
Z. Pan et al. (Eds.): Transactions on Edutainment IX, LNCS 7544, pp. 213–224, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Real-Time Rendering Framework in the Virtual Home
Design System

Pengyu Zhu1, Mingmin Zhang1, and Zhigeng Pan2,∗

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310027
2 Digital Media and HCI Research Center, Hangzhou Normal University, Hangzhou, China

{zhupengyu24,zhigengpan}@gmail.com

Abstract. This paper introduces a home design system with its great functions
and framework design, including the scene management based on the
Cell&Portal system, improved variance shadow mapping and the recently
popular real-time rendering framework called deferred lighting. In the
implementation details, we put in some useful improvements, such as
compressing the Geometry Buffer and Lighting Buffer to decrease the video
memory and bandwidth occupation with which the multi-render-target limitation
has been dislodged, using the light volume stencil culling which is similar to the
shadow volume algorithm to identify the lit pixels and modifying the physically
correct shading model based on Fresnel term to adapt to the deferred lighting
framework.

Keywords: Scene Management, Soft Shadow, Deferred Lighting, Light
Volume.

1 Introduction

With the real estate industry blooming as well as the housing prices continuing higher
in recent years, in order to live a life with comfort and economy, people have to
consider a variety of factors before purchase and renovation of housing, such as the size
and practicality, the cost estimate of decorating and the beauty and comfort of the room
layout. Meeting the above various needs, we have developed a user friendly, flexible
and powerful virtual home design software. Distinct from the traditional design
systems such as AutoCAD, 3ds Max which not only require the users to have a strong
design skills but also need a few hours’ design cycle, there already exist some home
design systems with foolproof operations and powerful functions such as 72xuan,
Sweet Home 3D. However these systems still have some weakness, including lack of
efficient scene management and poor rendering effects. Premise of powerful features,
our system aims at providing users with comfortable operations and efficient rendering
effects.

When there are a lot of geometries in the scene, the real-time rendering system needs
to cull the geometries which are outside the view frustum efficiently to minimize the
geometric information dumped into the pipeline. There exist lots of visibility

∗ Corresponding author.

214 P. Zhu, M. Zhang, and Z. Pan

algorithms, such as bounding volume test, space partition [1]. Haumont [2] has come
up with a visibility test algorithm called Cell&Protal Graph which is especially suitable
for interior scenes.

Real-time shadow can greatly improve the image authenticity, but a majority of
home design software generally uses the model-bounded texture to simulate pseudo
shadow. The most popular real-time shadow generation algorithms include Shadow
Volume [3] and Shadow Mapping [4]. The shadow volume algorithm needs to calculate
the models’ silhouette edges, whose time complexity is associated with the geometric
information among the scene, which may become the bottleneck of loading models.
The shadow mapping is more widely used among real-time rendering areas due to its
simplicity, generality and high speed, but it suffers from aliasing artifacts because of
perspective projection and under-sampling errors. Simple solution is to increase the
shadow map resolution or use Percentage Closer Filter (PCF) which may affect
performance. Donnelly [6] came up with the Variance Shadow Map (VSM) algorithm
in 2006, which can produce soft shadow efficiently by blurring the shadow map
immediately. VSM is exciting but still has some problems, such as light-bleeding
artifact due to variance jittering when the scene is complicated. Wojciech [6] has
reduced the lighting-bleeding artifact greatly by combining VSM with Exponential
Shadow Map (VSM).

The time complexity of pixel-lighting in traditional real-time rendering framework
(forward rendering) is Oሺm כ n כ sሻ where m represents geometry number, n
represents light number and s represents pixel number. Therefore it’s unable to meet
the real-time need when there’re multi lights in the scene. Deferred Shading was a
real-time rendering framework published by Deering [7] in 1988 which has been
widely used in games such as Startcraft2, Battlefield and Dota2 in recent years [8-10].
Deferred Shading stores pixel-related position, normal and material information in
multiple textures called Geometry Buffer (GBuffer). The time complexity of
pixel-lighting decreases to Oሺm ൅ n כ sሻ because of decoupling lights and geometries.
However, Deferred Shading still has some weakness:

 Fat GBuffer costs so much video memory and bandwidth.
 Rendering to GBuffer needs Video Cards with Multi-Render-Target feature.
 Hard to handle semi-transparency geometries.
 Unable to utilize hardware accelerated MSAA.
 The whole rendering pipeline can only use single rendering equation.

The rendering equation among Deferred Shading can be expressed as follows:

 L୭ሺvሻ ൌ ∑ fୱ୦ୟୢୣሺBL౟,l୧, v, n, Cୢ୧୤୤୳ୣ, Cୱ୮ୣୡ୳୪ୟ୰, Sሻ୬୧ୀଵ (1) BL౟: light’s intensity and color information, l୧: incident light vector, v: vertex position, n: vertex normal vector, Cୢ୧୤୤୳ୣ: surface diffuse material, Cୱ୮ୣୡ୳୪ୟ୰: surface specular
material, S: shininess.

According to Equation (2), the GBuffer needs to store normal, position and material.
This information may conquer 3 to 4 viewport-sized floating textures, which consume
so much video memory and bandwidth. How to slim down the GBuffer becomes the
key of improving the performance of Deferred Shading. Our system implements a
meliorated framework called Deferred Lighting which was proposed by Naty [11] in
2009. Deferred Lighting has been widely used in video games and game engines such

 Real-Time Rendering Framework in the Virtual Home Design System 215

as Crysis2 and Unreal3 [12-13]. Compared to Deferred Shading, Deferred Lighting
takes an additional forward geometry pass but reduces the GBuffer size. It also stores
lighting result into textures called Lighting Buffer, with which we can use multiple
rendering equations among shading. We take some optimizations when implementing
this framework to decrease GBuffer and Lighting Buffer to single texture each and
eliminate the Multi-Render-Target limitation.

2 Cell&Portal Scene Management

Our system uses Cell&Portal to do scene management. In the implementation details,
we maintain a room list and a model list. At First, we compute the room areas as Cells
in terms of the walls’ information, then identify the doors and windows belong to the
associated rooms as Portals, refer to figure 1. Using Equation (2) we can efficiently
identify the model’s belonging room:

ڀ ൛ٿ ൫࢜୩,୧ െ ൯࢖ ൈ ൫࢜୩,ሺ୧ାଵሻ%୬ െ ൯୬ିଵ୧ୀ଴࢖ ൐ 0ሻሽ୫୩ୀଵ (2) ൈ: represents cross product, m: convex polygon in the room, n: vertex number, ࢖:
viewpoint position, ࢜: represents vertex position.

Fig. 1. Cell&Portal in the System

At last, we use the Gribb [14] to extract the world space’s frustum information from
View-Projection Matrix. With above information, we can compute the models that
need to be bumped into the pipeline recursively as the following pseudo code:

program Cell_Portal (cell, frustum): model_list
 var model, portal, new_frustum;
 begin
 for(model in cell.model_list)
 if(Intersect(model.OBB, frustum))
 model_list.add(model);
 for(portal in cell.portal_list)
 if(Intersect(portal, frustum))
 new_frustum = Cull(frustum, portal);
 Cell_Portal(portal.other_cell, new_frustum);
 end

216 P. Zhu, M. Zhang, and Z. Pan

3 Real-Time Soft Shadow

Variance Shadow Mapping can produce plausibly soft shadow. Due to our small range
indoor scene, one median sized resolution shadow map is sufficient. VSM also allows
filtering the shadow map immediately, which is much more efficient than the other
shadow mapping algorithms that need multi sampling.

We supply three different resolution shadow map due to the current scene range,
including 256*256, 512*512 and 1024*1024. VSM uses Chebyshev Inequality
(Equation (3)) to simulate the shadow factor, so we can filter the shadow map
immediately (Mipmap, anisotropic filtering and Gaussian blur) .

 ܲሺO ൒ Rሻ ൑ ሺRሻ݌ ൌ ఙమఙమାሺோି௨ሻమ , ݑ ൏ ܴ

ݑ ൌ ଶߪ ሺOሻ (3)ܧ ൌ ሺܱଶሻܧ െ ሺOሻଶܧ
 R: pixel depth, O: associated texel depth, σଶ: texel depth variance, u: texel average

depth.
Then we can present the shadow function as follows:

 SሺRሻ ൌ ൜݌ሺRሻ ݑ ൏ ݑ 1ܴ ൒ ܴ (4)

When u ൒ R the pixel is lit.

3.1 Light Bleeding

When the occlusions are complex in the scene, light can emerge in some wrong shadow
areas due to depth variance jittering, refer to figure 2.

Fig. 2. Light Bleeding: the penumbra of object B bleeds onto C because of variance jittering
when ∆݀஺஻ ∆݀஻஼⁄ becomes big

We add a negative tail value after ݌ሺRሻ , this can reduce the bleeding light’s
intensity, but may cause band artifact, refer to Equation (5).

ሺRሻ′݌ ൌ max ሺ ఙమఙమାሺோି௨ሻమ െ γ , 0ሻ, ݑ ൏ ܴ (5)

 Real-Time Rendering Framework in the Virtual Home Design System 217

Wojciech solves this problem by combining another shadow mapping algorithm based
on statistics called Exponential Shadow Map (ESM) with VSM. This combination can
handle most situations except when VSM and ESM both fail, but that hardly happens.
Then we get the shadow function as follows:

 SᇱሺRሻ ൌ ൜pᇱᇱሺeୡRሻ u ൏ ܴ1 u ൒ R

 p′′ሺeୡRሻ ൌ max ሺ σ′మ
σ′మା൫ୣౙRି୳′൯మ െ γ , 0ሻ (6) σ′ଶ ൌ EሺሺeୡOሻଶሻ െ EሺeୡOሻଶ

 u′ ൌ EሺeୡOሻ
 c is a control parameter, its value is as big as possible in theory, but too large c may
cause floating point precision, we set c 30 in our system. Taking the exponential of
depth makes ∆݀஺஻ ∆݀஻஼⁄ gets smaller.

4 Deferred Lighting

Modified from Equation (1), we get a set of equations as follows: ܍ܛܝ܎܎ܑ܌ۺ ൌ ∑ fୢ୧୤୤୳ୱୣሺBL౟, ,ܑܔ ሻ୬୧ୀଵܖ ܚ܉ܔܝ܋܍ܘܛۺ ൌ ∑ fୱ୮ୣୡ୳୪ୟ୰ሺBL౟, ,ܑܔ ,ܖ ,ܞ Sሻ୬୧ୀଵ ܗۺ (7) ൌ ܍ܛܝ܎܎ܑ܌ۺ°܍ܛܝ܎܎ܑ܌۱ ൅ ܚ܉ܔܝ܋܍ܘܛۺ°ܚ܉ܔܝ܋܍ܘ܁۱

°: tensor product, ܍ܛܝ܎܎ܑ܌ۺ: pixel’s diffuse light intensity, ܚ܉ܔܝ܋܍ܘܛۺ: pixel’s specular
light intensity.

Fig. 3. The Framework of Deferred Lighting

According to Equation (7), our GBuffer only needs to store n, v, S, and we can get
the two material terms Cୢ୧୤୤୳ୱୣ and CS୮ୣୡ୳୪ୟ୰ which occupy two textures in the naïve
deferred shading framework from the second geometry pass. Because of the decoupling
of lighting pass from shading pass, Deferred Lighting is also called Partial Deferred
Shading, refer to figure 3.

218 P. Zhu, M. Zhang, and Z. Pan

In terms of figure 3, there is an additional rendering pass in order to get the Lighting
Buffer which stores ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ. The naïve memory layout still needs two
textures which consumes so much video memory and bandwidth, we must compress it
into single texture with some optimizations.

4.1 Buffer Compression Optimization

In the implementations, GBuffer uses GL_RGBA16F pixel format and Lighting Buffer
uses GL_RGBA8. GBuffer contains n, v, S, among which n and v occupy xyz three
terms each. We adopt “Spheremap Transform” [16] from CryEngine3 to compress n
into two terms and extract the original when needed refer to Equation (8).

࢔ࡳ ൌ ௫௬൯࢔൫݁ݖ݈݅ܽ݉ݎ݋݊ כ ටכࢠ࢔ଶାଵଶ

௭࢔ ൌ ݄ݐ݈݃݊݁ ቀ࢔ࡳ௫௬ቁ כ 2 െ ௫௬࢔ (8) 1 ൌ ݁ݖ݈݅ܽ݉ݎ݋݊ ቀ࢔ࡳ௫௬ቁ כ ඥ1 െ ଶࢠ࢔

 G୬ : the compressed normal information, n : the original normal vector. This
compression scheme consumes 18 pixel shader instructions, but compared to some
other schemes, it has a better balance between performance and effect.

In fact we can easily reconstruct the view position from pixel’s xy information in
NDC space. So we just store the view space linear depth in the GBuffer, and construct
View-Ray to rebuild the view position by similar triangle theorem in very small errors
(Equation (9)). By means of the above compression schemes, the GBuffer is
compressed into a single texture.

 ࢜ ൌ ࢠ࢘ࢠ࢜כࢠࢌכ࢘ (9) f୸: the far clip plane’s depth in view space, r: the View-Ray which is produced by the
rasterization from the far clip plane corners when rendering full screen quad or the pixel
view position when rendering light volume.

Lighting Buffer stores pixels’ lighting intensity information, including ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ which contains three terms each. Assuming that ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ have
the same color information, we use an approximate solution which just stores the
luminance of ܚ܉ܔܝ܋܍ܘܛۺ, and reconstruct its color information from ܍ܛܝ܎܎ܑ܌ۺ (however
specular color information is lost when ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ have different color
information).

’ܚ܉ܔܝ܋܍ܘܛۺ ൌ °܍ܛܝ܎܎ܑ܌ۺ ቀ ୪୳୫ሺܚ܉ܔܝ܋܍ܘܛۺሻ୪୳୫ሺ܍ܛܝ܎܎ܑ܌ۺሻାεቁ (10)

ε represents a small constant (0.0001 in our implementation) in case of dividing zero.

 Real-Time Rendering Framework in the Virtual Home Design System 219

4.2 Light Volume

In the Deferred Lighting framework, the lighting computation of global lights such as
the parallel light from sun is fulfilled by a full screen quad rendering pass. However,
there also exist some local lights which may just affect limit number of pixels, it’ll be a
waste of time to render a full screen quad pass as well. General solution is to use light
volume (sphere as point light and comicalness as spot light) to mark out the pixels
affected by local lights. Fabio [16] made use of the hardware accelerated sissor test to
mark out pixels by projecting the light volume onto screen viewport, but this method
may mark out some pixels incorrectly. Our system uses a method similar to the shadow
volume algorithm which is able to identify the pixels affected by lights accurately no
matter the eye point is inside or outside the light volume. This algorithm can be divided
into two passes whose pipeline states are taken out in Table 1.

Table 1. The pipeline states of Light Volume

State Pass 1 Pass 2
Backface Culling Back Front

Color Mask None RGBA
Depth Writable False True

Depth Test LessEqual GreateEqual
Stencil Test True False
Stencil Op Z-Fail Incr Equal Ref=0

Clear Stencil False True

According to the rendering states in Table 1, in Pass 1 we cull the back face of light

volumes, the blue pixels pass the depth test and keep the stencil buffer, red pixels fail
the depth test and increase the stencil buffer value. In Pass 2 front face is culled, the
green pixels pass the depth stencil test and marked as lights affected pixels refer to
figure 4-a. When eye point is within the light volume, this method still marks out the
pixels correctly seen from Figure 4-b.

Fig. 4. Light Volume algorithm: (a) eye point outside the light volume (b) eye point inside the
light volume

220 P. Zhu, M. Zhang, and Z. Pan

4.3 Rendering Equation

We use the rendering equation with physical correctness published by Sloan [1] to do
shading:

 fୱ୦ୟୢୣሺBL, ,ܔ ,ܖ ,ܞ Sሻ ൌ BL° ቀ۱܎܎ܑ܌ ൅ RF൫۱܋܍ܘܛ, ,ܔ ൯ܐ ଼ାS଼ ሺܖ · ሻSቁܐ ሺܖ · the eye :ܞ ,the incident light :ܔ ,ሻ (11) BL: the light diffuse and specular reflection intensityܔ
vector, ܐ: the half vector in Blinn Phong model, RF: Fresnel reflection function.

Due to the fact Fresnel function RF depends on ܔ, which also depend on the light ,ܐ
information, this leads the failure to decouple lighting from shading, so we use an
approximate solution by modifying RF as follows:

 RF′൫۱܋܍ܘܛ, ,ܖ ൯ܞ ൎ ܋܍ܘܛ۱ ൅ ሺ૚ െ ሻሺ1܋܍ܘܛ۱ െ ܖ · ሻ૞ (12)ܞ

Although this alterative solution is not physically correct, when ܞ is coinciding with ܔ, the value of ܖ · ܐ is the same as ܞ · ,܋܍ܘܛThen RF′൫۱ .ܔ ,ܖ ൯ no longer depends onܞ
the light, it can be applied to our shading framework with unnoticeable artifact.

5 Results

(a) (b)

(c) (d)

Fig. 5. (a) top orthogonal design view (b) 3D design view (c)(d) 3D navigation view

Our software has three different views (figure 5), including the top orthogonal view for
wall construction, operating models, laying floors, etc, 3D design view for operating
models, pasting wallpaper, etc, and the 3D navigation view for walking through the

 Real-Time Rendering Framework in the Virtual Home Design System 221

indoors. The results below are running on a PC with Intel Core2 Quad 2.5G Hz CPU,
4GB RAM, Nvidia GTX460 video card and Windows7 OS.

5.1 Scene Management

We take three variations as experiments when Cell&Portal system is on and off. The
results show that the frame rate has a big raise when Cell&Portal is on though the
performance still depends on the scene distribution, refer to table 2.

Table 2. Frame rate test under Cell&Portal Management

House Type Triangle Number On Off
West Lake Type A 46987 102 fps 42 fps

Wanan Court B 34959 105 fps 56 fps
Wanan Court C 29871 151 fps 65 fps

5.2 Soft Shadow

In the implementation details, the system automatically choose the shadow map
resolution from three candidates (256*256, 512*512 and 1024*1024) according to the
scene range. And by setting the value of γ and c reasonably, the light bleeding is
alleviated effectively. Seen from figure 6-left, when the scene’s occlusion relationship
is complex, the original VSM introduces noticeable light bleeding artifact due to
variance jittering. On the other hand, too big γ may cause banding as well (figure
6-middle).

Fig. 6. Light Bleeding: left: VSM causes light bleeding middle: VSM with γ ൌ 0.2 causes
banding right: VSM+ESM withγ ൌ 0.1, c ൌ 30

5.3 Deferred Lighting

The video memory consumed by Deferred Shading and Deferred Lighting with our
compress optimization respectively is displayed below (the resolution of viewport is
1072*768). According to table 3, Deferred Lighting uses just the half memory
comparing to Deferred Shading and needs only one texture each rendering pass which
saves bandwidth.

222 P. Zhu, M. Zhang, and Z. Pan

During the process of rendering, GBuffer contains a GL_RGBA16F float point
texture which uses Spheremap Transform to compress normal into RG channels and
stores the linear depth in channel G and shininess in channel A, refer to figure 7.

Table 3. Memory Consumption of Deferred Shading and Deferred Lighting

Buffering | Channels Deferred Shading Deferred Lighting
Normal | 2 √ √

Linear Depth | 1 √ √
Shininess | 1 √ √

Diffuse Material | 3 √ X

Sepcular Material | 3 √ X

Emissive Material | 3 √ X

Diffuse Lighting | 3 X √
Specular Lighting | 3 X √

Textures GL_RGBA16F*3 GL_RGBA16F*1
GL_RGBA8*1

Memory(MB) 18.84 9.42

 (a) (b) (c)

Fig. 7. Geometry Buffer (GBuffer) (a) Spheremap Transformed normal (b) Linear Depth (c)
Shininess

Lighting Buffer contains a GL_RGBA8 texture which stores diffuse lighting
information in RGB channel and specular lighting luminance in channel A (figure 8).

Fig. 8. Lighting Buffer (a) Diffuse Intensity (b) Specular Luminance

When entering the shading pass, geometries, materials and textures are dumped into
pipeline, and Lighting Buffer is viewed as a shader resource. After the pixel lighting
and shadow generation, the result of the bathroom is showed below:

 Real-Time Rendering Framework in the Virtual Home Design System 223

Fig. 9. Rendering Result

6 Conclusion

This paper introduces a virtual home design system, and describes the next-gen indoor
rendering framework with its optimizations in details. In addition to pixel lighting, we
can add some features effectively such as screen space ambient occlusion (SSAO), high
dynamic rendering (HDR) and depth of field (DOF) in the future.

Acknowledgements. This research work is co-supported by the following NSFC
projects: grant no: 61003197, 60970076, 61170318.

References

1. Tomas, M., Haines, E.: Real-Time Rendering, 3rd edn. A.K. Peters Ltd. (2008)
2. Haumont, D., Debeir, O., Sillion, F.: Volumetric cell-and-portal generation. J. Computer

Graphics Forum 22(3), 303–312 (2003)
3. Crow, F.C.: Shadow algorithms for computer graphics. In: Proceedings of SIGGRAPH

1977, pp. 242–248. ACM Press, Barzel (1977)
4. Williams, L.: Casting curved shadows on curved surfaces. In: Proceedings of SIGGRAPH

1978, pp. 270–274. ACM Press, Atlanta (1978)
5. Donnelly, W., Lauritzen, A.: Variance shadow maps. In: Proceedings of the 2006 ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 161–165. ACM Press,
New York (2006)

6. Wojciech, S.: Variance Shadow Maps Light-Bleeding Reduction Tricks. GPU Pro2
Advanced Rendering Techniques. A.K. Peters Ltd. (2011)

7. Deering, M.S., Winner, B., Schediwy, C., Duffy, Hunt, N.: The Triangle Processor and
Normal Vector Shader: A VLSI system for High Performance Graphics. J. Computer
Graphics 22(4), 21–30 (1988)

8. Shishkovtso, O.: GPU Gems 2: Deferred Rendering in S.T.A.L.K.E.R. Addison-Wesley
Professional (2005)

9. Valient, M.: Deferred Rendering in Killzone 2. Presentation, Develop Conference, Brighton
(2007)

224 P. Zhu, M. Zhang, and Z. Pan

10. Filion, D., Mcnaughton, R.: Effects & techniques. In: SIGGRAPH 2008: ACM SIGGRAPH
2008 Classes, pp. 133–164. ACM Press, New York (2008)

11. Naty: Deferred Lighting Approaches, http://www.realtimerendering.com/
blog/deferred-lighting-approaches/

12. Mittring, M.: Finding Next-Gen: CryEngine 2. In: SIGGRAPH 2007: ACM SIGGRAPH
2007 Courses, pp. 97–121. ACM Press, New York (2007)

13. Samaritan: Unreal Engine 3 Showcase. Technical report, Epic Games (2011)
14. Gribb, G., Hartmann, K.: Fast Extraction of Viewing Frustum Planes from the World View

Projection Matrix. Online document (2001)
15. Martin. M.: A bit more Deferred – CryEngine 3. Technical report, Triangle Game

Conference (2009)
16. Fabio, P., Franciso, F.: Deferred Shading Tutorial,

http://fabio.policarpo.nom.br/docs/Deferred_Shading_Tutorial
_SBGAMES2005.pdf

	Real-Time Rendering Framework in the Virtual Home
Design System
	Introduction
	Cell&Portal Scene Management
	Real-Time Soft Shadow
	Light Bleeding

	Deferred Lighting
	Buffer Compression Optimization
	Light Volume
	Rendering Equation

	Results
	Scene Management
	Soft Shadow
	Deferred Lighting

	Conclusion
	References

