797 8961 33631 1985 1778 1037
merge 60797 8961 33631 1985 1778 1037

bl
oa

t

1o
bj+

H sens - - - - - -
insens 65672 10116 31049 2067 2815 1911
merge 65672 10116 31049 2067 2815 1911

2o
bj+

H sens - - - - - -
insens - - - - - -
merge - - - - - -

1ty
pe
+
H sens 66697 10150 31089 2137 2818 2045

insens 66697 10150 31089 2137 2818 2045
merge 66697 10150 31089 2137 2818 2045

1c
all
+
H sens 70340 10200 31214 2129 2829 2007

insens 70340 10200 31214 2129 2829 2007
merge 70340 10200 31214 2129 2829 2007

ch
ar

t

1o
bj+

H sens
insens - - - - - -
merge - - - - - -

2o
bj+

H sens
insens - - - - - -
merge 59027 12510 31111 1610 2765 1055

1ty
pe
+
H sens

insens 79871 16044 39462 2725 3858 2445
merge 79896 16044 39462 2730 3858 2450

1c
all
+
H sens

insens 81865 16134 39724 2887 3887 2480
merge 81890 16134 39724 2892 3887 2485

ec
li

ps
e

1o
bj+

H sens 49279 9408 23505 1386 1984 1092
insens 49279 9408 23505 1386 1984 1092
merge 49282 9408 23505 1386 1984 1092

2o
bj+

H sens - - - - - -
insens 44792 9188 22852 1168 1912 729
merge 44795 9188 22852 1168 1912 729

1ty
pe
+
H sens 51161 9452 23634 1438 1987 1198

insens 51161 9452 23634 1438 1987 1198
merge 51162 9452 23634 1438 1987 1198

1c
all
+
H sens 52800 9511 23716 1507 2000 1154

insens 52800 9511 23716 1507 2000 1154
merge 52800 9511 23716 1507 2000 1154
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Table 5. Metrics concerning precision for a variety of analyses (cont’d from Table 4)

edges meths v-calls poly v-calls casts fail casts

lu
in

de
x

1o
bj+

H sens 40004 7876 18263 1110 1521 796
insens 40004 7876 18263 1110 1521 796
merge 40004 7876 18263 1110 1521 796

2o
bj+

H sens - - - - - -
insens 36477 7702 17748 899 1463 496
merge 36477 7702 17748 899 1463 496

1ty
pe
+
H sens 40646 7906 18303 1138 1524 889

insens 40646 7906 18303 1138 1524 889
merge 40646 7906 18303 1138 1524 896

1c
all
+
H sens 41790 7953 18492 1171 1532 837

insens 41790 7953 18492 1171 1532 837
merge 41790 7953 18492 1171 1532 837

lu
se

ar
ch

1o
bj+

H sens
insens 42977 8526 19556 1289 1622 812
merge 42977 8526 19556 1289 1622 812

2o
bj+

H sens
insens 39352 8344 19048 1071 1564 508
merge 39352 8344 19048 1071 1564 508

1ty
pe
+
H sens

insens 43676 8558 19620 1319 1625 927
merge 43676 8558 19620 1319 1625 934

1c
all
+
H sens

insens 45071 8626 19857 1352 1643 938
merge 45071 8626 19857 1352 1643 938

pm
d

1o
bj+

H sens
insens 46826 9277 21591 1168 1990 1210
merge 46826 9277 21591 1168 1990 1210

2o
bj+

H sens
insens 42988 9090 21004 942 1,931 846
merge 42988 9090 21004 942 1,931 846

1ty
pe
+
H sens

insens 47539 9311 21632 1192 1993 1311
merge 47540 9311 21632 1192 1993 1317

1c
all
+
H sens

insens 48895 9371 21843 1240 2003 1273
merge 48895 9371 21843 1240 2003 1273

xa
la

n

1o
bj+

H sens - - - - - -
insens 54033 10511 25683 1857 2042 1055
merge 54038 10511 25683 1858 2042 1055

2o
bj+

H sens - - - - - -
insens - - - - - -
merge - - - - - -

1ty
pe
+
H sens 54792 10561 25760 1887 2049 1235

insens 54792 10561 25760 1887 2049 1235
merge 54796 10561 25760 1888 2049 1235

1c
all
+
H sens 56658 10613 25891 1966 2059 1203

insens 56658 10613 25891 1966 2059 1203
merge 56666 10613 25891 1967 2059 1203
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Table 6. Objects on method boundaries compared to exception objects thrown by a method (mea-
sured in thousands)

insens 1obj+H 2obj+H 1type+H 1call+H
insens merge insens merge insens merge insens merge insens merge

an
tl

r objs passed 697 651 26,867 25,271 6,983 6,079 4,702 4,528 17,236 17,155
objs thrown 3,123 204 14,197 965 23,856 1,730 7,084 428 12,461 822

ratio .22 3.18 1.89 26.16 .29 3.51 .66 10.56 1.38 20.86

bl
oa

t objs passed 829 781 22,633 22,325 - - 5,338 5,167 46,650 46,563
objs thrown 4,112 257 18,697 1,189 - - 10,140 589 20,048 1,251

ratio .20 3.02 1.21 18.76 - - .52 8.76 2.32 37.22

ch
ar

t objs passed 2,315 1,723 - - - 16,739 - 18,721 46,158 41,909
objs thrown 8,331 414 - - - 7,231 - 1,357 19,747 1,371

ratio .27 4.15 - - - 2.31 - 13.79 2.33 30.56

ec
li

ps
e objs passed 637 539 14,045 16,875 15,234 14,357 6,025 6,471 18,311 18,186

objs thrown 4,064 248 15,983 1,047 36,699 2,612 10,516 593 11,829 777
ratio .15 2.17 .87 16.10 .41 5.49 .57 10.90 1.54 23.40

jy
th

on objs passed 801 479 43,068 35,106 - - - - 19,307 -
objs thrown 3,452 215 20,449 1,025 - - - - 11,288 -

ratio .23 2.23 2.10 34.21 - - - - 1.71 -

lu
in

de
x objs passed 383 339 7,664 7,414 3,525 3,037 3,031 2,881 8,186 8,109

objs thrown 2,544 166 8,953 606 21,401 1,521 6,055 363 7,218 486
ratio .15 2.03 .85 12.21 .16 1.99 .50 7.92 1.13 16.67

lu
se

ar
ch objs passed 429 385 8,085 7,822 4,519 4,010 3,319 3,165 9,005 8,928

objs thrown 2,764 180 9,222 626 19,432 1,435 6,341 379 7,880 528
ratio .15 2.13 .87 12.49 .23 2.79 .52 8.33 1.14 16.90

pm
d objs passed 461 414 9,273 8,949 4,388 3,864 3,500 3,337 10,948 10,867

objs thrown 3,008 198 10,409 695 19,961 1,465 7,100 431 8,529 577
ratio .15 2.09 .89 12.87 .21 2.63 .49 7.73 1.28 18.81

xa
la

n objs passed 668 589 24,618 24,155 - - 6,350 5,821 18,448 18,301
objs thrown 3,876 251 20,765 1,372 - - 11,278 641 12,198 810

ratio .17 2.34 1.18 17.60 - - .56 9.08 1.51 22.59

appropriately. Since all exception objects of the same type are merged, it makes little
sense to query points-to information for variables holding such objects (e.g., local vari-
ables inside exception handlers). Every such variable will appear to spuriously point to
any object of the same dynamic type. Instead, what we want to do is examine the impact
of merging exception objects on the rest of the points-to analysis. That is, a client anal-
ysis that cares about exception objects themselves should not employ our techniques.
The question, however, is whether an analysis that applies over the whole program will
be affected by the coarse exception representations.

Tables 4 and 5 show precision metrics for our benchmarks and a subset (for space
reasons) of our analyses. We show the size of the computed call-graph, in terms of both
nodes (i.e., methods) and edges, as well as the number of virtual calls that cannot be
statically resolved and casts that cannot be statically be proven safe. (The total number
of reachable virtual calls and casts are given for reference.) From our past experience,
the call-graph metrics are generally excellent proxies for the overall precision of an
analysis, and even tiny changes are reflected on them.
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As can be seen, the precision of the program analysis remains virtually unaffected
by the coarse representations of exceptions. This confirms that our merged exception
objects still carry the essence of the information that the rest of the program needs from
them.

The final question from our experiments is whether these two techniques address the
motivating measurements of Section 3.1. Table 6 shows the same metrics of (context-
sensitive) objects passed to/from methods vs. thrown for the analysis using our coarse
representations of exceptions. As can be seen, the handling of exceptions context-
insensitively does not suffice to bring the relative ratio of the metrics close to expected
values, but merging exception objects per-type does. Specifically, for all values of the
“merge” column, the total number of objects passed via calls and returns is several times
higher than the number of objects potentially thrown. Thus, the analysis is allocating
its reasoning effort in a way that closely matches what one would expect intuitively,
possibly indicating that large further improvements are unlikely.

5 Related Work

We next discuss in more detail some of the past work in points-to analysis combined
with exceptions.

As mentioned earlier, points-to analysis frameworks Spark [19] and Paddle [18, 20]
both use imprecise exception analysis via assignment of thrown exceptions to a single
global variable. Even if this were to change to distinct per-type variables, it would still
have significant precision shortcomings compared to our approach since the order and
scope of exception handlers would be ignored. The Soot framework also has a separate
exception analysis [16] that is not based on a pointer analysis.

The IBM Research Wala [6] static analysis library supports several different pointer
analysis configurations. The points-to analyses of Wala support computing which ex-
ceptions a method can throw (analogously to our ThrowPointsTo relation), but no re-
sults of Wala’s accuracy or speed have been reported in the literature. Wala allows
an exception object to be represented by-type (analogously to our coarsening) but it
is unclear how the underlying analysis compares to our joint exception and points-to
analysis. It will be interesting to compare our analyses to Wala in future work.

Type-based approaches to dealing with exception objects have also been explored
before [14, 15], in the context of a separate exception analysis (i.e., not jointly with a
precise points-to analysis and not in comparison to an object-based exception represen-
tation).

bddbddb is a Datalog and BDD-based database that has been employed for points-to
analysis [29, 30]. The publications do not discuss exception analysis, yet the bddbddb
distribution examples do propagate exceptions over the control-flow graph. One of the
differences between Doop and bddbddb is that Doop expresses the entire analysis in
Datalog and only relies on basic input facts. In contrast, the points-to analyses of bddb-
ddb largely rely on pre-computed input facts, such as a call-graph, reducing the Datalog
analysis to just a few lines of code for propagating points-to data. For exception analy-
sis, bddbddb ignores the order of exception handlers and also disables filtering of caught
exceptions. Both of these features are crucial for precision.
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Chatterjee et al. analyze the worst-case complexity of fully-precise pointer analysis
with exceptions [3]. This is a theoretical analysis with no current application to practical
points-to algorithms.

Sinha et al. discuss how to represent exception flow in the control-flow graph [27].
One of the topics is handling finally clauses. We analyze Java bytecode, hence the
complex control-flow of finally clauses is already handled by the Java compiler.

Choi et al. suggested a compact intraprocedural control-flow representation that col-
lapses the large number of edges to exceptions handlers [4]. Our analyses are interpro-
cedural and flow-insensitive, so not directly comparable to that work.

6 Conclusions

When analyzing an object-oriented program, exceptions pose an interesting challenge.
If completely ignored, valuable properties of the program are lost and large amounts of
code appear unexercised. If handled in isolation (either before or after points-to analy-
sis) the result is imprecise and the analysis suffers from inefficiency. A joint points-to
and exception analysis offers the answer but has significant time and space cost due
to the precise representation of exception objects. We showed that we can profitably
coarsen the representation of exception objects in such a joint analysis. Precision re-
mains unaffected, for the parts of the analysis not directly pertaining to exception ob-
jects, i.e., for most common analysis clients, such as cast elimination, devirtualization,
and call-graph construction. At the same time, performance is significantly enhanced.
Thus the approach is a clear win and is now the default policy for exception handling
in the Doop framework.

There are interesting avenues for further work along the directions of the paper. Our
approach is based on standard patterns of use of exception objects. These patterns can
perhaps be generalized to other kinds of objects used as “message carriers”. Further-
more, the question arises of how such patterns translate across languages. Is there an
analogous concept in functional languages that can be exploited to gain scalability?
Also, it remains to be seen whether similar approaches can apply to alias analysis in
C++ in the presence of exceptions.

Acknowledgments. We gratefully acknowledge funding by the European Union un-
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Abstract. Developing scalable and precise points-to analyses is increasingly im-
portant for analysing and optimising object-oriented programs where pointers are
used pervasively. An incremental analysis for a program updates the existing anal-
ysis information after program changes to avoid reanalysing it from scratch. This
can be efficiently deployed in software development environments where code
changes are often small and frequent. This paper presents an incremental ap-
proach for demand-driven context-sensitive points-to analyses based on Context-
Free Language (CFL) reachability. By tracing the CFL-reachable paths traversed
in computing points-to sets, we can precisely identify and recompute on demand
only the points-to sets affected by the program changes made. Combined with
a flexible policy for controlling the granularity of traces, our analysis achieves
significant speedups with little space overhead over reanalysis from scratch when
evaluated with a null dereferencing client using 14 Java benchmarks.

1 Introduction

Points-to analysis is a static program analysis technique to approximate the set of mem-
ory locations that may be pointed or referenced by program variables, which is crucial to
software testing, debugging, program understanding and optimisation. But performing
precise points-to analysis is an expensive activity, even for small programs. Develop-
ing scalable and precise points-to analyses is increasingly important for analysis and
optimisation of object-oriented programs where pointers are used pervasively.

Points-to analysis has been studied extensively in order to improve its scalabil-
ity, precision or tradeoffs [15,17,33,34], and continues to attract significant attention
[10,9,26,25,27,35,30,37,39]. The majority of the previous solutions perform a whole-
program points-to analysis to exhaustively compute points-to information for all vari-
ables in the program, which is often too resource-intensive in practice, especially for
large programs. Some recent efforts have focused on demand-driven points-to analysis
[11,26,27,37], which mostly rely on Context-Free Language (CFL) reachability [22] to
perform only the necessary work for a set of variables queried by a client rather than a
whole-program analysis to find the points-to information for all its variables.

Incremental static analysis seeks to efficiently update existing analysis information
about an evolving software system without recomputing from scratch [4], allowing the

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 61–81, 2013.
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previously computed information to be reused. Incremental analysis is especially im-
portant for large projects in a software development environment where it is necessary
to maintain a global analysis in the presence of small and frequent edits. Several so-
lutions have been proposed by using incremental elimination [3,5], restarting iteration
[20], a combination of these two techniques [18], timestamp-based backtracing [13],
and logic program evaluation [24]. In this paper, we introduce an incremental approach
for points-to analyses based on CFL-reachability.

Many program analysis problems can be solved by transforming them into graph
reachability problems [23]. In particular, CFL-reachability is an extension of graph
reachability. To perform points-to analysis with CFL-reachability, a program is rep-
resented by a Pointer Assignment Graph (PAG), a directed graph that records pointer
flow in a program. An object is in the points-to set of a variable if there is a reachable
path between them in the PAG, which must be labelled with a string in a specified CFL.
Such points-to analysis is typically field-sensitive (by matching load/store edges on the
same field), context-sensitive (by matching entry/exit edges for the same call site) and
heap-sensitive (by distinguishing the same abstract object from different call paths).

Pointer analyses derived from a CFL-reachability formulation achieve very high pre-
cision and are efficient for a small number of queries raised in small programs, but
they do not scale well to answer many queries for large programs. Existing solutions
address the performance issue from several directions, by using refinement [27,28],
(whole-program) pre-analysis [36], ad hoc caching [41], and procedural summarisation
[26,25,37]. In this paper, we tackle this issue from a different angle. Our goal is to de-
velop an incremental technique for boosting the performance of points-to analysis by
reusing previously computed points-to sets.

In this paper, we combine incremental analysis with graph reachability to obtain
naturally a trace-based incremental mechanism for points-to analysis, which is effec-
tive and simple to implement. The key to incremental analysis lies in approximating
dependency information for analysis results. By observing that each points-to query
in a CFL-reachability-based analysis is answered by finding the CFL-reachable paths
in the PAG from the queried variable to objects, we trace the set of nodes in the tra-
versed paths that the query depends on. Upon code changes, we can precisely iden-
tify and recompute on demand only those queries whose traces may overlap with the
changes made. Such trace-based falsification minimises the impact of changes on pre-
viously computed points-to sets, avoiding unnecessarily falsifying unaffected queries to
make them reusable after code changes. Our approach can support efficiently multiple
changes with overlapping traces, since multiple changes usually exhibit locality [40].

Precise tracing is costly in space, because it potentially involves thousands of nodes
in a PAG for each query, which may render the whole incremental approach impracti-
cal, especially for answering many queries in large programs. It is therefore useful to
allow tradeoffs between time and space to be made in an incremental analysis. Based
on the observation that a large portion of the analysis is performed on Java library code,
which is less likely to be changed, we introduce a flexible policy to control the granu-
larities of traces by approximating the variable nodes with their scopes (e.g., methods,
classes, etc.). Such trace policies describe different granularity levels used for different
parts of the program; they may be specified by programmers as an input to our analysis,
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or inferred adaptively based on the frequency of code changes. Typically a finer (e.g.,
variable-level) granularity may be used for the code that is more likely to be changed
frequently (e.g., for the classes being developed) to minimise falsification and recom-
putation required after code changes, while a coarser (e.g., package-level) granularity
may be used for the code that is less frequently edited (e.g., for the classes in libraries)
to minimise the space required for storing the traces as required. In our experiments, we
find that only a small part of code needs to use finer granularities. By using the appro-
priate granularities for different parts of the programs, we are able to maintain sufficient
dependency information for precise falsification with little memory overhead.

In summary, this paper makes the following contributions:

– We propose a trace-based incremental approach for points-to analysis by exploiting
graph reachability. To our knowledge, this is the first points-to analysis with CFL-
reachability that allows previously computed points-to sets to be reused.

– We introduce a flexible trace policy to approximate traces. Programmers may take
advantage of domain knowledge to control their granularities for different parts
of the program. We also describe an adaptive technique to automatically infer the
policy based on the frequency of changes. Trace policies can significantly reduce
the size of traces without unnecessarily increasing the chances of falsification.

– We have implemented our incremental analysis in Soot-2.5.0, a Java optimisation
and analysis framework, and compared it with a state-of-the-art from-scratch anal-
ysis, REFINEPTS, introduced in [27] using a null dereferencing client in the pres-
ence of small code changes. For a single deletion of a class/method/statement, our
incremental analysis achieves an average speedup of 78.3X/60.1X/3195.4X.

The rest of the paper is organised as follows. We introduce the background information
on CFL-reachability and PAGs in Section 2. Section 3 introduces reachability traces
by example. Section 4 presents our trace-based incremental analysis, including trace
policies. Experimental results are presented and analysed in Section 5 with related work
discussed in Section 6, followed by a brief conclusion in Section 7.

2 CFL-Reachability

We introduce the state-of-the-art points-to analysis for Java formulated in terms of CFL-
reachability [26,27,28,36] which uses Spark’s PAGs [17] as the program representation.
In Section 2.1, we consider the syntax of PAGs and how to represent a Java example as
a PAG. In Section 2.2, we describe the CFL-reachability formulation and show how to
answer points-to queries by finding reachable paths in the PAG of our example.

2.1 Program Representation

Points-to analysis for Java is typically flow-insensitive, field-sensitive and
context-sensitive (for both method calls and heap abstraction) to balance the precision
and efficiency for demand queries. When an analysis is flow-insensitive, control-flow
statements are irrelevant and thus ignored.
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Local variables x, y
Global variables g
Variables v ::� x � g
Nodes n ::� o � v

Allocation sites o
Call sites i
Instance fields f

Edges e ::� x
new
��� o � x

assign
���� y � v

global
���� g � g

global
���� v

� x
ld�f�
���� y � x

st�f�
���� y � x

entryi���� y � x
exiti��� y

Fig. 1. Syntax of PAG

In its canonical form, a Java program is represented by a directed graph, known as
a Pointer Assignment Graph (PAG), which has threes types of nodes: objects, local
variables and global variables. The syntax of PAG is given in Fig. 1.

All edges are oriented in the direction of value flow, representing the statements in
the program. For example, x new

��� o indicates the flow of o into x (an assignment
from an allocation site o to a local variable x). As a result, x points directly to o. An
assign edge represents an assignment between local variables (e.g., x = y), so x points
to whatever y points to. In a global edge, one or both variables are static variables in
a class. A ld edge reads an instance field f (e.g., x = y.f ) while a st edge writes to
an instance field f (e.g., x.f = y), where x and y are both local variables. An entryi
edge represents a binding of a (local) actual parameter y to its corresponding formal
parameter x for a call at the call site i. Similarly, an exiti edge represents a call return
where the (local) return value in y is bound to the local variable x at the call site i.

Fig. 2 gives an example, extending the original example in [27], which provides
an abstraction for the Java container pattern. The AddrBook class makes use of two
vectors. In lines 42–45, an AddrBook object created is assigned to p and populated
with a pair of objects: one with type String and the other with type Integer. In lines
46 and 47, calling getName/getNum results in v1 = n and v2 = c. Note that loads and
stores to array elements are modeled by collapsing all elements into a special field arr.

For this example, its PAG is shown in Fig. 3. Some notations are in order: (1) oi
denotes the abstract object o created at the allocation site in line i; (2) for temporary
variables (e.g., ret and tmp), the implicit self variable (this) and local variables (de-
clared in different scopes), we subscript them with their method names.

2.2 Points-to Analysis with CFL-Reachability

CFL-reachability [22,38] is an extension of graph reachability that is equivalent to the
reachability problem formulated in terms of either recursive state machines [7] or set
constraints [14]. Each reachable path in a PAG has a string formed by concatenating
in order the labels of edges in the path, where load/store pairs on the same field must
be matched (field sensitivity) and entry/exit pairs for the same callsite must be matched
(context sensitivity). An object is in the points-to set of a variable if there is a reachable
(or flowsTo) path from the object to the variable. Two variables may be aliases if there
is a reachable path from an object to both of them.

Field Sensitivity. Let us start by considering a PAG G with only new and assign. It
suffices to develop a regular language, LFT (FT for flows-to), such that if an object
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1 class AddrBook{
2 private Vector names, nums;
3 AddrBook(){
4 n = new Vector();
5 c = new Vector();
6 this.names = n;
7 this.nums = c; }
8 Object getName(Integer i){
9 n = this.names;

10 c = this.nums;
11 for (int j=0;j<c.count;j++)
12 if (c.get(j)==i)
13 return n.get(j);
14 return null; }
15 Object getNum(String s){
16 n = this.names;
17 c = this.nums;
18 for (int i=0;i<n.count;i++)
19 if (n.get(i)==s)
20 return c.get(i);
21 return null; }
22 void addAddr(Object s, Object i){
23 n = this.names;
24 c = this.nums;

25 n.add(s);
26 c.add(i);
27 }}
28 class Vector{
29 Object[] elems; int count;
30 Vector(){
31 t = new Object[MAXSIZE];
32 this.elems = t; }
33 void add(Object e){
34 t = this.elems;
35 t[count++] = e; // writes t.arr
36 }
37 Object get(int i){
38 t = this.elems;
39 return t[i]; // reads t.arr
40 }}
41 static void main(String[] args){
42 AddrBook p = new AddrBook();
43 String n =new String("John Smith");
44 Integer c = new Integer(12345);
45 p.addAddr(n,c);
46 String v1 = (String) p.getName(c);
47 Integer v2 = (Integer) p.getNum(n);
48 }

(a) original code

25 s = new String("Change1"); n.add(s); // Change 1
26 i = new String("Change2"); c.add(i); // Change 2

(b) code changes

Fig. 2. A Java example

sgetNum saddAddr

nmain

o43

en
tr

y 4
7 entry

4
5

new
eadd

iaddAddr igetName

cmain

o44
tadd

thisadd

en
try

2
5 entry

2
6

en
tr

y 4
5 entry

4
6

newst�arr�

ld�elems�

v1 retgetName

retget

tget

tmpgetName tmpgetNum

retgetNum

v2

exit12

exit19

exit20

exit4
7

ld�arr�

exit46
exit13

naddAddr caddAddr

entry25 entry26

thisaddAddr

ld�names� ld�nums�

o31

tVector

new

thisVector

st(elems)

nAddrBook cAddrBook

entry4 entry5o4 o5

new new

thisAddrBook

st(names) st(nums)

pmain
entry45

entry42

thisgetName

thisget

ld�elems�

ngetName
cgetName

ld
(n
a
m
e
s

)

entry
13

entry
1
2

ld(n
u
m
s

)

ngetNum

en
tr

y 1
9

cgetNum

entry 20

entry46

thisgetNum

ld(n
a
m
e
s

)

ld(nums)

entry47o42 new

Fig. 3. Complete PAG for the original code

o can flow to a variable v during the execution of the program, then v will be LFT-
reachable from o in G. Then we have the following (regular) grammar for LFT:

flowsTo � new � assign��

If o flowsTo v, then o belongs to the points-to set of v.
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For field accesses, precise handling of heap accesses is formulated with the updated
LFT being a CFL of balanced parentheses [27]. Two variables may be aliases if an
object may flow to both of them. Thus, v may point to o flowing into v� if there exists
two statements x.f � v� and v � y.f , such that the base variables x and y are aliases.
So o flows through the two statements with a pair of parentheses (i.e., st�f� and ld�f�),
first into v� and then into v. Therefore, the flowsTo production is extended into:

flowsTo � new � assign � st�f� alias ld�f���

where x alias y means that x and y can be aliases. To allow alias paths in an alias
language, flowsTo is introduced as the inverse of the flowsTo relation. A flowsTo-path
ρ can be inverted to obtain its corresponding flowsTo-path ρ using inverse edges, and

vice versa. For each edge x
�
�� y in ρ (where � is the label of the edge), its inverse

edge is y �
�� x in ρ. Thus, o flowsTo x iff x flowsTo o. This means that flowsTo actually

represents the standard points-to relation. As a result, a flowsTo-path represents a points-
to path. (To avoid cluttering, the inverse edges in a PAG, such as the one given in Fig. 3,
are not shown explicitly.) As a result, x alias y iff x flowsTo o flowsTo y:

alias � flowsTo flowsTo
flowsTo � � assign � ld�f� alias st�f��� new

Context Sensitivity. A context-sensitive analysis requires call entries and exits to be
matched, which is solved also as a balanced-parentheses problem [22]. This is done by
filtering out flowsTo- and flowsTo-paths corresponding to unrealisable paths. A realis-
able path may not start and end in the same method. So partially balanced parentheses,
i.e., a prefix (suffix) with unbalanced closed (open) parentheses, are allowed.

To compute the points-to set of a variable v, we simply solve a CFL-reachability
problem for LFT context-sensitively to find the set of allocation sites o such that v is L-
reachable from o. The analysis is fully context-sensitive not only for method invocation
but for heap abstraction (by distinguishing allocation sites with calling contexts).

Example. We use the PAG of our example in Fig. 3 to show how to resolve some simple
points-to relations via CFL-reachability. Let us see how to discover o4 as a pointer
target for naddAddr. In Fig. 2, o42 flows to pmain, which is the actual parameter passed
to the formal parameter thisAddrBook of constructor AddrBook and thisaddAddr of
addAddr. So thisAddrBook alias thisaddAddr. This fact is found in LFT because

thisAddrBook entry42 pmain new o42 new pmain entry45 thisaddAddr

We then know that o4 flowsTo naddAddr since LFT has the flowsTo-path:

o4 new nAddrBook st�names� thisAddrBook alias thisaddAddr ld�names� naddAddr

This flowsTo-path is a realisable path. So naddAddr points to o4.

3 Tracing CFL-Reachability: An Example

Most points-to analyses only consider fixed programs. We illustrate how we cope with
program changes using the example given in Fig. 2. There are two changes made to the
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Fig. 4. Partial PAGs after code changes (marked by the dashed edges introduced)

original code in Fig. 2(a), in order in line 25 and line 26 as shown in Fig. 2(b). We show
how these changes impact the points-to sets of v1 and v2. Fig. 4 shows the partial PAGs
after each change. We have used dashed arrows to indicate newly added edges.

A points-to query is answered by searching for all reachable paths between objects
and the queried variable in a PAG. The answer to the points-to query depends on all
nodes in the reachable paths traversed. Changes made on these nodes (by either adding
or deleting edges connected to them) may falsify the points-to set of the query. The key
to incremental analysis lies in tracking such dependent information.

A straightforward way to track precise dependency information is to explicitly main-
tain a set of variable nodes on which each points-to query depends, as traces. Let us
consider the traces for queries on v1 and v2 in Fig. 2 and see how they are affected
by code changes. By collecting all distinct variable nodes in the reachable path(s) from
o43 to v1 in Fig. 3, we get the trace for v1: {v1, retgetName, retget, tget, thisget,
ngetName, thisgetName, pmain, thisAddrBook, nAddrBook, thisVector, tVector, thisaddAddr,
naddAddr, thisadd, tadd, eadd, saddAddr, nmain} and the trace for v2: {v2, retgetNum,
retget, tget, thisget, cgetNum, thisgetNum, pmain, thisAddrBook, cAddrBook, thisVector,
tVector, thisaddAddr, caddAddr, thisadd, tadd, eadd, iaddAddr, cmain} .

Change 1 adds a new edge to the local variable saddAddr. Since the variable is in the
trace of v1, after the change, the points-to set of v1 must be falsified and recomputed.
However, the trace of v2 does not contain saddAddr. Thus, its points-to set is still valid
and reusable. Similarly, change 2 adds a new edge to the local variable iaddAddr. This
falsifies the points-to set of v2 without affecting v1 .

Tracing all nodes is costly in space as traces may be large for large programs. Instead
of tracking precise dependencies, we approximate the variables in a trace using their
scopes, based on a predefined policy. Trace policies control the granularities of traces
so that their sizes can be significantly reduced to trade time for space.

Policies are formed by a set of program units (variables or their scopes), which spec-
ify what may appear in traces. For example, if the policy for an analysis contains a
method name m, when nodes n1 and n2 are reached in computing a points-to set such
that n1 and n2 are contained (defined) in m, m (instead of n1 and n2) is tracked in the
trace of the points-to set. The default granularity is package-level. For example, if n
is in a reachable path but not contained in any program unit in the given policy, then
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n’s package name is used in the trace. This is particularly useful for specifying an ap-
propriate granularity for libraries. We do not have to explicitly include anything from
libraries in the policy. They are by default tracked at the coarsest package-level granu-
larity, because they are the least likely to change. For applications being developed in
an interactive programming environment, it is natural to use a finer granularity.

Let us now consider how traces and falsifications are enforced by trace policies.
We define a sample trace policy for analysing the Java example in Fig. 2: �main,
AddrBook.AddrBook, getName, getNum, addAddr	, which uses method-level gran-
ularity for the AddrBook class and the main method (they are considered as application
code in contrast to library code). Note that Vector is not explicitly mentioned in the
policy, since it is considered as part of library code. As a result, the default package-
level granularity is used to track the changes on Vector. In Section 4.2, we introduce
some forms of shorthand to simplify the specification of policies.

By applying this policy (assuming that the Vector class is defined in package util),
the trace for v1 becomes much smaller: {main, getName, AddrBook.AddrBook,
addAddr, util} and the trace for v2 is also smaller: {main, getNum,
AddrBook.AddrBook, addAddr, util} . Clearly, either Change 1 or Change 2 may
falsify both v1 and v2, because we have used a method-level granularity for the changes
made in addAddr. It is possible to define a finer-grained policy for the code being
changed, but it may not always be possible to anticipate where changes will be made.

Policies can be inferred automatically based on the frequency of code changes in dif-
ferent parts of a program. Typically finer-grained policies may be inferred for frequently
edited code and coarser-grained policies for code that is less likely to be modified.
Therefore, the impact of changes on the points-to information related to the frequently
changed code may be kept to a minimum.

Let us show how to infer policies adaptively. The initial policy is empty (or supplied
by the programmer) and the traces of v1 and v2 are �my package, util	, assuming
that AddrBook and main are defined in the my package package. After Change 1 at
line 25, the policy is adaptively changed to {thisaddAddr, saddAddr, iaddAddr, naddAddr,
caddAddr, getName, AddrBook.AddrBook, getNum, addAddr, AddrBook, main} by
adding finer-grained program units into the policy based on the change made.

Since code changes often exhibit locality, we choose a simple heuristic to reduce
the chance of falsification for units that are closely related to a certain change. When a
program unit is involved in a change, we add all units directly defined in its enclosing
scopes. For example, Change 1 affects variable saddAddr and transitively all its enclos-
ing scopes: method addAddr, class AddrBook and package my package. Therefore,
all variables defined in addAddr, all methods defined in AddrBook, and all classes
defined in my package are added into the new policy.

After Change 1 at line 25, both v1 and v2 are conservatively falsified, because the
change overlaps with my package in both traces. After recomputing the points-to sets
for v1 and v2 using the new policy, the new trace of v1 is {saddAddr, thisaddAddr,
naddAddr, AddrBook.AddrBook, getName, main, util} , and the new trace of v2 is
{AddrBook.AddrBook, getNum, thisaddAddr, caddAddr, iaddAddr, main, util} .

After Change 2 at line 26, an incremental analysis is used again. This time only
the points-to set of v2 is falsified, because iaddAddr does not overlap with the trace of
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v1. The previous points-to set for v2 before the change was �o44	. We knew that the
typecasting at line 47 was safe because the type of o44 was Integer; we could omit a
runtime check for this cast. After recomputing the query, the points-set of v2 becomes
�o44, o26	, where o26 is introduced by Change 2. Since o26 is a String, we know that
the typecasting at line 47 may no longer be safe.

4 Incremental Analysis with Reachability Traces

In this section, we describe our incremental analysis formally using inference rules
[11,28,24]. Our goal is to incrementalise the points-to analysis based on CFL-reachability.

In Section 4.1, we first introduce a simple form of incremental points-to analysis
based on reachability traces, where all nodes in the reachable paths traversed in com-
puting the points-to sets are traced. In Section 4.2, we then introduce a space-efficient
analysis by approximating traces using policies. Finally, in Section 4.3, we show how
to infer trace policies adaptively with each incremental analysis.

Our incremental analysis proceeds in two phases: initial phase and incremental phase.
The initial phase initialises the whole analysis by answering all queries from scratch,
and the answers (points-to sets) are cached for reuse. This occurs only when a new
program is analysed or after major program changes, where it is necessary to reinstall
the whole analysis. Unlike the initial phase, the incremental phase performs falsification
in addition to points-to analysis. This occurs after small changes and only recomputes
a small number of cached answers that are falsified by the changes made.

4.1 Points-to Analysis with Reachability Traces

We have developed our approach based on insights gained from formulating points-to
analysis as a graph reachability problem. Our CFL-reachability-based analysis com-
putes both points-to information and traces. The additional syntax is given in Fig. 5.

Contexts k ::� ∅ � k:i
Traces/Changes τ,Δ ::� ∅ � �μ� � τ � τ
Program units μ ::� v
Points-to sets σ ::� ∅ � �o� � σ � σ
Stores Σ ::� ∅ � Σ, v �	 
σ, τ �

Fig. 5. Additional syntax for points-to analysis

Contexts represent how method calls are made. A calling context k is a finite stack
of call sites, whose order is significant. Traces track nodes traversed in reachable paths
in computing points-to sets. A trace τ is a set of variable nodes (we do not track object
nodes), whose order is not significant. A points-to set σ contains a set of objects cached
in a store Σ, which maps variables to their points-to sets and traces.

In addition to performing the standard CFL-reachability-based points-to analysis in
the PAG of a program, we maintain the traces along the search. Our points-to analysis
is described in Fig. 6 by a set of inference rules in the form of:

n, k
τ



� n�, k�
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x
new
��	 o

x, k
�x�

��� o, k
(new)

x
assign
���	 y

x, k
�x�

��� y, k
(assign)

v
global
���	 g

v, k
�v�

��� g,∅
(global-r)

g
global
���	 v

g,∅
�g�

��� v,∅
(global-l)

x
entryi���	 y

x, k:i
�x�

��� y, k
(entry)

x
entryi���	 y

x,∅
�x�

��� y,∅
(entry-∅)

x
exiti��	 y

x, k
�x�

��� y, k:i
(exit)

x
ld�f�
���	 x� y�

st�f�
���	 y

x�, k
τ

�� o, k� y�, k�
τ �

��� o, k�

x, k
�x��τ�τ �

������� y, k�
(field)

n, k
τ

�� n�, k� n�, k�
τ �

�� n�, k�

n, k
τ�τ �

���� n�, k�
(transitivity)

Fig. 6. Points-to analysis with traces

which follow the flowsTo paths, i.e., the flowsTo paths in the opposite direction in a
PAG. Each edge in a flowsTo path is translated into one or more inference rules. For
example, node n in context k can be reached by node n� in context k� via a set of nodes
in trace τ . Traces are computed by tracking nodes along the traversal. To save space,
object nodes o tracked by (new) do not need to appear in a trace as they can be uniquely
identified by their corresponding left-hand side variables x that appear in the trace.

Global variables are context-insensitive (as our analysis is flow-insensitive). Thus,
(global-r) and (global-r) skip the sequence of calls and returns between the reads and writes
of a global variable. (entry) and (exit) achieve context sensitivity for method invocation
by matching call entries and exits. (entry-∅) allows for partially balanced parentheses.
(field) achieves field sensitivity for field accesses (reads and writes) by matching field
loads and stores on field f , only if x� and y� may be aliases (when there is an object
o that may be pointed by x� and may flow to y�). In this rule, �
 denotes the flows-
to analysis which is analogous to its inverse points-to analysis (by making inferences
based on traversing the flowsTo paths in a PAG) and thus omitted.

Given a points-to query for variable v, we find its point-to set, denoted as Pts�v�, by
deriving all possible reachable paths ending with some objects:

Pts�v� � ��o, τ� � v,∅
τ



� o, k	 (pointsto)

where o is a pointed-to object in context k and τ is the trace for computing it.

Initial Phase. During this phase, all queries are answered by computing points-to sets
from scratch. The initial analysis Initialise takes a set of queried variables (v1..n) as
input, and computes and caches each variable’s points-to set and trace in the store Σn.

Σ0 � ∅

�i � 1..n � Pts
vi� � 
o, τ �1..m Σi � Σi�1, vi �	 

�

o1..m,
�

τ1..m�

Initialise
v1..n� � Σn
(initialisation)
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Incremental Phase. Our incremental technique is based on the observation that if a
points-to set becomes invalid after a code change, then some part of its trace must be
involved in the change. In this phase, the incremental analysis Increment takes the
changes Δ (represented by a set of program units that are affected by either additions or
deletions of program constructs) and the points-to store Σ0 from the previous analysis
as input, and returns an update-to-date store Σn, where only the points-to sets affected
by the changes (whose traces τi overlap the changes Δ) are recomputed.

Σ0 � 
v �	 
σ, τ ��1..n �i � 1..n �

if Δ � τi then

�
Pts
vi� � 
o, τ ��1..m
Σi � Σi�1�vi �	 


�
o1..m,

�
τ �1..m��

else Σi � Σi�1

Increment
Δ,Σ0� � Σn
(increment)

We define the inference rules for determining if the changes overlap with a trace:

μ � τ μ� � τ � �μ� � �μ��

τ � τ �
(overlap-trace) τ � τ (overlap-reflectivity)

Here, traces or changes are only sets of variables, as a program unit μ can only be a
variable. In the next section, we will provide a more flexible model to handle different
types of program units, such as methods, classes and packages.

4.2 Saving Space with Trace Policies

Trace policies control the granularities of traces in order to trade analysis time for mem-
ory usage. In Fig. 7, we introduce method, class and package names into the syntax of
program units μ, which form traces τ (and changes Δ). Policies are also formed by a
set of program units, which specify what program units may appear in traces.

Method names m
Class names c
Package names p

Program units μ ::� � � � �m � c � p
Policies Γ ::� ∅ � μ � Γ � Γ

Fig. 7. Syntax of trace policies

Policies may be defined by programmers. Writing down all program units to be
tracked in traces may not be practical. To simplify the specification of policies, we
introduce some forms of shorthand, formally defined by the syntactical equivalence:

�μ : variable� � �v � v � μ� (policy-variable)

�μ : method� � �m � m� μ� (policy-method)

�μ : class� � �c � c� μ� (policy-class)

Often programmers may simply specify a single line my package:method in the policy
to indicate that my package is the package being developed and request the method-
granularity to be used. The shorthand essentially includes all methods contained in
my package. Any other code changes are tracked at package-level, which is the de-
fault (avoiding a need for a shorthand).
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The containment relation between program units is reflective and transitive. We cap-
ture it using the structure of a Java program with a few mappings. P maps a package
name to the set of names of all classes defined in the package. C maps a class name
to the set of names of all methods and global variables defined in the class. M maps a
method name to the set of names of all local variables defined in the method. Given P ,
C and M , we can easily find containment relations between each pair of program units:

x �M
m�

x �m
(contain-local)

g � C
c�

g � c
(contain-global)

m � C
c�

m� c
(contain-method)

c � P 
p�

c� p
(contain-class)

μ � μ� μ� � μ�

μ� μ�
(contain-transitivity)

μ� μ (contain-reflectivity)

Now we define the rules for approximating a trace according to a given policy:

�i � 1..n � μi � Approx 
vi, Γ �

Approx 
v1..n, Γ � �
�

μ1..n
(approx-trace)

v � p if v � μ then μ � Γ

Approx 
v, Γ � � p
(approx-default)

v � μ μ � Γ
�μ� � Γ � if v � μ� then μ� μ�

Approx 
v, Γ � � μ
(approx-contain)

In (approx-default), if no enclosing scope of v is defined in the policy, then its package is
tracked by default. (approx-contain) only finds and tracks the smallest enclosing scope in
the policy. For example, if we find that both the method name and class name of v are
in the policy, we will then use the method name as its granularity.

Initial Phase. The initial analysis is slightly modified to approximate the traces before
they are stored, according to the given policy as an input:

Σ0 � ∅

�i � 1..n � Pts
vi� � 
o, τ �1..m
Σi � Σi�1, vi �	 


�
o1..m,Approx 


�
τ1..m, Γ ��

Initialise2 
v1..n, Γ � � Σn
(initialisation-2)

Incremental Phase. The incremental analysis is also slightly changed to approximate
the traces when recomputing points-to sets:

Σ0 � 
v �	 
σ, τ ��1..n �i � 1..n �

if Δ � τi then

�
Pts
vi� � 
o, τ ��1..m
Σi � Σi�1�vi �	 


�
o1..m,Approx 


�
τ �1..m, Γ ���

else Σi � Σi�1

Increment2 
Δ,Σ0, Γ � � Σn
(increment-2)

We have just extended the syntax of program units in the traces and changes so that
we can now directly represent additions/deletions of not only statements but also, for
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example, methods or classes. We now need to extend the rules for checking overlap
among traces/changes. An overlap relation is reflective and symmetric:

μ� μ�

�μ� � �μ��
(overlap-contain)

τ � � τ

τ � τ �
(overlap-symmetry)

4.3 Adaptive Inference of Trace Policies

In order to specify a trace policy, we need to anticipate where changes will be made,
which may not always be possible. We describe how to gradually refine trace policies
from each incremental analysis, allowing policies to be inferred automatically based on
the frequency of changes in different parts of a program. Therefore, the impact of changes
on the existing points-to information related to the frequently changed code is minimised.

Initial Phase. The trace policy for the initial analysis is either empty or supplied by
the programmer, which can be set up by reusing Initialise2 from Section 4.2.

Incremental Phase. Increment3 refines the trace policy by adding finer-grained pro-
gram units into it. This incremental analysis reuses Increment2 after adapting the pol-
icy to the changes, and returns the refined policy as output:

Adapt
Δ� � Γ � Increment2 
Δ,Σ, Γ � Γ �� � Σ�

Increment3 
Δ,Σ, Γ � � Σ�, Γ � Γ � (increment-3)

The following adaption rules compute finer-grained program units to be added into the
policy, based on the type of changes made:

Adapt
∅� � ∅ (adapt-∅)

Adapt
�μ� �Δ� � Adapt
�μ�� �Adapt
Δ� (adapt-changes)

x �m

Adapt
�x�� � �y � y �m� �Adapt
�m��
(adapt-local)

g � c

Adapt
�g�� � �g� � g� � c� �Adapt
�c��
(adapt-global)

m� c

Adapt
�m�� � �m� � m� � c� �Adapt
�c��
(adapt-method)

c� p

Adapt
�c�� � �c� � c� � p� �Adapt
�p��
(adapt-class)

Adapt
�p�� � ∅ (adapt-package)

If a local variable x is changed in (adapt-local), we add all local variables in its method
into the policy, and then adapt the policy to the method changed. In general, we add
all programs units that are directly defined in the enclosing scopes of x. The last rule
(adapt-package) adapts nothing as package-level is the default granularity.
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Table 1. Benchmark statistics. “Whole Program” includes the reachable parts of the Java libraries
and “Application Code” does not. The last column gives the number of queries issued.

Benchmark
Whole Program Application Code

#Queries#Classes #Methods #Statements #Classes #Methods #Statements

compress 5262 50667 372268 23 175 2989 443
jess 5402 51318 382460 161 798 13099 2064
db 5254 50667 372327 15 175 3035 239
javac 5422 51803 395661 183 1300 26238 5844
mpegaudio 5302 50944 384133 63 410 14869 7644
mtrt 5275 50799 374981 36 304 5714 911
jack 5307 50948 381756 68 443 12486 3296
avrora 2858 24412 197754 549 3194 42946 1413
batik 6827 60013 507723 1114 7356 125770 3574
fop 8441 74894 538179 978 7055 147677 10739
lusearch 2457 23113 190279 220 1979 32124 4053
sunflow 5508 52238 410396 170 1469 35267 1552
tradebeans 9272 83384 533529 909 6787 106480 4353
xalan 3053 28183 258840 618 6253 103348 2093

5 Experimental Evaluation

We evaluate our incremental analysis using a null dereferencing client, NullDeref.
We compare our analysis with a state-of-the-art from-scratch analysis, REFINEPTS,
from [27] using 14 Java programs, selected from the Dacapo and SPECjvm98 bench-
mark suites, given in Table 1. In the presence of small code changes targeted by this
work, our incremental analysis is significantly faster (by at least one order of magni-
tude) than REFINEPTS when tracing application code at different granularity levels.

5.1 Implementation

We have implemented our incremental analysis and NullDeref in the Soot 2.5.0 [32]
and Spark [17] framework, and conducted our experiments using the Sun JDK 1.6.0 26
libraries. REFINEPTS is publicly available in the same framework. Unmodeled native
methods and reflection calls [19] are handled conservatively using Tamiflex [2]. The
on-the-fly call graph of the program is constructed so that a context-sensitive call graph
is always maintained for a program during the CFL-reachability computation.

5.2 Methodology

We have conducted our experiments on a machine consisting of Intel Xeon 2.27GHz
processors (4 cores) with 24 GB memory, running Ubuntu Linux operating system (ker-
nel version 2.6.38). Although the system has multi-cores, each analysis algorithm is
single-threaded. Table 1 gives some statistics about the benchmarks used. Columns 2–4
show the number of classes, methods and statements in each program. Columns 5–7 are
similar except the Java libraries are excluded. It can be seen that the application code is
usually a small part of a Java program, making it suitable to be analysed with different
trace policies depending on the nature of program changes made.
NullDeref detects null pointer violations, demanding high precision from points-

to analysis. Since this client issues a large number of queries, it is suitable to show
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the affected and unaffected queries after a program change. The last column in Table 1
gives the number of queries issued by the client in a program.

In this paper, we consider changes to the program in terms of node additions and
deletions to its program representation (i.e. PAG). To evaluate our incremental analysis,
we have selected three different levels of code changes: class, method and statement.
Our experiments are conducted by randomly deleting a class/method/statement in the
program being analysed, as in [40]. We handle a class-level code change as a set of
multiple method-level changes except that we must also handle the changes related to
the fields in a changed class. When a field is deleted from a class, all edges related to the
field are removed. When a field is added to the class (without statement additions), the
PAG needs not to be updated. We have adopted this approach because it is reasonably
simple to implement, which enables us to collect data on many potential changes across
many programs. We find, in practice, that many code changes do not cause changes to
the points-to information; however such code changes are excluded in our experiments.

Traditional points-to analyses like REFINEPTS, which are not designed to accom-
modate program changes, must recompute points-to information upon a code change.
We compare the incremental analysis time, which includes the times on falsification
and query processing, with the from-scratch analysis time, which includes the times on
PAG construction and query processing. We repeated each experiment 20 times using
randomly generated changes and reported the average of the 20 runs. Below we describe
and analyse two sets of experiments depending on the granularities used for tracing the
application code of a program. In both cases, the library code of a program is traced at
package-level since it is unlikely to be modified.

Optimising for Analysis Time. We show the best speedups of our analysis over a
from-scratch analysis by tracing application code at variable-level. Our analysis
is significantly faster than REFINEPTS and remains so even under a stress test.

Trading Time for Space. We show that our analysis remains to be at least one order
of magnitude faster even if we trace application code at method-level or class-level.

At this stage, we do not have results for the scenario when our analysis uses trace
policies adaptively, because, unfortunately, we do not have enough change history data
to obtain statistically significant results. However, its performance is expected to lie
between the two scenarios studied here.

5.3 Optimising for Analysis Time

We consider code changes comprising a single deletion of a class or method or state-
ment. The situation for adding a class or method or statement is similar.

We have compared the analysis times in Table 2 for REFINEPTS (Columns 2–4) and
our incremental analysis (Columns 5–7). The execution times are all in seconds. For
each program, there are three level of changes: deleting a class (denoted as “del c”),
deleting a method (denoted as “del m”) and deleting a statement (denoted as “del s”).
For REFINEPTS, “PAG” is the time elapsed on constructing the PAG and “QT” denotes
the time spent on recomputing all the issued queries. For our incremental analysis,
“Falsification” is the time spent on the falsification process and “QT2” is a fraction of
“QT” spent on recomputing the affected queries.
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Table 2. Analysis times of NullDeref in seconds for deleting a class, method or statement

REFINEPTS Incremental Analysis
PAG QT Total Falsification QT2 Total

compress
del c 118.8 11.0 129.8 0.011 0.3 0.3
del m 119.4 6.9 126.3 0.001 0.6 0.6
del s 118.9 6.5 125.4 0.000 0.09 0.09

jess
del c 125.9 157.7 283.6 0.013 70.3 70.3
del m 122.1 156.0 278.1 0.002 21.8 21.8
del s 122.1 155.8 277.9 0.001 0.06 0.06

db
del c 118.8 12.2 131.0 0.007 0.4 0.4
del m 119.1 12.2 131.3 0.001 0.5 0.5
del s 120.2 12.4 132.6 0.000 0.01 0.01

javac
del c 125.4 223.4 348.8 0.032 45.5 45.5
del m 124.8 224.0 348.8 0.006 21.5 21.5
del s 125.1 226.5 351.6 0.002 4.93 4.93

mpegaudio
del c 124.7 27.0 151.7 0.040 8.4 8.4
del m 121.5 31.0 152.4 0.003 6.5 6.5
del s 120.8 29.2 150.0 0.001 0.09 0.09

mtrt
del c 120.0 28.6 148.6 0.014 2.9 2.9
del m 118.4 27.2 145.5 0.001 2.4 2.4
del s 119.3 25.1 144.4 0.001 0.32 0.32

jack
del c 118.2 31.0 149.2 0.026 2.5 2.5
del m 118.4 31.6 150.0 0.001 2.1 2.1
del s 115.3 27.4 142.7 0.000 0.49 0.49

avrora
del c 38.9 15.1 54.0 0.009 1.3 1.3
del m 37.9 16.8 54.7 0.001 1.6 1.6
del s 38.7 15.4 54.1 0.001 0.14 0.14

batik
del c 141.7 148.9 290.6 0.014 7.3 7.3
del m 137.4 145.9 283.3 0.003 7.5 7.5
del s 138.9 141.2 280.1 0.003 0.04 0.04

fop
del c 192.0 372.5 564.5 0.065 134.7 134.7
del m 191.6 378.4 569.9 0.006 28.7 28.7
del s 190.4 366.4 556.8 0.001 0.11 0.12

lusearch
del c 38.0 59.7 97.7 0.010 4.6 4.6
del m 44.4 63.1 107.5 0.002 4.6 4.6
del s 38.8 61.8 100.6 0.000 2.03 2.03

sunflow
del c 123.3 32.3 155.6 0.018 3.4 3.4
del m 130.6 28.2 158.7 0.002 4.4 4.4
del s 126.7 31.0 157.7 0.002 0.48 0.49

tradebeans
del c 210.1 256.0 466.1 0.068 23.5 23.6
del m 214.1 255.3 469.4 0.023 36.5 36.6
del s 211.4 246.1 457.5 0.001 5.91 5.91

xalan
del c 39.2 20.6 59.8 0.009 1.9 1.9
del m 38.8 20.6 59.4 0.002 1.9 1.9
del s 36.9 20.3 57.2 0.002 0.02 0.02

Our incremental analysis is much faster for all the benchmarks under three different
levels of code changes. The average speedups range from 4X to a factor reaching several
thousands. This is also true even if only the query time alone is used as a reference,
since QT2 is a small fraction of QT. In addition, the falsification process is very fast
and negligible relative to QT2. For a single deletion of a class/method/statement, the
average speedup is 78.3X/60.1X/3195.4X.

As the library code of a program is traced at package-level, our analysis consumes
only 11 MB more memory than REFINEPTS in the worst case.

Our incremental analysis is designed to handle small and frequent code changes.
Nevertheless, we have stress-tested it with some major changes, involving a deletion of
100 randomly selected methods in a program, as shown in Table 3. While the percentage
of valid queries is smaller than the case when only small changes are made, our analysis
still outperforms REFINEPTS by 1.8X on average.

Our incremental analysis is developed to avoid recomputing unaffected queries after
program changes. To understand the sources of performance gains, we have plotted the
percentage of unaffected queries, including the “major” changes (with 100 methods
deleted) in Fig. 8. On average, 99.1% of the queries are unaffected after a statement
deletion. The percentage becomes 93.1% (91.9%) when a method (class) is deleted,
respectively. In the case of the major changes, only 33.4% queries are unaffected. Note
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Fig. 8. Percentage of unaffected queries after program changes

Table 3. Stress testing of our analysis with “major” changes (deleting 100 methods)

Benchmark Falsification QT #Unaffected Queries (%) Speedup over REFINEPTS
compress 0.020 1.743 17.9 6.1
jess 0.043 141.896 11.6 1.1
db 0.024 3.611 12.5 3.3
javac 0.156 193.899 21.8 1.2
mpegaudio 0.095 19.911 67.7 1.3
mtrt 0.024 14.576 16.7 1.8
jack 0.030 15.364 54.5 1.8
avrora 0.040 12.326 19.7 1.4
batik 0.041 115.812 31.3 1.2
fop 0.531 327.090 85.7 1.2
lusearch 0.044 43.284 25.4 1.4
sunflow 0.022 18.925 35.0 1.7
tradebeans 0.118 212.521 35.7 1.2
xalan 0.052 16.826 31.9 1.4
average 0.052 81.270 33.4 1.8

that neither “method” nor “class” is consistently better than the other in terms of the
percentage of affected queries. This may be due to the randomness of our experiments.

5.4 Trading Time for Space

For large programs, tracing the application code of a program at variable-level can be
space-prohibitive. Our analysis allows it to be traced at coarser granularities to trade
off analysis time for memory usage. As shown in Fig. 9 for a single method deletion,
the average trace size (measured in terms of PAG nodes) per query increases as the
trace policy becomes coarser. The percentage of unaffected queries for variable-level,
method-level and class-level are 93.1%, 87.4% and 74.3%, respectively, on average. As
a result, our analysis becomes slower but remains to be at least one order of magnitude
faster than a from-scratch analysis. As discussed earlier, our analysis is 60.1X faster
than REFINEPTS at variable-level. Its performance speedups has only dropped now to
24.2X and 18.0X at method-level and class-level, respectively.

At the two coarser trace policies, the largest analysis time increases are observed at
mtrt, which takes 2.438 secs at variable-level but now 9.232 secs at method-level and
13.437 secs at class-level. The speedup of our analysis over REFINEPTS has dropped
from 59.7X at variable-level to 15.8X at method-level and 10.X at class-level.
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Fig. 9. Trace sizes at three different granularities for a single method deletion

6 Related Work

In recent years, there has been a large body of research devoted to points-to analysis.
We restrict our discussion to three related areas: context-sensitive points-to analysis,
incremental analysis and change impact analysis. As demonstrated via a null derefer-
encing client in our experiments, context sensitivity is needed for Java because many
queries issued will not be positively answered otherwise.

Whole-program points-to analysis exhaustively computes points-to information for
all its variables, which achieves context sensitivity by cloning [33] or summarisation
[12,34,39,31,29]. Demand-driven points-to analysis [11] reduces the cost of analysis
by only computing points-to information that is needed by its client analysis or opti-
misation. The state-of-the-art algorithms for Java [27,26,36] and C [41] are formulated
in terms of CFL-reachability initially introduced in [23]. Given a CFL-reachability for-
mulation, demand-driven analyses answer points-to queries as described in Section 2.

Pointer analyses based on CFL-reachability are precise, but they do not scale well to
answer many queries for large programs. Sridharan et al. [28,27] proposed a refinement-
based analysis to give an initial approximation and then gradually refine it until the
client is satisfied. This strategy is useful for clients that can be satisfied early enough.
Xu et al. [36] used an imprecise but cheap pre-analysis to find non-aliasing pairs to
reduce redundancy in the subsequent points-to analysis. Zheng and Rugina [41] de-
scribed a memory alias CFL-reachability formulation, answering alias queries with-
out computing the complete points-to sets. Shang et al. [26] proposed a technique to
summarise local points-to relations within a method. Such procedural CFL-reachability
summaries may be reused later by the points-to analysis in the same or different calling
contexts. In [25], they have also reported preliminary experience of using this technique
to summarise the whole program and allow each procedural summary to be updated
independently in response to edits from an IDE, achieving a limited form of incre-
mentality. However, it does not allow points-to information to be reused. Therefore,
points-to queries are always answered by recomputing from scratch. In contrast, our
trace-based incremental algorithm presented in this paper allows previously computed
points-to results to be reused, by recomputing only the queries that are falsified by code
changes. Our technique is orthogonal to previous ones for improving the scalability of
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points-to analysis based on CFL-reachability. It may be possible to use our algorithm in
conjunction with other techniques such as pre-analysis and procedural summarisation.

Many incremental algorithm have been developed for data-flow analysis problems.
Some incremental analyses use the elimination method [3,5], some are based on the
technique of restarting iterations [20] and some are hybrids of the two techniques [18].
A comparison of incremental iterative algorithm can be found in [4].

Incremental points-to analysis has been considered for C programs. Yur et al. [40]
introduced an incremental approximation of their previous flow- and context-sensitive
alias analysis [15] for C, by falsifying the aliases affected by the changed statements.
Their algorithm handles addition/deletion of one single statement, achieving a 6-fold
speedup for programs with 1 – 25K LOC. Their analysis is less precise than the reanal-
ysis from scratch (with a solution agreement on 75% of tests on average). In contrast,
our incremental algorithm produces exactly the same results as their full-analysis coun-
terpart, and naturally handles multiple changes efficiently.

Kodumal and Aiken [13] considered for a limited form of incremental analysis via
backtracking in their Banshee toolkit, which allows constraint systems to be rolled back
to any previous state for a code change and reanalyses the program from that point
forward. Their coarse-grained analysis is fast but imprecise due to its lack of support
for context sensitivity. Saha and Ramakrishnan [24] extended [11], also for C, based
on techniques for incremental evaluation of logic programs. When context sensitivity is
considered, their analysis is slow, by consuming 50 – 73% of the from-scratch time.

Change impact analysis determines the effects of code changes to support the plan-
ning, implementation and validation of code changes in software evolution and main-
tenance. A taxonomy for impact analysis can be found in [16]. Recent approaches
[1,6,8,21] rely on slicing, dependence analysis, dynamic tracing and history mining.
In general, impact analysis requires fast and precise points-to information to be effec-
tive, which may benefit from our incremental points-to analysis.

7 Conclusion

Incremental points-to analysis is important in large projects where it is necessary to
maintain a global analysis in the presence of small edits. We have described an incre-
mental approach via tracing graph reachability, a mechanism that is efficient and simple
to implement, for modern demand-driven context-sensitive points-to analyses. We have
shown experimentally that tracing CFL-reachability is very effective in avoiding re-
analysis of points-to information in Java. Our next step is to study the behaviour of
real-world changes and to integrate our analysis into an interactive programming envi-
ronment. We want to study changes made by real programmers, so that the sequence of
changes we test will reflect more accurately modifications likely to be made in practice.
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Abstract. A static shape analysis is presented that can prove the ab-
sence of NULL- and dangling pointer dereferences in standard algorithms
on lists, trees and graphs. It is conceptually simpler than other analyses
that use symbolically represented logic to describe the heap. Instead, it
represents the heap as a single graph and a Boolean formula. The key
idea is to summarize two nodes by calculating their common points-to in-
formation, which is done using the recently proposed fold and expand op-
erations. The force of this approach is that both, fold and expand , retain
relational information between points-to edges, thereby essentially infer-
ring new shape invariants. We show that highly precise shape invariants
can be inferred using off-the-shelf SAT-solvers. Cheaper approximations
may augment standard points-to analysis used in compiler optimisations.

1 Introduction

Performing a shape analysis can help optimizing compilers to perform certain
program specializations, such as inlining of virtual functions, partial evaluation
(e.g. for fusing producers and consumers in functional languages [4]), or simply
to eliminate NULL pointer tests.

In order to make shape analysis amenable for compilers, an analysis should be
flexible in its precision to allow tuning its scalability. In this work we present a
shape analysis whose performance depends on a numeric domain that can be im-
plemented using off-the-shelf convex approximations [20], although we represent
the state exactly using a SAT solver to illustrate its precision.

Our shape analysis can be seen as an instance of TVLA with one crucial sim-
plification: The logic inherent in our analysis avoids a recursive transitive closure
operator (RTC), as it is used in TVLA to encode reachability. For instance, a
linked list with head H and a summarized tail T starting in a stack variable x is
commonly encoded in TVLA as x(H) = tn(H,H) = tn(H,T ) = 1∧tn(T, T ) = 1

2 ,
meaning that x points to H , and from H we can reach H and T by following the
n field zero or more times, from T we may reach T by following the n field zero
or more times. The tn predicate models transitive reachability and is defined
using the RTC operator. Retaining this linked list invariant requires nontrivial
integrity constraints on tn, since the 1

2 value of the tn(T, T ) predicate proliferates
during the evaluation of transfer functions. Rather than encoding reachability
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c© Springer-Verlag Berlin Heidelberg 2013



FESA: Fold- and Expand-Based Shape Analysis 83

a) x = y = new_node();
while(rnd()) {
*y = new_node();
y = *y;

}

b)
x

y

A

xA

yA
o
i

Fig. 1. allocating a linked list
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c)
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Fig. 2. calculating the state in the while-loop

directly, we only encode node-local information: (1) the existence of nodes and
points-to edges, (2) the number of incoming nodes and (3) the number of out-
going edges. We show that these three properties suffice. In fact, we replace
the set of graphs and their three-valued interpretation used in TVLA by a set
of two-valued interpretations of a single graph. Thus, the omission of the RTC
operator allows us to define a property-based shape analysis where a state is
simply described by one graph and a single Boolean formula. The contribution
of our work lies in describing how to perform summarization and materializa-
tion of nodes using sets of two-valued interpretations. Specifically, the insight in
this paper is that invariant relations between neighboring nodes can be inferred
during summarization using a relational fold operation that was recently de-
fined for numeric domains [19]. A symmetric expand operation duplicates these
relations when a summary cell is materialized back into two heap cells, one of
which is a concrete non-summary cell. While the semantic information aggre-
gated and duplicated by these two functions is nontrivial, their implementation
is straightforward. This simplicity stands in contrast to previous work on using
Boolean formulae as interpretation in the context of predicate abstraction [15]
that requires sophisticated abstraction refinement techniques to obtain sufficient
precision. Although our analysis does not explicitly maintain the linked list in-
variant, by virtue of the inferred relations between these predicates, it is precise
enough to distinguish between lists, trees and graphs, which is not possible in
TVLA without defining specific properties. We now demonstrate how inference
of relational information replaces the validation of TVLA’s linked list invariants.
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Fig. 3. Joining states

Consider the C program in Fig. 1a) that constructs a singly linked list. We
will first show how the allocated cells can be summarized into a single summary
node A, resulting in the heap in Fig. 1b). For the sake of exposition, we only
show information pertaining to points-to edges.

Before the loop in Fig. 1a) is entered for the first time, x and y both point to a
single node allocated by new_node(). The corresponding heap in Fig. 2a) depicts
program variables as diamonds and heap-allocated cells as circles. Figure 2b)
shows the state after one iteration. Here, y points to the newly allocated heap
cell B. Figure 2c) shows the state after another iteration.

In order to represent the three states in a single abstract state, we represent
heaps using a points-to map (a graph) and a numeric state. The points-to map
takes each heap cell or program variable to a set of points-to edges and is shown
as a directed graph. Each points-to edge is then further qualified by a flag that
is mapped to zero or to one by the numeric domain. In particular, a flag fAB

maps to one iff the edge from node A to node B exists. For instance, the state
before the loop consists of the points-to map shown in Fig. 2a) and the numeric
state 〈fxA, fyA〉 ∈ {〈1, 1〉}. The state after one iteration consists of the points-to
map shown in Fig. 2b) and the numeric state 〈fxA, fyB, fAB〉 ∈ {〈1, 1, 1〉}. After
another iteration, the state consists of the points-to map in Fig. 2c) and the
numeric state 〈fxA, fyC , fAB, fBC〉 ∈ {〈1, 1, 1, 1〉}.

These three states cannot be merged directly, since their sets of edges and
nodes are different. We therefore make them compatible to each other by adding
missing edges and nodes. Figure 3a) shows how adding nodes B and C and edges
yB, yC, AB and BC to Fig. 2a) gives a compatible points-to graph with numeric
state 〈fxA, fyA, fyB, fyC , fAB, fBC〉 ∈ {〈1, 1, 0, 0, 0, 0〉}. Figure 3b) and c) show
how the states in Fig. 2b) and c) are made compatible with the corresponding
numeric states {〈1, 0, 1, 0, 1, 0〉} and {〈1, 0, 0, 1, 1, 1〉}, respectively. The merge of
these compatible states is completed by joining the three numeric states into
a single state b := {〈1, 1, 0, 0, 0, 0〉 〈1, 0, 1, 0, 1, 0〉 〈1, 0, 0, 1, 1, 1〉}. The benefit of
this representation is that the three heap configurations are all encoded by the
graph in Fig. 3d) and the numeric state b.
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a) do {
z = x;
x = *x;
free(z);

} while(x);

b)
x

z D

A
xA

zD

DA
o
i

Fig. 4. Deallocating a linked list

The latter graph and state b can now be transformed into a graph where all
list nodes are summarized into one node as shown in Fig. 1b). To this end, our
analysis uses the points-to graph to determine which edges to overlay and then
applies a relational fold operation from [19] in order to summarize the corre-
sponding dimensions. As a result, the dimensions 〈fxA, fyA, fyB, fyC , fAB, fBC〉
corresponding to Fig. 3d) are mapped to the dimensions 〈fxA, fyA, fi, fo〉 cor-
responding to Fig. 1b). This summary state represents the common points-to
properties of all nodes, where the edges fi and fo represent the in- and outgoing
edges connecting A with another instance of A. This instance is drawn with a
dotted circle and is henceforth called the ghost node of A.

Interestingly, if we were to summarize a list with up to four nodes, we would
obtain the same summarized state. Indeed, the summarized state is a fixpoint for
the loop. This, in turn, implies that the summary represents a singly linked list of
arbitrary size.Theanalysis has thus inferred that the loopconstructs a singly linked
list that commences in x and ends in the node pointed to by y. The numeric state of
the fixpoint is quite subtle and describes the various rôles the summary node can
take on: the list head A in Fig. 3a); the list head A in b), c); the unreachable nodes
B,C in a) andC in b); the final nodeB in b) andC in c); and the inner nodeB in c).
The key observation is that the relational fold is able to automatically synthesize
these rôles and that the Boolean function maintains the distinction between them,
thereby inferring very strong shape invariants. Note, though, that the invariant
does not state which roles of A are possible. Thus, it might be that A only occurs
in its role as a middle element of a list, thereby forming a cyclic list in the heap.
Only the fact that x points to A and the relational information on A forces A to
take on the role as list head and as list tail, thereby stating that it is an acyclic
list. The inference of a precise relational summary using fold therefore replaces the
verification of a linked-list invariant done by TVLA.

We now consider the loop in Fig. 4a) that deallocates a linked list. In our
analysis, a summary node is materialized each time it is accessed. Thus, all
modifications to heap nodes are performed on materialized nodes, which ensures
that the abstract transformers are easy to derive since they closely follow the
concrete transformers. Consider the assignment x = *x in the third line. Since
the dereference *x would access a summary node, our analysis materializes a
node D from the summary before executing the assignment. This materialization
results in a state with the points-to set depicted in Fig. 4b).

In this particular case it is possible to free the node D by simply removing
it from the graph. After z goes out of scope, the resulting graph is already
compatible with that at the loop head. A fixpoint for the numeric domain is
observed after one further iteration.
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When evaluating the expression *x, the analysis checks that the numeric do-
main maps at least one edge in the points-to set of x to one. If this is not the case,
a warning is emitted, stating that x can be NULL. In the example, our analysis
is precise enough to verify the absence of NULL-pointer dereferences. Indeed, it
can infer invariants that distinguish lists from trees from graphs. In contrast to
other analyses [7,12], no extra effort is needed to make our analysis robust with
respect to variations of these basic data structures (position of pointer fields, use
of sentinel nodes instead of NULL values or the use of back pointers).

Overall, our shape analysis lies at a sweet-point between precision and sim-
plicity by building on the following contributions presented in this work:

– a shape representation using points-to relations qualified by {0, 1}-vectors,
thus substituting the common approach of representing heaps using a logic
with simple transformers operating on a single graph and a numeric state

– a shape analysis for which transformers are easy to derive since they never
operate on summary nodes and thus directly follow the concrete transformers

– the use of relational fold and expand operators [19] to summarize and materi-
alize heap cells, allowing for a highly precise inference of new shapes; indeed,
we can synthesize the strongest invariant when summarizing two heap cells

– the observation that only two extra properties suffice to distinguish common
classes of data structures [21] as long as these are tracked with high precision;
allowing us to verify programs operating on lists, trees and graphs

We present the principles of our shape analysis before Sect. 3 formalizes it for a
C-like language. An analysis of trees is presented in Sect. 4 before Sect. 5 details
our implementation. Section 6 discusses related work before Sect. 7 concludes.

2 Shape Analysis Using Numeric Domains

A shape analysis finitely summarizes a set of potentially unbounded, concrete
shape graphs into an abstract representation. Before we define the abstract do-
main of points-to sets and numeric states, we consider concrete heap shapes.

Let A be a set of symbolic addresses. With each memory cell M we associate
a unique symbolic address AM ∈ A. A concrete shape graph is a partial map
c : A → ℘(A) that maps each allocated memory cell to its points-to set c(AM ):
When c(AM ) = {AN} and AN ∈ dom(c) then memory cell M contains a pointer
to memory cell N . When c(AM ) = ∅ then the memory cell M contains NULL. A
points-to graph may also contain cells whose content does not represent a proper
pointer value: When |c(AM )| > 1 or c(AM ) = {AN} with N �∈ dom(c) then M
contains an invalid pointer, namely, one that should not be dereferenced.

The remainder of the section presents the abstract states that represent sets of
concrete shape graphs; it discusses summarization and materialization of nodes
and addresses the correctness of these operations.

2.1 Abstract Shape Graphs

The building block of our shape analysis is a points-to set that is further quali-
fied by a set of {0, 1}-vectors. In particular, we define a flow-sensitive points-to
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analysis [11] by associating each memory cell M with a points-to set of the form
{〈f1, A1〉, . . . 〈fk, Ak〉} ⊆ X ×A where X is a set of flags. A numeric domain as-
sociates each flag with a value drawn from {0, 1}. The idea is that Ai ∈ c(AM )
if the flag fi is mapped to one [20]. Thus, a memory cell can be dereferenced if
exactly one flag in its points-to set is mapped to one by the numeric domain. In
order to define this combined domain, we first present the numeric domain.

The Numeric Domain. The possible configurations of flags are given by a nu-
meric domain Bn := ℘({0, 1}n) that holds sets of {0, 1}-vectors of dimension
n. As a numeric domain, Bn can be modified by removing, adding and swap-
ping dimensions or by restricting their values. The removal of dimension i from
b ∈ Bn is defined by dropi(b) = {〈v1, . . . , vi−1, vi+1, . . . , vn〉 | 〈v1, . . . vn〉 ∈ b}. We
write dropi1...ik

= dropi1 ◦ · · · ◦dropik
for ascending sequences i1 . . . ik of indices.

A dimension is added to b ∈ Bn using add i(b) = {〈v1, . . . , vi−1, v, vi, . . . , vn〉 |
〈v1, . . . , vn〉 ∈ b, v ∈ {0, 1}}. We write add i1...ik = add ik ◦ · · · ◦ add i1 for ascend-
ing sequences i1 . . . ik of indices. A swap of two dimensions i and j in b ∈ Bn is
denoted as swapi,j(b). It lifts naturally to two sequences of equal length.

For presentational purposes, we use flag names as synonyms of vector indices
and assume sequences of dimensions to be in ascending order wherever they
occur. Moreover, we write addf (b) to associate a new dimension with the flag
name f . We omit the number of dimensions of the numeric domain, as it is equal
to the number of stored flags. Using this convention, restricting a numeric state
b ∈ B is denoted by b[[expr ]] = {b ∈ b | expr}. For instance, b[[f = 0]] denotes all
vectors b ∈ b in which the dimension associated with flag f maps to zero, and
addf2(b)[[f2 = 1− f1]] denotes an assignment of 1− f1 to a fresh dimension f2.

The Points-to Domain. A points-to state p : A → ℘(X ×A) maps (the address
of) each memory cell to its points-to set. The set of points-to states is denoted
by P . Writing a points-to set v to a memory cell at address A in state p ∈ P is
denoted by the update p[A �→ v]. We use a combined abstract state p� b ∈ PB

where PB is a new abstract points-to domain in which p is refined (qualified) by a
numeric domain b ∈ B. An operation on a state p�b adjusts p, thereby modifying
the set of flags in the points-to sets, which, in turn, requires adjustments to b ∈ B.

An abstract heap description must be able to represent concrete heaps c1, c2
with different numbers of cells, that is, dom(c1) �= dom(c2). For example, a heap
cell may be deallocated in one state but not in another. In order to ensure that
accessing a non-allocated region can be flagged as “dangling pointer” error, the
numeric domain tracks an additional flag f∃M for each heap-allocated cell M
that is one iff M is allocated, that is, if AM ∈ dom(c). For brevity, we generally
omit the f∃X flags in the presentation of the upcoming examples whenever they
are constant one in the numeric state b ∈ B, but we consider this example first:

Example 1. The points-to domain of the linked list in Fig. 5a) can be given
by p = [Ax �→ {〈fxA, AA〉}, AA �→ {〈fAB, AB〉}, AB �→ {〈fBC , AC〉}] where
Ax, AA, AB and AC are the addresses of memory cells x, A, B and C, respec-
tively. The numeric domain 〈fxA, fAB, fBC , f∃A, f∃B, f∃C〉 ∈ {〈1, 1, 1, 1, 1, 1〉}
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a) x A B CxA AB BC
b) x A BxA AB

Fig. 5. Two linked lists

assures that dereferencing the contents of x, A and B is safe since in each points-
to set exactly one flag has value one and all heap cells are allocated.

Lattice Operations on Abstract States. Whenever the control flow merges with
states p1 � b1 and p2 � b2, the analysis continues with the joined state p1 � b1 �
p2 � b2, which is p1 � b1 ∪ b2 if p1 = p2. Checking for fixpoints when analyzing
loops requires a subset test p1 � b1 � p2 � b2 that reduces to b1 ⊆ b2 if p1 = p2.
An analogous definition for � yields the complete lattice 〈PB,�,�,�〉.

In general, the points-to domains p1 and p2 may be different: Before they can
be joined or compared, they must be made compatible by adding edges and nodes
to p1, p2: When pi contains a node M that is not present in pj , the missing node
is added to pj using pj [AM �→ ∅] and f∃M = 0 is added to bj , indicating that M
is not allocated. When pi contains an edge from some node M to some node N
that is not present in pj , the edge is added to the points-to set of M in pj and
the corresponding numeric flag fMN is introduced in bj with value zero. Further
adjustments are necessary for summary nodes and instrumentation predicates
which are defined analogously. Consider again the lists in Fig. 5:

Example 2. Joining the heaps of Fig. 5a) and Fig. 5b) yields the points-to state
of Fig. 5a) with 〈fxA, fAB, fBC , f∃A, f∃B, f∃C〉 ∈ {〈1, 1, u, 1, 1, u〉 | u ∈ {0, 1}}.

2.2 Summarizing Nodes

This section illustrates how the previously defined operations are used to sum-
marize two heap cells, which is a three-step process: First, both nodes are made
compatible, then the edges between them are removed, and finally the numeric
flags of one cell have to be merged with those of the other cell. Materialization
applies the last two steps in reverse order. We consider each step in turn.

Making Nodes Compatible. Suppose that we summarize nodes A and B of the
three-element linked list in Fig. 5. In order to merge the numeric information
stored for the points-to information of A and B, both must have the same set of
incoming and outgoing edges. To this end, they are made compatible by comple-
menting the edge from x to A with a new edge from x to B and adding the flag
fxB = 0. Similarly, the edges from B to C and from A to B are complemented
with edges from A to C and from C to B, yielding the state in Fig. 6a).

Disconnecting the Nodes. The points-to information between A and B can no
longer be represented as edges between different nodes of the graph once they
are summarized. We therefore introduce a ghost node to which these edges point,
indicating that they point to a different instance of the summarized node. To



FESA: Fold- and Expand-Based Shape Analysis 89

a) nodes A and B are compatible b) nodes A and B are disconnected
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〈fxA, fxB , fAB , fBA, fAC , fBC〉 〈fxA, fxB , fAC , fiA, foA, fBC , fiB , foB〉
∈ {〈1, 0, 1, 0, 0, 1〉} ∈ {〈1, 0, 0, 0, 1, 1, 1, 0〉}

c) node B is folded onto node A d) nodes A and C are compatible
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〈fxA, fAC , fiA, foA〉 ∈ 〈fxA, fxC , fAC , fCA, fiA, foA〉 ∈
{〈x, 1− x, 1− x, x〉 | x ∈ {0, 1}} {〈x, 0, 1− x, 0, 1− x, x〉 | x ∈ {0, 1}}

e) nodes A and C are disconnected f) node C is folded onto node A
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〈fxA, fxC , fiA, foA, fiC , foC〉 ∈ 〈fxA, fiA, foA〉 ∈
{〈y, 0, x, 1− x, 1− y, y〉 | x, y ∈ {0, 1}} {〈y, x, 1− x〉 | x, y ∈ {0, 1}}

Fig. 6. Folding and expanding a linked list

this end, we assign the value of fAB to the flag foA that represents the out-edge
from A to its ghost node and to flag fiB that represents the in-edge from its
ghost node to B. In the same way, we assign the value of fBA to fiA and to foB.
Finally the edges between A and B are discarded, giving the state in Fig. 6b).

Summarizing Numeric Information. Note that the points-to sets of A and B
now contain the same set of addresses, so that each flag associated with B can
be merged with the respective flag of A. Merging and duplication of flags is based
on fold and expand which is defined as follows [19]:

Definition 1. Given the k dimensions i1 . . . ik and k dimensions j1 . . . jk, define
fold i1...ik,j1...jk

: Bn+k → Bn and expand : Bn → Bn+k as follows:

fold i1...ik,j1...jk
(b) = dropj1...jk

(b ∪ swapi1...ik,j1...jk
(b))

expand i1...ik,j1...jk(b) = add j1...jk(b) ∩ swapi1...ik,j1...jk(add j1...jk(b))

Intuitively, the fold operation merges the information over j1 . . . jk with that
over i1 . . . ik and removes j1 . . . jk. This process discards all information between
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〈fxA, fiA, foA, fxD, fAD, fDA〉 ∈
{〈y, x, 1− x, u, v, 1− v〉 | u, v, x, y ∈ {0, 1}}

Fig. 7. Materializing D from A, given the state of Fig. 6f)

i1 . . . ik and j1 . . . jk but retains any relational information that holds for both
i1 . . . ik and j1 . . . jk. Symmetrically, expand retains relations within i1 . . . ik when
duplicating them to j1 . . . jk but, unlike an assignment j1 := i1, induces no
equality between j1 and i1. In the example, the flags fxB, fBC , fiB, foB are folded
onto the flags fxA, fAC , fiA, foA by applying fold fxAfACfiAfoA,fxBfBCfiBfoB to the
numeric state. Note that this operation retains the relations that exist in each
group of flags as shown in Fig. 6c). Here, the summarized state retained that
the node that points to C is not the one pointed to by x since fxA �= fAC .

Summarizing Summaries. Now we merge the summary node A with node C
which has to be made compatible first as shown in Fig. 6d). Since A already
has a ghost node, the flags fiA, foA are already present in the numeric domain.
Therefore, the information of fiA, foA has to be merged with that of fAC , fCA.
The intuition is that after summarizing A and C, there is no distinction between
the edges from A to C and edges from A to nodes that have been previously
merged with A. On the numeric state, flags fiC , foC are introduced with fiC =
fAC , foC = fCA and flags fCA, fAC are folded onto fiA, foA by operation
foldfiAfoA,fCAfAC

, yielding the state in Fig. 6e). Now all flags of node C are
folded onto those of A by operation fold fxAfiAfoA,fxCfiCfoC , giving the state in
Fig. 6f).

2.3 Materializing Nodes from Summaries

In this section we discuss how to materialize a node from a summary node in two
steps: first, the summary node is duplicated by applying expand to its numeric
flags; second, the edges between the summary and the new node are synthesized
using the edges to the ghost node. Consider expanding D from node A in Fig. 6f).

The first step applies expandfxAfiAfoA,fxDfiDfoD to the numeric state, resulting
in 〈fxA, fiA, foA, fxD, fiD, foD〉 ∈ {〈y, x, 1 − x, u, v, 1 − v〉 | u, v, x, y ∈ {0, 1}}.
After that, it remains to reconstruct the edges between A and D: since node D is
concrete and node A is a summary, we may assume that the flags fDA, fAD are
equal to flags foD, fiD and also equal to flags that have been summarized with
fiA, foA in the process of summarization. Thus, we first add the edges between
A and D and their corresponding flags fAD, fDA by renaming flags fiD, foD in
Fig. 7a). In order to assert the equality with an instance of the edges fiA, foA, we
duplicate them to f ′

iA, f
′
oA using expandfiAfoA,f ′

iAf ′
oA

and enforcing the equality
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by restricting the numeric state b to b[[fAD = f ′
oA ∧ fDA = f ′

iA]]. The flags f ′
iA,

f ′
oA are removed using drop, resulting in the state shown in Fig. 7b).
In contrast to the initial state in Fig. 6a), in the materialized state variable

x may also contain NULL (since fxA = fxD = 0 is possible) or an invalid pointer
(since fxA = fxD = 1 is possible). This precision loss is caused by summarizing
the flags fxB and fxC onto fxA, which makes them indistinguishable. Sect. 4.1
details how the validity of pointers can be maintained despite summarization. We
conclude this section with an observation on the soundness of summarization.

2.4 Soundness of Summarization

We assume the existence of a function summarize that summarizes two nodes
and a function materialize that expands summary nodes as described above and
leaves non-summary nodes unchanged:

Definition 2. Define summarize : A × A × PB → PB such that in state
summarize(AM , AN , p� q) node M is a summary of M and N of state p� q.

Define materialize : A×PB → PB such that for p′� b′ = materialize(AN , p�
b), some new address AC ∈ dom(p′)\dom(p) points to the materialized concrete
node in state p′ � b′ if N is a summary in p� b, and p′ � b′ = p� b otherwise.

Note that we assume that materialize recognizes a node M as summary node
by observing the existence of the flags fiM , foM in the numeric domain. As
shown in [19], the pair (fold i1...ik,j1...jk , expand i1...ik,j1...jk) forms a Galois con-
nection, from which follows that folding dimensions j1 . . . jk onto dimensions
i1 . . . ik of a numeric state and then re-expanding dimensions j1 . . . jk yields an
over-approximation of the initial numeric state. The following observations states
that this extends to summarizing and then re-expanding a pair of nodes in the
abstract shape graph.

Observation 1. For all states p� b ∈ PB and addresses A1, A2 ∈ dom(p) there
is p � b � materialize(A1, summarize(A1, A2, p � b)) up to the renaming of the
materialized node.

We will allow our analysis to summarize nodes in one sequence and afterwards
materialize them in a different sequence. To ensure soundness, the result of
summarizing and expanding a set of nodes must therefore be independent of
the chosen sequence. It suffices that changing the order in which two nodes are
materialized does not change the result, which is asserted as follows:

Observation 2. For all states p � b ∈ PB and addresses A1, A2 ∈ dom(p),
materialize(A1,materialize(A2, p� b)) = materialize(A2,materialize(A1, p� b))
holds up to the renaming of the materialized nodes.

As a result, a shape analysis that relies on the operations summarize and
materialize may summarize heap cells at any point and re-expand them on de-
mand, namely when accessing the content of a summarized heap cell. The next
section puts this into practice by defining an abstract interpreter for a C-like
language which is later enriched to work on summaries.
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[[x=NULL]]�c = c[Ax �→ ∅]
[[x=y]]�c = c[Ax �→ c(Ay)]

[[x=&y]]�c = c[Ax �→ {Ay}]
[[x=malloc()]]�c = c[Ax �→ {AN}, AN �→ ∅] where AN fresh

[[x=*y]]�c = c[Ax �→ c(A)] where {A} = c(Ay)

[[*x=y]]�c = c[A �→ c(Ay)] where {A} = c(Ax)

[[free(x)]]�c = c \ A where {A} = c(Ax)

[[if (x==NULL) t else e]]�c =

{
[[t]]�c if c(Ax) = ∅
[[e]]�c otherwise

Fig. 8. Concrete semantics of a C-like language

3 Shape Analysis of a C-Like Language

We present a language with explicit memory management using malloc and free
which mimic their C counterparts. In contrast to C, we assume that program
variables and heap cells are initialized to NULL and that they hold only one value;
a simplification for the sake of clarity which is not present in our implementation.

The semantics of our language in Fig. 8 operates on concrete heap shapes as
defined in Sect. 2. In a heap c, a cell M is allocated iff AM ∈ dom(c). Thus
[[x=malloc()]]� adds a mapping for a new address AN to c and [[free(x)]]� re-
moves the mapping for A, denoted by c \A. Analogously, stack variables x,y,. . .
are stored at Ax, Ay, . . . where Ax ∈ dom(c) iff x is in scope. Note that a state
c containing an invalid pointer in cell M (with |c(AM )| > 1 or c(AM ) = {AN}
with AN �∈ dom(c)) is not an error, only dereferencing M is. This is addressed
by the rules [[x=*y]]�, [[*x=y]]�, and [[free(x)]]� that are undefined if the derefer-
enced cell does not hold exactly one pointer or if the pointed-to cell at A is not
allocated, that is, if A /∈ dom(c). The goal of the analysis is to prove the absence
of undefined behavior. Note that invalid pointers cannot arise in the concrete
semantics, but may arise due to approximations in the abstract semantics, which
is presented next.

3.1 Abstract Semantics

An abstract interpretation is sound if the abstract semantics [[s]]� of each state-
ment s approximates its concrete semantics [[s]]�, that is, if [[s]]�◦γ ⊆ γ◦[[s]]� with
[[s]]�(C) := {[[s]]�(c) | c ∈ C} [9]. In order to derive this semantics, we first define
a concretization function γ0 that relates each abstract cell M to one concrete
memory cell if AM exists (that is, if its f∃M flag is one):

Definition 3. Function γ0 : PB → ℘(A → ℘(A)) is given by

γ0(p� b)=
{
[AM �→{Ai | 〈fi, Ai〉 ∈ p(AM ) ∧ b(fi)=1}]AM∈dom(p)∧b(f∃M )=1 |b ∈ b

}

where b(fi) denotes dimension fi of a vector b.
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[[x=NULL]]�(p� b) = p[Ax �→ ∅]� drop{f |〈f,_〉∈p(x)}(b)
[[x=y]]�(p� b) = p[Ax �→ {〈fx1, A1〉, . . . , 〈fxn, An〉}]�

addfx1...fxn(drop{f |〈f,_〉∈p(x)}(b))[[fx1 = fy1, . . . , fxn = fyn]]

where x �= y and p(y) = {〈fy1, A1〉 . . . , 〈fyn, An〉}
[[x=&y]]�(p� b) = p[Ax �→ {〈fxy , Ay〉}]� addfxy (drop{f |〈f,_〉∈p(x)}(b))[[fxy = 1]]

[[x=malloc()]]�(p� b)=[[x=&N]]�(p[AN �→ ∅]� addf∃N
(b)[[f∃N =1]]) where AN fresh

[[*x=y]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ax,(p�b))[[z=y]]
�(p′ � b′)

[[x=*y]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ay ,(p�b))[[x=z]]
�(p′ � b′)

[[free(x)]]�(p� b) =
⊔

〈Az ,p′�b′〉∈deref (Ax,(p�b)) p
′ � b′[f∃z �→ 0]

[[if (x==NULL) t else e]]�(p� b)= [[t]]�(p� b[[fx1 = 0 ∧ . . . ∧ fxn = 0]])


 [[e]]�(p� b[[fx1 = 1 ∨ . . . ∨ fxn = 1]])
where p(Ax) = {〈fx1, A1〉, . . . 〈fxk, Ak〉}

Fig. 9. Abstract semantics

The abstract semantics [[s]]� that lifts the concrete semantics [[s]]� of a state-
ment s to the abstract domain PB is shown in Figure 9. Here, [[x=NULL]]� removes
all previous flags f of the points-to set of x from b using drop and empties p(Ax).
These stale flags are also removed in [[x=y]]� before the new flags fx1, . . . fxn are
set to the values of fy1, . . . fyn of y. Analogously for [[x=&y]]�. Allocating heap
cells with [[x=malloc()]]� chooses a fresh address AN . The fact that AN is a valid
cell is stated by adding the flag f∃N with value one to b. The result x is set to
point to the new address AN using [[x=&N]]�.

The next three statements dereference pointers. Each statement dereferences
the pointer contents using function deref : A×PB → ℘(A×PB). This function
partitions the passed-in state depending on the address that is pointed to:

deref (A, p� b) =
⋃

(_, B)∈p(A)

φ(A,B, p� b) \ {warn}

Here, a call φ(A,B, p � b) to the auxiliary function φ : A × A × PB → ℘(A ×
PB) ∪ {warn} returns a state in which the cell at A points to the address B:

φ(A,B, p� b) = {(B, p� b[[f1 + . . .+ fn = 1 ∧ fAB = 1 ∧ f∃B = 1]])} (1)
∪ {warn | b[[f1 + . . .+ fn �= 1]] �= ∅} (2)
∪ {warn | b[[f1 + . . .+ fn = 1 ∧ fAB = 1 ∧ f∃B = 0]] �= ∅} (3)

where p(A) = {〈f1, A1〉, . . . , 〈fn, An〉}. Value warn indicates a possible run-time
error that has to be reported by the abstract interpreter: it is issued whenever a
points-to set may point to none or more than one memory cell (Eqn. 2), or when
the heap cell pointed to is not allocated due to, for instance, free() (Eqn. 3).

For each tuple 〈B, p′ � b′〉 returned by function deref , [[*x=y]]� writes y to
address B, [[x=*y]]� reads from address B, and [[free(x)]]� deallocates address B
in state p′ � b′, and the results are joined. Finally, the rule for the conditional
partitions the state p� b such that x is NULL and non-NULL.

We note that our abstract semantics fulfills the soundness condition from above:
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Observation 3. For any statement s, there is [[s]]� ◦ γ0 = γ0 ◦ [[s]]�. Given α0 :

℘(A → ℘(A)) → PB with α0(c) = �{a | c ⊆ γ(a)} there is α0 ◦ [[s]]� = [[s]]� ◦ α0.

Moreover, the observation states that the abstract semantics exactly mirrors
the concrete semantics. However, abstract states can grow arbitrarily large, and
therefore fixpoint computations must apply a widening to ensure termination,
as detailed in the next section.

3.2 Widening and Materialization on Access

An infinite growth of the abstract state space can be avoided by inserting a
widening operator into every loop of the program [9] which ensures that any
increasing sequence of states eventually stabilizes. We implement widening by
summarization. By materializing memory cells on access, we are able to retain
our abstract semantics as is. We detail both operations in turn.

Widening by Summarization. A challenge in analyzing loops is to ensure that
the set of heap cells remains finite. We address this by summarizing nodes that
are abstract reachable from the same program variables. This abstract reachabil-
ity only considers the points-to graph and not the information in the numeric
domain. For instance, the nodes A and B in Fig. 3a) are abstract reachable from
x and y, even though B is not reachable according to the numeric state.

Our widening consists of two steps and is applied to a single state. In the
first step, a partitioning of the heap-allocated nodes is calculated: nodes that are
abstract reachable from the same set of stack variables are put into one partition.
This ensures finiteness of fixpoint computation since the set of partitions is
determined by the number of stack variables in scope. In the second step, each
partition of heap nodes is collapsed into one summary node by summarizing all
its members with the oldest member. This ensures that the symbolic addresses
remain stable under the fixpoint calculations which enables the detection of a
fixpoint using �.

Materialization on Access. Materialization is performed as part of dereferencing
pointers. To this end, each use of deref in Fig. 9 is replaced by deref ′ (defined
below). For every summary node, deref ′ returns a state in which the node is
materialized and a state in which the node is turned into a concrete node by
simply removing the ghost node. The latter is necessary in case a summary node
represents only one concrete node. The two cases are reflected by two calls to φ:

deref ′(A, p� b) =
⋃

(f, B)∈p(A)

φ(A,B′, p1 � b1) ∪ φ(A,B, p2 � b2) \ {warn}

where p1 � b1 = materialize(B, p � b) is the result of materializing node B to
{B′} = dom(p1) \ dom(p) and p2 � b2 = p� dropfiB ,foB (b) is the state in which
B is no longer a summary node. Since the state p1 � b1 returned by function
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materialize is unchanged if B is not a summary, deref ′(A, p � b) is identical to
deref (A, p� b) when the points-to set of A only refers to concrete nodes.

We conclude this section by defining a concretization γ that takes an abstract
state in PB to concrete states in ℘(A → ℘(A)).

Definition 4. Concretization γ : PB → ℘(A → ℘(A)) is given by γ = γ0 ◦ τ
where τ : PB → PB is given by τ(s) = fix s(λt . t �

⊔
A∈A{u | A ∈ A, (_, u) ∈

materialize(A, t)})) where fix s(f) is the least fixpoint of f greater than s.

Here, function τ calculates the reflexive transitive closure of applying arbitrary
materializations. Note that for abstract states with at least one summary node, τ
returns a points-to domain with an infinite number of nodes paired with a numeric
domain with an infinite number of dimensions. Materialization on access retains
the following property which implies that all precision loss is incurred by widening:

Observation 4. For any statement s, there is [[s]]� ◦ γ = γ ◦ [[s]]�.
We now enhance this basic analysis by two predicates that are sufficient to
distinguish between list, trees and graphs.

4 Two Simple Instrumentations

For the sake of presentation, we generalize the numeric domain from {0, 1}-
vectors to N

n. We define two simple numeric instrumentation variables and de-
scribe how they can be approximated by {0, 1}-flags.

4.1 Counting Outgoing Edges

The shape graph in Fig. 7b) shows the result of materializing a heap cell D from
a summary A. The obtained numeric state is 〈fxA, fiA, foA, fxD, fAD, fDA〉 ∈
{〈y, x, 1 − x, u, v, 1 − v〉 | u, v, x, y ∈ {0, 1}}, which allows flags fxA and fxD
to be zero or one at the same time, indicating NULL or an invalid pointer value
in variable x. The reason for this precision loss is that when summarizing two
nodes M and N the flags fxM and fxN become indistinguishable due to folding.

We rectify this precision loss by tracking the number of outgoing edges of
each node N in a numeric counter coutN . As this counter reflects the number of
outgoing edges in the concrete graph, summarizing two nodes does not change
this counter. However, when summarizing node O onto P , the flags fNO and
fNP are merged into f ′

NP which may be smaller than fNO+fNP . Thus, the sum
sN := fN1+ · · ·+ fNk of N ’s points-to flags may be smaller than coutN . We apply
the information in coutN by adding the assertion sN = coutN = 1 to deref ′ and by
enforcing sM ≤ coutM whenever p(AM ) receives new edges due to materialization.

Since the concrete semantics in Fig. 8 precludes points-to sets with more than
one element, the invariant coutN ≤ 1 can be enforced on the abstract state without
losing soundness. This reduction with respect to the concrete semantics has been
dubbed “hygiene condition” [18]. As a consequence, we implement only the lowest
bit of the coutN counter as {0, 1}-flag.
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a) while(a != NULL) {
tree * b = a->l;
if(b==NULL) {

b = a->r;
free(a);
a = b;

} else {
a->l = b->r;
b->r = a->r;
a->r = b; }}

b) c)
x

A.l A.r

A.l A.r

xA

oA.l iA.l oA.r iA.r

Fig. 10. Expanding a binary tree

4.2 Counting Incoming Edges

Fig. 10a) shows a C program that iteratively deallocates a binary tree pointed to
by variable a by tree rotation. It requires that a holds a tree, that is, neither cycles
nor diamond-shaped subgraphs as in Fig. 10b) are reachable from a, i.e., no heap
cell can be accessed via more than one path. We guarantee the latter by simple
reference counting: every memory cell M is equipped with a reference counter cinM
that counts the references coming from heap-allocated cells. Whenever an entry
〈fNM , AM 〉 is added to the points-to set of a node N , counter cinM is incremented
by the value of fNM . Analogously, the counter is decremented by the respective
flag when an entry is removed from the points-to set. We then assert cinM ≥ 0.

Our analysis is easily extended to compound memory cells like, for example,
the nodes of a binary tree: summarization is done by making the components
compatible one-by-one and then folding the compound cells onto each other.
Fig. 10c) shows the abstract representation of an arbitrary binary tree. Sum-
marization can infer the invariant that fxA = 1 − cinA ∈ {0, 1}, that is, every
heap cell has exactly one incoming edge. Indeed, this instrumentation is nearly
sufficient to prove the absence of double-free-errors for the algorithm in Fig. 10a).

Since the numeric domain of our implementation is restricted to {0, 1}-values,
we implement the counters cinN by a saturating binary 2-bit counter. We now show
how the analysis can be efficiently implemented using a SAT solver.

5 Implementation and Experimental Results

The numeric state b ∈ Bn can be represented by a Boolean formula over n
variables. We therefore implemented the functor domain p� b ∈ PBn as a tuple
consisting of a map for the points-to sets p ∈ P and a single formula ϕ for b ∈ Bn

that is either in conjunctive or in disjunctive normal form.
Since expand calculates an intersection of states, it can be straightforwardly

implemented on a CNF formula by duplicating clauses. Analogously, fold has a
straightforward implementation on a DNF formula. Join (resp. meet, in partic-
ular b[[·]]) is calculated by merging the DNF (resp. CNF) representations. The
semantics of most statements requires the removal of dimensions from the vector
set using dropfi , which corresponds to removing the quantifier in the formula
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Table 1. Evaluation of our implementation

instr. avg. size loop
pred. projections vars/clauses time mem iterations warnings

three-element list − 0 – 2 ms 10 MB - 1
+ 0 – 3 ms 10 MB - 0

singly linked list − 33 20 / 36 30 ms 12 MB 4 / 3 6
+ 42 36 / 55 132 ms 14 MB 5 / 3 0

doubly linked list − 12 23 / 37 13 ms 10 MB 2 / 2 7
+ 15 47 / 76 49 ms 13 MB 3 / 2 0

summarize tree − 0 – 2 ms 12 MB - 0
+ 0 – 2 ms 13 MB - 0

access tree − 38 15 / 15 48 ms 10 MB 3 6
+ 12 131 / 298 32 ms 17 MB 2 0

deallocate tree − 95 32 / 45 380 ms 25 MB 5 28
+ 80 52 / 95 1.511 ms 26 MB 5 1

deallocate graph − 96 34 / 51 375 ms 23 MB 5 44
+ 139 57 / 104 1.425 ms 26 MB 5 1

Table 2. Comparison with TVLA

TVLA predicates time mem iterations warnings
singly linked list 16 176 ms 14 MB 40 0
deallocate tree 19 3,391 ms 20 MB 66 26

∃fi . ϕ. Rather than removing each dimension using drop, fi is simply renamed
to a fresh variable. Unused variables are eventually removed during the conver-
sion between a CNF and a DNF formula. For the latter, we use the projection
method of Brauer et al. [5], which is based on SAT-solving and calculates a
minimal DNF representation from a CNF formula and vice versa.

Our implementation is written in Java using Minisat v2.2. Table 1 shows the
results for: summarizing a three-elemented list and accessing its first element as
described in Sect 2.2; allocating and then deallocating a singly linked list; dto. for
a doubly linked list of arbitrary length; summarizing a seven-element binary tree;
accessing the leftmost innermost element of a binary tree; running the algorithm
of Fig. 10a) on the summarized tree; running it on the summary of a diamond-
shaped graph as in Fig. 10b). Each task is shown with instrumentation flags
enabled (+) and disabled (−).

The columns show the number of calls to the projection function and the
average size of the formulae (number of variables / number of clauses) at each
projection. Running times and memory consumption on an Intel Core i7 with
2,66 GHz on Mac OS X 10.6 follow. The next two columns show how many
iterations are required to find a fixpoint for the loop(s) in the examples. A “-”
indicates that the example has no loop. For all examples except the last two,
we could verify the absence of NULL- and dangling pointer dereferences. The
warnings that occur in the deallocation examples arise when accessing a freed
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heap node N through a stack variable. In the tree deallocation example, cinN = 1
but no summary node M pointing to N can be materialized with fMN = 1. That
is, this state is contradictory in itself and could be removed by a reduction step.
Thus, while our analysis is expressive enough, an explicit reduction is required
to remove this spurious warning. Since this reduction is orthogonal to the shape
analysis itself, it has been omitted. Note that the warning in the last row of
Table 1 is a true error.

We compare our prototype implementation with the latest TVLA 3 analyzer.
Table 2 shows the running time of two of our examples when reformulated with
TVLA predicates. The verification of the list example is slightly slower. A TVLA
tree example that mimics our deletion algorithm for trees is shown in the second
row. Although TVLA provides predicates that can express the invariant, it is
unable to prove that a node is only freed once and, hence, emits warnings. This
is curious, since TVLA provides several tree invariants that are silently enforced
by integrity constraints.

6 Related Approaches to Shape Analysis

Using Boolean functions for analyzing points-to sets is a re-occurring theme in
the literature, although they are often represented as binary decision diagrams
rather than CNF formulae [3]. Our work shows how points-to analysis can be
enriched with summaries of heap structures, thereby giving a new answer to
the question of how to merge the regions created at call sites of malloc [14].
Moreover, our analysis could replace ad-hoc forms of shape analysis such as
summarizing all heap cells but the last one allocated [1]. The latter is used to
allow strong updates on heap cells that are allocated in a loop. By materializing
on access and summarizing through widening, our analysis refines this ad-hoc
strategy by a dynamic, semantics-driven strategy.

One peculiarity of our analysis is the ability to distinguish lists, trees, and
graphs using only relational information associated with each node. This de-
sign simplifies the abstract transfer functions in that they only have to update
information of the nodes that are actually accessed, we call this a node-local
analysis. One motivation for using separation logic for shape analysis is exactly
this ability, namely that an update in separation logic retains a so-called frame
that describes the part of the heap that is not being accessed. Moreover, the
inductively defined predicates of separation logic [17] are also local in that they
relate each node to a fixed number of neighboring nodes. Using these predicates,
a linked list is specified as list(x) ≡ emp ∨ (∃y . x �→ y • list(y)) where the
separating conjunction h1 • h2 expresses that heaps h1 and h2 do not overlap.
Interestingly, a summary node N and its ghost node live at different addresses
and, thus, they can be seen as being separated by the separating conjunction.

While automatic analysis using separation logic relies on a symbolic represen-
tation of heap shapes, our approach is based on a Boolean domain whose join
operation can infer new invariants. Inferring new invariants (predicates) in the
context of separation logic is in general not yet possible [8]. However, templates,



FESA: Fold- and Expand-Based Shape Analysis 99

namely higher-order predicates, have been automatically instantiated in order to
infer hierarchical data structures [2]. Since our current approach already infers
any node-local invariant, future work should address the inference of hierarchical
shapes, for instance, to verify operations on a list of independent circular lists.

A different approach to shape analysis is the TVLA framework [18] where
the shape of the heap is described by a set of core predicates such as n(x,C)
(indicating that x.n points to C). Other, so-called instrumentation predicates,
such as rx(C) (node C is reachable from x) are defined in terms of core predicates.
Transfer functions that describe the new value after a program statement must
be given at least for all core predicates. Two heap cells A1 and A2 are summarized
by merging the truth values of the predicates that mention them: for example,
if vi = n(x,Ai), then the merged value is v1 if v1 = v2 or 1

2 if v1 �= v2. Indeed,
TVLA’s three-valued interpretation approximates our set of Boolean vectors b
by using the value 1

2 for a predicate p iff b(p) is not constant for all b ∈ b. This
is troublesome when, for example, re-evaluating rx(C) after summarizing two
nodes that lie on a path from x to node C: although C is still reachable from x,
its re-evaluation on the core predicates yields 1

2 . Indeed, devising precise transfer
functions for instrumentation predicates in TVLA is considered a “black art” [16,
Sect. 4]. This triggered work on automatic synthesis of transfer function [16].

For certain predicates it is particularly challenging to define a precise trans-
fer function, one of them being rx(C). The reason is that these predicates use
a recursive, transitive closure operator, whose calculation in general requires
the whole heap state and, hence, incurs the imprecision of core predicates over
summary nodes. In contrast, our analysis only requires node-local information,
thereby eschewing the need to perform calculations using information in sum-
mary nodes. This strength comes at the cost of rather unintuitive invariants: For
instance, in TVLA a predicate would directly state that a summary node A rep-
resents an acyclic list, whereas in our analysis the relation foA �= fiA, fxA �= fiA
with [Ax �→ {〈fxA, AA〉}] states that A is a list which is acyclic if and only if x
is pointing to it (here fiA and foA decorate the edges to the ghost node of A).

The flag f∃N (node N is allocated) resembles the TVLA property present of
[13]. While our cinN counter can be seen as a generalization of TVLA’s is(N)
predicate (is shared, indicating that N has more than one incoming edge), it is
actually motivated by work on classifying data structures by Tsai [21]. Indeed,
our diamond-shaped subgraph in Fig. 10 can be classified as a shared, acyclic set
of heap nodes. We follow Tsai in using reference counting to detect this sharing.

The use of Boolean formulae for a TVLA-style shape analysis was also advo-
cated by Wies et al. [15]. Updates in their predicate abstraction approach are also
node-local. However, their analysis does not consider summary nodes. Further-
more, due to the lack of an adequate projection algorithm [5] they deliberately
destroy relational information using cartesian abstraction.

An interesting approach to shape analysis is given by Calcagno et al. [7]
who propose to perform a backward analysis using abduction. While it is well-
known [6] that Boolean functions lend themselves to this kind of task, future
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work has to address if the combined points-to and Boolean domain also allows
for abduction.

A natural extension is the use of a more generic numeric domain like polyhe-
dra [10] in which our instrumentation counters cinN and coutN require no special
encoding. This would also raise the question of how relational numeric invariants
between a summary and its ghost node can be inferred, for instance, to deduce
that a list is sorted [12,8]. Future work will address these challenges.

7 Conclusion

We proposed and formalized a fully automatic shape analysis that expresses the
heap shape using a single graph and a Boolean function. Our analysis is highly
precise by exploiting the ability of Boolean formulae to express relations between
heap properties. Due to this relational information, our analysis distinguishes
lists from trees from graphs by using only predicates pertaining to the existence
of nodes and edges and the number of incoming and outgoing edges.

The key insight is that this relational information can be precisely inferred
using a relational fold and expand [19] that we adapted to Boolean functions.
Using these operations, our shape analysis has the ability to infer new shape
invariants automatically. We have shown how an efficient implementation of the
analysis is possible using SAT solving.
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Abstract. We present a simple SSA construction algorithm, which al-
lows direct translation from an abstract syntax tree or bytecode into an
SSA-based intermediate representation. The algorithm requires no prior
analysis and ensures that even during construction the intermediate rep-
resentation is in SSA form. This allows the application of SSA-based opti-
mizations during construction. After completion, the intermediate
representation is in minimal andprunedSSA form. In spite of its simplicity,
the runtime of our algorithm is on par with Cytron et al.’s algorithm.

1 Introduction

Many modern compilers feature intermediate representations (IR) based on the
static single assignment form (SSA form). SSA was conceived to make program
analyses more efficient by compactly representing use-def chains. Over the last
years, it turned out that the SSA form not only helps to make analyses more
efficient but also easier to implement, test, and debug. Thus, modern compilers
such as the Java HotSpot VM [14], LLVM [2], and libFirm [1] exclusively base
their intermediate representation on the SSA form.

The first algorithm to efficiently construct the SSA form was introduced by
Cytron et al. [10]. One reason, why this algorithm still is very popular, is that it
guarantees a form of minimality on the number of placed φ functions. However,
for compilers that are entirely SSA-based, this algorithm has a significant draw-
back: Its input program has to be represented as a control flow graph (CFG) in
non-SSA form. Hence, if the compiler wants to construct SSA from the input
language (be it given by an abstract syntax tree or some bytecode format), it has
to take a detour through a non-SSA CFG in order to apply Cytron et al.’s algo-
rithm. Furthermore, to guarantee the minimality of the φ function placement,
Cytron et al.’s algorithm relies on several other analyses and transformations:
To calculate the locations where φ functions have to be placed, it computes
a dominance tree and the iterated dominance frontiers. To avoid placing dead
φ functions, liveness analyses or dead code elimination has to be performed [7].
Both, requiring a CFG and relying on other analyses, make it inconvenient to
use this algorithm in an SSA-centric compiler.
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Modern SSA-based compilers take different approaches to construct SSA: For
example, LLVM uses Cytron et al.’s algorithm and mimics the non-SSA CFG by
putting all local variables into memory (which is usually not in SSA-form). This
comes at the cost of expressing simple definitions and uses of those variables
using memory operations. Our measurements show that 25% of all instructions
generated by the LLVM front end are of this kind: immediately after the con-
struction of the IR they are removed by SSA construction.

Other compilers, such as the Java HotSpot VM, do not use Cytron et al.’s
algorithm at all because of the inconveniences described above. However, they
also have the problem that they do not compute minimal and/or pruned SSA
form, that is, they insert superfluous and/or dead φ functions.

In this paper, we
– present a simple, novel SSA construction algorithm,which does neither require

dominance nor iterated dominance frontiers, and thus is suited to construct an
SSA-based intermediate representation directly from an AST (Section 2),

– show how to combine this algorithm with on-the-fly optimizations to reduce
the footprint during IR construction (Section 3.1),

– describe a post pass that establishes minimal SSA form for arbitrary programs
(Section 3.2),

– prove that the SSA construction algorithm constructs pruned SSA form for
all programs and minimal SSA form for programs with reducible control flow
(Section 4),

– show that the algorithm can also be applied in related domains, like translat-
ing an imperative program to a functional continuation-passing style (CPS)
program or reconstructing SSA form after transformations, such as live range
splitting or rematerialization, have added further definitions to an SSA value
(Section 5),

– demonstrate the efficiency and simplicity of the algorithm by implement-
ing it in Clang and comparing it with Clang/LLVM’s implementation of
Cytron et al.’s algorithm (Section 6).

To the best of our knowledge, the algorithm presented in this paper is the first
to construct minimal and pruned SSA on reducible CFGs without depending on
other analyses.

2 Simple SSA Construction

In the following, we describe our algorithm to construct SSA form. It significantly
differs from Cytron et al.’s algorithm in its basic idea. Cytron et al.’s algorithm is
an eager approach operating in forwards direction: First, the algorithm collects
all definitions of a variable. Then, it calculates the placement of corresponding
φ functions and, finally, pushes these definitions down to the uses of the variable.
In contrast, our algorithm works backwards in a lazy fashion: Only when a
variable is used, we query its reaching definition. If it is unknown at the current
location, we will search backwards through the program. We insert φ functions
at join points in the CFG along the way, until we find the desired definition. We
employ memoization to avoid repeated look-ups.
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This process consists of several steps, which we explain in detail in the rest
of this section. First, we consider a single basic block. Then, we extend the
algorithm to whole CFGs. Finally, we show how to handle incomplete CFGs,
which usually emerge when translating an AST to IR.

2.1 Local Value Numbering

When translating a source program, the IR for a sequence of statements usually
ends up in a single basic block. We process these statements in program execution
order and for each basic block we keep a mapping from each source variable to
its current defining expression. When encountering an assignment to a variable,
we record the IR of the right-hand side of the assignment as current definition
of the variable. Accordingly, when a variable is read, we look up its current
definition (see Algorithm 1). This process is well known in literature as local
value numbering [9]. When local value numbering for one block is finished, we
call this block filled. Particularly, successors may only be added to a filled block.
This property will later be used when handling incomplete CFGs.

a ← 42;
b ← a;
c ← a + b;

a ← c + 23;
c ← a + d;

(a) Source program

v1: 42

v2: v1 + v1
v3: 23
v4: v2 + v3
v5: v4 + v?

(b) SSA form

Fig. 1. Example for local value numbering

writeVariable(variable, block, value):
currentDef[variable][block] ← value

readVariable(variable, block):
if currentDef[variable] contains block:

# local value numbering
return currentDef[variable][block]

# global value numbering
return readVariableRecursive(variable, block)

Algorithm 1. Implementation of local value numbering

A sample program and the result of this process is illustrated in Figure 1. For
the sake of presentation, we denote each SSA value by a name vi.1 In a concrete
implementation, we would just refer to the representation of the expression. The
names have no meaning otherwise, in particular they are not local variables in
the sense of an imperative language.
1 This acts like a let binding in a functional language. In fact, SSA form is a kind of

functional representation [3].
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Now, a problem occurs if a variable is read before it is assigned in a basic block.
This can be seen in the example for the variable d and its corresponding value v?. In
this case, d’s definition is found on a path from the CFG’s root to the current block.
Moreover, multiple definitions in the source program may reach the same use. The
next section shows how to extend local value numbering to handle these situations.

2.2 Global Value Numbering

If a block currently contains no definition for a variable, we recursively look
for a definition in its predecessors. If the block has a single predecessor, just
query it recursively for a definition. Otherwise, we collect the definitions from
all predecessors and construct a φ function, which joins them into a single new
value. This φ function is recorded as current definition in this basic block.

x ← ...
while (...)

{
if (...) {

x ← ...
}

}
use(x)

(a) Source Pro-
gram

v0: ...
while (...)

v2: φ(v0, v3)
{

if (...) {
v1: ...

}
v3: φ(v1, v2)

}
use(v2)

(b) SSA form

v0: ...

v2: φ(v0, v3)

v1: ...

v3: φ(v1, v2)use(v2)

(c) Control flow graph

Fig. 2. Example for global value numbering

Looking for a value in a predecessor might in turn lead to further recursive
look-ups. Due to loops in the program, those might lead to endless recursion.
Therefore, before recursing, we first create the φ function without operands and
record it as the current definition for the variable in the block. Then, we deter-
mine the φ function’s operands. If a recursive look-up arrives back at the block,
this φ function will provide a definition and the recursion will end. Algorithm 2
shows pseudocode to perform global value numbering. Its first condition will be
used to handle incomplete CFGs, so for now assume it is always false.

Figure 2 shows this process. For presentation, the indices of the values vi are
assigned in the order in which the algorithm inserts them. We assume that the
loop is constructed before x is read, i.e., v0 and v1 are recorded as definitions for x
by local value numbering and only then the statement after the loop looks up x.
As there is no definition for x recorded in the block after the loop, we perform
a recursive look-up. The block has only a single predecessor, so no φ function is
needed here. This predecessor is the loop header, which also has no definition
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readVariableRecursive(variable, block):
if block not in sealedBlocks:

# Incomplete CFG
val ← new Phi(block)
incompletePhis[block][variable] ← val

else if |block.preds| = 1:
# Optimize the common case of one predecessor: No phi needed
val ← readVariable(variable, block.preds[0])

else:
# Break potential cycles with operandless phi
val ← new Phi(block)
writeVariable(variable, block, val)
val ← addPhiOperands(variable, val)

writeVariable(variable, block, val)
return val

addPhiOperands(variable, phi):
# Determine operands from predecessors
for pred in phi.block.preds:

phi.appendOperand(readVariable(variable, pred))
return tryRemoveTrivialPhi(phi)

Algorithm 2. Implementation of global value numbering

tryRemoveTrivialPhi(phi):
same ← None
for op in phi.operands:

if op = same || op = phi:
continue # Unique value or self−reference

if same �= None:
return phi # The phi merges at least two values: not trivial

same ← op
if same = None:

same ← new Undef() # The phi is unreachable or in the start block
users ← phi.users.remove(phi) # Remember all users except the phi itself
phi.replaceBy(same) # Reroute all uses of phi to same and remove phi

# Try to recursively remove all phi users, which might have become trivial
for use in users:

if use is a Phi:
tryRemoveTrivialPhi(use)

return same

Algorithm 3. Detect and recursively remove a trivial φ function

for x and has two predecessors. Thus, we place an operandless φ function v2. Its
first operand is the value v0 flowing into the loop. The second operand requires
further recursion. The φ function v3 is created and gets its operands from its
direct predecessors. In particular, v2 placed earlier breaks the recursion.
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Recursive look-up might leave redundant φ functions. We call a φ function vφ
trivial iff it just references itself and one other value v any number of times:
∃v ∈ V : vφ : φ(x1, . . . , xn) xi ∈ {vφ, v}. Such a φ function can be removed and
the value v is used instead (see Algorithm 3). As a special case, the φ function
might use no other value besides itself. This means that it is either unreachable
or in the start block. We replace it by an undefined value.

Moreover, if a φ function could be successfully replaced, other φ functions
using this replaced value might become trivial as well. For this reason, we apply
this simplification recursively on all of these users.

This approach works for all acyclic language constructs. In this case, we can fill
all predecessors of a block before processing it. The recursion will only search in
alreadyfilled blocks.This ensures thatwe retrieve the latest definition for each vari-
able from the predecessors.For example, in an if-then-else statement the block con-
taining the condition can be filled before the then and else branches are processed.
Accordingly, after the two branches are completed, the block joining the branches
is filled.This approach alsoworkswhen reading a variable after a loophas been con-
structed. But when reading a variable within a loop, which is under construction,
some predecessors—at least the jump back to the head of the loop—are missing.

2.3 Handling Incomplete CFGs

We call a basic block sealed if no further predecessors will be added to the block.
As only filled blocks may have successors, predecessors are always filled. Note
that a sealed block is not necessarily filled. Intuitively, a filled block contains
all its instructions and can provide variable definitions for its successors. Con-
versely, a sealed block may look up variable definitions in its predecessors as all
predecessors are known.

sealBlock(block):
for variable in incompletePhis[block]:

addPhiOperands(variable, incompletePhis[block][variable])
sealedBlocks.add(block)

Algorithm 4. Handling incomplete CFGs

But how to handle a look-up of a variable in an unsealed block, which has no
current definition for this variable? In this case, we place an operandless φ function
into the block and record it as proxy definition (see first case in Algorithm 2). Fur-
ther, we maintain a set incompletePhis of these proxies per block. When later on a
block gets sealed, we add operands to these φ functions (see Algorithm 4). Again,
when the φ function is complete, we check whether it is trivial.

Sealing a block is an explicit action during IR construction. We illustrate how
to incorporate this step by the example of constructing the while loop seen in
Figure 3a. First, we construct the while header block and add a control flow edge
from the while entry block to it. Since the jump from the body exit needs to be
added later, we cannot seal the while header yet. Next, we create the body entry
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while entry

while header

body entry

body exit

while exit
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(a) While statement

if entry

then entry

then exit

else entry

else exit

if exit

0

2

4

6

8

10

1

3

5

7

9

11

(b) If statement

Fig. 3. CFG illustration of construction procedures. Dotted lines represent possible
further code, while straight lines are normal control flow edges. Numbers next to a
basic block denote the order of sealing (top) and filling (bottom).

and while exit blocks and add the conditional control flow from the while header to
these two blocks. No further predecessors will be added to the body entry block, so
we seal it now. The while exit block might get further predecessors due to break in-
structions in the loop body. Now we fill the loop body. This might include further
inner control structures, like an if shown in Figure 3b. Finally, they converge at
the body exit block. All the blocks forming the body are sealed at this point. Now
we add the edge back to the while header and seal the while header. The loop is
completed. In the last step, we seal the while exit block and then continue IR con-
struction with the source statement after the while loop.

3 Optimizations

3.1 On-the-Fly Optimizations

In the previous section, we showed that we optimize trivial φ functions as soon
as they are created. Since φ functions belong to the IR, this means we employ an
IR optimization during SSA construction. Obviously, this is not possible with all
optimizations. In this section, we elaborate what kind of IR optimizations can
be performed during SSA construction and investigate their effectiveness.

We start with the question whether the optimization of φ functions removes all
trivial φ functions. As already mentioned in Section 2.2, we recursively optimize
all φ functions that have used a removed trivial φ function. Since a successful
optimization of a φ function can only render φ functions trivial that use the
former one, this mechanism enables us to optimize all trivial φ functions. In
Section 4, we show that, for reducible CFGs, this is equivalent to the construction
of minimal SSA form.

Since our approach may lead to a significant number of triviality checks, we
use the following caching technique to speed such checks up: While constructing
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a φ function, we record the first two distinct operands that are also distinct from
the φ function itself. These operands act as witnesses for the non-triviality of the
φ function. When a new triviality check occurs, we compare the witnesses again.
If they remain distinct from each other and the φ function, the φ function is still
non-trivial. Otherwise, we need to find a new witness. Since all operands until
the second witness are equal to the first one or to the φ function itself, we only
need to consider operands that are constructed after both old witnesses. Thus,
the technique speeds up multiple triviality checks for the same φ function.

There is a more simple variant of the mechanism that results in minimal SSA
form for most but not all cases: Instead of optimizing the users of a replaced
φ function, we optimize the unique operand. This variant is especially interesting
for IRs, which do not inherently provide a list of users for each value.

The optimization of φ functions is only one out of many IR optimizations
that can be performed during IR construction. In general, our SSA construction
algorithm allows to utilize conservative IR optimizations, i.e., optimizations that
require only local analysis. These optimizations include:

Arithmetic Simplification. All IR node constructors perform peephole opti-
mizations and return simplified nodes when possible. For instance, the con-
struction of a subtraction x−x always yields the constant 0.

Common Subexpression Elimination. This optimization reuses existing val-
ues that are identified by local value numbering.

Constant Folding. This optimization evaluates constant expressions at com-
pile time, e.g., 2*3 is optimized to 6.

Copy Propagation. This optimization removes unnecessary assignments to lo-
cal variables, e.g., x = y. In SSA form, there is no need for such assignments,
we can directly use the value of the right-hand side.

int foo(int x) {
int mask ← 0;
int res;

if (x & mask) {
res ← 0;

} else {
res ← x;

}

return res;
}

(a) Program code

v0: x
v1: 0
v2: v0 & v1
v3: v2 �= 0
condjump v3

v4: 0 v5: v0

v6: φ(v4,v5)
return v6

(b) Unoptimized

v0: x
v1: 0

v3: false

return v0

(c) Optimized

Fig. 4. The construction algorithm allows to perform conservative optimization during
SSA construction. This may also affect control flow, which in turn could lead to a
reduced number of φ functions.
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Figure 4 shows the effectiveness of these optimizations. We want to construct
SSA form for the code fragment shown in Figure 4a. Without on-the-fly op-
timizations, this results in the SSA form program shown in Figure 4b. The
first difference with enabled optimizations occurs during the construction of the
value v2. Since a bitwise conjunction with zero always yields zero, the arithmetic
simplification triggers and simplifies this value. Moreover, the constant value
zero is already available. Thus, the common subexpression elimination reuses
the value v1 for the value v2. In the next step, constant propagation folds the
comparison with zero to false. Since the condition of the conditional jump is
false, we can omit the then part.2 Within the else part, we perform copy
propagation by registering v0 as value for res. Likewise, v6 vanishes and in the
end the function returns v0. Figure 4c shows the optimized SSA form program.

The example demonstrates that on-the-fly optimizations can further reduce
the number of φ functions. This can even lead to fewer φ functions than required
for minimal SSA form according to Cytron et al.’s definition.

3.2 Minimal SSA Form for Arbitrary Control Flow

So far, our SSA construction algorithm does not construct minimal SSA form in
the case of irreducible control flow. Figure 5b shows the constructed SSA form for
the program shown in Figure 5a. Figure 5c shows the corresponding minimal SSA
form—as constructedbyCytron et al.’s algorithm. Since there is only one definition
for the variable x, the φ functions constructed by our algorithm are superfluous.

x ← ...

if (...)
goto second_loop_entry

while (...) {
...

second_loop_entry:
...

}

use(x)

(a) Program with irreducible
control flow

v0: . . .

v1: φ(v0,v2)

v2: φ(v0,v1)

use(v2)

(b) Intermediate repre-
sentation with our SSA
construction algorithm

v0: . . .

use(v0)

(c) Intermediate repre-
sentation in minimal SSA
form

Fig. 5. Our SSA construction algorithm can produce extraneous φ functions in presence
of irreducible control flow. We remove these φ functions afterwards.

In general, a non-empty set P of φ functions is redundant iff the φ functions
just reference each other or one other value v: ∃v ∈ V ∀vi ∈ P : vi : φ(x1, . . . , xn)
xi ∈ P ∪ {v}. In particular, when P contains only a single φ function, this
2 This is only possible because the then part contains no labels.
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proc removeRedundantPhis(phiFunctions):
sccs ← computePhiSCCs(inducedSubgraph(phiFunctions))
for scc in topologicalSort(sccs):

processSCC(scc)

proc processSCC(scc):
if len(scc) = 1: return # we already handled trivial φ functions

inner ← set()
outerOps ← set()
for phi in scc:

isInner ← True
for operand in phi.getOperands():

if operand not in scc:
outerOps.add(operand)
isInner ← False

if isInner:
inner.add(phi)

if len(outerOps) = 1:
replaceSCCByValue(scc, outerOps.pop())

else if len(outerOps) > 1:
removeRedundantPhis(inner)

Algorithm 5. Remove superfluous φ functions in case of irreducible data flow

definition degenerates to the definition of a trivial φ function given in Section 2.2.
We show that each set of redundant φ functions P contains a strongly connected
component (SCC) that is also redundant. This implies a definition of minimality
that is independent of the source program and more strict than the definition
by Cytron et al. [10].

Lemma 1. Let P be a redundant set of φ functions with respect to v. Then there
is a strongly connected component S ⊆ P that is also redundant.

Proof. Let P ′ be the condensation of P, i.e., each SCC in P is contracted into a
single node. The resulting P ′ is acyclic [11]. Since P ′ is non-empty, it has a leaf
s′. Let S be the SCC, which corresponds to s′. Since s′ is a leaf, the φ functions
in S only refer to v or other φ functions in S. Hence, S is a redundant SCC. ��

Algorithm 5 exploits Lemma 1 to remove superfluous φ functions. The function
removeRedundantPhis takes a set of φ functions and computes the SCCs of their
induced subgraph. Figure 6b shows the resulting SCCs for the data flow graph in
Figure 6a. Each dashed edge targets a value that does not belong to the SCC of its
source.We process the SCCs in topological order to ensure that used values outside
of the current SCC are already contracted. In our example, this means we process
the SCC containing only φ0 first. Since φ0 is the only φ function within its SCC, we
already handled it during removal of trivial φ functions. Thus, we skip this SCC.
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For the next SCC containing φ1–φ4, we construct two sets: The set inner
contains all φ functions having operands solely within the SCC. The set outerOps
contains all φ function operands that do not belong to the SCC. For our example,
inner= {φ3, φ4} and outerOps= {φ0,+}.

If the outerOps set is empty, the corresponding basic blocks must be unreach-
able and we skip the SCC. In case that the outerOps set contains exactly one
value, all φ functions within the SCC can only get this value. Thus, we replace
the SCC by the value. If the outerOps set contains multiple values, all φ functions
that have an operand outside the SCC are necessary. We collected the remaining
φ functions in the set inner. Since our SCC can contain multiple inner SCCs, we
recursively perform the procedure with the inner φ functions. Figure 6c shows
the inner SCC for our example. In the recursive step, we replace this SCC by
φ2. Figure 6d shows the resulting data flow graph.

φ0

x y

1

φ1

φ2

+

φ3

φ4

(a) Original data
flow graph

φ0

x y

φ1

φ2

+

φ3

φ4

(b) SCCs and their
operands

φ2

φ3

φ4

(c) Inner
SCC

φ0

x y

1

φ1+

φ2

(d) Optimized data
flow graph

Fig. 6. Algorithm 5 detects the inner SCC spanned by φ3 and φ4. This SCC represents
the same value. Thus, it gets replaced by φ2.

Performing on-the-fly optimizations (Section 3.1) can also lead to irreducible
data flow. For example, let us reconsider Figure 2 described in Section 2.2.
Assume that both assignments to x are copies from some other variable y.
If we now perform copy propagation, we obtain two φ functions v2: φ(v0, v3)
and v3: φ(v0, v2) that form a superfluous SCC. Note that this SCC also will
appear after performing copy propagation on a program constructed with
Cytron’s algorithm. Thus, Algorithm 5 is also applicable to other SSA construc-
tion algorithms. Finally, Algorithm 5 can be seen as a generalization of the local
simplifications by Aycock and Horspool (see Section 7).
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3.3 Reducing the Number of Temporary φ Functions

The presented algorithm is structurally simple and easy to implement. Though,
it might produce many temporary φ functions, which get removed right away
during IR construction. In the following, we describe two extensions to the algo-
rithm, which aim at reducing or even eliminating these temporary φ functions.

Marker Algorithm. Many control flow joins do not need a φ function for a vari-
able. So instead of placing a φ function before recursing, we just mark the block
as visited. If we reach this block again during recursion, we will place a φ function
there to break the cycle. After collecting the definitions from all predecessors, we
remove the marker and place a φ function (or reuse the one placed by recursion)
if we found different definitions. Using this technique, no temporary φ functions
are placed in acyclic data-flow regions. Temporary φ functions are only generated
in data-flow loops and might be determined as unnecessary later on.

SCC Algorithm. While recursing we use Tarjan’s algorithm to detect data-flow
cycles, i.e., SCCs [17]. If only a unique value enters the cycle, no φ functions
will be necessary. Otherwise, we place a φ function into every basic block, which
has a predecessor from outside the cycle. In order to add operands to these
φ functions, we apply the recursive look-up again as this may require placement
of further φ functions. This mirrors the algorithm for removing redundant cycles
of φ functions described in Section 3.2. In case of recursing over sealed blocks,
the algorithm only places necessary φ functions. The next section gives a formal
definition of a necessary φ function and shows that an algorithm that only places
necessary φ functions produces minimal SSA form.

4 Properties of Our Algorithm

Because most optimizations treat φ functions as uninterpreted functions, it is ben-
eficial to place as fewφ functions as possible. In the rest of this section, we show that
our algorithm does not place dead φ functions and constructs minimal (according
to Cytron et al.’s definition) SSA form for programs with reducible control flow.
Pruned SSA Form. A program is said to be in pruned SSA form [7] if each
φ function (transitively) has at least one non-φ user. We only create φ functions
on demand when a user asks for it: Either a variable being read or another φ func-
tion needing an argument. So our construction naturally produces a program in
pruned SSA form.

Minimal SSA Form. Minimal SSA form requires that φ functions for a variable v
only occur in basic blocks where different definitions of v meet for the first time.
Cytron et al.’s formal definition is based on the following two terms:

Definition 1 (Path Convergence). Two non-null paths X0 →+ XJ and
Y0 →+ YK are said to converge at a block Z iff the following conditions hold:

X0 �= Y0; (1)
XJ = Z = YK ; (2)
(Xj = Yk) ⇒ (j = J ∨ k = K). (3)
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Definition 2 (Necessary φ Function). A φ function for variable v is neces-
sary in block Z iff two non-null paths X →+ Z and Y →+ Z converge at a block
Z, such that the blocks X and Y contain assignments to v.

A program with only necessary φ functions is in minimal SSA form. The follow-
ing is a proof that our algorithm presented in Section 2 with the simplification
rule for φ functions produces minimal SSA form for reducible programs.

We say a block A dominates a block B if every path from the entry block
to B passes through A. We say A strictly dominates B if A dominates B and
A �= B. Each block C except the entry block has a unique immediate dominator
idom(C), i.e., a strict dominator of C, which does not dominate any other strict
dominator of C. The dominance relation can be represented as a tree whose
nodes are the basic blocks with a connection between immediately dominating
blocks.

Definition 3 (Reducible Flow Graph, Hecht and Ullmann [12]). A (con-
trol) flow graph G is reducible iff for each cycle C of G there is a node of C,
which dominates all other nodes in C.

We now assume that our construction algorithm is finished and has produced a
program with a reducible CFG. We observe that the simplification rule
tryRemoveTrivialPhi of Algorithm 3 was applied at least once to each φ func-
tion with its current arguments. This is because we apply the rule each time a
φ function’s parameters are set for the first time. In the case that a simplification
of another operation leads to a change of parameters, the rule is applied again.
Furthermore, our construction algorithm fulfills the following property:

Definition 4 (SSA Property). In an SSA-form program a path from a defini-
tion of an SSA value for variable v to its use cannot contain another definition or
φ function for v. The use of the operands of φ function happens in the respective
predecessor blocks not in the φ’s block itself.

The SSA property ensures that only the “most recent” SSA value of a variable v
is used. Furthermore, it forbids multiple φ functions for one variable in the same
basic block.

Lemma 2. Let p be a φ function in a block P. Furthermore, let q in a block Q
and r in a block R be two operands of p, such that p, q and r are pairwise distinct.
Then at least one of Q and R does not dominate P.

Proof. Assume that Q and R dominate P, i.e., every path from the start block to
P contains Q and R. Since immediate dominance forms a tree, Q dominates R
or R dominates Q. Without loss of generality, let Q dominate R. Furthermore,
let S be the corresponding predecessor block of P where p is using q. Then
there is a path from the start block crossing Q then R and S. This violates the
SSA property. ��
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Lemma 3. If a φ function p in a block P for a variable v is unnecessary, but
non-trivial, then it has an operand q in a block Q, such that q is an unnecessary
φ function and Q does not dominate P.

Proof. The node p must have at least two different operands r and s, which are
not p itself. Otherwise, p is trivial. They can either be:

– The result of a direct assignment to v.
– The result of a necessary φ function r′. This however means that r′ was

reachable by at least two different direct assignments to v. So there is a path
from a direct assignment of v to p.

– Another unnecessary φ function.

Assume neither r in a block R nor s in a block S is an unnecessary φ function.
Then a path from an assignment to v in a block Vr crosses R and a path from an
assignment to v in a block Vs crosses S. They converge at P or earlier. Conver-
gence at P is not possible because p is unnecessary. An earlier convergence would
imply a necessary φ function at this point, which violates the SSA property.

So r or s must be an unnecessary φ function. Without loss of generality, let
this be r.

If R does not dominate P, then r is the sought-after q. So let R dominate P.
Due to Lemma 2, S does not dominate P. Employing the SSA property, r �= p
yields R �= P. Thus, R strictly dominates P. This implies that R dominates all
predecessors of P, which contain the uses of p, especially the predecessor S′ that
contains the use of s. Due to the SSA property, there is a path from S to S′

that does not contain R. Employing R dominates S′ this yields R dominates S.
Now assume that s is necessary. Let X contain the most recent definition of

v on a path from the start block to R. By Definition 2 there are two definitions
of v that render s necessary. Since R dominates S, the SSA property yields that
one of these definitions is contained in a block Y on a path R →+ S. Thus,
there are paths X →+ P and Y →+ P rendering p necessary. Since this is a
contradiction, s is unnecessary and the sought-after q. ��
Theorem 1. A program in SSA form with a reducible CFG G without any triv-
ial φ functions is in minimal SSA form.

Proof. Assume G is not in minimal SSA form and contains no trivial φ functions.
We choose an unnecessary φ function p. Due to Lemma 3, p has an operand q,
which is unnecessary and does not dominate p. By induction q has an unnecessary
φ function as operand as well and so on. Since the program only has a finite
number of operations, there must be a cycle when following the q chain. A cycle
in the φ functions implies a cycle in G. As G is reducible, the control flow
cycle contains one entry block, which dominates all other blocks in the cycle.
Without loss of generality, let q be in the entry block, which means it dominates
p. Therefore, our assumption is wrong and G is either in minimal SSA form or
there exist trivial φ functions. ��
Because our construction algorithm will remove all trivial φ functions, the re-
sulting IR must be in minimal SSA form for reducible CFGs.
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4.1 Time Complexity

We use the following parameters to provide a precise worst-case complexity for
our construction algorithm:

– B denotes the number of basic blocks.
– E denotes the number of CFG edges.
– P denotes the program size.
– V denotes the number of variables in the program.

We start our analysis with the simple SSA construction algorithm presented in
Section 2.3. In the worst case, SSA construction needs to insert Θ(B) φ func-
tions with Θ(E) operands for each variable. In combination with the fact the
construction of SSA form within all basic block is in Θ(P ), this leads to a lower
bound of Ω(P + (B + E) ·V ).

We show that our algorithm matches this lower bound, leading to a worst-case
complexity of Θ(P + (B + E) ·V ). Our algorithm requires Θ(P ) to fill all basic
blocks. Due to our variable mapping, we place at most O(B ·V ) φ functions. Fur-
thermore, we perform at most O(E ·V ) recursive requests at block predecessors.
Altogether, this leads to a worst-case complexity of Θ(P + (B + E) ·V ).

Next, we consider the on-the-fly optimization of φ functions. Once we op-
timized a φ function, we check whether we can optimize the φ functions that
use the former one. Since our algorithm constructs at most B ·V φ functions,
this leads to O(B2 ·V 2) checks. One check needs to compare at most O(B)
operands of the φ function. However, using the caching technique described in
Section 3.1, the number of checks performed for each φ functions amortizes the
time for checking the corresponding φ function. Thus, the on-the-fly optimization
of φ functions can be performed in O(B2 ·V 2).

To obtain minimal SSA form, we need to contract SCCs that pass the same
value. Since we consider only φ functions and their operands, the size of the
SCCs is in O((B +E) ·V ). Hence, computing the SCCs for the data flow graph
is in O(P + (B + E) ·V ). Computing the sets inner and outer consider each
φ function and its operands exactly once. Thus, it is also in O((B+E) ·V ). The
same argument applies for the contraction of a SCC in case there is only one
outer operand. In the other case, we iterate the process with a subgraph that is
induced by a proper subset of the nodes in our SCC. Thus, we need at most B ·V
iterations. In total, this leads to a time complexity in O(P + B · (B + E) ·V 2)
for the contraction of SCCs.

5 Other Applications of the Algorithm

5.1 SSA Reconstruction

Some transformations like live range splitting, rematerialization or jump thread-
ing introduce additional definitions for an SSA value. Because this violates the
SSA property, SSA has to be reconstructed. For the latter transformation, we run
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v0: x

use(v0)

A

B

C

(a) Original program

v0: x

use(v0)

A

B

C

(b) Optimized control flow

v1: x’

v0: x

v2: φ(v1, v0)
use(v2)

A

B

C

(c) Fixed SSA form

Fig. 7. We assume that A always jumps via B to C. Adjusting A’s jump requires SSA
reconstruction.

int f(int x) {
int a;
if (x = 0) {

a ← 23;
} else {

a ← 42;
}

return a;
}

(a) Source program

int f(int x) {

if (x = 0) {

} else {

}
v0: φ(23, 42)
return v0

}

(b) SSA form

f(x : int, ret : int → ⊥) → ⊥ {
let then := () → ⊥

next(23)
else := () → ⊥

next(42)
next := (a : int) → ⊥

ret(a)
in

branch(x = 0, then, else)
}

(c) CPS version

Fig. 8. An imperative program in SSA form and converted to a functional CPS program

through an example in order to demonstrate how our algorithm can be leveraged
for SSA reconstruction.

Consider an analysis determined that the basic block B in Figure 7a al-
ways branches to C when entered from A. Thus, we let A directly jump to
C (Figure 7b). However, definition v0 does not dominate its use anymore. We
can fix this issue by first inserting a copy v1 of v0 into A. Then, we invoke
writeVariable(V, A, x’) and writeVariable(V, B, x) while V is just some handle to
refer to the set of definitions, which represent the “same variable”. Next, a call
to readVariableRecursive(V, C) adds a necessary φ function and yields v2 as new
definition, which we can use to update v0’s original use (Figure 7c).

In particular, for jump threading, it is desirable to not depend on dominance
calculations—as opposed to Cytron et al.’s algorithm: Usually, several iterations
of jump threading are performed until no further improvements are possible.
Since jump threading alters control flow in a non-trivial way, each iteration
would require a re-computation of the dominance tree.

Note that SSA reconstruction always runs on complete CFGs. Hence, sealing
and issues with non-sealed basic blocks do not arise in this setting.
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5.2 CPS Construction

CPS is a functional programming technique that captures control flow in con-
tinuations. Continuations are functions, which never return. Instead, each con-
tinuation invokes another continuation in tail position.

SSA form can be considered as a restricted form of CPS [13,3]. Our algo-
rithm is also suitable to directly convert an imperative program into a functional
CPS program without the need for a third program representation. Instead of
φ functions, we have to place parameters in local functions. Instead of adding
operands to φ functions, we add arguments to the predecessors’ calls. Like when
constructing SSA form, on-the-fly optimizations, as described in Section 3.1, can
be exploited to shrink the program. Figure 8 demonstrates CPS construction.

In a CPS program, we cannot simply remove a φ function. Rather, we would
have to eliminate a parameter, fix its function’s type and adjust all users of
this function. As this set of transformations is expensive, it is worthwhile to
not introduce unnecessary parameters in the first place and therefore use the
extensions described in Section 3.3.

6 Evaluation

6.1 Comparison to Cytron et al.’s Algorithm

We implemented the algorithm presented in this paper in LLVM 3.1 [2] to com-
pare it against an existing, highly-tuned implementation of Cytron et al.’s algo-
rithm. Table 1 shows the number of constructed instructions for both algorithms.
Since LLVM first models accesses to local variables with load and stores instruc-
tions, we also denoted the instructions immediately before SSA construction.

Table 1. Comparison of instruction counts of LLVM’s normal implementation and our
algorithm. #mem are alloca, load and store instructions. Insn ratio is the quotient
between #insn of before SSA construction and marker.

Bench- Before SSA Constr. After SSA Constr. Marker Insn

mark #insn #mem #phi #insn #mem #phi #insn #mem #phi ratio

gzip 12,038 5,480 82 9,187 2,117 594 9,179 2,117 594 76%
vpr 40,701 21,226 129 27,155 6,608 1,201 27,092 6,608 1,201 67%
gcc 516,537 206,295 2,230 395,652 74,736 12,904 393,554 74,683 12,910 76%
mcf 3,988 2,173 14 2,613 658 154 2,613 658 154 66%
crafty 44,891 18,804 116 36,050 8,613 1,466 36,007 8,613 1,466 80%
parser 30,237 14,542 100 20,485 3,647 1,243 20,467 3,647 1,243 68%
perlbmk 185,576 86,762 1,764 140,489 37,599 5,840 140,331 37,517 5,857 76%
gap 201,185 86,157 4,074 149,755 29,476 9,325 149,676 29,475 9,326 74%
vortex 126,097 65,245 990 88,257 25,656 2,739 88,220 25,661 2,737 70%
bzip2 8,605 4,170 9 6,012 1,227 359 5,993 1,227 359 70%
twolf 76,078 38,320 246 58,737 18,376 2,849 58,733 18,377 2,849 77%

Sum 1,245,933 549,174 9,754 934,392 208,713 38,674 931,865 208,583 38,696 75%
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In total, SSA construction reduces the number of instructions by 25%, which
demonstrates the significant overhead of the temporary non-SSA IR.

Comparing the number of constructed instructions, we see small differences
between the results of LLVM’s and our SSA-construction algorithm. One reason
for the different number of φ functions is the removal of redundant SCCs: 3 (out
of 11) non-trivial SCCs do not originate from irreducible control flow and are not
removed by Cytron et al.’s algorithm. The remaining difference in the number of
φ functions and memory instructions stems from minor differences in handling
unreachable code. In most benchmarks, our algorithm triggers LLVM’s constant
folding more often, and thus further reduces the overall instruction count. Ex-
ploiting more on-the-fly optimizations like common subexpression elimination as
described in Section 3.1 would shrink the overall instruction count even further.

Table 2. Executed instructions for Cytron et al.’s algorithm and the Marker algorithm

Benchmark Cytron et al. Marker Marker
Cytron et al.

164.gzip 969,233,677 967,798,047 99.85%
175.vpr 3,039,801,575 3,025,286,080 99.52%
176.gcc 25,935,984,569 26,009,545,723 100.28%
181.mcf 722,918,540 722,507,455 99.94%
186.crafty 3,653,881,430 3,632,605,590 99.42%
197.parser 2,084,205,254 2,068,075,482 99.23%
253.perlbmk 12,246,953,644 12,062,833,383 98.50%
254.gap 8,358,757,289 8,339,871,545 99.77%
255.vortex 7,841,416,740 7,845,699,772 100.05%
256.bzip2 569,176,687 564,577,209 99.19%
300.twolf 6,424,027,368 6,408,289,297 99.76%

Sum 71,846,356,773 71,647,089,583 99.72%

For the runtime comparison of both benchmarks, we count the number of
executed x86 instructions. Table 2 shows the counts collected by the valgrind
instrumentation tool. While the results vary for each benchmark, the marker
algorithm needs slightly (0.28%) fewer instructions in total. All measurements
were performed on a Core i7-2600 CPU with 3.4 GHz, by compiling the C-
programs of the SPEC CINT2000 benchmark suite.

6.2 Effect of On-the-Fly Optimization

We also evaluated the effects of performing on-the-fly optimizations (as described
in Section 3.1) on the speed and quality of SSA construction. Our libFirm [1]
compiler library has always featured a variant of the construction algorithms
described in this paper.

There are many optimizations interweaved with the SSA construction. The
results are shown in Table 3. Enabling on-the-fly optimizations during construc-
tion results in an increased construction time of 0.84 s, but the resulting graph
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Table 3. Effect of on-the-fly optimizations on construction time and IR size

Benchmark No On-the-fly Optimizations On-the-fly Optimizations

Time IR Time Instructions Time IR Time Instructions

164.gzip 1.38 s 0.03 s 10,520 1.34 s 0.05 s 9,255
175.vpr 3.80 s 0.08 s 28,506 3.81 s 0.12 s 26,227
176.gcc 59.80 s 0.61 s 408,798 59.16 s 0.91 s 349,964
181.mcf 0.57 s 0.02 s 2,631 0.60 s 0.03 s 2,418
186.crafty 7.50 s 0.13 s 42,604 7.32 s 0.18 s 37,384
197.parser 5.54 s 0.06 s 19,900 5.55 s 0.09 s 18,344
253.perlbmk 25.10 s 0.29 s 143,039 24.79 s 0.41 s 129,337
254.gap 18.06 s 0.25 s 152,983 17.87 s 0.34 s 132,955
255.vortex 17.66 s 0.35 s 98,694 17.54 s 0.45 s 92,416
256.bzip2 1.03 s 0.01 s 6,623 1.02 s 0.02 s 5,665
300.twolf 7.24 s 0.18 s 60,445 7.20 s 0.27 s 55,346

Sum 147.67 s 2.01 s 974,743 146.18 s 2.86 s 859,311

has only 88.2% the number of nodes. This speeds up later optimizations resulting
in an 1.49 s faster overall compilation.

6.3 Conclusion

The algorithm has been shown to be as fast as the Cytron et al.’s algorithm in
practice. However, if the algorithm is combined with on-the-fly optimizations,
the overall compilation time is reduced. This makes the algorithm an interesting
candidate for just-in-time compilers.

7 Related Work

SSA form was invented by Rosen, Wegman, and Zadeck [15] and became popular
after Cytron et al. [10] presented an efficient algorithm for constructing it. This
algorithm can be found in all textbooks presenting SSA form and is used by the
majority of compilers. For each variable, the iterated dominance frontiers of all
blocks containing a definition is computed. Then, a rewrite phase creates new
variable numbers, inserts φ functions and patches users. The details necessary
for this paper were already discussed in Section 1.

Choi et al. [7] present an extension to the previous algorithm that constructs
minimal and pruned SSA form. It computes liveness information for each variable
v and inserts a φ function for v only if v is live at the corresponding basic block.
This technique can also be applied to other SSA construction algorithms to
ensure pruned SSA form, but comes along with the costs of computing liveness
information.

Briggs et al. [6] present semi-pruned SSA form, which omits the costly liveness
analysis. However, they only can prevent the creation of dead φ functions for
variables that are local to a basic block.
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Sreedhar and Gao [16] present a data structure, called DJ graph, that enhances
the dominance tree with edges from the CFG. Compared to computing iterated
dominance frontiers for each basic block, this data structure is only linear in
the program size and allows to compute the blocks where φ functions need to
be placed in linear time per variable. This gives an SSA construction algorithm
with cubic worst-case complexity in the size of the source program.

There are also a range of construction algorithms, which aim for simplicity in-
stead. Brandis and Mössenböck [5] present a simple SSA construction algorithm
that directly works on the AST like our algorithm. However, their algorithm is
restricted to structured control flow (no gotos) and does not construct pruned
SSA form. Click and Paleczny [8] describe a graph-based SSA intermediate rep-
resentation used in the Java HotSpot server compiler [14] and an algorithm to
construct this IR from the AST. Their algorithm is in the spirit as the one of
Brandis and Mössenböck and thus does construct neither pruned nor minimal
SSA form. Aycock and Horspool present an SSA construction algorithm that
is designed for simplicity [4]. They place a φ function for each variable at each
basic block. Afterwards they employ the following rules to remove φ functions:

1. Remove φ functions of the form vi = φ(vi, . . . , vi).
2. Substitute φ functions of the form vi = φ(vi1 , . . . , vin) with i1, . . . , in ∈ {i, j}

by vj .

This results in minimal SSA form for reducible programs. The obvious drawback
of this approach is the overhead of inserting φ functions at each basic block. This
also includes basic blocks that are prior to every basic block that contains a real
definition of the corresponding variable.

8 Conclusions

In this paper, we presented a novel, simple, and efficient algorithm for SSA con-
struction. In comparison to existing algorithms it has several advantages: It does
not require other analyses and transformations to produce minimal (on reducible
CFGs) and pruned SSA form. It can be directly constructed from the source
language without passing through a non-SSA CFG. It is well suited to perform
several standard optimizations (constant folding, value numbering, etc.) already
during SSA construction. This reduces the footprint of the constructed program,
which is important in scenarios where compilation time is of the essence. After
IR construction, a post pass ensures minimal SSA form for arbitrary control flow.
Our algorithm is also useful for SSA reconstruction where, up to now, standard
SSA construction algorithms where not directly applicable. Finally, we proved
that our algorithm always constructs pruned and minimal SSA form.

In terms of performance, a non-optimized implementation of our algorithm
is slightly faster than the highly-optimized implementation of Cytron et al.’s
algorithm in the LLVM compiler, measured on the SPEC CINT2000 benchmark
suite. We expect that after fine-tuning our implementation, we can improve the
performance even more.
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Abstract. Polyhedral techniques for program transformation are now used in
several proprietary and open source compilers. However, most of the research on
polyhedral compilation has focused on imperative languages such as C, where the
computation is specified in terms of statements with zero or more nested loops
and other control structures around them. Graphical dataflow languages, where
there is no notion of statements or a schedule specifying their relative execution
order, have so far not been studied using a powerful transformation or optimiza-
tion approach. The execution semantics and referential transparency of dataflow
languages impose a different set of challenges. In this paper, we attempt to bridge
this gap by presenting techniques that can be used to extract polyhedral repre-
sentation from dataflow programs and to synthesize them from their equivalent
polyhedral representation.

We then describe PolyGLoT, a framework for automatic transformation of
dataflow programs which we built using our techniques and other popular re-
search tools such as Clan and Pluto. For the purpose of experimental evaluation,
we used our tools to compile LabVIEW, one of the most widely used dataflow
programming languages. Results show that dataflow programs transformed using
our framework are able to outperform those compiled otherwise by up to a factor
of seventeen, with a mean speed-up of 2.30× while running on an 8-core Intel
system.

1 Introduction and Motivation

Many computationally intensive scientific and engineering applications that employ
stencil computations, linear algebra operations, image processing kernels, etc. lend
themselves to polyhedral compilation techniques [2, 3]. Such computations exhibit cer-
tain properties that can be exploited at compile time to perform parallelization and data
locality optimization.

Typically, the first stage of a polyhedral optimization framework consists of polyhe-
dral extraction. Specific regions of the program that can be represented using the poly-
hedral model, typically affine loop-nests, are analyzed. Such regions have been termed
Static Control Parts (SCoPs) in the literature. Results of the analysis include an abstract
mathematical representation of each statement in the SCoP, in terms of its iteration
domain, schedule, and array accesses. Once dependences are analyzed, an automatic
parallelization and locality optimization tool such as Pluto [16] is used to perform high-
level optimizations. Finally, the transformed loop-nests are synthesized using a loop
generation tool such as CLooG [4].
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Regardless of whether an input program is written in an imperative language, a
dataflow language, or using another paradigm, if a programmer does care about per-
formance, it is important for the compiler not to ignore transformations that yield sig-
nificant performance gains on modern architectures. These transformations include, for
example, ones that enhance locality by optimizing for cache hierarchies and exploiting
register reuse or those that lead to effective coarse-grained parallelization on multiple
cores. It is thus highly desirable to have techniques and abstractions that could bring
the benefit of such transformations to all programming paradigms.

There are many compilers, both proprietary and open-source which now use the
polyhedral compiler framework [12, 15, 6, 16]. Research in this area, however, has pre-
dominantly focused on imperative languages such as C, C++, and Fortran. These tools
rely on the fact that the code can be viewed as a sequence of statements executed one
after the other. In contrast, a graphical dataflow program consists of an interconnected
set of nodes that represent specific computations with data flowing along edges that
connect the nodes, from one to another. There is no notion of a statement or a muta-
ble storage allocation in such programs. Conceptually, the computation nodes can be
viewed as consuming data flowing in to produce output data. Nodes become ready to
be ‘fired’ as soon as data is available at all their inputs. The programs are thus inherently
parallel. Furthermore, the transparency with respect to memory referencing allows such
a program to write every output data value produced to a new memory location. Typi-
cally, however, copy avoidance strategies are employed to ensure that the output data is
inplace to input data wherever possible. Such inplaceness decisions can in turn affect
the execution schedule of the nodes.

The polyhedral extraction and code synthesis for dataflow programs, therefore, in-
volves a different set of challenges to those for programs in an imperative language
such as C. In this paper, we propose techniques that address these issues. Furthermore,
to demonstrate their practical relevance, we describe an automatic loop transformation
framework that we built for the LabVIEW graphical dataflow programming language,
which uses all of these techniques. To summarize, our contributions are as follows:

– We provide a specification of parts of a dataflow program that lends itself to the
abstract mathematical representation of the polyhedral model.

– We describe a general approach for extracting the polyhedral representation for
such a dataflow program part and also for the inverse process of code synthesis.

– We present an experimental evaluation of our techniques for LabVIEW and com-
parison with the LabVIEW production compiler.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground on LabVIEW, dataflow languages in general, the polyhedral model, and intro-
duces notation used in the rest of the paper. Section 3 deals with extracting a polyhedral
representation from a dataflow program, and Section 4 addresses the inverse process of
code synthesis. Section 5 describes our PolyGLoT framework. Section 6 presents an
experimental evaluation of our techniques. Related work and conclusions are presented
in Section 7 and Section 8 respectively.
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Fig. 1. matmul in LabVIEW. LabVIEW for-loops are unit-stride for-loops with zero-based index-
ing. A loop iterator node in the loop body (the [i] node) produces the index value in any iteration.
A special node on the loop boundary (the N node) receives the upper loop bound value. The input
arrays are provided by the nodes a, b and c. The output array is obtained at node c-out. The color
of the wire indicates the type of data flowing along it e.g. blue for integers, orange for floats.
Thicker lines are indicative of arrays.

N

a

b

c

l1

c-out
Fig. 2. DAG of the top-level diagram of matmul. In this abstract
model, the gray nodes are wires. The 4 source nodes (N, a, b, c),
the sink node (c-out) and the outermost loop are represented as the
6 blue nodes. Directed edges represent the connections from input-
s/outputs of computation nodes to the wires, e.g. data from source
node N flows over a wire into two inputs of the loop node. Hence
the two directed edges from the corresponding wire node.

2 Background

2.1 LabVIEW – Language and Compiler

LabVIEW is a graphical, dataflow programming language from National Instruments
Corporation (NI) that is used by scientists and engineers around the world. Typically,
it is used for implementing control and measurement systems, and embedded applica-
tions. The language itself, due to its graphical nature, is referred to as the G language.
A LabVIEW program called a Virtual Instrument (VI) consists of a front panel (the
graphical user interface) and a block diagram, which is the graphical dataflow diagram.
Instead of textual statements, the program consists of specific computation nodes. The
flow of data is represented by a wire that links the specific output on a source node
to the specific input on a sink node. The block diagram of a LabVIEW VI for matrix
multiplication is shown in Figure 1.
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Loop nodes act as special nodes that enclose the dataflow computation that is to be
executed in a loop. Data that is only read inside the loop flows through a special node
on the boundary of the loop structure called the input tunnel. A pair of boundary nodes
called the left and right shift registers are used to represent loop-carried dependence.
Data flowing into the right shift register in one iteration flows out of the left shift register
in the subsequent iteration. The data produced as a result of the entire loop computation
flows out of the right shift register. Additionally, some boundary nodes are also used
for the loop control. In addition to being inherently parallel because of the dataflow
programming paradigm, LabVIEW also has a parallel for loop construct that can be
used to parallelize the iterative computation [7].

The LabVIEW compiler first translates the G program into a Data Flow Intermediate
Representation (DFIR) [14]. It is a high-level, hierarchical and graph-based representa-
tion that closely corresponds to the G code. Likewise, we model the dataflow program
as being conceptually organized in a hierarchy of diagrams. It is assumed that the dia-
grams are free of dead-code.

2.2 An Abstract Model of Dataflow Programs

Suppose N is the set of computation nodes and W is the set of wires in a particular
diagram. Each diagram is associated with a directed acyclic graph (DAG), G = (V, E),
where V = N ∪ W and E = EN ∪ EW . EN ⊆ N ×W and EW ⊆ W×N. Essentially,
EN is the set of edges that connect the output of the computation nodes to the wires that
will carry the output data. Likewise, EW is the set of edges that connect the input of
computation nodes to the wires that propagate the input data. We follow the convention
of using small letters v and w to denote computation nodes and wires respectively. Any
edge (v, w) represents a particular output of node v and any edge (w, v) represents a
particular input of node v. So, the edges correspond to memory locations. The wires
serve as copy nodes, if necessary.

For every n ∈ N that is a loop node, it is associated with a DAG, Gn = (Vn, En)
which corresponds to the dataflow graph describing the loop body. The loop inputs and
outputs are represented as source and sink vertices. The former have no incoming edges,
whereas the latter have no outgoing edges. Let I and O be the set of inputs and outputs.
Furthermore, a loop output vertex may be paired with a loop input vertex to signify
a loop-carried data dependence i.e., data produced at the loop output in one iteration
flows out of the input for the next iteration (Fig 1).

Inplaceness. In accordance with the referential transparency of a dataflow program,
each edge could correspond to a new memory location. Typically, however, a copy-
avoidance strategy may be used to re-use memory locations. For example, consider the
array element write node u in Figure 1, and its input and output wires, w1 and w2.
The output array data flowing along w2 could be stored in the same memory location as
the input array data flowing along w1. The output data can be inplace to the input data.
The can-inplace relation (w1, u) � (u, w2) is said to hold.

In general, for any two edges (x, y) and (y, z), (x, y) � (y, z) holds iff the data inputs or
outputs that these edges correspond to can share the same memory location (regardless
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of whether a specific copy-avoidance strategy chooses to re-use the memory location
or not). The can-inplace relation is an equivalence relation. A path {x1, x2,. . . ,xn} in a
graph G = (V, E), such that (xi−1, xi) � (xi, xi+1) for all 2≤i≤n-1, is said to be a can-
inplace path. Note that by definition, the can-inplace relation (w1, v) � (v, w2) implies
that the node v can overwrite the data flowing over w1. And in such a case, we say that
the relation vXw1 holds. However, the can-inplace relation (v1, w) � (w, v2) does not
necessarily imply such a destructive operation as the purpose of a wire is to propagate
data, not to modify it.

Suppose <s is a binary relation on V which specifies a total ordering of the compu-
tation nodes. The relation <s specifies a valid execution schedule iff (v1 <s v2) implies
that there does not exist a directed path in graph G, from v2 to v1 for any v1, v2 ∈ V
i.e., the schedule respects all dataflow dependences. As we shall see later, the problem
of scheduling the computation nodes is closely related to inplaceness. Memory re-use
due to copy-avoidance can create additional dependences. A conjunction of scheduling
relations

∧
(v1 <s v2) is said to be consistent with a conjunction of can-inplace rela-

tions
∧

((x, y) � (y, z)), for x, y, z ∈ N ∪ V, iff such a schedule does not violate the
dependences imposed by such an inplaceness choice.

Loop Inputs and Outputs. Data flowing into and out of a loop is classified as either
loop-invariant input data or loop-carried data. Loop-invariant input data is that which is
only read in every iteration of the loop. Let Inv be the set of loop-invariant data inputs to
the loop. The LabVIEW equivalent for such an input is an input tunnel. In Figure 1, for
the outermost loop l1, Inv = {w, x, y}. Loop-carried data is that which is part of a loop-
carried dependence inducing dataflow. The paired loop inputs and outputs represent
such a dependence. Let ICar, OCar be sets of these loop inputs and outputs. The loop-
carried dependence is represented by the one-to-one mapping lcd : OCar → ICar.
The LabVIEW equivalent for such a pair are the left and right shift registers. In Figure 1,
for loop l1, ICar = {z}, OCar = {z′}, (z, z′) ∈ lcd.

Array Accesses. In Figure 1, the array read access is a node that takes in an array and
the access index values to produce the indexed array element value. The array write
access, takes the same set of inputs and the value to be written to produce an array with
the indexed element overwritten. We model the array read and write accesses similarly.
Notice that the output array of an array write, v need not be inplace to the input array
flowing through a wire w1. If it is, then vXw1.

2.3 Overview of the Polyhedral Model

The polyhedral model provides an abstract mathematical model to reason about pro-
gram transformations. Consider a program part that is a sequence of statements with
zero or more loops surrounding each statement. The loops may be imperfectly nested.
The dynamic instances of a statement S, are represented by the integer points of a
polyhedron whose dimensions correspond to the enclosing loops. The set of dynamic
instances of a statement is called its iteration domain, D. It is represented by the poly-
hedron, defined by a conjunction of affine inequalities that involve the enclosing loop
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for(i=1;i<=n;i++){
for(j=1;j<=n;j++){

if (i<=n-j+2){
S1;

}
}

}
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Fig. 3. Polyhedral representation of a loop-nest in geometric and linear algebraic form

for ( i=1;i<=n−1;i++)
for ( j=i+1; j<=n;j++)

/∗S1∗/ c[ i ][ j]=a[ j ][ i ]/ a[ i ][ i ];
for ( j=i+1; j<=n;j++)

for (k=i+1;k<=n;k++)
/∗S2∗/ a[ j ][ k]−=c[i][ j]∗a[ i ][k ];

(a) Original code

θS1 (i, j) = (i, 0, j, 0)

θS2 (i, j, k) = (i, 1, j, k)

(b) Initial schedule
θS1 (i, j) = (i+ j, j, 0)

θS2 (i, j, k) = (i+ j, j, 1, k)

(c) New schedule

for ( t1=3;t1<=2∗n−1;t1++)
for ( t2=ceild ( t1 +1,2); t2<=min(n,t1−1);t2++)

c[ t1−t2][t2]=a[ t2 ][ t1−t2]/a[ t1−t2][t1−t2];
for ( t3=t1−t2+1;t3<=n;t3++)

a[ t2 ][ t3]−=c[t1−t2][t2]∗a[t1−t2][t3 ];

(d) Transformed code

Fig. 4. An example showing the input code, the corresponding original schedule, a new schedule
that fuses j loops of both statements while skewing the outermost loop with respect to the second
outermost one, and code generated with the new schedule.

iterators and global parameters. Each dynamic instance is uniquely identified by its it-
eration vector, i.e., the vector iS of enclosing loop iterator values. Figure 3 shows the
polyhedral representation of a loop-nest in its geometric and linear algebraic form.

Schedules. Each statement, or more precisely its domain, has an associated schedule,
which is a multi-dimensional affine function mapping each integer point in the state-
ment’s domain to a unique time point that determines when it is to be executed. Code
generated from the polyhedral representation scans integer points corresponding to all
statements globally in the lexicographic order of the time points they are mapped to. For
example, θS(i, j, k) = (i + j, j, k) is a schedule for a 3-d loop nest with original loop
indices i, j, k. Changing the schedule to (i + j, k, j) would interchange the two inner
loops. The reader is referred to [3] for more detail on the polyhedral representation.

The initial schedule which is extracted, corresponding to the original execution or-
der, is referred to as an identity schedule, i.e., if it is not modified, code generation will
lead to the same code as the one from which the representation was extracted. A dimen-
sion of the multi-dimensional affine scheduling function is called a scalar dimension if
it is a constant. In Figure 4(b), the second dimension of both statements’ schedules are
scalar dimensions. In Figure 4(c) schedules the third dimension is a scalar one. Polyhe-
dral optimizers have models to pick the right schedule among valid ones. A commonly
used model that minimizes dependence distances in the transformed space [5], thereby
optimizing locality and parallelism simultaneously is implemented in Pluto [16].

3 Extracting the Polyhedral Representation

The polyhedral representation of a SCoP typically consists of an abstract mathematical
description of the iteration domain, schedule and array accesses for each statement.
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The array accesses are also classified as either read or write accesses. Each of these are
expressed as affine functions of the enclosing loop iterators and symbolic constants.

3.1 Challenges

As mentioned earlier, a graphical dataflow program has no notion of a statement. The
program is a collection of nodes that represent specific computations, with data flow-
ing along edges that connect one node to another. Referential transparency ensures that
each edge could be associated with its own distinct memory location. Generally, copy-
avoidance strategies are used to maximize inplaceness of output and input data. How-
ever, the exact memory allocation depends on the specific strategy used. Additionally,
the problem of copy-avoidance is closely tied with the problem of scheduling the com-
putation nodes. In the matmul program (Figure 1), consider the array write u and the
array read r that share the same data source (say, v). If no array copy is to be created,
the read must be scheduled ahead of the write, i.e., u <s r is not consistent with (v, w1)
� (w1, u) ∧ (w1, u) � (u, w2) ∧ (v, w1) � (w1, r). If the write is scheduled first, the
read must work on a copy of the array as the write is likely to overwrite the array input.
Abu-Mahmeed et al. [1] have looked into the problem of scheduling to maximize the
inplaceness of aggregate data. To summarize, the main challenges in the extraction of
the polyhedral representation for a graphical dataflow program are as follows:

1. A graphical dataflow program cannot be viewed as a sequence of statements exe-
cuted one after the other.

2. While the access expressions could be analyzed just like parse trees, it is difficult
to relate the access to a particular array definition as the exact memory allocation
depends on the specific copy-avoidance strategy used.

3. The actual execution schedule of the computation nodes determined depends on the
copy-avoidance decisions.

A trivial polyhedral representation can be extracted by treating each node of a graphical
data flow program as a statement analogue while making the conservative assumption
that data is copied over each edge. As most compilers make use of copy-avoidance
strategies, such a polyhedral representation most certainly over-estimates the amount of
data space required. This also results in an over-estimation of the computation e.g. an ar-
ray copy. Therefore, the problem of polyhedral transformation in such a representation
begins with a serious limitation in terms of dataspace and computation over-estimation.
In essence, extraction of a polyhedral representation of a dataflow program part cannot
negate the copy-avoidance optimizations. The inplaceness opportunities in the dataflow
program must be factored into the analysis.

3.2 Static Control Dataflow Diagram (SCoD)

A SCoP is defined as a maximal set of consecutive statements without while loops,
where loop bounds and conditionals may only depend on invariants within this set of
statements. Analogous to this, we now characterize a canonical graphical dataflow pro-
gram, a Static Control Dataflow Diagram (SCoD), which lends itself well to existing
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polyhedral techniques for program transformation. The reasoning behind each individ-
ual characteristic is provided later.

1. It is a maximal dataflow diagram without constructs for loops that are not countable,
where the countable loop bounds and conditionals, in any diagram, only depend on
parameters that are invariant for that diagram. Nodes in the SCoD (and its nested
diagrams) must be functional, without causing run-time side-effects or relying on
any run-time state.

2. The only array primitives that feature as nodes in a SCoD and its nested diagrams
are those which read an array element or write to an array element. More impor-
tantly, primitives that output array data that cannot be inplace to an input array data
cannot be present in the diagrams.

3. For an array data source in any diagram, (v1, w), there exists at most one node v2
such that (v1, w) � (w, v2) ∧ v2Xw.

4. Data flowing into a loop in any diagram is either loop-invariant data or loop-
carried scalar data or loop-carried array data that has an associated can-inplace
path through the loop body, which creates the loop-carried dependence, i.e., loop
input x ∈ I ⇒ x ∈ Inv ∨ (x ∈ ICar ∧ (isScalarType(x, wx) ∨ (isArrayType(x, wx) ∧
(x, wx) � (wy , y)))) where y = lcd−1(x), wx and wy the input and output wires.

5. In any diagram, there is no can-inplace path from a loop-invariant data input to the
loop-carried data input of a inner loop or to the array input of an array element
write node, i.e., in any DAG, G = (N, E) that corresponds to the body of a loop, if
(v1, w1) is the loop invariant input, then there does not exist any edge (w2, v2) such
that (v1, w1) � (w2, v2) ∧ v2Xw2.

The first characteristic is closely tied with the characterization of a SCoP. The rest of the
characterization specifies a canonical form of dataflow diagram which has can-inplace
relations that facilitate polyhedral extraction. As explained earlier, a naive implementa-
tion of a dataflow language could write each new output into a new memory location.
The question of whether a particular wire vertex gets a new memory allocation or not
depends on the actual copy-avoidance strategy employed by the compiler. The problem
of extracting the polyhedral representation of an arbitrary dataflow diagram, therefore
depends on the copy-avoidance strategy. In order to make the polyhedral extraction in-
dependent of it, we canonicalize the dataflow in a given diagram in accordance with the
above characteristics.

An operation such as appending an element to an input array data is a perfectly
valid dataflow operation. Clearly, the output array cannot be inplace to the input array.
(2) ensures that such array operations are disallowed. Furthermore, it is possible in a
dataflow program to overwrite multiple, distinct copies of the same array data. In such
a case, a copy-avoidance strategy would inplace only one of the copies with the original
data and the rest of them would be separate copies of data. (3) precludes such a scenario.
It is important to note that it however, still allows multiple writes. (4) ensures that loop-
carried dependence involving array data is tied to a single array data source. Assuming
the absence of (5), data flowing from loop-invariant source vertex to a loop-carried input
of an inner loop would necessitate a copy because the source data would have a pending
read in subsequent iterations of the outer loop.
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Theorem 1. In any diagram of the SCoD, G = (V, E), there exists a schedule <s of
the computation nodes V, which is consistent with the conjunction of all possible can-
inplace relations,

∧
x, y, z ∈ V ((x, y) � (y, z)), where isArrayType(x, y) ∧ isArrayType(y,

z) holds.

Proof. Consider an array data source (v, w) in G with v ∈ I. If v1, v2,. . . ,vn are the
nodes that consume the array data, then in accordance with characteristic (3), there is
at most one node vi such that (v, w) � (w, vi) ∧ viXw. Without any loss of generality,
we can assume that i = n. This implies that any valid schedule <s where v1 <s v2
<s v3 . . . <s vn holds is consistent with

∧n
i=1 ((v, w) � (w, vi)). Similar scheduling

constraints can be inferred for the nodes that consume the array data produced by vn and
so on, thereby ensuring that all the can-inplace relations are satisfied for array dataflow.
The new constraints inferred cannot contradict an existing constraint as the graph is
acyclic. Therefore, any valid schedule <s where all the inferred scheduling constraints
are satisfied is consistent with maximum array inplaceness in the diagram. ��
Essentially, in a SCoD, it is possible to schedule the computation nodes such that no new
memory allocation need be performed for any array data inside the SCoD, i.e., all the
array data consumed inside the SCoD will then have an inplace source that ultimately
lies outside the SCoD.

Lemma 1. In any diagram of the SCoD, G = (V, E), for any sink vertex t ∈ O, that has
array data flowing into it, a can-inplace path exists from a source vertex s ∈ I to t.

Proof. There must exist a node v1 which produces the array data flowing into t through
wire w. So, (v1, w) � (w, t) holds. In accordance with the model, v1 can either be an
array write node or a loop. In either case, there must exist a node v2 which produces
the array data flowing into v1 and so on until a source vertex s is encountered. The path
traversed backwards from t to s clearly constitutes a can-inplace path. ��

3.3 A Multi-dimensional Schedule of Compute-Dags

A compute-dag, T = (VT , ET ) in a diagram G = (V, E), is a sub-graph of G where there
exists a node, r ∈ VT such that for every other x ∈ VT there exists a path from x to r
in T (the node r will hereafter be referred to as the root node). As it is possible to pick
inplace opportunities such that no array data need be copied on any edge in the SCoD,
any diagram in the SCoD can be viewed as a sequence of computations that write on the
incoming array data. Instead of statements, compute-dags, which are essentially dags
of computation nodes can be identified. Consider an array write node or a loop node,
both of which can overwrite an input array. Starting with a dag that is just this node as
the root, the compute-dag can be built recursively by adding nodes which produce data
that flows into any of the nodes in the dag. Such a recursive sweep of the graph stops
on encountering another array write or loop node. However, while identifying compute-
dags in a diagram, it is necessary to account for all the data produced by the nodes in
the diagram.
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Theorem 2. In any diagram of the SCoD, G = (V, E), for every edge (x, y) ∈ E where
x is a computation node, there exists a compute-dag Ti = (Vi, Ei) in the set Σ′ = {T1,
T2,. . . ,Tm} of compute-dags rooted at array write or loop nodes, such that x ∈ Vi iff
only array data flows out of every diagram.

Proof. In accordance with Lemma 1, for any sink vertex t ∈ O, with array data flowing
into it, there exists a can-inplace path ps→t = {s,. . . , v, w, t} from a source vertex s to
t. Also, every node x, which is not dead-code, must have a path qx→tj= {x, y, . . . , vj ,
wj , tj} to at least one sink vertex tj ∈ O. If only array data flows into every sink vertex,
consider the first vertex z at which the path qx→tj overlaps with psj→tj . z must either
be a loop-node or an array write node. In either case x must be part of a compute-dag
rooted at z (in the former case, if x �= z, notice also that the data flowing along (x, y)
must be the intermediate result of a computation that produces the loop-invariant data
for the loop z). On the other hand, if scalar data can flow into a sink vertex t, clearly, the
path from node x to t is not guaranteed to have either an array write node or a loop node.
Consequently, the node x is not guaranteed to be part of any compute-dag. Likewise, if
loops can have scalar loop-carried data since a scalar loop-carried output is represented
as a sink vertex in the loop body DAG. ��
In order to address the consequences of Theorem 2, it is necessary to treat scalar data
flowing out of the diagram as a single-element array. This results in a compute-dag
that accounts for the scalar dataflow. Likewise, loop-carried scalar data must also be
treated as single-element array. The dataflow into the loop-carried input is treated as a
write to the array resulting in a corresponding compute-dag (refer Fig 5(a)). (Hereafter,
we assume in the following discussion, that scalar data flowing out of a diagram and
loop-carried scalar data are treated specially in this way as single-element arrays).

Each diagram in a SCoD is analyzed for compute-dags, starting from the top-level
diagram. Suppose θ is the scheduling function. At each diagram level, d, the set of roots
of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} are ordered as follows:

– If data produced by a root node n1 is consumed by root node n2, then θdn1
≺ θdn2

.
– In accordance with Theorem 1, if there is an array write in a compute-dag rooted

at n1 and an array read in a compute-dag rooted at n2, both of which are dependent
on the same array data source, then θdn1

� θdn2
. Scheduling n1 ahead of n2 in the

polyhedral representation would be unsafe. Such a schedule would only be possible
if n2 were to read a copy of the input array, allowing n1 to overwrite the input array.
The safe schedule ensures that an array copy is not required.

– If neither of the above hold for the two root nodes, either θdn1
� θdn2

or θdn1
≺ θdn2

should hold true.

Each diagram in the diagram hierarchy of the SCoD contributes to a dimension in the
global schedule. Each loop encountered adds an additional dimension. The total or-
der on the compute-dag roots in any diagram determines the time value at which each
compute-dag can be scheduled in that dimension. The global schedule is obtained by
appending its time value in the owning diagram to the schedule of the owning loop, if
any, together with the loop dimension.

Apart from ensuring that all the data produced by the nodes in a diagram are ac-
counted for, it must also be possible to schedule the compute-dag roots in a total order.
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(a) Treating scalar loop-carried data as
single-element array

(b) Scheduling compute-dags rooted at v1
and v2 in total order is not possible

Fig. 5. Single-element arrays and contradiction in schedule of compute-dags

Theorem 3. In any diagram of the SCoD, G = (V, E), it is possible to schedule the set
of roots of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} in a total order if for every path
pv1→v2 between a pair of roots, v1 and v2, there does not exist an array read node, r in
the compute-dag T(v2), such that r and v1 share the same data source (x, w) with v1Xw
and a path qr→v2 exists that does not include v1 on it.

Proof. Consider a pair of root nodes v1 and v2 (refer Fig 5(b)). In accordance with the
scheduling constraints specified above, θdv1 ≺ θdv2 if a path pv1→v2 exists in G. This
scheduling order is contradicted only if for some reason θdv1 � θdv2 must hold, which
can only happen if the compute-dag T(v2) contains a node that must be schedule ahead
of v1, i.e., an array read node that shares the same source as v1. If such a node does not
exist, then the contradiction never arises leading to a total ordering of the compute-dag
roots. Similarly, there is no contradiction in schedule order if a path pv1→v2 does not
exist. ��
In order to address the consequence of Theorem 3, while building compute-dag rooted
at v2, it is also necessary to stop on encountering an array read node r when there is
a node v1 with the same array source, overwriting the incoming array, such that there
exists a path from r to v2 which does not include v1. A separate compute-dag rooted
at such an array read must be identified, thereby breaking the compute-dag that would
have been identified otherwise (rooted at v2) into two different dags.

The set of actual statement analogues is Σ = {T1, T2,. . . ,Tn} such that the root(Ti)
for any Ti ∈ Σ′ is not a loop. Algorithm 1 provides a procedure for identifying the set
of statement analogues in a given dataflow graph G = (V, E) of a particular diagram. It
is possible for two statement analogues to have common sub-expressions. However, the
nodes in a SCoD are functional, making the common sub-expressions also so.

Analysis of Iteration Domains. We assume that loop normalization has been done,
i.e., all for-loops have a unit stride and a lower bound of zero. Analyzing the iteration
domain of a for loop only involves the analysis of the dataflow computation tree that
computes the upper bound of the for loop. This analysis is very similar to parsing an
expression tree. Symbolic constants are identified as scalar data sources that lie outside
the SCoD. Loop iterators and constant data sources are explicitly represented as nodes
in our model.

Analysis of Array Accesses. The access expression trees for the array reads and array
writes which are present in the compute-dags of the statement analogues are analyzed to
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Algorithm 1. identify-compute-dags(G = (V, E))
Require: Treat scalar data flowing out of diagram as single element arrays
Require: Loop-invariant computations have not been code-motioned out into an

enclosing diagram
1: procedure IDENTIFY-COMPUTE-DAGS(G = (V,E))
2: Σ = ∅

3: for all n ∈ V | isArrayWriter(n) ∧ !isloop(n) do
4: Σ =Σ ∪ build-compute-dag(n, G) � compute-dag from G, with root n
5: for all n ∈ V | root-candidate[n] do
6: Σ = Σ ∪ build-compute-dag(n, G)
7: return Σ

8: procedure BUILD-COMPUTE-DAG(n, G = (V,E))
9: VT = {n}, ET = ∅

10: while (x, y) = get-new-node-for-dag(n, T = (VT , ET ), G) do
11: VT = VT ∪ x,ET = ET ∪ {(x, y)}
12: return T = (VT , ET )

13: procedure GET-NEW-NODE-FOR-DAG(n, T = (VT , ET ), G = (V,E))
14: for each (x, y) ∈ E do
15: if (x, y) �∈ ET ∧ y ∈ VT∧ !isArrayWriter(x) ∧ !isloop(x) then
16: if isArrayReader(x) then
17: z = get-array-write-off-same-source-if-any(x)
18: if there exists a path pz→n then
19: root-candidate[x] = true
20: continue
21: return (x, y)
22: return ∅

obtain the access functions. The most important problem of tying the array access to a
particular memory allocation is resolved easily. Due to a carefully determined schedul-
ing order, which schedules array reads ahead of an array write having the same source,
all the accesses can be uniquely associated with array data sources that lie outside the
SCoD. This is regardless of the actual copy-avoidance strategy that may be used. Addi-
tionally, the scalar data produced by an array read that is the root of its own compute-dag
and a node in another compute-dag is treated as a single-element array, thereby encod-
ing the corresponding dependence in the array accesses of both the compute-dags. So,
each statement analogue has exactly one write access.

4 Code Synthesis

A polyhedral optimizer can be used to perform the required program transformations
on the polyhedral representation of the SCoD. We now consider the problem of synthe-
sizing a SCoD given its equivalent polyhedral representation.

4.1 Input

The input polyhedral representation must capture the iteration domain, access and
scheduling information of the statement analogues i.e., the set Σ = {T1, T2, . . . , Tn}
of compute-dags, which are also available as input. Each compute-dag, derived perhaps
from an earlier polyhedral extraction phase, has exactly one array write node, which is
the root of the dag.
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Algorithm 2. Synthesize-SCoD()
1: Convention: If s represents a source vertex, the paired sink is s′

2: procedure SYNTHESIZE-SCOD( )
3: Let G0 be the DAG of the top level diagram, G0 = (∅,∅)
4: create-source-vertex-for-each-global-parameter(G0)
5: for each statement analogue, T in global schedule order do
6: Read domain (D), identity schedule (θ) and access (A) matrices
7: l = create-or-get-loop-nest(G0, D, θ) � l, innermost loop
8: add-compute-dag(l, T, G0)
9: for each (variable, read access) pair (v, a) in A do
10: (s0, s

′
0) = create-source-and-sink-vertices-if-none(v, G0)

11: create-or-get-dataflow(s0, s′
0, l, G0, READ)

12: array-read-node-access(a, T, l, G0) � node reads data flowing into
l through loop-invariant input or data flowing into the loop carried output if
it exists. Create array index expression tree using a

13: (v, a) = get-variable-write-access-pair(A)
14: (s0, s′

0) = create-source-and-sink-vertices-if-none(v, G0)
15: create-or-get-dataflow(s0, s′

0, l, G0, WRITE)
16: insert-array-write-node(a, T, l, G0) � node is added to flow

path so that it overwrites the data flowing into the loop-carried output of l.
Create array index expression tree

17: create-dataflow-from-parameters-and-iterators(c, G0)
18: return G0

The polyhedral representation must have identity schedules. Any polyhedral repre-
sentation with non-identity schedules can be converted to one with identity schedules
by performing code generation and extracting the generated code again into the polyhe-
dral representation. In this manner, scheduling information gets into statement domains
and the schedule extracted from the generated code is an identity one. Once an equiv-
alent polyhedral representation in this form has been obtained, the approach described
in the rest of this section is used to synthesize a SCoD.

4.2 Synthesizing a Dataflow Diagram

The pseudocode for synthesizing a dataflow diagram is presented in Algorithms 2 and
3. The statement analogues are processed in their global schedule order (line 2.5). The
iteration domain and scheduling information of a statement analogue are together used
to create the surrounding loop-nest (line 2.7). Lower and upper bounds are inferred
for each loop iterator. In case the for-loop is a normalized for-loop as in our abstract
model, the actual upper bound will be a difference of the minimum and maximum of
the inferred upper and lower bounds plus one. Built-in primitives for various operations
such as max, min, floor, ceil etc. may be used to set up the loop-control. Note that if the
required loop-nest has been created already for a statement analogue scheduled earlier,
it need not be created again. The compute-dag is then added to the dataflow graph of
the enclosing loop (line 2.8).

Inherent Parallelism – the Factor to Consider. Dataflow programs are inherently par-
allel. A computation node is ready to be fired for execution as soon as all its inputs are
available. It is essential to exploit this inherent parallelism during code synthesis. In
order to infer such parallelism and exploit it, we reason in terms of coalesced depen-
dences. A coalesced dependence is the same as a regular data dependence except that
two accesses are considered to be in conflict if they even access the same variable (po-
tentially an aggregate data type), as opposed to the same location in the aggregate data.



136 S.G. Bhaskaracharya and U. Bondhugula

For example, an array access that writes to odd locations does not conflict with another
that reads from even locations. However, a coalesced dependence exists between the
two. Analogous to regular data dependences, we now also use the terms flow, anti, and
output coalesced dependences.

A unique source-sink vertex pair (s0, s′0) is created in the top-level DAG, G0, of the
top-level diagram for each variable v whose access is described in the access matrices
(lines 2.10, 2.14). A dataflow path is also created from s0 to s′0. The problem of syn-
thesizing a dataflow diagram is essentially a problem of synthesizing the dependences
between the given set Σ = {T1, T2, . . . , Tn} of compute-dags in terms of edges that
will connect them together. Specifically, as all the dependences involve array variables
(may be single-element), these interconnecting edges represent the dataflow between
array read or write nodes in the compute-dags, through intervening loops. Consider set
of array write nodes U = {u1, u2, . . . , un}, which correspond to write accesses on the
same variables in a particular time dimension such that ui is scheduled ahead of uj for
all i < j (i.e., the corresponding compute-dags).

Theorem 4. All coalesced output dependences on a variable in the polyhedral repre-
sentation are satisfied by a synthesized dataflow diagram if in any diagram, all array
write nodes u1, u2, . . . , un corresponding to write accesses to that variable lie on the
same can-inplace path pu1→un .

Proof. Suppose all the nodes in U = {u1, u2, . . . , un} are scheduled in the outermost
diagram. A coalesced output dependence exists between any pair of write nodes sched-
uled in this diagram, thereby defining a total ordering on the set U. Therefore, all the
corresponding array write nodes must be inserted along the can-inplace path ps0→s′0 .
Now consider a write node u scheduled in an inner loop. A coalesced output depen-
dence exists between u and any array write node ui ∈ U. This is ensured by inserting
the inner loop along the path ps0→s′0 , in accordance with its schedule order relative to
the other writes nodes on the path. The incoming and outgoing edges of the loop node
on the can-inplace path must correspond to the loop-carried input and its paired output,
which in turn serve as the source and sink vertices in the DAG of the loop body. ��
Theorem 5. A coalesced flow dependence in the polyhedral representation is satisfied
by a synthesized dataflow diagram if the array write node and read node associated
with the dependence lie on the same can-inplace path.

Proof. Each of the array write nodes u1, u2, . . . , um lies on the can-inplace path
pu1→um due to Theorem 4. A coalesced flow dependence exists between the the write
access um and read access r. Therefore, there must be a path pum→r, which means that
all of these nodes must lie on the same can-inplace path pu1→r. If a read access r is the
only access to a variable inside an inner loop l, the coalesced flow dependence between
r and any ui scheduled earlier is satisfied by a can-inplace path pu1→l. The incoming
edge to l on this path need only correspond to a loop-invariant input. It acts as a data
source for r in the loop body. ��
Together, from Theorem 4 and Theorem 5, it can be seen that the path pu1→r diverges
from the path pu1→un at um i.e., the last write scheduled ahead of r. This enables the
concurrent execution of the array write node um+1 and r, thereby exposing the inherent
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parallelism in a dataflow diagram discussed earlier. There is no coalesced output or
coalesced flow dependence between um+1 and r. Also, just as the output array of an
array write node can be inplace to the input array, loop-carried array outputs of a loop
node can be inplace to the corresponding input. Similarly, a loop-invariant array in-
put corresponds to the array input of a read node, as they do not have a corresponding
output that can be inplace. Due to this symmetric relationship, based on coalesced de-
pendences, we can infer inherent parallelism in the following scenarios:

– Consider two compute-dags, T1 and T2, scheduled in the same time dimension, d,
such that θdT1

≺ θdT2
with no coalesced output or coalesced flow dependence between

them e.g. the two compute-dags have array accesses on disjoint sets of arrays. T1 and
T2 then constitute two tasks that can executed in parallel in a dataflow program.

– Consider two loops, lx and ly , scheduled in the same time dimension such that
there is no coalesced output or coalesced flow dependence between compute-dags
in one loop and those of the other e.g. compute-dags in lx only read a particular
array variable, where those in ly only write to it. The two loops can be executed as
parallel tasks. This can be particularly crucial in obtaining good performance.

– Similarly, a loop and a compute-dag scheduled in the same time dimension with
no coalesced output or coalesced flow dependence between the compute-dag and
those in the loop.

Note that coalesced anti-dependences do not inhibit parallelism. The read and write
access on the same variable may share the same data source. The read access can be
performed on a copy of the data, while the write access is performed on the source data.

A dataflow diagram synthesized as described in the proofs for Theorem 4 and 5
is indeed a SCoD. The characteristics (1) and (2) are trivially satisfied. The dataflow
diagram also meets characteristic (3) as all the array write nodes are serialized in ac-
cordance with Theorem 4. Furthermore, the construction described in the proof for
Theorem 4 also ensures that whenever a loop-carried input-output pair is created, the
corresponding source and sink vertices have an associated can-inplace path, thereby en-
suring characteristic (4). Finally, the proof for Theorem 5 also implies a loop-carried
input for a particular variable access is created on a loop only when all the accesses to
a variable inside the loop-nest are read accesses. Therefore, a flow path from a loop-
invariant source vertex to a loop-carried input never exists, ensuring characteristic (6).

Algorithm 2 processes the read accesses of a statement analogue first and then the
write access. Algorithm 3, briefly explained below, describes the creation of the array
dataflow paths for the corresponding read and write nodes in the compute-dag.

Read Accesses: Suppose the array read node is scheduled to execute in loop lm. The
closest enclosing loop lc that has an array write node (for a write access on the same
variable) in its body, and therefore, an associated loop-carried input sc is found (line
3.4). A dataflow through loop-invariant inputs is then created to propagate the data
flowing into the loop-carried output s′c (line 3.12) to the inner loop lm (line 3.14). This
is the data produced by the write node associated with the last write access on the
variable. However, if part of such a flow through loop-invariant inputs already exists for
an intervening loop, it is extended to reach lm (line 3.13).
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Algorithm 3. Creation of loop-carried and loop-invariant dataflow
1: procedure CREATE-OR-GET-DATAFLOW(s0 , s

′
0, lm, G0, access − type)

2: {l1,...,lm} = get-enclosing-loops(lm) � {G1,...,Gm} be their DAGs
3: sources = get-inflow-if-any(s0, lm, G0)
4: c = max i | i ∈ {0, 1,...,|sources|} and si ∈ ICar[li] for i > 0
5: if access-type == WRITE then
6: if c < m then
7: find v | (v, w), (w, s′

c) ⊂ E|c|
8: create flow path from v to s′

c through loop lm via loop-carried
inputs/outputs (transforming sc+1,...,s|sources| into loop-carried inputs)

9: replace flow path (v, w, s′
c) with this new flow path

10: else if |sources|< m then � must be a read access
11: if c == |sources| then � use data overwritten in outer loop
12: find v | (v, w), (w, s′

c) ⊂ E|c|
13: else v = s|sources| � extend loop-invariant flow
14: create a flow path through loop-invariant inputs from v to lm

15: return

16: procedure GET-INFLOW-IF-ANY(s0 , lm, G0)
17: {l1,...,lm} = get-enclosing-loops(lm) � l1 outermost
18: s = s0, H = G, U = V, F = E, sources = ∅

19: for i ← 1,m do
20: wi = wire carrying data from s
21: if ∃ w ∈ U | (w, li) ∈ F ∧ (s, wi) � (w, li) then
22: H = DAG that describes body of loop li

23: s = source vertex in H that corresponds to loop input (w, li)
24: sources = append s to the sources list
25: else break
26: return sources

Write Accesses: Suppose the array write node is scheduled in a loop lm. As in the
case of a read access, the loop lc is found (line 3.4). Any flow of data through loop-
invariant inputs of intervening loops, from the source v of the loop-carried output s′c
is transformed to a flow of data through loop-carried inputs to the inner loop lm. The
newly created data flow through loop-carried inputs and outputs replaces the existing
flow path (v, w, s′c) (line 3.7-line 3.9).

Once the dataflow from the variable source vertex is created to the loop enclosing the
access node, it can read or write the data flowing in. The required access computation
trees are created using the access information (usually represented by a matrix). The
data outputs from these trees serve as the index inputs to access node.

Loop Iterators and Global Parameters: Besides the variable accesses, considered
so far, there might still be other nodes whose input dataflow is yet to be created. The
sources of these node inputs are either the loop iterators or global parameters for the
SCoD e.g. consider the compute-dag that corresponds to (b[i] = a[i] + i) , the i in-
put to the add node in the compute-dag still needs an input dataflow. Two mappings,
paramSource and iteratorSource , from the set of node inputs to the sets of global param-
eters and loop iterators, can be used to create the input dataflow from the corresponding
source vertices. In an actual implementation, these mappings have to be derived from
the earlier phases of polyhedral extraction and optimization.
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5 The PolyGLoT Auto-transformation Framework

We employed the techniques described so far to build PolyGLoT, a polyhedral auto-
matic transformation framework for LabVIEW. The LabVIEW compiler translates the
source dataflow diagram into a hierarchical, graph-based dataflow intermediate repre-
sentation (DFIR). Several standard compiler optimizations are performed on this inter-
mediate representation. We implemented a separate pass that uses PolyGLoT to perform
polyhedral extraction, auto-transformation and dataflow diagram synthesis in that order.
The optimized DFIR graph is then translated to the LLVM IR, which is then further op-
timized by the LLVM backend compiler that finally emits the machine code.

Fig. 6. A high-level overview of PolyGLoT

PolyGLoT consists of four stages. The first stage extracts the polyhedral represen-
tation from a user-specified SCoD using the techniques described in Section 3. The
translation is performed on DFIR. Glan (named after its C counterpart), a G loop analy-
sis tool, was implemented to serve this purpose. The polyhedral representation extracted
is used as an input to Pluto, an automatic parallelizer and locality optimizer. Pluto then
applies a sequence of program transformations that include loop interchange, skewing,
tiling, fusion, and distribution. Pluto internally calls into CLooG to output the trans-
formed program as C code. Glan was used to produce a representative text (encoding
a compute-dag id and also text describing the array accesses) for each compute-dag.
Thus, we ensured that the transformed C code produced by Pluto included statements
that could be matched with the computed-dags identified during extraction.

Clan was used to extract the polyhedral representation of the transformed C code,
which was finally used as the input for GLoS (G loop synthesis). GLoS is a tool that syn-
thesizes DFIR from the input polyhedral representation as per techniques developed in
Section 4. Pluto was also used to produce scheduling information of loops that it would
parallelize using OpenMP. This information was used by GLoS to parallelize the corre-
sponding loops in the synthesized DFIR using the LabVIEW parallel for loop feature.

6 Experimental Evaluation

For the purpose of experimental evaluation, we implemented many of the benchmarks
in the publicly available Polybench/C 3.2 [17] suite in LabVIEW. The matmul and
ssymm benchmarks from the example test suite in Pluto were also used. Each of these
benchmarks were then compiled using five different configurations.

– lv-noparallel is the configuration that simply uses the LabVIEW production com-
piler. This is the baseline for configurations that do not parallelize loops.
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Table 1. Summary of performance (sequential and parallel execution on an 8-core machine)

Benchmark Problem size Execution time (seq) Speedup Execution time (8 cores) Speedup over lv-par
lv-nopar pg-loc (local) lv-par pg-par pg-loc-par pg-par pg-loc-par

atax NX=4096, NY=4096 0.456s 0.567s 0.80 0.707s 0.642s 0.167s 1.10 4.23
bicg NX=4096, NY=4096 0.409s 0.689s 0.59 0.409s 0.220s 0.093s 1.86 4.40

doitgen NQ=NR=NP=128 7.476s 7.344s 1.02 0.976s 0.999s 0.934s 0.98 1.04
floyd-warshall N=1024 86.06s 91.89s 0.94 82.76s 13.64s 4.909s 6.07 16.9

gemm NI=NJ=NK=1024 60.40s 24.20s 2.50 7.026s 5.473s 3.628s 1.28 1.94
gesummv N=4096 0.488s 0.536s 0.91 0.078s 0.069s 0.074s 1.13 1.05
matmul N=2048 688.5s 196.3s 3.51 89.49s 94.70s 27.44s 0.94 3.26

mvt N=4096 1.248s 0.828s 1.51 0.195s 0.334s 0.105s 0.58 1.86
seidel N=1024, T= 1024 44.82s 44.79s 1.00 45.03s 9.797s 8.364s 4.60 5.38

ssymm N=2048 122.8s 177.4s 0.69 15.03s 55.45s 23.85s 0.27 0.63
syr2k NI=1024, NJ=1024 34.03s 30.86s 1.10 4.190s 4.423s 4.223s 0.95 0.99
syrk NI=1024, NJ=1024 24.44s 22.01s 1.11 2.974s 3.118s 2.793s 0.95 1.06
trmm N=2048 231.7s 64.62s 3.59 41.29s 39.94s 11.42s 1.03 3.62

– pg-loc uses the LabVIEW compiler but with our transformation pass enabled to
perform locality optimizations.

– lv-parallel again uses the LabVIEW production compiler, but with loop paralleliza-
tion. The parallel for loop feature in LabVIEW [19, 7] is used to parallelize loops
when possible in the G code.

– pg-par is with our transformation pass enabled to perform auto-parallelization but
without any locality optimizing transformations. In order to realize a parallel loop
identified as parallelizable, Bordelon et al [7]’s solution is used. The parallel loops
in the transformed code are identified using Pluto [16].

– pg-loc-par is with our transformation pass enabled to perform both locality opti-
mizations and auto-parallelization.

The comparisons of the runtime performance with various configurations can be found
in Table 1. The performance numbers were obtained on on a dual-socket Intel Xeon
CPU E5606 (2.13 GHz, 8 MB L3 cache) machine with 8 cores in all, and 24 GB of
RAM. LLVM 2.8 was the final backend compiler used by LabVIEW.

Table 1 shows that the benchmarks gemm, matmul, mvt, syr2k, syrk and trmm bene-
fit from locality-enhancing optimizations, in particular, loop tiling, and in addition, loop
fusion and other unimodular transformations [2, 18]. Table 1 also shows the effect of
locality optimizations in conjunction with loop parallelization. It can be seen that for
floyd-warshall and seidel, loop skewing exposes loop parallelism that could not have
been exploited without it. The benchmarks, atax, bicg, floyd-warshall, gemm, matmul,
mvt, seidel, syrk, trmm benefit from more coarse-grained parallelism, i.e., a reduced
frequency of shared-memory synchronization between cores as a result of loop tiling.
In some cases, we see a slow down with PolyGLoT, often by about 10%. We believe that
this is primarily due to transformed code generated by PolyGLoT not being optimized
by subsequent passes within LabVIEW and the backend compiler (LLVM) as well as
the baseline (lv-noparallel and lv-parallel). This is also partly supported by the fact that
pg-loc itself produces this slow down, for example, for ssymm. Better downstream opti-
mization within LabVIEW and in LLVM after PolyGLoT has been run can address this.
In addition, the loop fusion heuristic used by Pluto can be tailored for LabVIEW code
to obtain better performance. Overall, we see a mean speedup of 2.30× with PolyGLoT
(pg-loc-par) over the state-of-the-art (lv-parallel).



PolyGLoT: A Polyhedral Loop Transformation Framework 141

7 Related Work

Much work has been done on using polyhedral techniques in the compilation of impera-
tive languages [9, 11, 5]. Clan is a widely used research tool for extracting a polyhedral
representation from C static control parts [3]. Production compilers with polyhedral
framework implementations include IBM XL [6], RSTREAM [15], and LLVM [12].

Ellmenreich et al. [8] have considered the problem of adapting the polyhedral model
to parallelize a functional program in Haskell. The source program is analyzed to obtain
a set of parallelizable array definitions. Dependence analysis on each array set is then
performed to parallelize all the computations within the set. Johnston et al. [13] review
the advances in dataflow programming over the decades. Ample work has been done
on parallelizing dataflow programs. It includes the work on loop parallelization analy-
sis by Yi et al. [19]. Dependences between array accesses are analyzed using standard
techniques to determine if a given user-specified loop in a graphical dataflow program
can be parallelized. In contrast to these works, the focus of our work is not really on
parallelization but on leveraging existing polyhedral compilation techniques to perform
dataflow program transformations. Parallelism detection is but a small component of
a loop-nest optimization framework. The complete polyhedral representation that we
extract from a given dataflow program part can be used to drive automatic transforma-
tions, many of which can actually aid parallelization. Furthermore, to the best of our
knowledge, no prior art exists that tackles this problem and the problem of dataflow
program part synthesis from an equivalent polyhedral representation by exploiting the
inplaceness opportunities that can be inferred from the dataflow program. The work of
Yi et al. [19] is commercially available as the parallel for loop feature in LabVIEW, and
we compared with it through experiments in Section 6. Given an iterative construct in
a dataflow program that is marked parallel, Bordelon et al. [7] studied the problem of
parallelizing and scheduling it on multiple processing elements. Our system uses it to
eventually realize parallel code from the transformed DFIR.

The interplay between scheduling and maximizing the inplaceness of aggregate data
has been studied by Abu-Mahmeed et al. [1]. Recently, Gerard et al. [10] have built on
this work to provide a solution for inter-procedural inplaceness using language annota-
tions that express inplace modifications. The soundness of such an annotation scheme
is guaranteed by a semi-linear type system, where a value of a semi-linear type can be
read multiple times and then updated once. For any array data source in any diagram
of the SCoD, there is at most one node that can overwrite it. During the polyhedral ex-
traction, by scheduling a write node after all the read nodes which share the same data
source, we in effect choose semi-linear type semantics on the array data in the dataflow
diagram. It also allows us to infer an inplace path of array updates. The inplace path is
used for associating the accesses to an array definition in the polyhedral representation,
which can have multiple write accesses to the same definition.

8 Conclusions

We have addressed the problem of extracting polyhedral representations from graphi-
cal dataflow programs that can be used to perform high-level program transformations
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automatically. Additionally, we also studied the problem of synthesizing dataflow dia-
grams from their equivalent polyhedral representation. To the best of our knowledge,
this is the first work which tackles these problems, and does this while exploiting in-
placeness opportunities inherent in a dataflow program. We also demonstrated that our
techniques are of practical relevance by building an automatic transformation frame-
work for the LabVIEW compiler that uses them. In several cases, programs compiled
through our framework outperformed those compiled otherwise by significant margins,
sometimes by a factor as much as seventeen. A mean speed-up of 2.30× was observed
over state-of-the-art.
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[1] Abu-Mahmeed, S., McCosh, C., Budimlić, Z., Kennedy, K., Ravindran, K., Hogan, K.,
Austin, P., Rogers, S., Kornerup, J.: Scheduling Tasks to Maximize Usage of Aggregate
Variables in Place. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501,
pp. 204–219. Springer, Heidelberg (2009)

[2] Aho, A.V., Sethi, R., Ullman, J.D., Lam, M.S.: Compilers: Principles, Techniques, and
Tools, 2nd edn. Prentice-Hall (2006)

[3] Bastoul, C.: Clan: The Chunky Loop Analyzer. The Clan User Guide
[4] Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT,

pp. 7–16 (September 2004)
[5] Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayap-

pan, P.: Automatic Transformations for Communication-Minimized Parallelization and
Locality Optimization in the Polyhedral Model. In: Hendren, L. (ed.) CC 2008. LNCS,
vol. 4959, pp. 132–146. Springer, Heidelberg (2008)

[6] Bondhugula, U., Gunluk, O., Dash, S., Renganarayanan, L.: A model for fusion and code
motion in an automatic parallelizing compiler. In: PACT. ACM (2010)

[7] Bordelon, A., Dye, R., Yi, H., Fletcher, M.: Automatically creating parallel iterative pro-
gram code in a data flow program (20100306733) (December 2010),
http://www.freepatentsonline.com/y2010/0306733.html

[8] Ellmenreich, N., Lengauer, C., Griebl, M.: Application of the Polytope Model to Functional
Programs. In: Carter, L., Ferrante, J. (eds.) LCPC 1999. LNCS, vol. 1863, pp. 219–235.
Springer, Heidelberg (2000)

[9] Feautrier, P.: Some efficient solutions to the affine scheduling problem: Part I, one-
dimensional time. International Journal of Parallel Programming 21(5), 313–348 (1992)

[10] Gérard, L., Guatto, A., Pasteur, C., Pouzet, M.: A modular memory optimization for syn-
chronous data-flow languages: application to arrays in a lustre compiler. In: LCTES, pp.
51–60 (2012)

[11] Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory Architec-
tures. University of Passau, Habilitation thesis (2004)

[12] Grosser, T., Zheng, H., Aloor, R., Simbrger, A., Grolinger, A., Pouchet, L.-N.: Polly: Poly-
hedral optimization in LLVM. In: IMPACT (2011)

[13] Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming languages.
ACM Comput. Surv. 36(1) (March 2004)

http://www.freepatentsonline.com/y2010/0306733.html


PolyGLoT: A Polyhedral Loop Transformation Framework 143

[14] NI LabVIEW Compiler: Under the Hood,
http://www.ni.com/white-paper/11472/en

[15] Meister, B., Vasilache, N., Wohlford, D., Baskaran, M.M., Leung, A., Lethin, R.: R-stream
compiler. In: Encyclopedia of Parallel Computing, pp. 1756–1765. Springer (2011)

[16] PLUTO: An automatic polyhedral parallelizer and locality optimizer for multicores,
http://pluto-compiler.sourceforge.net

[17] Polybench, http://polybench.sourceforge.net
[18] Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley Long-

man Publishing Co., Inc., Boston (1995)
[19] Yi, H., Fletcher, M., Dye, R., Bordelon, A.: Loop parallelization analyzer for data flow

programs (20100306753) (December 2010),
http://www.freepatentsonline.com/y2010/0306753.html

http://www.ni.com/white-paper/11472/en
http://pluto-compiler.sourceforge.net
http://polybench.sourceforge.net
http://www.freepatentsonline.com/y2010/0306753.html


Architecture-Independent Dynamic Information

Flow Tracking�

Ryan Whelan1, Tim Leek2, and David Kaeli1

1 Department of Electrical and Computer Engineering
Northeastern University, Boston, MA USA

{rwhelan,kaeli}@ece.neu.edu
2 Cyber System Assessments Group

MIT Lincoln Laboratory, Lexington, MA USA
tleek@ll.mit.edu

Abstract. Dynamic information flow tracking is a well-known dynamic
software analysis technique with a wide variety of applications that range
from making systems more secure, to helping developers and analysts
better understand the code that systems are executing. Traditionally,
the fine-grained analysis capabilities that are desired for the class of
these systems which operate at the binary level require tight coupling to
a specific ISA. This places a heavy burden on developers of these systems
since significant domain knowledge is required to support each ISA, and
the ability to amortize the effort expended on one ISA implementation
cannot be leveraged to support other ISAs. Further, the correctness of
the system must carefully evaluated for each new ISA.

In this paper, we present a general approach to information flow track-
ing that allows us to support multiple ISAs without mastering the intri-
cate details of each ISA we support, and without extensive verification.
Our approach leverages binary translation to an intermediate representa-
tion where we have developed detailed, architecture-neutral information
flow models. To support advanced instructions that are typically im-
plemented in C code in binary translators, we also present a combined
static/dynamic analysis that allows us to accurately and automatically
support these instructions. We demonstrate the utility of our system in
three different application settings: enforcing information flow policies,
classifying algorithms by information flow properties, and characterizing
types of programs which may exhibit excessive information flow in an
information flow tracking system.

Keywords: Binary translation,binary instrumentation, informationflow
tracking, dynamic analysis, taint analysis, intermediate representations.

� This work was sponsored by the Assistant Secretary of Defense for Research and En-
gineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 144–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Architecture-Independent Dynamic Information Flow Tracking 145

1 Introduction

Dynamic information flow tracking (also known as dynamic taint analysis) is a
well-known software analysis technique that has been shown to have wide appli-
cability in software analysis and security applications. However, since dynamic
information flow tracking systems that operate at the binary level require fine-
grained analysis capabilities to be effective, this means that they are generally
tightly coupled with the ISA of code to be analyzed.

In order to implement a fine-grained analysis capability such as information
flow tracking for an ISA of interest, an intimate knowledge of the ISA is re-
quired in order to accurately capture information flow for each instruction. This
is especially cumbersome for ISAs with many hundreds of instructions that have
complex and subtle semantics (e.g., x86). Additionally, after expending the work
required to complete such a system, the implementation only supports the sin-
gle ISA, and a similar effort is required for each additional ISA. To overcome
this challenge, we’ve elected to take a compiler-based approach by translating
architecture-specific code into an architecture-independent intermediate repre-
sentation where we can develop, reuse, and extend a single set of analyses.

In this work, we present Pirate: a Platform for Intermediate Representation-
based Analyses of Tainted Execution. Pirate decouples the tight bond between
the ISA of code under analysis and the additional instrumentation code, and
provides a general taint analysis framework that can be applied to a large number
of ISAs. Pirate leverages QEMU [4] for binary translation, and LLVM [14] as
an intermediate representation within which we can perform our architecture-
independent analyses. We show that our approach is both general enough to
be applied to multiple ISAs, and precise enough to provide the detailed kind
of information expected from a fine-grained dynamic information flow tracking
system. In our approach, we define detailed byte-level information flowmodels for
29 instructions in the LLVM intermediate representation which gives us coverage
of thousands of instructions that appear in translated guest code. We also apply
these models to complex guest instructions that are implemented in C code.
To the best of our knowledge, this is the first implementation of a binary level
dynamic information flow tracking system that is general enough to be applied
to multiple ISAs without requiring source code.

The contributions of this work are:

– A framework that leverages dynamic binary translation producing LLVM
intermediate representation that enables architecture-independent dynamic
analyses, and a language for precisely expressing information flow of this IR
at the byte level.

– A combined static/dynamic analysis to be applied to the C code of the bi-
nary translator for complex ISA-specific instructions that do not fit within the
IR, enabling the automated analysis and inclusion of these instructions in our
framework.
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– An evaluation of our framework for x86, x86 64, and ARM, highlighting
three security-related applications: 1) enforcing information flow policies, 2)
characterizing algorithms by information flow, and 3) diagnosing sources of
state explosion for each ISA.

The rest of this paper is organized as follows. In Section 2, we present background
on information flow tracking. Sections 3 and 4 present the architectural overview
and implementation of Pirate. Section 5 presents our evaluation with three
security-related applications, while Section 6 includes some additional discussion.
We review related work in Section 7, and conclude in Section 8.

2 Background

Dynamic information flow tracking is a dynamic analysis technique where data
is labeled, and subsequently tracked as it flows through a program or system.
Generally data is labeled and tracked at the byte level, but this can also hap-
pen at the bit, word, or even page level, depending on the desired granularity.
The labeling can also occur at varying granularities, where each unit of data is
also accompanied by one bit of data (tracked or not tracked), one byte of data
(accompanied by a small number), or a data structure that tracks additional
information. Tracking additional information is useful for the cases when label
sets are propagated through the system. In order to propagate the flow of data,
major components of the system need a shadow memory to keep track of where
data flows within the system. This includes CPU registers, memory, and in the
case of whole systems, the hard drive also. When information flow tracking is
implemented for binaries at a fine-grained level, this means that propagation
occurs at the level of the ISA where single instructions that result in a flow of
information are instrumented. This instrumentation updates the shadow mem-
ory accordingly when tagged information is propagated.

Information flow tracking can occur at the hardware level [7,26,28], or in
software through the use of source-level instrumentation [12,15,31], binary in-
strumentation [10,13,22], or the use of a whole-system emulator [9,20,24]. In
general, hardware-based approaches are faster, but less flexible. Software-based
approaches tend to have higher overheads, but enable more detailed dynamic
analyses. Source-level approaches tend to be both fast and flexible, but are
sometimes impractical when source code is not available. These techniques have
proven to be effective in a wide variety of applications, including detection and
prevention of exploits, malware analysis, debugging assistance, vulnerability dis-
covery, and network protocol reverse engineering.

Due to the popularity of the x86 ISA, and the tight bond of these binary instru-
mentation techniqueswith the ISAunder analysis,manyof these systemshavebeen
carefully designed to correctly propagate information flow only for the instructions
that are included in x86. This imposes a significant limitation on dynamic informa-
tion flow tracking since a significant effort is required to support additional ISAs.
Pirate solves this problem by decoupling this analysis technique from the under-
lying ISA, without requiring source code or higher-level semantics.
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Fig. 1. Lowering code to the LLVM IR
with QEMU and Clang

Fig. 2. System architecture split be-
tween execution and analysis

3 System Overview

At a high level, Pirate works as follows. The QEMU binary translator [4] is at
the core of our system. QEMU is a versatile dynamic binary translation platform
that can translate 14 different guest architectures to 9 different host architec-
tures by using its own custom intermediate representation, which is part of the
Tiny Code Generator (TCG). In our approach, we take advantage of this transla-
tion to IR to support information flow tracking for multiple guest architectures.
However, the TCG IR consists of very simple RISC-like instructions, making it
difficult to represent complex ISA-specific instructions. To overcome this limi-
tation, the QEMU authors implement a large number of guest instructions in
helper functions, which are C implementations of these instructions. Each guest
ISA implements hundreds of instructions in helper functions, so we have devised
a mechanism to automatically track information flow to, from, and within these
helper functions.

3.1 Execution and Analysis

We perform dynamic information flow tracking on Linux binaries using the fol-
lowing approach, which is split between execution and analysis. In the execu-
tion phase, we run the program as we normally would under QEMU. We have
augmented the translation process to add an additional translation step, which
translates the TCG IR to the LLVM IR and then executes on the LLVM just-
in-time (JIT) compiler. This translation occurs at the level of basic blocks of
guest code. In Figure 1, we show the process of lowering guest code and helper
function code to the LLVM IR to be used in our analysis.

Figure 2 shows the architecture of our system. Once we have the execution
of guest code captured in the LLVM IR, we can perform our analysis over each
basic block of guest code with custom IR passes we have developed within the
LLVM infrastructure. The first part of our analysis is to derive information flow
operations to be executed on our abstract information flow processor. This is
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void glue(helper_pshufw , SUFFIX ) (Reg *d, Reg *s, int order){
Reg r;
r.W(0) = s->W(order & 3);
r.W(1) = s->W((order >> 2) & 3);
r.W(2) = s->W((order >> 4) & 3);
r.W(3) = s->W((order >> 6) & 3);
*d = r;

}

Fig. 3. QEMU helper function implementing the pshufw (packed shuffle word) MMX
instruction for x86 and x86 64 ISAs

an automated process that emits information flow operations that we’ve speci-
fied for each LLVM instruction. After deriving the sequence of information flow
operations for a basic block of code, we execute them on the information flow
processor to propagate tags and update the shadow memory. This allows us to
keep our shadow memory updated on the level of a guest basic block. When
we encounter system calls during our processing, we treat I/O-related calls as
sources or sinks of information flow. For example, the read() system call is a
source that we begin tracking information flow on, and a write() system call is
a sink where we may want to be notified if tagged information is written to disk.

3.2 Optimizations

QEMU has a translation block cache mechanism that allows it to keep a copy
of translated guest code, avoiding the overhead of re-translating frequently ex-
ecuted code repeatedly. This optimization permeates to our analysis phase; a
guest basic block that is cached may also be executed repeatedly in the LLVM
JIT, but it only appears once in the LLVM module that we analyze. This opti-
mization in QEMU also provides us the opportunity to cache information flow
operations. As we analyze translated guest code in the representation of basic
blocks that may be cached, we can also perform the derivation of information
flow tracking operations once, and then cache; we refer to these as taint basic
blocks. Once we derive a taint basic block for a guest basic block of code, we
deposit it into our taint basic block cache.

3.3 Static Analysis of QEMU Helper Functions

Since QEMU helper functions perform critical computations on behalf of the
guest, we need to include them in our analysis as well. To do this, we use Clang [1]
to translate helper functions to the LLVM IR. From there, we can use the ex-
act same analysis that we apply to translated guest code to derive information
flow operations. Since this is a static analysis, we can emit the corresponding
information flow operations for each helper function into a persistent cache. Fig-
ure 3 shows the helper function that implements the pshufw MMX instruction.
Automatically analyzing functions like these takes a significant burden off of
developers of information flow tracking systems.
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4 Implementation

Next, we present implementation details of Pirate. The implementation con-
sists of several major components: the execution and trace collection engine, the
information flow processor which propagates tagged data, the shadow memory
which maintains tagged data, the analysis engine which performs analysis and in-
strumentation passes over the LLVM IR, and the caching mechanism that caches
information flow operations and reduces overhead. In this paper, we support in-
formation flow tracking for the x86, x86 64, and ARM ISAs on Linux binaries,
but our approach can be extended in a straightforward manner to other ISAs
that are supported by QEMU. Our system is implemented with QEMU 1.0.1
and LLVM 3.0.

4.1 Dynamic Binary Translation to LLVM IR

At the core of our approach is the translation of guest code to an ISA-neutral IR.
Much like a standard compiler, we want to perform our analyses in terms of an
IR, which allows us to decouple from the ISA-specific details. We take advantage
of the fact that QEMU’s dynamic binary translation mechanism translates guest
code to its own custom IR (TCG), but this IR is not robust enough for our
analyses. In order to bridge the gap between guest code translated to the TCG
IR and helper functions implemented in C, we chose to perform our analysis in
the LLVM IR. Since both the TCG and LLVM IR consist of simple RISC-like
instructions, we have a straightforward translation from TCG to LLVM. For
this translation, we leverage the TCG to LLVM translation module included as
part of the S2E framework [8]. LLVM also enables us to easily translate helper
functions to its IR (through the Clang front end), and it provides a rich set of
APIs for us to work with.

By performing information flow tracking in the LLVM IR, we abstract away
the intricate details of each of our target ISAs, leaving us with only 29 RISC-
like instructions that we need to understand in great detail and model correctly
for information flow analysis. These 29 LLVM instructions describe all instruc-
tions that appear in translated QEMU code, and all helper functions that we
currently support. Developing detailed information flow tracking models for this
small set of LLVM instructions that are semantically equivalent to guest code
means that our information flow tracking will also be semantically equivalent.
Additionally, since the system actually executes the translated IR, we can rely
on the correctness of the translation to give us a degree of assurance about the
completeness and correctness of our analysis. While formally verifying the trans-
lation to LLVM IR is out of scope of this work, we assume that this translation
is correct since we can execute programs on the LLVM JIT and obtain correct
outputs.

4.2 Decoupled Execution and Analysis

In Pirate, we decouple the execution and analysis of code in order to give us
flexibility in altering our analyses on a single execution. We capture a compact
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Table 1. Information flow operations

Operation Semantics

label(a,l) L(a) ← L(a) ∪ l

delete(a) L(a) ← ∅
copy(a,b) L(b) ← L(a)

compute(a,b,c) L(c) ← L(a) ∪ L(b)

insn_start Bookkeeping info

call Begin processing a QEMU helper function

return Return from processing a QEMU helper function

dynamic trace of the execution in the LLVM bitcode format, along with dynamic
values from the execution that include memory access addresses, and branch
targets. We obtain these dynamic values by instrumenting the IR to log every
address of loads and stores, and every branch taken during execution. The code
we capture is in the format of an LLVM bitcode module which consists of a series
of LLVM functions, each corresponding to a basic block of guest code. We also
capture the order in which these functions are executed. Our trace is compact
in the sense that if a basic block is executed multiple times, we only need to
capture it once.

Once we’ve captured an execution, we leverage the LLVM infrastructure to
perform our analysis directly on the LLVM IR. Our analysis is applied in the
form of an LLVM analysis pass, where we specify the set of information flow
operations for each LLVM instruction in the execution. We perform this analysis
at the granularity of a guest basic block, and our analysis emits a taint basic
block. Our abstract information flow processor then processes these taint basic
blocks to update the shadow memory accordingly.

4.3 Shadow Memory, Information Flow Processor

Shadow Memory. Our shadow memory is partitioned into the following seg-
ments: virtual memory, architected registers, and LLVM registers (which includes
multiple calling scopes). The virtual memory portion of the shadow memory
keeps track of information flow through the process based on virtual addresses.
The architected state portion keeps track of general purpose registers, program
counters, and also some special purpose registers (such as MMX and XMM regis-
ters for x86 and x86 64) – this is the only architecture-specific component of our
system. The LLVM shadow registers are how we keep track of information flow
between LLVM IR instructions, which are expressed in static single assignment
form with infinite registers. Currently, our shadow memory models 2,000 ab-
stract registers, which is sufficient for our analysis. We maintain multiple scopes
of abstract LLVM registers in our shadow memory to accommodate the calling of
helper functions, which are explained in more detail in Section 4.5. The shadow
memory is configurable so data can be tracked at the binary level (tagged or
untagged), or positionally with multiple labels per address, which we refer to
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as a label set. Since we are modeling the entire address space of a process in
our shadow memory, it is important that we utilize an efficient implementation.
For 32-bit ISAs, our shadow memory of the virtual address space consists of
a two-level structure that maps a directory to tables with tables that map to
pages, similar to x86 virtual addressing. For 64-bit ISAs, we instead use a five-
level structure in order to accommodate the entire 64-bit address space. To save
memory overhead, we only need to allocate shadow guest memory for memory
pages that contain tagged information.

Deriving Information Flow Operations. On our abstract information flow pro-
cessor, we execute information flow operations in order to propagate tags and
update the shadow memory. These operations specify information flow at the
byte level. An address can be a byte in memory, a byte in an architected register,
or a byte in an LLVM abstract register. The set of information flow operations
can be seen in Table 1. Here, we describe them in more detail:

– label: Associate label l with the set of labels that belong to address a.
– delete: Discard the label set associated with address a.
– copy: Copy the label set associated with address a to address b.
– compute: Address c gets the union of the label sets associated with address

a and address b.
– insn_start: Maintains dynamic information for operations. For loads and

stores, a value from the dynamic log is filled in. For branches, a value from
the dynamic log is read to see which branch was taken, and which basic
block of operations needs to be processed next.

– call: Indication to process information flow operations for a QEMU helper
function. Shift information flow processor from caller scope to callee scope,
which has a separate set of shadow LLVM registers. Retrieve information flow
operations from the persistent cache. If the helper function takes arguments,
propagate information flow of arguments from caller scope to callee scope.

– return: Indication that processing of a QEMU helper function is finished.
Shift information flow processor from callee scope to caller scope. If the
helper function returns a value, propagate information flow to shadow return
value register.

The information flow models we’ve developed allow us to derive the sequence of
information flow operations for each LLVM function using our LLVM analysis
pass. In this pass, we iterate over each LLVM instruction and populate a buffer
with the corresponding information flow operations. In Figure 4, we show se-
quences of information flow operations for the LLVM xor and load instructions.

4.4 Caching of Information Flow Tracking Operations

One of the main optimizations that QEMU implements is the translation block
cache which saves the overhead of retranslating guest code to host code for
frequently executed basic blocks. We took a similar approach for our taint basic
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LLVM Instruction:

%32 = xor i32 %30, %31;

Information Flow Operations:

compute (%30[0], %31[0] , %32[0]) ;
compute (%30[1], %31[1] , %32[1]) ;
compute (%30[2], %31[2] , %32[2]) ;
compute (%30[3], %31[3] , %32[3]) ;

LLVM Instruction:

%7 = load i32* %2;

Information Flow Operations:

// get load address from dynamic
// log , and fill in next
// four operations
insn_start;

// continue processing operations
copy(addr[0], %7[0]) ;
copy(addr[1], %7[1]) ;
copy(addr[2], %7[2]) ;
copy(addr[3], %7[3]) ;

Fig. 4. Examples of byte-level information flow operations for 32-bit xor and load

LLVM instructions

blocks and developed a caching mechanism to eliminate the need to repeatedly
derive information flow operations. This means we only need to run our pass
once on a basic block, and as long as it is in our cache, we simply process the
information flow operations.

Our caching mechanism works as follows. During our analysis pass, we leave
dynamic values such as memory accesses and taken branches empty, and instead
fill them in at processing time by using our insn_start operation, as illustrated
in Figure 4. In the case of a branch, the insn_start operation tells the informa-
tion flow processor to consult the dynamic log to find which branch was taken,
and continue on to process that taint basic block. This technique enables us to
process cached information flow operations with minor preprocessing to adjust
for dynamic information.

4.5 Analysis and Processing of QEMU Helper Functions

Instrumentation and Analysis. Because important computations are carried out
in helper functions, we need some mechanism to analyze them in a detailed,
correct way. Because there are hundreds of helper functions in QEMU, this
process needs to be automated. We have modified the QEMU build process to
automatically derive information flow operations for a subset of QEMU helper
functions, and save them to a persistent cache. Here, we describe that process
in more detail:

1. Translate helper function C code to LLVM IR using Clang.
The Clang compiler [1], which is a C front end for the LLVM infrastructure,
has an option to emit a LLVM bitcode file for a compilation unit. We have
modified the QEMU build process to do this for compilation units which
contain helper functions we are interested in analyzing.

2. Run our LLVM function analysis pass on the helper function LLVM.
Once we have helper function code in the LLVM format, we can compute
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information flow operations using the same LLVM analysis pass that we have
developed for use on QEMU translated code.

3. Instrument the LLVM IR to populate the dynamic log.
In order for us to perform our analysis on the helper function LLVM, we need
this code to populate the dynamic log with load, store, and branch values.
We have developed a simple code transformation pass that instruments the
helper function IR with this logging functionality.

4. Emit information flow operations into a persistent cache.
Helper function information flow operations can be emitted into a persistent
cache because they are static, and because runtime overhead will be reduced
by performing these computations at compile time. This cache is now another
by-product of the QEMU build process.

5. Compile and link the instrumented LLVM.
Since the instrumented IR should populate the dynamic log during the trace
collection, we create an object file that can be linked into QEMU. Again, we
can use Clang to translate our instrumented LLVM bitcode into an object
file, and then link that file into the QEMU executable during the QEMU
build process.

Processing. Integration of helper function analysis into Pirate works as follows.
During analysis of QEMU generated code, we see a call to a helper function,
arguments (in terms of LLVM registers, if any), and return value (in terms of
a LLVM register, if any). When we see a call instruction in our analysis pass
on translated code, we propagate the information flow of the arguments to the
callee’s scope of LLVM registers, if necessary. For example, assume in the caller’s
scope that there is a call to foo() with values %29 and %30 as arguments. In the
scope of the helper function, the arguments will be in values %0 and %1. So the
information flow of each argument gets copied to the callee’s scope, similar to
how arguments are passed to a new scope on a stack. We then insert our call
operation, which tells the information flow processor which function to process,
and the pointer to the set of corresponding taint operations that are in the cache.
The information flow processor then processes those operations until return. On
return, a helper function may or may not return a value to the previous scope.
For return, we emit a return operation to indicate that we are returning to the
caller’s scope. If a value is returned, then its information will be present in the
LLVM return value register in our shadow memory so if there are any tags on
that value, they will be propagated back to the caller’s scope correctly.

5 Evaluation

In our evaluation, we show that Pirate is decoupled from a specific ISA, bring-
ing the utility of information flow tracking to software developers and analysts
regardless of the underlying ISA they are targeting. We demonstrate the fol-
lowing three applications for x86, x86 64, and ARM: enforcing information flow
policies, algorithm characterization, and state explosion characterization. We
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Table 2. Functions which operate on tagged data

Program x86 x86 64 ARM

Hello World 10/104 (9.62%) 11/93 (11.83%) 10/100 (10.00%)

Gzip Compress 17/150 (11.33%) 15/147 (10.20%) 17/150 (11.33%)

Bzip2 Compress 16/167 (9.58%) 16/153 (10.46%) 17/165 (10.30%)

Tar Archive 2/391 (0.51%) 2/372 (0.54%) 2/361 (0.55%)

OpenSSL AES Encrypt 8/674 (1.19%) 7/655 (1.07%) 7/671 (1.04%)

OpenSSL RC4 Encrypt 4/672 (0.59%) 4/653 (0.61%) 5/679 (0.73%)

Kernighan-Lin Graph Partition 29/132 (21.97%) 63/122 (51.64%) 32/134 (23.88%)

performed our evaluation on Ubuntu 64-bit Linux 3.2, and in each case, we
compiled programs with GCC 4.6 with default options for each program.

5.1 Enforcing Information Flow Policies

One important application of dynamic information flow tracking is to define
information flow policies for applications, and ensure that they are enforced
within the application. For example, one may define a policy that a certain subset
of program data is not allowed to be sent out over the network, or that user-
provided data may not be allowed to be passed to security-sensitive functions.
A universal information flow policy that most programs enforce is that user-
provided data may not be used to overwrite the program counter. However,
there is a lack of information flow tracking systems that support embedded
systems employing ARM, MIPS, PowerPC, and even x86 64, so defining and
verifying these policies without modifying source code is difficult or impossible
with existing information flow tracking systems.

Our system enables software developers to define and enforce these informa-
tion flow policies, regardless of the ISA they are developing for. In one set of
experiments, we carried out a buffer overflow exploit for a vulnerable program
and our system was able to tell us exactly which bytes from our input were
overwriting the program counter for x86, x86 64, and ARM.

In addition to telling the developer where in the program these information
flow policies are violated, Pirate can also tell the developer each function in
the program where tagged data flows. This can assist the developer in identify-
ing parts of the program that operate directly on user input so they can more
clearly identify where to focus when ensuring the security of their program. In
Table 2, we present results for the ratio of functions in several programs that
operate on tagged data. These ratios indicate the percentage of functions in the
program that operate on tagged data compared with every function executed
in the dynamic trace. For most of the programs we evaluated, these ratios are
under 25%. The exception is KL graph partition for x86 64, which shows effects
of state explosion. This is addressed in more detail in Section 5.3.

With this enhanced security capability, software developers can more eas-
ily identify parts of their programs that may be more prone to attacks. This
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(a) Encryption (b) Decryption

Fig. 5. AES CBC mode input/output dependency graphs

capability can also be used in the context of vulnerability discovery when source
code isn’t available in binaries compiled for different ISAs.

5.2 Algorithm Characterization

Recent work has shown that dynamic analysis techniques such as information
flow tracking can help malware analysts better understand the obfuscation tech-
niques employed by malware [6,17]. However, these approaches suffer the same
limitations as other systems, where they are tightly-coupled with a single ISA
(x86). As embedded systems are becoming increasingly relevant in the security
community, it is becoming more desirable for analysts to leverage the power of
dynamic information flow tracking for these embedded ISAs.

Here, we highlight the capability of our system to characterize encryption al-
gorithms based on input/output dependency graphs. We generate these graphs
by positionally labeling each byte in the buffer after the read() system call, and
tracking how each byte of the input is propagated through the encryption algo-
rithm. By subsequently interposing on the write() system call, we can inspect
each byte in the buffer to see the set of input bytes that influences each output
byte. For these experiments, we chose OpenSSL 1.0.1c [2] as a test suite for two
modes of AES block cipher encryption, and RC4 stream cipher encryption for
x86, x86 64, and ARM. The OpenSSL suite is ideal for demonstrating our capa-
bility because most of the encryption algorithms have both C implementations
and optimized handwritten assembly implementations.

AES, Cipher Block Chaining Mode. AES (Advanced Encryption Standard) is
a block encryption algorithm that operates on blocks of 128 bits of data, and
allows for key sizes of 128, 192, and 256 bits [25]. As there are a variety of
encryption modes for AES, cipher block chaining mode (CBC) is one of the
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stronger modes. In CBC encryption, a block of plaintext is encrypted, and then
the resulting ciphertext is passed through an exclusive-or operation with the
subsequent block of plaintext before that plaintext is passed through the block
cipher. Inversely, in CBC decryption, a block of ciphertext is decrypted, and then
passed through an exclusive-or operation with the previous block of ciphertext
in order to retrieve the plaintext.

Figure 5 shows our input/output dependency graphs for AES encryption and
decryption. In these figures, we can visualize several main characteristics of the
AES CBC cipher: the block size (16 bytes), and the encryption mode. In Fig-
ure 5(a), the first block of encrypted data is literally displayed as a block indi-
cating complicated dependencies between the first 16 bytes. We see the chaining
pattern as each subsequent block depends on all blocks before it in the de-
pendency graph. In Figure 5(b), we can see that each value in the output is
dependent on the second eight bytes in the input; this corresponds to the salt
value, which is an element of randomness that is included as a part of the en-
crypted file. We can also see the chaining dependency characteristic of CBC de-
cryption, where each block of ciphertext is decrypted, and then passed through
an exclusive-or operation with the previous block of ciphertext. This series of
exclusive-or operations is manifested as the diagonal line in Figure 5(b). With
Pirate, we were able to generate equivalent dependency graphs for x86, x86 64,
and ARM, for both handwritten and C implementations.

This result highlights the versatility of our approach based on the wide vari-
ety of implementations of AES in OpenSSL. In particular, the x86 handwritten
version is implemented using instructions from the MMX SIMD instruction set.
Our automated approach for deriving information flow operations for these ad-
vanced instructions allows us to support these instructions without the manual
effort that other systems require.

AES, Electronic Code Book Mode. Electronic Code Book (ECB) mode is similar
to CBC mode, except that it performs block-by-block encryption without the
exclusive-or chaining of CBC mode [25]. The input/output dependency graphs
we’ve generated to characterize this algorithm can be seen in Figure 6. Here,
we see that our system can accurately tell us the block size and the encryption
mode, without the chaining dependencies from the previous figures. We again
see the dependence on the bytes containing the salt value in Figure 6(b).

For AES in ECBmode, we were able to generate equivalent dependency graphs
for each ISA (x86, x86 64, and ARM) and implementation (handwritten and C
implementation), with the exception of the ARM C implementation for decryp-
tion, and the x86 handwritten assembly implementation for encryption. In these
exceptional cases, we see a similar input/output dependency graph with some
additional apparent data dependence. This highlights a design decision of our
system, where we over-approximate information flow transfer of certain LLVM
instructions in order to prevent the incorrect loss of tagged information. This
over-approximation can manifest itself as additional information flow spread, but
we’ve made the decision that it is better to be conservative rather than miss an
exploit, especially in the context of security-critical applications of this system.
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(a) Encryption (b) Decryption

Fig. 6. AES ECB mode input/output dependency graphs

RC4. RC4 is a stream cipher where encryption occurs through byte-by-byte
exclusive-or operations. The algorithm maintains a 256 byte state that is initial-
ized by the symmetric key [25]. Throughout the encryption, bytes in the state
are swapped pseudo-randomly to derive the next byte of the state to be passed
through an exclusive-or operation with the next byte of the plaintext.

The input/output dependency graphs for RC4 encryption can be seen in Fig-
ure 7. Since we only track information flow of the input data and not the key,
we can see from these figures that there is a linear dependence from input to
output, based on the series of exclusive-or operations that occur for each byte in
the file. As with the previous figures for decryption, we can see the dependence
on the salt value that is in the beginning of the encrypted file in Figure 7(b).
For RC4 encryption and decryption, we were able to generate equivalent de-
pendency graphs for encryption and decryption for each ISA (x86, x86 64, and
ARM) and implementation (handwritten and C implementation) with the ex-
ception of x86 64 encryption and decryption handwritten implementations. For
these cases, we see an equivalent dependency with additional information, again
due to the conservative approach we take in terms of information flow tracking.

5.3 Diagnosing State Explosion

One limitation of information flow tracking systems is that they are subject to
state explosion where tagged data spreads (i.e., grows) uncontrollably, increasing
the amount of data that needs to be tracked as it flows through the system. This
is especially true when pointers are tracked in the same way as data [23]. Despite
this limitation, it is necessary to track pointers to detect and prevent certain
kinds of attacks, such as those involved in read or write overflows but where
no control flow divergence occurs [7], or those that log keyboard input which is
passed through lookup tables [9]. In Pirate, we’ve implemented tagged pointer
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(a) Encryption (b) Decryption

Fig. 7. RC4 input/output dependency graphs

tracking as a configurable option. When this option is turned on, we propagate
information for loads and stores not only from the addresses that are accessed,
but also from the values that have been used to calculate those addresses.Pirate
allows us to evaluate the effects of state explosion between CISC and RISC ISAs
since we support x86, x86 64, and ARM. It also allows us to evaluate the rate of
state explosion for different software implementations of the same application.

To perform this evaluation, we’ve experimentally measured the amount of
tagged information throughout executions of four programs that make exten-
sive use of pointer manipulations with our tagged pointer tracking turned on.
These programs are bzip2, gzip, AES CBC encryption, and the Kernighan-Lin
(KL) graph partitioning tool (obtained from the pointer-intensive benchmark
suite [3]). The bzip2 and gzip programs make extensive use of pointers in their
compression algorithms. Part of the AES encryption algorithm requires lookups
into a static table, known as the S-box. For these three programs, tagged pointer
tracking is required to accurately track information flow through the program,
or else this tagged information is lost due to the indirect memory accesses that
occur through pointer and array arithmetic and table lookups. In addition, the
KL algorithm implementation utilizes data structures like arrays and linked lists
extensively for graph representation.

The measurements of information spread for pointer-intensive workloads can
be seen in Figure 8 for x86, x86 64, and ARM. Figures 8(a), 8(b), and 8(c) show
similar results for each ISA in terms of the number of tagged bytes in memory,
but we can see offsets in instruction counts that highlights one of the differences
of these CISC vs. RISC implementations. Figures 8(a) and 8(b) show the results
of compressing the same file, which was approximately 300 bytes. These figures
show the extent of information spread for these workloads; the peak number of
tagged bytes reaches 14x the original file size for bzip2 on average across each
ISA, and 6x the original file size for gzip on average across each ISA. For bzip2,
the drastic growth in tagged data occurs as soon as the block sorting starts in
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Fig. 8. Tagged information spread throughout execution

the algorithm. For gzip, there is a more gradual increase in tagged data as soon
as the compression function begins compressing the data. These patterns are
indicative of the complex manipulations that are made on files as the tagged
data flows through these compression algorithms. On the contrary, while many
complex manipulations occur on files through AES encryption, Figure 8(c) shows
that the amount of tagged data increases just over 2x for each ISA. Overall, these
three pointer-intensive algorithms show similar patterns of state explosion for
information flow tracking, regardless of the underlying ISAs that we’ve evaluated.

Figure 8(d) on the other hand shows major discrepancies in the amount of
tagged information across the various ISAs. For this experiment, we processed
a file of size 1260 bytes. For x86 and ARM, we can see an initial increase of
tagged information followed by a gradual increase up to a maximum of 1.5x
and 4.1x the original tagged data, respectively. For x86 64, it is clear that a
form of state explosion occurs causing the amount of tagged information to
spread dramatically, reaching 11x the amount of original tagged data. Looking
more closely at the x86 64 instance, we found that this initial explosion occurs
inside of C library functions. One reason for this state explosion is that tagged
data propagated to a global variable or base pointer, resulting in subsequent
propagation with every access of that variable or base pointer. The fact that
this explosion occurs inside of the C library implementation explains why we see
the discrepancies across ISAs.
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6 Discussion

Currently, our systemprovides the capability to performdynamic informationflow
tracking for several of the major ISAs supported by the QEMU binary translator.
It is straightforward to support more of these ISAs since we already have the abil-
ity to translate from the TCG IR to the LLVM IR. Additional work required for
this involves properly tracking changes to CPU state (architecture-specific general
purpose registers), and modeling those registers in the shadow memory. We plan
to support more of the ISAs included in QEMU as future work.

We also plan to extend our decoupled execution and analysis approach to
work with systems at runtime. This will enable us to perform dynamic detection
and prevention of exploits, as well as other active defenses. Additionally, having
a runtime system will allow us to perform a detailed performance evaluation,
identify major sources of overhead, and optimize accordingly. Developing opti-
mization passes over information flow operations is one way that we hope will
help to improve performance.

One limitation of the QEMU user mode emulator is that there is limited
support for multi-threaded programs. To deal with this, we plan to extend our
system to support the QEMU whole-system emulator. With this enhancement,
we will have the ability to perform detailed security analyses for entire operating
systems, regardless of the ISA that they are compiled to run on. This will en-
able studies in the area of operating system security, including exploit detection
and vulnerability discovery. Our architecture-independent approach will allow
us to perform important analyses for embedded systems ISAs, where support
for dynamic information flow tracking is limited.

7 Related Work

Dynamic information flow tracking has been shown to have a wide variety of real
world applications, including the detection and prevention of exploits for binary
programs [7,20,31] and web applications [27]. Applications to malware analysis
include botnet protocol reverse engineering [6,30], and identifying cryptographic
primitives in malware [17]. For debugging and testing assistance, dynamic infor-
mation flow tracking can be used to visualize where information flows in complex
systems [18], or to improve code coverage during testing [15]. Additionally, this
technique can be used for automated software vulnerability discovery [12,29].

Information flow tracking has been implemented in a variety of ways, including
at the hardware level [26,28], in software through the use of source-level instru-
mentation [12,15,31], binary instrumentation [10,13,22], or the use of a whole-
system emulator [9,20,24]. Additionally, it can also be implemented at the Java
VM layer [11]. Between all of these different implementations, the most practical
approach for analyzing real-world software (malicious and benign) when source
code is not available is to perform information flow tracking at the binary level.
Pirate is the first information flow tracking system that operates at the binary
level, supports multiple ISAs, and can be extended in a straightforward manner
to at least a dozen ISAs.
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Existing systems that are the most similar to ours are Argos [20], BitBlaze [24],
Dytan [10], and Libdft [13]. These systems have contributed to significant re-
sults in the area of dynamic information flow tracking. Argos and BitBlaze are
implemented with QEMU [4], while Dytan and Libdft are implemented with
Pin [16]. Even though QEMU and Pin support multiple guest ISAs, each of
these information flow tracking systems are tightly coupled with x86, limiting
their applicability to other ISAs.

Intermediate representations have been shown to be useful not only in compil-
ers, but also in software analyses. Valgrind [19] employs an intermediate represen-
tation, but it is also limited to user-level programs which would prevent us from
extending our work to entire operating systems. Valgrind also employs a shadow
memory, but no tools exist that perform information flow tracking with the detail
that we do in an architecture-neutral way. BAP [5] defines an intermediate rep-
resentation for software analysis, but that system currently can only analyze x86
and ARM programs, and it doesn’t have x86 64 support. CodeSurfer/x86 [21]
shows how x86 binaries can be statically lifted to an intermediate representation
enabling various static analyses on x86 binaries.

8 Conclusion

In this paper, we have presented Pirate, an architecture-independent informa-
tion flow tracking framework that enables dynamic information flow tracking
at the binary level for several different ISAs. In addition, our combined static
and dynamic analysis of helper function C code enables us to track information
that flows through these complex instructions for each ISA. Pirate enables us
to decouple all of the useful applications of dynamic information flow tracking
from specific ISAs without requiring source code of the programs we are inter-
ested in analyzing. To demonstrate the utility of our system, we have applied
it in three security-related contexts; enforcing information flow policies, charac-
terizing algorithms, and diagnosing sources of state explosion. Using Pirate,
we can continue to build on the usefulness of dynamic information flow tracking
by bringing these security applications to a multitude of ISAs without requiring
extensive domain knowledge of each ISA, and without the extensive implemen-
tation time required to support each ISA.
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Abstract. In this paper we propose a new technique and a framework
to select inlining heuristic constraints - referred to as an inlining vector,
for program optimization. The proposed technique uses machine learning
to model the correspondence between inlining vectors and performance
(completion time). The automatic selection of a machine learning algo-
rithm to build such a model is part of our technique and we present
a rigorous selection procedure. Subject to a given architecture, such a
model evaluates the benefit of inlining combined with other global opti-
mizations and selects an inlining vector that, in the limits of the model,
minimizes the completion time of a program.

We conducted our experiments using the GNU GCC compiler and op-
timized 22 combinations (program, input) from SPEC CINT2006 on the
state-of-the-art Intel Xeon Westmere architecture. Compared with opti-
mization level, i.e., -O3, our technique yields performance improvements
ranging from 2% to 9%.

1 Introduction

The widespread use of object-oriented programming models and software en-
gineering methodologies often leads to complex program structures that are
composed of a multitude of functions and source files. The presence of these
files and functions unfortunately limits the scope of global optimizations and
their forced separate compilation reduces the performance in complex and un-
predictable ways. As a result, when relying on current compiler technologies
and rigid compiler heuristics, programs achieve in practice only a portion of the
performance that they could in principle achieve on a given architecture.

Function inlining [1] provides a simple - in principle - way of overcoming these
barriers to program optimization - it removes the boundaries of function calls
by expanding call sites with the body of the callee - but it too is not without
pitfalls. Prior studies acknowledge the potential that function inlining offers at
compile time to other optimizations [2–4], parallelization [5] and vectorization
[6]. The importance of function inlining is also evidenced by the fact it is used in
all optimizing compilers - e.g., the GNU GCC, Intel ICC, IBM XLC - as a first

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 164–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On the Determination of Inlining Vectors for Program Optimization 165

pass of their aggressive optimization levels such as -O3. Unfortunately, inlining
in an effort to enable maximal optimization to the code has been shown to be
NP-Complete [7, 8] and while heuristics are implemented by all good optimizing
compilers, the number of constraints and their combinations to the process are
extremely large - making the achievement of best, or even good inlining for a
given application, practically unachievable. The above represents a limitation to
the direct application of specialized search techniques [9, 10] to the case of static
compilation of production software written in C or C++. For a given program,
searching the space of inlining vectors would involve a large number of expensive
recompilations and runs. For example, the number of inlining constraints vary
from compiler to compiler - GCC v3.4 has 4 inlining constraints, whereas GCC
v4.5 has 7 inlining constraints - and while in practice the range of values of
each constraint is somewhat limited (because of compiler malfunctioning), the
number of combinations is still enormous. In this work - refer to Section 4.2, we
estimate the number inlining vectors to be > 1015.

Despite the importance of function inlining, the influence of inlining constraints
on performance of arbitrarily complex programs and on high-performance archi-
tectures had received little attention in the past. Cavazos and O’Boyle in [9] de-
veloped a technique for dynamically tuning the JikesRVM [11] inlining heuristics
and selectively inline frequently used functions. However, in the case of static com-
pilation, inlining decisions incrementally influence any inlineable functions within
each module [7, 10], making the problem of selecting inlining vectors more com-
plex than that of inlining frequently used functions. Cooper et. al [10] proposed a
new heuristic for function inlining for C programs and a technique for auto-tuning
its parameters using genetic algorithms. While such an heuristic performs better
inlining decisions compared with the inlining heuristics implemented in produc-
tion compilers, e.g., GCC v3.3, the technique proposed in [10] does not account
for separate compilation, where additional barriers to global optimization are the
boundaries of source files.

In this paper we develop a new technique for function inlining, given a compiler
and its parameterized heuristic. The proposed technique attempts to achieve the
best settings of the inlining constraints - referred to as an inlining vector, that
will result in the most efficient (fastest) execution of the code produced by this
compiler. Our technique is suitable to be used in industry settings as a support
to production compilers as it does not modify the compiler. On the contrary, the
technique proposed in this work suggests inlining vectors for program optimiza-
tion and provides an estimation of the performance that can be achieved after
recompiling a program using the predicted inlining vectors.

The proposed technique is implemented in as a performance framework whose
design is shown in Figure 1 and is composed of two main passes. In the first pass,
it uses machine learning to model the relation between inlining vectors - ivs,
and performance (completion time) - p. The fact that the completion time of a
program is a continuous quantity leads us to the adoption of supervised learning
algorithms to build regression models. As part of our technique we provide a
quantitative procedure to evaluate and select a regression algorithm, amongst
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Fig. 1. Performance framework design

many regression algorithms, that best models the relation ĥ : iv → p subject to
a number of training samples - referred to as training set. Such a procedure is
based on 10-fold cross validation [12] that, in our technique, is used to evaluate
and compare different models in terms of mean absolute error - i.e., the average
accuracy of performance prediction, and mean coefficient of correlation - i.e., the
average correlation/alignment between a batch of performance predictions and
the actual batch of performance - refer to Appendix A. Once assigned a threshold
on the maximum admissible mean absolute error, the model corresponding to
the algorithm with maximum mean coefficient of correlation is selected amongst
the models whose mean absolute error is within the assigned threshold.

In the second pass of our technique, the selected model is leveraged to search
for an inlining vector - iv∗ , which is able to maximize predicted and ultimately
achieved performance of a program subject to a given workload (input). At the
cost of training a model using a relatively limited number of compilations and
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runs, such a model supplies for the intractability of searching the space of inlining
vectors without performing additional recompilations and runs.

In our experiments, we used GNU GCC version 4.5 - referred to as GCC v4.5 -
to optimize 22 combinations (program, input) on the state-of-the-art Intel Xeon
Westmere architecture. These combinations belong to four programs selected
from SPEC CINT2006 (refer to Section 4.1 and [13]) because these programs
have a larger number of input files, compared with other applications in the same
benchmark suite, and because their behavior is highly influenced by the selection
of a particular input file [14]. While the optimization of a program subject to
a workload may seem a limiting factor of the proposed technique, in industry
settings programs are purposely manually optimized for certain a certain class
of workloads [14]. We train our technique using a limited number of instances of
the 22 combinations (program, input), for a limited number of training inlining
vectors - refer to Section 3.2. Our technique identifies random forest - M5P [15]
- as a suitable algorithm to model the relation between inlining vectors and
completion time. Next, the performance model is used to predict inlining vectors
to optimize the performance of each combination (program, input). Lastly, we
recompile our programs using the inlining vectors predicted above. Experimental
results show: (1) Performance improvements ranging from 2% to 9% on the state-
of-the-art Intel Xeon Westmere architecture and without manually modifying
neither the structure of the program source code nor that of the compiler; (2)
Performance results outperform both the baseline performance and the best
performance recorded during the training phase.

To the best of our knowledge, this is the first paper investigating the influ-
ence of inlining vectors on program performance and in the presence of separate
compilation. This is also the first paper proposing a rigorous procedure to build
and enforce machine learning based performance models. The contributions of
this paper can be summarized as follows:

I - We propose a new machine-learning based technique to select inlining
vectors for program optimization and implement the proposed technique
in the performance framework illustrated in Figure 1. Our technique relies
on the selection of a performance model to quantify the influence of inlining
vectors on program performance. The presence of such a model represents
a practical mean to perform a fast exploration of the a large set of inlining
vectors, whereas the model is built using a limited number of training
examples - refer to Section 3.3.

II - We propose a rigorous procedure to select a machine learning algorithm
to build the model above. Using 10-fold cross-validation, such a procedure
focuses on algorithms providing models whose performance prediction ac-
curacy is below an admissible threshold - which is a parameter of our
framework. Amongst these model, our procedure selects the model with
highest mean coefficient of correlation.

The rest of the paper is organized as follows: In Section 2 we describe the op-
portunity of improving performance by determining inlining vectors and mo-
tivate the need of using machine learning to address the problem of selecting
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Table 1. 401.bzip2, hot functions

Source file:Function name Size [kB] # of calls Coverage

compress.c:BZ2 compressBlock 15.76 143 28.75

blocksort.c:fallbackSort 2.48 34 27.72

decompress.c:BZ2 decompress 10.92 17681 16.00

blocksort.c:mainSort 4.45 143 9.71

blocksort.c:mainGtU 0.55 1515464 7.96

Table 2. 401.bzip2, hot paths on the precise dynamic call graph

Source file:Caller name Source file:Callee name # of edge traversals Coverage [%]

bzip2.c:main bzip2.c:compressStream 3 79.14

bzlib.c:BZ2 bzCompress bzlib.c:handle compress 36345 78.95

bzlib.c:compressStream bzlib.c:BZ2 bzWrite 18876 77.99

bzlib.c:BZ2 bzWrite bzlib.c:BZ2 bzCompress 35986 77.93

bzlib.c:handle compress compress.c:BZ2 compressBlock 143 74.61

inlining vectors. In Section 3 we present our technique, including (a) a quantita-
tive procedure to build and evaluate a suitable performance prediction model to
select inlining vectors; (b) the detailed discussion on how to build the training
set. In Section 4, we describe the experimental setup, the experiments and dis-
cuss experimental results. We highlight both the significance of our performance
improvements and trends that are common to the predicted inlining vectors, sub-
ject to the architecture and the applications in use. Related work is discussed in
Section 5. Key highlights and conclusion are remarked in Section 6.

2 Motivation

In this Section we use the program 401.bzip2 from the industry standard bench-
mark suite SPEC INT2006 [13] as an example program to show opportunities to
improve program performance by properly selecting inlining vectors. We com-
pile the program using the compiler optimization level -O3 and refer the cor-
responding binary file to as 401.bip2O3. We use Trin-Trin [16] to collect the
dynamic call graph of the program subject to one of the reference inputs. Trin-
Trin allows the identification of hot functions - refer to Table 1, and hot paths
- refer to Table 2. Figure 2 shows a snapshot of the call graph concentrated
in the proximity of the hot functions and including the hot paths. 401.bzip2
has a peaked profile [17] as it spends most of its execution time in the func-
tions blocksort.c:fallbackSort and compress.c:BZ2 compressBlock. The
dynamic call graph of the binary 401.bip2O3 is composed of 59 nodes - where
a node represent a function, 69 edges, 2, 454, 278 directs call and 36 indirect
calls. Given the limited number of hot functions and hot paths, we manually
searched for opportunities for performance improvement coming from the re-
duction of the number of function calls. In Table 1, Table 2 and Figure 2 we
list the name of the source file containing the implementation of a given func-
tion, along with the name of the function. We can distinguish three groups of
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functions belonging to the source files bzip2.c, bzlib.c and compress.c. The
function BZ2 compressBlock calls only the function BZ blockSort withing a
single loop. The inlining of the latter function in the former would save 143
function calls, with an increase of the size of the caller of ≈ 16 kB. However,
because these two functions appear in different source files (and modules), the
decision to inlining BZ blockSort in its caller is never evaluated by the inliner. 1

Fig. 2. 401.bzip2 call graph snapshot

Nevertheless, within the same source
file (or module) there can be inlining
decisions that the inliner misses be-
cause of inappropriate settings of its
inlining parameters. For example, the
function blocksort.c:mainGtu is a
leaf function in the call graph that
is called 1, 515, 464 times. The large
call count stems from three different
call sites embodied in three different
loops. In this case there is a trade-
off between increasing the size of the
caller by roughly 1.65 kB and reduc-
ing the overhead of 1, 515, 464 func-
tion calls. This is a missed inlining op-

portunity for improving performance due to the default inlining settings.
The analysis that we carried out for 401.bzip2 would not have been possible

for other programs from SPEC CINT2006, because of the large number of func-
tions and files composing their source code. For example, the dynamic call graph
of 403.gcc accounts 2, 072 nodes, 7, 868 edges, 216, 947, 768 function calls and a
rather flat profile [17]. Such a complexity requires to approach our problem from
different angles and with automatic methodologies that can learn from examples
and are capable of predicting optimal inlining settings per program.

Lastly, we show that an obvious solution to tune inlining heuristics is not
suitable to approach program optimization. For this, we study the variation in
size and performance of 401.bzip2 with the increase of one inlining parame-
ter ruling indiscriminate inlining, max inlining insns auto. All the functions
whose estimated cost - i.e., pseudo-instructions count [19] - is less than the value
assigned to max inlining insns auto are inlined. Therefore, the larger is the
value assigned to max inlining insns auto, the more functions are inlined, in-
dependently of the values of other inlining parameters. 2 One could potentially
argue that the more functions calls are eliminated, the more performance of
a program varies and improves. To show that this is not the case, we assigned

1 In commercial and open source compilers the inliner works on the intermediate
representation and so the inliner acts separately on single files or on a single module.
The case of link-time optimization - e.g., GCC LTO [18] - is left to future work as
we believe that our technique would speedup performance of GCC LTO.

2 The list of inlining parameters of GCCv4.5 is at
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html
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values from 10 to 190, with step 10, to the parameter max inlining insns auto

and compile 19 binary versions of 401.bzip2. These 19 versions falls in four bins
of different sizes 75 kB, 79 kB, 83 kB and 87 kB and not all the version of the
binary files are unique. After 110 there is no variation in size, whereas after 190
the compiler exhibits malfunctioning. The performance of the binaries generated
with different values of max inlining insns auto as discussed above is slower
≈ 3 to 6% than performance achieved by the baseline -O3. Only in one case and
for the first input there is a speedup of ≈ 2%.

3 Technique

In this section we first establish the background to build our technique, including
the notations and the terminology used through the paper, and then we describe
our technique to select inlining vectors for program optimization.

3.1 Notations

In this paper we denote an inlining vector as iv, whereas we denote an inlining
vector selected for optimizing a certain program as iv∗ . The set of all possible
inlining vectors is denoted as F . While F is in principle an unbounded set -
as each component of the inlining vector can assume any positive integer value,
in practice the search for inlining vectors is confined into a subset of F that
is practically bounded due to compiler malfunctioning. Any limited the sub-
set of F that our technique explores to determine inlining vectors for program
optimization is denoted as F̂ .

A machine learning algorithm is denoted as A, whereas the model built with
the algorithm A is denoted as ĥα,ρ - and is referred to as an hypothesis. An
hypothesis is characterized by a number of parameters indicating its quality. As
a measure of the quality of an hypothesis, in this work we use the mean absolute
error - denoted as α, and the mean coefficient of correlation - denoted as ρ.
The training set - that is the set of sample runs used to train our model - is
denoted as T and is composed of pairs (programiv, p), where several instances
of programs subject to different inputs are compiled with a limited number
of inlining vectors and executed. p is the completion time corresponding to a
particular execution. During the execution of an instance of programiv, a vector
of hardware performance counters is collected. Such a vector is denoted as cntiv
and features the run-time behavior of the program subject to an inlining vector.
The set of ivs used to build the training set is within a limited subset of F̂ and
is denoted as M.

3.2 Collection of the Training Set

The training set for building our model is populated as follows. A set of programs
is compiled using M inlining vectors to generate an equal number binary files
per program. A subset of these binary files are executed. A vector of hardware
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performance counters and the completion time of each run is recorded. Each
component of these inlining vectors assumes values in a sequence of integer values
extracted from a limited range of integer values. These ranges are upper-bounded
in practice by the maximum integer value that produces a valid binary file for
a given program. Within each range we select a number of consecutive values
uniformly spaced and the combinations of these values, from all the ranges,
compose the set of iv ∈ M. However, not all these combinations of inlining
parameters produce distinct binary files and amongst distinct binary files not all
of these have distinct file sizes. In this work, distinct binary files with distinct
sizes are referred to as unique files; distinct binary files with same sizes are
referred to as alias files; other binary files that are identical byte-by-byte are
referred to as clone files. To build the training set our technique first produces
M binary files and second it dissects these files in unique, alias and clone files.
While the process still involves a large number of compilations, such a dissection
reduces the number of runs to the execution of only the unique files to populate
the training set - alias files achieve nearly equal performance subject to the same
workload. Therefore we decided not to include aliases in the training set.

The procedure to dissect the binary files in unique, alias and clone files is
implemented as follows in our framework. The available binary files are scanned
and a table indexed using the binary size is maintained. Each entry of the table
is a tuple <key, list of values>, where the key is binary size and the list of
values contains the names of alias and clone files. When a new binary is examined,
its size is measured and used to access the table. If there is not an entry in the
table for this key, then the binary is marked as unique and a new entry <key,

list of values> is added to the table. If such an entry exists, the binary is
appended to the list of values and marked as an alias. To test if the new binary
is unique, it is compared byte-to-byte with the binary file corresponding to the
first entry of the list. 3 If the comparison is positive, the new binary is re-marked
as a clone. The list of values is kept to provide statistics about the clone, alias
and unique files, whereas the first element of each list is a unique binary that will
be used to populate the training set. The training set is populated as follows: for
each element in the first column of the table, execute the corresponding binary
file and record a vector of hardware performance counters - a parameter of our
framework - and the corresponding performance.

3.3 Hypothesis Selection

Once the training set is available, our technique builds hypotheses from different
types of regression algorithms. Let us denote these algorithms asA1,A2, · · · ,AS .
For example, A1 could represent a regression tree such as C4.5 [20], A2 could be
support vector regression [21], etc. Each algorithm is trained using the training
set to build one (or more) hypotheses. Each hypothesis is subsequently validated

3 Byte-to-byte comparison is a simple, yet convenient way to classify binary files as
unique, alias and clones. Alternatively, a digest such as SHA-2 (Secure Hash Algo-
rithm version 2) can be used for such a classification.
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using 10-fold cross-validation, as discussed in the next Section and Appendix
A, and is characterized with a coefficient of correlation and a mean absolute
error. We denote the hypothesis associated to each algorithm as ĥαi,ρi , with
i = 1, 2, · · · , S.

Given a threshold z - corresponding to the maximum acceptable mean ab-
solute error - each hypothesis whose mean absolute error is greater than the z
and whose coefficient of correlation is negative is rejected. In our technique, we
assign a value to z according to the range of the outcomes of our experiments
at the baseline - the baseline is a parameter of our framework. For example, let
us assume -O3 to be the baseline. If our (programO3, input) pair runs for 500
seconds, a threshold tolerating an error of 1% on performance prediction would
be set as z = 5 seconds. Therefore, all the hypotheses exhibiting an average
mean absolute error lower than 5 seconds and exhibiting a positive coefficient of
correlation are good candidates to model our experiments.

Amongst the remaining hypotheses, the one with maximummean coefficient of
correlation - and not necessarily with minimummean absolute error - is selected.4

3.4 Model Validation

The evaluation of one or more regression algorithms is usually performed via a
standard statistical technique called k-fold cross-validation [12]. In k-fold cross-
validation, the training set is first partitioned into k nearly equally sized segments
or folds. Subsequently k iterations of training and validation are performed such
that within each iteration a different fold of the data is taken out for validation
while the remaining k − 1 folds are used to train a regression model. At each
iteration, one or more regression algorithms are trained using k− 1 folds of data
to build one or more hypotheses. These hypotheses are subsequently used to
make predictions using the features in the validation fold - refer to Appendix A
for an example.

The performance of each learning algorithm on each fold can be assessed using
performance metrics, such as the mean correlation coefficient and mean absolute
error. At the end of the cross-validation process, k samples of each performance
metric are available for each regression model. Different methodologies, such as
the average of the k samples, can be used to obtain an aggregate measure from
these samples, or these samples can be used in a statistical hypothesis test to
show that one regression model is better to another.

In this paper we consider mean absolute error and mean coefficient of corre-
lation as metrics to evaluate and to select a suitable regression model for our
analysis. The former represents the average accuracy of performance prediction,
whereas the latter represents the average correlation/alignment between a batch
of performance predictions and the actual batch of performance - refer to Ap-
pendix A.

4 In the case of hypotheses with the same mean absolute error and/or the coefficient
of correlation, a test of significance can be executed to select an hypothesis with the
most significant mean [22].
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3.5 Selection of an Inlining Vector

Without additional recompilations and runs, the hypothesis enables a rapid
search of the space of inlining vectors and the determination of the best inlining
vector to optimize performance of a given program subject to a given workload.
Let us denote the selected hypothesis ĥ∗ . The hypothesis predicts performance
for unseen inlining vectors in F̂ . Therefore the hypothesis is used to search for
the inlining vector that maximizes predicted performance and outperforms an
assigned baseline. In other words our technique leverages the hypothesis to solve
the following problem: select one inlining vector to minimize the completion time
of a given combination (program, input). Eventually, our framework verifies the
efficacy of the predicted inlining vector by recompiling the program using the
inlining vector iv∗ and measuring its performance on an average of several runs
compared with the performance of the baseline.

4 Experiments

We implemented the technique presented in Section 3 as a performance frame-
work written in Perl [23] and R [24–26]. The experiments we carried out to
evaluate the efficacy of the proposed technique are presented in this section.

4.1 Experimental Setup

We used the state-of-the-art Intel Xeon Westmere architecture for our experi-
ments - refer to Table 3. We evaluated the proposed technique optimizing 22
combinations (program, input) from SPEC CINT2006 - refer to Table 4. The
combinations above belong to four programs selected from SPEC CINT2006 [13],
because these programs have a larger number of input files, compared with other
applications in the same benchmark suite, and because their behavior is highly
influenced by the selection of a particular input file [14]. The components of the
inlining vector for GNU GCC v4.5 and the ranges estimated by our technique
are shown in Table 5.

To represent the run-time behavior of a binary compiled with a certain inlining
vector, we select a vector of hardware counters - cnt - composed of the following
components:

Table 3. System configuration

Model Intel X5680 (Westmere) @ 3.33GHz

L1 I/D cache [kB] 32

L2 cache [kB] 256

L3 cache (shared) [MB] 12

Main Memory [GB] 24

Compiler GNU GCC 4.5

Baseline optimization level -O3

Operating system Linux Red Hat AS 4 update 7
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Table 4. Combinations (program, input)

Program name Application domain Input

401.bzip2 Compression

I1:chicken.jpg
I2:control
I3:input.source
I4:liberty.jpg
I5:text.html

403.gcc C Language Optimizing Compiler

I1:166.i
I2:200.i
I3:c-typeck.i
I4:cpdecl.i
I5:expr.i
I6:expr2.i
I7:g23.i
I8:s04.i
I9:scilab.i

445.gobmk Artificial intelligence

I1:13x13.tst
I2:nngn.tst
I3:score2.tst
I4:trevorc.tst
I5:trevord.tst

464.h264ref Video compression
I1:foreman ref encoder baseline.cfg
I2:foreman ref encoder main.cfg
I3:sss encoder main.cfg

Table 5. Practical search space and F̂ for our programs

iv component Range

inline call cost {10}
max inline insns auto [10-190]

large function insns [1100-3100]

large function growth [20-100]

large unit insns [6,000-16,000]

inline unit growth [30-300]

inline recursive depth [4-8]

– CPI : Cycles per instruction.
– Br rate [%] : Number of branch retired as a percentage of the total instruc-
tions retired.

– L2 miss [�] : The count of L2 cache misses per thousand instructions.
– L3 miss [�] : The count of L3 cache misses per thousand instructions.

While the second component of the vector of counters, i.e., Br rate, includes the
variation in the number of function calls due to a different amount of inlining,
the other components indicates indirectly the influence of global optimizations
to local performance, i.e., CPI, and the memory hierarchy behavior, i.e., L2 and

L3 miss. Admittedly, the vector of hardware counters selected in this study may
be complemented with other counters aimed to capture more specific run-time
features. However, for the architecture considered in this paper, the counters
above can be collected in a single run. This alleviates the problem(s) which may
arise due to various sources of inaccuracies in the process of collection of the
hardware performance counters [27]. Furthermore, the counters are normalized
to instructions retired with different scale factors - % in the case of branch
retired and � in the case of the cache misses - because for ordinary programs,
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Fig. 3. Binary files dissection in unique, alias and clones

the cache miss count is usually one order of magnitude lower than the count of
other hardware events [28]. We use Intel VTune [29] to collect cnt.

4.2 Inlining Parameter Ranges and the Set F̂

We compile ≈ 30, 000 binary file per program - the size of M ≈ 30, 000 - and
dissect the number of unique, clone and alias files as it is shown in Figure 3.

In our technique, the set of inlining vectors used to build the training set is
limited to the unique and not alias binary files for each program to optimize -
≈ 26, 000 unique binary files in total, corresponding to ≈ 20, 000 inlining vectors.
However, inlining vectors for program optimization are determined in a larger
set F̂ composed of > 1015 inlining vectors - refer to Table 5.

4.3 Baseline

In our experiments we set -O3 as the baseline performance for our framework.
Our framework compiles the programs using -O3 and runs them to assess the
baseline performance for each reference input. cnt is collected for the baseline.
In the program selected for our experiments, each reference input exercises a
different and/or the same path of the call graph of a program, but in differ-
ent ways that are captured by the values of the components of cnt. For ex-
ample, (403.gcc, I6)=<1.24, 25.11, 1.98, 0.12> and (403.gcc, I7)=<1.42,

26.32, 2.89, 0.22>. Furthermore, our framework provides the percentage of
total cycles spent in program routines versus external library/system routines
- referred as cycles breakdown. The cycles breakdown is an indication of op-
portunities for performance optimization exploitable at compile-time. Arguably,
the more the program runs into external/system routines the less opportunities
exist for performance optimization exploitable at compile-time. Our framework
shows that the average number of cycles - average on the reference input - spent
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within program routines ranges from 45% to 98%. It follows the presence of
opportunities for program optimization for our set of programs.

4.4 Collection of the Training Set

Our framework compiles each program times the size of M - where size of
M ≈ 30, 000. According to the analysis explained in Section 3 and for each
program, our framework separates unique binary files from the binary files com-
piled. Next, our framework populate the training set. For each combination
(programiv, input), the framework runs the unique binary files and collects (a)
the completion time expressed in second, and (b) the vector cnt.

4.5 Model Selection

Once the training set is available, the framework selects the regression algorithm
that best models our experimental setup.5 In this section we report the compar-
ison between three regression algorithms - Least Median Square - LeastMedSq
[30], Radial Basis Function network - RBFnetwork [31], and Random Forest for
regression - M5P model tree [15]. These algorithms belong to three different types
of regression algorithms. LeastMedSq builds a linear function as an hypothesis,
whereas RBFnetwork builds a form of artificial neural network for regression,
whereas M5P builds a form of random forests for regression. The framework com-
pares LeastMedSq, RBFnetwork and M5P in terms of their mean absolute errors
and coefficients of correlation - refer to Table 6. The model selection is favorable
to the adoption of M5P, which is the algorithm exhibiting the lower prediction
error and the maximum coefficient of correlation.

Table 6. Hypotheses comparison and selection

Learning algorithm (α, ρ)

LeastMedSq (0.27, 93.17)

RBFnetwork (0.77, 38.67)

M5P (0.99, 2.15)

4.6 iv∗ Determination

After the model is selected, the framework leverages the model to find inlin-
ing vectors that minimizes the predicted completion time for each combination
(programO3, input). The predicted inlining vectors are listed in Table 7. The pre-
dicted inlining vectors never correspond to that of the baseline or to any others
present in the training set.

On the current architecture the components of the predicted inlining vectors
exhibit the following properties (trends):

5 Our framework explores all the regression algorithms available in the default package
Rweka [24] for the language R.
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Table 7. iv∗ determined per combination (program, input); Speedup = pO3
piv∗

;

ivO3 = < 10, 120, 2000, 300, 10000, 150, 8 >

(program, input) iv∗ pO3 [s] piv∗ [s] Speedup

(401.bzip2,I1) <10, 125, 2043, 197, 10000, 103, 8> 40.92 39.63 1.03

(401.bzip2,I2) <10, 142, 2042, 299, 10000, 115, 8> 363.00 354.24 1.02

(401.bzip2,I3) <10, 134, 2021, 185, 10000, 73, 8> 116.60 116.60 1.00

(401.bzip2,I4) <10, 132, 2032, 147, 10000, 64, 8> 64.98 63.47 1.02

(401.bzip2,I5) <10, 144, 2079, 159, 10000, 128, 8> 141.75 140.27 1.01

(403.gcc,I1) <10, 126, 2415, 297, 6000, 135, 8> 36.15 35.34 1.02

(403.gcc,I2) <10, 165, 2405, 296, 6000, 66, 8> 48.21 47.43 1.02

(403.gcc,I3) <10, 127, 2524, 46, 6000, 103, 8> 69.07 66.70 1.04

(403.gcc,I4) <10, 167, 2697, 207, 6000, 105, 8> 43.52 39.94 1.09

(403.gcc,I5) <10, 167, 2693, 33, 6000, 95, 8> 48.56 47.61 1.02

(403.gcc,I6) <10, 168, 2684, 183, 6000, 145, 8> 67.98 65.50 1.04

(403.gcc,I7) <10, 152, 2373, 298, 6000, 106, 8> 85.07 83.18 1.02

(403.gcc,I8) <10, 150, 2637, 127, 6000, 149, 8> 86.73 84.13 1.03

(403.gcc,I9) <10, 138, 2691, 299, 6000, 44, 8> 16.25 16.08 1.01

(445.gobmk,I1) <10, 129, 2004, 179, 6000, 40, 8> 72.54 70.78 1.02

(445.gobmk,I2) <10, 169, 2690, 285, 6000, 149, 8> 183.71 179.00 1.03

(445.gobmk,I3) <10, 157, 2070, 199, 6000, 123, 8> 97.62 91.36 1.07

(445.gobmk,I4) <10, 134, 2088, 164, 6000, 148, 8> 71.54 70.00 1.02

(445.gobmk,I5) <10, 156, 2603, 296, 6000, 97, 8> 97.90 95.50 1.03

(464.h264ref,I1) <10, 154, 2688, 297, 6000, 149, 8> 81.48 81.41 1.00

(464.h264ref,I2) <10, 169, 2053, 295, 6000, 124, 8> 60.78 60.00 1.01

(464.h264ref,I3) <10, 120, 2078, 271, 6000, 75, 8> 527.06 515.00 1.02

– max inline insns auto: the predicted values suggest that inlining functions
indiscriminately is never the best option. However, it is beneficial to assign
a value to this parameter that is larger than the default value.

– large function insns: the predicted values suggest that the presence of
larger functions (large in terms of instructions count after inlining) is bene-
ficial to performance. Indeed, it potentially exposes more opportunities for
global optimizations.

– large function growth: the predicted values limits the size of these func-
tions imposing more restrictive constraints than the baseline.

– large unit insns: the predicted values separate the programs in two groups.
In the first group there is 401.bzip2, where the default value corresponds
to the predicted one. This indicates that this program is not sensitive to the
variation of this parameter. The second group contains the other programs.
The value of large unit insns is lower than that of the baseline suggesting
that the inliner must exclude more functions from the inlining decisions to
deliver better program performance.

– large unit growth: the predicted values suggest that the presence of smaller
modules after compilation benefits performance on the target architecture.

– inline recursive depth: this parameter always assumes the default value,
although there are recursive functions inlined within both 401.bzip2 or
403.gcc. This indicates the performance variation induced by varying this
parameter is predicted to be negligible.
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4.7 Performance Results

Our framework feeds the compiler with the inlining vectors in Table 7 and re-
compiles the programs in Table 4. The compilation produces one binary file
for each combinations (program, input). Hence, five versions of the program
401.bzip2, nine versions of the program 403.gcc, five versions of the program
445.gobmk and three versions of the program 464.h264ref are produced by our
framework. Performance results - shown in Table 7 - exhibit modest yet positive
speedups. This is in part due to the features of the architecture in use. Indeed,
when compared with prior generations, Westmere has a deeper pipeline and
large micro-architectural buffers to mask more miss-events; consistent chunks
of the working set sizes fit into the large last level of cache; the presence of a
cross-bar interconnection network, which replace the old front-side bus, provides
fast access to main memory. Despite the massive presence of training examples
that were not outperforming the baseline performance for each program, the
proposed procedure for the hypothesis selection allows leveraging the information
embedded in the model and selecting inlining vectors outperforming in both the
best inlining vectors seen during the training phase and the baseline performance.

To support the performance results in Table 7 we repeated the execution
of the baseline and the optimized program for > 50 times. Then we applied
t-test [32] to evaluate the hypothesis of equality of the average execution times
of the baseline and the predicted inlining vector. As a result, our statistical test
rejects the null hypothesis with a confidence level of 95%. This, in turns assesses
the significance of performance improvements from 2% to 9%. Furthermore,
our technique never provides performance losses to any of the combinations
(program, input) considered in this work.

5 Related Work

Prior studies acknowledge the potential that function inlining offers at compile
time to other optimizations [2–4, 33], parallelization [5] and vectorization [6].
Despite its importance, most of the efforts of prior work on function inlining
propose techniques to improve the accuracy of inlining decisions. Sheifler in [7]
profile the cost of function calls and provide this information to the inliner. Dean
and Chambers in [34] propose inlining trials. After inlining a call site, the caller
is compiled and executed so to measure the profitability of the current inlining
decisions. The inliner queries a database of inlining trials to decide to inlining
a call site. This technique requires a compiler to be capable of compiling, ex-
ecute and replay pieces of code. Hazelwood and Grove in [35] drive function
inlining and specialization using call contexts. The technique proposed in this
work focuses on the selection of inlining constraints, i.e., an inlining vector, to
minimize the completion time of a program subject to a given workload on any
architecture. Little attention has been paid in the past to investigate the influ-
ence of inlining constraints on performance of arbitrarily complex programs, i.e.,
composed of several functions and source files. In particular, the techniques ref-
erenced above do not account for the mutual influence among inlining decisions



On the Determination of Inlining Vectors for Program Optimization 179

during the compilation of a module. In this work, we deal explicitly with such a
complex aspect of automatic inlining with the assistance of a machine learning
model to select inlining vectors for program optimization.

Cavazos and O’Boyle in [9] presented a technique that uses genetic search to
dynamically tune JikesRVM inlining heuristics and selectively inline frequently
used methods of Java programs. Profiling of frequently used methods in pro-
grams with long uptime - e.g., application server, ensures in practice the con-
vergence of the search within the uptime of the application. Cooper et al. in
[10] extended the source-to-source C inliner proposed by Davidson and Holler
in [1], introducing the notion of condition string - a vector of static and dy-
namic program properties designed to characterize the call sites of a program
and to allow fine-grain inlining decisions. Selecting condition strings is as com-
plex as selecting inlining vectors and specialized search methods may represent
a solution to the problem. Hill climbing is used in [10] to explore the space of
condition strings. The work in [10] is concerned on characterizing the space of
condition strings rather than reducing the time of the search. However, the large
number of compilations and runs involved in the search, for each program, shows
that the direct application of specialized search techniques is not practical for
optimize statically compiled programs. Furthermore, the technique proposed in
[10] does not account for separate compilation, which further reduces attainable
performance.

In contrast, the technique proposed in this work - that extends our prior
work in [36] - deals with separate compilation and approaches the problem of
selecting inlining constraints in two passes. First our technique selects and builds
a performance prediction model using a small number of training examples and
then uses the model to search the inlining vector which optimizes performance
of a program.

Prior work [37–39] interested in predicting near-optimal compiler settings for
program optimization explore only on-off compiler setting, including those en-
abling/disabling inlining, but do not account for the selection of inlining con-
straints that directly influence the behavior of the inliner. To the best of our
knowledge this is the first paper investigating automatic selection of inlining
constraints, given a compiler and its parameterized heuristic. Differently from
prior work utilizing machine learning algorithms to predict near-optimal on-off
compiler settings [40–45, 38, 46, 39] our technique leaves the selection of the
model unspecified until the training set is available and automatically selects
the model using the rigorous and quantitative procedure described in Sections
3.3 and 3.4.

6 Conclusion

We proposed a new technique to determine inlining vectors for program opti-
mization. Our technique uses regression algorithms to learn the relation between
inlining vectors and completion time. Such a relation is subsequently used to pre-
dict inlining vectors able to optimize programs subject to a given workload and
targeting a given architecture.
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Key highlights of our technique are as follows: (1) The selection of the re-
gression algorithm is unspecified until the training set is available and many
algorithms are evaluated; (2) The rigorous selection of the most suitable re-
gression algorithm follows a procedure based 10-fold cross-validation; (3) Our
technique is suitable to be used in industry settings as a support for production
compilers. In such settings, applications are routinely tested, hence the training
data required to train our technique is often times already available, whereas ap-
plication performance is often times optimized for specific classes of workloads
rather than for any workload.

The effectiveness of our technique is shown by the experimental results with
GNU GCC. Our technique was able to select inlining vectors to optimize 22
combinations (program, input) on the state-of-the-art Intel Xeon Westmere.
Compared with the optimization level -O3 and its default inlining vector, our
technique yielded performance improvements ranging from 2% to 9%.
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APPENDIX A - Example of Cross-Validation

Let us assume that our training set is composed of 1000 (size of M) samples and that
we want to compare the two hypotheses ĥI and ĥII corresponding to the regression
algorithms I and II respectively. We carry out k-fold cross-validation using k = 10.
We divide our training set into 10 folds. Each fold is composed of 100 examples. The
outcomes of the features in the fold j are arranged as a vector as in Equation 1.

pj = (pj,1; · · · ; pj,100), with j = 1, 2, · · · , 10 (1)

To compare the two hypotheses at the pass j of the procedure, we take the fold j out of
the training set, train both the models I and II with the remaining 9 folds and use the
corresponding ĥI,j and ĥII,j to predict the outcomes corresponding to the (unseen)
features in the fold j - see Equation 2.

p̂j = (p̂j,1; · · · ; p̂j,100), with j = 1, 2, · · · , 10 (2)

The mean absolute error between pj and p̂j is computed as in Equation 3, whereas
the Pearsons coefficient of correlation [47–49] between pj and p̂j is computed as in
Equation 4.

αj =
|pj,1 − p̂j,1|+ · · ·+ |pj,100 − p̂j,100|

100
(3)

ρj =

∑100
s=1(pj,s − μj)(p̂j,s − μ̂j)√∑100

s=1(pj,s − μj)2 ×∑100
s=1(p̂j,s − μ̂j)2

(4)

where

μj =

∑100
s=1 pj,s

100
and μ̂j =

∑100
s=1 p̂j,s

100
At the end of the cross-validation process we obtain a sequence of 10 mean absolute
errors and a sequence of 10 coefficients of correlation. The two models, I and II , are
compared using the average values of the mean absolute errors and of the coefficients
of correlation as indicated in Equations 5 and 6.

μα
I =

∑10
s=1 αj,s

10
and μρ

I =

∑10
s=1 ρj,s

10
(5)

μα
II =

∑10
s=1 αj,s

10
and μρ

II =

∑10
s=1 ρj,s

10
(6)

By definition α > 0 and |ρ| ≤ 1 and too are the quantities in Equations 5 and 6. Model

selection occur as follows. Let assume, for example, that μα
I < μα

II and μρ
I > μρ

II > 0.

Both models have positive coefficients of correlation - indicating the presence of a linear

relation between the real and the estimated values during cross-validation. However,

the mean absolute error of the model I is lower than that of the model II . Consequently,

one would select/prefer model I to model II .
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Abstract. Modern scientific and server programs require multisocket,
multicore machines to achieve good performance. Maximizing the per-
formance of these programs requires careful consideration of program
behavior and careful management of hardware resources. In particular,
a program’s affinity can have a critical performance effect. For such ma-
chines, there are many possible affinities for a multithreaded program. In
this paper, we present AutoFinity, a solution to automatically generate
program affinity policies that consider program behavior and the target
machine. The policies are constructed with machine learning and used
online to select an affinity. We implemented AutoFinity on a 4-processor,
48-core machine and evaluated it on 18 multithreaded programs with
varying thread counts. Our results show that in 12 out of 15 cases where
affinity impacts runtime, the policy generated by AutoFinity chose affini-
ties that improved performance versus assignments that do not consider
program and machine behavior.

Keywords: policy generation, runtime adaptation, parallel performance.

1 Introduction

Today’s computers for scientific and server workloads are large multisocket, mul-
ticore machines, capable of large amounts of parallelism. The cores in these
machines share multiple resources, such as caches, memory controllers, and in-
terconnects. For a multithreaded program, allocation decisions can be made for
threads to share the hardware resources. Alternatively, threads can be given
exclusive access to resources (e.g., executing with their own last-level cache).
Because resource allocation impacts performance, it must be performed care-
fully and in response to runtime conditions, such as core availability, thread
count, and workload demand. The assignment of program threads to cores, i.e.
program affinity, is one way resources can be allocated.

It is well known that there is no single “best” program affinity to use across
all programs. For example, Fig. 1a shows the program streamcluster ’s region-
of-interest (ROI) execution time when executed with different affinities [1]. The
ROI is the program’s parallel section where the “work” is done. This figure shows
how performance (y-axis) changes with different affinities (x-axis). The program
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Fig. 1. Execution times of programs’ region-of-interest across different program affini-
ties on a 48-core machine (each program has 8 threads)

affinities are sorted by ROI execution time. Streamcluster uses 8 threads on a
48-core AMD machine in these experiments.

For streamcluster (Fig. 1a) the first 5% of affinities achieve an execution time
of around 150 seconds. Beyond this point, quality diminishes, resulting in an ex-
ecution time of about 200 seconds (33% slower). The remaining execution times
steeply increase as the affinity quality continues to diminish. The worst affinity
has an execution time of over 450 seconds! Because so few affinities are good, it
is unlikely that a randomly chosen affinity will result in good performance.

In contrast, swaptions (Fig. 1b) is relatively insensitive to affinity [1]. The ma-
jority of affinities have nearly identical performance. If an affinity was randomly
selected, the resulting execution time would likely be good because most affini-
ties performed well. However, some affinities cause swaptions to perform poorly.
The worst affinity has an execution time of 124 seconds (45% slower than the
best one). Even in this insensitive program, it can be beneficial to select its
affinity because there are cases that should be avoided.

It is important to understand why streamcluster and swaptions behave so dif-
ferently (Fig. 1a and 1b). Certain affinities allow programs to communicate more
quickly (e.g., by sharing cache space). However, sharing caches among threads
can reduce the cache space, causing the working set to overflow the cache. Other
affinities give a thread more cache space, by spreading the threads across sock-
ets and caches, at the cost of communication speed. Cache and communication
demands of a program directly influence which affinities are best.

In a study of PARSEC, streamcluster made frequent use of barriers [1]. Because
affinity affects communication, and thus, the speed atwhich threads reach and pass
through barriers, streamcluster is affected dramatically by its affinity. Swaptions
does not make much use of barriers or locks [1]. Furthermore, its working set size
is relatively small: A thread’s working set can fit in our experimental machine’s
private L2 cache. Thus, swaptions is more resilient to affinity changes.

As these figures show, there is diversity in program behavior across affinities.
The runtime resource manager (e.g., operating system) should support the user
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and select a well-behaving affinity for the user’s program. Furthermore, selection
should support any thread count as well as never-before-executed programs.

In this paper, we present AutoFinity, an automated system that generates
an affinity policy based on machine learning and training data. The generated
policy is used at runtime to select a program’s affinity. The policy can handle
programs that were not part of the training and/or thread counts that have not
been considered by training. AutoFinity can update its policy as it discovers and
records new information about programs.

A policy chooses a thread-count-independent affinity class, which we call an
affinity hint. The system resource manager (e.g., the operating system) uses a
hint to select an affinity. Affinity hints enable policies and affinity selection across
thread counts in the presence of runtime resource constraints.

We discuss the choices and trade-offs behind AutoFinity’s design. We evaluate
several design decisions on how AutoFinity can improve program performance.
The contributions of this paper are:

1. We show the importance of choosing program affinities;
2. We present AutoFinity, an automated, thread-independent solution to select

program affinity;
3. We provide guidelines to find the proper set of hardware performance coun-

ters (HPCs); and,
4. We evaluate AutoFinity and demonstrate its ability to produce policies that

guide affinity settings across a range of programs and thread counts.

This paper is organized in the following way. Section 2 discusses the design and
use of AutoFinity. Section 3 performs an evaluation of AutoFinity. Section 4
discusses related work. Section 5 concludes.

2 The Design of an Affinity Policy Generator

This work focuses on choosing program affinity for CPU/memory-bound pro-
grams. These programs will most benefit from proper affinity selection. There
are several challenges to choosing program affinity. First, the number of affinity
settings is large, as shown in Fig. 2a. With 24 threads there are 1941 settings on a
48-core machine. Selecting program affinities across thread counts is even more
difficult. Second, the selection process must support unknown programs and
yet quickly select a program affinity without evaluating, through trial and er-
ror, program affinities. Finally, affinity selection should handle runtime resource
constraints (e.g., an unavailable socket). We assume at least one available core
per thread and that, if is the system is shared between users, machine resources
(e.g., sockets) are statically partitioned to provide strong isolation.

AutoFinity addresses these challenges. It is built onREEact, a framework for vir-
tual executionmanagement [13].AutoFinity automatically builds anaffinitypolicy
to maximize a user-defined metric. The policy is consulted at runtime on unseen
programs to determine an affinity hint, a set of possible affinities that shall work
well. A hint is independent from thread count and is used by the resourcemanager
(e.g., operating system) as a guide for satisfying runtime conditions.
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Fig. 3. Policy usage steps

Fig. 2b shows the steps to build a policy. First, AutoFinity profiles training
programs for a range of affinities (step 1). This step gathers data that indi-
cates how well particular affinities behave. Program behavior is captured by
hardware performance counters (HPC) gathered during the program’s ROI. The
HPC values are recorded regularly, creating multiple samples. Each sample is
timestamped to facilitate the examination of cross-affinity program behavior
(e.g., two samples each from the beginning of a program’s execution). A sam-
ple observes program behavior over a fixed amount of time. As such, multiple
consecutive sample periods capture a program’s ROI behavior.

The samples are analyzed and transformed into an action table (step 2). The
action table is built to maximize a user-defined metric (e.g., performance). A
row in the action table states what affinity hint (discussed in Sect. 2.1) should
be used if a program exhibits a particular behavior at runtime. The samples are
also archived in a behavior database to build future policies.

Machine learning is used to compact the rows of the action table thus building
the affinity policy while also handling contradictory or missing information in
the table (step 3). Machine learning resolves the conflicts and “holes” through
its statistical analysis.

The generated policy is used at runtime to select an affinity hint. Fig. 3 shows
this process. To use the policy, the program’s thread count must be known. The
thread count can be discovered on the command line, in an environment variable,
or by monitoring thread creation syscalls.
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With the thread count, the behavior database is consulted. If the program
and its thread count have been previously observed then the behavior database
specifies the program’s affinity hint (step 1). Otherwise, the policy is consulted to
obtain the program’s affinity hint. To consult the policy, program behavior must
be observed. A starting affinity will be used and the program’s parallel behavior
will be observed. In this paper, we examine the program’s behavior once, during a
single sample period (step 2). Continuous sampling and adjustment are naturally
supported by our approach, but require a migration cost model (future work).

The sampled HPC values are used by the AutoFinity policy to select an affinity
hint (step 3). The HPC values and selected hint are saved into the behavior
database. The affinity hint can be used to choose a new program affinity. To
use an affinity hint, the program’s resource controller (e.g., operating system),
considers the hint and allocates resources (cores), ultimately choosing a program
affinity for the program (step 4).

Because AutoFinity continuously records program behavior, it can generate
a new policy as program information is accumulated (e.g., when the behavior
database has grown by some percent threshold). If a stored affinity hint corre-
sponds to an old policy, the hint will be removed.

2.1 Affinity Hints

Program affinities explicitly state which cores a program may use (e.g., cores
0–5). For a particular thread count, there may be thousands of possible affinity
choices. It is difficult to directly pick an appropriate affinity, and selecting an
affinity is made harder by supporting all thread counts. To reduce the number of
affinity options that a policy must consider, it is necessary to generalize program
affinities into classes (e.g., affinity hints).

An affinity hint suggests a relationship between cores (e.g., cores should be
distributed across different cache domains). The generalization of program affini-
ties enables techniques which work across thread counts. Using a hint, a pro-
gram’s resource manager will select an affinity based on available resources (e.g.,
sockets) and number of active threads.

There are two requirements for affinity hints. First, affinity hints should not
be overly specific: A hint should be realized at runtime, even under runtime re-
source constraints (e.g., an unavailable processor socket). Second, affinity hints
must capture the effects of core assignments on a thread’s: a) cache space, b) com-
munication, and c) access to main memory (DRAM).

Threads may benefit from a large amount of effective cache space (e.g., to
hold their private working set). The space available to a thread may be nega-
tively impacted by the presence of one or more threads in the same last-level
cache domain (LLC). However, sharing LLCs also allows threads to more quickly
communicate. Regardless of whether cores share one or more levels of cache, a
thread will occasionally have cache misses. It is important to consider the im-
pact of affinity on NUMA accesses. For example, programs may be able to better
exploit memory bandwidth if spread across NUMA domains.
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Affinity Hint Parameter Parameter Description Values Symbol

spreadAcrossSockets Prefer use of many sockets {True, False} S
spreadAcrossLLCs Prefer to not share LLCs {True, False} L
socketOptionGetsPriority Socket preference is priority {True, False} P

Fig. 4. Affinity hint parameters

GetAffinity(resources , threadCount , spreadAcrossSockets , spreadAcrossLLCs ,
socketOptionGetsPriority )

1 affs = AllAffinities(resources , threadCount )
2 if spreadAcrossSockets
3 socketSortFunc = PrioritizeByLargerUsedSocketCount

4 else
5 socketSortFunc = PrioritizeBySmallerUsedSocketCount

6 if spreadAcrossLLCs
7 LLCSortFunc = PrioritizeBySmallerLLCOccupancy

8 else
9 LLCSortFunc = PrioritizeByHigherLLCOccupancy

10 if socketOptionGetsPriority
11 prioritizedAffs = Sort(affs, socketSortFunc then by LLCSortFunc)
12 else
13 prioritizedAffs = Sort(affs,LLCSortFunc then by socketSortFunc)
14 return HighestPriority(prioritizedAffs)

Fig. 5. Algorithm for selecting a program affinity

To meet these requirements, the affinity hints have three boolean parameters,
leading to eight possible affinity hints (Fig. 4). The first affinity hint parameter dic-
tates whether threads should be distributed across sockets (spreadAcrossSockets ,
symbol: S). The use of multiple sockets may allow greater memory bandwidth, by
simultaneously employing memory banks. On the contrary, assigning threads to
the same sockets allows better communication in the same memory domain, po-
tentially avoiding the need to access remote nodes.

The second parameter, spreadAcrossLLCs (symbol: L), controls whether
threads should be assigned to cores that share a LLC. Threads that share a
cache may communicate with each other more quickly or may prefetch data for
the sharers. However, sharers may contend for cache space. The third parameter
of an affinity hint (socketOptionGetsPriority , symbol: P) captures whether the
sharing sockets or sharing LLC parameter is more important.

The three parameters define eight hints. We use boolean notation to rep-
resent each hint. For example, SLP specifies spreadAcrossSockets = True,
spreadAcrossLLCs = False, and socketOptionGetsPriority = False. This hint
dictates that application threads share as few LLCs as possible (L)1. The LLCs
are preferred to be on separate sockets (S). The priority in this example hint is
to pack threads onto as few LLCs as possible (P).

1 There is always at most one thread per core.
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With an affinity hint, the OS can consider runtime resource availability to
choose an affinity. This process is shown in Fig. 5. GetAffinity takes a list
of available resources (cores) and the amount needed (threadCount). A list of
affinities that can be made from the available resources is obtained (line 1).
Only affinities that use as many cores as threads are considered. The value of
spreadAcrossSockets is used to prioritize the potential affinities (lines 2–5). If
threads should be spread across sockets then affinities which utilize more sock-
ets are prioritized, otherwise affinities which use fewer sockets will be preferred.
In lines 6–9 spreadAcrossLLCs is similarly processed. A hint which states that
threads should spread across LLCs will prioritize affinities accordingly. Next,
the potential affinities are sorted based on socketOptionGetsPriority ’s value
(lines 10–13). Ties are broken by the secondary priority. The highest priority
affinity (i.e., the one that best matches the affinity hint) is returned (line 14)2.

2.2 Action Table Generation

AutoFinity analyzes program behavior to generate a policy that specifies an
affinity hint for a program under runtime conditions. This process consists of
two steps: 1) building the action table and 2) condensing the table into a policy.

The action table contains observed program behaviors and the affinity hint(s),
that will improve the user-defined performance metric in those situations. It is
built with initial training data: programs in various affinities will have their
behavior (HPC values) recorded. Additional behaviors can be gathered online.

Fig. 6 shows BuildActionTable. This function condenses performance in-
formation (observations) into an action table. BuildActionTable has two
more parameters: condense (a function) and leeway (an integer). Condense re-
solves different performance values coming from similar HPC samples across
multiple programs. This phenomenon is expected to occur occasionally, as pro-
grams may have similar behavior (e.g., cache misses) but different performances.

GetAffinity selects one configuration per affinity hint (assuming a fixed
thread count). Each of the eight affinity hints will correspond to a best match
affinity (eight affinities total). To allow training on affinities which almost would
be selected by GetAffinity, we introduce leeway . Leeway is an integer that
allows an affinity hint to correspond to additional affinities, beyond its best
match. A leeway of 0 means that only the best match affinities are considered.

Leeway is a maximum edit distance between two affinities. A leeway of l allows
a program affinity to be considered as belonging to an affinity hint if, by moving
up to l threads across LLC domains, the affinity becomes identical to that affinity
hint’s best match affinity. The movement of threads across LLC domains may
also move threads across sockets. Therefore leeway also places a limit on affinity
similarity in terms of socket usage.

For example, an affinity that has six threads share a LLC might be selected
for the hint SLP as its corresponding best match affinity (for 6 threads). With

2 Multiple affinities may tie for the same priority. In this case, the affinities will be
isomorphic and one will be chosen arbitrarily.



Automatic Generation of Program Affinity Policies Using Machine Learning 191

BuildActionTable(observations ,condense , leeway)

1 possibilities = ∅, actionTable = ∅
2 for program ∈ observations
3 for samplePeriod ∈ program
4 for aff ∈ samplePeriod
5 behavior = aff.observedPerformanceCounters
6 for destAff ∈ samplePeriod
7 perf = destAff.perf
8 possibilities [behavior ][aff ][destAff ].append(perf )
9 for behavior ∈ possibilities

10 for aff ∈ behavior
11 for destAff ∈ aff
12 affinityHints = AffinityHintFromConf(destAff , leeway)
13 if affinityHints = none

14 continue // Configuration does not map to an affinity hint.
15 consequence = condense(possibilities [behavior ][aff ][destAff ])
16 // An affinity may map to > 1 affinity hints (e.g., due to leeway).
17 for hint ∈ affinityHints
18 actionTable [behavior ][aff ][hint ] = consequence
19 for behavior ∈ actionTable
20 for aff ∈ behavior
21 bestAffinityHint = max(actionTable [behavior ][aff ])
22 WriteTrainAction(behavior , bestAffinityHint)

Fig. 6. Algorithm for building the action table

a leeway of 1, the affinity which causes 5 threads to share a LLC while putting
another thread on a separate socket, would still be considered as corresponding
to SLP because only 1 thread was moved as compared to the best match affinity.

In Fig. 6 the first set of loops (lines 2–8), build up a table, possibilities ,
which stores the affinity (aff ) and its associated behavior (HPC values). For each
affinity with recorded behavior, alternate affinities (with the same thread count)
are considered. These are considered to be destination affinities (destAff ) that
the program could have been in. For each alternative affinity, the performance
metric of the program in that sample period affinity is recorded (perf).

Programs may exhibit similar behavior, and therefore, the first set of loops
accumulate a list of multiple performance metrics (line 8). List items are reduced
into one entry using the condense function (lines 9–18). BuildActionTable

also converts destination affinities to their corresponding affinity hint(s), with
AffinityHintfromConf (the inverse of GetAffinity). After this step, the
action table contains a list of affinities and associated behaviors, affinity hints
that could have applied, and the consequent performance for the affinity hints.

Finally, the action table is ready to be written. In lines 19–22 the action
table is iterated over. For each type of behavior seen under each experienced
affinity, BuildActionTable finds the best affinity hint to be in. These results
are written to a file as a series of rules (WriteTrainAction). Each rule states
an affinity that should be used if a particular behavior is observed. Contradictions
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AffinityHintPolicySW(dCacheAccesses , invalidDCacheLinesEvicted ,
exclusiveReadRequestsToL3CacheFromAnyCore , retiredUops)

1 if retiredUops ∈ (BoundLower0,BoundUpper0]
2 if dCacheAccesses < Bound1 and invalidDCacheLinesEvicted < Bound2

3 return SLP
4 if invalidDCacheLinesEvicted < Bound3 and

dCacheAccesses ∈ (BoundLower4,BoundUpper4] and
exclusiveReadRequestsToL3CacheFromAnyCore < Bound5

5 return SLP

6 return SLP

Fig. 7. Example affinity hint policy

between rules are expected, and may be due to noise and/or different programs
exhibiting similar behavior, yet operating best in different affinity hints.

2.3 Building the Affinity Hint Policy

To convert the action table to a policy that can be consulted at runtime, we
use JRIP from WEKA [4]. JRIP is an implementation of Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), a propositional rule learner
that produces a series of rules for classification. Each rule is a set of conditions
joined by and operators. RIPPER fills in “holes” due to incomplete data (i.e.,
combinations of HPC values that were not observed). It also prunes rules that are
statistically insignificant. We use RIPPER because it creates rules for missing
data, produces simple, human-readable policies, and its rules are easily converted
into a code implementation to use at runtime. We use WEKA’s default settings.

An example policy produced by JRIP is shown in Fig. 7. This policy is used
by swaptions in Sect. 3. For readability, numeric values have been replaced with
constants. The policy’s parameters are the values of four HPCs. The selection
of these counters is discussed later (Sect. 3.1). Depending on the values of these
counters, one of three affinity hints will be selected (SLP, SLP, or SLP).

These affinity hints have been selected by the RIPPER algorithm as the only
necessary affinity hints (i.e., there is no fourth affinity hint that the policy will
select). As more program performance data is obtained and the policy is rebuilt,
additional affinity hints may become available for selection.

3 Evaluation

The previous section described how AutoFinity generates affinity hints, builds
the action table and its policy, and uses its policy. This section presents experi-
mental results for AutoFinity on a diverse set of programs and thread counts.

All evaluations were performed on the machine described in Fig. 8. The ma-
chine is a 48-core AMD Opteron 6164 NUMA system. Each of the four sockets
has 2 NUMA domains (8 NUMA domains total). Each NUMA domain has 6
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Machine Component Component Details

Processors 4 AMD Opteron 6164 HE sockets (48 cores total)
Socket 2 NUMA nodes
NUMA Node 1 L3 cache (LLC)
L3 Cache 5 MiB cache, 6x cores
Core 1.7 GHz, private L1 $ (64 KiB), private L2 $ (512 KiB)
Operating System Linux 2.6.39.1

Fig. 8. Experimental Machine

cores that share an L3. The cores have private L1 and L2 caches. Programs are
executed on an otherwise idle system.

The 18 evaluated benchmarks are culled from PARSEC 2.1 [1], OmpSCR
2.0 [3], and the NAS Parallel Benchmark Suite (NPB) 3.3.1 [7]. The PARSEC
benchmarks use the largest input size (“native”) and the NPB benchmark uses
the “A” input size. Because OmpSCR does not provide official inputs, we con-
figured its programs to execute in a similar amount of time as the PARSEC
benchmarks (about one to two minutes with eight threads).

We use the following PARSEC programs: blackscholes (BS), bodytrack (BT),
canneal (CN), dedup (DD), facesim (FS), fluidanimate (FA), freqmine (FM),
raytrace (RA), streamcluster (SC), swaptions (SW), vips (VP), and x264 (X).
From OMPSCR we use c fft (FT), c fft6 (FT6), c lu (LU), c mandel (MN), and
c md (MD). Lastly, we use dc (DC) from NAS. Some programs (e.g., PARSEC’s
ferret) were not used due to compilation errors, framework incompatibilities, or
short execution times (i.e., a few seconds).

We use AutoFinity to maximize instructions per second (IPC), consequently
minimizing program execution time. We chose this metric because it captures
the rate of application progress and is easy to obtain via hardware performance
monitoring. As we show later, choosing IPC works well to reduce execution time.

Before using AutoFinity to select a program’s affinity hint and program affin-
ity, we remove that program’s data from the training data. This causes the pro-
gram to be treated as a never-before-executed program. The AutoFinity policy
is built on the remaining programs’ data (leave-one-out cross-validation).

To evaluate the quality of the generated policy, we launch the program in a
fixed affinity and observe one sample’s HPC values (as shown in Fig. 3). The
AutoFinity policy uses the HPC values to select an affinity hint. An affinity
is selected from the hint. We then execute the program with that affinity and
observe its ROI runtime. To find average performance, we take the geometric
mean of each program executed under their selected affinity.

By default, previously unexecuted programs and thread counts are executed
under a distributed affinity. A distributed affinity allows the AutoFinity policy to
make better affinity hint suggestions. A distributed affinity spreads a program’s
threads across sockets and LLCs.
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3.1 Choosing and Gathering Hardware Performance Counters

Before an AutoFinity policy can be used, the policy must be built. This requires
profiling programs using HPCs. We use feature selection to choose appropriate
counters automatically. The chosen counters will be measured during the initial
training period as well as online (e.g., to consult the policy). To determine which
counters were the best to help AutoFinity maximize IPC, we profiled several
programs multiple times, collecting HPC values periodically with 60 manually
selected counters.

Our experimental machine supports recording up to four counters at a time.
Additional counters bring dwindling returns in terms of utility. The machine
learning algorithm (i.e., RIPPER) will ignore counters and/or counter values
that are statistically insignificant.

We used WEKA’s CfsSubsetEval feature selection algorithm to choose the
four performance counters that best correlate with our objective metric, IPC.
This method evaluates features by considering the individual predictive ability
of each feature along with the degree of redundancy between them. Features
were selected and “grown” with a greedy search method.

Out of the 60 counters considered, the feature selection process selected the
following features: 1) data cache accesses, 2) invalid data cache lines evicted,
3) exclusive read requests to the LLC from any core, and 4) retired micro-ops.
These HPCs capture well how affinities affect IPC due to:

1. Data cache accesses indicate the memory demands of a program.
2. Cache lines become invalid if a shared line becomes modified by another

core. Therefore, this counter indicates thread communication.
3. Exclusive read requests to the LLC cache also indicates communication and

memory demand. A cache line in the exclusive state may soon become shared
if another thread accesses that line. Exclusive LLC read requests may also
allow one thread to prefetch another’s data.

4. Retired micro-ops counts the number of operations completed by the pro-
cessor. Our experiment machine, an x86-64 processor, executes instructions
that decode into one or more RISC-like operations. Therefore, this metric
captures application performance (IPC).

Lastly, for our techniques to work across a range of thread counts and sampling
period lengths, we normalize each performance counter value to the number of
threads and the number of seconds over which the counter was gathered.

Knowing which four HPCs were necessary to observe and maximize IPC, we
gathered the selected counters and IPCs for each program. The programs are
executed with 8 threads and counters are recorded for each of the 78 program
affinities (8 threads). This step gathers the initial training data.

3.2 Selecting a Discretization Method

To build the action table, the training data must be put into discrete bins.
After discretization, the data is analyzed and the action table is constructed (as
discussed in Sect. 2.2). We consider two methods to discretize the data:
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Method Geo. Mean

equal-width 79.4
equal-frequency 83.1

(a) Impact of the discretization method

Function Geo. Mean

average 80.6
gmean 80.6
hmean 80.6
max 81.5
median 79.4
min 83.1
sum 80.6

(b) Impact of the condense function

Fig. 9. Effects on average program execution time

1. Equal-width binning: Each bin corresponds to a constant range over the
possible values of a HPC. Equal-width binning uniformly covers the range
of observed performance counter values.

2. Equal-frequency binning: Bin widths are uneven to allow higher resolution
where HPC values are most concentrated. Bins have the same item counts.

While we tried a range of numbers, we found that five bins for each method
worked well, without making individual bins too wide or small. WEKA’s equal-
width discretization supports the automatic adjustment of the number of bins
to be data-appropriate. We enabled this feature. Equal-frequency binning does
not support such an option. In our experience, the adjustment is influenced by
the number of requested bins.

To evaluate the discretization method, we perform cross-validation. The geo-
metric mean of the program execution times is computed. Because the method of
discretization is not the only adjustable parameter, we fix the other parameters
(e.g., the condense function) to their best values (described later).

Fig. 9a shows the results of varying the discretization method. The results
show that equal-width binning improves the geometric mean by approximately
5% (a mean of 79.4s versus 83.1s). Equal-width binning does better because
equal-frequency binning creates very wide bins to allow for occasional narrow
bins. However, a policy built with equal-frequency binning may be unable to later
differentiate between HPC values which, though the difference between them is
large, are grouped into the same wide bins. Thus, we conclude that equal-width
binning is the best discretization method.

3.3 Selecting a Condense Function

We considered multiple condense functions to determine which method works
best. The condense function combines performance measures from similar behav-
ing samples gathered from the same affinity. Similar to Sect. 3.2, we set the other
parameters to their best values. The condense function can be: a) arithmetic
mean (average), b) geometric mean (gmean), c) harmonic mean (hmean),
d) max, e) median, f) min, and g) sum.
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For example, suppose that program a is similar to b in that both have high data
cache miss rates among other counter values. After analyzing their performance
in different affinities, it is determined that both programs would execute fastest
in affinity hint h. However, due to differences in program behavior, a will obtain
an IPC in h of 2, whereas b will obtain an IPC of 1.5.

During action table and policy construction, AutoFinity must consider the
expected IPC of a program, c, running under hint h, that is similar to a and b
(e.g., c is a not-yet-encountered program). The action table could consider c to
have a runtime of 2 (max), 1.5 (min), or 1.75 (average). The condense function
determines the expected value.

Fig. 9b shows the results of varying the condense function. The best func-
tion, median, has a geometric mean of 79.4s. The worst condense function is
min, with a geometric mean of 83.1s, about 5% worse than median’s result.
min results in the worst performance because it creates a pessimistic policy. It
penalizes types of behavior which are exhibited by multiple programs (e.g., if
three programs exhibit the same behavior, the worst performing one is the only
one whose performance will be considered).

Although min makes a pessimistic policy, and max makes an overly optimistic
one, median function is balanced and works well. Similarly, each of the means
had good behavior.

3.4 Other Parameters

There are three other parameters for AutoFinity: 1) whether to normalize IPCs,
2) whether to include affinity-insensitive programs in the training data, and
3) leeway.

A program’s IPC can be normalized to the smallest IPC recorded for that pro-
gram. This allows for easier comparison of IPCs across programs. For example, if
using a particular affinity hint can boost a program’s IPC by 0.1, then this may
be a relatively minor performance increase (e.g., 3% if the original IPC is 3.0) or
a relatively larger increase (e.g., 10% if the original IPC is 1.0). Normalization
allows these trends to be captured.

However, using the best parameter settings for the other policy parameters
(e.g., the best condense function, the best discretization method) causes normal-
ization to have no significant benefit. Nevertheless, we normalize IPCs because
it did, for suboptimal parameter settings, result in a better policy.

The second parameter is whether affinity-insensitive programs are included in
the training data. We define program insensitive programs as programs whose
ROI execution time standard deviation is less than 1% of the program’s average
execution time across all affinities. Intuitively, programs whose behavior is in-
sensitive to affinity contain no useful information to guide affinity selection. At
worst, the data from insensitive programs may dilute important information.

As with IPC normalization, we found that using the best possible parameter
settings causes the removal or inclusion of affinity-insensitive programs to make
little difference (less than 1%). We did find it was occasionally beneficial for less
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Fig. 10. Cumulative and per-program discretized behavior coverage

optimal settings. Therefore in our later evaluation, programs that are affinity
insensitive are removed from the training data.

Lastly, we set leeway to 2. This leeway setting was determined experimentally
(not presented due to space constraints). For 8 threads, this value resulted in 31
possible destination affinities while building the initial AutoFinity policy.

3.5 Program Behavior Coverage

Exposure to diverse program behavior allows the action table and policy to
appropriately respond to unseen programs. To gain insight into this diversity,
we analyzed program behavior across all possible affinities for 8 threads.

We define a program as exhibiting a behavior, b, if during the training pro-
cess it produces a discretized HPC sample that is equal to b. Each program, p,
produces a set of unique behaviors, Bp, where Bp = {b0, b1, ...}. Examining the
discretized behaviors, we can determine the diversity of a program (|Bp|) and
whether programs exhibit the same number of behaviors.

Other questions that we sought to address include whether some programs
have more diverse behavior than others (i.e., whether |Bpi | < |Bpj |), and what
is the effect of a program’s behavior on the cumulative training information.

Figure 10 shows how coverage is influenced by the programs. The figure’s x-
axis is sorted by the number of unique behaviors in each program. It has two
plots. The “+” line shows the number of unique behaviors in each program,
while the “×” line shows the number of cumulative behaviors as the programs
are added (left to right).

From the figure, we broadly place each program into one of two categories:
1) programs that have few unique behaviors and 2) programs that exhibit a
diverse range of behavior. Approximately half of the programs, those before and
including FM (freqmine), have few behaviors, and therefore, exhibit consistent
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behavior across their lifetime and affinities. This is shown by the low height of
the “unique behaviors” line. Even though 12 programs fall into this category,
each with an average of 2 unique behaviors per program (24 total), there are only
15 unique behaviors between them (i.e., at the point on the x-axis for FM, the
cumulative unique behaviors line has a y-value of 15). Each program, therefore,
contributes on average only 1.25 unique behaviors to the cumulative training
data (15 behaviors over 12 programs = 1.25 behaviors per program).

The other programs (after FM) have great diversity. This diversity may be due
to phases and/or sensitivity to affinity. These 6 programs contribute 49 unique
behaviors to the training data, for an average of more than 8 unique behaviors
per program. C lu has the most unique behaviors. It exhibits 18 unique behaviors
and contributes 15 to the cumulative list. Streamcluster has the second highest
number of unique behaviors (14) and contributes 5 unique behaviors.

From this data, we believe that only a few training programs (i.e., those that
exhibit a range of behavior) may be necessary to produce a good policy.

3.6 Performance Evaluation

Next, we evaluate how the policies from AutoFinity choose affinity hints for
unknown programs. We compare the execution times of the programs using the
AutoFinity-selected affinities against two static policies:

1. Packed : This policy places threads together, causing them to share LLCs
whenever possible, and preferring to use as few sockets as possible (SLP).

2. Distributed : This policy distributes threads uniformly across sockets and
LLCs (SLP).

AutoFinity uses a leeway of 2 and affinity insensitive programs are removed from
the training data. IPCs from a program are normalized to the slowest IPC from
that program. HPC monitoring uses a sample size of 10 seconds for the four
counters described in Sect. 3.1. Lastly, the condense function is median.

Fixed Thread Count Evaluation. First, we compare the runtime of each
program with 8 threads under the affinities chosen by AutoFinity. Training data
also consisted of programs with 8 threads. Figure 11 shows these results.

The y-axis is ROI execution time (lower is better). The x-axis shows each
program, with the geometric mean at the far right. Subscripts indicate thread
count. For each program, three bars are shown. The first bar is the runtime
under a packed affinity. The second bar is runtime under a distributed affinity.
Finally, the third bar is runtime for the affinity chosen by the AutoFinity policy.

Some programs are insensitive to the policy. Blackscholes, freqmine, c md,
c mandel, raytrace, swaptions, vips, and x264 are not significantly affected by
affinity. To a lesser extent, fluidanimate is insensitive too. However for most pro-
grams, the affinity is important. Five of the programs prefer a packed affinity
(bodytrack, canneal, dedup, c fft, streamcluster). These programs’ threads com-
municate and/or share data. For bodytrack, dedup, and c fft, AutoFinity selects
an affinity that performs nearly as good or just as good as the best static policy.
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Fig. 11. AutoFinity, packed, and distributed ROI execution times for 8 threads

The AutoFinity policy selects a poor affinity hint for streamcluster (SLP). The
result is due to streamcluster ’s unique behavior. As shown in Fig. 10 (discussed
in Sect. 3.5), streamcluster has the second highest number of unique behaviors.
Because streamcluster exhibits such different behavior (as compared to the other
programs), AutoFinity did not build an appropriate rule to handle programs like
it. Additional training data (i.e., from streamcluster or programs which exhibit
behavior like it) would, we believe, allow the AutoFinity policy to make better
affinity hint selections.

Dc, facesim, c fft6, and c lu prefer a distributed affinity. These programs have
large memory footprints, as evidenced by the distributed policy preference. For
dc, c fft6, and c lu, AutoFinity chooses an affinity hint and program affinity
which performs just as well as the distributed static policy.

In 7 out of 9 cases involving affinity sensitive programs, AutoFinity chose a
program affinity which performed nearly as well or just as well as their preferred
static policy. The geometric mean (last set of bars in Fig. 11) shows that Auto-
Finity has a slight runtime advantage over either static policy. The advantage
to AutoFinity is the user does not have to manually select the proper affinity.

We also compared AutoFinity’s performance against an oracle policy, built
through exhaustive experimentation. On average, AutoFinity achieved 96% of
the performance (ratio of the oracle and AutoFinity’s geometric mean). For three
programs, it tied with the oracle policy (dc, c fft6, c lu).

Varying Thread Count. Next, we evaluate AutoFinity on each program with
a range of thread counts (4, 8, 16, and 24 threads)3. Training data was obtained

3 Facesim and fluidanimate do not support executing with 24 threads.
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Fig. 12. AutoFinity and static policy ROI execution time comparisons across programs
and thread counts for interesting cases

only for a thread count of 8. To test AutoFinity on a program, we remove that
program from the training data before building the AutoFinity policy.

As previously shown, some programs have behavior that is not affected by
affinity. Many programs, however, do show widely variable behavior. Affinity
insensitivity is even sometimes thread count dependent. We deem the cases that
have at least a 20% ROI runtime difference between their packed and distributed
affinities, as “interesting cases.” Interesting cases have a potential for bad or
good affinity choices. Due to space constraints, we show and discuss only the
interesting cases across the thread counts. There are 15 interesting cases.

Figure 12 shows the interesting cases. The x-axis shows the program’s name
with subscripts indicating thread count. The y-axis is the runtime of the pro-
gram’s ROI (lower is better). The first bar is the runtime for the packed affinity,
the second bar is the runtime for the distributed affinity, and the third bar is
the runtime of the program under the affinity chosen by AutoFinity.

The figure is annotated to indicate whether AutoFinity chooses an affinity
that is within 1% of the best static policy. Wins (i.e., when AutoFinity is within
1%) are marked by “�.” If AutoFinity does not have a performance within 1%
of the best static policy, we mark the graph with “!.”

Dedup (DD) is an interesting program, appearing 3 times (4, 8, and 16
threads). Each time, dedup does best under a packed affinity. Because it is a
pipeline parallel program, there is communication between threads as data is
passed from stage to stage [1]. Therefore, it is natural that dedup would benefit
from packed affinities, which cause threads to share cache space. In each case,
the AutoFinity policy chooses an appropriate program affinity, and thus allowing
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dedup to execute quickly even though the AutoFinity policy was not built on
data obtained from observing dedup.

Dc also appears 3 times in Fig. 12 (using 4, 8, 16 threads). Each time, it
prefers a packed affinity. If dc is executed with 4 threads, AutoFinity chooses an
affinity hint that performs better than the best static affinity (SLP).

Streamcluster (SC) is another interesting case. If run with 8 threads (SC8),
it benefits most from a packed affinity. Unfortunately, AutoFinity chooses an
affinity whose runtime is similar to the distributed affinity’s runtime. If using 16
threads (SC16), streamcluster prefers a distributed affinity. AutoFinity chooses
an affinity which performs almost like (in terms of execution time) the preferred
distributed affinity, but is not within 1%, and therefore, it is not classified as
a win. If 24 threads are used (SC24), streamcluster still prefers a distributed
affinity. AutoFinity actually beats both the packed and distributed policies and
chooses an affinity hint that performs better than either (SLP).

Finally, in facesim (FS16) the packed affinity is almost 75% slower than the
distributed affinity. Unfortunately, in this case AutoFinity chooses an affinity
hint that behaves like the packed affinity. Additional behavior data would im-
prove AutoFinity’s hint selection.

Overall, AutoFinity chooses a good affinity in most cases (12 out of 15 cases).
It even beats the distributed and packed static policies in two cases. These results
across thread counts show that AutoFinity policies and affinity hints work well.

4 Related Work

Wang et al., like our work, use machine learning to choose affinities [14]. Their
approach requires a special compiler or dynamic binary instrumentation to ex-
tract features. Their offline approach requires a single-threaded execution of a
previously-unseen program. Fengguang et al. also use dynamic binary instru-
mentation to choose affinities. They use an analytical model and gathered in-
formation to predict program performance in various thread settings [9]. We do
not require dynamic binary instrumentation or special training runs before an
affinity can be chosen.

Tam et al. [10] propose a system that uses hardware performance counters to
decide thread affinity settings. Their work requires hardware support to track
data sharing on a cache line basis. Our system supports responding to runtime
resource availability by providing thread-count-independent affinity hints. We
present guidelines for using our techniques on new systems, by discussing fea-
ture selection, sensitivity studies, and making use of more generally available
performance counters. Our techniques adapt online and are more generic, sup-
porting multiple performance metrics (not just IPC). Evaluating AutoFinity on
other performance metrics is future work.

Klug et al. [5] propose autopin, a tool which uses hardware performance coun-
ters to choose thread affinities. Autopin uses a set, evaluate, iterate strategy:
threads are given an affinity and the program behavior is measured. Another
affinity is then evaluated and eventually the tool chooses an affinity. They ulti-
mately reach well-performing affinity settings. Radojković et al. have a similar
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approach (e.g., resource monitoring, trial and error) but focus on network appli-
cations [8]. Our approaches decide on an affinity after a single sample.

AbouGhazaleh et. al use machine learning to build a runtime policy that
examines hardware performance counters. However, their work is applied to em-
bedded single-core systems, and focuses on optimizing energy-delay product [8].

Our techniques currently assume program behavior with a particular thread
count does not change across invocations. Some programs have changing be-
havior across inputs. Techniques exist to model and predict how an input will
affect a program’s behavior [12]. Such techniques could be integrated into the
AutoFinity flow, and enable the reuse of learned program behavior.

Under AutoFinity, programs whose behavior is not stored in the behavior
database may dynamically change their program affinities (i.e., after sampling
an affinity hint is chosen). For some programs, dynamic affinities can cause poor
NUMA behavior. Blagodurov et al., propose dynamic techniques to improve
NUMA page placement, thus solving this potential issue [2]. Terboven et al. also
examined data placement and proposed OpenMP-based solutions [11].

Lee et al. discuss why a program might use different thread counts across
invocations [6]. They provide an automatic system to change program thread
count. This motivates the need for our work.

Although some programs’ were insensitive to the affinity setting, Zhang et al.
show how to modify programs to better share caches [15]. With their techniques,
programs can have improved performance. The modified programs will then, we
expect, require good affinity selection like that provided by AutoFinity.

5 Conclusion

Program affinity can have a large impact on performance; it is important to select
the “right” affinity to maximize performance. In this paper, we present Auto-
Finity, a method to automatically generate a policy that can select at runtime
the affinity of a previously unknown program. AutoFinity uses machine learn-
ing to derive thread-count-independent policy from training data. We evaluate
AutoFinity on previously unknown programs, across a range of thread counts
on which AutoFinity may not have been trained. In 12 of 15 cases where affinity
has a significant impact on performance, we show that AutoFinity’s selection
performs within 1% of, or better than, fixed assignments that do not consider
program behavior. In two of these cases, AutoFinity outperforms the fixed as-
signments. AutoFinity is a practical and successful solution to the problem of
choosing program affinity.
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Abstract. There is a huge body of sequential legacy code that needs to be refac-
tored for multicore processors. Especially for control code for embedded systems
it is often easy to split the program into multiple threads. But it is difficult to
identify critical sections to avoid data races as the legacy code hides its synchro-
nization in a static schedule, priorities and interrupts.

To ease refactoring, this paper presents a new static data-dependence anal-
ysis that identifies necessary critical sections in thread-parallel code that does
not yet contain any synchronization between threads. A novel optimization pass
then breaks up and shrinks the identified critical sections to maximize parallelism
while preserving correctness. Our technique proved to be successful in refactor-
ing sequential assembly-like legacy codes in an industry-sponsored project.

But as refactoring projects are hard to evaluate quantitatively and as the do-
main specific low-level language is of limited interest, we use a standard bench-
mark suite for which the optimum, i.e., the minimal set of the necessary atomic
block annotations is known. We removed the annotations and let the compiler at-
tempt to rediscover them. For 5 out of 7 benchmarks, our compiler identified the
same critical sections as the original programmers did by hand. For the other two
benchmarks, the compiler found slightly larger (but also correct) critical sections.
In all cases, the versions of the benchmarks that the compiler annotated achieved
the original run-time performance.

1 Introduction

With the increasing use of multicore processors, the refactorization of sequential legacy
applications becomes more important. For certain codes the division of the program into
multiple threads is relatively easy. This is especially true for low-level control codes
in embedded systems where all the concurrent control loops are sequentialized into
a (sequential) static schedule. When refactoring such code for use on multicores, the
control loops are obvious but it is difficult to identify the necessary critical sections
(atomic blocks) to avoid data races, because these have been implicitly implemented in
the static schedule or are hidden behind priorities and interrupts. It is likely to miss a
critical section, make it too small or too large. If critical sections are implemented with
mutexes, it is also too easy to introduce deadlocks.

To solve this problem, we leave the identification of critical sections to the compiler.
It analyzes parallel, but unsynchronized code and determines where critical sections are
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necessary. By means of static data-dependence techniques our algorithm determines the
set of variables that concurrent threads share and it also analyzes the correlations be-
tween those variables. Of course, every access to a shared variable must be atomic. But
correlations between variables also dictate that these variables are to be accessed within
an enclosing critical section. Hence, sets of shared variables and correlations among
them determine where critical sections need to be placed in the code. We will show
that there are two types of correlations which we call explicit and implicit relation-
ships. Explicit relationships can be detected by the compiler by means of dependence
analyses. Implicit relationships must be annotated by the programmer. In order to keep
critical sections small, a novel optimization pass breaks up the found critical sections
into several smaller ones, if possible. In general, these optimizations work by determin-
ing which data dependences do not indicate variable correlations and can therefore be
ignored by the compiler. Furthermore, we allow a programmer to use annotations that
further help to make critical sections smaller.

With this compiler tool at hand, the refactoring workflow for legacy applications is
then as follows. A programmer starts to parallelize the code by dividing it into multiple
threads, but without adding critical sections. Next, s/he asks the tool to suggest critical
sections. In the (rare) presence of implicit relationships, the critical sections may be
too small (the compiler might have placed accesses of correlated variables in different
critical sections instead of putting them together into one section), but the programmer
at least knows all places where races may occur, instead of having to find them on his
own. S/He can add annotations to mark implicit relationships in the code. If a suggested
critical section seems to be too large, the programmer can think of ways to restructure
the code to allow for smaller critical sections or can add annotations to indicate which
data dependences can be safely ignored by the compiler analysis. That way, adding
synchronization becomes an iterative process that is less error-prone in comparison to
having to add all synchronization manually to large legacy code bases.

Another potentially useful application of the techniques presented in this paper would
be a checking-tool. Assume a programmer that writes a new parallel program including
the critical sections. The checking-tool would ignore these critical sections provided
by the programmer, analyze the unsynchronized code, identify critical sections, and
present differences between the generated and the programmer-provided critical sec-
tions. The programmer can then use this diff to reason about the correctness of his/her
solution.

As the industry automation programs we worked with are written in a proprietary do-
main specific assembly-like language, we present our technique for a broader audience
in a C dialect. We have frontends for both languages that generate the same interme-
diate representation. The C frontend is a source-to-source C compiler that uses POSIX
threads to generate parallel code. It accepts C extended with the following extensions
for parallel programming. The statement t = spawn f() creates a new thread that starts
execution in function f and returns a handle of the thread in t. There is also a statement
join t that waits until a thread finishes. In order to be able to coordinate the work of
multiple threads and to divide it into multiple computational phases, the language also
supports barriers. For convenience, the dialect supports a parallel for loop where each
iteration spawns a new thread and every thread executes the body of the loop. At the
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end of the loop, there is an implicit join statement that waits for the threads to finish.
Note that our compiler does not automatically parallelize the code, it only adds critical
sections (atomic blocks) to the output.

In the related work in Sec. 2, we compare our approach to find critical sections to
other approaches. We discuss the basic algorithm of our technique in Sec. 3. Sec. 4
discusses optimizations of the basic algorithm.

When refactoring sequential legacy applications, we cannot judge how well our tech-
nique works in practice because we do not know what an optimal refactoring looks like.
Hence, in Sec. 5 we evaluate the presented compiler techniques on a standard bench-
mark suite for which the optimum, i.e., the minimal set of the necessary atomic blocks
is known. We use 7 benchmark codes with explicit critical sections. We strip those crit-
ical sections from the codes and show that our technique essentially rediscovers the
same sections and achieves the same execution times. Annotations are needed in only 2
benchmarks to achieve results similar to the original codes.

The contributions of this paper are (1) a language independent technique that identi-
fies critical sections in the code by analyzing data dependences and a few annotations,
and (2) optimizations that further analyze the large number of data dependences in the
program in order to detect those dependences that do not indicate correlations between
shared variables and therefore do not need to be considered to identify correct critical
sections, causing larger sections to be broken up into multiple smaller ones.

2 Related Work

The Abstraction-Guided Synthesis of Synchronization (AGS) algorithm of [19] identi-
fies atomic blocks in programs, by means of programmer supplied specifications that
describe which program states may not occur. AGS then uses abstract interpretation of
the program to find all interleavings that may lead to invalid states. Provably minimal
critical sections are added to the program to avoid such interleavings. An incorrect spec-
ification results in incorrect atomic blocks. In contrast, our work identifies (potentially
non-minimal) critical sections, but it does not need a specification. AGS’ critical sec-
tions are also only minimal with regard to the abstraction used in the abstract interpreta-
tion. AGS also suffers from the state explosion problem that leads to very long compile
times. While we tested our work in an industry-sponsored refactorization project and
with a full set of standard benchmark codes, AGS is evaluated with small kernels only
that neither use pointers nor dynamically allocated memory which we allow.

An algorithm that detects critical sections must know which variables are correlated
and therefore need to be accessed within the same critical section. Unfortunately, our
approach cannot detect all correlations. We miss so-called implicit relationships, see
below, that the programmer needs to express with annotations. MUVI [13] is an or-
thogonal approach that searches for such variable correlations that are not explicitly
specified in the code. While we rely on the programmer to use additional annotations
if necessary, MUVI analyzes a program with critical sections for variables that are ac-
cessed together. MUVI uses code metrics (like static distance in the code) to classify
whether accesses to different variables belong together. As these are heuristics, the an-
alysis can still miss some correlations. If related variables are updated in an inconsistent
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manner or if the accesses appear in two different critical regions, MUVI reports this as
an error to the programmer. We could integrate MUVI into our compiler and help the
programmer in adding explicit annotations for implicit relationships.

In Data-Centric Synchronization (DCS) [18] a programmer declares synchronization
constraints that specify up front which data need to be accessed within the same critical
section. The programmer annotates a (Java) class and declares which fields in objects
need to be accessed together atomically. DCS then automatically infers critical sections.
As object fields cannot be accessed through pointers, DCS can find all places that need
synchronization and encloses them in atomic blocks. Colorama [4] is hardware support
for DCS. The hardware tracks data accesses and decides when to start a critical section,
while our algorithm is a purely static approach that does not need hardware support.
In contrast to DCS’s explicit declarations, our algorithm derives synchronization con-
straints from data dependences that are present in the code and only relies on annota-
tions where necessary. While it is easy to derive that a critical section must start before
the first access to shared data, DCS does not know when a critical section is allowed
to end. DCS assumes that a critical section ends at the end of the function that started
the critical section. Our algorithm closes a critical section for all affected variables after
the last access to any of them. Both approaches can lead to critical sections that are too
short. In our case, a critical section may end too early if there are implicit relationships
in the program. In practice however, both the heuristics of DCS and our approach lead
to correct sections. Nevertheless, in case of implicit relationships, we could also use
the type of annotations used in DCS to help the compiler find smaller critical sections.
DCS and Colorama use the same benchmarking method that we do. They remove the
synchronization from a given parallel program, let the compiler attempt to rediscover
critical sections, and compare the results to the original critical sections in given pro-
gram. While DCS uses the Java Collections package for its evaluation, Colorama was
applied to applications such as Firefox and the MySQL database server. In contrast, we
use a standard benchmark suite (STAMP) that is available for C.

Race detection tools examine whether two threads may simultaneously access the
same shared memory location without holding a lock, either at runtime like FastTrack [6]
or statically like Chord [16]. These tools however only show where races may occur, they
do not give any hints on how to prevent them. In contrast, our algorithm suggests how
to add synchronization to the code to prevent the potential races.

AtomTracker [15] infers atomic blocks from the code and also detects atomicity
violations. While we use static analysis, AtomTracker analyzes the memory traces of
several concurrent executions of the program to calculate atomic regions.

Using an escape analysis, the work of Bogda and Hölzle [2] removes unnecessary
synchronization from Java objects that are used by only one thread. We use an escape
analysis as well to decide beforehand which data is thread-private. We can thus avoid
to generate unnecessary atomic blocks.

Our paper focuses on the identification of critical sections and their optimization and
not on the mechanics to realize the mutual exclusion. We could either use lock inference
or transactional memory to implement the critical sections. Lock inference algorithms
analyze programs with critical sections and add explicit lock/unlock statements to the
code. Current lock inference approaches scale well for large programs. For example,
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the algorithm of Gudka et al. [7] uses sparse representations of interprocedural dataflow
information and various optimizations to speed up dataflow propagations. With trans-
actional memory (TM) [10], critical sections execute atomically inside transactions. A
typical implementation records accesses to shared data inside a transaction in a log. At
the end of the transaction, the implementation attempts to commit by atomically writing
all changes to shared data back to main memory. If another critical section/transaction
modified a subset of the shared data that was touched by the committing transaction, the
committing transaction aborts and retries to execute the atomic block. For simplicity,
we use TM to implement the atomic blocks that our compiler detects to be required for
correctness.

3 Identification of Critical Sections

The high-level approach of our technique is to detect correlations between shared vari-
ables that are used by multiple threads. These correlations determine where critical
sections need to be placed in a program. As we will show, there are two classes of cor-
relations, which we call explicit and implicit relationships. Explicit relationships can be
detected by dependence analyses, while implicit relationships need to be annotated by
the programmer.

To identify critical sections, the compiler must first analyze which statements of the
program may execute concurrently to each other. An Andersen-style interprocedural
alias analysis (similar to the algorithm of [9]) extended with an escape analysis [17]
that is used to identify thread-local data then conservatively approximates the sets of
variables that these statements use. The intersection between read and written variables
of those sets gives the sets of shared variables. Of course, thread-local variables do not
belong to the set of shared variables. In the remainder of this paper, we call a state-
ment of a thread a concurrent instruction if it statically touches shared data. Without
synchronization, such statements are prone to race conditions and need to be put into
critical sections. Using dependence analyses, our compiler then solves the problem of
how concurrent instructions need to be grouped into critical sections, i.e., where critical
sections need to start and end.

Sec. 3.1 first discusses correctness issues and limits of our technique to identify crit-
ical sections in a program. Sec. 3.2 explains in more detail how the compiler finds con-
current instructions. The algorithm explained in Sec. 3.3 then calculates (large) atomic
blocks that guarantee correct synchronization. Sec. 3.4 illustrates the algorithm with an
example.

3.1 Correctness Considerations and Limits

Let us briefly consider correctness first. Assume a collection of threads that accesses
shared variables a to d. These variables may or may not affect each other. For example,
the value of b may be calculated from the value of a, which is a classical flow data
dependence [14] that a compiler can detect. An invariant could be that c always has
the same value as d. Although invariants often are essential for the correctness of the
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program, the compiler in general cannot derive them from the code. Data dependences1

between shared variables are explicit relationships between variables. A program can
also contain invariants/correlations between variables that have no data dependences
between. These are correlations implied due to program logic. We call them implicit re-
lationships. Our view of relationships is that once a shared variable a changes its value,
all shared variables b related to a must appear to update their values at the same time,
i.e., in the same (generated) critical section (instant update policy). If one statement uses
several shared variables, we treat the variables as related as well. Hence, all statements
that access related variables (explicitly or implicitly) need to execute atomically within
the same (generated) critical section.

All the statements X that access related variables are spread over the code. At run-
time their critical sections must start before the first of all statements X is executed
and must end after the last of them. To statically generate a critical section in the code,
the analysis needs to calculate first and last. First dominates2 all statements X and last
post-dominates them. First also dominates last and last post-dominates first. All in-
structions that lie on a path from first to last also belong to the critical section. First and
last therefore correspond to the entries and exits of single-entry-single-exit regions in
the program structure tree by Johnson [12].

c o l l e c t i o n t a = { x } ;
c o l l e c t i o n t b = {} ;
void run1 ( ) {

i n t i = 0 ;
whi le ( t rue ) {

i ++;
i f ( ( i % 2 == 0 ) ) {

a . remove ( x ) ;
b . i n s e r t ( x ) ;

} e l s e {
b . remove ( x ) ;
a . i n s e r t ( x ) ;

} } }

void run2 ( ) {
l 1 = 1 ;
r1 = 1 ;

}

void run3 ( ) {
l 2 = l 1 ;
r2 = r1 ;

}

Fig. 1. Implicit relationships

For programs with solely explicit re-
lationships, our algorithm guarantees
correct synchronization. Implicit rela-
tions pose limits to a fully automatic
approach. Fig. 1 shows two different
examples. Within function run1, either
one of the two collections a and b holds
the element x at all times. To cope with
the absence of a data dependence be-
tween the collections, the programmer
can add an annotation related(a, b) that
renders the relationship between a and
b explicit. This causes the compiler to
put accesses to a and b together into a critical section. In the second example, run2
and run3 execute concurrently. In a sequential execution, where run2 is called before
run3, the variables l1, l2, r1, and r3 would have the same value. If run2 and run3 exe-
cuted concurrently, one critical section enclosing the assignments to l1 and r1, as well
as another critical section around the assignments to l2 and r2 are necessary. However,
as there are no explicit data dependences between these variables, the analysis cannot
establish the necessary synchronization. If it is necessary for the algorithm that l1, l2,
r1, and r2 store the same value, a related annotation is needed to enable the compiler
to identify the necessary critical sections. There is also an annotation unrelated(a, b)
to explicitly break explicit relationships between variables that are dependent, but that

1 Unless otherwise noted, a dependence is a flow dependence in this paper.
2 Statement A dominates statement B if A appears on every control flow path from the entry of

the function to B. A post-dominates B if A appears on every control flow path from B to the
exit of the function.
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do not need to be in the same critical section. Both types of annotations extend the
applicability of our approach in an iterative refactoring tool.

Our approach exploits data dependences and the above annotations to determine crit-
ical sections. Note that this includes control dependences, because they are converted
into data dependences using techniques from Muchnick [14].

Due to aliases and function pointers the conservative analysis cannot avoid false
positive data dependences. These cause larger than necessary (but sill correct) criti-
cal sections. While our algorithm already works well on nicely structured programs
in legacy languages, modern managed languages offer fewer possibilities to introduce
aliases and are therefore even better to analyze, enhancing the applicability of our tech-
nique. Furthermore, when our technique is used during the development of new parallel
applications, early warnings can indicate too coarse-grained atomic blocks, and help the
programmer to improve the code by reducing dependences between variables. As as-
serts and annotations become more common in new languages, relationship annotations
are easy to digest.

Other approaches to infer critical sections such as AGS and DCS always need the
programmer to provide explicit specifications in order to work correctly. In contrast,
our algorithm works with plain code and just needs annotations in presence of implicit
relationships.

3.2 Concurrency Analysis

i n t a , b , c ;

void f ( ) { F : a ++; / / M2−M6, G, H }
void g ( ) { G: b ++; / / F , M4−MC, H, I , J }
void h ( ) { H: b ++; / / M5−MC, F , G, I , J }
void i ( ) { I : j ( ) ; / / MC, G, H, I , J }
void j ( ) { J : c += b ; / / MC, G, H, I , J }

void main ( ) {
M0: p t h r e a d t u , v , w;
M1: a ++; / /
M2: t = spawn f ( ) ; / / F
M3: a ++; / / F
M4: u = spawn g ( ) ; / / F ,G
M5: v = spawn h ( ) ; / / F , G, H
M6: j o i n t ; / / F , G, H
M7: a ++; / / G,H
M8: i f ( random ( ) > 5) { w = u ; } / / G,H
M9: e l s e { w = v ; } / / G,H
MA: j o i n w; / / G,H
MB: parfor ( i = 0 ; i < N; i ++) { / / G,H
MC: i ( ) ;
/ / G, H, I , J
} }

Fig. 2. Concurrency analysis

The first step in the identifica-
tion of critical sections is the
analysis that determines which
statements may execute concur-
rently to other statements. Con-
sider the code in Fig. 2 that
creates and destroys multiple
threads.

To find out which statements
may execute concurrently, we
use a may-happen-in-parallel
analysis [8]. The results of this
analysis are given in Fig. 2. The
comments show for every state-
ment which other statement may
run concurrently to it. For ex-
ample, after t (function f ) is
spawned in main, statement F
may run in parallel to the state-
ments M2 to M6 in main up to
the join on t. On the other hand,
M2 to M6 as well as G and H may run concurrently to F , because u and v are spawned
while t is running. Also note that the parallel for loop spawns multiple instances of
i. Therefore, I runs concurrently to itself in i. As either u or v is still running when
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the parallel for loop is entered, G and H may still execute concurrently to the loop
body (MC) as well as concurrently to I . As i calls j and multiple instances of i run
concurrently to each other, I is concurrent to J .

The compiler also analyzes (with a standard alias and escape analysis) which data a
thread may touch. For every thread, the compiler examines all statements of the thread
and collects all accessed variables in the thread’s a read/write set. Given a spawn state-
ment x = spawn r, the statements of x are the statements in r plus all the statements in
functions that are transitively called by r. In the example, the statements of t, u, and
v are F , G, and H . The statements that belong to the threads spawned in the parallel
for loop are I and J . Thread t reads/writes a, threads u and v read/write b. The threads
spawned in the loop read b and write c. To determine which data is shared by two threads
x and y, we intersect the read/write set of x with the write set of y and vice versa. We
call the statements that may access shared data and that may execute concurrently to
other statements concurrent instructions.

In Sec. 4.4, we will show that an instruction can be falsely identified as a concurrent
instruction that is in fact executed by only one thread. In that section, we also illustrate two
optimizations that reduce false positives in the identification of concurrent instructions.

3.3 Basic Algorithm

We explain the basic algorithm that finds atomic blocks with the pseudo code in Fig. 3.
The algorithm starts by calling get concurrent insns to interprocedurally find all con-
current instructions in which two threads may access shared data at the same time. How
this is done has been discussed in the previous section.

One aspect worth mentioning is that get concurrent insns also analyzes barriers in
the program. Statements in different computational phases separated by a barrier never
execute concurrently, since the next phase only starts as soon as all threads have finished
their previous phase. Hence, a critical section can never span two computational phases
divided by a barrier. An algorithm for the division of code into barrier-separated disjoint
phases is given by Jeremiassen et al. [11]. All further steps explained later take those
phases into account when they calculate critical sections, but for simplicity we will not
mention them any further.

The algorithm then has to bundle all instructions that access related shared variables
and all statements that must be executed between those instructions into a single critical
section. We call such a bundle of instructions a partition. In the pseudo code, every
single concurrent instruction starts a partition of its own that part intersect and flow
will later combine. We describe the optimization remove superfluous dependences in
Sections 4.1 to 4.3. Part intersect compares all pairs of partitions to combine those
partitions that access a common subset of shared data. Merge calculates the first and
last instructions for every partition and also adds all dominated and post-dominated
statements in between. Flow compares all pairs of partitions to check whether they have
statements with flow dependences/explicit relationships to the data of the partitions and
that hence must also be in the merged partition.3

3 There is a flow dependence between two partitions P and Q if there is a statement S1 in P and
a statement S2 in Q and there is a path in the dependence graph from S1 to S2.
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void b a s i c a l g o r i t h m ( ) {
s = g e t c o n c u r r e n t i n s n s ( ) ;
foreach i in s {

p a r t [ i ] = new P a r t i t i o n ( ) ;
v a r s ( p a r t [ i ] ) = s h a r e d v a r s ( i ) ;

}
p a r t i n t e r s e c t ( ) ;
r e m o v e s u p e r f l u o u s d e p e n d e n c e s ( ) ;
f low ( ) ;
f l a t t e n ( ) ;

/ / I n s e r t a t om i c b l o c k s
foreach p in p a r t {

w r a p a t o m i c a r o u n d ( f i r s t ( p ) ,
l a s t ( p ) ) ;

} }

void p a r t i n t e r s e c t ( ) {
foreach p in p a r t {

foreach q in p a r t {
i f ( p == q ) { c o n t i n u e ; }
s e t = i n t e r s e c t ( v a r s ( p ) ,

v a r s ( q ) ) ;
i f ( s e t != {} ) {

merge ( p , q ) ;
} } } }

void f low ( ) {
foreach p in p a r t {

foreach q in p a r t {
i f ( p != q ) {

i f ( d e p c h a i n ( p , q ) ) {
merge ( p , q ) ;

} } } } }

void f l a t t e n ( ) {
foreach p in p a r t {

/ / R e t u r n s a l l i n s t r u c t i o n s
/ / be tween f i r s t ( p ) and l a s t ( p )
foreach i in d f s ( f i r s t ( p ) ,

l a s t ( p ) ) {
i f ( p a r t [ i ] != p ) {

merge ( p , p a r t [ i ] ) ;
} } }
i n t e r p r o c m e r g e ( ) ;

}
void merge ( P a r t i t i o n p ,

P a r t i t i o n q ) {
foreach i in i n s n s ( q ) {

p a r t [ i ] = p ;
v a r s ( p ) += v a r s ( q ) ;

}
u p d a t e f i r s t a n d l a s t ( p ) ;

}

Fig. 3. Basic algorithm

After flow, the resulting partitions are correct critical sections. But they may over-
lap. Two partitions p and q overlap if on any path from first(p) to last(p) there is an
instruction that belongs to partition q or vice versa. We merge nested or overlapping
atomic blocks because most STM implementations do not support them. Flatten there-
fore performs an intraprocedural depth-first search from the first to the last instruction
of a partition. As last post-dominates first, a depth-first search from first will eventually
reach last. If on any search path there is an instruction belonging to another partition, the
two partitions are merged. After the depth-first search, flatten calls interproc merge to
remove atomic blocks that nest within the call hierarchy. For example, a function f may
contain an atomic block that calls g, which itself contains an atomic block. The block
in g is nested within the block in f . An interprocedural analysis walks the call-graph
to find call-paths where callees always execute within an atomic block of a caller. Then
the callee’s atomic blocks can be removed. If g is called both from an atomic context
and from a non-atomic context, function cloning generates two versions of g. From an
atomic context, the version of g without the atomic block is called. Otherwise, the ver-
sion of g that contains an atomic block is used. Currently, our approach can only handle
function pointers if the pointed-to functions provably do not contain atomic blocks. To
lift this restriction, the compiler could generate two versions—one version with atomic
blocks and one version without—of all functions that have the same signature as the
function pointer and use a runtime mechanism to direct calls via function pointers to
the proper function in order to avoid nested atomic blocks.

After flattening, each remaining critical section is wrapped into an atomic block.
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3.4 Sample Execution

We now apply the algorithm to the example in Fig. 4. Its shared variables are the Nodes
that are held in the inputs array, output, next input, counter, and double counter. The
concurrent instructions are marked with S1 to S8. These are concurrent instructions
because the parfor loop created multiple threads that all execute the same function
process. Fig. 5 shows the dependence graph of the example’s process code. Statements
that belong to a partition are marked with P1 to P4.

s t r u c t Node {
Node ∗ n e x t ;
i n t v a l u e ;

} ∗ i n p u t s [N] , ∗ o u t p u t ;

i n t n e x t i n p u t ;
i n t c o u n t e r , d o u b l e c o u n t e r ;

void main ( ) {
f o r ( i n t i = 0 ; i < N; i ++) {

Node ∗n = m a l l o c ( s i z e o f ∗n ) ;
n−>n e x t = NULL;
n−>v a l u e = random ( ) ;
i n p u t s [ i ] = n ;

}
parfor ( i = 0 ; i < K; i ++) {

p r o c e s s ( ) ;
} }

void p r o c e s s ( ) {
i n t i n d e x = 0 ;
whi le ( i n d e x < N) {

S1 : i n d e x = n e x t i n p u t ;
S2 : n e x t i n p u t = i n d e x + 1 ;

i f ( i n d e x >= N) { break ; }
X: Node ∗n = i n p u t s [ i n d e x ] ;
Y: i n t v a l = n−>v a l u e ;

Z : i n t i n c = v a l ∗ i n d e x ;
S3 : i n t n e x t = c o u n t e r + i n c ;
S4 : c o u n t e r = n e x t ;
S5 : i n t t = c o u n t e r ;
S6 : d o u b l e c o u n t e r = 2 ∗ t ;

S7 : n−>n e x t = o u t p u t ;
S8 : o u t p u t = n ;
} }

Fig. 4. Example program for atomic block identification

To avoid races, three atomic blocks are needed. First, next input must be incremented
atomically (S1, P1). Second, both partitions P2 and P3 must be in a critical section to
satisfy the explicit relationship that double counter (S6, P3) is always twice as big as
counter (S5, P2). Third, prepending n to the linked list pointed to by output must be
atomic. But since all four partitions of Fig. 5 are linked to each other by flow depen-
dences, the basic algorithm combines them into one correct but too large critical section
and generates the code in Fig. 6.4 Sec. 4 presents optimizations that achieve a more fine-
grained synchronization. No annotations were needed in this example.

4 As there is a chain of dependences between the statements index = next input (in partition
P1), inc = val ∗ index , and next = counter + inc (in partition P2), flow merges P1 and
P2. There are additional chains of flow dependences from statements in P2 to instructions in
P4, as well as from P3 to P4. Both P4 and P3 join that partition. As there are no overlapping
partitions in the running example, flatten shows no effect here.
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Fig. 5. Example program with flow depen-
dences (full arrows)

void p r o c e s s ( ) {
i n t i n d e x = 0 ;
whi le ( i n d e x < N) {

atomic {
S1 : i n d e x = n e x t i n p u t ;
S2 : n e x t i n p u t = i n d e x + 1 ;

i f ( i n d e x >= N) { break ; }
A: Node ∗n = i n p u t s [ i n d e x ] ;
B : i n t v a l = n−>v a l u e ;

C : i n t i n c = v a l ∗ i n d e x ;
S3 : i n t n e x t = c o u n t e r + i n c ;
S4 : c o u n t e r = n e x t ;
S5 : i n t c u r = c o u n t e r ;
S6 : d o u b l e c o u n t e r = 2 ∗ c u r ;

S7 : n−>n e x t = o u t p u t ;
S8 : o u t p u t = n ;
} } }

Fig. 6. Synchronized code for Fig. 4

4 Optimizations

The basic algorithm calculates a correct synchronization, but it is sometimes too con-
servative, as flow from Fig. 3 merges any partitions with dependences between them.
If we can remove unnecessary dependences between partitions, i.e., dependences that
need not be considered to ensure a proper synchronization, large critical sections break
up into smaller ones. This allows more parallelism.

For the discussion in this section, always assume that multiple threads execute the
code being discussed.

4.1 Removal of Non-critical Dependences

void p l a i n ( ) {
s h a r e d 1 ++;
i n t x = s h a r e d 1 ;
i n t y = x ;
s h a r e d 2 = y ;

}

void u n c r i t i c a l ( ) {
i n t x = s h a r e d 1 ;
s h a r e d 1 ++;
i n t y = x ;
s h a r e d 2 = y ;

}

Fig. 7. Motivation for removal of non-critical
dependences

Function plain in Fig. 7 writes the shared
variable shared1 and copies it to thread-
local variables x and y. If executed se-
quentially, all four variables have the
same value after the final assignment to
shared2. This invariant can be discovered
by analyzing flow dependences. It is nec-
essary for parallel execution and preserves
the invariant to put all four flow dependent statements of plain into a single critical
section. Assume flow would not have merged the two partitions for the two shared
variables. With the resulting two critical sections (around the first two statements and
around the final assignment) one thread could modify shared1 while the other assigns
the old value of shared1 that it keeps in y to shared2. This would break the invariant.
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Of course it depends on the application whether it is necessary to satisfy the invariant
in a parallel execution. But to conservatively ensure correctness, our technique must
make sure that the identified atomic sections satisfy the invariants. If an invariant is not
necessary, an annotation could be used. In the example, marking shared1 and shared2
as unrelated would lead to different atomic sections.

The code in uncritical is slightly different and demonstrates optimization potential.
(Assume that the code is free of implicit relationships as there are no annotations). The
code first stores a copy of shared1 in x. Then it increments shared1. Because the state-
ments work on the same shared variables and since they are flow dependent, the basic
algorithm would again create an embracing critical section. But now the discoverable
invariant is that the three variables x, y, and shared2 have the same value. There is no
explicit relationship between shared1 and shared2 anymore. Hence it is sufficient to put
the first two assignments into one critical section and to put the assignment to shared2
in a second critical section.5 The assignment to y operates only on thread-local data and
thus does not need to be in a critical section at all. Even if a concurrent thread changes
shared1 between those two atomic blocks, x, y, and shared2 will remain unaffected. To
generate a correct synchronization, flow therefore can ignore the dependence between
the assignment to x and the assignment to y.

void p r o c e s s ( ) {
i n t i n d e x = 0 ;
whi le ( i n d e x < N) {

atomic {
S1 : i n d e x = n e x t i n p u t ;
S2 : n e x t i n p u t = i n d e x + 1 ;

}

i f ( i n d e x >= N) { break ; }
A: Node ∗n = i n p u t s [ i n d e x ] ;
B : i n t v a l = n−>v a l u e ;
C : i n t i n c = v a l ∗ i n d e x ;

atomic {
S3 : i n t n e x t = c o u n t e r + i n c ;
S4 : c o u n t e r = n e x t ;
S5 : i n t c u r = c o u n t e r ;
S6 : d o u b l e c o u n t e r = 2 ∗ c u r ;

}

atomic {
S7 : n−>n e x t = o u t p u t ;
S8 : o u t p u t = n ;
} } }

Fig. 8. Optimized result for Fig. 4

More formally, the remove superfluous -
dependences optimization (Fig. 3) looks for
statements s and a that meet the following cri-
teria: s reads some shared variable, i.e., it be-
longs to some partition P. Statement a post-
dominates s and is must-antidependent on s,
i.e., it is guaranteed to overwrite the variable
that s has read (shared1++ in uncritical). No-
tice that as a writes the same shared variable,
it belongs to P as well. If there are such state-
ments s and a, then flow can ignore all outgoing
dependence edges of s (the one from x to y in
the example).

To see why the optimization is correct, as-
sume that there is a flow dependence between s
and another statement t. In case part intersect
has already put both s and t into P, they belong
into the same critical section, no matter what
dependences exist between the two statements.
In the other case, i.e., if t is outside of P, there
is room for optimization. If t is in another par-
tition Q or if s and t are part of a dependence
chain that ends in another partition Q, flow merges P and Q so that s and t are in the
same critical section. In the example t is the assignment to y that is linked to the update
of shared2 which is in the second partition. Now the statement a comes into play. As a

5 Of course there is an implicit invariant x == y == shared2 == shared1 − 1 . But this
invariant cannot be found by flow dependences (i.e., explicit relationships) only.
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belongs to P and post-dominates s, and as t is outside of P, a always executes between
s and t and it always modifies the shared data used by s and t. Because s and t are part
of a dependence chain from P to Q, we cannot construct an invariant from this chain
that involves the shared data between P and Q, as a always overwrites that data. Thus,
the flow dependence edge between s and t does not indicate an explicit relationship and
can be removed in flow. If there is no other dependence chain between P and Q, these
two partitions are not merged and result in separate critical sections.

Remove superfluous dependences examines every concurrent statement s in every
partition P in some arbitrary order. From s it traverses all outgoing antidependence
edges that lead to an antidependent statement a. If a post-dominates s and if the results
of the alias analysis indicate that a always overwrites the shared data used in s, then all
outgoing flow dependence edges are removed from s

This optimization is applicable to the example of Figs. 4 and 5. After next input is
read and copied to index by S1 (statement s), next input is changed by S2 (antidependent
statement a, dashed arrow). Hence, it is possible to increment next input in a critical
section of its own, as it cannot affect the behavior of flow dependent statements X and
Z . Note that statement X then still loads n from the proper array element. Flow can
ignore all edges marked with (1) in Fig. 5 and only merges partitions P2 and P3 because
of data dependences. The resulting code in Fig. 8 has the increment of next input, the
counter updates, and the list prepending in separate critical sections.

4.2 Removal of Dependences over Read-Only Variables

Fig. 9. Dependence over
read-only data

We can also safely eliminate dependences over pointer ac-
cesses in concurrent instructions that provably only reach
read-only data. Assume that a few threads concurrently ex-
ecute the code with its dependence graph in Fig. 9. The dif-
ference to Fig. 4 is that the Nodes are no longer read from
an inputs array. Instead, they are removed from a linked
list. Part intersect has identified the partitions P1 and P2.
As there is a chain of dependences from P1 to P2, flow
would merge those partitions. But it is correct to keep P1
and P2 in two critical sections, because after n is removed
from inputs, all accesses to it are read-only. No thread could concurrently write to n.
The only dependence entering P2 from outside comes from a read-only access to n.
Once the code has retrieved n from inputs, it does not matter how much later the code
in P2 is executed, as the memory reachable from n (that P2 depends on) will always
contain the same values.

In the example, the edge marked with (2) is removed which causes P1 and P2 to
become individual atomic blocks.

Remove superfluous dependences examines all flow dependence edges between any
two statements s and s′. If s′ dereferences a pointer p and if all memory locations tran-
sitively reachable from p are read-only (according to the results of the alias analysis),
then no concurrent modification between s and s′ can influence the effects of these two
statements. Thus, no matter how long the time span between s and s′ is, s′ always ap-
pears to execute instantly after s. Hence, if s and s′ are linked in a dependence chain
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that starts in a partition P and that ends in another partition Q, an update of shared vari-
ables in P always appears to happen instantly with the corresponding update in Q, even
if P and Q belong to different critical sections. This allows flow to safely remove the
dependence between s and s′. If there is no other dependence chain between P and Q,
these two partitions can execute in separate critical sections.

In the example, all threads executed the same function and the fields of n were never
written. Recall from Sec. 3.2 that the compiler analyzes which instructions may execute
concurrently. In the above analysis, if the compiler finds an instruction that accesses p, it
checks which set T of threads may execute concurrently to this instruction. If all threads
in T only read all memory locations transitively reachable from p, then the optimization
above is correct. That means, threads that write to memory locations reachable from p
are still possible. As long as those threads are not in T , the optimization is applicable.

4.3 Removal of Dependences between Builtin Data Structures

Fig. 10. Dependences over a builtin data structure

In Fig. 10 a pop routine of a hand-
written stack is called. There is a
chain of dependences from the in-
ternal representation of the stack
(an array of items) to the access
of the returned item after the pop.
This forces all the statements into
a single critical section. In contrast,
with opaque thread-safe library data
structures with known semantics as
they are common in modern lan-
guages (Java, Python, etc.), there is no such dependence chain, resulting in two smaller
critical sections one for pop and one for the access to the popped item.

Note that compiler analysis is sped up as well because the library codes do not need
to be analyzed. For this optimization to be correct, there may be no implicit relation-
ships between a black box builtin container data structure and and other shared data.
Otherwise related annotations are needed. Remove- super-fluous dependences finds all
calls of functions that are known to be thread-safe and removes outgoing dependences
from those calls. In the example, the edge marked with (3) is removed.

4.4 Detection of Concurrent Instructions That Execute in a Single Thread

void foo ( ) {
i f ( t h r e a d I d ( ) == 0) {

S1 : V = 6 ;
}
b a r r i e r ( ) ;

S2 : i n t t = ++V;
S3 : A[ t h r e a d I d ( ) ] = t ;
}

Fig. 11. Concurrent instructions
executing in one thread

All threads that execute the code in Fig. 11 share V
and A. Although the statements S1 to S3 appear to
be concurrent instructions, S1 is not because only the
thread with ID 0 executes it. S3 is neither a concurrent
instruction as all threads access different elements of
A (threadId() is unique for each of them).

Hence, to eliminate concurrent instructions that
run in only one thread, we first check if there is
a computational phase that matches the construct
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if (threadId() == x){...}. Then only one thread executes the body which is thus
free of concurrent instructions. Second, two statements accessing the same array are
considered concurrent instructions unless their subscript expressions have the form
a ∗ threadId() + b, with constant values for a �= 0 and b. Is this case we know that
every thread accesses a different array element. Dependence analysis as used in loop
parallelization [1] can further improve subscript analysis.

5 Evaluation

Methodology. Although we have developed our techniques for a refactoring tool, we
discuss an evaluation that uses a parallel benchmark suite. The evaluation of our ap-
proach is designed to show that (a) the identified critical sections are correct and small,
and (b) the execution times of the code generated by our compiler match the execution
times of code written by an expert programmer. We let our compiler analyze programs
from STAMP [3], a benchmark suite for testing transactional memory implementations.
The code contains atomic sections that permit as much concurrency as possible. For our
evaluation, we remove the atomic start and atomic end statements and use the resulting
unsynchronized thread-parallel codes as input.

We use this method of evaluation because it is hard to evaluate how good a refac-
toring tool is. For a given sequential legacy application it is simply unknown what the
best parallel refactorization is. Thus there is no way to compare the results of a tool to
some unknown optimal result. We could therefore make no sound statements about the
quality of our approach.

Therefore, we compare the number and sizes of the atomic blocks in STAMP with the
atomic blocks generated by our compiler. If they match, our algorithm works. In case
of variations, the runtime effects are interesting. Hence, we also compare execution
times with SwissTM [5] as target platform for the measurements. We also use STM
instead of lock inference because STAMP is an STM benchmark that does not have
lock/unlock statements in the code either. Because the critical sections in STAMP are
(almost) minimal, if an automated approach can identify identical critical sections and
generate code that is equally fast, the automatic approach is good.

This general evaluation methodology to use existing programs, remove all the syn-
chronization that is present in the codes, and then let the tool try to rediscover them is
also used in the evaluation of DCS [18] and Colorama [4].

We ran all benchmarks on a 2.66 GHz, 8 core Xeon (X5550) with 8 MB cache and 24
GB main memory, with Linux 2.6, using one, two, four, and eight cores. We excluded
the Ssca2 benchmark as even the original STAMP version already always crashed in
our setup.

Setup and Measurements. Table 1 holds the lines of code, the times tA for the alias
analysis, tE for escape analysis, tD for the initial construction of the dependence graph,
tI for the identification of atomic blocks, and tT for the total compile time. As we ported
STAMP to our C dialect first, we report the number of lines of the ported versions. Col-
umn orig contains the original number of atomic blocks in STAMP, columns gen and
genopt give the number of blocks identified by our basic algorithm and with optimiza-
tions enabled. Column opts lists the applicable optimizations (sub-section numbers).
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Table 1. Lines of code, compile times, and atomic block details

Benchmark Lines tA tE tD tI tT orig gen genopt opts

Vacation 504 0.09s 0.02s 0.15s 0.01s 0.27s 3 3 3 none
Intruder 3266 0.97s 1.66s 0.55s 0.04s 3.28s 3 2 3 4.3, 4.4
Bayes 5856 1.23s 0.33s 0.77s 0.14s 2.47s 2+13=15 2+1=3 2+3+1=6 4.3, 4.4

2+13+1=16 + annot.
Yada 6292 0.49s 0.97s 1.09s 0.14s 2.69s 6 3 5 4.3

7 + annot.
Genome 1861 0.19s 0.04s 0.33s 0.18s 0.74s 5 7 5 4.4
Labyrinth 2880 0.21s 0.04s 0.46s 0.01s 0.72s 3 3 4 4.2
Kmeans 742 0.08s 4.03ms 0.16s 3.68ms 0.25s 3 2 4 4.1, 4.4

To enable optimization 4.3 in STAMP, we treat its container structures such as lists,
heaps, etc. as builtin.

Fig. 12 shows the improvements of the execution times of the optimized over the un-
optimized code generated by our compiler and compares the runtimes of the optimized
code to the original STAMP versions.
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Fig. 12. Execution times

General Results. First, and
most importantly, our algo-
rithm generates correctly syn-
chronized programs. Second,
the number of atomic blocks
found by our algorithm with
optimizations enabled (genopt )
is in good accordance with
the number of atomic blocks
present in the original bench-
marks (orig). We will discuss
differences below. Third, even
if the optimizations do not lead
to the same blocks, the execu-
tion times of our code are sim-
ilar to the original benchmarks.
Fourth, the optimizations are
essential because the execution
times of the programs gener-
ated without them are signif-
icantly slower. These results
show that our approach is help-
ful for programmers.

Compile Times. With at most 3.3 seconds they are good and an improvement over the
related AGS algorithm (see Sec. 2), which reported compile times to be less than 10 min-
utes for algorithmic kernels instead of full benchmarks. The time for the identification
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of atomic blocks generally is between 1.2% and 24.3% of the overall compile time. The
alias, escape and dependence analyses are slowest but improvable, as we use an unopti-
mized O(n3) Andersen style alias analysis, a reaching definitions analysis to calculate
dependences, and an unoptimized implementation of an escape analysis.6 We did not in-
vest in more advanced state-of-the art analyses as the basic ones were sufficient and let
us focus on the identification of critical sections.

We now examine the results of our algorithm and the execution times for the individ-
ual benchmarks. We skip single core results as atomic blocks do not matter in absence
of parallelism.

Perfect Matches. Our compiler finds exactly the original atomic blocks for Intruder and
Vacation. For Vacation no optimizations are needed. So we skip the runtime numbers
as there is no effect to be seen. For Intruder, the version with optimization has the same
speed as the original code. Surprisingly, without optimizations (2 atomic blocks), the
code with 3 atomic blocks is between 7.5% and 11.2% faster. Fewer and larger atomic
blocks are beneficial for STM performance if transaction setup can be saved for tiny
and adjacent atomic blocks. This result shows potential for STM optimizations and
improvements of the atomic block annotations in STAMP.

Good Matches; Annotations Needed. For Bayes and Yada we discover all atomic
blocks as they are in STAMP, which then leads to the same execution times. But we
need some annotations. Bayes turns out to be the hardest benchmark. It contains two
computational phases. Let us first discuss the results without annotations. Phase (1) cre-
ates a list of tasks that are then used by phase (2). Phase (1) has two atomic blocks which
our compiler detects. The first block updates a global variable, the second block adds
a task to the list. The difference to the original STAMP code is that our compiler puts
the task creation into the atomic block, as it falsely assumes that the task is shared at
that point. But this does not cause any slowdown. Phase (2) contains 13 atomic blocks
in STAMP. Our compiler generates 3 larger blocks (plus one unnecessary block) be-
cause it has to conservatively respect some dependences. With added pseudo-barrier
annotations, the 3 blocks are split into 13 separate critical sections. A pseudo-barrier
is a no-op at runtime but like for an ordinary barrier, the analysis exploits that atomic
sections cannot span barriers. The superfluous block is small. It holds an access to the
task data structure that is thread-private at that point. This is harmless at runtime as
the logging overhead of the STM is negligible and as the task structure at that point
is thread-private. The optimizations are important, as they improve runtime by 79.8%
to 79.2% over the unoptimized code. But the additional transaction setup overhead of
more atomic blocks can only be amortized at higher thread counts.

Annotations are important for Yada as well. The original Yada code has six atomic
blocks. The shared data structures are a mesh, elements of the mesh, a heap, and two
global variables. Every thread executes a loop that contains the atomic blocks. Block
(1) removes an element from the heap. Block (2) checks if the element is invalid. If it is,
the code starts another loop iteration. Block (3) refines the mesh. Block (4) marks the

6 Our escape analysis interprocedurally propagates the escape information until a fix-point is
reached. Propagation starts at the main function of the program. If there is a call to a function
f in the program, we (repeatedly) visit f to propagate the information, which is costly.
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element removed from the heap as unreferenced. Block (5) adds elements recognized
as bad during the execution back to the heap. After the loop, block (6) updates two
global variables. With optimizations enabled, we exactly rediscover blocks (1) and (2).
As blocks (3)-(5) share data dependences and touch the same data, part intersect and
flow merge them into one large block. Again, pseudo-barrier annotations help to split
this block into the original three parts. The generated code runs at the same speed as the
original STAMP code. As block (6) updates two different global variables, our compiler
inserts two correct atomic blocks here. The variables are independent and they are only
used by the main program once the threads exit. Again, the optimizations are important
as the code is between 25.3% and 62.2% faster than the unoptimized version.

Close Matches with Irrelevant Variations. For the remaining three benchmarks, our
compiler generates essentially the same atomic blocks as the STAMP codes if optimiza-
tions are enabled. This results in identical execution times.

For Genome our technique generates similar atomic blocks as the original version.
There are three minor differences in the generated blocks. First, the benchmark per-
forms a number of atomic insertions to a hash table in one loop. The original version
puts the atomic block around the loop, probably because transaction setups are costly.
Our compiler puts the atomic block inside the loop, which is functionally equivalent.
Second, the original code has two atomic blocks that call a table insertion routine. Our
generated code has the atomic blocks in the insertion routine, which is essentially the
same. Third, the third block in our version is a a superfluous block similar to Bayes
where the compiler conservatively assumes that a statement touches shared data. At
the statement, the variable has become thread-private however, which the analysis does
not recognize. As this atomic block is small, its overhead at runtime is negligible for
the same reasons as for the extra block in Bayes. The execution times are essentially the
same. If the atomic block runs in the loop, the transactional logs per iteration are smaller
and lookups to it are faster. These savings outweigh the additional transaction creation
setup. Again, on two cores there is not enough parallelism to smooth over different
transaction setup costs, so that our code runs faster than the original STAMP code.
Without optimizations, there are two additional blocks executed by only one thread. As
they are small and transaction conflicts are impossible, the optimized and unoptimized
versions have the same execution times.

Our technique generates more and smaller atomic blocks for Labyrinth and Kmeans.
We re-discover all original atomic blocks in Labyrinth plus one additional block. This
block is added to an insert method of a linked list that also increments the size field of
the list. As there are no dependences (i.e., explicit relationships) between the pointer
update and the size increment, our compiler puts these two parts of the code in separate
atomic blocks. As Labyrinth does not use the list’s size field, it runs correctly with this
change. Otherwise, the programmer would have to mark the list entries and the size
field as related. The small overhead of the additional block shows little runtime effects
except for occasional jitter. The optimizations improve runtimes by 48.2% to 79.1%.

For Kmeans we generate 4 instead of the original 3 atomic blocks. Fig. 13 shows
where the difference comes from. Nevertheless, the execution times are identical. The
threads share the arrays len and C. Our finer synchronization is correct as len and C are
independent, and the loop iterations are independent as well. STAMP uses one atomic
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atomic {
l e n [ i d x ] += 1 ;
f o r ( j = 0 ; j < N; j ++) {

C[ i d x ] [ j ] += F [ i ] [ j ] ;
} }

(a) STAMP

atomic { l e n [ i d x ] = l e n [ i d x ] + 1 ; }
f o r ( j = 0 ; j < N; j ++) {

atomic { C[ i d x ] [ j ] += F [ i ] [ j ] ; }
}

(b) Our output

Fig. 13. Atomic blocks in STAMP and found by our technique

block outside of the loop probably because transaction setup is assumed to be costly.
Again, optimizations proved to be effective because they make the code run between
10.0% and 41.6% faster than the unoptimized version.

6 Conclusions and Future Work

To aid programmers in adding critical sections to parallel code, (or even take this bur-
den off of the programmer), we presented an algorithm that detects critical sections in
parallelized, but unsynchronized code. We used our technique in a refactoring tool for
embedded industry automation applications written in a low-level language.

Whereas previous approaches to detect critical sections always needed explicit spec-
ifications in order to be able to infer critical sections, our technical contribution is an
algorithm that starts from the data dependences in the plain code (and only needs some
annotations) and discovers the necessary critical sections. Several important optimiza-
tions have been presented that help to keep the atomic blocks small. These optimiza-
tions detect edges in the dependence graphs that do not need to be considered by the
algorithm to detect correct critical sections.

We used the STAMP benchmarks to show that our approach often detects the same
set of atomic blocks that an expert programmer would add to the code. In most cases,
no annotations were needed in order to generate a correct synchronization. Implicit re-
lationships between variables seldom are a problem for our approach in practice. The
execution times for the codes generated by our compiler almost always match the exe-
cution times of the manually synchronized versions.

Future work based on the presented technique can address a tool that helps the pro-
grammer to check manual synchronization for correctness.
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Abstract. MATLAB is a very popular dynamic “scripting” language for numeri-
cal computations used by scientists, engineers and students world-wide. MATLAB

programs are often developed incrementally using a mixture of MATLAB scripts
and functions, and frequently build upon existing code which may use outdated
features. This results in programs that could benefit from refactoring, especially
if the code will be reused and/or distributed. Despite the need for refactoring,
there appear to be no MATLAB refactoring tools available. Furthermore, correct
refactoring of MATLAB is quite challenging because of its non-standard rules for
binding identifiers. Even simple refactorings are non-trivial.

This paper presents the important challenges of refactoring MATLAB along
with automated techniques to handle a collection of refactorings for MATLAB

functions and scripts including: converting scripts to functions, extracting func-
tions, and converting dynamic function calls to static ones. The refactorings have
been implemented using the McLAB compiler framework, and an evaluation is
given on a large set of MATLAB benchmarks which demonstrates the effective-
ness of our approach.

1 Introduction

Refactoring may be defined as the process of transforming a program in order to im-
prove its internal structure without changing its external behavior. The goal can be to
improve readability, maintainability, performance or to reduce the complexity of code.
Refactoring has developed for the last 20 years, starting with the seminal theses by
Opdyke [1] and Griswold [2], and the well known book by Fowler [3]. Many pro-
grammers have come to expect refactoring support, and popular IDEs such as Eclipse,
Microsoft’s Visual Studio, and Oracle’s NetBeans have integrated tool support for au-
tomating simple refactorings. However, the benefits of refactoring tools have not yet
reached the millions of MATLAB programmers. Currently neither Mathworks’ propri-
etary MATLAB IDE, nor open-source tools provide refactoring support.

MATLAB is a popular dynamic (“scripting”) programming language that has been
in use since the late 1970s, and a commercial product of MathWorks since 1984, with
millions of users in the scientific, engineering and research communities.1 There are

1 The most recent data from MathWorks shows one million MATLAB users in 2004, with
the number doubling every 1.5 to 2 years; see www.mathworks.com/company/-
newsletters/news notes/clevescorner/jan06.pdf

K. De Bosschere and R. Jhala (Eds.): CC 2013, LNCS 7791, pp. 224–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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currently over 1200 books based on MATLAB and its companion software, Simulink
(http://www.mathworks.com/support/books).

As we have collected and studied a large body of MATLAB programs, we have found
that the code could benefit from refactoring for several reasons. First, the MATLAB lan-
guage has evolved over the years, incrementally introducing many valuable high-level
features such as (nested) functions, packages and so on. However, MATLAB program-
mers often build upon code available online or examples from books, which often do not
use the modern high-level features. Thus, although code reuse is an essential part of the
MATLAB eco-system, code cruft, obsolete syntax and new language features compli-
cates this reuse. Since MATLAB does not currently have refactoring tools, programmers
either do not refactor, or they refactor code by hand, which is time-consuming and error-
prone. Secondly, the interactive nature of developing MATLAB programs promotes an
incremental style of programming that often results in relatively unstructured and non-
modular code. When developing small one-off scripts this may not be important, but
when developing a complete application or library, refactoring the code to be better
structured and more modular is key for reuse and maintenance.

Refactoring MATLAB presents new research challenges in two areas: (1) ensuring
proper handling of MATLAB semantics; and (2) developing new MATLAB-specific
refactorings. The semantics of MATLAB is quite different from other languages, thus
even standard refactorings must be carefully defined. In particular, to ensure behav-
ior preservation, refactoring tools have to verify that identifiers maintain their cor-
rect kind [4] (variable or function), and that their binding is not accidentally changed.
MATLAB-specific refactorings include those which help programmers eliminate unde-
sirable MATLAB features. For example, MATLAB scripts are a hybrid of macros and
functions, and can lead to unstructured code that is hard to analyze and optimize. Thus,
an automatic refactoring which can convert scripts to functions is a useful refactoring
transformation which helps improve the structure of the code. Dynamic features like
feval also complicate programs and are often used inappropriately. Thus, MATLAB-
specific refactorings, which convert feval to more static constructs are also useful.

In this paper we introduce a family of automated refactorings aimed at restructuring
functions and scripts, and calls to functions and scripts. We start with a refactoring for
converting scripts into functions, which improves their reusability and modularity. Then
we introduce the MATLAB version of the well-known EXTRACT FUNCTION refactoring
that can be used to break up large functions into smaller parts. Finally, we briefly survey
several other useful refactorings for inlining scripts and functions, and a refactoring to
replace spurious uses of the dynamic feval feature with direct function calls.

We have implemented our refactoring transformations in our McLAB compiler frame-
work [5], and evaluated the refactorings on a collection of 3023 MATLAB programs.
We found that the vast majority of refactoring opportunities could be handled with few
spurious warnings.

The main contributions of this paper are:

– Identifying a need for refactoring tools for MATLAB and the key static properties
that must be checked for such refactorings.

– Introducing a family of refactorings for MATLAB functions and scripts.
– An implementation of these refactorings in McLAB.
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– An evaluation of the implementation on a large set of publicly-available MATLAB

programs.

The remainder of this paper is structured as follows. In Section 2 we provide some
motivating examples and background about determining the kind of identifiers and the
semantics of function lookup. Section 3 describes a refactoring for converting scripts
to functions, Section 4 presents EXTRACT FUNCTION, and Section 5 briefly introduces
several other refactorings. Section 6 evaluates the refactoring implementations on our
benchmark set, Section 7 surveys related work, and Section 8 concludes.

2 Background and Motivating Example

In this section we introduce some key features of MATLAB, and we give a motivating
example to demonstrate both a useful MATLAB refactoring and the sorts of MATLAB-
specific issues that must be considered.

2.1 MATLAB Scripts and Functions

A MATLAB program consists of a collection of scripts and functions. A script is sim-
ply a sequence of MATLAB statements. For example, Figure 1(a) defines a script called
sumcoswhich computes the sum of the cosine values of the numbers i to n. Although
using scripts is not a good programming practice, they are very easy for MATLAB pro-
grammers to create. Typically, a programmer will experiment with a sequence of state-
ments in the read-eval-print loop of the IDE and then copy and paste them into a file,
which becomes the script.

A script is executed in the workspace from which it was called, either the main
workspace, or the workspace of the calling function.2 For example, Figure 1(b) shows
function ex1 calling script sumcos. When sumcos executes it reads the values of
variables i and n from the workspace of function ex1, and writes the value of s into
that same workspace. Clearly, scripts are highly non-modular, and do not have a well-
defined interface. A programmer cannot easily determine the inputs and outputs of a
script. Thus, a better programming practice would be to use functions.

Figure 1(d) shows the script sumcos refactored into an equivalent function. The
body of the function is the same as the script, but now the output parameter s and the
input parameters i and n are explicitly declared. As shown in Figure 1(c) and (f), in
this case the refactored function produces the same result as the original script.3

In general, MATLAB functions may have multiple output and input arguments. How-
ever, not all input arguments need to be provided at a call, and not all returned values

2 Workspaces are MATLAB’s version of lexical environments. There is an initial “main”
workspace which is acted upon by commands entered into the main read-eval-print loop. There
is a also a stack of workspaces corresponding to the function call stack. A call to a function
creates and pushes a new workspace, which becomes the current workspace.

3 These results are snippets taken from an interactive session in the MATLAB read-eval-print
loop. The “>>” prompt is followed by the expression to be evaluated. In Figure 1(c) this is a
call to function ex1. The line after the prompt prints the result of the evaluation.
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s = 0;
while i <= n

s = s + cos(i);
i = i + 1;

end

function ex1( )
i = 1;
n = 5;
sumcos;
s

end

>> ex1
s = -1.2358

(a) script sumcos.m (b) calling sumcos (c) result of call

function s = sumcosFN(i, n)
s = 0;
while i <= n

s = s + cos(i);
i = i + 1;

end
end

function ex1FN( )
s = sumcosFN(1, 5)

end

>> ex1FN
s = -1.2358

(d) function sumcosFN.m (e) calling sumcosFN (f) result of call

Fig. 1. Example script and function

need to be used. Parameters obey call-by-value semantics where semantically a copy of
each input and output parameter is made.4

2.2 Identifier Kinds

MATLAB does not explicitly declare local variables, nor explicitly declare the types of
any variables. Input and output arguments are explicitly declared as variables, whereas
other variables are implicitly declared upon their first definition. For example, the as-
signment to s in the first line of Figure 1(d) implicitly also declares s to be a variable,
and allocates space for that variable in the workspace of function sumcosFN.

It is important to note that it is not possible to syntactically distinguish between
references to array elements and calls to functions. For example, so far we have assumed
that the expression cos(i) is a call to function cos. However, it could equally well
be an array reference referring to the ith element of array cos.

To illustrate, consider Figure 2(a), where cos is defined to be a five-element vector.
The call to sumcos in this context actually just sums the elements of the vector, return-
ing 15. This is because the MATLAB semantics give a kind of ID (identifier) to most
identifiers in scripts. The rule for looking up identifiers with kind ID at runtime is to
first look in the current workspace to see if a variable of that name exists, and if so the
identifier denotes that variable. If no such variable exists then the identifier is looked up
as a function. Since the script sumcos is being executed in the workspace of function
ex2, and there does exist a variable called cos in that workspace, the reference to cos
refers to that variable, and not the library function for computing the cosine.

The identifier lookup semantics within functions is different. In the case of functions,
each identifier is given a static kind at JIT compilation time; for details of this process we

4 Actual implementations of MATLAB optimize this using either lazy copying using reference
counts, or static analyses to insert copies only where necessary [6].
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function ex2( )
cos = [1,2,3,4,5];
i = 1;
n = 5;
sumcos;
s

end

>> ex2
s = 15

(a) calling script sumcos (b) result of call

function ex2FN( )
cos = [1,2,3,4,5];
s = sumcosFN(1, 5)

end

>> ex2FN
s = -1.2358

(c) calling function sumcosFN (d) result of call

Fig. 2. Calling sumcos in a context where cos is a variable

refer to the literature [4]. In the case of the refactored functionsumcosFN, identifiersi,
n and swould be determined to have kind VAR (variables), and identifier coswould be
given the kind FN (function). Thus, the reference to cos will always be to the function,
and our transformed functionsumcosFNmay have a different meaning than the original
script sumcos, as demonstrated by the different results in Figure 2(b) and (d).

From this example, it is clear that any MATLAB refactoring of scripts must take care
not to change the meaning of identifiers, and in order to do this all of the calling contexts
of the script must be taken into consideration.

2.3 MATLAB Programs and Function Lookup

MATLAB programs are defined as directories of files. Each file f.m contains either:
(a) a script, which is simply a sequence of MATLAB statements; or (b) a sequence of
function definitions. If the file f.m defines functions, then the first function defined in
the file should be called f (although even if it is not called f it is known by that name in
MATLAB). The first function is known as the primary function. Subsequent functions
are subfunctions. The primary and subfunctions within f.m are visible to each other,
but only the primary function is visible to functions defined in other .m files. Functions
may be nested, following the usual static scoping semantics of nested functions. That
is, given some nested function f’, all enclosing functions, and all functions declared in
the same nested scope are visible within the body of f’.

Figure 3(a) shows an example of a file containing two functions. The primary function
is ex3 and will be visible to all functions and scripts defined in other files. This file also
has a secondary function cos, which is an implementation of the cosine function using
a Taylor’s approximation. The important question in this example is which cos will be
called from the scriptsumcos: the library implementation ofcos or the Taylor’s version
of cos defined as a subfunction for ex3? The answer is that the lookup of a function
call from within a script is done with respect to the calling function’s environment. In
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function ex3( )
i = 1;
n = 5;
sumcos;
s

end

function r = cos(x)
r = 0;
xsq = x*x;
term = 1;
for i = 1:1:10

r = r + term;
term = -term*xsq/((2*i-1)*(2*i));

end
end

>> ex3
s = -1.2359

(a) ex3.m with primary and subfunction (b) result of call

function ex3FN( )
s = sumcosfn(1,5)

end

function r = cos(x)
% same as above
...

end

>> ex3FN
s = -1.2358

(c) refactored ex3.m (d) result of call

Fig. 3. Calling sumcos in a context where cos is defined as a subfunction

this case the call to cos in script sumcos refers to the environment of function ex3,
which was the last called function. Thus, cos binds to the subfunction in ex3.

The transformed function sumcosFN, however, will not call the Taylor’s version of
cos since subfunctions are not visible to functions defined outside of the file. Thus, the
results of running the original script and the transformed function are different. Clearly
any MATLAB refactoring must take care that it does not change the binding of functions.

In addition to subfunctions, MATLAB also uses the directory structure to organize
functions, and this directory structure also impacts on function binding.

MATLAB directories may contain special private, package and type-specialized di-
rectories, which are distinguished by the name of the directory. Private directories must
be named private/, Package directories start with a ‘+’, for example +mypkg/. The
primary function in each file f.m defined inside a package directory +p corresponds
to a function named p.f. To refer to this function one must use the fully qualified
name, or an equivalent import declaration. Package directories may be nested. Type-
specialized directories have names of the form @<typename>, for example @int32/.
The primary function in a file f.m contained in a directory @typename/ matches calls
to f(a1,...), where the run-time type of the primary argument is typename.
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Overall, the MATLAB lookup of a script/function is performed relative to: f, the cur-
rent function/script being executed; sourcefile, the file in which f is defined; fdir, the
directory containing the last called non-private function (calling scripts or private func-
tions does not change fdir); dir, the current directory; and path, a list of other directories.
When looking up function/script names, first f is searched for a nested function, then
sourcefile is searched for a subfunction, then the private directory of fdir is searched,
then dir is searched, followed by the directories on path. In the case where there is both
a non-specialized and type-specialized function matching a call, the non-specialized
version will be selected if it is defined as a nested, subfunction or private function,
otherwise the specialized function takes precedence.

In summary, a refactoring needs to ensure that identifier kinds do not change unex-
pectedly, and that function lookup remains the same.

3 Converting Scripts to Functions

In the previous section we have motivated the need for a refactoring that can convert
scripts, which are non-modular, into equivalent functions which will help improve the
overall structure of MATLAB programs. We also demonstrated that this refactoring is
not as straightforward as one might think due to MATLAB’s intricate kind assignment
and function lookup rules.

In this section we provide an algorithm to refactor a script into a semantically equiv-
alent function. The programmer provides a complete program, and also identifies the
script to be converted to a function. If the refactoring can be done in a semantics-
preserving manner, the SCRIPT TO FUNCTION refactoring converts the script to a func-
tion and replaces all calls to the script with calls to the new function.

This refactoring requires the use of two additional analyses, Reaching Definitions
and Liveness. These are standard analyses which we have implemented in a way that
enables our refactoring.

In our implementation of the reaching definition analysis, every identifier is initial-
ized to be have a special reaching definition of “undef”. This means that if “undef”
is not in the reaching definition set for an identifier at some program point p, then this
identifier is definitely assigned on all the paths to p. Further, if the reaching definition
of an identifier only contains “undef”, the variable is not assigned to on any paths.
Calls to scripts can change reaching definition and liveness results so we look into the
called scripts’ body during the analyses. Global and persistent variables may be de-
fined by function calls, so our analysis handles these conservatively by associating a
special “global def” or “persistent def” with each variable declared as global or
persistent. These definitions are never killed.

Our liveness analysis is intra-procedural, but also follows calls to scripts. The live-
ness analysis safely approximates global variables as always being live, and persistent
variables as live at the end of the function they are associated with. Variables that are
used in nested functions are also kept alive for simplicity.

Recall that the main difference between a script and a function is that a function has
its own workspace and communicates with its caller via input and output arguments,
while a script executes directly within the caller’s workspace. Thus, to convert a script
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Notation Meaning
DAs variables definitely assigned on every path through s
PAs variables possibly assigned on some path through s
L<s variables live immediately before s
L>s variables live immediately after s
RDs(x) reaching definitions for x immediately before s
Kf (x) kind assigned to x inside script or function f ; Kf (x) = � for inconsistent kind
Lookupf (x) look up identifier x in function f (subscript omitted where clear from context)

Fig. 4. Notation for auxiliary analysis results; s may be a sequence of statements, or the body of
a function or script

s to function f we need to: (1) determine input and output arguments that will work for
all calls to s, and (2) ensure that name binding will stay the same after conversion.

To determine arguments, the basic idea is that a variable needs to be made an input
argument if it is live within the script and assigned at every call site; conversely, it needs
to be an output argument if it is assigned within the script and live at some call site.

This intuition is made more precise in Algorithm 1, which uses the notations defined
in Figure 4. To convert script s into a function, we first compute the set L of identifiers
that are used before being defined in s, and that may refer to a variable (as opposed to a
function); these are candidates for becoming input arguments.

Now we examine every call c to s. If the call occurs in a script s′, we abort the
refactoring: the lack of structure in scripts makes it all but impossible to determine ap-
propriate sets of input and output arguments; the user can first convert s′ into a function,
and then attempt the refactoring again.

If c is in a function, we consider the set DA<c of variables definitely assigned at c.
As far as call site c is concerned, the set Ic of input arguments should simply be the
intersection of this set with L, the set of live variables at the beginning of s. Similarly,
the set Oc of output arguments should contain all variables that are possibly assigned
in s and that are live immediately after c. We also need to ensure that every output ar-
gument is definitely assigned somewhere in the script; otherwise the refactoring cannot
go ahead. Finally, we compute a set lookupc capturing name binding information for
functions at c, whose purpose will be explained below.

Next, we need to check that the set of input arguments I is consistent between call
sites: if different call sites provide different input arguments, the refactoring cannot go
ahead (line 13). For output arguments, on the other hand, no such precaution is required:
if an output argument is unused at a particular call site, it can be ignored by binding it
to the dummy “∼” identifier. Thus the set of output parameters O is simply the union
of output arguments at every call site.

We are now ready to build the function f using input arguments I , output arguments
O, and the body of s.

As a final step, we need to check that name resolution and kind assignments have not
changed.

The former is easy to do: we simply compute pairs 〈n,Lookup(n)〉 determining the
binding of every identifier n with kind ID or FN in f , and check that these bindings
agree with the bindings lookupc observed at the call sites.
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Algorithm 1. SCRIPT TO FUNCTION

Require: script s
Ensure: s converted to function; all calls to s replaced with function calls

1: // preliminary definitions
2: L ← {x | x ∈ L<s ∧Ks(x) ∈ {VAR, ID}}
3: Cs ← calls to s

4: // compute input and output arguments
5: for all calls c ∈ Cs do
6: if c is in another script s′ then
7: abort refactoring
8: Ic ← DA<c ∩ L // input arguments
9: Oc ← PAs ∩ L>c // output arguments

10: if Oc �⊆ DAs then
11: abort refactoring
12: lookupc ← {〈n,Lookup(n)〉 | n occurs in s,Ks(n) ∈ {ID, FN}} // binding information
13: if ¬∀c, c′ ∈ Cs.Ic = Ic′ then
14: abort refactoring
15: else
16: I ← Ic for some call c ∈ Cs

17: O ← ⋃
c∈Cs

Oc

18: // construct new function
19: construct new function f with input arguments I and output arguments O

20: // check name binding and kinds
21: lookupf ← {〈n,Lookup(n)〉 | n is identifier in f of kind ID or FN}
22: if ¬∀c ∈ Cs.lookupc = lookupf then
23: abort refactoring
24: for all identifiers x in f do
25: if Kf (x) = ID then
26: abort refactoring
27: else if Ks(x) = ID and Kf (x) = FN then
28: emit warning
29: else if Ks(x) = VAR and Kf (x) = � then
30: abort refactoring
31: replace calls to s with calls to f

To check kind preservation, we compare the kind Ks(x) an identifier x had in s, with
its kind Kf (x) in the new function f . In general, identifiers of kind ID can remain so or
turn into FN, and identifiers with kind VAR can cause a kind conflict.

If Kf (x) = ID, x may originally have been referring to a variable created dynami-
cally in the calling function. Since functions do not share their caller’s workspace, this
cannot be achieved in a function, and the refactoring has to be aborted.

If x’s kind changed from ID to FN, we emit a warning informing the user that the
refactoring assumes x refers to a function, which is always the case unless a variable of
the same name is created dynamically by eval or code loading.
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Finally, if x was originally of kind VAR, but provokes a kind conflict in f , we need
to abort the refactoring, since it is not clear which uses of the identifier were meant to
refer to a function, and which to a variable.

If all checks pass, calls to s can be rewritten to function calls, passing in all input
arguments in I and extracting output arguments from the result, discarding any output
arguments not needed at a particular call site.

4 Extracting Functions

The EXTRACT FUNCTION refactoring makes it possible to split large functions into
smaller ones to improve understandability and reusability. Across all our MATLAB

benchmarks, we found that the average number of lines of code per function is 22.7;
for comparison, this number is 5.4 for Java and 10.5 for C++ [7], which suggests that
MATLAB functions tend to be fairly long and could benefit from extraction.

We first introduce the refactoring on an example before giving a precise specification
of the extraction algorithm.

1 function printBest(names,
2 grades)
3 bestGrade=-1; bestIdx=-1;
4 for i=1:length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 return
12 end
13 disp(names{bestIdx})
14 end

1 function printBest(names,
2 grades)
3 RET=false;
4 bestGrade=-1; bestIdx=-1;
5 for i=1:length(grades)
6 if grades(i) > bestGrade
7 bestGrade=grades(i);
8 bestIdx=i;
9 end

10 end
11 if bestGrade == -1
12 RET=true;
13 end
14 if (˜RET)
15 disp(names{bestIdx})
16 end
17 end

(a) Original Function; extract lines 3–12 (b) After Return Elimination

Fig. 5. An example for EXTRACT FUNCTION

Figure 5(a) shows an example function that takes an array names containing the
names of students, and an array grades containing their grades. On lines 3–12, it
searches through grades to find the best grade, storing its index in local variable
bestIdx. If no best grade was found (because grades was empty or contained in-
valid data), the function returns to its caller; otherwise, the name of the student with the
best grade is printed.

Assume that we want to extract the code for finding the best grade (lines 3–12)
into a new function findBest. Note that the extraction region contains the return
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statement on line 11; if this statement were extracted into findBest unchanged, pro-
gram semantics would change, since it would now only return from findBest, not
from printBest any more. To avoid this, we first eliminate the return as shown in
Figure 5(b) by introducing a flag RET. In general, return elimination requires a slightly
more elaborate transformation than this, but it is still fairly straightforward and will not
be described in detail here; the reader is referred to the first author’s thesis for details [8].

Next, we need to determine which input and output arguments the extracted function
should have. Reasoning similar to the previous section, we determine that grades
should become an input argument, since it is live at the beginning of the extracted
region and definitely assigned beforehand. Conversely, bestIdx should become an
output argument, since it is assigned in the extracted region and live afterwards.

1 function [RET, bestIdx] =
2 findBest(grades)
3 bestGrade=-1; bestIdx=-1;
4 for i=1:length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 RET=true;
12 end
13 end
14

15 function printBest(names,
16 grades)
17 RET=false;
18 [RET, bestIdx] = ...
19 findBest(grades);
20 if (˜RET)
21 disp(names{bestIdx})
22 end
23 end

1 function [RET, bestIdx] =
2 findBest(grades, RET)
3 bestGrade=-1; bestIdx=-1;
4 for i=1:length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 RET=true;
12 end
13 end
14

15 function printBest(names,
16 grades)
17 RET=false;
18 [RET, bestIdx] = ...
19 findBest(grades, RET);
20 if (˜RET)
21 disp(names{bestIdx})
22 end
23 end

(a) After extracting function, RET may (b) Final version of the extracted function
be undefined after the call and the call

Fig. 6. Example for EXTRACT FUNCTION, continued

Similarly, RET should also become an output argument. Figure 6(a) shows the new
function with these arguments. Note, however, that RET is not assigned on all code
paths, so it may be undefined at the point where the extracted function returns, resulting
in a runtime error. To avoid this, we have to also add RET to the list of input arguments,
ensuring that it always has a value. This finally yields the correct extraction result,
shown in Figure 6(b).
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Algorithm 2. EXTRACT FUNCTION

Require: sequence s of contiguous statements in function f , name n
Ensure: s extracted into new function g with name n

1: if s contains top-level break or uses vararg syntax then
2: abort refactoring
3: if s contains return statement then
4: eliminate return statements in f
5: I ← {x | x ∈ L<s ∧ RDs(x) �⊆ {undef,global}}
6: O ← PAs ∩ L>s

7: for all x ∈ O \DAs do
8: if undef �∈ RDs(x) then
9: I ← I ∪ {x}

10: else
11: abort refactoring
12: if function with name n exists in same folder as f then
13: abort refactoring
14: create new function g with name n, input arguments I , output arguments O
15: declare any globals used in s as globals in g
16: for all identifier x in g do
17: if Kg(x) �= Kf (x) then
18: abort refactoring
19: else if Kg(x) = FN and Lookupf (x) �= Lookupg(x) then
20: abort refactoring
21: else if Kg(x) = ID then
22: abort refactoring
23: replace s by call to g

Algorithm 2 shows how to extract a sequence s of contiguous statements in a function
f into a new function named n, again using the notations from Figure 4.

We first check whether s contains a break statement that refers to a surrounding
loop that is not part of the extraction region; if so, the refactoring is aborted. Similarly,
if s refers to a variable argument list of f using “varargin” or “varargout”, the
refactoring is also aborted. Both of these cases would require quite extensive transfor-
mations, which we do not believe to be justified.

After eliminating return statements if necessary, we compute the set I of input ar-
guments, and the set O of output arguments for the new function: every variable that
is live immediately before the extraction region s and that has a non-trivial reaching
definition becomes an input argument; every variable that is potentially assigned in s
and is live afterwards becomes an output argument.

Additionally, any output arguments that are not definitely assigned in s but are def-
initely assigned before (like RET in our example above) also become input arguments.
We also check for the corner case of an output argument that is neither definitely as-
signed in s nor before s, which results in the refactoring being aborted.

Having established the sets of input and output arguments, we can now create the
extracted function g, but we need to ensure that no function of this name exists already.
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1 %%% matrix of Fourier coefficients
2 eps1 = feval (’epsgg’,r,na,nb,b1,b2,N1,N2);
3 ...
4 for j=1:length(BZx)
5 [kGx, kGy] = feval(’kvect2’,BZx(j),BZy(j),b1,b2,N1,N2);
6 [P, beta]=feval(’oblic_eigs’,omega,kGx,kGy,eps1,N);
7 ...
8 end

Listing 1.1. Extracts from a script which uses feval

We also need to declare any global variables used in s as global in g, as they would
otherwise become local variables of g.

Finally, we need to check that name binding and kind assignments work out. First,
we check that the kind of all identifiers in g is the same as before the extraction. Ad-
ditionally, if there is any function reference that refers to a different declaration in the
new function g than it did before, we need to abort the refactoring. Lastly, we ensure
that no identifier has kind ID, as this may again lead to different name lookup results.

If all these checks pass, we can replace s by a call to the extracted function.

5 Other Refactorings

In addition to the SCRIPT TO FUNCTION and EXTRACT FUNCTION refactorings de-
scribed in the previous sections, we have implemented several other refactorings that
we briefly outline in this section.

Corresponding to EXTRACT FUNCTION, there are two inlining refactorings for in-
lining scripts and functions. While this does not usually improve code quality, inlining
refactorings can play an important role as intermediate steps in larger refactorings.

When inlining a call to script or function g in function f , return statements in g first
have to be eliminated in the same way as for EXTRACT FUNCTION. If g is a function,
its local variables have to be renamed to avoid name clashes with like-named variables
in f . After copying the body of g into f , we then have to verify that name bindings
stay the same, and kind assignments either stay the same or at least do not affect name
lookup. For details we refer to the first author’s thesis [8].

Finally, we briefly discuss a very simple but surprisingly useful MATLAB-specific
refactoring, ELIMINATE FEVAL. The MATLAB builtin function feval takes a refer-
ence to a function (a function handle or a string with the name of the function) as an
argument and calls the function. Replacing feval by direct function calls where pos-
sible leads to cleaner and more efficient code.

Somewhat to our surprise, we found numerous cases where programmers used a con-
stant function name in feval. For example, the code in Listing 1.1, which is extracted
from one of our benchmarks, uses feval for all invocations of user defined functions
(lines 2, 5 and 6), even though there is no apparent reason for doing so; all uses of
feval can be replaced by direct function calls.
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Our refactoring tool looks for those calls to feval which have a string constant
as the first argument, and then uses the results from kind analysis to determine if an
identifier with kind VAR with the same name exists. If there is no such identifier in
the function, the call to feval is replaced with a direct call to the function named
inside the string literal. Of course, with more complex string and call graph analyses
one could support even more such refactorings. However, it is interesting that such a
simple refactoring is useful.

6 Evaluation

We now evaluate our implementation on a large set of MATLAB programs. While it
would be desirable to evaluate correctness (i.e., behavior preservation) of our imple-
mentation, this is infeasible to do by hand due to the large number of subject programs.
Automated testing of refactoring implementations is itself still a topic of research [9]
and relies on automated test generation, which is not yet available for MATLAB. Instead,
we aim to assess the usefulness of our refactorings and their implementation.

6.1 Evaluation Criteria

We evaluate every refactoring according to the following criteria:

EC1 How many refactoring opportunities are there?
EC2 Among all opportunities, how often can McLAB perform the refactoring without

warnings or errors? How often is the user warned of possible behavior changes?
How often is McLAB unable to complete the refactoring?

EC3 How invasive are the code changes?

6.2 Experimental Setup and Benchmarks

In order to experiment with our analyses we gathered a large number of MATLAB

projects.5 The benchmarks come from a wide variety of application areas including
Computational Physics, Statistics, Computational Biology, Geometry, Linear Algebra,
Signal Processing and Image Processing. We analyzed 3023 projects composed of
11698 function files, some with multiple functions, and 2380 scripts. The projects vary
in size between 283 files in one project, and a single file in other cases. A summary
of the size distribution of the benchmarks is given in Table 1 which shows that the
benchmarks tend to be small to medium in size. However, we have also found 9 large
and 2 very large benchmarks. The benchmarks presented here are the most downloaded
projects among the mentioned categories, which may mean that the average code qual-
ity is higher than for less popular projects.

5 Benchmarks were obtained from individual contributors plus projects from
http://www.mathworks.com/matlabcentral/fileexchange,
http://people.sc.fsu.edu/˜jburkardt/m_src/m_src.html,
http://www.csse.uwa.edu.au/˜pk/Research/MatlabFns/ and
http://www.mathtools.net/MATLAB/. This is the same set of projects that are
used in [4].

http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/
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Table 1. Distribution of size of the benchmarks

Benchmark Category Number of Benchmarks
Single (1 file) 2051
Small (2–9 files) 848
Medium (10–49 files) 113
Large (50–99 files) 9
Very Large (≥ 100 files) 2
Total 3023

6.3 Converting Scripts to Functions

We start by evaluating the SCRIPT TO FUNCTION refactoring presented in Section 3.
We consider every script a candidate for the refactoring (EC1), thus there are 2380

refactoring opportunities overall (note that some benchmarks only define functions).
For criterion EC2, Table 2 summarizes the result of using McLAB to convert all these
scripts to functions: in 204 cases, the refactoring completed without warnings or errors;
in 1312 cases, the refactoring succeeds with a warning about an identifier changing from
kind ID to the more specialized kind FN. This is only a problem if the program defines
a variable reflectively through eval or code loading, and the identifier in question is also
a function on the path. This is unlikely and should be easy for the programmer to check.
Finally, for 864 scripts the refactoring aborted because behavior preservation could not
be guaranteed.

Further breaking down the causes of rejection, we see that in most cases the problem
is an identifier of kind ID that cannot statically be resolved to a variable or a function.
In all these cases, the script is the only script in a single file project; thus it arguably
is not a very good target for conversion anyway. In some cases, the script was itself
called from a script, which also leads to rejection (as mentioned in Section 3, this could
be resolved by first converting the calling script to a function). Finally, in one case
different invocations of the script lead to different input argument assignments.

To assess the invasiveness of the code changes (EC3), we measured the number of
input and output arguments of the newly created functions. A large number of input and
output parameters can clutter up the code, so it is important that the refactoring creates
no spurious parameters. For those scripts that were called at least once, the number of
inputs range between 0 and 5 with an average of 1, and the number of outputs range

Table 2. Results from converting scripts to functions

Refactoring Outcome Number of Scripts
Success 204
Success with Warning about ID changed to FNs 1312
Unresolved IDs 712
Call from script 151
Input arguments mismatch 1
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between 0 and 12 with the average of 1.1. This shows that the algorithm is fairly efficient
in choosing a minimal set of parameters.

6.4 Extract Function

For function extraction, the number of refactoring opportunities is hard to measure,
since it is not clear how to identify blocks of code for which function extraction makes
sense.

In order to nevertheless be able to automatically evaluate a large number of function
extraction refactorings, we employ a heuristic for identifying regions that are more or
less independent in terms of control and data flow from the rest of a function.

We concentrate on regions starting at the beginning of a function, and comprising a
sequence of top-level statements. We only consider functions with at least seven top-
level statements; smaller functions are unlikely to benefit from extraction. Since we
want the region to contain some reasonable amount of code, we include at least as
many statements as it takes for the region to contain 30 AST nodes. We don’t want to
move all the body of the original function to the new function either, so we never extract
the last 30 AST nodes in the function either. In between, we find the choice that will
need the minimum number of input and output arguments, but only if that minimum
number is less than 15. Figure 7 shows these constraints.

Out of 13438 functions overall, 6469 contain at least seven top-level statements and
thus are interesting for extraction (EC1). Among these, we can successfully break 6214
functions (i.e., 96%) into smaller ones (EC2). The average number of arguments to the
newly created functions was 2.8 (EC3), with most extracted functions having between
one and three arguments. This means that the selection algorithm was effective in se-
lecting regions with minimal inter-dependency. Figure 8 shows the distribution of the
number of arguments among these 6214 functions.

In 48 cases the refactoring was rejected because a possibly undefined input argu-
ment was detected, and in 21 cases a possibly undefined output argument prevented the
refactoring from going ahead.

Function body

Extraction region contains at least 30 AST nodes

⎧⎨
⎩

−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Add statements, find minimum number of arguments

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

At least 30 AST nodes are not extracted

⎧⎨
⎩

−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Fig. 7. An example showing constraints used to select refactoring region
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Fig. 8. Distribution of number of arguments for the new functions

6.5 Replacing feval

Finally, we evaluated the ELIMINATE FEVAL refactoring for converting trivial uses of
feval into direct function calls. Of the 200 calls to feval, there were 23 uses of it with
a string literal argument (EC1), and all of them could be eliminated successfully (EC2).
The transformation performed by this refactoring is very local, and in fact makes the
code simpler (EC3).

6.6 Threats to Validity

There are several threats to validity for our evaluation.
First, our collection of benchmarks is extensive, but it may not be representative of

other real-world MATLAB code. In particular, the percentage of rejected refactorings
may be higher on code that makes heavy use of language features that are hard to
analyze.

Second, our selection of refactoring opportunities is based on heuristics and may
not be representative of actual refactorings that programmers may attempt. This is a
general problem with automatically evaluating refactoring implementations. Still, the
low number of rejections gives some confidence that the implementation should be able
to handle real-world use cases. A more realistic user study will have to wait until our
implementation has been integrated with an IDE.

Finally, we have not checked whether the refactorings performed by our implemen-
tation are actually behavior preserving in every case; the large number of successful
refactorings makes this impossible. We know of two edge cases where behavior may
not be preserved: the kind and name analyses do not handle dynamic calls to cd, and
eval is not handled by the liveness or reaching definition analysis. This is similar to
how refactorings for Java do not handle reflection. One possibility would be for the
refactoring engine to emit a warning to the user if a use of one of these features is
detected, but we have not implemented this yet.
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7 Related Work

There is a wide variety of work on refactoring covering a large number of programming
languages. In particular, there is a considerable body of work on automated refactor-
ing for statically typed languages such as Java with quite well developed and rigorous
approaches for specifying correct refactorings[10,11,12]. However, these approaches
intrinsically rely on the availability of rich compile-time information in the form of
static types and a static name binding structure; thus they are not easily applicable to
MATLAB, which provides neither.

Refactoring for dynamically typed languages has, in fact, a long history: the first ever
refactoring tool, the Refactoring Browser [13], targetted the dynamically typed object-
oriented language Smalltalk. However, the Refactoring Browser mostly concentrated
on automating program transformation and performed relatively few static checks to
ensure behavior preservation.

More recently, Feldthaus et al. [14] have presented a refactoring tool for JavaScript.
They employ a pointer analyis to infer static information about the refactored program,
thus making up for the lack of static types and declarations. Most of their refactorings
have the goal of improving encapsulation and modularity, thus they are similar in scope
to our proposed refactorings for MATLAB.

Even more closely related is recent work on refactoring support for Erlang. Like
MATLAB, Erlang has evolved over time, adding new constructs for more modular and
concise programming, and refactorings have been proposed that can help with upgrad-
ing existing code to make use of these new features. For instance, the Wrangler refac-
toring tool provides assistance for data and process refactoring [15], clone detection and
elimination [16] and modularity maintenance [17].

Most recently, Wrangler has been extended with a scripting language that makes it
easy to implement domain specific refactorings [18]. Such scriptable refactorings could
be interesting for MATLAB as well, either to implement one-off refactorings to be used
for one particular code base, or to provide a refactoring tool with specific information
about a program that enables otherwise unsafe transformations.

While Wrangler is an interactive tool, the tidier tool [19] performs fully automatic
cleanup operations on Erlang code. The standards for behavior preservation are obviously
much higher for a fully automated tool than for an interactive one, so tidier only performs
small-scale refactorings, but a similar tool could certainly also be useful for MATLAB.

Refactoring legacy Fortran code has also been the subject of some research. Over-
bey et. al. [20,21] point out the benefits of refactoring for languages that have evolved
over time. Although the specific refactorings are quite different, the motivation and the
applicability of our approaches is very similar. Like MATLAB, Fortran is often used for
computationally expensive tasks, hence there has been some interest in refactorings for
improving program performance [22,23].

In a similar vein, Menon and Pingali have investigated source-level transformations
for improving MATLAB performance [24]. The transformations they propose go beyond
the typical loop transformations performed by compilers, and capture MATLAB-specific
optimizations such as converting entire loops to library calls, and restructuring loops to
avoid incremental array growth. Automating these transformations would be an interest-
ing next step, and our foundational analyses and refactorings should aid in that process.
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8 Conclusion

In this paper we have identified an important domain for refactoring, MATLAB pro-
grams. Millions of scientists, engineers and researchers use MATLAB to develop their
applications, but no tools are available to support refactoring their programs. This means
that it is difficult for the programmers to improve upon old code which use out-of-date
language constructs or to restructure their initial prototype code to a state in which it
can be distributed.

To address this new refactoring domain we have developed a set of refactoring trans-
formations for functions and scripts, including function and script inlining, converting
scripts to functions, and eliminating simple cases of feval. For each refactoring we es-
tablished a procedure which defined both the transformation and the conditions which
must be verified to ensure that the refactoring is semantics-preserving. In particular, we
emphasized that both the kinds of identifiers and the function lookup semantics must be
considered when deciding if a refactoring can be safely applied or not.

We have implemented all of the refactorings presented in the paper using our McLAB

compiler toolkit, and we applied the refactorings to a large number of MATLAB applica-
tions. Our results show that, on this benchmark set, the refactorings can be effectively
applied. We plan to continue our work, adding more refactorings, including perfor-
mance enhancing refactorings and refactorings to enable a more effective translation of
MATLAB to Fortran.
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erhulme Trust (UK). We would also like to give special acknowledgment to Frank Tip
for helping to define the direction of this work.
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12. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A Comprehensive Approach to Naming and
Accessibility in Refactoring Java Programs. TSE (2012) (to appear)

13. Roberts, D., Brant, J., Johnson, R.E.: A Refactoring Tool for Smalltalk. TAPOS 3(4),
253–263 (1997)

14. Feldthaus, A., Millstein, T., Møller, A., Schäfer, M., Tip, F.: Tool-supported Refactoring for
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Abstract. The paper investigates an extension of LR parsing that al-
lows the delay of parsing decisions until a sufficient amount of context
has been processed. We provide two characterizations for the resulting
class of grammars, one based on grammar transformations, the other on
the direct construction of a parser. We also report on experiments with
a grammar collection.

1 Introduction

From a grammar engineer’s standpoint, LR parsing techniques, like the LALR(1)
parsers generated by yacc or GNU/bison, suffer from the troublesome existence
of conflicts, which appear sooner or later in any grammar development. Tracing
the source of such conflicts and refactoring the grammar to solve them is a
difficult task, for which we refer the reader to the accounts of Malloy et al. [15]
on the development of a C# grammar, and of Gosling et al. [10] on that of the
official Java grammar.

In the literature, different ways have been considered to solve conflicts
automatically while maintaining a deterministic parsing algorithm—which,
besides efficiency considerations, also has the considerable virtue of ruling
out ambiguities—, such as unbounded regular lookaheads [6], noncanonical
parsers [25], and delays before reductions [14]. Bertsch and Nederhof [4] have
made a rather counter-intuitive observation on the latter technique: increasing
delays uniformly throughout the grammar can in some cases introduce new con-
flicts.

In this paper we propose a parsing technique that selects how long a reduction
must be delayed depending on the context. More interestingly, and unlike many
techniques that extend LR parsing, we provide a characterization, using grammar
transformations, of the class of grammars that can be parsed in a LR fashion
with selective delays. More precisely,

– we motivate in Section 2 the interest of ML(k, m) parsing on an exerpt of
the C++ grammar, before stating the first main contribution of the paper:
we reformulate the technique of Bertsch and Nederhof [4] as a grammar
transformation, and show how selective delays can capture non-ML(k, m)
grammars,

� Part of this research was conducted while the second author was an invited professor
visiting ENS Cachan.
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– we define the class selML(k, m) accordingly through a nondeterminis-
tic grammar transformation, which allows us to investigate its properties
(Section 3),

– in Section 4 we propose an algorithm to generate parsers with selective de-
lays, and prove that it defines the same class of grammars.

– We implemented a Java proof of concept for this algorithm (see
http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/), and report
in Section 5 on the empirical value of selective delays, by applying the parser
on a test suite of small unambiguous grammars [2, 22].

– We conclude with a discussion of related work, in Section 6.

Technical details can be found in the full version of this paper at
http://hal.archives-ouvertes.fr/hal-00769668.

Preliminaries. We assume the reader to be familiar with LR parsing, but
nonetheless recall some definitions and standard notation.

A context-free grammar (CFG) is a tuple G = 〈N,Σ, P, S〉 where N is a finite
set of nonterminal symbols, Σ a finite set of terminal symbols with N ∩Σ = ∅—
together they define the vocabulary V = N � Σ—, P ⊆ N × V ∗ is a finite set
of productions written as rewrite rules “A → α”, and S ∈ N the start symbol.
The associated derivation relation ⇒ over V ∗ is defined as ⇒ = {(δAγ, δαγ) |
A → α ∈ P}; a derivation is rightmost, denoted ⇒rm, if γ is restricted to be in
Σ∗ in the above definition. The language of a CFG is L(G) = {w ∈ Σ∗ | S ⇒∗

w} = {w ∈ Σ∗ | S ⇒∗
rm w}.

We employ the usual conventions for symbols: nonterminals in N are denoted
by the first few upper-case Latin letters A, B, . . . , terminals in Σ by the first
few lower-case Latin letters a, b, . . . , symbols in V by the last few upper-case
Latin letters X , Y , Z, sequences of terminals in Σ∗ by the last few lower-case
Latin letters u, v, w, . . . , and mixed sequences in V ∗ by Greek letters α, β, etc.
The empty string is denoted by ε.

Given G = 〈N,Σ, P, S〉, its k-extension is the grammar 〈N�{S†}, Σ�{#}, P∪
{S† → S#k}, S†〉 where # is a fresh symbol. A grammar is LR(m) [13, 23] if
it is reduced—i.e. every nonterminal is both accessible and productive—and the
following conflict situation does not arise in its m-extension:

S† ⇒∗
rm δAu ⇒rm δαu = γu δ �= δ′ or A �= B or α �= β

S† ⇒∗
rm δ′Bv ⇒rm δ′βv = γwv m : u = m : wv

where “m : u” denotes the prefix of length m of u, or the whole of u if |u| ≤ m.

2 Marcus-Leermakers Parsing

The starting point of this paper is the formalization proposed by Leermakers
[14] of a parsing technique due to Marcus [16], which tries to imitate the way
humans parse natural language sentences. Bertsch and Nederhof [4] have given
another, equivalent, formulation, and dubbed it “ML” for Marcus-Leermakers.

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
http://hal.archives-ouvertes.fr/hal-00769668
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The idea of uniform ML parsing is that all the reductions are delayed to take
place after the recognition of a fixed number k of right context symbols, which
can contain nonterminal symbols. Bertsch and Nederhof [4] expanded this class
by considering m further symbols of terminal lookahead, thereby defining ML(k,
m) grammars. In Section 2.2, we provide yet another view on uniform ML(k, m)
grammars, before motivating the use of selective delays in Section 2.3. Let us
start with a concrete example taken from the C++ grammar from the 1998
standard [11].

2.1 C++ Qualified Identifiers

First designed as a preprocessor for C, the C++ language has evolved into a
complex standard. Its rather high level of syntactic ambiguity calls for nonde-
terministic parsing methods, and therefore the published grammar makes no
attempt to fit in the LALR(1) class.

We are interested in one particular issue with the syntax of identifier expres-
sions, which describe a full name specifier and identifier, possibly instantiating
template variables; for instance, “A::B<C::D>::E” denotes an identifier “E” with
name specifier “A::B<C::D>”, where the template argument of “B” is “D” with
specifier “C”.

The syntax of identifier expressions is given in the official C++ grammar by
the following (simplified) grammar rules:

I → U | Q, U → i | T, Q → N U, N → U ::N | U ::, T → i <I>.

An identifier expression I can derive either an unqualified identifier through
nonterminal U , or a qualified identifier through Q, which is qualified through
a nested name specifier derived from nonterminal N , i.e. through a sequence
of unqualified identifiers separated by double colons “::”, before the identifier i
itself. Moreover, each unqualified identifier can be a template identifier T , where
the template argument, between angle brackets “<” and “>”, can again be any
identifier expression.

Example 1. A shift/reduce conflict appears with this set of rules. A parser fed
with “A::”, and seeing an identifier “B” in its lookahead window, has a nonde-
terministic choice between

– reducing “A::” to a single N , in the hope that “B” will be the identifier
qualified by “A::”, as in “A::B<C::D>”, and

– shifting the identifier, in the hope that “B” will be a specifier of the identifier
actually qualified, for instance “E” in “A::B<C::D>::E”.

An informed decision requires an exploration of the specifier starting with “B”
in search of a double colon symbol. The need for unbounded lookahead occurs
if “B” is the start of an arbitrarily long template identifier: this grammar is not
LR(k) for any finite k.

Note that the double colon token might also appear inside a template ar-
gument. Considering that the conflict could also arise there, as after reading



On LR Parsing with Selective Delays 247

“A<B::” in “A<B::C<D::E>::F>::G”, we see that it can be arduous to know
whether a “::” symbol is significant for the resolution of the conflict or not.
In fact, this is an example of a conflict that cannot be solved by using regular
lookahead as proposed in [5, 3, 8], because keeping track of the nesting level of
well-balanced brackets is beyond the power of regular languages.1

2.2 Uniform ML

Observe that, in our extract of the C++ grammar, if we were to postpone the
choice between the two possible actions and attempt to parse an N in full,
then the issue would disappear. The mechanism Leermakers [14] employs for
delaying parsing decisions is to extend a nonterminal with additional terminal
and nonterminal symbols from its right context, thus delaying reduction to that
nonterminal until the moment when these additional symbols have been parsed
in full. This also involves introducing a new end-of-file terminal “#”.

We refer the reader to [14, 4] and the full version of this paper for the details
of the ML(k, m) parser construction. The automaton obtained by applying this
construction on the C++ grammar is too large to be rendered on a single page.
In what follows we present an alternative characterization of ML parsing on the
basis of a grammar transformation.

Uniform ML as a Transformation. Although Leermakers does not present his
technique in these terms, the intuition of extending nonterminals with right con-
text can be realized by a grammar transformation that introduces nonterminals
of the form [Aδ] in N ′ = N · V ≤k, which combine a nonterminal A with its
immediate right context δ.

This results for k = 1 and our C++ example into an LALR(1) grammar with
rules:

[I#] → [U#] | [Q#], [I>] → [U>] | [Q>],

[U#] → i# | [T#], [U>] → i > | [T>], [U::] → i :: | [T::], [U ] → i | [T ],
[Q#] → [NU ] #, [Q>] → [NU ] >,

[NU ] → [U::] [NU ] | [U::] [U ],

[T#] → i < [I>] #, [T>] → i < [I>] >, [T::] → i < [I>] ::, [T ] → i < [I>].

The new grammar demonstrates that our initial grammar for C++ identifier
expressions is ML(1, 1): it requires contexts of length k = 1, and lookahead of
length m = 1.

1 We can amend the rules of N to use left-recursion and solve the conflict:
N → N U :: | U :: . This correction was made by the Standards Committee in 2003
(see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125).
The correction was not motivated by this conflict but by an ambiguity issue, and
the fact that the change eliminated the conflict seems to have been a fortunate
coincidence. The C++ grammar of the Elsa parser [17] employs right recursion.

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125
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S† → • I##

I ## → • Q##

Q## → • NU ##

N U# → • U::N U#

U ::N → • i ::N

U ::N → i :: • N

N → • U::N

N → • U::

U ::N → • i ::N

U :: → • i ::

U ::N → i :: • N

U :: → i :: •
N → • U::

U :: → • i ::

i:: i::

Fig. 1. Parts of the uniform ML(2, 0) parser for C++ identifier expressions

Combing Function. Formally, the nonterminals in N ′ are used in the course of
the application of the uniform k-combing function combk from V ∗ to (N ′�Σ)∗,
defined recursively as:

combk(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[Aδ] · combk(α
′) if α = Aδα′, A ∈ N, and either |δ| = k,

or |δ| ≤ k and α′ = ε

a · combk(α
′) if α = aα′ and a ∈ Σ

ε otherwise, which is if α = ε .

For instance, comb1(ABcDeF ) = [AB]c[De][F ].
The right parts of the rules of [Aδ] are then of the form combk(αδ) if A → α

was a rule of the original grammar, effectively delaying the reduction of α to A
until after δ has been parsed.

Definition 1 (Uniform combing). Let G = 〈N,Σ, P, S〉 be a CFG. Its uni-
form k-combing is the CFG 〈N ·V ≤k, Σ, {[Aδ] → combk(αδ) | δ ∈ V ≤k and A →
α ∈ P}, [S]〉.

Equivalence of the Two Views. Of course we should prove that the two views
on ML parsing are equivalent:

Theorem 1. A grammar is ML(k, m) if and only if the uniform k-combing of
its k-extension is LR(m).

Proof Idea. One can verify that the LR(m) construction on the k-combing of
the k-extension of G and the ML(k, m) construction of Bertsch and Nederhof
[4] for the same G are identical.

2.3 Selective ML

An issue spotted by Bertsch and Nederhof [4] is that the classes of ML(k, m)
grammars and ML(k+1,m) grammars are not comparable: adding further delays
can introduce new LR(m) conflicts in the ML(k + 1, m)-transformed grammar.

For instance, the uniform 2-combing of our grammar for C++ identifier ex-
pressions is not LR(m) for any m: Fig. 1 shows the path to a conflict similar to
that of the original grammar, which is therefore not uniform ML(2, m). Selec-
tive ML aims to find the appropriate delay, i.e. the appropriate amount of right
context, for each item in the parser, in order to avoid such situations.
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Oscillating Behaviour. Bertsch and Nederhof also show that an oscillating be-
haviour can occur, for instance with the grammar

S → SdA | c, A → a | ab (Godd)

being ML(k, 0) only for odd values of k, and the grammar

S → SAd | c, A → a | ab (Geven)

being ML(k, 0) only for even values of k > 0, from which we can build a union
grammar

S → SdA | SAd | c, A → a | ab (G2)

which is not ML(k, 0) for any k.
Observe however that, if we use different context lengths for the different

rules of S in G2, i.e. if we select the different delays, we can still obtain an LR(0)
grammar G′

2 with rules

[S†] → [S#]#,

[S#] → [Sd][A#] | [SAd ]# | c#,

[Sd] → [Sd][Ad] | [SAd ]d | cd,
[SAd ] → [Sd][AAd ] | [SAd ][Ad] | c[Ad], (G′

2)

[A#] → a# | ab#,

[Ad] → ad | abd,
[AAd ] → a[Ad] | ab[Ad]

As we will see, this means that G2 is selective ML with a delay of at most
2, denoted selML(2, 0). This example shows that selective ML(k, m) is not
just about finding a minimal global k′ ≤ k such that the grammar is uniform
ML(k′, m). Because the amount of delay is optimized depending on the context,
selective ML captures a larger class of grammars.

3 Selective Delays through Grammar Transformation

We define selML(k, m) through a grammar transformation akin to that of Defi-
nition 1, but which employs a combing relation instead of the uniform k-combing
function. We first introduce these relations (Section 3.1) before defining the
selML(k,m) grammar class and establishing its relationships with various classes
of grammars in Section 3.2 (more comparisons with related work can be found
in Section 6).

3.1 Combing Relations

In the following definitions, we let G = 〈N,Σ, P, S〉 be a context-free grammar.
Combing relations are defined through the application of a particular inverse
homomorphism throughout the rules of the grammar.



250 E. Bertsch, M.-J. Nederhof, and S. Schmitz

Definition 2 (Selective Combing). Grammar G′ = 〈N ′, Σ, P ′, S′〉 is a selec-
tive combing of G, denoted G comb G′, if there exists a homomorphism μ from
V ′∗ to V ∗ such that

1. μ(S′) = S,
2. ∀a ∈ Σ,μ(a) = a,
3. μ(N ′) ⊆ N · V ∗, and
4. {A′ → μ(α′) | A′ → α′ ∈ P ′} = {A′ → αδ | A′ ∈ N ′, μ(A′) = Aδ, and A →

α ∈ P}.
It is a selective k-combing if furthermore μ(N ′) ⊆ N · V ≤k.

We denote the elements of N ′ by [Aδ]i, such that μ([Aδ]i) = Aδ, with an i
subscript in N to differentiate nonterminals that share the same image by μ.

Note that, if G comb G′, then there exists some k such that G′ is a selective
k-combing of G, because μ(N ′) is a finite subset of N ·V ∗. Another observation is
that comb is transitive, and thus we can bypass any intermediate transformation
by using the composition of the μ’s. In fact, comb is also reflexive (using the
identity on N for μ), and is thus a quasi order.

Grammar Cover. It is easy to see that a grammar and all its μ-combings are
language equivalent. In fact, we can be more specific, and show that any μ-
combing G′ = 〈N ′, Σ, P ′, [S]0〉 of G = 〈N,Σ, P, S〉 defines a right-to-x cover of G
(see Nijholt [19]), i.e. there exists a homomorphism h from P ′∗ to P ∗ such that

1. for all w in L(G′) and right parses π′ of w in G′, h(π′) is a parse of w in G,
and

2. for all w in L(G) there is a parse π of w in G, such that there exists a right
parse π′ of w in G′ with h(π′) = π.

Indeed, defining h by

h([Aδ]i → α) = A → μ(α) · δ−1 (1)

fits the requirements of a right-to-x cover.

Tree Mapping. Nevertheless, the right-to-x cover characterization is still some-
what unsatisfying, precisely because the exact derivation order x remains un-
known. We solve this issue by providing a tree transformation that maps any
derivation tree of G′ to a derivation tree of G. Besides allowing us to prove the
language equivalence of G and G′ (see Corollary 1), this transformation also al-
lows us to map any parse tree of G′—the grammar we use for parsing—to its
corresponding parse tree of G—the grammar we were interested in in the first
place.

We express this transformation as a rewrite system over the set of unranked
forests F(N∪N ′∪Σ) over the set of symbols N∪N ′∪Σ, defined by the abstract
syntax

t ::= X(f) (trees)

f ::= ε | f · t (forests)
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where “X” ranges overN∪N ′∪Σ and “·” denotes concatenation. Using unranked
forests, our tree transformation has a very simple definition, using a rewrite
system →R with one rule per nonterminal [AX1 · · ·Xr]i in N ′:

[AX1 · · ·Xr]i(x0 ·X1(x1) · · ·Xr(xr)) →R A(x0) ·X1(x1) · · ·Xr(xr) (2)

with variables x0, x1, . . . , xr ranging over F(N ∪N ′∪Σ). Clearly, →R is noethe-
rian and confluent, and we can consider the mapping that associates to a deriva-
tion tree t in G′ its normal form t↓R (see full paper for details):

Proposition 1. Let G be a CFG and G′ a combing of G.
1. If t′ is a derivation tree of G′, then t′ ↓R is a derivation tree of G.
2. If t is a derivation tree of G, then there exists a derivation tree t′ of G′ such

that t = t′ ↓R.
Since →R preserves tree yields, we obtain the language equivalence of G and G′

as a direct corollary of Proposition 1:

Corollary 1 (Combings Preserve Languages). Let G be a k-extended CFG
and G′ a combing of G. Then L(G) = L(G′).

3.2 Selective ML Grammars

We define selML(k, m) grammars by analogy with the characterization proved
in Thm. 1:

Definition 3 (Selective ML). A grammar is selML(k, m) if there exists a
selective k-combing of its k-extension that is LR(m).

Basic Properties. We now investigate the class of selML(k, m) grammars. As
a first comparison, we observe that the uniform k-combing of a grammar is by
definition a selective k-combing (by setting μ as the identity on N ·V ≤k), hence
the following lemma:

Lemma 1. If a grammar is ML(k, m) for some k and m, then it is selML(k,
m).

As shown by G2, this grammar class inclusion is strict.
A second, more interesting comparison holds between selML(0, m) and

LR(m). That a LR(m) grammar is selML(0, m) is immediate since comb is
reflexive; the converse is not obvious at all, because a 0-combing can involve
“duplicated” nonterminals, but holds nevertheless (see full paper for details).

Lemma 2. A reduced grammar is selML(0, m) if and only if it is LR(m).

Recall that a context-free language can be generated by some LR(1) grammar
if and only if it is deterministic [13], thus selML languages also characterize
deterministic languages:
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Corollary 2 (Selective ML Languages). A context-free language has a
selML grammar if and only if it is deterministic.

Proof. Given a selML(k, m) grammar G, we obtain an LR(m) grammar G′ with
a deterministic language, and equivalent to G by Corollary 1. Conversely, given
a deterministic language, there exists an LR(1) grammar for it, which is also
selML(0,1) by Lemma 2.

Monotonicity. We should also mention that, unlike uniform ML, increasing k
allows strictly more grammars to be captured by selML(k, m). Indeed, if a
grammar is a selective k-combing of some grammar G, then it is also a k + 1-
combing using the same μ (with an extra # endmarker), and remains LR(m).

Proposition 2. If a grammar is selML(k, m) for some k and m, then it is
selML(k′, m′) for all k′ ≥ k and m′ ≥ m.

Strictness can be witnessed thanks to the grammar family (Gk
3 )k≥0 defined by

S → AckA′ | BckB′, A → cA | d, B → cB | d, A′ → cA′ | a, B′ → cB′ | b (Gk
3 )

where each Gk
3 is selML(k + 1, 0), but not selML(k, m) for any m.

Ambiguity. As a further consequence of Proposition 1, we see that no ambiguous
grammar can be selML(k, m) for any k and m.

Proposition 3. If a grammar is selML(k, m) for some k and m, then it is
unambiguous.

Proof. Assume the opposite: an ambiguous grammar G has a selective k-combing
G′ that is LR(m). Being ambiguous, G has two different derivation trees t1 and
t2 with the same yield w. As t1 and t2 are in normal form for →R, the sets of
derivation trees of G′ that rewrite into t1 and t2 are disjoint, and using Propo-
sition 1 we can pick two different derivation trees t′1 and t′2 with t1 = t′1 ↓R and
t2 = t′2 ↓R. As →R preserves tree yields, both t′1 and t′2 share the same yield w,
which shows that G′ is also ambiguous, in contradiction with G′ being LR(m)
and thus unambiguous.

Again, this grammar class inclusion is strict, because the following unambiguous
grammar for even palindromes is not selML(k, m) for any k or m, since its
language is not deterministic:

S → aSa | bSb | ε (G4)

Undecidability. Let us first refine the connection between selML and LR in the
case of linear grammars: recall that a CFG is linear if the right-hand side of each
one of its productions contains at most one nonterminal symbol. A consequence is
that right contexts in linear CFGs are exclusively composed of terminal symbols.
In such a case, the selML(k,m) and LR(k+m) conditions coincide (see full paper
for details):
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Lemma 3. Let G be a reduced linear grammar, and k and m two natural inte-
gers. Then G is selML(k, m) if and only if it is LR(k +m).

Note that in the non-linear case, the classes of selML(k, m) and LR(k+m) gram-
mars are incomparable. Nevertheless, we obtain as a consequence of Lemma 3:

Theorem 2. It is undecidable whether an arbitrary (linear) context-free gram-
mar is selML(k, m) for some k and m, even if we fix either k or m.

Proof. Knuth [13] has proven that it is undecidable whether an arbitrary linear
context-free grammar is LR(n) for some n.

4 Parser Construction

This section discusses how to directly construct an LR-type parser for a given
grammar and fixed k and m values. The algorithm is incremental, in that it
attempts to use as little right context as possible: this is interesting for efficiency
reasons (much as incremental lookaheads in [1, 20]), and actually needed since
more context does not necessarily lead to determinism (recall Section 2.3). The
class of grammars for which the algorithm terminates successfully (i.e. results in
a deterministic parser, without ever reaching a failure state) coincides with the
class of selML(k, m) grammars (see Propositions 4 and 5). An extended example
of the construction will be given in Section 4.2.

4.1 Algorithm

Algorithm 1 presents the construction of an automaton from the k-extension of a
grammar. We will call this the selML(k, m) automaton. In the final stages of the
construction, the automaton will resemble an LR(m) automaton for a selective
k-combing. Before that, states are initially constructed without right context.
Right contexts are extended only where required to solve conflicts.

Items and States. The items manipulated by the algorithm are of form ([Aδ] →
α • α′, L), where L ⊆ Σ≤m is a set of terminal lookahead strings, and where α
and α′ might contain nonterminals of the form [Bβ], where B ∈ N and β ∈ V ≤k.
Such nonterminals may later become nonterminals in the selective k-combing of
the input grammar. To avoid notational clutter, we assume in what follows that
B and [B] are represented in the same way, or equivalently, that an occurrence
of B in a right-hand side is implicitly converted to [B] wherever necessary.

States are represented as sets of items. Each such set q is associated with three
more sets of items. The first is its closure close(q). The second is conflict(q),
which is the set of closure items that lead to a shift/reduce or reduce/reduce
conflict with another item, either immediately in q or in a state reachable from
q by a sequence of transitions. A conflict item signals that the closure step that
predicted the corresponding rule, in the form of a non-kernel item, must be
reapplied, but now from a nonterminal [Bβ] with longer right context β. Lastly,
the set deprecate(q) contains items that are to be ignored for the purpose of
computing the Goto function.
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([Aδ] → α • [Bβ1]β2, L) ∈ close(q)

([Bβ1] → • γβ1, L
′) ∈ close(q)

{
B → γ ∈ P,
L′ = Firstm(β2L)

(closure)

([A1δ1] → α1 • β1, L1) ∈ close(q)
([A2δ2] → α2 •, L2) ∈ close(q)

([A2δ2] → α2 •, L2) ∈ conflict(q)

{
(A1δ1, α1, β1) �= (A2δ2, α2, ε),
Firstm(μ(β1)L1) ∩ L2 �= ∅ (conflict detection)

([Aδ] → α • [Bβ], L) ∈ close(q)
([Bβ] → • γ, L) ∈ conflict(q)

([Aδ] → α • [Bβ], L) ∈ conflict(q)
(conflict propagation)

([Aδ] → α • [Bβ1]Xβ2, L) ∈ close(q)
([Bβ1] → • γ, L′) ∈ conflict(q)

([Aδ] → α • [Bβ1X]β2, L) ∈ close(q)

{|β1| < k,
L′ = Firstm(Xβ2L),

(extension)

([Bβ] → • γ, L) ∈ conflict(q)

⊥
{|β| = k (failure)

([Aδ] → α • [Bβ1X]β2, L) ∈ close(q)

([Aδ] → α • [Bβ1]Xβ2, L) ∈ deprecate(q)
(deprecation)

([Aδ] → α • [Bβ1X]β2, L) ∈ close(q)

([Bβ1] → • γ′, L′) ∈ deprecate(q)

{
B → γ ∈ P, μ(γ′) = γβ1,
L′ = Firstm(Xβ2L),

(deprecate closure)

Fig. 2. Closure of set q with local resolution of conflicts

Item Closure. The sets close(q), conflict(q) and deprecate(q) are initially com-
puted from the kernel q alone. However, subsequent visits to states reachable
from q may lead to new items being added to conflict(q) and then to close(q)
and deprecate(q). How items in these three sets are derived from one another for
given q is presented as the deduction system in Figure 2.

The closure step is performed as in conventional LR parsing, except that
right context is copied to the right-hand side of a predicted rule. The conflict
detection step introduces a conflict item, after a shift/reduce or reduce/reduce
conflict appears among the derived items in the closure. Conflict items solicit
additional right context, which

– may be available locally in the current state, as in step extension, where
nonterminal [Bβ1] is extended to incorporate the following symbol X—we
assume μ here is a generic “uncombing” homomorphism, turning a single
nonterminal [Bβ1] into a string Bβ1 ∈ N · V ≤k—, or

– if no more right context is available at the closure item from which a conflict
item was derived, then the closure item itself becomes a conflict item, by
step conflict propagation—propagation of conflicts across states is realized
by Algorithm 1 and will be discussed further below—, or

– if there is ever a need for right context exceeding length k, then the grammar
cannot be selML(k, m) and the algorithm terminates reporting failure by
step failure.
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Algorithm 1. Construction of the selML(k, m) automaton for the k-extension of
G = 〈N,Σ, P, S〉, followed by construction of a selective k-combing
1: States ← ∅
2: Transitions ← ∅
3: Agenda ← ∅
4: qinit = {(S† → • S#k, {ε})}
5: NewState(qinit)
6: while Agenda �= ∅ do
7: q ← pop(Agenda)
8: remove (q,X, q′) from Transitions for any X and q′

9: apply Figure 2 to add new elements to the three sets associated with q
10: for all ([Aδ] → αX • β, L) ∈ conflict(q) do
11: for all q′ such that (q′, X, q) ∈ Transitions do
12: AddConflict(([Aδ] → α • Xμ(β), L), q′)
13: end for
14: end for
15: if there are no ([Aδ] → αX • β, L) ∈ conflict(q) then
16: qmax ← close(q) \ deprecate(q)
17: for all X such that there is ([Aδ] → α • Xβ,L) ∈ qmax do
18: q′ ← Goto(qmax, X)
19: if q′ /∈ States then
20: NewState(q′)
21: else
22: for all ([A′δ′] → α′X • β′, L) ∈ conflict(q′) do
23: AddConflict(([A′δ′] → α′ • Xμ(β′), L), q)
24: end for
25: end if
26: Transitions ← Transitions∪{(q,X, q′)}
27: end for
28: end if
29: end while
30: construct a selective k-combing as explained in the running text
31:
32: function NewState(q)
33: close(q) ← q
34: conflict(q) ← ∅
35: deprecate(q) ← ∅
36: States ← States∪{q}
37: Agenda ← Agenda∪{q}
38: end function
39:
40: function AddConflict(([Aδ] → α • Xβ, L), q)
41: if ([Aδ] → α • Xβ, L) /∈ conflict(q) then
42: conflict(q) ← conflict(q) ∪ {([Aδ] → α • Xβ, L)}
43: Agenda ← Agenda∪{q}
44: end if
45: end function
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Step deprecation expresses that an item with shorter right context is to be ig-
nored for the purpose of computing the Goto function. The Goto function will
be discussed further below. Similarly, step deprecate closure expresses that all
items predicted from the item with shorter right context are to be ignored.

Main Algorithm. Initially, the agenda contains only the initial state, which is
added in line 5. Line 7 of the algorithm removes an arbitrary element from
the agenda and assigns it to variable q. At that point, either close(q) = q and
conflict(q) = deprecate(q) = ∅ if q was not considered by line 7 before, or elements
may have been added to conflict(q) since the last such consideration, which
also requires updating of close(q) and deprecate(q), by Figure 2. By a change
of the latter two sets, also the outgoing transitions may change. To keep the
presentation simple, we assume that all outgoing transitions are first removed
(on line 8) and then recomputed. From line 10, conflicting items are propagated
to states immediately preceding the current state, by one transition. Such a
preceding state is then put on the agenda so that it will be revisited later.

Outgoing transitions are (re-)computed from line 15 onward. This is only done
if no conflicting items had to be propagated to preceding states. Such conflict
items would imply that q itself will not be reachable from the initial state in
the final automaton, and in that case there would be no benefit in constructing
outgoing transitions from q.

For the purpose of applying the Goto function, we are only interested in the
closure items that have maximal right context, as all items with shorter context
were found to lead to conflicts. This is the reason why we take the set difference
qmax = close(q) \ deprecate(q). The Goto function is defined much as usual:

Goto(qmax, X) = {([Aδ] → αX • β, L) | ([Aδ] → α • Xβ,L) ∈ qmax} . (3)

The loop from line 22 is very similar to that from line 10. In both cases, conflicting
items are propagated from a state q2 to a state q1 along a transition (q1, X, q2).
The difference lies in whether q1 or q2 is the currently popped element q in
line 7. The propagation must be allowed to happen in both ways, as it cannot be
guaranteed that no new transitions are found leading to states at which conflicts
have previously been processed.

Combing Construction. After the agenda in Algorithm 1 becomes empty, only
those states reachable from the initial state qinit via transitions in Transitions are
relevant, and the remaining ones can be removed from States. From the reachable
states, we can then construct a selective k-combing, with start symbol S†, as
follows.

For each qn ∈ States and ([Aδ] → X1 · · ·Xn •, L) ∈ close(qn) \ deprecate(qn),
some n ≥ 0, find each choice of:

– q0, . . . , qn−1,
– β0, . . . , βn, with βn = ε,

such that for 0 ≤ j < n,
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– (qj , Xj+1, qj+1) ∈ Transitions,
– ([Aδ] → X1 · · ·Xj • Xj+1βj+1, L) ∈ close(qj) \ deprecate(qj), and
– βj = μ(Xj+1)βj+1.

It can be easily seen that β0 must be of the form αδ, for some rule A → α. For
each choice of the above, now create a rule Y0 → Y1 · · ·Yn, where Y0 stands for
the triple (q0, Aδ, L), and for 1 ≤ j ≤ n:

– if Xj is a terminal then Yj = Xj, and
– if Xj is of the form [Bjγj ] then Yj stands for the triple (qj−1, Bjγj , Lj),

where Lj = Firstm(βjL).

We assume here that μ(Y0) = Aδ and μ(Yj) = Bjγj for 1 ≤ j ≤ n.

4.2 Example

Example 2. Let us apply Algorithm 1 to the construction of a selML(2, 0) parser
for Godd. The initial state is qinit = {S† → •S##} (there is no lookahead set
since we set m = 0) and produces through the rules of Fig. 2

close(qinit) = {S† → •S##, S → •SdA, S → •c} . (4)

Fast-forwarding a little, the construction eventually reaches state qSd = {S →
Sd •A} with

close(qSd) = {S → Sd •A,A → •a,A → •ab} , (5)

which in turn reaches state qSda = {A → a•, A → a • b} with

close(qSda ) = qSda , (6)

conflict(qSda ) = {A → a•} . (7)

As this item is marked as a conflict item, line 10 of Algorithm 1 sets

conflict(qSd) = {A → •a} , (8)

and puts qSd back in the agenda. Then, the conflict propagation rule is fired to
set

conflict(qSd) = {A → •a, S → Sd •A} , (9)

and by successive backward propagation steps we get

conflict(qinit) = {S → •SdA} . (10)
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The extension rule then yields

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A} ,
(11)

which is closed to obtain

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A,
[S#] → •SdA#, [S#] → •c#, [Sd] → •SdAd , [Sd] → •cd} ,

(12)

and we can apply again the extension rule with the conflicting item S → •SdA:

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A,
[S#] → •SdA#, [S#] → •c#, [Sd] → •SdAd , [Sd] → •cd,
[S#] → •[Sd]A#, [Sd] → •[Sd]Ad} . (13)

The deprecate and deprecate closure rules then yield

deprecate(q) = {S† → •S##, S → •SdA, S → •c, [S#] → •SdA#,

[Sd] → •SdAd , . . .} . (14)

We leave the following steps to the reader; the resulting parser is displayed in
Fig. 3 (showing only items in close(q) \ deprecate(q) in states).

4.3 Correctness

First observe that Algorithm 1 always terminates: the number of possible sets
q, along with the growing sets close(q), conflict(q) and deprecate(q), is bounded.

Termination by the failure step of Fig. 2 occurs only when we know that
the resulting parser cannot be deterministic; conversely, successful termination
means that a deterministic parser has been constructed. One could easily modify
the construction to keep running in case of failure and output a nondeterministic
parser instead, for instance to use a generalized LR parsing algorithm on the
obtained parser.

The correctness of the construction follows from Propositions 4 and 5 (see full
paper for details).

Proposition 4. If Algorithm 1 terminates successfully, then the constructed
grammar is a selective k-combing. Furthermore, this combing is LR(m).

Proof Idea. The structure of the selML(k, m) automaton and the item sets en-
sure that the constructed grammar satisfies all the requirements of a selective
k-combing. Had this been non-LR(m), then there would have been further steps
or failure.
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S† → • [S#]#

[S#] → • [Sd]A#

[S#] → • c#

[S d] → • [Sd]Ad

[S d] → • c d

S† → [S#] • # S† → [S#]# •

[S#] → [Sd] • [A#]

[S d] → [Sd] • [Ad]

[A#] → • a#

[A#] → • ab#

[Ad] → • a d

[Ad] → • ab d

[S d] → [Sd][Ad] •

[S#] → [Sd][A#] •

[A#] → a • #

[A#] → a • b#

[Ad] → a • d

[Ad] → a • b d

[A#] → a# •

[Ad] → a d •

[A#] → ab • #

[Ad] → ab • d

[A#] → ab# • [Ad] → ab d •

[S#] → c • #

[S d] → c • d

[S#] → c# • [S d] → c d •

[S#]

c

#

[Sd]

a

[A#]

[Ad]

#

d

b

# d

# d

Fig. 3. The selML(2, 0) parser for Godd

Proposition 5. If the grammar is selML(k, m), then the algorithm terminates
successfully.

Proof Idea. The selML(k, m) automaton under construction reflects minimum
right context for nonterminal occurrences in any selective k-combing with the
LR(m) property. Furthermore, failure would imply that right context of length
exceeding k is needed.

As a consequence, we can refine the statement of Theorem 2 with

Corollary 3. It is decidable whether an arbitrary context-free grammar is
selML(k, m), for given k and m.

5 Experimental Results

We have implemented a proof of concept of Algorithm 1, which can be down-
loaded from http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/. Its
purpose is not to build actual parsers for programming languages, but merely to
check the feasibility of the approach and compare selML with uniform ML and
more classical parsers.

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
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Table 2. Results on example grammars

|N | |P | LR classes: #states ML classes: #states

Example 3 2 6 non-LR(m) ML(3,1): 357, selML(3,1): 41, ML(2,2): 351,
selML(2,2): 77

Example 4 5 8 LR(2): 16 (sel)ML(1,0): 17
Example 5 3 5 LALR(1): 11 ML(1,0): 17, selML(1,0): 15

Grammar Collection. We investigated a set of small grammars that exhibit
well-identified syntactic difficulties, to see whether they are treated correctly
by a given parsing technique, or lie beyond its grasp. This set of grammars was
compiled by Basten [2] and extended in [22], containing mostly grammars for pro-
gramming languages from the parsing literature and the comp.compilers archive,
but also a few RNA grammars used by the bioinformatics community [21].

Conflicts. As expected, we identified a few grammars that were not LALR(1)
but were selML(k, m) for small values of k and m. Results are summarized in
Table 2.

Example 3 (Tiger). One such example is an excerpt from the Tiger syntax
found at http://compilers.iecc.com/comparch/article/98-05-030. The
grammar describes assignment expressions E, which are typically of the form
“L := E” for L an lvalue.

E → L | L := E | i[E] of E L → i | L[E] | L.i

The grammar is not LR(m) for any m, but is ML(3, 1) and ML(2, 2): a conflict
arises between inputs of the form “i[E] of E” and “i[E] := E”, where the initial
i should be kept as such and the parser should shift in the first case, and reduce
to L in the second case. An ML(3, 1) or ML(2, 2) parser scans up to the “of” or
“:=” token that resolves this conflict, across the infinite language generated by
E.

Example 4 (Typed Pascal Declarations). Another example is a version of Pascal
identifier declarations with type checking performed at the syntax level, which
was proposed by Tai [26]. The grammar is LR(2) and ML(1,0):

D → var IL IT ; | varRLRT ;

IL → i , IL | i IT → : integer

RL → i , RL | i RT → : real

On an input like “var i , i , i : real ;”, a conflict arises between the reductions
of the last identifier i to either an integer list IL or a real list RL with “:” as
terminal lookahead. By delaying these reductions, one can identify either an
integer type IT or a real type RT .

http://compilers.iecc.com
http://compilers.iecc.com/comparch/article/98-05-030
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Non-Monotonicity. We found that non-monotonic behaviour with uniform ML
parsers occurs more often than expected. Here is one example in addition to the
C++ example given in Section 2.1; more could be found in particular with the
RNA grammars of Reeder et al. [21].

Example 5 (Pascal Compound Statements). The following is an excerpt from
ISO Pascal and defines compound statements C in terms of “;”-separated lists
of statements S:

C → begin L end L → L ; S | S S → ε | C

This is an LALR(1) and ML(1, 0) grammar, but it is not ML(2, 0): the nonter-
minal [L;S] has a rule [L;S] → [L;S]; [S], giving rise to a nonterminal [S] with
rules [S] → ε | [C] and a shift/reduce conflict—in fact, this argument shows
more generally that the grammar is not ML(k, 0) for even k.

Parser Size. Because selML parsers introduce new context symbols only when
required, they can be smaller than the corresponding LR or uniform ML parsers,
which carry full lookahead lengths in their items—this issue has been investi-
gated for instance by Ancona et al. [1] and Parr and Quong [20] for LR and LL
parsers. Our results are inconclusive as to the difference of parser size (in terms
of numbers of states) between selML and LR. However, selML parsers tend to
be considerably smaller than uniform ML parsers. Compare, for example, the
numbers of states in the case of ML and selML for Example 3, in Table 2.

In fact, we can make the argument more formal: consider the family of gram-
mars (Gj

4)j>0, each with rules:

S → A | D, A → a | Ab | Ac, D → EF j−1F | E′F j−1F ′,
F → a | bF, F ′ → f | bF ′, E → e, E′ → e .

(Gj
4)

The uniform ML(j, 0) parser for Gj
4 has exponentially many states in j, caused

by the rules [Aw] → aw for all w in {b, c}j, while the selective ML(j, 0) parser
has only a linear number of states, as there is no need for delays in that part of
the grammar.

6 Related Work

Grammar Transformations and Coverings. The idea of using grammar trans-
formations to obtain LR(1) or even simpler grammars has been thoroughly in-
vestigated in the framework of grammar covers [19]. Among the most notable
applications, Mickunas et al. [18] provide transformations from LR(k) grammars
into much simpler classes such as simple LR(1) or (1,1)-bounded right context ;
Soisalon-Soininen and Ukkonen [24] transform predictive LR(k) grammars into
LL(k) ones by generalizing the notion of left-corner parsing. Such techniques
were often limited however to right-to-right or left-to-right covers, whereas our
transformation is not confined to such a strict framework.
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Parsing with Delays. A different notion of delayed reductions was already sug-
gested by Knuth [13] and later formalized by Szymanski and Williams [25] as
LR(k, t) parsing, where one of the t leftmost phrases in any rightmost derivation
can be reduced using a lookahead of k symbols. The difference between the two
notions of delay can be witnessed with linear grammars, which are LR(k, t) if
and only if they are LR(k)—because there is always at most one phrase in a
derivation—but selML(k, m) if and only if they are LR(k + m)—as shown in
Lemma 3.

Like selML languages, and unlike more powerful noncanonical classes, the
class of LR(k, t) grammars characterizes deterministic context-free languages.
The associated parsing algorithm is quite different however from that of selML
parsing: it uses the two-stacks model of noncanonical parsing, where reduced
nonterminals are pushed back at the beginning of the input to serve as looka-
head in reductions deeper in the stack. Comparatively, selML parsing uses the
conventional LR parsing tables with a single stack.

Selectivity. Several parser construction methods attempt to use as little “infor-
mation” as possible before committing to a parsing action: Ancona et al. [1] and
Parr and Quong [20] try to use as little lookahead as possible in LR(k) or LL(k)
parsing, Demers [7] generalizes left-corner parsing to delay decisions possibly as
late as an LR parser, and Fortes Gálvez et al. [9] propose a noncanonical parsing
algorithm that explores as little right context as possible.

7 Concluding Remarks

Selective ML parsing offers an original balance between

– enlarging the class of admissible grammars, compared to LR parsing, while
– remaining a deterministic parsing technique, with linear-time parsing and

exclusion of ambiguities,
– having a simple description as a grammar transformation, and
– allowing the concrete construction of LR parse tables.

This last point is also of interest to practitioners who have embraced gen-
eral, nondeterministic parsing techniques [12]: unlike noncanonical or regular-
lookahead extensions, selML parsers can be used for nondeterministic parsing
exactly like LR parsers. Having fewer conflicts than conventional LR parsers,
they will resort less often to nondeterminism, and might be more efficient.
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9. Gálvez, J.F., Schmitz, S., Farré, J.: Shift-Resolve Parsing: Simple, Unbounded
Lookahead, Linear Time. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS,
vol. 4094, pp. 253–264. Springer, Heidelberg (2006)

10. Gosling, J., Joy, B., Steele, G.: The JavaTM Language Specification, 1st edn.
Addison-Wesley (1996)

11. ISO: ISO/IEC 14882:1998: Programming Languages — C++. International Orga-
nization for Standardization, Geneva, Switzerland (1998)

12. Kats, L.C., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition:
Paradise lost and regained. In: OOPSLA 2010, pp. 918–932. ACM (2010)

13. Knuth, D.E.: On the translation of languages from left to right. Inform. and
Cont. 8(6), 607–639 (1965)

14. Leermakers, R.: Recursive ascent parsing: from Earley to Marcus. Theor. Comput.
Sci. 104(2), 299–312 (1992)

15. Malloy, B.A., Power, J.F., Waldron, J.T.: Applying software engineering techniques
to parser design: the development of a C# parser. In: SAICSIT 2002, pp. 75–82.
SAICSIT (2002)

16. Marcus, M.P.: A Theory of Syntactic Recognition for Natural Language. Series in
Artificial Intelligence. MIT Press (1980)

17. McPeak, S., Necula, G.C.: Elkhound: A Fast, Practical GLR Parser Generator. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 73–88. Springer, Heidelberg
(2004)

18. Mickunas, M.D., Lancaster, R.L., Schneider, V.B.: Transforming LR(k) grammars
to LR(1), SLR(1), and (1,1) Bounded Right-Context grammars. J. ACM 23(3),
511–533 (1976)

19. Nijholt, A.: Context-free grammars: Covers, normal forms, and parsing. LNCS,
vol. 93. Springer (1980)

20. Parr, T.J., Quong, R.W.: LL and LR translators need k > 1 lookahead. ACM
Sigplan. Not. 31(2), 27–34 (1996)

21. Reeder, J., Steffen, P., Giegerich, R.: Effective ambiguity checking in biosequence
analysis. BMC Bioinformatics 6, 153 (2005)

22. Schmitz, S.: An experimental ambiguity detection tool. Science of Computer Pro-
gramming 75(1-2), 71–84 (2010)

23. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, vol. II: LR(k) and LL(k) Parsing.
EATCS Monographs on Theoretical Computer Science, vol. 20. Springer (1990)

24. Soisalon-Soininen, E., Ukkonen, E.: A method for transforming grammars into
LL(k) form. Acta Inf. 12(4), 339–369 (1979)

25. Szymanski, T.G., Williams, J.H.: Noncanonical extensions of bottom-up parsing
techniques. SIAM J. Comput. 5(2), 231–250 (1976)

26. Tai, K.C.: Noncanonical SLR(1) grammars. ACM Trans. Progr. Lang. Syst. 1(2),
295–320 (1979)



Author Index

Barany, Gergö 21
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