
Verifying Concurrent Programs

against Sequential Specifications�

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

LIAFA, Université Paris Diderot
{abou,mje,cenea,jhamza}@liafa.univ-paris-diderot.fr

Abstract. We investigate the algorithmic feasibility of checking whether
concurrent implementations of shared-memory objects adhere to their
given sequential specifications; sequential consistency, linearizability, and
conflict serializability are the canonical variations of this problem. While
verifying sequential consistency of systems with unbounded concurrency
is known to be undecidable, we demonstrate that conflict serializabil-
ity, and linearizability with fixed linearization points are EXPSPACE-
complete, while the general linearizability problem is undecidable.

Our (un)decidability proofs, besides bestowing novel theoretical re-
sults, also reveal novel program explorations strategies. For instance, we
show that every violation to conflict serializability is captured by a con-
flict cycle whose length is bounded independently from the number of
concurrent operations. This suggests an incomplete detection algorithm
which only remembers a small subset of conflict edges, which can be
made complete by increasing the number of remembered edges to the
cycle-length bound. Similarly, our undecidability proof for linearizability
suggests an incomplete detection algorithm which limits the number of
“barriers” bisecting non-overlapping operations. Our decidability proof
of bounded-barrier linearizability is interesting on its own, as it reduces
the consideration of all possible operation serializations to numerical con-
straint solving. The literature seems to confirm that most violations are
detectable by considering very few conflict edges or barriers.

1 Introduction

A key class of correctness criteria for concurrent systems is adherence to bet-
ter established sequential specifications. Such criteria demand that each concur-
rent execution of operations corresponds, at the level of abstraction described
by the operations’ specification, to some serial sequence of the same opera-
tions permitted by the specification. For instance, given a conventional speci-
fication of a mathematical set, a concurrent execution in which the operations
add(a), remove(b), is empty(true), remove(a), add(b) overlap could be permitted,
though one with only the operations add(a) and remove(b) could not.

Variations on this theme of criteria are the accepted correctness conditions for
various types of concurrent systems. In the context of processor memory architec-
tures, sequential consistency (SC) [24] allows only executions of memory access

� The proofs to many of our technical results appear in an extended report [7].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 290–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verifying Concurrent Programs against Sequential Specifications 291

operations for which the same operations taken serially adhere to the specification
of individual memory registers—i.e., where each load reads the last-written value.
Additionally, any two operations of the serialization carried out by the same pro-
cess must occur in the same order as in the original concurrent execution. In the
context of concurrent data structure implementations, linearizability [21] demands
additionally that two operations which do not overlap in the original concurrent
execution occur in the same order in any valid serialization.

The same kinds of criteria are also used in settings where operation specifica-
tions are less abstract. For transactional systems (e.g., databases, and runtime
systems which provide atomic sections in concurrent programs), (strict) serializ-
ability [28] allows only executions for which the same transactions taken serially
adhere to the specification of an entire (random-access) memory observable by
the transactions; additionally, transactions executed by the same process (or
which did not overlap, in the strict case) are obliged to occur in the same or-
der in any valid serialization. Practical considerations, such as the complexity
of determining whether a given trace is serializable, have generated even more
restrictive notions of serializability. Conflict serializability (Papadimitriou [28]
calls this property “DSR”) demands additionally—viewing a serialization as a
reordering of actions which untangles the operations of a concurrent execution—
that no two conflicting actions are reordered in the serialization. The typical
definition of “conflict” relates accesses to the same memory location or region,
with at least one being a store.

In this work we investigate the fundamental questions about the algorithmic
feasibility of verifying concurrent programs with respect to sequential specifica-
tions. While our results consider programs with unbounded concurrency aris-
ing from, e.g., dynamic thread-creation, they, as do most other (un)decidability
results concerning concurrent program analysis, apply to programs where the
domain of data values is either finite, or reduced by a finitary abstraction.

While the problem of determining whether a given concurrent system is se-
quentially consistent with respect to a given sequential specification is known to
be undecidable, even when the number of concurrent processes is bounded [1],
the decidability of the analogous questions for (conflict) serializability and lin-
earizability, for unbounded systems of concurrent processes, remains open. (Alur
et al. [1] have proved both of these problems decidable1, resp., in PSPACE and
EXPSPACE, when the number of concurrent processes is bounded.) In this work
we establish these decidability and complexity results for unbounded systems,
and as byproduct, uncover program exploration strategies which prioritize the
discovery of naturally-occurring property violations.

Our first result, of Section 3, is that conflict serializability is decidable, and com-
plete for exponential space. Since existing techniques rely on cycle detection in an
exhaustive exploration of possible conflict relations (graphs) among concurrent op-
erations [17], allowing for an unbounded number of concurrent operations renders
these techniques inapplicable to verification, since the unbounded set of possible
conflict graphs cannot generally be enumerated in finite time. Contrarily, here we

1 The correct decidability proof for serializability is due to Farzan andMadhusudan [17].

292 A. Bouajjani et al.

demonstrate that every cyclic conflict graph contains a cycle which is bounded in-
dependently of the number of concurrent operations; this cycle length is instead
bounded as a linear function in the number of memory locations. This suggests
that an incomplete cycle detection algorithm which only remembers a small sub-
set of conflict edges canbemade complete by increasing the number of remembered
edges to the given cycle-length bound. Even so, we expect that most violations to
conflict serializability can be efficiently detected by remembering very few conflict
edges: those we have seen reported in the literature are expressed with length 2
cycles [13, 19], and for systems satisfying certain supposedly-common symmetry
conditions, any violationmust occur with only two threads [19].

Our second result, of Section 4, is that the static linearizability problem, in
which the so-called “linearization points” of operations which modify the shared-
object state are fixed to particular implementation actions, is also decidable, and
complete for exponential space. Informally, a linearization point of an operation
in an execution is a point in time where the operation is conceptually effectuated;
given the linearization points of each operation, the only valid serialization is
the one which takes operations in order of their linearization points. Although
static linearizability is a stronger criterion than linearizability, it is based on a
fairly-well established proof technique [21] which is sufficiently weak to prove
linearizability of many common concurrent data-structure algorithms [31].

Turning to the general problem, in Section 5, we show that verifying lineariz-
ability for unbounded concurrent systems is undecidable. Our proof is a reduction
from a reachability problem on counter machines, and relies on imposing an un-
bounded number of “barriers”which bisect non-overlapping operations in order to
encode an unbounded number of zero-tests of the machines’ counters. Informally,
a barrier is a temporal separation between two non-overlapping operations, across
which valid serializations are forbidden from commuting those operations.

Besides disarming our proof of undecidability, bounding the amount of bar-
riers reveals an incomplete algorithm for detecting linearizability violations, by
exploring only those expressed with few barriers. Similarly to the small-cycle
case in conflict serializability, we expect that most violations to linearizability
are detectable with very few barriers; indeed the naturally-occurring bugs we are
aware of, including the infamous “ABA” bug [26], induce violations with zero or
one barrier. Our decidability proof of bounded-barrier linearizability in Section 6
is interesting on its own, since it effectively reduces the problem of considering
all possible serializations of an unbounded number of operations to a numerical
constraint solving problem. Using a simple prototype implementation leveraging
SMT-based program exploration, we use this reduction to quickly discover bugs
known in or injected into textbook concurrent algorithms.

To summarize, the contributions of thisworkare thefirst known(un)decidability
results for (§3) conflict serializability, (§4) static linearizability, (§5) lineariz-
ability, and (§6) bounded-barrier linearizability, for systems with unbounded
concurrency. Furthermore, besides substantiating these theoretical results our
proofs reveal novel prioritized exploration strategies, based on cycle- and barrier-
bounding. Since most known linearizable systems are also static-linearizable,

Verifying Concurrent Programs against Sequential Specifications 293

combining static-linearizability with bounded-barrier exploration ought to pro-
vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of op-
erations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concur-
rent or distributed data structures, and less conventionally, to the atomic code
sections of concurrent programs, or to the SQL implementations of database
transactions. A library is then simply the collection of API implementations, or
transactional code. Usually concurrent data structure libraries and transactional
runtime systems are expected to ensure that executed operations are logically
equivalent to some understood serial behavior, regardless of how clients concur-
rently invoke their methods or transactions; the implication is that such systems
should function correctly for a most-general client which concurrently invokes
an unbounded number of methods with arbitrary timing. In what follows we
formalize these notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = 〈Q,Σ, I, F, ↪→〉 with labeled transitions
〈m1, v1〉 a

↪−→ 〈m2, v2〉 between method-local states m1,m2 ∈ Q paired with
finite-domain shared-state valuations v1, v2 ∈ V . The initial and final states
I, F ⊆ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a par-
ticular method (resp., library) by subscripting, e.g., the states and symbols QM

and ΣM (resp., QL and ΣL). Though here we suppose an abstract notion of
shared-state valuations, in later sections we interpret them as valuations to a
finite set of finite-domain variables.

A client of a library L is a finite automaton C = 〈Q,Σ, �0, ↪→〉 with initial
state �0 ∈ Q and transitions ↪→ ⊆ Q × Σ × Q labeled by the alphabet Σ =
{M(m0,mf) : M ∈ L,m0,mf ∈ QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ΣC . The
most general client C� = 〈Q,Σ, �0, ↪→〉 of a library L nondeterministically calls
L’s methods in any order: Q = {�0} and ↪→ = Q×Σ ×Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing
a copy of a given client C; note that any shared memory program with an un-
bounded number of finite-state threads can be modeled using a suitably-defined
client C. A configuration c = 〈v, u〉 of L[C] is a shared memory valuation v ∈ V ,
along with a map u mapping each thread t ∈ N to a tuple u(t) = 〈�,m0,m〉,

294 A. Bouajjani et al.

Internal
u1(t) = 〈�,m0,m1〉

〈m1, v1〉 a
↪−−→ 〈m2, v2〉

u2 = u1 (t �→ 〈�,m0,m2〉)
〈v1, u1〉 〈a,t〉−−−→

L[C]
〈v2, u2〉

Call
u1(t) = 〈�1,⊥,⊥〉

m0 ∈ IM �1
M(m0,mf)

↪−−−→C �2
u2 = u1 (t �→ 〈�1,m0,m0〉)
〈v, u1〉 call(M,m0,t)−−−−−−−−→

L[C]
〈v, u2〉

Return
u1(t) = 〈�1,m0,mf 〉

mf ∈ FM �1
M(m0 ,mf)

↪−−−→C �2
u2 = u1 (t �→ 〈�2,⊥,⊥〉)
〈v, u1〉 ret(M,mf ,t)−−−−−−−→

L[C]
〈v, u2〉

Fig. 1. The transition relation →L[C] for the library-client composition L[C]

composed of a client-local state � ∈ QC , along with initial and current method
states m0,m ∈ QL ∪ {⊥}; m0 = m = ⊥ when thread t is not executing a
library method. In this way, configurations describe the states of arbitrarily-many
threads executing library methods. The transition relation→L[C] of L[C] is listed

in Figure 1 as a set of operational steps on configurations. A configuration 〈v, u〉
of L[C] is called v0-initial for a given v0 ∈ V when v = v0 and u(t) = 〈�0,⊥,⊥〉
for all t ∈ N, where �0 is the initial state of client C. An execution of L[C] is a
sequence ρ = c0c1 . . . of configurations such that ci →L[C] ci+1 for all 0 ≤ i < |ρ|,
and ρ is called v0-initial when c0 is.

We associate to each concurrent system L[C] a canonical vector addition sys-
tems with states (VASS),2 denoted AL[C], whose states are the set of shared-
memory valuations, and whose vector components count the number of threads
in each thread-local state; a transition of AL[C] from 〈v1,n1〉 to 〈v2,n2〉 updates
the shared-memory valuation from v1 to v2 and the local state of some thread t
from u1(t) to u2(t) by decrementing the u1(t)-component of n1, and increment-
ing the u2(t)-component, to derive n2. Several of our proof arguments in the
following sections invoke the canonical VASS simulation of a concurrent system,
which we define fully in our extended report [7].

A call action of thread t is a symbol call(M,m, t), a return action is a symbol
ret(M,m, t), and an internal action is a symbol 〈a, t〉. We write σ to denote a
sequence of actions, and τ to denote a trace—i.e., a sequence of actions labeling
some execution. AnM [m0,mf]-operation θ (or more simply,M -operation, or just
operation) of a sequence σ is a maximal subsequence of actions of some thread t
beginning with a call action call(M,m0, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M,mf , t); mf =
∗ when θ does not end in a return action. When θ ends with a return action, we
say θ is completed, and otherwise θ is pending; a sequence σ is complete when
all of its operations are completed. Two operations θ1 and θ2 of σ overlap when
the minimal subsequence of σ containing both θ1 and θ2 is neither θ1 · θ2 nor
θ2 · θ1. Two non-overlapping operations θ1 followed by θ2 in σ are called serial
when θ1 is completed; note that all operations of the same thread are serial. A
sequence σ is (quasi) serial when no two (completed) operations of σ overlap.

A (strict) permutation of an action sequence σ containing operations Θ is an
action sequence π with operations Θ such that every two same-thread operations

2 See our extended report [7] for a standard definition of VASS.

Verifying Concurrent Programs against Sequential Specifications 295

(resp., every two serial operations) of σ occur in the same serial order in π. Note
that π itself is not necessarily a trace of a system from which σ may be a trace.

2.2 Conflict Serializability

The notion of “conflict serializability” is a restriction to the more liberal “seri-
alizability” [28]: besides requiring that each concurrent execution of operations
corresponds to some serial sequence, a “conflict relation,” relating the individ-
ual actions of each operation, must be preserved in deriving that serial sequence
from a permutation of actions in the original concurrent execution. Both notions
are widely accepted correctness criteria for transactional systems.

We fix a symmetric3 relation ≺ on the internal library actions ΣL called the
conflict relation. Although here we assume an abstract notion of conflict, in
practice, two actions conflict when both access the same memory location, and
at least one affects the value stored in that location; e.g., two writes to the same
shared variable would conflict. A permutation π of a trace τ is conflict-preserving
when every pair 〈a1, t1〉 and 〈a2, t2〉 of actions of τ appear in the same order in
π whenever a1 ≺ a2. Intuitively, a conflict-preserving permutation w.r.t. the
previously-mentioned notion of conflict is equally executable on a sequentially-
consistent machine.

Definition 1 (Conflict Serializability [28]). A trace τ is conflict serializable
when there exists a conflict-preserving serial permutation of τ .

This definition extends to executions, to systems L[C] whose executions are all
conflict serializable, and to libraries L when C is the most general client C�.

2.3 Linearizability

Contrary to (conflict) serializability, linearizability [21] is more often used in con-
texts, such as concurrent data structure libraries, in which an abstract specifica-
tion of operations’ serial behavior is given explicitly. For instance, linearizability
with respect to a specification of a concurrent stack implementation would re-
quire the abstract push(·) and pop(·) operations carried out in a concurrent trace
τ correspond to some serial sequence σ of push(·)s and pop(·)s, in which each
pop(a) can be matched to a previous push(a); Figure 2 illustrates an automaton-
based specification of a two-element unary stack. Note that linearizability does
not require that a corresponding reordering of the trace τ can actually be ex-
ecuted by this stack implementation, nor that the implementation could have
even executed these operations serially.

A specification S of a library L is a language over the specification alphabet

ΣS
def
= {M [m0,mf] : M ∈ L,m0,mf ∈ QM}.

In this work we assume specifications are regular languages; in practice, spec-
ifications are prefix closed. We refer to the alphabet containing both symbols

3 All definitions of conflict that we are aware of assume symmetric relations.

296 A. Bouajjani et al.

qε qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-
element stacks containing the (abstract)
value a, given as the language of a finite
automaton, whose operation alphabet indi-
cates both the argument and return values.

qε qa qa,a

push[a, ∗],
push[a, true]

pop[·, ∗],
pop[·, true]

pop[·, ∗],
pop[·, true]

push[a, ∗],
push[a, true]

pop[·, false]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

Fig. 3. The pending closure of the stack
specification from Figure 2

M [m0,mf] and M [m0, ∗] for each M [m0,mf] occurring in ΣS as the pending-
closed alphabet of S, denoted ΣS .

Informally, a libraryL is linearizablew.r.t. a specificationS when the operations
of any concurrent trace can be serialized to a sequence of operations belonging to
S, which must preserve the order between non-overlapping operations. However,
the presence of pending operations introduces a subtlety: a trace may be consid-
ered linearizable by supposing that certain pending operations have already been
effectuated—e.g., a trace of a concurrent stack implementation in which push(a) is
pending and pop(a) has successfully completed is linearizable—while simultane-
ously supposing that other pending operations are ignored—e.g., a trace in which
push(a) is pending and pop(a) returned false is also linearizable. To account for the
possible effects of pending operations, we define a completion of a (quasi) serial se-
quence σ = θ1θ2 . . . θi of operations to be any sequence f(σ) = f(1)f(2) . . . f(i)
for some function f preserving completed operations (i.e., f(j) = θj when θj
is completed), and either deleting (i.e., f(j) = ε) or completing (i.e., f(j) =
θj · ret(M,mf , t), for some mf ∈ QM) each M [m0, ∗] operation of some thread t.
Note that a completion of a (quasi) serial sequence σ is a complete serial sequence.
Finally, the S-image of a serial sequence σ, denoted σ | S, maps eachM [m0,mf]-
operation θ to the symbol M [m0,mf] ∈ ΣS .

Definition 2 (Linearizability [21]). A trace τ is S-linearizable when there ex-
ists a completion4 π of a strict, quasi-serial permutation of τ such that (π|S)∈S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C�.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a quasi-
serial sequence whose completion (shown) excludes the pending push operation,
and whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]
belongs to the stack specification from Figure 2.

4 Some works give an alternative yet equivalent definition using the completion of a
strict, quasi-serial permutation of the S-image, rather than the S-image of a comple-
tion.

Verifying Concurrent Programs against Sequential Specifications 297

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)
ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)
ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)

· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace τ with four threads executing four completed and
one pending operation, along with a completion of a strict, quasi-serial permutation of
τ (ignoring internal actions)

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given quasi-serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(σ | S) ∈ Σ

∗
S : ∃σ′ ∈ Σ∗

S . (σ
′ | S) ∈ S and σ′ is a completion of σ}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ΣS \ ΣS correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ΣS \ΣS correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complica-
tion of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace τ is S-linearizable if and only if there exists a strict, quasi-
serial permutation π of τ such that (π | S) ∈ S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [17], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alterna-
tive structure witnessing non-conflict-serializability, whose size remains bounded

298 A. Bouajjani et al.

θ1 θ2
θ3

θ4

θ5

a1 b1a2 b2
a3 b3

a4

b4

(a)

θ1

θ2

θ3θ4

θ5

(b)

θ1
θ2

θ3
θ4

θ5

a1
b1a2

b2

a3
b3

a4
b4

(c)

θ1

θ2

θ3θ4

θ5

(d)

Fig. 5. Conflict-violation witness embeddings and their corresponding conflict graph
cycles over five operations θ1, θ2, θ3, θ4, θ5. (a) Thewitness 〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉
is notminimalwhen b2 = b3, since 〈a1, b1〉 〈a2, b3〉 〈a4, b4〉 is also awitness. (c)Thewitness
〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉 is not minimal when b2 = b3, since 〈b3, a2〉 〈a2, b2〉 〈a3, b3〉
is also a witness. The conflict graphs of (a) and (c) are shown in (b) and (d).

independently of the number of concurrent threads, and which we use to prove
EXPSPACE-completeness of conflict-serializability.

Definition 3 (Conflict-Graph [28]). The conflict graph of a trace τ is the
directed graph Gτ = 〈Θ,E〉 whose nodes Θ are the operations of τ , and which
contains an edge from θ1 to θ2 when either:

– θ1 and θ2 are serial and θ1 occurs before θ2 in τ , or
– there exist a conflicting pair of actions a1 and a2 of θ1 and θ2, resp., such

that a1 ≺ a2 and a1 occurs before a2 in τ .

Although a trace is serializable if and only if its conflict graph is acyclic [17], the
size of the conflict graph grows with the number of concurrent operations.

An embedding of a sequence of conflicting action pairs 〈a1, b1〉 . . . 〈ak, bk〉, into
a trace τ , is a function f from {ai, bi : 1 ≤ i ≤ k} to the actions of τ , such that:

– each f(ai) is executed by a different thread,
– f(bi) and f(aη(i)) are actions of the same thread,
– f(ai) precedes f(bi) in τ , and
– f(bi) precedes f(aη(i)) in τ when f(bi) and f(aη(i)) are of different operations,

for each 1 ≤ i ≤ k, where η(i) = (i mod k) + 1. A conflict-violation witness for
a trace τ is a sequence w for which there exists an embedding into τ .

Example 2. Figure 5a pictures the embeddings of two conflict-violation witnesses
containing 4 action pairs, corresponding to a cycle θ1θ2θ3θ4θ5θ1 in the conflict
graph of Figure 5c associated to the same trace.

The key to decidability of conflict-serializability is that any conflict cycle con-
structed from two occurrences of the same conflicting action a ∈ ΣL can be
short-circuited into a smaller conflict cycle.

Lemma 3. A trace τ of a library L (w.r.t. some client C) is not conflict serial-
izable iff there exists a conflict-violation witness for τ of size at most |ΣL|+ 1.

Verifying Concurrent Programs against Sequential Specifications 299

Proof. As a direct consequence of our definition, τ is not conflict serializable iff
there exists a witness w embedded into τ by some f . (Each w embedded in τ
defines a conflict graph cycle, and vice-versa). We show that if some bi besides
b1 repeats in w, then there exists an even smaller witness w′.

For any i, j ∈ N such that 1 < i < j ≤ |w| and bi = bj , we consider the two
possibilities:

– Suppose f(bj) occurs after f(ai) in τ . Then there exists a smaller conflict-
violation witness for τ :

w′ = 〈a1, b1〉 . . . 〈ai, bi〉 〈aj+1, bj+1〉 . . . 〈ak, bk〉 .
The illustration of Figure 5a exemplifies this case when b2 = b3.

– Suppose f(bj) occurs before f(ai) in τ . Then, leveraging the fact that ≺ is
symmetric, there exists a smaller conflict-violation witness for τ :

w′ = 〈bj , ai〉 〈ai, bi〉 . . . 〈aj , bj〉 .
The illustration of Figure 5b exemplifies this case when b2 = b3.

In either case w is not minimal unless |w| ≤ |ΣL|+ 1.
�
As we have considered an abstraction notion of actions which constitute a fi-
nite set ΣL, Lemma 3 would hold equally well for libraries accessing an un-
bounded shared memory, given an equivalence relation whose quotient set is
finite—e.g., by partitioning memory into a finite number of regions—which is
obtained in practice by abstraction.

As soon as conflict cycles are bounded, the set of all possible cycles is finitely
enumerable. We use this fact to prove that conflict serializability is decidable
in exponential space by reduction to state-reachability in VASS, using an ex-
tension to the canonical VASS AL[C] of a given system L[C] (see Section 2.1).
We augment the states of AL[C] to store a (bounded) conflict violation witness
w, which is chosen nondeterministically, and incrementally validated as AL[C]

simulates the behavior of L[C]. This algorithm is asymptotically optimal, since
state-reachability in VASS is also polynomial-time reducible to checking conflict
serializability. Our full proof is listed in an extended report [7].

Theorem 1. The conflict serializability problem for unbounded concurrent sys-
tems is EXPSPACE-complete.

Although exploring all possible conflict cycles up to the bound |ΣL|+1 yields a
complete procedure for deciding conflict serializability, we believe that in prac-
tice incomplete methods—e.g., based on constraint solving—using much smaller
bounds could be more productive. The existing literature on verification of con-
flict serializability seems to confirm that violations are witnessed with very small
cycles; for instance, two different violations on variations to the Transactional
Locking II transactional memory algorithm reported by Guerraoui et al. [19] and
Dragojević et al. [13] are witnessed by cycles formed by just two pairs of con-
flicting actions between two operations. Furthermore, Guerraoui et al. [19] show
that any violation to conflict serializability in practically-occurring transactional
memory systems must occur in an execution with only two threads.

300 A. Bouajjani et al.

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2, Herlihy and Wing [21] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ effects become instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions
in method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concur-
rently executing operations, and it may even reside outside of the operation’s
execution. Vafeiadis [31] observed that in practice such complicated linearization
points arise mainly for “read-only” operations, which do not modify a library’s
abstract state; a typical example being the contains-operation of an optimistic
set [27], whose linearization point may reside in a concurrently executing add-
or remove-operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a method M of a library L and m0,mf ∈ QM , an M [m0,mf]-operation
θ is read-only for a specification S if and only if for all w1, w2, w3 ∈ Σ∗

S,

1. If w1 ·M [m0,mf] · w2 ∈ S then w1 ·M [m0,mf]
k · w2 ∈ S for all k ≥ 0, and

2. If w1 ·M [m0,mf] · w2 ∈ S and w1 · w3 ∈ S then w1 ·M [m0,mf] · w3 ∈ S.

The first condition is a sort of idempotence of M [m0,mf] w.r.t. S, while the
second says that M [m0,mf] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M [m0,mf] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M [m0,mf] is a self-loop.
For instance, the specification in Fig. 2 dictates that pop[·, false] is read-only.
The control graph GM = 〈QM , E〉 is the quotient of a method M ’s transition
system by shared-state valuations V : 〈m1, a,m2〉 ∈ E iff 〈m1, v1〉 ↪→a

M 〈m2, v2〉
for some v1, v2 ∈ V . A function LP : L → ℘(ΣL) is called a linearization-point
mapping when for each M ∈ L:

1. each symbol a ∈ LP(M) labels at most one transition of M ,
2. any directed path in GM contains at most one symbol of LP(M), and
3. all directed paths in GM containing a ∈ LP(M) reach the same ma ∈ FM .

An action 〈a, i〉 of anM -operation is called a linearization point when a ∈ LP(M),
and operations containing linearization points are said to be effectuated ; LP(θ)
denotes the unique linearization point of an effectuated operation θ. A read-
points mapping RP : Θ → N for an action sequence σ with operations Θ maps
each read-only operation θ to the index RP(θ) of an internal θ-action in σ.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

Verifying Concurrent Programs against Sequential Specifications 301

An action sequence σ is called effectuated when every completed operation of
σ is either effectuated or read-only, and an effectuated completion σ′ of σ is
effect preserving when each effectuated operation of σ also appears in σ′. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence σ, we say a permutation π of σ is point preserving when every two
operations of π are ordered by their linearization/read points in σ.

Definition 4. A trace τ is 〈S, LP〉-linearizable when τ is effectuated, and there
exists a read-points mapping RP of τ , along with an effect-preserving completion
π of a strict, point-preserving, and serial permutation of τ such that (π | S) ∈ S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C�.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is 〈S, LP〉-linearizable for some mapping LP.

Example 3. The execution of Example 1 is 〈S, LP〉-linearizable with an LP which
assigns points denoted by ×s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide 〈LP, S〉-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specifica-
tion automaton AS , updating its state when operations are effectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation θ is enabled in AS at some point during θ’s execution, our
reachability query ensures that each effectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure for
static-linearizability, leveraging Savitch’s Theorem. Our proof in our extended re-
port [7] also demonstrates asymptotic optimality, since VASS state-reachability
is also polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent sys-
tems with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

302 A. Bouajjani et al.

machines to linearizability of unbounded concurrent systems. Technically, given
a counter machine A, we construct a library LA and a specification SA such
that LA[C�] is not SA-linearizable exactly when A has an execution reaching
the given target state. In what follows we outline our simulation of A, ignoring
several details in order to highlight the crux of our reduction. Our full proof is
listed in an extended report [7].

In our simulation ofA the most general client C� invokes an arbitrary sequence
of methods from the library LA containing a transition method T[t] for each
transition t of A, and an increment method I[ci], a decrement method D[ci], and
a zero-test method Z[ci], for each counter ci of A. As our simulation should
allow only concurrent traces which correspond to executions of A, and C� is a
priori free to invoke operations at arbitrary times, we are faced with constructing
the library LA and specification SA so that only certain well-formed concurrent
traces are permitted. Our strategy is essentially to build LA to allow only those
traces corresponding to valid sequences of A-transitions, and to build SA to
allow only those traces, which either do not reach the target state of A, or which
erroneously pass some zero-test—i.e., on a counter whose value is non-zero.

Figure 6 depicts the structure of our simulation, on an A-execution where
two increments are followed by two decrements and a zero test, all on the same
counter c1. Essentially we simulate each execution by a trace in which:

1. A sequence t1t2 . . . ti of A-transitions is modeled by a pairwise-overlapping
sequence of T[t1] · T[t2] · · ·T[ti] operations.

2. Each T[t]-operation has a corresponding I[ci], D[ci], or Z[ci] operation, de-
pending on whether t is, resp., an increment, decrement, or zero-test transi-
tion with counter ci.

3. Each I[ci] operation has a corresponding D[ci] operation.
4. For each counter ci, all I[ci] and D[ci] between Z[ci] operations overlap.
5. For each counter ci, no I[ci] nor D[ci] operations overlap with a Z[ci] opera-

tion.
6. The number of I[ci] operations between two Z[ci] operations matches the

number of D[ci] operations.

The library LA ensures Properties 1–4 using rendezvous synchronization, with
six types of signals: a T/T signal between T[·]-operations, and for each counter
ci, T/I, T/D, and T/Z signals between T[·]-operations and, resp., I[ci], D[ci],
and Z[ci] operations, an I/D signal between I[ci] and D[ci] operations, and a
T/C signal between T[t] operations and I[ci] or D[ci] operations, for zero-testing
transitions t. An initial operation (not depicted in Figure 6) initiates a T/T
rendezvous with some T[t] operation. Each T[t] operation then performs a ren-
dezvous sequence: when t is an increment or decrement of counter ci, then T[t]
performs a T/T rendezvous, followed by a T/I, resp., T/D for counter ci, followed
by a final T/T rendezvous; when t is a zero-test of counter ci, T[t] performs a
T/T rendezvous, followed by some arbitrary number of T/Cs for ci, followed by a
T/Z for ci, and finally a last T/T rendezvous. Each I[ci] operation performs T/I,
then I/D, and finally T/C rendezvous for counter ci, while each D[ci] operation
performs I/D, then T/D, and finally T/C rendezvous for ci; the Z[ci] operations

Verifying Concurrent Programs against Sequential Specifications 303

T[inc c1]

T[inc c1] T[dec c1]

T[dec c1]

T[jz c1 ..]

T[...]

I[c1]

I[c1]

D[c1]

D[c1]

Z[c1]
T/I T/I T/D T/D T/C

I/D I/D

T/ZT/TT/T T/T T/T T/T

Fig. 6. The LA simulation of an A-execution with two increments followed by two
decrements and a zero-test of counter c1. Operations are drawn as horizontal lines con-
taining rendezvous actions drawn as circles. Matching rendezvous actions are connected
by dotted lines labeled by rendezvous type. Time advances to the right.

perform a single T/Z rendezvous for ci. T/T rendezvousing ensures Property 1,
T/I, T/D, and T/Z rendezvousing ensures Property 2, I/D rendezvousing en-
sures Property 3, and T/C rendezvousing ensures Property 4. Note that even
in the case where not all pending I[ci] and D[ci] operations perform T/C ren-
dezvous with a concurrent T[t] operation, where t is a zero-test transition, at the
very least, they overlap with all other pending I[ci] and D[ci] operations having
performed T/I, resp., T/D, rendezvous since the last Z[ci] operation.

The trickier part of our proof is indeed ensuring Properties 5 and 6. There
we leverage Property 4: when all I[ci] and D[ci] operations between two Z[ci]
operations overlap, every permutation of them, including those alternating be-
tween I[ci] and D[ci] operations, is strict, i.e., is permitted by the definition of
linearizability. Our specification SA takes advantage of this in order to match
the unbounded number of I[ci] and D[ci] operations using only bounded memory.

Lemma 5. The specification SA accepting all sequences which either do not end
with a transition to the target state, or in which the number of alternating I[ci]
and D[ci] operations between two Z[ci] operations are unequal, is regular.

Lemma 5 gives a way to ensure Properties 5 and 6, since any trace which is
SA-linearizable either does not encode an execution to A’s target state, or re-
spects Property 5 while violating Property 6—i.e., the number of increments and
decrements between zero-tests does not match—or violates Property 5: in the
latter case, where some I[ci] or D[ci] operation θ1 overlaps with an Z[ci] operation
θ2, θ1 can always be commuted over θ2 to ensure that the number of I[ci] and
D[ci] operations does not match in some interval between Z[ci] operations. Thus
any trace which is not SA-linearizable must respect both Properties 5 and 6.
It follows that any trace of LA which is not SA-linearizable guarantees Proper-
ties 1–6, and ultimately corresponds to a valid execution of A, and visa versa,
thus reducing counter machine state-reachability to SA-linearizability.

Theorem 3. The linearizability problem for unbounded concurrent systems with
regular specifications is undecidable.

304 A. Bouajjani et al.

6 Deciding Bounded Barrier Linearizability

Our proof in Section 5 that verifying linearizability is undecidable relies on con-
structing an unbounded amount of “barriers” bisecting serial operations in order
to encode unboundedly-many zero-tests of a counter machine. Besides disarming
our undecidability proof, bounding the number of barriers leads to an interest-
ing heuristic for detecting violations to linearizability, based on the hypothesis
that many violations occur in executions expressed with few barriers. In this sec-
tion we demonstrate not only that the bounded-barrier linearizability problem is
decidable, but that when restricting exploration to bounded-barrier executions,
checking linearizability reduces to a constraint solving problem on the valuations
of counters counting the number of each operation occurring in a finite number
of barrier-separated intervals. Similarly to how context-bounding reduces the
problem of exploring concurrent program interleavings to sequential program
behaviors [22], barrier-bounding reduces the problem of exploring concurrent
operation serializations to counter-constraint solving.

Formally, a barrier of a trace τ is an index 0 < B < |τ | such that τ(B) is a
call action, and the nearest preceding non-internal action of τ is a return action.
An interval is a maximal integer interval I = [i1, i2] of τ -indices containing no
barriers except i1, in the case that i1 > 0; we index the intervals of a trace
sequentially from 0, as I0, I1, . . . , Ik. The span of an operation θ of τ is the pair
〈Ii, Ij〉 of intervals such that θ begins in Ii and ends in Ij—and Ij = ω when θ
is pending. The trace τ of Example 1 contains two barriers, B1 and B2, where
τ(B1) = call(pop, ·, t1) and τ(B2) = call(push, a, t3), thus dividing τ into three
intervals, I0 = [0, B1 − 1], I1 = [B1, B2 − 1], and I2 = [B2, |τ | − 1]; the span of,
e.g., the operation of threads t2 and t4 are, resp., 〈I0, I1〉 and 〈I0, ω〉. Note that
the spans of two serial operations of a trace are disjoint.

Definition 6. The system L[C] is 〈S, k〉-linearizable when every trace of L[C]
with at most k barriers is S-linearizable.

In what follows we develop the machinery to reduce this bounded-barrier lineariz-
ability problem to a reachability problem on systems which count the number
of each operation spanning each pair of intervals.

An interval-annotated alphabet Σ̇
def
= Σ × N × (N ∪ {ω}) attaches (non-zero)

interval indices to each symbol of Σ, and an interval-annotated sequence σ̇ ∈ Σ̇∗

is k-bounded when i1 ≤ k and either i2 ≤ k or i2 = ω for each symbol 〈a, i1, i2〉
of σ̇. The homomorphism ḣ : Σ̇ → Σ maps each symbol 〈a, , 〉 to ḣ(〈a, , 〉) = a.
An interval-annotated sequence σ̇ is timing consistent when i1 ≤ i2, i3 ≤ i4, and
i1 ≤ i4 for any symbol 〈 , i1, i2〉 occurring before 〈 , i3, i4〉 in σ̇.

We say that the sequence over the interval-annotated (and pending closed,
see Section 2.4) specification alphabet σ̇ ∈ Σ̇∗

S is consistent when σ̇ is timing
consistent, and i2 = ω iffmf = ∗, for all symbols 〈M [m0,mf], i1, i2〉 of σ̇. The (k-
bounded) interval-annotated specification Ṡ of a specification S is the language
containing all consistent interval-annotated sequences σ̇ such that h(σ̇) ∈ S.
For example, we obtain the 1-bounded interval-annotated specification from

Verifying Concurrent Programs against Sequential Specifications 305

the specification of Figure 3 by attaching the interval indices 〈1, ω〉 to each
pop[·, ∗] and push[a, ∗] symbol, and 〈1, 1〉 to each pop[·, false], pop[·, true], and
push[a, true] symbol.

Lemma 6. The k-bounded interval-annotated specification Ṡ, of a regular spec-
ification S, is also regular.

Proof. For any given k > 0 the set W ⊆ Σ̇∗
S of k-bounded consistent interval-

annotated sequences is regular. As regular languages are closed under inverse
homomorphism and intersection, Ṡ = W ∩ ḣ−1(S) is also regular.
�
To relate traces to an interval-annotated specification Ṡ, we define the interval-
annotated S-image σ̇ of an action sequence σ as the multiset σ̇ : Σ̇S → N map-
ping each 〈M [m0,mf], i1, i2〉 ∈ Σ̇S to the number of occurrences of M [m0,mf]-
operations in σ with span 〈i1, i2〉.
Example 4. The interval-annotated image τ̇ of the trace τ from Example 1 maps
the interval-annotated symbols

push[a, true][1, 1], push[a, ∗][1, ω], pop[·, true][1, 2],
pop[·, false][2, 3], and push[a, true][3, 3]

to 1, and the remaining symbols of Σ̇S to zero.

Annotating operations with the intervals in which they occur allows a compact
representation of specifications’ ordering constraints, while abstracting away the
order of same-interval operations—as they are free to commute. To realize this
abstraction, we recall that the Parikh image of a sequence σ ∈ Σ∗ is the multiset
Π(σ) : Σ → Nmapping each symbol a ∈ Σ to the number of occurrences of a in σ.
The Parikh image of a language L ⊆ Σ∗ are the images Π(L)

def
= {Π(σ) : σ ∈ L}

of sequences in L. We prove the following key lemma in our extended report [7].

Lemma 7. A trace τ with at most k barriers is S-linearizable iff τ̇ ∈ Π(Ṡ),
where Ṡ is the (k+1)-bounded interval-annotated specification of S.

Lemma 7 essentially allows us to reduce the bounded-barrier linearizability prob-
lem to a reachability problem: given a trace τ with at most k barriers, τ is lineariz-
able so long as its image τ̇ is included in the Parikh image of the (k+1)-bounded
specification Ṡ. In effect, rather than considering all possible serializations of
τ , it suffices to keep count of the number of pending and completed operations
over each span of intervals, and ensure that these counts continually remain
within the semi-linear set of counts allowed by the specification. For the pur-
poses of our results here, we keep these counts by increasing the dimension of the
canonical vector addition system AL[C] (see Section 2.1) of a given system L[C].
Furthermore, since Bouajjani and Habermehl [6] prove that checking whether
reachable VASS configurations lie within a semi-linear set is itself reducible to
VASS reachability, and the Parikh image of a regular set is a semi-linear, en-
suring these counts continually remain within those allowed by the specification
is therefore reducible to VASS reachability. In fact, our proof in our extended
report [7] shows this reduction-based procedure is asymptotically optimal, since
VASS reachability is also polynomial-time reducible to to 〈S, k〉-linearizability.

306 A. Bouajjani et al.

Theorem 4. The bounded-barrier linearizability problem for unbounded concur-
rent systems with regular specifications is decidable, and asymptotically equiva-
lent to VASS reachability.

Theorem 4 holds for any class of specifications with semi-linear Parikh images,
including, e.g., context-free languages. Furthermore, though Theorem 4 leverages
our reduction from serializations to counting operations for decidability with
unbounded concurrent systems, in principle this reduction applies to any class
of concurrent systems, including infinite-data systems—without any guarantee
of decidability—provided the ability to represent suitable constraints on the
counters of annotated specification alphabet symbols. We believe this reduction
is valuable whether or not data and/or concurrency are bounded, since we avoid
the explicit enumeration of possible serializations.

As a proof of concept, we have implemented a prototype of our reduction. First
we instrument a given library implementation (written in Boogie) with (1) auxil-
iary counters, counting the number of each operation within each bounded span,
(2) with Presburger assertions over these counters, encoding the legal specifica-
tion images, and (3) with a client nondeterministically invoking methods with ar-
bitrary arguments. As a second step we translate this instrumented (concurrent)
program to a sequential (Boogie) program, encoding a subset of delay-bounded
executions [16], then discover assertion violations using an SMT-based sequential
reachability engine [23]. Note that the bounded-barrier reduction, which treats
operation serialization, composes naturally with the bounded-delay reduction,
which treats operation interleaving. Furthermore, the reduction to SMT allows
us to analyze infinite-data implementations; e.g., we analyze an unbounded stack
with arbitrary data values, according to a specification which ensures each pop
is preceded by a matching push—which is context-free, thus has a semi-linear
Parikh image—while ignoring the pushed and popped values.

We have applied our prototype to discover bugs known in or manually-injected
into several textbook concurrent data structure algorithms; the resulting lineariz-
ability violations are discovered within a few seconds to minutes. Besides evidence
to the practical applicability of our reduction algorithm, our small set of experi-
ments suggests that many linearizability violations occur with very few barriers;
we discover violations arising from the infamous “ABA” bug [26], along with bugs
injected into a 2-lock queue, a lock-coupling set, and Treiber’s stack, in executions
without any barriers. For instance, in an improperly-synchronized Treiber-style
stack algorithm, two concurrent pop(a) operations may erroneously remove the
same element added by one concurrent push(a) operation; however, no serializa-
tion of pop(a), pop(a), and push(a) is included in our stack specification.

Of course, some violations do require barriers. A very simple example is a
violation involving one pop(a) serial with one push(a) operation, though since
pop(a) and push(a) are not concurrent, a bug causing this violation is unlikely.
More interestingly, a lost update due to improper synchronization between two
concurrent inc() operations in a zero-initialized counter can only be observed
as a linearizability violation when a barrier prevents, e.g., a subsequent read(1)
operation from commuting over an inc() operation.

Verifying Concurrent Programs against Sequential Specifications 307

7 Related Work

Papadimitriou [28] and Gibbons and Korach [18] studied variations on the prob-
lems of deciding serializability, sequential consistency, and linearizability for sin-
gle concurrent traces, finding the general problems to be NP-complete, and
pointing out several PTIME variants, e.g., when serializations must respect a
suitable conflict-order. Alur et al. [1] studied the complexity of similar decision
problems for all traces of finite-state concurrent systems: while sequential con-
sistency already becomes undecidable for finite-state systems—though Bingham
[4] proposes certain decidable pathology-omitting variations—checking conflict
serializability is declared PSPACE-complete5 while linearizability is shown to be
in EXPSPACE. Our work considers the complexity of these problems for systems
where the number of concurrent operations is unbounded.

Though many have developed techniques for proving linearizability [33, 2, 32,
3, 25, 14, 27, 31, 34, 10], we are not aware of decidability or complexity results for
the corresponding linearizability and static linearizability verification problems
for unbounded systems. While a few works propose testing-based detection of
linearizability violations [9, 11, 10], they rely on explicit enumeration of possible
serializations; prioritizing the search for violations with few barriers, and the
resulting reduction to numerical constraint solving, are novel.

Several works have also developed techniques for verifying sequential consis-
tency [20, 29, 5, 8] and serializability [12, 30, 17, 19, 15]; Farzan and Madhusudan
[17] demonstrate a complete technique for verifying conflict serializability with a
bounded number of concurrent operations, and while Guerraoui et al. [19] identify
symmetry conditions on transactional systems with which conflict serializability
can be verified completely, for an unbounded number of concurrent operations,
they propose no means of checking that these symmetry conditions hold on any
given system. On the contrary, we show that verifying conflict serializability with-
out bounding the number of concurrent operations is EXPSPACE-complete.

References

[1] Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)

[2] Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison Under Ab-
straction for Verifying Linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

[3] Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quan-
tification for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)

[4] Bingham, J.: Model Checking Sequential Consistency and Parameterized Proto-
cols. PhD thesis, The University of British Columbia (August 2005)

5 The correct proof of PSPACE-completeness is given by Farzan and Madhusudan
[17].

308 A. Bouajjani et al.

[5] Bingham, J.D., Condon, A., Hu, A.J., Qadeer, S., Zhang, Z.: Automatic Verifi-
cation of Sequential Consistency for Unbounded Addresses and Data Values. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 427–439. Springer,
Heidelberg (2004)

[6] Bouajjani, A., Habermehl, P.: Constrained Properties, Semilinear Systems, and
Petri Nets. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 481–497. Springer, Heidelberg (1996)

[7] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. Technical report (January 2013)

[8] Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI 2007: Proc. ACM
SIGPLAN 2007 Conf. on Programming Language Design and Implementation,
pp. 12–21. ACM (2007)

[9] Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pp. 330–340. ACM (2010)

[10] Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

[11] Burnim, J., Necula, G.C., Sen, K.: Specifying and checking semantic atomicity for
multithreaded programs. In: ASPLOS 2011: Proc. 16th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pp. 79–90. ACM
(2011)

[12] Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD 2007: Proc. 7th Intl. Conf. on Formal
Methods in Computer-Aided Design, pp. 37–44. IEEE Computer Society (2007)

[13] Dragojević, A., Guerraoui, R., Kapalka, M.: Dividing transactional memories by
zero. In: TRANSACT 2008: Proc. 3rd ACM SIGPLANWorkshop on Transactional
Computing. ACM (2008)

[14] Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying Linearizabil-
ity Proofs with Reduction and Abstraction. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

[15] Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pp. 134–145. ACM (2010)

[16] Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pp. 411–422. ACM (2011)

[17] Farzan, A., Madhusudan, P.: Monitoring Atomicity in Concurrent Programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer,
Heidelberg (2008)

[18] Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

[19] Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distributed Computing 22(3), 129–145 (2010)

[20] Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying Sequential Consistency
on Shared-Memory Multiprocessor Systems. In: Halbwachs, N., Peled, D.A. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 301–315. Springer, Heidelberg (1999)

[21] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

Verifying Concurrent Programs against Sequential Specifications 309

[22] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[23] Lal, A., Qadeer, S., Lahiri, S.K.: A Solver for Reachability Modulo Theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

[24] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

[25] Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model Checking Linearizability via Re-
finement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
321–337. Springer, Heidelberg (2009)

[26] Michael, M.M.: ABA prevention using single-word instructions. Technical Report
RC 23089, IBM Thomas J. Watson Research Center (January 2004)

[27] O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC 2010: Proc. 29th Annual Symp. on Princi-
ples of Distributed Computing, pp. 85–94. ACM (2010)

[28] Papadimitriou, C.H.: The serializability of concurrent database updates. J.
ACM 26(4), 631–653 (1979)

[29] Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741 (2003)

[30] Taşıran, S.: A compositional method for verifying software transactional memory
implementations. Technical Report MSR-TR-2008-56, Microsoft Research (April
2008)

[31] Vafeiadis, V.: Automatically Proving Linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010)

[32] Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
PLDI 2008: Proc. ACM SIGPLAN 2008 Conf. on Programming Language Design
and Implementation, pp. 125–135. ACM (2008)

[33] Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: PPOPP 2005: Proc. ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pp. 61–71. ACM (2005)

[34] Zhang, S.J.: Scalable automatic linearizability checking. In: ICSE 2011: Proc. 33rd
Intl. Conf. on Software Engineering, pp. 1185–1187. ACM (2011)

	Verifying Concurrent Programs against Sequential Specifications
	Introduction
	Preliminaries
	Unbounded Concurrent Systems
	Conflict Serializability
	Linearizability
	Linearizability with Pending-Closed Specifications

	Deciding Conflict Serializability
	Deciding Static Linearizability
	Undecidability of Linearizability in the General Case
	Deciding Bounded Barrier Linearizability
	Related Work
	References

