Matthias Felleisen
Philippa Gardner (Eds.)

ARCoSS

Programming
Languages
and Systems

22nd European Symposium on Programming, ESOP 2013
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2013

Rome, Italy, March 2013, Proceedings

ETAPS

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE
-

LNCS 7792

Lecture Notes in Computer Science 7792

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

Alfred Kobsa, USA Friedemann Mattern, Switzerland
John C. Mitchell, USA Moni Naor, Israel

Oscar Nierstrasz, Switzerland C. Pandu Rangan, India
Bernhard Steffen, Germany Madhu Sudan, USA

Demetri Terzopoulos, USA Doug Tygar, USA

Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Matthias Felleisen Philippa Gardner (Eds.)

Programming
Languages
and Systems

22nd European Symposium on Programming, ESOP 2013
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2013
Rome, Italy, March 16-24, 2013

Proceedings

@ Springer

Volume Editors

Matthias Felleisen
Northeastern University
College of Computer Science
Boston, MA 02115, USA
E-mail: matthias@ccs.neu.edu

Philippa Gardner

Imperial College

Department of Computing
London, SW7 2AZ, UK

E-mail: p.gardner @imperial.ac.uk

ISSN 0302-9743
ISBN 978-3-642-37035-9
DOI 10.1007/978-3-642-37036-6

e-ISSN 1611-3349
e-ISBN 978-3-642-37036-6

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013932559

CR Subject Classification (1998): D.2.1-5, D.3.1-4, D.1.3, D.1.0, D.4.1-2

F3.1-3,F1.2

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Franzle; and e-voting by Rolf Kiisters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers
in the TACAS proceedings). Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way to participate in this exciting event, and that you will all
continue to submit to ETAPS and contribute to making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with

VI Foreword

> European Association for Theoretical Computer Science (EATCS)
> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;

Conferences: Francesco Parisi Presicce;

Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;

Publicity: Ivano Salvo;

Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Martin Abadi (Santa Cruz), Erika
Abrahdm (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Ziirich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbriicken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Liittgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Déniel
Varré (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Liittgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.

Foreword VII

My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Bohm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Béhm-Jacopini Theorem (CACM 1966) and by the invention of Béhm-
trees. The former states that any algorithm can be implemented using only
sequencing, conditionals, and while-loops over elementary instructions. Béhm
trees arose as a convenient data structure in Corrado’s milestone proof of the
decidability inside the A-calculus of the equivalence of terms in (-n-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and —more than that!- his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,” and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.

VIII Foreword

Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbriicken, we took a significant step towards the
consolidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit
association founded under German law with the immediate purpose of sup-
porting the conference and the related activities. ETAPS e.V. was required for
practical reasons, e.g., the conference needed (to be represented by) a legal body
to better support authors, organisers and attendees by, e.g., signing contracts
with service providers such as publishers and professional meeting organisers.
Our ambition is however to make of ‘ETAPS the association’ more than just
the organisers of ‘ETAPS the conference’. We are working towards finding a
voice and developing a range of activities to support our scientific community, in
cooperation with the relevant existing associations, learned societies and inter-
est groups. The process of defining the structure, scope and strategy of ETAPS
e.V. is underway, as is its first ever membership campaign. For the time being,
ETAPS e.V. has started to support community-driven initiatives such as open
access publications (LMCS and EPTCS) and conference management systems
(Easychair), and to cooperate with cognate associations (European Forum for
ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed

Foreword IX

deadlines in the first week of October. We published a confidentiality policy to
set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that — regardless of our best intentions and efforts — the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS — and indeed most
computing conferences — currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ¢ Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers — be they
commercial, academic, or learned societies — and with their costs. A promising
way forward may be based on the ‘author-pays’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable — if not altogether superior — alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting — regardless
of the natural internal differences — a homogeneous interface to authors and

X Foreword

participants, i.e., to look like one large, coherent, well-integrated conference
rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the proceedings of the 22nd European Symposium on
Programming (ESOP 2013). The conference took place in Rome, Italy, during
March 20-22, 2013, as part of the European Joint Conferences on Theory and
Practice of Software (ETAPS).

ESOP is an annual conference devoted to the art and science of programming.
The conference solicits contributions on fundamental issues concerning the spec-
ification, analysis, and implementation of systems and programming languages.

The 2013 conference attracted 150 abstracts and 120 full submissions, in-
cluding two tool demo papers. For each submission, we solicited at least three
reviews from the Program Committee members and external reviewers, and for
most submissions, one of us authored a summary review to help the authors un-
derstand the final decision. After an intensive electronic meeting over two weeks,
the Program Committee accepted 31 papers for presentation, two of which focus
on tools.

In addition, this volume also contains the invited paper, “Distributed Elec-
tonic Rights in JavaScript.” Mark Miller presented the paper as the ESOP in-
vited talk in Rome.

We greatly appreciate the work of the Program Committee members, who
read the papers, solicited expert reviews, studied the author responses, and inten-
sively discussed every submission. Together with our colleagues on the Program
Committee, we also wish to thank the numerous external reviewers, without
whom running such a large conference would be impossible. Finally, we thank
the authors of all submissions for entrusting us with their work and the authors
of the accepted papers for their diligent work in preparing their final versions
and their conference presentations.

We acknowledge the use of the EasyChair conference system and the support
of the ETAPS Steering committee and its Chair, Vladimiro Sassone, with regard
to all the administrative work.

January 2013 Matthias Felleisen
Philippa Gardner

Program Committee

Luca Aceto
Véronique Benzaken
Derek Dreyer
Matthias Felleisen
Philippa Gardner
Giorgio Ghelli
Holger Hermanns
Suresh Jagannathan
Andy King

Akash Lal

Cosimo Laneve
Gary Leavens
Xavier Leroy

Annie Liu
Aleksandar Nanevski
Michael Norrish
Nate Nystrom

Joel Ouaknine

Scott Owens

Jens Palsberg
Simon Peyton-Jones
Xavier Rival
Sukyoung Ryu
Zhong Shao

Yannis Smaragdakis
Geoff Smith

Eran Yahav

Additional Reviewers

Ahmed, Amal
Andrade, Diego
Balabonski, Thibaut
Berdine, Josh
Botincan, Matko
Boyland, John
Braud, Laurent
Cachera, David

Organization

Reykjavik University, Iceland
Université Paris Sud 11, France
MPI-SWS, Germany

Northeastern University, USA
Imperial College, UK

Universita di Pisa, Italy

Universitat des Saarlandes, Germany
Purdue University, USA

University of Kent, UK

Microsoft Research, India
Universita di Bologna, Italy
University of Central Florida, USA
INRIA, France

SUNY at Stony Brook, USA

The IMDEA Software Institute
National ICT Australia

University of Lugano, Switzerland
University of Kent, UK

University of Cambridge, UK
UCLA, USA

Microsoft Research, Cambridge, UK
INRIA, France

KAIST, South Korea

Yale University, USA

University of Athens, Greece
Florida International University, USA
Technion, Israel

Carbone, Marco
Carbonell, Enric
Cerny, Pavol

Chang, Bor-Yuh Evan
Chin, Wei-Ngan
Chitil, Olaf
Costanzo, David

Dal Lago, Ugo

XIV Organization

Demange, Delphine
Denielou, Pierre-Malo
Dezani, Mariangiola
Dijkstra, Atze
Dimoulas, Christos
Dodds, Mike
Drachsler, Dana
Drossopoulou, Sophia
Dunfield, Joshua
Effinger-Dean, Laura
Escardd, Martin
Felleien, Matthias
Felleisen, Matthias
Feng, Xinyu
Ferrara, Pietro
Ferrer Fioriti, Luis MarAa
Filiot, Emmanuel
Filliatre, Jean-Christophe
Fu, Ming
Galmiche, Didier
Garg, Deepak
Gawlitza, Thomas Martin
Genaim, Samir
Gesbert, Nils
Giachino, Elena
Gibbons, Jeremy
Giunti, Marco
Given-Wilson, Thomas
Gorbovitski, Michael
Goriac, Eugen-lToan
Gorla, Daniele
Gotsman, Alexey
Gray, Kathryn
Gueta, Guy
Habermehl, Peter
Hartmanns, Arnd
Hoffmann, Jan
Howe, Jacob
Hur, Chung-Kil
Igarashi, Atsushi
Jacobs, Bart
Janssens and Verdoolaege,
Gerda and Sven
Jobin, Arnaud
Jérome, Feret

Kennedy, Andrew
Kolanski, Rafal
Koutavas, Vasileios
Krishnaswami, Neelakantan
Krivine, Jean

Lanese, Ivan

Levy, Paul Blain

Liang, Hongjin

Lin, Bo

Lindley, Sam

Lins, Rafael

Lippmeier, Ben

Liu, Yang

Lluch Lafuente, Alberto
Loreti, Michele

Lux, Wolfgang

Maffeis, Sergio

Mandel, Louis

Maneth, Sebastian
Marmar, Michael
Martignon, Fabio
Mauborgne, Laurent
Mazza, Damiano
Merro, Massimo
Meshman, Yuri

Meyer, Roland
Miculan, Marino

Neis, Georg

Niehren, Joachim
Noble, James

Okasaki, Chris
Padovani, Luca

Park, Sungwoo
Partush, Nimrod

Petri, Gustavo
Philippou, Anna

Pitts, Andrew

Potop Butucaru, Dumitru
Pottier, Francois

Pérez, Jorge A.

Qiu, Xiaokang

Rajan, Kaushik
Ramalingam, Ganesan
Rayside, Derek

Remy, Didier

Rinetzky, Noam
Rosu, Grigore
Rothamel, Tom
Sacerdoti Coen, Claudio
Sack, Joshua
Schmitt, Alan
Seidl, Helmut
Sergey, Ilya

Sewell, Thomas
Shan, Chung-Chieh
Shoham, Sharon
Simmons, Robert
Slepak, Justin
Smith, Gareth
Song, Lei

Sotin, Pascal

Spieler, David
Spiwack, Arnaud
Stampoulis, Antonis
Staton, Sam
Strichman, Ofer
Strub, Pierre-Yves
Struth, Georg
Suenaga, Kohei
Svendsen, Kasper
Talpin, Jean-Pierre
Thiemann, Peter

Organization

Tiezzi, Francesco
Tiu, Alwen
Tobin-Hochstadt, Sam
Toninho, Bernardo
Toronto, Neil
Toubhans, Antoine
Tov, Jesse

Tozawa, Akihiko
Turon, Aaron
Turrini, Andrea
Tzevelekos, Nikos
Ulidowski, Irek
Uustalu, Tarmo
Vafeiadis, Viktor
Van Cutsem, Tom
Vaswani, Kapil
Versari, Cristian
Voigt, Janina
Vytiniotis, Dimitrios
Wachter, Bjorn
Wadler, Philip
Weirich, Stephanie
Weng, Shu-Chun
Worrell, James
Zavattaro, Gianluigi
Zeilberger, Noam
Zhang, Lijun

XV

Table of Contents

Invited Talk

Distributed Electronic Rights in JavaScript............
Mark S. Miller, Tom Van Cutsem, and Bill Tulloh

Session I: Programming Techniques

The Compiler Forest
Mihai Budiu, Joel Galenson, and Gordon D. Plotkin

Pretty-Big-Step Semantics
Arthur Charguéraud

Language Constructs for Non-Well-Founded Computation.............
Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva

Session II: Programming Tools

Laziness by Need e e
Stephen Chang

FliPpr: A Prettier Invertible Printing System
Kazutaka Matsuda and Meng Wang

Slicing-Based Trace Analysis of Rewriting Logic Specifications with
TWJULIENNE . ottt ettt et e e e e e e e et e
Maria Alpuente, Demis Ballis, Francisco Frechina, and Julia Sapina

Why3 — Where Programs Meet Provers
Jean-Christophe Filliatre and Andrei Paskevich

Session III: Separation Logic

Compositional Invariant Checking for Overlaid and Nested Linked
5] 1P
Constantin Enea, Viad Saveluc, and Mihaela Sighireanu

A Discipline for Program Verification Based on Backpointers and Its
Use in Observational Disjointness
Toannis T. Kassios and Eleftherios Kritikos

Modular Reasoning about Separation of Concurrent Data Structures . ..
Kasper Svendsen, Lars Birkedal, and Matthew Parkinson

21

41

61

81

129

149

169

XVIII Table of Contents

Ribbon Proofs for Separation Logic 189
John Wickerson, Mike Dodds, and Matthew Parkinson

Session IV: Gradual Typing

Abstract Refinement Types 209
Niki Vazou, Patrick M. Rondon, and Ranjit Jhala

Constraining Delimited Control with Contracts 229
Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt

Session V: Shared-Memory Concurrency and
Verification

Verifying Concurrent Memory Reclamation Algorithms with Grace 249
Alexey Gotsman, Noam Rinetzky, and Hongseok Yang

Interleaving and Lock-Step Semantics for Analysis and Verification

of GPU Kernels.o e e 270
Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and
Shaz Qadeer

Verifying Concurrent Programs against Sequential Specifications 290
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

Session VI: Process Calculi

On Distributability in Process Calculi 310
Kirstin Peters, Uwe Nestmann, and Ursula Goltz

Behavioral Polymorphism and Parametricity in Session-Based
Communicationt e 330
Luds Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Higher-Order Processes, Functions, and Sessions: A Monadic
Integration 350
Bernardo Toninho, Luis Caires, and Frank Pfenning

Concurrent Flexible Reversibility i .. 370
ITvan Lanese, Michael Lienhardt, Claudio Antares Mezzina,
Alan Schmitt, and Jean-Bernard Stefani

Session VII: Taming Concurrency

Structural Lock Correlation with Ownership Types................... 391
Yi Lu, John Potter, and Jingling Xue

Table of Contents

Taming Confusion for Modeling and Implementing Probabilistic
Concurrent SySteImSot
Joost-Peter Katoen and Doron Peled

Session VIII: Model Checking and Verification

Model-Checking Higher-Order Programs with Recursive Types
Naoki Kobayashi and Atsushi Igarashi

Counterexample-Guided Precondition Inference
Mohamed Nassim Seghir and Daniel Kroening

Information Reuse for Multi-goal Reachability Analyses...............
Dirk Beyer, Andreas Holzer, Michael Tautschnig, and Helmut Veith
Session IX: Weak-Memory Concurrency and

Verification

Quarantining Weakness: Compositional Reasoning under Relaxed
Memory Models (Extended Abstract)............coooiiiiiii ...
Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely

Software Verification for Weak Memory via Program Transformation . . .
Jade Alglave, Daniel Kroening, Vincent Nimal, and
Michael Tautschnig

Checking and Enforcing Robustness against TSO
Ahmed Bouagjjani, Egor Derevenetc, and Roland Meyer
Session X: Types, Inference, and Analysis

GADTs Meet Subtypingooiin e
Gabriel Scherer and Didier Rémy

A Data Driven Approach for Algebraic Loop Invariants
Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken,
Percy Liang, and Aditya V. Nori

Automatic Type Inference for Amortised Heap-Space Analysis.........
Martin Hofmann and Dulma Rodriguez

Keyword Index

Author Imdex

XIX

Distributed Electronic Rights in JavaScript

Mark S. Miller!, Tom Van Cutsem?, and Bill Tulloh

1 Google, Inc.
2 Vrije Universiteit Brussel

Abstract. Contracts enable mutually suspicious parties to cooperate safely
through the exchange of rights. Smart contracts are programs whose behavior
enforces the terms of the contract. This paper shows how such contracts can be
specified elegantly and executed safely, given an appropriate distributed, secure,
persistent, and ubiquitous computational fabric. JavaScript provides the ubiquity
but must be significantly extended to deal with the other aspects. The first part
of this paper is a progress report on our efforts to turn JavaScript into this fabric.
To demonstrate the suitability of this design, we describe an escrow exchange
contract implemented in 42 lines of JavaScript code.

Keywords: security, distributed objects, object-capabilities, smart contracts.

1 Smart Contracts for the Rest of Us

The fabric of the global economy is held together by contracts. A contract is an agreed
framework for the rearrangement of rights between mutually suspicious parties. But
existing contracts are ambiguous, jurisdictions-specific, and written, interpreted, and
adjudicated only by expensive experts. Smart contracts are contract-like arrangements
expressed in program code, where the behavior of the program enforces the terms of
the “contract”[1]. Though not a substitute for legal contracts, they can provide some of
the benefits of contracts for fine-grain, jurisdiction-free, and automated arrangements
for which legal contracts are impractical.

To realize this potential, smart contracts need a distributed, secure, persistent, and
ubiquitous computational fabric. To avoid merely substituting one set of expensive ex-
perts for another, non-experts should be able to write smart contracts understandable
by other non-experts. Wel!l are working towards turning JavaScript into such a fabric.
JavaScript is already understood and used by many non-expert programmers. We call
our target JavaScript platform Dr. SES for Distributed Resilient Secure EcmaScriptE

Dr. SES is not specifically tied to electronic rights (erights) or smart contracts per
se. Its focus is to make distributed secure programming in JavaScript as effortless as
possible. But much of the design of Dr. SES and its predecessors [213/4] was shaped
by examining what we need to express smart contracts simply. Taking a rights-based
approach to local and distributed computing, we believe, has led us to building a better
general purpose platform as well as one naturally suited for expressing new kinds of
erights and contracts.

! Including many collaborators over many years. See the acknowledgements.
2 The official standards name for JavaScript is “ECMAScript”.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 1-20] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 M.S. Miller, T. Van Cutsem, and B. Tulloh

The first half of this paper, section[2] explains the design of Dr. SES and our progress
building it. After section[2.2] the rest can be skipped on a first read. Section 3] explains
how rights help organize complexity in society in a decentralized manner, addressing
many of the problems we face building distributed systems. Section 4] examines an im-
plementation of “money”. Section 3] examines an escrow exchange contract. Section
examines a generic contract host, able to host this contract and others. Together, they
demonstrate the simplicity and expressiveness of Dr. SES.

2 Dr. SES: Distributed Resilient Secure EcmaScript

Dr. SES is a platform for distributed, resilient, and secure computing, layered on
JavaScript. How do these ingredients support erights and contracts?

The participants in a contract are typically represented by mutually suspicious ma-
chines communicating over open networks. JavaScript is not a distributed programming
language. In the browser, a large number of APIs are available to scripts to communicate
with servers and other frames, but these APIs do not operate at the level of individual
objects. Dr. SES builds on the Q libraryﬁ to extend the JavaScript language with a hand-
ful of features to support distributed programming at the level of objects and messages.

In an architecture that aims to express erights or contracts, security must play a key
role. Dr. SES uses the Q library to support distributed cryptographic capabilities, and
builds on the SES library to support local object-capabilities. The latter allows Dr. SES
programs to safely execute mobile code from untrusted parties. This is especially rel-
evant in the context of JavaScript, where mobile code is routinely sent from servers to
clients. In Section [6] we will show an example that depends on the ability to safely
execute third-party code on servers.

Finally, the resilience aspect of Dr. SES deals with the unavoidable issues of failure
handling that come up in distributed systems. Server-side Dr. SES programs periodi-
cally checkpoint their state, so that in the event of a failure, the program can always
recover from a previously consistent state. Such Dr. SES programs can survive failures
without effort on the part of the programmer. Dr. SES builds on the NodeKen project,
which is layering the Node.js server-side JavaScript platform onto the Ken system [6]
for distributed orthogonal persistence—resilient against many failures.

2.1 Just Enough JavaScript

JavaScript is a complex language, but this paper depends only on a small subset
with two core constructs, functions and records. As of this writing, the standard and
ubiquitous version of JavaScript is ECMAScript 5 (ES5). For the sake of brevity, this
paper borrows one syntactic convenience proposed for ES6, arrow functions (“=>"
and one proposed for ES7, the eventual-send operator (“!”). Expanding away
these conveniences, all the code here is working ES5 code, and is available at
code.google.com/p/es-lab/source/browse/trunk/src/ses/#ses
and its contract subdirectory.

3 Once the les-1ab. googlecode.com/svn/trunk/src/ses/makeQ.js, [5], and
https://github.com/kriskowal/qgimplementations of Q are reconciled.

http://code.google.com/p/es-lab/source/browse/trunk/src/ses/#ses
http://es-lab.googlecode.com/svn/trunk/src/ses/makeQ.js
https://github.com/kriskowal/q

Distributed Electronic Rights in JavaScript 3

Arrow functions. The following four lines all define a one parameter function which
returns double its parameter. All bind a local variable named “twice” to this function.
This paper uses only the arrow function syntax of the last three lines.

var twice = function(n) { return n+n; }; /I old function expr
var twice = (n) => { return n+n; }; // ES6 arrow function
var twice = (n) => n+n; // non—““{°* expr implicitly returned
var twice = n => n+n; /I parens optional if one param

Records. Therecord syntax {x: 3, y: 4} isanexpression thatevaluates to a record
with two named properties initialized to the values shown. Records and functions com-
pose together naturally to give objects:

var makePoint = (x, y) => {
return {
getX: () => x,
getY: () => vy,

add: other => makePoint(x + other.getX(), y + other.getY())
Y
Y

var pt = makePoint (3, 5).add(makePoint (2, 7));

A record of functions hiding variables serves as an object of methods (getX, getY,
add) hiding instance variables (x, y). The makePoint function serves as a class-
like factory for making new point instances.

2.2 Basic Concepts of Dr. SES

Dr. SES extends this object model across time and space (persistence and distribution),
while relieving programmers of many of the typical worries associated with building
secure distributed resilient systems. The non-expert programmer can begin with the
following oversimplified understanding of Dr. SES:

SES. Don’t worry about script injection. Mobile code can’t do anything it isn’t autho-
rized to do. Functions and objects are encapsulated. Objects can invoke objects they
have a reference to, but cannot tamper with those objects.

Q. Don’t worry about memory races or deadlocks, they can’t happen. Objects can be
local or remote. The familiar infix dot (““.””) in pt . getX () accesses the pt object
immediately. Q adds the bang “!” to access an object eventually. Anywhere you
can write a dot, you can use “!” asinpt ! getX().Eventual operations return
promises for what the answer will be. If the object is remote or a promise, you can
only use “!” on it.

NodeKen. Don’t worry about network partitions or machine crashes. Once the ma-
chine comes back up, everything keeps going, so a crash and restart is just a very
long (possibly infinite) pause. Likewise, a partitioned network is just a slow net-
work waiting to heal. Once things come back up, every message ever sent will be
delivered in order exactly once.

4 M.S. Miller, T. Van Cutsem, and B. Tulloh

The above should be adequate to understand the functionality of the smart contract
code when things go well. Of course, much of the point of erights and smart contracts
is to limit the damage when things go badly. Understanding these risks does require a
careful reading of the following sections.

2.3 SES: Securing JavaScript

In a memory-safe object language with unforgeable object references (protected point-
ers) and encapsulated objects, an object reference grants the right to invoke the public
interface of the object it designates. A message sent on a reference both exercises this
right and grants to the receiving object the right to invoke the passed arguments.

In an object-capability (ocap) language [7]], an object can cause effects on the world
outside itself only by using the references it holds. Some objects are transitively im-
mutable or powerless [8]], while others might cause effects. An object must not be given
any powerful references by default; any references it has implicit access to, such as
language-provided global variables, must be powerless. Under these rules, granted ref-
erences are the sole representation of permission.

Secure EcmaScript (SES) is an ocap subset of ES5. SES is lexically scoped, its
functions are encapsulated, and only the global variables on its whitelist (including all
globals defined by ESS5) are accessible. Those globals are unassignable, and all objects
transitively reachable from them are immutable, rendering all implicit access powerless.

SES supports defensive consistency [[1]. An object is defensively consistent when it
can defend its own invariants and provide correct service to its well behaved clients,
despite arbitrary or malicious misbehavior by its other clients. SES has a formal seman-
tics supporting automated verification of some security properties of SES code [9]. The
code in this paper uses the following functions from the SES library:

def (obj) defines a defensible object. To support defensive consistency, the def
function makes the properties of its argument read-only, likewise for all objects
transitively reachable from there by reading properties. As a result, this subgraph
of objects is effectively tamper proof. A ramper-proof record of encapsulated func-
tions hiding lexical variables is a defensible object. In SES, if makePoint called
def on the points it returns by saying “return def ({...})”, it would make
defensively consistent points.

confine (exprSrc, endowments) enables safe mobile code. The confine
function takes the source code string for a SES expression and an endowments
record. It evaluates the expression in a new global environment consisting of the
SES whitelisted (powerless) global variables and the properties of this endowments
record. For example, confine (*x + y’, {x: 3, y: 6}) returns9.

Nat (allegedNumber) tests whether allegedNumber is indeed a primitive
number, and whether it is a non-negative integer (a natural number) within the
contiguous range of exactly representable integers in JavaScript. If so, it returns
allegedNumber. Otherwise it throws an error.

var m = WeakMap () assigns to m a new empty weak map. WeakMaps are an
ES6 extension (emulated by SES on ES5 browsers) supporting rights amplifi-
cation [10]. Ignoring space usage, m is simply an object-identity-keyed table.

Distributed Electronic Rights in JavaScript 5

m.set (obj,val) associates obj’s identity as key with val as value, so
m.get (obj) returns val and m.delete (obj) removes this entry. These
methods use only ob3j’s identity without interacting with ob3j.

2.4 Q: Distributed JavaScript Objects

To realize erights, we need a distributed, secure, and persistent computational fabric.
We have just seen how SES can secure a local JavaScript environment. Here, we focus
on how to link up multiple secured JavaScript environments into a distributed system.

Communicating Event-Loop Concurrency. JavaScript’s de-facto concurrency model,
on both the browser and the server, is “shared nothing” communicating event loops.
In the browser, every frame of a web page has its own event loop, which is used both
for updating the UI (i.e. rendering HTML) and for executing scripts. Node.js, the most
widespread server-side JavaScript environment, is based on a similar model, although
on the server the issue is asynchronous networking and file I/O rather than UL

In its most general form, an event loop consists of an event queue and a set of event
handlers. The event loop processes events one by one from its queue by dispatching to
the appropriate event handler. In JavaScript, event handlers are usually functions regis-
tered as callbacks on certain events (e.g. button clicks or incoming XHR responses).

The processing of a single event is called a furn of the event loop. Processing an
event usually entails calling a callback function, which then runs to completion without
interruption. Thus, turns are the smallest unit of interleaving.

A system of communicating event loops consists of multiple event loops (in the
same or distributed address spaces) that communicate with each other solely by means
of asynchronous message passing. The Web Workers API enables such communication
among multiple isolated event loops within the same browser. A JavaScript webpage
communicating with a Node.js server using asynchronous XHR requests is an example
of two distributed communicating event loops.

Communicating event loop concurrency makes it manageable for objects to main-
tain their invariants in the face of concurrent (interleaved) requests made by multiple
clients [[L1]. While JavaScript environments already support event loop concurrency, the
JavaScript language itself has no support for concurrent or distributed programming. Q
thus extends JavaScript with a handful of features that enable programmers to more
directly express distributed interactions between individual objects.

Promises. We introduce a new type of object, a promise, to represent both the outcome
of asynchronous operations as well as remote references [12]. A normal JavaScript di-
rect reference may only designate an object within the same event loop. Only promises
designate objects in other event loops. A promise may be in one of several states:

Pending. When it is not yet determined what object the promise designates,
Resolved. When it is either fulfilled or rejected,

Fulfilled. When it is resolved to successfully designate some object,
Rejected. When it will never designate an object, for an alleged reason represented
by an associated error.

6 M.S. Miller, T. Van Cutsem, and B. Tulloh

var tP = Q(target) assignsto tP apromisefor target.If target isalready
a promise, that same promise is assigned. Otherwise, tP is a fulfilled promise des-
ignating target.

Q.promise((resolve,reject) => (...)) returns a fresh promise
which is initially pending. It immediately calls the argument function with two
functions, conventionally named resolve and reject, that can be used to
either resolve or reject this new promise explicitly.

var resultP = tP.then((v) => resultl, (e) => result2)
provides eventual access to t P’s resolution. The . then method takes two callback
arguments, a success callback and an optional failure callback. It registers
these callbacks to be called back in a later turn after tP is resolved. If tP was
fulfilled with a value v, then success (v) is called. If tP was rejected with
an error e, then failure (e) is called. resultP is a promise for the invoked
callback’s result value.

If the callback invoked by . then throws an error, that error is used to reject resultP.
This propagation of errors along chains of dependent promises is called rejected
promise contagion [[L1], and it is the asynchronous analogue of propagating exceptions
up the call stack. If the failure callback is missing, rejecting tP will eventually reject
resultP with the same reason. If pointP is a promise for a local point object, we
may construct a derived point promise as follows:

var newP = pointP.then((point) => point.add(makePoint(1,2)));

Just like it is useful to compose individual functions into a composite function, it is often
useful to compose individual promises into a single promise whose outcome depends
on the individual promises. The Q library provides some useful combinatorf] functions
we use later in the escrow exchange contract:

Q.race (answerPs) takes an array of promises, answerPs, and returns a promise
for the resolution of whichever promise we notice has resolved first. For example,
Q.race([xP,yP]) .then(v => print (v)) will cause either the value of
xP or yP to be printed, whichever resolves first. If neither resolves, then neither
does the promise returned by Q. race. If the first promise to resolve is rejected,
the promise returned by Q. race is rejected with the same reason.

Q.all (answerPs) takes an array of promises and returns a promise for an array of
their fulfilled values. We often need to collect several promised answers, in order to
react either when all the answers are ready or when any of them become rejected.
Given var sumP = Q.all([xP,yP]).then(([x,y]) => x+y), if
both xP and yP are fulfilled with numbers, sumP is fulfilled with their sum.
If neither resolves, neither does sumP. If either xP or yP is rejected, sumP is
rejected with the same reason.

Q.join(xP,yP) takes two promises and returns a promise for the one object they
both designate. Q. join is our eventual equality operation. Any messages sent to
the joined promise are only delivered if xP and yP eventually come to designate

* These are easily built from the above primitives. Their implementation can be found at
wiki.ecmascript.org/doku.php?id=strawman:concurrency.

http://wiki.ecmascript.org/doku.php?id=strawman:concurrency

Distributed Electronic Rights in JavaScript 7

the same target. In this case, all messages are eventually delivered to that target and
the joined promise itself eventually becomes fulfilled to designate that target. Oth-
erwise, all these messages are discarded with the usual rejected promise contagion.

Immediate call and eventual send. Promises may designate both local objects, and
remote objects belonging to another event loop. If the promise comes to designate a
local object (or a primitive value), that value can be accessed via the . then method.

However, if the promise comes to designate a remote object, it is not possible to re-
solve the promise to a local reference. Instead, one must interact with the remote object
via the promise. Any such interaction must be asynchronous, to ensure that interaction
between the event loops as a whole remains asynchronous.

JavaScript provides many operators to interact with an object. Here, we will fo-
cus on only three: method calls, function calls, and reading the value of a property.
JavaScript has the familiar dot operator to express local, immediate method calls, such
aspoint.getX (). We introduce a corresponding infix “!” operator (named the even-
tually) operator, which designates asynchronous, possibly remote interactions.

The ! operator can be used anywhere the dot operator can be used. If pointP is
a promise for a point, then pointP ! getX () denotes an eventual send, which
enqueues a request to call the getX () method in the event loop of point. The syntax
fP ! (x,y), where £P is a promise designating a function £, enqueues a request
to call £ (x,y) in the event loop of £. The ! operator is actually syntactic sugar for
calling a method on the promise object itself:

Immediate syntax ~ Eventual syntax ~Expansion

p.m(x,y) p ! m(x,y) Q(p) .send("m",x,y)
p(x,y) p ! (x,v) Q(p) .fcall (x,vy)
p.m p!m Q(p) .get("m")

Remote object references. A local reference to an object is guaranteed to be unique
and unforgeable, and only grants access to the public interface of the designated object.
When a promise comes to designate a remote object, the promise effectively becomes
a remote object reference. A remote reference only carries eventual message sends, not
immediate method calls. Whereas local references are unforgeable, for remote refer-
ences over open networks, we use unguessability to approximate unforgeability.

Primitive values such as strings and numbers are pass-by-copy—when passed as ar-
guments or returned as results in remote messages, their contents are serialized and
unserialized. JavaScript arrays default to pass-by-copy. All other objects and functions
default to pass-by-reference—when passed as an argument or returned result, informa-
tion needed to access them is serialized, which is unserialized into a remote reference
for sending messages back to this object itself.

Over the RESTful transport [5], we serialize pass-by-reference objects using
unguessable HTTPS URLs (also called web-keys [[13]]). Such a reference may look
like https://www.example.com/app/#mhbgcmmva5ja3, where the frag-
ment (everything after the #) is a random character string that uniquely identifies an
object on the example . com server. We use unguessable secrets for remote object ref-
erences because of a key similarity between secrets and object references: If you do

8 M.S. Miller, T. Van Cutsem, and B. Tulloh

not know an unguessable secret, you can only come to know it if somebody else who
knows the secret chooses to share it with you.

Q.passByCopy (record) will override the pass-by-reference default, marking
record as pass-by-copy. The record will then be shallow-copied to the destina-
tion, making a record with the same property names. The values of these properties
get serialized according to these same argument passing rules.

2.5 NodeKen: Distributed Orthogonal Persistence

Rights, to be useful, must persist over time. Since object-references are our represen-
tation of rights, object references and the objects they designate must persist as well.
We have already covered the distributed and secure aspects of Dr. SES. Here, we cover
resilience against failures.

To introduce resilience, Dr. SES builds upon the Ken platform [6]. Ken applications
are distributed communicating event loops, which aligns well with JavaScript’s de-facto
execution model. The event loop of a Ken process invokes application-level code to
process incoming messages (one turn, i.e., one event loop iteration, per message). In
addition, Ken provides:

Distributed Consistent Snapshots. Ken provides a persistent heap for storing appli-
cation data. All objects stored in this heap are persistent. Ken ensures that the
snapshots of two or more communicating processes cannot grow inconsistent, by
recording messages in flight as part of a process’ snapshot.

Reliable Messaging. Under the assumption that all Ken processes eventually recover,
all messages transmitted between Ken processes are delivered exactly once, in
FIFO order. A permanently crashed Ken process is indistinguishable from a very
slow process. To deal with such situations, applications may still want to do their
own failure handling using time-outs.

A set of Ken processes can tolerate arbitrary failures in such a way that when a process
is restarted after a crash, it is always restored to a previously consistent state. To the
crashed process itself, it is as if the crash had never happened. To any of the process’s
communication partners, the process just seemed slow to respond. A crash will never
cause messages to be dropped or delivered twice.

To achieve orthogonal persistence of JavaScript programs, the Ken platform must be
integrated with the JavaScript runtime. NodeKen is our attempt at layering the Node.js
runtime on top of Kenf NodeKen can then be used as a stand-alone J avaScript environ-
ment to run persistent server-side Dr. SES programes. It is not our aim to embed Ken into
the browser. This leads to two types of Dr. SES environments: Dr. SES in the browser
runs in an ephemeral environment that ceases to exist when the user navigates to a dif-
ferent page, or closes the page. Objects and object references in such environments are
not persistent.

3 At the time of writing, NodeKen does not yet exist. We are actively working on integrating
Ken with the v8 JavaScript virtual machine, upon which Node.js is based. See
https://github.com/supergillis/v8-ken.

https://github.com/supergillis/v8-ken

Distributed Electronic Rights in JavaScript 9

By contrast, Dr. SES on NodeKen runs in a persistent environment. JavaScript ob-
jects born in such an environment are persistent by default, as are object references
spanning two persistent Dr. SES environments. Eventual message sends made using the
“1” operator over persistent references are reliable.

Following the philosophy of Waterken [4]], the persistent Java web server where the
Ken ideas originated, we expect it to be common for ephemeral and persistent Dr. SES
environments to communicate with each other, The ephemeral environment (inside the
browser) primarily deals with UI and the persistent environment stores durable applica-
tion state, a distributed form of the Model-View-Controller pattern. In the remainder of
this paper, we assume that all Dr. SES code runs in persistent Dr. SES environments.

Implementation. Ken achieves distributed consistent snapshots as follows:

e During a turn, accumulate all outgoing messages in an outgoing message queue.
These messages are not yet released to the network.

e At the end of each turn, make an (incremental) checkpoint of the persistent heap
and of all outgoing messages.

o After the end-of-turn checkpoint is made, release any new outgoing messages to
the network and acknowledge the incoming message processed by this turn.

e Number outgoing messages with a sequence number (for duplicate detection and
message ordering).

e Periodically retry sending unacknowledged outgoing messages (with exponential
back-off) until an acknowledgement is received.

e Check incoming messages for duplicates. When a duplicate message is detected, it
is dropped (not processed) and immediately acknowledged.

The key point is that outgoing messages are released, and incoming messages are ac-
knowledged, only after the message has been fully processed by the receiver and the
heap state has been checkpointed. The snapshot of a Ken process consists of both the
heap and the outgoing message queue. It does not include the runtime stack (which is
always empty between turns) nor the incoming message queue.

Checkpointing a program’s entire state after every event loop turn may be considered
costly. Ken takes care to only store those parts of the heap to disk that are updated
during a turn. Further, the availability of cheap low-latency non-volatile memory (such
as solid-state drives) has driven down the cost of writing state to “disk” to the point that
making micro-snapshots after every turn becomes practical.

Ken and security. The Ken protocol guarantees distributed snapshots even among mu-
tually suspicious machines. An adversarial process cannot corrupt the distributed snap-
shots of benign processes.

The implementation of Ken underlying NodeKen currently does not use an en-
crypted communications channel to deliver messages between Ken processes. Hence,
the authenticity, integrity or confidentiality of incoming messages cannot be guaran-
teed. In NodeKen, our plan is to actively secure the communications channels between
NodeKen processes using a cryptographic libraryﬁ

% An outline of such a design, due to Brian Warner, is available online:
eros-os.org/pipermail/cap-talk/2012-September/015386.html

http://eros-os.org/pipermail/cap-talk/2012-September/015386.html

10 M.S. Miller, T. Van Cutsem, and B. Tulloh

Now that we’ve seen the elements of Dr. SES, we can proceed to explain how to use
it to build erights and smart contracts.

3 Toward Distributed Electronic Rights

The elements of Dr. SES demonstrate how JavaScript can be transformed into a dis-
tributed, secure, and resilient system. At its core is the recognition that object refer-
ences represent a right to perform a set of operations on a specific, designated resource.
This emphasis on distributed rights has its counterpart in society: a system of rights is
society’s answer to creating distributed, secure, and resilient commercial systems.

Global commerce rests on tradeable rights. This system is: “the product of thousands
of years of evolution. It is highly complex and embraces a multitude of actions, objects,
and individuals. ... With minor exceptions, rights to take almost all conceivable actions
with virtually all physical objects are fixed on identifiable individuals or firms at every
instant of time. The books are kept up to date despite the burden imposed by dynamic
forces, such as births and deaths, dissolutions, and new technology.” [[14]]

Rights help people coordinate plans and resolve conflicts over use of resources.
Rights partition the space of actions to avoid interference between separately formulated
plans, thus enabling cooperative relationships despite mutual suspicion and competing
goals [[15]. This rights-based perspective can shed light on the problem of securing dis-
tributed computational systems.

All computational systems must address the problem of open access. Global mutable
state creates a tragedy of the commons: since anyone can access and change it, no one
can safely rely on it. Use conflicts arise from both intentional (malicious) and unin-
tentional (buggy) actions. Preventing use conflicts over shared state is one of the main
challenges designers face in building computational systems.

Historically, two broad strategies for avoiding the tragedy of the commons have
emerged: a governance strategy and a property rights strategy [16]]. The governance
approach solves the open access problem by restricting access to members and regu-
lating each member’s use of the shared resource. The property rights approach divides
ownership of the resource among the individuals and creates abstract rules that govern
the exchange of rights between owners. These approaches have their analogues in com-
putational systems: ocap systems pursue a property rights strategy, while access control
lists implement a governance strategy.

Access control lists solve the open access problem by denying unauthorized users
access, and specifying access rights for authorized users. Great effort is put into perime-
ter security (firewalls, antivirus, intrusion detection, and the like) to keep unauthorized
users out, while detailed access control lists regulate use by authorized users.

Governance regimes have proved successful in managing shared resources in many
situations [[17]. However, they tend to break down under increasing complexity. As the
number of users and types of use increases, the ability of governance systems to limit
external access and manage internal use breaks down. Perimeter security can no longer
cope with the pressure for increased access, and access control lists cannot keep up with
dynamic requests for changes in access rights.

Distributed Electronic Rights in JavaScript 11

The property rights strategy deals with increasing complexity by implementing a
decentralized system of individual rights. Rights are used to partition the commons into
separate domains under the control of specific agents who can decide its use, as long
as the use is consistent with the rights of others. Instead of excluding non-members at
the perimeter, the property strategy brings all agents under a common set of abstract
rules that determine how rights are initially acquired, transferred, and protected [18].
Individual rights define the boundaries within which agents can act free of interference
from others. Contracts enable the exchange of rights across these protected domains.

The ocap approach can be seen as analogous to an individual rights approach to
coordinating action in society. The local unforgeable object reference and the remote
unguessable reference represent one kind of eright—the right to invoke the public in-
terface of the object it designates. In ocap systems, references bundle authority with
designation [19]. Like property rights, they are possessory rights: possession of the ref-
erence is all that is required for its use, its use is at the discretion of the possessing
entity, and the entity holding the reference is free to transfer it to others [20].

The private law system of property, contract, and tort brings resources into a system
of rights. Property law determines the initial acquisition of rights; contract law governs
the transfer of rights; and tort law protects rights from interference [21]. Ocap systems
follow a similar logic: the rules of object creation make it easy to create objects with
only the rights they need, the message passing rules govern the transfer of rights, and
encapsulation protects rights from interference [[7]].

While object references represent a kind of eright, they differ in several respects from
more familiar rights in society. For example, object references are typically shared.
When Alice gives Bob a reference to an object, she is transferring a copy of the refer-
ence thereby sharing access to the object. In society, transfers of rights usually take the
form of a transfer of exclusive access due to the rivalrous nature of physical objects. I
give up my access to my car when I transfer title to you. Exclusive rights is the default
in the physical world; complex legal frameworks are needed to enable sharing (partner-
ships, corporations, easements, and so forth). Computational systems face the opposite
tradeoff: sharing is easy, but exclusivity is hard.

In the next sections, we will show how, by building on object references as erights,
we can create new kinds of erights at a new level of abstraction. We look first at how
money can be implemented as a smart contract. Money differs from other forms of
property in several ways [22]]. Here, we identify four dimensions in which money differs
from object references as rights. Object references are shareable, specific, opaque, and
exercisable, whereas money is exclusive, fungible, measurable, and symbolic.

By contrast with object references that are shareable, money needs to be exclusive
to serve as medium of exchange. Bob does not consider himself paid by Alice until
he knows that he has exclusive access to the funds. Object references are also specific;
they designate a particular object. Money, on the other hand, is fungible. You care about
having a certain quantity of a particular currency, not having a specific piece of currency.
One dollar is as good as another.

Objects are opaque. The clients of an object can invoke it but don’t necessarily
know how it will react—that information is private to the object. By contrast, money is

12 M.S. Miller, T. Van Cutsem, and B. Tulloh

measurable. Bob must be able to determine that he really has a certain quantity of a
particular currency. Finally, money, unlike object references, is never exercisable. The
right you have when you have an object reference is the right to do something: the right
to invoke the behavior of the object it designates. Money, however, has no direct use
value; its value is symbolic. It has value only in exchange.

Contracts manipulate rights. The participants in a contract each bring to it those
rights the contract will manipulate [23]. The logic of the contract together with the
decisions of the participants determines which derived rights they each walk away with.
The simplest example is a direct trade. Since half the rights exchanged in most trades
are money, we start with money.

4 Money as an Electronic Right

Figure [[l is our implementation of a money-like rights issuer, using only elements of
Dr. SES explained above. To explain how it works, it is best to start with how it is
used. Say Alice wishes to buy something from Bob for $10. The three parties involved
would be Alice, Bob, and a $ issuer, which we will informally call a bank. The starting
assumptions are that Alice and Bob do not trust each other, the bank does not trust either
Alice or Bob, and Alice and Bob trust the bank with their money but with nothing else.
In this scenario, Alice is willing to risk her $10 on the possibility of Bob’s non-delivery.
But Bob wants to be sure he’s been paid before he releases the good in exchange.

What do these relationships mean in terms of a configuration of persistent objects?
Say Alice owns (or is) a set of objects on machine A, Bob on machine B, and the bank
on machine C. In order for Alice to make a buy request of Bob, we assume one of
Alice’s objects already has a remote reference to one of Bob’s objects. Alice’s trust of
the bank with her money is represented by a remote reference to an object within the
bank representing Alice’s account at the bank. We refer to such objects as purses. The
one for Alice’s account is Alice’s main purse. And likewise for Bob. Where do these
initial account purses come from?

For each currency the bank wishes to manage, the bank calls makeMint () once
to get a mint function for making purses holding units of that currency. When Alice
opens an account with, say $100 in cash, the bank calls mint (100) on its $ mint, to
make Alice’s main purse. The bank then gives Alice a persistent remote reference to
this purse object within the bank.

For Alice to pay Bob, she sets up a payment purse, deposits $10 into it from her
main purse, and sends it to Bob in a buy request, together with a description of what
she wishes to buy.

var paymentP = myPurse ! makePurse() ;
var ackP = paymentP ! deposit (10, myPurse);
var goodP = ackP.then(_ => bobP ! buy(desc, paymentP)) ;

On the diagram in Figure[Il each makeMint call creates a layer with its own (mint,
m) pair representing a distinct currency. Each mint call creates a nested layer with its

Distributed Electronic Rights in JavaScript 13

1 var makeMint = () => {
» var m = WeakMap () ;
3 var makePurse = () => mint(

4+ var mint = balance => { \
5 var purse = def ({ makeMlnt /

6 getBalance: () => balance,

7 makePurse: makePurse,

8 deposit: (amount, srcP) =>

9 Q(srcP) .then(src => {

10 Nat (balance + amount) ;

11 m.get (src) (Nat (amount)) ;

12 balance += amount;

13 1)

14 Y

15 var decr = amount => { balance = Nat(balance - amount); };
16 m.set (purse, decr);

17 return purse;

18}
return mint;

o

0 };

Fig. 1. The Mint Maker

own (purse, decr, balance) triple. On line 16 of the code, each purse to decr
mapping is also entered into the m table shared by all purses of the same currency. Al-
ice’s main purse is on the bottom purse layer. Bob’s is on the top layer. Alice’s payment
purse, being sent to Bob in the buy message, is in the middle layer.

Bob receives this request at the following buy method:

buy: (desc, paymentP) => {

/I do whatever with desc, look up $10 price

return (myPurse ! deposit (10, paymentP)).then(_ => good);
}

Bob’s buy method handles a message from untrusted clients such as Alice, and thus it
does not know what object Alice actually provided as the payment argument. At this
point, the purse provided by Alice is specific—it is the specific object Alice designated,
but to Bob it also is opagque. In particular, Bob has no idea if his paymentP parameter
actually designates a purse, whether it is a purse at this bank, of this currency, and with
adequate funds. Even if he knew all these conditions were true at the moment, due to
the shareable nature of argument passing, Bob wouldn’t know the funds would still be
there by the time he deposits it. Alice may have retained a reference to it. He delegates
all these problems to the bank with the deposit request above.

If the bank’s deposit method acknowledges a successful deposit, by fulfilling the
promise for the result of the deposit, then Bob knows he has obtained exclusive access
to a fungible and measurable quantity of a given currency at a given bank. In this case,

14 M.S. Miller, T. Van Cutsem, and B. Tulloh

the success callback of the . then above gets called, returning the good, fulfilling
Alice’s pending goodP promise.

The interesting work starts on line 11, where deposit looks up the alleged payment
purse in the m table. If this is anything other than a purse of the same currency at the
same bank, this lookup will instead return unde £ ined, causing the following function
call to throw an error, rejecting Bob’s promise for the result of the deposit, rejecting
Alice’s goodP. If this lookup succeeds, it finds the decr function for decrementing
that purse’s balance, which it calls with the amount to withdraw. If the payment has
insufficient funds, balance - amount would be negative and Nat would throw.

We have now arrived at the commit point. All the tests that might cause failure have
already passed, and no side effects have yet happened. Now we perform all side effects,
all of which will happen since no locally observable failure possibilities remain. The
assignment decrements the payment purse’s balance by amount, and decr returns.
Line 12 increments the balance of the purse being deposited into.

The success callback in the deposit method implicitly returns undefined, ful-
filling Bob’s promise for the result of the deposit request, triggering Bob to release
the good to Alice in exchange.

5 The Escrow Exchange Contract

In the mint maker scenario, Alice must risk her $10 on the possibility of Bob’s non-
delivery. We now introduce an escrow exchange contract that implements an all or
nothing trade. We explain the escrow exchange contract in terms of a scenario among
five players: Alice, Bob, a money issuer (running the code of Figure [I)), a stock issuer
(also running the code of Figure[Ilbut with the units representing shares of some partic-
ular stock), and an escrow exchange agent (running the code of Figure2). The diagram
at the top of Figure 3 shows the initial relationships, with the escrow exchange agent in
the role of contract host.

Alice and Bob again do not trust each other. They wish to trade $10 of Alice’s money
for 7 shares of Bob’s stock, but in this case, neither is willing to risk their assets on the
possibility of the other’s non-delivery. They both trust the same money issuer with their
money, the same stock issuer with their stock, and the same escrow exchange agent
with the rights to be traded. The money issuer, the stock issuer, and the escrow ex-
change agent each have no prior knowledge or trust in the others. Additionally, none of
these trust Alice or Bob. The rest of the scenario as presented below examines only the
consequences of Alice or Bob’s misbehavior and assumes the other three run the code
shown honestly. A full analysis of vulnerabilities should consider all combinations.

Since the situation is now symmetric, we explain the progression of events from
Alice’s perspective. Alice’s prior trust in each issuer is represented as before—Alice
holds a persistent reference to her main purse at each issuer. Alice’s prior trust in the
escrow exchange agent is represented as the ability to provide the first “a” argument in
the call to escrowExchange (Figure[2 line 12) for which Bob is able to provide the
second “b” argument.

Distributed Electronic Rights in JavaScript 15

phase 2

phase 1 & o
phase 1 # o

phase 2

CE _/

All

| var transfer = (decisionP, srcPurseP, dstPurseP, amount) => {
2 var makeEscrowPurseP = Q.join(srcPurseP ! makePurse,

3 dstPurseP ! makePurse) ;

4 var escrowPurseP = makeEscrowPurseP ! ();

5 Q(decisionP) .then (/I setup phase 2
6 _ => { dstPurseP ! deposit (amount, escrowPurseP); 1},

7 _ => { srcPurseP ! deposit (amount, escrowPurseP); });

s return escrowPurseP ! deposit (amount, srcPurseP); //phase l

o };

10 var failOnly = cancellationP => Q(cancellationP) .then (

11 cancellation => { throw cancellation; });

12 var escrowExchange = (a, b) => { // a from Alice, b from Bob
13 var decide;
14 var decisionP = Q.promise (resolve => { decide = resolve; });

15 decide (Q.race([Q.all ([

16 transfer (decisionP, a.moneySrcP, b.moneyDstP, b.moneyNeeded),
17 transfer (decisionP, b.stockSrcP, a.stockDstP, a.stockNeeded)
18 1),

19 failOnly (a.cancellationP),

20 failOnly (b.cancellationP)]));

21 return decisionP;

Fig. 2. The Escrow Exchange Contract

16 M.S. Miller, T. Van Cutsem, and B. Tulloh

Alice might create this argument as follows:

var cancel;
var a = Q.passByCopy ({
moneySrcP: myMoneyPurse ! makePurse(),
stockDstP: myStockPurse ! makePurse(),
stockNeeded: 7,
cancellationP: Q.promise(r => { cancel = r; })
1)

a.moneySrcP ! deposit (10, myMoneyPurse) ;

w_ 9

By a protocol whose details appear below, Alice sends this “a” object to the escrow
exchange agent, for it to use as the first argument in a call to escrowExchange,
which initiates this specific contract between Alice and Bob. The escrowExchange
function returns a promise for the outcome of the contract, which the escrow exchange
agent returns to Alice.

If this outcome promise becomes fulfilled, the exchange succeeded, she should ex-
pect her a.moneySrcP to be drained, and 7 shares of stock to be deposited into her
a.stockDstP promptlyﬂ If this promise becomes rejected, the exchange failed, and
she should expect her $10 to reappear in her a .moneySrcP promptly. In the mean-
time, if she gets impatient and would rather not continue waiting, she can call her
cancel function with her alleged reason for walking away. Once she does so, the
exchange will then either succeed or fail promptly.

On lines 13 and 14 of Figure Pl the escrowExchange contract makes a
decisionP promise whose fulfillment or rejection represents its decision about
whether the exchange must succeed or fail. It makes this decision by calling decide
with the outcome of a race between a Q.all and two calls to failOnly. Until a
player cancels the exchange, the Q. race can only be won by the Q.all, where the
exchange is proceeding.

The arguments to Q.al1l are the results of two calls to transfer. The first call to
transfer sets up an arrangement of objects whose purpose is to transfer money from
Alice to Bob. The second call’s purpose is to transfer stock from Bob to Alice. Each
call to transfer returns a promise whose fulfillment or rejection indicates whether it has
become confident that this one-way transfer of erights would succeed. If both transfers
become confident (before any cancellations win the race), then the overall decision is
to proceed. If either transfer indicates failure, by rejecting the promise it has returned,
then, via Q.all, decisionP becomes rejected

We do not feed the cancellation promises directly into the race, as Alice could then
fulfill the cancellation promise, causing the race to signal a decision to proceed with the
exchange, even though Alice’s money has not been escrowed, potentially giving Bob’s
stock to Alice for free. Instead, once the cancellation promise has been either fulfilled

7 By ”promptly” we mean, once the relevant machines are up, processes running, and reachable
to each other over the network.

8 This pattern implements two phase commit enhanced with the possibility of cancellation,
where the call to escrowExchange creates a transaction coordinator, and each of its calls
to transfer creates a participant.

Distributed Electronic Rights in JavaScript 17

or rejected, the promise returned by failOnly will only become rejected. Only the
0Q.all can win the race with a success.

Since the two calls to transfer are symmetric, we examine only the first. The
first phase of the transfer, on line 8 of Figure[2] attempts to deposit Alice’s money into
an escrow purse mentioned only within this transfer. If this deposit succeeds, Alice’s
money has been escrowed, so the money portion of the exchange is now assured. If this
deposit fails, then the exchange as a whole should be cancelled. So transfer simply
returns the promise for the outcome of this first deposit.

The transfer function sets up the second phase on lines 5, 6, and 7. If the over-
all decision is that the exchange should succeed, the success callback deposits Alice’s
escrowed money into Bob’s account. Otherwise it refunds Alice’s money.

Only one mystery remains. How does the escrow agent obtain a fresh escrow purse
at this money issuer, in order to be confident that it has obtained exclusive access to the
money at stake? Since the escrow exchange agent has no prior knowledge or trust in
the money issuer, it cannot become confident that the issuer is honest or even that the
money it issues means anything. The question is meaningless. Instead, it only needs to
obtain a fresh escrow purse whose veracity is mutually acceptable to Alice and Bob.

If the escrow contract simply asks Alice’s purse for a new empty purse
(srcPurseP ! makePurse ()), Alice could return a dishonest purse that acknowl-
edges deposit without transferring anything. Alice would then obtain Bob’s stock for
free. If it simply asks Bob’s purse, then Bob could steal Alice’s money during phase
1. Instead, it checks if their makePurse methods have the same object identity by
using Q.join on promises for these two methods. This is why, on lines 3 and 7 of
Figure[dl all purses of the same currency at the same bank share the same function as
their makePurse method. If the Q. join of these two methods fails, then either Alice
was dishonest, Bob was dishonest, or they simply didn’t have prior agreement on the
same currency at the same money issuer.

6 The Contract Host

Once Alice and Bob agree on a contract, how do they arrange for it to be run in a
mutually trusted manner?

To engage in the escrow exchange contract, Alice and Bob had to agree on the is-
suers, which is unsurprising since they need to agree on the nature of rights exchanged
by the contract. And they had to agree on an escrow exchange agent to honestly run this
specific escrow exchange contract. For a contract as reusable as this, perhaps that is not
a problem. But if Alice and Bob negotiate a custom contract specialized to their needs,
they should not expect to find a mutually trusted third party specializing in running this
particular contract. Rather, it should be sufficient for them to agree on:

The issuers of each of the rights at stake.

The source code of the contract.

Who is to play which side of the contract.

A third party they mutually trust to run their agreed code, whatever it is, honestly.

18 M.S. Miller, T. Van Cutsem, and B. Tulloh

| var makeContractHost = () => {) §$§
> var m = WeakMap () ;
3 return def ({

4 setup: contractSrc => {

5 contractSrc = ' ’+contractSrc,

6 var tokens = [];

7 var argPs = [];

8 var resolve;

9 var resultP = Q.promise(r => { resolve = r; });

10 var contract = confine (contractSrc, {Q: Q});

11 var addParam = (i, token) => {

12 tokens[1] = token;

13 var resolveArg;

14 argPs[i] = Q.promise(r => { resolveArg = r; });

15 m.set (token, (allegedSrc, allegedI, arg) => {

16 if (contractSrc !== allegedSrc) {

17 throw new Error (’unexpected contract: ’+contractSrc) ;
18 }

19 if (i !== allegedI) {

20 throw new Error (’unexpected side: ’'+1i);

21 }

2 m.delete (token) ;

3 resolveArg (arg) ;

24 return resultpP;

25 1)

2 Y

27 for (var i = 0; i < contract.length; i++) {

2 addParam (i, def({}));

29 }

30 resolve (Q.all (argPs) . then (

31 args => contract.apply(undefined, args)));

32 return tokens;

33 .,

34 play: (tokenP, allegedSrc, allegedI, arg) => Q(tokenP) .then (
35 token => m.get (token) (allegedSrc, allegedI, arg))

1)

Fig. 3. The Contract Host

Distributed Electronic Rights in JavaScript 19

Figure B shows the code for a generic contract host. It is able to host any contract
formulated, as our escrow exchange contract is, as a function, taking one argument
from each player and returning the outcome of the contract as a whole. Setting up a
contract involves a necessary asymmetry among the players. One of the players, say
Bob, must initiate a new live contract instance by sending the contract’s code to the
contract host. At this point, only Bob knows both this contract instance and that he’d
like to invite Alice to participate in this instance. If Bob simply sent to Alice references
to those objects on the contract host that enable Alice to play, Alice would not know
what she’s received, since she received it from Bob whom she does not trust. She does
trust the contract host, and these objects are on the contract host, but so are the objects
corresponding to other contracts this host is initiating or running. Only Bob can connect
Alice to this contract instance, but Alice’s confidence that she’s playing the contract she
thinks she is must be rooted in her prior trust in the contract host.

Our contract host is an object with two methods, setup and play. Bob sets up the
contract instance by calling setup with the source code for the contract function in
question, e.g., escrowExchange. At line 32, setup returns an array of unique un-
forgeable tokens, one for each contract parameter. Bob’s invitation to Alice includes this
token, the source for the contract he wishes Alice to play, the argument index indicating
what side of the contract Alice is to play, and the contract host in question.

If Alice decides she’d like to play this contract, she formulates her argument object
as above, and sends it in a play request to the contract host along with the token, the
alleged contract source code, and the alleged side she is to play. If all of this checks out
and this token has not previously been redeemed, then this token gets used up, Alice’s
argument is held until the arguments for the other players arrive, and Alice receives a
promise for the outcome of the contract. Once all arguments arrive, the contract function
is called and its result is used to resolve the previously returned promise.

By redeeming the token, Alice obtains the exclusive right to play a specific contract
whose logic she knows, and whose play she expects to cause external effects. This eright
is exclusive, specific, measurable, and exercisable.

7 Conclusions

In human society, rights are a scalable means for organizing the complex cooperative
interactions of decentralized agents with diverse interests. This perspective is helping
us shape JavaScript into a distributed resilient secure programming language. We show
how this platform would enable the expression of new kinds of rights and smart con-
tracts simply, supporting new forms of cooperation among computational agents.

Acknowledgements. Many people contributed to the progress reported here, including
the e-lang community for refining ocap-based smart contracting, the Google Caja group
for SES’s growth and deployment, TC39 for making ESS and successors friendly to
ocaps, Tyler Close for the first Ken and Q, Terence Kelly for the new Ken, and Kris
Kowal for the new Q.

Tom Van Cutsem is a post-doctoral fellow of the Research Foundation, Flanders.
Thanks to Terry Stanley, Kevin Reid, and Terence Kelly for suggestions improving this

paper.

20

M.S. Miller, T. Van Cutsem, and B. Tulloh

References

1. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9)
(1997)

2. Tribble, E.D., Miller, M.S., Hardy, N., Krieger, D.: Joule: Distributed Application Founda-
tions. Technical Report ADd03.4P, Agorics Inc., Los Altos (December 1995),
erights.org/history/joule/

3. Miller, M.S., Morningstar, C., Frantz, B.: Capability-Based Financial Instruments. In:
Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 349-378. Springer, Heidelberg (2001),
www.erights.org/elib/capability/ode/index.html

4. Close, T.: Waterken Server: capability-based security for the Web (2004),
waterken.sourceforge.net

5. Close, T.: web send, waterken.sourceforge.net/web send/

6. Yoo, S., Killian, C., Kelly, T., Cho, H.K., Plite, S.: Composable reliability for asynchronous
systems. In: Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC 2012, p. 3. USENIX Association, Berkeley (2012)

7. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and Con-
currency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA (May
2006)

8. Mettler, A.: Language and Framework Support for Reviewably-Secure Software Systems.
PhD thesis, EECS Department, University of California, Berkeley (December 2012)

9. Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis of
security-critical javascript apis. In: 2011 IEEE Symposium on Security and Privacy (SP),
pp- 363-378. IEEE (2011)

10. Jones, A.K.: Protection in Programmed Systems. PhD thesis, Department of Computer Sci-
ence, Carnegie-Mellon University (June 1973)

11. Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency Among Strangers: Programming in E
as Plan Coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705,
pp. 195-229. Springer, Heidelberg (2005)

12. Liskov, B., Shrira, L.: Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems. In: PLDI 1988: Proc. ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, pp. 260-267. ACM Press, New York
(1988)

13. Close, T.: Web-key: Mashing with permission. In: W2SP 2008 (2008)

14. Jensen, M.C., Meckling, W.H.: Specific and general knowledge and organizational structure.
Journal of Applied Corporate Finance 8(2), 4-18 (1995)

15. Steiner, H.: An Essay on Rights. Wiley-Blackwell (1994)

16. Smith, H.E.: Exclusion versus governance: two strategies for delineating property rights.
Journal of Legal Studies 31 (2002)

17. Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action.
Cambridge University Press (1990)

18. Hayek, F.A.: Law, Legislation and Liberty. Rules and Order, vol. 1. University of Chicago
Press (1973)

19. Hardy, N.: The Confused Deputy. Operating Systems Review (October 1988)

20. Mossoff, A.: What is property-putting the pieces back together. Arizona Law Review 45, 371
(2003)

21. Epstein, R.A.: Simple Rules for a Complex World. Harvard University Press (1995)

22. Fox, D.: Property rights in money. Oxford University Press (2008)

23. Barnett, R.E.: A consent theory of contract. Columbia Law Review 86, 269 (1986)

http://erights.org/history/joule/
http://www.erights.org/elib/capability/ode/index.html
http://waterken.sourceforge.net
http://waterken.sourceforge.net/web_send/

The Compiler Forest

Mihai Budiu!, Joel Galenson':2, and Gordon D. Plotkin':?

! Microsoft Research, Silicon Valley
2 University of California, Berkeley
3 University of Edinburgh

Abstract. We address the problem of writing compilers targeting complex ex-
ecution environments, such as computer clusters composed of machines with
multi-core CPUs. To that end we introduce partial compilers. These compilers
can pass sub-programs to several child (partial) compilers, combining the code
generated by their children to generate the final target code. We define a set of
high-level polymorphic operations manipulating both compilers and partial com-
pilers as first-class values. These mechanisms provide a software architecture for
modular compiler construction. This allows the building of a forest of compilers,
providing a structured treatment of multistage compilers.

1 Introduction

Today’s computers are routinely composed of multiple computational units: multi-core
processors, hyperthreaded processors, graphics processors, and multi-processors; we
use the term “execution engine” for these computational resources. The work pre-
sented in this paper was motivated by the DryadLINQ compiler [27]. DryadLINQ
translates programs written in the LINQ programming language (Language INtegrated
Query) [[17]] into distributed computations that run on shared-nothing computer clusters,
using multiple cores on each machine. The core DryadLINQ compilation is structured
as a three-stage process: (1) translating a cluster-level computation into a set of interact-
ing machine-level computations, (2) translating each machine-level computation into a
set of CPU core-level computations, and (3) implementing each core-level computation.

Modifying a compiler stage requires deep understanding of both the compiler archi-
tecture and its implementation. We would prefer to be able to experiment easily, replac-
ing some stages without knowing the implementation of others. Our goal is therefore to
develop a general modular software architecture enabling compilers for distributed exe-
cution environments to be factored into a hierarchy of completely independent compil-
ers, or “pieces” of compilers that cooperate via well-defined interfaces; the architecture
should allow different pieces to be mixed and matched, with no access to source code
or knowledge of internals.

To this end we propose a novel architecture employing a standard type-theoretical
interface. In Section [2l we present partial compilers, a formalization of a “piece” of a
compiler: partial compilers need “help” from one or more child compilers to produce
a complete result. The resulting composite compilers form compiler forests. Formally,
one uses polymorphic composition operations on compilers and partial compilers. The
interface between component compilers is surprisingly simple and succinct. Traditional
compiler stages can be recast as partial compilers.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 21-}0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

22 M. Budiu, J. Galenson, and G.D. Plotkin

We present other natural poly-
source target morphic composition operations on
compilers and partial compilers in
Partial Sections 2] and Bl Taken together,
compiler | these operations can be seen as a
form of “structured programming”
, target’ manipulating compilers and partial
compilers as first-class values. We

Child thereby support dynamic compiler
Compiler construction and extension, enabling
sophisticated users to construct, cus-
Fig.1. L: A compiler translates sources to targets. tomize, and extend compilers by
R: A partial compiler invokes the service of a child mixing predefined and custom-built
compiler. compiler components.

The theoretical foundations we
establish have immediate practical applications. To demonstrate this, we revisit the
original problem of compiling LINQ for computer clusters. In order to expose the
fundamental ideas without undue detail, we use a stylized version of LINQ, called
pLINQ. This language is rich enough to express many interesting computations, in-
cluding the popular MapReduce [6] large-scale computation model. In Section [we
build a fully functional compiler for uLINQ that executes programs on a computer
cluster with multi-core machines.

Remarkably, partial compliers have their origins in work on categorical logic and
on computer-assisted theorem proving, specifically de Paiva and Hyland’s Dialectica
categories [5412] and Milner’s tactics [10419], the building blocks of his approach to
computer-aided theorem proving. Section [3] treats the mathematical foundations of par-
tial compilers in terms of a slight variant of the Dialectica category incorporating
compile-time effects via a suitable monad. The morphisms of this category can be viewed
as providing (the semantics of) a typed version of Milner’s tactics. The polymorphic op-
erations on partial compilers and compilers that we use to manipulate them as first-class
objects were inspired by categorical considerations. For example, the composition and
tensor operations of Section 2] correspond to compositions and tensors of morphisms.

We have also validated the partial compiler architecture with two proof-of-concept
compiler implementations: a (simplified) reimplementation of DryadLINQ, and a com-
piler for large-scale matrix expressions. They are described briefly in Section[@l Finally,
Sections[7land B discuss related work and conclude.

source target

G
generate

R
reduce

source

2 Compilers and Partial Compilers

We call the program fed as input to a compiler a “source” (usually denoted by S), and
the output generated by the compiler a “target” (usually denoted by T'). The intuition
behind partial compilers is shown on the right of Figure [l There a partial compiler
reduces the source program to a source’ program, to be handled by a child compiler.
Given a target’ result obtained from the source’ program by the child compiler, the
partial compiler then generates the target for the original source program.

The Compiler Forest 23

More generally, a partial compiler may use several child compilers. For example,
given a source, a cluster-level partial compiler may generate a target to distribute input
data among many machines, of various types, instructing each machine to perform a
computation on its local data. In order to generate the target code running on each ma-
chine, the cluster-level compiler creates machine-level source programs source’, which
are handed to machine-level child compilers, one for each type of machine; these, in
turn, generate the needed machine-level target’s. The global, cluster-level target con-
tains code to (1) move data between machines and (2) invoke machine-level target’s of
appropriate types on cluster machines and their local data.

2.1 Definitions

With these intuitions in mind, we can now give a theory of partial compilers. We take a
call-by-value typed lambda calculus as our compiler language, and use it to define par-
tial compilers and operations on them. We do not detail the calculus, but we make use of
product and function types, labeled sum types (see [22]), list types, and base types. Our
theory permits the lambda calculus to be effectful, i.e., we permit compile-time effects;
it also permits recursion. However neither our examples nor our implementations make
use of either of these two possibilities.

Formally, we take the calculus to be a suitable extension of Moggi’s computational
lambda calculus [20/2141] to allow for compile-time effects. For its semantics we as-
sume available a Cartesian closed category equipped with a strong “compile-time”
monad T¢omp and suitable extra structure to accommodate the sum types, etc. As
our examples and implementations use neither compile-time effects nor recursion, the
reader can assume there that the category is that of sets and functions, so that types
denote sets and terms denote elements of them.

Compilers transform sources into targets so they are terms C' typed as:

C : source — target

as pictured on the left of Figure [Il We do not specify the relationship between source
and target; in particular, the target type of some compiler may be the source type of
some other compiler.

Rather than making specific choices of target languages, we use a lambda calculus
to define the semantics [7T'] of targets T' output by compilers. We assume that the target
computations output by compilers act on a type “data” so that this semantics has the
form:

[T] : data — data

As in the case of the compiler language, we do not detail such a run-time lambda cal-
culus, but, in particular, it may have run-time effects. In general, target languages may
differ in both the data their targets handle and the run-time effects they create; however,
for simplicity, we keep both fixed in the examples.

Formally, we (again) use the computational lambda calculus, but for the semantics
we now use “run-time” monads T, to account for run-time effects. As it suffices for
the examples at hand, we work in the category of sets, but nothing depends on that.

We define (unary) partial compilers to be terms of type:

PC': source— (source’ x (target’ — target))

24 M. Budiu, J. Galenson, and G.D. Plotkin

As discussed above, the idea is that, given a source program, a partial compiler “re-
duces” it to a source’ program, to be handled by a child compiler, and also produces a
“generation” function that, given a target’ obtained from the child, returns the required
target. With this type, compile-time effects can occur at two points: when reducing the
original source, and when computing the target.

To make formulas more readable we employ syntactic sugar for both types and terms.
We write

(source, target) —o (source’, target’)

for the above partial compiler type, reading the type as “going from source to source’
and then back from target’ to target”; and we write

Compiler S : source.
Reduction R,
Generation T’ : target’. G

for the partial compiler
AS : source. let S”: source’ be Rin (', XT": target’. G)

Note that S is bound in both the reduction and generation clauses.

Figure[T] (right) shows a simple compiler tree, consisting of a parent partial compiler
invoking the services of a child compiler. We model this by a polymorphic composition
operation, which returns a compiler, given a (parent) partial compiler and a (child)
compiler. Let PC' be a partial compiler, as above, and C' : source’ — target’ be a
compiler. We write their composition using angle brackets:

PC{C)) : source — target
and define it to be:
AS : source. let (S”, G) be PC(S)in G(C(S"))

If there are no compile-time effects, we can view the operation of the compiler PC {(C))
on a source S’ as going through a sequence of compiler stages or passes:

fsto PC' c , snd(PC(S)) T

S’ T

where the last pass snd(PC(S)) is a function of the initial source. In contrast, the
operation of the partial compiler PC' is a “partial” sequence of passes:

fstoPC

S S’

The core function of our methodology is to generate useful patterns of such passes in a
structured way, including combining partial passes. We define the composition

? T, snd(PC(S)) T

PC{(PC"Y : (source, target) —o (source”, target”)
of a partial compiler PC' with a partial compiler
PC’ : (source’, target’) —o (source”, target”)
to be:
AS : source. let (57, G) be PC(S)inlet (S”,G') be PC'(8")in (8”,G o G')

The Compiler Forest 25

In terms of a partial sequence of passes this is:

fstoPC fstoPC’ 2, snd(PC'(S") T snd(PC (S))

S S’ S" =T T

Certain equations hold in the computational lambda calculus, for all compiler-time ef-
fects. Partial compiler composition is associative:

PC(PC (PC")) = PC(PC)(PC")
and the two compositions are compatible, as shown by the action equation:
PC(PC'(C) = PC{PC){C)

The partial compiler Id =g4o¢ (AS.S, A\(S,T).T') passes a given source to its child and
then passes back the target generated by its child unchanged. It is the identity element
for composition, i.e., the following identity equations hold:

Id{PC) = PC = PC(Id) Id{Cy) = C
Unary partial compilers can be generalized to n-ary terms PC™ of type
source —» ((source} X ... x sourcel,) X (target] x ... x target!) — target)

One can reduce such n-ary partial compilers to unary partial compilers by taking source’
to be source] X ... x source, and target’ to be target] x ... x target] . Compilers can
be thought of as 0-ary partial compilers. The ability to write n-ary partial compilers that
can communicate with several children, which may be addressing different execution
engines, is crucial to our approach.

To define composition on n-ary partial compilers we iterate two pairing operations,
which are both called tensor, on compilers and partial compilers. For the first, given
compilers Cj : source; — target; (for ¢ = 1, 2), we define their tensor

C1 ® Cy : (source; X sourcey) — (target; X target,)

to be:
C1 ® Cy = A(S1,52). (C1(S1), C2(S2))

Given an n-ary partial compiler PC™ and n compilers C; : source; — target; (for
it = 1,...,n) the n-ary composition PC™({(C,...,Cy)) is an abbreviation for the
unary composition PC™{(Cy ® ... ® Cy)). The n-fold tensor is the iterated binary one,
associated to the left; it is the trivial compiler for n = 0.

Next, we define the binary tensor

PC, ® PC, : (source; X sourceg, target; X targety) —o
(source] x source), target] X targets)

of two partial compilers
PC, : (source;, target;) —o (source], target;)
to be:

AS1, S2. let (S1,G1) be PC(S1) in
let (S5, G2) be PC',(S2) in
(S1, 84), ATy, To et T3, T} be Ga(Ty), G (Th) in (T}, T)

26 M. Budiu, J. Galenson, and G.D. Plotkin

The reason for the “twist” in the order of the G’s is explained in Section[3l Intuitively,
Go’s effects are “well-bracketed” by G1’s.

Using this tensor, one defines the composition of an n-ary partial compiler with n
partial compilers via iterated tensors, analogously to the case of compilers. One then
obtains suitable n-ary generalizations of the above unary associativity, action, and unit
equations for the two n-ary compositions. These hold when there are no compile-time
effects; Section[3 discusses the general case.

2.2 An Example: The Sequential Partial Compiler

We give an example of a binary partial compiler and its composition with two com-
pilers; Section 3.4 makes use of the composition of partial compilers. We consider
compiling source programs .S obtained from the composition of two simpler sources
prefix(S) and suffix(S), where:

prefix, suffix : source — source
The binary partial compiler
PC’%EQ : (source, target) —o (source x source, target x target)

generates (partial) sources from the source prefix and suffix, and the targets obtained
for these two sources are composed:

Compiler S : source.
Reduction (prefix(S), suffix(5)),
Generation Tprefix : target, Teusmyx : target. Comp(Tsusrix, Tprefix)

where Comp is an assumed available composition operation with semantics:

Hcomp(Tsufﬁxa Tpreﬁx)]] = \d : data. [[Tsufﬁx]]([[Tpreﬁx]] (d))

Suppose we wish to run our computation on a computer with a CPU and a graphics
card (GPU). Assume we have compilers Cgpy, generating a GPU target’, and Ccpuy,
generating a CPU target, and a term rungpy : target’ — target that, given 7”, pro-
duces a T" with the same semantics that loads 7" on the GPU and then runs it on the data
supplied to 7', returning the result to the CPU. The composition of Cepy with rungpuy
then defines a compiler Cg : source — target such that, for all source’s S and data d:

[Ca(9)](d) = [rungpu(Caru(5)](d) = [Capu(5)](d)

Given a source program, we can then run its prefix on the GPU and its suffix on the
CPU, using the binary composition PC3p, (Ca, Copu)) of the binary partial compiler
PC&g, with the two compilers C and Copy.

3 Compilers and Partial Compilers as First-Class Objects

While composition and tensor are the main operations on compilers and partial compil-
ers, we now discuss five more, shown in Table [Tl

The Compiler Forest 27

Table 1. Generic compiler operations described in this paper

. . Partial .
Operation Symbol Compilers Compilers Section
Composition ~ {()) Yes Yes 21
Tensor ® Yes Yes 21
Star * Yes No Bl
Conditional COND Yes Yes B2l
Cases CASES Yes Yes
Functor PCrune No Yes B4
Iteration DO No Yes 3.5l

3.1 Star

So far we have considered partial compilers whose arity is constant. We generalize,
defining partial compilers that operate with lists of sources and targets. For any compiler
C : source — target, we define C* : source™ — target®, the star of C, to be the
pointwise application of C' to all elements of a given list [of sources:

C*(I) = map(C,1)

Consider the partial compiler PCqpq, : (source, target) —o (source”, target™) that
generalizes the sequential compiler PC’%EQ from Section2.21by decomposing a source
S that is function composition into a list [Sy, ..., S,] of its components. Given a com-
piler C' : source — target for simple sources, the composition PCgrq (C*)) is a
compiler for queries that are an arbitrary composition of simple sources. A practical
example involving the star operation is given in Section4.2]

3.2 Conditionals

The partial compiler operations we have constructed so far are all independent of the
sources involved; by allowing dependence we obtain a richer class of compiler compo-
sition operations. For example, it may be that one compiler is better suited to handle a
given source than another, according to some criterion:

Pred : source — bool

We define a natural conditional operation to choose between two compilers

COND : (source—bool) x (source— target)? — (source— target)

by:
COND = A(p, (Cy,C2)). AS.if p(S) then C1(S) else C2(S)

We may write [F' Pred THEN Cy ELSE Cs instead of COND(Pred, (C1, C2)). There
is an evident analogous conditional operation on partial compilers.

We can use the conditional to “patch” bugs in a compiler without access to its imple-
mentation. Assume we have a predicate bug : source — bool that describes (a superset
of) the sources for which a specific complex optimizing compiler Copt generates an

28 M. Budiu, J. Galenson, and G.D. Plotkin

incorrect target. Let us also assume that we have a simple (non-optimizing) compiler
CsivpLE that always generates correct targets. Then the compiler

IF bug THEN CSIMPLE ELSE COPT

“hides” the bugs in Copr.

3.3 Cases

Similar to the * operation, but replacing list types by labeled sum types, we can define
a “cases” operation, a useful generalization of conditional composition. Given n indi-
vidual compilers C; : source; — target (fori = 1,...,n) together with a function
W : source — [; :sourceq + ...+ [, :source,, we define

CASES W OF 11 : Cy, ..., 0, : Cy
to be the compiler C' : source — target where:
C(S) = cases W(S) of 11 : C1(S), ..., 1 : Cu(S)

We give a practical example using CASES in Section[d.2]
There is an evident analogous cases operation on partial compilers. Given two partial
compilers PC, : (source;, target) —o (source’, target’), we define

CASES W OF Iy : PCy,...,l,, : PC

to be the partial compiler PC' : (source, target) —o (source’, target’) given by:
AS. cases W (S) of 11 : PC{(S),...,l, : PC_(S)

3.4 Functor

Given functions f : source — source’ and g : target’ — target, we define the partial
compiler

PCrunc(f,g) : (source, target) —o (source’, target’)

to be:
Compiler S : source.

Reduction f(S5),
Generation T' : target’. g(T")

This operation is functorial, meaning that this equation holds:

PCFunc(fvg)«PCFunc(f/’ g/)» = PCFunc(f/ofa gog/)

We describe two useful applications in which g is the identity id¢arget On target.

Traditional compilers usually include a sequence of optimizing passes, given by op-
timizing transformation functions Opt : source — source. Such passes correspond to
partial compilers of the form PCpy,,.(Opt, Idiarget)-

The Compiler Forest 29

Staged compilers (e.g., [13124]) are frequently built from a sequence of transforma-
tions between (progressively lower-level) intermediate representations, followed by a
final compilation step:

Trans; Trans, 1 C
source; - source,, — target

One can model this structure by composing partial compilers PCp,,,,.(Trans;, Id¢arget)
obtaining a partial compiler PCy;, . : (sourcey, target) —o (source,, target), where

PCgiage =def PCpypc(Transy, Id)((. .. (PCprypc(Trans,—1,1d))) .. .))

The final compiler is then PCqg,,.(C)). This integrates staged compilation into our
framework in a straightforward way.

3.5 Iteration

The iteration operation iterates a partial compiler
PC : (source, target) —o (source, target)

up to n times, stopping if a given predicate Pred : source — bool becomes true. We
define
Hpc : nat — ((source, target) —o (source, target))

to be:
Hpc(0) =1d
Hpc(n+1) = IF Pred THEN 1d ELSE PC {Hpc(n)))

(We assume the A-calculus has a facility for primitive recursion.) Applying Hpc to
Nwum : nat, one obtains the partial compiler

DO PC UNTIL Pred FOR Num TIMES

This could be used to repeatedly apply an optimizing compiler PC' until a fixed-point
is reached, as detected by Pred.

4 Application to Query Processing

In this section we return to our motivating problem: compiling LINQ. We introduce
essential aspects of LINQ and give a much simplified version, called pLINQ, that is
small enough to be tractable in a paper, but rich enough to express interesting compu-
tations. We develop a hierarchy of partial compilers that, composed together, provide
increasingly more powerful pLINQ compilers. In the LINQ terminology, inherited from
databases, source programs are called “queries” and target programs are called “plans”.

4.1 LINQ and pLINQ

LINQ was introduced in 2008 as a set of extensions to traditional .Net languages such
as C# and F#. It is essentially a functional, strongly-typed language, inspired by the
database language SQL (or relational algebra) and comprehension calculi [3]. Much as
in LISP, the main datatype manipulated by LINQ computations is that of lists of values;
these are thought of as (data) collections.

30 M. Budiu, J. Galenson, and G.D. Plotkin

LINQ operators transform collections to other collections. Queries (source programs)
are (syntactic) compositions of LINQ operators. For example, the query
C.Select(e => f(e)),wheree => f(e) is the LINQ syntax for the lambda expres-
sion \e.f (e), uses the Select operator (called map in other programming languages)
to apply £ to every element e of a collection C. The result is a collection of the same
size as the input collection. The elements e can have any .Net type, and f (e) can be
any .Net computation returning a value. The core LINQ operators are named after SQL.
All LINQ operators are second-order, as their arguments include functions.

pLINQ Syntax. The basic datatypes are ranged over by I, 0, and K (which stand for

CLIY3

“input”, “output” and “key”); they are given by the grammar:
I:=B|I"

where B ranges over a given set of primitive datatypes, such as int, the type of integers.
The type I* stands for the type of collections (taken to be finite lists) of elements of type
I. The corresponding .NET type is IEnumerable(I).

WLINQ queries (source programs) consist of sequences of operator applications; they
are not complete programs as the syntax does not specify the input data collection (in
contrast to LINQ). They are specified by the grammar

Query ::= OpAp,;...;0pAp, (n>0)

OpAp ::= SelectMany<I,0>(FExp) |
Aggregate<I>(FExp,Exp) |
GroupBy<I,K>(FExp)

Here Exp and FExp range over given sets of expressions and function expressions, of
respective given types I or I; X ... x I, — 0. The details of the given primitive types,
expressions, and function expressions are left unspecified.

Only well-formed operator applications and queries are of interest. The following
rules specify these and their associated types:

SelectMany<I,0>(FExp):I*—0* (if FExp has type I —0%)
Aggregate<I>(FExp,Exp):I*—TI*

(if FExp has type I x I — I, and Exp has type I)
GroupBy<I,K>(FExp):I*—I** (if FExp has type I — K)

OpAp; : I; — Iiy1 (i=1,...,n)
OpAp;;...;0pAp, : I1 — T4

pLINQ Semantics. We begin with an informal explanation of the semantics. A query
of type I* — 0* denotes a function from I collections to O collections. We begin with
operator applications and then consider composite queries.

SelectMany<I,0>(FExp) applied to a collection returns the result of applying
FExp to all its elements and concatenating the results. So, for example, the query
SelectMany<int,int>(n => [n,n+1]) applied to C' =gt [1,2,3,4, 5] results in
the list [1,2,2,3,3,4,4,5,5,6].

Aggregate<I>(FExp,Exp) applied to a collection produces a singleton list con-
taining the result of a fold operation [11] performed using FExp and Exp. So, for

The Compiler Forest 31

example, Aggregate<int,int>((m,n) => m+n,6) applied to C results in the list
1+ (2+ B+ (4+ (5+6))))] = [21]. Some of the compilers we construct require
that such aggregations are (commutatively) monoidal, i.e., that FExp is associative (and
commutative) with unit Exp.

GroupBy<I,K>(FExp) groups all the elements of a collection into a collection of
sub-collections, where each sub-collection consists of all the elements in the original
collection sharing a common key; the key of a value is computed using FExp. The sub-
collections in the result occur in the order of the occurrences of their keys, via FExp, in
the original collection, and the elements in the sub-collections occur in their order in the
original collection. So, for example, GroupBy(n => n mod 2) applied to C results in
the list [[1,3,5],[2,4]].

Composite queries are constructed with semicolons and represent the composition,
from left to right, of the functions denoted by their constituent operator applications.

The formal definition of pLINQ is completed by giving it a denotational semantics.
We only show the semantics for a language fragment; it is easy, if somewhat tedious,
to spell it out for the full language. First we assign a set [I] to every uLINQ type I,
assuming every primitive type already has such a set assigned:

[T1 X ... X I,] =def [T1] X - .- x [I.]

Next, to any well-typed operator application OpApp : I — 0 we assign a function
[0pApp] : [I] — [0], given a denotation [Exp] € [I] for each expression Exp : I. For
example:

[Aggregate<T>(FExp,Exp)](d) =qet [fold([FExp], [Exp], d)]
Finally, to any well-typed query S : I — 0 we assign a function [S] : [I] — [0]
[OpAp;;- - -;0pAp,] =det [OPAP,] °. .. [OpAp,] (n >0)

pLINQ and MapReduce. The popular MapReduce [6] distributed computation pro-
gramming model can be succinctly expressed in pLINQ:

MapReduce (map, reduceKey, reduce) : I* — 0"
is the same as
SelectMany (map) ;GroupBy (reduceKey) ;SelectMany (1l => [reduce(1l)])

where map : I — 0 is the map function, reduceKey : 0 — K computes the key for
reduction, and reduce : 0* — 0 is the reduction function. (Since we use SelectMany
for applying the reduction function, the result of reduce is embedded into a list with a
single element.)

4.2 Compiling pLINQ

A Single-Core Compiler. We start by defining the types for sources (queries) and
targets (plans). Let us assume we are given a type FExp corresponding to the set of
function expressions, and a type Exp for constants. Then we define types OpAp and
MLSource, corresponding to the sets of pLINQ operator applications and queries by
setting:

32 M. Budiu, J. Galenson, and G.D. Plotkin

OpAp = SelectMany : FExp +
Aggregate : FExpxExp +
GroupBy : FExp
MLSource = OpAp*

We assume we have a type MLTarget of yLINQ targets (plans) T with semantics [77] :
MLData — MLData, where MLData consists of lists of items, where items are
either elements of (the semantics of) a basic uLINQ type B, or lists of such items.

As a basic building block for constructing 4LINQ compilers, we start from three
very simple compilers, each of which can only generate a plan for a query consisting of
just one of the operators:

CselectMany : FExp — MLTarget
Caggregate : FExpxExp — MLTarget
Ceroupy : FExp — MLTarget

The denotational semantics of yLINQ operators (Section [4.1)) gives a blueprint for a
possible implementation of these compilers.

We use the CASES operation from Section [3.3]to combine these three elementary
compilers into a compiler that can handle simple one-operator queries:

Coo = CASES (AS : OpAp. S) OF
SelectMany : CselectMany
Aggregate : Caggregates
GroupBy : CGroupBy

Finally, we use the generalized sequential partial compiler PCgp, and the star opera-
tion, both introduced in Section3.]] to construct a compiler

C LLINQ MLSource — MLTarget

for arbitrary pLINQ queries, where
CuLING = PCspq(Coo)

A Multi-core Compiler. In this example we construct a partial compiler PCy; to
allow our single-core compiler to target a multi-core machine whose cores can exe-
cute plans independently. The most obvious way to take advantage of the available
parallelism is to decompose the work by splitting the input data into disjoint parts, per-
forming the work in parallel on each part using a separate core, and then merging the
results.

Table 2. Compiling a query .S for a dual-core computer

S collate(S, I,) part (S, d)
SelectMany (FExp) l-r prefix(d)
Aggregate (FExp,Exp) [[FExp](headexp (1), headesp(r))] prefix(d)
[z € d| [FExp](z) €

GroupBy (FExp) ber prefix(setr(map([FExp], d)))]

The Compiler Forest 33

A partial compiler PCy; : (OpAp, MLTarget) — (OpAp, MLTarget) for opera-
tor applications for multi-core machines with cores ¢ and co can be given by:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget. Gme(S,T)

where, for any OpAp S, MLTarget T":

[Gume (S, T)](d) = Ad : MLData. let d’ be part(S,d) in
collate(S, [run, (T)](d"), [run., (T)](d\d"))

The definition of the semantics of Gyic, which we now explain, provides a blueprint
for its intended parallel implementation. First, the functions run,,,run., ensure that
their argument MLTarget is run on the specified core; they act as the identity on the
semantics. Next, for any list d, part(.S, d) and d\part(S, d) constitute a division of d
into two parts in a query-dependent manner; here d\d’ is chosen so that d = d’ - (d\d’),
if possible (we use - for list concatenation). The function “collate” assembles the results
of the computations together, also in a query-dependent manner.

There are many possible ways to define part and collate and one reasonable speci-
fication is shown in Table[2] There, prefix(d) gives a prefix of d, headgyp(d) is the first
element of d, assuming d is non-empty, and [Exp] otherwise, and setr(d), which is used
to ensure that a given key is in only one partition, consists of d with all repetitions of an
element on its right deleted.

The SelectMany operator is homomorphic w.r.t. concatenation. It can be computed
by partitioning the collection d into an arbitrary prefix and suffix, applying SelectMany
recursively on the parts, and concatenating the results.

Similarly, if monoidal, Aggregate (FExp,Exp) is homomorphic w.r.t. the aggrega-
tion function FExp, so it can be applied to an arbitrary partition of d, combining the two
results using FExp.

Finally, GroupBy partitions the input collection d so that values with the same key
end up in the same partition. (It does so by splitting the codomain of the key function
FExp into two arbitrary disjoint sets.) The results of recursively applying GroupBy on
these partitions can be concatenated as the groups from both parts will also be disjoint.

The complete multi-core pLINQ compiler is given by

PCspq{(PCuc(Coo)™)

It is straightforward to generalize this to machines with n cores by suitably modifying
part and collate.

Note that we have achieved a non-trivial result: we have built a real pLINQ compiler
targeting multi-cores by writing just a few lines of code, combining several simple
compilers. This implementation is certainly not optimal as it repartitions the data around
each operation, but we can transform it into a smarter compiler by using the same
techniques. The functionality it provides is essentially that of PLINQ [7]], the parallel
LINQ implementation.

Compilation for Distributed Execution. The strategy employed for the multi-core
compiler for parallelizing uLLINQ query evaluations across cores can be used to paral-
lelize further, across multiple machines, in a manner similar to the DryadLINQ

34 M. Budiu, J. Galenson, and G.D. Plotkin

compiler. We add one additional twist by including resource allocation and schedul-
ing in the plan language. Consider an example of a cluster of machines, and suppose
we are dealing with a large input collection, stored on a distributed filesystem (e.g., [9])
by splitting the collection into many partitions resident on different cluster machines
(each machine may have multiple partitions). The goal of the generated plan is to pro-
cess the partitioned collections in an efficient way, ideally having each piece of data be
processed by the machine where it is stored. In the following simple example we just
use two machines.
We define the operator application unary partial compiler PC ., to be:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget. Ger, (S, T)

where, for any OpAp S and MLTarget T,

[Gen(S,T)](d) = Ad : MLData.
let mq, mo:Machine be getm, getm in
let d’ be mpart(S,d, m1,ms) in
collate(S, [run(my, T)](d’), [run(me, T)](d\d"))

Here, Machine is the type of cluster machines and the constant getm:Machine nonde-
terministically schedules a new machine. When applied to S, d, m1, mo, the function
mpart returns the first part of a partition of d into two, using a policy not detailed here;
as in the case of part, when S is a GroupBy the two parts should contain no common
keys. Note that the run functions are now parametrized on machines. The relative loca-
tion of data and machines on the cluster is important. In particular, the partition policy
for mpart may depend on that; we also assume that the code run(m, T) first loads re-
mote data onto m. As before, the semantics of G¢y, provides a blueprint for a parallel
implementation.

Formally we assume given a set Sch of scheduler states, and as run-time monad Ty,
take F+(Sch x X)5, the standard combination of side-effect and nondeterminism
monads (F(X) is the collection of non-empty finite subsets of X); for [getm] we
assume an allocation function Sch — F*(Sch x [Machine]).

The cluster-level operator application compiler is then obtained by composing the
cluster partial compiler with the multi-core compiler described previously

PCCluster <<PCMC <<COO>> >>

and then the complete compiler is:
PCsrq(PCaster (PCuc{Coo)))™)

The cluster-level compiler is structurally similar to the multi-core compiler, but the col-
lections themselves are already partitioned and the compiler uses the collection struc-
ture to allocate the computation’s run-time resources.

This compiler is in some respects more powerful than MapReduce, because (1) it
can handle more complex queries, including chains of MapReduce computations and

The Compiler Forest 35

(2) it parallelizes the computation across both cores and machines. With a tiny change
we obtain a compiler that only parallelizes across machines:

PCSEQ <<PCCluster <<COO >> - >> .

With a little more work one can also add the only important missing MapReduce opti-
mization, namely early aggregation in the map stage.

5 Mathematical Foundations

We now turn to a semantical account of partial compilers in terms of a category of
tactics. We then discuss the categorical correlates of our polymorphic operations on
compilers and partial compilers, and the relationships with the Dialectica category and
Milner’s tactics. We work with a cartesian closed category K with a strong monad T.
This supports Moggi’s computational lambda calculus [20]: each type o denotes an
object [o] of K, and every term

T1:01,...,&p 0, M :T
denotes a morphism of K
[M]: [o1] x ... x [on] = [7]

As is common practice, we may confuse terms and their denotations, writing M instead
of [M]; in particular we make free use of the definitions and notation of Section[2l In
doing so, we can use types and terms as notations for objects and morphisms, and treat
objects x as type constants denoting themselves and morphisms f:x — y as constants
denoting elements of the corresponding function type x — y. We can also use the proof
rules of the computational lambda calculus to establish relations between morphisms.

The objects of our category of tactics are pairs (P, S) of objects of K; we call P
and S (objects of) problems and solutions, respectively. The morphisms from (P, S) to
(P’,S") are morphisms of K of the form

FiP—T(P x (8" = T(S)))

and it is these that are called tactics.
The identity on (P, S) is Id(pgy = Az : P.(z,\y : S.y) and the composition

(P,S) 2L (P, 8"y of (P,S) L5 (P!, 8") and (P', ") % (P",5")is gf = f{(g)
(note the order reversal), making use of the definition in Section[2] Using Moggi’s laws
for the computational lambda calculus, one can show that composition is associative
with the identity as unit, and so this does indeed define a category.

Rather than speaking of sources, targets and partial compilers, we have chosen here
to speak more neutrally of problems, solutions and tactics. We follow Blass [2] for
problems and solutions, and Milner for tactics: one can think of tactics as tactics for re-
ducing problems to subproblems. Compilers are simply modelled as Kleisli morphisms
P — T(S).

We now consider the categorical operations corresponding to some of the operations
on partial compilers and compilers that we defined above. We define the action of a
given tactic f : (P,) — (P’,5") on a Kleisli morphism h : P* —s T(S") by:

36 M. Budiu, J. Galenson, and G.D. Plotkin

h-f=f{h):P— S

using the composition operation of partial compilers with compilers of Section [2 In
terms of this “right action” notation the action equations of Sectionlbecome:

(h-g)- f=h-gf h-Id=Id

We define tensors of Kleisli morphisms and tactics similarly, again making use of the
definitions in Section 2l The expected functorial laws

deld=Id (f @ d)(f ®9) =(f® g9

for the tensors of tactics hold if the monad is commutative [14], for example when
there are no compile-time effects, or for nondeterminism, probabilistic choice, or non-
termination (so having recursion is fine); typical cases where they fail are exceptions or
side-effects. When they hold, so too do the expected associativity, action, and unit laws
for the n-ary compositions defined in Section[2l

In general one obtains only a premonoidal structure [23] with weaker laws:

deld=Id (f®g) = Id)Id® f)
(ffeold(feld=(ffold ((dod¢)Ideg)=(1do gq)

The “twist” in the definition of the tensor in Section2l of two tactics is needed to obtain
these laws. The weaker laws yield correspondingly weaker laws for the n-ary composi-
tions.

Turning to Section 3] the cases operation arises from the fact that categorical sums
exist when the solution objects are the same, i.e., (P, S) + (P2, S) = (P1+ P, S), and
the functorial operation arises from the evident functor from K7* x K to the category
of tactics (K is the Kleisli category of T). The literature on Dialectica categories
contains further functorial constructions that may also prove useful—for example, the
sequential construction of Blass [2] is intriguing.

The Dialectica category has the same objects as the tactics category. A morphism
(f,9) : (P,S) — (P',5’) consists of a reduction function f : P — P’ and a
solution function g : P x S’ — S. This is essentially the same as a tactic, in the case
of the identity monad, and the Dialectica category is then equivalent to the category
of tactics. To incorporate compile-time effects in the Dialectica category, one might
alternatively try f : P — T(P’) and g : P x 8" — T(S). However this does not
give a category: the evident composition is not associative.

As we have said, partial compilers also arose by analogy with Milner’s tactics. Milner
cared about sequents and theorems, whereas we care about sources and targets. His
tactics produce lists and have the form:

sequent — (sequent™ X (theorem™ — theorem))
But these are nothing but partial compilers of type:
(sequent, theorem) —o (sequent”, theorem™)

Our methods of combining partial compilers correspond, more or less, to his tacti-
cals, e.g., we both use a composition operation, though his is adapted to lists, and the

The Compiler Forest 37

composition of two tactics may fail. He also makes use of an OR tactical, which tries
a tactic and, if that fails (by raising a failure exception), tries an alternate; we have
replaced that by our conditional partial compiler.

6 Implementations

Section M] describes a compiler for a stylized language. We used the compiler forest
architecture to implement two proof-of-concept compilers for (essentially) functional
languages targeting a computer cluster: one for LINQ and one for matrix computations.
The implementations reuse multiple partial compilers.

Our compiler forest implementations closely parallel the examples in this paper. The
lowest layer implements “tactics” (see Section [3): computations on abstract problems
and solutions that provide the basic composition operation. On top of this we build a
partial compiler abstraction, where problems are source programs and solutions are tar-
gets. We then implement a combinator library for the operations described in Sections
and[3l A set of abstract base classes for partial compilers, programs, data, optimization
passes, and execution engines provide generic useful operations. A set of libraries pro-
vides support for manipulating .Net System.Ling.Expressions objects, which are
the core of the intermediate representation used by all our compilers. To implement
partial compilers one writes source reduction functions R and target generation func-
tions G, exactly as described in Section 2l

Compiling LINQ. The LINQ compiler structure closely parallels the description from
Section 4] but handles practically the entire LINQ language, with a cluster-level com-
piler (PC¢y,ster)» @ machine multi-core compiler (PC)c), and a core-level compiler
based on native LINQ-to-objects. We also implemented a simple GPU compiler Cgpy
based on Accelerator [26]. A conditional partial compiler steers queries to either Copy
or PCy;¢, since Cgpy handles only a subset of LINQ, and operates on a restricted set
of data types.

While our implementation is only preliminary, it performs well and has served to
validate the architectural design. For example, when running MapReduce queries, our
multi-core compiler produces a speed-up of 3.5 using 4 cores. We tested our compiler on
a cluster with 200 machines; at this size the performance of MapReduce computations
is essentially the same as with DryadLINQ, since I/O is the dominant cost in such
applications.

Compiling Matrix Algebra. We have defined a simple functional language for com-
puting on matrices, with operations such as addition, multiplication, transposition, solv-
ing linear systems, Cholesky factorization, and LU decomposition. All these operations
are naturally parallelizable. The matrices are modeled as two-dimensional collections
of tiles, where the tiles are smaller matrices. Large-scale matrices are distributed col-
lections of tiles, each of which is a matrix composed of smaller tiles. This design is
useful for dense matrices; by making tiles very small it can also accommodate sparse
matrices.

The top-level partial compiler translates matrix operations into operations on collec-
tions of tiles. The collection operations are translated by a second-level partial compiler

38 M. Budiu, J. Galenson, and G.D. Plotkin

into LINQ computations on collections of tiles, where the functions FExp applied to the
elements are also tile/matrix operations. The collection computations are then passed to
the distributed LINQ compiler of Section [6fto generate code running on a cluster. The
basic distributed matrix compiler is:

PCSEQ <<PCMatrix «CTilea CCluster>>* >>

where PC)y,,.:. 1S @ binary partial compiler that rewrites an operation on matrices in
terms of a LINQ computation (compiled by its second child) applying functions to a
set of tiles (compiled by its first child), and Cciyster is the distributed LINQ compiler
described previously.

Figure [2] illustrates how the work of compiling the expression M1 x M2 + M3 is
partitioned between the compilers involved. In this example we do not use a multi-core
LINQ compiler as part of Cciyster-

m1t = M1Tiles.HashPartition(t => t.X)
m2t = M2 Tiles. HashPartltlon(t =>1tY)

HashPartltlon(t =>t. Pos)

Apply(

rs iy i >.t.|;)s.).

| .Select(g => g.Aggregate((t1, t2) => new Tlle(tl+ t2- t.Pos))))

m3t = M3.Tiles.Concat(m1m2)
iHashPartition(t => t.Pos)
LApply(

PCseq | PCivatrix i CTlIe a1 CCLUSTER l CLINQ_]

Fig. 2. Intermediate result produced when compiling the expression M1 * M2 + M3 using the
distributed matrix compiler. The colored dotted lines indicate how various parts of the program
are generated or assigned to various compilers; PCggq is responsible for the complete program.
We show the logical program state just before the leaf compilers Criic and Cring (which is
a part of Cciuster) are invoked. HashPartition implements the “part” partitioning construct,
while Apply corresponds to the “run,,” construct that executes a program on one partition, and
Concat is concatenation.

7 Related Work

Federated and heterogeneous distributed databases also decompose computations be-
tween multiple computation engines. In the former, queries are converted into queries
against component databases using wrappers [25/15]], and most work concentrates on
optimizations. Partial compilers serve a similar, but more general, role as they can have
multiple children while wrappers operate on a single database. Regarding the latter,

The Compiler Forest 39

systems such as Dremel [[18] that use a tree of databases to execute queries could be
implemented in a principled way using a hierarchy of partial compilers.

The authors of [16] use graph transformations to allow multiple analyses to commu-
nicate. In [4] cooperating decompilers are proposed, where individual abstract interpre-
tations share information. Our approach supports these applications using the iteration
operation.

As we have seen, multistage compilers, e.g., [13124]], fit within our framework. How-
ever our formalism is more general than standard practice, as non-unary partial compil-
ers enable branching partial multistage compilation, dividing sources between different
engines, or parallelizing data computations.

8 Discussion and Conclusions

We made several simplifications so as to concentrate on the main points: partial com-
pilers and their compositions. For example, uLINQ does not have a join operator, and
function expressions were left unspecified; in particular they did not contain nested
queries. Adding join leads to tree-shaped queries rather than lists, and nested queries
lead to DAG’s: indeed DryadLINQ plans are DAG’s. (There seems to be no natu-
ral treatment of operator-labeled DAG’s for functional programming in the literature,
though there is related work on graphs [8]].) There is a version of the star operator of
Section[3.I] for trees, which enables the compiler of Sectiond.2]to be extended to joins;
there should also be a version for DAG’s.

A well-known shortcoming of modularity is that it hides information that could po-
tentially be useful across abstraction boundaries thereby impacting performance (see for
example the micro-kernel/monolithic operating system debate); in our context, it may
prevent cooperating partial compilers from sharing analysis results. A way to “cheat”
to solve this problem is to use a partial compiler whose source language is the same as
the intermediate language of its parent — a much richer language than the source alone.
Whether this approach is practical remains to be validated by more complex compiler
implementations.

The benefits of structuring compilers as we do may extend beyond modularity: since
partial compilers are now first-class values, operations for compiler creation, compo-
sition and extensibility can be exposed to users, allowing compilers to be customized,
created and invoked at run-time.

Partial compilers were motivated by the desire to discover the “right” interface be-
tween a set of cooperating compilers (the components of DryadLINQ described in the
introduction). We were surprised when we stumbled on the partial compiler method-
ology, because it is extremely general and very simple. A partial compiler provides a
compilation service to the upper layers (as do traditional compilers), but also invokes
the same, identical service from the lower layers. While this structure looks overly sim-
ple, it is surprisingly powerful; one reason is that the objects that cross the interface
between compilers are quite rich (source and target programs).

Acknowledgements. We are grateful to Martin Abadi, Gavin Bierman, Valeria de Paiva,
Robert Harper, Martin Hyland, Michael Isard, Frank McSherry, and Phil Scott for their
comments and suggestions.

40

M. Budiu, J. Galenson, and G.D. Plotkin

References

1.

2.

12.
13.

14.

15.

17.

18.

20.
21.
23. Pierce, B.C.: Types and programming languages. MIT Press (2002)
24.
25.
26.

27.

Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L.,
Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42—-122. Springer, Heidelberg (2002)
Blass, A.: Questions and answers — a category arising in linear logic, complexity theory, and
set theory. In: Advances in Linear Logic. London Math. Soc. Lecture Notes, vol. 222, pp.
61-81 (1995)

. Buneman, P, et al.: Comprehension syntax. SIGMOD Record 23(1), 87-96 (1994)
. Chang, B.-Y.E., Harren, M., Necula, G.C.: Analysis of low-level code using cooperating

decompilers. In: Proc. 13th SAS, pp. 318-335. ACM (2006)

. de Paiva, V.: The Dialectica categories. In: Proc. Cat. in Comp. Sci. and Logic, 1987. Cont.

Math., vol. 92, pp. 47-62. AMS (1989)

. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proc.

6th OSDI, pp. 137-150. ACM (2004)

. Duffy, J.: Concurrent Programming on Windows. Addison Wesley (2008)
. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program. 11(5), 467—

492 (2001)

. Ghemawat, S., Gobioff, H., Leung, L.: The Google file system. In: Proc. 19th SOSP, pp.

29-43. ACM (2003)

. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Hei-

delberg (1979)

. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct. Program. 9(4),

355-372 (1999)

Hyland, J.M.E.: Proof theory in the abstract. APAL 114(1-3), 43-78 (2002)

Kelsey, R., Hudak, P.: Realistic compilation by program transformation. In: Proc. 16th POPL,
pp- 281-292. ACM (1989)

Kock, A.: Commutative monads as a theory of distributions. Theory and Applications of
Categories 26(4), 97-131 (2012)

Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32,
422-469 (2000)

. Lerner, S., et al.: Composing dataflow analyses and transformations. In: Proc. 29th POPL,

pp- 270-282. ACM (2002)

Meijer, E., et al.: LINQ: reconciling object, relations and XML in the .NET framework. In:
Proc. SIGMOD Int. Conf. on Manage. Data, p. 706. ACM (2006)

Melnik, S., et al.: Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow. 3,
330-339 (2010)

. Milner, R., Bird, R.: The use of machines to assist in rigorous proof. Phil. Trans. R. Soc.

Lond. A 312(1522), 411-422 (1984)

Moggi, E.: Computational lambda-calculus and monads. In: Proc. 4th LICS, pp. 14-23. IEEE
Computer Society (1989)

Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55-92 (1991)

Power, J., Robinson, E.: Premonoidal categories and notions of computation. MSCS 7(5),
453-468 (1997)

Sarkar, D., Waddell, O., Dybvig, R.K.: Educational pearl: A nanopass framework for com-
piler education. J. Funct. Program. 15(5), 653-667 (2005)

Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Comput. Surv. 22, 183-236 (1990)

Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPU’s for
general-purpose uses. In: Proc. 12th. ASPLOS, pp. 325-335. ACM (2006)

Yu, Y., et al.: DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In: Proc. 8th OSDI, pp. 1-14. ACM (2008)

Pretty-Big-Step Semantics

Arthur Charguéraud

Inria Saclay — Ile-de-France & LRI, Université Paris Sud, CNRS
arthur.chargueraud@inria.fr

Abstract. In spite of the popularity of small-step semantics, big-step
semantics remain used by many researchers. However, big-step seman-
tics suffer from a serious duplication problem, which appears as soon as
the semantics account for exceptions and/or divergence. In particular,
many premises need to be copy-pasted across several evaluation rules.
This duplication problem, which is particularly visible when scaling up
to full-blown languages, results in formal definitions growing far big-
ger than necessary. Moreover, it leads to unsatisfactory redundancy in
proofs. In this paper, we address the problem by introducing pretty-big-
step semantics. Pretty-big-step semantics preserve the spirit of big-step
semantics, in the sense that terms are directly related to their results,
but they eliminate the duplication associated with big-step semantics.

1 Introduction

There are two traditional approaches to formalizing the operational semantics of
a programming language: small-step semantics [11], and big-step semantics [7]. In
small-step semantics, the subterm in evaluation position is reduced step by step
and these transitions are reflected at the top level. In big-step semantics, a term
is directly related to its result, and the behavior of a term is expressed in terms
of the behavior of its subterms. While provably equivalent, these two approaches
are fundamentally different in terms of how evaluation rules are stated and how
proofs are conducted.

This paper describes and proposes a solution to a severe limitation of big-step
semantics: the fact that a number of rules and premises need to be duplicated in
order to handle exceptions and divergence. In particular, this limitation typically
discourages the use of big-step semantics in mechanized definitions of large-scale
languages. Before trying to address this limitation of the big-step semantics, we
may ask ourselves: Why should we care about big-step semantics? Why not just
use small-step semantics all the time?

To find out whether big-step semantics are still being used, we opened up
proceedings from recent programming language conferences. We counted the
number of research papers making use of a big-step semantics. In ICFP’11, 5
papers were describing results based on a big-step semantics, out of 8 papers that
had an operational semantics. In POPL’11, there were 7 out of 23. In ICFP’12,
there were 5 out of 9. An immediate conclusion that we can draw from these
rough statistics is that big-step is not dead.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 41-F0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

42 A. Charguéraud

A closer look at the papers involved reveals that the choice of the opera-
tional semantics usually depends on the topic covered by the paper. Papers on
type systems nearly always use a small-step semantics to conduct a soundness
proof in Wright and Felleisen’s style [I2]. Papers describing a machine-level lan-
guage typically use a small-step relation to describe transitions between pairs
of machine configurations. Papers concerned with concurrent languages are also
almost exclusively described using small-step semantics. Furthermore, a major-
ity of the mechanized definitions of full-blown programming languages that have
been developed in recent years were based on small-step semantics.

There are, however, topics for which the use of a big-step semantics appears
to prevail. Cost semantics, which associate a cost to the evaluation of every ex-
pression, are mainly presented as big-step relations. Program logics often have
soundness and completeness proofs that are easier to conduct with respect to a
big-step relation. In particular, there are cases of completeness proofs, such as
that developed in the author’s thesis [I], that need to be conducted by induction
over a big-step derivation; any attempt to build the completeness proof with re-
spect to a small-step semantics amounts to re-proving on-the-fly the equivalence
between small-step and big-step semantics. Moreover, there are compiler trans-
formations that are easier to prove correct with respect to big-step semantics,
in particular for transformations introducing so-called “administrative redexes”,
which typically clutter simulation diagrams based on small-step semantics.

Big-step semantics are also widely used in informal descriptions. For example,
the reference manual of a programming language typically contain sentences of
the form “to evaluate if el then e2 else €3, first evaluate el; if the result is true, then
evaluate e2; otherwise, evaluate e3.” None of the many reference manuals that we
have looked at contains a sentence of the form “if el takes a step to expression el’
then ifel thene2elsee3 takes a step to ifel’ thene2elsee3.” Thus, we speculate
that it would be easier to convince the standards committee in charge of a
given programming language of the adequacy of a big-step formalization than
to convince them of the adequacy of a small-step formalization.

Given that there are a number of important applications for which big-step
semantics seem to have an edge on small-step semantics, any significant improve-
ment to big-step semantics should be considered as a valuable contribution.

In this paper, we focus on a critical issue associated with big-step semantics:
the amount of duplication involved in the statement of the evaluation rules.
To illustrate the extent of the problem, consider a C-style for-loop of the form
“for (; t1; ta) {ts}”, that is, a for-loop where the initialization expression has
already been executed. We use the notation “fort; t3 t3” to describe such a loop.
We next formalize its big-step semantics. For terminating executions, the evalu-
ation judgment takes the form ¢,,,, = v/,,, asserting that, in a store m, the
evaluation of ¢ terminates on the value v in a store mso. The two rules at the top
of Figure [[describe the regular execution of a loop. When the loop condition ¢;
evaluates to false, the loop terminates. Otherwise, if ¢; evaluates to true, we
evaluate the body t3 of the loop, and obtain the unit value, written #. We then
evaluate the stepping expression ¢y, and start over.

Pretty-Big-Step Semantics 43

tl/ml = false/m2
fort1 to t3/m1 = t‘t/m2

tl/ml = true/m2 t3/m2 = tt/mg t2/m3 = tt/m4 forty to t3/m4 = t'lf/ms
for t1t2 t3/m1 = tt/m5

t/my :>exn/m2 b1 /my =
for t1ta t3/m1 :>exn/m2 for ti1t2 t3/m1 :>OO c°
tl/ml = true/,, t3/m2 :>exn/m3 tl/ml = true t3/m2 =
fort1 to t3/m1 :>exn/m3 for ti1t2 t3/m1 :>OO c°
tl/ml = true extng/m2 = tt/mg tl/ml = true t;zo/,mQ = tt/mg
t2ms =" ma tafmy =
fort1 to t3/m1 :>exn/m4 for ti1t2 t3/m1 :>OO <
tl/ml = true/p,, t:’,/m2 = tte/xw:s tl/ml = true/p,, t3/m2 = tt/mo%
t2/m3 = tt/m4 for t1ta t3/m4 = /ms t2/m3 = tt/m4 for tita t3/m4 =
fortitots m, =" /ms forty tats /m, = “

Fig. 1. Big-step rules for C loops of the form “for (; t1; t2) {¢3 }”, written “for t1 ta t3”

The four rules at the bottom-left of Figure [l describe the case of an excep-
tion being raised during the execution of the loop. These rules are expressed
using another inductive judgment, written ¢,,,, =*"/,,,. They capture the fact
that the exception may be triggered during the evaluation of any of the subex-
pressions, or during the subsequent iterations of the loop. The four rules at the
bottom-right of Figure[Il describe the case of the loop diverging. These rules rely
on a coinductive big-step judgment, written ¢, = [2/8]. “Coinductive” means
that a derivation tree for a judgment of the form ¢,,, => may be infinite.

The amount of duplication in Figure[Ilis overwhelming. There are two distinct
sources of duplication. First, the rules for exceptions and the rules for divergence
are extremely similar. Second, a number of evaluation premises are repeated
across many of the rules. For example, even if we ignore the rules for divergence,
the premise ¢ /,,,, = true,,,, appears 4 times. Similarly, t3,,, = tt/,,,, appears
3 times and t3/,,, = /., appears 2 times. This pattern is quite typical in big-
step semantics for constructs with several subterms.

One may wonder whether the rules from Figure [Il can be factorized. The
only obvious factorization consists of merging the regular evaluation judgment
(t/m, = V/m,) with the judgment for exceptions (t/,,, ="/,), using a single
evaluation judgment that relates a term to a behavior, which consists of either a
value or an exception. This factorization, quite standard in big-step semantics,
here only saves one evaluation rule: the second rule from the top of Figure[Ilwould
be merged with the rule at the bottom-left corner. It is, however, not easy to
factorize the evaluation judgment with the divergence judgment, because one is
inductive while the other is coinductive. Another trick sometimes used to reduce

44 A. Charguéraud

the amount of duplication is to define the semantics of a for-loop in terms of other
language constructs, using the encoding “if 1 then (t3; t2; forty tat3) else #”. Yet,
this approach does not support break and continue instructions, so it cannot be
applied in general. In summary, just to define the semantics of for-loops, even if
we merge the two inductive judgments, we need at least 9 evaluation rules with
a total number of 21 evaluation premises. We will show how to achieve a much
more concise definition, using only 6 rules with 7 evaluation premises.

With the pretty-big-step semantics introduced in this paper, we are able to
eliminate the two sources of duplication associated with big-step definitions.
First, we eliminate the duplication of premises. To that end, we break down
evaluation rules into simpler rules, each of them evaluating at most one subterm.
This transformation introduces a number of intermediate terms and increases the
number of evaluation rules, but it eliminates the need for duplicating premises
across several rules. Overall, the size of the formal definitions usually decreases.

Second, we set up the set of evaluation rules in such a way that it characterizes
either terminating executions or diverging executions, depending on whether we
consider an inductive or a coinductive interpretation for this set of rules. In
contrast to Cousot and Cousot’s bi-inductive semantics [3/4], which are based
on the construction of a least fixed point of the set of evaluation rules with
respect to a non-standard ordering that corresponds neither to induction nor
coinduction, our definitions are based on the standard notions of induction and
coinduction (as provided, e.g., by Coq).

Furthermore, we show that, when adding traces to the pretty-big-semantics,
the coinductive judgment suffices to describe both terminating and diverging
executions. Our definitions syntactically distinguish finite traces from infinite
traces. This approach leads to rules that are, in our opinion, simpler to under-
stand and easier to reason about than rules involving possibly-infinite traces
(coinductive lists), as used by Nakata and Uustalu [I0] and Danielsson [5].

In theory, the fact that we are able to capture the semantics through a single
judgment means that we should be able to establish, through a single proof, that
a program transformation correctly preserves both terminating and diverging
behaviors. Unfortunately, the guard condition implemented in existing proof
assistants such as Coq or Agda prevents us from conducting such reasoning.
Workarounds are possible, but the encodings involved are so tedious that it would
not be realistic to use them in practice. For this reason, we have to postpone the
construction of proofs based on pretty-big-step trace semantics.

In this paper, we also investigate the formalization of type soundness proofs.
Interestingly, the pretty-big-step semantics allows for a generic error rule that
replaces all the error rules that are typically added manually to the semantics.
This generic error rule is based on a progress judgment, whose definition can be
derived in a simple and very systematic way from the set of evaluation rules.

To demonstrate the ability of the pretty-big-step to accommodate realistic
languages, we formalized a large fragment of Caml Light. Compared with the big-
step semantics, the pretty-big-step semantics has a size reduced by about 40%.

Pretty-Big-Step Semantics 45

This paper is organized as follows. In §2] we explain how to turn a big-step
semantics into its pretty-big-step counterpart. In §3] we discuss error rules and
type soundness proofs. In §4 we show how to extend the semantics with traces. In
§5l we explain how to handle more advanced language constructs and report on
the formalization of core-Caml. We then discuss related work (§6]), and conclude
(§7). All the definitions and proofs from this paper have been formalized in Coq
and put online at: http://arthur.chargueraud.org/research/2012/pretty.

2 Pretty-Big-Step Semantics

2.1 Decomposition of Big-Step Rules

We present the pretty-big-step semantics using the call-by-value A-calculus. The
grammar of values and terms are as follows.

v = intn | absxt t :=valv | varxz | apptt

Thereafter, we leave the constructor val implicit, writing simply v instead of val v
whenever a term is expected. (In Coq, we register val as a coercion.) We recall
the definition of the standard big-step judgment, which is written ¢t = wv.

t1 = absxt ty = v [z —]t =
v = v apptitas = v

The rules of the pretty-big-step semantics are obtained by decomposing the
rules above into more atomic rules that consider the evaluation of at most one
subterm at a time. A first attempt at such a decomposition consists of replacing
the evaluation rule for applications with the following three rules.

t1 = v1 appuits = vV ty = vy appuvivy = v [z — vt =
apptita = v appurta = v app(abszt)v = o/

These rules, without further constraints, suffer from an overlapping problem.
For example, consider the term app vy t2. This term is subject to the application
of the second rule, which evaluates t5. However, it is also subject to application
of the first rule, whose first premise would reduce v; to itself and whose second
premise would be identical to the conclusion of the rule. The fact that two dif-
ferent rules can be applied to a same term means that the evaluation judgment
is not syntax-directed and thus not very convenient to work with. Even worse,
the fact that an evaluation rule can be applied without making progress is prob-
lematic when considering a coinductive interpretation of the evaluation rules;
typically, one could prove, by applying the first reduction rule infinitely many
times, that any term of the form appwv; to diverges.

Cousot and Cousot [3/4], who use a similar decomposition of the big-step rules
as shown above, prevent the overlapping of the rules by adding side-conditions.
For example, the evaluation rule that reduces appt; t2 has a side-condition en-
forcing t1 to not be already a value. However, such side-conditions are numerous
and they need to be discharged in formal proofs.

http://arthur.chargueraud.org/research/2012/pretty

46 A. Charguéraud

Instead of using side-conditions, we ensure that the three evaluation rules
introduced above are always applied one after the other by introducing interme-
diate terms, whose grammar is shown below. Observe that intermediate terms
are not defined as an extension of the grammar of regular terms, but as a new
grammar that embeds that of regular terms. This presentation avoids polluting
the syntax of source terms with purely-semantical entities.

e:=trmt | applvt | app2vv

We extend the evaluation judgment to intermediate terms, defining an inductive
judgment of the form e |} v. In the particular case where e describes a regular
term, the judgment takes the form (trm¢) || v. Thereafter, we leave the con-
structor trm implicit and thus simply write ¢ |} v. The predicate e | v is defined
inductively by the rules shown below. The evaluation of an application appt; to
takes three step. First, we reduce t; into v; and obtain the term appl vy t3. Sec-
ond, we reduce t5 into vo and obtain the term app2v; vo. Third, assuming v to
be of the form absz ¢, we proceed to the S-reduction and evaluate [z — v]t in
order to obtain some final result v’'.

t1 4 v appluity | '

v v apptite | v/
ta I vo app2vive | V' [z —]t | o
appluity | o' app2(abszt)v | o'

The definitions above provide an adequate reformulation of the big-step se-
mantics by which complex rules have been decomposed into a larger num-
ber of more elementary rules. This decomposition avoids the duplication of
premises when adding support for exceptions and divergence. Observe that the
intermediate terms introduced in the process correspond to the intermediate
states of an interpreter. For example, the form applwv; t2 corresponds to the
state of the interpreter after the evaluation of the first let-binding in the code
“letv; = evaltyin letve = evaltsin let(absat) = vyin eval ([x — o] t)”.

2.2 Treatment of Exceptions

We now extend the source language with value-carrying exceptions and exception
handlers. The term raiset builds an exception and throws it. The term tryt; to
is an exception handler with body ¢; and handler ¢5. Its semantics is as follows.
If t; produces a regular value, then tryt; to returns this value. However, if t;
raises an exception carrying a value vy, then tryt; to reduces to appts v;.

To describe the fact that a term can produce either a regular value or an
exception carrying a value, the evaluation judgment is generalized to the form
e |} b, where b denotes a behavior, built according to the grammar below.

b:=retv | exnv

Pretty-Big-Step Semantics 47

Because we generalize the form of the judgment, we also need to generalize
the form of the intermediate terms. For example, consider the evaluation of an
application app t1 to. First, we evaluate t; into a behavior ;. We then obtain the
intermediate term appl by t2. To evaluate this later term, we need to distinguish
two cases. On the one hand, if b; is of the form retv;, then we should evaluate
the second branch t;. On the other hand, if b; is of the form exnwv, then we
should directly propagate exnv. The updated grammar of intermediate terms,
augmented with intermediate forms for raise and try, is as follows.

e:=trmt | applbt | app2vb | raiseld | trylbt

The definition of e | b follows a similar pattern as previously. It now also
includes rules for propagating exceptions. For example, appl (exnv)t¢ evaluates
to exnv. Moreover, the definition includes rules for evaluating raise and try. For
example, to evaluate tryt; to, we first evaluate ¢; into a behavior by, and then
we evaluate the term tryl by t2. In the rules shown below, the constructor ret is
left implicit.

t1 U bl app1b1 to U b

v v apptite | b appl (exnv)t |} exnv
to llbz app2v1b2 llb [a:—HJ}tUb
appluite | b app2v (exnv) || exnv app2(abszt)v | b

t | b raisel by | b

raiset | b raiselv || exnwv raisel (exnv) | exnwv
t1 4 b1 trylbita | b apptv | b
trytite | b trylovt | v tryl (exnv)t | b

2.3 Treatment of Divergence

The above set of rules only describes terminating evaluations. To specify diverg-
ing evaluations, we are going to generalize the grammar of behaviors and to
consider a coinductive interpretation of the same set of rules as that describing
terminating evaluations.

First, we introduce the notion of outcome: the outcome of an execution is
either to terminate on a behavior b (i.e., to return a value or an exception), or
to diverge. We explicitly materialize the divergence outcome with a constant,
called div. An outcome, written o, is thus described as follows: o := terb | div.

We update accordingly the grammar of intermediate terms. For example, con-
sider the evaluation of an application appt; to. First, we evaluate ¢; into some
outcome 07 (a value, an exception, or divergence). We then consider the term
apploj to, whose evaluation depends on o07. If 01 describes a value vy, we can
continue as usual by evaluating to. However, if 0; describes an exception or the
constant div, then the term applo; to directly propagates the outcome o;.

48 A. Charguéraud

b:=retv | exnv o:=terb | div e:=trmt | applot | app2vo | raiselo | trylot

t1 | o1 apploite | o

abort (exnv) abort div v{wv apptita | o
aborto ta | 02 app2vi o2 | o aborto [x = 0]t o
applot | o appluvits | o app2vo | o app2 (abszt)v | o
tl o1 raiselo; | o aborto t1 § o1 tryloite | o
raiset | o raiselo | o raiselv || exnwv trytita | o
apptv | o aborto Yv. 0 # exnv
trylovt | v tryl (exnv)t | o trylot | o

Fig. 2. Pretty-big-step semantics: e | o (inductive) and e {*° div (coinductive), with
the constructors val, trm, ret and ter left implicit in the rules

To capture the fact that applo; t5 returns o; both when o describes diver-
gence or an exception, we use an auxiliary predicate, called abort. The predicate
abort o1 asserts that o “breaks the normal control flow” in the sense that o; is
either of the form exn v or is equal to div. We are then able to factorize the rules
propagating exceptions and divergence into a single abort rule, as shown below.

abort o;

apploits | o1

For describing terminating evaluations, we use an inductive judgment of the form
e | o. The particular form e | terb, simply written e || b, corresponds to the
same evaluation judgment as that defined previously. For describing diverging
evaluations, we use a coevaluation judgment, written e | o, which is defined
by taking a coinductive interpretation of the same set of rules as that defining
the inductive judgment e |} o. The particular form e |° div asserts that the
execution of e diverges.

The complete set of rules defining both e || o and e |° o appears in Fig-
ure 21 One novelty is the last rule, which is used to propagate divergence out of
exception handlers. The rule captures the fact that tryl divt produces the out-
come div, but it is stated in a potentially more general way that will be useful
when adding errors as a new kind of behavior. Remark: in Coq, we currently
need to copy-paste all the rules in order to build one inductive definition and
one coinductive definition, however it would be easy to implement a Coq plug-in
to automatically generate the coinductive definition from the inductive one.

2.4 Properties of the Judgments

While we are ultimately only interested in the forms e || b and e {°° div, our
definitions syntactically allow for the forms e | div and e | b. It is worth
clarifying their interpretation. For the former, the situation is quite simple: the

Pretty-Big-Step Semantics 49

form e || div is derivable only when e is an intermediate term that carries a div.
In particular, ¢ |} div is never derivable.

Lemma 1. For any termt, t | div — False.

The interpretation of the form e {° b is more subtle. On the one hand, the
coinductive judgment contains the inductive one, because any finite derivation
is also a potentially-infinite derivation. It is trivial to prove the following lemma.

Lemma 2. For any term e and outcome o, e | o — e |o.

On the other hand, due to coinduction, it is sometimes possible to derive e {<° b
even when e diverges. For example, consider w = app é §, where § = absx (app z x);
one can prove by coinduction that, for any outcome o, the relation w {<° o holds.
Nevertheless, the coevaluation judgment is relatively well-behaved, in the sense
that if e J°° o holds, then either e terminates on some behavior b, or e diverges.
This property is formalized in the next lemma.

Lemma 3. For any term e and outcome o, e {°o0 — e | o V e | div.

We have proved in Coq that the pretty-big-step semantics shown in Figure
yields an operational semantics adequate with respect to the standard big-step
evaluation judgment for terminating programs (¢ = b) and with respect to
the coinductive big-step evaluation judgment (¢ =°°) introduced by Leroy and
Grall [8[9] for diverging programs. (The proof requires the excluded middle.)

Theorem 1 (Equivalence with big-step semantics). For any term t, and
for any behavior b (describing either a value or an exception),

tl b ifand onlyif t = b and t < div if and only if t =>°.

All the results presented so far can be generalized to non-deterministic semantics.
In the particular case of a deterministic semantics, such as our call-by-value A-
calculus, we can express the determinacy property as follows.

Lemma 4 (Determinacy). Veoi0a. el 01 N e oy — 01 =09

As corollaries, we can prove that if a given term e evaluates to a behavior o1,
then it cannot evaluate to a different behavior oy and it cannot diverge.

3 Error Rules and Type Soundness Proofs

3.1 Explicit Error Rules

When considering a deterministic language, one can express the type soundness
theorem in the form “if a term is well-typed, then it either terminates or diverges”.
However, for a non-deterministic language, such a statement does not ensure
soundness, because a term could execute safely in some execution but get stuck
in other executions. For a non-deterministic big-step semantics, the traditional
approach to proving type soundness consists of adding explicit error rules to the

50 A. Charguéraud

semantics, and then proving a theorem of the form “if a term is well-typed, then
it cannot evaluate to an error”.

Adding error rules to a pretty-big-step semantics turns out to be much easier
than for a big-step semantics, because we are able to reuse the abort rules for
propagating errors to the top level. To describe stuck terms in our language, it
suffices to add a behavior err, to state that it satisfies the predicate abort, and
to add two error rules, one for variables and one for stuck applications.

Vxt. v1 # absxt

b := ... |err aborterr varzx | err app2vi vz { err

3.2 The Generic Error Rule

A classic problem with the introduction of explicit error rules for proving type
soundness is that the theorem can be compromised if an error rule is missing.
Indeed, if we remove a few error rules, then it makes it easier to prove that “if a
term is well-typed, then it cannot evaluate to an error”. So, the omission of an
error rule may hide a flaw in the type system that we want to prove sound.

For a language as simple as the A-calculus, the error rules are few. However, for
a more realistic language, they can be numerous. In such a case, it becomes fairly
easy to forget a rule and thereby compromise the adequacy of the type soundness
theorem. One could hope to be able to prove (say, in Coq) that a semantics is
not missing any error rules. Yet, as far as we know, there is no way of formally
stating this property. (The formulation “every term either evaluates to a value
or to an error, or diverges” is not appropriate, due to non-determinism.)

In what follows, we explain how a pretty-big-step semantics can be equipped
with a generic error rule, which directly captures the intuition that “a term
should evaluate to an error if no other evaluation rule can be applied”. Remark:
this intuition was at the source of the work by Gunter and Rémy [6] on partial
proof semantics, which consists of a specialized proof theory that allows describ-
ing derivation trees with exactly one unproved leaf; our approach at handling
error rules in a generic manner can be viewed as a realization of Gunter and
Rémy’s idea of partial proofs within a standard proof theory.

The generic error rule is defined in terms of the progress judgment, written e |,
which asserts that there exists at least one pretty-big-step evaluation rule whose
conclusion matches the term e. The rules defining the progress judgment can
be derived in a systematic manner from the pretty-big-step evaluation rules, as
described next. An evaluation rule has a conclusion of the form e |} o0, a number
of evaluation premises and some other premises. The corresponding progress rule
is obtained by changing the conclusion to e | (i.e., dropping the outcome o) and
by removing all the evaluation premises. The progress judgment associated with
the semantics described in Figure Plis defined in Figure [l

Then, the generic error rule, shown below, simply asserts that “if a term e
cannot make progress (e | is false) then e should evaluate to an error”.

- (el)

e | err

Pretty-Big-Step Semantics 51

aborto aborto
vl apptitz | applotz | appluita | app2vo |
aborto
app2 (abszt)v | raiset | raisel o | raisel v | trytita |
aborto Yv. 0 # exnwv
trylot | tryl (exnv)t] trylot |

Fig. 3. Progress judgment

We have proved in Coq that using the generic error rule yields evaluation and
coevaluation judgments that are equivalent to those obtained with the traditional
approach to introducing explicit error rules.

There are two main benefits to using the generic error rule. First, deriving
the progress rules from the evaluation rules is easier than deriving explicit error
rules. Indeed, instead of having to find out which rules are needed to complete the
semantics, we can apply to each of the evaluation rules a very systematic process
—so systematic that we believe it could be automated by a Coq plug-in. Second,
forgetting a progress rule does not compromise the type soundness theorem.
Indeed, omitting a progress rule makes it easier to prove that a term evaluates to
an error, and therefore makes it harder (if not impossible) to prove the statement
of the type soundness theorem. To be fair, it should be acknowledged that adding
arbitrary progress rules can compromise type soundness. That said, we believe
that it is much more unlikely for a researcher to add arbitrary progress rules
than to omit a few legitimate rules.

3.3 Type Soundness Proofs

To give an example of a type soundness proof, we equip our A-calculus with
simple types. For simplicity, we enforce exceptions to carry only values of type
int. A source program can be typed using the standard typing judgment, of the
form E + t : T. We write - ¢ : T when the typing context F is empty. The
typing rules for terms are standard, so we do not show them.

To prove type soundness, we first need to consider a typing judgment for
intermediate terms, written - e : T, and another one for outcomes, written
F o : T. The proposition F o : T asserts that the outcome o describes either
a value of type T', or an exception carrying a value of type int, or the outcome
div. Note that err, the error outcome, is never well-typed. The rules defining the
new typing judgments appear in Figure @l The type soundness theorem states
that “if a closed term is well-typed, then it cannot evaluate to an error”.

Theorem 2 (Type soundness). For anyt andT, +Ft:T — -t | err

The proof is conducted by induction on the preservation property: (e | o) —
(Fe:T) — (F o:T). To see why the above proposition implies the type

52 A. Charguéraud

Fo:T Fo:int Ft: T Fo:S—>T Ft:8

Fretvo: T Fexnv:T Fdiv:T Ftmt: T F applot : T

Fov:S—>T Fo:S F o :int Fo:T Ft:int—>T
F app2vo : T F raiselo : T F trylot : T

Fig. 4. Typing rules for outcomes and intermediate terms

soundness theorem, it suffices to instantiate e with ¢, instantiate o with err,
and observe that F err : T is equivalent to False. There are two particularly
interesting cases in the proof. First, when the evaluation rule is an abort rule,
we need to exploit the fact that a well-typed outcome satisfying abort admits
any type. Formally: (F o : T) A (aborto) — (F o : T”). Second, when the
evaluation rule is the error rule, we need to establish that if a term is well-typed
then it must satisfy the progress judgment. Formally: (F e : T) — (e]).

All the other proof cases are straightforward. Compared with the big-step
semantics, the pretty-big-step semantics leads to a type soundness proof that
involves a slightly larger number of cases, however these proof cases are typically
simpler, due to the fact that the evaluation rules have at most two premises. In
practice, we have found that having simpler proof cases makes the proofs easier
to complete and easier to automate.

In summary, the pretty-big-step semantics, by reusing its abort rules, reduces
the amount of work needed for adding error behaviors. It also allows for a generic
error rule that makes it faster and less error-prone to add all the error rules.
Moreover, even though it requires additional typing rules for intermediate terms,
it leads to proofs that involve cases that are simpler and easier to automate.

4 Traces

Traces are typically used to record the interactions of a program with its envi-
ronment, for example i/o operations. In what follows, we show how to extend
the pretty-big-step evaluation rules with traces. A trace describes a sequence of
effects. Here, an effect, written «, describes a read operation (inn), or a write
operation (outn), or the absence of an operation (e). We use the e effect to make
the evaluation rules productive with respect to traces. Productivity is needed in
particular to ensure that a diverging program that does not perform any i/o
cannot be associated with arbitrary traces. A trace can be finite or infinite. A
finite trace, written 7, consists of a list of effects. An infinite trace, written o,
consists of a stream of effects (i.e., an infinite list). The outcome of a program
can be either “termination on a value with a finite trace” or “divergence with an
infinite trace”. These definitions are summarized below.

a:=¢|inn | outn o:=tertb | dive (7 list of e, and o stream of «)

In several evaluation rules, we need to append a finite trace to the head of a finite
or an infinite trace. We write 7 - 7" and 7 - ¢ the corresponding concatenation

Pretty-Big-Step Semantics 53

abort (ter 7 (exnv)) abort (divo)
t1 J o1 apploite | o aborto
v | ter[e]v apptita | [¢] -0 applot | [¢]-o
ta | 02 app2vio2 | o aborto [x = o]t o

appl(tertuvi)ta | [e]-7-0 app2vo | [¢] -0 app2(absxt) (terTv) | [e]-7-0

tl o1 readloi | o aborto
readt | [e] -0 readlo | [e] -0 readl(terT tt) | ter([e] -7 [inn])n
tl o1 writelo; | o aborto
writet | [¢] - o writelo | [e] -0 writel (terTn) | ter([¢] - T - [outn]) &

Fig. 5. Pretty-big-step semantics with traces

operations. By extension, we define an operation, written 7 - 0, to concatenate a
finite trace 7 to the trace contained in the outcome o. The updated definition for
abort and the evaluation rules appear in Figure Bl ([-] denotes a singleton list.)
With traces, the inductive interpretation of the rules is no longer needed
because, thanks to the productivity of the rules with respect to the trace, a
diverging expression cannot coevaluate to a terminating behavior. We have:

Lemma 5. For any finite trace 7, (e {° tertv) < (e || terTv).

An important consequence of Lemma [is that, when the semantics includes
traces, we do not need the inductive judgment (e | o) anymore. In theory,
all our reasoning can be conducted using solely the coevaluation judgment. In
particular, we should be able to prove a program transformation correct with
respect to both terminating and diverging programs through a single coinductive
proof. In practice, though, coinductive reasoning in proof assistants such as Coq
or Agda remains problematic because they only accept statement of theorems
whose conclusion is a coinductive judgment and where all applications of the
coinduction hypothesis are guarded by constructors. As soon as we fall out of
this basic pattern, we need to resort to heavy encodings in order to transform
the statement and the proof in the appropriate form.

The verification of program transformations, one important applications of
formal semantics, almost systematically departs from the basic pattern. Their
correctness proof typically relies on a simulation diagram establishing that any
behavior exhibited by the compiled code is indeed a behavior of the original code.
Consider for example a source-to-source translation, written [-]. Its correctness
would typically be captured by a statement of the form ([t] | 0) — Jo'. (0 =
0) A (t | 0'), where o' = o asserts that o’ and o describe the same behavior
and contain traces that are bisimilar up to insertion or deletion of a finite num-
ber of € between every two items of the traces. (The equivalence relation ~ is
defined coinductively, by a single rule with premise o ~ ¢’ and with conclusion

54 A. Charguéraud

€"-la]-o0 & €™ [a]-0.) Intuitively, such a statement could be established by

coinduction, performing a case analysis on the derivation of [t] < o and, in
each case, picking the right o’ to build the proof of ¢ {*° o'

Unfortunately, this form of reasoning currently cannot be mechanized in Coq
because the conclusion of the statement is not just a coinductive judgment; in-
deed, the conclusion starts with an existential quantifier and a conjunction. One
possible work-around consists in defining o’ as a function of o and ¢ (this defi-
nition is non-constructive), and then proving o’ =~ o and ¢ {*° o', through two
independent proofs. These two proofs have a chance of satisfying the guard con-
dition because they conclude on coinductive judgments. Yet, overall, the work-
around described here is extremely unpleasant. First, defining the function that
produces o’ amounts to building the core of a proof term by hand. Second, the
process requires one to go three times over the structure of the intended proof:
once for the function definition, and once for each of the two coinductive proofs.

We must therefore acknowledge that, with the support for coinduction cur-
rently provided by Coq, mechanizing proofs based on pretty-big-step trace se-
mantics appears to be unrealistic in practice. Nevertheless, we hope that further
developments of proof assistants could allow us to conduct the intended reason-
ing without resorting to painful encodings, either by automating the generation
of the encoding, or by somehow relaxing the guard condition. We should then be
able to reason about both terminating and diverging programs in a single pass.

5 Scaling Up to Real Languages

So far, we have only considered a toy A-calculus with exceptions. In this section,
we explain how to set up pretty-big-step rules for more advanced programming
language constructs, such as effectful operations, tuples of arbitrary arity, and
C-style for loops. We also show how to handle constructs for which the order of
evaluation of the subterms needs to remain deliberately unspecified.

5.1 Factorization of the Abort Evaluation Rules

The pretty-big-step semantics of a realistic language may involve a fair number
of intermediate terms. For each intermediate term, we typically need to intro-
duce an abort rule, i.e., a rule with a premise of the form abort o, to propagate
exceptions, divergence and errors. Fortunately, it is possible to factorize all the
abort rules using the generic abort rule. This rule formalizes the following in-
tuition: if an intermediate term e is not an exception handler and if one of its
arguments is an outcome o that satisfies the predicate abort, then e should di-
rectly evaluate to o. The definition of the generic abort rule relies on an auxiliary
function, called getout. It is defined in such a way that getoute returns the out-
come contained in e (there is at most one), except for exception handlers, which
are treated specially. Formally:

getout (applot) = Someo getout (trm¢) = None
getout (app2v o) = Someo getout (tryl ot) = None
getout (raisel o) = Someo

Pretty-Big-Step Semantics 55

The generic abort rule, shown below, replaces the three abort rules from Figure[2l

getoute = Someo aborto
el o

Throughout the rest of this section, when we introduce new intermediate terms,
we assume the definition of getout to be extended accordingly.

5.2 Side Effects

We now extend the source language with side effects. When the evaluation of a
term terminates, it produces not just a value or an exception, but also an updated
memory store. We therefore update the grammar of outcomes as follows.

o := termb | div

The pretty-big-step evaluation judgment now takes the form e ,,, || o, asserting
that the evaluation of the term e in the store m has o for outcome. In particular,
the proposition ¢ /,,, |} term’b corresponds to the traditional big-step judgment
t/m = b/p and, similarly, the proposition ¢ /,,, |} div corresponds to t,,, =
The evaluation rules are extended so as to take memory stores into account. For
example, the first rules for reducing applications are as shown below. Observe
that the intermediate term applo; to is evaluated in the store m in which #;
was evaluated, and not yet in the store produced by t¢;. Indeed, at this point,
we do not yet know whether the evaluation of ¢; terminates or diverges. In the
particular case where t; terminates, the store produced by the evaluation of t;
can be pulled out of the outcome 01 and used for the evaluation of ¢s.

t1 /m ‘U'Ol app]-ol ta /m‘U’O ta /m‘U’OQ app2v1 02 /m ‘U’O
apptity /m I 0 appl (termwy)ta /m Y0

We end this section with an example of a rule that modifies the store. Consider
a term reft;. Its evaluation goes through an intermediate term refl oy. If 01 is a
value, then a memory cell is allocated at a fresh location. The updated store is
then returned together with the address of the new memory cell.

tl /m ‘U’ 01 refl 01 /m ‘U’ o l ¢ dom(m)
refty jm 0 refl (termv) /b ter (m[l — v])1

Other rules accessing and updating the memory store follow a similar pattern.

5.3 C-Style for Loops

We now come back to the example of C-style for loops described in the intro-
duction, revisiting the evaluation rules from Figure [I] using a pretty-big-step se-
mantics. We introduce a single intermediate term, written “fori oty t5 t3”, where
1 € {1,2,3}. The pretty-big-step evaluation rules, shown below, are significantly

56 A. Charguéraud

more concise than their big-step counterpart. Note that we included an abort
rule, even though it would typically be covered by the generic abort rule (§5.1]).

t1 ym I 01 forloititats /m Y0

fortitats /m do for 1 (ret mfalse) t1 tatz /m | retmtt
tg/m»u03 for203t1t2t3/mUo t2/m»U«02 for302t1t2t3/mUo
for 1 (retmtrue)titats s 0 for2 (retmtt)titats /py o
fortitats ym do aborto
for3 (retm tt)titats jp {0 foriotitats jpm {0

5.4 List of Subterms

Consider a tuple expression, written tuplet, where ¢ denotes a list of terms of ar-
bitrary length, and assume a left-to-right evaluation order. The semantics needs
to describe the fact that if one of the subterms of the tuple raises an exception or
diverge, then the remaining subterms should not be evaluated. In what follows,
we describe a technique for evaluating an ordered list of subterms in a way that
is not specific to tuples, so that we are able to reuse the same rules for reducing
other language constructs that involve lists of subterms (e.g., records).

We introduce an intermediate term, written listl¢v K, where v represents
the list of values that have already been produced, ¢ represents the list of terms
remaining to be evaluated, and K denotes the continuation describing what term
to transition to once all the subterms have been evaluated. Here, K is a logical
function that takes a list of values as arguments and produces an intermediate
term. In practice, K is usually a partially-applied constructor.

To evaluate tuple t, we evaluate list1 ¢ nil (tuplel), where the continuation tuplel
indicates that, when we get the list of values v describing the results of the
terms t, we should evaluate the term tuplel v. This latter term will immediately
evaluate to the value vtuplev. The corresponding evaluation rules are:

list1¢ nil (tuplel) ,,,, 4 0
tuplet /, I 0 tuplel v /p, |} term (vtuplev)

It remains to describe the rules involved in the evaluation of listltv K. If ¢ is
empty, we apply (in the logic) the continuation K to v and obtain the term
from which to continue the evaluation. Otherwise, ¢ is of the form ¢; :: ¢t. In
this case, we evaluate the head term ¢;, obtaining some outcome o, and we then
evaluate the term list2 ot v K. If o corresponds to a value, we can save this value
at the tail of the list v and continue. Otherwise, we can apply the generic abort
rule to propagate this outcome directly, skipping the evaluation of the remaining
terms t. The corresponding evaluation rules are shown below.

(Kv) ym o tim o1 list2o1tvK), Lo listlt(v4++[n]) K) o
listlnilv K, {0 listl (t1::t)v K ;) 0 list2 (termwi)tv K /py |0

Pretty-Big-Step Semantics 57

5.5 TUnspecified Order of Evaluation

Some programming languages choose to deliberately not specify the order of
evaluation of the subterms of particular language constructs. For example, Caml
does not specify the order of evaluation of the arguments of a function call. In
what follows, we explain how to describe the semantics of a list of subterms
without specifying the order of evaluation. We use a list whose items are either
values or unevaluated terms. Formally, r := Trm¢ | Valv, and r := listr.

We start from an intermediate term ulistl ¢ K, where, as previously, ¢ denotes
the list of subterms and K is a logical function that denotes the continuation. To
evaluate ulistl t K, we evaluate another intermediate term, ulist2 » K, where r is
obtained by mapping the constructor Trm to all the elements of ¢. Then, we pick
any unevaluated term from the list r and evaluate it. We repeat this process until
either the evaluation of one of the term diverges or produces an exception, or
until all the items in r are values. The rules, shown below, involve an intermediate
term of the form ulist3r; oo K, where o denotes the outcome that has just been
produced, and where r; and ro denote the prefix and the suffix of r, respectively.

ulist2 (map (Trm)t) K /,,, I 0 t1/m o1 ulist3ry 0172 Ky dh 0
ulistlt K ;. b 0 ulist2 (ry 4+ [Trm 1] 4+ 72) K/ 0

ulist2 (r +- [Valvi] + r2) K/, 0 (Kv) jm o
ulist3 7y (termuvy) re K/ |0 ulist2 (map (Val) v) K ,,,, § 0

5.6 Formalization of Core-Caml

To assess the ability of the pretty-big-step semantics to scale up to a realistic
programming language, we formalized the semantics of core-Caml, both in big-
step and in pretty-big-step style. By core-Caml, we refer to the subset of Caml
Light made of booleans, integers, tuples, algebraic data types, mutable records,
boolean operators (lazy and, lazy or, negation), integer operators (negation,
addition, subtraction, multiplication, division), comparison operator, functions,
recursive functions, applications, sequences, let-bindings, conditionals (with op-
tional else branch), for loops and while loops, pattern matching (with nested
patterns, as patterns, or patterns, and when clauses), raise construct, try-with
construct with pattern matching, and assertions. (The features missing from
Caml Light are: floats, mutual recursion, recursive values, with construct for
records, and arrays. Objects and modules are not covered either.)

Translating the big-step semantics into a pretty-big-step one following the
ideas described in this paper was straightforward and took little time. Apart from
adapting the rules, the only extra work required consisted of the definition of
outcomes and of the abort predicate (4 lines), the definition of the 28 intermediate
terms, and the definition of the auxiliary function getout using a simple pattern
matching with 22 cases (one case per intermediate term carrying an outcome).

The table shown below quantifies the improvement. It reports on the number
of evaluation rules, the number of evaluation premises, and the number of tokens

58 A. Charguéraud

(excluding head quantified variables, which are typically omitted in paper def-
initions). It shows that switching to the pretty-big-step semantics reduced the
number of the evaluation rules by 38%, reduced the total number of evaluation
premises by more than a factor of 2, and reduced the total size of the evaluation
rules (as counted by the number of tokens) by 40%.

rules premises tokens

Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

6 Related Work

Cousot and Cousot [2] proposed a coinductive big-step characterization of di-
vergence for A-terms. Leroy and Grall [8/9] showed how to represent coinductive
big-step semantics in a theorem prover such as Coq, and used this semantics
to prove that nontrivial program transformations preserve diverging behaviors.
They justify the need to introduce separate coinductive rules by observing that
naively taking the coinductive interpretation of the standard evaluation rules
yields a coevaluation judgment that does not properly characterizes diverging
terms. Indeed, there exist terms that diverge but do not coevaluate. Leroy and
Grall also explained how to extend their semantics with traces, using two judg-
ments: t = v/ asserts that the execution of ¢ produces the value v and a finite
trace 7 (a list), and ¢ =°°/0 asserts that the execution of ¢ diverges producing
an infinite trace o (a stream). We have shown in this paper, among other things,
how to factorize these two separate judgments into a single one.

Following up on earlier work [2], Cousot and Cousot further developed the notion
of bi-inductive semantics [3l4]. These semantics are able to characterize both ter-
minating and diverging executions using a common set of inference rules. Their ap-
proach is based on the construction of a least fixed point of a set of evaluation rules
with respect to a non-standard ordering, which corresponds neither to induction
nor coinduction. By contrast, we have shown in this paper how to achieve the same
goal using only the standard notions of induction and coinduction. In their work,
Cousot and Cousot also decompose the evaluation rule for application in separate
rules. However, their decomposition does not go as far as ours. For example, two
of their rules perform the evaluation of the left branch of an application, whereas
with the pretty-big-step semantics we only need one such rule.

Nakata and Uustalu [10] propose a coinductive relation that provides a big-
step semantics for both terminating and diverging programs, using possibly-
infinite traces (coinductive lists) that record all the intermediate memory states
of an execution. Formally, they define traces coinductively: ¢ := (m) | m ::: ¢.
Their (coinductive) big-step evaluation judgment takes the form ¢,,, = ¢. Its
definition, whose key rules are shown below, is mutually-recursive with another
judgment, t/¢ = ¢'. The definition is quite subtle. It is explained next.

t1/m = @ to)(m @) = ¢ tym = ¢ t/p= ¢
(tr1s t2)/m = ¢’ t/(m) = ¢ t/(m @) = (m @)

Pretty-Big-Step Semantics 59

To evaluate a sequence (¢1 ; t2), we first evaluate t; and obtain a trace ¢. Using

the relation t/(m ::: ¢) = ¢', we ensure that the trace ¢ produced by t; corre-
sponds to the prefix of the trace ¢ associated with the term (¢1 ; t2). If the trace
¢ is finite, then we reach the judgment t5/(m’) = ¢, where m’ denotes the
state produced by ¢; and where ¢” corresponds to what remains of the trace ¢’
after stripping its prefix ¢. We can then proceed to the evaluation of t5 in m/'.
Otherwise, if the trace ¢ is infinite, then the third rule shown above applies
indefinitely, ensuring that the trace ¢’ associated with the term (¢1 ; t2) is equal
(up to bisimilarity) to the trace ¢ produced by ;.

The manipulation of traces involved with the pretty-big-step semantics is, in
our opinion, much simpler for several reasons. First, instead of working with
potentially-infinite lists, we use a syntactic disjunction between finite traces and
infinite traces, so it is always clear whether we are describing a finite or an infinite
execution. Second, we do not need to use an auxiliary, mutually-coinductive
judgment to traverse traces; instead, we use a simpler concatenation operation
that only needs to traverse finite traces. Third, applying Nakata and Uustalu’s
approach to a A-calculus instead of a simple imperative language would require
all the rules to be stated in continuation-passing style, because the judgment
t/¢ = ¢’ would need to be generalized to the form K/¢ = ¢, where K denotes
a continuation that expects the result of the previous computation (that is, the
result stored at the end of the trace ¢) and produces the term to continue the
evaluation from. Such a systematic use of continuations would likely result in
fairly obfuscated rules.

Danielsson [] revisits Nakata and Uustalu’s work by defining a corecursive
function that yields a big-step semantics for both terminating and diverging
programs. This function produces a value of type (MaybeValue) , where the
Maybe indicates the possibility of an error and where the bottom represents
the partiality monad. The partiality monad involves two constructors: one that
carries a value, and one that “delays” the exhibition of a value. Formally, the
coinductive definition is A; := now A | later (A,). The partiality monad thus
corresponds to a degenerated version of potentially-infinite traces, where the
spine of a trace does not carry any information; only the tail of a trace, if any,
carries a value. Note that, to accommodate non-deterministic semantics, the type
(Maybe Value) | needs to be further extended with the non-determinism monad.

In summary, Danielsson’s semantics for the A-calculus consists of a reference
interpreter, defined in a formal logic. (It is actually not so straightforward to
convince the checker of the guard condition that the definition of the inter-
preter indeed yields a productive function.) Note that this interpreter should
only be used for specification, not for execution, because it is quite inefficient:
each bind operation needs to traverse the trace that carries the result that it is
binding. Specifying the semantics of a language via an interpreter departs quite
significantly from the traditional statement of a big-step semantics as a relation
between a term and a result. We find that pretty-big-step semantics remains
much more faithful to big-step semantics, and is thus more likely to be accepted
as the reference semantics of a programming language. Moreover, some forms of

60 A. Charguéraud

reasoning, such as reasoning by inversion, are typically easier to conduct when
the definition is a relation than when it is a function.

7 Conclusion

In this paper, we addressed the duplication problem associated with big-step
semantics by introducing pretty-big-step semantics. Pretty-big-semantics rely
on four key ingredients: (1) a breakdown of complex rules into a larger number
of simpler rules, (2) a grammar of intermediate terms for ensuring that rules
are applied in the appropriate order, (3) an explicit constant div to represent
divergence, and (4) an inductive and a coinductive interpretation of the same
set of reduction rules. Pretty-big-step semantics accommodate the introduction
of a generic error rule for conducting type soundness proofs, and they scale up
to realistic programming languages. Moreover, they can easily be extended with
traces, in which case the behavior of both terminating and diverging programs
is adequately captured by the coinductive evaluation judgment alone.

Acknowledgments. I am grateful to Xavier Leroy for very useful feedback.

References

1. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification.
PhD thesis, Université Paris-Diderot (2010)

2. Cousot, P.; Cousot, R.: Inductive definitions, semantics and abstract interpretation.
In: POPL, pp. 83-94 (1992)

3. Cousot, P., Cousot, R.: Bi-inductive structural semantics: (extended abstract).
Electronic Notes Theoretical Computer Sciences 192(1), 29-44 (2007)

4. Cousot, P., Cousot, R.: Bi-inductive structural semantics. Information and Com-
putation 207(2), 258-283 (2009)

5. Danielsson, N.A.: Operational semantics using the partiality monad. In: ICFP, pp.
127-138. ACM (2012)

6. Gunter, C.A., Rémy, D.: A proof-theoretic assessment of runtime type errors. Re-
search Report 11261-921230-43TM, AT&T Bell Laboratories (1993)

7. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22-39. Springer, Heidelberg (1987)

8. Leroy, X.: Coinductive Big-Step Operational Semantics. In: Sestoft, P. (ed.) ESOP
2006. LNCS, vol. 3924, pp. 54-68. Springer, Heidelberg (2006)

9. Leroy, X., Grall, H.: Coinductive big-step operational semantics. CoRR,
abs,/0808.0586 (2008)

10. Nakata, K., Uustalu, T.: Trace-Based Coinductive Operational Semantics for
While. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 375-390. Springer, Heidelberg (2009)

11. Plotkin, G.D.: A structural approach to operational semantics. Internal Report
DAIMI FN-19, Department of Computer Science, Aarhus University (1981)

12. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38-94 (1994)

Language Constructs
for Non-Well-Founded Computation

Jean-Baptiste Jeannin', Dexter Kozen', and Alexandra Silva?

! Cornell University, Ithaca, NY 14853-7501, USA
{jeannin,kozen}@cs.cornell.edu
2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands
alexandra@cs.ru.nl

Abstract. Recursive functions defined on a coalgebraic datatype C may
not converge if there are cycles in the input, that is, if the input object
is not well-founded. Even so, there is often a useful solution. Unfortu-
nately, current functional programming languages provide no support
for specifying alternative solution methods. In this paper we give nu-
merous examples in which it would be useful to do so: free variables,
a-conversion, and substitution in infinitary A-terms; halting probabili-
ties and expected running times of probabilistic protocols; abstract in-
terpretation; and constructions involving finite automata. In each case
the function would diverge under the standard semantics of recursion.
We propose programming language constructs that would allow the spec-
ification of alternative solutions and methods to compute them.

Keywords: coalgebraic types, functional programming, recursion.

1 Introduction

Coalgebraic datatypes have become popular in recent years in the study of infi-
nite behaviors and non-terminating computation. One would like to define func-
tions on coinductive datatypes by structural recursion, but such functions may
not converge if there are cycles in the input; that is, if the input object is not
well-founded. Even so, there is often a useful solution that we would like to
compute.

For example, consider the problem of computing the set of free variables of a
A-term. In pseudo-ML, we might write

type term = let rec fv = function
| Var of string | Var v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) U (fv t2)
| Lam of string * term | Lam (x,t) -> (fv t) — {x}

and this works provided the argument is an ordinary (well-founded) A-term.
However, if we call the function on an infinitary term (A-coterm), say

let rec t = App (Var "x", App (Var "y", t))

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 6180 2013.
(© Springer-Verlag Berlin Heidelberg 2013

62 J.-B. Jeannin, D. Kozen, and A. Silva

e M

then the function will diverge, even though it is clear the answer should be {z, y}.
Note that this is not a corecursive definition: we are not asking for a greatest
solution or a unique solution in a final coalgebra, but rather a least solution
in a different ordered domain from the one provided by the standard semantics
of recursive functions. The standard semantics gives us the least solution in
the flat Scott domain (P(string),, C) with bottom element | representing
nontermination, whereas we would like the least solution in a different CPO,
namely (P(string), C) with bottom element &.

The coinductive elements we consider are always regular, that is, they have a
finite but possibly cyclic representation. This is different from a setting in which
infinite elements are represented lazily. A few of our examples, like substitu-
tion, could be computed by lazy evaluation, but most of them, for example free
variables, could not.

Theoretically, the situation is governed by diagrams of the form

C A
gl fa @
FC FA

Fh

describing a recursive definition of a function h : C' — A. Here F is a functor
describing the structure of the recursion. To apply A to an input x, the function
v : C — FC identifies the base cases, and in the recursive case prepares the
arguments for the recursive calls; the function Fh : FC — FA performs the
recursive calls; and the function a : FA — A assembles the return values from

the recursive calls into final value h(z).
A canonical example is the usual factorial function

let rec factorial = function
| 0 ->1
| n => n * factorial (n-1)

Here the abstract diagram (2 becomes

h
N N
d fo 3)
T4+NXN——>1T+NxN
+ idg +idw X h +

where the functor is FX =1+ N x X and v and « are given by:

7(0) = t0() a() =1
yn+1)=u(n+1,n) a(t1(e,d)) = cd

Language Constructs for Non-Well-Founded Computation 63

where ¢y and ¢ are injectors into the coproduct. The fact that there is one
recursive call is reflected in the functor by the single X occurring on the right-
hand side. The function v determines whether the argument is the base case 0
or the inductive case n + 1, and in the latter case prepares the recursive call.
The function a combines the result of the recursive call with the input value
by multiplication. In this case we have a unique solution, which is precisely the
factorial function.

Theoretical accounts of this general idea have been well studied [II2/319]. Most
of this work is focused on conditions ensuring unique solutions, primarily when
C is well-founded or when A is a final coalgebra. The account most relevant to
this study is the work of Addmek et al. [2], in which a canonical solution can
be specified even when it is not unique, provided various desirable conditions
are met; for example, when A is a complete CPO and « is continuous, or when
A is a complete metric space and « is contractive. Also closely related are the
work of Widemann [I0] on coalgebraic semantics of recursion and cycle detection
algorithms and the work of Simon et al. [7I8] on coinductive logic programming,
which addresses many of the same issues in the context of logic programming.

Ordinary recursion over inductive datatypes corresponds to the case in which
C' is well-founded. In this case, the solution A exists and is unique: it is the least
solution in the standard flat Scott domain. For example, the factorial function
is uniquely defined by (B]) in this sense. If C' is not well-founded, there can be
multiple solutions, and the one provided by the standard semantics of recursion is
typically not be the one we want. Nevertheless, the diagram (2)) can still serve as
a valid definitional scheme, provided we are allowed to specify a desired solution.
In the free variables example, the codomain of the function (sets of variables) is
indeed a complete CPO under the usual set inclusion order, and the constructor
« is continuous, thus the desired solution can be obtained by a least fixpoint
computation.

The example (I involving free variables of a A-coterm fits this scheme with
the diagram

fv

Term P(Var)
v l T o
F(Term) F(P(var))

idVar + fV2 + idVar x fv

where FX = Var + X2 + Var x X and

1(Var @) = to(a) alio(e)) = {z}
Y(App (t1,t2)) = t1(t1,t2) a(i(u,v)) =uUwv
~v(Lam (z,t)) = t2(x,t) ata(z,v)) =v\ {z}.

Here the domain of fv (regular A-coterms) is not well-founded and the codomain
(sets of variables) is not a final coalgebra, but the codomain is a complete CPO
under the usual set inclusion order with bottom element &, and the desired
solution is the least solution in this order; it is just not the one that would be
computed by the standard semantics of recursive functions.

64 J.-B. Jeannin, D. Kozen, and A. Silva

Unfortunately, current programming languages provide little support for spec-
ifying alternative solutions. One must be able to specify a canonical method for
solving systems of equations over an F-algebra (the codomain) obtained from the
function definition and the input. We will demonstrate through several examples
that such a feature would be extremely useful in a programming language and
would bring coinduction and coinductive datatypes to a new level of usability in
accordance with the elegance already present for algebraic datatypes. Our ex-
amples include free variables, a-conversion, and substitution in infinitary terms;
halting probabilities, expected running times, and outcome functions of proba-
bilistic protocols; and abstract interpretation. In each case, the function would
diverge under the standard semantics of recursion.

In this paper we propose programming language constructs that would allow
the specification of alternative solutions and methods to compute them. These
examples require different solution methods: iterative least fixpoint computation,
Gaussian elimination, structural coinduction. We describe how this feature might
be implemented in a functional language and give mock-up implementations of
all our examples. In our implementation, we show how the function definition
specifies a system of equations and indicate how that system of equations might
be extracted automatically and then passed to an equation solver. In many cases,
we suspect that the process can be largely automated, requiring little extra work
on the part of the programmer.

Current functional languages are not particularly well suited to the manipula-
tion of coinductive datatypes. For example, in OCaml one can form coinductive
objects with let rec as in (), but due to the absence of mutable variables, such
objects can only be created and not dynamically manipulated, which severely
limits their usefulness. One can simulate them with references, but this negates
the elegance of algebraic manipulation of inductively defined datatypes, for which
the ML family of languages is so well known. It would be of benefit to be able
to treat coinductive types the same way.

Our mock-up implementation with all examples and solvers is available from

[5].

2 DMotivating Examples

In this section we present a number of motivating examples that illustrate the
usefulness of the problem. Several examples of well-founded definitions that fit
the scheme (2)) can be found in the cited literature, including the Fibonacci func-
tion and various divide-and-conquer algorithms such as quicksort and mergesort,
so we focus on non-well-founded examples: free variables and substitution in A-
coterms, probabilistic protocols, and abstract interpretation.

2.1 Substitution

We now describe another function on infinitary A-terms: substitution. A typical
implementation for well-founded terms would be

Language Constructs for Non-Well-Founded Computation 65

let rec subst t y = function
Var x -> if x = y then t else Var x
App (t1,t2) -> App (subst t y tl, subst t y t2)
Lam (x,s) -> if x = y then Lam (x,s)
else if x € fv t then
let w = fresh ()
in Lam (w, subst t y (rename w x s))
else Lam (x, subst t y s)

where fv is the free variable function defined above and rename w x s is a
function that substitutes a fresh variable w for x in a term s.

let rec rename w x = function
| Var z -> Var (if z = x then w else z)
| App (t1,t2) -> App (rename w x tl, rename w x t2)
| Lam (z,s) -> if z = x then Lam (z,s)
else Lam (z, rename w X s)

Applied to a A-coterm with a cycle, for example attempting to substitute a term
for y in (), the computation would never finish. Nevertheless, this computation
fits the scheme () with C' = A = term (the set of A-coterms), functor

FX = term+ X% + string x X Fh = idiepn + 2 + idstring X A

and v and « defined by

~v(Var z) = {Lo(t) ifr=y

to(Var =) otherwise

v(App (t1,t2)) = t1(t1,t2)

to(Lam (z, s)) ife=y
v(Lam (z,5)) = < to(w,rename w x s) if x # y and x € £v ¢, where w is fresh
to(x, s) otherwise

aw(s)) =s
(1 (s1,52)) = App (s1,52)
a(tz(x,s)) = Lam (z, s)

In this case, even though the domain is not well-founded, the solution never-
theless exists and is unique up to observational equivalence. This is because the
definition of the function is corecursive and takes values in a final coalgebra.

2.2 Probabilistic Protocols

In this section, we present a few examples in the realm of probabilistic protocols.
Imagine one wants to simulate a biased coin, say a coin with probability 2/3 of
heads, with a fair coin. Here is a possible solution: flip the fair coin. If it comes up
heads, output heads, otherwise flip again. If the second flip is tails, output tails,

66 J.-B. Jeannin, D. Kozen, and A. Silva

otherwise repeat from the start. This protocol can be represented succinctly by
the following probabilistic automaton:

O
() 1D (4)
(@)

Operationally, starting from states s and ¢, the protocol generates series that
converge to 2/3 and 1/3, respectively.

N =

Pra(s) =3+ s+ g9+ 195+ =3

PrH(t):41L+116+614+2é6+'”:;’

However, these values can also be seen to satisfy a pair of mutually recursive
equations:

PI’H(S): é—i—é -PI’H(t) PI’H(t): é PI’H(S)

This gives rise to a contractive map on the unit interval, which has a unique
solution. It is also monotone and continuous with respect to the natural order
on the unit interval, therefore has a unique least solution.

One would like to define the probabilistic automaton (@) by

T | Flip of float * pa * pa

type pa = H |
= Flip (0.5,H,t) and t = Flip (0.5,T,s)

let rec s
and write a recursive program, say something like

let rec pr_heads = function
| H-> 1.
| T -> 0.
| Flip (p,u,v) -> p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

and specify that the extracted equations should be solved exactly by Gaussian
elimination, or by iteration until achieving a fixpoint to within a sufficiently
small error tolerance e. We give implementations using both methods.

The von Neumann trick for simulating a fair coin with a coin of arbitrary
bias is a similar example. In this protocol, we flip the coin twice. If the outcome
is HT, we output heads. If the outcome is TH, we output tails. These outcomes
occur with equal probability. If the outcome is HH or T'T, we repeat.

Here we would define

Language Constructs for Non-Well-Founded Computation 67

let rec s = Flip (p,t,u) and t = Flip (p,s,H) and u = Flip (p,T,s)

but the typing and recursive function pr_heads are the same. Markov chains
and Markov decision processes can be modeled the same way.

Other functions on probabilistic automata can be computed as well. The ex-
pected number of steps starting from state s is the least solution of the equation

o if s € {H,T}
= {1 +p- E(w)+ (1 —p)-E(v) if s =Flip(p,u,v).

We would like to write simply

let rec ex = function
| H-> 0.
| T -> 0.
| Flip (p,u,v) -> 1. +. p *. (ex w) +. (1 -. p) *. (ex V)

and specify that the extracted equations should be solved by Gaussian elimina-
tion or least fixpoint iteration from 0.

The coinflip protocols we have discussed all fit the abstract definitional scheme
@) in the form

Fh

where S is the set of states (a state can be either H, T, or a triple (p, u,v), where
p € R and u,v € S, the last indicating that it flips a p-biased coin and moves to
state u with probability p and v with probability 1 — p), and F' is the functor

FX=1+1+Rx X? Fh =idy +idg + idg x h2.

For both the probability of heads and expected running times examples, we can
take

Lo() ifs=H
~v(s) = ¢ t1() ifs=T
ta(p,u,v) if s = (p,u,v).

For the probability of heads, we can take

a(uo()) =1 a(u()) =0 a(e2(p; a,b)) = pa+ (1 —p)b.
For the expected running time, we can take
a(0)) = a(u () = 0 a(ia(p, a,b)) = 1+ pa+ (1 - p)b.

The desired solution in all cases is a least fixpoint in an appropriate ordered
domain.

68 J.-B. Jeannin, D. Kozen, and A. Silva

2.3 Abstract Interpretation

In this section we present our most involved example: abstract interpretation
of a simple imperative language. Our example follows Cousot and Cousot [6] as
inspired by lecture notes of Stephen Chong [4].

Consider a simple imperative language of while programs with integer expres-
sions a and commands c. Let Var be a countable set of variables.

az=n€Z|xeVar|a +as

cu=skip|z:=a|c1; ca|if athen ¢ else ¢a | while a do ¢

For the purpose of tests in the conditional and while loop, an integer is considered
true if and only if it is nonzero. Otherwise, the operational semantics is standard,
in the style of [11]. A store is a partial function from variables to integers, an
arithmetic expression is interpreted relative to a store and returns an integer,
and a command is interpreted relative to a store and returns an updated store.
Abstract interpretation defines an abstract domain that approximates the
values manipulated by the program. We define an abstract domain for integers
that abstracts an integer by its sign. The set of abstract values is AbsInt =
{neg, zero, pos, T }, where neg, zero, and pos represent negative, zero, and positive
integers, repectively, and T represents an integer of unknown sign. The abstract
values form a join semilattice with join U defined by the following diagram:

SN .

neg zero pos

The abstract interpretation of an arithmetic expression is defined relative to
an abstract store o : Var — AbsInt, used to interpret the abstract values of
variables. We write AS = Var — AbsInt for the set of abstract stores. The
abstract interpretation of arithmetic expressions is given by:

pos ifn >0
Aln]o = < zero if n =10
neg ifn<0
Alz]o = o(x)
Alai]o if Afaz]lo = zero
Alar + a2 = { Alaz]o if AJa1]o = zero

Alai]o U Afaz]oc otherwise.

The abstract interpretation of commands returns an abstract store, which is an
abstraction of the concrete store returned by the commands. Abstract stores
form a join semilattice, where the join L of two abstract stores just takes the
join of each variable: (o1 U o2)(z) = o1(x) U o2(z). Commands other than the
while loop are interpreted as follows:

Clskip]lo =0 Clz :=a]o = o[z — Afa]o] Clei; e2]lo = Cle2](Clei]o)

Language Constructs for Non-Well-Founded Computation 69

Cler]lo if Afa]o € {pos, neg}
C[lif a then ¢ else co]o = ¢ Clca]lo if Afa]o = zero
Cler]o UC[ex]o otherwise.

We would ideally like to define

Clwhile a do cJo = {0 . if .A[[a]].a - e
o U C[while a do ¢](C[c]o) otherwise.

Unfortunately, when Afa]o # zero, the definition is not well-founded, because
it is possible for o and C[c]o to be equal. However, it is a correct definition of
C[lwhile a do ¢] as a least fixpoint in the join semilattice of abstract stores. The
existence of the least fixpoint can be obtained in a finite time by iteration because
the join semilattice of abstract stores satisfies the ascending chain condition
(ACQ), that is, it does not contain any infinite ascending chains.

Given Afa] and C[c] previously defined, C[while a do c] satisfies the following
instantiation of (2)):

C[while a do]

AS AS
| k
AS + AS x AS AS + AS x AS

idas + idas X C[[while a do Cﬂ
where the functor is FX = AS + AS x X and

(o) = {““’) if Afa]r = zero au(o) = o

t2(0,C[c]o) otherwise afw(o, 7)) =0oUT

The function C[while a do] is the least function in the pointwise order that
makes the above diagram commute.

This technique allows us to define C[¢] inductively on the structure of ¢. An
inductive definition can be used here because the set of abstract syntax trees is
well-founded.

The literature on abstract interpretation explains how to compute the least
fixpoint, and much research has been done on techniques for accelerating con-
vergence to the least fixpoint. This body of research can inform compiler opti-
mization techniques for computation with coalgebraic types.

2.4 Finite Automata

We conclude this section with a brief example involving finite automata. Suppose
we want to construct a deterministic finite automaton (DFA) over a two-letter
alphabet accepting the intersection of two regular sets given by two other DFAs
over the same alphabet. We might define states coalgebraically by

type state = State of bool * state * state

70

J.-B. Jeannin, D. Kozen, and A. Silva

where the first component specifies whether the state is an accepting state and
the last two components give the states to move to under the two input symbols.
The standard product construction is defined coalgebraically simply by

let rec product (s : state) (t : state) : state =
match s, t with
| State (b1,s1,t1), State (b2,s2,t2) ->
State (bl && b2, product sl tl, product s2 t2)

and we can compute it, provided we can solve the generated equations.

3

In

A Framework for Non-Well-Founded Computation

this section we discuss our proposed framework for incorporating language

constructs to support non-well-founded computation. At a high level, we wish to
specify a function h uniquely using a finite set E of structural recursive equations.
The function is defined in much the same way as an ordinary recursive function
on an inductive datatype. However, the value h(z) of the function on a particular
input z is computed not by calling the function in the usual sense, but by
generating a system of equations from the function definition and then passing
the equations to a specified equation solver to find a solution. The equation
solver is either a standard library function or programmed by the user according

to

1.

an explicit interface.
The process is partitioned into several tasks as follows.

The left-hand sides of the clauses in the function definition determine syn-
tactic terms representing equation schemes. These schemes are extracted by
the compiler from the abstract syntax tree of the left-hand side expressions.
This determines (more or less, subject to optimizations) the function v in

the diagram ().

. The right-hand sides of the clauses in the function definition determine the

function « in the diagram (2)) (again, more or less, subject to optimizations).
These expressions essentially tell how to evaluate terms extracted in step 1
in the codomain. As in 1, these are determined by the compiler from the
abstract syntax trees of the right-hand sides.

. At runtime, when the function is called with a coalgebraic element ¢, a finite

system of equations is generated from the schemes extracted in steps 1 and
2, one equation for each element of the coalgebra reachable from c. In fact,
we can take the elements reachable from c as the variables in our equations.
Each such element matches exactly one clause of the function body, and this
determines the right-hand side of the equation that is generated.

. The equations are passed to a solver that is specified by the user. This

will presumably be a module that is programmed separately according to a
fixed interface and available as a library function. There should be a simple
syntactic mechanism for specifying an alternative solution method (although
we do not specify here what that should look like).

Language Constructs for Non-Well-Founded Computation 71

Let us illustrate this using our initial example of the free variables. Recall the
infinitary A-term below and the definition of the free variables function from the
introduction:

. let rec fv = function
RN | Var v -> {v} ©)
c | App (t1,t2) -> (fv t1) U (fv t2)
Y | Lam (x,t) -> (fv t) — {x}

Steps 1 and 2 would analyze the left-and right-hand sides of the three clauses in
the body at compile time to determine the equation schemes. Then at runtime, if
the function were called on the coalgebraic element pictured, the runtime system
would generate four equations, one for each node reachable from the top node:

fvt=Evx)U@Evw fvu=EvypUUEvt) fvzxs={x} fvys=/{y}

where t and u are the unlabeled top and right nodes of the term above.

As noted, these equations have many solutions. In fact, any set containing
the variables x and y will be a solution. However, we are interested in the least
solution in the ordered domain (P (Var), C) with bottom element @. In this case,
the least solution would assign {x} to the leftmost node, {y} to the lowest node,
and {x,y} to the other two nodes.

With this in mind, we would pass the generated equations to an iterative
equation solver, which would produce the desired solution. In many cases, such
as this example, the codomain is a complete partial order and we have default
solvers to compute least fixpoints, leaving to the programmer the simple task
of indicating that this is the desired solution method. That would be an ideal
situation: the defining equations of (@) plus a simple tag would be enough to
obtain the desired solution.

3.1 Generating Equations

The equations are generated from the recursive function definition and the input
¢, a coalgebraic element, in accordance with the abstract definitional scheme (2)).
The variables can be taken to be the elements of the coalgebraic object reachable
from c. There are finitely many of these, as no infinite object can ever exist in
a running program. More accurately stated, the objects of the final coalgebra
represented by coalgebraic elements during program execution are all reqular in
the sense that they have a finite representation. These elements are first collected
into a data structure (in our implementation, simply a list) and the right-hand
sides of the equations are determined by the structure of the object using pattern
matching. The object matches exactly one of the terms extracted in step 1.

4 Implementation

The examples of §2show the need for new program constructs that would allow
the user to manipulate corecursive types with the same ease and elegance as we

72 J.-B. Jeannin, D. Kozen, and A. Silva

are used to for algebraic datatypes. It is the goal of this section to provide lan-
guage constructs that allow us to provide the intended semantics to the examples
above in a functional language like OCaml.

The general idea behind the implementation is as follows. We want to keep
the overhead for the programmer to a minimum. We want the programmer to
specify the function in the usual way, then at runtime, when the function is
evaluated on a given argument, a set of equations is generated and passed on
to a solver, which will find a solution according to the specification. In an ideal
situation, the programmer only has to specify the solver. For the examples where
a CPO structure is present in the codomain, such as the free variables example,
or when we have a complete metric space and a contractive map, we provide
the typical solution methods (least and unique fixpoint) and the programmer
only needs to tag the codomain with the intended solver. In other cases, the
programmer needs to implement the solver.

4.1 Equations and Solvers

Our mock-up implementation aims to allow the programmer to encode a partic-
ular instantiation of the general diagram (@) as an OCaml module. This module
can then be passed to an OCaml functor, Corecursive, that builds the desired
function. We discuss the structure of Corecursive later in this section.

The functor F' is represented by a parameterized type b f. The structures
(C,~) and (A,), which form a coalgebra and an algebra, respectively, for the
functor F', are defined by types coalgebra and algebra, respectively. This allows
us to specify v naturally as a function from coalgebra to coalgebra f and « as
a function from algebra f to algebra. In the free variables example, if VarSet
is a module implementing sets of strings, this is done as:

type ’b f = I1 of string | I2 of ’b * ’b | I3 of string * ’b
type coalgebra = Var of string

| App of coalgebra * coalgebra

| Lam of string * coalgebra
type algebra = VarSet.t

let gamma (c:coalgebra) : coalgebra f =
match ¢ with
| Var v. -> I1 v
| App(cl, c2) -> I2(cl, c2)
| Lam(x, c) -> I3(x, c)
let alpha (s:algebra f) : algebra =
match s with
| I1 v -> VarSet.singleton v
| I2(s1, s2) -> VarSet.union sl s2
| I3(x, s) -> VarSet.remove X s

Variables are represented by strings and fresh variables are generated with a
counter. Equations are of the form variable = t, where the variables on the
left-hand side are elements of the domain and the terms on the right side are
built up from the constructors of the datatype, constants and variables.

Language Constructs for Non-Well-Founded Computation 73

In the fv example, the domain was specified by the following datatype:

type term =
| Var of string
| App of term * term
| Lam of string * term

Recall the four equations above defining the free variables of the A-term () from
the introduction:

fvt=Evx)UUEv W fvu=(Ev pDUEY t) fvx={x} fvy={y}

A variable name is generated for each element of the coalgebra encountered. For
example, here we write v1 for the unknown corresponding to the value of fv t;
v2 for x; v3 for u; and v4 for y. An equation is represented as a pair of a variable
and an element of type f variable. The intuitive meaning of a pair (v, w) is the
equation v = «(w). In the example above, we would have

("viv, I2("v2", "v3")) representing v1 = v2 U v3

("v2", I1("x")) representing v2 = {x}
("v3", I2("v4", "v1")) representing v3 = v4 U vl
("va", I1("y") representing v4 = {y}

The function solve can now be described. Its arguments are a variable v for
which we want a solution and a system of equations in which v appears. It
returns a value for v that satisfies the equations. In most cases the solution is
not unique, and the solve method determines which solution is returned.

For technical reasons, two more functions need to be provided. The function
equal provides an equality test on the coalgebra, which allows the equation
generator to know when it has encountered a loop. In most cases, this equality
is just the OCaml physical equality ==; this is necessary because the OCaml
equality = on coinductive objects does not terminate. In some other cases the
function equal is an equality function built from both = and ==.

The function £h can be seen either as an iterator on the functor f in the style
of folding and mapping on lists or as a monadic operator on the functor f. It
allows the lifting of a function from ’c (typically coalgebra) to ’a (typically
algebra) to a function from ’c £ to ’a f, while folding on an element of type ’e.
It works by destructing the element of type ¢ f to get some number (perhaps
zero) elements of type ’c, successively applying the function on each of them
while passing through the element of type ’e, and reconstructing an element of
type ’a f with the same constructor used in ’c¢ £, returned with the final value

of the element of type ’e. In the example on free variables, the function fh is
defined as:

let fh (h: ’c * e => ’a * ’e) : ’c f * ’e -> ’a f * ’e = function
| I1 v, e > I1 v, e
| I2(c1l, c2), e -> let al, el = h (c1, e) in
let a2, e2 = h (c2, el) in
I2(al, a2), e2
| I3(x, ¢c), e => let a, el = h (c, e) in
I3(x, a), el

74 J.-B. Jeannin, D. Kozen, and A. Silva

If we had access to an abstract representation of the functor f, analyzing it
allows to automatically generate the function £h. This is what we do in §5l

All this is summarized in the signature of a type SOLVER, used to specify one
of those functions:

module type SOLVER = sig
type ’b f
type coalgebra
type algebra

val gamma : coalgebra -> coalgebra f
val alpha : algebra f -> algebra

type variable = string
type equation = variable * (variable f)

val solve : variable -> equation list -> algebra

val equal : coalgebra -> coalgebra -> bool
val th : (°c * ’e -> ’a *x ’e) -> ’c f * ’e -> ’a f * ’e
end

Let us now define the OCaml functor Corecursive. From a specification of a
function as a module S of type SOLVER, it generates the equations to be solved
and sends them to S.solve. Here is how it generates the equations: starting from
an element c of the coalgebra, it gathers all the elements of the coalgebra that
are reachable from c, recursively descending with gamma and fh, and stopping
when reaching an element that is equal—in the sense of the function equal—to
an element that has already been seen. For each of those elements, it generates
an associated fresh variable and an associated equation based on applying gamma
to that element.

From an element c, generating the equations and solving them with solve
returns an element a in the coalgebra, the result of applying the function we
defined to c.

module Corecursive :
functor (S: SOLVER) -> sig
val main : S.coalgebra -> S.algebra
end

We will now explain the default solvers we have implemented and which are
available for the programmer to use. These solvers cover the examples we have
shown before: a least fixpoint solver, a solver that generates coinductive elements
and is used for substitution, and a Gaussian elimination solver.

4.2 Least Fixpoints

If the algebra A is a CPO, then every monotone function f on A has a least
fixpoint, by the Knaster—Tarski theorem. Moreover, if the CPO satisfies the

Language Constructs for Non-Well-Founded Computation 75

ascending chain condition (ACC), that is, if there does not exist an infinite
ascending chain, then this least fixpoint can be computed in finite time by iter-
ation, starting from 1 4. Even if the ACC is not satisfied, an approximate least
fixpoint may suffice.

In the free variables example, the codomain (P(Var),C) is a CPO, and its
bottom element is 1 4 = @. It satisfies the ACC as long as we restrict ourselves
to the total set of variables appearing in the term. This set is finite because the
term is regular and thus has a finite representation.

To implement this, first consider the set of equations: each variable is defined
by one equation relating it to the other variables. We keep a guess for each
variable, initially set at | 4, and compute a next guess based on the equation
for each variable. This eventually converges and we can return the value of the
desired variable. Note that to implement this, the programmer needs to know
that A is a CPO satisfying the ACC, and needs to provide two things: a bottom
element 1 4, and an equality relation on A that determines when a fixpoint is
achieved.

The same technique can be used to implement the solver for the abstract
interpretation example, as it is also a least fixpoint in a CPO. This CPO is the
subset of the join semilattice of abstract domains containing only the elements
greater than or equal to the initial abstract domain. The ACC is ensured by the
fact that the abstract domain is always of finite height. The bottom element is
the initial abstract domain. Much of the code is shared with the free variables
example. As pointed out before, only the bottom element of A and the equality
on A change.

More suprisingly, this technique can also be used in the probability examples.
Here the system of equations looks more like a linear system of equation on R.
Except in trivial extreme cases, the equations are contracting, thus we can solve
them by iterative approximation until getting close enough to a fixpoint. The
initial element | 4 is 0. The equality test on A is the interesting part: since it
determines when to stop iterating, two elements of A are considered equal if and
only if they differ by less than e, the precision of the approximation. This is
specified by the programmer in the definition of equality on A. Of course, such a
linear system could also be solved with Gaussian elimination, as presented below
in §4.41

It can be seen from these examples that the least fixpoint solver is quite
generic and works for a large class of problems. We need only parameterize with
a bottom element to use as an initial guess and an equality test.

4.3 Generating Coinductive Elements and Substitution

Let us return to the substitution example. Suppose we wanted to replace y in
Fig. [[(b) by the term of Fig. [[[(a) to obtain Fig. l(c). The extracted equations
would be

vl = App(v2, v3)
v2 = Var("x")
v3 = App(v4, v1)

76 J.-B. Jeannin, D. Kozen, and A. Silva

N N YN
T x x . T .
y;/ 'K/
/N
X X

(a) (b) (c)

Fig. 1. A substitution example

v4 = App(Var "x", Var "x")

and we are interested in the value of vi. Finding such a v1 is easily done by
executing the following code in OCaml:

let rec vl = App(v2, v3)

and v2 = Var("x")

and v3 = App(v4, v1)

and v4 = App(Var "x", Var "x")
in vl

This code can be easily generated (as a string of text) from the equations. Unfor-
tunately, there is no direct way of generating the element that this code would
produce. One workaround is to use the module Toploop of OCaml that provides
the ability to dynamically execute code from a string, like eval in Javascript.
But that is not a satisfying solution.

Another solution is to allow the program to manipulate terms by making all
subterms mutable using references:

type term =
| Var of string
| App of term ref * term ref
| Lam of string * term ref

This type allows the creation of the desired term by going down the equations and
building the terms progressively, backpatching if necessary when encountering
a loop. But this is also unsatisfactory, as we had to change the type of term to
allow references.

The missing piece is mutable variables, which are currently not supported
in the ML family of languages. A variable is mutable if it can be dynamically
rebound, as with the Scheme set! feature or ordinary assignment in imperative
languages. In ML, variables are only bound once when they are declared and
cannot be rebound.

References can simulate mutable variables, but this corrupts the typing and
forces the programmer to work at a lower pointer-based level. Moreover, there
are subtle differences in the aliasing behavior of references and mutable variables.
The language constructs we propose should ideally be created in a programming
language with mutable variables.

Language Constructs for Non-Well-Founded Computation 7

4.4 Gaussian Elimination

In many of the examples on probabilities and streams, a set of linear equations
is generated. One of the examples on probabilistic protocols of §2.2 requires us
to find a float varil such that

varl = 0.5 + 0.5 * var2
var2 = 0.5 * varl

In the case where the equations are contractive, we have already seen that the
solution is unique and we can approximate it by iteration. We have also imple-
mented a Gaussian elimination solver that can be used to get a more precise
answer or when the map is not contractive but the solution is still unique.

But what happens when the linear system has no solution or an infinite num-
ber of solutions? If the system does not have a solution, then there is no fixpoint
for the function, and the function is undefined on that input. If there are an
infinite number of solutions, it depends on the application. For example, in the
case of computing the probability of heads in a probabilistic protocol, we want
the least such solution such that all variables take values between 0 and 1.

For example, let us consider the following probabilistic protocol: Flip a fair
coin. If it comes up heads, output heads, otherwise flip again. Ignore the result
and come back to this last state, effectively flipping again forever. This protocol
can be represented by the following probabilistic automaton:

1 1
2 2

1

The probability of heads starting from s and ¢, respectively, is given by:
Prer(s) =3 + 5 - Pru(t) Prir(t) =1-Pry(2).

The set of solutions for these equations for Prg(t) is the interval [0, 1], thus the
set of solutions for Pry(s) is the interval [},1]. The desired result, however, is
the least of those solutions, namely 1/2 for Prg(s), because the protocol halts
with result heads only with probability 1/2.

Again, the Gaussian solver is quite generic and would be applicable to a large
class of problems involving linear equations.

5 Future Work: Automatic Partitioning

In §4 we described a mock-up implementation that demonstrates the feasibility
of our approach. In this implementation, the programmer needs to provide the
elements of the SOLVER module. We now describe our ideas for future work, and
in particular, ideas to make the task of the programmer easier by automatically
generating some of those elements.

Providing all the elements to a SOLVER module requires from the programmer
a good understanding of the concepts explained in this paper and a method

78 J.-B. Jeannin, D. Kozen, and A. Silva

to solve equations. On the other hand, examples show that the same solving
techniques arise again and again. Ideally, we would like the programmer to have
to write only:

type term = let rec[...] fv = function
| Var of string | Vvar v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) U (fv t2)
| Lam of string * term | Lam (x,t) -> (fv t) — {x}

where the keyword rec has been parameterized by the name of a module im-
plementing the SOLVER interface for a particular codomain, such as a generic
iteration solver for CPOs or contractive maps or a Gaussian elimination solver
for linear equations.

This definition is almost enough to generate the SOLVER module. Only three
more things need to be specified by the programmer:

— the function equal on coalgebras, which is just == in most cases; and
— the two elements needed in the least fixpoint algorithm: a bottom element
1 4 and an equality test =4 on the algebra A, written algebra in the code.

The other elements can be directly computed from a careful analysis of the
function definition:

— The function can be typed with the usual typing rules for recursive functions.
Then algebra is defined as its input type and coalgebra as its output type.

— An analysis of the abstract syntax trees of the clauses of the function defini-
tion can determine what is executed before the recursive calls, which com-
prises 7, and what is executed after the recursive calls, which comprises a.
An analysis of the arguments that are passed to the recursive calls, as well
as the variables that are still alive across the boundary between gamma and
alpha, determine the functor f.

— The function f£h can be defined by induction on the structure of the abstract
syntax tree defining ’>a f. The only difficult case is the product, where we
apply h to every element of type ’a in the product, passing through the
element of type ’e, and returning a reconstructed product of the results.

— The type equation is always defined in the same way.

— Finally, the solve function is generic for all functions solved as a least fix-
point by iteration, just depending on the bottom element and the equality
on the algebra.

6 Conclusion

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are sim-
ilar in many ways. Nevertheless, there are some important distinctions. Algebraic
types have a long history, are very well known, and are heavily used in modern
applications, especially in the ML family of languages. Coalgebraic types, on the
other hand, are the subject of more recent research and are less well known. Not

Language Constructs for Non-Well-Founded Computation 79

all modern languages support coalgebraic types—for example, Standard ML and
F# do not—and even those that do may not do so adequately.

The most important distinction is that coalgebraic objects can be cyclic,
whereas algebraic objects are always well-founded. Functions defined by struc-
tural recursion on well-founded data always terminate and yield a value under
the standard semantics of recursion, but not so on coalgebraic data. A more
subtle distinction is that constructors can be interpreted as functions under the
algebraic interpretation, as they are in Standard ML, but not under the coalge-
braic interpretation as in OCaml.

Despite these differences, there are some strong similarities. They are defined
in the same way by recursive type equations, algebraic types as initial solutions
and coalgebraic types as final solutions. Because of this similarity, we would like
to program with them in the same way, using constructors and destructors and
writing recursive definitions using pattern matching.

In this paper we have shown through several examples that this approach
to computing with coalgebraic types is not only useful but viable. For this to
be possible, it is necessary to circumvent the standard semantics of recursion,
and we have demonstrated that this obstacle is not insurmountable. We have
proposed new programming language features that would allow the specification
of alternative solutions and methods to compute them, and we have given mock-
up implementations that demonstrate that this approach is feasible.

The chief features of our approach are the interpretation of a recursive function
definition as a scheme for the specification of equations, a means for extracting
a finite such system from the function definition and its (cyclic) argument, a
means for specifying an equation solver, and an interface between the two. In
many cases, such as an iterative fixpoint on a codomain satisfying the ascending
chain condition, the process can be largely automated, requiring little extra work
on the part of the programmer.

We have mentioned that mutable variables are essential for manipulating coal-
gebraic data. Current functional languages in the ML family do not support
mutable variables; thus true coalgebraic data can only be constructed explicitly
using let rec, not programmatically. Moreover, once constructed, a coalgebraic
object cannot be changed dynamically. These restrictions currently constitute a
severe restriction the use of coalgebraic datatypes. One workaround is to simulate
mutable variables with references, but this is a grossly unsatisfactory alternative,
because it confounds algebraic elegance and forces the programmer to work at a
lower pointer-based level. A future endeavor is to provide a smoother and more
realistic implementation of these ideas in an ML-like language with mutable
variables.

Acknowledgments. We are grateful to Bob Constable, Edgar Friendly, Nate
Foster, Helle Hvid Hansen, Bart Jacobs, Jonathan Kimmitt, Xavier Leroy, An-
drew Myers, Stefan Milius, Ross Tate, and the anonymous referees for helpful
comments. Part of this work was done while the first two authors were visiting
Radboud University Nijmegen and the CWI Amsterdam.

80 J.-B. Jeannin, D. Kozen, and A. Silva
References
1. Adédmek, J., Liicke, D., Milius, S.: Recursive coalgebras of finitary functors. Theo-

10.

11.

retical Informatics and Applications 41, 447-462 (2007)

Adémek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput.
Sci. 2(5:4), 1-31 (2006)

Capretta, V., Uustalu, T., Vene, V.: Corecursive Algebras: A Study of General
Structured Corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 84-100. Springer, Heidelberg (2009)

Chong, S.: Lecture notes on abstract interpretation. Harvard University (2010),
http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
CoCaml project (December 2012),
http://www.cs.cornell.edu/Projects/CoCaml/

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, pp. 238-252.
ACM Press, New York (1977)

Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyriski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330-345.
Springer, Heidelberg (2006)

Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Arge, L., Cachin, C., Jurdziniski, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472-483. Springer, Heidelberg
(2007)

Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced
Mathematics, vol. 59. Cambridge University Press (1999)

y Widemann, B.T.: Coalgebraic semantics of recursion on circular data structures.
In: Cirstea, C., Seisenberger, M., Wilkinson, T. (eds.) CALCO Young Researchers
Workshop (CALCO-jnr 2011), pp. 28-42 (August 2011)

Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
http://www.cs.cornell.edu/Projects/CoCaml/

Laziness by Need

Stephen Chang

Northeastern University
stchang@ccs.neu.edu

Abstract. Lazy functional programming has many benefits that strict
functional languages can simulate via lazy data constructors. In recogni-
tion, ML, Scheme, and other strict functional languages have supported
lazy stream programming with delay and force for several decades. Un-
fortunately, the manual insertion of delay and force can be tedious and
error-prone.

We present a semantics-based refactoring that helps strict program-
mers manage manual lazy programming. The refactoring uses a static
analysis to identify where additional delays and forces might be needed
to achieve the desired simplification and performance benefits, once the
programmer has added the initial lazy data constructors. The paper
presents a correctness argument for the underlying transformations and
some preliminary experiences with a prototype tool implementation.

1 Laziness in a Strict World

A lazy functional language naturally supports the construction of reusable com-
ponents and their composition into reasonably efficient programs [12]. For ex-
ample, the solution to a puzzle may consist of a generator that produces an
easily-constructed stream of all possible solutions and a filter that extracts the
desired wvalid solutions. Due to laziness, only a portion of the possible solutions
are explored. Put differently, lazy composition appears to naturally recover the
desired degree of efficiency without imposing a contorted programming style.

Unfortunately, programming in a lazy language comes at a cost. Not only
are data constructors lazy, but all functions are as well. This pervasiveness of
laziness makes it difficult to predict the behavior and time/space performance of
lazy programs. As several researchers noticed [2/6JI5IT6/23], however, most pro-
grams need only a small amount of laziness. In response, people have repeatedly
proposed lazy programming in strict functional languages [II820/25127]. In fact,
Scheme [22] and ML [3] have supported manual stream programming with delay
and force for decades. Using delay and macros, a programmer can easily turn
an eager, Lisp-style list constructor into a lazy one [I1], while force retrieves
the value from a delayed computation.

However, merely switching from eager constructors to lazy ones is often not
enough to achieve the performance benefits of laziness. The insertion of one
delay tends to require additional delays elsewhere in the program to achieve
the desired lazy behavior. Since these additional delay insertions depend on

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 81-{[00] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

82 S. Chang

the value flow of the program, it can be difficult to determine where to insert
them, especially in the presence of higher-order functions. In short, manual lazy
programming is challenging and error-prone.

In response, we introduce a static analysis-based refactoring that assists pro-
grammers with the task of inserting delays and accompanying forces. We imag-
ine a programmer who wishes to create a lazy generator and starts using lazy
constructs in the obvious places. Our transformation then inserts additional
delays and forces to achieve the desired lazy performance benefit.

The paper is organized as follows. The second section introduces some moti-
vating examples. Section [3] presents the analysis-based program transformation,
and section Ml argues its correctness. Section [l sketches a prototype implemen-
tation, and section [6] describes real-world applications. Section [compares our
approach with other attempts at taming laziness. Finally, section [lists some
ideas for future work.

2 DMotivating Examples

Nearly every modern strict programming language supports laziness, either via
delay and force, or in the form of a streams or other lazy data structure
library. None of these languages offer much help, however, in figuring out the
right way to use these forms. To illustrate the problems, this section presents
three examples in three distinct languages, typed and untyped. The first one,
in Racket [I0], shows how conventional program reorganizations can eliminate
the performance benefits of laziness without warning. The second, in Scala [19],
demonstrates how laziness propagates across function calls. The third example
illustrates the difficulties of developing an idiomatic lazy n-queens algorithm in
a strict language like OCaml [I4]. That is, the problems of programming lazily
in a strict language are universal across many languages.

2.1 Reorganizations Interfere with Laziness

Using delay and force occasionally confuses even the most experienced pro-
grammers. This subsection retells a recent story involving a senior Racket de-
veloper. A game tree is a data structure representing all possible sequences of
moves in a game. It is frequently employed in Al algorithms to calculate an op-
timal next move, and it is also useful for game developers wishing to experiment
with the rules of a game. For anything but the simplest games, however, the
multitude of available moves at each game state results in an unwieldy or even
infinite game tree. Thus, laziness is frequently utilized to manage such trees.
The Racket code to generate a game tree might roughly look like this:

;3 A GameTree (short: GT) is one of:
;3 —— (GT-Leaf GameState)
;3 —— (GT-Node GameState Player [ListOf Movel)

;3 A Move is a (Move Name Position GameTree)

Laziness by Need 83

;; gen-GT : GameState Player -> GameTree
(define (gen-GT game-state player)
(if (final-state? game-state)
(GT-Leaf game-state)
(GT-Node game-state player (calc-next-moves game-state player))))

;; calc-next-moves : GameState Player -> [ListOf Move]
(define (calc-next-moves game-state player)
((for each possible attacker and target in game-state:))
(define new-state ...)
(define new-player ...)
(Move attacker target (gen-GT new-state new-player)))

A game tree is created with the gen-GT function, which takes a game state and
the current active player. If the given state is a final state, then a GT-Leaf node is
created. Otherwise, a GT-Node is created with the current game state, the current
player, and a list of moves from the given game state. The calc-next-moves
function creates a list of Move structures, where each move contains a new game
tree starting from the game state resulting from the move.

An upcoming, Racket-based programming book utilizes such a game tree.
Initially, only a small game is implemented, so Move is defined as a strict con-
structor. As the book progresses, however, the game tree becomes unwieldy as
more features are added to the game. In response, the third argument of the Move
structure is changed to be lazy, meaning the call to the Move constructor implic-
itly wraps the third argument with a delayE With the lazy Move constructor,
the code above generates only the first node of a game tree.

To prepare the book for typesetting, an author reorganized the definition of
calc-next-moves in a seemingly innocuous fashion to fit it within the margins
of a page:

;; calc-next-moves : GameState Player -> [List0f Movel
(define (calc-next-moves game-state player)
((for each possible attacker and target in game-state:))
(define new-state ...)
(define new-player ...)
(define new-gt (gen-GT new-state new-player))
(Move attacker target new-gt))

The underlined code above pulls the generation of the game tree into a separate
definition. As the astute reader will recognize, the new game tree is no longer
created lazily. Even though the Move constructor is lazy in the third position,
the benefits of laziness are lost. Even worse, such a performance bug is easily
unnoticed because the program still passes all unit tests.

In contrast, our laziness transformation recognizes that the new-gt variable
flows into the lazy position of the Move constructor, and in turn, proposes a
delay around the construction of the new game tree.

! Specifically, Move becomes a macro that expands to a private constructor call where
the third argument is delayed. This is a common idiom in Lisp-like languages [I1].

84 S. Chang

2.2 Laziness Must Propagate

A 2009 blog pos illustrates a related tricky situation in the following Scala [19
example. Scala delays method arguments whose type is marked with =>, as in

def fool[A,B](a: A, b: => B): B = ...

When foo is called, its second argument is not evaluated until its value is needed
inside the function body. However, if another function, bar, calls foo:

def bar[C,A,B](c: C, a: A, b: B): B=4{ ... foo(a, b) }

the b argument is evaluated when bar is called, thus negating the benefit of
laziness in foo. To recover it, we must delay the third argument to bar:

def bar[C,A,B](c: C, a: A, b: => B): B = ...

If yet another function calls bar then that function must delay its argument as
well. For programs with complex call graphs, the required delay points may be
scattered throughout the program, making programmer errors more likely. Our
transformation is designed to help with just such situations.

2.3 Idiomatic Lazy Programming in a Strict Language

The n-queens problem makes an illustrative playground for advertising lazy pro-
gramming. An idiomatic lazy solution to such a puzzle may consist of just two
parts: a part that places n queens at arbitrary positions on an n by n chess
board, and a part for deciding whether a particular placement is a solution to
the puzzle. Given these two components, a one-line function calculates a solution:

let nqueens n = hd (filter isValid all_placements)

The all placements variable stands for a stream of all possible placements of
n queens; filter isValid eliminates placements with conflicting queens; and
hd picks the first valid one. Lazy evaluation guarantees that filter isValid
traverses all placements for just enough placements to find the first solution.

The approach cleanly separates two distinct concerns. While all placements
may ignore the rules of the puzzle, it is the task of isValid to enforce them. If the
components were large, two different programmers could tackle them in parallel.
All they would have to agree on is the representation of queen placements, for
which we choose a list of board coordinates (r, ¢). The rest of the section explains
how an OCaml [14] programmer may develop such a lazy algorithm. Here is
all placements::

let process_row r gss_so_far =
foldr (fun gs new_gss -> (map (fun ¢ -> (r,c)::gs) (rng n)) @ new_gss)
[1 gss_so_far

let all_placements = foldl process_row [[]1] (rng n)

2 http://pchiusano.blogspot . com/2009/05/
optional-laziness-doesnt-quite-cut-it.html

3 The => syntax specifies “by-name” parameter passing for this position but the dis-
tinction between “by-name” and “lazy” is inconsequential here.

http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html
http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html

Laziness by Need 85

Brackets denote lists, rng n is [1...n], :: is infix cons, and @ is infix append.
All possible placements are generated by adding one coordinate at a time. The
process row function, given a row r and a list of placements ¢ss so far, dupli-
cates each placement in ¢ss so far n times, adding to each copy a new coordinate
of r with a different column ¢, and then appends all these new placements to
the final list of all placements. The process row function is called n times, once
per row. The result of evaluating all placements looks like this:

[[(n,1);(-1,1); ... ;(1,1)];

[(n,n);(@-1,n); ... ;(1,n)]]

where each line represents one possible placement.

Since OCaml is strict, however, using all placements with the nqueens func-
tion from earlier generates all possible placements before testing each one of
them for validity. This computation is obviously time consuming and performs
far more work than necessary. For instance, here is the timing for n = 8 queens

real Omb2.122s user Om51.399s sys Om0.468s

If the programmer switches to lazy lists to represent all placements, then only
a portion of the possible placements should be explored. Specifically, all instances
of cons (::) are replaced with its lazy variant, represented with ::;, below. In
this setting, lazy cons is defined using OCaml’s Lazy module and is cons with
a delayed rest list. It is also necessary to add forces where appropriateE For
example, here is append (@) and map with lazy cons ([] also represents the
empty lazy list)

let rec (@) 1lstl 1st2 =
match force 1lstl with
| [1 -> 1st2
| x::,xs -> x::,delay (xs @ 1st2)

let rec map f 1st =
match force 1lst with
I 0O ->10

| x::.xs => f x::;,delay (map f xs)
Running this program, however, surprises our lazy-strict programmer:
real 1m3.720s user 1m3.072s sys Om0.352s

With lazy cons and force, the program runs even slower than the strict version.
Using lazy cons naively does not seem to generate the expected performance
gains. Additional delays and forces are required, though it is not immedi-
ately obvious where to insert them. This step is precisely where our analysis-
based refactoring transformation helps a programmer. In this particular case,
our transformation would insert a delay in the foldr function:

* Run on an Intel i7-2600k, 16GB memory machine using the Linux time command.

5 “Appropriate” here means we avoid Wadler et al.’s [27] “odd” errors.

5 OCaml’s delaying construct is lazy but for clarity and consistency with the rest of
the paper we continue to use delay. Also, in ML languages, the delay is explicit.

86 S. Chang

let rec foldr f base lst =
match force 1lst with
| [0 -> base
| x::.xs => £ x (delay (foldr f base xs))

This perhaps unobvious delay is needed because f’s second argument eventually
flows to a lazy cons in append (@). Without this delay, the list of all queen
placements is evaluated prematurely. With this refactoring, and an appropriate
insertion of forces, the lazy-strict programmer sees a dramatic improvement:

real Om3.103s user Om3.068s sys Om0.024s

Lazy programmers are already familiar with such benefits, but our refactoring
transformation enables strict programmers to reap the same benefits as well.

3 Refactoring For Laziness

The heart of our refactoring is a whole-program analysis that calculates where
values may flow. Our transformation uses the results of the analysis to insert
delays and forces. Section 3.1l describes the core of our strict language. We then
present our analysis in three steps: section explains the analysis rules for our
language; section extends the language and analysis with lazy forms: delay,
force, and lazy cons (lcons); and section [3.4] extends the analysis again to
calculate the potential insertion points for delay and force. Finally, section [3.0]
defines the refactoring transformation function.

3.1 Language Syntax

Our starting point is an untypecﬂ functional core language. The language is
strict and uses a standard expression notation:

ecFExp=n|blaz|Nz...)e|lee...|oee|zero?e|note|ifeece
| let z =eine|null |consee|firste|reste|null?e
n €7, be Bool=true |false, z € Var, o€ Op=+|—|*|/|<|>|=| or | and
There are integers, booleans, variables, As, applications, boolean and arithmetic

primitives, conditionals, (non-recursive) lets, and eager lists and list operations.
Here are the values, where both components of a non-empty list must be values:

veVal=n|b|A(z...).e|null | cons v v

A program p consists of two pieces: a series of mutually referential function
definitions and an expression that may call the functions:

p€E€ Prog=d...ce d € Def=define f(z...)=¢

" Standard type systems cannot adequately express the flow of laziness and thus cannot
solve the delay-insertion problems from section 2l A type error can signal a missing
force, but a type system will not suggest where to add performance-related delays.
Thus we omit types for this first step in our research.

Laziness by Need 87

3.2 Analysis Step 1: 0-CFA

Our initial analysis is based on 0-CFA [I324)26]. The analysis assumes that
each subexpression has a unique label ¢, also drawn from Var, but that the set
of labels and the set of variables in a program are disjoint. The analysis computes
an abstract environment p that maps elements of Var to sets of abstract values:

p € Env= Var — P(v) e Var Ve I//El:val\)\(x...).ﬁ\consﬁﬁ

A set p(x) or p(¢) represents an approximation of all possible values that can be
bound to x or observed at ¢, respectively, during evaluation of the program.
The analysis uses abstract representations of values, ¥, where val stands for
all literals in the language. In addition, A(x ...).¢ are abstract function values
where the body is represented with a label, and (cons ¢) are abstract list values
where the £’s are the labels of the respective pieces. We overload the ~ notation
to denote a function that converts a concrete value to its abstract counterpart:

n =val b=val null = val > Val — Val
Mz ..)et=Az...)L cons vi' v5? = cons /) £y

We present our analysis with a standard [I8], constraints-based specification,
where notation p = p means p is an acceptable approximation of program p.
Figures [and [2 show the analysis for programs and expressions, respectively.

The [prog] rule specifies that environment p satisfies program p = d...e if
it satisfies all definitions d... as well as the expression e in the program. The
[def] rule says that p satisfies a definition if the corresponding abstract A-value
is included for variable f in p, and if p satisfies the function body as well.

In figure 2] the [num], [bool], and [null] rules show that val represents these
literals in the analysis. The [var] rule connects variables x and their labels ¢,
specifying that all values bound to x should also be observable at £. The [lam]
rule for an ¢-labeled A says that its abstract version must be in p(¢) and that
p must satisfy its body. The [app] rule says that p must satisfy the function
and arguments in an application. In addition, for each possible A in the function
position, the arguments must be bound to the corresponding parameters of that A
and the result of evaluating the \’s body must also be a result for the application
itself. The [let] rule has similar constraints. The [op], [zero?], [not], and [null?]
rules require that p satisfy a primitive’s operands and uses val as the result.
The [if] rule requires that p satisfy the test expression and the two branches,
and that any resulting values in the branches also be a result for the entire

pEd... eiff [prog] pl=q define f(z...) =€’ iff [def]
PlEad A ... AN PlEece Maz..)Lep(f) N plEee

Fig. 1. 0-CFA analysis on programs

88 S. Chang

plen’ iff val € p(e) [num] P l=e (zero? et iff [zero?]

Pl b iff val € p(f) [bool] PlEecel A val € p(l)

P2t it plz) CpY) [var] P e (not ef')" iff [not]

e (Mw...).e0) iff [lam)] plcer’ A valep(l)

Aa..)lo €5(0) A fleed Ple (if ef' 5 e) iff [if]

P (e)i app] | P A DR A F(E) CA0)
Pt A Bl A A A el A BlEs) € A0)
(VA(z1...).Lo € B(Ey) : pl=e null’ iff val € p(¢) [null]

p(6) Cpx) A ... A P l=e (null? ef1)* iff [null?]
p(bo) C p(£)) Ple el A val ep(l)

Pl (letz=e inel) iff [let] 5 = (cons e e22)" iff [cons]
Pl et A Bll) C o) A Pl el A Pl el A (cons 1 £2) € p(0)
ple e A pllo) S p(E) pl=e (first &) iff pl=c el A [first]

Pl (o€l e)” iff (o] (¥(cons £z) € p(tr) = Blt2) € P(0))

Dlcell N pEce? Aval e pll) pl=. (rest i) iff pl=. el A [rest]

(V(cons £2) € (1) : plt2) C (L))

Fig. 2. Step 1: 0-CFA analysis on expressions

expression. The [cons| rule for an ¢-labeled, eager cons requires that p satisfy
both arguments and that a corresponding abstract cons value be in p(¢). Finally,
the [first] and [rest] rules require satisfiability of their arguments and that the
appropriate piece of any cons arguments be a result of the entire expression.

3.3 Analysis Step 2: Adding delay and force

Next we extend our language and analysis with lazy forms:

e € Ezp=...|delaye|forcee|lconsee

df
where lcons e; e; = cons e; (delay es)

The language is still strict but delay introduces promises. A force term re-
cursively forces all nested delays. Lazy cons (lcons) is only lazy in its rest
argument and first and rest work with both lcons and cons values so that
rest (lcons v e) results in (delay e).

We add promises and lazy lists to the sets of values and abstract values, and ~
is similarly extended. The abstract representation of a delay replaces the labeled
delayed expression with just the label and the abstract lcons is similar.

Laziness by Need 89

veE Val=...|delaye|lconsve

e Va=... | delay ¢ | 1cons £ ¢

deTa?ef =delay / lcons vfl eg"’ = 1cons ¥ {5 2 Val— Val
Figure [3 presents the new and extended analysis rules. The [delay] rule speci-
fies that for an (-labeled delay, the corresponding abstract delay must be in
p(¢) and p must satisfy the delayed subexpression. In addition, the values of the
delayed subexpression must also be in p(¢). This means that the analysis approx-
imates evaluation of a promise with both a promise and the result of forcing that
promise. We discuss the rationale for this constraint below. The [force] rule says
that p must satisfy the argument and that non-delay arguments are propagated
to the outer ¢ label. Since the [delay] rule already approximates evaluation of
the delayed expression, the [force] rule does not have any such constraints.

We also add a rule for 1cons and extend the [first] and [rest] rules to handle
lcons values. The [lcons] rule requires that p satisfy the arguments and requires a
corresponding abstract Lcons at the expressions’s ¢ label. The [first] rule handles
lcons values just like cons values. For the [rest] rule, a delay with the lcons’s
second component is a possible result of the expression. Just like the [delay] rule,
the [rest] rule assumes that the lazy component of the lcons is both forced and
unforced, and thus there is another constraint that propagates the values of the
(undelayed) second component to the outer label.

Implicit Forcing. In our analysis, delays are both evaluated and unevaluated.
We assume that during evaluation, a programmer does not want an unforced
delay to appear in a strict position. For example, if the analysis discovers an un-
forced delay as the function in an application, we assume that the programmer
forgot a force and analyze that function call anyway. This makes our analysis
quite conservative but minimizes the effect of any laziness-related errors in the
computed control flow. On the technical side, implicit forcing also facilitates the
proof of a safety theorem for the transformation (see subsection E.3]).

P = (delay ef!)" iff [delay] P [Ee (fFirste)" iff ... A [first]
(delay /1) € p(£) A P e el A pllr) C p(e) (V(1cons >) € p(tr)

P l=e (force i)’ iff [force] p(f? QZ p(e))
FEce A (Vo €p(h),5 ¢ delay: Depe)) Pre(rester) iff .. A resi]

V(1 ly) € p(ty) :
P = (1coms et e2)" iff [lcons] (vV(1cons L) ,OE)
, , (delay £2) € p(£) A

PEecelr N plEee? A (lcons £y £2) € p(d)

plt2) € p(£))

Fig. 3. Step 2: Analysis with lazy forms

90 S. Chang

(5. D) e (e} efr..)" iff [app] (p,D) =. (delay €it) iff [delay)
(5, D) =« eff A (5, D) Ee et AL A (delay ¢1) € p(¢) A
(V)\(ih DAo € p(ff) :

(3. D) ke €' A ptr) S L) A
p(0) Cp(@) A ... A (Vz € fu(er) : (V(arg £2) € p(z) :

(arg £1) € p(z1) A ... A t,eD A (darg £2) € p(z) 4))

(Vo € p(lo),v ¢ arg: v € p(£)))

2

(7. D) e (let z =€t inel)’ iff [let] (5, D) e (coms ef! ex?)" iff [lcons]
(5. D) e €' A pltr) € plz) A (3.D) e e’ A (7,D) b= €5 A

(arg 1) €) A (5,D) e eff A (cons &1 £) € p(6) A
(Vz € fo(e2) : (V(arg £3) € p(x) :
(Vv € p(lo),v ¢ arg : ¥ € p(¢))

2 s €D A (dargls) € plx) B)

Fig. 4. Step 3a: Calculating flow to lazy positions

3.4 Analysis Step 3: Laziness Analysis

Our final refinement revises the analysis to calculate three additional sets, which
are used to insert additional delays and forces in the program:

D € DPos=P(Var), S¢€ SPos=P(Var), F € FPos=P(VarU (Varx Var))

Intuitively, Dis a set of labels representing function arguments that flow to
lazy positions and S is a set of labels representing arguments that flow to strict
positions. Our transformation then delays arguments that reach a lazy position
but not a strict position. Additionally, F collects the labels where a delayed
value may appear—both those manually inserted by the programmer and those
suggested by the analysis—and is used by the transformation to insert forces.
We first describe how the analysis computes D. The key is to track the flow of
arguments from an application into a function body and for this, we introduce
a special abstract value (arg ¢), where ¢ labels an argument in a function call.

Ve @l:...\argé

Figure[d presents revised analysis rules related to ﬁ.ATo reduce clutter, we express
the analysis result as (p, D), temporarily omitting S and F. In the new [app] and
[let] rules, additional constraints (box 1) specify that for each labeled argument,
an arg abstract value with a matching label must be in p for the corresponding
parameter. We are only interested in the flow of arguments within a function’s
body, so the result-propagating constraint filters out arg values (box 2).

Recall that D is to contain labels of arguments that reach lazy positions.
Specifically, if an (arg ¢) value flows to a delay or the second position of an

Laziness by Need 91

(7, D,S,F) |=e (force efl)f it [force] (p,D,S,F) . Sle']iff ... A [strict]

5,D,8,F) e et (V(arg 1) € p() : 61 €8) A

Vo € p(f1), 0 gédelay.@eﬁ(Z))/\ 5
R _ (3delay € p() = L€ F) A

(V(arg £2) € p(l1) : b2 € S) . 6

(V(darg €2) € p(£) : (£, 62) € F) .

where S € SCtz=[]e...|o[]e|ov[]|if []e1 ez
| zero? [] | not [] | null? [] | first [] | rest []

Fig. 5. Step 3b: Calculating flow to strict positions

lcons, then £ must be in D (box 3) (fu(e) calculates free variables in e). If an
{-labeled argument reaches a lazy position, the transformation may decide to
delay that argument, so the analysis must additionally track it for the purposes
of inserting forces. To this end, we introduce another abstract value (darg ¢),

Ve I//El:...\dargﬁ

and insert it when needed (box 4). While (arg ¢) can represent any argument,
(darg ¢) only represents arguments that reach a lazy position (ie., L€ D)

Figure Gl presents revised analysis rules involving Sand F. These rules use the
full analysis result (p, D S F). Here, S represents arguments that reach a strict
position so the new | orce] rule dictates that if an (arg ¢) is the argument of a
force, then £ must be in & (box 5). However, a force is not the only expression
that requires the value of a promise. There are several other contexts where a
delay should not appear and the [strict] rule deals with these strict contexts
S': the operator in an application, the operands in the primitive operations, and
the test in an if expression. Expressions involving these strict positions have
three additional constraints. The first specifies that if an (arg ¢1) appears in any
of these positions, then ¢; should also be in S (box 5). The second and third
additional constraints show how F is computed. Recall that F determines where
to insert forces in the program. The second [strict] constraint says that if any
delay flows to a strict position ¢, then ¢ is added to F (box 6). This indicates
that a programmer-inserted delay has reached a strict position and should be
forced. Finally, the third constraint dictates that if a (darg ¢3) value flows to a
strict label ¢, then a pair (¢, £2) is required to be in F (box 7), indicating that
the analysis may insert a delay at {2, thus requiring a force at .

3.5 The Refactoring Transformation

Figure [@ specifies our refactorlng as a function ¢ that transforms a program
p using analysis result (p,D,S,F). The . function wraps expression e’ with

92 S. Chang

@ : Prog x Env x DPos x SPos x FPos — Prog

¢l(define f(z...)=e1)...e];p57 = (define f(z...) = peler] ;557) - - - velel 557

e : Fxp X Env X DPos X SPos X FPos — Ezp
¢ele’];p57 = (delay” (pelel ps7)), LD, £¢S, b ¢ dom(p))
gele'l 557 = (force (pelel;p52))", if L€ F, b1 ¢ dom(p), (

or Ia.(0,02) € F, by €D, 05 ¢ 8, 1 ¢ dom(p)

“++
~

Fig. 6. Transformation function ¢

delay™ if £ is in D and not in 8. In other words, e is delayed if it flows to a
lazy position but not a strict position. With the following correctness section in
mind, we extend the set of expressions with delay*, which is exactly like delay
and merely distinguishes programmer-inserted delays from those inserted by the
our transformation. The new delay™ expression is given a fresh label /1. In two
cases, @, inserts a force around an expression ef. First, if £ is in]-' it means ¢
is a strict position and a programmer-inserted delay reaches this strict position
and must be forced. Second, an expression e’ is also wrapped with force if there
is some /¢ such that (¢, ¢3) is in F and the analysis says to delay the expression
at 0y, i.e., o € D and ly & S. This ensures that transformation-inserted delay™s
are also properly forced. All remaining clauses in the definition of ¢, represented
with ellipses, traverse the structure of e in a homomorphic manner.

4 Correctness

Our refactoring for laziness is not semantics-preserving. For example, non-termi-
nating programs may be transformed into terminating ones or exceptions may
be delayed indefinitely. Nevertheless, we can prove our analysis sound and the ¢
transformation safe, meaning that unforced promises cannot cause exceptions.

4.1 Language Semantics

To establish soundness, we use Flanagan and Felleisen’s [9] technique, which
relies on a reduction semantics. The semantics is based on evaluation contexts,
which are expressions with a hole in place of one subexpression:

Ee€Ctz=][]|v... FEe...|oEe|ovE|letz=Fine|if Eee|zero? E
| not F | null? E | force F | cons E e | cons v E |1lcons FE e | first E | rest E

A reduction step — is defined as follows, where — is specified in figure [Tt

Ele]— Ele/] if e—¢

Laziness by Need 93

A conventional § function evaluates primitives and is elided. We again assume
that subexpressions are uniquely labeled but since labels do not affect evaluation,
they are implicit in the reduction rules, though we do mention them explicitly
in the theorems. Since our analysis does not distinguish memoizing promises
from non-memoizing ones, neither does our semantics. To evaluate complete
programs, we parameterize — over definitions d. .., and add a look-up rule:

E[f] —a... B[Nz ...).e], if (define f(z...)=¢)€d...

Thus, the result of evaluating a program p = d...e is the result of reducing e
with —4.... We often drop the d... subscript to reduce clutter.

Exceptions

Our — reduction thus far is partial, as is the (elided) ¢ function. If certain
expressions show up in the hole of the evaluation context, e.g., first null or
division by 0, we consider the evaluation stuck. To handle stuck expressions,
we add an exception exn to our semantics. We assume that § returns exn for
invalid operands of primitives and we extend — with the exception-producing
reductions in figure 8

The (apx) rule says that application of non-As results in an exception. The
(fstx) and (rstx) rules state that reducing first or rest with anything but a
non-empty list is an exception as well. The (strictx) and (strictx*) reductions
partially override some reductions from figure [and specify that an exception
occurs when an unforced promise appears in a context where the value of that
promise is required. These contexts are exactly the strict contexts S from figure[bl
We introduce dexn and dexn® to indicate when a delay or delay® causes an
exception; otherwise these tokens behave just like exn. We also extend —:

Elexn] — exn

A conventional well-definedness theorem summarizes the language’s semantics.

Mz..)e)v...—se{z:=v,...} (ap) null? null — true (nuln)
0V V2 = 0V V2 (op) null? v — false, v # null (nul)
let x =v ine — e{z:= v} (let) first (coms vi v2) — vy (fste)
if false e e2 — e (iff) first (lconsve) — (fstlc)
ifvel es — ey, vF#false (if) rest (coms vy v2) — V2 (rste)
zero? 0 — true (z0) rest (lcons ve) — delaye (rstle)
zero? v — false, v#0 (z) force (delay e) — force e (ford)
not false — true (notf) force v — v, v # delay e (forv)

not v — false, v # false (not)

Fig. 7. Call-by-value reduction semantics

94 S. Chang

vup...—exn, ifv#Xz...).e (apx) Sldelay e] — dexn (strictx)
first v — exn, if v ¢ cons or lcons (fstx) Sldelay” e] — dexn™ (strictx™)

rest v — exn, if v ¢ cons or lcons (rstx)

Fig. 8. Exception producing reductions

Theorem 1 (Well-Definedness). A program p either reduces to a value v;
starts an infinitely long chain of reductions; or reduces to exn.

4.2 Soundness of the Analysis

Before stating the soundness theorem, we first extend our analysis for exceptions:
(p,D, S, F) = exn’ [exn]

Lemma [Tl states that — preserves |=.. We use notation p =, e when we are not
interested in D, S, and F, which are only used for transformation. This means
p satisfies only the constraints from sections and [3.3]

Lemma 1 (Preservation). If p =, e and e — ¢, then p =, €.

We now state our soundness theorem, where — is the reflexive-transitive closure
of ——. The theorem says that if an expression in a program reduces to an /-
labeled value, then any acceptable analysis result p correctly predicts that value.

Theorem 2 (Soundness). Forallp=p,p=d...e, ife—q. E'], v € p(f).

4.3 Safety of Refactoring

We show that refactoring for laziness cannot raise an exception due to a delay
or delay™ reaching a strict position. To start, we define a function £ that derives
a satisfactory abstract environment for a (-transformed program:

E[pl, = p', where & : Env x Prog — Env
v,z € dom(p) : 7€) = P(E) U {(delay” 1) | (daxg 1) € p(¢), (delay” eft) € p} (1)
7(2) =

(z) U{(delay” £1) | (darg (1) € p(x), (delay” ef') € p}
V(delay® ei)" € p, £ ¢ dom(p) : (2)
p'(£) = p(t1) U {(delay” £1)} U{(delay” £2) | (darg f2) € p(t1), (delay” e5?) € p}
V(force e")' € p,l ¢ dom(p): p'(€) = {0 |7 € p(t1),D ¢ delay} (3)

The £ function takes environment p and a program p and returns a new envi-
ronment p'. Part 1 of the definition copies p entries to p’, except darg values are
replaced with delay*s when there is a corresponding delay* in p. Parts 2 and 3
add new p’ entries for delay*s and forces not accounted for in p. When the
given p is a p-transformed program, then the resulting p’ satisfies that program.

Laziness by Need 95

Lemma 2. If (5,D,S,F) [p, then ElPlote, 557 F elPlsp57-

Finally, theorem [3] states the safety property. It says that evaluating a trans-
formed program cannot generate an exception due to delays or delay™s.

Theorem 3 (Safety). For all p and (ﬁ,ﬁ,g, ﬁ) Ep, if go[p]]ﬁﬁgA =d...e,
then e/ dexn, and e-/+q. . dezn®.

Proof. (Sketch) Using Soundness, the analysis rules in figure Bl and Lemma

4.4 Idempotency

Our transformation is not idempotent. Indeed, it may be necessary to refactor
a program multiple times to get the “right” amount of laziness. For example:

let x = (long computation) in let y = (short computation involving x)
in (delay y)

The long computation should be delayed but applying our transformation once
only delays the short computation. To delay the long computation, a second
transformation round is required. In practice, we have observed that one round
of laziness refactoring suffices to handle the majority of cases. However, section [G]
presents a real-world example requiring multiple transformations so our tool
currently allows the programmer to decide how often to apply the refactoring.

5 A Prototype Implementation

We have implemented refactoring for laziness as a tool for Racket [I0], in the
form of a plugin for the DrRacket IDE. It uses laziness analysis to automatically
insert delay and force expressions as needed, with graphical justification.

5.1 Constraint Solving Algorithm

Computing our laziness analysis requires two stages: (1) generate a set of con-
straints from a program, and (2) solve for the least solution using a conventional
worklist algorithm [I8]. The graph nodes are the variables and labels in the pro-
gram, plus one node each for D S and F. Without loss of generality, we use
only labels for the nodes and p for the analysis result in our description of the
algorithm. There exists an edge from node ¢ to £ if there is a constraint where
p(¢2) depends on p(£1); the edge is labeled with that constraint. Thus one can
view a node ¢ as the endpoint for a series of data flow paths. To compute p(¢), it
suffices to traverse all paths from the leaves to ¢, accumulating values according
to the constraints along the way.
The analysis result is incrementally computed in a breadth-first fashion by
processing constraints according a worklist of nodes. Processing a constraint

96 S. Chang

entails adding values to p so the constraint is satisfied. The algorithm starts by
processing all constraints where a node depends on a value, e.g., val € p(¥);
the nodes on the right-hand side of these constraints constitute the initial work-
list. Nodes are then removed from the worklist, one at a time. When a node
is removed, the constraints on the out-edges of that node are processed and a
neighbor ¢ of the node is added to the worklist if p(¢) was updated while pro-
cessing a constraint. A node may appear in the worklist more than once, but
only a finite number of times, as shown by the following termination argument.

Termination and Complexity of Constraint Solving

Inspecting the constraints from section [3] reveals that an expression requires re-
cursive calls only for subexpressions. Thus, a finite program generates a finite
number of constraints. For a finite program with finitely many labels and vari-
ables, the set of possible abstract values is also finite. Thus, a node can only
appear in the worklist a finite number of times, so algorithm must terminate.

We observe in the constraint-solving algorithm that, (1) a node £ is added to
the worklist only if p(¢) is updated due to a node on which it depends being in
the worklist, and (2) values are only ever added to p; they are never removed. For
a program of size n, there are O(n) nodes in the dependency graph. Each node
can appear in the worklist O(n) times, and a data flow path to reach that node
could have O(n) nodes, so it can take O(n?) node visits to compute the solution
at a particular node. Multiplying by O(n) total nodes, means the algorithm may
have to visit O(n?) nodes to compute the solution for all nodes.

5.2 Laziness Refactoring Tool

Our prototype tool uses the result of the analysis and the ¢ function from sec-
tion B8] to insert additional delays and forces. In contrast to the mathematical
version of ¢, its implementation avoids inserting delays and forces around
values and does not insert duplicate delays or forces.

We evaluated a number of examples with our tool including the n-queens
problem from section 21 Figure @l (top) shows the program in Racket, including
timing information and a graphical depiction of the answer. Despite the use of
1consE the program takes as long as an eager version of the same program (not
shown) to compute an answer. Figure [@ (bot) shows the program after our tool
applies the laziness transformation. When the tool is activated, it: (1) computes
an analysis result for the program, (2) uses the result to insert delays and
forces, highlighting the added delays in yellow and the added forces in blue,
and (3) adds arrows originating from each inserted delay, pointing to the source
of the laziness, thus explaining its decision to the programmer in an intuitive
manner. Running the transformed program exhibits the desired performance.

8 Though lcons is not available in Racket, to match the syntax of our paper, we
simulate it with a macro that wraps a delay around the second argument of a cons.

97

Laziness by Need

File Edit View Language

nqueens-racket.rktw (define .)v Fix Laziness <4 Run[» stop [l

nqueens-racketrktv (define..)v

#lang racket

Fix Laziness =1 Runl> Stop il
#lang racket 3

(define (append 1st1 1st2)
{(if (null? (force 1lst1))
1st2
(lcons (first (force 1st1)) (append (rest (force lsti1)) 1st2))))

(define (foldr f base 1st)
(if (null? (force 1lst))
base
(f (first (force 1st)) (foldr f base (rest (force 1st))))))

(define (nqueens n)
ﬁmﬁﬁnc ©

(A (1 ass) &

(foldr

(A (gs acc) @

(append (map (A (k) (lcons (cons i k) gs)) ﬂu

(build-1list n add1l))
acc)) mﬂv

null gss))] AHV
[ok?

(A (1st) ®
(if (null? 1st) @
true
(andmap (X (q) (safe? (first (force 1lst)) q)
(rest (force 1st}))))])
(let ([all-possible-solns
(foldl qu (cons null null) (build-list n add1))]
[valid?
(A (1st) (andmap ok? (tails 1st)))])
(first (filter valid? all-possible-solns)))))

(show-queens (time (nqueens 8&)))

(define (append lstl 1st2)
(if (null? (force 1lst1))
1st2

(lcons (first (force 1stl)) (append (rest (force lsti1)) 1st2))))

(define (foldr f base 1lst)

(if (null? (force 1lst))
base

(f (first (force 1lst)) (delay (foldr T base (rest (force 1lst)))))))

(define (ngqueens n)
(let ([qu
(A (1 gss)
(foldr
(A (gs acc)
(append (map (A (k) (lcons (cons i k) gs)) ﬂu
(build-1list n add1i)) ﬂu

acc))

null gss))] ﬁv
[ok?

(A (1st) @
(if (null? (force lst)) mMV
true
(andmap (A (q) (safe? (first (force 1lst)) q))
(rest (force 1st)))))])
(let ([all-possible-solns
(foldl qu (cons null null) (build-list n add1))]
[valid?
(A (1lst) (andmap ok? (tails 1st)))])
(first (filter valid? all-possible-solns)))))

(show-queens (time (nqueens 8)))

Language: racket [custom].

cpu time: 30250 real time: 30372 gc time: 22977
>

Language: racket [custom].

cpu time: 5776 real time: 5797 gc time: 1904
>

Determine language from source custom =

17556 MB[| & @

Determine language from source custom~ 2:0 202.68MB[_| & @

Fig. 9. Evaluating n-queens in Racket: only lazy cons (top), after refactoring (bot)

98 S. Chang

6 Laziness in the Large

To further evaluate our idea and our tool, we examined the Racket code base
and some user-contributed packages for manual uses of laziness. We found several
erroneous attempts at adding laziness and we verified that our tool would have
prevented many such errorsf] We consider this investigation a first confirmation
of the usefulness of our tool. The rest of the section describes two of the examples.

The DMdA languages [5] allow students to write contracts for some data
structures. These contracts are based on Findler et al.’s lazy contracts [8]. The
contracts are primarily implemented via a constructor with a few lazy fields. Ad-
ditionally, several specialized contract constructors for various data structures
call the main constructor. However, since the specialized constructors are imple-
mented with ordinary strict functions, to preserve the intended lazy behavior,
the programmer must manually propagate the laziness to the appropriate argu-
ments of these functions, similar to the Scala example from section [2. Thus, a
small amount of laziness in the main contract constructor requires several more
delays scattered all throughout the program. Adding these delays becomes te-
dious as the program grows in complexity and unsurprisingly, a few were left
out. Our tool identified the missing delays, which the author of the code has
confirmed and corrected with commits to the code repository.

A second example concerns queues and deques [21] based on implicit recursive
slowdown [20, Chapter 11|, where laziness enables fast amortized operations and
simplifies the implementation. The library contained several performance bugs,
as illustrated by this code snippet from a deque enqueue function:

define enqueue(elem dq) =
let strictprt = (extract strict part of dq)
newstrictprt = (combine elem and strictprt)
lazyprt = force (extract lazy part of dq)
lazyprtl = (extracted from lazyprt)
lazyprt2 = (extracted from lazyprt)
in Deque newstrictprt (delay (combine lazyprtl and lazyprt2))

The function enqueues elem in deque dq, which has a lazy part and a strict
part. In one execution path, the lazy part is extracted, forced, and separated
into two additional pieces. Clearly, the forcing is unnecessary because neither of
the pieces are used before they are inserted back into the new deque. Worse, the
extra forcing slows the program significantly. For this example, activating our
tool twice fixes the performance bug. For a reasonably standard benchmark, the
fix reduced the running time by an order of magnitude. The authors of the code
have acknowledged the bug and have merged our fix into the code repository.

7 Related Work

The idea of combining strict and lazy evaluation is old, but most works involve re-
moving laziness from lazy languages. We approach strict-lazy programming

9 The examples were first translated to work with the syntax in this paper.

Laziness by Need 99

from the other, relatively unexplored, end of the spectrum, starting with a strict
language and then only adding laziness as needed. This seems worthwhile since
empirical studies indicate that most promises in a lazy language are
unneeded [BIIHI6I23]. Starting with a strict language also alleviates many disad-
vantages of lazy evaluation such as difficulty reasoning about space/time
consumption.

The most well-known related work is strictness analysis [4/I7], which calcu-
lates when to eagerly evaluate arguments without introducing non-termination.
With our work, calculating divergence properties is not sufficient since even ter-
minating programs may require additional laziness, as seen in examples from this
paper. Hence we take a different, flow-analysis-based approachl] Researchers
have also explored other static [7] and dynamic [2/6/T5] laziness-removal tech-
niques. However, these efforts all strive to preserve the program’s semantics. We
focus on the problem of strict programmers trying to use laziness, but doing
so incorrectly. Thus our transformation necessarily allows the semantics of the
program to change (i.e., from non-terminating to terminating), but hopefully in
a way that the programmer intended in the first place.

Sheard [25] shares our vision of a strict language that is also practical for
programming lazily. While his language does not require explicit forces, the
programmer must manually insert all required delay annotations.

8 Future Work

This paper demonstrates the theoretical and practical feasibility of a novel ap-
proach to assist programmers with the introduction of laziness into a strict con-
text. We see several directions for future work. The first is developing a modular
analysis. Our transformation requires the whole program and is thus unsatisfac-
tory in the presence of libraries. Also, we intend to develop a typed version of
our transformation and tool, so typed strict languages can more easily benefit
from laziness as well. We conjecture that expressing strictness information via
types may also provide a way to enable a modular laziness-by-need analysis.

Acknowledgements. Partial support provided by NSF grant CRI-0855140.
Thanks to Matthias Felleisen, Eli Barzilay, David Van Horn, and J. Tan Johnson
for feedback on earlier drafts.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs. MIT Press (1984)

2. Aditya, S., Arvind, Augustsson, L., Maessen, J.W., Nikhil, R.S.: Semantics of pH:
A parellel dialect of Haskell. In: Proc. Haskell Workshop, pp. 34-49 (1995)

10 Interestingly, we conjecture that our approach would be useful to lazy programmers
trying to insert strictness annotations, such as Haskell’s seq, to their programs.

100

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

S. Chang

Appel, A., Blume, M., Gansner, E., George, L., Huelsbergen, L., MacQueen, D.,
Reppy, J., Shao, Z.: Standard ML of New Jersey User’s Guide (1997)

Burn, G.L., Hankin, C.L., Abramsky, S.: Strictness analysis for higher-order func-
tions. Sci. Comput. Program. 7, 249-278 (1986)

Crestani, M., Sperber, M.: Experience report: growing programming languages for
beginning students. In: Proc. 15th ICFP, pp. 229-234 (2010)

Ennals, R., Peyton Jones, S.: Optimistic evaluation: an adaptive evaluation strat-
egy for non-strict programs. In: Proc. 8th ICFP, pp. 287-298 (2003)

Faxén, K.F.: Cheap eagerness: speculative evaluation in a lazy functional language.
In: Proc. 5th ICFP, pp. 150-161 (2000)

Findler, R.B., Guo, S.-Y., Rogers, A.: Lazy Contract Checking for Immutable Data
Structures. In: Chitil, O., Horvath, Z., Zsék, V. (eds.) IFL 2007. LNCS, vol. 5083,
pp. 111-128. Springer, Heidelberg (2008)

Flanagan, C., Felleisen, M.: Modular and polymorphic set-based analysis: Theory
and practice. Tech. Rep. TR96-266, Rice Univ. (1996)

Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-~2012-1, PLT Inc. (2012),
http://racket-lang.org/trl/

Friedman, D., Wise, D.: Cons should not evaluate its arguments. In: Proc. 3rd
ICALP, pp. 257281 (1976)

Hughes, J.: Why functional programming matters. Comput. J. 32, 98-107 (1989)
Jones, N.D.: Flow analysis of lambda expressions. Tech. rep., Aarhus Univ. (1981)
Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system, release 3.12, Documentation and user’s manual. INRIA (July 2011)
Maessen, J.W.: Eager Haskell: resource-bounded execution yields efficient iteration.
In: Proc. Haskell Workshop, pp. 38-50 (2002)

Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the Design of the R Lan-
guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 104-131. Springer,
Heidelberg (2012)

Mycroft, A.: Abstract interpretation and optimising transformations for applicative
programs. Ph.D. thesis, Univ. Edinburgh (1981)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2005)

Odersky, M.: The Scala Language Specification, Version 2.9. EPFL (May 2011)
Okasaki, C.: Purely Functional Data Structures. Cambridge Univ. Press (1998)
Hari Prashanth, K.R., Tobin-Hochstadt, S.: Functional data structures for Typed
Racket. In: Proc. Scheme Workshop (2010)

Rees, J., Clinger, W. (eds.): Revised® Report on the Algorithmic Language Scheme.
ACM SIGPLAN Notices (December 1986)

Schauser, K.E., Goldstein, S.C.: How much non-strictness do lenient programs
require? In: Proc. 7th FPCA (1995)

Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,
Univ. Copenhagen (1988)

Sheard, T.: A pure language with default strict evaluation order and explicit lazi-
ness. In: 2003 Haskell Workshop: New Ideas Session (2003)

Shivers, O.: Control-flow analysis in scheme. In: Proc. PLDI, pp. 164-174 (1988)
Wadler, P., Taha, W., MacQueen, D.: How to add laziness to a strict language,
without even being odd. In: Proc. Standard ML Workshop (1998)

http://racket-lang.org/tr1/

FliPpr: A Prettier Invertible Printing System

Kazutaka Matsuda' and Meng Wang?

! The University of Tokyo
2 Chalmers University of Technology

Abstract. When implementing a programming language, we often write
a parser and a pretty-printer. However, manually writing both programs
is not only tedious but also error-prone; it may happen that a pretty-
printed result is not correctly parsed. In this paper, we propose FliPpr,
which is a program transformation system that uses program inversion
to produce a CFG parser from a pretty-printer. This novel approach
has the advantages of fine-grained control over pretty-printing, and easy
reuse of existing efficient pretty-printer and parser implementations.

1 Introduction

In this paper, we will discuss the implementation of a programming language,
say the following one

prog = tuley;...;ruley
rule 2= fp1 ... pn=c¢
p ==z|Cp1 ... pn
e n=x|Cer ... en|lerdea| fer ... en

which is a standard first-order functional language with data constructors C,
functions f and binary operators . Ignoring the semantics of the language for
the time being, we start with writing a parser and a pretty-printer to deal with
the syntax: the parser converts textual representations of programs into the AST,
and the pretty-printer converts the AST to nicely laid-out programs. Though
not often measured objectively, the prettiness of printing results is important:
a pretty-printer is central to the communication between a compiler and the
programmers, and the quality of it directly contributes to the productivity and
satisfaction of the users of the language.

Despite being developed separately, the parser and the pretty-printer are al-
ways expected to be consistent to each other: very informally, parsing a pretty-
printed program should succeed, and produces the same AST that is pretty-
printed. It is common knowledge that consistency properties like this between a
pair of tightly-coupled programs are hard to produce and maintain; and perhaps
less widely known that they are difficult to be tested effectively too, due to the
complexity of AST data [5].

In this paper, we are going to discuss the implementation of a language, which
has a more elaborated version of the above-presented syntax. The language can
be used to program pretty-printers, and at the same time through program inver-
sion techniques, obtain a consistent parser. We, as usual, manually implemented

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 101-{[20] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

102 K. Matsuda and M. Wang

a parser and a pretty-printer for the language, but with the hope that we, and
many others who read this paper, will not need to do it again for their own
language implementations.

Prior to this work, there has been a rich body of literature on exploring
correctness-by-construction techniques to automatically generate one or both
programs of the printer/parser pair, notably [2[4,[17] . We have intentionally
omitted the prefix “pretty-” from the mentioning of printers here because few of
the existing work is actually producing pretty-printers in the sense of Hughes [10]
and Wadler [22]

To be more precise about what we mean by “prettiness”, let us consider a
subtraction language e ::= 1 | e; —es that has a constant (1) and a left-associative
binary operator (—). We represent the syntax with the following AST datatype.

data E =One|Sub E F

Using the language we propose in this paper, which is based on Wadler’s li-
brary [10], one can define a pretty-printer as below.

ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line <> text "=" <> text " " <> pprP e3))
—-- The suffix P in pprP stands for parentheses.
pprP One = text "1"
pprP (Sub e1 e2) =
text " (" <> group (ppr e1 <> nest 2 (line
<> text "-" <> text " " <> pprP eg)) <> text ")"

The pretty-printing library functions are shown in slant sans serif. Roughly speak-
ing, text s converts a string s to a layout, d; <>ds is an infix binary operator that
concatenates two layouts d; and ds, which binds looser than prefix applications,
and line starts a new line, but its behavior can be affected by surrounding nest
and group applications: nest n d inserts n-spaces after each lines in d, and group d
smartly chooses between the layout d and other layouts derivable from d by se-
lectively interpreting lines as single spaces. (In this paper, we write “space” for
the space character and write “whitespace” for the space character and the new-
line character. Other kinds of spaces such as horizontal tabs are not discussed
as they do not yield new insight.)
The function ppr pretty-prints Sub (Sub One One) (Sub One One) as

1-1
1-1-@G-1 o +71 or - (1
-(1-1) T

depending on the screen width that is used to render the result. This fine-grained
control from users over bracketing, spacing and indentation is clearly beyond
any technique based on mechanical traversals of ASTs, which is likely to rigidly

! The Syn system [2] is capable of handling non-contextual layouts, which can be seen
as a limited form of prettiness.

FliPpr: A Prettier Invertible Printing System 103

produce 1 - 1 - (1 - 1) (with arbitrary line-wrapping) or even (1 - 1) -
(1 - 1) as the only printing result.

Knowing that prettiness cannot be generated automatically, in this paper we
propose a novel approach: the programmer provides a carefully turned pretty-
printer (which is slightly annotated with some additional information for pars-
ing), and our system invert it to obtain a consistent parser. We claim the fol-
lowing benefits of our approach:

— Fine-Grained Control over Pretty-Printing. Our language based on
Wadler’s library [22] offers the possibility of refined control over different
aspects of pretty-printing: spacing can be tuned; redundant bracketing can
be eliminated through the passing of fixity and precedence information; in-
dentation can be designed by nesting lines; and wrapping of lines can be
performed smartly.

— Efficiency. FliPpr is efficient in the sense that we can reuse existing efficient
implementation of pretty-printers and parsers. For pretty-printing, we can
use Wadler’s library [22]. For parsing, we can use any parser generator that
supports full CFG.

The technique of program inversion used in FliPpr is not new; it is a direct
consequence of our previous work [I5]. The novelty of this paper lies in the de-
sign of the pretty-printing system, which makes the program inversion possible.
Specifically, in this work:

— We propose an invertible pretty-printing technique based on grammar-based
inversion [15], by which we can obtain a consistent parser from a pretty-
printer.

— We give a surface language such that a pretty-printer written in it can be
converted to a linear and treeless form by deforestation [2I] which is suitable
for inversion [15].

— We implemented our idea as a program transformation tool that generates
parsers in Haskell2.

2 Overview

In this section, we present an overview of our
Surface Language

technique using the subtraction language from (Sect.H)

the introduction as the running example. Figure[l] Core L:nguage Core
shows the overall picture of FliPpr. A user of our (Sect.) System
system programs a pretty-printer in a surface lan- CFG with Actions

guage, which is translated to a core language that
can be inverted. The example pretty-printer for Fig. 1. Architecture of FliPpr
the subtraction language is simple enough not to
require any advanced features that the surface

2 Available at http://www-kb.is.s.u-tokyo.ac.]jp/~kztk/F1iPpr/

http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

104 K. Matsuda and M. Wang

language provides, and the translation from the surface language to the core
language is the identity operation in this case. Therefore, we focus on the core
system in this section and postpone the discussion of the surface language to
Sect. [l

As a start, let’s revisit the pretty-printer ppr defined in the previous section.
If the function is inverted as it is, we can hope for no more than a parser that
only recognizes pretty strings. This is neither the fault of function ppr nor of the
inverter: a pretty-printer ppr (correctly) produces only pretty layouts, and an in-
verter cannot invent information that is not already carried by the function to be
inverted. To remedy this information mismatch, we instrument the pretty-printer
with additional information about non-pretty but nevertheless valid layouts.

2.1 Introducing Ugliness

Reinterpretation of line. A common source of prettiness is the clever interpre-
tation of lines either as a single space or a nicely indented new line depending
on the environment. This effect can be simply eliminated by reinterpreting line
as one or more whitespaces. Using this new interpretation in the derivation of
a parser enables us to parse certain non-pretty layouts. For example, now the
inverse of the pretty-printer can parse the following strings.

1 -1 or _ 1
These strings do not satisfy our notion of prettiness defined by ppr, and will not
be produced by the pretty-printer, but will be accepted by the generated parser
through the reinterpretation of l/ines. Also note that this reinterpretation also
means that we can safely ignore group and nest during inversion, because their
sole purpose is to affect the behavior of /ines.

Still, this solution alone is not enough. Strings like 1 - 1 and (1)- ((1))
remain unparsable: the pretty-printer has dictated that there is only a single
space between the operator and the second operand by using text " " instead of
line, and that there shouldn’t be redundant parentheses. We need to find a way
to alter these behaviors in parsing without losing pretty-printing.

Biased Choice. To annotate pretty-printers with information about non-pretty
layouts, we introduce the choice operator <+. In pretty-printing the operator
behaves as e <+ es = ey, ignoring the non-pretty alternative es; in parser deriva-
tion the operator is interpreted as a nondeterministic choice, which accepts both
branches. The operator <+ binds looser than <> and has the following algebraic
properties.

Associativity e1 <+ (e2 <+e3) = (e1 <+ea) <tes
Distributivity-L (e1 <+ e2) <>e3 = e1 <> e3 <+ ez <>e3
Distributivity-R e1 <> (€2 <+eg) = e1 <>ea <+ep <> e

FliPpr: A Prettier Invertible Printing System 105

For example, one can define variants of (white)spaces with the choice operator
as follows.

nil = text "" < space -- (zero-or-more whitespaces in parsing)
space = (text " " <+ text "\n") <>nil -- (one-or-more whitespaces in parsing)
Here, nil and space pretty-print "" and " " respectively, but represent zero-or-

more and one-or-more whitespaces in parsing. We can now refactor our pretty-
printer ppr with the aim of obtaining more robust parsers.

ppr x = ppr x <+ text "(" <> nil <> ppr x <> nil <> text ")"
ppr One = text "1"
ppr (Sub e e2) = group (ppr e1 <> nest 2 (line’ <> text "-" <> space’ <> pprP e2))

pprP x = pprP x <+ text " (" <> nil <> pprP x <> nil <> text ")"
pprP One = text "1"
pprP (Sub e e2) =

text " (" <> nil <> group (ppr e1 <> nest 2 (line’

<> text "=" <> space’ <> pprP es)) <> nil <> text ")"
space’ = space <+ text "" -— (zero-or-more whitespaces in parsing)
line’ = line<+text "" -- (zero-or-more whitespaces in parsing)

Note that we have separated the original definitions of ppr and pprP into two
parts: the top level definitions introduce annotations for optional parentheses,
and the actual pretty-printing is handled by worker functions that are sub-
scripted. Optional whitespaces are also introduced by replacing text " " and
line with space’ and line’ respectively in the definitions.

This refactoring is semantic preserving with respect to pretty-printing, and at
the same time brings in necessary information for robust parsing. For example,
we can now expect the inverse program to parse strings like 1 - 1, (1)-
(1)), and (1 - (1)) correctlyé)

2.2 Construction of CFG with Actions

So far, we have discussed how a user can provide a refactored pretty-printer that
behaves like the original, but with additional information for non-pretty strings
embedded. Our system FliPpr further transforms the program by removing the
layouting and replacing <+ with a nondeterministic choice 7 to create an ugly-
printer solely for inversion.

ppr x = ppr = 7 "(" 4+ nil + ppr r +H nil H ")"
ppr One ="
ppr (Sub e1 e2) = ppr e1 ++ line’ ++ "-" ++ space’ + pprP ez

We postpone a detailed discussion of the transformation to Sect.[8l For now, it
is sufficient to know that the above program nondeterministically produces a
string that is valid for parsing, but not necessarily pretty.

3 To also make strings like " 1-1" parsable, we can add a declaration f z = nil <>
ppr x <> nil. However this addition does not post any new insight, and is omitted for
simplicity.

106 K. Matsuda and M. Wang

prog ::= ruley;...;rule,

rule == fp1 ... pp =€

p ==z |Cp1 ... pn

e = text "string" | ey <>e2 | line| nest n e | group e (Wadler’s Combinators)
| e1<tes (Biased Choice)
| fx1 ... zn (Treeless Call)

Fig. 2. Syntax of the core language: f ranges over function, C ranges over constructors,
z and xz;s range over variables and n range over natural numbers

Then, using our previous work on grammar-based inversion [15], the program
can be inverted to construct the following grammar with actions (simplified for
presentation).

Ppr — Ppr {1}
| "(" Nil Ppr Nil ")" {$3}
Ppr — 1 {One}

| Ppr Line’ "-" Space’ PprP {Sub $1 $5}

The correctness of the parser construction comes from our previous work [15].
Since FliPpr produces a CFG with actions, users have the choice of using any
parser generator that supports full CFG. In our implementation, we use Frost
et al. [8]’s top-down parser.

3 Core Language and Parser Construction

In this section, we give the formal definition of the core language of FliPpr, and
discuss parser construction by program inversion.

3.1 Syntax and Semantics

Figure 2 shows the syntax of our core language, a first-order functional language
similar to one found in the introduction. We include Wadler’s pretty-printing
combinators [22] and the biased choice as primitive operators, and place two
restrictions for later inversion:

— Function calls must be treeless [21]: they take only variables as arguments.

— Variable use must be linear: every bound variable in a rule is used ezactly
once on the right-hand side. A notable exception is with <+. For e <+ e, the
two branches are supposed to be both linear. Thus, they contain the same
set of free variables. For example, assuming f is linear, then g x = f x<+ f z
is linear, but h x = line<+ f x and k x = line <+ text "s" are not.

“

For simplicity, we often omit the rule separator “;” if no confusion would arise.
We use vector notation = for a sequence z1,...,x,. We abuse the notation to
write f x for f z1 ... x,.

FliPpr: A Prettier Invertible Printing System 107

Afp=e).pl'=2 I"'telv I'teidu
Fl‘f%l}?} F|_€1<+€2ll’l}1
{Fl—eiUvi}i:LQ
' text "s" || text "s" I['Fei<>exllvi<>ve I'F linel line
I'Felw I'telw
I't-nestn el nestnv I+ group el group v

Fig. 3. The call-by-value pretty-printing semantics of the language

Afp=e).pl'=2 I'Felnps I'e; Unp si
I'fzlnps I'-e1 <+e2 Inp si
{F Fe; U’ND Si}i=1,2 s € Ulgi Si
't text "s" Inxp "s" I'Fep<>ez np 81+ 52 I'F line{np s
I'telnp s I'elnp s
I'tnestnelnps It groupelnp s

i=1,2

Fig. 4. Nondeterministic printing semantics of the language

The formal pretty-printing semantics of the language is shown in Fig.[Bl We
write I' F e | v if under environment I', expression e evaluates to value v. Values
are closed expressions that only consist of Wadler’s combinators (i.e., we don’t
evaluate Wadler’s combinators). The environment I" is a mapping from variables
to terms (i.e., expressions or patterns). We write tI” for the term obtained from ¢
by replacing free variables x in ¢ with I'(x). Pattern matching is nondeterministic
in this semantics.

We do not define formally the semantics of Wadler’s combinators, as our dis-
cussion in this paper is not dependent on it. However, we define the reinterpre-
tation of the combinators and the biased choice <+ for parser generation, firstly
mentioned in Sect.2] where /ines are seen as one-or-more whitespaces and <+ as a
true nondeterministic choice. As shown in Fig.Hl the reinterpretation is defined
similarly to the pretty-printing semantics; the main difference is that it returns
a string nondeterministically, pretty or not. We write I' F e {xp s if, under the
environment I', e nondeterministically evaluates to a string s. Here, S; is the set
of i-long consecutive whitespaces, inductively defined by: S; = {" ","\n"} and
Snt+1 = {81 H s2 | s1 € 51,82 € Sp}, and ++ is the concatenation of two strings.
The possible evaluation results of the nondeterministic semantics, which covers
both pretty and non-pretty strings, is a super set of what Wadler’s combinators
may produce if evaluated in the original semantics. Thanks to treelessness and
linearity, the sets of strings defined by L. = {s | I' F e {np s} for expressions e
are exactly those that are expressible by CFGs. This fact enables us to use CFG-
parsers for inverses, which will be shown in the rest of this section. Also note
that due to linearity, call-by-value and call-by-name coincide for the language,
even with nondeterminism (assuming that Wadler’s combinators and string op-
erations are strict). This is handy later when we require a call-by-value semantics

108 K. Matsuda and M. Wang

for program inversion [I5], and a call-by-name semantics for fusion [21] in the
surface language (Sect.H).

3.2 Parser Construction by Inversion

To invert programs written in the core language, we firstly perform a semantic-
preserving transformation to remove the pretty-printing combinators, and obtain
a syntax that is recognizable by our grammar-based inversion system [15].

Converting to Nondeterministic Programs. This step is done by “forget-
ting smart layouting mechanism”, through the following rewriting rules.

text "s" — "s" groupe — e e1<>eg —> €1 +He9
nestne — e line — space e1<teg —r e1 7 ey

Here, space is a rewritten version (according to the rules above) of its definition
in Sect.[2] i.e. the function defined by

space = (" " ?"\n") + nil nil = "" 7 space

and the operator 7 is a nondeterministic choice.
The formal semantics of the obtained nondeterministic programs is defined
straightforwardly by adding the following rules.

I'te v | {I'teidvitizi

=1,2
I'Er"s" | "s" I'tei?ex v ! ’ I'tey Heo | v1 +H 2

Their behaviors of "s", 7 and ++ are the same as the reinterpretations of text "s",
<+ and <>, respectively; we use different symbols to clarify that the conversion
discards the pretty-printing semantics. Note that, since the language is linear
and treeless, the call-time choice and the run-time choice [19] do not differ.

We write f and e as the rewritten version of f and e. The following lemma
states that the rewriting is semantic preserving.

Lemma 1 (Semantic Preservation). I'Fe {np s iff [Fel s. O

Grammar-Based Inversion. The rewritten programs can be processed to ob-
tain a grammar with actiondd that computes the inverse of the rewritten program
by using grammar-based inversion [I5]. The basic idea of the inversion is to read
a rule of a program as a production rule of a grammar, and to use semantic
actions to track how variables (i.e., inputs) are passed.

In the inversion, we construct two sorts of non-terminals: Fy for functions
f and E, for expressions e. For a function f that takes t1,...,t, and returns
s, Iy is used to parse string s, and the semantic action returns original inputs

4 In the original paper [15], transformations on parse trees (or more precisely, deriva-
tion trees of productions) are used, instead of semantic actions.

FliPpr: A Prettier Invertible Printing System 109

Rules of F
For function f, we generate:
F;y — E., {let '=8%11in (p1)I"}
if f hasrules f p=-e1;...;f Pn = €n.
| Ee, {let I'=%1in (p,)I'}

Rules of E.
For expression e, we generate:
let (t1,...,tn) = $1 e
E. — Fy {in (21 b1,y > £} ife=fx1 ... zn
E.— E. E., {$14w8$2} ife=e1 +He2
Ee —y ngn {@} lf e ="g"
E. — E., {$1}

ife=e=c¢e; 7es

| Ee, {31}
Here, W merges two environments assuming that their domains are disjoint. Note
that this disjoint property is guaranteed by linearity.

Fig. 5. Construction of CFG with actions

(t1,...,tn). For an expression e such that I' - e || s, E. is used to parse string s,
and the semantic action returns the original environment I'. The generation of
the production rules and semantics actions are presented in Fig.[5l The grammar
in Sect.lis a simplified version of the grammar obtained by this generation.

We write [N]p(s) for the set of results returned by the semantics actions,
when s is parsed with start symbol N (the subscript P means “parse”). The
following lemma holds.

Lemma 2 (Correctness of Inversion)

— I'kFel s anddom(I") =fv(e) iff I' € [Ec]p(s),
—{omi—=t, o wpta b B far oo bsiff (B te) € [Frlp(s).

Proof. Follows from [I5].]

Let ppr be a single-argument function defined in the core language, and parse
be a function defined by parse s = [Fppr]p(s). Then, the following theorem is a
special case of the above lemma.

Theorem 1. {z +— t} F ppr x |np s iff t € parse s. O

The set parse s contains at most one element if ppr is injective. Note that
the inversion can produce arbitrary CFGs, and therefore FliPpr requires parser
generators that support full CFGs.

4 Surface Language: Making It More Flexible

The core language is restricted to be linear and treeless, which is expressive
enough for CFG parsing, but may be cumbersome to program in at times. In this

110 K. Matsuda and M. Wang

section, we present a surface language that has a relaxed form of the restrictions,
and through fusion techniques (specifically deforestation [2I] or supercompila-
tion [20]), programs written in the surface language are transformed to treeless
and linear programs in the core language.

4.1 Problems with Programming in the Core Language
Let us consider extending the subtraction language with division and variables.

data £ =---| Div E E | Var String

Recall that we used two mutually recursive functions ppr and pprP to control
bracketing issues around “-”. In general, when there are many operators with
different precedence levels, it suffices to use a function for each precedence level.
For example, assuming “~” has precedence-level 6 and “/” has precedence-level
7 as they do in Haskell, a pretty-printer can be written as follows.

ppr X = pprs T -- 5 is the lowest precedence level
ppr 5 (Subz y) = ...pprg x...text "="...ppr, y... -- (1)
ppr 5 (Divzy) = ...ppry o...text "/"...pprg y... --(2)

ppr ¢ (Sub z y) = text "(" <> nil <>...{- the RHS of (1) -}... <> nil <> text ")"
ppr ¢ (Divz y) =...{- the RHS of (2) -}...

ppr , (Sub z y) = text "(" <> nil <>...{- the RHS of (1) -}... <> nil <> text ")"
ppr - (Div z y) = text "(" <> nil <>...{- the RHS of (2) -}... <> nil <> text ")"

There are a lot of undesirable repetitions in the above definition largely due to
the treeless restriction.

Another problem that it is non-trivial to separate variable names with pre-
defined names. For example, let us consider pretty-printing for Var z. One may
be tempted to write ppr (Var x) = text x but a parser derived from the above
will parse “-” as Var "-", because there is no information in the above definition
that specifies valid variable names. We can improve the pretty-printer as follows.

ppr (Marz)=fux gl = text""
f(a:xz)= text"a"<>gx g (Ca’:x) text "a" <> g x

f(Cz:z)= text"z"<>gx g (’z’ 1x) = text"z"<o>gx
Note that strings are represented as lists of characters as in Haskell. This function
ppr is partial and intentionally undefined for Var "-". In this definition, we have
successfully restricted variable names to range over lower-case English alphabets,
but in a very cumbersome way.

4.2 An Overview

To reduce the programming effort, we propose a surface language, which has
relaxed linearity and treelessness restrictions, and is equipped with a shorthand

FliPpr: A Prettier Invertible Printing System 111

notation for expressing name ranges. In this language, a pretty-printer for the
extended subtraction language can be written as follows.

ppr r =go 5 x
go i x = manyPars (go i x)
go i One = text "1"
go i (Varx) = text (zas [a-z]+)
go i (Subz y) =
parlf (i > 6) (group (go 5 e1 <> nest 2 (line’ <> text "-" <> space’ <> go 6 e2)))
go i (Divzy) =
parlf (i > 7) (group (go 6 e1 <> nest 2 (line’ <> text "/" <> space’ <> go 7 e2)))

Here, manyPars and parlf are defined as:

parlf b d = if b then par d else d
manyPars d = d <+ par (manyPars d)
par d = text " (" <> nil <> d <> nil <> text ")"

This program differs from the one in the core language in the following ways:

1. The auxiliary functions manyPars, parlf and par are used and applied to
non-variable arguments, which enable users to avoid duplicating frequently-
occurring patterns such as text " (" <> nil <> ... <> nil <> text ")".

2. Instead of embedding precedence-levels into function names, we pass them
as arguments and inspect them by if and < for bracketing. (These were
previously impossible due to the linearity and treelessness restrictions.)

3. A new construct text (x as r) is used to avoid explicit recursion on strings.

Ttem 3 of the above is rather easy to deal with. For Item 1, we borrow the
idea of program fusion [I4,20L21] to make sure that these auxiliary functions are
fused away. For Item 2, we use partial evaluation to erase statically-computable
arguments such as precedence-levels. The statically-computable arguments are
separated from the rest through types.

4.3 Surface Language

Figure [6] shows the syntax of the surface language. The treeless restriction is
replaced by a relaxed one that will be discussed towards the end of this subsec-
tion. The language has constants as expressions, such as the precedence levels of
operations found in the previous subsection. Used as arguments, such constants
can be eliminated at compilation time through partial evaluation; we call such
constants static information. The if branchings inspect static information, and
are eliminable statically as well.

We use a type system to distinguish static information (of type St) from
other kinds of values such as the input ASTs (of type AST) and the pretty-
printing results (of type Doc). The type system ensures that static information
are eliminable through partial-evaluation, and variable uses are linear. Formally,
primitive types 7 and function types o are defined by:

T:::AST|St|DOC Tu=T1 — = Tn =T

112 K. Matsuda and M. Wang

prog ::= ruley ... rulen

rule = fp1 ... ppn=c¢e

e u=text"s" | ey <> ez |line| nestn e | group e | e1 <+ ez (Combinators)
| text (zasr) (Annotated Text)
| = (Variable)
| fer ... en (Call)
| if pred e1 ... e, then e; else ef (Static Branching)
| ¢ (Constant)

c 1= ... any constants ...

r u=...regular expression ...

Fig. 6. Syntax of the surface language: pred are Boolean predicates

O, I'AkFe:T

O,r{z:r}rx:7 O,I0Fx:I(z) O,I,0Fc:St
O,I, Al e: Doc {6, I A; - e; : Docti<i<n op=text "s", group, (<>), line
O,I'At+ nestn e: Doc @,F,LﬂléiénAil—op e1 ... en: Doc
{6, At e; : Doc}iz1,2
O,INAt e <+rex:Doc O, {x: AST} I text (zasr) : Doc
{6, 0 F e;: Sthi<i<n {O, 1 Al ey :Tho=tr
O,I' A+ if pred e1 ... e, then e; else e; : 7
{0, A e :Titicicn O(f) =71 — -+ — 7 — Doc
O, e, Ai - fer ... en:Doc
OFfpr ... pn=c¢
O(f)y=1— -+ — 1 — Doc
ar Ay, A {Aibpiimiticie,, dom(I) C 1, ciey, fY(pi)
Q,F,LﬂlgignAil—e:Doc

OFfpr ... pn=c¢e
AFp:T
I'(z)=St 7€ {AST,Doc} {IA;Fpi:Th<i<n 7 € {AST,St}
Iotz:St N{z:7}ba:7 I'WicichAi-Cp1 oo pntt

Fig. 7. Typing rules: here W represents disjoint union

Typing judgment O, A e : 7 reads that under function-type environment
©, non-linear type environment I and linear type environment A, e has type
7. Similarly, we define I’ AFp:7and ©F f p; ... p, = e for patterns and
declarations. Figure [[lshows the typing rules, which are mostly self-explanatory.
Notably, the uses of variables of type AST and Doc have to be linear, as dictated
by the rules. The linearity restriction of AST variables is inherited from the core
language, while that of Doc variables is required for the correctness of fusion; it is

FliPpr: A Prettier Invertible Printing System 113

known that the deforestation is not correct for non-linear and non-deterministic
programs [I]. A program is assumed to have a distinguished entry point function
of type AST — Doc. The type Doc is treated as a black box in the language;
nothing except Wadler’s combinators can handle Doc data. Only variables can
have type AST.

Treeless Restriction. We replace the universal treeless restriction of the core
language to a typed one: only arguments of type AST or Doc are restricted to
be variables. Moreover, we view programs in the surface language as multi-tier
systems [I4]: every function is associated to a natural number called tier, and
every function call occurring in the body of a tier-i function must be to a tier-j
(< 4) function. Tiers of functions are easily inferred by topologically sorting of
the call-graph. A program is called tiered-treeless if for every call of a tier-k
function f occurring in the body of a tier-k function, the arguments (of type
AST or Doc) passed to the call must be variables. The pretty-printer defined in
Sect.[2] is tiered-treeless: functions ppr, go and go belong to tier 3, function
manyPars belongs to tier 2, and other functions belong to tier 1.

We omit a formal semantics of the surface language, as it is a straightforward
extension of the core language. Similar to the case of the core language, the
evaluation results of the call-by-value and the call-by-name semantics coincide
in the surface language due to linearity.

4.4 Conversion to the Core Language

The surface language is elaborated to the core language through a number of
program transformations: (1) desugaring expressions of the form text (x as r),
(2) partial-evaluating static information, (3) fusing higher-tier functions. Steps
(1) and (2) above are straightforward adaptation of existing technologies, while
step (3) is new and uses a property specific to our surface language. In what
follows, we discuss the steps one by one.

Desugaring text (xz as r). We firstly convert r to a deterministic automaton.
Then, we replace text (x as r) with f,, where ¢o is an initial state of the
automaton, and, for each state g, a function f; is defined as follows: function f,
has arule f; (*a’ :) = f « if the automaton has a transition rule (¢, a, ¢’), and
has a rule f; [| = text "" if ¢ is a final state of the automaton. For the example
in Sect.[£2 the regular expression [a-z]+ can be expressed in a deterministic
automaton with two states, and the functions f and g correspond to the two
states.

Partial-Evaluating St-Expressions. A role of our type system is to perform
binding-time analysis; the expressions of type St can be statically evaluated,
assuming that predicate applications are terminating. Thus, a standard par-
tial evaluation suffices to eliminate all the St-expressions and thus we omit the

114 K. Matsuda and M. Wang

details. For the example in Sect.[.2] we obtain the partially evaluated functions
as below.
ppr x = g05 x

gos (Subzy)=...g05x...g05Yy...
gogs Divzy) =...g05x...g0,y...
gog (Subzy)=...g05 x...g05y...

gog Divae y) =par (...gog x...g0; y...)

go , (Subz y) =par (...gos x...g05y...)

go, Divzy) =par (...gog x...g0; y...)
Roughly speaking, thanks to the type AST — Doc of the entry point function,
the type system guarantees that every St-type expression must be a constant
itself or a part of some constant obtained by pattern-matching, and thus can
eliminated by partial-evaluation.

Fusing Functions to Obtain 1-Tier Programs. We show the transforma-
tion of 2-tiered programs to 1-tiered programs, with the understanding that the
procedure can be applied iteratively to transform m-tiered programs to 1-tiered
programs.

The transformation is done by deforestation [2I]. Roughly speaking, defor-
estation (or, supercompilation [20[) performs call-by-name evaluation of ex-
pressions; but instead of computing a value, it produces a new expression that
has the same behavior as the original one but with intermediate data structures
eliminated. Without loss of generality, we assume that AST arguments appear
before Doc arguments in function calls. The deforestation procedure D[e] is
defined as follows.

— Dlop e1 ... en] = op D[ea] ... Dlen], where op ranges over text "s", (<>),
line, nest i, group and (<+).

— D[f z¢] = fz T Z. Assuming T have type AST (recall that only variables
have type AST), € have type Doc, and {Z} are the free variables in €, the
newly generated function f; is defined as fs p z = Dle[y — €]] for each
corresponding rule f py = e in the definition of f (with proper a-renaming).
Here, we do not repeatedly generate rules of fz if they are already generated
(up to renaming of the free variables in €).

The above procedure follows from the original one [2I], and is simplified to
suit the restricted surface language. The procedure terminates if the number of
functions fz generated in the latter case is finite. By using D[e], we replace every
tier-2 rule f py = e with f p gy = D[e].

Ezample 1. We deforest the pretty-printer defined in Sect.[d.2

® Because of the linearity, Wadler’s deforestation [2I] and (positive) supercompila-
tion [20] coincide for the surface language.

FliPpr: A Prettier Invertible Printing System 115

The tier-2 function manyPars is transformed into the following.

manyPars d = d <+ par
par

manyPars d d

manyPars 4 @ = text " (" <> nil <> manyPars d <> nil <> text ")"

And iteratively, we can now apply the procedure to the function go (reproduced
below), which is in tier-2 after the above transformation.

gos © = manyPars (go 5 x)

After renaming par,, .y pars 4 10 parMP, we obtain the following tier-1 functions

gos x = manyPars,, =, x
manyPars,, =, * = go 5 © <+ parMP,, —, x
parMP,, —,x = text " (" <> nil <> go 5 x<>nil <> text ")"

assuming calls gos = are transformed too. This behavior is similar to inlining
except that the deforestation handles recursive functions such as manyPars. 0O

Theorem 2 (Termination). For tier-2 expression e, D[e] terminates.

Proof (Sketch). All expressions € in D[f ¥ €] must be tier-2 expressions in the
original program or just variables, which implies the finiteness of the number of
functions fz generated in the deforestation process. a

Theorem 3. The resulting tier-1 program is treeless and linear. O

The correctness of the deforestation is known for call-by-name languages [18].
Note again that call-by-value and call-by-name coincide in our surface language.

In the deforestation process, we treat Wadler’s combinators as constructors be-
cause Doc-values are black boxes. This is key to termination; if we allow pattern-
matching on Doc-values, then we can make a tiered-treeless program for which
deforestation runs infinitely. As a result, Theorem[2lcan be generalized and D[e]
terminates for tier-n expression e. Also, since deforestation (supercompilation)
is a sort of partial-evaluation, the steps (2) and (3) of the transformation can be
performed at once. We omit a formal discussion on this for space reason.

5 An Involved Example

In the introduction, we advertised that “we, and many others who read this
paper, will not need to do it [writing both parser and pretty-printer] for their
own language implementations.”. In this section, we demonstrate the feasibility
of this goal by writing a pretty-printer for the core language in the surface
language, which, if fed to FliPpr, will generate a parser for the core language.
The ASTs of the core language can be expressed by the following datatype.

type Prog = [Rule]

data Rule = Rule String [Pat] Ezp

data Ezp = ECon String [Exp] | EOp Op Ezp Ezp | EVar String [Ezp]
data Pat = PVar String | PCon String [Pat]

data Op = OCat | OAlt -- <> and <

116

K. Matsuda and M. Wang

We leave out nest and text "s" for simplicity. In the datatype, we use EVar both
for variables and function calls to avoid ambiguity in grammars.

The overall principle of our pretty-printing is to insert breaks after =, and
before <> and <+, with 2-space indentation. We start with lists of rules, and insert
separators with optional whitespaces nil <> text ;" <> line’ between individual

rules.

ppr x = pprRules x

pprRules || = nil

pprRules (r : rs) = nil <> pRules r rs <> nil

pRules r' [] = pprRule r’

pRules 7' (r : 1s) = pprRule r' <> nil <> text ";" <> line’ <> pRules r rs

For each rule, its right-hand side may start a new line.

pprRule (Rule f ps e) =
group (var f <> space <> pprPats ps <> space’ <> text "=" <> nest 4 (line’ <> pprEzp ¢))

var © = text (x as [a-z] [a-zA-Z0-9]*’*)

A list of patterns is treated in a similar way to a list of rules.

pprPats || = text ""
pprPats (p: ps) = pPats p ps
pPats p' || = pprPat p’

pPats p' (p: ps) = pprPat p’ <> space <> pPats p ps

Redundant parentheses in patterns are admissible to the generated parser,
but will not be produced by the pretty-printer.

pprPat p = manyPars (pprPat p)
pprPat (PVar z) = var x
pprPat (PCon ¢ []) = con ¢
pprPat (PCon ¢ (p: ps)) = par (con c<> space <> pPats p ps)

con f = text (v as [A-Z] [a-zA-Z0-9]*’*)

Expressions are printed according to the precedence-levels and associativities
of the operators.

pprEzp e =go 4 e

go 1

go i
go i
go i (EOp OAlt e1 e2) =
go i

go 1
go 1

e = manyPars (go i e)
i (ECon ¢ []) = con ¢
i (ECon ¢ (e:es)) = parlf (i > 9) (con c<> space <> pExps e es)

parlf (i >5) (group (go 5 e1 <> nest 2 (line’ <> text "<+" <> space’ <> go 4 €2)))

3 (EOp OCat e 62) =

parlf (i > 6) (group (go 6 ey <> nest 2 (line’ <> text "<>" <> space’ <> go 5 e2)))
i (EVar f 1)) =wvar f

i (EVar f (e:es)) = parlf (i >9) (var f <> space <> pExps e es)

Finally, a list of expressions printed in a similar way to a list of patterns.

pEzps €] =go9e¢
pExps €' (e: es) = go 9 €' <> space <> pEzps e es

FliPpr: A Prettier Invertible Printing System 117

6 Discussion
We discuss limitations and extensions of FliPpr.

Non-Structured Values in AST. ASTs may contain non-structured values such
as Int. It is easy to extend the core system to handle the issue. For example,
our implementation supports the syntax text (f = as r) where f is a bijection
between a non-structured value and a string representation of it. The bijections
can be read bidirectionally for either pretty-printing and parsing.

Higher-Order Functions. Higher-order functions, such as map, foldr and foldri
are useful in writing pretty-printers. For example, pprRules and pprPats in
Sect.[l can be more conveniently implemented by map and foldrl. However,
general use of higher-order functions in pretty-printing may produce grammars
that go beyond CFG. The linearity restriction is also affected, most of the higher-
order functions use the functional arguments more than once on the right-hand
sides.

In line with the spirit of the surface language, a way forward is to use higher-
order functions only when they can be fused away. A sufficient condition for
fusion is the absence of A-abstractions and partial-applications. In other words,
functions must be treeless in the sense that intermediate function values are
prohibited, and all the higher-order values must be variables (function names).
We leave this extension as future work.

Spacing. We have demonstrated that careful use of whitespaces in the definition
of the pretty-printer is an effectively way to control the behavior of the generated
parser. For example, for pretty-printing constructor application in Sect.[] we
wrote (con ¢ <> space <> pExps e es); the use of space (representing one-or-more
whitespaces) allows us to parse “S Z” or “S Z” as valid strings. However, it
is difficult to express the use of spaces that are dynamically dependent on the
printing results of adjacent expressions, especially with nondeterminism. In the
above example, if we were to know that the argument of the application is printed
in parentheses as “(Z)”, then in some syntax the space between the constructor
and the argument can be omitted as in “S(Z)”. On the other hand, we cannot
simply replace space with space’, because we don’t want to accept “SZ” as a
valid constructor application. One possible solution to the problem is to try to
extend the generate parsers with a lexing phase. But it may require some major
surgery to the current system.

Non-Linearity. In the literature of tree transducers [9], the discussion of linearity
can be separated into input- and output-linearity. In our case, variables of type
AST can be seen as inputs, and those of type Doc can be seen as outputs.

For AST variables, sometimes we want to pretty-print the same AST twice;
for example, an element e in XML is printed as <e>...</e>. A naive solution to
admit this behavior is to check the equivalence of values of duplicated variables
in semantic actions. More concretely, we relax W to allow overlapping domains

118 K. Matsuda and M. Wang

in the operands, and define {z — v} W {x — v} = {& — v}. This naive solution
works effectively for XML, because the number of possible ASTs is usually finite.
However, in general parsing becomes undecidable with non-linear use of AST
variables, as shown in [I3] (Theorem 4.4). Thus, for this kind of non-linear uses,
a method that checks the finiteness of parse trees is required.

The non-linearity of Doc values has non-trivial interaction with nondetermin-
ism. In the absence of linearity, the call-by-value and the call-by-name seman-
tics may cease to coincide. This is a problem because call-by-value is suitable for
grammar-based inversion [I5], but call-by-name is suitable for deforestation [I§].
We also need to resort to grammars beyond CFGs, which may pose difficulties
in inversion. It is a challenging problem to find a sweet spot between obtaining
efficient inverses and supporting fusion in the surface language.

7 Related Work

Different approaches have been proposed to simultaneously derive a parser and a
printer from some intermediate descriptions. In particularly, one could start from
an annotated CFG specification to derive both a parser and a pretty-printer [2].
Compared to these systems, FliPpr offers finer control over pretty-printing. In
particular, we are able to deal with contextual information and to define auxiliary
functions like par in printing, which is made conveniently available by the surface
language. Other approaches include invertible syntax descriptions [I7] based on
invertible programming, and BNFC-meta [4] based on meta programming. Both
work recognizes the importance of good printing, but is not able to support
pretty-printing.

There are also general-purpose bidirectional languages [3/[6l[11] that in the-
ory can be used to build the printer/parser pair from the definition of one of
them. Notably quotient lenses [7] are designed to include a representative of a
quotient before performing bidirectional conversions; in our case, roughly speak-
ing this quotient operation is the erasure of redundant whitespaces and paren-
theses. However, there is a gap between the theoretical possibility and practi-
cally execution. In particular, the pretty-printing libraries of Wadler [22] and
Hughes [10] are not only user-friendly but also highly optimized. Moreover, for
efficient parsing we have to perform whole-program analysis (as in conventional
parsing algorithms like LR-k) or use sophisticated data structures and memo-
ization [8[I6]. It is not obvious how these sophisticated implementations can be
packed into a bidirectional program. In our approach, we avoid this problem by
using grammar-based inversion [I5], which generates grammars and outsources
the parsing algorithms to selected parser generators.

There are a lot of discussions on how to make deforestation (supercompila-
tion) terminate (e.g., [I2]) for Turing-complete languages. These approaches use
conditions to give up fusion, and reuse the already-generated deforested func-
tions. As a result, these approaches may fail to fuse some functions, and thus
are not suitable for our purpose. The completeness of deforestation, in the sense
whether all the nested calls are fused away, has not been the focus of study in

FliPpr: A Prettier Invertible Printing System 119

the literature. Notable exceptions are Wadler’s original work [2I] and tree trans-
ducer fusion [1,[9,[14]. However, there is a gap between treeless functions and
tree transducers; especially, treeless functions can take multiple inputs. It is not
obvious how existing results can be directed applied in our case.

8 Conclusion

In this paper, we proposed a method to derive parsers from pretty-printers.
We start with a program written in a language equipped with Wadler’s pretty-
printing combinators [22], and an additional “choice” operator. The choice op-
erator allows us to enrich the pretty-printer with information about valid but
yet non-pretty strings, without changing the pretty-printing behavior. This en-
riched pretty-printer can be transformed and inverted using grammar-based in-
version [I5] to produce a CFG parser. For the inversion to be possible, the
language is restricted to be linear and treeless [2I]. We also provide a surface
language that has relaxed restrictions, which eases programming. The surface
language is transformed into the linear and treeless language through fusion.
We feel that the specific problem we addressed in this paper has much wider
implications. It suggests a general framework for program inversion problems
with “information mismatch”. A compression/decompression pair is another ex-
ample of this kind. For the example of runlength encoding, we want to decode
both A3B1 and A1A2B1 as AAAB, but an encoder “prefers” the former. Our re-
sult for pretty-printing/parsing benefits from Wadler’s combinators, in which
the “preference” is encapsulated in the combinators in a compositional way. It is
an interesting problem to see how the technique may apply in different contexts.

Acknowledgments. We thank Nils Anders Danielsson for his critical yet con-
structive comments on an earlier version of this work, without which the surface
language probably would not exist. We also thank Janis Voigtlander and Aki-
masa Morihata for their insightful comments on deforestation. This work was
partially supported by JSPS KAKENHI Grant Number 24700020. Part of this
research was done when the first author was visiting Chalmers Univeristy of
Technology supported by Study Program at the Overseas Universities by Grad-
uate School of Information Science and Technology, the University of Tokyo.

References

1. Baker, B.S.: Composition of Top-down and Bottom-up Tree Transductions. Infor-
mation and Control 41(2), 186-213 (1979)

2. Boulton, R.J.: Syn: A Single Language for Specifiying Abstract Syntax Tress, Lex-
ical Analysis, Parsing and Pretty-Printing. Technical Report UCAM-CL-TR-390,
University of Cambridge Computer Laboratory (1996)

3. Brabrand, C., Mgller, A., Schwartzbach, M.I.: Dual Syntax for XML Languages.
Inf. Syst. 33(4-5), 385-406 (2008)

4. Duregard, J., Jansson, P.: Embedded Parser Generators. In: Haskell 2011: Proceed-
ings of the 2011 ACM SIGPLAN Haskell Symposium, pp. 107-117. ACM (2011)

120

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Matsuda and M. Wang

Duregard, J., Jansson, P., Wang, M.: Feat: Functional Enumeration of Algebraic
Types. In: Haskell 2012: Proceedings of the 2012 ACM SIGPLAN Haskell Sympo-
sium, pp. 61-72. ACM (2012)

Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient Lenses. In: ICFP 2008: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 383-396. ACM (2008)

Frost, R.A., Hafiz, R., Callaghan, P.: Parser Combinators for Ambiguous Left-
Recursive Grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 167-181. Springer, Heidelberg (2008)

Filop, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree
Transducers, 1st edn. Springer-Verlag New York, Inc., Secaucus (1998)

Hughes, J.: The Design of a Pretty-Printing Library. In: Jeuring, J., Meijer, E.
(eds.) AFP 1995. LNCS, vol. 925, pp. 53-96. Springer, Heidelberg (1995)
Jansson, P., Jeuring, J.: Polytypic Data Conversion Programs. Sci. Comput. Pro-
gram. 43(1), 35-75 (2002)

Jonsson, P.A., Nordlander, J.: Positive Supercompilation for a Higher Order Call-
by-Value Language. In: POPL 2009: Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 277-288. ACM
(2009)

Kobayashi, N., Tabuchi, N., Unno, H.: Higher-Order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL 2010: Proceed-
ings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 495-508. ACM (2010)

Kiithnemann, A., Glick, R., Kakehi, K.: Relating Accumulative and Non-
accumulative Functional Programs. In: Middeldorp, A. (ed.) RTA 2001. LNCS,
vol. 2051, pp. 154-168. Springer, Heidelberg (2001)

Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A Grammar-Based Approach to
Invertible Programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
448-467. Springer, Heidelberg (2010)

Might, M., Darais, D., Spiewak, D.: Parsing with Derivatives: A Functional Pearl.
In: ICFP 2011: Proceeding of the 16th ACM SIGPLAN International Conference
on Functional Programming, pp. 189-195. ACM (2011)

Rendel, T., Ostermann, K.: Invertible Syntax Descriptions: Unifying Parsing and
Pretty Printing. In: Haskell 2010: Proceedings of the 2010 ACM SIGPLAN Haskell
Symposium, pp. 1-12. ACM (2010)

Sands, D.: Proving the Correctness of Recursion-Based Automatic Program Trans-
formations. Theor. Comput. Sci. 167(1&2), 193-233 (1996)

Sgndergaard, H., Sestoft, P.: Non-Determinism in Functional Languages. Comput.
J. 35(5), 514-523 (1992)

Sgrensen, M.H., Glick, R., Jones, N.D.: A Positive Supercompiler. J. Funct. Pro-
gram. 6(6), 811-838 (1996)

Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Theor. Com-
put. Sci. 73(2), 231-248 (1990)

Wadler, P.: A Prettier Printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming. Palgrave Macmillan (2003)

Slicing-Based Trace Analysis of

Rewriting Logic Specifications with ¢JULIENNE*

Maria Alpuente!, Demis Ballis?, Francisco Frechina!, and Julia Sapifia'

! DSIC-ELP, Universitat Politecnica de Valéncia,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain
{alpuente,ffrechina, jsapina}@dsic.upv.es
2 DIMI, Universita degli Studi di Udine,

Via delle Scienze 206, 33100 Udine, Italy
demis.ballis@uniud.it

Abstract. We present iJULIENNE, a trace analyzer for conditional rewrit-
ing logic theories that can be used to compute abstract views of Maude ex-
ecutions that help users understand and debug programs. Given a Maude
execution trace and a slicing criterion which consists of a set of target sym-
bols occurring in a selected state of the trace, ¢JULIENNE is able to track
back reverse dependences and causality along the trace in order to incre-
mentally generate highly reduced program and trace slices that
reconstruct all and only those pieces of information that are needed to
deliver the symbols of interest. ¢JULIENNE is also endowed with a trace
querying mechanism that increases flexibility and reduction power and al-
lows program runs to be examined at the appropriate level of abstraction.

1 Introduction

Execution traces are an important source of information for program under-
standing and debugging. Standard tracers usually present execution histories
that mainly consist of low-level execution steps so that the relationship between
the executed program and the execution history is not easy to derive because
some key dependences that are naturally expressed at the programming language
level can be either scattered or omitted in the trace. This is particularly true for
those systems that are specified in Rewriting Logic (RWL) —a logic of change
that can deal naturally with highly nondeterministic concurrent computations.

Rewriting logic is efficiently implemented in the high-performance language
Maude. Execution traces generated by Maude are complex objects to deal with.
The traces typically include thousands of rewrite steps that are obtained by
applying the equations and rules of the considered specification (including all
the internal rewrite steps for evaluating the conditions of such equations/rules).

* This work has been partially supported by the EU (FEDER) and the Spanish
MEC project ref. TIN2010-21062-C02-02, and Generalitat Valenciana ref. PROME-
TEO2011/052, and was carried out during the tenure of D. Ballis’ ERCIM ” Alain
Bensoussan” Postdoctoral Fellowship. The research leading to these results has re-
ceived funding from the EU 7'" Framework Programme (FP7/2007-2013) under
agreement n. 246016. F. Frechina is supported by FPU-ME grant AP2010-5681.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 121-[[24] 2013.
© Springer-Verlag Berlin Heidelberg 2013

122 M. Alpuente et al.

In addition, Maude traces are incomplete because algebraic axiom applications,
which implicitly occur in an equational simplification process that is hidden
within Maude’s matching modulo algorithm, are not recorded at all in the trace.
This provides a very low-level blueprint of program execution whose manual
inspection is frequently unfeasible or, in the best case, is an extremely labor-
intensive and time-consuming task.

This paper describes ¢JULIENNE, a slicing-based trace analysis tool that assists
the user in the comprehension and debugging of RWL theories that are encoded
in Maude. 4JULIENNE is built on top of a trace slicer that implements the back-
ward conditional trace slicing algorithm described in [2/3/4]. Roughly speaking,
the trace slicing mechanism included in ¢{JULIENNE rolls back the program exe-
cution (making all the rewrite and equational simplification steps explicit) while
tracking back only and all data in the trace that are needed to accomplish the
selected slicing criterion —that is, the data that contribute to producing the
set of target symbols that occur in the observed state of the trace. The core
trace slicer included within ¢JULIENNE is a totally redesigned implementation of
our slicing technique in [2/3] that supersedes and greatly improves the prelim-
inary system presented in [4]. In particular, the new trace analyzer iJULIENNE
is equipped with an incremental backward trace slicing algorithm that supports
stepwise refinements of the trace slice and achieves huge reductions in the size of
the trace. Starting from a Maude execution trace 7T, a slicing criterion S can be
attached to any given state of the trace and the computed trace slice 7* can be
repeatedly refined by applying backward trace slicing w.r.t. increasingly restric-
tive versions of S. Furthermore, the system supports a cogent form of dynamic
program slicing [7] as follows. Given a Maude program M and a trace slice T*
for M, i{JULIENNE is able to infer the minimal fragment of M (i.e., the program
slice) that is needed to reproduce 7*. Finally, ¢JULIENNE is endowed with a
powerful and intuitive Web user interface that allows the slicing criteria to be
easily defined by either highlighting the chosen target symbols or by applying a
user-defined filtering pattern. A browsing facility is also provided that enables
forward and backward navigation through the trace (and the trace slice) and
allows the user to examine each state transition (and its corresponding sliced
counterpart) at different granularity levels.

2 (JULIENNE at Work

The ¢JULIENNE system is written in Maude and consists of about 250 Maude
function definitions. It can be invoked as a Maude command or used online
through a Java Web service. The tool is publicly available at [6] together with
several case studies which consider large execution traces, such as the counter-
examples delivered by the Maude LTLR model-checker [I]. A thorough experi-
mental evaluation of our slicing methodology can be found in [5].

To illustrate how ¢JULIENNE works in practice, we show a typical trace slicing
session on a Maude implementation of Blocks World —one of the most popu-
lar planning problems in artificial intelligence. We assume that there are some
blocks, placed on a table, that can be moved by means of a robot arm; the

Slicing-Based Trace Analysis with ¢JULIENNE 123

mod BLOCKS-WORLD is inc INT .
sorts Block Prop State .
subsort Prop < State .
ops a b ¢ : -> Block .

op table : Block -> Prop . **% block is on the table

op on : Block Block -> Prop . *** first block is on the second block
op clear : Block -> Prop . *** block is clear

op hold : Block -> Prop . *** robot arm holds the block

op empty : -> Prop . **% robot arm is empty

op _&_ : State State -> State [assoc comm] .

op size : Block -> Nat .
vars X Y : Block .

1.
2 .
3.

eq [sizeA] : size(a)
eq [sizeB] : size(b)
eq [sizeC] : size(c)

rl [pickup] : clear(X) & table(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & table(X)

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .
endm

Fig. 1. BLOCKS-WORLD faulty Maude specification

goal of the robot arm is to produce one or more vertical stacks of blocks. In
our specification, which is shown in the Maude module BLOCKS-WORLD of Figure
[we define a Blocks World system with three different kinds of blocks that
are defined by means of the operators a, b, and c of sort Block. Different blocks
have different sizes that are described by using the unary operator size. We also
consider some operators that formalize block and robot arm properties whose
intuitive meanings are given in the accompanying program comments.

The states of the system are modeled by means of associative and commutative
lists of properties of the form propi&prop.& ...&prop,, which describe any
possible configuration of the blocks as well as the status of the robot arm. The
system behavior is formalized by four, simple rewrite rules that control the robot
arm. Specifically, the pickup rule describes how the robot arm grabs a block
from the table, while putdown rule corresponds to the inverse move. The stack
and unstack rules respectively allow the robot arm to drop one block on top
of another block and to remove a block from the top of a stack. Note that the
conditional stack rule forbids a given block By from being piled on a block By if
the size of By is greater than the size of B,.

Barely perceptible, the Maude specification of Figure [fails to provide a
correct Blocks World implementation. By using the BLOCKS-WORLD module, it is
indeed possible to derive system states that represent erroneous configurations.
For instance, the initial state

s; = empty & clear(a) & table(a) & clear(b) & table(b) & clear(c) & table(c)
describes a simple configuration where the robot arm is empty and there are
three blocks a, b, and c on the table. It can be rewritten in 7 steps to the state

s¢ = empty & empty & table(b) & table(c) & clear(a) & clear(c) & on(a,b)

which clearly indicates a system anomaly, since it shows the existence of two
empty robot arms!

124 M. Alpuente et al.

To find the cause of this wrong behavior, we feed {JULIENNE with the faulty
rewrite sequence 7 = s; —* s¢, and we initially slice 7 w.r.t. the slicing cri-
terion that observes the two anomalous occurrences of the empty property and
the stack on(a, b) in State s¢. This task can be easily performed in ¢JULIENNE by
first highlighting the terms that we want to observe in State sy with the mouse
pointer and then starting the slicing process. Alternatively, we can also query the
trace using an appropriate pattern, which extracts the considered target data by
means of pattern-matching, to State s¢. ¢JULIENNE yields a trace slice which only
records those data that are strictly needed to produce the considered slicing cri-
terion. Also, it automatically computes the corresponding program slice, which
consists of the equations defining the size operator together with the pickup and
stack rules. This allows us to deduce that the malfunction is located in one or
more rules and equations that are included in the computed program slice.

The generated trace slice is then browsed backwards using the ¢JULIENNE’s
navigation facility in search of a possible explanation for the wrong behavior. Dur-
ing this phase, we found an inconsistent state that models a robot arm that is
holding block a and is empty at the same time. Therefore, we further refine the
trace slice by incrementally applying backward trace slicing to the detected, in-
consistent state w.r.t. the slicing criterion hold(a). This way, we achieve a trace
reduction of ~90% in which we can easily observe that hold(a) only depends on
the clear(a) and table(a) properties. Furthermore, the computed program slice
includes the single pickup rule. Thus, we can conclude that: (i) the malfunction is
certainly located in the pickup rule (since the computed program slice only con-
tains that rule); (ii) the pickup rule does not depend on the status of the robot
arm (this is witnessed by the fact that hold(a) only relies on the clear(a) and
table(a) properties); (iii) by (i) and (ii), we can deduce that the pickup rule
is incorrect, as it never checks the emptiness of the robot arm before grasping a
block.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-Checking Web Applications
with WEB-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 341-346. Springer, Heidelberg (2010)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewrit-
ing Logic Theories. In: Bjgrner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 34-48. Springer, Heidelberg (2011)

3. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward Trace Slicing for
Conditional Rewrite Theories. In: Bjgrner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 62-76. Springer, Heidelberg (2012)

4. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: JULIENNE: A Trace Slicer for
Conditional Rewrite Theories. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 28—-32. Springer, Heidelberg (2012)

5. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing
for Improving Maude Programs. Science of Comp. Progr. (to appear, 2013)

6. The ¢JULIENNE website (2013), http://safe-tools.dsic.upv.es/iJulienne

7. Korel, B., Laski, J.: Dynamic Program Slicing. Inf. Process. Lett. 29(3), 155-163
(1988)

http://safe-tools.dsic.upv.es/iJulienne

Why3 — Where Programs Meet Provers

Jean-Christophe Filliatre'?> and Andrei Paskevich'-?

' Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
2 INRIA Saclay — ile-de-France, Orsay, F-91893

Abstract. We present Why3, a tool for deductive program verification, and WhyML,
its programming and specification language. WhyML is a first-order language with
polymorphic types, pattern matching, and inductive predicates. Programs can
make use of record types with mutable fields, type invariants, and ghost code.
Verification conditions are discharged by Why3 with the help of various exist-
ing automated and interactive theorem provers. To keep verification conditions
tractable and comprehensible, WhyML imposes a static control of aliases that ob-
viates the use of a memory model. A user can write WhyML programs directly and
get correct-by-construction OCaml programs via an automated extraction mech-
anism. WhyML is also used as an intermediate language for the verification of C,
Java, or Ada programs. We demonstrate the benefits of Why3 and WhyML on non-
trivial examples of program verification.

1 Introduction

Why3 is a platform for deductive program verification [1]. It provides a rich language of
specification and programming, called WhyML, and relies on external theorem provers,
both automated and interactive, to discharge verification conditions. The tool comes
with a standard library of logical theories (integer and real arithmetic, sets and maps,
etc.) and of basic programming data structures. WhyML is used as an intermediate lan-
guage for the verification of C, Java, or Ada programs [2]], in a similar fashion to the
Boogie language [3]]. Besides, WhyML strives to be comfortable as a primary program-
ming language and inherits numerous high-level features from ML, listed below.

The specification component of WhyML, used to write program annotations and back-
ground logical theories, is presented in [4]], and here we only mention the most es-
sential features. Why3 is based on first-order logic with rank-1 polymorphic types and
several extensions: recursive definitions, algebraic data types, and (co-)inductive predi-
cates. Pattern matching, let-expressions, and conditional expressions are allowed both
in terms and in formulas. A type, a function, or a predicate can be given a definition
or just declared as abstract symbols and then axiomatized. The specification language
of Why3 does not depend on any features of the programming language, and can serve
as a rich common format for theorem proving problems, readily suitable (via Why3) for
multiple automated and interactive provers, such as Alt-Ergo, CVC3, Z3, E, SPASS,
Vampire, Coq, or PVS. When a proof obligation is dispatched to a prover that does not
support some language features, Why3 applies a series of encoding transformations to,
for example, eliminate pattern matching or polymorphic types [5].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 125-28] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

126 J.-C. Filliatre and A. Paskevich
2 Programming Language

WhyML can be seen as an ML dialect, with two important restrictions. Firstly, in order
to generate first-order proof obligations, WhyML is also limited to the first order: Nested
function definitions and partial application are supported, but higher-order functions are
not. Secondly, in order to keep proof obligations more tractable for provers and more
readable (hence debuggable) for users, WhyML uses no memory model and imposes a
static control of aliases instead. Every l-value in a program must have a finite set of
names and all these names must be known statically, at the time of generation of verifi-
cation conditions. In particular, recursive data types cannot have mutable components.
This restriction is not as limiting as it may seem, and we show in the next section that it
does not preclude us from writing and verifying complex algorithms and data structures.

WhyML functions are annotated with pre- and post-conditions for normal and excep-
tional termination, and WhyML loops are annotated with invariants. Recursive functions
and while-loops can be given variants (i.e. values that decrease at each recursive call or
iteration) to ensure termination. Statically checked assertions can be inserted at arbitrary
points in a program. Verification conditions are generated using a standard weakest-
precondition procedure. Every pure type, function or predicate introduced in the logical
component can be used in a WhyML program. For instance, the type of integers and basic
arithmetic operations are shared between specifications and programs.

The mutable state of a computation is embodied in mutable fields of record data
types. Mutable data types can be nested. For example, a polymorphic resizable array
can be modeled by a record with a mutable field containing an ordinary fixed-size array:

type rarray 'a = { mutable data: array ’'a; mutable size: int }
invariant { 0 < size < data.length }

Here, the type is accompanied by an invariant, i.e. a logical property imposed on any
value of that type. Why3 assumes that any rarray passed as an argument to a program
function satisfies the invariant and it produces a proof obligation every time an rarray
is created or modified in a program. Notice that this requires that types with invariants
not be used in recursive data structures, just as mutable types.

An important feature of WhyML is ghost code, i.e. computations that only serve to
facilitate verification and that can be safely removed from a program without affecting
its final result. A ghost expression cannot be used in a non-ghost computation, it cannot
modify a non-ghost mutable value, and it cannot raise exceptions that would escape
into non-ghost code. However, a ghost expression can use non-ghost values and its
result can be used in program annotations. A classical use case for ghost code is that of
step counters to prove time complexity of an algorithm. It also serves to equip a data
structure with a ghost field containing a pure logical “view” for specification purposes.

3 Case Studies

We have used WhyML to verify a lot of non-trivial data structures and algorithms. Our
gallery (http://proval.lri.fr/gallery/why3.en.html) currently contains 67 case
studies. In this section, we illustrate three different kinds of verification.

http://proval.lri.fr/gallery/why3.en.html

Why3 — Where Programs Meet Provers 127

Verification of an Algorithm. Let us consider the Knuth-Morris-Pratt algorithm for
string searching [[6]. A string is simply an array of characters. Arrays are imported from
the Why3 standard library. Conversely, the type of characters is declared as an abstract,
uninterpreted type character. The Knuth-Morris-Pratt algorithm is then implemented
as a function that receives two strings p and t and that returns, if any, the position of the
first occurrence of p in t and, otherwise, the length of t:

let kmp (p a: array character)
requires { 1 < length p A 0 < length a }
ensures { first_occur p a result } = ...

where first_occur is a predicate introduced earlier in the specification. To get an
executable code, Why3 translates WhyML to OCaml. In the process, uninterpreted WhyML
types are either mapped to existing OCaml types or left as abstract data types. In the
example above, this results into the following OCaml function:

val kmp: character array — character array — Num.t

where array is the OCaml built-in type, character is an abstract data type, and Num. t
is the type of arbitrary precision integers from OCaml library. Such a mapping can be
customized at the user level. The key point here is genericity. Extracted code is pa-
rameterized w.r.t. uninterpreted symbols, such as the character type from the above
example. It is then possible to instantiate the extracted code in different ways, for ex-
ample by wrapping it into an OCaml functor.

Verification of a Data Structure. Let us implement hash tables (associative arrays) in
WhyML, using an uninterpreted type key for keys:

type t 'a = { mutable size: int; (x total number of elements x)

mutable data: array (list (key, 'a)); (* buckets x) }

where arrays and lists are imported from the Why3 standard library. Field data is de-
clared mutable, in order to allow dynamic resizing, for the case when the array holding
the buckets is replaced by a new, larger array. This operation changes the current set of
aliases and the type system of WhyML can detect and safely handle it. In particular, after
the resize, one cannot use any stale pointer to the old value of data. Also, the new value
of data must be fresh. The key point here is modularity: One can implement resizing
in a separate function and call it, for instance, from the add function that inserts a new
element in the table.

Specification of a Data Structure. There are data structures that cannot be implemented
in WhyML. Simply speaking, these are pointer-based data structures where mutable nodes
are arbitrarily nested, e.g. doubly-linked lists or mutable trees. Still we can easily model
such data structures and then verify the programs that use them. Let us consider, for
instance, a program building a perfect maze using a union-find data structure, as pro-
posed in the VACID-0 benchmark [7]]. A union-find can be implemented in WhyML using
arrays. However, a more flexible implementation, with chains of pointers, is beyond the
scope of WhyML, and is simply modeled as follows:

type uf model { mutable contents: uf_pure }

128 J.-C. Fillidtre and A. Paskevich

There are three ideas here. First, the keyword model replaces the equal sign. This means
that type uf is not a record, as far as programs are concerned, but an abstract data type.
Inside specifications, though, it is a record and its field contents may be accessed.
Second, field contents is declared mutable, to account for the fact that uf is a mutable
data structure. Last, a pure data type uf_pure represents the immutable snapshot of the
contents of the union-find data structure.

We then declare and specify operations over type uf. For instance, the function find
that returns the representative of the class of a given element and may modify the struc-
ture (e.g. for path compression) can be specified as follows:

val find (u : uf) (x : elt) : elt writes {u}
ensures { result = repr u x A same_repr u (old u) }

The key point here is encapsulation: Though we cannot implement the union-find data
structure, we can declare an interface data type to model it and then verify a client code
(in this case, a program building a maze). Any implementation of union-find could be
used without compromising the proof of the client code.

4 Future Work

The most immediate direction of our future development is the ability to verify that
a given implementation conforms to an interface. This amounts to establishing a re-
finement relation between WhyML modules, their data types and their functions, be they
defined or merely specified. We also plan to introduce some higher-order features in
the specification language, e.g. set comprehensions and sum-like operations, together
with suitable encodings to first-order logic. A more ambitious goal would be to accept
higher-order programs in WhyML, in order to bring it closer to functional programming.
Finally, our long-term goal is to merge the specification and programming languages,
in the spirit of PVS and ACL2. The challenge is two-fold. We want to allow imperative
constructions in pure functions, provided they do not break referential transparency.
Even more importantly, we want to state and prove theorems about WhyML programs,
beyond what is possible to express using pre- and postconditions.

References

1. Why3, a tool for deductive program verification, GNU LGPL 2.1, http://why3.lri.fr

2. Guitton, J., Kanig, J., Moy, Y.: Why Hi-Lite Ada? In: Boogie, pp. 27-39 (2011)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364-387. Springer, Heidelberg
(2006)

4. Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers. In:
Boogie, pp. 53-64 (2011)

5. Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 87-102.
Springer, Heidelberg (2011)

6. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal on
Computing 6, 323-350 (1977)

7. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invariants of data-
structures, edition 0. In: VSTTE (2010)

http://why3.lri.fr

Compositional Invariant Checking for Overlaid
and Nested Linked Lists*

Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

Univ Paris Diderot, Sorbonne Paris Cite, LIAFA CNRS UMR 7089, Paris
{cenea, sighirea}@liafa.univ-paris-diderot.fr,
vlad.saveluc@gmail.com

Abstract. We introduce a fragment of separation logic, called NOLL, for auto-
mated reasoning about programs manipulating overlaid and nested linked lists,
where overlaid means that the lists share the same set of objects. The distinguish-
ing features of NOLL are: (1) it is parametrized by a set of user-defined predicates
specifying nested linked list segments, (2) a “per-field” version of the separating
conjunction allowing to share object locations but not record field locations, and
(3) it can express sharing constraints between list segments. We prove that check-
ing the entailment between two NOLL formulas is co-NP complete using a small
model property. We also provide an effective procedure for checking entailment
in NOLL, which first constructs a Boolean abstraction of the two formulas in order
to infer all the implicit constraints, and then, it checks the existence of a homo-
morphism between the two formulas, viewed as graphs. We have implemented
this procedure and applied it on verification conditions generated from several
interesting case studies that manipulate overlaid and nested data structures.

1 Introduction

Reasoning about behaviors of programs that manipulate dynamic data structures is a
challenging problem because of the difficulty of representing (potentially infinite) sets
of configurations, and of manipulating these representations for the analysis of the exe-
cution of program statements. For instance, pre/post-condition reasoning requires being
able, given pre- and post-conditions ¢ resp. W, and a straight-line code P, (1) to com-
pute the (strongest) post-condition of executing P starting from ¢, denoted post(P,0),
and (2) to check that it entails y. Therefore, an important issue is to investigate logic-
based formalisms where pre/post conditions are expressible for the class of programs
under interest, and for which it is possible to compute effectively post-conditions, and
to efficiently check the entailment. The latter can be done either using theorem provers,
where user-provided tactics are needed to guide the proof system, or using decision pro-
cedures, when the given annotations are in a decidable fragment. An essential ingredient
in order to scale to large programs is being able to perform compositional reasoning and,
in this context, Separation Logic [[17] (SL) has emerged as a fundamental approach. Its
main tool is the frame rule, which states that if the Hoare triple {¢}P{y} holds and P
does not alter free variables in ¢ then {0 * 6} P{y * G} also holds, where % denotes the

* This work has been partially supported by the French ANR project Veridyc and by FSMP.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 129-[[48] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

130 C. Enea, V. Saveluc, and M. Sighireanu

separating conjunction. Therefore, when reasoning about P one has to manipulate only
specifications for the heap region altered by P.

In this paper, we define a fragment of SL, called NOLL, suitable for compositional
reasoning about programs that manipulate overlaid and nested linked lists, built with
an arbitrary set of fields. Such data structures are used in low-level code to link objects
with respect to different aspects. For example, the network monitoring software Nagios
(www.nagios.com) manipulates hash-tables with closed addressing, implemented as
arrays of linked lists, where all the elements in the lists are also linked in the order of
their insertion time. Here, we have two overlaid data structures, i.e., which share a set
of objects: an array of linked lists and a singly-linked list.

To specify such data structures, NOLL is parametrized by a fixed, but arbitrary, set
of recursive predicates defined in a higher-order extension of NOLL and which are
expressive enough to specify various types of (nested) linked lists, e.g., singly-linked
lists of singly-linked lists, where all the elements point to some fixed object.

To specify that these list segments are overlapped, NOLL includes, besides the clas-
sical operator *, that we will call object separating conjunction, a field separating con-
junction operator *,,. Both operators separate the heap into disjoint regions, the only
difference being the granularity of the separated heap cells. For *, a heap cell corre-
sponds to a heap object. For x,, a heap cell corresponds to a field from a heap object.
Thus, the *,, operator allows to specify data structures sharing sets of objects as long
as they are built over disjoint sets of fields. In the example above, if ArrOfS| and Sl are
formulas specifying the array of lists, resp. the list, then ArrOfSl x,, S| expresses the fact
that the two structures share some objects.

However, «w alone is not enough to describe precisely overlaid data structures. In
the example above, we would also need to express the fact that the objects of the list
described by Sl are exactly all the list objects in ArrOfSl; let SI type be their type. To
this, we index each atomic formula specifying list segments by a variable, called a set
of locations variable and interpreted as the set of all heap objects in the list segment.
The values of these new variables can be constrained in a logic that uses classical set
operators C and U. For example, the specification ArrOfSlg ,, Slg A a(SI type) =
constrains the set of objects in the linked list to be exactly the set of objects of type
Sl type in the array of linked lists. (A NOLL formula @ can also put constrains over
some set of locations variables, which are not associated to atomic formulas in ¢.)

The semantics of the field separating conjunction x,, allows us to establish another
frame rule, which is essential for compositional reasoning about overlaid data struc-
tures: if the Hoare triple {6} P {w} holds then {¢*,, 6} P {y*, G} also holds, where
P is a straight-line code that does not alter fields described by o, and the set of loca-
tions variables in ¢ are not bound to atomic formulas in ¢ or y. The consequences of
this frame rule are that, to reason about a program fragment P, one has to provide only
specifications for the data structures built with fields altered by P.

We prove that checking satisfiability of NOLL formulas is NP-complete and that the
problem of checking entailments between NOLL formulas is co-NP complete. The up-
per bound on the complexity of checking satisfiability/entailment is first proved using
a small model argument, and subsequently, following the approach in [§]. The sec-
ond proof provides also an effective decision procedure for proving the validity of an

Compositional Invariant Checking for Overlaid and Nested Linked Lists 131

entailment @ = y by (1) computing a normal form for the two formulas and (2) check-
ing the existence of a homomorphism from the graph representation of the normal form
of y to the graph representation of the normal form of ¢. The main advantages of this
decision procedure are: (i) by defining a Boolean abstraction for NOLL formulas, the
construction of the normal form is reduced to (un)satisfiability queries to a SAT solver
and (ii) checking the existence of a homomorphism between graph representations of
formulas can be done in polynomial time.
To summarize, this work makes the following contributions:

— defines a fragment of SL, called NOLL, that can be used to perform compositional
reasoning about overlaid and nested linked structures,

— proves that checking satisfiability, resp. entailment, of NOLL formulas is NP-
complete, resp. co-NP complete,

— defines effective procedures for checking satisfiability and entailment of NOLL for-
mulas based on SAT solvers, which are implemented in a prototype tool and proven
to be efficient in practice.

Related Work. SL has been widely used in the literature for the analysis and the veri-
fication of programs with dynamic data structures [[1H8, (12, 13,117, 119].

The NOLL fragment incorporates several existing features of SL: the separating con-
junction * introduced in [12], the separating conjunction *,, introduced in [€]], and the
inductive predicates describing nested linked structures introduced in [[1]]. The set of lo-
cation variables are an abstraction of the sequences defined in [17]. However, [1, 6] use
these features in order to define abstract domains for program analysis. The (partial)
order relation on elements of these abstract domains can be seen as a sound, but not
complete, decision procedure for entailment.

The works in [2, 5, [8] introduce results concerning the decidability/complexity of
the satisfiability/entailment problem in fragments of SL. Berdine et al. [2] defines a
fragment that allows to reason about programs with singly-linked lists and proves that
the satisfiability of a formula can be decided in NP and that checking the validity of
an entailment between two formulas belongs to the co-NP complexity class. A decision
procedure for entailments in the same fragment is introduced in [16], which combines
SL inference rules with a superposition calculus to deal with (in)equalities between
variables. These complexity results were improved in [8] where it is proved that the
satisfiability/entailment problem for the previous fragment can be solved in polynomial
time. In fact, the procedure for checking entailments of NOLL formulas based on nor-
mal forms and graph homomorphism is inspired by the work in [8]. The differences
are that (a) the procedure for computing the normal form of a NOLL formula is based
on a new approach that uses Boolean abstractions (the procedure in [|§] works only for
singly-linked lists and can not be extended to NOLL) and (b) the notion of graph homo-
morphism is extended in order to handle the two versions of the separating conjunction,
the constraints on set of locations variables, and more general recursive predicates.

The (sound) decision procedures for satisfiability/entailment introduced in [|18, [15]
are also based on Boolean abstractions of formulas. As in our case, the Boolean ab-
stractions are used to transform logical validity into simpler decidable problems. How-
ever, they concern different types of logics: algebraic data types specifications for

132 C. Enea, V. Saveluc, and M. Sighireanu

reasoning about functional programs in [18] and a recursive extension of first-order
logic for reasoning about programs manipulating tree data structures in [[15].

Semi-automatic frameworks for reasoning about programs within SL, based on the-
orem provers, have been defined in [7, 4, [13]. In this paper, we target a completely
automatic framework based on decision procedures.

2 Overview

In general, NOLL formulas have the form ITA X A A, where I1 is the pure part, i.e., a
conjunction of equalities and inequalities between program variables expressing alias-
ing constraints, X is the spatial part specifying the data structures and the separation
properties, and A specifies the sharing constraints between the data structures. The ob-
jects building the data structures in the heap are sets of record fields, called simply fields
in the following.

¢ := x # NULL A Hashg(x,y,NULL) * Listg(z,NULL) Aoi(SI type) =B (1)

Hash(in,out,dest) = (in=out)V (Ju,v. in+ {(g,u); (h,v)} * LowList(v,dest))
« Hash(u,out,dest))

LowList(in,out) = (in = out)V (3u.in s {(s,u)} % LowList(u,out)) (3)

List(in,out) = (in=out)V (3u.in v {(f,u)} * List(u,out)) “4)

Fig. 1. NOLL specification of a hash table whose elements are shared with a list

Examples of NOLL Formulas: Fig. [contains a NOLL formula @ describing a list of
lists, using the predicate Hashy(x,y,NULL), such that the elements of the nested lists
are shared with another list, represented by the predicate Listg(z,NULL). This is an ab-
straction of the hash table sharing all its elements with a singly-linked list, presented in
Sec.[Il in the sense that we use a linked list to represent the array structure.

The predicate Hashg(in,out,dest) has a recursive definition, written in a higher-
order extension of NOLL: either in = out, which means that the nested list segment is
empty, or in contains a field 4 pointing to an inner singly-linked list (in — {...; (h,v) } *
LowlList (v,dest)) and also a field g pointing to a new location u (in — {(g,u);...}),
which is the starting point of another nested list segment. Note that the elements of the
lists described by LowList (v,dest) are linked by the field s. In general, we suppose that
variables and fields are typed. Thus, if S| type is the type of the variables used in the
predicate LowList, all the objects in the nested lists are of type Sl type. Moreover, the
use of the object separating conjunction * implies that all the nested lists are disjoint.

The overlapping property is expressed using two features of this logic. The first one
is the field separating conjunction operator *,, which allows to share object locations
but not the locations of fields in these objects. The second feature is the ability to speak
about the set of all object locations in a list segment. This set of locations is given
by the interpretation of the variable that indexes some recursive predicate, e.g., ¢ in
Hashg(...). These variables are constrained in the A part of a formula. For example,
oSl type) = P says that all the locations of type S| type in the list of lists are also
present in the list starting in z (f stands for the set of locations in Listg (z,NULL)).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 133

The operators * and *,, can be nested. This is essential to specify a similar data struc-
ture (considered in [11]) where the elements stored in a hash table are shared between
two disjoint linked lists (using the predicates from Fig. [I):

x 7 NULL A Hash(x,y,NULL) *,, (Listg (z,NULL) * List(u,NULL)) A oi(SI type) = BUY,

where * is used to specify the disjointness of the linked
List lists starting in z and u.

f
¢1: : ™o~ : !
1 4@ Decision Procedure for Entailment: We define a proce-

i List " dure for checking entailments of NOLL formulas, which is
¢2: @’\’@ based on the graph homomorphism approach in [8]. The
basic idea is to think of formulas as graphs, where nodes
represent variables (sets of equal variables) and edges rep-
resent list segments, and then, given @ and @, two for-
mulas, if there exists a homomorphism from ¢, to @; then
@1 = @2 holds. Roughly, the homomorphism is a function
mapping each node of @, to a node of ¢; representing at
least the same set of variables. It is required that this func-
tion defines a mapping from edges of ¢, to disjoint paths
in @;. (Note that the homomorphism is unique.) For exam-
ple, there exists such a homomorphism from @, to ¢; in
Fig. 2l(a), where a snaked edge labeled by List from x to
y denotes a predicate List(x,y), a straight edge labeled by

Fig. 2. f from y to z denotes a points-to constraint y — {(f,z)},
all these constraints are supposed to be separated by *, and
the dotted edges represent the homomorphism.

In order to be complete, this procedure needs that the formulas of an entailment
contain the maximum number of equalities and inequalities; in this case, we say that
the formula is in normal form. Also, if it contains an equality u = v then, it contains
no spatial constraint defining a list segment from u to v (as usual in separation logic,
u =vAList(u,v) is equivalent to u = v). For example, although the entailment @; = @
in Fig. 2I(b) holds, there exists no homomorphism from @, to @;. (Because the field f
is already defined in x, the list segment using this field and starting in x is empty. Thus,
¢ implies x =y, which is needed to show that ¢; = ¢,.)

(@)

Boolean Abstractions of NOLL Formulas: Our first insight in defining such a decision

procedure is that the normal form of a NOLL formula ¢ =ITAXA A can be constructed

through a boolean abstraction of @, denoted F(¢). For the moment, let us consider the

case when A = true. Then, the formula F (@) is defined over a set of boolean variables

denoting (in)equalities between variables and atomic formulas from the spatial part X.
We illustrate the definition of F (@) on the formula:

@ := List(x,y) * List (x,z) *y — {(f,1) } * List (y,s). Q)

The set of boolean variables in F (@) consists of:
— avariable [u = v], for every two variables u and v in @,
— avariable [y, 7, f] to represent the points-to constraint y — {(f,#)}, and
— a variable [List(u,v)], for every spatial constraint List (u,v) in ¢.

134 C. Enea, V. Saveluc, and M. Sighireanu

In this case, the formula F (@) £ F,, A F (), where F,, encodes the reflexivity and the
transitivity of the equality relation, i.e.,

AN le=ul A (=vAV=w]) = [u=w],

u,v,w variables in @

and F(X) models the spatial part of ¢, i.e.,

F(X) &yt f] A A [Listu,v)]@u=v] A /\ F.AB).

List(u,v) atom in @ A,B atoms in £

The sub-formula [y,, f] ensures that the points-to constraint is satisfied by any model
of @; the sub-formula [List(u,v)] @ [u = v] models the fact that in any model of @,
either u = v or List(u,v) describes a non-empty list segment. The sub-formula F (A, B)
contains the in(equalities) implied by the use of *, i.e,

F.(y— {(f,0)},List(u,v)) = —[y=u]V[u=v], forany u,v,
F.(List(u1,v1),List(uz,v7))

A
£ —|[u1 = uz} \Y [ul = vl] \Y [ug = vﬂ, for any uj,vi,uz,va.

In general, the size of F (@) is polynomial in the size of the formula @. Also, @ is
satisfiable iff F(¢) is satisfiable.

Computing the Normal Form: The formula F(¢) can be used to compute the normal
form of ¢ since @ = (u = v) iff F(¢) = [u = V|, for any u and v. Thus, for any valid
entailment F (@) = [u =], the equality u = v is added to @, and all predicates describing
list segments between u and v are removed. For example, the normal form of @ in (@) is
y=sAx=_zAList(x,y) xy+— {(f,7)} (the formula F (@) implies [y = s] and [x = z]).

Handling Sharing Constraints: For NOLL formulas with sharing constraints, com-
puting the normal form before checking the existence of a graph homomorphism is not
enough. Besides (in)equalities, we may have implicit spatial constraints which are not
exposed in some formula. Consider the entailment ¢; = @2, where:

@1 := Listq(x,y) *, LowListg(n,m) A C (6)
@2 := (Listg(x,n) Listy(n,y)) %, LowListg (n,m) Ap' C Uy @)

Note that B C o implies that n is a location on the list segment described by Listy(x,y)
and thus @; = @, holds. In this case, F(¢;) includes constraints over a set of boolean
variables [u € €] representing the fact that u is a location in the set of locations denoted
by €, for any u and € € {0, B} (we defer the reader to Sec. [for more details).

In general, if the formula F(¢) implies [u € €], for some u and &, then the graph rep-
resentation of @ includes some additional edges induced by the fact that « is a location
on the list segment indexed by €. In this case, F (@) = [n € o and the graph representa-
tion of @; completed with these additional edges is the graph G(¢@;) in Fig.Bl Now, it is
easy to see that there exists a homomorphism from G(@2) to G(¢;) (the homomorphism
must satisfy additional constraints explained in Sec.[6.3).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 135

G(91): G(o1):
Listy, C .-
Listq, LS
e
LowListﬁ LowListB
Listy,

Fig. 3. The graph representations G(@;) resp. G(¢;) of the (normal forms of the) formulas in
eq. @HZ). G(@y) is the graph representation of ¢ that includes the implicit spatial constraints.
Dotted edges represent the homomorphism proving that @1 = @.

3 Logic NOLL

The logic NOLL is a multi-sorted fragment of Separation Logic [17]. Let 7 be a set of
sorts (corresponding to record types defined in the program), Fids a set of field names,
and T a typing function mapping each field name into a function type over 7. A field
f € Flds is called recursive iff ©(f) = R— R with R € T and non-recursive, otherwise.
The set of recursive fields is denoted by Flds ..

Syntax: Let LVars and SetVars be two sets of variables, called location variables and
set of locations variables, respectively. We assume that the typing function T associates
a sort, resp. a set of sorts, to every variable in LVars, resp. SetVars. For simplicity, we
assume that LVars contains the constant NULL. The syntax of NOLL is given in Fig. [l

x,¥,y; € LVars location variables 7 € LVars™ tuples of location variables
f,fi € Flds field names o € SetVars set of locations variables
ReT sort P e P list segment predicates
¢ =TIAZAA NOLL formula
I u=1true | x#y|x=y|IIATI pure constraints
Sia=emp | x> {(f1,51)s s (foyi)} | Pu(x,y, Z) | Z+Z | Z#,Z spatial constraints
Au=true|t Ct' |xet|x€t|ANA sharing constraints
t = {x}|a|a(R)|tur set of locations terms

Fig. 4. Syntax of NOLL formulas

An atomic points-to constraint x — {(f1,1);-.-;(fx, %)} is used to specify the val-
ues of fields fi,...,fx in the location denoted by x: the value stored by the field f; is
yi, for all 1 <i < k. The fields shall be pairwise disjoint and the formula shall be well
typed, i.e., for any fi, ©(fi) = t(x) — T(i).

In every list segment constraint Py(x,y, Z), P is a predicate from a fixed, but arbi-
trary, set P. The predicates in P have recursive definitions with the following syntax:

136 C. Enea, V. Saveluc, and M. Sighireanu

P(in,out,rm) £ (in=out)V
(Hu,?.EO(imuUVUlm)*21(?,%) * P(u,outﬂﬂ))
X (in,V) 2= in+— 0, where © C {(f,w) | f € Flds,w €V}
(V1) = emp | Q(v.b, B) | £1 (V) % £y (V' ,uhb) with b, B C nkb, and Q € P

where in,out,u € LVars and 1@,7,? € LVars™. The definition of every P € P is
well typed and satisfies the additional typing constraints t(in) = t(out) = t(u), and
1(in) # 1(v), for every v € V. Moreover, the definitions in P are not mutually recursive.

A predicate P(in, out,zﬁ) defines possibly empty list segments starting from in and
ending in out. The fields of each element in this list segment are defined by ¥ while
the nested lists to which it points to are defined by X;. The parameters rﬂ are used to
define the “boundaries” of the nested list segment described by P, in the sense that ever
location described by P belongs to a path between in and some location in out Unh
(this path may be defined by more than one field). Every element of the list segment
described by P points to several nested lists, each one of them being described by a
predicate Q in P. The use of * in the definition of P implies that the inner list segments
are disjoint. The typing constraints ensure bounded nesting.

For simplicity of the presentation, we have restricted ourselves to such inductive def-
initions, which are not expressive enough to describe doubly-linked lists or nested lists
containing cyclic lists on their inner levels. However, our techniques can be extended to
cover such cases. For example, to describe doubly-linked lists, one must allow further
points-to constraints and use a special type of existential variables representing the next
to last location in a doubly-linked list segment like, e.g., in [1].

For any predicate P, Xo(P), resp. Xi(P), denotes the sub-formula X, resp. X; of
P. Moreover, Fldso(P) denotes the set of fields of in that point to u according to the
formula Xo(P), i.e., f € Fldso(P) iff Zo(P) = in— 0 and (f,u) € 0.

In every spatial constraint Py (x,y, 7), o is a set of locations variable, which is said
to be bounded to or to index the spatial constraint. The constraint A may contain set of
locations variables which are not bounded to some spatial constraint. For simplicity, we
assume that a variable in SetVars appears in X at most once. Also, we consider that all
atomic constraints in A are well typed, i.e., for any r C ¢’ in A, t(¢) C t(¢') and for any
(x €1) in A, t(x) € 1(¢), where T is extended to set of locations terms as usual.

In the following, we denote by LVars(@) (and SetVars()) the set of location variables
(resp. set of locations variables) used in @. Also, atoms(@) denotes the set of atomic
formulas in @. Two atoms in X are object separated, resp. field separated, if their least
common ancestor in the syntactic tree of @ is *, resp. *,,.

Semantics: Let Loc be a multi-sorted set of locations typed by the typing function T,
and let Locg denote the set of locations in Loc of sort R.

A program heap is modeled by a pair C = (S,H), where S : LVars — Loc maps
location variables to locations in Loc and H : Loc x Flds — Loc defines values of fields
for a subset of locations. Intuitively, each allocated object is denoted by a location in Loc
and then, H defines the fields for the allocated objects and S gives for each variable, the
object it points to. The set of locations / for which there exists f s.t. H(I, f) is defined
is called the set of locations in C, and denoted by Loc(C). The component S (resp. H)
of a heap C is denoted by S (resp. H).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 137

(C.J) E 01 Ae iff (C.J) = @1 and (C,J) = 92

(Ch) Ex=y iff S(x) =S(y)

(CJ) Ex—= Uier{(fi,yi) } iff H(S(x),fi) =S(y;) foralli el

(C,J) = Py(x,,7) iff there exists k € N's.t. (C,J) = Pk(x,y,7)

(€,J) =PY(x,y,7) iff S(x) = S(v) and J(ot) = 0

(C,J) = PE (x,y,7) iff S(x) # S(y) and there exists p : {u} UV — Loc and J' s.t.

(C[S+— SUP],J') = Zo(,ulUVUTZ)+Z(V, Z) *Pi(u,y, 7).
img(p)Nimg(S) =0,
J'(0) =J(o)\ ({S(x)}Up(7)). and J'(B) = J(B), for any B # a

(C) EZ +X, iff there exist program heaps C| and C; s.t. C = C| xC,
(C1,J) EZy, and (G, J) E X

(CJ) EZ #w X iff there exist program heaps C; and C, s.t. C = Cy %, C,
(C17J) '= 21, and (C27J) '= 22

(C,))Exer iff S(x) € [r]y

(CJ)yEtct iff [t]; C ')y

Separation operators over program heaps:

C=C'«C" iff Loc(C) = Loc(C")ULoc(C") and Loc(C") N Loc(C") = @,
S =S | Loe(cry and S =S | e

C =C',C" iff dom(HC) = dom(HC) Udom(HC") and dom(HE) Ndom(HC") = @,
S =5 Loe(cry and 5" =S | e

Interpretation of a term ¢, [f]:

{xdls ={$@)}. [ods=J(@), [a(R)]; =J(a)NLocg, [tUr];=I[t];V['];.

Fig. 5. Semantics of NOLL formulas. dom(F') denotes the domain of the function F and SUp
denotes a new mapping K : dom(S) Udom(p) — Loc s.t. K(x) = p(x), Vx € dom(p) and K(y) =
S(y), Yy € dom(S)).

NOLL interpretations are pairs (C,J), where C = (S,H) is a program heap and J :
SetVars — 2L°¢ interprets variables in SetVars to finite subsets of Loc. We assume that
S, H, and J are well-typed w.r.t. T. A NOLL interpretation (C,J) is a model of a formula
@ iff (C,J) = ¢, where |= is defined in Fig.[Blfor its non trivial cases. For simplicity, we
consider the intuitionistic semantics of SL [17]: if a formula is true on a model then it
remains true for any extension of that model with more locations. Our techniques can
be adapted to work also for the non-intuitionistic semantics [10].

Note the difference between the two kinds of separation of heaps: C = C' * C" holds
iff the set of locations in C’ and C” are disjoint while C = C’ x,, C" holds iff the domains
of the H component in C’ and C” are disjoint.

W.lLo.g., we suppose that the sharing constraints in A are in a simplified form ob-
tained as follows. First, inclusion constraints are put in the form o C ¢, where 7 contains
at most two set of locations variables. Second, for any atomic formula ot C ¢ in A such
that o is bound to some spatial constraint Py (x, y, 7), we remove from ¢ (1) all the vari-
ables o such that o and o are bound to object separated spatial constraints and (2) all
the terms of the form {x} such that ¢ contains a points-to constraint x — 6, which is
object separated from the spatial constraint indexed by o.. If # becomes empty then, the
equality x =y is added to .

138 C. Enea, V. Saveluc, and M. Sighireanu

We denote by [@] the set of pairs (C,J) which are models of ¢. The entailment be-
tween two NOLL formulas is denoted by = and it is defined by ¢ = y iff [¢] C [y].

Fragment MOLL: To illustrate some constructions in this paper, we consider the frag-
ment MOLL which does not allow to specify nested lists, but only overlaid multi-
linked lists. Formally, the fragment MOLL contains all the NOLL formulas defined
over a set of predicates P such that, for any P € P, X;(P) = emp, i.e., P is defined

by P(in,out,lﬂ) 2 (in = out) vV (Ju. Zo(in,u Urﬁ) *P(u,out,lm)).

4 A Model-Theoretic Procedure for Checking Entailment

We prove that satisfiability, resp. entailment checking, of NOLL formulas is NP-
complete, resp. co-NP complete. The upper bound for the complexity of satisfiability
is proved using a small model property: if @ € NOLL has a model, then it has also a
model of size polynomial in the size of ¢ and P (the size of P is defined as the size
of all recursive definitions for predicates in). The co-NP upper bound for entailment
checking is obtained by proving a small model property for formulas of the form ¢ #
(a model for this formula corresponds to a counter-example for ¢ =).

4.1 Satisfiability Problem

The NP lower bound of the satisfiability problem for NOLL formulas is given by the
next theorem. The proof is based on a reduction of 3SAT, the satisfiability problem for
CNF formulas with three literals in each clause, to the satisfiability problem for MOLL
formulas. The proof of this result is detailed in [10].

Theorem 1. The satisfiability problem for NOLL (MOLL) is NP-hard.

To prove the small model property for the NP upper bound, we use an abstraction of
the models of NOLL formulas by colored heap graphs. Intuitively, a model (C,J) of
a NOLL formula is represented by a colored graph where each location ¢ from C is
represented by a set of graph nodes V;. V; is a singleton when £ is the interpretation of
a location variable or it is not shared between list segments described in @. Otherwise,
each node in V; represents a subset of fields at location ¢ such that two nodes in V,
represent disjoint sets of fields. All nodes in V; are colored by ¢ and are called sibling
nodes. The abstraction is built such that the sub-graphs corresponding to list segments
defined using different atoms of @ share only nodes which are interpretations of location
variables. Thus, we can collapse in these sub-graphs most of nodes and still obtain a
model of @. The collapsed nodes shall not be colored by the interpretation of a location
variable, i.e., they are anonymous nodes. We show that for any model (C,J), one can
identify a set of anonymous nodes, whose size is polynomial in the size of ¢ and P,
called crucial nodes, such that by collapsing all the non-crucial anonymous nodes one
can still obtain a model of ¢. Formally,

Compositional Invariant Checking for Overlaid and Nested Linked Lists 139

Definition 1 (Colored heap graph). A colored heap graph over LVars, Flds, and
SetVars is a tuple G = (V,E,P,L,S), where (1) V is a finite set of nodes, (2) E :
V X Flds =V is a set of edges, (3) P : LVars(9) — V is a labeling of nodes with
location variables, (4) L : V — Loc is a coloring of nodes with locations, and (5)
S : SetVars — 2V is an interpretation of variables in SetVars to sets of nodes.

Fig.[6l pictures a model of @ in eq. (1) and its colored heap graph abstraction. We denote
the components of a colored heap graph G using superscripts, e.g., the set V in G is
denoted by VC. The semantics of NOLL formulas on colored heap graphs is defined
similarly to the one on NOLL interpretations, except for x and the constraints in A. A
colored heap graph G satisfies a formula @ * @2 iff G can be split into two disjoint
graphs G| and G; such that G| = @1, G2 = @2, and for any two nodes v; € VG and
va € V@2, £O1(v)) # L£L92(vy). Also, for any constraint Py(x,y, 7), S(ct) is interpreted
as the union of L(v), for all nodes v in the unique subgraph defined by P,.

(a) (b)

Fig.6. A program heap satisfying @ in (1) and its colored heap graph. For any 0 < n <9, the
nodes ng and ny in (b) are colored by the location n from (a). Primed variables x',y',7 label
crucial nodes. A small model is obtained by collapsing filled nodes in (b).

Lemma 1. If a NOLL formula ¢ has a model (C,J) then it also has a model (Cs,J;) of
size polynomial in the size of ¢ and P.

Proof. (Idea) The proof builds a small model following the steps given in Fig. [Za
Roughly, we show that anonymous locations from (C,J) can be collapsed until the list
segments are of bounded length. The bounds are determined by the sharing constraints
in @ and the levels of nesting in the definition of the recursive predicates. To collapse
anonymous locations on list segments, we use the colored heap graph abstraction. How-
ever, some distinguished set of crucial anonymous nodes shall not be collapsed because
this will invalidate spatial or sharing constraints in ¢ (an example is shown below). Also,
to preserve the truth value of sharing constraints, if a node is found crucial on some list
segment, then all its sibling nodes are also marked as crucial (this corresponds to the
fact that the small model contains all the fields for that location).

140 C. Enea, V. Saveluc, and M. Sighireanu

The procedure purify removes from (C,J) all the locations not involved in spatial
constraints from . This is possible because the minimal part of C satisfying some
spatial constraint is unique. splitLocations builds the colored heap graph abstraction
of (C',J') by splitting the nodes not labeled by location variables but shared between
several list segments described by predicates in ¢. An example is given in Fig.

I (CJ') = purity(¢)(C.J) e
2: G := splitLocations(C’,J")
. h
3: V' :=crucialNodes(,G) collapse
4: G’ :=labelCrucial(G,V') i
5: G := collapseAnonymous(G') s
6: (Cs,Js) := mergeNodes(G") @ NULL
(a) Steps for computing a small model (b) Example of collapsing

Fig.7. Computing a small model for NOLL formulas

crucialNodes computes the set of crucial nodes V' as the closure under the sibling
relation of the set of (anonymous) nodes in G which are either (1) the successor of a
labeled node by a non recursive field (e.g., node 2, in Fig. [6)), or (2) the source or the
target of a non recursive field on a fixed path between two nodes labeled by location
variables (e.g., node 8 in Fig.[6). Because the nesting of recursive predicates is bounded,
the size of the set V' is bounded by a polynomial in the size of @ and P (the number of
variables, the nesting depth, and the size of Flds). The crucial nodes are labeled with a
set of additional location variables LVars' in labelCrucial.

Afterwards, the anonymous nodes (not labeled by variables in LVars(@)U LVars’) are
collapsed by collapseAnonymous in a bottom up manner, i.e., starting from the inner list
segments to the upper ones. Roughly, the collapsing removes a node (and the sub-graph
representing the nested, anonymous structure) if it is between two recursive fields (see
Fig.[7D). Intuitively, this process preserves a model of ¢ because no edges are added and
the nodes marked as important for the satisfaction of the spatial and sharing constraints
are kept. Due to the special syntax of predicates in P, we can compute for each list
segment the minimal number of anonymous nodes that must be preserved in order to
satisfy some given spatial constraint. This number depends only on the size of P and
it is obtained when all the spatial constraints in the predicate definition are interpreted
as list segments of length one. Thus, we obtain a colored heap graph G” where all
labeled nodes are preserved and with them some sub-graphs with a bounded number of
anonymous nodes. Finally, from G”, a (small) model (Cy,J;) of @ is built, by applying
mergeNodes, which roughly merges sibling nodes in locations. (I

Since the complexity of the model-checking problem for NOLL formulas is polynomial,
the following result holds.

Theorem 2. The satisfiability problem for NOLL is NP-complete.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 141

4.2 Entailment Problem

The colored heap graph abstraction is also used to prove a small counter-example prop-
erty for entailments ¢ =\ when ¢ and y are in NOLL. The proof is similar to the proof
of Lemma [I] with two main differences. Let (C,J) be a counter-example for ¢ = .
First, in purify, the locations not used in ¢ are removed from (C,J) except for locations
that are witnesses for some unsatisfied sharing constraint in . It is enough to keep one
location per sharing constraint in W and thus, their number is bounded by the size of
. We label these locations with variables from some set LVars”. Second, crucialNodes
marks some additional nodes as crucial, in order to keep track if two list segments are
sharing at least one location and in order to distinguish between list segments of size 1
and list segments of size at least 2. However, this process adds at most one more node
per constraint, and thus the bound on the number of nodes is increased by a linear term
in the size of ¢ and y. This property and the NP-completeness of satisfiability imply:

Theorem 3. Checking the validity of an entailment between two NOLL formulas is co-
NP complete.

5 Computing the Normal Form

This section makes a first step towards the effective procedure for checking entailments
of NOLL formulas by presenting the procedure for computing the normal form of a
NOLL formula. We say that a NOLL formula is in normal form if it contains the max-
imum set of equalities and disequalities between location variables and the minimum
set of list segment constraints. Formally,

Definition 2 (Normal form). A NOLL formula ¢ =1 ANZ A A is in normal form iff:

— for any x,y € LVars(9), if 9 = x =y, resp. ¢ = x # y, then I1 contains the atom
X =y, resp. x #y, and
— for any atomic formula Py(x,y, ?) in X, there exists a model (C,J) of ¢ such that

S (x) # 5(y).
The normal form of @ is a formula ¢' in normal form and equivalent to @.

We now describe the main ideas behind the procedure that computes the normal form
and to this, we must define the class of reduced, explicit NOLL formulas.

A NOLL formula is called explicit if it contains x = y or x # y, for any constraint
Py(x,y, Z) in ¢, and x € o or x € o, for any x and o in @. Then, an explicit formula y
is called reduced if it does not contain both the atoms x = y and Py (x,y, 7).

Any NOLL formula ¢ is equivalent to a disjunction of reduced, explicit formulas
Y1 V...V, The formulas y; are obtained from ¢ by (1) adding in all possible ways
atomsx =y, x #y, x € o, and x € o until the obtained formula is explicit and then, (2) if
a formula contains x = y, by removing atoms Py (x,y, 7) together with all occurrences
of o in the sharing constraints (e.g., every atom x € o, or B C o, where B indexes a
constraint Qg (u, v, W) and u # v belongs to the formula, is replaced by false).

The equivalent formula y; V...V, can be used to compute the normal form of ¢
as follows. An atom x =y or x # y is implied by @ iff this atom is included in all the

142 C. Enea, V. Saveluc, and M. Sighireanu

satisfiable formulas ;. Also, for any P(x,y, 7) in @, there exists a model (C,J) of ¢
s.t. S€(x) # S€(y) iff this atom is included in some satisfiable ;.

In general, the number of satisfiable formulas in the disjunction y; V...V y, may be
exponential w.r.t. the size of ¢. However, all these formulas can be represented symbol-
ically as the satisfying assignments of a boolean formula, denoted by F ().

In order to simplify the presentation, we give below the construction of F(¢) only
for MOLL formulas where variables are of the same type; [[1Q] gives the general case.
F (o) is defined over the set of boolean variables BVars(F(¢)) defined in Tab.[1l

Table 1. Definition of the set BVars(F(¢)) of boolean variables used in F (@)

[x=y] forevery x,y € LVars(¢)

[x,y,f] forevery atom x — 6 of ¢ with (f,y) €6
[Po(x,y, Z)] forevery atom Py(x,y, Z7) of ¢

[x€a] forevery x € LVars(@) and o € SetVars(¢)

Given a satisfying assignment G : BVars(F(¢)) — {0,1} for F(@) such that
o([x,y,f]) = 1, for any [x,y, f] € BVars(F(9)), we define the MOLL formula ys to
be ¢ to which the following transformations are applied:

- if o([x =y]) is O, resp. 1, then g includes the pure constraint x # y, resp. x =y,
— if 6([Py(x,y, Z)]) = O then Py(x,y, 7) and o, are removed from ¢,
- ifo([x € a]) is 0, resp. 1, then x & o, resp. x € a, is added to Y.

Let =TIAXAAbe a MOLL formula. The formula F () is defined by:
F((p):F(H)/\Feq/\F(Z)/\Fdet/\F(A)/\FEa 3

where F(IT), F(X), and F(A) encode the semantics of the atomic formulas of @, Fe,
encodes the reflexivity and the transitivity of the equality relation in I, Fy., encodes
the semantics of the field separating conjunction, and F¢ encodes the properties of the
membership relation €. These sub-formulas are defined inductively on the syntax of
MOLL formulas. Most of them are not difficult to follow. We provide here some intu-
ition for the most interesting ones.

In F(X), an atom Py (x,y, 7) is translated into F (Py(x,y, 7)) = [Pa(x,y, 7)] & [x =
y], where @ is the exclusive or. This expresses the fact that the atom is kept in a reduced,
explicit MOLL formula only if its endpoints are not equal.

The separation of fields (defined for locations which are interpretations of location
variables) induced by the use of the field separating conjunction is expressed in the
formula Fy,, in Fig. [l Thus, Fy,, states that for any location variable x and any field
f € Flds, at most one of the following conditions is true:

1. the reduced, explicit formula contains the equality x = x’ and a points-to constraint
X'+ 0 such that (f,y) € 0, for some y,

2. the reduced, explicit formula contains the atoms x € o and P (X', y, 7) (therefore
it also includes x’ # y), for some y and Z, such that f € Fldsy (Pa)-

Compositional Invariant Checking for Overlaid and Nested Linked Lists 143

Fer = /\ for any [x1,y1, f], [x2,¥2, f] € BVars(F (o)) different variables

i =x2] Alxry fl = =y, f])
/\ for any [x1,y1, f], [Pa(x2,Y2,23)] € BVars(F(@)) s.t. f € Fldso(P) and x € LVars(¢)
e =x]Alx € a Ay, f] = —[Pa(x2,y2,73)] (10)

/\ for any [Po(x1,y1,21)], [0p(x2,¥2, 23)] € BVars(F(9)) different variables
s.t. Fldso(P) N Fldsy(Q) # 0 and x,x’ € LVars(¢)
ke o] Al €BIA[x=X]A[Pa(x,y1,2])] = —[0p(x2.y2,23)] (an

Fig. 8. Definition of Fy,, fora MOLL formula @ =IIAZAA

Fig.Dlgives the main definitions of F (A). For instance, F (0 C o) in eq. (I4) expresses
the fact that if there exists some variable x such that x € o is true then x € o also holds.
In eq. (T3), Fc encodes the closure of € under the equality, the fact that if a boolean
variable [x| € o is true then the list segment bound to o in @, if any, is not empty, and
if o0 is bound to a non-empty list segment Py (x, y,?) in @, then o contains the first
element of the segment, i.e., x.

F(x€oy) = [x€ 0] (12)
F(xe U {u;}) = \/ [x = u;] (13)
1<i<n 1<i<n
Floy Cap) = /\ [x€o]=[x€ (14)
xeLVars(@)
Fe = /\ (u=vAluea])=[veq] (15)
wy,oin @
A A (eo=[Pa(x,y, D)) A ([Palxy, D))= [xea)

xl*,PCL(‘X!y‘,?) ing

Fig. 9. Main definitions of F(A) and F¢ for a MOLL formula ¢ =TIAXZAA

Proposition 1. The size of F(Q) is polynomial in the size of @.

Proposition 2. Let ¢ be a NOLL formula. For any satisfying assignment 6 of F(0), Ws
is an explicit, reduced, and satisfiable formula. Also, ¢ is equivalent to the disjunction
of W, for all satisfying assignments G of F (o).

Theorem 4. The problem of computing the normal form of a formula ¢ is in co-NP.

Proof. To compute the maximum set of (in)equalities that should be included in the
normal form of @, we iterate over every pair of location variables x, y in ¢ and check if
F(@)= [x=y] or F(9) = —[x =y] is valid. In the first (resp., second) case, x = y (resp.,
x # y) is included in the normal form. When some equality x = y is added to the normal
form, the atoms Py (x,Y, 7) in @ are removed, and all occurrences of o are interpreted
as the empty set. Since we need to perform a polynomial number of Boolean formula
validity tests, the overall complexity of this procedure is co-NP time.]

144 C. Enea, V. Saveluc, and M. Sighireanu

6 An Effective Procedure for Checking Entailment

The procedure for checking the validity of the entailments ¢ = y be-
tween two NOLL formulas is detailed in Fig. It has three main steps:
(a) compute (lines 1-2) the nor-
mal form of ¢ and y, denoted by
¢’ and \, respectively, (b) com-
pute (line 3) additional spatial
constraints, which are implied
by @, and (c) check (lines 3-6) if
the graph representation of ' is
homomorphic to the graph rep-
resentation of both ¢/ and the
additional constraints computed
Fig. 10. in the previous step.

In the following, we first de-
scribe the step (b) above, then we define graph representations for NOLL formulas,
called (complete) NOLL graphs, and finally, we define the notion of homomorphism
between NOLL graphs. Moreover, we assume that ¢ and \ are satisfiable. Otherwise,
Proposition2]implies that a formula @ is satisfiable iff F (@) is satisfiable, which allows
to decide in co-NP time entailments of the form ¢ = y when @ or y is unsatisfiable.

procedure CheckEntl (¢ = V)
: ¢/ := the normal form of @
' := the normal form of y
G := the complete NOLL graph of ¢
G, := the NOLL graph of y/
h:=the function h:V(G;) —=V(G;) s.t.
varsg, (n) C varsg, (h(n)), Yn € V(G3)
6: return (h is total) and
(h is a homomorphism)

ARl S

6.1 Inferring Additional Spatial Constraints

In order to give an intuition about the additional spatial constraints deduced from ¢,
recall the entailment @; = @, where ¢ and ¢, are defined in eq. (@7) at page 134
The entailment holds because the list segments linking x to n and n to y, and described
by Lists(x,n) * Listy(n,y), exist in every model of ¢;. To obtain a complete decision
procedure for entailment, such constraints must be made explicit before checking the
existence of a homomorphism between the two formulas viewed as graphs.

Observe that ¢; does not imply @y *,, (Lists(x,n) * Listy(n,y)) but, @1 A (Lists(x,n) *
Listy(n, y)) . Thus, these implicit constraints will be added only to the graph representa-
tion of NOLL formulas and not to the formula itself, as explained in Sec.

For simplicity, we give the definition only for MOLL formulas ¢. Let £ be a set of
atoms in @ of the form Qg (u,, W). For any such &, P(£) denotes the set of recursive
predicates in &, SerVars(&) denotes the set of variables B € SerVars bounded to atoms in
€, and #; is the term defined as the union of all variables in SerVars(§).

An atom Py (x,y, 7) is called implicit in & iff one of the following holds:

— & consists of one atom Pﬁ(u,v, 7) the source of P, is the same as the source of P,
i.e., @ = x = u, and the destination of Py is included in the list segment defined by
Py, ie,p=ycp;

- (1) 9= x €1, (2) 1 is aminimal term 7 such that ¢ = x €1, i.e., for every other term
#', which is the union of the variables from a strict subset of SerVars(§), ¢ A& x € ¢/,
(3) Fldsg (P) = ﬂQELP(&) FldS()(Q), and (4) ¢ = /\Qﬁ(u,v,?)eéy =V

Similarly, an atom x — {(f,y)} is called implicit in & iff the conditions (1) and (2)
above hold, (3') an atom u — 0; with (f,d;) € 0; is included in the definition of Q, for
allQ € P(&),and (4") ¢ = Ni<i<ny = d;.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 145

For example, for & = {Listy(x,y)} a set of atoms in ¢; from eq. (@), the atom
Listg(x,n) is implicit in & because C o in @ implies that n € o and the equality
x = x is trivially implied by @;. Also, the atom Listy(n,y) is implicit in § because the
conditions (1-4) above hold.

By definition, the Boolean abstraction F(¢) defined in Sec.[5lcan be used to check
that ¢ implies the equalities and the sharing constraints in the above conditions. The
conditions (3) and (3') can be checked syntactically. Thus, the computation of the im-
plicit spatial constraints for a formula is co-NP complete.

6.2 NOLL Graphs

We define NOLL graphs, a graph representation for NOLL formulas. Roughly, the nodes
of these graphs represent sets of equal location variables and the edges represent spatial
or difference constraints. The object separated spatial constraints are represented by a
binary relation 2, over edges while the sharing constraints are kept unchanged.

Definition 3 (NOLL graph). Given a NOLL formula @ =TI ANZ A A over a set of pred-
icates ‘P, the NOLL graph of ¢, denoted G(@), is a tuple (V,Ep,Eg,Ep,,Q.,A) or the
error graph L, where:

— eachnode in'V denotes an equivalence class over elements of LVars w.r.t. the equal-
ity relation defined in T1; the equivalence class of x is denoted by [x]. If 1 contains
both x # y and x =y then G is the error graph 1 ;

— Ep CV X Flds X V represents the points-to constraints: ([x], f,[y]) € Ep iff x+— 0
with (f,y) € 0 is an atomic formula in X;

— ER CV X Px VT XV represents list segment constraints: (|x], Py, [Z],[y]) € Er iff
Po(x,y, ?) is an atomic formula in X;

— Ep CV XV represents inequalities: ([x],[y]) € Ep iff x # y is an atom in T1;

— 0 :LVars—V, called variable labeling, it is defined by {(x) = [x], for any x € LVars;

— Q, contains all pairs of edges in Ep U Eg denoting object separated atoms in X.

In the following, V(G), denotes the set of nodes in the NOLL graph G. We use a sim-
ilar notation for all the other components of G. Also, for any n € V(G), varsg(n) de-
notes the set of all the variables labeling the node n in G. The graph G(,) in Fig.[3]
represents the NOLL graph of @, where V = {x,y,n,m}, Ep = Ep = 0, Eg contains
the three edges corresponding to the three list segments, {2, contains only one pair
<([x]vLiStOh [n])v ([n]aLiStﬁ’a [y]»’ and A is B/ - BUY
A graph representation for ¢ which includes an edge for each implicit spatial con-
straint of ¢ is called a complete NOLL graph. This representation has an additional
attribute A, which identifies the set of atoms where a spatial constraint is implicit in.
Definition 4 (complete NOLL graph). Given a NOLL formula @ =TIIAZAA, the com-
plete NOLL graph of ¢, denoted by G() is a tuple (G,A) where:
— G is a NOLL graph where all components except Eg, Ep, Q., and A are equal to
the components of G(@);
— ER(G) (resp. Ep(G)) includes Er(G(Q)) (resp. Ep(G(9))) and, for any atom
Pa(x,y,?) (resp. x — {(f,y)}) which is implicit in some set of atoms &, e =
([¥], Pas [Z], 1) € Er(G) (resp. e = ([¥]. £, [¥]) € Er(G));

146 C. Enea, V. Saveluc, and M. Sighireanu

- Q.(G) consists of Q.(G(9)) plus all pairs (e,€') s.t. e represents an implicit con-
straint in & and (€' e") € Q.(G) for some " representing an atom in &;

— A C (EpUER) x 2Er represents the relation between edges and the sets of list seg-
ments where they are implicit in, i.e., for every Pa(x,y,?) (resp. x — {(f,y)})
implicit in & (([x],Pu,[Z], V]),Ee) € A (resp. (([x], f,[¥]),Ee) € A), where E is
the set of edges representing the atoms in &;

— if P, (x,y, Z) and Py, (y,t,) are implicit in & = {Pq(x,t, 7))} then, ot = oy U0
is added to A.

The graph in the middle of Fig. 3] represents the complete NOLL graph of @1, G(¢1),
where V = {x,y,n,m}, Ep = Ep = Q, = 0, and Ep contains the four edges: two edges
represent the spatial constraints in ¢, and the edges ([x], Listy, , [n]) and ([n], Listy, , [m])
represent implicit constraints in & = {Listo(x,y)}. Ais B C oAo= oy Uop and A is the

relation { (([x], Lista, ,[1]),§), (([n], Lista, ,[m]),€)}.
6.3 NOLL Graph Homomorphism

Given a NOLL graph G| and a complete NOLL graph G», a homomorphism from G to
G, is a mapping i : V(Gy) — V(G»), which:

1. preserves the labeling with location variables, i.e., varsg, (n) C varsg, (h(n)), for
any n € V(Gy),
2. maps each difference, resp., points-to, edge of G to a difference, resp., points-to,
edge of Gy, (e.g., for any (n, f,n’') € Ep(G), (h(n),f,h(n')) € Ep(G2)),
3. maps each edge representing a list segment in G; to a path in G, formed of edges
in Ep(G2) UER(G?2), and
4. satisfies the constraints required by the semantics of the separating conjunctions,
the special status of the implicit spatial constraints, and the sharing constraints.
To explain the mapping of edges in Eg(Gy) to paths of Gy, let us consider the case of
an edge (n, Py, m, p) € Er(G1), where n,m,p € V(G) and P is a MOLL predicate, i.e.,
P(in,out,b) = (in = out) V (3u. Zo(in,uUb) * P(u,out,b)). The definition of & requires
that there exists a sequence of nodes T =7 ... T, k > 1,in Gy s.t. 1y = h(n), T, = h(p),
and for every two consecutive nodes 7; and 1, either

— Ep(G>) contains some set of edges between T;, 11, and k(m), which prove that
o (X, Xit1 Uxh(m>) holds, where x;, x;11, and Xp(m) are some variables labeling m;,
Ti+1, and h(m), respectively, or

— there exists an edge (Tcl,P 7 miy1) in Eg(Ga), representing a stronger predicate
than Py, i.e., h(m) € 7 and PB(xl,le,?) = Po(Xi, Xi+1,Xp(m))» Where xi, Xit1,
and xj,,) are as above, and 7 is a set of variables labeling 7 8.t Xp(m) € 7 (this is

possible because h(m) € 7) The entailment between recursive pred1cates can be
checked syntactically in polynomial time.

In the following, we explain the constraints required by the 4" item in the definition
of the homomorphism. For any edge ¢ in Ep(G1)UEg(G1), we define a set used(e) C
Ep(Gy)U 2(Er(G2)xFlds) wwhich represents all the edges/fields used in the path from G
to which e is mapped by h. If e € Ep(G)) then used(e) = {¢’}, where €’ is the edge of

Compositional Invariant Checking for Overlaid and Nested Linked Lists 147

G to which e is mapped by 4. If e € Er(G)) represents a list segment Py, then, used (e)
consists of (1) the set of points-to edges in the path associated to e and (2) the set of
pairs (¢, f), where ¢’ represents a list segment Qp from the same path, if such an edge
exists, and f € Fldsy(P) N Fldso(Q). When the path associated to e € Egr(G1) labeled
by Py (resp. e € Ep(G)) labeled by f) contains an edge ¢’ representing a constraint
implicit in some &, i.e., (¢/,Ez) € A(G2), then used(e) includes all pairs (¢, f) with
¢ € E¢ labeled by Qg € &, and f € Fldso(P) N Fldso(Q) (resp. f € Fldso(Q)).

Then, to express the semantics of #,,, we require that used(e;) Nused(ez) = 0, for
any two edges e; and e; in Ep(G) UER(G1). Concerning , it is required that for any
two edges e; and e; in Ep(G1) UER(G1) s.t. (e1,e2) € Q,(G1), we have that (e],e5) €
Q.(G,), for any €| an edge appearing in used(e;) and ¢}, an edge appearing in used(e>).

Finally, for the sharing constraints, the mapping by & of edges in Er(G)) to paths
in G defines a substitution T for set of locations variables in A(G}) to terms over set
of locations variables in A(G>). For example, the homomorphism in Fig. 3 defines the
substitution I'(8) = oy, I'(y) = o2, and T'(B’) = B. Then, it is required that A(G2) =
A(G1)[I]. Such a formula belongs for instance, to the fragment of BAPA [14], and thus
its validity can be decided in NP-time. For the example in Fig. 3l we obtain the trivial
entailment BC aAna=0a; U0, = BC o Uds.

6.4 Checking Entailments of NOLL Formulas

The following theorem states the correctness and the complexity of the procedure
CheckEntl given in Fig.[IQ} the proof is given in [10].

Theorem 5. Given two NOLL formulas ¢ and \y, ¢ = holds iff CheckEnt1(¢@ = y)
returns true. Moreover, the complexity of CheckEntl is co-NP time.

7 Experimental Results

We have implemented the procedure for entailment checking in a solver which takes as
input the specification of predicates in P and two formulas @,y € NOLL defined over
P and returns as result either the homomorphism found when ¢ = y or a diagnosis
explaining why the entailment is not valid. The diagnosis is given as a list of variables
or atomic spatial constraints in ¢ and y for which the conditions for the homomorphism
are not satisfied. The solver is implemented in C. It uses MiniSat [9] to compute normal
forms and an ad-hoc solver for the sharing constraints.

We have used this solver to check verification conditions generated for procedures
working on singly linked lists, doubly linked lists, and overlaid hash tables and lists in
the Nagios network monitoring example. We have considered mainly the procedures for
inserting or moving elements in these data structures. The post-condition computation
follows the standard approach: introducing primed variables to denote old values and
unfolding recursive predicates for statements that involve fields. To generate simpler
verification conditions, we use the frame rules for the separating conjunction operators.
In this way, the graph representations for the NOLL formulas have less than ten ver-
tices and twenty edges (including the inferred edges), and less than five set of locations
variables. Each verification condition is decided in less than 0.1 seconds.

148

C. Enea, V. Saveluc, and M. Sighireanu

References

10.

12.

13.

. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape

Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178-192. Springer, Heidelberg (2007)

Berdine, J., Calcagno, C., O’Hearn, P.W.: A Decidable Fragment of Separation Logic. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97-109. Springer,
Heidelberg (2004)

. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion Check-

ing with Separation Logic. In: de Boer, E.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2005. LNCS, vol. 4111, pp. 115-137. Springer, Heidelberg (2006)

Bobot, F., Fillidtre, J.-C.: Separation Predicates: A Taste of Separation Logic in First-
Order Logic. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 167-181.
Springer, Heidelberg (2012)

Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 108-119. Springer, Heidelberg (2001)

. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247-260. ACM

(2008)
Chlipala, A.: Mostly-automated verification of low-level programs in computational separa-
tion logic. In: PLDI, pp. 234-245. ACM (2011)

. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable Reasoning in a

Fragment of Separation Logic. In: Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 235-249. Springer, Heidelberg (2011)

Eén, N., Sorensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)

Enea, C., Saveluc, V., Sighireanu, M.: Composite invariant checking for nested, overlaid
linked lists (2012), Extended version available as HAL-00768389 report

. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data representation synthesis.

In: PLDI, pp. 38-49. ACM (2011)

Ishtiaq, S., O’Hear, P.W.: Bl as an assertion language for mutable data structures. In: POPL,
pp. 14-26. ACM (2001)

Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304-311. Springer, Heidelberg (2010)

. Kuncak, V., Nguyen, H.H., Rinard, M.: An Algorithm for Deciding BAPA: Boolean Al-

gebra with Presburger Arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, pp. 260-277. Springer, Heidelberg (2005)

. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-structures.

In: POPL, pp. 123-136. ACM (2012)

. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus = heap the-

orem prover. In: PLDI, pp. 556-566. ACM (2011)

. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp.

55-74. IEEE Computer Society (2002)

. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstrac-

tions. In: POPL, pp. 199-210. ACM (2010)

. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-

able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385-398. Springer, Heidelberg (2008)

A Discipline for Program Verification
Based on Backpointers and Its Use
in Observational Disjointness

Ioannis T. Kassios* and Eleftherios Kritikos?

! ETH Zurich, Switzerland
ioannis.kassios@inf.ethz.ch
2 National Technical University of Athens, Greece
eleftherios.kritikos@gmail.com

Abstract. In the verification of programs that manipulate the heap,
logics that emphasize localized reasoning, such as separation logic, are
being used extensively. In such logics, state conditions may only refer to
parts of the heap that are reachable from the stack. However, the cor-
rect implementation of some data structures is based on state conditions
that depend on unreachable locations. For example, reference counting
depends on the invariant that “the number of nodes pointing to a certain
node is equal to its reference counter”. Such conditions are cumbersome
or even impossible to formalize in existing variants of separation logic.

In the first part of this paper, we develop a minimal programming
discipline that enables the programmer to soundly express backpointer
conditions, i.e., state conditions that involve heap objects that point to
the reachable part of the heap, such as the above-mentioned reference
counting invariant.

In the second part, we demonstrate the expressiveness of our method-
ology by verifying the implementation of concurrent copy-on-write lists
(CCoWL). CCoWL is a data structure with observational disjointness,
i.e., its specification pretends that different lists depend on disjoint parts
of the heap, so that separation logic reasoning is made easy, while its im-
plementation uses sharing to maximize performance. The CCoWL case
study is a very challenging problem, to which we are not aware of any
other solution.

1 Introduction

The advent of separation logic |1] has revolutionized reasoning about programs
with rich heap structure. The main motivation behind this line of work is local-
ized reasoning (also referred to as “reasoning in the small”). In particular, the
specifier is only allowed to talk about the locations of the heap s/he has explicit
permission to, completely ignoring the rest of the heap. In separation logic, a
state condition contains its own permissions. For example, x — 3 is a condition

* The first author was funded by the Hasler Foundation.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 149-[[68] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

150 I.T. Kassios and E. Kritikos

that not only expresses the fact that 3 is the content of memory location z, but
also that the programmer is permitted to read and write to x.

State conditions that contain their own permissions are called self-framing
[244]. A self-framing assertion has the important property that it cannot be
falsified by an unknown program. As a result, the localized verification of our
program cannot be falsified when this program is composed (sequentially, paral-
lelly, through method call, or through thread forking) with other programs. In
concurrent variants of separation logic, permissions can be split [3] (e.g., in frac-
tions [6]), thus enabling shared resources without data races. These well-known
extensions of separation logic, maintain this important property: all expressible
state conditions are self-framing.

Self-framing conditions cannot talk about objects that are unreachable by the
pointers of the program under verification. However, there are cases when such
conditions would be desirable.

For example, assume that we have a concurrent program operating on a graph.
Normally, none of its threads has access to the whole graph, because that would
mean that only one thread can perform changes, which defeats the purpose of
concurrency. Consider now the following examples of node invariants:

— Reference counting. The value of the reference counter of a node N is equal
to the number of nodes N’ such that N'.f = N.

— Priority Inheritance Protocol [T]. The priority of a node is the minimum of
its initial priority and the priority of the node pointing to it (see also [g]).

— The union-find structure. In this structure each node represents a set of
nodes. The set represented by a node N is { N} unioned with the sets rep-
resented by all nodes that point to V.

Assume that a thread T has access to a node N. The invariant of N involves
nodes that are unreachable from N, and therefore inaccessible to T'. This makes
the invariant of N non-self-framing, and therefore inexpressible in existing vari-
ants of separation logic.

All the examples of node invariants that we mentioned are conditions which
may involve unreachable heap objects that point to reachable heap objects. We
call such conditions backpointer conditions. Our purpose is to enable the “rea-
soning in the small” style of separation logic, in verification problems that involve
backpointer conditions.

1.1 Contributions

In this paper, we propose an extension of separation logic with a minimal pro-
gramming discipline that makes it possible to express backpointer conditions in
a self-framing way. Our methodology enables the verification, in the localized
style of separation logic, of data structures with backpointer node invariants.
Furthermore, we use our technique to verify the case study of concurrent copy-
on-write lists (hence CCoWL). This is a challenging problem of observational
disjointness: the structure pretends that it supports mutually disjoint mutable

Backpointers and Observational Disjointness 151

sequences of integers, even though it uses data sharing under the hood, to en-
hance performance. The clients are happy to use the facilities of separation logic
to verify their programs as if the lists were actually heap-disjoint, but the verifier
of the implementation is faced with a challenging reference counting mechanism.
We are not aware of other solutions to the CCoWL verification problem.

1.2 Structure of the Paper

The paper is organized as follows: In Sect. Bl we motivate and introduce the
discipline of backpointers. In Sect. Bl we show how the discipline can be used to
verify CCoWLs, highlighting the most important parts of the implementation
and the correctness proof. In Sect. [l we discuss the relationship of our method-
ology to related work and point out some possibilities for future work. Sect.
concludes.

Our online technical report [9] contains an appendix with the full specification,
implementation and correctness proof of the CCoWL example.

2 The Backpointers Discipline

In this section, we introduce the discipline of backpointers. We start by intro-
ducing the background (Sect. B-I)) on which we work, a framework for locking,
monitor invariants, and deadlock avoidance borrowed from Chalice [10]. We then
extend our language with the backpointer formalism (Sect. [Z2) and provide an
argument about the soundness of this extension (Sect. Z3]).

2.1 Background

Records and Locking. Our language supports mutable records. A monitor is
associated with each record and a monitor invariant is also associated with each
monitor. The monitor invariant is an expression written in separation logic with
fractional permissions.

Consider the following definition:

struct Pair

{

x,y:int
invariant 3X,Y €Z- this.x—=X * this.y25Y A X>0

}

The definition introduces a set Pair. The members of Pair are: (a) the special
record null and (b) records r such that r.x and r.y are heap locations that
store integers.

152 I.T. Kassios and E. Kritikos

Assume that this is a non-null record of type Pair. The monitor invariant
associated with this asserts that this.x stores a positive value. It also grants
write (full) access permission to this.x and 50% permission to this.y. In
general, when we write monitor invariants, this refers to the current record and
may be omitted when referring to its fields.

We are interested in thread-modular verification. From the point of view of
the current thread, a record can be in one of the following three conditions: (a)
local, (b) shared and not held by the current thread, (c) shared and held by the
current thread. Fig. [Il shows all these conditions, together with the commands
that perform the transitions between them.

release r1;

/\

shared
held by T

shared

r = mew R — local share r; not held by T

-~

acquire r;

Fig. 1. A record’s life cycle from the point of view of thread T

The invariant of a monitor is always true when the associated record is shared
but not held by any thread. To hold a record, a thread must acquire it. As long
as it holds the record, the thread may invalidate the monitor invariant but must
ensure that the invariant holds before it releases the record. Similarly, a thread
that shares a record must first ensure that the associated invariant holds.

Sharing and releasing means that the current thread loses all permissions
that are contained in the invariant. Acquiring means that the thread gains these
permissions and that it may furthermore assume that the invariant holds imme-
diately after the record is acquired.

The Chalice locking model has a simple mechanism to prevent cyclic depen-
dencies between “acquire” requests, and thus to prevent deadlock [10]. Assume
that Ord is a set equipped with a strict partial ordering = . We furthermore as-
sume that C is dense in the sense that if a C b then there exists ceOrd such that
a C cC b. Every shared record is associated with a value in Ord called its lock-
level. A thread is allowed to acquire a record, only when that record is greater
in C than all the other records that the thread holds.

The rules that govern record creation, sharing, releasing and acquiring are
shown in Fig. 2 In it:

— local and shared are abstract predicates that indicate that a record is
local or shared resp. The second argument of shared equals the lock-level
of the record.

— Both predicates imply that their first argument, the record, is non-null:

shared(r,) V local(r) = r#null

Backpointers and Observational Disjointness 153

— shared is infinitely divisible, i.e.,

shared (r,u) <= shared(r,pu) * shared(r,p)

This means that, unlike in Chalice, the lock-level of an object is immutable.
— Each shared record has a single lock-level:

shared (r,u) * shared(r,u') = pu='

— If r, 7’ are records, the notation r C 7’ is a shorthand for:

Ju,p'€ Ord- shared(r,u) * shared (s’ ,p') * pCy

We extend this notation to “compare” a record r to a set of records:

RCcr < VYr'eR-7Cr

Note that RCr = r¢R

— Inv(r) is the monitor invariant of record r

— held is a thread-local variable whose value is the set of all records held by
the current thread

— newRec is an abstract predicate describing the situation directly after a new
record is created. It gives access to all fields f; of the new record r, initializes
them to the default value of their type and asserts that r is local:

newRec(r) <= r.fi—sdi x ... % r.fa—d, * local(r)

The default value of all record types is null

The share command can specify bounds for the lock-level of the record being
shared. We omit the rules for these variants of share for brevity.

Counting Permissions. Counting permissions are an important alternative to
fractional permissions. The idea is as follows. A counting permission is a natural
number n, or —1. At any given execution time, there is one thread that holds a
non-negative counting permission n to a heap location and n threads that hold
a —1 counting permission. We call the holder of counting permission n the main
thread for that heap location.

The main thread can give away —1 counting permissions, increasing its own
counting permission accordingly. The holders of —1 counting permissions may
return their counting permission to the main thread, decreasing its counting
permission accordingly. If n = 0, then the main thread is the only thread that
can access the location and thus has write privileges. Otherwise, all involved
threads have read-only access.

We do not need to invent new notation for counting permissions. Instead, we
introduce an infinitesimal fractional permission € to stand for the —1 counting
permission. Then the counting permission n corresponds to fractional permission
1 — ne. This approach is taken in the current Chalice permission model [11].

154 I.T. Kassios and E. Kritikos

{emp}

r-=new R

{newRec(r)}

{Iocal(r) x Inv(r) x held—O A r§ZO}
share r

{shared(r,) heId»—)O}

{shared(r,,u) * held—O = OC r}
acquire r
{shared(r,,u) x held—OU{r} x Im;(r)}

{shared(r,,u) x held—O % Inv(r) A reO}
release r

{shared (rop) = heIdl—)Of{r}}

Fig. 2. Commands on records

2.2 Backpointers

To make the backpointer properties self-framing, we impose a restriction on the
assignments which may potentially invalidate such properties.

Tracked Fields. Our first step is to identify those reference-valued fields, whose
value influences backpointer invariants. We mark these fields as tracked, because
we want to track assignments to them.

struct C { tracked f:D; }

Backpointer Definitional Aziom. Suppose now that a record type C' has a tracked
field f of type D (where C,D are not necessarily different). To express back-
pointer properties, it should be possible to refer to “all allocated records of type
C that point to the record d of type D through the field f”. We write d.(C.f)~*
to refer to that set. In other words, the definitional aziom of backpointers is (for
every state o):

[VeeaC,deaD - ced.(C.f)™" & cf=d] (o) (1)
where

— [E] (o) evaluates expression E in state o
— aT is the set of all non-null allocated records of type T in a given state

If C is clear from the context, we simply write d.f~!.

Backpointer Fields. The value of the expression (C.f)™! is not associated with
any permission, which is what makes it non-self-framing. To fix this, we turn
(C.f)~! into a field of D. This field has access permissions like any regular

Backpointers and Observational Disjointness 155

field. However, it is a ghost field: it does not appear in the actual program; it
is only part of its specification annotation. Furthermore, even explicit “ghost
assignments” to it are forbidderfY.

Tracked Assignments. Assume now that record r points to record ¢ through a
tracked field f. Consider the assignment:

r.f:=p

Notice that this assignment changes not only the value of r.f, but also that of
q.f~Y and p.f~1. The situation is depicted graphically in Fig. Bl Since the values
of two backpointer fields are changed, the thread that executes the assignment
must have full permission to those fields. In the case q or p are the null reference,
then, of course, we do not require access to their backpointer fields.

We introduce two axiomatic rules for tracked assignmentsﬁ. First, for the case

PFq
{

r=RZnull AN p=P#Q A r.f—Q
* (pEnull = pft=81) *x (Qnull = Q.f ' S2)

r.f:=p

r=R#null AN p=P#Q AN r.f—p
* (pEnull = pf =S —{r}) * (Q#null = Q.f'— S2U{r})

and second, for the contrived case p = ¢

{ r=R#null A p=P A r.f—P % (P#null = Pf'—S) }
r.f:=p
{ r=R#null A p=P A r.f—P % (P#null = Pf'—S) }

Ezample 1. In this simple example, we will show how the backpointers discipline
makes it possible to express reference counting, and how we can use reference
counting to protect shared data from mutation.

Suppose that we have two types Cell and Client. Clients have a reference
field f to cells. Many clients may share a cell and we are interested in keeping
track of them. Therefore f is a tracked field:

struct Client { tracked f:Cell; }

! In this sense, backpointer fields are like JML’s model fields [12]. Unlike model fields
however, backpointer fields are associated with permissions.
2 For simplicity, assume that 7 and p are local variables.

156 I.T. Kassios and E. Kritikos

g pft
[N T T T T T T T T T)
: 03 02 01 T lo o o .
b A - — N R J

q
Before
of p -7]{71
\(03 02 OT\ ‘[r 0} 0h 03)‘
q p
After

Fig. 3. Assignment to a tracked field r.f := p. This diagram depicts the case where p
is not equal to the original value ¢ of r.f and where both p and ¢ are non-null.

A cell has an integer field data and a reference counter refCount. If n clients
point to the cell, then each of them holds € permission and 1 — ne remains in the
monitor invariant of the cell. The reference counter must be equal to n. Using
the ghost field f ~*, the requirement is stably expressible:

struct Cell

{

data,refCount:int;

invariant 3B-f '—B x refCount— |B| * data bl

}

It is impossible for a client to add/remove a reference to a cell ¢ without first
acquiring it (because one needs write access to ¢. f ~' to perform such an assign-
ment). After acquiring c, if the client wishes to release ¢, it must also update the
reference counter appropriately, since otherwise the monitor invariant of ¢ will
not hold. Here is an example of a client which correctly adds a reference to a
cell:

acquire c;

cl:=new Client;

cl.f:=c;

c.refCount := c.refCount+1;
release c;

Backpointers and Observational Disjointness 157

Every client that references ¢ holds an € permission to c.data. For example,
in the above code, the client has gained an € permission to c.data, because it
added a new reference to c.

A holder of an € permission to c. data can probe the reference counter of ¢,
to see if it shares the cell with any other client. If the reference counter is 1,
then the holder may acquire the cell, combine its € permission with the 1 — €
permission to c.data, and obtain write permission to c. data. Here is a client
that does this correctly:

// here: c.data>s
acquire c;
if(c.refCounter=1)

{
// here we can prove c.data—
c.data:=42;
}
So long as the reference counter is greater than 1, it is not possible for a client
to gain write access to the data. |

2.3 Soundness

In this subsection, we give an brief informal argument to explain why the back-
pointers discipline is sound.

The extension of a specification and programming language with backpointers
imposes the soundness requirement that the definitional axiom of backpointers
@) is a system invariant, i.e., a property that holds at any given state during
the execution of the program.

Consider a programming language that supports all the features that we have
introduced so far: mutable records, locking, assignment, conditionals, procedures,
sequential and parallel composition. Assume a standard small step semantics for
that programming language. The rule for field assignment in this language is

[er # null] (0) = (e1.f:=ea, o) » o[([ea] (0).f) = [e2] (o)] (2)

where (s, o) is a configuration, ~ is the operational semantics relation and [- —]
is the update notation.

The introduction of backpointers entails the following change to the opera-
tional semantic rules:

— Rule (@) applies only when f is a non-tracked field

— Backpointers are introduced as ghost fields. Explicit assignments to them
are forbidden.

— If f is a tracked field, then (2)) is replaced by the following rule

[er # null] (0) = (e1.f:=ea, o)~ d'[o.f — [e] ()] (3)

where

0= [ei] (o)

158 I.T. Kassios and E. Kritikos

~

_{ Lof ™ = [ex-f-f 7] (0) = {o}] if [er-f # nun] (o)
o otherwise
) {o[[e2] (0).F 71 = [ea-f 1] (@) U0}] if [e2 # nunl] (o)

otherwise

— The rule for the creation of new records is revised as follows:
e The new record can only be assigned to a local variabld]
e All reference-typed fields of the new record are initialized to null and
all backpointer fields of the new record are initialized to (

To prove that () is a system invariant, we perform a standard induction on the
structure of the statements of the language. Notice that (l) can only be falsified
by rule [B) and by the creation of new records.

It is easy to see that (B]) does not falsify (). For the creation of new records,
we also assume that there are no dangling pointers, as is the case with languages
that support garbage collection. Under this assumption, the creation of new
records as described above does not falsify ().

3 Concurrent Copy-on-Write Lists

We now turn our attention to a hard verification problem, that of concurrent
copy-on-write lists (CCoWL). We discuss how backpointers help us verify this
data structure.

In this section, we highlight the most important aspects of the verification.
As we commented above, the specifications, implementations, and proof outlines
for all the procedures can be found in [9].

3.1 Description of the Problem

A CCoWL data structure supports a record called list, which represents a mu-
table sequence of integers. One can create new empty sequences, insert items
at the beginning of an existing sequence, update an item at a specific index,
and copy one sequence to another. For simplicity, we restrict ourselves to the
operations mentioned here, which can already generate all possible graphs in the
underlying data structure.

The clients of lists, which may be one or more threads, are given the impres-
sion that every list is completely heap-disjoint from all the others and thus can
reason about mutations using ordinary separation logic. The specification of the
procedures that are available to the clients is shown in Fig. [l Init, list (I,L) is
an abstract predicate that expresses the fact that the list record [represents the
integer sequence L, the operator ++ denotes concatenation, and the expression
L[i — v] denotes the sequence L with the content of index ¢ updated to value v.
Indexes are zero-based.

3 Assignment to a field is considered syntactic sugar.

Backpointers and Observational Disjointness 159

{neWRec(this) * heldr—>O}
initEmpty (this)
{list (this, []) * held—O % OC this}

{newRec(this) x list (other, L) x held—O x OC other}
copy(this ,other)

{ list(this, L) % list(other, L) % held—O

* OC this * OC other}

{1list (this, L) * held—O * OC this}
insert(this , newValue)
{Iist(this, [newValue]4++L) = heId»—>O}

{1list (this, L) * held—O % OC this A O<index<|L| }
set(this ,index ,value)
{list (this, L[index—value]) % held—O}

Fig. 4. Public Specification of CCoWLs

For example, consider the following client:

listl:=new List;

initEmpty (listl);

insert(listl , 3); insert(listl, 2); insert(listl, 1);
list2:=new List;

copy(list2, listl);

set(listl , 1, 4);

We can use ordinary separation logic and the specifications of Fig. @ to prove
that, at the end of the execution, listl contains the sequence [1,4,3], and
list2 contains [1,2,3].

Behind the scenes however, the data structure performs lazy copying: all op-
erations are implemented with reference manipulations as long as this does not
influence the clients’ disjointness illusion. Copying happens only when necessary.

The underlying representation uses linearly linked lists of node records. First
the implementation creates such a linked list to represent that list1l contains
the sequence [1,2,3] (Fig. Bh). After that, a new list list2 is created and it is
initialized by copying list1. The client may pretend that the lists are disjoint,
but the implementation is being lazy: it just sets the head node reference of
list2 to point to the head node of list1, producing the situation in Fig. Eb.
Finally, the client sets the item 1 of list1 to 4. The change must influence only
listl and not list2. The implementation must now copy the first two nodes
of the common underlying structure, and then perform the set operation in a
way that ensures that list2 is not affected. The last node remains shared. The
final situation is shown in Fig. Bk.

160 I.T. Kassios and E. Kritikos

[1ist1] [1ist2] [1ist1] [1ist2]

(a) (b) (c)

Fig. 5. An example of CCoWL history

To achieve this copy-on-write effect, the nodes are equipped with a reference
counter. When a set operation occurs, then the affected list is traversed from
the head to the index where the update should happen. During the traversal,
the reference counter of all the nodes is examined. As long as the reference
count equals 1, the procedure knows that only one list is affected. As soon as
the procedure meets a reference count greater than 1, it knows that, from that
point on, more than one lists are affected. At that point, the procedure copies
the nodes of the list all the way to the index where the update should happen.

Starting from Fig. Bk, a set(listl , 1, 10) operation will only find ref-
erence counts of 1 in its way and will perform no copying. On the contrary,
set(listl , 2, 10) will find that the reference count of the node it is trying
to mutate is 2, thus it must copy this node, separating the two lists completely.

3.2 Record Definitions, Abstract Predicates, and Invariants

Our implementation contains List and Node records. A List record contains a
reference to a head node. The reference should be tracked, because it should be
counted in the reference count of the head node.

struct List { tracked head:Node }

If head points to null, then the list record represents the empty sequence.
A Node record contains a value, a tracked reference to the next node, and a
reference count. We defer the monitor invariant of nodes for later.

struct Node

{
value , refCount:int;
tracked next:Node;
invariant

Backpointers and Observational Disjointness 161

We now define the abstract predicate list. The definition uses the auxiliary
abstract predicate node:

predicate list(this:List, L:Z")
{
3H €Node- shared(this,) % this.head—H
x ((node(H,L) x thisC H) VvV (H=null A L=][]))

predicate node(this:Node, L:Z")

{
LA A
dN €Node-

this.valuersL[0] * this.nextr> N % shared(this,)
+ ((node(N,L[1..]) * thisCN) Vv (N=null A |L|=1))

The predicate node traverses the structure following recursively the next refer-
ences of the node records it encounters. The represented sequence is not empty.
The first item L[0] of the sequence is stored in field value. The rest of the se-
quence L [1..] is represented by the node pointed to by field next, if one exists.
The lock-order of node n is below that of n. next, because we intend to acquire
monitors of nodes in the order in which we traverse the structure. Similarly, the
lock-order of a list [is below that of I. head.

If a node record n is reachable from a list record [, then it contributes to the
value of the sequence that [represents. We then say that [is interested in n.

Note that each holder of a list (I,L) predicate has € access to all the value
and next fields of the nodes in which [is interested. The rest of the permissions
to these fields are in the monitors of their respective records. So, if a node record
interests n different lists, then it stores in its monitor 1 — ne permission to its
fields value and next.

So far, this pattern is exactly the same as the one we have seen in Ex.[Il There
is however a complication: the reference counter of a node does not indicate how
many lists are interested in it. For example, consider Fig. [in which a possible
state of a CCoWL structure is shown. Both nodes A and B interest three lists,
however their reference counters are 2 and 1 respectively.

To deal with this problem, we introduce a ghost field in Node. This field counts
how many lists are interested in the current node. We call it transRefCount (for
transitive reference counter). In Fig. [l we see not only the reference counters
but also the transitive reference counters of all the nodes.

We now know the following about the monitor invariant of the Node type:

— It grants permission 1 — T'e to the fields value and next, where T is the
value of the transitive reference counter:

1-T 1-T
value—5V % next—o N

162 I.T. Kassios and E. Kritikos

refCount = 2 refCount = 1

transRefCount = 2 transRefCount = 1

refCount = 2

A:
transRefCount = 3

B: ®
’ transRefCount = 3

Fig. 6. Reference and Transitive Reference Counters in a CCoWL

1

— It grants full access to the fields head ™' and next ~':

head '—B; % next '~ B>

— The value of the reference counter is equal to |By|+|Bz|. The field refCount
is granted full access, as it should be possible for the thread that acquires
the node to update the reference counter correctly:

refCount—|Bi1| + |B2|

Notice that the value of the transitive reference counter is equal to the sum of
the transitive reference counters of all nodes that point to the current node plus
the number of list records that point directly to the current node. In order to
be able to express this condition, we must grant to the monitor invariant of the
current node read access to the transRefCount field of all the nodes that point
to the current node. We give them 0.5 permission:

3F eNode— Z- ®n € By -n. transRefCountr>s F(n)
The value of the field transRefCount is given by
T = |Bil + Y n€Bz-F(n)

The permission to the field transRefCount cannot be 1, since, as we have
discussed above, the node N that follows the current one has 0.5 permission to
it. Therefore, the invariant conjunct that relates transRefCount to its value is:

transRefCount’> T

The final detail: if N is null, then there is no other node that has 0.5 permission
to the current node’s transRefCount field. In this case, the monitor invariant
of the current node should include the extra permission:

Backpointers and Observational Disjointness 163

N=null = transRefCount’> T

Putting it all together, the definition of Node, together with the monitor invari-
ant, is:

struct Node

{

value , refCount:int;
ghost transRefCount:int;
tracked next:Node;
invariant 37 €Z, N €Node, B; € 2" B, 2" F cNode— Z-
value™"% & nextr—IS N « head '—B; * next '— Bs
x refCount~|Bi|+|Ba| * transRefCount’> T
* (@neBg~n.transRefCountl—0—‘5+F(n))
« (N=null = transRefCount> T
AN T = |Bi| + Y.n€ By -F(n)

3.3 Some Highlights of the Implementation

In this section, we discuss three interesting aspects of the implementation: how
lists gain and lose interest to nodes and how the updating procedure decides
how to substitute in-place update by copy-and-update.

Gaining Interest. In our procedures, the only place where a list gains interest
to new nodes is lazy list copying. When a list is copied, only the head refer-
ence of the target list changes. The target list gains interest to all the nodes of
the source list. To ensure that our bookkeeping is correct, we must update the
transitive reference counters of all these nodes. We do this with a ghost proce-
durd] addOneToTra nsRefCount, which traverses the whole list and adds 1 to
all transitive reference counters.

Losing Interest. Our copy-and-update procedure node copy set takes as pa-
rameters (besides the obvious index/value pair) a source node this and a
target node new node. The precondition of node copy set asserts that the
caller has a predicate node(this, L). Its postcondition returns a predicate
node(new node, L[index—»value]). The predicate node(this, L) of the
precondition is lost. Indeed, the permissions node(this , L) are taken away
from the thread. Those monitors of the nodes to which the source list loses in-
terest obtain an extra e permission to the corresponding value and next field.
For the nodes to which no interest is lost, the thread maintains its ¢ permissions,
but they are now part of the node(new node, L[index—»value]) predicate.
In this way, no permission to fields value and next is ever lost.

4 A ghost procedure updates the state by assigning only to ghost fields, and therefore
is not executed in the actual program.

164 I.T. Kassios and E. Kritikos

For example, consider the situation in Fig. Bb. The permission to the value
and next fields that is stored in the monitor of nodes A, B,C is 1 — 2¢. There
is a thread that holds a list (listl , [1,2,3]) predicate, that grants e per-
mission to the value and next fields of these nodes. Now set (listl , 1, 4)
is called. Since the reference count of A is 2, a new node A’ is created and the
node copy set procedure is called with source A and target A’. The procedure
takes away the node (A, [1,2,3]) predicate of the caller and returns a new
node(A’, [1,4,3]) predicate. The final state is shown in Fig. Bl.

List list1 lost interest in nodes A, B. The e permissions to their value and
next fields are returned from the node(A, [1,2,3]) predicate back to their
monitor, which now maintains 1—e permission to these fields. The list maintained
interest to node C, so an € permission to the value and next fields of C' is trans-
ferred from node (A, [1,2,3]) to node(A’, [1,4,3]). The monitor of C has
1 — 2¢ permission to those fields, as before. The predicate node (A", [1,4,3])
has € permission to the value and next fields of the newly generated A’ and B’
nodes. There was no loss of permission; only permission transfer.

Setting without Copying. As we have explained, the algorithm decides to start
the copy-and-update procedure once it sees a reference counter greater than 1.
To verify that this policy is indeed correct, we include a precondition to our
update-in-place procedure node set that the transitive reference counter of the
node it is applied to equals 1.

The algorithm calls node set on the next node, under the circumstance “I
have not yet seen a reference counter greater than 1 and the reference counter
of the next node is 1”. In our formalism, this is translated into:

this.refCounts1 % this.transRefCount2%1
* this.next—N % N.refCount—1 A N#null

From this condition, together with the fact that Inv(this) and Inv(N) hold,
one must prove that the value of the transitive reference counter of N is 1. In
the following, we explain how we prove this property.

Let B; be the value of N.head™! and By be the value of N.next !.
By the definitional axiom, we know that this€B:. By Inv(N), we con-
clude that Bo={this} and Bi=f. Again by Inv(N), we get that the value of
N .transRefCount is equal to the value of this.transRefCount, which is 1.

The above argument applies when node set recursively calls itself. Initially
however, it is procedure set (the update procedure on lists) that decides whether
it should call node set or node copy set on its head node. The argument for
this decision is similar.

4 Discussion

4.1 Related Work

Invariant Disciplines. An invariant discipline is a set of rules that speci-
fiers and programmers have to follow to ensure that some state (or history)

Backpointers and Observational Disjointness 165

conditions remain true throughout a computation (or at specific states thereof).
Some such conditions are independent of the program, for example, our method-
ology guarantees that the backpointer definitional axiom (I holds in any state
o. We call these conditions system invariants. Some other conditions are given
by the programmer, for example object or monitor invariants. There are several
flavors of treating program-specific invariants, mostly focusing on the special
case of object invariants [13]. Various forms of ownership [14, 15] are popular
invariant disciplines.

Parkinson [16] comments that object invariants are inflexible, in comparison
to the use of abstract predicates. Summers et al. [8] answer by making the case
for object invariants as an independent specification tool. Most of their argu-
ments have to do with the usefulness of object invariants in practical software
engineering contexts; but they also provide an example (the priority inheritance
protocol [7]) as one in which object invariants can turn a seemingly global prop-
erty (in our terminology, a backpointer property) into a local one. It seems,
the authors argue, that the priority inheritance protocol example is not easy to
handle with abstract predicates alone.

Our paper provides a monitor invariant discipline that can handle such back-
pointer examples. The discipline consists of restricting the use of assignments to
tracked fields. We have expressed our discipline not as a set of rules, as is com-
mon, but by using permissions in the separation logic style. Our proposal makes
it possible to treat backpointer conditions as special cases of separation logic
conditions, turning them into local properties, which supports the argument of
[8], in the concurrent case.

Our verification of CCoWLs is influenced by considerate reasoning [17], a
framework in which it is possible for a procedure to “notify” via specification
annotations all interested parties about the object invariants that it might break.
Our specification and implementation of addOneToTransRefCount is a direct
adaptation of their addToTotal method.

Observational Disjointness. While separation logic has been a revolution in the
specification of heap-intensive computations, it has been observed, especially
in the context of concurrency, that the association of separating conjunction
with actual heap separation is too restrictive: sometimes we want the client(s)
to “observe” disjointness, but, at the same time, allow the implementers the
opportunity to share heap under the hood.

In our work, we make use of a standard solution to loosen the heap disjoint-
ness requirement: fractional and counting permissions. Furthermore, our use of
backpointers permits us to maintain bookkeeping information about the clients
of observationally disjoint data structures. These two ingredients together suffice
for the verification of the CCoWL case study.

Concurrent abstract predicates [18] support the hidden sharing of state with
the use of capabilities, i.e., special predicates that allow exclusive access to a
shared region. This idea has been successfully applied to the specification and
verification of indexing structures [19]. The work presented here cannot substi-
tute for capabilities. On the other hand, it is not clear how one would handle

166 I.T. Kassios and E. Kritikos

the CCoWL example with CAPs. It seems that backpointers and CAPs are
orthogonal tools and could be integrated into a single specification language.

Fictional Separation Logic |20] is an ambitious mathematical framework that
allows the implementer to choose their own separation algebra as part of the
implementation. This idea completely decouples heap disjointness from sepa-
rating conjunction. The use of fractional permissions as well as other examples
of observational disjointness are shown to be special cases of this very general
methodology. The generality comes at the price of complexity at the part of the
implementer, so it remains an open question if this idea scales up to reasonably-
sized programs. Furthermore, it seems that fictional separation logic has no
provision for object and monitor invariants, nor does it provide the means of
mentioning unreachable parts of the heap, like we do.

In |21], the verification of snapshotable trees is proposed as a challenge. The
problem is very similar to the CCoWLs: the clients see a mutable tree and
immutable snapshots of previous states of that tree. A snapshot can be created
at any time. All snapshots and the tree appear to be heap-disjoint, but, in fact,
the implementation uses lazy copying and shares as much as possible. There are
four different versions of the structure, one of which is verified by the authors,
using whole-heap predicates (and therefore restricting it to sequential programs).

The fact that snapshots are immutable is a very crucial difference compared
to the CCoWL example, in which all lists are mutable. In the terminology of [22]
snapshotable trees are partially persistent, while CCoWLs are fully persistent.
The implementers of snapshotable trees need no permission accounting, because
they do not wish to reclaim write permissions to the part of the structure that
becomes immutable. Contrary to that, we ensure that no permissions are lost.
For example, suppose that exactly two lists [1, [> are interested in a node n. At
this state, no thread can change the fields of n. Suppose now that ls loses interest.
The fields of n become mutable again: the list /; may gain write permissions to
them. To achieve this, the bookkeeping of backpointers is essential (see also
Sect. B3l “losing interest”).

4.2 Evaluation and Work in Progress

Two significant questions that have not been answered so far are (a) how ex-
pressive is the new specification language and (b) how automatable it is.

Ezxpressiveness. In the Introduction, we have mentioned three examples, in which
backpointers seem useful. From these examples, we have focused on reference
counting, which we have used in a very complex example, CCoWLs, which we
have specified, implemented and verified.

It is worth mentioning that our CCoWL example is a fully-persistent data
structure [22]. It is a further research direction to investigate how much our
proof technique generalizes to fully-persistent data structures in general.

Besides reference counting and the CCoWLs, we have also specified, imple-
mented, and verified the priority inheritance protocol. We are currently working
on specifying union-find structures; a challenging problem for which backpointers
seem to be particularly promising.

Backpointers and Observational Disjointness 167

We believe that the potential of the methodology has not yet been fully ex-
plored and we expect new interesting case studies to be revealed as experience
accumulates.

Automation. We have implemented a prototype verifier for backpointers as an
extension of Chalice. We have tested it on a suite of 20 unit tests, observing
significant variation in verification times, which is undesirable.

To counter the problem we have experimented with various degrees of restrict-
ing the automation. For example, we have given the programmer the possibility
to control the triggering of backpointer and set theoretic axioms. We have also
introduced explicit annotations for the application of the frame rule, for the
framing of aggregate expressions.

The automation of the CCoWL case study has been extremely challenging.
At the time of this writing, our tool has verified all but one of the procedures
of the present example. The verification of most procedures happens within less
than 5 minutes, which is satisfactory. The procedure node set copy verifies in
90 minutes. The verification of one of the branches of the procedure node set
unfortunately seems not to terminate.

To conclude, the automation of the discipline does not yet deliver consistently
low verification times and seems to diverge in some cases. Much improvement
has been achieved since the beginning of the project, but further research is
required to achieve consistently satisfactory performance and less annotation.

5 Conclusion

We have introduced an invariant discipline to enhance the expressiveness of
separation logic with backpointer conditions. We have used our methodology
to specify and verify concurrent copy-on-write lists, a challenging case study of
observational disjointness, which, to the best of our knowledge, has not been
tackled before.

Acknowledgements. The authors are deeply grateful to P. Miiller and to the
three anonymous ESOP reviewers, whose deep and insightful comments signifi-
cantly helped improve the quality of the paper.

References

1. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS
2002, pp. 55-74. IEEE Computer Society (2002)

2. Parkinson, M.J., Summers, A.J.: The Relationship between Separation Logic and
Implicit Dynamic Frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439-458. Springer, Heidelberg (2011)

3. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148-172. Springer, Heidelberg (2009)

168

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

I.T. Kassios and E. Kritikos

Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268-283. Springer, Heidelberg (2006)

Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL 2005, pp. 259-270 (2005)

Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003)

Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175-1185 (1990)
Summers, A., Drossopoulou, S., Miiller, P.: The need for flexible object invariants.
In: IWACO 2009, pp. 1-9. ACM (2009)

Kassios, I.T., Kritikos, E.: A discipline for program verification based on back-
pointers and its use in observational disjointness. Technical Report 772, Dept. of
Computer Science, ETH Zurich (2012),
http://pm.inf.ethz.ch/publications/getpdf . php?bibname
=0wn&id=KassiosKritikos12.pdf

Leino, K.R.M., Miiller, P.: A Basis for Verifying Multi-threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378-393. Springer, Heidelberg
(2009)

Heule, S., Leino, K.R.M., Miiller, P., Summers, A.: Fractional permissions without
the fractions. In: FT{JP 2011 (2011)

Leavens, G., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In: Kilov,
1., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and
Systems, pp. 175-188. Kluwer (1999)

Drossopoulou, S., Francalanza, A., Miiller, P., Summers, A.J.: A Unified Frame-
work for Verification Techniques for Object Invariants. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 412-437. Springer, Heidelberg (2008)

Leino, K.R.M., Miiller, P.: Object Invariants in Dynamic Contexts. In: Odersky,
M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491-515. Springer, Heidelberg (2004)
Miiller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

Parkinson, M.: Class invariants: the end of the road? In: IWACO 2007 (2007)
Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite
Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328-344. Springer, Heidelberg (2010)

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504-528. Springer, Heidelberg (2010)

da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse,
M.: A simple abstraction for complex concurrent indexes. In: OOPSLA 2011, pp.
845-864. ACM (2011)

Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377-396. Springer, Heidelberg (2012)

Mehnert, H., Sieczkowski, F., Birkedal, L., Sestoft, P.: Formalized Verification of
Snapshotable Trees: Separation and Sharing. In: Joshi, R., Miiller, P., Podelski, A.
(eds.) VSTTE 2012. LNCS, vol. 7152, pp. 179-195. Springer, Heidelberg (2012)
Driscoll, J.R., Sarnak, N.; Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. In: STOC 1986, pp. 109-121. ACM (1986)

http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf

Modular Reasoning about Separation
of Concurrent Data Structures

Kasper Svendsen!, Lars Birkedal', and Matthew Parkinson?

! IT University of Copenhagen
{kasv,birkedal}@itu.dk

2 Microsoft Research Cambridge
mattpark@microsoft.com

Abstract. In a concurrent setting, the usage protocol of standard sep-
aration logic specifications are not refinable by clients, because standard
specifications abstract all information about potential interleavings. This
breaks modularity, as libraries cannot be verified in isolation, since the
appropriate specification depends on how clients intend to use the library.

In this paper we propose a new logic and a new style of specifica-
tion for thread-safe concurrent data structures. Our specifications allow
clients to refine usage protocols and associate ownership of additional
resources with instances of these data structures.

1 Introduction

Why? One of the challenges of specifying the abstract behavior of a library is
that the appropriate specification depends on the context in which the library
is going to be used. Consider a simple bag library with operations to push and
pop elements from the bag. In a sequential setting the standard separation logic
specification is:

{bag.(x,X)} x.Push(y) {bag. (x, XU {y})}
{bag,(x,X)} x.Pop() {ret. (X =0 Aret = null A bag,(x, X))

V
(3Y. X =Y U {ret} Abag,(x,Y))}
bag, (x, X) * bag,(x,Y) = L

Here bag, is an abstract predicate, i.e., implicitly existentially quantified, so
that clients cannot depend on its definition [2], x is a reference to a bag object,
and X and Y range over multisets of elements. The implication in the third line
expresses that the bag, predicate cannot be duplicated. Hence this specification
enforces that clients follow a strict usage protocol, with a single exclusive owner
of the bag object. On the other hand, this specification allows the owner of the
bag to track the exact contents of the bag. In other words, bag,(x, X) asserts
full ownership of the bag and that the bag contains exactly the objects in the
multiset X.

Now consider a client of the bag library and suppose this client wants to
implement a bag of independent tasks scheduled for execution. This client might

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 169-[[88] 2013.
© Springer-Verlag Berlin Heidelberg 2013

170 K. Svendsen, L. Birkedal, and M. Parkinson

not care about the exact contents of the bag, only that each task in the bag
owns the resources necessary to perform its task. In addition, this client might
wish to share the bag to allow multiple users to schedule tasks for execution.
Thus this client might prefer the following specification for shared bags:

{bag,(x,P) * P(y)} x.Push(y) {bag,(x,P)}
{bag,(x,P)} x.Pop() {ret. bag,(x,P) * (ret = null v P(ret))}

bag,(x, P) = bag,(x, P) x bag,(x, P)

This specification allows more sharing, but it does not track the exact contents
of the bag. Instead, it allows clients to associate additional resources with each
element of the bag using the P predicate, and to freely share the bag as expressed
by the implication in the third line. Clients thus transfer P(y) to the bag when
pushing y, and receive P(ret) from the bag, when pop returns a non-null element.

In a sequential first-order setting without reentrancy, the standard separation
logic specification suffices. Using techniques from fictional separation logic [I1],
clients can refine the standard specification to allow the additional sharing of
the shared bag specification. However, in a concurrent setting, it is easy to come
up with a non-thread-safe implementation (without synchronization), that sat-
isfies the standard specification (as it enforces a single exclusive owner), but not
the shared bag specification. Hence, in a higher-order concurrent setting with
reentrancy, this type of refinement is unsound!

What? The key challenge is to provide a logic that enables clients to refine
the specifications to their requirements in a concurrent setting. In this paper
we propose such a logic, called Higher-Order Concurrent Abstract Predicates
(HOCAP), and a new style of specification for thread-safe concurrent data struc-
tures[] This style of specification allows clients to refine the usage protocol and
associate ownership of additional resources with instances of the data structure,
in a concurrent higher-order setting.

How? Observe first that while it is not sound to refine specifications to al-
low more sharing in a concurrent setting, it is sound to refine specifications to
permit less sharing. Thus we will start with a weak specification that allows
unrestricted sharing of instances of the data structure, and then let clients refine
this specification as needed.

To reason about sharing we partition the state into regions, with protocols
governing how the state in each region is allowed to evolve, following earlier
work on concurrent abstract predicates [5]. Our new program logic, HOCAP,
also uses phantom fields — a logical construct akin to auxiliary variables, that
only occur in the logic.

To support abstract refinement of library specifications, we propose to verify
the implementation using a region to share the concrete state of the implementa-
tion, with a fixed protocol that relates the concrete state of the implementation

! We consider a concurrent data structure thread-safe if each of its methods has one
or more synchronization points, where the abstract effects of the method appear to
take affect. See Related Work for a discussion of the relation to linearizability.

Modular Reasoning about Separation of Concurrent Data Structures 171

with an abstract description of the state of the data structure. To refine this spec-
ification, clients define a region of their own, with a protocol on the abstract state
of the data structure. For soundness, these two regions must evolve in lock-step
and synchronize when the abstract state changes (in synchronization points).
We do so by giving each region a half permission to a shared phantom field;
synchronization can then be enforced since updating a phantom field requires
full permission. Half permissions have previously been used to synchronize local
and shared state [14]; here we are using it to synchronize two shared regions.
For the bag example, we introduce a phantom field cont that contains the
abstract state of the bag: a multiset of references to the elements in the bag.
The bag constructor also returns a half permission to the phantom field cont:

{emp}new Bag(){ret. bag(ret) * retcont 22 0}

Here retcont r£> () asserts partial ownership of the phantom cont field. Since the
client obtains half the cont permission upon calling the constructor, the library
cannot update the cont field on its own.

The protocol governing the bag x thus relates the concrete state of the bag
with its abstract state (the value of the cont field):

(3. xeomt PO X % list(o X))~ (3K xeom 23 X list(x, X))

This protocol permits any atomic update to the region containing the internal
state of bag x from a state satisfying the left side of ~ to a state satisfying the
right side.

To allow the library to update cont in synchronization points, we therefore
transfer the library’s half-permission to the client and require the client to update
the phantom field with the abstract effects of the method, and then transfer a
half-permission back to the library. When the client updates the phantom field,
the client is forced to prove that the abstract effects of the method is permitted
by whatever protocols the client may have imposed on the abstract state.

We express the update to the phantom cont field using a view-shift [4]. Concep-
tually, a view-shift corresponds to a step in the instrumented semantics that does
not change the concrete machine state. View-shifts, written P C Q, thus general-
ize assertion implication by allowing updates to phantom fields (given sufficient
permission) and ownership transfer between the local state and shared regions.

The bag push method thus requires the client to provide a view-shift, to
update the abstract state from X to XU {y} in the synchronization point:

VX Xeont 15 X # P xeomt ~2% XU {y} ¥ Q
{bag(x) * P}x.Push(y){bag(x) * Q}

Here, P and Q are universally quantified and thus picked by the client. Hence,
the client can use P and Q to perform further updates of the instrumented state
in the synchronization point and relate the new abstract state with its local
state. We thus refer to P and Q as synchronization pre- and postconditions.

172 K. Svendsen, L. Birkedal, and M. Parkinson

Likewise, the bag pop operation requires two view-shifts; one, in case the bag
is empty in the synchronization point, and another, in case the bag is non-empty
in the synchronization point:

Xcont 'ﬁ DxP L Xcont 'ﬁ 0 * Q(null)
VX, Wy xeont ~2 XU {y} # P T xeom 25 X Q(y)
{bag(x) *x P}x.Pop(){bag(x) * Q(ret)}

Finally, the bag predicate is freely duplicable:
bag(x) = bag(x) * bag(x)

Note that since P and Q are universally quantified — our logic is higher or-
der — the client could potentially pick instantiations referring to the library’s
region, thus introducing self-referential region assertions. We can illustrate this
problem by instantiating P with an assertion that itself refers to the bag in the
specification of Push. Since bag(x) asserts that there exists a shared region that
owns half the xcont field, it follows that bag(x) * xcont = = false. Hence, by

instantiating P with bag(x) * Xcont l£> , we can derive the postcondition false
from the specification of Push.

To prevent this, we introduce a notion of region type and a notion of support,
as an over-approximation of the types of regions a given assertion refers to. Our
formal bag specification (presented in Section B]) thus imposes support restric-
tions on P and Q to ensure the client does not introduce self-referential region
assertions.

Another key challenge we address is higher-order protocols. Higher-order pro-
tocols are crucial to allow clients to associate ownership of additional resources
with shared data structures. For example, to derive the shared bag specifica-
tion from the generic specification, we use a second region with a protocol that
requires clients to transfer ownership of P(x), when pushing x into the bag:

(3X. xeomt 225 X % @ByexP(y) ~ (X Xeomt 22 X % @yexP(y))

Again, P is a predicate variable and could be instantiated to refer to the state
and protocol of this and other regions — making the above protocol a higher-order
protocol. We also use region types to break a circularity introduced by higher-
order protocols. In particular, instead of assigning protocols to individual regions,
we assign parameterized protocols to region types. This allows us to reason about
higher-order protocols that refer to the region types — and thus, implicitly, the
protocol — of other regions. We show that this well-behaved subset of higher-order
protocols, called state-independent protocols, suffices for sophisticated libraries,
such as the Joins library [16].

To summarize, our new logic and specification methodology allows clients to
refine the usage protocol of the bag. It also allows clients to transfer ownership
of resources to the bag, by transferring them to a client region synchronized with
the abstract state of the bag.

Modular Reasoning about Separation of Concurrent Data Structures 173

More details and examples can be found in the extended version of this article,
which is available at http://www.itu.dk/people/kasv/hocap-ext.pdf.

Related Work. Jacobs and Piessens introduced the idea of parameterizing
the specification of concurrent methods with ghost code, to be executed in syn-
chronization points [I0]. Here we build on their idea, using a much stronger logic
based on CAP [5], to address the main problem with their approach.

Instead of regions with protocols, Jacobs and Piessens use ghost objects —
data structures built from ghost variables — with handles that represent partial
information about the data structure and permissions to modify it. While these
handles provide support for reasoning about the state of shared ghost objects,
they lack the ability to associate ownership of additional state with ghost objects.
Instead, Jacobs and Piessens use the lock invariant of the lock protecting the
concurrent data structure to associate ownership of additional state.

However, this approach is problematic without proper storable locks. In par-
ticular, Jacobs and Piessens logic and model of storable locks only supports lock
labels parameterized over simple types (i.e., not assertions). This forces the client
to create the synchronization primitive, so that the client can pick a lock invari-
ant containing both the state of the concurrent data structure and any additional
resources the client may wish to associated with the data structure. This breaks
abstraction, by exposing internal implementation details to the client (the syn-
chronization primitive used) and it requires the client to reprove the shared bag
specification every time it is needed. Hence, Jacobs and Piessens cannot derive
the shared bag specification. We solve this problem using higher-order protocols.

CAP was designed to verify concurrent data structures [b]. However, the orig-
inal specifications and proofs are non-modular in the sense that implementations
have been verified against unrefinable specifications with fixed usage protocols.

Recently, Dodds et. al. introduced a higher-order variant of CAP to give a
generic specification for a library for deterministic parallelism [6]. While their
proofs make explicit use of nested region assertions and higher-order protocols,
the authors failed to recognize the semantic difficulties these features introduce.
Consequently, their reasoning is unsound. In particular, their higher-order rep-
resentation predicates are not stable.

Another approach for achieving modular reasoning is to prove concurrent
implementations to be contextual refinements of coarse-grained counterparts —
thus taking the coarse-grained counterparts as specifications. Previous efforts
for proving such contextual refinements have mostly focused on indirect proofs
through a linearizability property on traces of concurrent libraries [97]. So far,
this approach lacks support for transfer of ownership of resources between client
and library. More recently, there has been work on proving such contextual re-
finements directly, using logical relations [20]. Unless combined with a program
logic, both of these approaches restrict all reasoning to statements about contex-
tual refinement or contextual equivalence. As our approach demonstrates, if a
Hoare-style specification is what we are ultimately interested in, then contextual
refinement is unnecessary; what we really want is a generic specification that is
refinable by clients.

174 K. Svendsen, L. Birkedal, and M. Parkinson

Conceptually, linearizability aims to provide a fiction of atomicity to clients
of concurrent libraries. Our approach does not. Instead, we aim to allow clients
to reason about changes of the abstract state in synchronization points inside
concurrent libraries. To illustrate the distinction, consider an extension of the
bag library with a Push2(x, y) method that takes two elements and pushes
them one at a time (i.e., with the implementation Push(x); Push(y)). This
method is not linearizable, as it has two synchronization points. However, it still
has a natural specification expressed in terms of two view-shifts, one for each
synchronization point:

VX xeant ~25 X % P xeomt -2 XU {y} % Q
VX, Xeont ~25 X % Q T xcome +25 X U {z} # R
{bag(x) * P}x.Push2(y,z){bag(x) * R}

From this specification, a client can derive a natural shared bag specification:

{bag,(x, P) x P(y) % P(z) }x.Push2(y, z){bag,(x, P)}

Contributions. We propose a new style of specification for thread-safe concur-
rent data structures. Using protocol synchronization, this style of specification
allows clients to refine the usage protocol of concurrent data structures. More-
over, using nested region assertions and state-independent higher-order proto-
cols, our specification style allows clients to associate additional resources with
the data structure.

Technically, we realize the ideas by developing HOCAP, a higher-order separa-
tion logic for a subset of C* featuring named delegates and fork concurrency. The
logic allows two or more protocols to be synchronized and evolve in lock-step.
In addition, we support nested region assertions, state-independent higher-order
protocols, and guarded recursive assertions. We present a step-indexed model
of the logic and use it to prove the logic sound. We emphasize that unlike ear-
lier versions of CAP, our logic includes sufficient proof rules for carrying out all
proofs (including stability proofs) of examples in the logic, i.e., without passing
to the semantics.

Lastly, in the extended version we demonstrate the power and utility of the
logic by verifying a library for executing tasks in parallel, based on Doug Lea’s
Fork/Join framework [12]. We have also used the logic to specify and verify the
Joins library [16] and clients thereof, which will be described in a separate paper.

2 The Logic

Our logic is a general program logic for a subset of Cf, featuring delegates referring
to named methods€? and an atomic compare-and-swap statement. New threads are

2 Anonymous delegates in C* may capture the I-values of free variables and hence the
semantics and logic for anonymous methods is non-trivial, see our earlier paper [I§].
Those semantic issues are orthogonal to what we discuss in the present paper and
hence we omit anonymous delegates here.

Modular Reasoning about Separation of Concurrent Data Structures 175

allocated via a fork statement that forks a delegate. Each thread has a private
stack, but all threads share a common heap. We use an interleaving semantics.

The specification logic is an intuitionistic higher-order logic over a simply
typed term language, and the assertion logic an intutionistic higher-order sepa-
ration logic over the same simply typed term language. Types are closed under
the usual type constructors, —, x, and +. Basic types include the type of asser-
tions, Prop, the type of specifications, Spec, the type of C! values, Val, and the
type of fractional permissions, Perm.

2.1 Concurrent Abstract Predicates

Recall that the basic idea behind CAP is to provide an abstraction of possible
interference from concurrently executing threads, by partitioning the state into
regions, with protocols governing how the state in each region is allowed to
evolve. Requiring all assertions to be stable — i.e., closed under protocols — and
proving all specifications with respect to arbitrary stable frames, then achieves
thread-local reasoning about shared mutable state.

Following earlier work on CAP [5], we use a shared region assertion, written
r’t’a
P , which asserts that r is a region and that the resources in region r satisfy

the assertion P. Unlike earlier versions, the region assertion is also annotated
with a region type t and a protocol argument a, since we assign parameter-
ized protocols to region types instead of regions, as mentioned above. Region
assertions are freely duplicable and thus satistfy,

r,t,a

P e p’

)t)t

“wp’ (1)
Protocols consist of named actions and updates to a shared region require own-
ership of a named action justifying the update. Protocols are specified using
protocol assertions, written protocol(t,). Here t is a region type and | is a para-
metric protocol. We use the following notation for a parametric protocol | with

parameter a and named actions aq, ..., u,:
I(a) = (al : (Al) Pl ~> Ql; RS 77 (An) Pn ~> Qn)

Here 4; is a context of logical variables relating the action precondition P;
with the action postcondition Q;. The action «; thus allows updates from states
satisfying P; to states satisfying Q;. We use I(a)[c] to refer to the definition of the
a; action in protocol | applied to argument a. Hence, I(a)[a;] = (4;). P; ~ Q;.

We use P Ir’t’a as shorthand for P nhe * protocol(t, I).

We can distinguish different client roles in protocols through ownership of
named actions. An action assertion [a]] asserts fractional ownership of the
named action a on region r with fraction 7. Fractions are used to allow multiple
clients to use the same action. We can split or reassemble action assertions using

the following property,
[dp1q & [adp * [alq (2)

where p,q,p + q are terms of type Perm — permissions in (0, 1].

176 K. Svendsen, L. Birkedal, and M. Parkinson

An assertion p is stable if it is closed under interference from the environment.
In the absence of self-referential region assertions and higher-order protocols, the

region assertion, P :7t7a is stable if P is closed under all I(a) actionsH
vy. valid(P A P;(¥) = L) Vvalid(Q;(§) = P)
for all i, where I(a)[o;] = (X). P;(X) ~ Q;(X).

Example. To illustrate reasoning about sharing, consider a counter with read
and increment methods. Since the count can only be increased, this counter
satisfies the specification of a monotonic counter [15]:

{counter(x, n)} x.Increment() {counter(x,n + 1)}
{counter(x,n)} x.Read() {ret. counter(x,ret) xn < ret}

counter(x, n) = counter(x, n) * counter(x, n)

Here counter(x,n) asserts that n is a lower-bound on the current count. Hence
we expect that this predicate can be freely duplicated, as expressed by the third
line above.

To verify a counter implementation against this specification, we place the
current count in a shared region, with a protocol that allows the current count
to be increased. Assertions about lower bounds are thus invariant under the
protocol. If the counter implementation maintains the current count in field
count, then we can specify the counter protocol as follows:

def r r,Counter,x
counter(x,n) = Jr, 7. [INCR]; * Im. n < mx*x.count — m |

where | is a parametric protocol with parameter x and a single action INCR, that
allows the count field of x to be increased:

I(x) = (INCR : (m, k : N). x.count = m * m < k ~» x.count > k)

Here we have used a fixed region type Counter for the counter region r. Since
fractional permissions can always be split ([2]), and region assertions always dupli-
cated (), it follows that counter(x,n) = counter(x, n) % counter(x, n), as required
by the specification. Since the shared region assertion in counter(x,n) contains
no self-referential region assertions or higher-order protocols, to prove it stable,
it suffices to show that,

Vm, k. valid((Im : N. n < m*x.count — m) A (x.count = mx*m < k)= 1)V

valid(x.count — k = (3m : N. n < m % x.count — m))

This follows easily by case analysis on n < k. Lastly, to verify the implementation
of Increment and Read, we have to prove they satisfy the protocol, namely that
they do not decrease the current count. This is easy.

3 This is a formula in the specification logic; P and Q are assertions and for an assertion
P, valid(P) is the specification that expresses that P is valid in the assertion logic.

Modular Reasoning about Separation of Concurrent Data Structures 177

2.2 Higher-Order Concurrent Abstract Predicates

As the above example illustrates, we can use CAP to reason about a shared
counter by imposing a protocol on the shared count field. Since this is a protocol
on a primitive resource (the count field), first-order CAP suffices. To reason
about examples, such as the shared bag, which associates ownership of general
resources — through the P predicate — with a shared bag, we need Higher-Order
CAP. In particular, to define the bag, predicate requires region and protocol
assertions containing the predicate variable P.

To support modular reasoning about region and protocol assertions contain-
ing predicate and assertion variables, ideally, we want to treat predicate and
assertion variables as black boxes. For instance, consider the assertion,

def

Q= P " protocol(t, I) (3)

where | is the parametric protocol I(=) = (7 : P ~» P) expressed in terms of the
assertion variable P. Treating P as a black box, Q is clearly stable if P is stable,
as Q asserts that P holds of the resources in region r, which is clearly closed
under the protocol . However, in general P could itself be instantiated with
region and protocol assertions, introducing the possibility of self-referential re-
gion assertions and turning | into a higher-order protocol. This makes reasoning
significantly more challenging. In particular, some self-referential region asser-
tions do not admit modular stability proofs: it is possible to instantiate P with
stable assertions for which Q is not stable. Furthermore, higher-order protocols
introduce a circularity in the definition of the model.

Self-referential Region Assertions. To see how self-referential region as-
sertions can break the modularity of stability proofs, consider assertion P below:

def Y/,t/,— /
P=x—0x%xy—0 * protocol(t’, J),

where J is the protocol with a single « action that allows the y variable to be
changed from 0 to 1, provided region r owns variable x and x is zero:

rt

(=)= (a: x50 xyr> 0~ Xr—>0r’t’7*yt—>1>

Then P is stable, because P asserts full ownership of the x variable, ensuring
that the environment cannot perform the « action, as x cannot also be owned
by region r. However, the region assertion Q defined above is not stable when

instantiated with this P, as P e asserts that region r does own x, thus allowing
the environment to perform the a action. As this example illustrates, some self-
referential region assertions thus do not admit modular stability proofs. A similar
problem occurs when reasoning about atomic updates to shared regions.

178 K. Svendsen, L. Birkedal, and M. Parkinson

Support. To ensure modular reasoning about stability and atomic updates
to shared regions, we require clients to explicitly prove that their instantia-
tions of predicate variables do not introduce self-referential region assertions. To
facilitate these proofs, we introduce a notion of support, which gives an over-
approximation of the types of regions a given assertion refers to.

An assertion P is supported by a set of region types A, if P is invariant under
arbitrary changes to the state and protocol of any region of a region type not
in A. To support modular reasoning about hierarchies of concurrent libraries,
instead of reasoning directly in terms of sets of regions, we introduce a partial
order on region types and reason in terms of upwards-closed sets of region types.
More formally, we introduce a new type, RType, of region types with a partial
order < : RType x RType — Spec, with a bottom element 1 : RType and
finite meets. We say that an assertion P is dependent on region type t if it is
supported by the set of region types greater than or equal to t. We introduce two
new specification assertions, dep, indep : RType x Prop — Spec for asserting that
an assertion is dependent and independent of a given region type, respectively.
The inference rules for dep and indep are fairly natural. For instance, if P is

r,ta,a
dependent on region type t;, then P s dependent on the greatest lower
bound, of t; and ts.

r,t,a . .
Whenever we reason about region assertions, P we thus require that P is
independent of the region type t. This excludes self-referential region assertions
through protocols (such as in [@])), and through nested region assertions (such

r,t,a
rta

as P).

Stability. General higher-order protocols would introduce a circularity in the
definition of the model. We break this circularity by exploiting the indirection
of region types — i.e., that we assign protocols to region types instead of indi-
vidual regions. This allows us to support protocols with assertions about the
region types of regions, but without assertions about the protocols assigned to
those region types. Technically, we enforce this restriction by ignoring protocol
assertions in action pre- and postconditions when interpreting protocols. The
parameterized higher-order protocol I,

I(x) = (x — 0 * protocol(t, J) ~» x — 1 % protocol(t, J))

is thus interpreted as I(x) = (x — 0 ~» x — 1). The interpretation simply ignores

the protocol(t, J) assertion (See definition of act in the technical report [19]).
r,t,a
In the absence of self-referential region assertions, a region assertion P | is

stable under the « action, if P is closed under the action pre- and postcondition
of the a action of I(a) and | is a first-order protocol. If | is a higher-order proto-

r,t,a
col, then the assertion P~ is stable under the v action, if P is closed under the

Modular Reasoning about Separation of Concurrent Data Structures 179

action pre- and postcondition of the « action of I(a) and P is also protocol-pure.
We thus have the following proof rule for stability:

I(a)[a] = (R).1p(%) ~ 14(x) V& valid(P A 1p(X) = L) V valid(I4(X) = P)
indept(P) mdept(Q) Stable(P * Q) pureprotocol(P) purestate(Q)

SA
stablel, (P lr’t’a * Q)

Here pure,ooc and pureg,. are propositions in the specification logic;
PUre otocol(P) expresses that P is invariant under any changes to protocols and
pureg...(P) expresses that P is invariant under any change to the local or shared
state. The SA proof rule thus allows us to prove stability of region assertions, by
first “pulling out” any protocol assertions, Q, from the region assertion. We say
that an assertion is expressible using state-independent protocols if the protocol
assertions can be “pulled out” in this sense. Formally,

sip = AP : Prop. 3Q, R : Prop. valid(P < Q R) A pureooco (Q) A purege (R)

nt, rt,
In particular, if P < Q * R and pureg,(R), then P, ‘o Q | “¥R. Thus, if

sip(P), then P Ir’t’a can be rewritten to a form that satisfies the pure;c Premise
of the SA rule. Expressibility using state-independent protocols is closed under
conjunction and separating conjunction, but in general not under disjunction
or existential quantification. To achieve closure under existential quantification,
Ix : X. P(x), we have to impose a stronger restriction on the predicate family P.
Namely, P has to be uniformly expressible using state-independent protocols:

usipy = AP : X — Prop. 3R : Prop. 3Q : X — Prop. pure,,,.(R) A
Vx € X. (P(X) < Q(X) * R) A pureprotocol(Q(m))

Then we have that usipy(P) = sip(Ix € X. P(x)).

2.3 View-Shifts

Phantom State. Proofs in Hoare logic often employ auxiliary variables [13],
as an abstraction of the history of execution and state. To support this style
of reasoning, without changing the formal operational semantics, we instrument
our abstract semantics with phantom fields.

We thus extend our logic with a phantom points-to assertion, written x¢ LN v,
which asserts partial ownership, with fraction p, of the phantom field f on object
x, and that the current value of the phantom field is v.

Phantom fields live in the instrumented state and are thus updated through

view-shifts. Updating a phantom field requires full ownership of the field (x¢ N

vi T X =N VQ)E A fractional phantom field permission can be split and re-
assembled arbitrarily. As a partial fraction only confers read-only ownership, two

4 The view-shift is annotated with the L region type; we explain the reason for such
annotations on view-shifts in the following.

180 K. Svendsen, L. Birkedal, and M. Parkinson

partial fractional assertions must agree on the current value of a given phantom
field (x¢ ey V1 % Xf 23 Vo = Vi = vp). To create a phantom field f we require that
the field does not already exist, so that we can take full ownership of the field.
We thus require all phantom fields of an object o to be created simultaneously
when o is first constructed (in the proof rule for constructors, see the technical
report [19]).

Simultaneous Updates. To support synchronization of two regions by split-
ting ownership of a common phantom field, we need to update the value of the
phantom field in both regions simultaneously. Previous versions of CAP have
only supported sequences of independent updates to single regions. To support
synchronization of protocols we thus extend CAP with support for simultaneous
updates of multiple regions.

We have chosen a semantics that requires that updates of regions have the
same action granularity (you cannot have one simultaneous update of two re-
gions, where the update of one region is justified by one action, and the update of
the other region is justified by two actions). This is a choice; it simplifies stabil-
ity proofs, but it means that we must explicitly track the regions that may have
been updated by a view-shift. We thus index the view-shift relation with a region
type t. The indexed view-shift relation, C;, thus describes a single update that,
in addition to updating the local state, may update multiple shared regions with
region types not greater than or equal to t, where each update must be justified
by a single action. The indexed view-shift relation is thus not transitive.

Figure [contains a selection of proof rules for view-shifts. The two main
rules, VSNOPEN and VSOPEN, are used to open a region, to allow access to the
resources in that shared region. Both rules allow us to open a region and perform
a nested view-shift on the contents of that region. This is how we reason about
simultaneous updates to multiple regions in the logic. Rule VSNOPEN allows
the nested view-shift to modify further regions, while VSOPEN does not (note
the use of region type L on the nested view shift in VSOPEN). Both rules require
a proof the update is possible —

P1* Py T me, Q1 % Qo and PixPyC1 Qp xQq,

respectively — and a proof that the update is allowed by the protocol, denoted

r,ty,a rti,a

Py | * Py ~Dt2 Qg | * Qg

and explained below.

Since actions owned by shared regions cannot be used to perform updates
to shared regions, the VSNOPEN rule further requires that P; does not assert
ownership of any local action permissions (pure,e,,(P1)). This ensures that no
local action permissions from Py were used to justify any actions performed in
the nested view-shift. Since VSOPEN does not allow the nested view-shift to
update any regions, this restriction is unnecessary for the VSOPEN rule.

Modular Reasoning about Separation of Concurrent Data Structures 181

pure .. (P1) indep,, ., (P1, P2, Q1,Q2) ta £ t1

rty,a r,ti,a

P \ * Py "2 Qy | * Qo P1* P2 Gy, Q1+ Q2

rti,a rt1,a VSNOPEN

Pl | * P2 Etg Ql | * Q2

indeptlth(Pl: P2,Q1,Q2) t2 £t
rty,a . rt1,a
PrTaPy et QT THQy PraPaCL QaQy

rti,a I rt1,a VSOPEN

P | * P2 G, Q | * Qo

PC stable(R PC t <t
=Q ®) VSFRAME Cu Q V= QWEAKEN

P+RC: Q=R PEtzQ

Fig. 1. Selected view-shift proof rules

Update Allowed. The update allowed relation, P ~"* Q, asserts that the
update described by P and Q to region r is justified by an action owned by P.
Thus the basic proof rule for the update allowed relation is:

indep,, (P(¥),Q(Y)) t2Zti I(a)la] = (%). P(X) ~ Q(X)
PE) el " Q) " ol

UAAct

Since the update allowed relation simply asserts that any update described by
P and Q is allowed, it satisfies a slightly non-standard rule of consequence, that
allows strengthening of both the pre- and postcondition. From this non-standard
rule-of-consequence, it follows that the update allowed relation satisfies a frame
rule that allows arbitrary changes to the context:

P— P P’ st Q/ Q= Q/ P oSt Q

UACONSE UAF
Pwr’tQ Q P *x Ry ws’tQ*RQ

3 Concurrent Bag

We now return to the concurrent bag from the introduction, and show how
to formalize the informal specification from the introduction. Next, we show
how to derive the two bag specifications from the introduction, using protocol
synchronization, nested region assertions, and higher-order protocols.

Specification. In the introduction we proposed a refineable bag specification
with phantom variables to force protocol synchronization and with view-shifts
to synchronize client and library in synchronization points. In the formal speci-
fication we restrict the synchronization pre- and postconditions, P and Q, using

182 K. Svendsen, L. Birkedal, and M. Parkinson

region types, to ensure that the client’s instantiation does not introduce self-
referential region assertions. Upon creation of new bag instances, the client picks
a region type t for that bag instance and the client is then required to prove that
all its synchronization pre- and postconditions are independent of region type t.
The formal refinable bag specification is:

{emp}new Bag(){ret. bag(t, ret) * retcont 22 0}

stable(P) stable(Q) indep,(P) indep,(Q)
VX. Xcont 22 0 % P(x) Ct Xcont LN 0 % Q(x, null)
VX. VX, Y. Xcont A2 U {y} * P(X) C¢ Xcont 2 Xk Q(x,y)
{bag(t,x) * P(x) }x.Pop(){ret. bag(t,x) * Q(x, ret) }

stable(P) stable(Q) indep, (P) indep,(Q)
X. VX,y. Xcont '£> X * P(X, y) Lt Xcont 'ﬁ XU {Y} * Q(va)
{bag(t,x) * P(x,y) x.Push(y){bag(t,x) * Q(x,y)}

bag(t, x) < bag(t,x) * bag(t, x) dep, (bag(t, x))

The indep, assumptions on the synchronization pre- and postconditions ensure
that P and Q do not introduce self-referential region assertions. Furthermore,
the index on the view-shifts, T, ensures that the granularity of actions match
between the library and any client protocols.

Exclusive Owner. We now show how to derive the standard specification with
a single exclusive owner. This specification is very simple to derive; we simply
let the exclusive owner of the bag keep the 1/2 permission of the phantom field
. def 1/2
containing the abstract state of the bag: bag,(t,x, X) = bag(t, x) * Xcont — X.

Shared Bag. The derivation of the shared bag specification is more inter-
esting, as it uses both protocol synchronization and higher-order protocols. We
begin by formalizing the shared bag specification in our logic:

dep,(P) stable(P) indep, (P) usipy, (P)
dep,.(bag,(t,x, P)) {emp}new Bag(){ret. bag,(t,ret,P)}

{bag,(t,x, P) * P(y)}x.Push(y){bag,(t,x, P)}
{bag,(t,x, P)}x.Pop(){ret. bag,(t,x, P) * (ret = null V P(ret))}

bag, (t,x, P) < bag,(t,x, P) * bag,(t,x, P)

This corresponds to the specification from the introduction, except with restric-
tions on predicate P to ensure it is expressible using state-independent protocols
and does not introduce self-referential protocol or region assertions.

Modular Reasoning about Separation of Concurrent Data Structures 183

With these restrictions on P we can now derive the shared bag specification
from our generic specification. The idea is to introduce a new region containing
the state associated with each element currently in the bag:

def

bag,(t,x,P) = 3r: RId. 37 : Perm. 3t;,t2 : RType.
t<tiAt<taAt: Lta Ate £ t1 Alindep,(P) A usip(P) A
rito,x
bag(ti,x) * q(x,P) . * [UPD|;,

def

a(x, P) 23X : P, (Val). xeom ~25 X ®yexP(y)
I(P)(x) = (UPD : q(x,P) ~ q(x, P))

The parametric protocol I(P) allows the bag to be changed arbitrarily, provided
the region still contains the state associated with each element currently in the
bag. From the assumption that each P(x) is stable and that usipy,;(P) it follows
that q(x, P) is stable and sip(q(x, P)). Hence, there exists R,S : Prop such that
q(x,P) & R %S, pure, 10001 (S) and pureg,o(R). Thus, bag(t,x, P) is equivalent
to the following assertion:

r,to,x

Irymiti,te. t <ty At <ta Atp Lta Ate Lty Abag(ty,x) * S P)

* R+ [UpD]},

rta,x

Hence, to prove bag,(t,x, P) stable, it suffices to prove stability of S ey * R.

Applying rule SA, it thus suffices to prove,
valid(q(x,P) AS = 1) Vvalid(q(x,P) = S)

and the right disjunct follows easily from the assumption that q(x, P) < R % S.
To derive the shared bag specification for push, we thus have to transfer the
resources associated with the element being pushed, P(y), to the client region

containing the element resources. We thus instantiate P and Q in the generic
r,to,x r,to,x
bag specification with P(y) = q(x,P) |(|:) % [UpD]". and q(x,P) |(|:) « [UpD]",
respectively.
We thus have to provide a view-shift to synchronize the abstract state of the
library protocol with our client protocol r:

VX : P (Val). Xcont 22X 4 P(y) * q(x,P) lr;:’x x [UpPD], C,
1/2 rita,x v
Xcont > (X U {Y}) * q(X7 P) 1P * [UPD]W
Since Xeont r£> X% P(y) « [UPD]". and q(x, P) are all independent of region type
t, by rule VSOPEN it suffices to prove that the change to region r is allowed and
possible. The update is easily shown to be allowed by the UPD action, using the
UAACcT rule and update action frame rule (UAF). To show the possibility of
the view shift it suffices to prove that:

Xeont P25 X % P(y) % 3Z : Ppn(Val). xcont -2 Z % ®,e2P(2) * [UPD], T,

Xeont 2125 (XU {y}) % 3Z : P (Val). xeont ~2> Z % ®ezP(2) * [UPD],

which follows ecasily, as xeont 2 X % Xeont H2 Z = X = Z.

184 K. Svendsen, L. Birkedal, and M. Parkinson

Note that to provide a view-shift to synchronize the abstract state of the
library protocol with the client protocol, we were essentially forced to update
the phantom field cont in the client region, which in turn forced us to transfer
ownership of P(y) to the client region.

4 Semantics

In this section we sketch the model and the interpretation of our logic. Due to lack
of space, we focus on parts presented in Section[2l The full model, interpretation
and accompanying soundness proof can be found in the technical report [19].

The presentation of the model is strongly inspired by the Views framework
presentation [4]. The model is an instance of the Views framework extended
with step-indexing to model guarded recursion, and thread local state to model
dynamic allocation of threads.

The basic structure of the model is defined below. Assertions are modeled as
step-indexed predicates on instrumented states (M). Instrumented states con-
sist of three components, a local state, a shared state and an action model. The
local state specifies the current local resources. The shared state is further par-
titioned into regions and each region consists of a local state, a region type and
a protocol parameter. The action model maps region types to parameterized
protocols, which are functions from a tuple containing a protocol argument, a
region identifier and an action identifier to an action. Lastly, actions are modeled
as certain step-indexed relations on shared states. In particular, actions are not
relations on shared states and action models, and thus do not support general
higher-order protocols. Actions do however support state-independent protocols,
through the region type indirection.

LState <’ Heap x PHeap x Cap SState % RId — (LState x RType X Val)

def

M £ LState x SState x AMod AMod % RType — ((Val x RId x AId) — Act)

def

Cap “ {f € R1d x Ald — [0,1] | 3R Cyy,, RId. Vr € RId \ R. Vo € Ald. f(r,a) = 0}

def

Act = {R € P(N x SState x SState) |
V(i, 81,82) € R. Vj <. Vr € RId \ dom(s2). Vn € RType. VI,1’ € LState.

s1 <s2 A (j731752) ERA (j’sl’SQ[r = (l/’n)}) ERA

G, silr = (I, n)), s2[r = (I',n)]) € R}
Prop ' {U € P(N x M) | V(i,m1) € U. Vj < i. Vmg € M.

(m1 =5 ma Vmi <mg) = (j,me) € U}
Spec € {U e P(N) | Vi€ U. Vj <i. j €U}

The semantics of both the assertion logic and specification logic is step-indexed.
The specification logic is step-indexed to allow reasoning about mutual recursion.
The assertion logic is step-indexed to support nested triples (which embed specifi-
cations in the assertion logic) [17] and guarded recursive predicates [1I3]. Specifi-
cations are thus modeled as downwards closed subsets of numbers, and assertions

Modular Reasoning about Separation of Concurrent Data Structures 185

are modeled as step-indexed predicates on instrumented states, that are down-
wards closed in the step-index and upwards closed in M. The upwards closure in
M ensures that assertions are closed under allocation of new regions and protocols
(the ordering < on M is defined as expected). To define guarded recursive func-
tions and predicates, the types of our logic are modeled as sets with a step-indexed
equivalence relation, =;, and terms and predicates are modeled as non-expansive
functions. However, as this part of the model is mostly orthogonal to CAP, we will
elide the details, which can be found in the technical report [19].

Comparison with Previous Models of CAP. The original model of (first-
order) CAP [5] employed a syntactic treatment of actions to break a circularity
in the definition of worlds. Our model follows the previous model of higher-
order CAP (without higher-order protocols) [6] in treating actions semantically.
However, to support higher-order protocols we introduce a new indirection, in the
form of region types. Actions are thus relations on shared states, which include
the region types of allocated regions. Actions can thus implicitly refer to the
protocol on regions through the region type indirection. While previous work has
only considered CAP for a first-order programming language, our HOCAP is for
a higher-order programming language. We thus step-index both the specification
and assertion logic, instead of just the specification logic.

Model Operations. Separating conjunction is interpreted as the lifting of the
partial commutative ey function to Prop (point-wise in the step-index). The e 4
function expresses how to compose two instrumented states. Two instrumented
states are combinable if they agree on the shared state and action model, by com-
bining their local states, using e s¢ate. Local states are combined using the stan-
dard combination function, ey, on disjoint partial functions, on the heap and phan-
tom heap component, and by point-wise summing up the action permissions.

While assertions are modeled as step-indexed predicates on instrumented
states, which include phantom fields, protocols, and regions, the operational
semantics operates on concrete states, which are simply heaps. The main sound-
ness theorem (Theorem [Il) expresses that any step in the concrete semantics
has a corresponding step in the instrumented semantics. This is expressed in
terms of an erasure function, |—| € M — Heap, that erases the instrumenta-
tion from an instrumented state. The erasure of an instrumented state is simply
the combination of the local state and all shared regions.

[(1,9)] = 1 eLstate H s(r).l

redom(s)
aot | B if (h,ph,c) = [(l,s)] and 1 (dom(ph)) C objs(h)
L(,s,9)] = .
undef otherwise

Interference. The interference relation R C M x M describes possible in-
terference from the environment. It is defined as the reflexive, transitive closure
of the single-action interference relation, Rf (defined below), that describes pos-
sible environment interference using at most one action on each region. Defining

186 K. Svendsen, L. Birkedal, and M. Parkinson

R as the reflexive, transitive closure of R forces a common action granularity
on updates to multiple regions with protocols referring to each other. In addition
to the step-index i € N, the single-action interference relation is also indexed by
a set A € P(RType) of region types of those regions that are allowed to change
and that actions justifying those changes are allowed to depend on.

(l1,81,§1) Rf‘ (l2,82,€2) f lh=0LAs1<saAg <gA |—(l1,81)—| defined A
(Vr € dom(s1). si(r) = s2(r) V (Fa. si(r).t € A A
([(t, s1)]-e)(ry o) < LA (i, 51]a, 52]4) € ci(s1(r)-t)(s1(r).a, 7, a)))

sla = Ar € RId.

def s(r) if r € dom(s) and s(r).t € A
undef otherwise

In particular, the Rf relation expresses that the environment is not allowed to
change the local state (I; = l3), but it is allowed to allocate new regions and
protocols (s1 < s9 and ¢; < ¢2). Furthermore, the environment is allowed to
update the resources of any region r with a region type in A (s1(r).t € A),
provided the update is justified by an action « that is partially owned by the
environment ([(I1,s1)](r,) < 1).

An assertion is stable if it is closed under interference to all region types:

stable(p) = {i € N | Vj <. Y(my,mo) € R}PE. (j,ma) € p = (j,ms) € p}

Previous models of CAP have only permitted multiple independent updates,
whereas our model supports multiple dependent updates. Previous models thus
lack the A-index that we use to enforce a common action granularity on updates
to multiple dependent regions.

View-Shifts. View-shifts describe a step in the instrumented semantics that
correspond to a no-op in the concrete semantics. To perform a view-shift from p
to ¢ we thus have to prove that for every concrete state ¢ in the erasure of some
instrumented state m € p there exists an instrumented state m’ € ¢ such that ¢
is in the erasure of m/.

PLiqg=E{ieN|VmeM. VjeEN.0<j<i =
Lo {(G:m)}H; € Lg* {Gm') [m RITET m/Y)5

To allow framing on view-shifts (rule VSFRAME in Section [Z3]) we bake in
framing under certain stable frames. The frames in question depend on the
region index ¢t € RType. In particular, C; permits a single simultaneous update
of multiple regions with region types not greater than or equal to ¢, each justified
by a single action. Hence, we require that C; is closed under arbitrary frames
that are stable under a single simultaneous update of multiple regions with

region types not greater than or equal to ¢, each justified by a single action, i.e.,
RItZt}

Support. In Section we introduced specification logic assertions indep and
dep, to internalize a notion of region type support in the logic, to allow explicit

Modular Reasoning about Separation of Concurrent Data Structures 187

proofs of the absence of self-referential region assertions. Their meaning is defined
in terms of the following supp assertion, which asserts that p is supported by the
set of region types A € P(RType). Formally, supp4(p) asserts that p is closed
under arbitrary shared states that agree on all regions of type A (s|la = s'|a)
and arbitrary action models that are A equivalent (¢ =4 ¢').

suppa(p) = {i € N| V) <i. V(j, (I,5,5)) € p. Vs'. V<.
S|A = S/|A AYS =A gl = (]a (laslagl)) € p}

Intuitively, two action models are considered A-equivalent if they agree on the
regions of types in A (but they are allowed to differ on regions of types not in
A). An assertion p is then dependent on region type t € RType if p is supported
by the set of region types greater than or equal to ¢, and independent if it is
supported by the set of region types not greater than or equal to t:

dep;(p) = SUpp{t'|t§t'}(p) indep, (p) = supp{t’\t$t’}(p)

Purity. To reason about state-independent protocols and nested view-shifts we
have introduced several types of purity; namely, state, protocol and permission
purity. Since our assertion logic is intuitionistic, we interpret purity as closure
under arbitrary changes to the state, protocols, and permissions, respectively. For

instance, pureprot(p) £ {ie N|Vj<i.V((s,9) €p. Y (4,(,s,¢)) € p}.

Soundness. The main soundness theorem expresses that for any derivable
Hoare triple, {p}c{q}, if € is executed with a local stack s as thread ¢, with a
global heap h that is in the erasure of some instrumented state in p(s), then, if
t (and any threads ¢ may have forked) terminates, then the terminal heap A’ is
in the erasure of some instrumented state in g(s’), where s’ is the terminal stack
of t.

Theorem 1. If I' + (A).{P}e{Q} then for all ¥ € [I'], thread identifiers t €
TId, stacks s € [A], and heaps h € |[['; AF P: Prop](¥,s)], if

(h, {(t,s,©)}) — (W, {(t, s, skip)} W T")
and T' is irreducible then h' € |[I; A+ Q: Prop] (¥, s")].

5 Conclusion and Future Work

We have proposed a new style of specification for thread-safe data structures
that allows the client to refine the specification with a usage protocol, in a
concurrent setting. We have shown how to apply it to the bag and concurrent
runner example. To realize this style of specification we have presented a new
higher-order separation logic with Concurrent Abstract Predicates, that sup-
ports state-independent higher-order protocols and synchronization of multiple
regions. We have also used the logic to specify and verify Joins, a sophisticated
library implemented using higher-order code and shared mutable state.

188 K. Svendsen, L. Birkedal, and M. Parkinson

We have demonstrated that our logic and style of specification scales to imple-
mentations of fine-grained concurrent data structures without helping [8]. Future
work includes investigating concurrent data structures that use helping.

References

1. Appel, A., Mellies, P.-A., Richards, C., Vouillon, J.: A very modal model of a
modern, major, general type system. In: Proc. of POPL (2007)

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-Hyperdoctrines, Higher-order Sepa-
ration Logic, and Abstraction. ACM TOPLAS (2007)

3. Birkedal, L., Mggelberg, R., Schwinghammer, J., Stgvring, K.: First Steps in Syn-
thetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. In: Proc. of
LICS (2011)

4. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
Compositional Reasoning for Concurrent Programs. In: Proceedings of POPL

2013)

5. I()insdale—Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504-528. Springer, Heidelberg (2010)

6. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: Proceedings of POPL, pp. 259-270 (2011)

7. Filipovié, 1., O’'Hearn, P., Rinetzky, N., Yang, H.: Abstraction for Concurrent Ob-
jects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252-266. Springer,
Heidelberg (2009)

8. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12, 463-492 (1990)

10. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: Proceedings of POPL, pp. 271-282 (2011)

11. Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377-396. Springer, Heidelberg (2012)

12. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, JAVA 2000, pp. 36-43. ACM (2000)

13. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cor-
nell (1975)

14. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking
stack. SIGPLAN Not. 42(1) (2007)

15. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of
TLDI, pp. 73-86 (2011)

16. Russo, C.V.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 260-274. Springer, Heidelberg (2007)

17. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare Triples and
Frame Rules for Higher-Order Store. LMCS 7(3:21) (2011)

18. Svendsen, K., Birkedal, L., Parkinson, M.: Verifying Generics and Delegates. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 175-199. Springer, Heidel-
berg (2010)

19. Svendsen, K., Birkedal, L., Parkinson, M.: Higher-order Concurrent Abstract Pred-
icates. Technical report, IT University of Copenhagen (2012),
http://www.itu.dk/people/kasv/hocap-tr.pdf

20. Turon, A., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical Relations
for Fine-Grained Concurrency. In: Proceedings of POPL (2013)

http://www.itu.dk/people/kasv/hocap-tr.pdf

Ribbon Proofs for Separation Logic

John Wickerson!, Mike Dodds2, and Matthew Parkinson?®

L Technische Universitit Berlin, Germany
2 University of York, United Kingdom
3 Microsoft Research Cambridge, United Kingdom

Abstract. We present ribbon proofs, a diagrammatic system for proving program
correctness based on separation logic. Ribbon proofs emphasise the structure of a
proof, so are intelligible and pedagogical. Because they contain less redundancy
than proof outlines, and allow each proof step to be checked locally, they may be
more scalable. Where proof outlines are cumbersome to modify, ribbon proofs
can be visually manoeuvred to yield proofs of variant programs. This paper in-
troduces the ribbon proof system, proves its soundness and completeness, and
outlines a prototype tool for validating the diagrams in Isabelle.

1 Introduction

A program proof should not merely certify that a program is correct; it should explain
why it is correct. A proof should be more than ‘true’: it should be informative, and it
should be intelligible. This paper does not contribute new methods for proving more
properties of more programs, but rather, a new way to present such proofs. Building on
work by Bean [2], we present a system that produces program proofs in separation logic
that are readable, scalable, and easily modified.

A program proof in Hoare logic [[15] is usually presented as a proof outline, in which
the program’s instructions are interspersed with ‘enough’ assertions to allow the reader
to reconstruct the derivation tree. Since emerging circa 1971, the proof outline has be-
come the de facto standard in the literature on both Hoare logic (e.g. [1,116,125,128]) and
its recent descendant, separation logic (e.g. [3,8-11, 14, |17, 18, 20, 127, 31]). Its great
triumph is what might be called instruction locality: that one can verify each instruction
in isolation (by confirming that the assertions immediately above and below it form a
valid Hoare triple) and immediately deduce that the entire proof is correct.

Yet proof outlines also suffer several shortcomings, some of which are manifested
in Fig. [[al This proof outline concerns a program that writes to three memory cells,
which separation logic’s x-operator deems distinct. First, it is highly repetitive: ‘x + 1’
appears three times. Second, it is difficult to interpret the effect of each instruction,
there being no distinction between those parts of an assertion that are actively involved
and those that are merely in what separation logic calls the frame. For instance, line 4
affects only the second conjunct of its preceding assertion, but it is difficult to deduce
the assignment’s effect because two unchanged conjuncts are also present. Of course,
these are only minor problems in our toy example, but they quickly become devastating
when scaled to serious programs.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 189-208] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

190 J. Wickerson, M. Dodds, and M. Parkinson

l{x»—>0*yl—>0*zn—>0} x—=0 y—0 z—0

2 [x]:=1; [x]:=1

3 {X»—>1*yl—>0*zn—>0} —

5 {x—=1xy—1xz—0} v 1

6 [z]:=1; [z]:=1

7 {xlxy—lxz—1} z—1
(a) A proof outline (b) A ribbon proof

Fig. 1. A simple example

The crux of the problem is what might be called resource locality. Separation
logic [18, 127] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. [Tal

{xl—>1*y»—>0*zn—>0}

{y+—o0}
frame [y] =1 small axiom
x—=1xz—0 yai=2s for heap update
{y»—> 1}

{x—1xy—1xz—0}

Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little — see Sect. [6l Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure [1bl gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assignments
update different memory cells. They are thus independent, and amenable to reordering
or parallelisation. One can imagine obtaining a proof of the transformed program by
simply sliding the left-hand column downward and the right-hand column upward. The
corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
triples {p} ¢ {¢q}, and often neglect the details of entailments between assertions, p = ¢,

Ribbon Proofs for Separation Logic 191

even though such entailments often encode important insights about the program being
verified. Ribbon proofs treat both types of judgement equally, within the same system.

There are many recent extensions of separation logic (e.g. [7-11,114,17,120,123,131])
to which our ribbon proof technology can usefully be applied; indeed, ribbons have
already aided the development of a separation logic for relaxed memory [5]. All of
these program logics are based on increasingly complex reasoning principles, of which
clear explanations are increasingly vital. We propose ribbon proofs as the ideal device
for providing them.

Comparison with Bean’s System. Bean [2] introduced ribbon proofs as an extension
of Fitch’s box proofs [12] to handle the propositional fragment of bunched implications
logic (BI) [24]. BI being the basis of separation logic’s assertion language [[18], his sys-
tem can be used to prove entailments between propositional separation logic assertions.
Our system expands Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. It is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing degree of flexibility.

Contributions and Paper Outline. We describe a diagrammatic proof system that
enables a natural presentation of separation logic proofs. We prove it sound and com-
plete with respect to separation logic (Sect. [3). We also give an alternative, graphical
formalisation (Sect.[}), which is sound in the absence of the frame rule’s side-condition.

We describe a prototype tool (Sect.[3) for mechanically checking ribbon proofs with
the Isabelle proof assistant. Given a small proof script for each basic step, our tool
assembles a script that verifies the entire diagram. Such tediums as the associativity and
commutativity of * are handled in the graphical structure, leaving the user to focus on
the interesting parts of the proof.

We discuss (Sect.[]) extensions to handle concurrent separation logic, possible appli-
cations to parallelisation, and connections to proof nets, bigraphs and string diagrams.

We begin by introducing our ribbon proof system with the aid of an example. Fur-
ther examples can be found in Wickerson’s PhD dissertation [33]. Of those, our ribbon
proof of the Version 7 Unix memory manager demonstrates that our system can present
readable proofs of more complex programs than those considered in this paper.

2 An Example

Let us consider a simple program for in-place reversal of a linked list.

Figure [3al presents a proof of this program as a proof outline (adapted from [27]).
For a binary relation r, we write = 7 y for z r y A emp, where emp describes an empty
heap. We write ¢ for the empty sequence, (—) for sequence reversal, and - for cons
and concatenation. We define the list o x predicate by induction on the length of the
sequence «:

listex % (z =nil) list (i - o)z def (T x> i, list o 2,

where x — y, z abbreviates (z — y) * (r + 1+ 2).

192 J. Wickerson, M. Dodds, and M. Parkinson

Fig. 2. While-loops and if-statements, pictorially

The invariant (line 5) states that x and y are linked lists representing two sequences
« and [such that the initial sequence « is obtained by concatenating the reverse of
B onto «. Our proof outline seeks to clarify the proof by making minimal changes
between successive assertions, despite this making the proof large and highly redundant.
Alternatively, intermediate assertions can be elided, but this can make the proof hard to
follow. Either way, proof outlines do not make the structure of the proof clear.

Figure [3bl presents a ribbon proof for the same program. It comprises

— steps, each labelled with an instruction (black) or a justification of an entailment
(dark grey),

— ribbons (light grey), each labelled with an assertion, and

— existential boxes, which delimit the scope of logical variables.

The ribbon proof advances vertically, and the resources (memory cells) being operated
upon are distributed horizontally across the ribbons. Instructions are positioned accord-
ing to the resources they access, not merely according to the syntax of the program, as in
the proof outline. Horizontal separation between ribbons corresponds to the separating
conjunction of the assertions on those ribbons; that is, parallel ribbons refer to disjoint
sets of memory cells. Because * is commutative, we can ‘twist’ one ribbon over another.
The resource distribution is not only unordered, but also non-uniform, so the width of
a ribbon is not proportional to the amount of resource it describes. In particular, the
assertion ‘x 7£ nil’ obtained upon entering the while-loop describes no memory cells
at all; it merely states that the program variable x is not the null pointer. A gap in the
diagram (e.g. above the ‘y:=nil’ step) corresponds to the ‘emp’ assertion.

While-loops are special steps that contain further nested steps. The loop invariant
is the collection of ribbons and existential boxes entering the top of the loop. This
collection must be recreated at the end of the loop body, so that one could roll the
proof into the shape drawn in Fig. Zh. If-statements are not depicted in our example, but
appear in Wickerson’s PhD dissertation [33]. They are treated straightforwardly: the
ribbons and boxes entering the then-branch must match those entering the else-branch,
and likewise at the two exit points, so that the proof could be cut and folded into the
three-dimensional shape suggested in Fig. 2b.

After the ‘z:=[x+1]" step, the assertion ‘list a z’ is not needed for a while. In a proof
outline, this assertion would either be temporarily removed via an explicit application
of the frame rule or, as is done in Fig. Bal redundantly repeated at every intermediate

{list g x}

y:=nil;

{list X * listey}

4 // Choose av:=qp and (3 :=¢
5

1
2
3

(x!=nil) {
Ha,ﬂ.xy'énil*listax*listﬂy
{*aoiﬂf'a }

// Unfold list def

o, B. (3 i, Z.x i, Z x lista’ z
{*aii-a/)*listﬂy*aoiﬂT-a
// Choose «a := o
{Ha,ﬁ,i,Z.xHi,Z*listaZ}

xag =BT (i-a)*list By

z:=[x+1];

|

10
11
" {Ha,ﬁ,i.listaz*xHi,z

xap =" (i-a)xlist By
// Reassociate ¢

da, B,i. listaz *x— i,z
{*aoi(i~ﬁ)T-a*listﬁy
[x+1] :=y;
{Ela,ﬂ,i.listaz*xr—)i,y

13

sxap=(i-B) -axlistBy
// Fold list def

Ja, B, 4. list oz * list (i - B) x
Carsaipra e
// Choose 3 :=(i-f)
{Ha,ﬁ. listazx list Bx % g = BT -a}
y:i=x;
{EIa,,B. listavz + list By % cg = BT -a}
X:=2z;
{Ha,ﬁ. listax list By % g = BT -a}
25}

{Ela,ﬂ.x = nil * list ax * list,By}
26 = at

xap = -«

27 // Unfold list def
28 {Ha,ﬁ.ai exlist By *ag = -a}
29 // Concatenate empty sequence
30 {3B. list By * a0 = BT}
31 // Fold list def
32 {list agy}
(a) A proof outline

while {Ela,ﬂ. listoaox list By * cg = G1 -a}

Ribbon Proofs for Separation Logic 193

list cip x

listey
Jo ‘ listax listfy oao=
a8 JELY

Unfold list def

3,0, Z.x— 10,7

Fold list def

* lista' Z
xa=1i-a |
ng‘ 3Z.x— i, 7 ag = Af ‘
[xlistaZ (i-a)
Wz :=[x+1]
‘ listaz x+— i,z
iate ¢
| o =
X0y (i) a
|

list Bx ay =
]“"3 BT o @
|
| list By

list a x

|
-
Unfold list def

a=¢

Concatenate empty sequence

ao =

|
Fold list def
listoag y

(b) A ribbon proof

Fig. 3. Two proofs of list reverse

194 J. Wickerson, M. Dodds, and M. Parkinson

point. In the ribbon proof, it slides discreetly down the left-hand side. This indicates
that the assertion is inactive without suggesting that it has been removed.

The proof outline obscures the usage of the logical variables o and 8. The witness
for o changes after line 8, then stays the same until line 24; meanwhile, 3’s witness is
constant through lines 5 to 18 before becoming the previous witness prepended with
1. This structure can only be spotted through careful examination of the proof outline
(aided by the textual hints on lines 9 and 19). The scoping of logical variables in the
ribbon proof, through the use of existential boxes, is far more satisfactory. Boxes extend
horizontally across several ribbons, but also vertically to indicate the range of steps over
which the same witness is used. Horizontally, existential boxes must be well-nested;
this corresponds to the static scoping of existential quan-
tifiers in assertions. Vertically, however, boxes may over-
lap. Figure M depicts how the boxes for o and 3 overlap in
Fig. BBl As explained in Sect. 3.1} such ‘overlaps’ are for-
mally treated as entailment steps of the form Jz.3y.p =
Jy. Jz. p. Similarly, boxes may be stretched horizontally
(see, for instance, immediately below the loop in Fig.
in accordance with the entailment p * (3z.¢) = Jz.p * g
(for z not in p). We thus obtain an intriguing proof struc-
ture — present in neither the proof outline nor the underlying
derivation tree — in which the scopes of logical variables do Fig-4. Existential boxes,
not follow the program’s syntactic structure, but are instead Yertically overlapping
dynamically scoped. Section [6] contains further discussion.

We close this section by explaining a shortcoming in the proof system as currently
presented. One nicety of Fig. Bblis that the ‘Reassociate i’ entailment, being horizon-
tally separated from its neighbouring proof steps, can clearly be moved a little earlier
or later. (Close inspection is necessary to discover this from the proof outline.) But
similar reasoning allows the assignments ‘y:=x’ and ‘x:=z’ to be swapped, unsoundly.
We ensure our proof system is sound either by forbidding such manoeuvres altogether
(Sect.B) or by encoding variable dependencies into the ribbons themselves (Sect. ().

3 Formalisation

Let us now formalise the concepts introduced in the previous section. We introduce in
Sect.[3.1] a two-dimensional syntax for diagrams, and explain how it can generate the
pictures we have already seen. We present the rules of our diagrammatic proof system
in Sect. We relate ribbon proofs to separation logic in Sect.

Proofs performed by hand are annotated with O, while those mechanically verified
using the Isabelle proof assistant are annotated with &%, and can be viewed online at:
http://www.cl.cam.ac.uk/”jpw48/ribbons.html

Definition 1 (Assertions). Let p range over a set of ordinary separation logic asser-
tions, containing at least the following constructions:

Assertion {pu=emp|p*xp|Jx.p|...}.

http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Ribbon Proofs for Separation Logic 195

Fsi{p}c{q} wr(c)Nrd(r) =0 (p, ¢, q) € Axioms Fsi{p}c{q}
Fsu{p*rhc{qg*r} Fsi{p}c{q} Fsi{3z. p} c{3z. ¢}
Fsu{pi}c{q} Fsu{p'}c{d'} Fsu{p} i {q}
Fsi{p2} c{g2} p=7p d=q Fsi{p} ez {q}

Fsi{p1 Vp2}c{q V g} Fsi{p}c{q} Fsi{p} c1 or c2 {q}
Fsu{ptei{at Fsi{a}ez{r} Fsi{p} c{p}
Fsi{p}ecisea {r} Fsi{p} skip {p} Fsi{p} loopc{p}

Fig. 5. Proof rules for commands

Definition 2 (Commands). Let ¢ range over the commands of a sequential program-
ming language, containing at least sequential composition (which is associative), skip
(the unit of sequential composition), and non-deterministic choice and looping:

f .
Command % {c::=c;c|skip|corec|loopc]|...}.
If a primitive ‘assumeb’ command is available (where b is a pure assertion; that is,
independent of the heap) then standard if-statements and while-loops can be derived:

. def
if bthenc; elsec; = (assumeb ; ¢;)or (assume—b ; c2)
. f
whilebdoc % loop(assumeb ; ¢) ; assume —b.

We assume a separation logic comprising the rules given in Fig.[B]plus a set of Axioms.
In the first rule, the frame rule, the rd and wr functions respectively extract the sets of
program variables read and written.

Remark 1. We do not consider Hoare logic’s conjunction rule in this paper. Conjunc-
tion and universal quantification can still appear inside individual ribbon assertions. We
could design graphical analogues (which would resemble our treatment of disjunction
and existential quantification) but this would complicate our graphical language with
constructs that are seldom used in separation logic proofs.

3.1 Syntax of Diagrams

We present a syntax that can generate the pictures seen in the preceding section. Each
diagram is built up as a sequence of rows, each containing a single proof step. We thus
refer to such diagrams as ‘stratified’. (Section] will present an alternative formalisa-
tion that does not impose such strict sequentiality.) We begin by introducing inferfaces,
which are the top and bottom boundaries through which diagrams can be composed.

Definition 3 (Interfaces). An interface is either a single ribbon labelled with an asser-
tion, an empty interface (shown as whitespace in pictures), two interfaces side by side,
or an existential box wrapped around an interface:

Interface < {Px= p | ¢ | PP | 3P }.

196 J. Wickerson, M. Dodds, and M. Parkinson

[a(z list (i -) x aoi(i’/j)T'a‘

3 :; pct 0 Wew = - o Choose 8 := (i - 8)
.

(
listaz HLJ listBx ag=pl-a

38 listaz lst Bx a0 =8" Extend SCpe of 3
|
| [list Bx [. .
38 listaz ao=g-a 93 listaz listBx ag=p -«
i
it By | gy EE
listaz v l
.= list = gt.
’ iy e = 9 o listax list By

list ax

|
listaz I8 UstBx oo =8«

(a) Stratified (b) Graphical (see Sect.H)

Fig. 6. Two ways to parse a fragment of Fig. 30

The asn function maps an interface to the assertion it represents:

asn p =p asn (P Q) = asn P asn Q
asne = emp asn P = 3Jz.asn P.

When clarity demands it, we shall write P ® @) instead of P (), and hence ®;c; P; for
iterated composition. We equate interfaces up to (PQ)R = P(QR), Pe = ¢ P =
P and PQ = @ P. Since ® commutes, ribbon ‘twisting’ is merely a presentational
artefact.

A diagram can be thought of as a mapping between two interfaces.

Definition 4 (Diagrams). A diagram D € Diagram is a non-empty list of rows p €
Row. When space permits, we align the list elements in a single column without punc-
tuation. A row is a pair (v, F') comprising a cell v € Cell and a frame F' € Interface.
The syntax of cells is as follows: p

P
def D 3 ﬂ loop
Cl = (v:=P IEH *D |33 \}
P L) 5
P

To illustrate how this syntax is used, Fig. [6al shows a term of Diagram that corresponds
to a fragment of the picture in Fig. Note that the cell in each row is always pushed
to the left-hand side. In the concrete pictures, it can be moved to allow corresponding
ribbons in different rows to be aligned, and hence for redundant labels to be removed.
Each entailment p = ¢ is handled as the basic step { p} skip {q} Rather than write
‘skip’, we label such a step with a justification of the entailment, and colour it dark
grey to emphasise those steps that actually contain program instructions. Concerning

Ribbon Proofs for Separation Logic 197

R BAsic EXISTS
IBBON FsL{asn P} c{asn Q} F@D:P—Q
Leelp.p o p P peel 3z . 3z p _>HacQ
'l P - Q
Q
Row
CHO(}CE ey P Q
::diag : }JZ —Q LofcﬁaD Pop wr(y)Nrd(F) =0
P — P =
Q F%,F): PQF - Q®F
P P
m loop MAIN
et P> P . row
ol u— . > Q V? <kF"pi:P,— P
P Fi2p0, ..., pr] : Po — Preya
Q

Fig. 7. Proof rules for stratified ribbon diagrams

existential boxes: the operations of extending, contracting and commuting are really
the entailments depicted informally below. Having to show these entailments explicitly
would make Fig. 3blmuch more repetitive. (We are working on an improved formalisa-
tion that supports these operations directly — see Sect. [0l for further discussion.)

|
P 3 4

3.2 Proof Rules for Diagrams

There are two pertinent questions to be asked of a given ribbon diagram. The first ques-
tion is: is it a valid proof? This subsection develops a provability judgement to answer
this. The second question — if this ribbon diagram is deemed valid, what does it prove?
—is addressed in the next subsection.

The rules given in Fig. [7] define provability judgements for cells ('), for rows
(F™") and for diagrams (F41%). Each judgement ascribes a type, which comprises the
top and bottom interfaces of that object.

The ROwW and M AIN rules recall Hoare logic’s sequencing rule and separation logic’s
frame rule. They embody the ‘locally checkable’ nature of ribbon proofs: that the entire
diagram is valid if each row is valid in isolation, and that a row is valid if its active cell
is valid and writes no program variable that is read elsewhere in the row.

The BASIC rule corresponds to an ordinary separation logic judgement s {p} ¢ {¢}.
This judgement may be arbitrarily complex, so a ribbon diagram may be no easier to
check than a traditional proof outline. This is intentional. Our formalisation allows p
and ¢ to be minimised, by framing common fragments away, but does not demand this.
The command c can be reduced to skip or some primitive command, but this may not
be desirable if one requires only a high-level overview proof. A ribbon diagram can

198 J. Wickerson, M. Dodds, and M. Parkinson

com[(vo0, Fo), -, (Y, F)] com P = skip com 3D = com D

=com~o ;- ; COMYE
P

P [D]

P loop com RSl = (com D)
com |JEll = ¢ com = loop(com D) or(com E)
Q Q Q

Fig. 8. Extracting a command from a stratified diagram

thus be viewed as a flexible combination of diagrammatic and traditional proofs, with
the BASIC rule as the interface between these two levels.

We remark that these proof rules provide only limited mechanisms for building new
diagrams from old. Diagrams can be wrapped in existential boxes, or put inside choice
or loop diagrams, but not stacked vertically or placed side by side. One can define
operations for composing elements of Diagram in sequence or in parallel, and hence
additional proof rules for diagrams so composed. The process is straightforward, and
described in Wickerson’s PhD dissertation [33].

3.3 Semantics of Diagrams

A stratified ribbon diagram denotes a Hoare triple. The pre- and postconditions of this
triple are the assertions represented by the diagram’s top and bottom interfaces. The
command being proved is extracted by composing the labels on all of the proof steps
in top-to-bottom order. Figure 8] defines the function responsible for this extraction. We
hence obtain the following soundness result for ribbon proofs.

Theorem 1 (Soundness - stratified diagrams). Separation logic can encode any prov-
able ribbon diagram.

Fiap . P — Q = ks {asn P} com D {asn Q}.
Proof. By mutual rule induction on F¢¢!, % and Fdia, &

Ribbon diagrams are trivially complete, because the BASIC rule can be invoked right
at the root of the proof tree. In fact, ribbon diagrams remain complete even when the
BASIC rule can occur only immediately beneath an axiom or the rule of consequence.

Theorem 2 (Completeness — stratified diagrams). A strengthened ribbon proof sys-
tem in which the BASIC rule is replaced by

(asn P, c, asn Q) € Axioms asn P = asn Q

and

P P
'_cel:P_>Q |_ce1:P4>Q
« Q

can encode any separation logic proof.
Fsi{p}c{q} = 3D, P,Q.c€com D Ap=asn P A gq=asnQ A Fliap. p—Q

Proof. By rule induction on t-g| . a

Ribbon Proofs for Separation Logic 199

The main problem with the formalisation given in this section is that it sacrifices much
of the flexibility we expect in our ribbon diagrams. It is often sound to tweak the layout
of a diagram by sliding steps up or down or reordering ribbons, but by thinking of our
diagrams as sliced into a sequence of rows, we rule out all such manoeuvres.

4 Graphical Formalisation

We now give an alternative formalisation, in which diagrams are represented not as a
sequence of rows, but as graphs.

Our ‘graphical’ diagrams are more flexible than their ‘stratified” cousins, but extra
precautions must be taken to ensure soundness. The core difficulty is the side-condition
on the frame rule: that the command writes no program variable in the frame. With strat-
ification, the frame is clearly delimited, so this condition is easily checked. Without it,
this check would become more global: a command may affect a ribbon that appears far
above or below itself in a laid-out diagram. Our simple solution is to require henceforth
that the frame rule has no side-condition. This requirement could be met by abolishing
program variables altogether, leaving only the heap and numerical constants. A more
practical alternative, explored later in this section, is to use the variables-as-resource
paradigm [4].

Our graphs are nested, directed, acyclic hypergraphs. Ribbons correspond to nodes,
and basic steps to hyperedges. Existential boxes are represented as single nodes that
contain a nested graph. Likewise, choice diagrams and loop diagrams are represented
by single hyperedges that contain, respectively, one or two nested graphs.

Definition 5 (Graphical diagrams, assertion-gadgets and command-gadgets). Let
V be an infinite set of node-identifiers. We define a language of assertion-gadgets,
command-gadgets and graphical diagrams as follows.

1
AsnGadget — {A = p | 3@} ComGadget = {C = IEI BIEEIR | }

GDiagram = {G | A¢ € Vg — AsnGadget, Eg Csn P(Va) x ComGadget x P(Va),
Ve Can V, acyclic(G) and linear (G), where G = (Va, A, Eq)}

The definitions are mutually recursive, and are well-formed because the definienda (left-
hand sides) appear only positively in the definientia (right-hand sides)L The first of
these equations defines an assertion-gadget A € AsnGadget o be either a ribbon or an
existential box. The second defines a command-gadget C € ComGadget to be either a
basic step, a choice diagram, or a loop diagram. The third equation defines a graphical
diagram G € GDiagram 1o be a triple (Vg, Aq, Eq) that comprises:

— a finite set Vg Can V of node identifiers;
— alabelling Ag : Vo — AsnGadget that associates each node identifier with an
assertion-gadget; and

! This is true even for the occurrence of ComGadget in the definiens of GDiagram, because the
set in which it appears is finite.

200 J. Wickerson, M. Dodds, and M. Parkinson

- afinite set Eq Can P(Vi) x ComGadget x P(V) of hyperedges (v, C, w), each
comprising a set v of tail identifiers, a command-gadget C, and a set w of head
identifiers,

and which satisfies the following two properties.

ACYCLICITY: Let us write v — w if v € v and w € w for some (v,C,w) € Eg.
Then define acyclic(G) to hold iff the transitive closure of — is irreflexive.

LINEARITY: Define linear(G) to hold iff the hyperedges in E¢ have no common heads
and no common tails. (This forbids the duplication or merging of ribbons, in ac-
cordance with p = p x p and p x p = p being invalid in separation logic.)

Remark 2. We could represent our diagrams by a single graph, with dedicated ‘parent’
edges to simulate the nesting hierarchy. However, mindful of our Isabelle formalisa-
tion, and that “reasoning about graphs [...] can be a real hassle in HOL-based theorem
provers” [34], we prefer to use an algebraic datatype to depict the hierarchy.

Figure[6bl presents a term of GDiagram that corresponds to a fragment of the picture in
Fig.[3bl Unlike Fig.[6al this representation does not impose a strict ordering between the
‘y:=x’ and ‘x:=2’ instructions. As such, this proof is invalid; the figure serves merely
to demonstrate how the graphical syntax is used.

The problem is that the graph does not take into account dependencies on program
variables. To address this, let us remove the side-condition on the frame rule in our
axiomatisation s of separation logic (Fig.[3). The new proof system thus obtained
shall be written as g, . We shall now develop proof rules for graphical diagrams, and
show them to be sound and complete with respect to ¢, . Section [4.3] describes the
application of ribbon proofs to variables-as-resource, which is one instance of I-g, .

4.1 Proof Rules for Graphical Diagrams

Proof rules for graphical diagrams, command-gadgets and assertion-gadgets are de-
fined in Fig. [0l which refers to the top and bot functions defined below. The judgement
Fe'2 G P — (@ means that the diagram G, precondition P, and postcondition ¢
form a valid proof. The interfaces P and @ are always equal to top(G) and bot(Q)
respectively, so we sometimes omit them. The judgements for command-gadgets and
assertion-gadgets are similar, the latter without interfaces.

Definition 6 (Top and bottom interfaces). These functions extract interfaces from
assertion-gadgets and from diagrams. For assertion-gadgets:

top p = p bot p = p top 3G = Ftop G bot =G| = Fhot G .
For diagrams:
tOp(G) = Queinitials G top(AG 'U) bOt(G) = Qucterminals G bOt(AG U)

where initials(G) = Vo \U(__yyep, v and terminals(G) = Vo \ Uy, ep, V-

c€Eq
As was the case for stratified diagrams, one can define operations for composing ele-
ments of GDiagram in sequence or parallel, and hence additional proof rules for graph-
ical diagrams so composed [33].

Ribbon Proofs for Separation Logic 201

GCHOICE
GR GBASsIC GEXISTS FE G P = Q
iAo Fe{asn P} c{asn Q} Fee G FE Gy : P — Q
o o ikl P — Q Lasn Sz
'_COm
GMAIN
GLoor Yo € Vg.F*" Ag v

G . P— P V(v,C,w) € Ec.F" C : Qpev bot(Agv) = Quew top(Ag w)
il & G : top(G) — bot(G
N p(C) > bot(C)

Fig. 9. Proof rules for graphical diagrams

coms(G) = {co ;-3 ck—1; skip | J[zo,...,xk—1] € lin G.Vi < k.c; € coms z; }
coms p = {skip} coms 3@ = comsG coms |l = {<}

{Cl or C2 ‘]_oop
coms RSl = ¢ € coms Gy, coms = {loopc|c € coms G}
c2 € coms Ga}

Fig. 10. Extracting commands from a diagram

4.2 Semantics of Graphical Diagrams

Since graphical diagrams have a parallel nature, but our language is only sequential, it
follows that each graphical diagram proves not a single command, but a set of com-
mands, each one a linear extension of the partial order imposed by the diagram. The
coms function defined in Fig. [0l is responsible for extracting this set from a given di-
agram. Each command is obtained by picking an ordering of command- and assertion-
gadgets that is compatible with the partial order defined by the edges (this is the purpose
of the lin function defined below), then recursively extracting a command from each
gadget and sequentially composing the results.

Definition 7 (Linear extensions). For a diagram G, we define lin G as the set of all
lists [z, . . ., xr—1] of AsnGadgets and ComGadgets, for which there exists a bijection
7w k — Vo U Eq that satisfies, for all (v,C,w) € Eqg:

Ywev.r) <7 Hv,C,w) Vw e w.nH(v,C,w) < 7 (w)
and where, for all i < k: x; = Ag(v) if 7(i) = v, and x; = C if n(i) = (v,C,w).
By ACYCLICITY, every diagram admits at least one linear extension.

Theorem 3 (Soundness — graphical diagrams). Separation logic without the side-
condition on the frame rule can encode any provable ribbon diagram:

F&2 G P — Q = Ve € coms G.F§ {asn P} c{asn Q}.
Proof. By mutual induction on 82, -¢°™ and 412, See [33] for details. &

202 J. Wickerson, M. Dodds, and M. Parkinson

Theorem 4 (Completeness — graphical diagrams). A strengthened ribbon proof sys-
tem in which the GBASIC rule is replaced by

(asn P, c, asn Q) € Axioms J asn P = asn Q
an
"COH]ZP%Q l_com:P*)Q

can encode any proof in separation logic without the side-condition on the frame rule.
Fe{pr}c{q} = 3G, P,Q.c€coms GAp=asnPAg=asnQANF"™G: P—=Q

Proof. By rule induction on ¢, . O

4.3 Using Variables-as-Resource

The variables-as-resource paradigm [4] treats program variables a little like separa-
tion logic treats heap cells. Each program variable x is associated with a piece of re-
source, all of which (written Own(x)) must be held to write to x, and some of which
(Own(x) for some 0 < 7 < 1) must be held to read it. This treatment replaces the
use of rd and wr sets in Fig.[5l The variables-as-resource proof system is an instance of
separation logic without the side-condition on the frame rule, and can be obtained from
5, simply by selecting an appropriate Axioms set.

Figure [[Tlexhibits a ribbon proof, conducted using variables-as-resource, of the list-
reversal program from Sect.[2l Variables-as-resource dictates that every assertion in the
proof is accompanied by one Own predicate per program variable it mentions. For in-
stance, the precondition list o x is paired with some of x’s resource. The extra shading
is merely syntactic sugar; for instance:

X, 5y X4,y def Owny(x) * Own 5(y) * x— 1,y .

The other preconditions — the resources associated with y and z — entitle the program
to write to these program variables in due course. Note that at the entry to the while
loop, part of x’s resource is required in order to carry out the test of whether x is zero.
At various points in the proof, variable resources are split or combined, but their total is
always conserved.

Figure [l introduces a couple of novel visual features: ribbons may pass ‘under-
neath’ basic steps to reduce the need for twisting (see the three ‘Choose ...~ steps), and
horizontal space is conserved by writing some assertions sideways. The diagram can be
laid out in several ways, unconstrained by the stratification strategy of the previous sec-
tion, so there exists the potential to use the same diagram to justify several variations of
a program. Recall the shortcoming of Fig.[3bt that it misleadingly suggested that ‘y : =x’
and ‘x:=2z’ could be safely permuted. Figure [[T] forbids this by inserting a ribbon be-
tween them labelled ‘x’. On the other hand, both figures agree that the ‘Reassociate ¢’
step can be safely manoeuvred up or down a little.

Ribbon Proofs for Separation Logic 203

x listagx =z y
2X éx list ap x y listey
Choose @ := ap and 3 := €

3(‘1 3B ;X list ax

listBy oao=p" -«

y

x A ,i, Z. x>0, 7 *
T listd! Zxa=1i- o (
Choose « := o/

Jallx FZx— i, ZxlistaZ oy =
- S G
37" éz listaz X, éz X1,z éy éy S
| S
&4 .
‘ ;z X, ;y X4,y ap =
9 (i B«
|
z listaz x list (i - B) x y
3?3 x list Bx ao=8"-«a
‘ yi=x
‘ = y list By
‘ X:=2z
‘ éx ;x listax =z
E ——

J

\

|
‘ = a=c
|

\

Concatenate empty seq.

o = ' .

Fold list def :

y st ag y

Fig. 11. A ribbon proof of list reverse using variables-as-resource

204 J. Wickerson, M. Dodds, and M. Parkinson

4.4 Stratified or Graphical?

We have presented two alternative formalisations of ribbon diagrams.

The stratified version supports traditional separation logic (with its side-condition on
the frame rule), and the formalisation is simpler, but its proof objects are less manoeu-
vrable. Concrete pictures should be drawn carefully so they can be successfully parsed
into a sequence of rows.

The graphical version works with any separation logic whose frame rule has no side-
conditions, variables-as-resource being one example. Another example is Views [7],
which can encode a wide variety of program logics. The use of variables-as-resource
requires much splitting, distributing and re-combining of the resources associated with
each program variable, and this is perhaps an unnecessary burden if one seeks merely
to present a proof of a particular program. (Figure [[1] is significantly larger and fid-
dlier than Fig. which does not use variables-as-resource.) However, one seeking to
explore potential optimisations, or to analyse the dependencies between various com-
ponents of a program, should consider investing in variables-as-resource.

5 Tool Support

Several properties of ribbon proofs make them a potentially appealing partner for auto-
matic verification tools based on separation logic, such as Bedrock [€] and VeriFast [[19].
Because ribbon proofs can be decomposed both horizontally and vertically, into inde-
pendent proof blocks, they may suggest more opportunities for modular verification.
One problem with automation is that users can lose track of their position in the proof:
ribbons could provide an interface to the proof as it develops. Moreover, when automa-
tion fails, partial ribbon proofs could be used to view and guide the process manually.
Ribbon proofs also shift the bureaucracy of rearranging assertions (in accordance with
the associativity and commutativity of *) from the individual proof steps into the sur-
rounding graphical structure, where it is more naturally handled.

To demonstrate the potential of ribbon proofs to complement automation, we have
developed a prototype tool whose inputs are a ribbon diagram and a collection of small
Isabelle proof scripts, one for each basic step. Our tool uses our Isabelle formalisation
of Thm. Il and the proof rules of Fig.[7] to assemble the proof scripts for the individual
commands into a single script that verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands and a collection of
axioms about lists, our tool has successfully verified a number of small ribbon proofs,
among them Fig.[3bl All of the proof scripts for the individual basic steps are small, and
they can often be discharged without manual assistance. Individual proof scripts can be
checked in any order — even concurrently. This feature recalls recent developments in
theorem proving that allow proofs to be processed in a non-serial manner [32].

The input to the tool is a graphical ribbon diagram, following Defn. [5l Our tool
begins by converting this graphical diagram into a stratified diagram, resolving any
ambiguity about the node order by reference to the order of their input. (By taking
this approach, we avoid having to invest in variables-as-resource.) It outputs a pictorial
representation of the graph it has verified, laid out using the dot tool in the Graphviz
library. Clicking on any basic step loads the corresponding proof script, which can then

Ribbon Proofs for Separation Logic 205

{xr—>0*yi—>0*zr—>0} {xi—)O*yr—)O*ZI—)O}
[x]:=1; {xr—>0*yl—>0}
{x1xy—0xz—0} [x]:=1; fram
{y»—>0>kzv—>0} {x»—>1*y»—>0} Z:%
[yl:=1; frame [yl:=1;
{yi—)l*zr—>0} %1 {xr—>1*yi—>1}
{[z]:=1; } {Xl—)l*Yl—)l*Zl—)O}
y—1lxz—1 [z]:=1;
{xl—>1*y»—>1*zn—>1} {x»—>1*yl—>1*z»—>1}
(a) (b)

Fig. 12. Two alternatives to the proof outline in Fig.[Tal

be edited. When a step’s proof is admitted by Isabelle, the corresponding node in the
pictorial representation is marked with a tick; a failed or incomplete proof is marked
with a cross. The picture below illustrates this on a snippet of Fig. and also shows
the proof script for one of the steps.

lemma listrev_lemi3: llst az list ,3 x

" {list (lvar * 7’)(1)11(17“ 2"}
“x” = (pvar “z”)
{list (lvar “a”) (pvar “x”)}"

by (auto simp add: assign_axiom) | | lzstax lzstﬁy

In the current prototype, the user must supply the input in textual form, but in the fu-
ture, we intend to enable direct interaction with the graphical representation, perhaps
through a framework for diagrammatic reasoning such as Diabelli [30]. We envisage an
interactive graphical interface for exploring and modifying proofs, that allows steps to
be collapsed or expanded to the desired granularity — whether that is the fine details of
every rule and axiom, or a coarse bird’s-eye view of the overall structure of the proof.

The ribbon proofs in this paper have all been laid out manually (and we are preparing
a public release of the IZTEX macros we use to do this) but there is scope for additional
tool support for discovering pleasing layouts automatically.

6 Related and Further Work

Ribbon proofs are more than just a pretty syntax; they are a sound and complete proof
system. Proof outlines have previously been promoted from a notational device to a for-
mal system by Schneider [28], and by Ashcroft, who remarks that “the essential prop-
erty of [proof outlines] is that each piece of program appears once” [1l]. Very roughly
speaking, ribbon proofs extend this property to each piece of assertion.

When constructing a proof outline, one can reduce the repetition by ‘framing off’
state that is unused for several instructions. For instance, Fig.[I2a depicts one variation
of Fig.[Tal obtained by framing off x during the latter two instructions; another option is
to frame off z during the first two (Fig. [12B). It is unsatisfactory that there are several
different proof outlines for what is essentially the same proof. More pragmatically, de-
ciding among these options can be difficult with large proof outlines. Happily, each of

206 J. Wickerson, M. Dodds, and M. Parkinson

while true { ;
L . vhile true { (full Ac+—) V (—full A emp)
x:=new();
with buff when !full { with buff when full {
full:=true; full
Cc:=X;
} full Ac— _
¥ CH _ full A emp
(a) Code for ‘producer’ thread full := false
i= —full
while true { y = ¢ ull A emp
with buff when full { y—_ (full Acr)V (=full A emp)
full:=false;
y:=c;
} dispose(y)
dispose(y);
}
(b) Code for ‘consumer’ thread (c) Ribbon proof for ‘consumer’ thread (mock-up)

Fig. 13. Concurrency example: a single-cell buffer

these options yields the same ribbon proof (Fig. [[B). We note a parallel here with proof
nets [13], which are a graphical mechanism for unifying proofs in linear logic that differ
only in uninteresting ways, such as the order of rule applications.

The graphical structures in Defn. Blresemble Milner’s bigraphs [22]. Assertions and
commands are nodes, the deductions of the proof form the link graph, and existential
boxes, choices and loops form the place graph. In fact, our diagrams correspond to
binding bigraphs, in which links may not cross place boundaries. Relaxing this restric-
tion may enable a model of the ‘dynamic’ scoping of existential boxes exhibited in
Fig. [l which our current formalisation dismisses as a purely syntactic artefact.

Ribbon proofs can be understood as objects of a symmetric monoidal category, and
our pictures as string diagrams, which are widely used as graphical languages for such
categories [29]. In future work we intend to investigate this categorical semantics of rib-
bon proofs; in particular, the use of fraces [21]] to model the loop construction depicted
in Fig.2h, and coproducts to model if-statements and existential boxes.

Another avenue for future work is the connection between ribbon proofs and Raza et
al.’s labelled separation logic [26]. Labelled separation logic seeks to justify compiler
reorderings by analysing the dependencies between program statements, and checking
that these are not violated. The dependencies are detected by first labelling each com-
ponent of each assertion with the commands that access it, and then propagating these
labels through program proofs. Raza’s labels recall the columns in our ribbon diagrams:
each ribbon and each command occupies one or more columns of a diagram, and com-
mands that occupy common columns (modulo twisting) may share a dependency.

We have so far considered only sequential programs, but our proofs have a dis-
tinctly concurrent flavour. It may be possible to extend ribbon proofs to concurrent
separation logic 23] as follows. Figure [13] gives a program (adapted from [23]) in
which two threads communicate through a shared buffer at location c. The resource

Ribbon Proofs for Separation Logic 207

invariant (full A ¢ — _) V (=full A emp) protected by the lock buff signifies that
c is shared exactly when full is set. Figure [[3d imagines a ribbon proof of the ‘con-
sumer’ thread. The resource invariant is initially in a protected ribbon, inaccessible to
the thread (as suggested by the hatching). Upon entering the critical region, the ribbon
becomes available, and upon leaving it, the resource invariant is re-established and the
ribbon is inaccessible once again.

Beyond concurrent separation logic, we intend to apply our system to more ad-
vanced separation logics. It has already aided the development of a logic for relaxed
memory [5]; other candidates handle fine-grained concurrency [8,10,11,131], dynamic
threads [9], storable locks [[14], loadable modules [20] and garbage collection [17]. In-
creasingly complicated logics for increasingly complicated programming features make
techniques for intuitive construction and clear presentation ever more crucial.

7 Conclusion

Ribbon proofs are an attractive and practical approach for constructing and presenting
proofs in separation logic or any derivative thereof. They contain less redundancy than
a proof outline, and express the intent of the proof more clearly. Each step of the proof
can be checked locally, by focusing only on the relevant resources. They are useful
pedagogically for explaining how a simple proof is constructed, but also scale to more
complex programs (as demonstrated in [33]), and have aided the development of a sepa-
ration logic for relaxed memory [15]. They show graphically the distribution of resource
in a program, and in particular, which parts of a program operate on disjoint resources,
and this may prove useful for exploring parallelisation opportunities.
Acknowledgements. Wickerson was supported by a DAAD postdoctoral scholarship
and EPSRC grant F019394/1. Dodds was supported by EPSRC grants EP/H005633/1
and EP/F036345. Figure [2| was drawn by Rasmus Petersen. We thank him, Nick Ben-
ton, Richard Bornat, Matko Botinc¢an, Daiva NaudZitiniené, Peter O’Hearn, Andy Pitts,
Noam Rinetzky and the anonymous reviewers for suggestions and encouragement.

References

[1] Ashcroft, E.A.: Program verification tableaus. Technical Report CS-76-01, University of
Waterloo (1976)

[2] Bean, J.: Ribbon Proofs - A Proof System for the Logic of Bunched Implications. PhD
thesis, Queen Mary University of London (2006)

[3] Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting in sepa-
ration logic. In: POPL 2005. ACM Press (2005)

[4] Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. In: MFPS
XXI. ENTCS, vol. 155 (2006)

[5] Bornat, R., Dodds, M.: Abducing barriers for Power and ARM. Draft (2012)

[6] Chlipala, A.: Mostly-automated verification of low-level programs in computational sepa-
ration logic. In: PLDI 2011. ACM Press (2011)

[7] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: Composi-
tional reasoning for concurrent programs. In: POPL 2013. ACM Press (2013)

[8] Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent
Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504-528.
Springer, Heidelberg (2010)

[9] Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-Guarantee Reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363-377. Springer, Heidelberg (2009)

208

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]

[28]
[29]

[30]

[31]

[32]
[33]

[34]

J. Wickerson, M. Dodds, and M. Parkinson

Feng, X.: Local rely-guarantee reasoning. In: POPL 2009. ACM Press (2009)

Feng, X., Ferreira, R., Shao, Z.: On the Relationship Between Concurrent Separation Logic
and Assume-Guarantee Reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 173-188. Springer, Heidelberg (2007)

Fitch, F.B.: Symbolic Logic: An Introduction. Ronald Press Co. (1952)

Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50 (1987)

Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for Storable
Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 19-37. Springer,
Heidelberg (2007)

Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969)

Hoare, C.A.R.: Proof of a program: Find. Communications of the ACM 14(1) (1971)

Hur, C.-K., Dreyer, D., Vafeiadis, V.: Separation logic in the presence of garbage collection.
In: LICS 2011. IEEE Computer Society (2011)

Ishtiaq, S., O’Hearn, P.W.: Bl as an assertion language for mutable data structures. In: POPL
2001. ACM Press (2001)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast:
A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41-55. Springer,
Heidelberg (2011)

Jacobs, B., Smans, J., Piessens, F.: Verification of Unloadable Modules. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 402—416. Springer, Heidelberg (2011)
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. of the Cambridge
Philosophical Society 119(3) (1996)

Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press
(2009)

O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci. 375(1-3)
(2007)

O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. B. Symb. Log. 5(2) (1999)
Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informat-
ica 6 (1976)

Raza, M., Calcagno, C., Gardner, P.: Automatic Parallelization with Separation Logic. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348-362. Springer, Heidelberg (2009)
Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS 2002.
IEEE Computer Society (2002)

Schneider, F.B.: On Concurrent Programming, ch. 4. Springer (1997)

Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures
for Physics, vol. 813, ch. 4. Springer (2011)

Urbas, M., Jamnik, M.: Diabelli: A Heterogeneous Proof System. In: Gramlich, B., Miller, D.,
Sattler, U. (eds.) ICAR 2012. LNCS, vol. 7364, pp. 559-566. Springer, Heidelberg (2012)
Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256-271.
Springer, Heidelberg (2007)

Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In:
UITP 2010. ENTCS, vol. 285 (2012)

Wickerson, J.: Concurrent Verification for Sequential Programs. PhD thesis, University of
Cambridge (2013)

Wu, C., Zhang, X., Urban, C.: A Formalisation of the Myhill-Nerode Theorem Based on
Regular Expressions (Proof Pearl). In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk,
F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341-356. Springer, Heidelberg (2011)

Abstract Refinement Types

Niki Vazou!, Patrick M. Rondon?, and Ranjit Jhala!

1 UC San Diego
2 Google

Abstract. We present abstract refinement types which enable quantification over
the refinements of data- and function-types. Our key insight is that we can avail
of quantification while preserving SMT-based decidability, simply by encod-
ing refinement parameters as uninterpreted propositions within the refinement
logic. We illustrate how this mechanism yields a variety of sophisticated means
for reasoning about programs, including: parametric refinements for reasoning
with type classes, index-dependent refinements for reasoning about key-value
maps, recursive refinements for reasoning about recursive data types, and in-
ductive refinements for reasoning about higher-order traversal routines. We have
implemented our approach in a refinement type checker for Haskell and present
experiments using our tool to verify correctness invariants of various programs.

1 Introduction

Refinement types offer an automatic means of verifying semantic properties of pro-
grams by decorating types with predicates from logics efficiently decidable by modern
SMT solvers. For example, the refinement type {v: Int | v > 0} denotes the ba-
sic type Int refined with a logical predicate over the “value variable” v. This type
corresponds to the set of Int values v which additionally satisfy the logical predicate,
i.e., the set of positive integers. The (dependent) function type x: {v:Int| v >
0} -> {v:Int]| v < x} describes functions that take a positive argument x and
return an integer less than x. Refinement type checking reduces to subtyping queries of
the form I' - {7:v | p} < {7:v | ¢}, where p and ¢ are refinement predicates. These
subtyping queries reduce to logical validiry queries of the form [I'] A p = g, which can
be automatically discharged using SMT solvers [6].

Several groups have shown how refinement types can be used to verify properties
ranging from partial correctness concerns like array bounds checking [27/23] and data
structure invariants [16] to the correctness of security protocols [2], web applications
[14] and implementations of cryptographic protocols [10]].

Unfortunately, the automatic verification offered by refinements has come at a price.
To ensure decidable checking with SMT solvers, the refinements are quantifier-free
predicates drawn from a decidable logic. This significantly limits expressiveness by
precluding specifications that enable abstraction over the refinements (i.e., invariants).
For example, consider the following higher-order for-loop where set i x v returns
the vector v updated at index i with the value x.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 209-228] 2013.
© Springer-Verlag Berlin Heidelberg 2013

210 N. Vazou, P.M. Rondon, and R. Jhala

for :: Int -> Int -> a -> (Int -> a -> a) -> a
for lo hi x body loop lo x
where loop i x

| i < hi = loop (i+1l) (body i x)
| otherwise = x
initUpto :: Vec a -> a -> Int -> Vec a

initUpto a x n = for 0 n a (\i -> set i x)

We would like to verify that initUpto returns a vector whose first n elements are
equal to x. In a first-order setting, we could achieve the above with a loop invariant
that asserted that at the i" iteration, the first i elements of the vector were already
initalized to x. However, in our higher-order setting we require a means of abstracting
over possible invariants, each of which can depend on the iteration index i. Higher-
order logics like Coq and Agda permit such quantification over invariants. Alas, validity
in such logics is well outside the realm of decidability, and hence their use precludes
automatic verification.

In this paper, we present abstract refinement types which enable abstraction (quan-
tification) over the refinements of data- and function-types. Our key insight is that we
can preserve SMT-based decidable type checking by encoding abstract refinements as
uninterpreted propositions in the refinement logic. This yields several contributions:

— First, we illustrate how abstract refinements yield a variety of sophisticated means
for reasoning about high-level program constructs (§2), including: parametric re-
finements for type classes, index-dependent refinements for key-value maps, re-
cursive refinements for data structures, and inductive refinements for higher-order
traversal routines.

— Second, we demonstrate that type checking remains decidable (§3) by showing a
fully automatic procedure that uses SMT solvers, or, to be precise, decision proce-
dures based on congruence closure [19], to discharge logical subsumption queries
over abstract refinements.

— Third, we show that the crucial problem of inferring appropriate instantiations for
the (abstract) refinement parameters boils down to inferring (non-abstract) refine-
ment types (§3), which we have previously automated via the abstract interpretation
framework of Liquid Types [23]].

— Finally, we have implemented abstract refinements in HSOLVE, a new Liquid Type-
based verifier for Haskell. We present experiments using HSOLVE to concisely
specify and verify a variety of correctness properties of several programs ranging
from microbenchmarks to some widely-used libraries (§4)).

2 Overview

We start with a high level overview of abstract refinements, by illustrating how they can
be used to uniformly specify and automatically verify various kinds of invariants.

Abstract Refinement Types 211

2.1 Parametric Invariants

Parametric Invariants via Type Polymorphism. Suppose we had a generic compar-
ison (<=):: a -> a -> Bool asin OCAML. We could use it to write:

max it a ->a -> a

max X y = if x <= y then y else x

maximum :: [a] -> a
maximum (x:xs) = foldr max x Xs

In essence, the type given for maximum states that for any a, if a list of a values is
passed into maximum, then the returned result is also an a value. Hence, for example,
if a list of prime numbers is passed in, the result is prime, and if a list of even numbers
is passed in, the result is even. Thus, we can use refinement types [23] to verify

[}

type Even = {v:Int | v $ 2 = 0 }

maxEvens :: [Int] -> Even
maxEvens xs = maximum (0 : xs')
where xs’ = [x | x <- xs, x '‘mod' 2 = 0]

Here the % represents the modulus operator in the refinement logic [6] and we type

the primitive mod :: x:Int -> y:Int -> {v: Int | v = x % y}. Ver-
ification proceeds as follows. Given that xs :: [Int], the system has to verify that
maximum (0 : xs’):: Even. To this end, the type parameter of maximum is

instantiated with the refined type Even, yielding the instance:

maximum :: [Even] -> Even

Then, maximum’s argument should be proved to have type [Even]. So, the type pa-
rameter of (:) is instantiated with Even, yielding the instance:

(:) :: Even -> [Even] -> [Even]

Finally, the system infers that 0 : : Evenandxs’ :: [Even], i.e., the arguments of
(:) have the expected types, thereby verifying the program. The refinement type instan-
tiations can be inferred from an appropriate set of logical qualifiers using the abstract
interpretation framework of Liquid Types [23]. Here, once v%2 = 0 is added to the
set of qualifiers, either manually or (as done by our implementation) by automatically
scraping predicates from refinements appearing in specification signatures, the refine-
ment type instantiations, and hence verification, proceed automatically. Thus, parametric
polymorphism offers an easy means of encoding second-order invariants, i.e., of quan-
tifying over or parametrizing the invariants of inputs and outputs of functions.

Parametric Invariants via Abstract Refinements. Instead, suppose that the com-
parison operator was monomorphic, and only worked for Int values. The resulting
(monomorphic) signatures

max :: Int -> Int -> Int
maximum :: [Int] -> Int

212 N. Vazou, P.M. Rondon, and R. Jhala

preclude the verification of maxEvens (i.e., typechecking against the signature shown
earlier). This is because the new type of maximum merely states that some Int is
returned as output, and not necessarily one that enjoys the properties of the values in
the input list. This is a shame, since the property clearly still holds. We could type

max :: forall t <: Int. t -> t -> t

but this route would introduce the complications that surround bounded quantification
which could render checking undecidable [22].

To solve this problem, we introduce abstract refinements which let us quantify or
parameterize a type over its constituent refinements. For example, we can type max as

max :: forall <p::Int->Bool>. Int<p> -> Int<p> -> Int<p>

where ITnt<p> is an abbreviation for the refinement type {v:Int | p(v)}. Intu-
itively, an abstract refinement p is encoded in the refinement logic as an uninterpreted
Sfunction symbol, which satisfies the congruence axiom [19]

VX,Y: (X =Y)= P(X) = P(Y)

Thus, it is trivial to verify, with an SMT solver, that max enjoys the above type: the
input types ensure that both p (x) and p (y) hold and hence the returned value in
either branch satisfies the refinement {v:Int | p(v) }, thereby ensuring the output
type. By the same reasoning, we can generalize the type of maximum to

maximum :: forall <p :: Int -> Bool>. [Int<p>] -> Int<p>

Consequently, we can recover the verification of maxEvens. Now, instead of instan-
tiating a type parameter, we simply instantiate the refinement parameter of maximum
with the concrete refinement {\v -> v % 2 = 0}, after which type checking pro-
ceeds as usual [23]]. Later, we show how to retain automatic verification by inferring
refinement parameter instantiations via liquid typing (§ B.4).

Parametric Invariants and Type Classes. The example above regularly arises in prac-
tice, due to type classes. In Haskell, the functions above are typed

(<=) :: (Oxrd a) => a -> a -> Bool
max :: (0xrd a) => a -> a -> a
maximum :: (Ord a) => [a] -> a

We might be tempted to ignore the typeclass constraint and treat maximumas [a] ->
a. This would be quite unsound, as typeclass predicates preclude universal quantifica-
tion over refinement types. Consider the function sum :: (Num a)=> [a] -> a
which adds the elements of a list. The Num class constraint implies that numeric op-
erations occur in the function, so if we pass sum a list of odd numbers, we are not
guaranteed to get back an odd number.
Thus, how do we soundly verify the desired type of maxEvens without instantiating
class predicated type parameters with arbitrary refinement types? First, via the same
analysis as the monomorphic Int case, we establish that

max:: forall <p::a->Bool>. (Ord a)=> a<p> -> a<p> -> a<p>
maximum: : forall <p::a ->Bool>. (0rxd a) => [a<p>] -> a<p>

Abstract Refinement Types 213

Next, at the call-site for maximum in maxEvens we instantiate the type variable a
with Int, and the abstract refinement p with {\v -> v % 2 = 0} after which, the
verification proceeds as described earlier (for the Int case). Thus, abstract refinements
allow us to quantify over invariants without relying on parametric polymorphism, even
in the presence of type classes.

2.2 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-
dependent invariants of key-value maps. To this end, we develop a small library of
extensible vectors encoded, for purposes of illustration, as functions from Int to some
generic range a. Formally, we specify vectors as

data Vec a <dom :: Int -> Bool, rng :: Int -> a -> Bool>
=V (i:Int<dom> -> a <rng 1i>)

Here, we are parameterizing the definition of the type Vec with two abstract refine-
ments, dom and rng, which respectively describe the domain and range of the vector.
That is, dom describes the set of valid indices, and r specifies an invariant relating each
Int index with the value stored at that index.

Creating Vectors. We can use the following basic functions to create vectors:

empty :: forall <p::Int->a->Bool>.Vec<{_ -> False}, p> a
empty = V (_ -> error "Empty Vec")

create :: x:a -> Vec <{_ -> True}, {_ v -> v = x}> a
create x = V (_ -> x)

The signature for empty states that its domain is empty (i.e., is the set of indices sat-
isfying the predicate False), and that the range satisfies any invariant. The signature
for create, instead, defines a constant vector that maps every index to the constant x.

Accessing Vectors. We can write the following get function for reading the contents
of a vector at a given index:

get :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d> -> Vec<d, r> a -> a<r 1>
get 1 (V £) = £ 1

The signature states that for any domain d and range r, if the index 1 is a valid index,
i.e., is of type, Int<d> then the returned value is an a that additionally satisfies the
range refinement at the index i. The type for set, which updates the vector at a given
index, is even more interesting, as it allows us to extend the domain of the vector:

set :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d>
-> a<r 1i>
-> Vec<d && {\k -> k !'= 1}, r> a

-> Vec<d, r> a
set 1 v (V£f) =V (\k -> if k == 1 then v else f k)

214 N. Vazou, P.M. Rondon, and R. Jhala

The signature for set requires that (a) the input vector is defined everywhere at d
except the index i, and (b) the value supplied must be of type a<r 1>, i.e., satisfy the
range relation at the index i at which the vector is being updated. The signature ensures
that the output vector is defined at d and each value satisfies the index-dependent range
refinement r. Note that it is legal to call get with a vector that is also defined at the
index 1 since, by contravariance, such a vector is a subtype of that required by (a).

Initializing Vectors. Next, we can write the following function, init, that “loops”
over a vector, to set each index to a value given by some function.

initialize :: forall <r :: Int -> a -> Bool>.
(z: Int -> a<r z>)
-> 1i: {v: Int | v >= 0}
-> n: Int

-> Vec <{\v -> 0 <= v && v < i}, r> a
-> Vec <{\v -> 0 <= Vv && v < n}, r> a

initialize £ i n a
| i >=n = a
| otherwise = initialize £ (i+l) n (set i (f 1) a)

The signature requires that (a) the higher-order function £ produces values that satisfy
the range refinement r, and (b) the vector is initialized from 0 to i. The function ensures
that the output vector is initialized from 0 through n. We can thus verify that

idvec :: Vec <{\v -> 0<=v && v<n}, {\i1 v -> v=i}> Int
idVvec n = initialize (\i -> i) 0 n empty

i.e., 1dVec returns a vector of size n where each key is mapped to itself. Thus, abstract
refinement types allow us to verify low-level idioms such as the incremental initializa-
tion of vectors, which have previously required special analyses [[12J1515].

Null-Terminated Strings. We can also use abstract refinements to verify code which
manipulates C-style null-terminated strings, represented as Char vectors for ease of
exposition. Formally, a null-terminated string of size n has the type

type NullTerm n
= Vec <{\v -> 0O<=v<n}, {\1 v -> i=n-1 => v='\0’'}> Char

The above type describes a length-n vector of characters whose last element must be
a null character, signalling the end of the string. We can use this type in the specifi-
cation of a function, upperCase, which iterates through the characters of a string,
uppercasing each one until it encounters the null terminator:

upperCase :: n:{v: Int| v>0} -> NullTerm n -> NullTerm n
upperCase n s = ucs 0 s where
ucs 1 s = case get 1 s of
"\0’ -> s
c -> ucs (1 + 1) (set i (toUpper c) s)

Abstract Refinement Types 215

Note that the length parameter n is provided solely as a “witness” for the length of the
string s, which allows us to use the length of s in the type of upperCase; n is not used
in the computation. In order to establish that each call to get accesses string s within
its bounds, our type system must establish that, at each call to the inner function ucs,
i satisfies the type {v: Int | 0 <= v && v < n}. Thisinvariant is established
as follows. First, the invariant trivially holds on the first call to ucs, as n is positive
and 1 is 0. Second, we assume that i satisfies the type {v: Int | 0 <= v &&

v < n}, and, further, we know from the types of s and get that c has the type

{v: Char | 1 = n - 1 => v = “\0’}.Thus,if c is non-null, then i cannot
be equal ton - 1. This allows us to strengthen our type for i in the else branch to
{v: Int | 0 <= v & v < n - 1} and thus to conclude that the value 1 +

1 recursively passed as the i parameter to ucs satisfies the type {v: Int | 0
<= Vv && Vv < n}, establishing the inductive invariant and thus the safety of the
upperCase function.

Memoization. Next, let us illustrate how the same expressive signatures allow us to
verify memoizing functions. We can specify to the SMT solver the definition of the
Fibonacci function via an uninterpreted function £ib and an axiom:

measure fib :: Int -> Int
axiom: forall i. fib(i) = i<=1 ? 1 : fib(i-1) + fib(i-2)

Next, we define a type alias FibV for the vector whose values are either 0 (i.e., unde-
fined), or equal to the Fibonacci number of the corresponding index.

type FibV = Vec<{_->True}, {\1 v-> v!=0 => v=£fib(i)}> Int

Finally, we can use the above alias to verify fastFib, an implementation of the Fi-
bonacci function which uses a vector to memoize intermediate results

fastFib :: n:Int -> {v:Int | v = fib(n)}
fastFib n = snd $ fibMemo (create 0) n

fibMemo :: FibV -> i:Int -> (FibVv, {v: Int | v = fib(i)})
fibMemo t 1
| i <=1 = (t, 1)

| otherwise = case get i t of
0 -> let (tl, nl)

fibMemo t (i-1)

(t2, n2) = fibMemo tl (i-2)
n = nl + n2
in (set i n t2, n)
n -> (t, n)

Thus, abstract refinements allow us to define key-value maps with index-dependent
refinements for the domain and range. Quantification over the domain and range refine-
ments allows us to define generic access operations (e.g., get, set, create, empty)
whose types enable us establish a variety of precise invariants.

216 N. Vazou, P.M. Rondon, and R. Jhala

2.3 Recursive Invariants

Next, we turn our attention to recursively defined datatypes, and show how abstract
refinements allow us to specify and verify high-level invariants that relate the elements
of a recursive structure. Consider the following refined definition for lists:

data [a] <p :: a -> a -> Bool> where
[1 :: [al<p>
(:) :: h:a -> [a<p h>]<p> -> [al<p>

The definition states that a value of type [a]<p> is either empty ([]) or constructed
from a pair of a head h: : a and a tail of a list of a values each of which satisfies the
refinement (p h).Furthermore, the abstract refinement p holds recursively within the
tail, ensuring that the relationship p holds between all pairs of list elements.

Thus, by plugging in appropriate concrete refinements, we can define the following
aliases, which correspond to the informal notions implied by their names:

type IncrList a [al<{\h v -> h <= v}>
type DecrList a = [al<{\h v -> h >= v}>
type UnigList a = [al<{\h v -> h != v}>

Thatis, IncrList a (resp. DecrList a)describes a list sorted in increasing (resp.
decreasing) order, and UnigList a describes a list of distinct elements, i.e., not con-
taining any duplicates. We can use the above definitions to verify

[1, 2, 3, 4] :: IncrList Int
[4, 3, 2, 1] :: DecrList Int
[4, 1, 3, 2] :: UnigList Int

More interestingly, we can verify that the usual algorithms produce sorted lists:

insertSort :: (Ord a) => [a] -> IncrList a
insertSort [] = [1
insertSort (x:xXs) = insert x (insertSort xs)
insert :: (Ord a) => a -> IncrList a -> IncrList a
insert y [1 = [vy]
insert y (x:xXs)

| v <= x =y : X : Xs

| otherwise = x : insert y xs

Thus, abstract refinements allow us to decouple the definition of the list from the actual
invariants that hold. This, in turn, allows us to conveniently reuse the same underlying
(non-refined) type to implement various algorithms unlike, say, singleton-type based
implementations which require up to three different types of lists (with three different
“nil” and “cons” constructors [24]). This, makes abstract refinements convenient for
verifying complex sorting implementations like that of Data.List.sort which, for
efficiency, use lists with different properties (e.g., increasing and decreasing).

Abstract Refinement Types 217

Multiple Recursive Refinements. We can define recursive types with multiple pa-
rameters. For example, consider the following refined version of a type used to encode
functional maps (Data .Map):

data Tree k v <1 k->k->Bool, r k->k->Bool>
= Bin { key ok
, value :: v
, left Tree <1, r> (k <1 key>) v
, right Tree <1, r> (k <r key>) v }
| Tip

The abstract refinements 1 and r relate each key of the tree with all the keys in the left
and right subtrees of key, as those keys are respectively of type k <1 key> and k
<r key>. Thus, if we instantiate the refinements with the following predicates

type BST k v =
type MinHeap k v =
type MaxHeap k v =

then BST k v, MinHeap

Tree<{\x v -> x> v}, {\x y-> X< y}>
Tree<{\x y -> x<=y},{\x y—> x<=y}>
Tree<{\x y -> x>=y},{\x y—> x>=y}>

AN A
< <<

k v and MaxHeap k v denote exactly binary-search-

ordered, min-heap-ordered, and max-heap-ordered trees (with keys and values of types
k and v). We demonstrate in (§) how we use the above types to automatically verify
ordering properties of complex, full-fledged libraries.

2.4 Inductive Invariants

Finally, we explain how abstract refinements allow us to formalize some kinds of struc-
tural induction within the type system.

Measures. First, let us formalize a notion of length for lists within the refinement logic.
To do so, we define a special 1en measure by structural induction

measure len [a] -> Int
len [] =0
len (x:xs) =1 + len(xs)

We use the measures to automatically strengthen the types of the data constructors[16]:

where
forall a.{v:[a] | len(v) = 0}
forall a.a -> xs:[a]l -> {v:[a]|len(v)=1l+len(xs)}

data [a]
[]
(:)

Note that the symbol len is encoded as an uninterpreted function in the refinement
logic, and is, except for the congruence axiom, opaque to the SMT solver. The mea-
sures are guaranteed, by construction, to terminate, and so we can soundly use them as
uninterpreted functions in the refinement logic. Notice also, that we can define multiple
measures for a type; in this case we simply conjoin the refinements from each measure
when refining each data constructor.

218 N. Vazou, P.M. Rondon, and R. Jhala

With these strengthened constructor types, we can verify, for example, that append
produces a list whose length is the sum of the input lists’ lengths:

append :: 1l:[a] -> m:[a] -> {v:[a]|1en(v):1en(l)+len(m)}
append [] ZsS = zZS
append (y:ys) zs =y : append ys zs

However, consider an alternate definition of append that uses foldr
append ys zs = foldr (:) zs ys

where foldr :: (a -> b -> b)-> b -> [a] -> b. It is unclear how to
give foldr a (first-order) refinement type that captures the rather complex fact that
the fold-function is “applied” all over the list argument, or, that it is a catamorphism.
Hence, hitherto, it has not been possible to verify the second definition of append.

Typing Folds. Abstract refinements allow us to solve this problem with a very ex-
pressive type for foldr whilst remaining firmly within the boundaries of SMT-based
decidability. We write a slightly modified fold:

foldr :: forall <p :: [a] -> b -> Bool>.
(xs:[a] -> x:a -> b <p xXs> -> <p (x:xX8)>)
-> b<p []>
-> ys: [a]
-> b<p ys>
foldr op b [] =Db

foldr op b (x:xs) = op xs x (foldr op b xs)

The trick is simply to quantify over the relationship p that foldr establishes between
the input list xs and the output b value. This is formalized by the type signature, which
encodes an induction principle for lists: the base value b must (1) satisfy the relation
with the empty list, and the function op must take (2) a value that satisfies the relation-
ship with the tail xs (we have added the xs as an extra “ghost” parameter to op), (3) a
head value x, and return (4) a new folded value that satisfies the relationship with x : xs.
If all the above are met, then the value returned by foldr satisfies the relation with the
input list ys. This scheme is not novel in itself [3] — what is new is the encoding, via
uninterpreted predicate symbols, in an SMT-decidable refinement type system.

Using Folds. Finally, we can use the expressive type for the above foldr to verify
various inductive properties of client functions:

length :: zs:[a] -> {v: Int | v = len(zs)}
length = foldr (_ _n ->n + 1) 0
append :: 1l:[a] -> m:[a] -> {v:[a]| len(v)=1len(l)+len(m) }

append ys zs = foldr (_ -> (:)) zs ys

The verification proceeds by just (automatically) instantiating the refinement parameter
p of foldr with the concrete refinements, via Liquid typing:

{\xs v -> v = len(xs)} -- for length
{\xs v -> len(v) = len(xs) + len(zs)} -- for append

Abstract Refinement Types 219

Expressions e:=x | c| Ax:7.e | ee | Aae | e[r] | Ar:T.e | ele]
Abstract Refinements p ::=true | pATe
Basic Types b ::= int | bool | «
Abstract Refinement Types 7 ::={v :b(p) |e} | {v:(xz:7)— 7 |e}
Abstract Refinement Schemas o := 71 | YVa.o | Vr: 1.0

Fig. 1. Syntax of Expressions, Refinements, Types and Schemas

3 Syntax and Semantics

Next, we present a core calculus Ap that formalizes the notion of abstract refinements.
We start with the syntax (§ B.1)), present the typing rules (§ B.2)), show soundness via a
reduction to contract calculi [17/1]] (§ 3.3), and inference via Liquid types (§ 3.4).

3.1 Syntax

Figure [I] summarizes the syntax of our core calculus Ap which is a polymorphic -
calculus extended with abstract refinements. We write b, {v : b | e}, and b(p) to abbre-
viate {v : b{true) | true}, {v : b(true) | e}, and {v : b(p) | true} respectively. We say a
type or schema is non-refined if all the refinements in it are frue. We write z to abbrevi-
ate a sequence 27 . . . Zn.

Expressions. \p expressions include the standard variables x, primitive constants c, A-
abstraction Az : 7.e, application e e, type abstraction A«.e, and type application e [7].
The parameter 7 in the type application is a refinement type, as described shortly. The
two new additions to Ap are the refinement abstraction A : 7.e, which introduces a
refinement variable 7 (together with its type 7), which can appear in refinements inside
e, and the corresponding refinement application e [e].

Refinements. A concrete refinement e is a boolean valued expression e drawn from
a strict subset of the language of expressions which includes only terms that (a) nei-
ther diverge nor crash, and (b) can be embedded into an SMT decidable refinement
logic including the theory of linear arithmetic and uninterpreted functions. An abstract
refinement p is a conjunction of refinement variable applications of the form 7 e.

Types and Schemas. The basic types of A p include the base types int and bool and
type variables «v. An abstract refinement type T is either a basic type refined with an ab-
stract and concrete refinements, {v : b(p) | e}, or a dependent function type where the
parameter x can appear in the refinements of the output type. We include refinements for
functions, as refined type variables can be replaced by function types. However, type-
checking ensures these refinements are trivially true. Finally, types can be quantified
over refinement variables and type variables to yield abstract refinement schemas.

220 N. Vazou, P.M. Rondon, and R. Jhala

Well-Formedness I'kFo
Ik I+ : bool
WF-TRUE p(v) TeviPool g RAPP
I + true(v) 't (pAme)(v)
Iv:bke:bool I v:bk p(v):bool WE-BASE
I'-{v:b(p)|e}
It e :bool 't 1, Iz :1m, 1 WE-FUN
I't{v:(z:71y) > 7€}
Im:1tko I'ako
’ WEF-ABS-7 ’ WEF-ABS-a
I'EVr:1.0 I'+-VYa.o
Subtyping I'kop Ro2
SMT-Valid([I'] A A = N ez
([T A Ty o] ATer] = ool A leal) g
I'H{v:b{p1) e} <X {v:b(p2)|e2}
I < Ias:m b7 <7
To X T To i To b oTi[Ta/21] 2 TS <-FUN
F't{v:(w1:7m) =7 |er} 2 {v: (wa:72) = 75| true}
Im:7F =< <
T o R o2 ~_RVAR I'op RXo2 ~-POLY
I'EVr:71.00 IV :T.09 - I'-Va.ocp X Va.oa —
Type Checking I'kFe:o
I'beios I'Foy= rr
€2 72 =9 1 T-Sus T-CONST
I'ke:o; I'tc:te(c)
: :b er .
zi{veblp) | e} T-VAR-BASE e:m € T yaR
I'taz:{v:b(p)|eAv=ur} I'taz:7
Nx:t,Fe:7 I'kT1y T-FUN I'tei:(x:1g) 27 TI'hFex:my T-App
Xz :Tge:(x:7g) > T I'teyes: Tlea/x]
Iatke: .
ya-e:ro T-GEN I'te:YVao I'kT T-INST
'+ Aa.e : Va.o I'telr]:olr/a]
Im:1tke: I+ I'ke: LT, I'FXx:7g.€e:
T:Tke:o T T-PGEN e:Vr:T1.0 Ax i Tp.e T T-PINST
'cAn:Te:Vm:T10 I'kel[Az:7p.'] tolm > Az : 75.€¢']

Fig. 2. Static Semantics: Well-formedness, Subtyping and Type Checking

3.2 Static Semantics

Next, we describe the static semantics of Ap by describing the typing judgments and
derivation rules. Most of the rules are standard [21123l17/2]]; we discuss only those
pertaining to abstract refinements.

Judgments. A type environment I is a sequence of type bindings z : o. We use
environments to define three kinds of typing judgments:

— Wellformedness judgments (I' | o) state that a type schema o is well-formed
under environment I, that is, the refinements in ¢ are boolean expressions in the
environment /.

Abstract Refinement Types 221

— Subtyping judgments (I' - 01 < 09) state that the type schema o is a subtype
of the type schema o5 under environment I, that is, when the free variables of o
and o2 are bound to values described by I, the set of values described by o is
contained in the set of values described by os.

— Typing judgments (I' - e : o) state that the expression e has the type schema
o under environment I, that is, when the free variables in e are bound to values
described by I, the expression e will evaluate to a value described by o.

Wellformedness Rules. The wellformedness rules check that the concrete and ab-
stract refinements are indeed bool-valued expressions in the appropriate environment.
The key rule is WF-BASE, which checks, as usual, that the (concrete) refinement e is
boolean, and additionally, that the abstract refinement p applied to the value v is also
boolean. This latter fact is established by WF-RAPP which checks that each refinement
variable application 7 e v is also of type bool in the given environment.

Subtyping Rules. The subtyping rules stipulate when the set of values described by
schema o is subsumed by the values described by 2. The rules are standard except for
=-VAR, which encodes the base types’ abstract refinements p; and ps with conjunctions
of uninterpreted predicates [p, v] and [p v] in the refinement logic as follows:

[true v] = true
[((pAme)v] = [pol Ax(ledd, - [en],v)

where 7(e) is a term in the refinement logic corresponding to the application of the
uninterpreted predicate symbol 7 to the arguments e.

Type Checking Rules. The type checking rules are standard except for T-PGEN and
T-PINST, which pertain to abstraction and instantiation of abstract refinements. The
rule T-PGEN is the same as T-FUN: we simply check the body e in the environment
extended with a binding for the refinement variable 7. The rule T-PINST checks that the
concrete refinement is of the appropriate (unrefined) type 7, and then replaces all (ab-
stract) applications of 7 inside o with the appropriate (concrete) refinement e’ with the
parameters x replaced with arguments at that application. Formally, this is represented
as o[m > Az : 7.€’] which is o with each base type transformed as

{v:b(p) | e}lr > 2] = {v:b(p") [ene”}

where (p”,e”) = Apply(p, 7, 2, true, true)

Apply replaces each application of 7 in p with the corresponding conjunct in e”, as

Apply(true, B 'ap/a el) = (pla 6/)

Apply(p Ame,m z:T.e”,p e') = Apply(p,m, Az : 7.€”,p e’ Ne'le,v/x])

222 N. Vazou, P.M. Rondon, and R. Jhala

In other words, the instantiation can be viewed as two symbolic reduction steps: first re-
placing the refinement variable with the concrete refinement, and then “beta-reducing”
concrete refinement with the refinement variable’s arguments. For example,

{v:iint(my) |v > 10}[m > Az1 : 7. Az2 t oxy < 2] = {v:int|v>10Ay < v}

3.3 Soundness

As hinted by the discussion about refinement variable instantiation, we can intuitively
think of abstract refinement variables as ghost program variables whose values are
boolean-valued functions. Hence, abstract refinements are a special case of higher-order
contracts, that can be statically verified using uninterpreted functions. (Since we focus
on static checking, we don’t care about the issue of blame.) We formalize this notion by
translating A p programs into the contract calculus Fy of [1] and use this translation to
define the dynamic semantics and establish soundness.

Translation. We translate Ap schemes o to Fy schemes (o) as by translating abstract
refinements into contracts, and refinement abstraction into function types:

(true v)) = true (Vr : T.0) (m:{7)) = (o)
{(pAme)v) = (pv)Amew (Va.o) = Va.{o)
({v:0{p) le}h = {v:blen(puv)} (@:m) = n) = (@:(nh) = (n)

Similarly, we translate A p terms e to F'y terms (e by converting refinement abstraction
and application to A-abstraction and application

o) = o (e = o
Az :7e) = Az (7]).{e) {le1 e2) = {er) (e2)
(Aace) = Aa.(e) {e[r]) = {eb (7D
(Am:Te) = Ar: (7). {e) {eife2]) = {e1) (e2)

Translation Properties. We can show by induction on the derivations that the type
derivation rules of Ap conservatively approximate those of Fy;. Formally,

- IfI'+ 7then (') kg (7).
-IfI'tn < mthen (') by (mi) <: (72),
- If'ke:rthen (I') Fu {e) : 7).

Soundness. Thus rather than re-prove preservation and progress for A p, we simply use
the fact that the type derivations are conservative to derive the following preservation
and progress corollaries from [[1]:

— Preservation: If () -e: 7and (e)) — e/ then () Fp € : {7)
— Progress: If () - e : 7, then either (e — € or {e]) is a value.

Note that, in a contract calculus like F;, subsumption is encoded as a upcast. How-
ever, if subtyping relation can be statically guaranteed (as is done by our conservative
SMT based subtyping) then the upcast is equivalent to the identity function and can be
eliminated. Hence, Fyy terms (e|) translated from well-typed Ap terms e have no casts.

Abstract Refinement Types 223

3.4 Refinement Inference

Our design of abstract refinements makes it particularly easy to perform type inference
via Liquid typing, which is crucial for making the system usable by eliminating the
tedium of instantiating refinement parameters all over the code. (With value-dependent
refinements, one cannot simply use, say, unification to determine the appropriate instan-
tations, as is done for classical type systems.) We briefly recall how Liquid types work,
and sketch how they are extended to infer refinement instantiations.

Liquid Types. The Liquid Types method infers refinements in three steps. First, we cre-
ate refinement templates for the unknown, to-be-inferred refinement types. The shape of
the template is determined by the underlying (non-refined) type it corresponds to, which
can be determined from the language’s underlying (non-refined) type system. The tem-
plate is just the shape refined with fresh refinement variables x denoting the unknown
refinements at each type position. For example, from a type (z : int) — int we create
the template (x : {v: int | k. }) — {v : int | k}. Second, we perform type checking
using the templates (in place of the unknown types.) Each wellformedness check be-
comes a wellformedness constraint over the templates, and hence over the individual
K, constraining which variables can appear in . Each subsumption check becomes a
subtyping constraint between the templates, which can be further simplified, via syn-
tactic subtyping rules, to a logical implication query between the variables x. Third,
we solve the resulting system of logical implication constraints (which can be cyclic)
via abstract interpretation — in particular, monomial predicate abstraction over a set
of logical qualifiers [9423]]. The solution is a map from x to conjunctions of qualifiers,
which, when plugged back into the templates, yields the inferred refinement types.

Inferring Refinement Instantiations. The key to making abstract refinements practi-
cal is a means of synthesizing the appropriate arguments e’ for each refinement appli-
cation e [¢’]. Note that for such applications, we can, from e, determine the non-refined
type of e/, which is of the form 73 — ... — 7, — bool. Thus, e’ has the template
A1 :T1....\Zy . Tn.k Where k is a fresh, unknown refinement variable that must
be solved to a boolean valued expression over x1, ..., x,. Thus, we generate a well-
formedness constraint x1 : T1,..., %, : T, = K and carry out typechecking with tem-
plate, which, as before, yields implication constraints over «, which can, as before, be
solved via predicate abstraction. Finally, in each refinement template, we replace each
x with its solution e, to get the inferred refinement instantiations.

4 Evaluation

In this section, we empirically evaluate the expressiveness and usability of abstract re-
finement types by exploring the process of typechecking a set of challenging benchmark
programs using a prototype type checker for Haskell. (We defer the task of extending
the metatheory to a call-by-name calculus to future work.)

HSOLVE. We have implemented abstract refinement in HSOLVE, a refinement type
checker for Haskell. HSOLVE verifies Haskell source one module (.hs file) at a time. It
takes as input:

224

N. Vazou, P.M. Rondon, and R. Jhala

Table 1. (LOC) is the number of non-comment Haskell source code lines as reported by sloc-
count, (Specs) is the number of lines of type specifications, (Annet) is the number of lines of
other annotations, including refined datatype definitions, type aliases and measures, required for
verification, (Time) is the time in seconds taken for verification.

Program LOC Specs Annot Time (s)
Micro 32 19 4 2
Vector 56 56 2 14
ListSort 29 4 1 3
Data.List.sort 71 3 1 8
Data.Set.Splay 136 15 11 15
Data.Map.Base 1399 119 31 235
Total 1723 216 50 277

A target Haskell source file, with the desired refinement types specified as a special
form of comment annotation,

An (optional) set of type specifications for imported definitions; these can either be
put directly in the source for the corresponding modules, if available, or in special
. spec files otherwise. For imported functions for which no signature is given,
HSOLVE conservatively uses the non-refined Haskell type.

An (optional) set of logical qualifiers, which are predicate templates from which
refinements are automatically synthesized [23]]. Formally, a logical qualifier is a
predicate whose variables range over the program variables, the special value vari-
able v, and wildcards *, which HSOLVE instantiates with the names of program
variables. Aside from the qualifiers given by the user, HSOLVE also uses qualifiers
mined from the refinement type annotations present in the program.

After analyzing the program, HSOLVE returns as output:

Either SAFE, indicating that all the specifications indeed verify, or UNSAFE, indi-
cating there are refinement type errors, together with the positions in the source
code where type checking fails (e.g., functions that do not satisfy their signatures,
or callsites where the inputs don’t conform to the specifications).

An HTML file containing the program source code annotated with inferred refine-
ment types for all sub-expressions in the program. The inferred refinement type for
each program expression is the strongest possible type over the given set of logi-
cal qualifiers. When a type error is reported, the programmer can use the inferred
types to determine why their program does not typecheck: they can examine what
properties HSOLVE can deduce about various program expressions and add more
qualifiers or alter the program as necessary so that it typechecks.

Implementation. HSOLVE verifies the contents of a single file (module) at a time
as follows. First, the Haskell source is fed into GHC, which desugars the program to
GHC’s “core” intermediate representation [26]. Second, the desugared program, the
type signatures for the module functions (which are to be verified) and the type sig-
natures for externally imported functions (which are assumed to hold) are sent to the
constraint generator, which traverses the core bindings in a syntax-directed manner to

Abstract Refinement Types 225

generate subtyping constraints. The resulting constraints are simplified via our sub-
typing rules (§ B)) into simple logical implication constraints. Finally, the implication
constraints, together with the logical qualifiers provided by the user and harvested from
the type signatures, are sent into an SMT- and abstract interpretation-based fixpoint
computation procedure that determines if the constraints are satisfiable [[139]]. If so, the
program is reported to be safe. Otherwise, each unsatisfiable constraint is mapped back
to the corresponding program source location that generated it and a potential error is
reported at that line in the program.

Benchmarks. We have evaluated HSOLVE over the following list of benchmarks
which, in total, represent the different kinds of reasoning described in § 2l While we
can prove, and previously have proved [16], many so-called “functional correctness”
properties of these data structures using refinement types, in this work we focus on the
key invariants which are captured by abstract refinements.

— Micro, which includes several functions demonstrating parametric reasoning with
base values, type classes, and higher-order loop invariants for traversals and folds,
as described in § 2.1and § 2.4t

— Vector, which includes the domain- and range-generic Vec functions and several
“clients” that use the generic Vec to implement incremental initialization, null-
terminated strings, and memoization, as described in § 2.2}

— ListSort, which includes various textbook sorting algorithms including insert-,
merge- and quick-sort. We verify that the functions actually produce sorted lists,
i.e., are of type ITncrList a, as described in § 2.3}

— Data.List.sort, which includes three non-standard, optimized list sorting al-
gorithms, as found in the base package. These employ lists that are increasing and
decreasing, as well as lists of (sorted) lists, but we can verify that they also finally
produce values of type ITncrList a;

— Data.Set.Splay, which is a purely functional, top-down splay set library from
the 11rbtree package. We verify that all the interface functions take and return
binary search trees;

— Data.Map.Base, which is the widely-used implementation of functional maps
from the containers package. We verify that all the interface functions preserve
the crucial binary search ordering property and various related invariants.

Table[I] quantitatively summarizes the results of our evaluation. We now give a qualita-
tive account of our experience using HSOLVE by discussing what the specifications and
other annotations look like.

Specifications are Usually Simple. In our experience, abstract refinements greatly
simplify writing specifications for the majority of interface or public functions. For
example, for Data.Map.Base, we defined the refined version of the Tree ADT
(actually called Map in the source, we reuse the type from § 2.3] for brevity), and then
instantiated it with the concrete refinements for binary-search ordering with the alias
BST k v as described in § 2.3] Most refined specifications were just the Haskell types
with the Tree type constructor replaced with the alias BST. For example, the type
of fromList is refined from (Ord k)=> [(k, a)] -> Tree k ato (Ord
k)=> [(k, a)] -> BST k a.Furthermore, intra-module Liquid type inference
permits the automatic synthesis of necessary stronger types for private functions.

226 N. Vazou, P.M. Rondon, and R. Jhala

Auxiliary Invariants Are Sometimes Difficult. However, there are often rather thorny
internal functions with tricky invariants, whose specification can take a bit of work. For
example, the function trimin Data.Map .Base has the following behavior (copied
verbatim from the documentation): “trim blo bhi t trims away all subtrees that
surely contain no values between the range blo to bhi. The returned tree is either
empty or the key of the root is between blo and bhi.” Furthermore blo (resp. bhi)
are specified as option (i.e., Maybe) values with Nothing denoting —oo (resp. +00).
Fortunately, refinements suffice to encode such properties. First, we define measures

measure isJust :: Maybe a -> Bool
isJust (Just x) = true

isJust (Nothing) = false

measure fromJust :: Maybe a -> a
fromJustS (Just x) = x

measure 1isBin :: Tree k v -> Bool
isBin (Bin _ _ _ _) = true

isBin (Tip) = false

measure key :: Tree k v -> k

key (Bin k _ _ _) =k

which respectively embed the Maybe and Tree root value into the refinement logic,
after which we can type the trim function as

trim :: (Ord k) => blo:Maybe k
-> bhi:Maybe k
-> BST k a
-> {v:BST k a | bound(blo, v, bhi)}

where bound is simply a refinement alias

refinement bound(lo, v, hi)
= 1isBin(v) => isdJust(lo) => fromJust(lo) < key(v)
&& 1isBin(v) => isJust(hi) => fromJust(hi) > key(v)

That is, the output refinement states that the root is appropriately lower- and upper-
bounded if the relevant terms are defined. Thus, refinement types allow one to formalize
the crucial behavior as machine-checkable documentation.

Code Modifications. On a few occasions we also have to change the code slightly,
typically to make explicit values on which various invariants depend. Often, this is for
a trivial reason; a simple re-ordering of binders so that refinements for later binders can
depend on earlier ones. Sometimes we need to introduce “ghost” values so we can write
the specifications (e.g., the foldr in § 2.4). Another example is illustrated by the use
of list append in quickSort. Here, the append only produces a sorted list if the

Abstract Refinement Types 227

two input lists are sorted and such that each element in the first is less than each element
in the second. We address this with a special append parameterized on pivot

append :: pivot:a
-> IncrlList {v:a | v < pivot}
-> IncrList {v:a | v > pivot}
-> IncrList a
append pivot [] ys pivot : ys
append pivot (x:xs) ys = x : append pivot xs ys

5 Related Work

The notion of type refinements was introduced by Freeman and Pfenning [[11]], with
refinements limited to restrictions on the structure of algebraic datatypes, for which
inference is decidable. Our present notion of refinement types has its roots in the in-
dexed types of Xi and Pfenning [27], wherein data types’ ranges are restricted by in-
dices, analogous to our refinement predicates, drawn from a decidable domain; in the
example case explored by Xi and Pfenning, types were indexed by terms from Pres-
burger arithmetic. Since then, several approaches to developing richer refinement type
systems and accompanying methods for type checking have been developed. Knowles
and Flanagan [[17]] allow refinement predicates to be arbitrary terms of the language
being typechecked and present a technique for deciding some typing obligations stati-
cally and deferring others to runtime. Findler and Felleisen’s [8] higher-order contracts,
which extend Eiffel’s [[18] first-order contracts — ordinary program predicates acting
as dynamic pre- and post-conditions — to the setting of higher-order programs, eschew
any form of static checking, and can be seen as a dynamically-checked refinement type
system. Bengtson et al. [2] present a refinement type system in which type refinements
are drawn from a decidable logic, making static type checking tractable. Greenberg et
al. [1] gives a rigorous treatment of the metatheoretic properties of such a refinement
type system.

Refinement types have been applied to the verification of a variety of program prop-
erties [270712/10]. In the most closely related work to our own, Kawaguchi et al. [16]
introduce recursive and polymorphic refinements for data structure properties. The
present work unifies and generalizes these two somewhat ad-hoc notions into a single,
strictly and significantly more expressive mechanism of abstract refinements.

A number of higher-order logics and corresponding verification tools have been de-
veloped for reasoning about programs. Example of systems of this type include NuPRL
[4]], Coq [3]], F* [25] and Agda [20] which support the development and verification
of higher-order, pure functional programs. While these systems are highly expressive,
their expressiveness comes at the cost of making logical validity checking undecidable.
To help automate validity checking, both built-in and user-provided tactics are used to
attempt to discharge proof obligations; however, the user is ultimately responsible for
manually proving any obligations which the tactics are unable to discharge.

228

N. Vazou, P.M. Rondon, and R. Jhala

References

1.

2.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

Belo, J.F., Greenberg, M., Igarashi, A., Pierce, B.C.: Polymorphic Contracts. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 18-37. Springer, Heidelberg (2011)

Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement types for
secure implementations. ACM TOPLAS 33(2), 8 (2011)

. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’ Art:

The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer
(2004)

. Constable, R.L.: Implementing Mathematics with the Nuprl Proof Development System.

Prentice-Hall (1986)

. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic

and scalable array content analysis. In: POPL, pp. 105-118 (2011)

. de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg (2008)

. Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon Univer-

sity, Pittsburgh, PA, USA (2007)

. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP, pp. 48-59 (2002)
. Flanagan, C., Joshi, R., Leino, K.R.M.: Annotation inference for modular checkers. Infor-

mation Processing Letters (2001)

. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic verification. In:

CCS, pp. 341-350 (2011)

. Freeman, T., Pfenning, F.: Refinement types for ML. In: PLDI (1991)
. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In:

POPL, pp. 338-350 (2005)

. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997)

. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.

In: IEEE Symposium on Security and Privacy, pp. 115-130 (2011)

. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.

(eds.) CAV 2007. LNCS, vol. 4590, pp. 193-206. Springer, Heidelberg (2007)

. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In: PLDI, pp.

304-315 (2009)

Knowles, K.W., Flanagan, C.: Hybrid type checking. ACM TOPLAS 32(2) (2010)

Meyer, B.: Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River (1992)

Nelson, G.: Techniques for program verification. Technical Report CSL81-10, Xerox Palo
Alto Research Center (1981)

Norell, U.: Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers, SE-412 96 Goteborg, Sweden (September 2007)

Ou, X., Tan, G., Mandelbaum, Y., Walker, D.: Dynamic Typing with Dependent Types. In:
Levy, J.-J., Mayr, E.-W., Mitchell, J.C. (eds.) TCS 2004. IFIP, vol. 155, pp. 437-450. Springer,
Boston (2004)

Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI (2008)

Sheard, T.: Type-level computation using narrowing in omega. In: PLPV (2006)

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., Yang, J.: Secure distributed
programming with value-dependent types. In: ICFP, pp. 266-278 (2011)

Vytiniotis, D., Peyton Jones, S.L., Magalhaes, J.: Equality proofs and deferred type errors: a
compiler pearl. In: ICFP, pp. 341-352 (2012)

Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types. In: PLDI
(1998)

Constraining Delimited Control with Contracts*

Asumu Takikawa!, T. Stephen Strickland?, and Sam Tobin-Hochstadt!

! Northeastern University
2 University of Maryland, College Park

Abstract. Most programming languages provide abstractions for non-local con-
trol flow and access to the stack by using continuations, coroutines, or generators.
However, their unrestricted use breaks the local reasoning capability of a pro-
grammer. Gradual typing exacerbates this problem because typed and untyped
code co-exist. We present a contract system capable of protecting code from con-
trol flow and stack manipulations by unknown components. We use these con-
tracts to support a gradual type system, and we prove that the resulting system
cannot blame typed components for errors.

1 Ubiquitous Continuations

Delimited continuations [6, 10, 12, 18, 19, 26, 27] enable the expression of many useful
programming constructs such as coroutines, engines, and exceptions as libraries. Their
expressive power stems from three key operations on the control stack: (1) marking a
stack frame with a prompt; (2) jumping to a marked frame, discarding the context in
between; and (3) re-attaching the slice of the control stack that the jump discarded.
Continuations are not the only operations that manipulate the stack. In particular, con-
tinuation marks [4] provide the ability to (4) annotate a stack frame with data that
can be dynamically accessed and updated from subsequent frames. They are used to
implement features like general stack inspection for debugging, dynamic binding, and
aspect-oriented programming as libraries [4, 22, 23].

Many dynamically-typed languages support delimited continuations and related con-
trol operators such as coroutines or generators [15, 20], and some also support contin-
uation marks [5, 15]. Their lack of static typing, however, implies that a programmer
could easily misuse manipulations of the stack to jump to the wrong place or anno-
tate a frame with the wrong kind of data. Gradual typing addresses just these kinds
of problems. Gradually typed languages allow programmers to type parts of their pro-
grams statically but leave other parts untyped. Even better, they provide strong dynamic
guarantees about the safety of the combination of typed and untyped code [24, 32]. In
particular, a gradually typed language does not allow untyped code to cause a run-time
violation of the type invariants in the typed code.

Unfortunately, naively combining delimited continuations, continuation marks, and
gradual typing fails to maintain the benefits of gradual typing. The numerous type sys-
tems proposed for delimited continuations [2, 6, 11, 18, 20, 21] can prevent an ill-typed

* Supported in part by NSF CRI-0855140, SHF-1064922, CCF-0915978, the Mozilla Founda-
tion, and the DARPA CRASH program.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 229-48] 2013.
© Springer-Verlag Berlin Heidelberg 2013

230 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

re-attachment of a continuation or an ill-typed continuation jump. However, these type
systems alone are not sufficient for gradual typing, because of the need for dynamic
enforcement. Ordinarily, gradual type systems dynamically protect a typed component
from its untyped context with a contract [14] that monitors the flow of values across
the boundary [31]. Continuations, however, allow an untyped component to bypass the
contract protection at the component boundary by jumping over the contract. After the
jump, the untyped code could arrive in the middle of a typed component on the con-
trol stack and deliver an ill-typed value. Similarly, a continuation mark allows untyped
code to update a stack annotation in typed code with an ill-typed value. In other words,
continuations and continuation marks establish illicit communication channels between
components. For the invariants of the typed language to hold, these channels require
additional protection [9].

In this paper, we equip a gradually typed language with typed delimited control op-
erators and continuation marks while maintaining the soundness of the entire system.
To support this gradual type system, we introduce and formalize control contracts that
mediate continuation jumps between prompts and their clients. We implement them in
the Racket programming language [15] using control chaperones based on Strickland
et al. [28]’s chaperone framework. Control chaperones allow a programmer to redirect
communication between a prompt and a corresponding jump, inserting contract checks
in between. For continuation marks, we offer an analogous pair of continuation mark
key contracts and continuation mark key chaperones.

We also prove a soundness theorem for the combined language using Dimoulas et
al’s complete monitoring [9] technique. The key idea is to split a program into typed
and untyped components via ownership annotations on values. Using these annotations,
we impose a single owner policy which ensures that, at any given point, all of the
values in the program are owned only by the typed or untyped portion of the program.
Components may transfer ownership of a value only through the use of a contract,
guaranteeing that no value changes hands without being checked. We prove that our
contract system is a complete monitor and use this result to show that the gradual type
system is sound.

2 Types and Contracts for Control Operators

To illustrate how delimited continuations and continuation marks cause problems for
gradual typing, we present a series of examples using Sitaram’s % and fcontrol oper-
ators [26]. The following example illustrates a simple use of the % operator to install a
prompt and then a use of fcontrol to jump to that prompt, aborting part of the stack.
The diagram on the right depicts the control flow of the example on the stack:

(+21[D
> (+ 2 (% (+ 1 (fcontrol 7)) (% [] (A (nat con) nat))
(A (nat con) (+ 1 nat))))
10 +11[D

(fcontrol 7)

Constraining Delimited Control with Contracts 231

The evaluation of this example starts at (fcontrol 7), which immediately discards
the current continuation up to the prompt (i.e., the third frame in the diagram). After
discarding the continuation, fcontrol calls the handler, the A expression argument
to %, with two arguments: the value passed to fcontrol (i.e., 7) and the discarded
continuation reified as a function, i.e., (A (x) (+ 1 x)).In this case, the handler just
increments the first argument by one and returns, ignoring the reified continuation. The
% operator then returns the result of the handler to its context.

The handler in this example is simple, but in general prompt handlers allow the pro-
grammer to specify arbitrary computations. The correspondence between the prompt
handler and fcontrol matches the correspondence between exception handlers and
throwing an exception [26]. In other words, continuation operators like fcontrol gen-
eralize exceptions [18].

One major difference between fcontrol and most exception interfaces is that in-
stead of throwing the continuation away, the handler can also re-install the continuation:

> (% (+ 1 (fcontrol 2)) (% [1 (A (vK) (+Vv(k8)))
AN (vk) (+v (k 8))) +1M

1 (fcontrol 2)
Here the handler calls its second argument, the reified continuation, instead of ignoring
it. Since the continuation is a value, the handler just calls it like any other function. In
fact, the handler could choose to return the continuation or apply it multiple times. The
presence of the reified continuation makes fcontrol a higher-order control operator,
as opposed to exceptions, which usually only provide first-order control

2.1 Types for Delimited Control

To implement a type system for delimited control, we must provide a means to type-
check % and fcontrol. Each handler, however, may provide a different interface to its
corresponding fcontrol. That is, they expect different types of input from a jump. In
order to give a precise type for these handlers, we need to keep different logical uses of
fcontrol separate and type-check them separately

To distinguish prompts with conflicting uses, control operators in the literature of-
ten allow the programmer to annotate prompts with prompt tags [11, 16, 18, 26]. For
example, an implementation of coroutines and an implementation of exceptions might
both install prompts on the stack. However, the stack changes coordinated by these li-
braries are “logically different” [26], even if they use the same operators, and should
not interfere with one another.

Prompt tags also provide a convenient means to type-check separate uses of fcon-
trol [18]. The type of a prompt tag determines the valid types of values that an ap-
plication of fcontrol can send to the corresponding prompt’s handler. The prompt
tag type also specifies the return type of the handler and the prompt’s body. The % and
fcontrol operators can be used with prompt tags to allow fine-grained control over
what prompt is targeted:

! A type and effect system for delimited control [2, 6] could provide more precise types. How-
ever, an effect system would require intrusive run-time monitoring to enforce with contracts.

232 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

(define handler-1 (A (v k) (string-append v "0")))
(define handler-2 (A (v k) (k 1)))

> (% (number->string (% (+ 1 (fcontrol "10" prompt-tag-1))
handler-2 prompt-tag-2))
handler-1 prompt-tag-1)
n 100 n

Since the call to fcontrol uses prompt-tag-1, the jump arrives at the outermost
prompt, which is tagged with prompt-tag-1. The jump triggers handler-1, associ-
ated with the outer prompt. Notably, the jump does not invoke handler-2. It is vital
that the programmer does not use the wrong prompt tag here, because the handlers
expect different types: a string for handler-1 and an integer for handler-2.

Using a type system for prompt tags, we could declare that prompt-tag-1 has the
type (Prompt String (Integer -> String) String). The first two types mean
that the handler expects to receive a string and a function that takes integers and returns
strings. The third type corresponds to the return type of the body and handler. This
matches our example, since fcontrol sends the string "10" and the continuation from
fcontrol to the outer prompt expects an integer and produces a string. Both the body
(using number->string) and the handler clearly produce strings as well.

2.2 Gradual Typing, the Broken Variant

In a language with gradual typing, a typed component may import unknown functions
from an untyped component:

#lang typed/racket
(require/typed [g : Integer -> String] from "untyped.rkt")

(% (string-length (g 2))
(A ([v : Integer] [k : Integer -> Integer])
(+ v (k 8))))

In this example, the typed component imports a function g that is specified to have the
type Integer -> String, which is valid for its use in the prompt expression. The
gradual type system enforces the type for g with the generated contract (-> integer?
string?). It blames the untyped component if its export fails to uphold the contract.
Imports from untyped components and exports to untyped components are always pro-
tected with contracts translated from the corresponding type [31]. The type system pre-
vents the typed component from misapplying the function.

Unfortunately, this naive model of interaction fails in the presence of control opera-
tors, as demonstrated by the following untyped component:

#lang racket
(provide g)
(define (g x) (fcontrol "bad"))

Constraining Delimited Control with Contracts 233

The use of the fcontrol operator in the body of g immediately transfers control to the
handler function when the typed module invokes g. Since this control transfer bypasses
the contract boundary, the string "bad" is passed to the + operation, which causes a
run-time failure that the type system should have prevented. The failure stems from the
lack of protection on the communication channel between fcontrol and %.

(% [1 (A (vK) (+V (k 8))))

typed
(string-length []) ype
contract: String
(fcontrol “bad”) untyped

Generally speaking, the usual strategy of applying contracts to just the component im-
ports and exports does not adequately protect the typed code from invalid uses of control
operators within untyped code. In particular, the abort-like behavior of fcontrol al-
lows it to directly communicate with the handler in the typed code, without first passing
through a contract check at the component boundary.

With higher-order programming, the illicit communication may also take place using
control operators in the opposite direction, as in the following pair of components:

#lang typed/racket
(provide g)

(define: (g) : Void (fcontrol h))
(define: (h [y : Integer]) : Integer (+ 1 y))

#lang racket
(require g from "typed.rkt")
G+ 1 () (A (v k) (v "bad")))

Here, the typed component exports a function g that uses a control operator to jump to
the prompt, passing its handler a function. The untyped component calls g inside of a
prompt whose handler misapplies the returned function to the string "bad" instead of
an integer. Again, we depict this situation with a diagram:

(% [] (A (v) (v “bad”)))
+11[D

contract: Void
(fcontrol (A (y) (+y 2)))| typed

untyped

This stack illustrates a situation similar to the last diagram except that the typed and
untyped components have swapped roles. Furthermore, notice that the contract on the
stack is Void because the contract system checks the return value of g, because exports
from typed components are wrapped with a contract.

On the surface, this may not seem like a problem; after all, the untyped component
is free to do anything it likes with values since it is not beholden to a type system.

234 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

Unfortunately, fcontrol has smuggled the function h across the contract boundary.
Since h originates from typed code, applying it should not cause an error that the type
system could prevent. In the top frame, however, the untyped component applies h to
a value "bad" that the function does not expect, causing the addition (+ 1 y) to fail.
This shows that higher-order programming requires protection for communication in
both directions between typed and untyped components. To make gradual typing work,
we must account for and protect all extra channels of communication.

2.3 Gradual Typing, Fixed

In order to fix our naive gradual type system, we reuse the key insight from the gradual
typing literature: the dynamic semantics must protect all possible channels of communi-
cation between typed and untyped components [9]. We instantiate this research insight
for stack abstractions by installing contract checks on prompt tags that activate when
control operators cross component boundaries. A prompt tag is a capability for com-
municating between two stack frames in a program. Thus, only components that have
access to a given tag are allowed to communicate with the matching prompt, enabling
the programmer to leverage lexical scope to limit access. However, the capability nature
of prompt tags only determines who can communicate over the channel, but not what
can be communicated across the channel.

To enable prompt tags to protect the data communicated via control operators, we
equip prompt tags with contracts that trigger when a control operator transfers a value
to the matching prompt. Since prompt tags function as capabilities, a component can be
assured that only components with access to the corresponding prompt tag can jump to
its prompts. Thus, as long as typed prompt tags are always exported with appropriate
contracts, other components cannot jump to them without incurring contract checks.
We formally characterize the translation of types to contracts in section 4.

For the problematic example from before, we revise the typed component to create
and export a prompt tag. The untyped component can import and use the tag to jump to
the typed component’s prompt:

#lang typed/racket
(require/typed [g : Integer -> Integer] from "untyped.rkt")
(provide pt)

(pt : (Prompt Integer (Integer -> String) Integer))
(define pt (make-prompt-tag))

(% (string-length (g 2))
(A ([v : Integer] [k : Integer -> Integer])
(+ v (k 8)))
pt)

As before, the prompt tag type describes the type of the two values that fcontrol
sends to the handler and the result type of the handler. In the untyped code, the call to
fcontrol uses the prompt tag from the typed code:

Constraining Delimited Control with Contracts 235

#lang racket

(require pt from "typed.rkt")
(provide g)

(define (g x) (fcontrol "bad" pt))

Now, the type system installs a contract on uses of the exported tag in untyped code
that corresponds to the type (Prompt Integer (Integer -> Integer)). When
the function g aborts the continuation using the fcontrol operator, the "bad" value
is checked with the Integer contract. The contract check fails and blames the un-
typed component for not providing an Integer to the prompt’s handler. Pictorially, the
fix adds a second contract boundary between the use of fcontrol and its matching
prompt:

(% [1 A (vE) (+ Vv (k 8)))

. typed
(string-length [1) yp
contract: Int contract: String
(fcontrol “bad”) untyped

With the second contract boundary, all possible paths between the untyped and typed
components are protected. This ensures that no unmonitored communication can occur
between the components. In other words, the contract system completely monitors all
communication between components, thus ensuring the safety of typed code that uses
continuation operations.

2.4 Continuation Marks

The stack also offers non-local data storage to the programmer. Continuation marks are
a language feature that enables this view, allowing the association of a key-value storage
cell with each of the continuation frames that make up the stack. In turn, continuation
marks enable other language features and tools such as debuggers, dynamic binding,
and aspect-oriented programming [3, 4, 33].

A continuation mark is added to the current continuation frame with the wem form
(short for with-continuation-mark) and accessed with the ccm form (short for
current-continuation-marks):

> (wem ’key 7 (+ 1 (first (ccm ’key))))
8

Continuation marks consist of a key and an associated value, which are passed to the
wcm operation. The ccm operation returns a list of the marks stored in the continuation
associated with some key. The previous example demonstrates a simple case of setting
and accessing a mark. As with continuations, continuation marks allow non-local com-
munication of data through the stack, and thus require new forms of protection from the
contract system. More concretely, continuation marks can be set in an untyped compo-
nent and then accessed later in a typed component:

236 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

#lang racket

(require g from "typed.rkt")

(define key (make-continuation-mark-key))
(wem key "bad" (g 7))

#lang typed/racket

(require/typed [key : (Mark Integer)] from "untyped.rkt")
(provide g)

(define (g x) (+ x (first (ccm key))))

In this example, the untyped component stores a string in the continuation mark with
a new continuation mark key. The typed component imports the key with a type that
requires integers in the mark storage for the key. However, the untyped component has
already violated this assumption by storing a string in the mark. This demonstrates
another example of an unprotected stack-based channel of communication.

Our solution for continuation mark protection is similar to the solution for delimited
continuations. First, instead of allowing any value as a key for marks, we require the use
of a prompt-tag-like key type, which we call a continuation mark key. This key acts as
a capability for accessing the data contained in the mark. Using the same technique as
prompt tags, we attach contracts to this key so that the continuation mark operations can
introduce contract checks based on the key’s contract. The following diagram illustrates
the example above (on the left) and our solution (right):

® — (wcm (...) []) untyped TO (wem (...) [J) | untyped
contract: Int contract: Int contract: Int
GXD | yneq GxD e
(ccm key) (ccm key)

The new circle attached to the top stack frame illustrates a storage cell for the continua-
tion mark on that frame. The cell might store many values, up to one for each key. The
arrow from the cell depicts the flow of a value from the cell to the continuation frame
that requests it using the ccm operation. As with continuations, this flow bypasses the
ordinary contract boundary on the stack. The diagram on the right shows the fix in the
form of an extra contract boundary that is established for accesses to the continuation
mark store. In short, the contract system must protect all possible channels of interaction
between the typed and untyped portions of the program.

From a contract system design perspective, continuation marks are similar to mutable
reference; both enable non-local communication. Moreover, contracts for references
and marks have related semantics. Mutable references need specialized support from
the contract system to ensure that all access to the reference is protected by a contract [9,
28]. This extra protection amounts to wrapping the reference with a guard that redirects
reads or writes to the reference and injects appropriate contract checking. Similarly,
continuation mark key contracts wrap the key with a guard that redirects reads or writes
to the continuation mark. Our formal model characterizes these guards and contracts
more precisely.

Constraining Delimited Control with Contracts 237

3 Formalizing Contracts for Stack Abstractions

To explain our design and to validate its soundness, we present a formal model of a
gradually typed A-calculus extended with low-level operations on stacks. The low-level
operators faithfully macro-express [13] the high-level operators. We chose our model’s
operators to match the production libraries used in both Racket [16] and in Guile [17]
in order to demonstrate the model’s practical applicability. Further details are available
in a technical report [30].

Dybvig et al. [11] identify a template of five key operations that are necessary for
delimited continuations: (1) construction of a delimiter, (2) delimiting a continuation,
(3) capturing a continuation, (4) aborting a continuation, and (5) re-instating a continu-
ation. Our model provides each of the elements in the template above. In our case, (1)
corresponds to prompt tag creation and (5) to function application. The remaining three
are provided as distinct operations %, call/comp, and abort, detailed below.

Our language is Dimoulas et al’s CPCF [8], extended with Flatt et al’s continuation
operators [16]. We augment this model with an adaptation of Gunter et al. [18]’s type
system for delimited control and a type system for continuation marks based on similar
ideas. For dynamic invariant enforcement, we add contracts for delimited continuations
and continuation marks.

Figure 1 presents the core grammar of the model. Programs consist of a tuple with an
expression and a store. The store tracks the allocation of prompt tags and continuation
mark keys. Expressions include straightforward PCF operations, list operations, and a
set of control operators. The language is parameterized over a set of basic data types
and primitive unary and binary operations such as addition, subtraction, and so on.

The key control operators are (% e; ez v), (aborte; ez2), and (call/comp v e), which
correspond to delimiting the continuation, aborting the continuation, and capturing the
continuation respectively. For continuation marks, the (call/cm e; ez e3) and (ccme) op-
erations model the setting of continuation marks and access of marks respectively.

P .= <e, o> t:=B| (-tt)| (Prompt tt)
o= 2| (key 0) | (tag 0) | (Mark t) | (List t)
ex=x|v|(ee)| (ifeee)| (UW(x:t)e) pt ::= tag
| (unop e) | (binop e e) | (cons e e) mk ::= key
| (case e (null = e) ((cons X X) =e)) E ::= M| (wem w M)
| (prompt-tag) | (cm-key) M:=[]1|(ifEee)|(Ee)| (VE)
| (5eev) | (aborte e) | (unop E) | (binop E e) | (binop v E)
| (wemw e) | (ccme) | (case E (null = e) ((cons X X) =e))
| (call/comp e e) | (call/cme e e) | (cons E e) | (cons V E)
| (update mk e); e | (update mk E); e
| Cerror) | (4eEv)| (%E ptv)
va=b| (A (x:t)e)|pt| mk | (abort E e) | (abortv E)
| (cons v v) | null | (call/comp E e) | (call/comp v E)
| call/comp | call/cm | (call/cmE e e) | (call/cmV E e)

Fig. 1. Core grammar and evaluation contexts

238 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

I'lXtFe;:t; T'|XFer: (> (~tstz) ts)
I'|XFe;: (Prompt t; t2) I'|XFez: (Prompt t; t2)
[TAbort] [TCallComp]
I'| 2} (aborte;ez) : t I'| 2} (call/comp e; e2) : t3

I'|XFe;: (Mark t;) [ISke: (Mark b

I'XtFey:t; I'|Ztes:t [TCCM]
[TCallCM] T |ZF (ceme) : (List b)

I'| 2F (call/cmes ez e3) : L2

C|Zte :t TC|Zte:t
C|ZFv: (bt T|ZFmk: Mark t;)
I'| X Fe;: (Prompt t; t2) r'Xtv:t
[TPrompt] [TWCM]
|2k @eiev): t I'|X2F (wem ((mkv) ..)e):t

Fig. 2. Typing rules

Our continuation operators suffice to encode high-level operators such as % and
fcontrol. For example, here is a macro encoding of fcontrol:

(fcontrol v p) = (call/comp (A (k) (abort v k)) p)

The static semantics of the model is straightforward. For delimited continuations, we
adapt the prompt types of Gunter et al.’s cupto system [18]. The major type judgments
are shown in figure 2. A judgment I | £ } e : t separates the environment typing ' from
the store typing . The store typing straightforwardly keeps track of the types of al-
located prompt tags and mark keys. Prompt tag types (Prompt t; ;) are parameterized
by two types: t; for the argument type expected by the handler function and t, for the
body of the prompt. The rule for prompt expressions requires that, given an appropriate
prompt tag, the body and the handler both produce a result of type t; and that the han-
dler accepts an argument of type t;. Conversely, an abort must carry a value of type t.
for a given prompt tag and may result in any type, since control never returns.

Meanwhile, the call/comp operator captures a continuation up to a prompt with the
given prompt tag and passes it to its handler. The return type ts of call/comp is the return
type of its argument function. Since the current continuation has a hole of type t3, and
since the type of the expression up to the prompt is dictated by the prompt tag type
tz, the type rule also requires that call/comp’s argument expects an argument type of
(= ts t2).

Continuation mark keys have a type (Mark t) where t is type of the value to be stored
in the mark. The rule for wem requires that all of the key-value pairs it stores are consis-
tently typed; that is, the value stored is well-typed with respect to the mark key’s type
parameter. Similarly, call/cm requires that the specified mark key and value match and
that its result type is the result type of its body. The ccm operation, used to extract the
mark values, returns a list containing the values of the type stored in the mark.

Constraining Delimited Control with Contracts 239

e ::=| (oy tc o) (mon ¥ (flat vy) v) — (check ¥ (vyv) v)
mon; CLC e
| (ctc-errori) (mon ' (i ctc, ctey) v) —
| (checkie v) A X b) y
pt = ... ((A (X2 : t) (monj” cter (V X2)))
| (PG} ctc pt) (mon }* ctca x1)))
mk = ... where v= (A (x : t))
| (MG} ctc mk) (mon ' (list/c ctc) null) — null
ote o Ef»lg:c(é\té); DO (non ¥ (List/c cte) (cons vy v2)) —>
| (prompt-tag/c ctc) (cons (mon ' ctc v;) (mon ' (list/c ctc) vz))
| (mark/c ctc) (mon}“l (prompt-tag/c ctc) vp) — (PG}"I ctc vp)
¢ =| (List/c cte) (mon ' (mark/c ctc) vim) —> (MG} ctc Vi)
| (Con t) (checkj#tv) —> v
M:=
| (mon! ctc E) (check | #f v) —> (ctc-error})
| (check |E v)

Fig. 3. Contracts and monitors

We specify the dynamic semantics in an operational style using evaluation con-
texts [12], omitting straightforward rules for conventional operations. The evaluation
contexts, shown in figure 1, follow the form of the expression grammar. The contexts
are stratified into two non-terminals E and M to ensure that adjacent wem frames in the
context are merged before further reduction. These merge steps simplify the rest of the
operational rules and have precedent in the continuation mark literature [4, 16].

The contract system, based on CPCF, adds additional constructs to the language. The
additional constructs and reduction rules for contracts are shown in figure 3. Contracts
are applied using both monitors and guards. A monitor (mon ' ctc e) represents a term
e protected by a contract ctc. The labels k and I indicate the server and client parties,
respectively, that entered into the contract. The final label j indicates the component that
the contract belongs to [9]. Since monitored terms are not values, we need additional
guard terms for prompt tags and continuation mark keys, because guarded tags and keys
may appear in positions that expect values. Guards, like monitors, include a contract and
server, client, and contract labels for the involved parties. A monitor or guard and its
labels delineate the boundary between two components: server and client. Boundaries
play a key role when we prove that no values pass between components (i.e., across a
monitor or guard) without appropriate contract protection.

Monitors with a flat contract, i.e., one that the contract system can immediately
check, reduce to a check expression that runs the contract predicate and either raises a
contract error or returns the checked value. Monitors for functions reduce to a wrapped
function that checks both the domain and range contracts. For prompt tags and mark
contracts, the monitors respectively reduce to a prompt tag or mark key guard.

Figure 4 shows the key rules for continuations and continuation marks, which war-
rant additional explanation. The make-prompt-tag and make-cm-key terms reduce to fresh
prompt tag and mark key values, respectively, allocating them in the store. A prompt
that contains a value reduces to the value itself.

240 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

When a prompt contains an abort, the reduction relation takes the prompt’s handler
and applies it to the aborted value (via [abort]). The notation E,: means that the context E
does not contain a prompt tagged with the prompt tag pt. The rule additionally wraps
the aborted value with any necessary contracts using the wrap+ and wrap- metafunctions.
Respectively, these metafunctions wrap the values with the contract checks that are ne-
cessitated by the prompt tag of the prompt and the tag used by the abort. This rule
only triggers when the prompt tag on the prompt side and the abort side are equiva-
lent modulo any contract guards. An abort where the surrounding context contains no
matching prompt tag gets stuck. Like Gunter et al. [18], we isolate this error case, which
is difficult to rule out without a type and effect system, in our theorems.

Within a prompt, call/comp reifies the continuation as (A (x : t) En[x]) and applies v
to this function. As with aborts, the rule only triggers when the prompt tags on both
sides are the same.

Continuation mark frames (wem w v) are discarded when the body is a value and re-
duce to the value itself. When two continuation mark frames are directly adjacent in the
form (wem w; (wem w2 e)), the frames are merged. The metafunction takes the innermost
value for any given continuation mark key for the resulting store.

For continuation captures and setting a continuation mark, a continuation mark frame
is allocated unless one already exists in the continuation. These are used to ensure that
subsequent updates to the marks can be carried out. A call/cm operation that sets or
updates a continuation mark reduces to an intermediate update term that first applies
any necessary contract checks and then sets or updates the mark value. Continuation
marks are actually updated via the [wem/update/set] and [wem/update/add] rules. The values
stored in a continuation mark are extracted with the ccm expression for a given mark key.
If the key is unguarded, the reduction rule uses a metafunction to retrieve the relevant
values stored in the continuation’s mark frames. If a guard exists, the ccm term reduces
to a contract check wrapped around a new ccm term.

Notice that the only rules that involve both contracts and control operators are those
that potentially cross into another component across a monitor or guard. Specifically,
these are the [abort], [ccm/guard], and [call/lcm] rules. None of the other control rules involve
contracts, demonstrating the one key intuition behind our formalism: only the opera-
tions that set up communication across component boundaries need additional attention
from the contract system. The proof technique in the next section justifies this intuition.

4 Complete Monitoring and the Blame Theorem

To show that our contract system comprehensively protects all of the communication
channels in the language, we prove that the contract system satisfies the complete moni-
toring property [9]. Essentially, this property requires that the values in the language are
always owned and manipulated by a single component at a time. Values only flow to a
different component under the auspices of the contract system. Expressions that attempt
to smuggle values without the contract system’s knowledge would get stuck. We prove
that the reduction relation is a complete monitor in order to show the blame theorem,
which informally states that the contract system does not find the typed component at
fault for any violation of types turned into contracts.

Constraining Delimited Control with Contracts 241

<E[(prompt-tag)], o> = <Eltag], (tag 0)> [prompt-tag]
where tag ¢ o

(% Vi pt v2) —> Vv [prompt]

(% Epl (abort pt v)1 pt; vi) — (v EL[EIVID [abort]

where E. = wrap+[pt;]l, E. = wrap-[pt, [1]l, pt =, pt:

(% Epl (wem w (call/comp v pt))] — (% Exl(wem w (v (A (X : t) Enlx])))] [call/comp]
pt: vi) pti vn)
where pt =, pt;

<E[(cm-key)], o> = <Elkeyl, (key 0)> [mark-key]
where key ¢ o

(wem w V) —>v [wem/v]

(wem w; (wem W3 e)) —> (wem (W; ® W) e) [wem/mergel]

<E[(call/cmv; v; €)], o> == <E[(wem () (call/cmv; vz e))], o> [wcm/intro/cm]

where E # E;[(wem w [1)]

(wem W (call/cm mk v e)) — (wem w (update mk; e;); e) [call/cm]
where (mk; e;) = pushl[mk, v]

(wem ((key; Vi) ... —> (wem ((key; Vi) ... [wem/set]
(key: v2) (keys vs) ...) (key: va) (keys vs) ...)
(update key, v4); e) e)
(wem ((key; vi) ...) — (wem ((key: Vi) ... (key: v2)) €) [wem/add]

(update key: v2); e)
where key. ¢ (key; ...)

<E[(ccmkey)], o> == <E[marks[[E, key, nulllll, o> [ccm]

(cem (MG M ctc mk)) —> (mon ' (list/c ctc) (ccmmk)) [ccm/guard]

wrap+[(PG ctc pt)] = (mon "' ctc wrap+[ptl) wrap-[[(PG} ctc pt), E = wrap-[pt, (mon}*ctc E)]
wrap+[[tagll =[] wrap-[tag, E]l =E

Fig. 4. Control reductions

Judgment Description

r,Llke ‘Well-formed source terms

;% ..); d..); I>ctc Well-formed contracts

I LlEe Loosely well-formed terms
S~0 ‘Well-formed store
S§,S"|Glre:t Well-typed mixed terms (sec. 5)
S5,S"|Gte Well-formed mixed terms (sec. 5)

Fig. 5. Judgments

242 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

I = X(tag) 1 = X(key) 2 lke
——— [WPromptTag] — [WKey] — [WOwn]
3, I 1 tag 3T 1 I- key Z;F;Ill-|e|1

;I klke 2 klFv
3; I (k); (D; jecte 3, I (kD; (kD;jocte
[WMon] [WPromptGuard]
;I LI (mon [cte |e|*) > 11 (PG cte v)
> lke 3T k I key
3, T; X(key) F v I kIFv I lke
[WWCM] [WUpdate]
35 1 IF (wem ((key v) ...) e) 3; I 1I- (update k key v); e

305 .); (k...); j>ctey

[WCFlat] 25 (k.); ... jocte:

20 (k.D); dnD;j flat |eP) | [WCFun]
(ks g L(flat el 3T (k..); ..D); > (- cte; ctes)

2 Gjlke

Fig. 6. Selected well-formed source program and contract rules

A proof of complete monitoring requires an annotation of values and expressions
with ownership labels, using the component labels that contracts already use. In addi-
tion, we annotate contracts with obligation labels to show which components are re-
sponsible for which parts of the contract:

eu= ... V=L, ctc =
| lel! | v| | L(flat (A (x : &) e
| (update I mk e); e

The proof that our reduction relation is a complete monitor utilizes the traditional sub-
ject reduction technique. First, we describe how to set up the subject. We use several
judgments, listed in figure 5, to enforce the necessary properties from the contract sys-
tem. The judgmentT; %; I I+ e checks that source programs are well-formed with respect
to the ownership annotations. We omit the details of several judgments; see the sepa-
rate appendix for additional rules. Figure 6 presents a key subset of the rules for our
model. Essentially, the judgment ensures that terms that set up a contract boundary, i.e.,
monitors, guards, and so on, contain sub-terms with matching ownership. For example,
a monitor must be well-formed under its server label and its sub-term must be well-
formed under the monitor’s client label with an appropriate annotation. Guards set up a
contract boundary in a similar fashion.

The judgment also features a store environment . We use this environment to stati-
cally track the ownership of prompt tags and continuation mark keys. Since these values
are unique and originate in a single component, we say that their ownership is deter-
mined purely by their mapping in the store. This ensures that any given tag or mark key
appears only in the component that created them unless transported to another compo-
nent via a contract.

Constraining Delimited Control with Contracts 243

A oo el Ivlh — letx := v [B]

(% Eju (wem w (call/comp [[v]|* [pt]*))] —> (% Epl (wem w (Jv]* |(cont E)|*))] [call/comp]
Ipt: 0" Ivallhy Ipt: I Ivallhy
where pt =, pt;

(% E[(abort | pt VI Iptall' vally — (Jval' EXLES V1D [abort]
where F'; = wrap+[pt]l, E* = wrap-l[pt, [11l, pt =x pt:

(wem w (call/em |mKk]|" |v]' €)) — (wem w (update k key e;); e) [call/cm]
where (key e; k) = pushl[mk, v]l

Fig. 7. Select reduction rules with annotations

In the case of monitors and guards, we also require that their contract is well-formed
using the judgmentT; %; (k ...); (I ...); j > cte. The third and fourth parts of the judgment
indicate the components that should be responsible for the positive and negative parts
of a contract, respectively. The fifth label indicates the component that should own
the contract. Flat contracts are well-formed when their obligations match up with the
positive parties and their code matches the contract party. Function contracts swap the
positive and negative obligations for the domain contract. In all other cases, we require
that sub-contracts are appropriately well-formed.

For some terms in a reduction sequence, the well-formedness condition is too strict.
Most commonly, terms that reduce to monitored expressions can cause well-formedness
to fail, even though a few additional steps of reduction corrects this failure. To han-
dle this situation, we extend well-formedness to a loose well-formedness judgment
I; %; 1 = e, which is preserved by reduction.

Finally, we require with the judgment ¥ ~ o that the program store is well-formed
with respect to the store environment, meaning all of the statically known tags and
keys are allocated with the correct owners. This requirement prevents a situation where
unallocated tags or keys appear in an expression or where the environment records the
wrong ownership.

To guarantee that the preservation lemma actually holds, we also modify the reduc-
tion rules to propagate the ownership annotations appropriately. Figure 7 shows a subset
of the revised reduction rules. We rely on the notation ||v||', which means the value v may
be wrapped with zero or more ownership annotations, all with the label 1. In the rules,
we take any possibly annotated values and replace them in the contractum with the
value wrapped in a single annotation, ensuring the annotation remains in future steps.
One interesting case is the [cal/cm] rule. The rule utilizes a modified push metafunction
that guides the value v through several contract boundaries to reach the component that
the mark key lives in. Each boundary traversal wraps the value with an additional mon-
itor. The modified metafunction additionally returns the final owner of the component
v after wrapping, which we need to annotate the update term.

With the judgments in mind, we formalize the complete monitoring property.

244 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

Definition 1. A reduction relation is a complete monitor if for all well-typed terms eo
such that ¥; @; lo I+ ey,

- <ep, > —* <v, 0>, or

— for all e; and stores o, such that <ey, > —* <e;, 01>, there exists an e; and o
such that <e;, 01> — <ez, 02>, Or

— <eg, > —* <Epf(abortv pt)], 01>, or

- <@y, 2> —* <e;, 01> —* <(ctc-errorf), 02> where e; is of the form
E'[(mon k| (flat v) | [v|"] and k € (1...).

Theorem 1. The reduction relation — is a complete monitor.

The proof follows a standard subject reduction strategy with two main lemmas: progress
and preservation. We list the key lemmas below but omit details of the proof cases,
which are similar to those presented by Dimoulas et al. [9].

Lemma 1. For all ey, 0o, and X such that >;; o; O« e; and Xy ~ oo, then either

— €=V,

- e = (ctc—error,’-‘),

there exists an e; and o such that <e,, 0o> — <ei;, 01>, or
— <ey, 00> = <Epf(abortv pt)], oo>.

Lemma 2. For all <ey, 00> — <ei, 01> and there exists X, such that Zi; @; Q I+ e; and
Yo ~ 0o, then for some ;1 O 3o, 31; 2; 1 I ey.

The culmination of the formalism is the Blame Theorem. Informally, the key idea of
the Blame Theorem is that the contract system never blames the typed components of a
mixed program for a contract error. Again, we first require some setup in order to state
the theorem. The technique that we use here is detailed in Dimoulas et al. [9].

First, we set up an untyped sister language of our original typed language in order to
have mixed programs. The untyped language shares the syntax and current operational
semantics, but omits type annotations. Second, we isolate any stuck states that occur
due to type errors and reduce them to contract errors blaming the component. For the
contract system, we also require that flat contracts are picked from a pool of built-in
contracts that exactly correspond to the base datatypes we use: integers, strings, etc.

In the mixed language, monitors allow the embedding of expressions from other
components as before. We now limit the server and client labels to T and v for typed
and untyped components. In other words, untyped components are embedded in a typed
component with server and client labels v and T, respectively. For embedding in the
other direction, the labels are reversed.

To ensure that components are well-formed, we require that the typed portions of any
mixed program are well-typed and require that all components respect the ownership
annotations as before. Furthermore, we need to guarantee that all component bound-
aries are protected by the correct contracts. We formalize this notion in the judgments
S,S°|GreandS, S’ | Gt e:twith store typing S, an environment S° for tracking un-
typed locations, and type environment G. Our notion of store consistency requires that
untyped and typed locations are tracked disjointly [7]. These judgments rely on the
mapping between types and contracts, presented in figure 8.

Finally, we can state and prove the Blame Theorem:

Constraining Delimited Control with Contracts 245

TI[(» ctc; ctez)] = (- T[ctc;] Tlcte,1)
T[(prompt-tag/c ctc)] = (Prompt T[ctc])
T[(mark/c ctc)] = (Mark T[ctc])

T[(list/c ctec)] = (List T[ctcl)

Fig. 8. Contract-type translation

Theorem 2. For all untyped terms ey such that @, @ | @ + e, and @; @; v I+ e, <eo, 2>
does not reduce to a configuration of the form <(ctc-error}), o>.

The proof follows by subject reduction, again with two main lemmas [7, 9].

5 Implementing Stack Protection

In addition to demonstrating the theoretical soundness of our design, we also describe
its implementation in a production languageH Our implementation technique builds
on Strickland et al’s chaperone framework [28]. Chaperones act as proxies for values
that behave the same as the originals, modulo additional exceptions. This allows the
enforcement of a desirable property of contracts: a contracted value should behave the
same as the uncontracted value except for the possibility of contract errors.

To implement our control contracts, we modified the Racket runtime system to pro-
vide additional primitive operations such as chaperone-continuation-prompt-tag
and chaperone-continuation-mark-key. Both prompt tag and mark key chaper-
ones take two function arguments that are called when continuation and continuation
mark operations are used, respectively. For the prompt tag case, one function is inter-
posed on the application of a prompt handler and the other is interposed on a continua-
tion abort. For continuation marks, one function is interposed on retrieval from a mark
and the other is interposed on insertion into a mark.

Prompt and mark operations in the runtime coordinate with chaperones by checking
if the prompt tag or mark key, respectively, is a chaperone and then using the appro-
priate interposition function if so. The interposition function receives the aborted value
in the continuation case and the stored mark value in the case of continuation marks.
The result of the interposition function is then used in place of the original value. If the
prompt tag or mark key is not chaperoned, the operation proceeds normally.

6 Related Work

Types for delimited control. We use a variation of Gunter et al. [18]’s type system for
the cupto delimited control operator. Although their type system does not support con-
tinuation marks, it inspired our solution. The main difference is our choice of primitives:

2 Contracts for control are available in Racket 5.3 and higher. A development version of Typed
Racket supports delimited control and continuation marks.

246 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

abort and call/comp are lower-level than cupto [15]. In addition, our type construc-
tors for prompt tags take two arguments instead of one. This allows the handler to return
a different type than its argument.

Many type systems for delimited control, following Danvy and Filinksi, use a type
and effect system [2, 6]. These type systems support result type modification and stat-
ically eliminating continuation jumps to missing prompts. Our design choices make
different compromises, based on two pragmatic considerations: simplicity of the sys-
tem and the difficulty of dynamically enforcing effect typing with contracts.

Gradual typing and the Blame Theorem. Many researchers have constructed models of
gradual typing: both functional and object-oriented [1, 24, 25, 29, 31]. The soundness
theorem for gradual typing originates from Tobin-Hochstadt and Felleisen [31] and was
christened the “Blame Theorem” in Wadler and Findler [34]. Our proof technique for
this central theorem of gradual typing comes from Dimoulas et al. [9]. In general, the
idea of complete monitoring also provides the intuition for the design of a contract
system for gradual typing.

7 Conclusion

Virtually every modern programming language provides facilities for accessing and
manipulating the stack, with exceptions, generators, and stack inspection as just a few
examples. However, these facilities add non-local flows to programs, defeating the in-
variants programmers expect of their code. This problem is particularly acute in gradu-
ally typed languages, where type invariants are enforced with software contracts.

In this paper, we show that contracts, originally designed to mediate between caller
and receiver, extend naturally to these non-local constructs. We equip Racket’s delim-
ited control and continuation mark operations with a gradual type system enforced at
the boundaries by contracts. This system maintains type soundness in arbitrary com-
position with untyped code, as proved via the blame theorem. The implementation of
control contracts in Racket leverages the existing chaperone framework for implement-
ing contracts.

Acknowledgments. The authors wish to thank Aaron Turon and Stephen Chang for
comments on early drafts. Christos Dimoulas gave valuable advice on the formalism.
Matthias Felleisen also provided his feedback and insight on continuations.

References

[1] Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for All. In: Proc. ACM Sym. Prin-
ciples of Programming Languages, pp. 201-214 (2011)

[2] Asai, K., Kameyama, Y.: Polymorphic Delimited Continuations. In: Shao, Z. (ed.) APLAS
2007. LNCS, vol. 4807, pp. 239-254. Springer, Heidelberg (2007)

[3] Clements, J.: Portable and High-level Access to the Stack with Continuation Marks. PhD
dissertation, Northeastern University (2006)

[4] Clements, J., Flatt, M., Felleisen, M.: Modeling an Algebraic Stepper. In: Proc. European
Sym. on Programming, pp. 320-334 (2001)

(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

Constraining Delimited Control with Contracts 247

Clements, J., Sundaram, A., Herman, D.: Implementing Continuation Marks in Javascript.
In: Proc. Wksp. Scheme and Functional Programming (2008)

Danvy, O., Filinski, A.: Abstracting Control. In: Proc. LISP and Functional Programming,
pp- 151-160 (1990)

Dimoulas, C.: Foundations for Behavioral Higher-Order Contracts. PhD dissertation,
Northeastern University (2012)

Dimoulas, C., Felleisen, M.: On Contract Satisfaction in a Higher-Order World. Trans.
Programming Languages and Systems 33(5), 16:1-16:29 (2011)

Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete Monitors for Behavioral Con-
tracts. In: Proc. European Sym. on Programming, pp. 214-233 (2012)

Draves, R.P.: Control Transfer in Operating System Kernels. PhD dissertation, Carnegie
Mellon University (1994)

Dybvig, K., Peyton-Jones, S., Sabry, A.: A Monadic Framework for Delimited Continua-
tions. J. Functional Programming 17(6), 687-730 (2007)

Felleisen, M.: The Theory and Practice of First-Class Prompts. In: Proc. ACM Sym. Prin-
ciples of Programming Languages, pp. 180-190 (1988)

Felleisen, M.: On the Expressive Power of Programming Languages. Science of Computer
Programming 17(1-3), 35-75 (1991)

Findler, R.B., Felleisen, M.: Contracts for Higher-Order Functions. In: Proc. ACM Intl.
Conf. Functional Programming, pp. 48-59 (2002)

Flatt, M., PLT: Reference: Racket. PLT Inc., PLT-TR-2010-1 (2010),
http://racket-lang.org/trl/

Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding Delimited and Composable Control
to a Production Programming Environment. In: Proc. ACM Intl. Conf. Functional Program-
ming, pp. 165-176 (2007)

Free Software Foundation. Guile Reference Manual: Prompts (2012),
http://www.gnu.org/software/guile/manual/html_node/Prompts.html

Gunter, C.A., Didier, R., Riecke, J.G.: A Generalization of Exceptions and Control in ML-
like Languages. In: Proc. ACM Intl. Conf. Functional Programming Languages and Com-
puter Architecture, pp. 12-23 (1995)

Hieb, R., Kent Dybvig, R., Anderson, C.W.: Subcontinuations. In: LISP and Symbolic
Computation, pp. 83—110 (1994)

James, R.P., Sabry, A.: Yield: Mainstream Delimited Continuations. In: Proc. Theory and
Practice of Delimited Continuations, pp. 20-32 (2011)

Kiselyov, O., Shan, C.-C.: A Substructural Type System for Delimited Continuations. In:
Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 223-239. Springer, Heidelberg
(2007)

Kiselyov, O., Shan, C.-C., Sabry, A.: Delimited Dynamic Binding. In: Proc. ACM Intl.
Conf. Functional Programming, pp. 26-37 (2006)

Pettyjohn, G., Clements, J., Marshall, J., Krishnamurthi, S., Felleisen, M.: Continuations
from Generalized Stack Inspection. In: Proc. ACM Intl. Conf. Functional Programming,
pp. 216227 (2005)

Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Proc. Wksp. Scheme
and Functional Programming (2006)

Siek, J.G., Taha, W.: Gradual Typing for Objects. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 2-27. Springer, Heidelberg (2007)

Sitaram, D.: Handling Control. In: Proc. ACM Conf. Programming Language Design and
Implementation, pp. 147-155 (1993)

Sitaram, D., Felleisen, M.: Control Delimiters and their Hierarchies. In: LISP and Symbolic
Computation, pp. 67-99 (1990)

http://racket-lang.org/tr1/
http://www.gnu.org/software/guile/manual/html_node/Prompts.html

248

[28]

[29]

[30]
[31]
[32]
[33]

[34]

A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

Stephen Strickland, T., Tobin-Hochstadt, S., Findler, R.B., Flatt, M.: Chaperones and Im-
personators: Run-time Support for Reasonable Interposition. In: Proc. ACM Conf. Object-
Oriented Programming, Systems, Languages and Applications (2012)

Takikawa, A., Stephen Strickland, T., Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.:
Gradual Typing for First-Class Classes. In: Proc. ACM Conf. Object-Oriented Program-
ming, Systems, Languages and Applications (2012)

Takikawa, A., Stephen Strickland, T., Tobin-Hochstadt, S.: Constraining Delimited Control
with Contracts. Northeastern University, NU-CCIS-13-01 (2013)

Tobin-Hochstadt, S., Felleisen, M.: Interlanguage Migration: from Scripts to Programs. In:
Proc. Dynamic Languages Symposium, pp. 964-974 (2006)

Tobin-Hochstadt, S., Felleisen, M.: The Design and Implementation of Typed Scheme. In:
Proc. ACM Sym. Principles of Programming Languages, pp. 395-406 (2008)

Tucker, D.B., Krishnamurthi, S.: Pointcuts and Advice in Higher-Order Languages. In:
Proc. Intl. Conf. on Aspect-Oriented Software Development, pp. 158-167 (2003)

Wadler, P., Findler, R.B.: Well-typed Programs Can’t be Blamed. In: Proc. European Sym.
on Programming, pp. 1-15 (2009)

Verifying Concurrent Memory Reclamation
Algorithms with Grace

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang

! IMDEA Software Institute
2 Tel-Aviv University
3 University of Oxford

Abstract. Memory management is one of the most complex aspects of mod-
ern concurrent algorithms, and various techniques proposed for it—such as haz-
ard pointers, read-copy-update and epoch-based reclamation—have proved very
challenging for formal reasoning. In this paper, we show that different memory
reclamation techniques actually rely on the same implicit synchronisation pat-
tern, not clearly reflected in the code, but only in the form of assertions used to
argue its correctness. The pattern is based on the key concept of a grace period,
during which a thread can access certain shared memory cells without fear that
they get deallocated. We propose a modular reasoning method, motivated by the
pattern, that handles all three of the above memory reclamation techniques in a
uniform way. By explicating their fundamental core, our method achieves clean
and simple proofs, scaling even to realistic implementations of the algorithms
without a significant increase in proof complexity. We formalise the method us-
ing a combination of separation logic and temporal logic and use it to verify
example instantiations of the three approaches to memory reclamation.

1 Introduction

Non-blocking synchronisation is a style of concurrent programming that avoids the
blocking inherent to lock-based mutual exclusion. Instead, it uses low-level synchro-
nisation techniques, such as compare-and-swap operations, that lead to more complex
algorithms, but provide a better performance in the presence of high contention among
threads. Non-blocking synchronisation is primarily employed by concurrent implemen-
tations of data structures, such as stacks, queues, linked lists and hash tables.

Reasoning about concurrent programs is generally difficult, because of the need to
consider all possible interactions between concurrently executing threads. This is espe-
cially true for non-blocking algorithms, where threads interact in subtle ways through
dynamically-allocated data structures. In the last few years, great progress has been
made in addressing this challenge. We now have a number of logics and automatic
tools that combat the complexity of non-blocking algorithms by verifying them thread-
modularly, i.e., by considering every thread in an algorithm in isolation under some
assumptions on its environment and thus avoiding explicit reasoning about all thread
interactions. Not only have such efforts increased our confidence in the correctness of
the algorithms, but they have often resulted in human-understandable proofs that eluci-
dated the core design principles behind these algorithms.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 249-269] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

250 A. Gotsman, N. Rinetzky, and H. Yang

However, one area of non-blocking concurrency has so far resisted attempts to give
proofs with such characteristics—that of memory management. By their very nature,
non-blocking algorithms allow access to memory cells while they are being updated
by concurrent threads. Such optimistic access makes memory management one of the
most complex aspects of the algorithms, as it becomes very difficult to decide when it
is safe to reclaim a memory cell. Incorrect decisions can lead to errors such as memory
access violations, corruption of shared data and return of incorrect results. To avoid this,
an algorithm needs to include a protocol for coordinating between threads accessing
the shared data structure and those trying to reclaim its nodes. Relying on garbage
collection is not always an option, since non-blocking algorithms are often implemented
in languages without it, such as C/C++.

In recent years, several different methods for explicit memory reclamation in non-
blocking algorithms have been proposed:

— Hazard pointers [12] let a thread publish the address of a node it is accessing as a
special global pointer. Another thread wishing to reclaim the node first checks the
hazard pointers of all threads.

— Read-copy-update (RCU) [11] lets a thread mark a series of operations it is perform-
ing on a data structure as an RCU critical section, and provides a command that waits
for all threads currently in critical sections to exit them. A thread typically accesses
a given node inside the same critical section, and a reclaimer waits for all threads to
finish their critical sections before deallocating the node.

— Epoch-based reclamation |5 uses a special counter of epochs, approximating the
global time, for quantifying how long ago a given node has been removed from the
data structure. A node that has been out of the data structure for a sufficiently long
time can be safely deallocated.

Despite the conceptual simplicity of the above methods, their implementations in non-
blocking algorithms are extremely subtle. For example, as we explain in §2] the protocol
for setting a hazard pointer is more involved than just assigning the address of the
node being accessed to a global variable. Reasoning naturally about protocols so subtle
is very challenging. Out of the above algorithms, only restricted implementations of
hazard pointers have been verified [[1446J3116], and even in this case, the resulting proofs
were very complicated (see 6l for discussion).

The memory reclamation algorithms achieve the same goal by intuitively similar
means, yet are very different in details. In this paper, we show that, despite these differ-
ences, the algorithms actually rely on the same synchronisation pattern that is implicit—
not clearly reflected in the code, but only in the form of assertions used to argue its cor-
rectness. We propose a modular reasoning method, formalising this pattern, that handles
all three of the above approaches to memory reclamation in a uniform way. By explicat-
ing their fundamental core, we achieve clean and simple proofs, scaling even to realistic
implementations of the algorithms without a significant increase in proof complexity.

In more detail, we reason about memory reclamation algorithms by formalising the
concept of a grace period—the period of time during which a given thread can access
certain nodes of a data structure without fear that they get deallocated. Before deallo-
cating a node, a reclaimer needs to wait until the grace periods of all threads that could
have had access to the node pass. Different approaches to memory reclamation define

Verifying Concurrent Memory Reclamation Algorithms with Grace 251

31 void reclaim(int *s) {

32 insert(detached[tid-1],s);
33 if (nondet()) return;

34 Set in_use = 0;

14 int *C = new int(0);
15 int *HP[N] = {0};
| int *C = new int(0); 16 Set detached[N] = {(0};

int i int i
j lnin’:cm\(r:()*s{ *n; :; lnin:n\(r:()*lf *s, *s2; s while (!isEmpty(
) T ’ o ’ ’ 36 detached [tid-1])) {
4 n = new int; 19 n = new int;
37 bool my = true;
5 do { 20 do { X
6 s = C; 21 do { * int *n =
’ 39 pop(detached [tid-1]);
7 vV = *s; 22 s = C; . K
X 40 for (int i = 0;
8 *n = v+1; 23 HP[tid-1] = s; . .
' 4 i < N && my; i++)
9} while 24 s2 = C; 42 if (HP[i] == n)
10 ('CAS(&C,s,n)); 25 } while (s != s2);
_ 43 my = false;
1 // free(s); 26 v = *s; .
44 if (my) free(n);
12 return v; 7 m = vtl; 45 else insert(in_use, n);
13} 28)} while(!CAS(&C,s,n)); } - ’ ’
1 1 .
v reclaim(s); 47 moveAll (detached[tid-1],
3 return v; } X
48 in_use); }

(a) (b) (©)

Fig. 1. A shared counter: (a) an implementation leaking memory; (b)-(c) an implementation based
on hazard pointers. Here tid gives the identifier of the current thread.

the grace period in a different way. However, we show that, for the three approaches
above, the duration of a grace period can be characterised by a temporal formula of a
fixed form “n since p”, e.g., “the hazard pointer has pointed to the node since the node
was present in the shared data structure”. This allows us to express the contract between
threads accessing nodes and those trying to reclaim them by an invariant stating that a
node cannot be deallocated during the corresponding grace period for any thread. The
invariant enables modular reasoning: to prove the whole algorithm correct, we just need
to check that separate threads respect it. Thus, a thread accessing the data structure has
to establish the assertion “7 since p”, ensuring that it is inside a grace period; a thread
wishing to reclaim a node has to establish the negation of such assertions for all threads,
thus showing that all grace periods for the node have passed. Different algorithms just
implement code that establishes assertions of the same form in different ways.

We formalise such correctness arguments in a modular program logic, combining
one of the concurrent versions of separation logic [17/4] with temporal logic (3). We
demonstrate our reasoning method by verifying example instantiations of the three ap-
proaches to memory reclamation—hazard pointers (§4), RCU (§5) and epoch-based
reclamation [[7, §D]. In particular, for RCU we provide the first specification of its inter-
face that can be effectively used to verify common RCU-based algorithms. Due to space
constraints, the development for epochs is deferred to [7, §D]. As far as we know, the
only other algorithm that allows explicitly returning memory to the OS in non-blocking
algorithms is the Repeat-Offender algorithm [8]. Our preliminary investigations show
that our method is applicable to it as well; we leave formalisation for future work.

2 Informal Development

We start by presenting our reasoning method informally for hazard pointers and RCU,
and illustrating the similarities between the two.

252 A. Gotsman, N. Rinetzky, and H. Yang

2.1 Running Example

As our running example, we use a counter with an increment operation inc that can be
called concurrently by multiple threads. Despite its simplicity, the example is represen-
tative of the challenges that arise when reasoning about more complex algorithms.

The implementation shown in Figure [Th follows a typical pattern of non-blocking
algorithms. The current value of the counter is kept in a heap-allocated node pointed
to by the global variable C. To increment the counter, we allocate a new memory cell n
(line[)), atomically read the value of C into a local pointer variable s (linel@)), dereference
s to get the value v of the counter (line[7)), and then store v’s successor into n (line [§)).
At that point, we try to change C so that it points to n using an atomic compare-and-
swap (CAS) command (line[I0). A CAS takes three arguments: a memory address (e.g.,
&C), an expected value (s) and a new value (n). It atomically reads the memory address
and updates it with the new value if the address contains the expected value; otherwise,
it does nothing. The CAS thus succeeds only if the value of C is the same as it was
when we read it at line [6 thus ensuring that the counter is updated correctly. If the
CAS fails, we repeat the above steps all over again. The algorithm is memory safe, i.e.,
it never accesses unallocated memory cells. It is also functionally correct in the sense
that every increment operation appears to take effect atomically. More formally, the
counter is linearizable with respect to the expected sequential counter specification [9].
Unfortunately, the algorithm leaks memory, as the node replaced by the CAS is never
reclaimed. It is thus not appropriate for environments without garbage collection.

A Naive Fix. One can try to prevent memory leakage by uncommenting the free com-
mand in line [[T] of Figure[Th, so that the node previously pointed to by C is deallocated
by the thread that changed C’s value (in this case we say that the thread defached the
node). However, this violates both memory safety and linearizability. To see the former,
consider two concurrent threads, one of which has just read the value x of C at line [6]
when the other executed inc to completion and reclaimed the node at the address .
When the first thread resumes at line [7]it will access an unallocated memory cell.

The algorithm also has executions where a memory fault does not happen, but inc
just returns an incorrect value. Consider the following scenario: a thread ¢; running inc
gets preempted after executing line[7] and, at that time, C points to a node x storing v; a
thread 2 executes inc, deallocating the node x and incrementing the counterto v+ 1; a
thread ¢3 calls inc and allocates x, recycled by the memory system; ¢3 stores v + 2 into
x and makes C point to it; £; wakes up, its CAS succeeds, and it sets the counter value
to v + 1, thereby decrementing it! This is a particular instance of the well-known ABA
problem: if we read the value A of a global variable and later check that it has the value
A, we cannot conclude, in general, that in the meantime it did not change to another
value B and then back to A. The version of the algorithm without free in line[I1]does
not suffer from this problem, as it always allocates a fresh cell. This algorithm is also
correct when executed in a garbage-collected environment, as in this case the node x in
the above scenario will not be recycled as long as ¢; keeps the pointer s to it.

2.2 Reasoning about Hazard Pointers

Figure [[b shows a correct implementation of inc with explicit memory reclamation
based on hazard pointers [[12l]. We assume a fixed number of threads with identifiers

Verifying Concurrent Memory Reclamation Algorithms with Grace 253

from 1 to N. As before, the thread that detaches a node is in charge of reclaiming it.
However, it delays the reclamation until it is assured that no other thread requested that
the node be protected from reclamation. A thread announces a request for a node to be
protected using the array HP of shared hazard pointers indexed by thread identifiers. Ev-
ery thread is allowed to write to the entry in the array corresponding to its identifier and
read all entries. To protect the location s, a thread writes s into its entry of the hazard
array (line 23) and then checks that the announcement was not too late by validating
that C still points to s (line 23)). Once the validation succeeds, the thread is assured that
the node s will not be deallocated as long as it keeps its hazard pointer equal to s. In
particular, it is guaranteed that the node s remains allocated when executing lines 26-
28l which ensures that the algorithm is memory safe. This also guarantees that, if the
CAS in line 28]is successful, then C has not changed its value since the thread read it at
line 24l This prevents the ABA problem and makes the algorithm linearizable.

The protection of a node pointed to by a hazard pointer is ensured by the behaviour of
the thread that detaches it. Instead of invoking free directly, the latter uses the reclaim
procedure in Figure[Ik. This stores the node in a thread-local detached set (line[32) and
occasionally performs a batched reclamation from this set (for clarity, we implemented
detached as an abstract set, rather than a low-level data structure). To this end, the
thread considers every node n from the set and checks that no hazard pointer points to
it (lines [QH43)). If the check succeeds, the node gets deallocated (line [44).

Reasoning Challenges. The main idea of hazard pointers is simple: threads access-
ing the shared data structure set hazard pointers to its nodes, and threads reclaiming
memory check these pointers before deallocating nodes. However, the mechanics of
implementing this protocol in a non-blocking way is very subtle.

For example, when a thread ¢; deallocates a node x at line d4] we may actually
have a hazard pointer of another thread ¢, pointing to x. This can occur in the following
scenario: to reads the address x from C at line@2land gets preempted; ¢1’s CAS detaches
2 and successfully passes the check in lines 40H43} ¢ wakes up and sets its hazard
pointer to x; t; deallocates x at line 44l However, such situations do not violate the
correctness, as the next thing t» will do is to check that C still points to x at line
Provided x has not yet been recycled by the memory system, this check will fail and the
hazard pointer of ¢5 will have no force. This shows that the additional check in line 23]
is indispensable for the algorithm to be correct.

It is also possible that, before to performs the check in line 23] z is recycled, allocated
at line [T9 by another thread ¢3 and inserted into the shared data structure at line 28]
In this case, the check by ¢y succeeds, and the element can safely be accessed. This
highlights a subtle point: when ¢35 executes the CAS at line 2§ to insert z, we might
already have a hazard pointer pointing to z. This, however, does not violate correctness.

Our Approach. We achieve a natural reasoning about hazard pointers and similar pat-
terns by formalising the main intuitive concept in their design—that of a grace period.
As follows from the above explanation, a thread ¢ can only be sure that a node x its
hazard pointer points to is not deallocated after a moment of time when both the haz-
ard pointer was set and the node was pointed to by C. The grace period for the node =
and thread ¢ starts from this moment and lasts for as long as the thread keeps its hazard
pointer pointing to x. Informally, this is described by the following temporal judgement:

254 A. Gotsman, N. Rinetzky, and H. Yang

“the hazard pointer of thread ¢ has pointed to x since C pointed to z”, (D

where since is a temporal connective with the expected interpretation: both of the facts
connected were true at some point, and since then, the first fact has stayed true. We can
thus specify the contract between threads accessing nodes and those trying to reclaim
them by the following invariant that all threads have to respect:

“for all t and z, if the hazard pointer of thread ¢ has pointed to = since
C pointed to x, then x is allocated.”

2

It is this invariant that justifies the safety of the access to a shared node at line On
the other hand, a thread that wants to deallocate when executing reclaim checks that
the hazard pointers of other threads do not point to z (lines @0H43) only after detaching
the node from the shared data structure, and it keeps the node in the detached set until
its deallocation. Thus, even though threads can set their hazard pointers to x after the
reclaimer executes the check in lines 40H43] they cannot do this at the same time as C
points to . Hence, when the reclaimer deallocates x at line @4] we know that

“for all ¢, C has not pointed to x since the hazard pointer of ¢ did not
point to x.”

3)

Clearly, @) is inconsistent with (). Therefore, no thread is inside a grace period for
at the time of its deallocation, and the command in line @4l does not violate invariant ().

More formally, let us denote the property “the hazard pointer of thread ¢ points to
node z” by 1,4, “C points to node x” by u,, and “x is allocated” by A,. Then (@) is
(e, since pig), @ is (Y, z. (e, since p,) = Ay), and @) is (Vt. —py since -y z).
The combination of () and (3)) is inconsistent due to the following tautology:

Vn, p. (n since) A (- since —-n) = false. (€))

The above argument justifies the memory safety of the algorithm, and (as we show in
§4) the absence of memory leaks. Moreover, (2)) guarantees to a thread executing inc
that, when the CAS in line[28] succeeds, the node s has not been reallocated, and so the
ABA problem does not occur.

We have achieved a simple reasoning about the algorithm by defining the duration of
a grace period (), the protocol all threads follow (@), and the fact a reclaimer establishes
before deallocating a node (@) as temporal formulas of particular forms. We find that
the above reasoning with temporal facts of these forms is applicable not only to our
example, but also to uses of hazard pointers in other data structures [[7, §B], and in fact,
to completely different approaches to memory reclamation, as we now illustrate.

2.3 Reasoning about Read-Copy-Update

Read-Copy-Update (RCU) [11] is a non-standard synchronisation mechanism used in
Linux to ensure safe memory deallocation in data structures with concurrent access. So
far, there have been no methods for reasoning about programs with RCU. We now show
that we can use our temporal reasoning principle based on grace periods to this end.

Verifying Concurrent Memory Reclamation Algorithms with Grace 255

bool rcul[N] = {0};
rcu_enter O {(rcultid-11=1)Rrcuy,.;}
3 reu_exit () {(rcultid-11=0)rcy,; 3} B2 | sync |

1
2

3

4+ syncO { ta | rcu_enter; Sl;rcu,exitil |rcu,enter; Sg;rcu,exitl
5 bool r[N] = {0}; . :
6
;
8
9

for(int i = 0; i < N; i++) fsl rcu_enter; Sd,rcu,exnl: | rcu_enter; Sa; rcu_exit |

(r[il = rculil)iy; ty | rcu_enter;i S ; rcu_exit |

for(int i = 0; i < N; i++) b |

rcuienter; Sg; rcu_exit |

if (r[i]) {while({rculil)ig);}

Fig.2. An abstract RCU implementation and an illustration of the semantics of sync. Blocks
represent the time spans of RCU critical sections or an execution of sync.

1 int *C = new int(0); 15 int inc() {

2 bool rcul[N] = {0}; 16 int v, *n, *s;

3 Set detached[N] = {0}; 17 1n = new int; rcu_enter();

4 18 do {

5 void reclaim(int* s) { 19 rcu_exit(); rcu_enter();
6 insert(detached[tid-1], s); 20 s = C; v = %xs; *n = v+l;
7 if (nondet()) return; 21} while (!CAS(&C,s,n));

s sync(Q); 2 rcu_exit();

9 while (!isEmpty(detached[tid])) 23 reclaim(s);

10 free(pop(detached[tid])); } 24 return v; }

Fig. 3. Counter with RCU-based memory management

RCU Primer. RCU provides three commands: rcu enter, rcu exit and sync. The
rcu enter and rcu exit commands delimit an RCU critical section. They do not ensure
mutual exclusion, so multiple threads can be in their critical sections simultaneously.
Instead of enforcing mutual exclusion, RCU provides the sync command, which records
the identifiers of the threads currently in critical sections and waits until all of them exit
the sections. Note that if a new thread enters a critical section while sync is waiting, the
command does not wait for the completion of its section. For example, when ¢; calls
sync in the execution in Figure 2] it has to wait for critical sections S7, S5 and Sg to
finish. However, it does not wait for Sy or Sy, as they start after sync was called.

Figure 2] shows an abstract implementation of the RCU primitives, formalising the
above description of their semantics (for now, the reader should disregard the anno-
tations in the figure). A concrete optimised RCU implementation would simulate the
abstract one. Whether every thread is inside or outside an RCU critical section is deter-
mined by its entry in the rcu array.

RCU-Based Counter. Figure[3gives the implementation of the running example using
RCU. Its overall structure is similar to the implementation using hazard pointers. In
inc, we wrap an RCU critical section around the commands starting from the read
of the global variable C at line 20| and including all memory accesses involving the
value read up to the CAS at line 21l The correctness of the algorithm is ensured by
having reclaim call sync at line[§] before deallocating the detached nodes. This blocks
the thread until all critical sections that existed at the time of the call to sync finish.
Since, when sync is called, the nodes to be deallocated have already been moved to
the thread-local detached set, newly arriving inc operations have no way of gaining

256 A. Gotsman, N. Rinetzky, and H. Yang

areference to one of these nodes, which guarantees the safety of their deallocation. We
can similarly argue that an ABA problem does not occur, and thus, the algorithm is
linearizable. We can formulate the contract among threads as follows:

“for all ¢ and z, if thread ¢ has stayed in a critical section since it saw C)
pointing to z, then z is allocated,”

which is of the same form as (). Here, a grace period for a thread, specified by the
‘since’ clause, lasts for as long as the thread stays in its critical section. During the time
span of sync, every thread passes through a point when it is not in a critical section.

Hence, after executing line[8] for every node z to be deallocated we know:
“for all ¢, C has not pointed to z since ¢ was not in a critical section,” (6)

which is of the same form as (B). As before, this is inconsistent with the ‘since’ clause
of (@), which guarantees that deallocating = will not violate (3).

Pattern. The algorithms using hazard pointers and read-copy-update fundamentally
rely on the same synchronisation pattern, where a potentially harmful race between
threads accessing nodes and those trying to reclaim them is avoided by establishing an
assertion of the form (1, , since p,) before every access, and (-, since -y ;) before
every deallocation. This implicit pattern is highlighted not by examining the syntactic
structure of different memory management implementations, but by observing that the
arguments about their correctness have the same form, as can be seen in our proofs.

3 Abstract Logic

Reasoning about highly concurrent algorithms, such as the example in §2] is conve-
nient in logics based on rely-guarantee [[10J15]], which avoids direct reasoning about all
possible thread interactions in a concurrent program by specifying a relation (the guar-
antee condition) for every thread restricting how it can change the program state. For
any given thread, the union of the guarantee conditions of all the other threads in the
program (its rely condition) restricts how those threads can interfere with it, and hence,
allows reasoning about this thread in isolation.

The logic we use to formalise our verification method for memory reclamation
algorithms uses a variant of rely-guarantee reasoning proposed in SAGL [4] and
RGSep [17]—Tlogics for reasoning about concurrent programs that combine rely-
guarantee reasoning with separation logic. These partition the program heap into several
thread-local parts (each of which can only be accessed by a given thread) and the shared
part (which can be accessed by all threads). The partitioning is defined by proofs in the
logic: an assertion in the code of a thread restricts its local state and the shared state.
Thus, while reasoning about a thread, we do not have to consider local states of other
threads. Additionally, the partitioning is dynamic, meaning that we can use ownership
transfer to move some part of the local state into the shared state and vice versa. Rely
and guarantee conditions are then specified as relations on the shared state determining
how the threads change it. This is in contrast with the original rely-guarantee method,
in which rely and guarantee conditions are relations on the whole program state. We
use RGSep [17]] as the basis for the logic presented in this section. Our logic adds just
enough temporal reasoning to RGSep to formalise the verification method for algo-
rithms based on grace periods that we explained in §21

Verifying Concurrent Memory Reclamation Algorithms with Grace 257

3.1 Preliminaries
Programming Language. We formalise our results for a simple language:
C = aa|lC;C|CH+C|C*|(C) P u=Cr] ... || Cn

A program P is a parallel composition of N threads, which can contain primitive com-
mands « € PComm, sequential composition C; C’, nondeterministic choice C + C’,
iteration C* and atomic execution (C) of C. We forbid nested atomic blocks. Even
though we present our logic for programs in the above language, for readability we use
a C-like notation in our examples, which can be easily desugared [7, §A].

Separation Algebras. To reason about concurrent algorithms, we often use permis-
sions [, describing ways in which threads can operate on an area of memory. We
present our logic in an abstract form [2] that is parametric in the kind of permissions
used. A separation algebra is a set X, together with a partial commutative, associative
and cancellative operation * on X' and a unit element £ € Y. The property of cancella-
tivity says that for each 8 € X, the function 6 x - : X' — 3 is injective. In the rest of the
paper we assume a separation algebra State with the operation *. We think of elements
0 € State as portions of program states and the * operation as combining such portions.

Primitive Commands. We assume that the semantics of every primitive command
a € PComm, executed by thread ¢, is given by a transformer f? : State — P(State) .
Here P(State) T is the set of subsets of State with a special element T used to denote
an error state, resulting, e.g., from dereferencing an invalid pointer. For our logic to be
sound, we need to place certain standard restrictions on fé deferred to [[7, §A].

Notation. We write g(x)] to mean that the function g is defined on z, and g(z)? that
it is undefined on x. We also write for an expression whose value is irrelevant.

3.2 Assertion Language

Assertions in the logic describe sets of worlds, comprised of the local state of a thread
and a history of the shared state. Local states are represented by elements of a separa-
tion algebra (§3.1), and histories, by sequences of those. Our assertion language thus
includes three syntactic categories, for assertions describing states, histories and worlds.

Logical Variables. Our logic includes logical variables from a set LVar = LIVar @
LSVar; variables from LIVar = {z,y, ...} range over integers, and those from LSVar =
{X,Y, ...}, over memory states. Let LVal = State U Z be the set of values of logical
variables, and LInt C LVar — LVal, the set of their type-respecting interpretations.

Assertions for States. We assume a language for denoting subsets of State x Lint:
p,q == true| plp=¢q| X |3z.p|IX.p|emp|pxq]|...
The interpretation of interesting connectives is as follows:
fiemp < O=¢ liEX < 0=1i(X)
OiEpxq < 30,0".(0'x0" =0)A(0',i=p)A(0",iFEq)
The assertion emp denotes an empty state; X, the state given by its interpretation; and

P * q, states that can be split into two pieces such that one of them satisfies p and the
other, g. We assume that * binds stronger than the other connectives.

258 A. Gotsman, N. Rinetzky, and H. Yang

Assertions for Histories. A history is a non-empty sequence recording all shared states
that arise during the execution of a program: & € History = State™. We denote the
length of a history & by |¢], its i-th element by &;, and its i-th prefix, by &|; (so that
|f |z| = 1.) We refer to the last state §¢| in a history & as the current state. We define
assertions denoting subsets of History x Llnt:

7,7 v=true| 7|7 = 7| Je.7|3IX.7|p|Tisincers | Tap

€1y since 1y 4= 31 € {1, [€]}. (Eliri |2 72) AV € (i €1} (€l = 1)
EikETap = 3,0.(E=E0) N iET) A0 iFDp)

The assertion p denotes the set of histories of shared states, whose last state satisfies p;
the box signifies that the assertion describes a shared state, as opposed to a thread-local
one. The assertion (71 since 7o) describes those histories where both 7 and 72 held at
some point in the past, and since then, 7; has held continuously. The assertion 7 < p (7
extended with p) describes histories obtained by appending a state satisfying p to the
end of a history satisfying 7. It is easy to check that () from §2lis indeed a tautology.

Assertions for Worlds. A world consists of a thread-local state and a history of shared
states such that the combination of the local state and the current shared state is defined:

w € World = {(0, &) € State x History | (6 * §¢))}. (7)
We define assertions denoting subsets of World x Lint:
P,Q == pl|7|true| -P|P=Q|3x.P|IX.P|PxQ

0,6, iEp = 0,iEp 0,6iFT <= &ifET
0,6iEP*Q < 30,0".(0=0%0")A(0,&iEP)AW@,£ikEQ)

An assertion P * () denotes worlds in which the local state can be divided into two parts
such that one of them, together with the history of the shared partition, satisfies P and
the other, together with the same history, satisfies (). Note that « does not split the shared
partition, p does not restrict the shared state, and 7 does not restrict the thread-local one.

3.3 Rely/Guarantee Conditions and the Temporal Invariant

Actions. The judgements of our logic include guarantee G and rely R conditions, de-
termining how a thread or its environment can change the shared state, respectively.
Similarly to RGSep [[17], these are sets of actions of the form { | px X ~~ ¢ x X, where
l, p and g are assertions over states, and X is a logical variable over states. An action
denotes a relation in P (State x State x State):

[px X~ g XT = {(61,0p,6) | 31 (01,1 = DA (0,1 = pr X)A(0g,1 = g+ X))},
and a rely or a guarantee denotes the union of their action denotations. We write R =
R’ for [R] C [R']. Informally, the action [| p x X ~» ¢ x X allows a thread to change
the part of the shared state that satisfies p into one that satisfies ¢, while leaving the rest
of the shared state X unchanged. The assertion [is called a guard: it describes a piece
of state that has to be in the local partition of the thread for it to be able to perform
the action. We omit [when it is emp. Our actions refer explicitly to the unchanged part
X of the shared state, as we often need to check that a command performing an action

Verifying Concurrent Memory Reclamation Algorithms with Grace 259

PAT=P R=R G =G QAN =Q

CEhCll R.GLT P AP} CHQT Conseo
R,G,T Fug {p} a{q} R, G, T Hig {P}C{Q}
R,G,T 4 {P}C{Q} Q=7 P, Q are stable under R and 1
F is stable under RU G and T 0,G,true Fg {P}(C)a {Q}
R,G,Y kg (P F}YO{QxF} T RG.T g (PY(Caf@) SR
p = 1 true {l|ps ~ gs} = {a} ace G 0,0, true Fig {p* ps} C{q *qs}
.G true boa {p A7 A pa } (Cha {a A (7 A p2) <)} SHAED
Ri,G1, Y Hi {P1}C1{Q1} ... Rn,Gn, T bn {Pa}Cn{Qn}
Rig = U{Gr |1 <k <nAk#tid} Prx...xP,=7T Py, Q. stable under Ry and 7
F P ek Pa} o | || G { Q1 % % Qn} PAR

Fig. 4. Proof rules of the logic

preserves global constraints on it (see §4.3). We require that pand ginl | px X ~ ¢+ X
be precise. An assertion - for states is precise [13]], if for every state 6 and interpretation
i, there exists at most one substate 6, satisfying r, i.e., such that 6,1 = r and 0 = 6, %6,
for some 6. Informally, a precise assertion carves out a unique piece of the heap.

Temporal Invariant. Rely/guarantee conditions describe the set of actions that threads
can perform at any point, but do not say anything about temporal protocols that the
actions follow. We describe such protocols using a femporal invariant, which is an
assertion 1" over histories of the shared state. Every change to the shared state that a
thread performs using one of the actions in its guarantee has to preserve 77; in return,
a thread can rely on the environment not violating the invariant. We require that 7" be
insensitive to logical variables, i.e., V€,i,1'. (§,i £ Y) < (i E 7).

Stability. When reasoning about the code of a thread in our logic, we take into account
the interference from the other threads in the program, specified by the rely R and the
temporal invariant T, using the concept of stability. An assertion over worlds P is stable
under an action ! | ps; ~~ ¢, and a temporal invariant 7", if it is insensitive to changes to
the shared state permitted by the action that preserve the invariant:

V0,0,,0,0,,1,€. (0,601 = P) A (€0,,i =) A (€0,0.,i =) A
(01,05,00) € [l | ps ~ qs] A (00, % 0.)LA (0% 02))) = (0,60,0.,i = P).

This makes use of the guard [: we do not take into account environment transitions when
the latter cannot possibly own the guard, i.e., when 6; is inconsistent with the current
thread-local state 6 and the current shared state 8. An assertion is stable under R and 7,
when it is stable under every action in R together with 7. We only consider assertions
that are closed under stuttering on histories: (0, £0:¢’,i = P) = (0,£050:¢',i = P).

®)

3.4 Proof System

The judgements of the logic are of the form R, G, Y Fyg {P} C {Q}. Here P and Q are
the pre- and postcondition of C, denoting sets of worlds; G describes the set of atomic
changes that the thread tid executing C' can make to the shared state; R, the changes to
the shared state that its environment can make; and 7", the temporal invariant that both

260 A. Gotsman, N. Rinetzky, and H. Yang

have to preserve. The judgement guarantees that the command C'is safe, i.e., it does not
dereference any invalid pointers when executed in an environment respecting R and 7.

The proof rules of our logic are given in Figure[dl We have omitted the more standard
rules [[7, §A]. We have a single axiom for primitive commands executing on the local
state (LOCAL), which allows any pre- and postconditions consistent with their seman-
tics. The axiom uses the expected pointwise lifting of the transformers f! from §3.1]
to assertion denotations, preserving the interpretation of logical variables. The CON-
SEQ rule looks as usual in rely/guarantee, except it allows strengthening the pre- and
postcondition with the information provided by the temporal invariant 7.

By convention, the only commands that can operate on the shared state are atomic
blocks, handled by the rules SHARED-R and SHARED. The SHARED-R rule checks that
the atomic block meets its specification in an empty environment, and then checks that
the pre- and postcondition are stable with respect to the actual environment R, and that
the postcondition implies the invariant 7. Note that to establish the latter in practice,
we can always add 7 to the precondition of the atomic block using CONSEQ.

SHARED handles the case of an empty rely condition, left by SHARED-R. It is the
key rule in the proof system, allowing an atomic command C to make a change to
the shared state according to an action [| ps ~> ¢s. The action has to be included
into the annotation a of the atomic block, which in its turn, has to be permitted by
the guarantee GG. The annotations are part of proofs in our logic. For the logic to be
sound, we require that every atomic command in the program be annotated with the
same action throughout the proof. SHARED also requires the thread to have a piece of
state satisfying the guard [in its local state p. It combines the local state p with the
shared state p,, and runs C' as if this combination were in the thread’s local state. The
rule then splits the resulting state into local ¢ and shared g, parts. Note that SHARED
allows the postcondition of the atomic block to record how the shared state looked like
before its execution: the previous view p, of the shared state and the assertion 7 about
its history are extended with the new shared state g, with the aid of < (§3.1).

The FRAME rule ensures that if a command C' is safe when run from states in P, then
it does not touch an extra piece of state described by F'. Since F' can contain assertions
constraining the shared state, we require it to be stable under R U G and 1.

PAR combines judgements about several threads. Their pre- and postconditions in
the premisses of the rule are x-conjoined in the conclusion, which composes the local
states of the threads and enforces that they have the same view of the shared state.

3.5 Soundness

Let us denote by Prog the set of programs P with an additional command done,
describing a completed computation. The language of §3.1] has a standard small-step
operational semantics, defined by a relation —: Config x Config, which transforms
configurations from the set Config = (Prog x State) U {T }. (Note that this semantics
ignores the effects of weak memory consistency models, which are left for future work.)
We defer the definition of — to [[7, §A]. The following theorem is proved in [7, §E].

Theorem 1 (Soundness). Assume = {P}P{Q} and take 0;, 05 and i such that
01,05, = P. Then (P,0; x 05) /" T and, whenever (P,0; x 05) —* (done ||
... || done, &), for some), 0, and & we have 0" = 0] x 0, and 6}, 0.1 = Q.

Verifying Concurrent Memory Reclamation Algorithms with Grace 261

4 Logic Instantiation and Hazard Pointers

As explained in §2 proofs of algorithms based on grace periods, use only a restricted
form of temporal reasoning. In this section, we describe an instantiation of the abstract
logic of 3] tailored to such algorithms. This includes a particular form of the tempo-
ral invariant (§4.2) and a specialised version of the SHARED rule (SHARED-I below)
that allows us to establish that the femporal invariant is preserved using standard state-
based reasoning. We present the instantiation by the example of verifying the concurrent
counter algorithm with hazard pointers from §2

4.1 Assertion Language

Permissions. We instantiate State to RAMe = N —5, ((Z x {1,m}) U {e}). A state
thus consists of a finite partial function from memory locations allocated in the heap to
the values they store and/or permissions. The permission 1 is a full permission, which
allows a thread to perform any action on the cell; the permission m is a master per-
mission, which allows reading and writing the cell, but not deallocating it; and e is an
existential permission, which only allows reading the cell and does not give any guar-
antees regarding its contents. The transformers f¢ over RAM, are given in [[7, §A].

We define * on cell contents as follows: (u, m) x e = (u, 1); undefined in all other
cases. This only allows a full permission to be split into a master and an existential one,
which is enough for our purposes. For 01, 02 € RAM,, 61 * 05 is undefined, if for some
x, we have 01 (x)], O2(x){, but (61(x) * 02(x))?T. Otherwise,

O1%02 ={(z,w) | (01(x) =wAbz(z)P)V(02(x) =wA01(2)1)V(w=01(x)*b2(x))}.

State Assertions. To denote elements of RAM,, we extend the assertion language for
predicates over states givenin 32t p = ... | E— F | Evn F | E —. , where
E, F range over expressions over integer-valued logical variables. The semantics is as
expected; e.g., [[E]i : ([Fi,1),iEE— Fande — u < & —n usxT —e .
Conventions. We assume that logical variables ¢, ', . . . range over thread identifiers in
{1,...,N}. We write A[k] for A + k, and true, for JA. ®,ca x . , where ® is the
iterated version of *. We adopt the convention that global variables are constants, and
local variables are allocated at fixed addresses in memory. For a local variable var of
thread tid, we write var I+ P for Jvar. (&var + tid — 1) — var x P, where &var is
the address of the variable. Note that here var is a program variable, whereas var is a
logical one. We use a similar notation for lists of variables V.

4.2 Actions and the Temporal Invariant

The actions used in the proof of the running example and the rely/guarantee conditions
constructed from them are given in Figure[3l Id allows reading the contents of the shared
state, but not modifying it, and HPjq allows modifying the contents of the ¢-th entry in
the hazard pointer array. The rely Ryq and the guarantee Giiq are set up in such a way
that only thread tid can execute HPq.

Inc allows a thread to change the node pointed to by C from x to y, thus detaching
the old node z. Note that y +— occurs on the right-hand side of Inc, but not on its

262 A. Gotsman, N. Rinetzky, and H. Yang

X~ X (1d) Trm | 2 x X~ X (Take)
HP[tid—1] > # X ~» HP[tid—1] — * X (HP+iq)
Coax*xx—> *X~»Chykyr— *xTrre %X (Inc)

Gtid = {HPtid, Inc,Take, |d}; Rtid = U{Gk | 1 S k S N A k # tid}

Yup < Va,t. ((HP[t — 1] — x * true since C+— T *x — *true) = T +>e *true)

Fig. 5. Rely/guarantee conditions and the temporal invariant used in the proof of the counter
algorithm with hazard pointers

left-hand side. Hence, the thread executing the action transfers the ownership of the
node y (in our example, initially allocated in its local state) into the shared state. Since
x +— occurs on the left-hand side of Inc, but only z — occurs on its right-hand side,
the thread gets the ownership of « —, . This is used to express the protocol that the
thread detaching the node will be the one to deallocate it. Namely, Take allows a thread
to take the remaining existential permission from the shared state only when it has the
corresponding master permission in its local state. The existential permission left in
the shared state after a thread executes Inc lets concurrently running threads access the
detached node until it is deallocated.

Threads can only execute Take and other actions when these do not violate the tem-
poral invariant Yyp in Figure[l Temporal invariants used for proofs of algorithms based
on grace periods are of the form “Vz,t. (g since r) = ¢”, where “g since r” defines
the duration of the grace period for a thread ¢ and a location x, and ¢ gives the prop-
erty that has to be maintained during the grace period. In our example, the invariant
formalises @)): if a hazard pointer of ¢ has pointed to a node = continuously since C
pointed to z, then an existential permission for x is present in the shared state.

4.3 Proof Outlines and a Derived Rule for Grace Periods

The proof outline for the running example is shown in Figures [6l and [7l In the figure,
we write CAS, ;(addr,v1,v2) as a shorthand for the following, where the assume
command “assumes” its parameter to be non-zero [7, §A]:

if (nondet()) {(assume(*addr == v1); *addr = v2),; return 1; }
else { (assume(*addr != v1)),; return 0; }

The bulk of the proof employs standard state-based reasoning of the kind performed in
RGSep [I17]. Temporal reasoning is needed, e.g., to check that every command changing
the shared state preserves the temporal invariant Yyp (the premiss () = 7" in SHARED-
R). We start by discussing the proof outline of inc in Figure [0 in general terms; we
then describe the handling of commands changing the shared state in detail.

Verifying inc. Let H & (®:HP[t—1]—)and [< H+Jy.Cr— y*xy— *truee.
The pre- and postcondition of inc in Figure [6] thus state that the shared state always
contains the hazard pointer array, the pointer at the address C and the node it identifies.
Additionally, we can have an arbitrary number of existential permissions for nodes that
threads leave in the shared state in between executing Inc and Take. We also have an
assertion Fiiq, defined later, which describes the thread-local detached set.

Verifying Concurrent Memory Reclamation Algorithms with Grace 263

| int *C = new int(0), *HP[N] = {0}; 8 (HP[tid — 1] > s * true

2 Set detached[N] = {0}; 19 since C+» s2 % s2 — s true)}

3 int inc() { 20 } while (s != s82);

4 int v, *n, *s, *s2; 21 {V Fn+— *xFig AT AN s+—re *xtrue A
s AV I Frg A I} 2 (HP[tid — 1] — s * true

6 n = new int; .

, do { 23 since C+— s*s— xtrue)}

8 {VIFnw— xFyqAl} 2 (v = *s)ias

5 do { 25 *n = v+l;

10 {VIFn— *FyAl} 2 {ViIkn— xFiq AN s—e *xtrue A
1 (s = C)ias 27 (HP[tid — 1] — s * true

12 {V\F.n»—> * Frig A1} 2 since Cr> s* s+ xtrue)}

13 <Ig’ ‘[:m—ﬂ =;>Hptidl; » } while (!CASipcia(&C, s, n));

1 { _nH * Frig A LA 0 {VIFstsm *Fig AIA srse *true}
15 HP[tid — 1] — s * true } 5 reclaim(s);

16 (s2 = Chigs 2 {VIF FigAI}

17 {ViIFn—= *FgAIA 33 return v; }

Fig. 6. Proof outline for inc with hazard pointers. Here V' is v, n, s, 2, my, in use, i.

At line [T1] of inc, the current thread reads the value of C into the local variable
s. For the postcondition of this command to be stable, we do not maintain any cor-
relation between the values of C and s, as other threads might change C using Inc at
any time. The thread sets its hazard pointer to s at line[I3] The postcondition includes
HP[tid — 1] — s * true, which is stable, as Ry;q and Gyq (Figure[3) allow only the cur-
rent thread to execute HPyq.

At line[T8] the thread reads the value of C into s2. Right after executing the command,
we have HP[tid — 1] — s true A C— s2 % s2 — s true. This assertion is unstable,
as other threads may change C at any time using Inc. We therefore weaken it to the
postcondition shown by using the tautology (n A) = (n since w). It is easy to check
that an assertion (7 since p) is stable if 7 is. Since HP[tid — 1] — s true is stable, so
is the postcondition of the command in line[[6l After the test s != s2 in line 20 fails,
the since clause in this assertion characterises the grace period of the thread tid for the
location s, as stated by Typ. This allows us to exploit Typ at line 23] using CONSEQ,
establishing s — * true. This assertion allows us to access the node at the address s
safely at line 24l

If the CAS in line is successful, then the thread transfers the ownership of the
newly allocated node n to the shared state, and takes the ownership of the master per-
mission for the node s; the existential permission for s stays in the shared state. The
resulting assertion s —, A s+ *true is stable, because the only action that can
remove s —. from the shared state, Take, is guarded by s >, . Since the current
thread has the ownership of s —,, and s —, %S +> isinconsistent, the condition
(0 % 6; x 05)] in (8, checking that the guard is consistent with the local state, implies
that the action cannot be executed by the environment, and thus, the assertion is stable.

Derived Rule for Grace Periods. To check that the commands in lines [13] and 29] of
inc preserve 1yp, we use the following rule SHARED-I, derived from SHARED [7, §A]:

264 A. Gotsman, N. Rinetzky, and H. Yang

p =[x true a=(]|ps~q)€EG ps=p, qs = qs
0,0, true g {p* (ps A=(g A7)} C{g*(gs AN(g AT =)}
0,0, true big {p* (ps Ag A)} C{a = (¢: A (g =)}
0, G, true g {p A ps A ((g since r) = ¢)HC)a {qg A gs A ((g since r) = ¢)}

This gives conditions under which (C') preserves the validity of an assertion of the form
(g sincer)=c¢ 9

and thus allows us to prove the preservation of a temporal invariant of the form (@) using
standard Hoare-style reasoning. In the rule, ps describes the view of the shared partition
that the current thread has before executing C', and g, the state in which C leaves it. The
rule requires that the change from p; to g5 be allowed by the annotation a = (I | p/, ~~
q.), i.e., that p; = p’. and g5 = ¢.. It further provides two Hoare triples to be checked
of C, which correspond, respectively, to the two cases for why (g since r) = ¢ may
hold before the execution of C: —(g since r) or (g since r) A c.

As in SHARED, the two Hoare triples in the premiss allow the command inside the
atomic block to access both local and shared state. Consider the first one. We can assume
(g A) in the precondition, as it is implied by —(g since r). Since g since r
does not hold before the execution of C, the only way to establish it afterwards is by
obtaining g A r. In this case, to preserve (9)), we have to establish ¢, which motivates the
postcondition. Formally: ((—(g since 7)) < gAr = c¢) = ((g since r) = ¢).

Consider now the second Hoare triple. Its precondition comes from the tautology
((g since r) A ¢) = g A c. We only need to establish ¢ in the postcondition when
g since r holds there, which will only be the case if g continues to hold after C'
executes: (((g since r) A c)<dg=¢)= ((g since r)= c¢).

Preserving the Temporal Invariant. We illustrate the use of SHARED-I on the com-
mand in line 29 of Figure [& the one in line [[3] is handled analogously. We consider
the case when the CAS succeeds, i.e., C is {assume(C == s); C = n;}. Let P
and () be the pre- and postconditions of this command in lines and respec-
tively. We thus need to prove Rid, Grid, T Frid {P} (C)inc {@}. We first apply CON-
SEQ to strengthen the precondition of the CAS with 7, and then apply SHARED-R.
This rule, in particular, requires us to show that the temporal invariant is preserved:
0, Gyig, true Fvg {P AT} C {Q A T}. Let us first strip the quantifiers over x and ¢ in
7 using a standard rule of Hoare logic. We then apply SHARED-I with

g = (HP[t—1] — x xtrue); r=(C—ax*x+— xtrue); c=(z+re xtrue);
ps=(H*3Jy.Coyxym— xtruee); p=nr ;
gs = (H*3Jy.Coyxy— x5 *truee); q=58—>m .

We consider only the first Hoare triple in the premiss of SHARED-I, which corresponds

to g since r being false before the atomic block. The triple instantiates to

{n— *(H*3Jy.Coyxy—> xtruee) A(HP[t — 1] =z xtrue AC—x*x+— x*true))}
assume(C == s8); C =n; {s+>m *(H*xJy.Cr>y*xyr—> *Srre *truee) A
((HP[t—1] > zxtrue) A (C— xxx — xtrue)) = (z e *true))}

Recall that when the CAS at line inserts a node into the shared data structure, we
already might have a hazard pointer set to the node (§2)). The postcondition of the above

Verifying Concurrent Memory Reclamation Algorithms with Grace 265

1 void reclaim(int *s) { {VIFs+—m *FigA s+—>e =xtrue A}

> insert(detached[tid-1], s);

3 if (nondet()) return;

4 Set in_use = 0;

5 while (!isEmpty(detached[tid-11)) {

6 {V IF 3A.detached[tid — 1] — A * D(A) * D(in use) NAF#OANI}

7 bool my = true;

8 Node *n = pop(detached[tid-1]);

9 {V IF my A JA.detached[tid — 1] — A * D(A) * D(in use) *x n+—>m A nire *true AT}

10 for (int i = 0; i < N && my; i++) {

1" {V IF my A JA. detached[tid — 1] — A * D(A) x D(in use) xn +>m * n+>e *true A
12 0<i<NAINHx*x3y.y#nACr— yxyr— xtruee A

13 VO<j<i(Jyy#nAC— y*xyr— *truee since Jz.z # n AHP[j] — x * true)}
14 if ((HP[i] == n)|4) my = false;

15 }

16 if (my) {

17 {V IF JA.detached[tid — 1] — A * D(A) * D(in use) *n —>m A nire *true AIA
18 Vt.— C+> n * true since = HP[t — 1] > n * true }

19 < 5 >Take

2 {V I 3A. detached[tid — 1] = A x D(A) * D(in use) xn— AI}

21 free(n);

2 } else { insert(in_use, n); }

23} {V IF detachedtid — 1] — @ * D(in use) A I}
24 moveAll(in_use, detached[tid-11); {V Ik Fyq AT}

Fig. 7. Proof outline for reclaim with hazard pointers. V' is v, n, s, s2, my, in use, i.

triple states that, in this case, we need to establish the conclusion of the temporal invari-
ant. This is satisfied, as x — < x>y * X e

Verifying reclaim. We now explain the proof outline in Figure[7l The predicate Fyq
describes the detached set of thread tid:

D(A) <= ®zea(r—m Axrre xtrue);

Fiiq <= JA.detached[tid — 1] — A x D(A). (10)

Fiiq asserts that thread tid owns the tid-th entry of the detached array, which stores the
set A of addresses of detached nodes; D(A) asserts that, for every = € A, the thread
has the master permission for z in its local state, and the shared state contains the
existential permission for x. The assertion Fijq is stable, since, as we explained above,
soisz —, Az e *true. We assume the expected specifications for set operations.

The core of reclaim is the loop following the pop operation in line[8 which checks
that the hazard pointers do not point to the node that we want to deallocate. The as-
sertion in line [[3] formalises (3 and is established as follows. If the condition on the
pointer HP[¢] in line [I4] fails, then we know that 3x.z # n A HP[i] — x * true. Recall
that, according to (), §3.21 the combination of the local and the shared states has to
be consistent. Then, since we have n —,, in our local state, we cannot have C point-
ing to n: in this case the full permission n — would be in the shared state, and
n +— *n >y, is inconsistent. Hence, Jy.y #n AC+— yxy — xtrue. By the
tautology (n A) = () since u), we obtain the desired assertion:

Fy.yAnACr y*yr— xtrue since Jx.x # n AHP[i] — x * true. a1

266 A. Gotsman, N. Rinetzky, and H. Yang

Since n —m A Jy.y #FnACr+ y*y+— xtrue is stable, so is the loop invariant.
At line we use (II) and @) to show that the existential permission for the node n
can be safely removed from the shared state. After this, we recombine it with the local
master permission to obtain n — , which allows deallocating the node.

Absence of Memory Leaks. According to Theorem [Il the above proof establishes
that the algorithm is memory safe. In fact, it also implies that the algorithm does not
leak memory. Indeed, let P be the program consisting of any number of inc operations
running in parallel. From our proof, we get that P satisfies the following triple:

F {L * (®;detached[t — 1] = 0) A (®:HP[t — 1] — 0)*Jy.C— yxy— 0}
P{L* (®: Fy) AN (®:HP[t — 1] —)xJy.Cr— y*xy+— s*truee},

where L includes the local variables of all threads. The assertion true, in the postcon-
dition describes an arbitrary number of existential permissions for memory cells. How-
ever, physical memory cells are denoted by full permissions; an existential permission
can correspond to one of these only when the corresponding master permission is avail-
able. Every such master permission comes from some Fj, and hence, the corresponding
cell belongs to detached|t — 1]. Thus, at the end of the program, any allocated cell is
reachable from either C or one of the detached sets.

Extensions. Even though we illustrated our proof technique using the idealistic ex-
ample of a counter, the technique is also applicable both to other algorithms based on
hazard pointers and to different ways of optimising hazard pointer implementations. In
[7Z, §B], we demonstrate this on the example of a non-blocking stack with several op-
timisations of hazard pointers used in practice [12]: e.g., the pointers are dynamically
allocated, reclaim scans the hazard list only once, and the detached sets are repre-
sented by lists with links stored inside the detached elements themselves. The required
proof is not significantly more complex than the one presented in this section.

In [[7, §C], we also present an adaptation of the above proof to establish the lineariz-
ability of the algorithm following the approach in [17]] (we leave a formal integration of
the two methods for future work). The main challenge of proving linearizability of this
and similar algorithms lies in establishing that the ABA problem described in §2] does
not occur, i.e., when the CAS in line 29 of Figure [6lis successful, we can be sure that
the value of C has not changed since we read it at line[I6 In our proof this is easy to es-
tablish, as between lines[I6land[29] all assertions are stable and contain s —. * true,
which guarantees that s cannot be recycled.

5 Formalising Read-Copy-Update

RCU Specification. We start by deriving specifications for RCU commands in our
logic from the abstract RCU implementation in Figure 2} see Figure [8] The formula
S(tid, 1) states that the thread tid is in a critical section, and S(tid, 0), that it is outside
one. We use the identity action Id and an action RCUy;q allowing a thread tid to enter
or exit a critical section. The latter is used to derive the specification for rcu enter
and rcu exit (see Figure). To satisfy the premisses of the SHARED-R rule in these
derivations, we require certain conditions ensuring that the RCU client will not corrupt

Verifying Concurrent Memory Reclamation Algorithms with Grace 267

Let S(tid, k) = rcuftid — 1] — k * true and
X~ X (Id) reuftid — 1] 5 % X ~ reuftid — 1] — * X (RCUyq)

Then, R,{RCU4q},7T kg {S(tid,0) A emp}rcu enter() {S(tid,1) A emp};
R,{RCUd},T kg {S(tid, 1) A emp} rcu exit() {S(tid,0) A emp};
R, {ld},T Fya {p A 7} sync() {p A Vt.T since S(t,0)},

where 1. R = {(rcuftid — 1] — x * true) ~> (rcuftid — 1] — = * true) };
2.7 is stable under {ld, RCUsiq } and true; and
3.p A T is stable under R U {Id} and 7.

Fig. 8. Specification of RCU commands

the rcu array. First, we require that the rely R does not change the element of the
rcu array for the thread tid executing the RCU function (condition 1). In practice, R
includes the actions RCUy, for k£ # tid and actions that do not access the rcu array.
Second, we require that 7" be preserved under the actions that RCU functions execute
(condition 2).

The specification for sync is the most interesting one. The precondition p A T is
required to be stable (condition 3), and thus holds for the whole of sync’s duration.
Since, while sync is executing, every thread passes through a point when it is not in a
critical section, we obtain Vt. 7 since S(t, 0) in the postcondition. (We mention the local
state p in the specification, as it helps in checking stability; see below.) The derivation
of the specification from Figure [2] is straightforward: e.g., the invariant of the loop in
line@lis r,i F p AVE. (¢t <i+1Vr[t —1] =0) = (7 since S(£,0)). As usual, here
we obtain the since clause by weakening: (7 A S(tid,0)) = (7 since S(tid, 0)).

Verification of the RCU-Based Counter. Since this RCU-based algorithm is simi-
lar to the one using hazard pointers, most actions in relies and guarantees are reused
from that proof (Figure B): we let Gyg = {ld, Inc, Take, RCUyq} and Riig = J{G¥ |
1 <k < N Ak # tid}. The following invariant formalises (3):

Treu <= Va,t. (S(t,1)since C— xxx — xtrue) = x> *true.

The proof outline for the RCU-based counter is given in Figure[9l The assertion Fijq is
the same as for hazard pointers and is defined by (I0) in §4l The assertion I describes
the state invariant of the algorithm:

I <= (®;rcuft—1]—)*Jy.Cr>y*xyr> *truee.

The key points are as follows. After reading C at line [[21 we obtain an unsta-
ble assertion S(tid,1) A C+> s+ s+ xtrue, which we weaken to a stable one
(S(tid,1) since Cr+> s* s+ xtrue). Then Trcy yields s, *true, which jus-
tifies the safety of dereferencing s at line[T3l The same assertion in line[T7 would let us
rule out the ABA problem in a linearizability proof. We get the assertion in line[33]from
the tautology x >, = —Cr> x x> xtrue. At line[36] we apply the specifica-
tion of sync with 7 = (®peca x e) *true A (®zca ~Cr> zxx — *true) and
p = (®zcax +—m). The resulting since clause formalises (@) and allows us to justify
that the Take action in line[4]] does not violate Yrcy.

268 A. Gotsman, N. Rinetzky, and H. Yang

1 int *C=new int(0); bool rcul[N]={0};
> Set detached [N]={(};

3 int inc() { 26 void reclaim(int* s) {
4 int v, *n, *s; 27 {VIFs+—m * Fyq A A S(tid,0) A
s {VIF Faa ANIAS(tid,0)}} 28 s+re xtrue}
6 n = new int; 29 insert(detached[tid-1], s);
7 {VIFnw— xFggAIAS(tid,0)}} 30 if (nondet()) return;
s rcu_enter(); st {VIFIAS(tid,0) A
9 do { {VIFn+— xF4yAIAS(tid, 1)} 3 JA. detached[tid — 1] — A
10 rcu_exit(); 33 (®reaT—m)A
n ?cu_eg;:er() 3 3 (®gecax e)*true A
1 s = Chd;
b [Vine xFgATAsoe stuen © (PeeanCroraxa— xtrue))
) . 36 syncQ;
14 (S(tid,1) since C+> s* s+ *true)} v {V I IAS(tid,0) A
15 (v = *s)1d3 38 JA. detached[tid — 1] — A
16 *n = v+l; 39 @zrea((T—m A xTrre *true) AVE
17 ViFn= x«Fia AIA s—e true 40 —Cr> z*x > *true since S(t,0))}
18 (S(tid, 1) since C > s* s+ *true)} (3 Voke
19} while (!CASjnc1d(&C, s, n)); o {VIFIAS(tid,0) A
20 rcu_exit(); 43 JA.detached[tid — 1] — A
a {VIFs—m x Fyg AT A S(tid, 0) A w“ (®geax—)}
2 stre *true} 45 while (!isEmpty(detached[tid]))
23 reclaim(s); 46 free(pop(detached[tid]));
u {VIF Fyg AL AS(tid, 0)} a1 {V IF Fyq AT A S(tid, 0)}
25 return v; } 4 }

Fig. 9. Counter with an RCU-based memory management. Here V is v, n, s.

Like for hazard pointers, this proof implies that the algorithm does not leak memory,
and that the ABA problem does not occur.

6 Related Work

Out of the three techniques for memory reclamation that we consider in this paper, only
restricted versions of the non-blocking stack with hazard pointers that we handle in [[7,
§B] have been verified: in concurrent separation logic [[14], a combination of separation
logic and temporal logic [6], a reduction-based tool [3] and interval temporal logic [16].
These papers use different reasoning methods from the one we propose, none of which
has been grounded in a pattern common to different algorithms.

Among the above-mentioned verification efforts, the closest to us technically is the
work by Fu et al. [6], which proposed a combination of separation logic and tempo-
ral logic very similar to the one we use for formalising our method. We emphasise
that we do not consider the logic we present in §3]as the main contribution of this pa-
per, but merely as a ool for formalising our reasoning method. It is this method that
is the main difference of our work in comparison to Fu et al. The method used by
Fu et al. to verify a non-blocking stack with hazard pointers leads to a complicated
proof that embeds a lot of implementation detail into its invariants and rely/guarantee
conditions. In contrast, our proofs are conceptually simple and technically straightfor-
ward, due to the use of a strategy that captures the essence of the algorithms consid-
ered. Fu et al. also handle only an idealistic implementation of hazard pointers, where

Verifying Concurrent Memory Reclamation Algorithms with Grace 269

deallocations are not batched, and many assertions in the proof inherently rely on this
simplification. We do not think that their proof would scale easily to the implementation
that batches deallocations (§2), let alone other extensions we consider [[7, §B].

Having said that, we fully acknowledge the influence of the work by Fu et al. In par-
ticular, we agree that a combination of temporal and separation logics provides a useful
means of reasoning about non-blocking algorithms. We hope that our formalisation of
powerful proof patterns in such a combined logic will motivate verification researchers
to adopt the pattern-based approach in verifying other complex concurrent algorithms.

Acknowledgements. We thank the following people for discussions and comments:
Richard Bornat, Sungkeun Cho, Byron Cook, Wonchan Lee, Paul McKenney, Peter
O’Hearn, Matthew Parkinson, Mooly Sagiv, Viktor Vafeiadis, Jonathan Walpole, Eran
Yahav and Kwangkeun Yi.

References

1. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003)

2. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic. In: LICS
(2007)

3. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL (2009)

4. Feng, X., Ferreira, R., Shao, Z.: On the Relationship Between Concurrent Separation Logic
and Assume-Guarantee Reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp- 173-188. Springer, Heidelberg (2007)

5. Fraser, K.: Practical lock-freedom. PhD Thesis. University of Cambridge (2004)

6. Fu,M,, Li, Y, Feng, X., Shao, Z., Zhang, Y.: Reasoning about Optimistic Concurrency Using
a Program Logic for History. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 388—402. Springer, Heidelberg (2010)

7. Gotsman, A., Rinetzky, N., Yang, H.: Verifying concurrent memory reclamation algorithms
with grace. Technical Report 7/13, School of Computer Science, Tel-Aviv University (2013),
http://www.cs.tau.ac.il/~maon

8. Herlihy, M., Luchangco, V., Moir, M.: The Repeat Offender Problem: A Mechanism for
Supporting Dynamic-Sized, Lock-Free Data Structures. In: Malkhi, D. (ed.) DISC 2002.
LNCS, vol. 2508, pp. 339-353. Springer, Heidelberg (2002)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS (1990)

10. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)

11. McKenney, P.: Exploiting deferred destruction: an analysis of read-copy-update techniques
in operating system kernels. PhD Thesis. OGI (2004)

12. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. (2004)

13. O’Hearn, P.: Resources, concurrency and local reasoning. TCS (2007)

14. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking stack. In:
POPL (2007)

15. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:
Logics and Models of Concurrent Systems (1985)

16. Tofan, B., Schellhorn, G., Reif, W.: Formal Verification of a Lock-Free Stack with Hazard
Pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 239-255.
Springer, Heidelberg (2011)

17. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD Thesis. University of
Cambridge (2008)

http://www.cs.tau.ac.il/~maon

Interleaving and Lock-Step Semantics
for Analysis and Verification of GPU Kernels*

Peter Collingbournel’**, Alastair F. Donaldson!, Jeroen Ketema®, and Shaz Qadeer2

! Imperial College London
peter@pcc.me.uk, {afd, jketema}@imperial.ac.uk
2 Microsoft Research
gadeer@microsoft.com

Abstract. We study semantics of GPU kernels — the parallel programs that run
on Graphics Processing Units (GPUs). We provide a novel lock-step execution
semantics for GPU kernels represented by arbitrary reducible control flow graphs
and compare this semantics with a traditional interleaving semantics. We show for
terminating kernels that either both semantics compute identical results or both
behave erroneously.

The result induces a method that allows GPU kernels with arbitrary reducible
control flow graphs to be verified via transformation to a sequential program that
employs predicated execution. We implemented this method in the GPU Verify
tool and experimentally evaluated it by comparing the tool with the previous ver-
sion of the tool based on a similar method for structured programs, i.e., where
control is organised using if and while statements. The evaluation was based on
a set of 163 open source and commercial GPU kernels. Among these kernels, 42
exhibit unstructured control flow which our novel method can handle fully auto-
matically, but the previous method could not. Overall the generality of the new
method comes at a modest price: Verification across our benchmark set was 2.25
times slower overall; however, the median slow down across all kernels was 0.77,
indicating that our novel technique yielded faster analysis in many cases.

1 Introduction

Graphics Processing Units (GPUs) have recently found application in accelerating
general-purpose computations, e.g., in image retrieval [23|] and machine learning [3].
If an application exhibits significant parallelism it may be possible to extract the com-
putational core of the application as a kernel and offload this kernel to run across the
parallel hardware of a GPU, sometimes beating CPU performance by orders of magni-
tude. Writing kernels for massively parallel GPUs is challenging, requiring coordination
of a large number of threads. Data races and mis-synchronisation at barriers (known as
barrier divergence) can lead to erroneous and non-deterministic program behaviours.
Worse, they can lead to bugs which manifest only on some GPU architectures.
Substantial effort has been put into the design of tools for rigorous analysis of GPU
kernels [[ZU1648U17415]. In prior work [7], we presented a verification technique and
tool, GPU Verify, for analysis of data races and barrier divergence in OpenCL [13] and

* This work was supported by the EU FP7 STREP project CARP (project number 287767).
** Peter Collingbourne is currently employed at Google.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 270-289] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Interleaving and Lock-Step Semantics for GPU Kernels 271

CUDA [21] kernels. GPU Verify achieves scalability by reducing verification of a paral-
lel kernel to a sequential program verification task. This is achieved by transforming
kernels into a form where all threads execute in lock-step in a manner that still fa-
cilitates detection of data races and barrier divergence arising due to arbitrary thread
interleavings.

Semantics and program transformations for lock-step execution have been formally
studied for structured GPU kernels where control flow is described by if and while
constructs [[7]. In this setting, the hierarchical structure of a program gives rise to a sim-
ple, recursive algorithm for transforming control flow into predicated form so that all
threads execute the same sequence of statements. Lock-step semantics for GPU kernels
where control flow is described by an arbitrary reducible control flow graph (CFG)
has not been studied. Unlike structured programs, arbitrary CFGs do not necessarily
exhibit a hierarchical structure, thus the existing predication-based approach cannot be
directly extended. Furthermore, it is not possible in to efficiently pre-process an arbi-
trary CFG into a structured form [9].

The restriction to structured programs poses a serious limitation to the design of GPU
kernel analysis techniques: kernels frequently exhibit unstructured control flow, either
directly, e.g., through switch statements, or indirectly, through short-circuit evaluation
of Boolean expressions. Dealing with CFGs also enables analysis of GPU kernels after
compiler optimisations have been applied, bringing the analysis closer to the code ac-
tually executed by the GPU. It allows for the reuse of existing compiler infrastructures,
such as Clang/LLVM, which use CFGs as their intermediate representation. Reusing
compiler infrastructures hugely simplifies tool development, removing the burden of
writing a robust front-end for C-like languages.

We present a traditional interleaving semantics and a novel lock-step semantics for
GPU kernels described by CFGs. We show that if a GPU kernel is guaranteed to termi-
nate then the kernel is correct with respect to the interleaving semantics if and only if
it is correct with respect to the lock-step semantics, where correct means that all execu-
tion traces are free from data races, barrier divergence, and assertion failures. Our novel
lock-step semantics enables the strategy of reducing verification of a multithreaded GPU
kernel to verification of a sequential program to be applied to arbitrary GPU kernels, and
we have implemented this method in the GPU Verify tool. We present an experimental
evaluation, applying our new tool to a set of 163 open source and commercial GPU ker-
nels. In 42 cases these kernels exhibited unstructured control flow either (a) explicitly
(e.g., through switch statements), or (b) implicitly due to short-circuit evaluation. In
the case of (a), these kernels had to be manually simplified to be amenable to analysis
using the original version of GPU Verify. In the case of (b), it turned out that the seman-
tics of short-circuit evaluation of logical operators was not handled correctly in GPU-
Verify. Our new, more general implementation handles all these kernels accurately and
automatically. Our results show that GPU Verify continues to perform well: compared
to the original version that was limited to structured kernels [7], verification across our

! Henceforth, whenever we refer to a CFG we shall always mean a reducible CFG. For a definition
of reducibility we refer the reader to [1]]. We note that irreducibility is uncommon in practice. In
particular, we have never encountered a GPU kernel with an irreducible control flow graph, and
whether irreducible control flow is supported at all is implementation-defined in OpenCL [13].

272 P. Collingbourne et al.

__kernel void _ _kernel void
scan(__global int xsum) { scan(__global int *sum) {
int offset = 1, temp; int offset = 1, temp;
while (offset < TS) { while (offset <= tid) {
if (tid >= offset) temp = sum[tid - offset];
temp = sum[tid - offset]; barrier () ;
barrier(); sum[tid] = sum[tid] + temp;
if (tid >= offset) barrier() ;
sum[tid] = sum[tid] + temp; offset *= 2;
barrier() ; }
offset x= 2; }
}
}
(a) A correct kernel (b) A kernel with barrier divergence

Fig. 1. Two OpenCL kernels

benchmark set was 2.25 times slower overall, but the median slow down across all ker-
nels was 0.77, indicating that our novel technique yields faster analysis in many cases.
In summary, our main contributions are:

— A novel operational semantics for lock-step execution of GPU kernels with arbi-
trary reducible control flow.

— A proof-sketch that this semantics is equivalent to a traditional interleaving seman-
tics for terminating GPU kernels.

— A revised implementation of GPU Verify which uses our lock-step semantics to
reduce verification of a multithreaded kernel to a sequential verification task.

After presenting a small example to provide some background on GPU kernels and
illustrate the problems of data races and barrier divergence (Sect.), we present the
interleaving semantics (Sect. [3), our novel lock-step semantics (Sect. M) and a proof-
sketch showing that the semantics are equivalent for terminating kernels (Sect. [3)). We
then discuss the implementation in GPU Verify, and present our experimental results
(Sect.[6). We end with related work and conclusions (Sect. [7]).

2 A Background Example

We use an example to illustrate the key concepts from GPU programming and provide
an informal description as to how predicated lock-step execution works for structured
programs. We return to this example when presenting interleaving and lock-step seman-
tics for kernels described as CFGs in Sects. 3l and 4

Threads, Barriers, and Shared Memory. Figure [1a shows an OpenCL kernef to be
executed by TS threads, where T'S is a power of two. The kernel implements a scan
(or prefix-sum) operation on the sum array so that at the end of the kernel we have,
forall 0 < i < T8, sum[i] = Xi_; old(sum)[j], where old(sum) refers to the
sum array at the start of the kernel. All threads execute this kernel function in parallel,

2 For ease of presentation we use a slightly simplified version of OpenCL syntax, and we assume
that all threads reside in the same work group and that this work group is one dimensional. Our
implementation, described in Sect.[6] supports OpenCL in full.

Interleaving and Lock-Step Semantics for GPU Kernels 273

and threads may follow different control paths or access distinct data by querying their
unique thread id, tid. Communication is possible via shared memory; the sum array
is marked as residing in global shared memory via the global qualifier. Threads
synchronise using a barrier-statement, a collective operation that requires all threads
to reach the same syntactic barrier before any thread proceeds past the barrier.

Data Races and Barrier Divergence. Two common defects from which GPU kernels
suffer are data races and barrier divergence. In Fig. [[al accesses to sum inside the
loop are guarded so that on loop iteration i only threads with id at least 2~ ! access
the sum array. If either of the barriers in the example were omitted the kernel would
be prone to a data race arising due to thread ¢; reading from sum[t; — offset],
while thread to writes to sumlts]|, where to = ¢; — of £set. The kernel of Fig. [Ib]
aims to optimise the original example by reducing branches inside the loop: threads are
restricted to only execute the loop body if their id is sufficiently large. This optimisation
is erroneous; given a barrier inside a loop, the OpenCL standard requires that either
all threads or zero threads reach the barrier during a given loop iteration, otherwise
barrier divergence occurs and behaviour is undefined. In Fig.[TBl thread 0 will not enter
the loop at all and thus will never reach the first barrier, while all other threads will
enter the loop and reach the barrier. Unfortunately, on an NVIDIA 9400M the kernel of
Fig.[IB behaves identically to the kernel of Fig.[Tal meaning that this barrier divergence
bug would not be detected on this platform. This is problematic because the erroneous
kernel code is not portable across architectures which support OpenCL (e.g., the kernel
fails to produce correct results with Intel’s SDK for OpenCL).

Lock-Step Predicated Execution. We informally describe lock-step execution for struc-
tured programs as used by GPUVerify [7]] and which we here generalise to CFGs.
To achieve lock-step execution, GPUVerify transforms kernels into predicated
form [2]. The example of Fig. [2] illustrates the _
effect of applying predication to the kernel (.)f ;zsffélzg:‘: int xsum)
Fig.[Id A statement of the form e = stmt is vool p, a;
a predicated statement which is a no-op if e is i
false, and has the same effect as stmt if e is while (3 t :: t.p) {

true. Observe that the if statements in the body S (tpepr& :tlsi;[:tiodf feecli | o

of the loop have been predicated: the condition p = barrier();
(which is the same for both statements) is eval- q = sum(tid] = sum[tid] + temp;
. X . P = barrier();
uated into a Boolean variable ¢, the conditional p = offset *= 2;
p = p = (offset < TS);

statements are removed and the statements pre-

viously inside the conditionals are predicated by 3
the associated Boolean variable. Predication of
the while loop is achieved by evaluating the
loop condition into a Boolean variable p, pred-
icating all statements in the loop body by p, and recomputing p at the end of the loop
body. The loop condition is replaced by a guard which evaluates to false if and only if
the predicate variable p is false for every thread. Thus all threads continue to execute the
loop until each thread is ready to leave the loop; when the loop condition becomes false
for a given thread the thread simply performs no-ops during subsequent loop iterations.

}

Fig.2. Lock-step predicated execution
for structured kernel of Fig.[Id

274 P. Collingbourne et al.

In predicated form, the threads do not exhibit any diverging behaviour due to execu-
tion of different branches, and thus the kernel can be regarded as a sequential, vector
program. GPU Verify exploits this fact to reduce GPU kernel verification to a sequen-
tial program verification task. The full technique, described in [7]], involves considering
lock-step execution of an arbitrary pair of threads, rather than all threads.

The example illustrates that predication is easy to perform at the level of structured
programs built hierarchically using if and while statements. However, predication does
not directly extend to the unstructured case, and unstructured control flow cannot be
efficiently pre-processed into structured form [9]. Hence, we present a program trans-
formation for predicated execution of GPU kernels described as CFGs.

3 Interleaving Semantics for GPU Kernels

We introduce a simple language for describing GPU kernels as CFGs.

3.1 Syntax

A kernel is defined over a set of variables Var = V, W V), with V; the shared vari-
ables and V), the private variables. Variables take values from a domain D. Kernels
are expressed using a syntax that is identical to the core of the Boogie programming
language [15]], except that it includes an additional barrier statement:

Program ::= Block™
Block ::= Blockld : Stmts goto BlockId™ ;
Stmts = ¢ | Stmt ; Stmts

Stmt ::= Var := Expr | havoc Var | assume Ezpr | assert Expr | skip | barrier

Here, ¢ is an empty sequence of statements. The form of expressions is irrelevant, except
that we assume (a) equality testing (=), (b) the standard Boolean operators, and (c) a
ternary operator Expr, 7 Expry: Expr,, which — like the operator from C — evaluates
to the result of Expr, if Expr, is true and to the result of Fzpr, otherwise.

Thus, a kernel consists of a number of basic blocks, with each block consisting of
a number of statements followed by a goto that non-deterministically chooses which
block to execute next based on the provided BlockIds; non-deterministic choice in com-
bination with assumes at the beginning of blocks is used to model branching.

Because gotos only appear at the end of blocks there is a one-to-one correspondence
between kernels and CFGs. We assume that all kernels have reducible CFGs, which
means that cycles in a CFG are guaranteed to form natural loops. A natural loop has
a unique header node, the single entry point to the loop, and one or more back edges
going from a loop node to the header [[1]].

We assume that each block in a kernel is uniquely labelled and that there is a block la-
belled Start. This is the block from which execution of each thread commences. More-
over, no block is labelled End; instead the occurrence of End in a goto signifies that
the program may terminate at this point. The first statement of a block is always an
assume and only variables from V), appear in the guard of the assume. No other
assumes occur in blocks and the first statement of Start is assume true. Observe
that any kernel can be easily pre-processed to satisfy these restrictions.

Interleaving and Lock-Step Semantics for GPU Kernels 275

Start : offset :=1; I : assume tid > offset ;
goto W, Wena ; sum[tid] :== sum[tid] + temp;
W . assume offset < TS ; goto Bs ;
goto I, 1] ; I : assume tid < offset ;
L : assume tid > offset ; goto B2 ;
temp = sum[tid — offset]; B2 : barrier ;
goto B ; goto Wi, ;
I : assume tid < offset ; Wiast = offset := 2 - offset ;
goto B ; goto W, Wena ;
B; : barrier ; Wend : assume offset > TS ;
goto I, I} ; goto End ;

Fig. 3. The kernel of Fig.[Iaencoded in our kernel language and its CFG

Figure Bl shows the kernel of Fig. [[al encoded in our simple programming language,
where we omit assume true for brevity. Remark that an array is being used; we could
easily add arrays to our GPU kernel semantics but, again for brevity, we do not.

3.2 Operational Semantics

We now define a small-step operational semantics for our kernel programming language,
which is based on interleaving the steps taken by individual threads.

Individual Threads. The behaviour of individual threads and the non-barrier statements
executed by these threads is presented in Figs. [4al and 4Bl

The operational semantics of a thread ¢ is defined in terms of triples (o, o¢, b;), where
o : Vs — D is the shared store, o, : V, — D is the private store of thread ¢, and b; is
the statement or sequence of statements the thread will reduce (i.e., execute) next.

In Fig.dd (0,0¢)[v — wal] denotes a pair of stores equal to (o, o) except that v
(which we assume occurs in either o or g;) has been updated and is equal to val. The
evaluation of an expression e given (o, 0y) is denoted (o, 0¢)(e). The labels on arrows
allow us to observe (a) changes to stores and (b) the state of stores upon termination. A
label is omitted when the stores do not change, e.g., in the case of the SKIP rule.

The symbols +/, £, and L indicate, resp., termination, error, and infeasible. These
are termination statuses which signify that a thread (or later kernel) has terminated
with that particular status. Below, termination always means termination with status
termination; termination with status error or infeasible is indicated explicitly.

The ASSIGN and SKIP rules of Fig. 4a are standard. The HAvOC rule updates the
value of a variable v with an arbitrary value from the domain D of v. The ASSERTT
and ASSUMEr rules are no-ops if the assumption or assertion (o, o¢)(e) holds. If the
assumption or assertion does not hold, ASSERTg and ASSUMEg yield, resp., £ and L.

In Fig.[dhl s denotes a statement and b denotes the body of a block, i.e., a sequence of
statements followed by a goto. The SEQg and SEQg | rules define reduction of s; b in
terms of reduction of s. The GOTO and BLOCK rules specify how reduction continues
once the end of a block is reached. The END rule specifies termination of a thread.

276 P. Collingbourne et al.

val = (o, 04)(e)

(N ASSIGN

Pt (o,0¢,v:i=c¢) 723t (o,0¢)[v — val]
leD

v) HAvVOC
P+ (o, 0¢, havocv) -3t (o, ot)[v — wal]
a € {assert, assume} (0,04)(e) ASSERTT —(o50¢)(e) ASSUMER
Pt (o,01,ae) — (0,04) ASSUMET P+ (0,04, assume e) (Ugt) L
—(o,0¢)(e) s ASSERTF Skip
P\ (0,0, asserte) 23t e P+ (0,04, skip) — (0,0¢)

(a) Statement rules

(o,a¢) (o:q¢)
Pt {o,0¢,8) = (1,7 PtF{o,0¢,8) — e ee{€, L
I (0,01,5) LB g
PF (o,0¢,8;b) 3P (7,7, b) Pt (o,00,5;b) St e
1<i<n B:b)e P
- GoTo () BLoCK
Pt (o,01,80t0B1,...,By;) = (0,0, B;) Pt (0,01, B) = (0,0¢,b)

... END
Pt (0,04, End) 5t/

(b) Thread rules

Tsle = (o0,be) P F (0,00, b)) 3 (r, 7,

(e,7)

Pt (o,Tz) = (7,Tz[(7¢,ce)]e)

) THREAD

Tsle = (00,b) Pk (o006, bs) 23V

(a,3)

P|_<O-7T3) - <07T3[<0t7\/>]t>

v THREADT

Ts|t = (o, be) P”(U’Utsbt>(af>t)s se{€ L1} THREADE |

P (o, T5) ‘) s
V1<t<TS:Tsl = (o0,)

(a,3)

Pt (o, Tz) = +/

TERMINATION

(c) Interleaving rules

Ts|t = ((Bt,01), barriere, ; by) A (o, 0¢)(et)

P (0,Ts) = (0, Tsl((Brs o), b)) DARRIERswe

Vit: Tzt = ((Bt,0r), barriere; ; by) A (o,0¢)(er) Viti,t2 : Bey

=P BARRIERg
Pt (0, Tz) — (0,{((B1,01),b1),...,((Brs,ors), brs))

Vt:Tz|t = ((Bt,01), barrieres ; by) A (o,0¢)(er) It1,t2: By

(0,3)

Pt (0,T5) ‘5 €

7 Pry BARRIERF

(d) Synchronisation rules; barrier variables B¢, and B¢, enforce OpenCL conditions B1 and B2

Fig. 4. Interleaving operational semantics

Interleaving and Lock-Step Semantics for GPU Kernels 277

Interleaving. Fig.[dd we give our interleaving semantics for a kernel P given thread
count T'S. The semantics is defined over tuples (o, (o1, b1), ..., {(cTs,bTs)), where o
is the shared store, o, is the private store of thread ¢, and b; is the statement or sequence
of statements thread ¢ will reduce next. A thread cannot access the private store of any
other thread, while the shared store is accessible by all threads. In the figure, Tz denotes
({o1,b1),...,{o1s,brs)), where & = (01, ...,071s). Moreover, Tz|; denotes (o, b;)
and T3[(c’, b)]; denotes T with the ¢-th element replaced by (o”,).

The THREADg rule defines how a single step is performed by a single thread, cf. the
rules in Fig. @bl The THREADT rule defines termination of a single thread, where the
thread enters the termination state 1/ from which no further reduction is possible. The
THREADg | rule specifies that a kernel terminates with status error or infeasible if one
of the threads terminates as such. The TERMINATION rule specifies that a kernel termi-
nates once all threads have terminated. As steps might be possible in multiple threads,
the THREAD rules are non-deterministic and, hence, define an interleaving semantics.

We define a reduction of a kernel P as sequence of applications of the operational
rules where each thread starts reduction from Start and where the initial shared store is
some o and the initial private store of thread ¢ is some o;. A reduction is maximal if it is
either infinite or if termination with status termination, error, or infeasible has occurred.

Our interleaving semantics effectively has a sequentially consistent memory model,
which is not the case for GPUs in practice. However, because our viewpoint is that GPU
kernels that exhibit data races should be regarded as erroneous, this is of no consequence.

Barrier Synchronisation. When we define lock-step predicated execution of barriers in
Sect. [we will need to model execution of a barrier by a thread in a disabled state. In
preparation for this, let us say that a barrier statement has the form barrier e, where
e is a Boolean expression. In Sect.[d] e will evaluate to true if and only if the barrier
is executed in an enabled state. The notion of thread-enabledness is not relevant to our
interleaving semantics: we can view a thread as always being enabled. Thus we regard
the barrier syntax of our kernel programming language as short for barrier true.

Figure[d defines the rules for (mis-)synchronisation between threads at barriers. Our
aim here is to formalise the conditions for correct barrier synchronisation in OpenCL,
which are stated informally in the OpenCL specification as follows [13]:

B1. If barrier is inside a conditional statement, then all [threads] must enter the con-
ditional if any [thread] enters the conditional statement and executes the barrier.

B2. If barrier is inside a loop, all [threads] must execute the barrier for each iteration
of the loop before any are allowed to continue execution beyond the barrier.

The rules of Fig.[ddlcapture these conditions using a number of special barrier variables
that we assume are implicit in definition of each kernel:

— Every thread has a private variable vp,;ricr- We assume that each barrier appearing
in the kernel has a unique id. The variable vpq,rier Of €ach thread ¢ is initialised to a
special value (—) different from every barrier id. When ¢ reaches a barrier, vparrier
is set to the id of that barrier, and it is reset to (—) after reduction of the barrier.

— For every loop L in the kernel, every thread has a private loop counter variable vy, .
The variable vy, of each thread ¢ is initialised to zero, incremented each time the
header node for L is reduced by ¢, and reset to zero on exit from L.

278 P. Collingbourne et al.

The variable v, rier codifies that each thread is synchronising on the same barrier, cap-
turing condition B1 above. The loop counters codify that each thread must have exe-
cuted the same number of loop iterations upon synchronisation, capturing B2.

In Fig. we express the private store of a thread ¢ as a pair (8, o), where §;
records the barrier variables for the thread and o, the values of all other private variables.
The BARRIERggp rule specifies that barrier e is a no-op if e is false. Although this
can never occur for kernels written directly in our kernel programming language, our
equivalence proof in Sect. [} requires this detail to be accounted for.

The BARRIERg rule specifies that reduction continues beyond a barrier if all threads
are at a barrier and the barrier variables agree across threads. The BARRIERF rule spec-
ifies that a kernel should terminate with error if the threads have reached barriers with
disagreeing barrier variables: this means that one of B1 or B2 has been violated and
thus barrier divergence has occurred.

Data Races. We say that a thread ¢ is responsible for a step in a reduction if a THREAD
rule (see Fig.[dd) was employed in the step and the premise of the rule was instantiated
with t. Moreover, we say that a thread ¢ accesses a variable v in a step if ¢ is responsible
for the step and if in the step either (a) the value of v is used to evaluate an expression
or (b) v is updated. The definition is now as follows:

Definition 3.1. Let P be a kernel. Then, P has data race if there is a maximal reduction
p of P, distinct threads t and t', and a shared variable v such that: p does not end in
the infeasible status | ; t updates v during p; t' accesses v during p; no application of
BARRIERg occurs between the accesses (i.e., no barrier separates them).

Terminating and Race Free Kernels. We say that a kernel P is (successfully) termi-
nating with respect to the interleaving semantics if all maximal reductions of P are
finite and do not end with status error. We say that P is race free with respect to the
interleaving semantics if P has no data races according to Definition[3.1]

4 Lock-Step Semantics for GPU Kernels

We define lock-step execution semantics for GPU kernels represented as arbitrary CFGs
in two stages. First, in Sect. [4.]l we present a transformation which turns the program
executed by a single thread into a form where control flow is flattened: all branches,
except for loop back edges, are eliminated. Then, in Sect.[4.2] we use the transformation
to express lock-step execution of all threads in a kernel as a sequential vector program.

To avoid many corner cases we assume that kernels always synchronise on a
barrier immediately preceding termination. This is without loss of generality, as threads
implicitly synchronise on kernel termination. In addition, if a block B ends with
goto B1, ..., B, then at most one of By, ..., B, is a loop head. A kernel can be triv-
ially preprocessed to satisfy these restrictions.

Sort Order. Predication of CFGs involves flattening control flow, rewriting branches
by predicating blocks and executing these blocks in a linear order. Intuitively, for a
kernel exhibiting control flow corresponding to an if-then-else statement s, this linear
order must arrange blocks such that statements preceding s occur before the statements

Interleaving and Lock-Step Semantics for GPU Kernels 279

inside s, which in turn must precede the statements occurring after s. However, if state-
ments $1 and sy occur, resp., in the then and else branches of s, then the order in which
the blocks associated with s1 and sy appear does not matter.

For arbitrary CFGs without loops any topological sort gives a suitable order: it en-
sures that if block B is a predecessor of C' in the original CFG then B will be executed
before C in the predicated program. In the presence of loops the order must ensure that
once execution of the blocks in a loop commences this loop will be executed completely
before any node outside the loop is executed.

Formally, we require a total order < on blocks satisfying the following conditions:

— For all blocks B and C, if there is a path from B to C in the CFG, then B < C'
unless a back edge occurs on the path.
— Forallloops L,if B< Dand B,D € L,thenC € Lforall B< C < D.

A total order satisfying the above conditions always can always be computed: Consider
any innermost loop of the kernel and perform a topological sort of the blocks in the loop
body (disregarding back edges). Replace the loop body by an abstract block. Repeat
until no loops remain and perform a topological sort of resulting CFG. The sort order is
now the order obtained by the final topological sort where one recursively replaces each
abstract node by the nodes it represents, i.e., if B < L < D with L an abstract node,
then for any C' < C” in the loop body represented by L one defines B < C < C' < D.

Considering the kernel of Fig.[3] we have that L = {W, I, I}, By, I3, I}, Bo, Wiast }
is a loop and that Start <W < I, <I{ < By < I < I} < By < Wit < Weng
satisfies our requirements; reversing I; and 17, and also I and I, is possible.

In what follows we assume that a total order satisfying the above conditions has been
chosen, and we refer to this order as the sort order. For a block B we use next(B) to
denote the block that follows B in the sort order. If B is the final block in the sort order
we define next(B) to be End, the block label denoting thread termination.

4.1 Predication of a Single Thread

We now describe how predication of the body of a kernel thread is performed.

Predication of Statements. To predicate statements, we introduce a fresh private variable
Vactive fOr each thread, to which we assign Blocklds; the assigned BlockId indicates
the block that needs to be executed.

If the value of v,ctive 18 NOt equal to

the block that is currently being ex- Original form Predicated form

Table 1. Predication of statements

ecuted, all statements in the block ._ e v 1= (Vactive = B) €1 v;
will effectively be no-ops. In the oo . havoc v .
. Y 1avoc »
case of barrier this follows by the v = (Vactive = B) 7 vn y-
. A active — . avoc -)
BARRIER,SK”’ rule of Fig. idl asserte; assert (Vactive = B) = €
Assuming the Blockld of the Kip - Kip -
block is B, predication of oD <P
current P barrier ; barrier (vactive = B) ;

statements is defined in Table [I]
except for assume statements which are dealt with below at the level of blocks. In
the case of havoc, the variable vp,yoc 1S fresh and private.

280 P. Collingbourne et al.

Table 2. Predication of blocks

Original form Predicated form
B : assume guard(B); B : w(ss)
sS Unext :€ {B1,...,Bn};
goto B1,...,Bn; assume (Vactive = B)
= A, (tnext = Bi) = guard(By));
(B is not the last node of a loop Vactive ‘= (Vactive = B) 7 Unext : Vactive ;
according to the sort order) goto next(B);
B : assume guard(B); B : w(ss)
ss Unext :€ {B1,...,Bn};
goto B1,...,B,; assume (Vactive = B)
= Nizy ((Unexs = Bi) = guard(B:)) ;
(B is the last node of a loop ac- Vactive 1= (Vactive = B) 7 Unext : Vactive ;
cording to the sort order) goto Bhack, Bexit ;
Bpack : assume Vactive = Bhead ;
gOtO Bhead N
Bexit @ assume vactive 7 Bhead ;
goto next(B);

Predication of Blocks. Let 7(s) denote the predicated form of a single statement s, and
m(ss) the pointwise extension to a sequence of statements ss. Predication of blocks
is defined by default as in the top row of Table 2] (see also Fig. Q). Here, vyext is
a fresh, private variable, and vyext :€ {Bi,..., By} is shorthand for havoc vyext ;
assume \/]_; (vnex; = B;). Furthermore, guard(B) denotes the expression that oc-
curs in the assume that is required to occur at the beginning of block B.

At the end of the predicated block, vactive 18 set to the value of the block to be reduced
next, while actual reduction continues with block next(B), as specified by the sort
order. The assume that ‘guards’ the block to be reduced next is moved into the block
currently being reduced. Moving guards does not affect behaviour, but only shortens
traces that end in infeasible; this is needed to properly handle barrier divergence in
lock-step kernels.

The above method does not deal correctly with loops: no block can be executed
more than once as no back-edges are occur. As such, we predicate block a B in a special
manner if B belongs to a loop L and B occurs last in the sort order among all the blocks
of L. Assume Bjc,q is the header of L. The block B is predicated as in the bottom row
of Table 2l where Bpack and Beyiy are fresh (see again Fig. [3). Our definition of the
sort order guarantees that Beaq 1s always sorted first among the blocks of L. By the
introduction of Byack, reduction jumps back to Bheaq if L needs to be reduced again,
otherwise reduction will continue beyond L by definition of Beyit.

Predication of Kernels. Predicating a complete kernel P now consists of three steps:
(1) Compute a sort order on blocks as detailed above; (2) Predicate every block with
respect to the sort order, according to the rules of Table 2} (3) Insert the assignment
Vactive := Start at the beginning of 7(Start). The introduction of vVactive = Start
ensures that the statements from 7 (Start) are always reduced first.

Interleaving and Lock-Step Semantics for GPU Kernels 281

B : barrier (Vactive = B2);
Unext ‘€ {Wlast};
Vactive ‘= (Uactive = BZ) ? Unext : Vactive ;
goto Wi, ;

Wiast @ offset :=

(Vactive = Wiast) 7 (2 - offset) : offset ;
Unext € {W7 Ws’nd} ;
Vactive = ('Uactive = Wlast) ? Unext © Vactive)
assume (Vactive = Wiast) = (((Unext = W) = (offset < T'S))
A((Vnext = Wena) = (offset > T5)))
goto Whaci, Wexit ;
Whack : assume vactive = W'
goto W ;
Wexit : assume vactive # W ;
goto Weng ;
Wena : goto End;

Fig. 5. Predication of part of the kernel of Fig.

4.2 Lock-Step Execution of All Threads

We now use the predication scheme of Sect.[.1]to define a lock-step execution semantics
for kernels. We achieve this by encoding the kernel as a sequential program, each state-
ment of which is a vector statement that performs the work of all threads simultaneously.
To enable this, we first extend our programming language with these vector statements.

Vector Statements. We extend our language as follows:
Stmt :=---| Var™ := Ezpr”™ | havoc Var™ | Var := ¢((Ezpr x Ezpr)™)

The vector assignment simultaneously assigns values to multiple variables, where the
variables assigned to are assumed to be distinct and where the number of expressions is
equal to the number of variables. Similarly, the vector havoc havocs multiple variables,
which are are assumed to be distinct. The -assignment is used to model simultaneous
writes to a shared variable by all threads. It takes a sequence (ey, €}), ..., (en, €},), with
each e; a Boolean, and non-deterministically assigns to the variable v a value from the
set {o(e}) | 1 <i<nAoc(e;)} (if the set is empty, v is left unchanged).

The semantics for the new statements is presented in Fig. [0l where (e;)? ; denotes
(e1),-..,(en)and [v; — val;]7, denotes [vy — valy] - - [v, — valy,].

Lock-Step Execution. To encode a kernel P as a single-threaded program ¢(P) which
effectively executes all threads in lock-step, we assume for every private variable v
from P that there exists a variable v; in ¢(P) for each 1 < ¢t < TS. For each shared
variable v from P we assume there exists an identical variable in ¢(P). Construction
of a lock-step program for P starts from 7 (P) — the predicated version of P.

Statements. The construction for the predicated statements from Table [Tl is presented
in Table[3al In the table, ¢; denotes a map over expressions which replaces each private
variable v by v;. Note that for every thread ¢, there exists a variable V,ctive,t, as variables

282 P. Collingbourne et al.

Vi : val; = (o,0¢)(es)

() ASSIGNS
PF ((0,00), (vi)iy = (ei)ioy) =" (0, 00)[vi = vali]}_,
Vi : wval; € D HAVOCS
P+ {(o,04), havoc (v;)[— ;) (7:30) (0, 0¢)[vi — val;];—,
Ji: o(e;) Aval = (0,04)(e))
Pr

P (0,0 = d((ei e y)) 3 oo val]

Vi:=(o,04)(eq)
PF{(0,00),v = 9({ei,) i_1)) = (0,0¢)

YF

Fig. 6. Operational semantics for vector statements

freshly introduced by the predication scheme of Sect.[d.T]are private. Hence, we always
know for each thread which block to reduce next. We discuss each statement in turn.

With respect to assignments, we distinguish between assignments to private and
shared variables. For a private variable v, the assignment is replaced by a vector assign-
ment to the variables vy, where ¢, is applied to e as appropriate. For a shared variable
v, it is not obvious which value needs to be assigned to v, as there might be multiple
threads ¢ with vactive,s = B; we non-deterministically pick the value from one of the
threads with v,ctive t = B, employing a 1p-assignment.

In the case of a havoc followed by an assignment, there is again a case distinction
between private and shared variables. For a private variable, the havoc and assignment
are simply replaced by corresponding vector statements. For a shared variable, a vector
havoc is used to produce an arbitrary value for each thread, and then the value asso-
ciated with one of the threads ¢ with v,ctive,s = B is non-deterministically assigned
employing 1.

In the case of assert, we test whether (Vactive,t = B) = ¢+ (e) holds for each thread
1 <t < TS. The skip statement remains a no-op.

Lock-step execution of a barrier statement with condition v,ctive = B translates
to an assertion checking that if vactivet = B holds for some thread ¢ then it must
hold for all threads. We call these assertions barrier assertions. We shall sketch in
Sect. 3] that checking for barrier divergence in this manner is equivalent to checking
for barrier divergence in the interleaving semantics of Sect.[3l However, contrary to the
interleaving case, there is no need to consider barrier variables in the lock-step case.

The last three rows of Table[3a consider statements that do not originate from Table[I]
but that do occur in blocks: Initially, each vactive,: is assigned to Start; assignments to
Vactive are vectorised, where :€ is extended in the obvious way to non-deterministically
assign values from multiple sets to multiple variables; assume is dealt with as assert.

Blocks. The lock-step construction for blocks is presented in Table BB where ¢(ss)
denotes the lock-step form of a sequence of statements.

If a block is not sorted last among the blocks of a loop (see the top row of Table[3B),
we simply apply the lock-step construction to the statements in the block. If a block
is sorted last among blocks in a loops L (see the bottom row of Table then the

Interleaving and Lock-Step Semantics for GPU Kernels 283

Table 3. Lock-step construction
(a) Statements

Predicated form Lock-step form
V= (’Uactive = B) Te: v, v priVate <1)t>tT=S1 = <('Uactive,t = B) ? ¢t(e) : Ut>tT=Sl)
v shared v := ¥({Vactive,t = B, ¢1(€))is);
havoc <’Uhavoc,t>tT:51 B
(V) &2 = ((Vactive,t = B) 7 Unavoc,t : Vt)iy ;
havoc <'Uhavoc,t>tT:51 5

havoc Vhavoc ;

v private
V= ('Uactive = B) ? Vhavoc : U3

v shared v 1= 1 ((Vactive,t = B, Vhavoe,t)ic1) ;
assert (Vactive = B) = €; assert /\tT:Sl((vactive,t = B) = ¢¢(e))
skip; skip;
barrier (vactive = B) ; assert (Vgl(vactive,t = B)) = (Agl(vactive,t = B));
Vactive = StaTt; <vactive,t>z:51 = <Sta7’t>tT:51)
Unext :€ {B1,...,Bn}; (vnext,t)tT:Sl :€ ({Bq,..., Bn})tT:Sl ;

assume (Vactive = B) = ¢; assume Agl((vactive,t = B) = ¢¢(e))

(b) Blocks
Predicated form Lock-step form
B ;88 B : P(ss)
goto next(B); goto next(B);
B ;88 B : P(ss)
g0t0 Bhpack; Bexit g0t0 Bpack, Bexit
Bhack @ aSSUme Vactive = Bhead ; Boack : assume \/[”” (Vactive,t = Bhead) ;
g0to Bhead ; g0t0o Bhead ;
Bexit © assume vactive 7 Bhead ; Bexit : assume A\, (Vactive,t 7 Bhead) ;
goto next(B); goto next(B);

successors of the block in the predicated program are By, Which leads to the loop
header, and B, which leads to a node outside the loop. Our goal is to enforce the
rule that no thread should leave the loop until all threads are ready to leave the loop,
as discussed informally in Sect. [2l and illustrated for structured programs by the guard
of the while loop in Fig.[2l To achieve this, the bottom row of Table [3bl employs an
assume in By, requiring that vactive = Bhead fOr some thread, and an assume in
Bexit T€qQUIring vactive 7 Bheaa for all threads. A concrete example is given in Fig.[Zl

Lock-Step Semantics and Data Races. Having completed our definition of the lock-step
construction ¢(P) for a kernel P, we now say that the lock-step semantics for P is the
interleaving semantics for ¢(P), with respect to a single thread (i.e., with 'S = 1).
Barrier divergence is captured via the introduction of barrier assertions. This leaves to
define data races in lock-step execution traces.

Say that thread ¢ is enabled during a reduction step if the statement being reduced
occurs in block B and vactive,r = B holds at the point of reduction and let v be a
variable. A thread ¢ reads v during a reduction step if ¢ is enabled during the step and
if the step involves evaluating an expression containing v. A thread ¢t writes v during a

284 P. Collingbourne et al.

By : assert vthsl(’Uactive,t = Bz)) = (/\tT:Sl(Uactive,t = B2)) :
<Unext,t>t=S1 HS <{Wlast}>tT=51;
<vactive,t>g§1 = <('Uactive,t = BQ) ? Unext,t :'Uactive,t>tT:51 5
goto Wigs:t ;
Wiast @ (offset,)io1 i= ((Vactivet = Wiast) 7 (2 - offset,) : offset,)2y ;
<'Unext,t>t,5T:SlT:€ <{W, and}>;rzsl 3
assume /\t:Sl((UaCtiveyt = Wlast) = (((vnext,t = W) = (oﬁsett < TS))
A(vaext,t = Wena) = (offset, > TS))));
<vactive,t>g§1 = <('Uactive,t = Wlast) ? Unext,t - vactive,t>g§1 5
gOtO Wback» Wexit 3
Whack : assume \/|, (vVactive,r = W)
goto W ;
Wexit @ assume /\th31 (vactive,t # W);
gOtO Wend)
Wena @ goto End;

Fig. 7. Part of the lock-step program for the kernel of Fig.[3]

reduction step if ¢ is enabled during the step and if the statement being reduced is an
assignment to v. In the case of a write, if multiple threads are enabled then v will be
updated non-deterministically using one of the values supplied by the enabled threads.
Nevertheless, we regard all enabled threads as having written to v.

A data race in a lock-step program is defined as follows:

Definition 4.1. Let ¢(P) be the lock-step form of a kernel P. Then, ¢(P) has a data
race if there is a maximal reduction p of ¢(P), distinct threads t and t', and a shared
variable v such that: p does not end in infeasible; t writes v during p and t' either
reads or writes v during p, the accesses are not separated by a barrier assertion (i.e.,
no barrier is reduced between the accesses).

Terminating and Race Free Kernels. We say that a kernel P is terminating with respect
to the lock-step semantics if all maximal reductions of ¢(P) are finite and do not end
with status error. We say that P is race free with respect to the lock-step semantics if
@(P) has no data races according to Definition {1}

5 Equivalence between Interleaving and Lock-Step Semantics

We can now prove our main result, an equivalence between the interleaving semantics
of Sect.Bland lock-step semantics of Sect.dl Our result applies to well-formed kernels:

Definition 5.1. A kernel P is well-formed if for every block B in P if B ends with
goto By, ..., B, then \/"_, guard(B;) is a tautology.

Well-formedness implies that whenever a thread reduces a goto, the guard of at least
one block that can be reached via the goto is guaranteed to hold. Recall from Sect. 3.1
that guards of assume statements refer only to private variables, thus it is not possible
for another thread to invalidate the guard of an assume between reduction of a goto
and evaluation of the guard. Well-formedness is guaranteed to hold if the CFG for P is
obtained from a kernel written in a C-like language such as OpenCL or CUDA.

Interleaving and Lock-Step Semantics for GPU Kernels 285

Theorem 5.2. Let P be a well-formed kernel and let ¢(P) be the lock-step version
of P. Then, P is race free and terminating with respect to the interleaving semantics
iff P is race free and terminating with respect to the lock-step semantics. Moreover; if
race-freedom holds then for every terminating reduction of P there exists a terminating
reduction of ¢(P), and vice versa, such that every shared variable v has the same value
at the end of both reductions.

To see why well-formedness is required, consider the following kernel, where each thread
t has a private variable tid whose value is ¢ and where v is shared and v’ is private:

Start : assume true B;: assumetid =1 Av' =5; B> : assumetid # 1;
vi=4;0 = v; goto End ; v:=D5;
goto Bi, Ba; goto End ;

The interleaving semantics allows for reduction of assume tid = 1 A v’ = 5 after
all assignments in all threads have taken place. Hence, if the assignment of 4 to v by
thread 1 is not last among the assignments to v, then v/ = 5 evaluates to true, and
eventually termination occurs with a data race. In the case of lock-step execution and
assuming the sort order Start < B; < Bs, we have that assumetid = 1 Av' =5 is
always reduced immediately after v := 4 ; v’ := v ;. Hence, reduction always terminates
with infeasible and no data race occurs.

That termination is required follows by adapting the counterexamples from [12/11]]
showing that CUDA hardware does not necessarily schedule threads from a non-
terminating kernel in a way that that is fair from an interleaving point-of-view.

The proof of the theorem proceeds by showing that P and its predicated form 7(P)
are stutter equivalent, and then establishing a relationship between 7 (P) and ¢(P).

Equivalence of P and w(P). To show that P and 7 (P) are stutter equivalent [[14],
we define a denotational semantics of kernels in terms of execution traces [3l], i.e., se-
quences of tuples (0, &) = (0,01, ...,07s) with o the shared store and o the private
store of thread ¢.

Definition 5.3. Let p be a maximal reduction. The denotation or execution trace D(p)
of p is the sequence of —-labels of p together with the termination status of p if p

terminates. Let (b1, ..., brs) be a tuple of block labels. The denotation D(by, ..., brs)
of (b1,...,brg) is the set of denotations of all maximal reductions of (by,...,brs)
for all initial stores 0,01, ... ,0 not terminating as infeasible. Let P be a kernel. The

denotation D(P) of P is D(Start, ..., Start).

Observe that infeasible traces are not included in the denotations of (b1, . .., brg) and P;
these traces do not constitute actual program behaviour.

Stutter equivalence is defined on subsets of variables, where a restriction of a
store o to a set of variables V' is denoted by o[y, and, where given a tuple (o,5) =
(0,01,...,0718), the restriction (0, &) [y is (0,8) [y = (ov,01lyy---01s]v)-

Definition 5.4. Let V be a set of variables. Define the map 0y over execution traces
as the map that replaces every maximal subsequence (01,01) (02,82) -+ (op,0n) - -

where (01,81) [y = (02,82) [y = ... = (oOn,0n)y = ... by (01,01).

286 P. Collingbourne et al.

Let X' and T be execution traces. The traces are stutter equivalent with respect to 'V,
denoted X ~Y T, iff:

— Y and T are both finite with equal termination statuses and oy (X) = oy (T);
— X and T are both infinite and 5y (%) = oy (T).

Let P and Q) be kernels. The kernels are stutter equivalent with respect to V, denoted
P ~Y Q, ifffor every X € D(P) thereisa T € D(Q) with X ~Y T, and vice versa.

Theorem 5.5. If P is a kernel with variables V, then m(P) ~¥ P, where 7(P) is the
predicated form of P. A data race occurs in P iff a data race occurs in 7w(P) where,
during reduction of neither of the two statements causing the data race, vactive # B
with B is the block containing the statement.

The above result follows immediately by a case distinction on the statements that may
occur in kernels once we establish the following lemma, which is a direct consequence
of our construction and the first requirement on the sort order of blocks.

Lemma 5.6. Let P be a kernel with variables V. For any thread t and each block B of
P, if (0,04) is a store of t and (6,64) is a store of in t in w(P) such that 61y, = o and
&(Uactive) = B, then

1. if the reduction of B is immediately followed by the reduction of a block C, then
there exists a reduction of w(B) such that Vaetive is equal to C at the end of w(B)
and eventually w(C) is reduced with vactive equal to C;

2. if the reduction of w(B) ends with Vactive equal to C, then there exists a reduction
of B that is immediately followed by the reduction of a block C.

Soundness and Completeness. Theorem[5.2]is now proved as follows.

Proof (Sketch). For termination and race-freedom of ¢(P), it suffices by Theorem [5.3]
to consider 7(P) — the predicated form of P. Reason by contradiction and construct
for a reduction of ¢(P) which is either infinite or has data race, a reduction of 7(P)
that also is either infinite or has a data race: Replace each statement and goto from
the right-hand columns of Table Blby a copy of the statement or goto in the left-hand
column and reduce, where we introduce a copy for each thread. That a reduction of a
barrier assertion can be replaced by BARRIERg follows as no statements from outside
loops can be reduced while we are inside a loop (cf. the second requirement on sort
order of blocks) and by the guards of blocks having been moved during predication to
the end of the block preceding it in execution. The remainder of the theorem follows
by permuting steps of different threads so the reverse transformation from above can be
applied. O

6 Implementation and Experiments

Implementation in GPUVerify. We have implemented the predication technique de-
scribed here in GPU Verify [7], a verification tool for OpenCL and CUDA kernels built

Interleaving and Lock-Step Semantics for GPU Kernels 287

on top of the Boogie verification engine [6]] and Z3 SMT solver [19]]. GPU Verify previ-
ously employed a predication technique for structured programs. Predication for CFGs
has allowed us to build a new front-end for GPU Verify which takes LLVM interme-
diate representation (IR) as input; IR directly corresponds to a CFG. This allows us
to compile OpenCL and CUDA kernels using the Clang/LLVM framework and per-
form analysis on the resulting IR. Hence, tricky syntactic features of C-like languages
are taken care of by Clang/LLVM. Analysing kernels after compilation and optimisa-
tion also increases the probity of verification, opening up the opportunity to discover
compiler-related bugs.

Experimental Evaluation. To assess the performance overhead in terms of verification
time for our novel predication scheme and associated tool chain we compared our new
implementation (GPU Verify II) with the original structured one (GPU Verify I).

We compared the tool versions using 163 OpenCL and CUDA kernels drawn from
the AMD Accelerated Parallel Processing SDK v2.6 [4] (71 OpenCL kernels), the
NVIDIA GPU Computing SDK v2.0 [20] (20 CUDA kernels), Microsoft C++ AMP
Sample Projects [[18] (20 kernels translated from C++ AMP to CUDA) and Rightware’s
Basemark CL v1.1 suite [22]] (52 OpenCL kernels, provided to us under an academic
license). These kernels were used for analysis of GPU Verify I in [7], where several of
the kernels had to be manually modified before they could be subjected to analysis: 4
kernels exhibited unstructured control flow due to switch statements, and one featured
a do-while loop which was beyond the scope of the predication scheme of [[7]. Further-
more, unstructured control flow arising from short-circuit evaluation of logical opera-
tors had been overlooked in GPU Verify I, which affected 30 kernels. In GPU Verify 11
all kernels are handled uniformly as a consequence of our novel predication scheme in
combination with the use of Clang/LLLVM, which encodes short-circuit evaluation using
unstructured control flow.

All experiments were performed on a PC with a 3.6 GHz Intel i5 CPU, 8 GB RAM
running Windows 7 (64-bit), using Z3 v4.1. All times reported are averages over 3
runs. Both tool versions and all our benchmarks, except the commercial Basemark CL
kernels, are available online to make our results reproducible

The majority of our benchmark kernels could be automatically verified by both GPU-
Verify I and GPU Verify II; 22 kernels were beyond the scope of both tools and resulted
in a failed proof attempt. Key to the usability of GPUVerify is its response time, the
time the tool takes to either report successful verification vs. a failed proof attempt.
Comparing GPU Verify I and GPU Verify II we found that across the entire benchmark
set the analysis time taken by GPU Verify II was 2.25 times that of GPU Verify I, with
GPU Verity II taking on average 2.53 times longer than GPU Verify per kernel. However,
the median slow down associated with GPU Verify II was 0.77, i.e., a speed up of 1.3.

The average, median and longest analysis time across all kernels were 4.3, 1.7 and
157 seconds, resp., for GPU Verify I, and 9.6, 1.4 and 300 seconds, resp., for GPU Ver-
ify II. For 124 of the 163 kernels (76%), GPU Verify II was marginally (though not sig-
nificantly) faster than GPU Verify I. For a further 21 kernels (13%) GPU Verify II was
up to 50% slower than GPU Verify 1. The remaining 18 kernels (11%) caused the slow

3 http://multicore.doc.ic.ac.uk/tools/GPUVerify

http://multicore.doc.ic.ac.uk/tools/GPUVerify

288 P. Collingbourne et al.

down on average. In each case the difference lay in constraint solving times; the SMT
queries generated by our CFG-based tool chain can be somewhat more complex than in
the structured case. The most dramatic example is a kernel which was verified by GPU-
Verify I and GPU Verify Il in 3 and 202 seconds, resp., a slow-down for GPU Verify II of
70 times. This kernel exhibits a large number of shared memory accesses. In the LLVM
IR processed by GPU Verify Il these accesses are expressed as many separate, contiguous
loads and stores, requiring reasoning about race-freedom between many pairs of opera-
tions. The structured approach of GPUVerify I captures these accesses at the abstract
syntax tree level, allowing a load/store from/to a contiguous region to be expressed as a
single access, significantly simplifying reasoning. This illustrates that there are benefits
to working at the higher level of abstract syntax trees, and suggests that optimisations in
GPU Verify II to automatically identify and merge contiguous memory accesses might
be beneficial.

7 Related Work and Conclusion

Related Work. Interleaving semantics for GPU kernels has been defined by [15417012].
These are similar to our semantics except that [[15/12] do not give a semantics for barri-
ers. Contrary to our lock-step approach, [15417] battle the state space explosion due to
arbitrary interleavings of threads by considering one particular schedule.

In [[11/12]], a semantics of CUDA kernels is defined that tries to model NVIDIA hard-
ware as faithfully as possible. The focus is not on predicated execution (although it does
figure briefly in [[L1]), but on so-called immediate post-dominator re-convergence [10],
a method to continue lock-step execution of threads as soon as possible after branch
divergence has occurred between threads.

In addition to the above and similar to us, [12] shows for terminating kernels that
CUDA execution of kernels can be faithfully simulated by certain interleaving thread
schedules. The reverse is not shown; our analysis is that such a result is difficult to
establish due to data races that occur in the examples of [12].

Conclusion. Our lock-step semantics for GPU kernels expressed as arbitrary reducible
CFGs enables automated analysis of a wider class of GPU kernels than previous tech-
niques for structured programs, and allows for the analysis of compiled kernel code, af-
ter optimisations have been applied. Our soundness and completeness result establishes
an equivalence between our lock-step semantics and a traditional semantics based on
interleaving, and our implementation in GPU Verify and associated experimental evalu-
ation demonstrate that our approach is practical.

Because our kernel programming language supports non-deterministic choice and
havocking of variables it can express an over-approximation of a concrete kernel. In
future work we plan to exploit this, investigating the combination of source-level ab-
straction techniques such as predicate abstraction with our verification method.

The well-formedness restriction of Definition [3.]l means that our equivalence result
does not apply to kernels that exhibiting ‘dead end’ paths. This is relevant if such paths
are introduced through under-approximation, e.g., unwinding a loop by a fixed number
of iterations in the style of bounded model checking. We plan to investigate whether it
is possible to relax these well-formedness conditions under certain circumstances.

Interleaving and Lock-Step Semantics for GPU Kernels 289

References

1.

2.

10.

12.

13.
14.

16.

17.

19.

20.

21.
22.

23.

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Pearson Education, 2nd edn. (2007)

Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control dependence to data
dependence. In: POPL 1983, pp. 177-189 (1983)

. Alshawabkeh, M., Jang, B., Kaeli, D.: Accelerating the local outlier factor algorithm on a

GPU for intrusion detection systems. In: GPGPU-3, pp. 104-110 (2010)

. AMD: AMD Accelerated Parallel Processing (APP) SDK,

http://developer.amd.com/sdks/amdappsdk/pages/default.aspx

. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE

2005, pp. 82-87 (2005)

. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364-387. Springer, Heidelberg
(2006)

. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPU Verify: a verifier for

GPU kernels. In: OOPSLA 2012, pp. 113-132 (2012)

. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic Testing of OpenCL Code. In: Eder,

K., Lourengo, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203-218. Springer,
Heidelberg (2012)

. DeMillo, R.A., Eisenstat, S.C., Lipton, R.J.: Space-time trade-offs in structured program-

ming: An improved combinatorial embedding theorem. J. ACM 27(1), 123-127 (1980)
Fung, W.W., Sham, 1., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling for
efficient GPU control flow. In: MICRO 2007, pp. 407-418 (2007)

. Habermaier, A.: The model of computation of CUDA and its formal semantics. Tech. Rep.

2011-14, University of Augsburg (2011)

Habermaier, A., Knapp, A.: On the Correctness of the SIMT Execution Model of GPUs. In:
Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 316-335. Springer, Heidelberg (2012)
Khronos Group: The OpenCL specification, version 1.2 (2011)

Lamport, L.: What good is temporal logic? In: Information Processing 1983, pp. 657-668
(1983)

. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels

by test amplification. In: PLDI 2012, pp. 383-394 (2012)

Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:
FSE 2010, pp. 187-196 (2010)

Li, G., Li, P, Sawaya, G., Gopalakrishnan, G., Ghosh, 1., Rajan, S.P.: GKLEE: concolic
verification and test generation for GPUs. In: PPoPP 2012, pp. 215-224 (2012)

. Microsoft Corporation: C++ AMP sample projects for download,

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/
01/30/c-amp-sample-projects-for-download.aspx

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg (2008)

NVIDIA: CUDA Toolkit Release Archive,
http://developer.nvidia.com/cuda/cuda-toolkit-archive

NVIDIA: NVIDIA CUDA C Programming Guide, Version 4.2 (2012)

Rightware Oy: Basemark CL, http://www.rightware.com/en/
Benchmarking+Software/Basemark%99+CL

Zhu, FE., Chen, P., Yang, D., Zhang, W., Chen, H., Zang, B.: A GPU-based high-throughput
image retrieval algorithm. In: GPGPU-5, pp. 30-37 (2012)

http://developer.amd.com/sdks/amdappsdk/pages/default.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://developer.nvidia.com/cuda/cuda-toolkit-archive
http://www.rightware.com/en/Benchmarking+Software/Basemark%99+CL
http://www.rightware.com/en/Benchmarking+Software/Basemark%99+CL

Verifying Concurrent Programs
against Sequential Specifications*

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

LIAFA, Université Paris Diderot
{abou ,lmje,cenea, jhamza}@liafa .univ-paris-diderot.fr

Abstract. We investigate the algorithmic feasibility of checking whether
concurrent implementations of shared-memory objects adhere to their
given sequential specifications; sequential consistency, linearizability, and
conflict serializability are the canonical variations of this problem. While
verifying sequential consistency of systems with unbounded concurrency
is known to be undecidable, we demonstrate that conflict serializabil-
ity, and linearizability with fixed linearization points are EXPSPACE-
complete, while the general linearizability problem is undecidable.

Our (un)decidability proofs, besides bestowing novel theoretical re-
sults, also reveal novel program explorations strategies. For instance, we
show that every violation to conflict serializability is captured by a con-
flict cycle whose length is bounded independently from the number of
concurrent operations. This suggests an incomplete detection algorithm
which only remembers a small subset of conflict edges, which can be
made complete by increasing the number of remembered edges to the
cycle-length bound. Similarly, our undecidability proof for linearizability
suggests an incomplete detection algorithm which limits the number of
“barriers” bisecting non-overlapping operations. Our decidability proof
of bounded-barrier linearizability is interesting on its own, as it reduces
the consideration of all possible operation serializations to numerical con-
straint solving. The literature seems to confirm that most violations are
detectable by considering very few conflict edges or barriers.

1 Introduction

A key class of correctness criteria for concurrent systems is adherence to bet-
ter established sequential specifications. Such criteria demand that each concur-
rent execution of operations corresponds, at the level of abstraction described
by the operations’ specification, to some serial sequence of the same opera-
tions permitted by the specification. For instance, given a conventional speci-
fication of a mathematical set, a concurrent execution in which the operations
add(a), remove(d), is empty (true), remove(a), add(b) overlap could be permitted,
though one with only the operations add(a) and remove(b) could not.
Variations on this theme of criteria are the accepted correctness conditions for
various types of concurrent systems. In the context of processor memory architec-
tures, sequential consistency (SC) [24] allows only executions of memory access

* The proofs to many of our technical results appear in an extended report [7].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 290-BU09] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Verifying Concurrent Programs against Sequential Specifications 291

operations for which the same operations taken serially adhere to the specification
of individual memory registers—i.e., where each load reads the last-written value.
Additionally, any two operations of the serialization carried out by the same pro-
cess must occur in the same order as in the original concurrent execution. In the
context of concurrent data structure implementations, linearizability [21] demands
additionally that two operations which do not overlap in the original concurrent
execution occur in the same order in any valid serialization.

The same kinds of criteria are also used in settings where operation specifica-
tions are less abstract. For transactional systems (e.g., databases, and runtime
systems which provide atomic sections in concurrent programs), (strict) serializ-
ability 28] allows only executions for which the same transactions taken serially
adhere to the specification of an entire (random-access) memory observable by
the transactions; additionally, transactions executed by the same process (or
which did not overlap, in the strict case) are obliged to occur in the same or-
der in any valid serialization. Practical considerations, such as the complexity
of determining whether a given trace is serializable, have generated even more
restrictive notions of serializability. Conflict serializability (Papadimitriou [2§]
calls this property “DSR”) demands additionally—viewing a serialization as a
reordering of actions which untangles the operations of a concurrent execution—
that no two conflicting actions are reordered in the serialization. The typical
definition of “conflict” relates accesses to the same memory location or region,
with at least one being a store.

In this work we investigate the fundamental questions about the algorithmic
feasibility of verifying concurrent programs with respect to sequential specifica-
tions. While our results consider programs with unbounded concurrency aris-
ing from, e.g., dynamic thread-creation, they, as do most other (un)decidability
results concerning concurrent program analysis, apply to programs where the
domain of data values is either finite, or reduced by a finitary abstraction.

While the problem of determining whether a given concurrent system is se-
quentially consistent with respect to a given sequential specification is known to
be undecidable, even when the number of concurrent processes is bounded [1],
the decidability of the analogous questions for (conflict) serializability and lin-
earizability, for unbounded systems of concurrent processes, remains open. (Alur
et al. [1] have proved both of these problems decidabl7 resp., in PSPACE and
EXPSPACE, when the number of concurrent processes is bounded.) In this work
we establish these decidability and complexity results for unbounded systems,
and as byproduct, uncover program exploration strategies which prioritize the
discovery of naturally-occurring property violations.

Our first result, of Section[3] is that conflict serializability is decidable, and com-
plete for exponential space. Since existing techniques rely on cycle detection in an
exhaustive exploration of possible conflict relations (graphs) among concurrent op-
erations [17], allowing for an unbounded number of concurrent operations renders
these techniques inapplicable to verification, since the unbounded set of possible
conflict graphs cannot generally be enumerated in finite time. Contrarily, here we

! The correct decidability proof for serializability is due to Farzan and Madhusudan [17].

292 A. Bouajjani et al.

demonstrate that every cyclic conflict graph contains a cycle which is bounded in-
dependently of the number of concurrent operations; this cycle length is instead
bounded as a linear function in the number of memory locations. This suggests
that an incomplete cycle detection algorithm which only remembers a small sub-
set of conflict edges can be made complete by increasing the number of remembered
edges to the given cycle-length bound. Even so, we expect that most violations to
conflict serializability can be efficiently detected by remembering very few conflict
edges: those we have seen reported in the literature are expressed with length 2
cycles [13,[19], and for systems satisfying certain supposedly-common symmetry
conditions, any violation must occur with only two threads [19].

Our second result, of Section H] is that the static linearizability problem, in
which the so-called “linearization points” of operations which modify the shared-
object state are fixed to particular implementation actions, is also decidable, and
complete for exponential space. Informally, a linearization point of an operation
in an execution is a point in time where the operation is conceptually effectuated;
given the linearization points of each operation, the only valid serialization is
the one which takes operations in order of their linearization points. Although
static linearizability is a stronger criterion than linearizability, it is based on a
fairly-well established proof technique [21] which is sufficiently weak to prove
linearizability of many common concurrent data-structure algorithms [31].

Turning to the general problem, in Section bl we show that verifying lineariz-
ability for unbounded concurrent systems is undecidable. Our proof is a reduction
from a reachability problem on counter machines, and relies on imposing an un-
bounded number of “barriers” which bisect non-overlapping operations in order to
encode an unbounded number of zero-tests of the machines’ counters. Informally,
a barrier is a temporal separation between two non-overlapping operations, across
which valid serializations are forbidden from commuting those operations.

Besides disarming our proof of undecidability, bounding the amount of bar-
riers reveals an incomplete algorithm for detecting linearizability violations, by
exploring only those expressed with few barriers. Similarly to the small-cycle
case in conflict serializability, we expect that most violations to linearizability
are detectable with very few barriers; indeed the naturally-occurring bugs we are
aware of, including the infamous “ABA” bug [26], induce violations with zero or
one barrier. Our decidability proof of bounded-barrier linearizability in Section [6]
is interesting on its own, since it effectively reduces the problem of considering
all possible serializations of an unbounded number of operations to a numerical
constraint solving problem. Using a simple prototype implementation leveraging
SMT-based program exploration, we use this reduction to quickly discover bugs
known in or injected into textbook concurrent algorithms.

To summarize, the contributions of this work are the first known (un)decidability
results for (§3]) conflict serializability, (§4)) static linearizability, (§0) lineariz-
ability, and (§8) bounded-barrier linearizability, for systems with unbounded
concurrency. Furthermore, besides substantiating these theoretical results our
proofs reveal novel prioritized exploration strategies, based on cycle- and barrier-
bounding. Since most known linearizable systems are also static-linearizable,

Verifying Concurrent Programs against Sequential Specifications 293

combining static-linearizability with bounded-barrier exploration ought to pro-
vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of op-
erations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concur-
rent or distributed data structures, and less conventionally, to the atomic code
sections of concurrent programs, or to the SQL implementations of database
transactions. A library is then simply the collection of API implementations, or
transactional code. Usually concurrent data structure libraries and transactional
runtime systems are expected to ensure that executed operations are logically
equivalent to some understood serial behavior, regardless of how clients concur-
rently invoke their methods or transactions; the implication is that such systems
should function correctly for a most-general client which concurrently invokes
an unbounded number of methods with arbitrary timing. In what follows we
formalize these notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = (Q, X, I, F,—) with labeled transitions
(m1,v1) <%y (ma,v2) between method-local states mi,ms € @ paired with
finite-domain shared-state valuations vy,ve € V. The initial and final states
I, F C (@ represent the method-local states passed to, and returned from, M. A
library L is a finite set of methods, and we refer to the components of a par-
ticular method (resp., library) by subscripting, e.g., the states and symbols Q
and Xy (resp., @ and X'p). Though here we suppose an abstract notion of
shared-state valuations, in later sections we interpret them as valuations to a
finite set of finite-domain variables.

A client of a library L is a finite automaton C' = (Q, X, {y,—) with initial
state £p € @ and transitions < C @ x X x @ labeled by the alphabet X =
{M(mgo,my¢) : M € L,mg, my € Qn} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols Q¢ and Y. The
most general client C* = (Q, X, lg,—) of a library L nondeterministically calls
L’s methods in any order: Q = {{p} and — = Q x X' x Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing
a copy of a given client C; note that any shared memory program with an un-
bounded number of finite-state threads can be modeled using a suitably-defined
client C. A configuration ¢ = (v, u) of L[C] is a shared memory valuation v € V,
along with a map « mapping each thread ¢ € N to a tuple u(t) = (¢, mg, m),

294 A. Bouajjani et al.

INTERNAL CALL RETURN
ul(t) = <£7m07m1> ul(t) = <‘€17J—7J-> ul(t) = <‘€17m05mf>
a M (mg,my) M(mg,mpy)
(m1,v1) — (ma,v2) mo €In b ———c L2 my€Fu f1 ———c Lo
U2 = U1 (t’—) <€,m0,m2>) U2 = U1 (t'—> <£1,’I7’Lo,mo>) U2 = U1 (t'—> <£2,L,L>)
(a,t) call(M,mg,t) ret(]\/l,mf,t)
—
(v1,u1) B (v2, u2) (v, u1) P (v,u2) (v, o (v, uz2)

Fig. 1. The transition relation — ¢ for the library-client composition L[C]

composed of a client-local state ¢ € Q¢, along with initial and current method
states mg,m € Qr U {L}; mg = m = L when thread ¢ is not executing a
library method. In this way, configurations describe the states of arbitrarily-many
threads executing library methods. The transition relation — LIC] of L[C] is listed
in Figure[ll as a set of operational steps on configurations. A configuration (v, u)
of L[C] is called wvg-initial for a given vy € V when v = vy and u(t) = (fo, L, L)
for all t € N, where {; is the initial state of client C. An ezecution of L[C] is a
sequence p = cycy - . . of configurations such that ¢; — 1) Citl forall 0 <i < |p|,
and p is called vg-initial when cq is.

We associate to each concurrent system L[C] a canonical vector addition sys-
tems with states (VASS)E denoted Ap(c), whose states are the set of shared-
memory valuations, and whose vector components count the number of threads
in each thread-local state; a transition of Ay c] from (vi,m1) to (v2, m2) updates
the shared-memory valuation from v; to v2 and the local state of some thread ¢
from wy(t) to ua(t) by decrementing the wj(t)-component of n1, and increment-
ing the wus(t)-component, to derive ms. Several of our proof arguments in the
following sections invoke the canonical VASS simulation of a concurrent system,
which we define fully in our extended report |7].

A call action of thread t is a symbol call(M, m,t), a return action is a symbol
ret(M,m,t), and an internal action is a symbol (a,t). We write o to denote a
sequence of actions, and 7 to denote a trace—i.e., a sequence of actions labeling
some execution. An M [mg, m f]—opemtion 6 (or more simply, M -operation, or just
operation) of a sequence o is a maximal subsequence of actions of some thread ¢
beginning with a call action call(M, my, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M, my,t); my =
*x when 6 does not end in a return action. When 6 ends with a return action, we
say 0 is completed, and otherwise 6 is pending; a sequence o is complete when
all of its operations are completed. Two operations 81 and 85 of o overlap when
the minimal subsequence of ¢ containing both #; and 6; is neither 6; - 65 nor
03 - 0,. Two non-overlapping operations #; followed by 65 in ¢ are called serial
when 6; is completed; note that all operations of the same thread are serial. A
sequence o is (quasi) serial when no two (completed) operations of o overlap.

A (strict) permutation of an action sequence o containing operations © is an
action sequence 7 with operations © such that every two same-thread operations

2 See our extended report |7] for a standard definition of VASS.

Verifying Concurrent Programs against Sequential Specifications 295

(resp., every two serial operations) of o occur in the same serial order in 7. Note
that 7 itself is not necessarily a trace of a system from which ¢ may be a trace.

2.2 Conflict Serializability

The notion of “conflict serializability” is a restriction to the more liberal “seri-
alizability” [28]: besides requiring that each concurrent execution of operations
corresponds to some serial sequence, a “conflict relation,” relating the individ-
ual actions of each operation, must be preserved in deriving that serial sequence
from a permutation of actions in the original concurrent execution. Both notions
are widely accepted correctness criteria for transactional systems.

We fix a symmetricﬁ relation < on the internal library actions X7, called the
conflict relation. Although here we assume an abstract notion of conflict, in
practice, two actions conflict when both access the same memory location, and
at least one affects the value stored in that location; e.g., two writes to the same
shared variable would conflict. A permutation 7 of a trace 7 is conflict-preserving
when every pair (a1,¢1) and (as,t2) of actions of 7 appear in the same order in
m whenever a1 < ag. Intuitively, a conflict-preserving permutation w.r.t. the
previously-mentioned notion of conflict is equally executable on a sequentially-
consistent machine.

Definition 1 (Conflict Serializability [28]). A trace T is conflict serializable
when there exists a conflict-preserving serial permutation of 7.

This definition extends to executions, to systems L[C] whose executions are all
conflict serializable, and to libraries L when C' is the most general client C*.

2.3 Linearizability

Contrary to (conflict) serializability, linearizability [21] is more often used in con-
texts, such as concurrent data structure libraries, in which an abstract specifica-
tion of operations’ serial behavior is given explicitly. For instance, linearizability
with respect to a specification of a concurrent stack implementation would re-
quire the abstract push(-) and pop(+) operations carried out in a concurrent trace
7 correspond to some serial sequence o of push(-)s and pop(-)s, in which each
pop(a) can be matched to a previous push(a); Figure 2lillustrates an automaton-
based specification of a two-element unary stack. Note that linearizability does
not require that a corresponding reordering of the trace 7 can actually be ex-
ecuted by this stack implementation, nor that the implementation could have
even executed these operations serially.
A specification S of a library L is a language over the specification alphabet

PO {M[mo,mys] : M € L,mg,ms € Qur}-

In this work we assume specifications are regular languages; in practice, spec-
ifications are prefix closed. We refer to the alphabet containing both symbols

3 All definitions of conflict that we are aware of assume symmetric relations.

296 A. Bouajjani et al.

pop|-, false]

ushla, trumush[a, true,

popl:, *], popl[-, *], popl[-, *],
push[a, *] push[a, %] push[a, *]

pushla,],
ush[a, true

pushla,],
ush[a, true

(s

popl-, true] popl, true]

pop|[-, *],
pop[-, true]

pop|[-, *],

Fig. 2. The sequential specification of two- pop[-, true]

element stacks containing the (abstract) Ppopl, false]

value a, given as the language of a finite

automaton, whose operation alphabet indi- Fig.3. The pending closure of the stack
cates both the argument and return values. specification from Figure

Mmoo, my] and M[mg,] for each M[mg, ms] occurring in Xg as the pending-
closed alphabet of S, denoted Xg.

Informally, alibrary L is linearizable w.r.t. a specification S when the operations
of any concurrent trace can be serialized to a sequence of operations belonging to
S, which must preserve the order between non-overlapping operations. However,
the presence of pending operations introduces a subtlety: a trace may be consid-
ered linearizable by supposing that certain pending operations have already been
effectuated—e.g., a trace of a concurrent stack implementation in which push(a) is
pending and pop(a) has successfully completed is linearizable—while simultane-
ously supposing that other pending operations are ignored—e.g., a trace in which
push(a) is pending and pop(a) returned false is also linearizable. To account for the
possible effects of pending operations, we define a completion of a (quasi) serial se-
quence o = 60105 ...6; of operations to be any sequence f(o) = f(1)f(2)... f(i)
for some function f preserving completed operations (i.e., f(j) = 6; when 6;
is completed), and either deleting (i.e., f(j) = ¢) or completing (i.e., f(j) =
0; - ret(M, my, t), for some my € Q) each M[my, *| operation of some thread ¢.
Note that a completion of a (quasi) serial sequence o is a complete serial sequence.
Finally, the S-image of a serial sequence o, denoted o | S, maps each M[mg, my]-
operation 6 to the symbol M[mg, ms] € Xsg.

Definition 2 (Linearizability [21]). A trace 7 is S-linearizable when there ex-
ists a completiod 7 of a strict, quasi-serial permutation of T such that (n|S)€S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C' is the most general client C*.

Example 1. The trace pictured in Figure[d can be strictly permuted into a quasi-
serial sequence whose completion (shown) excludes the pending push operation,
and whose S-image

push[a, true] popl:, true|] popl[-, false] push[a, true]
belongs to the stack specification from Figure
4 Some works give an alternative yet equivalent definition using the completion of a

strict, quasi-serial permutation of the S-image, rather than the S-image of a comple-
tion.

Verifying Concurrent Programs against Sequential Specifications 297

call(push, a, t1) call(pop, -, t1)
P
ret(push, true, ¢ ret(pop, false, t
(83 reth)gop,true, t2) (pop 1) call(push, a, t1) - ret(push, true, ¢1)

call(pop, -, tﬁ(- call(pop, -, t2) - ret(pop, true, t2)

ret(push, true, t3)

- call(pop, -, t1) - ret(pop, false, t1)
(push, &, ¢ j
call(push, a, t4) call(push, &, t5 - call(push, a, t3) - ret(push, true, t3)

Fig. 4. The visualization of a trace 7 with four threads executing four completed and
one pending operation, along with a completion of a strict, quasi-serial permutation of
7 (ignoring internal actions)

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given quasi-serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

SE (|8 eXe:30 € X5 (0/|S) € Sand o is a completion of o}

The language of the automaton of Figure [} is the pending closure of the spec-
ification from Figure 2} looping transitions labeled from Xg \ Xg correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from X's \ X'g correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complica-
tion of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a reqular specification S is reqular.

Lemma 2. A trace 7 is S-linearizable if and only if there exists a strict, quasi-
serial permutation m of T such that (| S) € S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [17], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alterna-
tive structure witnessing non-conflict-serializability, whose size remains bounded

298 A. Bouajjani et al.

Fig.5. Conflict-violation witness embeddings and their corresponding conflict graph
cycles over five operations 01, 02, 03, 04, 05. (a) The witness (a1, b1) (a2, b2) (a3, bs) (a4, bs)
is not minimal when by = bs, since (a1, b1) (a2, b3) (a4, ba) is also awitness. (¢) The witness
<a1, b1> <a2, b2> <a3, b3> <ll4, b4> is not, minimal When b2 = bg, since <b3, ll2> <a2, b2> <a3, b3>
is also a witness. The conflict graphs of (a) and (c) are shown in (b) and (d).

independently of the number of concurrent threads, and which we use to prove
EXPSPACE-completeness of conflict-serializability.

Definition 3 (Conflict-Graph [28]). The conflict graph of a trace 7 is the
directed graph G, = (O, E) whose nodes © are the operations of T, and which
contains an edge from 01 to O3 when either:

— 01 and 03 are serial and 01 occurs before 0y in T, or
— there exist a conflicting pair of actions a1 and as of 01 and 62, resp., such
that a1 < as and a1 occurs before ag in 7.

Although a trace is serializable if and only if its conflict graph is acyclic [17], the
size of the conflict graph grows with the number of concurrent operations.

An embedding of a sequence of conflicting action pairs (a1, b1) ... (ak, bx), into
a trace 7, is a function f from {a;,b; : 1 < i < k} to the actions of 7, such that:

— each f(a;) is executed by a different thread,

— f(b;) and f(a,;)) are actions of the same thread,

— f(a;) precedes f(b;) in 7, and

— f(bs) precedes f(a,;)) in 7 when f(b;) and f(ay(;)) are of different operations,

for each 1 < i < k, where n(i) = (i mod k) + 1. A conflict-violation witness for
a trace 7 is a sequence w for which there exists an embedding into 7.

Ezxample 2. FigureBh pictures the embeddings of two conflict-violation witnesses
containing 4 action pairs, corresponding to a cycle 610203040501 in the conflict
graph of Figure Bk associated to the same trace.

The key to decidability of conflict-serializability is that any conflict cycle con-
structed from two occurrences of the same conflicting action a € X can be
short-circuited into a smaller conflict cycle.

Lemma 3. A trace T of a library L (w.r.t. some client C) is not conflict serial-
izable iff there exists a conflict-violation witness for T of size at most | Y|+ 1.

Verifying Concurrent Programs against Sequential Specifications 299

Proof. As a direct consequence of our definition, 7 is not conflict serializable iff
there exists a witness w embedded into 7 by some f. (Each w embedded in 7
defines a conflict graph cycle, and vice-versa). We show that if some b; besides
b1 repeats in w, then there exists an even smaller witness w’.
For any 4,j € N such that 1 < ¢ < j < |w| and b; = b;, we consider the two
possibilities:
— Suppose f(b;) occurs after f(a;) in 7. Then there exists a smaller conflict-
violation witness for 7:

U)/ = <a1, b1> . (ai, bz> <aj+1, bj+1> . <ak, bk> .
The illustration of Figure Bh exemplifies this case when by = bs.

— Suppose f(b;) occurs before f(a;) in 7. Then, leveraging the fact that < is
symmetric, there exists a smaller conflict-violation witness for 7:

U)/ = <bj, ai> <ai, b2> N <aj, bj> .
The illustration of Figure Bb exemplifies this case when be = bs.
In either case w is not minimal unless |w| < | X |+ 1. a

As we have considered an abstraction notion of actions which constitute a fi-
nite set X7, Lemma [3 would hold equally well for libraries accessing an un-
bounded shared memory, given an equivalence relation whose quotient set is
finite—e.g., by partitioning memory into a finite number of regions—which is
obtained in practice by abstraction.

As soon as conflict cycles are bounded, the set of all possible cycles is finitely
enumerable. We use this fact to prove that conflict serializability is decidable
in exponential space by reduction to state-reachability in VASS, using an ex-
tension to the canonical VASS Apc of a given system L[C] (see Section .T).
We augment the states of A to store a (bounded) conflict violation witness
w, which is chosen nondeterministically, and incrementally validated as Agc
simulates the behavior of L[C]. This algorithm is asymptotically optimal, since
state-reachability in VASS is also polynomial-time reducible to checking conflict
serializability. Our full proof is listed in an extended report [7].

Theorem 1. The conflict serializability problem for unbounded concurrent sys-
tems is EXPSPACE-complete.

Although exploring all possible conflict cycles up to the bound | X |+ 1 yields a
complete procedure for deciding conflict serializability, we believe that in prac-
tice incomplete methods—e.g., based on constraint solving—using much smaller
bounds could be more productive. The existing literature on verification of con-
flict serializability seems to confirm that violations are witnessed with very small
cycles; for instance, two different violations on variations to the Transactional
Locking IT transactional memory algorithm reported by Guerraoui et al. [19] and
Dragojevi¢ et al. |[13] are witnessed by cycles formed by just two pairs of con-
flicting actions between two operations. Furthermore, Guerraoui et al. [19] show
that any violation to conflict serializability in practically-occurring transactional
memory systems must occur in an execution with only two threads.

300 A. Bouajjani et al.

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2] Herlihy and Wing [21] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ effects become instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions
in method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concur-
rently executing operations, and it may even reside outside of the operation’s
execution. Vafeiadis |31] observed that in practice such complicated linearization
points arise mainly for “read-only” operations, which do not modify a library’s
abstract state; a typical example being the contains-operation of an optimistic
set [27], whose linearization point may reside in a concurrently executing add-
or remove-operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a method M of alibrary L and mg, ms € Qr, an M[mg, ms]-operation
0 is read-only for a specification S if and only if for all wy, wq, w3 € X%,

1. If wy - M[mo, my] - way € S then w1~M[m0,mf]k ~wg € S for all k£ > 0, and
2. If wy - M[mg,mys] - wa € S and wy - w3 € S then wy - M[mg, my] - ws € S.

The first condition is a sort of idempotence of M[mg, m¢] w.r.t. S, while the
second says that M[mg, ms] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M[mg, my] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M[mg, my] is a self-loop.
For instance, the specification in Fig. 2 dictates that popl[-, false] is read-only.

The control graph Gy = (Qar, E) is the quotient of a method M’s transition
system by shared-state valuations V: (m1,a,mz) € E iff (my,v1) <=3 (me, v2)
for some vy,v2 € V. A function LP : L — o(X) is called a linearization-point
mapping when for each M € L:

1. each symbol a € LP(M) labels at most one transition of M,
2. any directed path in Gps contains at most one symbol of LP(M), and
3. all directed paths in Gjs containing a € LP(M) reach the same m, € Fyy.

An action (a, i) of an M-operation is called a linearization point when a € LP(M),
and operations containing linearization points are said to be effectuated; LP(0)
denotes the unique linearization point of an effectuated operation 6. A read-
points mapping RP : © — N for an action sequence o with operations @ maps
each read-only operation € to the index RP(#) of an internal #-action in o.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

Verifying Concurrent Programs against Sequential Specifications 301

An action sequence o is called effectuated when every completed operation of
o is either effectuated or read-only, and an effectuated completion o’ of o is
effect preserving when each effectuated operation of o also appears in ¢’. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence o, we say a permutation w of o is point preserving when every two
operations of 7 are ordered by their linearization/read points in o.

Definition 4. A trace 7 is (S, LP)-linearizable when 7 is effectuated, and there
exists a read-points mapping RP of T, along with an effect-preserving completion
7 of a strict, point-preserving, and serial permutation of T such that (7 | S) € S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C' is the most general client C*.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C| is (S, LP)-linearizable for some mapping LP.

Ezample 3. The execution of Example[dlis (S, LP)-linearizable with an LP which
assigns points denoted by xs in Figure l} the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide (LP, S)-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specifica-
tion automaton Ag, updating its state when operations are effectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation 6 is enabled in Ag at some point during 6’s execution, our
reachability query ensures that each effectuated operation corresponds to an
enabled transition in Ag; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section [ZT]), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure for
static-linearizability, leveraging Savitch’s Theorem. Our proof in our extended re-
port [7] also demonstrates asymptotic optimality, since VASS state-reachability
is also polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent sys-
tems with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

302 A. Bouajjani et al.

machines to linearizability of unbounded concurrent systems. Technically, given
a counter machine A, we construct a library L4 and a specification S 4 such
that L 4[C*] is not S4-linearizable exactly when .4 has an execution reaching
the given target state. In what follows we outline our simulation of A, ignoring
several details in order to highlight the crux of our reduction. Our full proof is
listed in an extended report [7].

In our simulation of A the most general client C* invokes an arbitrary sequence
of methods from the library L4 containing a transition method T[t] for each
transition t of A, and an increment method 1[c;], a decrement method D[c;], and
a zero-test method Z|c;], for each counter ¢; of A. As our simulation should
allow only concurrent traces which correspond to executions of A, and C* is a
priori free to invoke operations at arbitrary times, we are faced with constructing
the library L 4 and specification S 4 so that only certain well-formed concurrent
traces are permitted. Our strategy is essentially to build L 4 to allow only those
traces corresponding to valid sequences of A-transitions, and to build S4 to
allow only those traces, which either do not reach the target state of A, or which
erroneously pass some zero-test—i.e., on a counter whose value is non-zero.

Figure [0 depicts the structure of our simulation, on an A-execution where
two increments are followed by two decrements and a zero test, all on the same
counter c;. Essentially we simulate each execution by a trace in which:

1. A sequence tits...t; of A-transitions is modeled by a pairwise-overlapping
sequence of T[t1] - T[ta] - - - T[t;] operations.

2. Each T[t]-operation has a corresponding I[¢;], Dl¢;], or Z|ci] operation, de-

pending on whether ¢ is, resp., an increment, decrement, or zero-test transi-

tion with counter c;.

Each I[¢;] operation has a corresponding D[¢;] operation.

For each counter ¢;, all I[¢;] and Dlc¢;] between Z[c;] operations overlap.

5. For each counter ¢;, no I[¢;] nor D[¢;] operations overlap with a Z[¢;] opera-
tion.

6. The number of I[¢;] operations between two Z[c;] operations matches the
number of Dl¢;] operations.

o~ oo

The library L4 ensures Properties 1-4 using rendezvous synchronization, with
six types of signals: a T/T signal between T|-]-operations, and for each counter
¢i, T/I, T/D, and T/Z signals between T|-|-operations and, resp., I[¢;], D[c;],
and Z[c;] operations, an I/D signal between I[¢;] and D[¢;] operations, and a
T/C signal between T|t] operations and I[¢;] or D[¢;] operations, for zero-testing
transitions ¢. An initial operation (not depicted in Figure [A]) initiates a T/T
rendezvous with some T[t] operation. Each T[t] operation then performs a ren-
dezvous sequence: when ¢ is an increment or decrement of counter ¢;, then T|t]
performs a T /T rendezvous, followed by a T/I, resp., T /D for counter ¢;, followed
by a final T/T rendezvous; when t is a zero-test of counter ¢;, T[t] performs a
T/T rendezvous, followed by some arbitrary number of T/Cs for ¢;, followed by a
T/Z for ¢;, and finally a last T /T rendezvous. Each I[¢;] operation performs T/I,
then I/D, and finally T/C rendezvous for counter ¢;, while each D]¢;] operation
performs I/D, then T/D, and finally T/C rendezvous for ¢;; the Z[c;] operations

Verifying Concurrent Programs against Sequential Specifications 303

T[inc c1] T[dec c1] Tz ci ..]
T Tlinc 1] e T Tidec c1] L i
Wk ™ D: D! TIC §
0 : : : iz
RO ——0— : Siriroa,
o] : T : S :
0 — O O ! :
Dla] VDi i uD: HO——
' O—O — OH -
Pleil A/

Fig.6. The L simulation of an .A-execution with two increments followed by two
decrements and a zero-test of counter ci. Operations are drawn as horizontal lines con-
taining rendezvous actions drawn as circles. Matching rendezvous actions are connected
by dotted lines labeled by rendezvous type. Time advances to the right.

perform a single T/Z rendezvous for ¢;. T/T rendezvousing ensures Property 1,
T/1, T/D, and T/Z rendezvousing ensures Property 2, I/D rendezvousing en-
sures Property 3, and T/C rendezvousing ensures Property 4. Note that even
in the case where not all pending I[¢;] and DJ¢;] operations perform T/C ren-
dezvous with a concurrent T[t] operation, where t is a zero-test transition, at the
very least, they overlap with all other pending I[¢;] and DJc¢;] operations having
performed T/I, resp., T/D, rendezvous since the last Z[¢;] operation.

The trickier part of our proof is indeed ensuring Properties 5 and 6. There
we leverage Property 4: when all I[¢;] and D[c¢;] operations between two Z[c;]
operations overlap, every permutation of them, including those alternating be-
tween I[¢;] and D[¢;] operations, is strict, i.e., is permitted by the definition of
linearizability. Our specification S, takes advantage of this in order to match
the unbounded number of I[¢;] and D[e¢;] operations using only bounded memory.

Lemma 5. The specification S 4 accepting all sequences which either do not end
with a transition to the target state, or in which the number of alternating I[c;]
and D[e;] operations between two Z[c;] operations are unequal, is regular.

Lemma [0 gives a way to ensure Properties 5 and 6, since any trace which is
S a-linearizable either does not encode an execution to A’s target state, or re-
spects Property 5 while violating Property 6—i.e., the number of increments and
decrements between zero-tests does not match—or violates Property 5: in the
latter case, where some I[¢;] or D|¢;] operation 6; overlaps with an Z[c;| operation
02, 01 can always be commuted over 6 to ensure that the number of I[¢;] and
D[¢;] operations does not match in some interval between Z[c;] operations. Thus
any trace which is not S4-linearizable must respect both Properties 5 and 6.
It follows that any trace of L 4 which is not S 4-linearizable guarantees Proper-
ties 1-6, and ultimately corresponds to a valid execution of A, and visa versa,
thus reducing counter machine state-reachability to S 4-linearizability.

Theorem 3. The linearizability problem for unbounded concurrent systems with
reqular specifications is undecidable.

304 A. Bouajjani et al.

6 Deciding Bounded Barrier Linearizability

Our proof in Section [l that verifying linearizability is undecidable relies on con-
structing an unbounded amount of “barriers” bisecting serial operations in order
to encode unboundedly-many zero-tests of a counter machine. Besides disarming
our undecidability proof, bounding the number of barriers leads to an interest-
ing heuristic for detecting violations to linearizability, based on the hypothesis
that many violations occur in executions expressed with few barriers. In this sec-
tion we demonstrate not only that the bounded-barrier linearizability problem is
decidable, but that when restricting exploration to bounded-barrier executions,
checking linearizability reduces to a constraint solving problem on the valuations
of counters counting the number of each operation occurring in a finite number
of barrier-separated intervals. Similarly to how context-bounding reduces the
problem of exploring concurrent program interleavings to sequential program
behaviors [22], barrier-bounding reduces the problem of exploring concurrent
operation serializations to counter-constraint solving.

Formally, a barrier of a trace 7 is an index 0 < B < |7| such that 7(B) is a
call action, and the nearest preceding non-internal action of 7 is a return action.
An interval is a maximal integer interval I = [i1, i3] of 7-indices containing no
barriers except i1, in the case that i; > 0; we index the intervals of a trace
sequentially from 0, as Iy, I, ..., Ix. The span of an operation 6 of 7 is the pair
(I3, I,) of intervals such that 6 begins in I; and ends in I,—and I; = w when 6
is pending. The trace 7 of Example [I] contains two barriers, B; and By, where
7(B1) = call(pop, -, t1) and 7(B2) = call(push, a, t3), thus dividing 7 into three
intervals, Iy = [0, By — 1], Iy = [B1, B2 — 1], and Iy = [Ba, |7| — 1]; the span of,
e.g., the operation of threads t; and t4 are, resp., (I, I1) and (Iy,w). Note that
the spans of two serial operations of a trace are disjoint.

Definition 6. The system L[C] is (S, k)-linearizable when every trace of L|C]
with at most k barriers is S-linearizable.

In what follows we develop the machinery to reduce this bounded-barrier lineariz-
ability problem to a reachability problem on systems which count the number
of each operation spanning each pair of intervals.

An interval-annotated alphabet 3 = 5 x N x (NU {w}) attaches (non-zero)
interval indices to each symbol of X' and an interval-annotated sequence & € o
is k-bounded when i1 < k and either io < k or ia = w for each symbol {(a,i1,1i2)
of ¢. The homomorphism & : X — X maps each symbol (a, ,) to h({a, ,)) = a.
An interval-annotated sequence ¢ is timing consistent when i1 < io, i3 < i4, and
i1 < i4q for any symbol (,i1,142) occurring before (,i3,4i4) in J.

We say that the sequence over the interval-annotated (and pending closed,
see Section 2] specification alphabet ¢ € Eg‘ is consistent when ¢ is timing
consistent, and iy = w iff my = =, for all symbols (M[mg, my],41,42) of 6. The (k-
bounded) interval-annotated specification S of a specification S is the language
containing all consistent interval-annotated sequences ¢ such that h(s) € S.
For example, we obtain the 1-bounded interval-annotated specification from

Verifying Concurrent Programs against Sequential Specifications 305

the specification of Figure [by attaching the interval indices (1,w) to each
popl-, *] and pushla,] symbol, and (1,1) to each pop[-, false|, popl[-, true], and
push|a, true] symbol.

Lemma 6. The k-bounded interval-annotated specification S, of a reqular spec-
ification S, is also regqular.

Proof. For any given k > 0 the set W C Eg‘ of k-bounded consistent interval-
annotated sequences is regular. As regular languages are closed under inverse
homomorphism and intersection, S = W N h~1(9) is also regular. g

To relate traces to an interval-annotated specification S, we define the interval-
annotated S-image & of an action sequence ¢ as the multiset & : Y =N map-
ping each (M[mq,my],i1,i2) € X to the number of occurrences of M[mq, m ¢]-
operations in o with span (i1, i2).

Ezample 4. The interval-annotated image 7 of the trace 7 from Example [l maps
the interval-annotated symbols

pUSh[av true] [17 l]a pUSh[a’v *] [17 w]a pop[-, true] [17 2}7
pop[-, false][2, 3], and push[a, true|[3, 3]

to 1, and the remaining symbols of X5 to zero.

Annotating operations with the intervals in which they occur allows a compact
representation of specifications’ ordering constraints, while abstracting away the
order of same-interval operations—as they are free to commute. To realize this
abstraction, we recall that the Parikh image of a sequence o € X* is the multiset
II(0) : ¥ — N mapping each symbol a € X to the number of occurrences of a in o.
The Parikh image of a language L C X* are the images I1(L) = {II(0) : 0 € L}
of sequences in L. We prove the following key lemma in our extended report [1].

Lemma 7. A trace 7 with at most k barriers is S-linearizable iff 7 € II(S),
where S is the (k—+1)-bounded interval-annotated specification of S.

Lemmal[7 essentially allows us to reduce the bounded-barrier linearizability prob-
lem to a reachability problem: given a trace 7 with at most k barriers, 7 is lineariz-
able so long as its image 7 is included in the Parikh image of the (k+1)-bounded
specification S. In effect, rather than considering all possible serializations of
7, it suffices to keep count of the number of pending and completed operations
over each span of intervals, and ensure that these counts continually remain
within the semi-linear set of counts allowed by the specification. For the pur-
poses of our results here, we keep these counts by increasing the dimension of the
canonical vector addition system Arc) (see Section LT]) of a given system L[C].
Furthermore, since Bouajjani and Habermehl 6] prove that checking whether
reachable VASS configurations lie within a semi-linear set is itself reducible to
VASS reachability, and the Parikh image of a regular set is a semi-linear, en-
suring these counts continually remain within those allowed by the specification
is therefore reducible to VASS reachability. In fact, our proof in our extended
report |7] shows this reduction-based procedure is asymptotically optimal, since
VASS reachability is also polynomial-time reducible to to (S, k)-linearizability.

306 A. Bouajjani et al.

Theorem 4. The bounded-barrier linearizability problem for unbounded concur-
rent systems with regular specifications is decidable, and asymptotically equiva-
lent to VASS reachability.

Theorem [holds for any class of specifications with semi-linear Parikh images,
including, e.g., context-free languages. Furthermore, though Theorem[lleverages
our reduction from serializations to counting operations for decidability with
unbounded concurrent systems, in principle this reduction applies to any class
of concurrent systems, including infinite-data systems—without any guarantee
of decidability—provided the ability to represent suitable constraints on the
counters of annotated specification alphabet symbols. We believe this reduction
is valuable whether or not data and/or concurrency are bounded, since we avoid
the explicit enumeration of possible serializations.

As a proof of concept, we have implemented a prototype of our reduction. First
we instrument a given library implementation (written in Boogie) with (1) auxil-
iary counters, counting the number of each operation within each bounded span,
(2) with Presburger assertions over these counters, encoding the legal specifica-
tion images, and (3) with a client nondeterministically invoking methods with ar-
bitrary arguments. As a second step we translate this instrumented (concurrent)
program to a sequential (Boogie) program, encoding a subset of delay-bounded
executions [16], then discover assertion violations using an SMT-based sequential
reachability engine |23]. Note that the bounded-barrier reduction, which treats
operation serialization, composes naturally with the bounded-delay reduction,
which treats operation interleaving. Furthermore, the reduction to SMT allows
us to analyze infinite-data implementations; e.g., we analyze an unbounded stack
with arbitrary data values, according to a specification which ensures each pop
is preceded by a matching push—which is context-free, thus has a semi-linear
Parikh image—while ignoring the pushed and popped values.

We have applied our prototype to discover bugs known in or manually-injected
into several textbook concurrent data structure algorithms; the resulting lineariz-
ability violations are discovered within a few seconds to minutes. Besides evidence
to the practical applicability of our reduction algorithm, our small set of experi-
ments suggests that many linearizability violations occur with very few barriers;
we discover violations arising from the infamous “ABA” bug [26], along with bugs
injected into a 2-lock queue, a lock-coupling set, and Treiber’s stack, in executions
without any barriers. For instance, in an improperly-synchronized Treiber-style
stack algorithm, two concurrent pop(a) operations may erroneously remove the
same element added by one concurrent push(a) operation; however, no serializa-
tion of pop(a), pop(a), and push(a) is included in our stack specification.

Of course, some violations do require barriers. A very simple example is a
violation involving one pop(a) serial with one push(a) operation, though since
pop(a) and push(a) are not concurrent, a bug causing this violation is unlikely.
More interestingly, a lost update due to improper synchronization between two
concurrent inc() operations in a zero-initialized counter can only be observed
as a linearizability violation when a barrier prevents, e.g., a subsequent read(1)
operation from commuting over an inc() operation.

Verifying Concurrent Programs against Sequential Specifications 307

7 Related Work

Papadimitriou [28] and Gibbons and Korach 18] studied variations on the prob-
lems of deciding serializability, sequential consistency, and linearizability for sin-
gle concurrent traces, finding the general problems to be NP-complete, and
pointing out several PTIME variants, e.g., when serializations must respect a
suitable conflict-order. Alur et al. [1] studied the complexity of similar decision
problems for all traces of finite-state concurrent systems: while sequential con-
sistency already becomes undecidable for finite-state systems—though Bingham
[4] proposes certain decidable pathology-omitting variations—checking conflict
serializability is declared PSPACE—completeﬁ while linearizability is shown to be
in EXPSPACE. Our work considers the complexity of these problems for systems
where the number of concurrent operations is unbounded.

Though many have developed techniques for proving linearizability [33, 12, 32,
3,125,114, 217,131,134, [10], we are not aware of decidability or complexity results for
the corresponding linearizability and static linearizability verification problems
for unbounded systems. While a few works propose testing-based detection of
linearizability violations [9, [11, [10], they rely on explicit enumeration of possible
serializations; prioritizing the search for violations with few barriers, and the
resulting reduction to numerical constraint solving, are novel.

Several works have also developed techniques for verifying sequential consis-
tency [20, 129, |5, 8] and serializability [12,130, (17,19, [15]; Farzan and Madhusudan
[17] demonstrate a complete technique for verifying conflict serializability with a
bounded number of concurrent operations, and while Guerraoui et al. [19] identify
symmetry conditions on transactional systems with which conflict serializability
can be verified completely, for an unbounded number of concurrent operations,
they propose no means of checking that these symmetry conditions hold on any
given system. On the contrary, we show that verifying conflict serializability with-
out bounding the number of concurrent operations is EXPSPACE-complete.

References

[1] Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1-2), 167-188 (2000)

[2] Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison Under Ab-
straction for Verifying Linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477-490. Springer, Heidelberg (2007)

[3] Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quan-
tification for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399-413. Springer, Heidelberg (2008)

[4] Bingham, J.: Model Checking Sequential Consistency and Parameterized Proto-
cols. PhD thesis, The University of British Columbia (August 2005)

® The correct proof of PSPACE-completeness is given by Farzan and Madhusudan
[L7].

308

[5]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

21]

A. Bouajjani et al.

Bingham, J.D., Condon, A., Hu, A.J., Qadeer, S., Zhang, Z.: Automatic Verifi-
cation of Sequential Consistency for Unbounded Addresses and Data Values. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 427-439. Springer,
Heidelberg (2004)

Bouajjani, A., Habermehl, P.: Constrained Properties, Semilinear Systems, and
Petri Nets. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 481-497. Springer, Heidelberg (1996)

Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. Technical report (January 2013)

Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI 2007: Proc. ACM
SIGPLAN 2007 Conf. on Programming Language Design and Implementation,
pp. 12-21. ACM (2007)

Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pp. 330-340. ACM (2010)
Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 87-107. Springer, Heidelberg (2012)

Burnim, J., Necula, G.C., Sen, K.: Specifying and checking semantic atomicity for
multithreaded programs. In: ASPLOS 2011: Proc. 16th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pp. 79-90. ACM
(2011)

Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD 2007: Proc. 7th Intl. Conf. on Formal
Methods in Computer-Aided Design, pp. 37-44. IEEE Computer Society (2007)
Dragojevié¢, A., Guerraoui, R., Kapalka, M.: Dividing transactional memories by
zero. In: TRANSACT 2008: Proc. 3rd ACM SIGPLAN Workshop on Transactional
Computing. ACM (2008)

Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying Linearizabil-
ity Proofs with Reduction and Abstraction. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 296-311. Springer, Heidelberg (2010)

Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pp. 134-145. ACM (2010)

Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pp. 411-422. ACM (2011)

Farzan, A., Madhusudan, P.: Monitoring Atomicity in Concurrent Programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52-65. Springer,
Heidelberg (2008)

Gibbons, P.B., Korach, E.: Testing shared memories. STAM J. Comput. 26(4),
1208-1244 (1997)

Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distributed Computing 22(3), 129-145 (2010)

Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying Sequential Consistency
on Shared-Memory Multiprocessor Systems. In: Halbwachs, N., Peled, D.A. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 301-315. Springer, Heidelberg (1999)

Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463-492 (1990)

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

Verifying Concurrent Programs against Sequential Specifications 309

Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73-97 (2009)

Lal, A., Qadeer, S., Lahiri, S.K.: A Solver for Reachability Modulo Theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427-443.
Springer, Heidelberg (2012)

Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690-691 (1979)

Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model Checking Linearizability via Re-
finement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
321-337. Springer, Heidelberg (2009)

Michael, M.M.: ABA prevention using single-word instructions. Technical Report
RC 23089, IBM Thomas J. Watson Research Center (January 2004)

O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC 2010: Proc. 29th Annual Symp. on Princi-
ples of Distributed Computing, pp. 85-94. ACM (2010)

Papadimitriou, C.H.: The serializability of concurrent database updates. J.
ACM 26(4), 631-653 (1979)

Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730-741 (2003)
Tagiran, S.: A compositional method for verifying software transactional memory
implementations. Technical Report MSR-TR-2008-56, Microsoft Research (April
2008)

Vafeiadis, V.: Automatically Proving Linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450-464. Springer, Heidelberg
(2010)

Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
PLDI 2008: Proc. ACM SIGPLAN 2008 Conf. on Programming Language Design
and Implementation, pp. 125-135. ACM (2008)

Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: PPOPP 2005: Proc. ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pp. 61-71. ACM (2005)

Zhang, S.J.: Scalable automatic linearizability checking. In: ICSE 2011: Proc. 33rd
Intl. Conf. on Software Engineering, pp. 1185-1187. ACM (2011)

*

On Distributability in Process Calculi

Kirstin Peters', Uwe Nestmann', and Ursula Goltz?

! TU Berlin, Germany
2 TU Braunschweig, Germany

Abstract. We present a novel approach to compare process calculi and
their synchronisation mechanisms by using synchronisation patterns and
explicitly considering the degree of distributability. For this, we propose a
new quality criterion that (1) measures the preservation of distributabil-
ity and (2) allows us to derive two synchronisation patterns that sepa-
rate several variants of pi-like calculi. Precisely, we prove that there is
no good and distributability-preserving encoding from the synchronous
pi-calculus with mixed choice into its fragment with only separate choice,
and neither from the asynchronous pi-calculus (without choice) into the
join-calculus.

1 Introduction

The pi-calculus is a well-known and frequently used process calculus to model
concurrent systems. Therein, intuitively, the degree of distributability corres-
ponds to the amount of parallel components that can act independently. Prac-
tical experience has shown that it is not possible to implement every pi-calculus
term—mnot even every asynchronous one—in an asynchronous setting while pre-
serving its degree of distributability. To overcome these problems, the join-cal-
culus was introduced as a model of distributed computation [I2]. It employs a
locality principle by ensuring that there is always exactly one immobile receiver
for each communication channel. More precisely, for every name, exactly one
receiver is defined at the time of the name’s creation, and communication occurs
only on so-defined channels [7].

Most of the existing approaches that analyse the distributability of concur-
rent systems use special formalisms often equipped with an explicit notion of
location, e.g. [2] in Petri nets or the distributed pi-calculus [9]. In contrast to
these approaches, we analyse (similarly to [I725]) the potential of a formalism
to describe distributed systems without an explicit allocation of locations to
processes. Instead, we abstract from a particular distribution and consider dis-
tributability and, thus, all possible explicitly-located variants of a calculus. We
do so, because we consider the expressive power of languages, not just individual
terms. Moreover, we obtain results for a larger number of process calculi.

In order to measure whether an encoding respects the degree of distribution,
usually the homomorphic translation of the parallel operator, i.e., [P| Q] =

* Supported by the DFG (German Research Foundation), grants NE-1505/2-1 and
GO-671/6-1.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 310-BZ9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

On Distributability in Process Calculi 311

[P]][Q],]is used as a criterion (see e.g. [[7UBITI]). Such an encoding naturally
preserves the parallel structure of terms and, thus (at least for process calculi
such as CSP or the pi-calculus), the degree of distribution. However, the opposite
is not true. In [19], the first two authors present an encoding that preserves the
degree of distribution although it does not translate the parallel operator homo-
morphically. In this sense, the homomorphic translation of the parallel operator
is too strict—at least for separation results. It rightly forbids the introduction
of coordinators that reduce the degree of distribution. But it also forbids proto-
cols that handle communications of parallel components without sequentialising
them or reducing the degree of distribution in another sense. Moreover, the ho-
momorphic translation of the parallel operator is not always suited to reason
about distribution in process calculi as, for example, the join-calculus: there, it
is not always possible to separate distributable subterms by means of a paral-
lel operator (see the discussion in Section [B)). To overcome this problem, [19]
presents a first formulation of a new criterion to more succinctly measure the
preservation of distributability in process calculi like the pi-calculus. We gener-
alise this criterion to reason about arbitrary process calculi. Moreover, we show
that the distributability of processes implies also distributability of executions.
This leads to a new proof method for separation results.

As a result, we obtain a difference between the distributability of the asyn-
chronous pi-calculus (m,) and the join-calculus (J), elucidated by the non-exis-
tence of a good and distributability-preserving encoding from 7, into J. Interest-
ingly, the difference between these two calculi is captured by a synchronisation
pattern that was already used in [25] when studying the distributability of Petri
nets. Moreover, we shed more light on the difference between the synchronous
pi-calculus with mixed choice (my,) and its fragment with only separate choice
(ms) already considered in [I7U819] by capturing this difference within a novel
synchronisation pattern. Hence, these calculi, although they all have the same
abstract expressive power [JJI6/19], embody different levels of synchronisation.

Owverview. We start with some general definitions on process calculi in §2 Tn §3]
we propose a new criterion to reason about the preservation of distributability.
4] then introduces the first synchronisation pattern and separates m, and J. A
second synchronisation pattern and separation between m,, and 7y is presented
in §5l We conclude with 8l Proofs and additional material can be found in [20].

2 Process Calculi

Within this paper we compare different variants of the pi-calculus and the join-
calculus as they are described e.g. in [14[13] and [7], respectively. We provide a
short introduction into process calculi in general and these variants in particular.

Assume a countably-infinite set A, whose elements are called names. We use
lower case letters a,b,c,...,a’,a,... to range over names. Moreover, let 7 ¢ A/
and N = {n | n € N} be the set of co-names (used in the pi-calculus). A process
calculus is a language £ = (P,—) that consists of a set of process terms P
(its syntax) and a relation —: P x P on process terms (its semantics). We often

312 K. Peters, U. Nestmann, and U. Goltz

refer to process terms also simply as processes or as terms and use upper case
letters P,Q, R, ..., P’, P1,... to range over them.

The syntazx is usually defined by a context-free grammar defining operators,
i.e., functions op : N™ x P™ — P. An operator of arity 0, i.e., m = 0, is a
constant. The arguments that are again process terms are called subterms of P.

Definition 1 (Subterms). Let (P,—) be a process calculus and P € P.
The set of subterms of P = op (z1,...,%n, P1,..., Pn) is defined recursively as
{PYU{P'|Fie{l,...,m} .P isasubterm of P; }.

Hence every term is a subterm of itself and constants have no further subterms.
We require that each process calculus defines at least the empty process as con-
stant and the parallel operator as binary operator. Moreover, we add the special
constant v' to each process calculus. Its purpose is to denote success (or success-
ful termination) which allows us to compare the abstract behaviour of terms in
different process calculi as described in Section 2.1l Another typical operator is
the restriction of scopes of names. A scope defines an area in which a particular
name is known and can be used. For several reasons, it can be useful to restrict
the scope of a name. For instance to forbid interaction between two processes or
with an unknown and, hence, potentially untrusted environment. Names whose
scope is restricted such that they cannot be used from outside the scope are
denoted as bound names. The remaining names are called free names. Accord-
ingly, we assume three sets—the sets of names n(P) and its subsets of free names
fn(P) and bound names bn(P)—with each term P. In the case of bound names,
their syntactical representation as lower case letters serves as a place holder for
any fresh name, i.e., any name that does not occur elsewhere in the term. To
avoid name capture or clashes, i.e., to avoid confusion between free and bound
names or different bound names, bound names can be mapped to fresh names
by a-conversion. We write P =, @ if P and @ differ only by a-conversion.

We use o, ¢, 01, ...to range over substitutions. A substitution is a finite
mapping from names to names defined by a set { ¥1/z,,...,¥n/x, } of renamings,
where the x1,...,x, are pairwise distinct. The application of a substitution on
aterm {¥1/zy, ..., ¥/, } (P) is defined as the result of simultaneously replacing
all free occurrences of z; by y; for ¢ € {1,...,n}, possibly applying a-con-
version to avoid capture or name clashes. For all names N \ {z1,...,z, } the
substitution behaves as the identity mapping. We sometimes omit the paren-
theses, i.e., o(P) = oP. We naturally extend substitutions to co-names, i.e.,
VYn € N'. o(n) = o(n) for all substitutions o.

To reason about environments of process terms, we use functions on pro-
cess terms called contexts. More precisely, a context C ([-]1,...,[]n) : P* = P
with n holes is a function from n process terms into a process term, i.e., given
Py,...,P, € P, the term C (P,...,P,) is the result of inserting P;,..., P, in
that order into the n holes of C.

We consider three variants of the pi-calculus—the full pi-calculus 7y, including
mixed choice, its subcalculus 7 with only separate choice, and the asynchronous
pi-calculus m,—, and the join-calculus J. Their process terms are given by the
sets Pm, Ps, Pa, and Pj, respectively.

On Distributability in Process Calculi 313

Definition 2 (Syntax). The sets of process terms are given by
Ponu= PP | v | (wn)P | P | Y. mP
mu=ylz) | yl@) | 7T
Psu= PP | v | wn)P | P | Y,om0P | Yo 7lP
| 7

70 u=ylz) | 7 and 7! = y(o)
Pou=0 | PP | v | wn)P | P | ylz) | yl).P | 7.P
Pyuo=0 | PP | v | y(2) | defDinP

Ju=yx) | Ji|J2 and D = J>P | DiADs
for some names n,xz,y,z € N and a finite index set I.

The interpretation of the defined terms is as usual. In all languages the empty
process is denoted by 0 and Py | Py defines parallel composition. Within the pi-
calculi restriction (vn) P restricts the scope of the name n to the definition of P
and ! P denotes replication. The process term), m;.P; represents finite guarded
choice; as usual, the sum Zz’e{ Lon} 7;.P; is sometimes written as 7. Py +...+
mn.P, and 0 abbreviates the empty sum, i.e., where I =). The input prefix
y(z) is used to describe the ability of receiving the value x over link y and,
analogously, the output prefix y(z) describes the ability to send a value z over
link y. The prefix 7 describes the ability to perform an internal, not observable
action. The choice operators of 7, and 7 require that all branches of a choice
are guarded by one of these prefixes. We omit the match prefix, because it does
not influence the results.

In Py within a single choice term either there are no input or no output
guards, i.e., we have input- and output-guarded choice, but no mixed choice.
Apart from that, P, and Ps define the same processes. m, and mg represent
synchronous variants of the pi-calculus. Asynchronous variants were introduced
independently by [1I0] and [3]. In asynchronous communication, a process has no
chance to directly determine (without a hint by another process) whether a value
sent by it was already received or not. Hence, output actions are not allowed
to guard a process different from 0. Also, the interpretation of output guards
within a choice construct is delicate. We use the standard variant of m,, where
choice is not allowed at all. Since P, has no choice, we include 0 as a primitive.

In Py the operator y (z) describes an output prefix similar to P,. A definition
def Din P defines a new receiver on fresh names, where D consists of one or
several elementary definitions J > P connected by A, J potentially joins several
reception patterns y (x) connected by |, and P is a process. Note that def Din P
unifies the concepts of restriction, input prefix, and replication of the pi-calculus.
Moreover, [7] define the core join-calculus c¢J as a subcalculus of J that restricts
definitions to the form def y; (x1) | y2 (x2)> Py in Pa, i.e., in ¢J definitions consist
of a single elementary definition of exactly two reception patterns.

As usual, the continuation 0 is often omitted, so e.g. y(x).0 becomes y(x).
In addition, for simplicity in the presentation of examples, we sometimes omit
an action’s object when it does not effectively contribute to the behaviour of a
term, e.g. y(x) .0 is written as y.0 or just y, and def y (z)>0iny (z) is abbreviated
as def y > 0iny. Moreover, let (vZ) P abbreviate the term (vay) ... (vz,) P.

314 K. Peters, U. Nestmann, and U. Goltz

The definitions of free and bound names are completely standard, i.e., names
are bound by restriction and as parameter of input and n(P) = fn(P) U bn(P)
for all P. In the join-calculus the definition def Din P binds for all elementary
definitions J; > P; in D and all join pattern y; ; (z; ;) in J; the received variables
2;,; in the corresponding P; and the defined variables y; ; in P. By convention,
the received variables of composed join patterns have to be pairwise distinct.

To compare process terms, process calculi usually come with different well-
studied equivalence relations (see [23] for an overview). A special kind of equiva-
lence with great importance to reason about processes are congruences, i.e., the
closure of an equivalence with respect to contexts. Process calculi usually come
with a special congruence = C P x P called structural congruence. Its main pur-
pose is to equate syntactically different process terms that model quasi-identical
behaviour. In the pi-calculus structural congruence is usually provided by a set
of equivalence equations. For the above variants we have:

P=QiftP=,Q P|0=P P|Q=Q|P P|(Q|R)=(P|Q)|R P=P|P
(vn)0=0 (vn)(vm)P=(wm)(wn)P P|(wn)Q=(vn)(P|Q) if n & fn(P)

The entanglement of input prefix and restriction within the definition operator
of the join-calculus limits the flexibility of relations defined by sets of equivalence
equations. Instead structural congruence is given by an extension of the chemical
approach in [I] by the heating and cooling rules. They operate on so-called so-
lutions R + M, where R and M are multisets. We have (1) - P | Q =+ P, Q,
(2) DAEF = D,EF,and (3) - def Din P = 04y,(D) b 04, (P), where only
elements—separated by commas—that participate in the rule are mentioned and
04y instantiates the defined variables in D to distinct fresh names. Then P = Q)
if P and @ differ only by applications of the =-rules, i.e., if F P = F Q.

We assume that the semantics is given as an operational semantics consist-
ing of inference rules defined on the operators of the language [22]. For many
process calculi, the semantics is provided in two forms, as reduction semantics
and as labelled semantics. We assume that at least the reduction semantics —
is given as part of the definition, because its treatment is easier in the context of
encodings. A single application of the reduction semantics is called a (reduction)
step and is written as P —— P’. If P —— P’ we say P’ is a derivative of P.
Moreover, let P — (or P /) denote the existence (absence) of a step from
P ie, P~ 2 3P €¢ P.P+— P and P v/ = —(P+—), and let =
denote the reflexive and transitive closure of —. A sequence of reduction steps
is called a reduction. We write P ——* if P has an infinite sequence of steps.
We also use ezecution to refer to a reduction starting from a particular term. A
mazximal execution of a process P is a reduction starting from P that cannot be
further extended, i.e., that is either infinite or of the form P = P’ /.

The semantics of the above variants of the pi-calculus is given by the axioms

(.. P+..)— P (.. +yl@).P+..)|(..+yx).Q+..)0—{*}P|Q
for m, and m, the axioms
T.P— P y(x) .Plylz) — {%/=} P
for 7,, and the three rules
P— P P— P P=qQ Q—Q Q=P
P|Q— P |Q (vn) P — (vn) P’ P+ P’

On Distributability in Process Calculi 315

that hold for all three variants m,, ms, and 7,. The operational semantics of J
is given by the heating and cooling rules (see structural congruence) and the
reduction rule J> P + 0,(J) — J > P F 0,4(P), where o, substitutes the
transmitted names for the distinct received variables.

We distinguish between dynamic and static operators. Intuitively, dynamic
operators define terms that can perform steps, while static operators define con-
nections between terms and side conditions on the reductions of their respective
subterms. Moreover, we denote the parts of a term that are removed in reduction
steps as capabilities. Usually, the reduction of dynamic operators is described by
the axioms of the reduction semantics, while the remaining inference rules and
the structural congruence describe the interplay with static operators. Accord-
ingly, the dynamic operators of the above calculi are prefix and choice, because
these operators are removed in the axioms of the respective reductions semantics,
while 0, v, parallel composition, restriction, and replication are static operators.
Note that we consider the definition operator of the join-calculus as dynamic,
because e.g. a reduction of def Ji> P’ in P copies the elementary definition J> P’
and removes J if P contains the required outputs.

Furthermore, we distinguish between operators that allow for reductions of
their subterms and those that require to be reduced first. We denote an operator
as guard if at least one of its subterms cannot be used to perform a step before
the guard itself is reduced. Its subterm(s) that cannot perform steps before the
guard is reduced are denoted as guarded subterms. The other subterms, if there
are any, as well as the subterms of operators that are not guards are denoted
as unguarded subterms. Guards model sequential behaviour. To our intuition
a purely sequential component cannot be cut into pieces to occupy different
locations. Hence guarded subterms are not distributable until their guards are
removed. However, there are process calculi, as the join-calculus, where a single
operator combines different needs and guards only some of its subterms. Section[3]
explains how we deal with such operators in the definition of distributability.

The capabilities of the pi-calculus are the prefixes, where the capability of a
choice is the conjunction of the prefixes of all its branches—considered as sin-
gle capability. Prefixes and thus also choice are guards, and all their subterms
are guarded. The capabilities of the join-calculus are outputs and (compositions
of) reception pattern, where the capability of a definition def Din P is the con-
junction of all compositions of reception patterns in D. In def (J1>P) A ... A
(Jn> Py) in P the subterms Pi,..., P, are guarded while P is an unguarded
subterm. Reception patterns are matched against outputs in order to instanti-
ate and unguard an instance of a guarded subterm. Note that the distinction
into static and dynamic operators, guards, and capabilities are decisions made
with the design of a process calculus. We use guards and capabilities to define
distributability in Section Bl Hence, we require that all process calculi explicitly
distinguish their guards, guarded subterms, and capabilities.

Replication or recursion can be provided by dynamic or static operators, e.g.
def Din P in J is a dynamic and !P in 7, a static operator. Also the semantics
can be given by a reduction rule or a rule of structural congruence. In both cases,

316 K. Peters, U. Nestmann, and U. Goltz

recursion or replication distinguishes itself from other operators by the fact that
(one of) its subterms can be copied within rules of structural congruence or
by reduction rules while the operator itself is usually never removed during
reductions. We call such operators and capabilities recurrent.

In order to formalise the identification of sequential components, we assume
for each process calculus a so-called labelling on the capabilities of processes.
The labelling has to ensure that (1) each capability has a label (2) no label
occurs more than once in a labelled term, (3) a label disappears only when the
corresponding capability is reduced in a reduction step, and (4), once it has dis-
appeared, it will not appear in the execution any more. A labelling method that
satisfies these conditions for processes of the pi-calculus is presented in [4] (cf.
[20]). Note that such a labelling can be derived from the syntax tree of processes.
We require that, once the labelling of a term is fixed, the labels are preserved
by the rules of structural congruence as well as by the reduction semantics of
the respective calculus. Because of recurrent operators, new subterms with fresh
labels for their capabilities may arise from applications of structural congruence
or reduction rules. Since we need the labels only to distinguish syntactically sim-
ilar components of a term, and to track them alongside reductions, we do not
restrict the domain of the labels nor the method used to obtain them as long as
the resulting labelling satisfies the above properties for all terms and all their
derivatives in the respective calculus. Due to space constraints, and in order not
to clutter the development with the details of labelling, we prefer to argue at the
corresponding informal level. More precisely, we assume that all processes in the
following are implicitly labelled. Remember that we need these labels only to dis-
tinguish between syntactical equivalent capabilities, e.g. to distinguish between
the left and the right y in y | y.

2.1 Encodings and Quality Criteria

Let L = (Ps,—>s) and L1 = (Pp,—7) be two process calculi, denoted as
source and target language. An encoding from Lg into L1 is a function [-] :
Ps — Pr. Encodings often translate single source term steps into a sequence or
pomset of target term steps. We call such a sequence or pomset an emulation of
the corresponding source term step.

To analyse the quality of encodings and to rule out trivial or meaningless
encodings, they are augmented with a set of quality criteria. In order to provide
a general framework, Gorla in [8] suggests five criteria well suited for language
comparison. Accordingly, we consider an encoding to be “good”, if it satisfies
the following conditions:

(1) Compositionality: The translation of an operator op is the same for all oc-
currences of that operator in a term, i.e., it can be captured by a context.

(2) Name Invariance: The encoding does not depend on particular names.

(3) Operational Correspondence: Every computation of a source term can be
emulated by its translation, i.e., S =>g S' implies [S | =1=< [5’] (com-
pleteness), and every computation of a target term corresponds to some
computation of the corresponding source term (soundness).

On Distributability in Process Calculi 317

(4) Divergence Reflection: The encoding does not introduce divergence.
(5) Success Sensitiveness: A source term and its encoding answer the tests for
success in exactly the same way, i.e., Sy, [S] I,

Note that the second criterion is not necessary to derive the separation results of
this paper. Also note that a behavioural equivalence < on the target language is
assumed for the definition of name invariance and operational correspondence.
Its purpose is to describe the abstract behaviour of a target process, where
abstract refers to the behaviour of the source term. By [8] the equivalence = is
often defined in the form of a barbed equivalence (as described e.g. in [I5]) or
can be derived directly from the reduction semantics and is often a congruence,
at least with respect to parallel composition. We require only that < is a weak
reduction bisimulation, i.e., for all T, T € Pt such that T; < T5, for all T} ==
T/ there exists a Ty such that Ty =7 Ty and T} < Tj.

We choose may-testing to instantiate the test for success in success sensi-
tiveness, i.e., P |, if it is reducible to a process containing a top-level un-
guarded occurrence of v. However, as we claim, this choice is not crucial. We
have n(v) = fn(v) = bn(v") = 0. Moreover, we write P |}, if P reaches success
in every finite maximal execution. Note that success sensitiveness only links the
behaviours of source terms and their literal translations, but not of their deriva-
tives. To do so, Gorla relates success sensitiveness and operational correspon-
dence by requiring that the equivalence on the target language never relates two
processes with different success behaviours, i.e., P |, and @ |/, implies P % Q.

3 Distributability

Within this section, we discuss and fix the notions of distributability and preser-
vation of distributability in the context of process calculi. Intuitively, a dis-
tribution of a process means the extraction (or: separation) of its (sequential)
components and their association to different locations. However, we do not con-
sider locations explicitly; we just focus on the possible division of a process term
into components. Accordingly, a process P is distributable into P, ..., P,, if
we find some distribution that extracts Py, ..., P, from within P onto different
locations. Preservation of distributability then means that the target term is at
least as distributable as the source term.

3.1 Distributable Processes

The most important operator to implement distributability is the parallel oper-
ator. Indeed we consider distributability as a special case of parallel composition
with a stricter notion of independence, which becomes visible if we compare
calculi. So, first of all, two subterms are distributable if they are parallel.
Unfortunately, the converse of that statement—two subterms are not dis-
tributable if they are not parallel—is usually not true. The main reason for this
is scoping of names. Consider for example the term (vz) (P | @) in the pi-calcu-
lus. Although the outermost operator is not the parallel operator, the processes

318 K. Peters, U. Nestmann, and U. Goltz

P and @ are nonetheless distributable. More precisely, for all considered variants
of the pi-calculus, two subterms are distributable if they are (modulo =) com-
posed in parallel under some restrictions; see the notion of standard form of the
pi-calculus [I3]. Hence, (1) we consider distributability modulo structural con-
gruence, and (2) we allow to remove toplevel restrictions and parallel operators
to separate the distributable components.

In the case of the join-calculus, the situation is worse. Again, the problematic
operator is responsible for scoping of names. But in the case of the join-calculus
scoping is realised by definitions that at the same time represent the input capa-
bilities of the calculus. Consider the term R = def a >0in (defb > ¢ (a) in (a | b)).
It is constructed of two nested definitions. Intuitively, it represents the combina-
tion of the two processes def a >0in a and def b>c (a) in b but, because of ¢ (a), we
cannot get rid of the nesting of the definitions—mnot even modulo structural con-
gruence. The best we can achieve is R = defa >0in ((defb > ¢ (a) inbd) | a). Note
that defb > c{a) inb is not guarded within R. Because of that, the cooling and
heating rules, which model structural congruence of the join-calculus, allow us to
derive - R = b>c(a) Fdefa>0ina,bas wellas - R = a>0+ defb>c(a) inb,a.
This reason is enough for us to consider defa >0ina and defb > c(a) inb as
distributable within R. Formally, each J-term J is distributable into the terms
J1, .., Jp, € Jif, for all 1 < ¢ < n, there exists some multisets R, M such that
FJ=RF J;, M and there are no two capabilities in Ji,...,J, with the same
label. Note that we can define structural congruence for all process calculi by
a chemical abstract machine, but that this kind of special consideration is only
necessary because definitions in the join-calculus are guards that have unguarded
subterms. Hence, we assume that, (at least) for all process calculi that contain
a guard with unguarded subterms, structural congruence is given by a chemical
abstract machine.

Note that this example on the join-calculus illuminates that we consider dis-
tributability as an irreversible predicate. There is no possibility to restore from
a given set of distributable components the original process term, because by
the separation of the components we irreversibly loose their original connec-
tions. Thus, we cannot beyond doubt conclude that the terms def a >0ina and
def b > ¢ {a) inb originally belong to R. Similarly, we cannot conclude that the
terms P and @) were originally subterms of the pi-calculus term (vz) (P | Q),
because we lost the information about the restriction. However, these lost infor-
mation, i.e., the connections between distributable components in the original
term, are already captured by the other criteria on the quality of an encoding.

Another important observation is that, because of P = P |!P, different
copies of a recursive term are distributable in the pi-calculus, whereas there is
no such =-rule for definitions in the join-calculus. This reflects a fundamental
design decision in the join-calculus, namely that the receptors of a given channel
are forced to reside at the same location [(IT2]. Note that this design deci-
sion marks the main difference between the join-calculus and the asynchronous
pi-calculus. Accordingly, we require that this design decision is made explicit
within the structural congruence of the calculus. A recurrent operator is called

On Distributability in Process Calculi 319

distributable if such a =-rule is provided and, otherwise, as not distributable,
i.e., | P is distributable but J-term definitions are not distributable.

Definition 3 (Distributability). Let (P,—) be a process calculus, = be its

structural congruence, and P € P. P is distributable into Pi,..., P, € P if

there exists P’ € P with P' = P such that

1. for all 1 < i < n, P; contains at least one capability or constant different
from 0 and P; is an unguarded subterm of P’ or, in case = is given by a
chemical approach, - P’ = R + P;, M for some multisets R, M,

2. in Py,..., P, there are no two occurrences of the same capability, i.e., no
label occurs twice, and

3. each guarded subterm and each constant (different from 0) of P’ is a subterm
of at least one of the terms Py, ..., P,.

The degree of distributability of P is the mazimal number of distributable sub-

terms of P.

Hence, we can split a process into its sequential components or larger subterms,
e.g. each term is distributable into itself. This allows us to analyse the behaviour
of distributable subterms. Note that we do not allow to distribute the empty
process, because otherwise usually every process is distributable into infinitely
many empty processes. The same holds for subterms not containing any capa-
bility or constant different from 0, as e.g. in the term 0 | 0. Of course, !P is
distributable into arbitrary many copies of P (and one !P). However, since none
of the later counterexamples contains replication, this decision is not crucial.

Hence a pi-term P is distributable into Py,..., P, if P = (va) (P | ... | Pn)-
The Pj-term def a >0in (defb > ¢ (a) in (a | b)) is distributable into def a >0ina
and def b > c{a) inb, but e.g. also into defa >0in0, defb > c({a) in0, a, and b,
because - defa >0in (defb >c(a) in (a| b)) = defa in0,defbinc(a)Fa|b=
defa in0,defbinc(a) - a,b ="F defa >0in0,defb >c(a) in0,a,b.

3.2 Preservation of Distributability

Note that an encoding can always trivially ensure that the encoding has at
least as much distributable components by introducing new subterms without
any behaviour. Hence, it does not suffice to reason only about the degree of
distributability, i.e., about the number of distributable components. Instead we
require that the encodings of distributable source term parts and their corre-
sponding parts in the encoding are related by <. By doing so we relate the def-
inition of the preservation of distributability to operational completeness, i.e., a
semantical criterion that ensures the preservation of the behaviour of the source
term (part). We require that each target term part has to be able to emulate at
least all behaviour of the respective source part. As a side effect we require that
whenever a part of a source term can solve a task independently of the other
parts—i.e., it can reduce on its own—then the respective part of its encoding
must also be able to emulate this reduction independently of the rest of the
encoded term. This reflects the intuition that distribution adds some additional
requirements on the independence of parallel terms.

320 K. Peters, U. Nestmann, and U. Goltz

Definition 4 (Preservation of Distributability). An encoding [-] : Ps —
‘Pr preserves distributability if for every S € Ps and for all terms S1,...,5, €
Ps that are distributable within S there are some T4,...,T, € Pt that are dis-
tributable within [S| such that T; < [S;] for all 1 <i < n.

In essence, this requirement is a distributability-enhanced adaptation of opera-
tional completeness. It respects both the intuition on distribution as separation
on different locations—an encoded source term is at least as distributable as the
source term itself—as well as the intuition on distribution as independence of
processes and their executions—implemented by T; =< [S;].

To ensure that the new criterion is not in conflict with the framework of Gorla,
it suffices to show the existence of encodings that satisfy all six criteria. Such
encodings are presented in [I6] and [I9]. Moreover, [I9] shows that in case of
the pi-calculus every good encoding that translates the parallel operator and
restriction homomorphically and preserves structural congruence also preserves
distributability. Not surprisingly, the most crucial requirement here is the ho-
momorphic translation of the parallel operator. However, this holds only in case
of process calculi as the pi-calculus, where distributable terms can be separated
modulo = by parallel operators.

Thus, the (semantic) criterion formalised in Definition M can be considered to
be at most as hard as the (syntactic) criterion on the homomorphic translation
of the parallel operator. To see that it is not an equivalent requirement, but
indeed strictly weaker, [I9] refers to an encoding from 7y, (without replication)
into 72, the asynchronous pi-calculus augmented with a two-level polyadic syn-
chronisation by Carbone and Maffeis [5]. This encoding is good and preserves
distributability but it does not translate the parallel operator homomorphically.
Moreover, [5] proves that there is no good encoding from my, into 72 that trans-
lates the parallel operator homomorphically; this separation result does not rely
on replication, i.e., it also implies that there is no such encoding from 7, without
replication into 2.

3.3 Distributable Reductions

As discussed above, the criterion in Definition @l requires not only the preser-
vation of the distributability of processes but also the preservation of the dis-
tributability of steps or executions of the respective distributable processes. In
order to obtain an alternative way to prove the preservation of distributability,
we make this intuition explicit. More precisely, we show that an operationally
complete encoding that preserves distributability always also preserves the dis-
tributability between sequences of source term steps. To do so, we define first
what it means for two steps or executions to be distributable.

If a single process—of an arbitrary process calculus—can perform two different
steps, i.e., steps on capabilities with different labels, then we call these steps
alternative to each other. Two alternative steps can either be in conflict or not;
in the latter case, it is possible to perform both of them in parallel, according to
some assumed step semantics.

On Distributability in Process Calculi 321

Definition 5 (Distributable Steps). Let { P,——) be a process calculus and
P € P a process. Two alternative steps of P are in conflict, if performing one
step disables the other step, i.e., if both reduce the same not recurrent capability.
Otherwise they are parallel. Two parallel steps of P are distributable, if each
recurrent capability reduced by both steps is distributable, else the steps are local.

Remember that the “same” means “with the same label”, i.e., iny |y.P; | y.Ps
the two steps on y are in conflict but y | y.P1 | y.Pe | y and y | ly.P1 | y can both
perform two parallel steps on y. Moreover, the reductions on channel a and b
are parallel in a | b | a.P; | b.P», but they are in conflict in a | b | a.Py + b.Ps,
because choice counts as a single capability which is reduced in both steps.

Also note that in contrast to parallel steps, distributable steps can reduce
the same recurrent capability only if it is distributable. In many process calculi
such as 7,, two steps are distributable iff they are parallel, because all recurrent
capabilities are distributable. However, there are also process calculi as J in which
these notions indeed refer to quite different situations. Thus, for the comparison
with these calculi, their intuitive distinction is useful.

In the join-calculus, two alternative steps that reduce the same definition but
do not compete for some output, as e.g. the reduction of z (u) and x (v) in
defz (2) >y (z) in (z (u) | x (v)), can be considered as parallel steps; they do not
compete for the input capability, because it is recurrent. However, we can not
consider these two steps as distributable, as this would imply that the definition
itself is distributable which—by design—is not intended in J: there is always
exactly one receiver for each defined name [7].

Next we define parallel and distributable sequences of steps.

Definition 6 (Distributable Executions). Let (P,—) be a process cal-
culus, P € P, and let A and B denote two executions of P. A and B are in
conflict, if a step of A and a step of B are in conflict, else A and B are parallel.

Two parallel sequences of steps A and B are distributable, if each pair of a
step of A and a step of B is distributable.

In 7,, two sequences of steps A and B of a process P are parallel iff P =
(vZ) (Py | Pp) such that P; can perform A while Py can perform B, i.e., if A :
P+— Pyy+— ...+— Pynand B: P+— Py — ... — Pp, then,
forall 1 < i < nandall 1 <j < m, there exists PI’M,P]%J € P such that
Py, = (v2) (PI’“ | Pg) and Pp; = (vi) (P1 | Pl/3,j)' Again, two sequences of
steps are distributable iff they are parallel. Unfortunately, in the join-calcu-
lus two processes able to perform parallel sequences of steps cannot always be
separated by a parallel operator in this way; even if they do not reduce the
same definition. The reason is again the restriction caused by definitions. In the
term def a > Py in (defb >c(a) in (a | b)) the reduction of a is independent of the
reduction of b. Hence, these two steps are parallel and even distributable. But,
because of ¢ (a), we cannot get rid of the nesting of these two definitions.
Although the definitions of distributable processes in Definition Bl and dis-
tributable executions in Definition [0 are quite different, they are closely related.
Two executions of a term P are distributable iff P is distributable into two

322 K. Peters, U. Nestmann, and U. Goltz

[«] 2]

Fig. 1. A fully reachable pure M in Petri nets

subterms such that each performs one of these executions. Hence, an opera-
tionally complete encoding is distributability-preserving only if it preserves the
distributability of sequences of source term steps. The proofs of this and the
following results can be found in [20].

Lemma 1 (Distributability-Preservation). An operationally complete en-
coding [-] : Ps — Pr that preserves distributability also preserves distributabil-
ity of executions, i.e., for all source terms S € Ps and all sets of pairwise
distributable executions of S, there exists an emulation of each execution in this
set such that all these emulations are pairwise distributable in [S].

4 Separation by the Synchronisation Pattern M

[24] analyses the possibility to implement a (synchronous) Petri net specification
within an asynchronous setting. They find a semi-structural property called M
that distinguishes distributable Petri nets from those nets that may only under
additional assumptions on the underlying system structure be implemented in a
fully asynchronous and distributed setting.

An M, as visualised in Figure [Il describes a Petri net that consists of two
parallel transitions and one transition that is in conflict with both of the former.
In other words, it describes a situation where either two parts of the net can pro-
ceed independently or they synchronise to perform a single transition together.
We denote such descriptions of special situations of synchronisation as synchro-
nisation pattern. [2425] states that a Petri net specification can be implemented
in an asynchronous, fully distributed setting iff it does not contain a fully reach-
able pure M. Accordingly, they denote such Petri nets as distributable. They
also present a description of a fully reachable pure M as a property of a step
transition system which allows us to directly use this pattern to reason about
process calculi.

A first analysis shows that we find the M also in the asynchronous pi-cal-
culus (see Example [[l below). This reflects earlier observations in [I2]: it is not
possible to implement the pi-calculus and even its asynchronous fragment in an
asynchronous and fully distributed setting. To overcome these problems the join-
calculus was introduced as a model of distributed computation [7II2]. Mutual
encodings between the (core) join-calculus and the asynchronous pi-calculus have
shown that they have the same expressive power [7]. Here, we show a difference
with respect to the degree of distributability. Hence, we explain what exactly
distinguishes both calculi. It turns out that this distinction is well described by

On Distributability in Process Calculi 323

the synchronisation pattern M, i.e., what distinguishes the asynchronous pi-cal-
culus and the join-calculus is the ability to express conflicts between distributable
steps. This lack in expressiveness in turn allows fully distributed implementations
of the join-calculus.

4.1 The Synchronisation Pattern M

If we compare the asynchronous pi-calculus and the join-calculus, the most ob-
vious difference is that in J any channel can appear only once in input position.
As a consequence, two conflicting steps in the join-calculus can only compete
for different output messages but not for different input capabilities, as it is the
case in m,. Repeating this argument, all steps of a chain of conflicting steps in
the join-calculus are tied to the same definition, i.e., are not distributable.

Lemma 2. For all P € Py and all lists S = [s1,..., 8] of steps of P such that
for all 1 < i < n the step s; is in conflict with the step s;y1, all steps in S are
pairwise local and reduce the same definition.

In contrast, in m,, it is very easy to find such a list of conflicting steps of which
some are distributable, by combining conflicts on outputs and inputs.

Ezample 1. Consider P = y(u) | y(z).P1 | y{v) | y(x).P> with P € P,. P can
perform four different alternative steps modulo structural congruence:

P {v/a} Py | y(v) | y(z) P2
Pr—y(x) P y() [{v/«} P
Pr—y(u) [y(z) P {v/«} P
P y(u) [{v/=} P1 | y(z) . P

81)
82)
S3

)
84)

The step B7]is in conflict with step B3 since both compete for the first output
y(u). Similarly, step 3] and g3 compete for the second input y(x).Ps, and step
B3 and step [g7) compete for the second output, i.e., P has a chain S = [511. .. ,54
of conflicting steps. But g1] and [83] as well as g3 and [g7] are distributable in P.

(
(
(
(

Thus, the ability to express distributable conflicts separates the asynchronous
pi-calculus from the join-calculus. However, the preservation of distributability
in Definition @] does not require to preserve the distributability of conflicts but
only of processes and their executions. On the other side, the structure used in
[24] to identify distributable Petri nets strongly relies on the notion of conflict.
More precisely, an M arises from the combination of two parallel steps and a
third step that is in conflict with both of the former.

Definition 7 (Synchronisation Pattern M). Let {(P,—) be a process cal-

culus and P € P such that:

1. P can perform at least three alternative reduction steps a : P —— P,, b :
P+— Py, and c: P +—— P, such that P,, Py, and P, are pairwise different.

2. Moreover, the steps a and ¢ are parallel in P.

8. But b is in conflict with both a and c.

324 K. Peters, U. Nestmann, and U. Goltz

In this case, we denote the process P as M. If the steps a and c are distributable
in P, then we call the M non-local. Otherwise, the