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Abstract. This paper introduces a home design system with its great functions 
and framework design, including the scene management based on the 
Cell&Portal system, improved variance shadow mapping and the recently 
popular real-time rendering framework called deferred lighting. In the 
implementation details, we put in some useful improvements, such as 
compressing the Geometry Buffer and Lighting Buffer to decrease the video 
memory and bandwidth occupation with which the multi-render-target limitation 
has been dislodged, using the light volume stencil culling which is similar to the 
shadow volume algorithm to identify the lit pixels and modifying the physically 
correct shading model based on Fresnel term to adapt to the deferred lighting 
framework. 

Keywords: Scene Management, Soft Shadow, Deferred Lighting, Light 
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1 Introduction 

With the real estate industry blooming as well as the housing prices continuing higher 
in recent years, in order to live a life with comfort and economy, people have to 
consider a variety of factors before purchase and renovation of housing, such as the size 
and practicality, the cost estimate of decorating and the beauty and comfort of the room 
layout. Meeting the above various needs, we have developed a user friendly, flexible 
and powerful virtual home design software. Distinct from the traditional design 
systems such as AutoCAD, 3ds Max which not only require the users to have a strong 
design skills but also need a few hours’ design cycle, there already exist some home 
design systems with foolproof operations and powerful functions such as 72xuan, 
Sweet Home 3D. However these systems still have some weakness, including lack of 
efficient scene management and poor rendering effects. Premise of powerful features, 
our system aims at providing users with comfortable operations and efficient rendering 
effects. 

When there are a lot of geometries in the scene, the real-time rendering system needs 
to cull the geometries which are outside the view frustum efficiently to minimize the 
geometric information dumped into the pipeline. There exist lots of visibility 
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algorithms, such as bounding volume test, space partition [1]. Haumont [2] has come 
up with a visibility test algorithm called Cell&Protal Graph which is especially suitable 
for interior scenes. 

Real-time shadow can greatly improve the image authenticity, but a majority of 
home design software generally uses the model-bounded texture to simulate pseudo 
shadow. The most popular real-time shadow generation algorithms include Shadow 
Volume [3] and Shadow Mapping [4]. The shadow volume algorithm needs to calculate 
the models’ silhouette edges, whose time complexity is associated with the geometric 
information among the scene, which may become the bottleneck of loading models. 
The shadow mapping is more widely used among real-time rendering areas due to its 
simplicity, generality and high speed, but it suffers from aliasing artifacts because of 
perspective projection and under-sampling errors. Simple solution is to increase the 
shadow map resolution or use Percentage Closer Filter (PCF) which may affect 
performance. Donnelly [6] came up with the Variance Shadow Map (VSM) algorithm 
in 2006, which can produce soft shadow efficiently by blurring the shadow map 
immediately. VSM is exciting but still has some problems, such as light-bleeding 
artifact due to variance jittering when the scene is complicated. Wojciech [6] has 
reduced the lighting-bleeding artifact greatly by combining VSM with Exponential 
Shadow Map (VSM).  

The time complexity of pixel-lighting in traditional real-time rendering framework 
(forward rendering) is Oሺm כ n כ sሻ  where m  represents geometry number, n 
represents light number and s represents pixel number. Therefore it’s unable to meet 
the real-time need when there’re multi lights in the scene. Deferred Shading was a 
real-time rendering framework published by Deering [7] in 1988 which has been 
widely used in games such as Startcraft2, Battlefield and Dota2 in recent years [8-10]. 
Deferred Shading stores pixel-related position, normal and material information in 
multiple textures called Geometry Buffer (GBuffer). The time complexity of 
pixel-lighting decreases to Oሺm ൅ n כ sሻ because of decoupling lights and geometries. 
However, Deferred Shading still has some weakness:   

 Fat GBuffer costs so much video memory and bandwidth. 
 Rendering to GBuffer needs Video Cards with Multi-Render-Target feature. 
 Hard to handle semi-transparency geometries. 
 Unable to utilize hardware accelerated MSAA. 
 The whole rendering pipeline can only use single rendering equation. 

The rendering equation among Deferred Shading can be expressed as follows: 

             L୭ሺvሻ ൌ ∑ fୱ୦ୟୢୣሺBL౟,l୧, v, n, Cୢ୧୤୤୳ୣ, Cୱ୮ୣୡ୳୪ୟ୰, Sሻ୬୧ୀଵ             (1) BL౟: light’s intensity and color information, l୧: incident light vector, v: vertex position, n: vertex normal vector, Cୢ୧୤୤୳ୣ: surface diffuse material, Cୱ୮ୣୡ୳୪ୟ୰: surface specular 
material, S: shininess. 

According to Equation (2), the GBuffer needs to store normal, position and material. 
This information may conquer 3 to 4 viewport-sized floating textures, which consume 
so much video memory and bandwidth. How to slim down the GBuffer becomes the 
key of improving the performance of Deferred Shading. Our system implements a 
meliorated framework called Deferred Lighting which was proposed by Naty [11] in 
2009. Deferred Lighting has been widely used in video games and game engines such 
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as Crysis2 and Unreal3 [12-13]. Compared to Deferred Shading, Deferred Lighting 
takes an additional forward geometry pass but reduces the GBuffer size. It also stores 
lighting result into textures called Lighting Buffer, with which we can use multiple 
rendering equations among shading. We take some optimizations when implementing 
this framework to decrease GBuffer and Lighting Buffer to single texture each and 
eliminate the Multi-Render-Target limitation. 

2 Cell&Portal Scene Management 

Our system uses Cell&Portal to do scene management. In the implementation details, 
we maintain a room list and a model list. At First, we compute the room areas as Cells 
in terms of the walls’ information, then identify the doors and windows belong to the 
associated rooms as Portals, refer to figure 1. Using Equation (2) we can efficiently 
identify the model’s belonging room: 

ڀ            ൛ٿ ൫࢜୩,୧ െ ൯࢖ ൈ ൫࢜୩,ሺ୧ାଵሻ%୬ െ ൯୬ିଵ୧ୀ଴࢖ ൐ 0ሻሽ୫୩ୀଵ                (2) ൈ: represents cross product, m: convex polygon in the room, n: vertex number, ࢖: 
viewpoint position, ࢜: represents vertex position. 

 

 

Fig. 1. Cell&Portal in the System 

At last, we use the Gribb [14] to extract the world space’s frustum information from 
View-Projection Matrix. With above information, we can compute the models that 
need to be bumped into the pipeline recursively as the following pseudo code: 

program Cell_Portal (cell, frustum): model_list  
    var model, portal, new_frustum; 
  begin 
    for(model in cell.model_list)  
      if(Intersect(model.OBB, frustum))  
        model_list.add(model); 
    for(portal in cell.portal_list) 
      if(Intersect(portal, frustum)) 
        new_frustum = Cull(frustum, portal); 
        Cell_Portal(portal.other_cell, new_frustum);  
  end 
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3 Real-Time Soft Shadow 

Variance Shadow Mapping can produce plausibly soft shadow. Due to our small range 
indoor scene, one median sized resolution shadow map is sufficient. VSM also allows 
filtering the shadow map immediately, which is much more efficient than the other 
shadow mapping algorithms that need multi sampling. 

We supply three different resolution shadow map due to the current scene range, 
including 256*256, 512*512 and 1024*1024. VSM uses Chebyshev Inequality 
(Equation (3)) to simulate the shadow factor, so we can filter the shadow map 
immediately (Mipmap, anisotropic filtering and Gaussian blur) . 

 

                    ܲሺO ൒ Rሻ ൑ ሺRሻ݌ ൌ ఙమఙమାሺோି௨ሻమ  , ݑ ൏ ܴ 

ݑ                       ൌ ଶߪ      ሺOሻ                                        (3)ܧ ൌ ሺܱଶሻܧ െ  ሺOሻଶܧ
 R: pixel depth, O: associated texel depth, σଶ: texel depth variance, u: texel average 

depth. 
Then we can present the shadow function as follows: 

                    SሺRሻ ൌ  ൜݌ሺRሻ       ݑ ൏ ݑ              1ܴ ൒ ܴ                          (4) 

When u ൒ R the pixel is lit. 

3.1 Light Bleeding 

When the occlusions are complex in the scene, light can emerge in some wrong shadow 
areas due to depth variance jittering, refer to figure 2. 

 

 

Fig. 2. Light Bleeding: the penumbra of object B bleeds onto C because of variance jittering 
when ∆݀஺஻ ∆݀஻஼⁄  becomes big 

We add a negative tail value after ݌ሺRሻ , this can reduce the bleeding light’s 
intensity, but may cause band artifact, refer to Equation (5). 

ሺRሻ′݌                ൌ max ሺ ఙమఙమାሺோି௨ሻమ  െ  γ , 0ሻ, ݑ ൏ ܴ                (5) 
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Wojciech solves this problem by combining another shadow mapping algorithm based 
on statistics called Exponential Shadow Map (ESM) with VSM. This combination can 
handle most situations except when VSM and ESM both fail, but that hardly happens. 
Then we get the shadow function as follows: 

                          SᇱሺRሻ ൌ  ൜pᇱᇱሺeୡRሻ       u ൏ ܴ1                   u ൒ R  

                                    p′′ሺeୡRሻ ൌ  max ሺ σ′మ
σ′మା൫ୣౙRି୳′൯మ  െ  γ , 0ሻ             (6)          σ′ଶ ൌ EሺሺeୡOሻଶሻ െ EሺeୡOሻଶ 

                                  u′   ൌ EሺeୡOሻ  
 c is a control parameter, its value is as big as possible in theory, but too large c may 
cause floating point precision, we set c 30 in our system. Taking the exponential of 
depth makes ∆݀஺஻ ∆݀஻஼⁄  gets smaller. 

4 Deferred Lighting 

Modified from Equation (1), we get a set of equations as follows:                               ܍ܛܝ܎܎ܑ܌ۺ ൌ ∑ fୢ୧୤୤୳ୱୣሺBL౟, ,ܑܔ ሻ୬୧ୀଵܖ ܚ܉ܔܝ܋܍ܘܛۺ                                   ൌ ∑ fୱ୮ୣୡ୳୪ୟ୰ሺBL౟, ,ܑܔ ,ܖ ,ܞ Sሻ୬୧ୀଵ ܗۺ                                                       (7) ൌ ܍ܛܝ܎܎ܑ܌ۺ°܍ܛܝ܎܎ܑ܌۱ ൅  ܚ܉ܔܝ܋܍ܘܛۺ°ܚ܉ܔܝ܋܍ܘ܁۱ 

°: tensor product, ܍ܛܝ܎܎ܑ܌ۺ: pixel’s diffuse light intensity, ܚ܉ܔܝ܋܍ܘܛۺ: pixel’s specular 
light intensity. 
 

 

Fig. 3. The Framework of Deferred Lighting 

According to Equation (7), our GBuffer only needs to store n, v, S, and we can get 
the two material terms Cୢ୧୤୤୳ୱୣ and CS୮ୣୡ୳୪ୟ୰ which occupy two textures in the naïve 
deferred shading framework from the second geometry pass. Because of the decoupling 
of lighting pass from shading pass, Deferred Lighting is also called Partial Deferred 
Shading, refer to figure 3. 
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In terms of figure 3, there is an additional rendering pass in order to get the Lighting 
Buffer which stores ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ. The naïve memory layout still needs two 
textures which consumes so much video memory and bandwidth, we must compress it 
into single texture with some optimizations.  

4.1 Buffer Compression Optimization  

In the implementations, GBuffer uses GL_RGBA16F pixel format and Lighting Buffer 
uses GL_RGBA8. GBuffer contains n, v, S, among which n and v occupy  xyz three 
terms each. We adopt “Spheremap Transform” [16] from CryEngine3 to compress n 
into two terms and extract the original when needed refer to Equation (8). 
 

࢔ࡳ          ൌ ௫௬൯࢔൫݁ݖ݈݅ܽ݉ݎ݋݊ כ ටכࢠ࢔ଶାଵଶ  

௭࢔                     ൌ ݄ݐ݈݃݊݁ ቀ࢔ࡳ௫௬ቁ כ 2 െ ௫௬࢔                         (8)                      1 ൌ ݁ݖ݈݅ܽ݉ݎ݋݊ ቀ࢔ࡳ௫௬ቁ כ ඥ1 െ  ଶࢠ࢔

 G୬ : the compressed normal information, n : the original normal vector. This 
compression scheme consumes 18 pixel shader instructions, but compared to some 
other schemes, it has a better balance between performance and effect. 

In fact we can easily reconstruct the view position from pixel’s xy information in 
NDC space. So we just store the view space linear depth in the GBuffer, and construct 
View-Ray to rebuild the view position by similar triangle theorem in very small errors 
(Equation (9)). By means of the above compression schemes, the GBuffer is 
compressed into a single texture. 

 

                      ࢜ ൌ ࢠ࢘ࢠ࢜כࢠࢌכ࢘                            (9) f୸: the far clip plane’s depth in view space,  r: the View-Ray which is produced by the 
rasterization from the far clip plane corners when rendering full screen quad or the pixel 
view position when rendering light volume. 

Lighting Buffer stores pixels’ lighting intensity information, including ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ which contains three terms each. Assuming that ܍ܛܝ܎܎ܑ܌ۺ and ܚ܉ܔܝ܋܍ܘܛۺ have 
the same color information, we use an approximate solution which just stores the 
luminance of ܚ܉ܔܝ܋܍ܘܛۺ, and reconstruct its color information from ܍ܛܝ܎܎ܑ܌ۺ (however 
specular color information is lost when ܍ܛܝ܎܎ܑ܌ۺ and  ܚ܉ܔܝ܋܍ܘܛۺ have different color 
information). 
 

’ܚ܉ܔܝ܋܍ܘܛۺ                  ൌ °܍ܛܝ܎܎ܑ܌ۺ ቀ ୪୳୫ሺܚ܉ܔܝ܋܍ܘܛۺሻ୪୳୫ሺ܍ܛܝ܎܎ܑ܌ۺሻାεቁ            (10) 

ε represents a small constant (0.0001 in our implementation) in case of dividing zero. 
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4.2 Light Volume  

In the Deferred Lighting framework, the lighting computation of global lights such as 
the parallel light from sun is fulfilled by a full screen quad rendering pass. However, 
there also exist some local lights which may just affect limit number of pixels, it’ll be a 
waste of time to render a full screen quad pass as well. General solution is to use light 
volume (sphere as point light and comicalness as spot light) to mark out the pixels 
affected by local lights. Fabio [16] made use of the hardware accelerated sissor test to 
mark out pixels by projecting the light volume onto screen viewport, but this method 
may mark out some pixels incorrectly. Our system uses a method similar to the shadow 
volume algorithm which is able to identify the pixels affected by lights accurately no 
matter the eye point is inside or outside the light volume. This algorithm can be divided 
into two passes whose pipeline states are taken out in Table 1. 

Table 1. The pipeline states of Light Volume 

State Pass 1 Pass 2 
Backface Culling Back Front 

Color Mask None RGBA 
Depth Writable False True 

Depth Test LessEqual GreateEqual 
Stencil Test True False 
Stencil Op Z-Fail Incr Equal Ref=0 

Clear Stencil False True 

 
According to the rendering states in Table 1, in Pass 1 we cull the back face of light 

volumes, the blue pixels pass the depth test and keep the stencil buffer, red pixels fail 
the depth test and increase the stencil buffer value. In Pass 2 front face is culled, the 
green pixels pass the depth stencil test and marked as lights affected pixels refer to 
figure 4-a. When eye point is within the light volume, this method still marks out the 
pixels correctly seen from Figure 4-b.  

 

  
Fig. 4. Light Volume algorithm: (a) eye point outside the light volume (b) eye point inside the 
light volume 
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4.3 Rendering Equation  

We use the rendering equation with physical correctness published by Sloan [1] to do 
shading: 

     fୱ୦ୟୢୣሺBL, ,ܔ ,ܖ ,ܞ Sሻ ൌ BL° ቀ۱܎܎ܑ܌ ൅ RF൫۱܋܍ܘܛ, ,ܔ ൯ܐ ଼ାS଼ ሺܖ · ሻSቁܐ ሺܖ ·  the eye :ܞ  ,the incident light :ܔ ,ሻ    (11) BL: the light diffuse and specular reflection intensityܔ
vector, ܐ: the half vector in Blinn Phong model, RF: Fresnel reflection function. 

Due to the fact Fresnel function RF depends on ܔ,  which also depend on the light ,ܐ
information, this leads the failure to decouple lighting from shading, so we use an 
approximate solution by modifying RF as follows: 
 

            RF′൫۱܋܍ܘܛ, ,ܖ ൯ܞ ൎ ܋܍ܘܛ۱ ൅ ሺ૚ െ ሻሺ1܋܍ܘܛ۱ െ ܖ ·  ሻ૞            (12)ܞ
 
Although this alterative solution is not physically correct, when ܞ  is coinciding with ܔ, the value of ܖ · ܐ is the same as ܞ · ,܋܍ܘܛThen RF′൫۱ .ܔ ,ܖ  ൯ no longer depends onܞ
the light, it can be applied to our shading framework with unnoticeable artifact. 

5 Results 

 

   
(a)                                          (b) 

 

   
(c)                                           (d) 

Fig. 5. (a) top orthogonal design view (b) 3D design view (c)(d) 3D navigation view 

Our software has three different views (figure 5), including the top orthogonal view for 
wall construction, operating models, laying floors, etc, 3D design view for operating 
models, pasting wallpaper, etc, and the 3D navigation view for walking through the 
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indoors. The results below are running on a PC with Intel Core2 Quad 2.5G Hz CPU, 
4GB RAM, Nvidia GTX460 video card and Windows7 OS.     

5.1 Scene Management 

We take three variations as experiments when Cell&Portal system is on and off. The 
results show that the frame rate has a big raise when Cell&Portal is on though the 
performance still depends on the scene distribution, refer to table 2. 

Table 2. Frame rate test under Cell&Portal Management 

House Type Triangle Number On Off 
West Lake Type A 46987 102 fps 42 fps 

Wanan Court B 34959 105 fps 56 fps 
Wanan Court C 29871 151 fps 65 fps 

5.2 Soft Shadow 

In the implementation details, the system automatically choose the shadow map 
resolution from three candidates (256*256, 512*512 and 1024*1024) according to the 
scene range. And by setting the value of γ and c reasonably, the light bleeding is 
alleviated effectively. Seen from figure 6-left, when the scene’s occlusion relationship 
is complex, the original VSM introduces noticeable light bleeding artifact due to 
variance jittering. On the other hand, too big γ may cause banding as well (figure 
6-middle). 
 

   

Fig. 6. Light Bleeding: left: VSM causes light bleeding middle: VSM with γ ൌ 0.2  causes 
banding right: VSM+ESM withγ ൌ 0.1, c ൌ 30 

5.3 Deferred Lighting 

The video memory consumed by Deferred Shading and Deferred Lighting with our 
compress optimization respectively is displayed below (the resolution of viewport is 
1072*768). According to table 3, Deferred Lighting uses just the half memory 
comparing to Deferred Shading and needs only one texture each rendering pass which 
saves bandwidth. 
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During the process of rendering, GBuffer contains a GL_RGBA16F float point 
texture which uses Spheremap Transform to compress normal into RG channels and 
stores the linear depth in channel G and shininess in channel A, refer to figure 7. 

Table 3. Memory Consumption of Deferred Shading and Deferred Lighting 

Buffering | Channels Deferred Shading Deferred Lighting 
Normal | 2 √ √ 

Linear Depth | 1 √ √ 
Shininess | 1 √ √ 

Diffuse Material | 3 √ X 

Sepcular Material | 3 √ X 

Emissive Material | 3 √ X 

Diffuse Lighting | 3 X √ 
Specular Lighting | 3 X √ 

Textures GL_RGBA16F*3 GL_RGBA16F*1 
GL_RGBA8*1 

Memory(MB)     18.84 9.42 

   
 

 
            (a)                          (b)                        (c) 

Fig. 7. Geometry Buffer (GBuffer)  (a) Spheremap Transformed normal (b) Linear Depth (c) 
Shininess 

Lighting Buffer contains a GL_RGBA8 texture which stores diffuse lighting 
information in RGB channel and specular lighting luminance in channel A (figure 8). 

 

    

Fig. 8. Lighting Buffer  (a) Diffuse Intensity  (b) Specular Luminance 

When entering the shading pass, geometries, materials and textures are dumped into 
pipeline, and Lighting Buffer is viewed as a shader resource. After the pixel lighting 
and shadow generation, the result of the bathroom is showed below: 
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Fig. 9. Rendering Result 

6 Conclusion 

This paper introduces a virtual home design system, and describes the next-gen indoor 
rendering framework with its optimizations in details. In addition to pixel lighting, we 
can add some features effectively such as screen space ambient occlusion (SSAO), high 
dynamic rendering (HDR) and depth of field (DOF) in the future.  
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