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Abstract. This article puts forward a novel framework for pedestrian detection 
tasks, which proposing a model with both sparse reconstruction and class 
discrimination components, jointly optimized during dictionary learning. We 
present an efficient pedestrian detection system using mixing sparse features of 
HOG, FOG and CSS to combine into a Kernel classifier. Results presented on 
our data set show competitive accuracy and robust performance of our system 
outperforms current state-of-the-art work. 
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1 Introduction 

Pedestrian counting in public places plays a key role in many applications, such as 
evacuating from a dense region to a sparse one when an emergency happens, or 
optimizing the design of traffic infrastructures to provide better transportation services. 
Furthermore, social security and surveillance strongly depend on the effectiveness of 
pedestrian counting. A wide variety of pedestrian detection methods have been 
proposed [1-6]. 

Sparse representations have recently drawn much interest in signal, image, and 
video processing. Under the assumption that natural images admit a sparse 
decomposition in some redundant basis (or so-called dictionary), several such models 
have been proposed, e.g., curve lets, wedge lets, band lets and various sorts of wavelets 
[7]. Interestingly, while discrimination is the main goal of these papers, the 
optimization (dictionary design) is purely generative, based on a criterion which does 
not explicitly include the actual discrimination task, which is one of the key 
contributions of our work. In [8], a discriminative method is introduced for various 
classification tasks, learning one dictionary per class; the classification process itself is 
based on the corresponding reconstruction error, and does not exploit the actual 
decomposition coefficients. In [9], a generative model for documents is learned at the 
same time as the parameters of a deep network structure. In [10], multi-task learning is 
performed by learning features and tasks are selected using a sparsity criterion. The 
framework we present in this paper extends these approaches by learning 
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simultaneously a single shared dictionary as well as models for different signal classes 
in a mixed generative and discriminative formulation (see also [11], where a different 
discriminative term is added to the classical reconstructive one). Similar joint 
generative/discriminative frameworks have started to appear in probabilistic 
approaches to learning, e.g., [12, 13, 14, 15, 16], and in neural networks [17], but not, to 
the best of our knowledge, in the sparse dictionary learning framework. 

The remainder of this paper is organized as follows. In Section 2, we describe the 
procedure of feature extraction, and in Section 3, we present a formulation for learning 
a dictionary tuned for a classification task, which we call discriminative sparse 
learning. Section4 gives the optimization procedure of discriminative sparse learning 
.Experimental results are provided and analyzed in Section 5. Finally, Section 6 
concludes this work. 

2 Feature Extraction  

Obviously, the choice of features is the most critical decision when designing a 
detector, and finding good features is still largely an empirical process with few 
theoretical guidelines. We evaluate different combinations of features, and introduce a 
new feature based on the similarity of colors in different regions of the detector 
window, which significantly raises detection performance. The pedestrian region in our 
detection window is of size 48*96 pixels.  

Histograms of oriented gradients (HOG) are a popular feature for object detection, 
first proposed in [18]. They collect gradient information in local cells into histograms 
using trilinear interpolation, and normalize overlapping blocks composed of 
neighboring cells. Interpolation, local normalization and histogram binning make the 
representation robust to changes in lighting conditions and small variations in pose. 
HOG was recently enriched by Local Binary Patterns (LBP), showing a visible 
improvement over standard HOG on the INRIA Person data set [24]. In our 
experiments we compute histograms with 9 bins on cells of 8*8 pixels. Block size is 
2*2 cells overlapping by one cell size. 

HOF Histograms of flow were initially also proposed by Dalal et al. [19]. We have 
shown that using them (e.g. in [19]’s IMHwd scheme) complementary to HOG can 
give substantial improvements on realistic datasets with significant ego motion. Here, 
we introduce a lower-dimensional variant of HOF, IMHd2, which encodes motion 
differences within 2*2 blocks with 4 histograms per block, while matching the 
performance of IMHwd (3*3 blocks with 9 histograms). Fig. 2(d) schematically 
illustrates the new coding scheme: the 4 squares display the encoding for one histogram 
each. For the first histogram, the optical flow corresponding to the pixel at the ith row 
and jth column of the upper left cell is subtracted from the one at the corresponding 
position of the lower left cell, and the resulting vector votes into a histogram as in the 
original HOF scheme. IMHd2 provides a dimensionality reduction of 44% (2520 
instead of 4536 values per window), without changing performance significantly. We 
used the publicly available flow implementation of [20]. In this work we show that 
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HOF continues to provide a substantial improvement even for flow fields computed on 
JPEG images with strong block artifacts (and hence degraded flow fields). 

Several authors have reported improvements by combining multiple types of 
low-level features [21, 22, 23]. Still, it is largely unclear which cues should best be used 
in addition to the now established combination of gradients and optic flow. Intuitively, 
additional features should be complementary to the ones already used, capturing a 
different part of the image statistics. Color information is such a feature enjoying 
popularity in image classification [24] but is nevertheless rarely used in detection. 
Furthermore, second order image statistics, especially co-occurrence histograms, are 
gaining popularity, pushing feature spaces to extremely high dimensions [25, 22]. 

We propose to combine these ideas and use second order statistics of colors as 
additional feature. Color by itself is of limited use, because colors vary across the entire 
spectrum both for people (respectively their clothing) and for the background, and 
because of the essentially unsolved color constancy problem. However, people do 
exhibit some structure, in that colors are locally similar—for example (see Fig. 1) the 
skin color of a specific person is similar on their two arms and face, and the same is true 
for most people’s clothing. Therefore, we encode color self similarities within the 
descriptor window, i.e. similarities between colors in different sub-regions. To leverage 
the robustness of local histograms, we compute D local color histograms over 8*8 pixel 
blocks, using trilinear interpolation as in HOG to minimize aliasing. We experimented 
with different color spaces, including 3*3*3 histograms in RGB, HSV, HLS and CIE 
Luv space, and 4*4 histograms in normalized rg, HS and uv, discarding the intensity 
and only keeping the chrominance. Among these, HSV worked best, and is used in the 
following. 

 

 

Fig. 1. Self-similarity encodes relevant parts  

3 Supervised Dictionary Learning 

We present in this section the core of the proposed model. In classical sparse coding 
tasks, one considers a signal x in Rn and a fixed dictionary D = [d1, . . . , dk] in Rn×k 
(allowing k>n, making the dictionary over complete). In this setting, sparse coding with 
an ℓ1 regularization amounts to computing 
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It is well known in the statistics, optimization, and compressed sensing communities 
that the ℓ1 penalty yields a sparse solution, very few non-zero coefficients in α, 
although there is no explicit analytic link between the value of λ1 and the effective 
sparsity that this model yields. Other sparsity penalties using the ℓ0 regularization can 
be used as well. Since it uses a proper norm, the ℓ1 formulation of sparse coding is a 
convex problem, which makes the optimization tractable with algorithms such as those 
introduced in [26, 27], and has proven in practice to be more stable than its ℓ0 
counterpart, in the sense that the resulting decompositions are less sensitive to small 
perturbations of the input signal x. Note that sparse coding with an ℓ0 penalty is an 
NP-hard problem and is often approximated using greedy algorithms. 

In this paper, we consider a setting, where the signal may belong to any of p different 
classes. We first consider the case of p = 2 classes and later discuss the multiclass 
extension. We consider a training set of m labeled signals (xi)mi=1 in Rn, associated 
with binary labels (yi ∈{−1, +1})mi=1.Our goal is to learn jointly a single dictionary D 
adapted to the classification task and a function f which should be positive for any 
signal in class +1 and negative otherwise. We consider in this paper two different 
models to use the sparse code α for the classification task: 

(i) linear in α: bwxf T += αθα ),,( , where θ = {w∈Rk, b∈R} parametrizes the model. 

(ii) bilinear in x and α: bwxxf T += αθα ),,( , where θ= {W∈Rn×k, b ∈R}. In this 
case, the model is bilinear and f acts on both x and its sparse code α. 

The number of parameters in (ii) is greater than in (i), which allows for richer models. 
Note that one can interpret was a linear filter encoding the input signal x into a model 
for the coefficients, which has a role similar to the encoder in [28] but for a 
discriminative task. A classical approach to obtain for (i) or (ii) is to first adapt D to the 
data, solving 
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Note also that since the reconstruction errors 
2
2|||| ii Dx α−  are invariant to scaling 

simultaneously D by a scalar and αi by its inverse, we need to constrain the ℓ2 norm of 
the columns of D. Such a constraint is classical in sparse coding [29]. This 
reconstructive approach provides sparse codes αi for each signal xi, which can be used 
a posteriori in a regular classifier such as logistic regression, which would require to 
solve 
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where C is the logistic loss function (C(x) = log(1 + e−x)), which enjoys properties 
similar to that of the hinge loss from the SVM literature, while being differentiable, and 
λ2 is a regularization parameter, which prevents over fitting. This is the approach 
chosen in [30] (with SVMs). However, our goal is to learn jointly D and the model 
parameters θ. To that effect, we propose the formulation 
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where λ0 controls the importance of the reconstruction term, and the loss for a pair 
(xi,yi) is 

),,,,(min),,,(*
iiii yDxSyDxS θαθ

α
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2
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the classification procedure of a new signal x with an unknown label y, given a learned 
dictionary D and parameters θ, involves supervised sparse coding:  
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The learning procedure of Eq. (4) minimizes the sum of the costs for the pairs 
(xi,yi)mi=1 and corresponds to a generative model. We will refer later to this model as 
SDL-G (supervised dictionary learning, generative). Note the explicit incorporation of 
the reconstructive and discriminative component into sparse coding, in addition to the 
classical reconstructive term (see [31] for a different classification component). 

However, since the classification procedure from Eq. (6) compares the different 

costs ),,,(* yDxS θ  of a given signal for each class y = −1, +1, a more discriminative 

approach is to not only make the costs ),,,(*
ii yDxS −θ  small, as in (4), but also make 

the value of ),,,(*
ii yDxS −θ  greater than ),,,(*

ii yDxS −θ , which is the purpose of the 
logistic loss function C. This leads to:  
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As detailed below, this problem is more difficult to solve than (4), and therefore we 
adopt instead a mixed formulation between the minimization of the generative Eq. (4) 
and its discriminative version (7), (see also [32])—that is, 
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where μ controls the trade-off between the reconstruction from Eq. (4) and the 
discrimination from Eq. (7). This is the proposed generative/discriminative model for 
sparse signal representation and classification from learned dictionary D and model θ. 
We will refer to this mixed model as SDL-D, (supervised dictionary learning, 
discriminative). Note also that, again, we constrain the norm of the columns of D to be 
less than or equal to one. 

All of these formulations admit a straightforward multiclass extension, using 

softmax discriminative cost functions
)log(),...,(
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i
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, which are 
multiclass versions of the logistic function, and learning one model θi per class. Other 
possible approaches such as one-vs-all or one-vs-one are of course possible, and the 
question of choosing the best approach among these possibilities is still open. 
Compared with earlier work using one dictionary per class [33], our model has the 
advantage of letting multiple classes share some features, and uses the coefficients of 
the sparse representations as part of the classification procedure, thereby following the 
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works from[34, 35, 30], but with learned representations optimized for the 
classification task similar to [31, 36]. 

Our bilinear model with bwxxf T += αθα ),,(  does not admit a straightforward 
probabilistic interpretation. On the other hand, it can easily be interpreted in terms of 
kernels: Given two signals x1 and x2, with coefficients α1 and α2, using the kernel 

212121 ),( xxxxK TTαα=  in a logistic regression classifier amounts to finding a decision 
function of the same form as f. It is a product of two linear kernels, one on the α’s and 
one on the input signals x. Interestingly, Raina et al. [30] learn a dictionary adapted to 
reconstruction on a training set, then train an SVM a posteriori on the decomposition 
coefficients. They derive and use a Fisher kernel, which can be written 

as 212121 ),( rrxxK TTαα=′  in this setting, where the r’s are the residuals of the 
decompositions. In simple experiments, which are not reported in this paper, we have 
observed that the kernel K, where the signals x replace the residuals r, generally yields 
a level of performance similar to K′ and often actually does better when the number of 
training samples is small or the data are noisy. 

4 Optimization Procedure 

Classical dictionary learning techniques (e.g., [30, 37, 38]), address the problem of 
learning a reconstructive dictionary D in Rn×k well adapted to a training set, which is 
presented in Eq. (3). It can be seen as an optimization problem with respect to the 
dictionary D and the coefficients. Although not jointly convex in D, it is convex with 
respect to each unknown when the other one is fixed. This is why block coordinate 
descent on D and performs reasonably well [30, 37, 38], although not necessarily 
providing the global optimum. Training when μ = 0 (generative case), i.e., from Eq. (4), 
enjoys similar properties and can be addressed with the same optimization procedure. 
Equation (4) can be rewritten as: 
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Block coordinate descent consists therefore of iterating between supervised sparse 
coding, where D and θ are fixed and one optimizes with respect to the α’s and 
supervised dictionary update, where the coefficients αi’s are fixed, but D and θ are 
updated. Details on how to solve these two problems are given in sections 4.1 and 4.2. 
The discriminative version SDL-D from Eq.(7) is more problematic. To reach a local 
minimum for this difficult non-convex optimization problem, we have chosen a 
continuation method, starting from the generative case and ending with the 
discriminative one as in [33]. The algorithm is presented in Figure 2. 



190 K. Cheng, Q. Mao, and Y. Zhan 

 

Fig. 2. SDL: Supervised dictionary learning algorithm 

4.1 Supervised Sparse Coding 

The supervised sparse coding problem from Eq. (6) (D and θ are fixed in this step) 
amounts to minimizing a convex function under a ℓ1 penalty. The fixed-point 
continuation method (FPC) from [27] achieves good results in terms of convergence 
speed for this class of problems. For our specific problem, denoting by g the convex 
function to minimize, this method only requires ▽g and a bound on the spectral norm 
of its Hessian Hg. Since the we have chosen models g which are both linear in α, there 
exists, for each supervised sparse coding problem, a vector a in Rk and a scalar c in R 
such that 
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and it can be shown that, if 2|||| U denotes the spectral norm of a matrix U(which is the 
magnitude of its largest Eigen value), then we can obtain the following bound, 
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4.2 Dictionary Update 

The problem of updating D and θ in Eq. (11) is not convex in general (except when μ is 
close to 0), but a local minimum can be obtained using projected gradient descent (as in 
the general literature on dictionary learning, this local minimum has experimentally 
been found to be good enough in terms of classification performance). Denoting E(D,θ) 
the function we want to minimize in Eq. (11), we just need the partial derivatives of E 
with respect to D and the parameters θ. When considering the linear model for the α’s, 

bwxf T += αθα ),,( , and θ = {w∈Rk, b∈R}, we obtain 

 

Input: n (signal dimensions); (xi, yi) mi=1 (training signals); k (size of the dictionary); λ0, 
λ1, λ2(parameters); 0≤μ1≤μ2≤ . . . ≤μm≤1 (increasing sequence). 
Output: D∈Rn×k (dictionary); θ (parameters). 
Initialization: Set D to a random Gaussian matrix with normalized columns. Set θ to zero. 
Loop: For μ = μ1, . . . , μm, 
Loop: Repeat until convergence (or a fixed number of iterations), 
• Supervised sparse coding: Solve, for all i = 1, . . . ,m, 
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Partial derivatives when using our model with multiple classes or with the bilinear 
models bwxxf T += αθα ),,(  are not presented in this paper due to space limitations 

5 Experiments  

To evaluate the performance of the proposed algorithm, we carry out a series of 
experiments on a dataset extracted 500 images of size 48*96 from a video. If the image 
is contain a pedestrian, the label of it will be 1, otherwise -1. Fig. 3(a) shows several 
images with label 1. Fig. 3(b) shows several images with label -1. 100 images from the 
dataset are selected as the test examples. Different number images of the dataset are 
selected as the training examples to compare the accuracy rate.  

Fig.4 shows the compare results of recognition between with HOG, HOF and Color 
features respectively and with the corresponding sparse features.Fig.5 shows the result 
of using mixing features to compare the two methods. As shown in the graph, our 
method performs better than the method directly using HOG, HOF and Color features 
to recognition. In addition, with the increasing number of training samples, our method 
performs better. 

Fig.6 shows the result of these two methods using shading images to test. Compared 
with the traditional method, our method has better recognition accuracy and shows 
good robustness.  

 

       

       
(a)  

       

       
(b) 

Fig. 3. Images with label 1(a) and images with label -1(b) 
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Fig. 4. The compare results of recognition between with HOG, HOF and Color features 
respectively and with the corresponding sparse features 

 

 
 

Fig. 5. The result of using mixing features to compare the two methods 
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Fig. 6. The result of these two methods using shading images to test 

6 Conclusion 

We proposed a system for pedestrian detection with very good accuracy. To achieve 
good classification performance, we put forward a novel framework for pedestrian 
detection tasks, which proposing a model with both sparse reconstruction and class 
discrimination components, jointly optimized during dictionary learning. We present 
an efficient pedestrian detection system using mixing sparse features of HOG, FOG 
and CSS to combine into this a Kernel classifier. Results presented on our data set show 
competetive accuracy and robust performance of our system outperforms current 
state-of-the-art work. Although we use the system for the detection of pedestrians, the 
general idea can be applied to the detection of other object classes as well. 
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