
Z. Pan et al. (Eds.): Transactions on Edutainment IX, LNCS 7544, pp. 115–131, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Game Based Early Programming Education: The More
You Play, the More You Learn

Ioannis Paliokas, Chistos Arapidis, and Michail Mpimpitsos

Alexander Technological Educational Institute of Thessaloniki,
Department of Information Technology, P.O BOX 141,

57400 Sindos, Greece
{ipalioka,charap,mpimpits}@teithe.gr

Abstract. Mini-languages is a branch of Educational Software for learning
programming at an introductory level. On the other hand, participation,
interaction and storylines make Educational Games motivating to young
learners. The study presented here examined various widely known mini-
languages with an emphasis on LOGO implementations and followed a
combinational route to take advantage of both Game-Based Learning (GBL)
and the use of mini-languages in the design of a new LOGO-like environment.
PlayLOGO 3D is a video game with defined learning outcomes aiming to
support GBL activities especially designed for children aged 6-13 years in the
early stages of programming education. The Expert Review Method was used
for initial evaluation based on a set of heuristics for usability, game play and
educational effectiveness. Although the expert team found a few violations of
heuristics criteria, evaluation results are very encouraging and prove that there
is enough room to make programming education more fun.

Keywords: Game Based Learning, LOGO, Edugames.

1 Introduction

LOGO is widely known as a computer programming language used for programming
turtle-graphics school projects. In contrast to freshmen who learn many general-
purpose programming languages as tools for writing real-world application programs,
LOGO is the most common educational programming language for elementary school
students. It was created by Daniel G. Bobrow, Wally Feurzeig, Seymour Papert and
Cynthia Solomon at 1967 for constructivist teaching [34]. LOGO has been used in the
past years in education of Mathematics, Geometry, Physics and interdisciplinary
approaches in all over the world. The turtle-graphics use drawing commands followed
by coordinates relative to the cursor. In most applications, the cursor is depicted by a
turtle or a robot. A common set of LOGO commands includes Forward, Backward,
Left and Right as well as other commands to handle lists, files, functions and even
recursion. Some typical tasks assigned to students are to draw basic shapes using
locomotion commands on a turtle. A lot of researchers have supported the educational
use of LOGO [27]. Especially about the impact the turtle metaphor has on motivating

116 I. Paliokas, C. Arapidis, and M. Mpimpitsos

students, there are positive values of that flexible and universal metaphor to stimulate
student’s imagination, constructive, and analytical thinking [29].

On the other hand, video games constitute an alternative way to teach children of
the so-called Game Generation using their own language [2]. Using a programming
language to move a turtle in the screen may be fun, but this does not constitute a
video game. The question is: How can we introduce programming concepts in a video
game? Most educational video game designers try to emulate the commercially
successful video games, but fail to gain similar success because they are resistant to
change their thinking [31]. Educational software design teams usually give more
importance on the visible educational and cognitive characteristics of educational
applications based on their previous experience in designing educational material.
This is detrimental to other characteristics that are equally important to video games
like fantasy, challenge and curiosity according to the three basic game elements
proposed by Malone [21]. When aimed at: A) motivating students, B) interaction with
content and C) role taking, video games can increase the learning gains [11].

2 Motivation of Our Research

Why does a game-like mini-language for turtlegraphics programming is needed in
schools? Mini-languages provide a sound basis for introducing programming to
novices because they are small, simple, build on engaging metaphors and make user
operations to be naturally visible [5]. The mini-languages approach is not entirely
new. To name a few, Karel the Robot [26] was one of the first programming
microworlds, Robocode [24], Gun-Tactyx [3] and Prog&Play [23] which give
emphasis on Artificial Intelligence scripting. Also, Marvin’s Arena [28] and
MUPPETS [30] are programming games suitable for students of varying
programming experience. Other implementations that could not be missing from the
above list are the very well supported Alice [7] used for story-telling, animations and
interactive games and C-Sheep [1] a mini-language based on a simplified ANSI C
programming language.

Dealing particularly with video games, role-playing and challenge is emphasized.
Interaction today is common to all contemporary educational software applications
and needs no extensive analysis. Role-playing in educational activities is an
established technique and when introduced in narrative interacting environments can
maximize intrinsic motivation and affect positively a wide range of knowledge
domains [10]. In turtle-graphics programming, role-playing can foster students to
make critical choices to reach their goals. In such a scenario, students need to
strategize first in order to apply knowledge to new domains as the game is going
through a number of states which follow one another in a dynamic way.

Summarizing the above, most mini-languages are based on general-purpose
programming languages such as Pascal, Java or C and they were designed as
edutainment environments for both beginners and experienced programmers of K12
ages, while few of them were designed for university freshmen. There are rarely
found competitive role-playing 3D video games based on LOGO, especially designed
for elementary school students without any prerequisites or software dependencies
(e.g., IDEs, compilers). The underlying motive for this implementation of LOGO was

Game Based Early Programming Education: The More You Play, the More You Learn 117

the attempt to discover new areas of interest in programming education using game-
based learning scenarios.

3 LOGO Like Environments and Similar Projects

During the design phase, the development team of the PlayLOGO 3D project studied
several educational software packages based on LOGO language. Studied factors
include the 3D functionality, the educational orientation of the implementation, the
interface design and the ease of use.

The first ‘turtle’ robot was created in 1969 at M.I.T., and it was based on a virtual
turtle robot. It was designed to be an educational tool, primary for children. Its subject
was the movement in two dimensions and this was done by typing words on a
keyboard. The history of LOGO after that includes many different implementations,
which belong to different categories. For example, Lego Logo is a special Logo
implementation with an interesting human-computer interaction. It focuses on
education, but uses Lego bricks, the well known children’s toy, instead of a computer
simulator. Along with the classic Lego bricks there are available special bricks that
contain gears, motors and sensors used to build and program a robot. Lego
Mindstorms is the successor of Lego Logo and combines everything from Lego Logo
and robotics. LEGOsheets made programming with Lego Mindstorms more fun by
‘continuing to reward the children with increasingly powerful abilities while requiring
only small increases in the skill needed’ [14].

MicroWorlds is a pure LOGO implementation for 2D turtle graphics and it became
famous in Greek Elementary and Middle schools after LCSI distributed a Greek
version named MicroWorlds Pro in 2002. Its basic functionality is not limited to
simple movement of the turtle or creating shapes, but extends to more complicated
procedural programming. Dapontes is among numerous researchers and teachers who
have become enthusiasts of MicroWorlds to support programming in Greek language
[8] [13].

The variety of different implementations of LOGO is impressive. A complete list
of all LOGO-like environments can be found on the LOGO-Tree Project [4]. The rest
of LOGO implementations examined below extends 3D functionality.

Elica appeared in 1999 by Pavel Boytchev, professor of Sofia University of
Bulgaria, as one of the first LOGO implementations with 3D functionality. It can be
used to visualize mathematical subjects, animate objects and create fractals. Apart
from basic LOGO programming, Elica extensions allow students to experiment with
design concepts and 3D animation. The build-in 3D objects library offers a starting
point for 3D design and when combined with LOGO language it offers students a
complete tool to build applications like a 3D chess or Towers of Hanoi.

The StarLogo is an implementation developed byMitchel Resnick, Eric Klopfer
and others at the M.I.T. [6]. The most recent version is StarLogo TNG (The Next
Generation), published in June 2008. It was engineered by C and Java programming
languages and uses OpenGL to result in a 3D environment. The most impressive
feature of StarLogo is that language elements are represented by colored blocks that

118 I. Paliokas, C. Arapidis, and M. Mpimpitsos

fit together like puzzle pieces. Designers describe their project as a ‘programmable
modeling environment for exploring the workings of decentralized systems - systems
that are organized without an organizer, coor- dinated without a coordinator’ [32].
This implementation can be used to model real-life phenomena like traffic jams and
market economies.

AquaMOOSE 3D, by Elliott and Bruckman [12] approached mathematics
education using a desktop 3D environment and let the children play with a fish avatar
that follows parametric equations in 3D. As in AquaMOOSE 3D students create
mathematical challenges for one another to prevent mathophobia [12], in this project
they create programming challenges to prevent programmophobia.

4 Introducing PlayLOGO 3D

In this section, theory, design philosophy and methodology of PlayLOGO 3D are
described. Game play characteristics, major features and level design reveal the
keypoints as they were crystalized from the prototyping processes to the final version
of the game.

4.1 Game Based Learning and Constructivistic Background

The narrative metaphore is an efficient tool to maximize the learner’s motivation. The
population of interest is consisting of very young learners who love story telling, use
computers and play video games. Holzinger et al. say that ‘...especially small children
do not make a distinction between play and learning, play and work, fantasy and
reality’ [17]. In a construvistic approach games are understood as mediums to develop
children’s mental and motor-sensory abilities, while the storytelling is working
closely with emotions (as an expression of fantacy) to maximize the motivation to
play the game.

Most game-based learning environments for programming implement a compiler
or interpreter of LOGO or other programming language and have the same very
specific purpose: to familiarize the user with the geometry, specifically the movement
of an object, which is usually represented by a turtle. The proposed application
maintains the purpose of familiarization with the movement in space and the use of
LOGO commands, but it distances from the classical implementations in integrating
three new parameters: A) the movement in three dimensional space, B) the existence
of game mechanics and narrative and C) creating competition between users.

Among other immersive applications (educational or entertainment) which allow
navigation in 3D space, this solution differs in the following key point: the movement
is accurate. Using mouse or other hand-driven input devices, all moves are
approximate in a sense that there is no arithmetic representation of the moving
commands. In certain video games this characteristic is preferable because speed and
ease are more important. Here, each move is given by typed commands and the
movements are very accurate in units of length and degrees of rotation (given as
parameters). In most cases, this accuracy in players movement will reveal the winner.

Game Based Early Programming Education: The More You Play, the More You Learn 119

Players have to carefully estimate distances and to orientate in 3D space, and then
carefully design a piece of LOGO code, given line by line, to reach their target.
Players actively build an initial programming mental model concerning syntax,
programming set, command order and visually seperate commands from parameters.
This is the constructivistic core that underlyies the game mechanics and gives the
game educational effectiveness.

The atmospheric scenes of the proposed game activate the curiosity and fantasy of
the players and this is in line with Malone hypotheses about what makes games fun
[21]. Regarding the third hypotheses of Malore, that is the challenge, this game makes
the final outcome to be uncertain up to the last moment. Rules are very simple and
clear to the players while the overall cognitive workload of students does not exceed a
critical limit that otherwise could negatively influence the challenge [18].

The aim of educational video games is to maximize the total educational and
entertainment benefits from dealing with it. In cases a video game is designed around
specific educational scopes, such as the PlayLOGO 3D project, it can be
harmoniously integrated in educational activities and can meet most of the goals and
specifications set by the educational process. What changes need to be addressed by
the traditional educational system in order to adopt the new philosophy of educational
video games is outside of the scope of this paper.

4.2 Design and Prototyping

After carefully studying similar projects, the design team crystallized the basic
educational and technological requirements at the initial phase of the development. In
simple words, what wanted was: A) a LOGO-like environment to practice LOGO
commands, B) a 3D immersive environment, C) a serious video game application.

The followed methodology was closer to Extreme Programming than traditional
system development methods (such as SSADM or the Waterfall Model). Although a
limited set of educational and technological requirements was determined at the
beginning of the development, the small but flexible design team managed most
programming and graphics design issues by avoiding lots of dependencies within the
system to reduce the cost of changes. Early in the project’s life cycle, brainstorming
led to horizontal prototyping with a wide range of functions mostly concerning HCI
and interface design for young children. For the sake of simplicity, a limited set of
functions was finally chosen to be conceived analytically in a vertical prototyping
procedure (Fig. 1). The most important and complicated element was the pseudo-
interpreter, that is the internal machine to process the user-typed commands. The
result was a number of versions, by which the most robust beta version was finally
tested and distributed.

This project was engineered in the Lite-C programming language (GameStudio,
v.A8, Conitec Datensysteme GmbH). 3D models were designed with SketchUp 7.0
(Google) and machinima videos were developed with iClone 3.2, 3DExchange and
CrazyTalk 5 (Reallusion Inc). 2D graphics were processed with PhotoShop (Adobe
Systems Inc). A data-driven development technique (DDD) was used to decouple
content development from source code.

120 I. Paliokas, C. Arapidis, and M. Mpimpitsos

Fig. 1. Horizontal and vertical prototyping

4.3 High Concept

The scenario of the game, as described in the intro video, is a future contest for robot
pilots which takes place every year in X-15 spaceship located at a constellation of
Andromeda galaxy. The introductory video is used for more than one reason. Firstly,
it introduces the game scenario to players (Fig. 2). This is typical to most commercial
games. Secondly, the main characters (actors) explain to players the simple rules of
the game in indirect way (Fig. 3). Later, players can review the help file to examine
more carefully the game rules and check PlayLOGO 3D commands and syntax.

4.4 Game Overview and Features

Gameplay. Each pilot (player) drives remotely his/her robot model down in a planet's
inhospitable surface (scene) while seated in an emulator at the contest platform inside
the X-15 spaceship. Students play in couples and each player tries to make a collision
with his/her opponent. Simple steps to reach goal are going through orientation in 3D
space, lock the current position of the opponent and finally try to eliminate the
distance between robots avoiding possible obstacles. Navigation is possible only by
typing LOGO locomotion commands with the right syntax. During gameplay, there is
no in-game vocal or textual communication between players apart from visual
contact. This helps students to concentrate more on the use of LOGO locomotion
commands.

The game is going through times of typing LOGO commands alternately for the
two players (play in turns). After each block of commands has been typed and Enter
button has been pressed, an interpretation error checking function is called. This
pseudo-interpreter is also checking for data validation because some levels apply
restrictions in distances and negative angles. If there are no interpretation errors, then
the virtual robot executes the commands and move to a new position in 3D space. The

Game Based Early Programming Education: The More You Play, the More You Learn 121

first player who confirms a positive collision checking message from his/her robot is
the winner. In this case, the other robot is destroyed and players can move to the next
level. So, the collision checking of the game shows the winner depending on who
sends the collision message first.

Fig. 2. Sreencapture from the intro video: The players enter the simulators

The gaming is defined as a decision making problem involving two opponent
players where the outcome for each player mostly depends on the decisions taken by
the other. If the current state of the game is such, one of the two players consider
himself/herself as Hunter of Runaway. It is important to note that those two roles are
not predefined before the game starts. Actually, it is a very sensitive and dynamically
changing situation implied by the relative positions of the two players. In certain
situations, one or maybe both players decide to attack because they evaluate their
positions and playing order as predominant.

Avatars. Robot models are the avatars used in the game. In other words, robots are
the turtles used in Microworlds and other implementations. Robots can stronger
motivate the target audience and can act as a bridge between humans and machines.
They are human-like in terms of body structure and at the same time they operate
executing commands remotely transmitted by humans.

Fig. 3. Sreencapture from the intro video: The players enter the simulators

122 I. Paliokas, C. Arapidis, and M. Mpimpitsos

Camera. Since the environment is three dimensional and robots hold their orientation
in space, the players cannot examine the whole virtual scene at any time. A
mechanism independent of the robot’s point of view was needed and this creates the
sense of a target-free camera. By pressing the right mouse key a target-free camera is
released to rotate the users point of view in all directions. This tool is used to scan the
arena for the position of the opponent.

The Use of Keyboard. In 3D virtual environments like Second Life and also on
commercial video games players use input devices like mouse and/or joystick to
navigate. This kind of navigation is not precise because it simulates the physical
movement of our bodies. In PlayLOGO 3D accuracy and quantification in navigation
is a requirement because it simulates the result of a computer program, not a physical
movement. This substantiates the choice of keyboard as the only input device to give
locomotion commands and their parameters.

Table 1. The Complete List of PlayLOGO 3D Commands

No. Command Name Shortcut Parameters

C1 FORWARD X FD X: distance
C2 BACK X BK X: distance
C3 LEFT F LT F: angle
C4 RIGHT F RT F: angle
C5 RISE X RS X: distance
C6 LOWER X LO X: distance
C7 SHIFTLEFT X SL X: distance
C8 SHIFTRIGHT X SR X: distance
C9 PASS PS {none}
C10 SET X ST X: distance
C11 FORWARDRISE X FDRS X: distance
C12 FORWARDLOWER X FDLR X: distance
C13 BACKRISE X BKRS X: distance
C14 BACKLOWER X BKLR X: distance
C15 PREVIOUS PR {none}
C16 CLEARSCREEN SC {none}
C17 PENUP PU {none}
C18 PENDOWN PD {none}
C19 PENCOLOR PC Color Name

Programming Set. This project is not full-featured for 3D design like other
implementations (e.g. Elica). But there is the need to move in 3D space and thus new
commands have to be included in the basic set of LOGO commands. Currently, there
is no standardization for LOGO language by an international organization (like ISO
or ECMA) as has been done in the past with other widely used programming
languages. On the other hand, in most implementations, LOGO drawing (or moving)
commands refer only to 2D space. As a solution, two more commands were imported
from Elica: Rise and Lower. They need no more than a distance parameter to follow
(integer data type). Note each turn moves the User Coordinate System (UCS) to the

Game Based Early Programming Education: The More You Play, the More You Learn 123

new position. The language structure, commands and parameters have intentionally
been kept similar to Microworlds Pro, the most used LOGO environment in Greek
schools. Currently the game is available in English and Greek. Not all LOGO
commands have been used in the proposed project. The aim was not to replace any
other official versions of LOGO language which are used in Greek Elementary and
Middle school education, but to prepare students for later use of those environments
to make school projects. A list of the available PlayLOGO 3D commands is showed
in Table 1. Commands marked with an asterisk are available in a ‘plus’ version.
Commands C15 to C19 are used only in design level (Raw Draw). The escape button
is used to return to the Main Menu, P button for pause and right click to change
camera view. Although those commands are used during the game play, it is clarified
that they are used to control the game environment and they should be not considered
as part of the PlayLOGO 3D programming set.

Levels. Currently, there are four levels in the game representing the corresponding
arenas (Fig. 4). They are represented by futuristic scenes like surfaces of exoplanets
or indoor spaceship arenas. One of them is used for training purposes before the
actual contest (Raw Draw). In this extra level students can also use regular LOGO
commands for drawing, plus Rise and Lower. So, the training level can be used for
common LOGO drawing tasks in 3D. After a few rounds of experimentation in the
training level, students get familiarize themselves with the language and syntax and
can move on competition arenas.

Fig. 4. Level example: Floating Chessboard

5 Player’s Experience and Expected Educational Benefits

Primarily, an educational video game needs first to be a video game. Whether it is
educational, it is by educational benefits on offer and in this example, the expected
ones are:

- Familiarization with the use of a programming language. Students understand that a
computer language has a predefined set of commands. No other commands -not included
in the set- can be used to drive a computer when this particular language is in use.

124 I. Paliokas, C. Arapidis, and M. Mpimpitsos

- Learn the differences between commands used to control the environment and
commands which are part of the programming language.

- Understand that each command follows some rules and those rules constitute the
syntax. If the syntax of a programming language is not respected, then a
compilation/interpretation error will occur.

- Understand that commands can be followed by a number of parameters.
Parameters can be one or more of known data types. Parameters provide the
commands with data. Although some commands (like clearscreen) do not need
parameters, they still can be processed by the computer to complete a task.

- Understand that a computer cannot directly execute commands typed by the user.
A compiler or interpreter needs to translate the language to machine code. If the
compiler/interpreter arise an error, the user gets an error message.

- Students practice on LOGO locomotion commands. This is beneficial for later
use of more formal programming tools to build school geometry, math and/or
programming projects.

During game time, the optimal strategy for each player is a deterministic plan of plain
locomotion commands. Those commands are typed rather than given by mouse and
dictate students actions in every valid state of the game. If mouse was used to move
the robots as in entertainment video games, then it would be no much educational
effectiveness. In this case, the language, syntax, parameters and compiling procedure
would not be visible.

6 Evaluation

6.1 Usability Heuristics

Mark Griffiths [15] argues that computer games have a very positive effect on the
recreational function and a remarkable success when the games are designed to
address a specific problem or reason to teach a specific skill. He also remarks some
negative issues that have been taken into consideration by the design team. The first
refers to the fact that video games can excite and inspire students so much that finally
researchers obtain false evidence as to the motives for participation and skills of
participants. Moreover, the participant’s previous experience of computer games can
also affect the obtained results. This makes the evaluation of this project more
challenging.

Initially, it was important to formulate a set of evaluation criteria for PlayLOGO
3D. Those should be related to usability, game play and educational effectiveness. To
address the above issues, a set of 40 heuristics were developed. The Expert Review
Method was used to evaluate usability of the alpha version of the game prototype.
User testing and expert review methods are equally accurate in case of skilful and
knowledgeable usability experts [22] [19].

Nielsen and Molichs' heuristics are of the most used usability heuristics [25] for
interface design. But serious games used in education have certain differences.
Moreover, Korhonen et al. imply: ‘The playability heuristic set can be extended or

Game Based Early Programming Education: The More You Play, the More You Learn 125

limited based on the needs of the evaluation’ [19] and here the needs extend the
pleasant gaming experience. Thus, the evaluation was mostly based on the Game
Playability Heuristics (GUH) of [20] -which was implemented for Mobile Games-
excluding the set of heuristics related to Mobility.

Desurvire et al. [9] proposed another powerful set of Heuristics for Evaluating
Playability (HEP). Based on the hypothesis that a more extensive set of heuristics
does not eliminate the chances reviewers to capture criteria violations, selected
heuristics proposed by HEP were used as extensions to the current set of Korhonen &
Koivisto. The selection was made having in mind the game genre of the proposed
application. Although both heuristics sets are complete and powerful as standalones,
finally a combination was used because some heuristics were not applicable for this
kind of application.

On the other hand, Korhonen & Koivisto heuristics target only on gaming
characteristics. It is widely known that educational effectiveness is hard to be proved
is short periods of time and especially when important educational factors are not
taken into consideration, like the curricula and teachers previous experience in GBL.
Nevertheless, the educational purpose of PlayLOGO 3D prototype led the design
team to add another set of heuristics in order to take feedback regarding the
educational effectiveness. This does not mean that no further educational evaluation is
required over time. A recently proposed methodology is Playability Heuristics for
Educational Game (PHEG) which is specially designed for Educational Games [16].
From PHEG, it was used only what was missing: the subset of heuristics related to
Educational-Pedagogical issues. The complete(cocktail) set of heuristics used for
evaluation is shown in Tables 2, and 4. The Q40 (HEP), originally located at Game
Play set of heuristics was moved to Educational-Pedagogical set with a slightly
different meaning. Early in case of PlayLOGO 3D means before moving to traditional
LOGO-like environments for programming tasks. Let us have in mind that the
proposed video game is only the first step in a wider educational pipelined procedure
related to programming and does not constitute a complete educational programming
environment by itself.

6.2 Evaluation Methodology

A group of four edugame experts (and teachers by themselves) played the alpha
version in couples for a few rounds to discover all of the game features. They had no
more than ten minutes demonstration before actual play. This short introduction time
was considered enough thanks to the simplicity and the minimalistic design of the
game. Later, experts were asked to take notes with clarity and cohesion. An online
survey with open-ended discussion questions directly related to selected heuristics
was used to collect notes. Although the questions were translated into Greek, the
original English version of the questionnaire was also available to reviewers (who
have at least basic written communication skills in English) to reduce the impact of
possible translation errors.

126 I. Paliokas, C. Arapidis, and M. Mpimpitsos

6.3 Evaluation Results

All experts mentioned that graphics and the overall interface was visually appealing.
Particularly, the intro video was found very helpful in order to understand differences
from the more ‘traditional’ LOGO environments that they had previously experienced
as teachers. Although answers were given as detailed notes, in a first read they were
coded as positive or negative to the related heuristic. Even in cases reviewers had
given controversial answers, they were asked to take position in a positive-negative
manner and they did so.

Game usability results were very encouraging (Table 2). The only not 4/4 result
was related to the user manual. In Q11 (‘Players do not need to use a manual to play’)
reviewers found that reading the user manual is necessary. One reviewer mentioned
that reading the manual is not a must because the game rules are very well explained
in the intro video and there is an additional in-game help screen. Regarding Q2 one
expert said ‘...the players field of view is important for pleasure and reuse. In this
game there is room for improvement’. Another reviewer advises the avatars to be
visually friendlier to students, assuming that the used robot models were not.

Regarding game play (Q13-Q31) experts found some violations of the used
heuristics. For example in Q18 (‘The first-time experience is encouraging’) half of
them did not found the first experience encouraging. In Q21 (‘The players can express
themselves’) none found that players can express themselves playing that game. This
result was expected, since this project was not designed to be a full featured LOGO-
like environment and application development is not possible. The same is valid for
Q22 (‘The game supports different playing styles’), possibly because although there
are different levels, the playing style is fixed.

Table 2. Usability Evaluation Results

No. Game Usability Heuristics ET E1 E2 E3 E4 Viol.

Q1 Audio-visual representation supports the game GUH     -
Q2 Screen layout is efficient and visually pleasing GUH   ! ! !
Q3 Indicators are visible GUH     -
Q4 The player understands the terminology GUH     -
Q5 Navigation is consistent, logical, minimalist GUH     -
Q6 Game controls are convenient and flexible GUH     -
Q7 The game gives feedback on the player’s

actions
GUH     -

Q8 The player cannot make irreversible errors GUH     -
Q9 The player does not have to memorize things

unnecessarily
GUH     -

Q10 The game contains help GUH     -
Q11 Players do not need to use a manual to play HEP  ! ! ! !
Q12 The interface should be as non-intrusive to the

player as possible
HEP     -

Q: Question number, ET: Evaluation Tool, E: Expert, Viol.: Violation found

Game Based Early Programming Education: The More You Play, the More You Learn 127

The results of Q23 (‘The game does not stagnate’) is positive because only one
reviewer found a situation where a player found obstacles resulting inability for
further movements. By closing the game play evaluation, one more violation found at
Q31 (‘Challenges are positive game experiences, rather than a negative experience’)
where experts gave controversial results. One of them said that some times
experiences are positive, while some other times are not. A second one answered
positively (‘so it is true to some extend’) but with doubts.

Table 3. Gameplay Evaluation Results

No. Game Usability Heuristics ET E1 E2 E3 E4 Viol.
Q13 The game provides clear goals or supports

playercreated goals
GUH     -

Q14 The player sees the progress in the game and
can compare the results

GUH     -

Q15 The players are rewarded and rewards are
meaningful

GUH    ! !

Q16 The player is in control GUH     -
Q17 Challenge, strategy, and pace are in balance GUH     -
Q18 The first-time experience is encouraging GUH   ! ! !
Q19 The game story supports the gameplay and is

meaningful
GUH     -

Q20 There are no repetitive or boring tasks GUH     -
Q21 The players can express themselves GUH ! ! ! ! !
Q22 The game supports different playing styles GUH  ! ! ! !
Q23 The game does not stagnate HEP  ! ! ! !
Q24 The game is consistent HEP     -
Q25 The game uses orthogonal unit differentiation GUH     -
Q26 The player does not lose any hard-won

possessions
GUH     -

Q27 There is an interesting and absorbing tutorial
that mimics game play

GUH     -

Q28 The game is enjoyable to replay GUH     -
Q29 Player should not experience being penalized

repetitively for the same failure
GUH     -

Q30 Easy to learn, hard to master GUH     -
Q31 Challenges are positive game experiences,

rather than a negative experience
GUH   ! ! !

Q: Question number, ET: Evaluation Tool, E: Expert, Viol.: Violation found

The evaluation results related to Educational-Pedagogical heuristics (Q32-Q40)

where very interesting. The first question Q32 (‘Clear goal and learning objectives’)
regarding clearness of objectives gave only half positive results. Two experts found
that educational objectives could be clearer. One more answered positively but
mentioned that there is room for improvement. The same result comes with Q39
(‘Offers the ability to select the level of difficulty’) where two experts found that
arenas truly offer varying levels of difficulty. The other two found that the level of
difficulty is actually the same in all arenas or there is not enough diversity as it was
expected.

128 I. Paliokas, C. Arapidis, and M. Mpimpitsos

Table 4. Educational-Pedagogical Evaluation Results

No. Game Usability Heuristics ET E1 E2 E3 E4 Viol.

Q32 Clear goal and learning objectives GUH   ! ! !
Q33 The activities are interesting and engaging GUH   ! ! !
Q34 Clear and understandable structure of contents GUH     -
Q35 Can be used as self-directed learning tools GUH   ! ! !
Q36 Medium for learning by doing GUH     -
Q37 Considers the individual differences GUH  ! ! ! !
Q38 Performance should be an outcome-based GUH    ! !
Q39 Offers the ability to select the level of difficulty GUH   ! ! !
Q40 Player is taught skills early that you expect the

players to use later, or right before the new
skill is needed

GUH    ! !

Q: Question number, ET: Evaluation Tool, E: Expert, Viol.: Violation found

The last question Q40 (‘Player is taught skills early that you expect the players to

use later, or right before the new skill is needed.’) gave one criteria violation. The
expert found that it is possible (this was considered as a positive answer) and another
explained that he was not sure.

7 Conclusions

A new solution for applying a simplified LOGO language has been presented. With
PlayLOGO 3D there are neither ready solutions, nor previously stated problems.
Students try to defeat one another in an interactive narrative applying LOGO
commands as ‘weapons’. Its educational effectiveness is to prepare students of
Elementary Education for the actual use of LOGO language in school projects and
extend the LOGO philosophy beyond two dimensions. LOGO seems to be the best
choice for this project because it is widely used in Public Elementary Education as a
learning programming language, most teachers can use it (especially those who have
not a Computer Science background) and there is a remarkable teaching experience
accumulated over the past decades. As of the final visual result, the working
environment has all the characteristics of a typical video game interface and the way
of use is analogous to an entertainment video game.

PlayLOGO 3D is not another typical LOGO implementation to teach advanced
programming issues, but a video game about LOGO. Initially, the design team was
inspired by the ‘LOGO spirit’ and ‘LOGO philosophy’ that Seymour Papert described
[27]. The exuberance of a commercial computer game and the characteristics of a
tight turtle graphics environment were kept in balance. Star-Logo and most of other
LOGO implementations, as studied earlier, offer very sophisticated environments to
build applications including video games. But those LOGO implementations are not
video games in their nature. They are more like Integrated Development
Environments (IDEs) as members of the LOGO family because students have to learn

Game Based Early Programming Education: The More You Play, the More You Learn 129

how to apply programming principles first. In this project, students learn the very
basics of LOGO without paying conscious effort and without any prerequisites,
following the principles of Game Based Learning; while having fun, they empower
their spatial abilities and learn what is to drive a computer using a structured language
with respect to language syntax. All of the above can be said a ‘programming pre-
education’, especially designed for students who have no previous experience in any
programming language.

The currently presented PlayLOGO 3D (and future versions), the users guide and
instructional materials to support students and teachers can be downloaded for free at:
http://www.videotutorials.gr/playlogo3d.html. The first evaluation results are
encouraging and motivate the design team for future plans. Those include the
distribution of a version with more levels (arenas) and a bigger set of avatars which
will be constructed by users during game time, based on a library of robot
components. Currently, the Artificial Intelligence of the game is under construction in
order to make possible for students to play against the computer. All future versions
will keep the original characteristics of the video game without downgrading its
educational scope.

Acknowledgments. Game and main menu loop music was composed by the music
composer Liam Bradbury especially for this project. Scenes of intro video include
objects retreived by Google 3DWarehouse and the robot models are modified models
retrieved by Acknex User Magazine, vol. 68.

References

1. Anderson, E.F., McLoughlin, L.: Critters in the classroom: a 3D computer-gamelike tool
for teaching programming to computer animation students. In: ACM SIGGRAPH
Educators Program, pp. 7–15. ACM Press, New York (2007)

2. Baer, L.: The generation gap: bridging learners and educators. J. International Digital
Media & Arts Association 2, 47–52 (2005)

3. Boselli, L.: GUN-TACTYX (January 16, 2013),
http://apocalyx.sourceforge.net/guntactyx

4. Boytchev, P.: The Logo Tree Project, versions 1.92 (2012) (January 16, 2013),
http://www.elica.net/download/papers/LogoTreeProject.pdf

5. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., Miller, P.: Minilanguages:
a way to learn programming principles. J. Education and Information Technologies 2,
65–83 (1997)

6. Colella, V., Klopfer, E., Resnick, M.: Adventures in modeling: exploring complex,
dynamic systems with StarLogo. Teachers College Press, New York (2001)

7. Cooper, S., Dann, W., Pausch, R.: Teaching objects-first in introductory computer science.
In: 34th SIGCSE Technical Symposium on Computer Science Education, Reno, NV, pp.
191–195 (2003)

8. Dapontes, N., Ioannou, S., Mastroyiannis, I., Tzimopoulos, N., Tsovolas, S., Alpas, A.:
The Teacher as a Creator: Ideas on How to Teach MicroWorlds Pro in Kindergarten and
Primary School Students. Kastaniotis Publications, Athens (2003)

130 I. Paliokas, C. Arapidis, and M. Mpimpitsos

9. Desurvire, H., Caplan, M., Toth, J.A.: Using Heuristics to Evaluate the Playability of
Games. In: CHI Conference on Human Factors in Computing Systems, pp. 1509–1512.
ACM Press, Vienna (2004)

10. Dickey, M.D.: Game Design and Learning: a Conjectural Analysis of How Massively
Multiple Online Role-playing Games Foster Intrinsic Motivation. J. Education Tech.
Research Dev. 55, 253–273 (2007)

11. Dondlinger, M.: Educational Video Game Design: a Review of the Literature. J. of
Applied Educational Technology 4, 21–31 (2007)

12. Elliott, J., Bruckman, A.: Design of a 3D Interactive Math Learning Environment. In:
International Conference on Designing Interactive Systems, pp. 64–74. ACM Press,
London (2002)

13. Glezou, K., Grigoriadou, M.: Engaging Students of Senior High School in Simulation
Development. J. Informatics in Education 9, 37–62 (2010)

14. Gindling, J., Ioannidou, A., Loh, J., Lokkebo, O., Repenning, A.: LEGOsheets: a Rule-
based Programming, Simulation and Manipulation Environment for the LEGO
Programmable Brick. In: Visual Languages, pp. 172–179. IEEE Computer Society Press,
Darmstadt (1995)

15. Griffiths, M.: The Educational Benefits of Videogames. J. Education and Health 20, 47–51
(2002)

16. Hasiah, M., Bangi, S., Azizah, J.: Conceptual Framework for a Heuristics Based
Methodology for Interface Evaluation of Educational Games. J. of Computer and
Information Science 3, 211–219 (2010)

17. Holzinger, A., Pichler, A., Maurer, H.: Multi Media E-learning Software TRIANGLE
Sase-study: Experimental Results and Lessons Learned. J. of Universal Science of
Technology in Learning, 61–92 (2006)

18. Köffel, C., Haller, M.: Heuristics for the Evaluation of Tabletop Games. In: CHI
Workshop: Evaluating User Experiences in Games, pp. 233–256. ACM Press, Florence
(2008)

19. Korhonen, H., Paavilainen, J., Saarenenpaa, H.: Expert Review Method in Game
Evaluations Comparison of Two Playability Heuristic Sets. In: MindTrek Conference, pp.
74–81. ACM Press, Tampere (2009)

20. Korhonen, H., Koivisto, E.: Playability Heuristics for Mobile Games. In: The 8th
Conference on Human-Computer Interaction With Mobile Devices and Services, pp. 9–16.
ACM Press, Helsinki (2006)

21. Malone, T.: Toward a Theory of Intrinsically Motivating Instruction. Cognitive &
Science 4, 333–369 (1981)

22. Molich, R., Dumas, J.S.: Comparative Usability Evaluation. Behaviour & Information
Technology 27, 263–281 (2008)

23. Muratet, M., Torguet, P., Viallet, F., Jessel, J.P.: Experimental Feedback on Prog&Play, a
Serious Game for Programming Practice. Computer Graphics Forum, The Eurographics
Association and Blackwell Publishing Ltd. 30, 61–73 (2011)

24. Nelson, M.: Robocode. IBM alphaWorks (2001)
25. Nielsen, J., Molich, R.: Heuristic Evaluation of User Interfaces. In: The CHI 1990

Conferenxe, pp. 249–256. ACM Press, Seattle (1990)
26. Pattis, R.E.: Karel the Robot: a Gentle Introduction to the Art of Programming. John Wiley

& Sons (1981)
27. Papert, S.: What is Logo and Who Needs It? Logo Computer Systems Inc., Quebec (1999)
28. Pech, S.: Marvin’s arena (January 16, 2013), http://www.marvinsarena.com

Game Based Early Programming Education: The More You Play, the More You Learn 131

29. Petrovǐc, P.: Mathematics with Robotnǎcka and Imagine Logo. In: The Eurologo, pp.
353–360. Warsaw (2005)

30. Phelps, A.M., Bierre, K.J., Parks, D.M.: MUPPETS: Multi-user Programming Pedagogy
for Enhancing Traditional Study. In: Proceedings of CITC4 2003, Lafayette, Indiana, pp.
100–105 (2003)

31. Shelton, B.E., Wiley, D.: Instructional Designers Take All the Fun Out of Games:
Rethinking Elements of Engagement for Designing Instructional Games. In: Annual
Meeting of the American Educational Research Association, San Francisco (2006)

32. Introduction to StarLogo (January 16, 2013),
http://education.mit.edu/starlogo/

33. Wang, D.L., Li, J., Dai, G.: Usability and Internationalization. In: Aykin, N. (ed.)
HCII 2007. LNCS, vol. 4559, pp. 622–630. Springer, Heidelberg (2007)

34. Logo (January 16, 2013),
http://en.wikipedia.org/wiki/Logo_ (programming_language)

	Game Based Early Programming Education: The More
You Play, the More You Learn
	Introduction
	Motivation of Our Research
	LOGO Like Environments and Similar Projects
	Introducing PlayLOGO 3D
	Game Based Learning and Constructivistic Background
	Design and Prototyping
	High Concept
	Game Overview and Features

	Player’s Experience and Expected Educational Benefits
	Evaluation
	Usability Heuristics
	Evaluation Methodology
	Evaluation Results

	Conclusions
	References

