
On Distributability in Process Calculi�

Kirstin Peters1, Uwe Nestmann1, and Ursula Goltz2

1 TU Berlin, Germany
2 TU Braunschweig, Germany

Abstract. We present a novel approach to compare process calculi and
their synchronisation mechanisms by using synchronisation patterns and
explicitly considering the degree of distributability. For this, we propose a
new quality criterion that (1) measures the preservation of distributabil-
ity and (2) allows us to derive two synchronisation patterns that sepa-
rate several variants of pi-like calculi. Precisely, we prove that there is
no good and distributability-preserving encoding from the synchronous
pi-calculus with mixed choice into its fragment with only separate choice,
and neither from the asynchronous pi-calculus (without choice) into the
join-calculus.

1 Introduction

The pi-calculus is a well-known and frequently used process calculus to model
concurrent systems. Therein, intuitively, the degree of distributability corres-
ponds to the amount of parallel components that can act independently. Prac-
tical experience has shown that it is not possible to implement every pi-calculus
term—not even every asynchronous one—in an asynchronous setting while pre-
serving its degree of distributability. To overcome these problems, the join-cal-
culus was introduced as a model of distributed computation [12]. It employs a
locality principle by ensuring that there is always exactly one immobile receiver
for each communication channel. More precisely, for every name, exactly one
receiver is defined at the time of the name’s creation, and communication occurs
only on so-defined channels [7].

Most of the existing approaches that analyse the distributability of concur-
rent systems use special formalisms often equipped with an explicit notion of
location, e.g. [2] in Petri nets or the distributed pi-calculus [9]. In contrast to
these approaches, we analyse (similarly to [17,25]) the potential of a formalism
to describe distributed systems without an explicit allocation of locations to
processes. Instead, we abstract from a particular distribution and consider dis-
tributability and, thus, all possible explicitly-located variants of a calculus. We
do so, because we consider the expressive power of languages, not just individual
terms. Moreover, we obtain results for a larger number of process calculi.

In order to measure whether an encoding respects the degree of distribution,
usually the homomorphic translation of the parallel operator, i.e., � P | Q � =

� Supported by the DFG (German Research Foundation), grants NE-1505/2-1 and
GO-671/6-1.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 310–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Distributability in Process Calculi 311

� P � | � Q �, is used as a criterion (see e.g. [17,5,11]). Such an encoding naturally
preserves the parallel structure of terms and, thus (at least for process calculi
such as CSP or the pi-calculus), the degree of distribution. However, the opposite
is not true. In [19], the first two authors present an encoding that preserves the
degree of distribution although it does not translate the parallel operator homo-
morphically. In this sense, the homomorphic translation of the parallel operator
is too strict—at least for separation results. It rightly forbids the introduction
of coordinators that reduce the degree of distribution. But it also forbids proto-
cols that handle communications of parallel components without sequentialising
them or reducing the degree of distribution in another sense. Moreover, the ho-
momorphic translation of the parallel operator is not always suited to reason
about distribution in process calculi as, for example, the join-calculus: there, it
is not always possible to separate distributable subterms by means of a paral-
lel operator (see the discussion in Section 3). To overcome this problem, [19]
presents a first formulation of a new criterion to more succinctly measure the
preservation of distributability in process calculi like the pi-calculus. We gener-
alise this criterion to reason about arbitrary process calculi. Moreover, we show
that the distributability of processes implies also distributability of executions.
This leads to a new proof method for separation results.

As a result, we obtain a difference between the distributability of the asyn-
chronous pi-calculus (πa) and the join-calculus (J), elucidated by the non-exis-
tence of a good and distributability-preserving encoding from πa into J. Interest-
ingly, the difference between these two calculi is captured by a synchronisation
pattern that was already used in [25] when studying the distributability of Petri
nets. Moreover, we shed more light on the difference between the synchronous
pi-calculus with mixed choice (πm) and its fragment with only separate choice
(πs) already considered in [17,8,19] by capturing this difference within a novel
synchronisation pattern. Hence, these calculi, although they all have the same
abstract expressive power [7,16,19], embody different levels of synchronisation.

Overview.We start with some general definitions on process calculi in §2. In §3,
we propose a new criterion to reason about the preservation of distributability.
§4 then introduces the first synchronisation pattern and separates πa and J. A
second synchronisation pattern and separation between πm and πs is presented
in §5. We conclude with §6. Proofs and additional material can be found in [20].

2 Process Calculi

Within this paper we compare different variants of the pi-calculus and the join-
calculus as they are described e.g. in [14,13] and [7], respectively. We provide a
short introduction into process calculi in general and these variants in particular.

Assume a countably-infinite set N , whose elements are called names. We use
lower case letters a, b, c, . . . , a′, a1, . . . to range over names. Moreover, let τ /∈ N
and N = {n | n ∈ N } be the set of co-names (used in the pi-calculus). A process
calculus is a language L = 〈 P , �−→ 〉 that consists of a set of process terms P
(its syntax) and a relation �−→: P×P on process terms (its semantics). We often

312 K. Peters, U. Nestmann, and U. Goltz

refer to process terms also simply as processes or as terms and use upper case
letters P,Q,R, . . . , P ′, P1, . . . to range over them.

The syntax is usually defined by a context-free grammar defining operators,
i.e., functions op : Nn × Pm → P . An operator of arity 0, i.e., m = 0, is a
constant. The arguments that are again process terms are called subterms of P .

Definition 1 (Subterms). Let 〈 P , �−→ 〉 be a process calculus and P ∈ P.
The set of subterms of P = op (x1, . . . , xn, P1, . . . , Pm) is defined recursively as
{P } ∪ {P ′ | ∃i ∈ { 1, . . . ,m } . P ′ is a subterm of Pi }.
Hence every term is a subterm of itself and constants have no further subterms.
We require that each process calculus defines at least the empty process as con-
stant and the parallel operator as binary operator. Moreover, we add the special
constant � to each process calculus. Its purpose is to denote success (or success-
ful termination) which allows us to compare the abstract behaviour of terms in
different process calculi as described in Section 2.1. Another typical operator is
the restriction of scopes of names. A scope defines an area in which a particular
name is known and can be used. For several reasons, it can be useful to restrict
the scope of a name. For instance to forbid interaction between two processes or
with an unknown and, hence, potentially untrusted environment. Names whose
scope is restricted such that they cannot be used from outside the scope are
denoted as bound names. The remaining names are called free names. Accord-
ingly, we assume three sets—the sets of names n(P) and its subsets of free names
fn(P) and bound names bn(P)—with each term P . In the case of bound names,
their syntactical representation as lower case letters serves as a place holder for
any fresh name, i.e., any name that does not occur elsewhere in the term. To
avoid name capture or clashes, i.e., to avoid confusion between free and bound
names or different bound names, bound names can be mapped to fresh names
by α-conversion. We write P ≡α Q if P and Q differ only by α-conversion.

We use σ, σ′, σ1, . . . to range over substitutions. A substitution is a finite
mapping from names to names defined by a set { y1/x1, . . . , yn/xn } of renamings,
where the x1, . . . , xn are pairwise distinct. The application of a substitution on
a term { y1/x1, . . . , yn/xn } (P) is defined as the result of simultaneously replacing
all free occurrences of xi by yi for i ∈ { 1, . . . , n }, possibly applying α-con-
version to avoid capture or name clashes. For all names N \ { x1, . . . , xn } the
substitution behaves as the identity mapping. We sometimes omit the paren-
theses, i.e., σ(P) = σP . We naturally extend substitutions to co-names, i.e.,
∀n ∈ N . σ(n) = σ(n) for all substitutions σ.

To reason about environments of process terms, we use functions on pro-
cess terms called contexts. More precisely, a context C ([·]1, . . . , [·]n) : Pn → P
with n holes is a function from n process terms into a process term, i.e., given
P1, . . . , Pn ∈ P , the term C (P1, . . . , Pn) is the result of inserting P1, . . . , Pn in
that order into the n holes of C.

We consider three variants of the pi-calculus—the full pi-calculus πm including
mixed choice, its subcalculus πs with only separate choice, and the asynchronous
pi-calculus πa—, and the join-calculus J. Their process terms are given by the
sets Pm, Ps, Pa, and PJ, respectively.

On Distributability in Process Calculi 313

Definition 2 (Syntax). The sets of process terms are given by
Pm ::= P1 | P2 | � | (νn)P | !P | ∑

i∈I πi.Pi

π ::= y〈z〉 | y(x) | τ

Ps ::= P1 | P2 | � | (νn)P | !P | ∑
i∈I π

O
i .Pi | ∑

i∈I π
I
i .Pi

πO ::= y〈z〉 | τ and πI ::= y(x) | τ

Pa ::= 0 | P1 | P2 | � | (νn)P | !P | y〈z〉 | y(x) .P | τ.P

PJ ::= 0 | P1 | P2 | � | y 〈z〉 | defD inP
J ::= y (x) | J1 | J2 and D ::= J � P | D1 ∧D2

for some names n, x, y, z ∈ N and a finite index set I .

The interpretation of the defined terms is as usual. In all languages the empty
process is denoted by 0 and P1 | P2 defines parallel composition. Within the pi-
calculi restriction (νn)P restricts the scope of the name n to the definition of P
and !P denotes replication. The process term

∑
i∈I πi.Pi represents finite guarded

choice; as usual, the sum
∑

i∈{ 1,...,n } πi.Pi is sometimes written as π1.P1+ . . .+

πn.Pn and 0 abbreviates the empty sum, i.e., where I = ∅. The input prefix
y(x) is used to describe the ability of receiving the value x over link y and,
analogously, the output prefix y〈z〉 describes the ability to send a value z over
link y. The prefix τ describes the ability to perform an internal, not observable
action. The choice operators of πm and πs require that all branches of a choice
are guarded by one of these prefixes. We omit the match prefix, because it does
not influence the results.

In Ps within a single choice term either there are no input or no output
guards, i.e., we have input- and output-guarded choice, but no mixed choice.
Apart from that, Pm and Ps define the same processes. πm and πs represent
synchronous variants of the pi-calculus. Asynchronous variants were introduced
independently by [10] and [3]. In asynchronous communication, a process has no
chance to directly determine (without a hint by another process) whether a value
sent by it was already received or not. Hence, output actions are not allowed
to guard a process different from 0. Also, the interpretation of output guards
within a choice construct is delicate. We use the standard variant of πa, where
choice is not allowed at all. Since Pa has no choice, we include 0 as a primitive.

In PJ the operator y 〈z〉 describes an output prefix similar to Pa. A definition
defD inP defines a new receiver on fresh names, where D consists of one or
several elementary definitions J � P connected by ∧, J potentially joins several
reception patterns y (x) connected by |, and P is a process. Note that defD inP
unifies the concepts of restriction, input prefix, and replication of the pi-calculus.
Moreover, [7] define the core join-calculus cJ as a subcalculus of J that restricts
definitions to the form def y1 (x1) | y2 (x2)�P1 inP2, i.e., in cJ definitions consist
of a single elementary definition of exactly two reception patterns.

As usual, the continuation 0 is often omitted, so e.g. y(x).0 becomes y(x).
In addition, for simplicity in the presentation of examples, we sometimes omit
an action’s object when it does not effectively contribute to the behaviour of a
term, e.g. y(x) .0 is written as y.0 or just y, and def y (x)�0 in y 〈z〉 is abbreviated
as def y � 0 in y. Moreover, let (νx̃)P abbreviate the term (νx1) . . . (νxn)P .

314 K. Peters, U. Nestmann, and U. Goltz

The definitions of free and bound names are completely standard, i.e., names
are bound by restriction and as parameter of input and n(P) = fn(P) ∪ bn(P)
for all P . In the join-calculus the definition defD inP binds for all elementary
definitions Ji � Pi in D and all join pattern yi,j (xi,j) in Ji the received variables
xi,j in the corresponding Pi and the defined variables yi,j in P . By convention,
the received variables of composed join patterns have to be pairwise distinct.

To compare process terms, process calculi usually come with different well-
studied equivalence relations (see [23] for an overview). A special kind of equiva-
lence with great importance to reason about processes are congruences, i.e., the
closure of an equivalence with respect to contexts. Process calculi usually come
with a special congruence ≡ ⊆ P × P called structural congruence. Its main pur-
pose is to equate syntactically different process terms that model quasi-identical
behaviour. In the pi-calculus structural congruence is usually provided by a set
of equivalence equations. For the above variants we have:
P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P |!P
(νn) 0 ≡ 0 (νn) (νm)P ≡ (νm) (νn)P P | (νn)Q ≡ (νn) (P | Q) if n /∈ fn(P)

The entanglement of input prefix and restriction within the definition operator
of the join-calculus limits the flexibility of relations defined by sets of equivalence
equations. Instead structural congruence is given by an extension of the chemical
approach in [1] by the heating and cooling rules. They operate on so-called so-
lutions R � M, where R and M are multisets. We have (1) � P | Q � � P,Q,
(2) D ∧ E � � D,E �, and (3) � defD inP � σdv(D) � σdv(P), where only
elements—separated by commas—that participate in the rule are mentioned and
σdv instantiates the defined variables in D to distinct fresh names. Then P ≡ Q
if P and Q differ only by applications of the �-rules, i.e., if � P � � Q.

We assume that the semantics is given as an operational semantics consist-
ing of inference rules defined on the operators of the language [22]. For many
process calculi, the semantics is provided in two forms, as reduction semantics
and as labelled semantics. We assume that at least the reduction semantics �−→
is given as part of the definition, because its treatment is easier in the context of
encodings. A single application of the reduction semantics is called a (reduction)
step and is written as P �−→ P ′. If P �−→ P ′ we say P ′ is a derivative of P .
Moreover, let P �−→ (or P ��−→) denote the existence (absence) of a step from
P , i.e., P �−→ � ∃P ′ ∈ P . P �−→ P ′ and P ��−→ � ¬ (P �−→), and let �=⇒
denote the reflexive and transitive closure of �−→. A sequence of reduction steps
is called a reduction. We write P �−→ω if P has an infinite sequence of steps.
We also use execution to refer to a reduction starting from a particular term. A
maximal execution of a process P is a reduction starting from P that cannot be
further extended, i.e., that is either infinite or of the form P �=⇒ P ′ ��−→.

The semantics of the above variants of the pi-calculus is given by the axioms
(. . .+ τ.P + . . .) �−→ P (. . .+ y(x) .P + . . .) | (. . .+ y〈z〉 .Q+ . . .) �−→ { z/x }P | Q
for πm and πs, the axioms

τ.P �−→ P y(x) .P | y〈z〉 �−→ { z/x }P
for πa, and the three rules

P �−→ P ′

P | Q �−→ P ′ | Q
P �−→ P ′

(νn)P �−→ (νn)P ′
P ≡ Q Q �−→ Q′ Q′ ≡ P ′

P �−→ P ′

On Distributability in Process Calculi 315

that hold for all three variants πm, πs, and πa. The operational semantics of J
is given by the heating and cooling rules (see structural congruence) and the
reduction rule J � P � σrv(J) �−→ J � P � σrv(P), where σrv substitutes the
transmitted names for the distinct received variables.

We distinguish between dynamic and static operators. Intuitively, dynamic
operators define terms that can perform steps, while static operators define con-
nections between terms and side conditions on the reductions of their respective
subterms. Moreover, we denote the parts of a term that are removed in reduction
steps as capabilities. Usually, the reduction of dynamic operators is described by
the axioms of the reduction semantics, while the remaining inference rules and
the structural congruence describe the interplay with static operators. Accord-
ingly, the dynamic operators of the above calculi are prefix and choice, because
these operators are removed in the axioms of the respective reductions semantics,
while 0, �, parallel composition, restriction, and replication are static operators.
Note that we consider the definition operator of the join-calculus as dynamic,
because e.g. a reduction of def J �P ′ inP copies the elementary definition J �P ′

and removes J if P contains the required outputs.
Furthermore, we distinguish between operators that allow for reductions of

their subterms and those that require to be reduced first. We denote an operator
as guard if at least one of its subterms cannot be used to perform a step before
the guard itself is reduced. Its subterm(s) that cannot perform steps before the
guard is reduced are denoted as guarded subterms. The other subterms, if there
are any, as well as the subterms of operators that are not guards are denoted
as unguarded subterms. Guards model sequential behaviour. To our intuition
a purely sequential component cannot be cut into pieces to occupy different
locations. Hence guarded subterms are not distributable until their guards are
removed. However, there are process calculi, as the join-calculus, where a single
operator combines different needs and guards only some of its subterms. Section 3
explains how we deal with such operators in the definition of distributability.

The capabilities of the pi-calculus are the prefixes, where the capability of a
choice is the conjunction of the prefixes of all its branches—considered as sin-
gle capability. Prefixes and thus also choice are guards, and all their subterms
are guarded. The capabilities of the join-calculus are outputs and (compositions
of) reception pattern, where the capability of a definition defD inP is the con-
junction of all compositions of reception patterns in D. In def (J1 � P1) ∧ . . . ∧
(Jn � Pn) inP the subterms P1, . . . , Pn are guarded while P is an unguarded
subterm. Reception patterns are matched against outputs in order to instanti-
ate and unguard an instance of a guarded subterm. Note that the distinction
into static and dynamic operators, guards, and capabilities are decisions made
with the design of a process calculus. We use guards and capabilities to define
distributability in Section 3. Hence, we require that all process calculi explicitly
distinguish their guards, guarded subterms, and capabilities.

Replication or recursion can be provided by dynamic or static operators, e.g.
defD inP in J is a dynamic and !P in πm a static operator. Also the semantics
can be given by a reduction rule or a rule of structural congruence. In both cases,

316 K. Peters, U. Nestmann, and U. Goltz

recursion or replication distinguishes itself from other operators by the fact that
(one of) its subterms can be copied within rules of structural congruence or
by reduction rules while the operator itself is usually never removed during
reductions. We call such operators and capabilities recurrent.

In order to formalise the identification of sequential components, we assume
for each process calculus a so-called labelling on the capabilities of processes.
The labelling has to ensure that (1) each capability has a label (2) no label
occurs more than once in a labelled term, (3) a label disappears only when the
corresponding capability is reduced in a reduction step, and (4), once it has dis-
appeared, it will not appear in the execution any more. A labelling method that
satisfies these conditions for processes of the pi-calculus is presented in [4] (cf.
[20]). Note that such a labelling can be derived from the syntax tree of processes.
We require that, once the labelling of a term is fixed, the labels are preserved
by the rules of structural congruence as well as by the reduction semantics of
the respective calculus. Because of recurrent operators, new subterms with fresh
labels for their capabilities may arise from applications of structural congruence
or reduction rules. Since we need the labels only to distinguish syntactically sim-
ilar components of a term, and to track them alongside reductions, we do not
restrict the domain of the labels nor the method used to obtain them as long as
the resulting labelling satisfies the above properties for all terms and all their
derivatives in the respective calculus. Due to space constraints, and in order not
to clutter the development with the details of labelling, we prefer to argue at the
corresponding informal level. More precisely, we assume that all processes in the
following are implicitly labelled. Remember that we need these labels only to dis-
tinguish between syntactical equivalent capabilities, e.g. to distinguish between
the left and the right y in y | y.

2.1 Encodings and Quality Criteria

Let LS = 〈 PS, �−→S 〉 and LT = 〈 PT, �−→T 〉 be two process calculi, denoted as
source and target language. An encoding from LS into LT is a function � · � :
PS → PT. Encodings often translate single source term steps into a sequence or
pomset of target term steps. We call such a sequence or pomset an emulation of
the corresponding source term step.

To analyse the quality of encodings and to rule out trivial or meaningless
encodings, they are augmented with a set of quality criteria. In order to provide
a general framework, Gorla in [8] suggests five criteria well suited for language
comparison. Accordingly, we consider an encoding to be “good”, if it satisfies
the following conditions:

(1) Compositionality: The translation of an operator op is the same for all oc-
currences of that operator in a term, i.e., it can be captured by a context.

(2) Name Invariance: The encoding does not depend on particular names.
(3) Operational Correspondence: Every computation of a source term can be

emulated by its translation, i.e., S �=⇒S S′ implies � S � �=⇒T� � S′ � (com-
pleteness), and every computation of a target term corresponds to some
computation of the corresponding source term (soundness).

On Distributability in Process Calculi 317

(4) Divergence Reflection: The encoding does not introduce divergence.
(5) Success Sensitiveness : A source term and its encoding answer the tests for

success in exactly the same way, i.e., S ⇓� iff � S � ⇓�.

Note that the second criterion is not necessary to derive the separation results of
this paper. Also note that a behavioural equivalence � on the target language is
assumed for the definition of name invariance and operational correspondence.
Its purpose is to describe the abstract behaviour of a target process, where
abstract refers to the behaviour of the source term. By [8] the equivalence � is
often defined in the form of a barbed equivalence (as described e.g. in [15]) or
can be derived directly from the reduction semantics and is often a congruence,
at least with respect to parallel composition. We require only that � is a weak
reduction bisimulation, i.e., for all T1, T2 ∈ PT such that T1 � T2, for all T1 �=⇒T

T ′
1 there exists a T ′

2 such that T2 �=⇒T T ′
2 and T ′

1 � T ′
2.

We choose may-testing to instantiate the test for success in success sensi-
tiveness, i.e., P ⇓�, if it is reducible to a process containing a top-level un-
guarded occurrence of �. However, as we claim, this choice is not crucial. We
have n(�) = fn(�) = bn(�) = ∅. Moreover, we write P ⇓�!, if P reaches success
in every finite maximal execution. Note that success sensitiveness only links the
behaviours of source terms and their literal translations, but not of their deriva-
tives. To do so, Gorla relates success sensitiveness and operational correspon-
dence by requiring that the equivalence on the target language never relates two
processes with different success behaviours, i.e., P ⇓� and Q �⇓� implies P �� Q.

3 Distributability

Within this section, we discuss and fix the notions of distributability and preser-
vation of distributability in the context of process calculi. Intuitively, a dis-
tribution of a process means the extraction (or: separation) of its (sequential)
components and their association to different locations. However, we do not con-
sider locations explicitly; we just focus on the possible division of a process term
into components. Accordingly, a process P is distributable into P1, . . . , Pn, if
we find some distribution that extracts P1, . . . , Pn from within P onto different
locations. Preservation of distributability then means that the target term is at
least as distributable as the source term.

3.1 Distributable Processes

The most important operator to implement distributability is the parallel oper-
ator. Indeed we consider distributability as a special case of parallel composition
with a stricter notion of independence, which becomes visible if we compare
calculi. So, first of all, two subterms are distributable if they are parallel.

Unfortunately, the converse of that statement—two subterms are not dis-
tributable if they are not parallel—is usually not true. The main reason for this
is scoping of names. Consider for example the term (νx) (P | Q) in the pi-calcu-
lus. Although the outermost operator is not the parallel operator, the processes

318 K. Peters, U. Nestmann, and U. Goltz

P and Q are nonetheless distributable. More precisely, for all considered variants
of the pi-calculus, two subterms are distributable if they are (modulo ≡) com-
posed in parallel under some restrictions; see the notion of standard form of the
pi-calculus [13]. Hence, (1) we consider distributability modulo structural con-
gruence, and (2) we allow to remove toplevel restrictions and parallel operators
to separate the distributable components.

In the case of the join-calculus, the situation is worse. Again, the problematic
operator is responsible for scoping of names. But in the case of the join-calculus
scoping is realised by definitions that at the same time represent the input capa-
bilities of the calculus. Consider the term R = def a �0 in (def b � c 〈a〉 in (a | b)).
It is constructed of two nested definitions. Intuitively, it represents the combina-
tion of the two processes def a �0 in a and def b �c 〈a〉 in b but, because of c 〈a〉, we
cannot get rid of the nesting of the definitions—not even modulo structural con-
gruence. The best we can achieve is R ≡ def a � 0 in ((def b � c 〈a〉 in b) | a). Note
that def b � c 〈a〉 in b is not guarded within R. Because of that, the cooling and
heating rules, which model structural congruence of the join-calculus, allow us to
derive � R � b�c 〈a〉 � def a �0 in a, b as well as � R � a�0 � def b �c 〈a〉 in b, a.
This reason is enough for us to consider def a � 0 in a and def b � c 〈a〉 in b as
distributable within R. Formally, each J-term J is distributable into the terms
J1, . . . , Jn ∈ J if, for all 1 ≤ i ≤ n, there exists some multisets R,M such that
� J � R � Ji,M and there are no two capabilities in J1, . . . , Jn with the same
label. Note that we can define structural congruence for all process calculi by
a chemical abstract machine, but that this kind of special consideration is only
necessary because definitions in the join-calculus are guards that have unguarded
subterms. Hence, we assume that, (at least) for all process calculi that contain
a guard with unguarded subterms, structural congruence is given by a chemical
abstract machine.

Note that this example on the join-calculus illuminates that we consider dis-
tributability as an irreversible predicate. There is no possibility to restore from
a given set of distributable components the original process term, because by
the separation of the components we irreversibly loose their original connec-
tions. Thus, we cannot beyond doubt conclude that the terms def a � 0 in a and
def b � c 〈a〉 in b originally belong to R. Similarly, we cannot conclude that the
terms P and Q were originally subterms of the pi-calculus term (νx) (P | Q),
because we lost the information about the restriction. However, these lost infor-
mation, i.e., the connections between distributable components in the original
term, are already captured by the other criteria on the quality of an encoding.

Another important observation is that, because of !P ≡ P | !P , different
copies of a recursive term are distributable in the pi-calculus, whereas there is
no such ≡-rule for definitions in the join-calculus. This reflects a fundamental
design decision in the join-calculus, namely that the receptors of a given channel
are forced to reside at the same location [7,12]. Note that this design deci-
sion marks the main difference between the join-calculus and the asynchronous
pi-calculus. Accordingly, we require that this design decision is made explicit
within the structural congruence of the calculus. A recurrent operator is called

On Distributability in Process Calculi 319

distributable if such a ≡-rule is provided and, otherwise, as not distributable,
i.e., !P is distributable but J-term definitions are not distributable.

Definition 3 (Distributability). Let 〈 P , �−→ 〉 be a process calculus, ≡ be its
structural congruence, and P ∈ P. P is distributable into P1, . . . , Pn ∈ P if
there exists P ′ ∈ P with P ′ ≡ P such that
1. for all 1 ≤ i ≤ n, Pi contains at least one capability or constant different

from 0 and Pi is an unguarded subterm of P ′ or, in case ≡ is given by a
chemical approach, � P ′ � R � Pi,M for some multisets R,M,

2. in P1, . . . , Pn there are no two occurrences of the same capability, i.e., no
label occurs twice, and

3. each guarded subterm and each constant (different from 0) of P ′ is a subterm
of at least one of the terms P1, . . . , Pn.

The degree of distributability of P is the maximal number of distributable sub-
terms of P .

Hence, we can split a process into its sequential components or larger subterms,
e.g. each term is distributable into itself. This allows us to analyse the behaviour
of distributable subterms. Note that we do not allow to distribute the empty
process, because otherwise usually every process is distributable into infinitely
many empty processes. The same holds for subterms not containing any capa-
bility or constant different from 0, as e.g. in the term 0 | 0. Of course, !P is
distributable into arbitrary many copies of P (and one !P). However, since none
of the later counterexamples contains replication, this decision is not crucial.

Hence a pi-term P is distributable into P1, . . . , Pn if P ≡ (νã) (P1 | . . . | Pn).
The PJ-term def a � 0 in (def b � c 〈a〉 in (a | b)) is distributable into def a � 0 in a
and def b � c 〈a〉 in b, but e.g. also into def a � 0 in 0, def b � c 〈a〉 in 0, a, and b,
because � def a � 0 in (def b � c 〈a〉 in (a | b)) � def a in 0, def b in c 〈a〉 � a | b �
def a in 0, def b in c 〈a〉 � a, b � � def a � 0 in 0, def b � c 〈a〉 in 0, a, b.

3.2 Preservation of Distributability

Note that an encoding can always trivially ensure that the encoding has at
least as much distributable components by introducing new subterms without
any behaviour. Hence, it does not suffice to reason only about the degree of
distributability, i.e., about the number of distributable components. Instead we
require that the encodings of distributable source term parts and their corre-
sponding parts in the encoding are related by �. By doing so we relate the def-
inition of the preservation of distributability to operational completeness, i.e., a
semantical criterion that ensures the preservation of the behaviour of the source
term (part). We require that each target term part has to be able to emulate at
least all behaviour of the respective source part. As a side effect we require that
whenever a part of a source term can solve a task independently of the other
parts—i.e., it can reduce on its own—then the respective part of its encoding
must also be able to emulate this reduction independently of the rest of the
encoded term. This reflects the intuition that distribution adds some additional
requirements on the independence of parallel terms.

320 K. Peters, U. Nestmann, and U. Goltz

Definition 4 (Preservation of Distributability). An encoding � · � : PS →
PT preserves distributability if for every S ∈ PS and for all terms S1, . . . , Sn ∈
PS that are distributable within S there are some T1, . . . , Tn ∈ PT that are dis-
tributable within � S � such that Ti � � Si � for all 1 ≤ i ≤ n.

In essence, this requirement is a distributability-enhanced adaptation of opera-
tional completeness. It respects both the intuition on distribution as separation
on different locations—an encoded source term is at least as distributable as the
source term itself—as well as the intuition on distribution as independence of
processes and their executions—implemented by Ti � � Si �.

To ensure that the new criterion is not in conflict with the framework of Gorla,
it suffices to show the existence of encodings that satisfy all six criteria. Such
encodings are presented in [16] and [19]. Moreover, [19] shows that in case of
the pi-calculus every good encoding that translates the parallel operator and
restriction homomorphically and preserves structural congruence also preserves
distributability. Not surprisingly, the most crucial requirement here is the ho-
momorphic translation of the parallel operator. However, this holds only in case
of process calculi as the pi-calculus, where distributable terms can be separated
modulo ≡ by parallel operators.

Thus, the (semantic) criterion formalised in Definition 4 can be considered to
be at most as hard as the (syntactic) criterion on the homomorphic translation
of the parallel operator. To see that it is not an equivalent requirement, but
indeed strictly weaker, [19] refers to an encoding from πm (without replication)
into π2

a , the asynchronous pi-calculus augmented with a two-level polyadic syn-
chronisation by Carbone and Maffeis [5]. This encoding is good and preserves
distributability but it does not translate the parallel operator homomorphically.
Moreover, [5] proves that there is no good encoding from πm into π2

a that trans-
lates the parallel operator homomorphically; this separation result does not rely
on replication, i.e., it also implies that there is no such encoding from πm without
replication into π2

a .

3.3 Distributable Reductions

As discussed above, the criterion in Definition 4 requires not only the preser-
vation of the distributability of processes but also the preservation of the dis-
tributability of steps or executions of the respective distributable processes. In
order to obtain an alternative way to prove the preservation of distributability,
we make this intuition explicit. More precisely, we show that an operationally
complete encoding that preserves distributability always also preserves the dis-
tributability between sequences of source term steps. To do so, we define first
what it means for two steps or executions to be distributable.

If a single process—of an arbitrary process calculus—can perform two different
steps, i.e., steps on capabilities with different labels, then we call these steps
alternative to each other. Two alternative steps can either be in conflict or not;
in the latter case, it is possible to perform both of them in parallel, according to
some assumed step semantics.

On Distributability in Process Calculi 321

Definition 5 (Distributable Steps). Let 〈 P , �−→ 〉 be a process calculus and
P ∈ P a process. Two alternative steps of P are in conflict, if performing one
step disables the other step, i.e., if both reduce the same not recurrent capability.
Otherwise they are parallel. Two parallel steps of P are distributable, if each
recurrent capability reduced by both steps is distributable, else the steps are local.

Remember that the “same” means “with the same label”, i.e., in y | y.P1 | y.P2

the two steps on y are in conflict but y | y.P1 | y.P2 | y and y | !y.P1 | y can both
perform two parallel steps on y. Moreover, the reductions on channel a and b
are parallel in a | b | a.P1 | b.P2, but they are in conflict in a | b | a.P1 + b.P2,
because choice counts as a single capability which is reduced in both steps.

Also note that in contrast to parallel steps, distributable steps can reduce
the same recurrent capability only if it is distributable. In many process calculi
such as πa, two steps are distributable iff they are parallel, because all recurrent
capabilities are distributable. However, there are also process calculi as J in which
these notions indeed refer to quite different situations. Thus, for the comparison
with these calculi, their intuitive distinction is useful.

In the join-calculus, two alternative steps that reduce the same definition but
do not compete for some output, as e.g. the reduction of x 〈u〉 and x 〈v〉 in
def x (z) � y 〈z〉 in (x 〈u〉 | x 〈v〉), can be considered as parallel steps; they do not
compete for the input capability, because it is recurrent. However, we can not
consider these two steps as distributable, as this would imply that the definition
itself is distributable which—by design—is not intended in J: there is always
exactly one receiver for each defined name [7].

Next we define parallel and distributable sequences of steps.

Definition 6 (Distributable Executions). Let 〈 P , �−→ 〉 be a process cal-
culus, P ∈ P, and let A and B denote two executions of P . A and B are in
conflict, if a step of A and a step of B are in conflict, else A and B are parallel.

Two parallel sequences of steps A and B are distributable, if each pair of a
step of A and a step of B is distributable.

In πa, two sequences of steps A and B of a process P are parallel iff P ≡
(νx̃) (P1 | P2) such that P1 can perform A while P2 can perform B, i.e., if A :
P �−→ PA,1 �−→ . . . �−→ PA,n and B : P �−→ PB,1 �−→ . . . �−→ PB,m then,
for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m, there exists P ′

A,i, P
′
B,j ∈ P such that

PA,i ≡ (νx̃)
(
P ′
A,i | P2

)
and PB,j ≡ (νx̃)

(
P1 | P ′

B,j

)
. Again, two sequences of

steps are distributable iff they are parallel. Unfortunately, in the join-calcu-
lus two processes able to perform parallel sequences of steps cannot always be
separated by a parallel operator in this way; even if they do not reduce the
same definition. The reason is again the restriction caused by definitions. In the
term def a �P1 in (def b � c 〈a〉 in (a | b)) the reduction of a is independent of the
reduction of b. Hence, these two steps are parallel and even distributable. But,
because of c 〈a〉, we cannot get rid of the nesting of these two definitions.

Although the definitions of distributable processes in Definition 3 and dis-
tributable executions in Definition 6 are quite different, they are closely related.
Two executions of a term P are distributable iff P is distributable into two

322 K. Peters, U. Nestmann, and U. Goltz

a b c

Fig. 1. A fully reachable pure M in Petri nets

subterms such that each performs one of these executions. Hence, an opera-
tionally complete encoding is distributability-preserving only if it preserves the
distributability of sequences of source term steps. The proofs of this and the
following results can be found in [20].

Lemma 1 (Distributability-Preservation). An operationally complete en-
coding � · � : PS → PT that preserves distributability also preserves distributabil-
ity of executions, i.e., for all source terms S ∈ PS and all sets of pairwise
distributable executions of S, there exists an emulation of each execution in this
set such that all these emulations are pairwise distributable in � S �.

4 Separation by the Synchronisation Pattern M

[24] analyses the possibility to implement a (synchronous) Petri net specification
within an asynchronous setting. They find a semi-structural property called M
that distinguishes distributable Petri nets from those nets that may only under
additional assumptions on the underlying system structure be implemented in a
fully asynchronous and distributed setting.

An M, as visualised in Figure 1, describes a Petri net that consists of two
parallel transitions and one transition that is in conflict with both of the former.
In other words, it describes a situation where either two parts of the net can pro-
ceed independently or they synchronise to perform a single transition together.
We denote such descriptions of special situations of synchronisation as synchro-
nisation pattern. [24,25] states that a Petri net specification can be implemented
in an asynchronous, fully distributed setting iff it does not contain a fully reach-
able pure M. Accordingly, they denote such Petri nets as distributable. They
also present a description of a fully reachable pure M as a property of a step
transition system which allows us to directly use this pattern to reason about
process calculi.

A first analysis shows that we find the M also in the asynchronous pi-cal-
culus (see Example 1 below). This reflects earlier observations in [12]: it is not
possible to implement the pi-calculus and even its asynchronous fragment in an
asynchronous and fully distributed setting. To overcome these problems the join-
calculus was introduced as a model of distributed computation [7,12]. Mutual
encodings between the (core) join-calculus and the asynchronous pi-calculus have
shown that they have the same expressive power [7]. Here, we show a difference
with respect to the degree of distributability. Hence, we explain what exactly
distinguishes both calculi. It turns out that this distinction is well described by

On Distributability in Process Calculi 323

the synchronisation pattern M, i.e., what distinguishes the asynchronous pi-cal-
culus and the join-calculus is the ability to express conflicts between distributable
steps. This lack in expressiveness in turn allows fully distributed implementations
of the join-calculus.

4.1 The Synchronisation Pattern M

If we compare the asynchronous pi-calculus and the join-calculus, the most ob-
vious difference is that in J any channel can appear only once in input position.
As a consequence, two conflicting steps in the join-calculus can only compete
for different output messages but not for different input capabilities, as it is the
case in πa. Repeating this argument, all steps of a chain of conflicting steps in
the join-calculus are tied to the same definition, i.e., are not distributable.

Lemma 2. For all P ∈ PJ and all lists S = [s1, . . . , sn] of steps of P such that
for all 1 ≤ i < n the step si is in conflict with the step si+1, all steps in S are
pairwise local and reduce the same definition.

In contrast, in πa, it is very easy to find such a list of conflicting steps of which
some are distributable, by combining conflicts on outputs and inputs.

Example 1. Consider P = y〈u〉 | y(x) .P1 | y〈v〉 | y(x) .P2 with P ∈ Pa. P can
perform four different alternative steps modulo structural congruence:

P �−→ { u/x }P1 | y〈v〉 | y(x) .P2 (s1)

P �−→ y(x) .P1 | y〈v〉 | { u/x }P2 (s2)

P �−→ y〈u〉 | y(x) .P1 | { v/x }P2 (s3)

P �−→ y〈u〉 | { v/x }P1 | y(x) .P2 (s4)

The step s1 is in conflict with step s2, since both compete for the first output
y〈u〉. Similarly, step s2 and s3 compete for the second input y(x) .P2, and step
s3 and step s4 compete for the second output, i.e., P has a chain S = [s1, . . . , s4]
of conflicting steps. But s1 and s3 as well as s2 and s4 are distributable in P .

Thus, the ability to express distributable conflicts separates the asynchronous
pi-calculus from the join-calculus. However, the preservation of distributability
in Definition 4 does not require to preserve the distributability of conflicts but
only of processes and their executions. On the other side, the structure used in
[24] to identify distributable Petri nets strongly relies on the notion of conflict.
More precisely, an M arises from the combination of two parallel steps and a
third step that is in conflict with both of the former.

Definition 7 (Synchronisation Pattern M). Let 〈 P , �−→ 〉 be a process cal-
culus and P ∈ P such that:
1. P can perform at least three alternative reduction steps a : P �−→ Pa, b :

P �−→ Pb, and c : P �−→ Pc such that Pa, Pb, and Pc are pairwise different.
2. Moreover, the steps a and c are parallel in P .
3. But b is in conflict with both a and c.

324 K. Peters, U. Nestmann, and U. Goltz

In this case, we denote the process P as M. If the steps a and c are distributable
in P , then we call the M non-local. Otherwise, the M is called local.

We observe, that the P of Example 1 represents a non-local M in πa, because
we can choose the step s1 as a, s2 as b, and s3 as c. In contrast, the term Q =
def x (z) | y (z′) � z 〈z′〉 in (x 〈u〉 | x 〈v〉 | y 〈u〉 | y 〈v〉) is a local M in the (core)
join-calculus. Indeed, all M in the join-calculus are local, because, by Lemma 2,
the step b forces its conflicting counterparts to reduce the same definition.

Lemma 3. All M in the join-calculus are local.

Thus, the asynchronous pi-calculus and the join-calculus do also differ by the
ability to express a non-local M. As described in [24], a language that cannot ex-
press a non-local M can be considered as distributable. Accordingly, as intended
by its design, the join-calculus is distributable. We show that the pi-calculus is
not distributable—not even in its asynchronous and choice-free fragment.

4.2 Distributability of the Pi-calculus

To show that the examined difference forbids distributability-preserving encod-
ings, we have to show that it is not possible to express the abstract behaviour
of all non-local M in the join-calculus with respect to our requirements on good
and distributability-preserving encodings. We use the M of Example 1 as running
counterexample S. In the framework of Gorla, source terms and their encodings
are compared by their ability to reach success. To distinguish the conflicting step
b = s2 from the parallel steps a = s1 and c = s3, we instantiate P1 with x, P2

with x | x, and place the observer O = u.v.v.� in parallel to P . Hence,

S = (y〈u〉 | y(x) .x) | (y〈v〉 | y(x) . (x | x) | u.v.v.�) (E1)

reaches success iff S performs both of the distributable steps a and c. Note
that any good encoding that preserves distributability has to translate E1 such
that the emulations of the steps a and c are again distributable. However, the
encoding can translate these two steps into sequences of steps, which allows to
emulate the conflicts with the emulation of b by two different distributable steps.
We show that every distributability-preserving encoding has to distribute b and,
afterwards, that this distribution of b violates the criteria of a good encoding.

Lemma 4. Every encoding � · � : Pa → PJ that is good (except for composition-
ality) and distributability-preserving has to split up the conflict in S given by E1
of b with a and c such that there exists a maximal execution in � S � in which a
is emulated but not c, and vice versa.

Lemma 4 describes a partial deadlock. If the emulation of b and with it the
conflicts with the emulation of a and c are distributed, the encoded term can
make the wrong decision and, thus, result in one successful emulation (of a or c)
but two deadlocked emulation attempts of the respective other two steps. Since
there is no maximal execution of E1 with a but not c (or vice versa), such an

On Distributability in Process Calculi 325

encoding cannot be considered as a good encoding. In the setting used so far,
we cannot observe the difference in the abstract behaviour of E1 and � E1 �.

One reason is the weak requirements on �. A success respecting bisimulation,
in its simplest case, cannot distinguish between more than three different cases:
success is not reachable, success is always reachable, and success is reachable
in some but not all maximal executions. To prove non-existence of distribution-
preserving encodings it suffices to require that � is not trivial, e.g. by requiring
that it distinguishes more than two observables. In this case, we have to modify
E1, i.e., choose a suitable instantiation of P1, P2, and the observer, such that
� Sa �, � Sb �, � Sc �, and � Sac � are pairwise distinguished by �, where Sac is the
result of performing a and c in S. Then, the maximal execution that emulates a
but not c contradicts operational correspondence. Note that in this case we do
not need compositionality at all.

Another way is to make use of compositionality. Remember that the best
known encoding from the asynchronous pi-calculus into the join-calculus in
[7] is not compositional, but consists of an inner, compositional encoding sur-
rounded by a fixed context—the implementation of so-called firewalls—that is
parametrised on the free names of the source term. Actually, it is this surround-
ing context that reduces the degree of distributability, because different steps on
the same channel name have to synchronise on a firewall. The following result
captures this and similar encodings.

Theorem 1. There is no good and distributability-preserving encoding from πa

into J. There is no distributability-preserving encoding from πa into J that is
good except for compositionality but consists of an inner compositional encoding
surrounded by a fixed context parametrised on the free names of the source term.

4.3 Distributability in Other Calculi

Above, first an absolute result, i.e., a result that refers to the properties of a
single language, is derived in Lemma 2. It clarifies which property distinguishes
the source and the target language, i.e., the reason why the target language
does not contain the synchronisation pattern M. Then, the existence of the M
in the source language is shown by an example, which is subsequently used
as counterexample. Lemma 4 uses properties of the target language—basically
the absolute result in Lemma 2—to show that any encoding has to split the
conflict in the counterexample. Finally, Theorem 1 reasons about some properties
of the source language to show that the split of the conflict in the encoded
counterexample violates the criteria of a good encoding. This argumentation
provides a guideline for similar considerations in other languages.

Note that the synchronisation pattern does not only describe the difference
between two languages as an abstraction of a particular situation of synchro-
nisation but it also serves as an abstract description of the properties of the
counterexample. This allows us to separate more clearly between the argumen-
tation for the source and the target language in the above proofs. Hence, to
change the source language it usually suffices to find an example with the prop-
erties required by the synchronisation pattern. In case of the target language

326 K. Peters, U. Nestmann, and U. Goltz

we have to revise the absolute result and Lemma 4, i.e., we have to show why
the new target language can not express the synchronisation pattern modulo the
criteria required on an encoding. As example, we exhibit a separation between
two simple variants of CSP in [20,18]. The splitting of arguments on the source
and the target languages simplifies also the comparison of multiple languages,
because not every pair has to be checked.

5 Another Synchronisation Pattern

In the last section we compare different process calculi by their ability to ex-
press the synchronisation pattern M. We learn that the different synchronisation
mechanisms of the calculi lead to differences in the expressive power with respect
to specific kinds of conflicts. By [17,8,21,19], we also know that the restriction
in the choice operator leads to a separation result between πm and πs. However,
in [17] and [8] the homomorphic translation of the parallel operator was used to
derive this separation result and in [21,19] the proof was unsatisfactory, because
it reveals not much intuition on why the counterexamples lead to the difference.
In order to provide more intuition on this separation result and on the difference
in the expressive power of πm and πs with respect to conflicts, we show that the
calculi can be distinguished by a new synchronisation pattern similar to the M.
Not surprisingly, the new pattern combines again conflicting and distributable
steps. Interestingly, it reflects a well-known standard problem in the area of
distributed systems, namely the problem of the dining philosophers [6].

We start with a simple observation on the asynchronous pi-calculus. Without
choice each reduction step reduces exactly one output and one input. So all
conflicts in πa are on steps on the same link. With separate choice a single step
can reduce more than a single out- or input. But if we consider steps between
two distributable subprocesses then each reduction step reduces only outputs
in one subprocess and only inputs in the other. As a consequence, a chain of
conflicting steps can build an M by alternating input and output capabilities as
visualised in Example 1. But, by this method, no circle of odd length can be
constructed as it is represented by the synchronisation pattern �.

Definition 8 (Synchronisation Pattern �). Let 〈 P , �−→ 〉 be a process cal-
culus and P ∈ P such that:
1. P can perform at least five alternative reduction steps i : P �−→ Pi for

i ∈ { a, b, c, d, e } such that the Pi are pairwise different.
2. Moreover, the steps a, b, c, d, and e form a circle such that a is in conflict

with b, b is in conflict with c, c is in conflict with d, d is in conflict with e,
and e is in conflict with a. Finally,

3. every pair of steps in { a, b, c, d, e } that is not in conflict is parallel in P .
In this case, we denote the process P as �. The synchronisation pattern � is
visualised by the Petri net in Figure 2. If all pairs of parallel steps in { a, b, c, d, e }
are distributable in P , then we call the � non-local. Otherwise, it is called local.

Note that in the pi-calculus every � and every M is non-local. To see the connec-
tion with the dining philosophers problem, consider the places in Figure 2 as the

On Distributability in Process Calculi 327

e

d

c

ba

Fig. 2. The Synchronisation Pattern � in Petri nets

chopsticks of the philosophers, i.e., as resources, and the transitions as eating
operations, i.e., as steps consuming resources. Each step needs mutually exclu-
sive access to two resources and each resource is shared among two subprocesses.
If both resources are allocated simultaneously, eventually exactly two steps are
performed. As shown in the following, a fully distributable implementation of
that pattern requires the expressive power of mixed choice.

By Example 1 we know that πs can express distributable conflicts, but πs can-
not express a circle of such conflicts that is of odd degree greater than four as it
is depicted by �. Note that smaller circles do not have parallel, i.e., distributable,
steps. Hence, � represents the smallest example of the problematic structure but
separation can principally be proved for any such structure of odd degree and
at least five steps. The main argument is that πs can build chains of conflicts by
alternating conflicts between output and input capabilities, but without mixed
choice no cycle of odd degree can be obtained this way.

Lemma 5. There is no � in πs.

In contrast to πs, πm can express the synchronisation pattern � as the example

S = a+ b.S1 | b+ c.S2 | c+ d.S3 | d+ e.S4 | e+ a.S5 (E3)

shows. We use this example as counterexample. Similar to Section 4.2, we show
that each encoding of the counterexample requires that at least one conflict has
to be distributed and that this violates the requirements on a good encoding.

Theorem 2. No good encoding from πm into πs preserves distributability.

Note that we could derive the same result if, as in Section 4.2, we allow for
a not compositional encoding that consists of an inner compositional encoding
surrounded by a fixed context parametrised on the free names of the source term.
Moreover, since the synchronisation pattern � includes the pattern M—more
precisely it consists of three cyclic overlapping M—separation results derived on
these two patterns (with respect to the same quality criteria) automatically lead
to a lattice. Here, by Theorem 1 and Theorem 2, no good encoding from πm into
J preserves distributability.

Also note, that the E3 is in fact a CCS-term. Hence, we can apply the same
line of argument to show separation between the corresponding variants of CCS.

328 K. Peters, U. Nestmann, and U. Goltz

Moreover, we can show that there is no good and distributability-preserving
encoding from πa into CCS with mixed choice.

6 Conclusion

As main contributions, we (1) propose a new criterion to reason about the degree
of distribution which is better suited than the common homomorphic translation
of the parallel operator. Then, (2) we present a new separation result that clarifies
the difference between the asynchronous pi-calculus and the join-calculus. More-
over, we (3) show that the proof method of this result is in general well suited to
reason about the expressive power of synchronisation mechanisms by discussing
how it can be transferred with little effort to compare other source and target
languages (cf. [20,18]). And (4) we present two generally formulated synchroni-
sation patterns that expose the power of different synchronisation mechanisms
in the pi-calculus family but can be used in a similar manner to reason about
and to classify synchronisation mechanisms in other process calculi.

Note that [16] presents a good encoding from πs into πa that translates the
parallel operator homomorphically, i.e., that preserves distributability. More-
over, [7,19] present good (but not distributability-preserving) encodings between
J and πa, and from πm into πa. Combining these positive results and the new
separation results on the two synchronisation patterns, we obtain a hierarchy
of distributability between pi-like calculi. The synchronous pi-calculus (πm), the
asynchronous pi-calculus (πa), and the join-calculus (J) all have the same ab-
stract expressive power, but there exists no good and distributability-preserving
encoding from πm into πa, and neither from πa into J.

Of course we do not believe that these two patterns already capture all kinds
of synchronisation mechanisms in process calculi. In further research we want
to analyse e.g. what kind of synchronisation patterns are expressed by polyadic
synchronisation in [5] or by the synchronisation mechanisms described in [11].

In case of separation results, a natural next step to improve the results is to
go back to particular distributions in terms, in order to examine the problematic
set of distributed terms in the source language. This way a positive result for a
sublanguage of the source language can be derived. An exhaustive analysis may
even lead to an exact borderline between distributable and not distributable
languages. Note that the results in [25] go in this direction for the area of Petri
nets. This kind of consideration is beyond the scope of this paper but another
interesting topic of further research.

References

1. Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proc. of POPL.
SIGPLAN-SIGACT, pp. 81–94 (1990)

2. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite,
I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012)

On Distributability in Process Calculi 329

3. Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (1992)
4. Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing seman-

tics. Logical Methods in Computer Science 5(2), 1–27 (2009)
5. Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in

π-Calculus. Nordic Journal of Computing 10(2), 70–98 (2003)
6. Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informat-

ica 1(2), 115–138 (1971)
7. Fournet, C., Gonthier, G.: The Reflexive CHAM and the Join-Calculus. In: Proc.

of POPL. SIGPLAN-SIGACT, pp. 372–385 (1996)
8. Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for

Process Calculi. Information and Computation 208(9), 1031–1053 (2010)
9. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press (2007)

10. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

11. Laneve, C., Vitale, A.: The Expressive Power of Synchronizations. In: Proc. of
LICS, pp. 382–391 (2010)

12. Lévy, J.-J.: Some Results in the Join-Calculus. In: Ito, T., Abadi, M. (eds.) TACS
1997. LNCS, vol. 1281, pp. 233–249. Springer, Heidelberg (1997)

13. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, New York (1999)

14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II.
Information and Computation 100(1), 1–77 (1992)

15. Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

16. Nestmann, U.: What is a “Good” Encoding of Guarded Choice? Information and
Computation 156(1-2), 287–319 (2000)

17. Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the
Asynchronous π-calculus. Mathematical Structures in Computer Science 13(5),
685–719 (2003)

18. Peters, K.: Translational Expressiveness. PhD thesis, TU Berlin (2012),
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495

19. Peters, K., Nestmann, U.: Is It a “Good” Encoding of Mixed Choice? In: Birkedal,
L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012)

20. Peters, K., Nestmann, U., Goltz, U.: On Distributability in Process Calculi (Ap-
pendix). Technical Report, TU Berlin (2013),
http://www.mtv.tu-berlin.de/fileadmin/a3435/pubs/distProcCal.pdf

21. Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the
Asynchronous Pi-Calculus. In: Proc. of EXPRESS. EPTCS, vol. 64, pp. 89–103
(2011)

22. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60, 17–140 (2004); (An earlier version of this paper
was published as technical report at Aarhus University in 1981)

23. van Glabbeek, R.: The Linear Time – Branching Time Spectrum I: The Semantics
of Concrete, Sequential Processes. Handbook of Process Algebra, 3–99 (2001)

24. van Glabbeek, R., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous
Interaction in Distributed Systems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS
2008. LNCS, vol. 5162, pp. 16–35. Springer, Heidelberg (2008)

25. van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On Distributability of Petri
Nets. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 331–345. Springer,
Heidelberg (2012)

http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495
http://www.mtv.tu-berlin.de/fileadmin/a3435/pubs/distProcCal.pdf

	On Distributability in Process Calculi
	Introduction
	Process Calculi
	Encodings and Quality Criteria

	Distributability
	Distributable Processes
	Preservation of Distributability
	Distributable Reductions

	Separation by the Synchronisation Pattern M
	The Synchronisation Pattern M
	Distributability of the Pi-calculus
	Distributability in Other Calculi

	Another Synchronisation Pattern
	Conclusion
	References

