

Lecture Notes in Computer Science 7792
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Matthias Felleisen Philippa Gardner (Eds.)

Programming
Languages
and Systems
22nd European Symposium on Programming, ESOP 2013
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013
Rome, Italy, March 16-24, 2013
Proceedings

13

Volume Editors

Matthias Felleisen
Northeastern University
College of Computer Science
Boston, MA 02115, USA
E-mail: matthias@ccs.neu.edu

Philippa Gardner
Imperial College
Department of Computing
London, SW7 2AZ, UK
E-mail: p.gardner@imperial.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37035-9 e-ISBN 978-3-642-37036-6
DOI 10.1007/978-3-642-37036-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013932559

CR Subject Classification (1998): D.2.1-5, D.3.1-4, D.1.3, D.1.0, D.4.1-2
F.3.1-3, F.1.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers
in the TACAS proceedings). Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way to participate in this exciting event, and that you will all
continue to submit to ETAPS and contribute to making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with

VI Foreword

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.

Foreword VII

My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only
sequencing, conditionals, and while-loops over elementary instructions. Böhm
trees arose as a convenient data structure in Corrado’s milestone proof of the
decidability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.

VIII Foreword

Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the
consolidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit
association founded under German law with the immediate purpose of sup-
porting the conference and the related activities. ETAPS e.V. was required for
practical reasons, e.g., the conference needed (to be represented by) a legal body
to better support authors, organisers and attendees by, e.g., signing contracts
with service providers such as publishers and professional meeting organisers.
Our ambition is however to make of ‘ETAPS the association’ more than just
the organisers of ‘ETAPS the conference’. We are working towards finding a
voice and developing a range of activities to support our scientific community, in
cooperation with the relevant existing associations, learned societies and inter-
est groups. The process of defining the structure, scope and strategy of ETAPS
e.V. is underway, as is its first ever membership campaign. For the time being,
ETAPS e.V. has started to support community-driven initiatives such as open
access publications (LMCS and EPTCS) and conference management systems
(Easychair), and to cooperate with cognate associations (European Forum for
ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed

Foreword IX

deadlines in the first week of October. We published a confidentiality policy to
set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and

X Foreword

participants, i.e., to look like one large, coherent, well-integrated conference
rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President

Preface

This volume contains the proceedings of the 22nd European Symposium on
Programming (ESOP 2013). The conference took place in Rome, Italy, during
March 20–22, 2013, as part of the European Joint Conferences on Theory and
Practice of Software (ETAPS).

ESOP is an annual conference devoted to the art and science of programming.
The conference solicits contributions on fundamental issues concerning the spec-
ification, analysis, and implementation of systems and programming languages.

The 2013 conference attracted 150 abstracts and 120 full submissions, in-
cluding two tool demo papers. For each submission, we solicited at least three
reviews from the Program Committee members and external reviewers, and for
most submissions, one of us authored a summary review to help the authors un-
derstand the final decision. After an intensive electronic meeting over two weeks,
the Program Committee accepted 31 papers for presentation, two of which focus
on tools.

In addition, this volume also contains the invited paper, “Distributed Elec-
tonic Rights in JavaScript.” Mark Miller presented the paper as the ESOP in-
vited talk in Rome.

We greatly appreciate the work of the Program Committee members, who
read the papers, solicited expert reviews, studied the author responses, and inten-
sively discussed every submission. Together with our colleagues on the Program
Committee, we also wish to thank the numerous external reviewers, without
whom running such a large conference would be impossible. Finally, we thank
the authors of all submissions for entrusting us with their work and the authors
of the accepted papers for their diligent work in preparing their final versions
and their conference presentations.

We acknowledge the use of the EasyChair conference system and the support
of the ETAPS Steering committee and its Chair, Vladimiro Sassone, with regard
to all the administrative work.

January 2013 Matthias Felleisen
Philippa Gardner

Organization

Program Committee

Luca Aceto Reykjavik University, Iceland
Véronique Benzaken Université Paris Sud 11, France
Derek Dreyer MPI-SWS, Germany
Matthias Felleisen Northeastern University, USA
Philippa Gardner Imperial College, UK
Giorgio Ghelli Università di Pisa, Italy
Holger Hermanns Universität des Saarlandes, Germany
Suresh Jagannathan Purdue University, USA
Andy King University of Kent, UK
Akash Lal Microsoft Research, India
Cosimo Laneve Università di Bologna, Italy
Gary Leavens University of Central Florida, USA
Xavier Leroy INRIA, France
Annie Liu SUNY at Stony Brook, USA
Aleksandar Nanevski The IMDEA Software Institute
Michael Norrish National ICT Australia
Nate Nystrom University of Lugano, Switzerland
Joel Ouaknine University of Kent, UK
Scott Owens University of Cambridge, UK
Jens Palsberg UCLA, USA
Simon Peyton-Jones Microsoft Research, Cambridge, UK
Xavier Rival INRIA, France
Sukyoung Ryu KAIST, South Korea
Zhong Shao Yale University, USA
Yannis Smaragdakis University of Athens, Greece
Geoff Smith Florida International University, USA
Eran Yahav Technion, Israel

Additional Reviewers

Ahmed, Amal
Andrade, Diego
Balabonski, Thibaut
Berdine, Josh
Botincan, Matko
Boyland, John
Braud, Laurent
Cachera, David

Carbone, Marco
Carbonell, Enric
Cerny, Pavol
Chang, Bor-Yuh Evan
Chin, Wei-Ngan
Chitil, Olaf
Costanzo, David
Dal Lago, Ugo

XIV Organization

Demange, Delphine
Denielou, Pierre-Malo
Dezani, Mariangiola
Dijkstra, Atze
Dimoulas, Christos
Dodds, Mike
Drachsler, Dana
Drossopoulou, Sophia
Dunfield, Joshua
Effinger-Dean, Laura
Escardó, Mart́ın
Felleien, Matthias
Felleisen, Matthias
Feng, Xinyu
Ferrara, Pietro
Ferrer Fioriti, Luis MarÃa
Filiot, Emmanuel
Filliatre, Jean-Christophe
Fu, Ming
Galmiche, Didier
Garg, Deepak
Gawlitza, Thomas Martin
Genaim, Samir
Gesbert, Nils
Giachino, Elena
Gibbons, Jeremy
Giunti, Marco
Given-Wilson, Thomas
Gorbovitski, Michael
Goriac, Eugen-Ioan
Gorla, Daniele
Gotsman, Alexey
Gray, Kathryn
Gueta, Guy
Habermehl, Peter
Hartmanns, Arnd
Hoffmann, Jan
Howe, Jacob
Hur, Chung-Kil
Igarashi, Atsushi
Jacobs, Bart
Janssens and Verdoolaege,

Gerda and Sven
Jobin, Arnaud
Jérôme, Feret

Kennedy, Andrew
Kolanski, Rafal
Koutavas, Vasileios
Krishnaswami, Neelakantan
Krivine, Jean
Lanese, Ivan
Levy, Paul Blain
Liang, Hongjin
Lin, Bo
Lindley, Sam
Lins, Rafael
Lippmeier, Ben
Liu, Yang
Lluch Lafuente, Alberto
Loreti, Michele
Lux, Wolfgang
Maffeis, Sergio
Mandel, Louis
Maneth, Sebastian
Marmar, Michael
Martignon, Fabio
Mauborgne, Laurent
Mazza, Damiano
Merro, Massimo
Meshman, Yuri
Meyer, Roland
Miculan, Marino
Neis, Georg
Niehren, Joachim
Noble, James
Okasaki, Chris
Padovani, Luca
Park, Sungwoo
Partush, Nimrod
Petri, Gustavo
Philippou, Anna
Pitts, Andrew
Potop Butucaru, Dumitru
Pottier, François
Pérez, Jorge A.
Qiu, Xiaokang
Rajan, Kaushik
Ramalingam, Ganesan
Rayside, Derek
Remy, Didier

Organization XV

Rinetzky, Noam
Rosu, Grigore
Rothamel, Tom
Sacerdoti Coen, Claudio
Sack, Joshua
Schmitt, Alan
Seidl, Helmut
Sergey, Ilya
Sewell, Thomas
Shan, Chung-Chieh
Shoham, Sharon
Simmons, Robert
Slepak, Justin
Smith, Gareth
Song, Lei
Sotin, Pascal

Spieler, David
Spiwack, Arnaud
Stampoulis, Antonis
Staton, Sam
Strichman, Ofer
Strub, Pierre-Yves
Struth, Georg
Suenaga, Kohei
Svendsen, Kasper
Talpin, Jean-Pierre
Thiemann, Peter

Tiezzi, Francesco
Tiu, Alwen
Tobin-Hochstadt, Sam
Toninho, Bernardo
Toronto, Neil
Toubhans, Antoine
Tov, Jesse
Tozawa, Akihiko
Turon, Aaron
Turrini, Andrea
Tzevelekos, Nikos
Ulidowski, Irek
Uustalu, Tarmo
Vafeiadis, Viktor
Van Cutsem, Tom
Vaswani, Kapil
Versari, Cristian
Voigt, Janina
Vytiniotis, Dimitrios
Wachter, Björn
Wadler, Philip
Weirich, Stephanie
Weng, Shu-Chun
Worrell, James
Zavattaro, Gianluigi
Zeilberger, Noam
Zhang, Lijun

Table of Contents

Invited Talk

Distributed Electronic Rights in JavaScript . 1
Mark S. Miller, Tom Van Cutsem, and Bill Tulloh

Session I: Programming Techniques

The Compiler Forest . 21
Mihai Budiu, Joel Galenson, and Gordon D. Plotkin

Pretty-Big-Step Semantics . 41
Arthur Charguéraud

Language Constructs for Non-Well-Founded Computation 61
Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva

Session II: Programming Tools

Laziness by Need . 81
Stephen Chang

FliPpr: A Prettier Invertible Printing System . 101
Kazutaka Matsuda and Meng Wang

Slicing-Based Trace Analysis of Rewriting Logic Specifications with
iJulienne . 121

Maŕıa Alpuente, Demis Ballis, Francisco Frechina, and Julia Sapiña

Why3 — Where Programs Meet Provers . 125
Jean-Christophe Filliâtre and Andrei Paskevich

Session III: Separation Logic

Compositional Invariant Checking for Overlaid and Nested Linked
Lists . 129

Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

A Discipline for Program Verification Based on Backpointers and Its
Use in Observational Disjointness . 149

Ioannis T. Kassios and Eleftherios Kritikos

Modular Reasoning about Separation of Concurrent Data Structures . . . 169
Kasper Svendsen, Lars Birkedal, and Matthew Parkinson

XVIII Table of Contents

Ribbon Proofs for Separation Logic . 189
John Wickerson, Mike Dodds, and Matthew Parkinson

Session IV: Gradual Typing

Abstract Refinement Types . 209
Niki Vazou, Patrick M. Rondon, and Ranjit Jhala

Constraining Delimited Control with Contracts . 229
Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt

Session V: Shared-Memory Concurrency and
Verification

Verifying Concurrent Memory Reclamation Algorithms with Grace 249
Alexey Gotsman, Noam Rinetzky, and Hongseok Yang

Interleaving and Lock-Step Semantics for Analysis and Verification
of GPU Kernels . 270

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and
Shaz Qadeer

Verifying Concurrent Programs against Sequential Specifications 290
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

Session VI: Process Calculi

On Distributability in Process Calculi . 310
Kirstin Peters, Uwe Nestmann, and Ursula Goltz

Behavioral Polymorphism and Parametricity in Session-Based
Communication . 330

Lúıs Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Higher-Order Processes, Functions, and Sessions: A Monadic
Integration . 350

Bernardo Toninho, Lúıs Caires, and Frank Pfenning

Concurrent Flexible Reversibility . 370
Ivan Lanese, Michael Lienhardt, Claudio Antares Mezzina,
Alan Schmitt, and Jean-Bernard Stefani

Session VII: Taming Concurrency

Structural Lock Correlation with Ownership Types 391
Yi Lu, John Potter, and Jingling Xue

Table of Contents XIX

Taming Confusion for Modeling and Implementing Probabilistic
Concurrent Systems . 411

Joost-Peter Katoen and Doron Peled

Session VIII: Model Checking and Verification

Model-Checking Higher-Order Programs with Recursive Types 431
Naoki Kobayashi and Atsushi Igarashi

Counterexample-Guided Precondition Inference . 451
Mohamed Nassim Seghir and Daniel Kroening

Information Reuse for Multi-goal Reachability Analyses 472
Dirk Beyer, Andreas Holzer, Michael Tautschnig, and Helmut Veith

Session IX: Weak-Memory Concurrency and
Verification

Quarantining Weakness: Compositional Reasoning under Relaxed
Memory Models (Extended Abstract) . 492

Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely

Software Verification for Weak Memory via Program Transformation . . . 512
Jade Alglave, Daniel Kroening, Vincent Nimal, and
Michael Tautschnig

Checking and Enforcing Robustness against TSO . 533
Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer

Session X: Types, Inference, and Analysis

GADTs Meet Subtyping . 554
Gabriel Scherer and Didier Rémy

A Data Driven Approach for Algebraic Loop Invariants 574
Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken,
Percy Liang, and Aditya V. Nori

Automatic Type Inference for Amortised Heap-Space Analysis 593
Martin Hofmann and Dulma Rodriguez

Keyword Index . 615

Author Index . 619

Distributed Electronic Rights in JavaScript

Mark S. Miller1, Tom Van Cutsem2, and Bill Tulloh

1 Google, Inc.
2 Vrije Universiteit Brussel

Abstract. Contracts enable mutually suspicious parties to cooperate safely
through the exchange of rights. Smart contracts are programs whose behavior
enforces the terms of the contract. This paper shows how such contracts can be
specified elegantly and executed safely, given an appropriate distributed, secure,
persistent, and ubiquitous computational fabric. JavaScript provides the ubiquity
but must be significantly extended to deal with the other aspects. The first part
of this paper is a progress report on our efforts to turn JavaScript into this fabric.
To demonstrate the suitability of this design, we describe an escrow exchange
contract implemented in 42 lines of JavaScript code.

Keywords: security, distributed objects, object-capabilities, smart contracts.

1 Smart Contracts for the Rest of Us

The fabric of the global economy is held together by contracts. A contract is an agreed
framework for the rearrangement of rights between mutually suspicious parties. But
existing contracts are ambiguous, jurisdictions-specific, and written, interpreted, and
adjudicated only by expensive experts. Smart contracts are contract-like arrangements
expressed in program code, where the behavior of the program enforces the terms of
the “contract”[1]. Though not a substitute for legal contracts, they can provide some of
the benefits of contracts for fine-grain, jurisdiction-free, and automated arrangements
for which legal contracts are impractical.

To realize this potential, smart contracts need a distributed, secure, persistent, and
ubiquitous computational fabric. To avoid merely substituting one set of expensive ex-
perts for another, non-experts should be able to write smart contracts understandable
by other non-experts. We1 are working towards turning JavaScript into such a fabric.
JavaScript is already understood and used by many non-expert programmers. We call
our target JavaScript platform Dr. SES for Distributed Resilient Secure EcmaScript.2

Dr. SES is not specifically tied to electronic rights (erights) or smart contracts per
se. Its focus is to make distributed secure programming in JavaScript as effortless as
possible. But much of the design of Dr. SES and its predecessors [2,3,4] was shaped
by examining what we need to express smart contracts simply. Taking a rights-based
approach to local and distributed computing, we believe, has led us to building a better
general purpose platform as well as one naturally suited for expressing new kinds of
erights and contracts.

1 Including many collaborators over many years. See the acknowledgements.
2 The official standards name for JavaScript is “ECMAScript”.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M.S. Miller, T. Van Cutsem, and B. Tulloh

The first half of this paper, section 2, explains the design of Dr. SES and our progress
building it. After section 2.2, the rest can be skipped on a first read. Section 3 explains
how rights help organize complexity in society in a decentralized manner, addressing
many of the problems we face building distributed systems. Section 4 examines an im-
plementation of “money”. Section 5 examines an escrow exchange contract. Section 6
examines a generic contract host, able to host this contract and others. Together, they
demonstrate the simplicity and expressiveness of Dr. SES.

2 Dr. SES: Distributed Resilient Secure EcmaScript

Dr. SES is a platform for distributed, resilient, and secure computing, layered on
JavaScript. How do these ingredients support erights and contracts?

The participants in a contract are typically represented by mutually suspicious ma-
chines communicating over open networks. JavaScript is not a distributed programming
language. In the browser, a large number of APIs are available to scripts to communicate
with servers and other frames, but these APIs do not operate at the level of individual
objects. Dr. SES builds on the Q library3 to extend the JavaScript language with a hand-
ful of features to support distributed programming at the level of objects and messages.

In an architecture that aims to express erights or contracts, security must play a key
role. Dr. SES uses the Q library to support distributed cryptographic capabilities, and
builds on the SES library to support local object-capabilities. The latter allows Dr. SES
programs to safely execute mobile code from untrusted parties. This is especially rel-
evant in the context of JavaScript, where mobile code is routinely sent from servers to
clients. In Section 6, we will show an example that depends on the ability to safely
execute third-party code on servers.

Finally, the resilience aspect of Dr. SES deals with the unavoidable issues of failure
handling that come up in distributed systems. Server-side Dr. SES programs periodi-
cally checkpoint their state, so that in the event of a failure, the program can always
recover from a previously consistent state. Such Dr. SES programs can survive failures
without effort on the part of the programmer. Dr. SES builds on the NodeKen project,
which is layering the Node.js server-side JavaScript platform onto the Ken system [6]
for distributed orthogonal persistence—resilient against many failures.

2.1 Just Enough JavaScript

JavaScript is a complex language, but this paper depends only on a small subset
with two core constructs, functions and records. As of this writing, the standard and
ubiquitous version of JavaScript is ECMAScript 5 (ES5). For the sake of brevity, this
paper borrows one syntactic convenience proposed for ES6, arrow functions (“=>”),
and one proposed for ES7, the eventual-send operator (“!”). Expanding away
these conveniences, all the code here is working ES5 code, and is available at
code.google.com/p/es-lab/source/browse/trunk/src/ses/#ses
and its contract subdirectory.

3 Once the es-lab.googlecode.com/svn/trunk/src/ses/makeQ.js, [5], and
https://github.com/kriskowal/q implementations of Q are reconciled.

http://code.google.com/p/es-lab/source/browse/trunk/src/ses/#ses
http://es-lab.googlecode.com/svn/trunk/src/ses/makeQ.js
https://github.com/kriskowal/q

Distributed Electronic Rights in JavaScript 3

Arrow functions. The following four lines all define a one parameter function which
returns double its parameter. All bind a local variable named “twice” to this function.
This paper uses only the arrow function syntax of the last three lines.

var twice = function(n) { return n+n; }; // old function expr
var twice = (n) => { return n+n; }; // ES6 arrow function
var twice = (n) => n+n; // non−‘‘{’’ expr implicitly returned
var twice = n => n+n; // parens optional if one param

Records. The record syntax {x: 3, y: 4} is an expression that evaluates to a record
with two named properties initialized to the values shown. Records and functions com-
pose together naturally to give objects:

var makePoint = (x, y) => {
return {
getX: () => x,
getY: () => y,
add: other => makePoint(x + other.getX(), y + other.getY())

};
};

var pt = makePoint(3, 5).add(makePoint(2, 7));

A record of functions hiding variables serves as an object of methods (getX, getY,
add) hiding instance variables (x, y). The makePoint function serves as a class-
like factory for making new point instances.

2.2 Basic Concepts of Dr. SES

Dr. SES extends this object model across time and space (persistence and distribution),
while relieving programmers of many of the typical worries associated with building
secure distributed resilient systems. The non-expert programmer can begin with the
following oversimplified understanding of Dr. SES:

SES. Don’t worry about script injection. Mobile code can’t do anything it isn’t autho-
rized to do. Functions and objects are encapsulated. Objects can invoke objects they
have a reference to, but cannot tamper with those objects.

Q. Don’t worry about memory races or deadlocks, they can’t happen. Objects can be
local or remote. The familiar infix dot (“.”) in pt.getX() accesses the pt object
immediately. Q adds the bang “!” to access an object eventually. Anywhere you
can write a dot, you can use “!” as in pt ! getX(). Eventual operations return
promises for what the answer will be. If the object is remote or a promise, you can
only use “!” on it.

NodeKen. Don’t worry about network partitions or machine crashes. Once the ma-
chine comes back up, everything keeps going, so a crash and restart is just a very
long (possibly infinite) pause. Likewise, a partitioned network is just a slow net-
work waiting to heal. Once things come back up, every message ever sent will be
delivered in order exactly once.

4 M.S. Miller, T. Van Cutsem, and B. Tulloh

The above should be adequate to understand the functionality of the smart contract
code when things go well. Of course, much of the point of erights and smart contracts
is to limit the damage when things go badly. Understanding these risks does require a
careful reading of the following sections.

2.3 SES: Securing JavaScript

In a memory-safe object language with unforgeable object references (protected point-
ers) and encapsulated objects, an object reference grants the right to invoke the public
interface of the object it designates. A message sent on a reference both exercises this
right and grants to the receiving object the right to invoke the passed arguments.

In an object-capability (ocap) language [7], an object can cause effects on the world
outside itself only by using the references it holds. Some objects are transitively im-
mutable or powerless [8], while others might cause effects. An object must not be given
any powerful references by default; any references it has implicit access to, such as
language-provided global variables, must be powerless. Under these rules, granted ref-
erences are the sole representation of permission.

Secure EcmaScript (SES) is an ocap subset of ES5. SES is lexically scoped, its
functions are encapsulated, and only the global variables on its whitelist (including all
globals defined by ES5) are accessible. Those globals are unassignable, and all objects
transitively reachable from them are immutable, rendering all implicit access powerless.

SES supports defensive consistency [7]. An object is defensively consistent when it
can defend its own invariants and provide correct service to its well behaved clients,
despite arbitrary or malicious misbehavior by its other clients. SES has a formal seman-
tics supporting automated verification of some security properties of SES code [9]. The
code in this paper uses the following functions from the SES library:

def(obj) def ines a def ensible object. To support defensive consistency, the def
function makes the properties of its argument read-only, likewise for all objects
transitively reachable from there by reading properties. As a result, this subgraph
of objects is effectively tamper proof. A tamper-proof record of encapsulated func-
tions hiding lexical variables is a defensible object. In SES, if makePoint called
def on the points it returns by saying “return def({...})”, it would make
defensively consistent points.

confine(exprSrc, endowments) enables safe mobile code. The confine
function takes the source code string for a SES expression and an endowments
record. It evaluates the expression in a new global environment consisting of the
SES whitelisted (powerless) global variables and the properties of this endowments
record. For example, confine(‘x + y’, {x: 3, y: 6}) returns 9.

Nat(allegedNumber) tests whether allegedNumber is indeed a primitive
number, and whether it is a non-negative integer (a natural number) within the
contiguous range of exactly representable integers in JavaScript. If so, it returns
allegedNumber. Otherwise it throws an error.

var m = WeakMap() assigns to m a new empty weak map. WeakMaps are an
ES6 extension (emulated by SES on ES5 browsers) supporting rights amplifi-
cation [10]. Ignoring space usage, m is simply an object-identity-keyed table.

Distributed Electronic Rights in JavaScript 5

m.set(obj,val) associates obj’s identity as key with val as value, so
m.get(obj) returns val and m.delete(obj) removes this entry. These
methods use only obj’s identity without interacting with obj.

2.4 Q: Distributed JavaScript Objects

To realize erights, we need a distributed, secure, and persistent computational fabric.
We have just seen how SES can secure a local JavaScript environment. Here, we focus
on how to link up multiple secured JavaScript environments into a distributed system.

Communicating Event-Loop Concurrency. JavaScript’s de-facto concurrency model,
on both the browser and the server, is “shared nothing” communicating event loops.
In the browser, every frame of a web page has its own event loop, which is used both
for updating the UI (i.e. rendering HTML) and for executing scripts. Node.js, the most
widespread server-side JavaScript environment, is based on a similar model, although
on the server the issue is asynchronous networking and file I/O rather than UI.

In its most general form, an event loop consists of an event queue and a set of event
handlers. The event loop processes events one by one from its queue by dispatching to
the appropriate event handler. In JavaScript, event handlers are usually functions regis-
tered as callbacks on certain events (e.g. button clicks or incoming XHR responses).

The processing of a single event is called a turn of the event loop. Processing an
event usually entails calling a callback function, which then runs to completion without
interruption. Thus, turns are the smallest unit of interleaving.

A system of communicating event loops consists of multiple event loops (in the
same or distributed address spaces) that communicate with each other solely by means
of asynchronous message passing. The Web Workers API enables such communication
among multiple isolated event loops within the same browser. A JavaScript webpage
communicating with a Node.js server using asynchronous XHR requests is an example
of two distributed communicating event loops.

Communicating event loop concurrency makes it manageable for objects to main-
tain their invariants in the face of concurrent (interleaved) requests made by multiple
clients [11]. While JavaScript environments already support event loop concurrency, the
JavaScript language itself has no support for concurrent or distributed programming. Q
thus extends JavaScript with a handful of features that enable programmers to more
directly express distributed interactions between individual objects.

Promises. We introduce a new type of object, a promise, to represent both the outcome
of asynchronous operations as well as remote references [12]. A normal JavaScript di-
rect reference may only designate an object within the same event loop. Only promises
designate objects in other event loops. A promise may be in one of several states:

Pending. When it is not yet determined what object the promise designates,
Resolved. When it is either fulfilled or rejected,

Fulfilled. When it is resolved to successfully designate some object,
Rejected. When it will never designate an object, for an alleged reason represented

by an associated error.

6 M.S. Miller, T. Van Cutsem, and B. Tulloh

var tP = Q(target) assigns to tP a promise for target. If target is already
a promise, that same promise is assigned. Otherwise, tP is a fulfilled promise des-
ignating target.

Q.promise((resolve,reject) => (...)) returns a fresh promise
which is initially pending. It immediately calls the argument function with two
functions, conventionally named resolve and reject, that can be used to
either resolve or reject this new promise explicitly.

var resultP = tP.then((v) => result1, (e) => result2)
provides eventual access to tP’s resolution. The .thenmethod takes two callback
arguments, a success callback and an optional failure callback. It registers
these callbacks to be called back in a later turn after tP is resolved. If tP was
fulfilled with a value v, then success(v) is called. If tP was rejected with
an error e, then failure(e) is called. resultP is a promise for the invoked
callback’s result value.

If the callback invoked by .then throws an error, that error is used to reject resultP.
This propagation of errors along chains of dependent promises is called rejected
promise contagion [11], and it is the asynchronous analogue of propagating exceptions
up the call stack. If the failure callback is missing, rejecting tP will eventually reject
resultP with the same reason. If pointP is a promise for a local point object, we
may construct a derived point promise as follows:

var newP = pointP.then((point) => point.add(makePoint(1,2)));

Just like it is useful to compose individual functions into a composite function, it is often
useful to compose individual promises into a single promise whose outcome depends
on the individual promises. The Q library provides some useful combinator4 functions
we use later in the escrow exchange contract:

Q.race(answerPs) takes an array of promises, answerPs, and returns a promise
for the resolution of whichever promise we notice has resolved first. For example,
Q.race([xP,yP]).then(v => print(v)) will cause either the value of
xP or yP to be printed, whichever resolves first. If neither resolves, then neither
does the promise returned by Q.race. If the first promise to resolve is rejected,
the promise returned by Q.race is rejected with the same reason.

Q.all(answerPs) takes an array of promises and returns a promise for an array of
their fulfilled values. We often need to collect several promised answers, in order to
react either when all the answers are ready or when any of them become rejected.
Given var sumP = Q.all([xP,yP]).then(([x,y]) => x+y), if
both xP and yP are fulfilled with numbers, sumP is fulfilled with their sum.
If neither resolves, neither does sumP. If either xP or yP is rejected, sumP is
rejected with the same reason.

Q.join(xP,yP) takes two promises and returns a promise for the one object they
both designate. Q.join is our eventual equality operation. Any messages sent to
the joined promise are only delivered if xP and yP eventually come to designate

4 These are easily built from the above primitives. Their implementation can be found at
wiki.ecmascript.org/doku.php?id=strawman:concurrency.

http://wiki.ecmascript.org/doku.php?id=strawman:concurrency

Distributed Electronic Rights in JavaScript 7

the same target. In this case, all messages are eventually delivered to that target and
the joined promise itself eventually becomes fulfilled to designate that target. Oth-
erwise, all these messages are discarded with the usual rejected promise contagion.

Immediate call and eventual send. Promises may designate both local objects, and
remote objects belonging to another event loop. If the promise comes to designate a
local object (or a primitive value), that value can be accessed via the .then method.

However, if the promise comes to designate a remote object, it is not possible to re-
solve the promise to a local reference. Instead, one must interact with the remote object
via the promise. Any such interaction must be asynchronous, to ensure that interaction
between the event loops as a whole remains asynchronous.

JavaScript provides many operators to interact with an object. Here, we will fo-
cus on only three: method calls, function calls, and reading the value of a property.
JavaScript has the familiar dot operator to express local, immediate method calls, such
as point.getX(). We introduce a corresponding infix “!” operator (named the even-
tually) operator, which designates asynchronous, possibly remote interactions.

The ! operator can be used anywhere the dot operator can be used. If pointP is
a promise for a point, then pointP ! getX() denotes an eventual send, which
enqueues a request to call the getX() method in the event loop of point. The syntax
fP ! (x,y), where fP is a promise designating a function f, enqueues a request
to call f(x,y) in the event loop of f. The ! operator is actually syntactic sugar for
calling a method on the promise object itself:

Immediate syntax Eventual syntax Expansion
p.m(x,y) p ! m(x,y) Q(p).send("m",x,y)
p(x,y) p ! (x,y) Q(p).fcall(x,y)
p.m p ! m Q(p).get("m")

Remote object references. A local reference to an object is guaranteed to be unique
and unforgeable, and only grants access to the public interface of the designated object.
When a promise comes to designate a remote object, the promise effectively becomes
a remote object reference. A remote reference only carries eventual message sends, not
immediate method calls. Whereas local references are unforgeable, for remote refer-
ences over open networks, we use unguessability to approximate unforgeability.

Primitive values such as strings and numbers are pass-by-copy—when passed as ar-
guments or returned as results in remote messages, their contents are serialized and
unserialized. JavaScript arrays default to pass-by-copy. All other objects and functions
default to pass-by-reference—when passed as an argument or returned result, informa-
tion needed to access them is serialized, which is unserialized into a remote reference
for sending messages back to this object itself.

Over the RESTful transport [5], we serialize pass-by-reference objects using
unguessable HTTPS URLs (also called web-keys [13]). Such a reference may look
like https://www.example.com/app/#mhbqcmmva5ja3, where the frag-
ment (everything after the #) is a random character string that uniquely identifies an
object on the example.com server. We use unguessable secrets for remote object ref-
erences because of a key similarity between secrets and object references: If you do

8 M.S. Miller, T. Van Cutsem, and B. Tulloh

not know an unguessable secret, you can only come to know it if somebody else who
knows the secret chooses to share it with you.

Q.passByCopy(record) will override the pass-by-reference default, marking
record as pass-by-copy. The record will then be shallow-copied to the destina-
tion, making a record with the same property names. The values of these properties
get serialized according to these same argument passing rules.

2.5 NodeKen: Distributed Orthogonal Persistence

Rights, to be useful, must persist over time. Since object-references are our represen-
tation of rights, object references and the objects they designate must persist as well.
We have already covered the distributed and secure aspects of Dr. SES. Here, we cover
resilience against failures.

To introduce resilience, Dr. SES builds upon the Ken platform [6]. Ken applications
are distributed communicating event loops, which aligns well with JavaScript’s de-facto
execution model. The event loop of a Ken process invokes application-level code to
process incoming messages (one turn, i.e., one event loop iteration, per message). In
addition, Ken provides:

Distributed Consistent Snapshots. Ken provides a persistent heap for storing appli-
cation data. All objects stored in this heap are persistent. Ken ensures that the
snapshots of two or more communicating processes cannot grow inconsistent, by
recording messages in flight as part of a process’ snapshot.

Reliable Messaging. Under the assumption that all Ken processes eventually recover,
all messages transmitted between Ken processes are delivered exactly once, in
FIFO order. A permanently crashed Ken process is indistinguishable from a very
slow process. To deal with such situations, applications may still want to do their
own failure handling using time-outs.

A set of Ken processes can tolerate arbitrary failures in such a way that when a process
is restarted after a crash, it is always restored to a previously consistent state. To the
crashed process itself, it is as if the crash had never happened. To any of the process’s
communication partners, the process just seemed slow to respond. A crash will never
cause messages to be dropped or delivered twice.

To achieve orthogonal persistence of JavaScript programs, the Ken platform must be
integrated with the JavaScript runtime. NodeKen is our attempt at layering the Node.js
runtime on top of Ken.5 NodeKen can then be used as a stand-alone JavaScript environ-
ment to run persistent server-side Dr. SES programs. It is not our aim to embed Ken into
the browser. This leads to two types of Dr. SES environments: Dr. SES in the browser
runs in an ephemeral environment that ceases to exist when the user navigates to a dif-
ferent page, or closes the page. Objects and object references in such environments are
not persistent.

5 At the time of writing, NodeKen does not yet exist. We are actively working on integrating
Ken with the v8 JavaScript virtual machine, upon which Node.js is based. See
https://github.com/supergillis/v8-ken.

https://github.com/supergillis/v8-ken

Distributed Electronic Rights in JavaScript 9

By contrast, Dr. SES on NodeKen runs in a persistent environment. JavaScript ob-
jects born in such an environment are persistent by default, as are object references
spanning two persistent Dr. SES environments. Eventual message sends made using the
“!” operator over persistent references are reliable.

Following the philosophy of Waterken [4], the persistent Java web server where the
Ken ideas originated, we expect it to be common for ephemeral and persistent Dr. SES
environments to communicate with each other, The ephemeral environment (inside the
browser) primarily deals with UI and the persistent environment stores durable applica-
tion state, a distributed form of the Model-View-Controller pattern. In the remainder of
this paper, we assume that all Dr. SES code runs in persistent Dr. SES environments.

Implementation. Ken achieves distributed consistent snapshots as follows:

• During a turn, accumulate all outgoing messages in an outgoing message queue.
These messages are not yet released to the network.

• At the end of each turn, make an (incremental) checkpoint of the persistent heap
and of all outgoing messages.

• After the end-of-turn checkpoint is made, release any new outgoing messages to
the network and acknowledge the incoming message processed by this turn.

• Number outgoing messages with a sequence number (for duplicate detection and
message ordering).

• Periodically retry sending unacknowledged outgoing messages (with exponential
back-off) until an acknowledgement is received.

• Check incoming messages for duplicates. When a duplicate message is detected, it
is dropped (not processed) and immediately acknowledged.

The key point is that outgoing messages are released, and incoming messages are ac-
knowledged, only after the message has been fully processed by the receiver and the
heap state has been checkpointed. The snapshot of a Ken process consists of both the
heap and the outgoing message queue. It does not include the runtime stack (which is
always empty between turns) nor the incoming message queue.

Checkpointing a program’s entire state after every event loop turn may be considered
costly. Ken takes care to only store those parts of the heap to disk that are updated
during a turn. Further, the availability of cheap low-latency non-volatile memory (such
as solid-state drives) has driven down the cost of writing state to “disk” to the point that
making micro-snapshots after every turn becomes practical.

Ken and security. The Ken protocol guarantees distributed snapshots even among mu-
tually suspicious machines. An adversarial process cannot corrupt the distributed snap-
shots of benign processes.

The implementation of Ken underlying NodeKen currently does not use an en-
crypted communications channel to deliver messages between Ken processes. Hence,
the authenticity, integrity or confidentiality of incoming messages cannot be guaran-
teed. In NodeKen, our plan is to actively secure the communications channels between
NodeKen processes using a cryptographic library.6

6 An outline of such a design, due to Brian Warner, is available online:
eros-os.org/pipermail/cap-talk/2012-September/015386.html

http://eros-os.org/pipermail/cap-talk/2012-September/015386.html

10 M.S. Miller, T. Van Cutsem, and B. Tulloh

Now that we’ve seen the elements of Dr. SES, we can proceed to explain how to use
it to build erights and smart contracts.

3 Toward Distributed Electronic Rights

The elements of Dr. SES demonstrate how JavaScript can be transformed into a dis-
tributed, secure, and resilient system. At its core is the recognition that object refer-
ences represent a right to perform a set of operations on a specific, designated resource.
This emphasis on distributed rights has its counterpart in society: a system of rights is
society’s answer to creating distributed, secure, and resilient commercial systems.

Global commerce rests on tradeable rights. This system is: “the product of thousands
of years of evolution. It is highly complex and embraces a multitude of actions, objects,
and individuals. ... With minor exceptions, rights to take almost all conceivable actions
with virtually all physical objects are fixed on identifiable individuals or firms at every
instant of time. The books are kept up to date despite the burden imposed by dynamic
forces, such as births and deaths, dissolutions, and new technology.” [14]

Rights help people coordinate plans and resolve conflicts over use of resources.
Rights partition the space of actions to avoid interference between separately formulated
plans, thus enabling cooperative relationships despite mutual suspicion and competing
goals [15]. This rights-based perspective can shed light on the problem of securing dis-
tributed computational systems.

All computational systems must address the problem of open access. Global mutable
state creates a tragedy of the commons: since anyone can access and change it, no one
can safely rely on it. Use conflicts arise from both intentional (malicious) and unin-
tentional (buggy) actions. Preventing use conflicts over shared state is one of the main
challenges designers face in building computational systems.

Historically, two broad strategies for avoiding the tragedy of the commons have
emerged: a governance strategy and a property rights strategy [16]. The governance
approach solves the open access problem by restricting access to members and regu-
lating each member’s use of the shared resource. The property rights approach divides
ownership of the resource among the individuals and creates abstract rules that govern
the exchange of rights between owners. These approaches have their analogues in com-
putational systems: ocap systems pursue a property rights strategy, while access control
lists implement a governance strategy.

Access control lists solve the open access problem by denying unauthorized users
access, and specifying access rights for authorized users. Great effort is put into perime-
ter security (firewalls, antivirus, intrusion detection, and the like) to keep unauthorized
users out, while detailed access control lists regulate use by authorized users.

Governance regimes have proved successful in managing shared resources in many
situations [17]. However, they tend to break down under increasing complexity. As the
number of users and types of use increases, the ability of governance systems to limit
external access and manage internal use breaks down. Perimeter security can no longer
cope with the pressure for increased access, and access control lists cannot keep up with
dynamic requests for changes in access rights.

Distributed Electronic Rights in JavaScript 11

The property rights strategy deals with increasing complexity by implementing a
decentralized system of individual rights. Rights are used to partition the commons into
separate domains under the control of specific agents who can decide its use, as long
as the use is consistent with the rights of others. Instead of excluding non-members at
the perimeter, the property strategy brings all agents under a common set of abstract
rules that determine how rights are initially acquired, transferred, and protected [18].
Individual rights define the boundaries within which agents can act free of interference
from others. Contracts enable the exchange of rights across these protected domains.

The ocap approach can be seen as analogous to an individual rights approach to
coordinating action in society. The local unforgeable object reference and the remote
unguessable reference represent one kind of eright—the right to invoke the public in-
terface of the object it designates. In ocap systems, references bundle authority with
designation [19]. Like property rights, they are possessory rights: possession of the ref-
erence is all that is required for its use, its use is at the discretion of the possessing
entity, and the entity holding the reference is free to transfer it to others [20].

The private law system of property, contract, and tort brings resources into a system
of rights. Property law determines the initial acquisition of rights; contract law governs
the transfer of rights; and tort law protects rights from interference [21]. Ocap systems
follow a similar logic: the rules of object creation make it easy to create objects with
only the rights they need, the message passing rules govern the transfer of rights, and
encapsulation protects rights from interference [7].

While object references represent a kind of eright, they differ in several respects from
more familiar rights in society. For example, object references are typically shared.
When Alice gives Bob a reference to an object, she is transferring a copy of the refer-
ence thereby sharing access to the object. In society, transfers of rights usually take the
form of a transfer of exclusive access due to the rivalrous nature of physical objects. I
give up my access to my car when I transfer title to you. Exclusive rights is the default
in the physical world; complex legal frameworks are needed to enable sharing (partner-
ships, corporations, easements, and so forth). Computational systems face the opposite
tradeoff: sharing is easy, but exclusivity is hard.

In the next sections, we will show how, by building on object references as erights,
we can create new kinds of erights at a new level of abstraction. We look first at how
money can be implemented as a smart contract. Money differs from other forms of
property in several ways [22]. Here, we identify four dimensions in which money differs
from object references as rights. Object references are shareable, specific, opaque, and
exercisable, whereas money is exclusive, fungible, measurable, and symbolic.

By contrast with object references that are shareable, money needs to be exclusive
to serve as medium of exchange. Bob does not consider himself paid by Alice until
he knows that he has exclusive access to the funds. Object references are also specific;
they designate a particular object. Money, on the other hand, is fungible. You care about
having a certain quantity of a particular currency, not having a specific piece of currency.
One dollar is as good as another.

Objects are opaque. The clients of an object can invoke it but don’t necessarily
know how it will react—that information is private to the object. By contrast, money is

12 M.S. Miller, T. Van Cutsem, and B. Tulloh

measurable. Bob must be able to determine that he really has a certain quantity of a
particular currency. Finally, money, unlike object references, is never exercisable. The
right you have when you have an object reference is the right to do something: the right
to invoke the behavior of the object it designates. Money, however, has no direct use
value; its value is symbolic. It has value only in exchange.

Contracts manipulate rights. The participants in a contract each bring to it those
rights the contract will manipulate [23]. The logic of the contract together with the
decisions of the participants determines which derived rights they each walk away with.
The simplest example is a direct trade. Since half the rights exchanged in most trades
are money, we start with money.

4 Money as an Electronic Right

Figure 1 is our implementation of a money-like rights issuer, using only elements of
Dr. SES explained above. To explain how it works, it is best to start with how it is
used. Say Alice wishes to buy something from Bob for $10. The three parties involved
would be Alice, Bob, and a $ issuer, which we will informally call a bank. The starting
assumptions are that Alice and Bob do not trust each other, the bank does not trust either
Alice or Bob, and Alice and Bob trust the bank with their money but with nothing else.
In this scenario, Alice is willing to risk her $10 on the possibility of Bob’s non-delivery.
But Bob wants to be sure he’s been paid before he releases the good in exchange.

What do these relationships mean in terms of a configuration of persistent objects?
Say Alice owns (or is) a set of objects on machine A, Bob on machine B, and the bank
on machine C. In order for Alice to make a buy request of Bob, we assume one of
Alice’s objects already has a remote reference to one of Bob’s objects. Alice’s trust of
the bank with her money is represented by a remote reference to an object within the
bank representing Alice’s account at the bank. We refer to such objects as purses. The
one for Alice’s account is Alice’s main purse. And likewise for Bob. Where do these
initial account purses come from?

For each currency the bank wishes to manage, the bank calls makeMint() once
to get a mint function for making purses holding units of that currency. When Alice
opens an account with, say $100 in cash, the bank calls mint(100) on its $ mint, to
make Alice’s main purse. The bank then gives Alice a persistent remote reference to
this purse object within the bank.

For Alice to pay Bob, she sets up a payment purse, deposits $10 into it from her
main purse, and sends it to Bob in a buy request, together with a description of what
she wishes to buy.

var paymentP = myPurse ! makePurse();
var ackP = paymentP ! deposit(10, myPurse);
var goodP = ackP.then(_ => bobP ! buy(desc, paymentP));

On the diagram in Figure 1, each makeMint call creates a layer with its own (mint,
m) pair representing a distinct currency. Each mint call creates a nested layer with its

Distributed Electronic Rights in JavaScript 13

1 var makeMint = () => {
2 var m = WeakMap();
3 var makePurse = () => mint(0);

4 var mint = balance => {
5 var purse = def({
6 getBalance: () => balance,
7 makePurse: makePurse,
8 deposit: (amount, srcP) =>
9 Q(srcP).then(src => {

10 Nat(balance + amount);
11 m.get(src)(Nat(amount));
12 balance += amount;
13 })
14 });
15 var decr = amount => { balance = Nat(balance - amount); };
16 m.set(purse, decr);
17 return purse;
18 };
19 return mint;
20 };

Alice Bobbuy

makeMint

minmint
purse decr
purse decr
purse decr

balance

m

Fig. 1. The Mint Maker

own (purse, decr, balance) triple. On line 16 of the code, each purse to decr
mapping is also entered into the m table shared by all purses of the same currency. Al-
ice’s main purse is on the bottom purse layer. Bob’s is on the top layer. Alice’s payment
purse, being sent to Bob in the buy message, is in the middle layer.

Bob receives this request at the following buy method:

buy: (desc, paymentP) => {
// do whatever with desc , look up $10 price
return (myPurse ! deposit(10, paymentP)).then(_ => good);

}

Bob’s buy method handles a message from untrusted clients such as Alice, and thus it
does not know what object Alice actually provided as the payment argument. At this
point, the purse provided by Alice is specific—it is the specific object Alice designated,
but to Bob it also is opaque. In particular, Bob has no idea if his paymentP parameter
actually designates a purse, whether it is a purse at this bank, of this currency, and with
adequate funds. Even if he knew all these conditions were true at the moment, due to
the shareable nature of argument passing, Bob wouldn’t know the funds would still be
there by the time he deposits it. Alice may have retained a reference to it. He delegates
all these problems to the bank with the deposit request above.

If the bank’s deposit method acknowledges a successful deposit, by fulfilling the
promise for the result of the deposit, then Bob knows he has obtained exclusive access
to a fungible and measurable quantity of a given currency at a given bank. In this case,

14 M.S. Miller, T. Van Cutsem, and B. Tulloh

the success callback of the .then above gets called, returning the good, fulfilling
Alice’s pending goodP promise.

The interesting work starts on line 11, wheredeposit looks up the alleged payment
purse in the m table. If this is anything other than a purse of the same currency at the
same bank, this lookup will instead return undefined, causing the following function
call to throw an error, rejecting Bob’s promise for the result of the deposit, rejecting
Alice’s goodP. If this lookup succeeds, it finds the decr function for decrementing
that purse’s balance, which it calls with the amount to withdraw. If the payment has
insufficient funds, balance - amount would be negative and Nat would throw.

We have now arrived at the commit point. All the tests that might cause failure have
already passed, and no side effects have yet happened. Now we perform all side effects,
all of which will happen since no locally observable failure possibilities remain. The
assignment decrements the payment purse’s balance by amount, and decr returns.
Line 12 increments the balance of the purse being deposited into.

The success callback in the deposit method implicitly returns undefined, ful-
filling Bob’s promise for the result of the deposit request, triggering Bob to release
the good to Alice in exchange.

5 The Escrow Exchange Contract

In the mint maker scenario, Alice must risk her $10 on the possibility of Bob’s non-
delivery. We now introduce an escrow exchange contract that implements an all or
nothing trade. We explain the escrow exchange contract in terms of a scenario among
five players: Alice, Bob, a money issuer (running the code of Figure 1), a stock issuer
(also running the code of Figure 1 but with the units representing shares of some partic-
ular stock), and an escrow exchange agent (running the code of Figure 2). The diagram
at the top of Figure 3 shows the initial relationships, with the escrow exchange agent in
the role of contract host.

Alice and Bob again do not trust each other. They wish to trade $10 of Alice’s money
for 7 shares of Bob’s stock, but in this case, neither is willing to risk their assets on the
possibility of the other’s non-delivery. They both trust the same money issuer with their
money, the same stock issuer with their stock, and the same escrow exchange agent
with the rights to be traded. The money issuer, the stock issuer, and the escrow ex-
change agent each have no prior knowledge or trust in the others. Additionally, none of
these trust Alice or Bob. The rest of the scenario as presented below examines only the
consequences of Alice or Bob’s misbehavior and assumes the other three run the code
shown honestly. A full analysis of vulnerabilities should consider all combinations.

Since the situation is now symmetric, we explain the progression of events from
Alice’s perspective. Alice’s prior trust in each issuer is represented as before—Alice
holds a persistent reference to her main purse at each issuer. Alice’s prior trust in the
escrow exchange agent is represented as the ability to provide the first “a” argument in
the call to escrowExchange (Figure 2, line 12) for which Bob is able to provide the
second “b” argument.

Distributed Electronic Rights in JavaScript 15

phase 1

phase 1
All

phase 2

Race

phase 2 cancel

cancel failOnly

failOnly

1 var transfer = (decisionP, srcPurseP, dstPurseP, amount) => {
2 var makeEscrowPurseP = Q.join(srcPurseP ! makePurse,
3 dstPurseP ! makePurse);
4 var escrowPurseP = makeEscrowPurseP ! ();

5 Q(decisionP).then(// setup phase 2
6 _ => { dstPurseP ! deposit(amount, escrowPurseP); },
7 _ => { srcPurseP ! deposit(amount, escrowPurseP); });

8 return escrowPurseP ! deposit(amount, srcPurseP); // phase 1
9 };

10 var failOnly = cancellationP => Q(cancellationP).then(
11 cancellation => { throw cancellation; });

12 var escrowExchange = (a, b) => { // a from Alice , b from Bob
13 var decide;
14 var decisionP = Q.promise(resolve => { decide = resolve; });

15 decide(Q.race([Q.all([
16 transfer(decisionP, a.moneySrcP, b.moneyDstP, b.moneyNeeded),
17 transfer(decisionP, b.stockSrcP, a.stockDstP, a.stockNeeded)
18]),
19 failOnly(a.cancellationP),
20 failOnly(b.cancellationP)]));
21 return decisionP;
22 };

Fig. 2. The Escrow Exchange Contract

16 M.S. Miller, T. Van Cutsem, and B. Tulloh

Alice might create this argument as follows:

var cancel;
var a = Q.passByCopy({
moneySrcP: myMoneyPurse ! makePurse(),
stockDstP: myStockPurse ! makePurse(),
stockNeeded: 7,
cancellationP: Q.promise(r => { cancel = r; })

});
a.moneySrcP ! deposit(10, myMoneyPurse);

By a protocol whose details appear below, Alice sends this “a” object to the escrow
exchange agent, for it to use as the first argument in a call to escrowExchange,
which initiates this specific contract between Alice and Bob. The escrowExchange
function returns a promise for the outcome of the contract, which the escrow exchange
agent returns to Alice.

If this outcome promise becomes fulfilled, the exchange succeeded, she should ex-
pect her a.moneySrcP to be drained, and 7 shares of stock to be deposited into her
a.stockDstP promptly.7 If this promise becomes rejected, the exchange failed, and
she should expect her $10 to reappear in her a.moneySrcP promptly. In the mean-
time, if she gets impatient and would rather not continue waiting, she can call her
cancel function with her alleged reason for walking away. Once she does so, the
exchange will then either succeed or fail promptly.

On lines 13 and 14 of Figure 2 the escrowExchange contract makes a
decisionP promise whose fulfillment or rejection represents its decision about
whether the exchange must succeed or fail. It makes this decision by calling decide
with the outcome of a race between a Q.all and two calls to failOnly. Until a
player cancels the exchange, the Q.race can only be won by the Q.all, where the
exchange is proceeding.

The arguments to Q.all are the results of two calls to transfer. The first call to
transfer sets up an arrangement of objects whose purpose is to transfer money from
Alice to Bob. The second call’s purpose is to transfer stock from Bob to Alice. Each
call to transfer returns a promise whose fulfillment or rejection indicates whether it has
become confident that this one-way transfer of erights would succeed. If both transfers
become confident (before any cancellations win the race), then the overall decision is
to proceed. If either transfer indicates failure, by rejecting the promise it has returned,
then, via Q.all, decisionP becomes rejected.8

We do not feed the cancellation promises directly into the race, as Alice could then
fulfill the cancellation promise, causing the race to signal a decision to proceed with the
exchange, even though Alice’s money has not been escrowed, potentially giving Bob’s
stock to Alice for free. Instead, once the cancellation promise has been either fulfilled

7 By ”promptly” we mean, once the relevant machines are up, processes running, and reachable
to each other over the network.

8 This pattern implements two phase commit enhanced with the possibility of cancellation,
where the call to escrowExchange creates a transaction coordinator, and each of its calls
to transfer creates a participant.

Distributed Electronic Rights in JavaScript 17

or rejected, the promise returned by failOnly will only become rejected. Only the
Q.all can win the race with a success.

Since the two calls to transfer are symmetric, we examine only the first. The
first phase of the transfer, on line 8 of Figure 2, attempts to deposit Alice’s money into
an escrow purse mentioned only within this transfer. If this deposit succeeds, Alice’s
money has been escrowed, so the money portion of the exchange is now assured. If this
deposit fails, then the exchange as a whole should be cancelled. So transfer simply
returns the promise for the outcome of this first deposit.

The transfer function sets up the second phase on lines 5, 6, and 7. If the over-
all decision is that the exchange should succeed, the success callback deposits Alice’s
escrowed money into Bob’s account. Otherwise it refunds Alice’s money.

Only one mystery remains. How does the escrow agent obtain a fresh escrow purse
at this money issuer, in order to be confident that it has obtained exclusive access to the
money at stake? Since the escrow exchange agent has no prior knowledge or trust in
the money issuer, it cannot become confident that the issuer is honest or even that the
money it issues means anything. The question is meaningless. Instead, it only needs to
obtain a fresh escrow purse whose veracity is mutually acceptable to Alice and Bob.

If the escrow contract simply asks Alice’s purse for a new empty purse
(srcPurseP ! makePurse()), Alice could return a dishonest purse that acknowl-
edges deposit without transferring anything. Alice would then obtain Bob’s stock for
free. If it simply asks Bob’s purse, then Bob could steal Alice’s money during phase
1. Instead, it checks if their makePurse methods have the same object identity by
using Q.join on promises for these two methods. This is why, on lines 3 and 7 of
Figure 1, all purses of the same currency at the same bank share the same function as
their makePursemethod. If the Q.join of these two methods fails, then either Alice
was dishonest, Bob was dishonest, or they simply didn’t have prior agreement on the
same currency at the same money issuer.

6 The Contract Host

Once Alice and Bob agree on a contract, how do they arrange for it to be run in a
mutually trusted manner?

To engage in the escrow exchange contract, Alice and Bob had to agree on the is-
suers, which is unsurprising since they need to agree on the nature of rights exchanged
by the contract. And they had to agree on an escrow exchange agent to honestly run this
specific escrow exchange contract. For a contract as reusable as this, perhaps that is not
a problem. But if Alice and Bob negotiate a custom contract specialized to their needs,
they should not expect to find a mutually trusted third party specializing in running this
particular contract. Rather, it should be sufficient for them to agree on:

• The issuers of each of the rights at stake.
• The source code of the contract.
• Who is to play which side of the contract.
• A third party they mutually trust to run their agreed code, whatever it is, honestly.

18 M.S. Miller, T. Van Cutsem, and B. Tulloh

1 var makeContractHost = () => {
2 var m = WeakMap();

3 return def({
4 setup: contractSrc => {
5 contractSrc = ’’+contractSrc;
6 var tokens = [];
7 var argPs = [];
8 var resolve;
9 var resultP = Q.promise(r => { resolve = r; });

10 var contract = confine(contractSrc, {Q: Q});

11 var addParam = (i, token) => {
12 tokens[i] = token;
13 var resolveArg;
14 argPs[i] = Q.promise(r => { resolveArg = r; });
15 m.set(token, (allegedSrc, allegedI, arg) => {
16 if (contractSrc !== allegedSrc) {
17 throw new Error(’unexpected contract: ’+contractSrc);
18 }
19 if (i !== allegedI) {
20 throw new Error(’unexpected side: ’+i);
21 }
22 m.delete(token);
23 resolveArg(arg);
24 return resultP;
25 });
26 };
27 for (var i = 0; i < contract.length; i++) {
28 addParam(i, def({}));
29 }
30 resolve(Q.all(argPs).then(
31 args => contract.apply(undefined, args)));
32 return tokens;
33 },
34 play: (tokenP, allegedSrc, allegedI, arg) => Q(tokenP).then(
35 token => m.get(token)(allegedSrc, allegedI, arg))
36 });
37 };

Stock
Issuer

Money
Issuer

Alice Bob

Contract
Host

$

Fig. 3. The Contract Host

Distributed Electronic Rights in JavaScript 19

Figure 3 shows the code for a generic contract host. It is able to host any contract
formulated, as our escrow exchange contract is, as a function, taking one argument
from each player and returning the outcome of the contract as a whole. Setting up a
contract involves a necessary asymmetry among the players. One of the players, say
Bob, must initiate a new live contract instance by sending the contract’s code to the
contract host. At this point, only Bob knows both this contract instance and that he’d
like to invite Alice to participate in this instance. If Bob simply sent to Alice references
to those objects on the contract host that enable Alice to play, Alice would not know
what she’s received, since she received it from Bob whom she does not trust. She does
trust the contract host, and these objects are on the contract host, but so are the objects
corresponding to other contracts this host is initiating or running. Only Bob can connect
Alice to this contract instance, but Alice’s confidence that she’s playing the contract she
thinks she is must be rooted in her prior trust in the contract host.

Our contract host is an object with two methods, setup and play. Bob sets up the
contract instance by calling setup with the source code for the contract function in
question, e.g., escrowExchange. At line 32, setup returns an array of unique un-
forgeable tokens, one for each contract parameter. Bob’s invitation to Alice includes this
token, the source for the contract he wishes Alice to play, the argument index indicating
what side of the contract Alice is to play, and the contract host in question.

If Alice decides she’d like to play this contract, she formulates her argument object
as above, and sends it in a play request to the contract host along with the token, the
alleged contract source code, and the alleged side she is to play. If all of this checks out
and this token has not previously been redeemed, then this token gets used up, Alice’s
argument is held until the arguments for the other players arrive, and Alice receives a
promise for the outcome of the contract. Once all arguments arrive, the contract function
is called and its result is used to resolve the previously returned promise.

By redeeming the token, Alice obtains the exclusive right to play a specific contract
whose logic she knows, and whose play she expects to cause external effects. This eright
is exclusive, specific, measurable, and exercisable.

7 Conclusions

In human society, rights are a scalable means for organizing the complex cooperative
interactions of decentralized agents with diverse interests. This perspective is helping
us shape JavaScript into a distributed resilient secure programming language. We show
how this platform would enable the expression of new kinds of rights and smart con-
tracts simply, supporting new forms of cooperation among computational agents.

Acknowledgements. Many people contributed to the progress reported here, including
the e-lang community for refining ocap-based smart contracting, the Google Caja group
for SES’s growth and deployment, TC39 for making ES5 and successors friendly to
ocaps, Tyler Close for the first Ken and Q, Terence Kelly for the new Ken, and Kris
Kowal for the new Q.

Tom Van Cutsem is a post-doctoral fellow of the Research Foundation, Flanders.
Thanks to Terry Stanley, Kevin Reid, and Terence Kelly for suggestions improving this
paper.

20 M.S. Miller, T. Van Cutsem, and B. Tulloh

References

1. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9)
(1997)

2. Tribble, E.D., Miller, M.S., Hardy, N., Krieger, D.: Joule: Distributed Application Founda-
tions. Technical Report ADd03.4P, Agorics Inc., Los Altos (December 1995),
erights.org/history/joule/

3. Miller, M.S., Morningstar, C., Frantz, B.: Capability-Based Financial Instruments. In:
Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 349–378. Springer, Heidelberg (2001),
www.erights.org/elib/capability/ode/index.html

4. Close, T.: Waterken Server: capability-based security for the Web (2004),
waterken.sourceforge.net

5. Close, T.: web send, waterken.sourceforge.net/web send/
6. Yoo, S., Killian, C., Kelly, T., Cho, H.K., Plite, S.: Composable reliability for asynchronous

systems. In: Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC 2012, p. 3. USENIX Association, Berkeley (2012)

7. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and Con-
currency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA (May
2006)

8. Mettler, A.: Language and Framework Support for Reviewably-Secure Software Systems.
PhD thesis, EECS Department, University of California, Berkeley (December 2012)

9. Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis of
security-critical javascript apis. In: 2011 IEEE Symposium on Security and Privacy (SP),
pp. 363–378. IEEE (2011)

10. Jones, A.K.: Protection in Programmed Systems. PhD thesis, Department of Computer Sci-
ence, Carnegie-Mellon University (June 1973)

11. Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency Among Strangers: Programming in E
as Plan Coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705,
pp. 195–229. Springer, Heidelberg (2005)

12. Liskov, B., Shrira, L.: Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems. In: PLDI 1988: Proc. ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, pp. 260–267. ACM Press, New York
(1988)

13. Close, T.: Web-key: Mashing with permission. In: W2SP 2008 (2008)
14. Jensen, M.C., Meckling, W.H.: Specific and general knowledge and organizational structure.

Journal of Applied Corporate Finance 8(2), 4–18 (1995)
15. Steiner, H.: An Essay on Rights. Wiley-Blackwell (1994)
16. Smith, H.E.: Exclusion versus governance: two strategies for delineating property rights.

Journal of Legal Studies 31 (2002)
17. Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action.

Cambridge University Press (1990)
18. Hayek, F.A.: Law, Legislation and Liberty. Rules and Order, vol. 1. University of Chicago

Press (1973)
19. Hardy, N.: The Confused Deputy. Operating Systems Review (October 1988)
20. Mossoff, A.: What is property-putting the pieces back together. Arizona Law Review 45, 371

(2003)
21. Epstein, R.A.: Simple Rules for a Complex World. Harvard University Press (1995)
22. Fox, D.: Property rights in money. Oxford University Press (2008)
23. Barnett, R.E.: A consent theory of contract. Columbia Law Review 86, 269 (1986)

http://erights.org/history/joule/
http://www.erights.org/elib/capability/ode/index.html
http://waterken.sourceforge.net
http://waterken.sourceforge.net/web_send/

The Compiler Forest

Mihai Budiu1, Joel Galenson1,2, and Gordon D. Plotkin1,3

1 Microsoft Research, Silicon Valley
2 University of California, Berkeley

3 University of Edinburgh

Abstract. We address the problem of writing compilers targeting complex ex-
ecution environments, such as computer clusters composed of machines with
multi-core CPUs. To that end we introduce partial compilers. These compilers
can pass sub-programs to several child (partial) compilers, combining the code
generated by their children to generate the final target code. We define a set of
high-level polymorphic operations manipulating both compilers and partial com-
pilers as first-class values. These mechanisms provide a software architecture for
modular compiler construction. This allows the building of a forest of compilers,
providing a structured treatment of multistage compilers.

1 Introduction

Today’s computers are routinely composed of multiple computational units: multi-core
processors, hyperthreaded processors, graphics processors, and multi-processors; we
use the term “execution engine” for these computational resources. The work pre-
sented in this paper was motivated by the DryadLINQ compiler [27]. DryadLINQ
translates programs written in the LINQ programming language (Language INtegrated
Query) [17] into distributed computations that run on shared-nothing computer clusters,
using multiple cores on each machine. The core DryadLINQ compilation is structured
as a three-stage process: (1) translating a cluster-level computation into a set of interact-
ing machine-level computations, (2) translating each machine-level computation into a
set of CPU core-level computations, and (3) implementing each core-level computation.

Modifying a compiler stage requires deep understanding of both the compiler archi-
tecture and its implementation. We would prefer to be able to experiment easily, replac-
ing some stages without knowing the implementation of others. Our goal is therefore to
develop a general modular software architecture enabling compilers for distributed exe-
cution environments to be factored into a hierarchy of completely independent compil-
ers, or “pieces” of compilers that cooperate via well-defined interfaces; the architecture
should allow different pieces to be mixed and matched, with no access to source code
or knowledge of internals.

To this end we propose a novel architecture employing a standard type-theoretical
interface. In Section 2 we present partial compilers, a formalization of a “piece” of a
compiler: partial compilers need “help” from one or more child compilers to produce
a complete result. The resulting composite compilers form compiler forests. Formally,
one uses polymorphic composition operations on compilers and partial compilers. The
interface between component compilers is surprisingly simple and succinct. Traditional
compiler stages can be recast as partial compilers.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 21–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 M. Budiu, J. Galenson, and G.D. Plotkin

target

Compiler

source target

source

source’ target’

Child

Compiler

Partial
compiler R

re
du

ce
 G

ge
ne

ra
te

Fig. 1. L: A compiler translates sources to targets.
R: A partial compiler invokes the service of a child
compiler.

We present other natural poly-
morphic composition operations on
compilers and partial compilers in
Sections 2 and 3. Taken together,
these operations can be seen as a
form of “structured programming”
manipulating compilers and partial
compilers as first-class values. We
thereby support dynamic compiler
construction and extension, enabling
sophisticated users to construct, cus-
tomize, and extend compilers by
mixing predefined and custom-built
compiler components.

The theoretical foundations we
establish have immediate practical applications. To demonstrate this, we revisit the
original problem of compiling LINQ for computer clusters. In order to expose the
fundamental ideas without undue detail, we use a stylized version of LINQ, called
μLINQ. This language is rich enough to express many interesting computations, in-
cluding the popular MapReduce [6] large-scale computation model. In Section 4 we
build a fully functional compiler for μLINQ that executes programs on a computer
cluster with multi-core machines.

Remarkably, partial compliers have their origins in work on categorical logic and
on computer-assisted theorem proving, specifically de Paiva and Hyland’s Dialectica
categories [5,12] and Milner’s tactics [10,19], the building blocks of his approach to
computer-aided theorem proving. Section 5 treats the mathematical foundations of par-
tial compilers in terms of a slight variant of the Dialectica category incorporating
compile-time effects via a suitable monad. The morphisms of this category can be viewed
as providing (the semantics of) a typed version of Milner’s tactics. The polymorphic op-
erations on partial compilers and compilers that we use to manipulate them as first-class
objects were inspired by categorical considerations. For example, the composition and
tensor operations of Section 2 correspond to compositions and tensors of morphisms.

We have also validated the partial compiler architecture with two proof-of-concept
compiler implementations: a (simplified) reimplementation of DryadLINQ, and a com-
piler for large-scale matrix expressions. They are described briefly in Section 6. Finally,
Sections 7 and 8 discuss related work and conclude.

2 Compilers and Partial Compilers

We call the program fed as input to a compiler a “source” (usually denoted by S), and
the output generated by the compiler a “target” (usually denoted by T). The intuition
behind partial compilers is shown on the right of Figure 1. There a partial compiler
reduces the source program to a source′ program, to be handled by a child compiler.
Given a target′ result obtained from the source′ program by the child compiler, the
partial compiler then generates the target for the original source program.

The Compiler Forest 23

More generally, a partial compiler may use several child compilers. For example,
given a source, a cluster-level partial compiler may generate a target to distribute input
data among many machines, of various types, instructing each machine to perform a
computation on its local data. In order to generate the target code running on each ma-
chine, the cluster-level compiler creates machine-level source programs source′, which
are handed to machine-level child compilers, one for each type of machine; these, in
turn, generate the needed machine-level target′s. The global, cluster-level target con-
tains code to (1) move data between machines and (2) invoke machine-level target′s of
appropriate types on cluster machines and their local data.

2.1 Definitions

With these intuitions in mind, we can now give a theory of partial compilers. We take a
call-by-value typed lambda calculus as our compiler language, and use it to define par-
tial compilers and operations on them. We do not detail the calculus, but we make use of
product and function types, labeled sum types (see [22]), list types, and base types. Our
theory permits the lambda calculus to be effectful, i.e., we permit compile-time effects;
it also permits recursion. However neither our examples nor our implementations make
use of either of these two possibilities.

Formally, we take the calculus to be a suitable extension of Moggi’s computational
lambda calculus [20,21,1] to allow for compile-time effects. For its semantics we as-
sume available a Cartesian closed category equipped with a strong “compile-time”
monad Tcomp and suitable extra structure to accommodate the sum types, etc. As
our examples and implementations use neither compile-time effects nor recursion, the
reader can assume there that the category is that of sets and functions, so that types
denote sets and terms denote elements of them.

Compilers transform sources into targets so they are terms C typed as:

C : source −→ target

as pictured on the left of Figure 1. We do not specify the relationship between source
and target; in particular, the target type of some compiler may be the source type of
some other compiler.

Rather than making specific choices of target languages, we use a lambda calculus
to define the semantics [[T]] of targets T output by compilers. We assume that the target
computations output by compilers act on a type “data” so that this semantics has the
form:

[[T]] : data→ data

As in the case of the compiler language, we do not detail such a run-time lambda cal-
culus, but, in particular, it may have run-time effects. In general, target languages may
differ in both the data their targets handle and the run-time effects they create; however,
for simplicity, we keep both fixed in the examples.

Formally, we (again) use the computational lambda calculus, but for the semantics
we now use “run-time” monads Trun to account for run-time effects. As it suffices for
the examples at hand, we work in the category of sets, but nothing depends on that.

We define (unary) partial compilers to be terms of type:

PC : source→ (source′ × (target′→target))

24 M. Budiu, J. Galenson, and G.D. Plotkin

As discussed above, the idea is that, given a source program, a partial compiler “re-
duces” it to a source′ program, to be handled by a child compiler, and also produces a
“generation” function that, given a target′ obtained from the child, returns the required
target. With this type, compile-time effects can occur at two points: when reducing the
original source, and when computing the target.

To make formulas more readable we employ syntactic sugar for both types and terms.
We write

(source, target) � (source′, target′)

for the above partial compiler type, reading the type as “going from source to source′

and then back from target′ to target”; and we write

Compiler S : source.
Reduction R,
Generation T ′ : target′. G

for the partial compiler

λS : source. letS′ : source′ beR in (S′, λT ′ : target′. G)

Note that S is bound in both the reduction and generation clauses.
Figure 1 (right) shows a simple compiler tree, consisting of a parent partial compiler

invoking the services of a child compiler. We model this by a polymorphic composition
operation, which returns a compiler, given a (parent) partial compiler and a (child)
compiler. Let PC be a partial compiler, as above, and C : source′ → target′ be a
compiler. We write their composition using angle brackets:

PC 〈〈C〉〉 : source→ target

and define it to be:

λS : source. let (S′, G) bePC (S) inG(C(S′))

If there are no compile-time effects, we can view the operation of the compiler PC 〈〈C〉〉
on a source S′ as going through a sequence of compiler stages or passes:

S
fst◦PC−−−−−−−→ S′

C−−−−−→ T ′
snd(PC (S))−−−−−−−−→ T

where the last pass snd(PC (S)) is a function of the initial source. In contrast, the
operation of the partial compiler PC is a “partial” sequence of passes:

S
fst◦PC−−−−−−−→ S′

?−−−−−→ T ′
snd(PC (S))−−−−−−−−→ T

The core function of our methodology is to generate useful patterns of such passes in a
structured way, including combining partial passes. We define the composition

PC 〈〈PC
′
〉〉 : (source, target) � (source′′, target′′)

of a partial compiler PC with a partial compiler

PC
′
: (source′, target′) � (source′′, target′′)

to be:

λS : source. let (S′, G) bePC (S) in let (S′′, G′) bePC
′
(S′) in (S′′, G ◦G′

)

The Compiler Forest 25

In terms of a partial sequence of passes this is:

S
fst◦PC−−−−→ S′

fst◦PC
′

−−−−−→ S′′
?−→ T ′′

snd(PC
′
(S′))−−−−−−−−−→ T ′

snd(PC (S))−−−−−−−−→ T

Certain equations hold in the computational lambda calculus, for all compiler-time ef-
fects. Partial compiler composition is associative:

PC 〈〈PC ′〈〈PC ′′ 〉〉〉〉 = PC 〈〈PC ′ 〉〉〈〈PC ′′ 〉〉

and the two compositions are compatible, as shown by the action equation:

PC 〈〈PC
′
〈〈C〉〉〉〉 = PC 〈〈PC

′
〉〉〈〈C〉〉

The partial compiler Id =def (λS.S, λ(S, T).T) passes a given source to its child and
then passes back the target generated by its child unchanged. It is the identity element
for composition, i.e., the following identity equations hold:

Id〈〈PC 〉〉 = PC = PC 〈〈Id〉〉 Id〈〈C〉〉 = C

Unary partial compilers can be generalized to n-ary terms PCn of type

source−→ ((source′1 × . . .× source′n)× (target′1 × . . .× target′n)→ target)

One can reduce such n-ary partial compilers to unary partial compilers by taking source′

to be source′1× . . .× source′n and target′ to be target′1× . . .× target′n. Compilers can
be thought of as 0-ary partial compilers. The ability to write n-ary partial compilers that
can communicate with several children, which may be addressing different execution
engines, is crucial to our approach.

To define composition on n-ary partial compilers we iterate two pairing operations,
which are both called tensor, on compilers and partial compilers. For the first, given
compilers Ci : sourcei → targeti (for i = 1, 2), we define their tensor

C1 ⊗ C2 : (source1 × source2)→ (target1 × target2)

to be:

C1 ⊗ C2 = λ(S1, S2). (C1(S1), C2(S2))

Given an n-ary partial compiler PCn and n compilers Ci : source′i → target′i (for
i = 1, . . . , n) the n-ary composition PCn〈〈C1, . . . , Cn〉〉 is an abbreviation for the
unary composition PCn〈〈C1 ⊗ . . .⊗Cn〉〉. The n-fold tensor is the iterated binary one,
associated to the left; it is the trivial compiler for n = 0.

Next, we define the binary tensor

PC1 ⊗ PC2 : (source1 × source2, target1 × target2) �
(source′1 × source′2, target

′
1 × target′2)

of two partial compilers

PC i : (sourcei, targeti) � (source′i, target
′
i)

to be:

λS1, S2. let (S
′
1, G1) bePC 1(S1) in

let (S′2, G2) bePC 2(S2) in
((S′1, S

′
2), λT1, T2. letT

′
2, T

′
1 beG2(T2), G1(T1) in (T

′
1, T

′
2))

26 M. Budiu, J. Galenson, and G.D. Plotkin

The reason for the “twist” in the order of the G’s is explained in Section 5. Intuitively,
G2’s effects are “well-bracketed” by G1’s.

Using this tensor, one defines the composition of an n-ary partial compiler with n
partial compilers via iterated tensors, analogously to the case of compilers. One then
obtains suitable n-ary generalizations of the above unary associativity, action, and unit
equations for the two n-ary compositions. These hold when there are no compile-time
effects; Section 5 discusses the general case.

2.2 An Example: The Sequential Partial Compiler

We give an example of a binary partial compiler and its composition with two com-
pilers; Section 3.4 makes use of the composition of partial compilers. We consider
compiling source programs S obtained from the composition of two simpler sources
prefix(S) and suffix(S), where:

prefix, suffix : source −→ source

The binary partial compiler

PC2
SEQ : (source, target) � (source× source, target× target)

generates (partial) sources from the source prefix and suffix, and the targets obtained
for these two sources are composed:

Compiler S : source.
Reduction (prefix(S), suffix(S)),
Generation Tprefix : target, Tsuffix : target.Comp(Tsuffix, Tprefix)

where Comp is an assumed available composition operation with semantics:

[[Comp(Tsuffix, Tprefix)]] = λd : data. [[Tsuffix]]([[Tprefix]](d))

Suppose we wish to run our computation on a computer with a CPU and a graphics
card (GPU). Assume we have compilers CGPU, generating a GPU target′, and CCPU,
generating a CPU target, and a term runGPU : target′ → target that, given T ′, pro-
duces a T with the same semantics that loads T ′ on the GPU and then runs it on the data
supplied to T , returning the result to the CPU. The composition of CGPU with runGPU

then defines a compiler CG : source→ target such that, for all source’s S and data d:

[[CG(S)]](d) = [[runGPU(CGPU(S))]](d) = [[CGPU(S)]](d)

Given a source program, we can then run its prefix on the GPU and its suffix on the
CPU, using the binary composition PC2

SEQ〈〈CG, CCPU〉〉 of the binary partial compiler
PC2

SEQ with the two compilers CG and CCPU.

3 Compilers and Partial Compilers as First-Class Objects

While composition and tensor are the main operations on compilers and partial compil-
ers, we now discuss five more, shown in Table 1.

The Compiler Forest 27

Table 1. Generic compiler operations described in this paper

Operation Symbol Compilers
Partial

Section
Compilers

Composition 〈〈〉〉 Yes Yes 2.1
Tensor ⊗ Yes Yes 2.1
Star ∗ Yes No 3.1
Conditional COND Yes Yes 3.2
Cases CASES Yes Yes 3.3
Functor PCFunc No Yes 3.4
Iteration DO No Yes 3.5

3.1 Star

So far we have considered partial compilers whose arity is constant. We generalize,
defining partial compilers that operate with lists of sources and targets. For any compiler
C : source → target, we define C∗ : source∗ → target∗, the star of C, to be the
pointwise application of C to all elements of a given list l of sources:

C∗(l) = map(C, l)

Consider the partial compiler PCSEQ : (source, target) � (source∗, target∗) that
generalizes the sequential compiler PC2

SEQ from Section 2.2 by decomposing a source
S that is function composition into a list [S1, . . . , Sn] of its components. Given a com-
piler C : source → target for simple sources, the composition PCSEQ 〈〈C∗〉〉 is a
compiler for queries that are an arbitrary composition of simple sources. A practical
example involving the star operation is given in Section 4.2.

3.2 Conditionals

The partial compiler operations we have constructed so far are all independent of the
sources involved; by allowing dependence we obtain a richer class of compiler compo-
sition operations. For example, it may be that one compiler is better suited to handle a
given source than another, according to some criterion:

Pred : source→ bool

We define a natural conditional operation to choose between two compilers

COND : (source→bool)× (source→target)2 → (source→target)

by:
COND = λ(p, (C1, C2)). λS. if p(S) then C1(S) else C2(S)

We may write IF PredTHEN C1 ELSE C2 instead ofCOND(Pred, (C1, C2)). There
is an evident analogous conditional operation on partial compilers.

We can use the conditional to “patch” bugs in a compiler without access to its imple-
mentation. Assume we have a predicate bug : source→ bool that describes (a superset
of) the sources for which a specific complex optimizing compiler COPT generates an

28 M. Budiu, J. Galenson, and G.D. Plotkin

incorrect target. Let us also assume that we have a simple (non-optimizing) compiler
CSIMPLE that always generates correct targets. Then the compiler

IF bugTHEN CSIMPLE ELSE COPT

“hides” the bugs in COPT.

3.3 Cases

Similar to the * operation, but replacing list types by labeled sum types, we can define
a “cases” operation, a useful generalization of conditional composition. Given n indi-
vidual compilers Ci : sourcei → target (for i = 1, . . . , n) together with a function
W : source→ l1 : source1 + . . .+ ln : sourcen, we define

CASES W OF l1 : C1, . . . , ln : Cn

to be the compiler C : source→ target where:

C(S) = casesW (S) of l1 : C1(S), . . . , ln : Cn(S)

We give a practical example using CASES in Section 4.2.
There is an evident analogous cases operation on partial compilers. Given two partial

compilers PCi : (sourcei, target) � (source′, target′), we define

CASES W OF l1 : PC1, . . . , ln : PCn

to be the partial compiler PC : (source, target) � (source′, target′) given by:

λS. casesW (S) of l1 : PC1(S), . . . , ln : PCn(S)

3.4 Functor

Given functions f : source → source′ and g : target′ → target, we define the partial
compiler

PCFunc(f, g) : (source, target) � (source′, target′)

to be:
Compiler S : source.
Reduction f(S),
Generation T ′ : target′. g(T ′)

This operation is functorial, meaning that this equation holds:

PCFunc(f, g)〈〈PCFunc(f
′, g′)〉〉 = PCFunc(f

′of, gog′)

We describe two useful applications in which g is the identity idtarget on target.
Traditional compilers usually include a sequence of optimizing passes, given by op-

timizing transformation functions Opt : source → source. Such passes correspond to
partial compilers of the form PCFunc(Opt, Idtarget).

The Compiler Forest 29

Staged compilers (e.g., [13,24]) are frequently built from a sequence of transforma-
tions between (progressively lower-level) intermediate representations, followed by a
final compilation step:

source1
Trans1−−−−→ . . .

Transn−1−−−−−−→ sourcen
C−→ target

One can model this structure by composing partial compilersPCFunc(Transi, Idtarget),
obtaining a partial compiler PCStage : (source1, target) � (sourcen, target), where

PCStage =def PCFunc(Trans1, Id)〈〈. . . 〈〈PCFunc(Transn−1, Id)〉〉 . . .〉〉

The final compiler is then PCStage〈〈C〉〉. This integrates staged compilation into our
framework in a straightforward way.

3.5 Iteration

The iteration operation iterates a partial compiler

PC : (source, target) � (source, target)

up to n times, stopping if a given predicate Pred : source → bool becomes true. We
define

HPC : nat→ ((source, target) � (source, target))

to be:
HPC(0) = Id
HPC(n+ 1) = IF PredTHEN IdELSE PC 〈〈HPC(n)〉〉

(We assume the λ-calculus has a facility for primitive recursion.) Applying HPC to
Num : nat, one obtains the partial compiler

DO PC UNTIL Pred FOR Num TIMES

This could be used to repeatedly apply an optimizing compiler PC until a fixed-point
is reached, as detected by Pred.

4 Application to Query Processing

In this section we return to our motivating problem: compiling LINQ. We introduce
essential aspects of LINQ and give a much simplified version, called μLINQ, that is
small enough to be tractable in a paper, but rich enough to express interesting compu-
tations. We develop a hierarchy of partial compilers that, composed together, provide
increasingly more powerfulμLINQ compilers. In the LINQ terminology, inherited from
databases, source programs are called “queries” and target programs are called “plans”.

4.1 LINQ and μLINQ

LINQ was introduced in 2008 as a set of extensions to traditional .Net languages such
as C# and F#. It is essentially a functional, strongly-typed language, inspired by the
database language SQL (or relational algebra) and comprehension calculi [3]. Much as
in LISP, the main datatype manipulated by LINQ computations is that of lists of values;
these are thought of as (data) collections.

30 M. Budiu, J. Galenson, and G.D. Plotkin

LINQ operators transform collections to other collections. Queries (source programs)
are (syntactic) compositions of LINQ operators. For example, the query
C.Select(e => f(e)), where e => f(e) is the LINQ syntax for the lambda expres-
sion λe.f(e), uses the Select operator (called map in other programming languages)
to apply f to every element e of a collection C. The result is a collection of the same
size as the input collection. The elements e can have any .Net type, and f(e) can be
any .Net computation returning a value. The core LINQ operators are named after SQL.
All LINQ operators are second-order, as their arguments include functions.

μLINQ Syntax. The basic datatypes are ranged over by I, O, and K (which stand for
“input”, “output” and “key”); they are given by the grammar:

I ::= B | I∗

where B ranges over a given set of primitive datatypes, such as int, the type of integers.
The type I∗ stands for the type of collections (taken to be finite lists) of elements of type
I. The corresponding .NET type is IEnumerable〈I〉.
μLINQ queries (source programs) consist of sequences of operator applications; they

are not complete programs as the syntax does not specify the input data collection (in
contrast to LINQ). They are specified by the grammar

Query ::= OpAp1; . . . ; OpApn (n ≥ 0)
OpAp ::= SelectMany<I,O>(FExp) |

Aggregate<I>(FExp,Exp) |
GroupBy<I,K>(FExp)

Here Exp and FExp range over given sets of expressions and function expressions, of
respective given types I or I1× . . .× In → O. The details of the given primitive types,
expressions, and function expressions are left unspecified.

Only well-formed operator applications and queries are of interest. The following
rules specify these and their associated types:

SelectMany<I,O>(FExp):I∗→O∗ (if FExp has type I→O∗)
Aggregate<I>(FExp,Exp):I∗→I∗

(if FExp has type I× I→ I, and Exp has type I)
GroupBy<I,K>(FExp):I∗→I∗∗ (if FExp has type I→ K)

OpApi : Ii → Ii+1 (i = 1, . . . , n)

OpAp1; . . . ; OpApn : I1 → In+1

μLINQ Semantics. We begin with an informal explanation of the semantics. A query
of type I∗ → O∗ denotes a function from I collections to O collections. We begin with
operator applications and then consider composite queries.

SelectMany<I,O>(FExp) applied to a collection returns the result of applying
FExp to all its elements and concatenating the results. So, for example, the query
SelectMany<int,int>(n => [n,n+1]) applied to C =def [1, 2, 3, 4, 5] results in
the list [1, 2, 2, 3, 3, 4, 4, 5, 5, 6].

Aggregate<I>(FExp,Exp) applied to a collection produces a singleton list con-
taining the result of a fold operation [11] performed using FExp and Exp. So, for

The Compiler Forest 31

example, Aggregate<int,int>((m,n) => m+n,6) applied to C results in the list
[1 + (2 + (3 + (4 + (5 + 6))))] = [21]. Some of the compilers we construct require
that such aggregations are (commutatively) monoidal, i.e., that FExp is associative (and
commutative) with unit Exp.

GroupBy<I,K>(FExp) groups all the elements of a collection into a collection of
sub-collections, where each sub-collection consists of all the elements in the original
collection sharing a common key; the key of a value is computed using FExp. The sub-
collections in the result occur in the order of the occurrences of their keys, via FExp, in
the original collection, and the elements in the sub-collections occur in their order in the
original collection. So, for example, GroupBy(n => n mod 2) applied to C results in
the list [[1,3,5],[2,4]].

Composite queries are constructed with semicolons and represent the composition,
from left to right, of the functions denoted by their constituent operator applications.

The formal definition of μLINQ is completed by giving it a denotational semantics.
We only show the semantics for a language fragment; it is easy, if somewhat tedious,
to spell it out for the full language. First we assign a set [[I]] to every μLINQ type I,
assuming every primitive type already has such a set assigned:

[[I1 × . . .× In]] =def [[I1]]× . . .× [[In]]

Next, to any well-typed operator application OpApp : I → O we assign a function
[[OpApp]] : [[I]] → [[O]], given a denotation [[Exp]] ∈ [[I]] for each expression Exp : I. For
example:

[[Aggregate<T>(FExp,Exp)]](d) =def [fold([[FExp]], [[Exp]], d)]

Finally, to any well-typed query S : I→ O we assign a function [[S]] : [[I]]→ [[O]]

[[OpAp1; . . . ; OpApn]] =def [[OpApn]] o . . . o [[OpAp1]] (n ≥ 0)

μLINQ and MapReduce. The popular MapReduce [6] distributed computation pro-
gramming model can be succinctly expressed in μLINQ:

MapReduce(map, reduceKey, reduce) : I∗ → O∗

is the same as

SelectMany(map);GroupBy(reduceKey);SelectMany(l => [reduce(l)])

where map : I → O is the map function, reduceKey : O → K computes the key for
reduction, and reduce : O∗ → O is the reduction function. (Since we use SelectMany
for applying the reduction function, the result of reduce is embedded into a list with a
single element.)

4.2 Compiling μLINQ

A Single-Core Compiler. We start by defining the types for sources (queries) and
targets (plans). Let us assume we are given a type FExp corresponding to the set of
function expressions, and a type Exp for constants. Then we define types OpAp and
MLSource, corresponding to the sets of μLINQ operator applications and queries by
setting:

32 M. Budiu, J. Galenson, and G.D. Plotkin

OpAp = SelectMany : FExp +
Aggregate : FExp×Exp +
GroupBy : FExp

MLSource = OpAp∗

We assume we have a type MLTarget of μLINQ targets (plans) T with semantics [[T]] :
MLData −→ MLData, where MLData consists of lists of items, where items are
either elements of (the semantics of) a basic μLINQ type B, or lists of such items.

As a basic building block for constructing μLINQ compilers, we start from three
very simple compilers, each of which can only generate a plan for a query consisting of
just one of the operators:

CSelectMany : FExp −→ MLTarget

CAggregate : FExp×Exp −→ MLTarget

CGroupBy : FExp −→ MLTarget

The denotational semantics of μLINQ operators (Section 4.1) gives a blueprint for a
possible implementation of these compilers.

We use the CASES operation from Section 3.3 to combine these three elementary
compilers into a compiler that can handle simple one-operator queries:

COO = CASES (λS : OpAp. S) OF
SelectMany : CSelectMany,
Aggregate : CAggregate,
GroupBy : CGroupBy

Finally, we use the generalized sequential partial compiler PCSEQ and the star opera-
tion, both introduced in Section 3.1, to construct a compiler

CμLINQ : MLSource→ MLTarget

for arbitrary μLINQ queries, where

CμLINQ = PCSEQ〈〈C∗OO〉〉

A Multi-core Compiler. In this example we construct a partial compiler PCMC to
allow our single-core compiler to target a multi-core machine whose cores can exe-
cute plans independently. The most obvious way to take advantage of the available
parallelism is to decompose the work by splitting the input data into disjoint parts, per-
forming the work in parallel on each part using a separate core, and then merging the
results.

Table 2. Compiling a query S for a dual-core computer

S collate(S, l, r) part(S, d)

SelectMany(FExp) l · r prefix(d)

Aggregate(FExp,Exp) [[[FExp]](headExp(l),headExp(r))] prefix(d)

GroupBy(FExp) l · r [x ∈ d | [[FExp]](x) ∈
prefix(setr(map([[FExp]], d)))]

The Compiler Forest 33

A partial compiler PCMC : (OpAp,MLTarget) � (OpAp,MLTarget) for opera-
tor applications for multi-core machines with cores c1 and c2 can be given by:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget.GMC(S, T)

where, for any OpAp S, MLTarget T :

[[GMC(S, T)]](d) = λd : MLData. let d′ be part(S, d) in
collate(S, [[runc1(T)]](d

′), [[runc2(T)]](d\d′))
The definition of the semantics of GMC, which we now explain, provides a blueprint
for its intended parallel implementation. First, the functions runc1 , runc2 ensure that
their argument MLTarget is run on the specified core; they act as the identity on the
semantics. Next, for any list d, part(S, d) and d\part(S, d) constitute a division of d
into two parts in a query-dependent manner; here d\d′ is chosen so that d = d′ · (d\d′),
if possible (we use · for list concatenation). The function “collate” assembles the results
of the computations together, also in a query-dependent manner.

There are many possible ways to define part and collate and one reasonable speci-
fication is shown in Table 2. There, prefix(d) gives a prefix of d, headExp(d) is the first
element of d, assuming d is non-empty, and [[Exp]] otherwise, and setr(d), which is used
to ensure that a given key is in only one partition, consists of d with all repetitions of an
element on its right deleted.

The SelectMany operator is homomorphic w.r.t. concatenation. It can be computed
by partitioning the collection d into an arbitrary prefix and suffix, applying SelectMany
recursively on the parts, and concatenating the results.

Similarly, if monoidal, Aggregate(FExp,Exp) is homomorphic w.r.t. the aggrega-
tion function FExp, so it can be applied to an arbitrary partition of d, combining the two
results using FExp.

Finally, GroupBy partitions the input collection d so that values with the same key
end up in the same partition. (It does so by splitting the codomain of the key function
FExp into two arbitrary disjoint sets.) The results of recursively applying GroupBy on
these partitions can be concatenated as the groups from both parts will also be disjoint.

The complete multi-core μLINQ compiler is given by

PCSEQ〈〈PCMC〈〈COO〉〉∗〉〉

It is straightforward to generalize this to machines with n cores by suitably modifying
part and collate.

Note that we have achieved a non-trivial result: we have built a real μLINQ compiler
targeting multi-cores by writing just a few lines of code, combining several simple
compilers. This implementation is certainly not optimal as it repartitions the data around
each operation, but we can transform it into a smarter compiler by using the same
techniques. The functionality it provides is essentially that of PLINQ [7], the parallel
LINQ implementation.

Compilation for Distributed Execution. The strategy employed for the multi-core
compiler for parallelizing μLINQ query evaluations across cores can be used to paral-
lelize further, across multiple machines, in a manner similar to the DryadLINQ

34 M. Budiu, J. Galenson, and G.D. Plotkin

compiler. We add one additional twist by including resource allocation and schedul-
ing in the plan language. Consider an example of a cluster of machines, and suppose
we are dealing with a large input collection, stored on a distributed filesystem (e.g., [9])
by splitting the collection into many partitions resident on different cluster machines
(each machine may have multiple partitions). The goal of the generated plan is to pro-
cess the partitioned collections in an efficient way, ideally having each piece of data be
processed by the machine where it is stored. In the following simple example we just
use two machines.

We define the operator application unary partial compiler PCCluster to be:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget.GCL(S, T)

where, for any OpAp S and MLTarget T ,

[[GCL(S, T)]](d) = λd : MLData.
let m1,m2 :Machine be getm, getm in
let d′ be mpart(S, d,m1,m2) in
collate(S, [[run(m1, T)]](d

′), [[run(m2, T)]](d\d′))
Here, Machine is the type of cluster machines and the constant getm:Machine nonde-
terministically schedules a new machine. When applied to S, d,m1,m2, the function
mpart returns the first part of a partition of d into two, using a policy not detailed here;
as in the case of part, when S is a GroupBy the two parts should contain no common
keys. Note that the run functions are now parametrized on machines. The relative loca-
tion of data and machines on the cluster is important. In particular, the partition policy
for mpart may depend on that; we also assume that the code run(m,T) first loads re-
mote data onto m. As before, the semantics of GCL provides a blueprint for a parallel
implementation.

Formally we assume given a set Sch of scheduler states, and as run-time monad Trun

take F+(Sch × X)Sch, the standard combination of side-effect and nondeterminism
monads (F+(X) is the collection of non-empty finite subsets of X); for [[getm]] we
assume an allocation function Sch→ F+(Sch× [[Machine]]).

The cluster-level operator application compiler is then obtained by composing the
cluster partial compiler with the multi-core compiler described previously

PCCluster〈〈PCMC〈〈COO〉〉 〉〉

and then the complete compiler is:

PCSEQ〈〈PCCluster〈〈PCMC〈〈COO〉〉 〉〉∗〉〉

The cluster-level compiler is structurally similar to the multi-core compiler, but the col-
lections themselves are already partitioned and the compiler uses the collection struc-
ture to allocate the computation’s run-time resources.

This compiler is in some respects more powerful than MapReduce, because (1) it
can handle more complex queries, including chains of MapReduce computations and

The Compiler Forest 35

(2) it parallelizes the computation across both cores and machines. With a tiny change
we obtain a compiler that only parallelizes across machines:

PCSEQ〈〈PCCluster〈〈COO〉〉∗〉〉.

With a little more work one can also add the only important missing MapReduce opti-
mization, namely early aggregation in the map stage.

5 Mathematical Foundations

We now turn to a semantical account of partial compilers in terms of a category of
tactics. We then discuss the categorical correlates of our polymorphic operations on
compilers and partial compilers, and the relationships with the Dialectica category and
Milner’s tactics. We work with a cartesian closed category K with a strong monad T.
This supports Moggi’s computational lambda calculus [20]: each type σ denotes an
object [[σ]] of K, and every term

x1 : σ1, . . . , xn : σn 	M : τ

denotes a morphism of K

[[M]] : [[σ1]]× . . .× [[σn]]→ [[τ]]

As is common practice, we may confuse terms and their denotations, writing M instead
of [[M]]; in particular we make free use of the definitions and notation of Section 2. In
doing so, we can use types and terms as notations for objects and morphisms, and treat
objects x as type constants denoting themselves and morphisms f :x→ y as constants
denoting elements of the corresponding function type x→y. We can also use the proof
rules of the computational lambda calculus to establish relations between morphisms.

The objects of our category of tactics are pairs (P, S) of objects of K; we call P
and S (objects of) problems and solutions, respectively. The morphisms from (P, S) to
(P ′, S′) are morphisms of K of the form

f : P −→ T(P ′ × (S′ ⇒ T(S)))

and it is these that are called tactics.
The identity on (P, S) is Id(P,S) = λx : P. (x, λy : S. y) and the composition

(P, S)
gf−→ (P ′′, S′′) of (P, S)

f−→ (P ′, S′) and (P ′, S′)
g−→ (P ′′, S′′) is gf = f〈〈g〉〉

(note the order reversal), making use of the definition in Section 2. Using Moggi’s laws
for the computational lambda calculus, one can show that composition is associative
with the identity as unit, and so this does indeed define a category.

Rather than speaking of sources, targets and partial compilers, we have chosen here
to speak more neutrally of problems, solutions and tactics. We follow Blass [2] for
problems and solutions, and Milner for tactics: one can think of tactics as tactics for re-
ducing problems to subproblems. Compilers are simply modelled as Kleisli morphisms
P → T(S).

We now consider the categorical operations corresponding to some of the operations
on partial compilers and compilers that we defined above. We define the action of a
given tactic f : (P, S) −→ (P ′, S′) on a Kleisli morphism h : P

′ −→ T(S
′
) by:

36 M. Budiu, J. Galenson, and G.D. Plotkin

h · f = f〈〈h〉〉 : P −→ S

using the composition operation of partial compilers with compilers of Section 2. In
terms of this “right action” notation the action equations of Section 2 become:

(h · g) · f = h · gf h · Id = Id

We define tensors of Kleisli morphisms and tactics similarly, again making use of the
definitions in Section 2. The expected functorial laws

Id ⊗ Id = Id (f ′ ⊗ g′)(f ⊗ g) = (f ′f ⊗ g′g)

for the tensors of tactics hold if the monad is commutative [14], for example when
there are no compile-time effects, or for nondeterminism, probabilistic choice, or non-
termination (so having recursion is fine); typical cases where they fail are exceptions or
side-effects. When they hold, so too do the expected associativity, action, and unit laws
for the n-ary compositions defined in Section 2.

In general one obtains only a premonoidal structure [23] with weaker laws:

Id ⊗ Id = Id (f ⊗ g) = (g ⊗ Id)(Id ⊗ f)

(f ′ ⊗ Id)(f ⊗ Id) = (f ′f ⊗ Id) (Id ⊗ g′)(Id ⊗ g) = (Id ⊗ g′g)

The “twist” in the definition of the tensor in Section 2 of two tactics is needed to obtain
these laws. The weaker laws yield correspondingly weaker laws for the n-ary composi-
tions.

Turning to Section 3, the cases operation arises from the fact that categorical sums
exist when the solution objects are the same, i.e., (P1, S)+(P2, S) = (P1+P2, S), and
the functorial operation arises from the evident functor from Kop

T ×KT to the category
of tactics (KT is the Kleisli category of T). The literature on Dialectica categories
contains further functorial constructions that may also prove useful—for example, the
sequential construction of Blass [2] is intriguing.

The Dialectica category has the same objects as the tactics category. A morphism
(f, g) : (P, S) −→ (P ′, S′) consists of a reduction function f : P −→ P ′ and a
solution function g : P × S′ −→ S. This is essentially the same as a tactic, in the case
of the identity monad, and the Dialectica category is then equivalent to the category
of tactics. To incorporate compile-time effects in the Dialectica category, one might
alternatively try f : P −→ T(P ′) and g : P × S′ −→ T(S). However this does not
give a category: the evident composition is not associative.

As we have said, partial compilers also arose by analogy with Milner’s tactics. Milner
cared about sequents and theorems, whereas we care about sources and targets. His
tactics produce lists and have the form:

sequent→ (sequent∗ × (theorem∗ → theorem))

But these are nothing but partial compilers of type:

(sequent, theorem) � (sequent∗, theorem∗)

Our methods of combining partial compilers correspond, more or less, to his tacti-
cals, e.g., we both use a composition operation, though his is adapted to lists, and the

The Compiler Forest 37

composition of two tactics may fail. He also makes use of an OR tactical, which tries
a tactic and, if that fails (by raising a failure exception), tries an alternate; we have
replaced that by our conditional partial compiler.

6 Implementations

Section 4 describes a compiler for a stylized language. We used the compiler forest
architecture to implement two proof-of-concept compilers for (essentially) functional
languages targeting a computer cluster: one for LINQ and one for matrix computations.
The implementations reuse multiple partial compilers.

Our compiler forest implementations closely parallel the examples in this paper. The
lowest layer implements “tactics” (see Section 5): computations on abstract problems
and solutions that provide the basic composition operation. On top of this we build a
partial compiler abstraction, where problems are source programs and solutions are tar-
gets. We then implement a combinator library for the operations described in Sections 2
and 3. A set of abstract base classes for partial compilers, programs, data, optimization
passes, and execution engines provide generic useful operations. A set of libraries pro-
vides support for manipulating .Net System.Linq.Expressions objects, which are
the core of the intermediate representation used by all our compilers. To implement
partial compilers one writes source reduction functions R and target generation func-
tions G, exactly as described in Section 2.

Compiling LINQ. The LINQ compiler structure closely parallels the description from
Section 4, but handles practically the entire LINQ language, with a cluster-level com-
piler (PCCluster), a machine multi-core compiler (PCMC), and a core-level compiler
based on native LINQ-to-objects. We also implemented a simple GPU compiler CGPU

based on Accelerator [26]. A conditional partial compiler steers queries to either CGPU

or PCMC, since CGPU handles only a subset of LINQ, and operates on a restricted set
of data types.

While our implementation is only preliminary, it performs well and has served to
validate the architectural design. For example, when running MapReduce queries, our
multi-core compiler produces a speed-up of 3.5 using 4 cores. We tested our compiler on
a cluster with 200 machines; at this size the performance of MapReduce computations
is essentially the same as with DryadLINQ, since I/O is the dominant cost in such
applications.

Compiling Matrix Algebra. We have defined a simple functional language for com-
puting on matrices, with operations such as addition, multiplication, transposition, solv-
ing linear systems, Cholesky factorization, and LU decomposition. All these operations
are naturally parallelizable. The matrices are modeled as two-dimensional collections
of tiles, where the tiles are smaller matrices. Large-scale matrices are distributed col-
lections of tiles, each of which is a matrix composed of smaller tiles. This design is
useful for dense matrices; by making tiles very small it can also accommodate sparse
matrices.

The top-level partial compiler translates matrix operations into operations on collec-
tions of tiles. The collection operations are translated by a second-level partial compiler

38 M. Budiu, J. Galenson, and G.D. Plotkin

into LINQ computations on collections of tiles, where the functions FExp applied to the
elements are also tile/matrix operations. The collection computations are then passed to
the distributed LINQ compiler of Section 6 to generate code running on a cluster. The
basic distributed matrix compiler is:

PCSEQ〈〈PCMatrix〈〈CTile, CCluster〉〉∗ 〉〉

where PCMatrix is a binary partial compiler that rewrites an operation on matrices in
terms of a LINQ computation (compiled by its second child) applying functions to a
set of tiles (compiled by its first child), and CCluster is the distributed LINQ compiler
described previously.

Figure 2 illustrates how the work of compiling the expression M1 ×M2 +M3 is
partitioned between the compilers involved. In this example we do not use a multi-core
LINQ compiler as part of CCluster.

m1t = M1.Tiles.HashPartition(t => t.X)
m2t = M2.Tiles.HashPartition(t => t.Y)
m1m2 = m1t. Apply(m2t,
 (tt1, tt2) =>tt1.Join(tt2, t => t.X, t => t.Y, (t1, t2) => new Tile(t1 * t2 , t1.X, t2.Y))
 .GroupBy(t => t.Pos)
 .Select(g => g.Aggregate((t1, t2) => new Tile(t1 + t2 , t1.Pos))))
 .HashPartition(t => t.Pos)
 .Apply(
 s => s.GroupBy(t => t.Pos)
 .Select(g => g.Aggregate((t1, t2) => new Tile(t1 + t2 , t.Pos))))

m3t = M3.Tiles.Concat(m1m2)
 .HashPartition(t => t.Pos)
 .Apply(
 s => s.GroupBy(t => t.Pos)
 .Select(g => g.Aggregate((t1, t2) => new Tile(t1 + t2 , t.Pos))))

PCMatrix CLINQ CTile PCSEQ CCLUSTER

Fig. 2. Intermediate result produced when compiling the expression M1 * M2 + M3 using the
distributed matrix compiler. The colored dotted lines indicate how various parts of the program
are generated or assigned to various compilers; PCSEQ is responsible for the complete program.
We show the logical program state just before the leaf compilers CTile and CLINQ (which is
a part of CCluster) are invoked. HashPartition implements the “part” partitioning construct,
while Apply corresponds to the “runm” construct that executes a program on one partition, and
Concat is concatenation.

7 Related Work

Federated and heterogeneous distributed databases also decompose computations be-
tween multiple computation engines. In the former, queries are converted into queries
against component databases using wrappers [25,15], and most work concentrates on
optimizations. Partial compilers serve a similar, but more general, role as they can have
multiple children while wrappers operate on a single database. Regarding the latter,

The Compiler Forest 39

systems such as Dremel [18] that use a tree of databases to execute queries could be
implemented in a principled way using a hierarchy of partial compilers.

The authors of [16] use graph transformations to allow multiple analyses to commu-
nicate. In [4] cooperating decompilers are proposed, where individual abstract interpre-
tations share information. Our approach supports these applications using the iteration
operation.

As we have seen, multistage compilers, e.g., [13,24], fit within our framework. How-
ever our formalism is more general than standard practice, as non-unary partial compil-
ers enable branching partial multistage compilation, dividing sources between different
engines, or parallelizing data computations.

8 Discussion and Conclusions

We made several simplifications so as to concentrate on the main points: partial com-
pilers and their compositions. For example, μLINQ does not have a join operator, and
function expressions were left unspecified; in particular they did not contain nested
queries. Adding join leads to tree-shaped queries rather than lists, and nested queries
lead to DAG’s: indeed DryadLINQ plans are DAG’s. (There seems to be no natu-
ral treatment of operator-labeled DAG’s for functional programming in the literature,
though there is related work on graphs [8].) There is a version of the star operator of
Section 3.1 for trees, which enables the compiler of Section 4.2 to be extended to joins;
there should also be a version for DAG’s.

A well-known shortcoming of modularity is that it hides information that could po-
tentially be useful across abstraction boundaries thereby impacting performance (see for
example the micro-kernel/monolithic operating system debate); in our context, it may
prevent cooperating partial compilers from sharing analysis results. A way to “cheat”
to solve this problem is to use a partial compiler whose source language is the same as
the intermediate language of its parent — a much richer language than the source alone.
Whether this approach is practical remains to be validated by more complex compiler
implementations.

The benefits of structuring compilers as we do may extend beyond modularity: since
partial compilers are now first-class values, operations for compiler creation, compo-
sition and extensibility can be exposed to users, allowing compilers to be customized,
created and invoked at run-time.

Partial compilers were motivated by the desire to discover the “right” interface be-
tween a set of cooperating compilers (the components of DryadLINQ described in the
introduction). We were surprised when we stumbled on the partial compiler method-
ology, because it is extremely general and very simple. A partial compiler provides a
compilation service to the upper layers (as do traditional compilers), but also invokes
the same, identical service from the lower layers. While this structure looks overly sim-
ple, it is surprisingly powerful; one reason is that the objects that cross the interface
between compilers are quite rich (source and target programs).

Acknowledgements. We are grateful to Martı̀n Abadi, Gavin Bierman, Valeria de Paiva,
Robert Harper, Martin Hyland, Michael Isard, Frank McSherry, and Phil Scott for their
comments and suggestions.

40 M. Budiu, J. Galenson, and G.D. Plotkin

References

1. Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L.,
Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)

2. Blass, A.: Questions and answers – a category arising in linear logic, complexity theory, and
set theory. In: Advances in Linear Logic. London Math. Soc. Lecture Notes, vol. 222, pp.
61–81 (1995)

3. Buneman, P., et al.: Comprehension syntax. SIGMOD Record 23(1), 87–96 (1994)
4. Chang, B.-Y.E., Harren, M., Necula, G.C.: Analysis of low-level code using cooperating

decompilers. In: Proc. 13th SAS, pp. 318–335. ACM (2006)
5. de Paiva, V.: The Dialectica categories. In: Proc. Cat. in Comp. Sci. and Logic, 1987. Cont.

Math., vol. 92, pp. 47–62. AMS (1989)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proc.

6th OSDI, pp. 137–150. ACM (2004)
7. Duffy, J.: Concurrent Programming on Windows. Addison Wesley (2008)
8. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program. 11(5), 467–

492 (2001)
9. Ghemawat, S., Gobioff, H., Leung, L.: The Google file system. In: Proc. 19th SOSP, pp.

29–43. ACM (2003)
10. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Hei-

delberg (1979)
11. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct. Program. 9(4),

355–372 (1999)
12. Hyland, J.M.E.: Proof theory in the abstract. APAL 114(1-3), 43–78 (2002)
13. Kelsey, R., Hudak, P.: Realistic compilation by program transformation. In: Proc. 16th POPL,

pp. 281–292. ACM (1989)
14. Kock, A.: Commutative monads as a theory of distributions. Theory and Applications of

Categories 26(4), 97–131 (2012)
15. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32,

422–469 (2000)
16. Lerner, S., et al.: Composing dataflow analyses and transformations. In: Proc. 29th POPL,

pp. 270–282. ACM (2002)
17. Meijer, E., et al.: LINQ: reconciling object, relations and XML in the .NET framework. In:

Proc. SIGMOD Int. Conf. on Manage. Data, p. 706. ACM (2006)
18. Melnik, S., et al.: Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow. 3,

330–339 (2010)
19. Milner, R., Bird, R.: The use of machines to assist in rigorous proof. Phil. Trans. R. Soc.

Lond. A 312(1522), 411–422 (1984)
20. Moggi, E.: Computational lambda-calculus and monads. In: Proc. 4th LICS, pp. 14–23. IEEE

Computer Society (1989)
21. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
22. Pierce, B.C.: Types and programming languages. MIT Press (2002)
23. Power, J., Robinson, E.: Premonoidal categories and notions of computation. MSCS 7(5),

453–468 (1997)
24. Sarkar, D., Waddell, O., Dybvig, R.K.: Educational pearl: A nanopass framework for com-

piler education. J. Funct. Program. 15(5), 653–667 (2005)
25. Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous,

and autonomous databases. ACM Comput. Surv. 22, 183–236 (1990)
26. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPU’s for

general-purpose uses. In: Proc. 12th. ASPLOS, pp. 325–335. ACM (2006)
27. Yu, Y., et al.: DryadLINQ: A system for general-purpose distributed data-parallel computing

using a high-level language. In: Proc. 8th OSDI, pp. 1–14. ACM (2008)

Pretty-Big-Step Semantics

Arthur Charguéraud

Inria Saclay – Île-de-France & LRI, Université Paris Sud, CNRS
arthur.chargueraud@inria.fr

Abstract. In spite of the popularity of small-step semantics, big-step
semantics remain used by many researchers. However, big-step seman-
tics suffer from a serious duplication problem, which appears as soon as
the semantics account for exceptions and/or divergence. In particular,
many premises need to be copy-pasted across several evaluation rules.
This duplication problem, which is particularly visible when scaling up
to full-blown languages, results in formal definitions growing far big-
ger than necessary. Moreover, it leads to unsatisfactory redundancy in
proofs. In this paper, we address the problem by introducing pretty-big-
step semantics. Pretty-big-step semantics preserve the spirit of big-step
semantics, in the sense that terms are directly related to their results,
but they eliminate the duplication associated with big-step semantics.

1 Introduction

There are two traditional approaches to formalizing the operational semantics of
a programming language: small-step semantics [11], and big-step semantics [7]. In
small-step semantics, the subterm in evaluation position is reduced step by step
and these transitions are reflected at the top level. In big-step semantics, a term
is directly related to its result, and the behavior of a term is expressed in terms
of the behavior of its subterms. While provably equivalent, these two approaches
are fundamentally different in terms of how evaluation rules are stated and how
proofs are conducted.

This paper describes and proposes a solution to a severe limitation of big-step
semantics: the fact that a number of rules and premises need to be duplicated in
order to handle exceptions and divergence. In particular, this limitation typically
discourages the use of big-step semantics in mechanized definitions of large-scale
languages. Before trying to address this limitation of the big-step semantics, we
may ask ourselves: Why should we care about big-step semantics? Why not just
use small-step semantics all the time?

To find out whether big-step semantics are still being used, we opened up
proceedings from recent programming language conferences. We counted the
number of research papers making use of a big-step semantics. In ICFP’11, 5
papers were describing results based on a big-step semantics, out of 8 papers that
had an operational semantics. In POPL’11, there were 7 out of 23. In ICFP’12,
there were 5 out of 9. An immediate conclusion that we can draw from these
rough statistics is that big-step is not dead.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 41–60, 2013.
© Springer-Verlag Berlin Heidelberg 2013

42 A. Charguéraud

A closer look at the papers involved reveals that the choice of the opera-
tional semantics usually depends on the topic covered by the paper. Papers on
type systems nearly always use a small-step semantics to conduct a soundness
proof in Wright and Felleisen’s style [12]. Papers describing a machine-level lan-
guage typically use a small-step relation to describe transitions between pairs
of machine configurations. Papers concerned with concurrent languages are also
almost exclusively described using small-step semantics. Furthermore, a major-
ity of the mechanized definitions of full-blown programming languages that have
been developed in recent years were based on small-step semantics.

There are, however, topics for which the use of a big-step semantics appears
to prevail. Cost semantics, which associate a cost to the evaluation of every ex-
pression, are mainly presented as big-step relations. Program logics often have
soundness and completeness proofs that are easier to conduct with respect to a
big-step relation. In particular, there are cases of completeness proofs, such as
that developed in the author’s thesis [1], that need to be conducted by induction
over a big-step derivation; any attempt to build the completeness proof with re-
spect to a small-step semantics amounts to re-proving on-the-fly the equivalence
between small-step and big-step semantics. Moreover, there are compiler trans-
formations that are easier to prove correct with respect to big-step semantics,
in particular for transformations introducing so-called “administrative redexes”,
which typically clutter simulation diagrams based on small-step semantics.

Big-step semantics are also widely used in informal descriptions. For example,
the reference manual of a programming language typically contain sentences of
the form “to evaluate if e1 then e2 else e3, first evaluate e1; if the result is true, then
evaluate e2; otherwise, evaluate e3.” None of the many reference manuals that we
have looked at contains a sentence of the form “if e1 takes a step to expression e1′
then if e1 then e2 else e3 takes a step to if e1′ then e2 else e3.” Thus, we speculate
that it would be easier to convince the standards committee in charge of a
given programming language of the adequacy of a big-step formalization than
to convince them of the adequacy of a small-step formalization.

Given that there are a number of important applications for which big-step
semantics seem to have an edge on small-step semantics, any significant improve-
ment to big-step semantics should be considered as a valuable contribution.

In this paper, we focus on a critical issue associated with big-step semantics:
the amount of duplication involved in the statement of the evaluation rules.
To illustrate the extent of the problem, consider a C-style for-loop of the form
“for (; t1 ; t2) { t3 }”, that is, a for-loop where the initialization expression has
already been executed. We use the notation “ for t1 t2 t3” to describe such a loop.
We next formalize its big-step semantics. For terminating executions, the evalu-
ation judgment takes the form t/m1

⇒ v/m2
, asserting that, in a store m1, the

evaluation of t terminates on the value v in a store m2. The two rules at the top
of Figure 1 describe the regular execution of a loop. When the loop condition t1
evaluates to false, the loop terminates. Otherwise, if t1 evaluates to true, we
evaluate the body t3 of the loop, and obtain the unit value, written tt . We then
evaluate the stepping expression t2, and start over.

Pretty-Big-Step Semantics 43

t1/m1
⇒ false/m2

for t1 t2 t3/m1
⇒ tt/m2

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒ tt/m5

for t1 t2 t3/m1
⇒ tt/m5

t1/m1
⇒exn

/m2

for t1 t2 t3/m1
⇒exn

/m2

t1/m1
⇒ true/m2

t3/m2
⇒exn

/m3

for t1 t2 t3/m1
⇒exn

/m3

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒exn

/m4

for t1 t2 t3/m1
⇒exn

/m4

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒exn

/m5

for t1 t2 t3/m1
⇒exn

/m5

t1/m1
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒∞

for t1 t2 t3/m1
⇒∞ co

Fig. 1. Big-step rules for C loops of the form “for (; t1 ; t2) { t3 }”, written “for t1 t2 t3”

The four rules at the bottom-left of Figure 1 describe the case of an excep-
tion being raised during the execution of the loop. These rules are expressed
using another inductive judgment, written t/m1

⇒exn
/m2

. They capture the fact
that the exception may be triggered during the evaluation of any of the subex-
pressions, or during the subsequent iterations of the loop. The four rules at the
bottom-right of Figure 1 describe the case of the loop diverging. These rules rely
on a coinductive big-step judgment, written t/m ⇒∞ [2,8]. “Coinductive” means
that a derivation tree for a judgment of the form t/m ⇒∞ may be infinite.

The amount of duplication in Figure 1 is overwhelming. There are two distinct
sources of duplication. First, the rules for exceptions and the rules for divergence
are extremely similar. Second, a number of evaluation premises are repeated
across many of the rules. For example, even if we ignore the rules for divergence,
the premise t1/m1

⇒ true/m2
appears 4 times. Similarly, t3/m2

⇒ tt/m3
appears

3 times and t2/m3
⇒ tt/m4

appears 2 times. This pattern is quite typical in big-
step semantics for constructs with several subterms.

One may wonder whether the rules from Figure 1 can be factorized. The
only obvious factorization consists of merging the regular evaluation judgment
(t/m1

⇒ v/m2
) with the judgment for exceptions (t/m1

⇒exn
/m2

), using a single
evaluation judgment that relates a term to a behavior, which consists of either a
value or an exception. This factorization, quite standard in big-step semantics,
here only saves one evaluation rule: the second rule from the top of Figure 1 would
be merged with the rule at the bottom-left corner. It is, however, not easy to
factorize the evaluation judgment with the divergence judgment, because one is
inductive while the other is coinductive. Another trick sometimes used to reduce

44 A. Charguéraud

the amount of duplication is to define the semantics of a for-loop in terms of other
language constructs, using the encoding “ if t1 then (t3 ; t2 ; for t1 t2 t3) else tt ”. Yet,
this approach does not support break and continue instructions, so it cannot be
applied in general. In summary, just to define the semantics of for-loops, even if
we merge the two inductive judgments, we need at least 9 evaluation rules with
a total number of 21 evaluation premises. We will show how to achieve a much
more concise definition, using only 6 rules with 7 evaluation premises.

With the pretty-big-step semantics introduced in this paper, we are able to
eliminate the two sources of duplication associated with big-step definitions.
First, we eliminate the duplication of premises. To that end, we break down
evaluation rules into simpler rules, each of them evaluating at most one subterm.
This transformation introduces a number of intermediate terms and increases the
number of evaluation rules, but it eliminates the need for duplicating premises
across several rules. Overall, the size of the formal definitions usually decreases.

Second, we set up the set of evaluation rules in such a way that it characterizes
either terminating executions or diverging executions, depending on whether we
consider an inductive or a coinductive interpretation for this set of rules. In
contrast to Cousot and Cousot’s bi-inductive semantics [3,4], which are based
on the construction of a least fixed point of the set of evaluation rules with
respect to a non-standard ordering that corresponds neither to induction nor
coinduction, our definitions are based on the standard notions of induction and
coinduction (as provided, e.g., by Coq).

Furthermore, we show that, when adding traces to the pretty-big-semantics,
the coinductive judgment suffices to describe both terminating and diverging
executions. Our definitions syntactically distinguish finite traces from infinite
traces. This approach leads to rules that are, in our opinion, simpler to under-
stand and easier to reason about than rules involving possibly-infinite traces
(coinductive lists), as used by Nakata and Uustalu [10] and Danielsson [5].

In theory, the fact that we are able to capture the semantics through a single
judgment means that we should be able to establish, through a single proof, that
a program transformation correctly preserves both terminating and diverging
behaviors. Unfortunately, the guard condition implemented in existing proof
assistants such as Coq or Agda prevents us from conducting such reasoning.
Workarounds are possible, but the encodings involved are so tedious that it would
not be realistic to use them in practice. For this reason, we have to postpone the
construction of proofs based on pretty-big-step trace semantics.

In this paper, we also investigate the formalization of type soundness proofs.
Interestingly, the pretty-big-step semantics allows for a generic error rule that
replaces all the error rules that are typically added manually to the semantics.
This generic error rule is based on a progress judgment, whose definition can be
derived in a simple and very systematic way from the set of evaluation rules.

To demonstrate the ability of the pretty-big-step to accommodate realistic
languages, we formalized a large fragment of Caml Light. Compared with the big-
step semantics, the pretty-big-step semantics has a size reduced by about 40%.

Pretty-Big-Step Semantics 45

This paper is organized as follows. In §2, we explain how to turn a big-step
semantics into its pretty-big-step counterpart. In §3, we discuss error rules and
type soundness proofs. In §4, we show how to extend the semantics with traces. In
§5, we explain how to handle more advanced language constructs and report on
the formalization of core-Caml. We then discuss related work (§6), and conclude
(§7). All the definitions and proofs from this paper have been formalized in Coq
and put online at: http://arthur.chargueraud.org/research/2012/pretty.

2 Pretty-Big-Step Semantics

2.1 Decomposition of Big-Step Rules

We present the pretty-big-step semantics using the call-by-value λ-calculus. The
grammar of values and terms are as follows.

v := intn | absx t t := val v | varx | app t t

Thereafter, we leave the constructor val implicit, writing simply v instead of val v
whenever a term is expected. (In Coq, we register val as a coercion.) We recall
the definition of the standard big-step judgment, which is written t ⇒ v.

v ⇒ v

t1 ⇒ absx t t2 ⇒ v [x→ v] t ⇒ v′

app t1 t2 ⇒ v′

The rules of the pretty-big-step semantics are obtained by decomposing the
rules above into more atomic rules that consider the evaluation of at most one
subterm at a time. A first attempt at such a decomposition consists of replacing
the evaluation rule for applications with the following three rules.

t1 ⇒ v1 app v1 t2 ⇒ v′

app t1 t2 ⇒ v′
t2 ⇒ v2 app v1 v2 ⇒ v′

app v1 t2 ⇒ v′
[x→ v] t ⇒ v′

app (absx t) v ⇒ v′

These rules, without further constraints, suffer from an overlapping problem.
For example, consider the term app v1 t2. This term is subject to the application
of the second rule, which evaluates t2. However, it is also subject to application
of the first rule, whose first premise would reduce v1 to itself and whose second
premise would be identical to the conclusion of the rule. The fact that two dif-
ferent rules can be applied to a same term means that the evaluation judgment
is not syntax-directed and thus not very convenient to work with. Even worse,
the fact that an evaluation rule can be applied without making progress is prob-
lematic when considering a coinductive interpretation of the evaluation rules;
typically, one could prove, by applying the first reduction rule infinitely many
times, that any term of the form app v1 t2 diverges.

Cousot and Cousot [3,4], who use a similar decomposition of the big-step rules
as shown above, prevent the overlapping of the rules by adding side-conditions.
For example, the evaluation rule that reduces app t1 t2 has a side-condition en-
forcing t1 to not be already a value. However, such side-conditions are numerous
and they need to be discharged in formal proofs.

http://arthur.chargueraud.org/research/2012/pretty

46 A. Charguéraud

Instead of using side-conditions, we ensure that the three evaluation rules
introduced above are always applied one after the other by introducing interme-
diate terms, whose grammar is shown below. Observe that intermediate terms
are not defined as an extension of the grammar of regular terms, but as a new
grammar that embeds that of regular terms. This presentation avoids polluting
the syntax of source terms with purely-semantical entities.

e := trm t | app1 v t | app2 v v

We extend the evaluation judgment to intermediate terms, defining an inductive
judgment of the form e ⇓ v. In the particular case where e describes a regular
term, the judgment takes the form (trm t) ⇓ v. Thereafter, we leave the con-
structor trm implicit and thus simply write t ⇓ v. The predicate e ⇓ v is defined
inductively by the rules shown below. The evaluation of an application app t1 t2
takes three step. First, we reduce t1 into v1 and obtain the term app1 v1 t2. Sec-
ond, we reduce t2 into v2 and obtain the term app2 v1 v2. Third, assuming v1 to
be of the form absx t, we proceed to the β-reduction and evaluate [x → v] t in
order to obtain some final result v′.

v ⇓ v

t1 ⇓ v1 app1 v1 t2 ⇓ v′

app t1 t2 ⇓ v′

t2 ⇓ v2 app2 v1 v2 ⇓ v′

app1 v1 t2 ⇓ v′
[x→ v] t ⇓ v′

app2 (absx t) v ⇓ v′

The definitions above provide an adequate reformulation of the big-step se-
mantics by which complex rules have been decomposed into a larger num-
ber of more elementary rules. This decomposition avoids the duplication of
premises when adding support for exceptions and divergence. Observe that the
intermediate terms introduced in the process correspond to the intermediate
states of an interpreter. For example, the form app1 v1 t2 corresponds to the
state of the interpreter after the evaluation of the first let-binding in the code
“ let v1 = eval t1 in let v2 = eval t2 in let (absx t) = v1 in eval ([x→ v2] t)”.

2.2 Treatment of Exceptions

We now extend the source language with value-carrying exceptions and exception
handlers. The term raise t builds an exception and throws it. The term try t1 t2
is an exception handler with body t1 and handler t2. Its semantics is as follows.
If t1 produces a regular value, then try t1 t2 returns this value. However, if t1
raises an exception carrying a value v1, then try t1 t2 reduces to app t2 v1.

To describe the fact that a term can produce either a regular value or an
exception carrying a value, the evaluation judgment is generalized to the form
e ⇓ b, where b denotes a behavior, built according to the grammar below.

b := ret v | exn v

Pretty-Big-Step Semantics 47

Because we generalize the form of the judgment, we also need to generalize
the form of the intermediate terms. For example, consider the evaluation of an
application app t1 t2. First, we evaluate t1 into a behavior b1. We then obtain the
intermediate term app1 b1 t2. To evaluate this later term, we need to distinguish
two cases. On the one hand, if b1 is of the form ret v1, then we should evaluate
the second branch t2. On the other hand, if b1 is of the form exn v, then we
should directly propagate exn v. The updated grammar of intermediate terms,
augmented with intermediate forms for raise and try, is as follows.

e := trm t | app1 b t | app2 v b | raise1 b | try1 b t

The definition of e ⇓ b follows a similar pattern as previously. It now also
includes rules for propagating exceptions. For example, app1 (exn v) t evaluates
to exn v. Moreover, the definition includes rules for evaluating raise and try. For
example, to evaluate try t1 t2, we first evaluate t1 into a behavior b1, and then
we evaluate the term try1 b1 t2. In the rules shown below, the constructor ret is
left implicit.

v ⇓ v

t1 ⇓ b1 app1 b1 t2 ⇓ b

app t1 t2 ⇓ b app1 (exn v) t ⇓ exn v

t2 ⇓ b2 app2 v1 b2 ⇓ b

app1 v1 t2 ⇓ b app2 v (exn v) ⇓ exn v

[x → v] t ⇓ b

app2 (absx t) v ⇓ b

t ⇓ b1 raise1 b1 ⇓ b

raise t ⇓ b raise1 v ⇓ exn v raise1 (exn v) ⇓ exn v

t1 ⇓ b1 try1 b1 t2 ⇓ b

try t1 t2 ⇓ b try1 v t ⇓ v

app t v ⇓ b

try1 (exn v) t ⇓ b

2.3 Treatment of Divergence

The above set of rules only describes terminating evaluations. To specify diverg-
ing evaluations, we are going to generalize the grammar of behaviors and to
consider a coinductive interpretation of the same set of rules as that describing
terminating evaluations.

First, we introduce the notion of outcome: the outcome of an execution is
either to terminate on a behavior b (i.e., to return a value or an exception), or
to diverge. We explicitly materialize the divergence outcome with a constant,
called div. An outcome, written o, is thus described as follows: o := ter b | div.

We update accordingly the grammar of intermediate terms. For example, con-
sider the evaluation of an application app t1 t2. First, we evaluate t1 into some
outcome o1 (a value, an exception, or divergence). We then consider the term
app1 o1 t2, whose evaluation depends on o1. If o1 describes a value v1, we can
continue as usual by evaluating t2. However, if o1 describes an exception or the
constant div, then the term app1 o1 t2 directly propagates the outcome o1.

48 A. Charguéraud

b := ret v | exn v o := ter b | div e := trm t | app1 o t | app2 v o | raise1 o | try1 o t

abort (exn v) abort div v ⇓ v

t1 ⇓ o1 app1 o1 t2 ⇓ o

app t1 t2 ⇓ o

abort o

app1 o t ⇓ o

t2 ⇓ o2 app2 v1 o2 ⇓ o

app1 v1 t2 ⇓ o

abort o

app2 v o ⇓ o

[x → v] t ⇓ o

app2 (absx t) v ⇓ o

t ⇓ o1 raise1 o1 ⇓ o

raise t ⇓ o

abort o

raise1 o ⇓ o raise1 v ⇓ exn v

t1 ⇓ o1 try1 o1 t2 ⇓ o

try t1 t2 ⇓ o

try1 v t ⇓ v

app t v ⇓ o

try1 (exn v) t ⇓ o

abort o ∀v. o �= exn v

try1 o t ⇓ o

Fig. 2. Pretty-big-step semantics: e ⇓ o (inductive) and e ⇓co div (coinductive), with
the constructors val, trm, ret and ter left implicit in the rules

To capture the fact that app1 o1 t2 returns o1 both when o1 describes diver-
gence or an exception, we use an auxiliary predicate, called abort. The predicate
abort o1 asserts that o1 “breaks the normal control flow” in the sense that o1 is
either of the form exn v or is equal to div. We are then able to factorize the rules
propagating exceptions and divergence into a single abort rule, as shown below.

abort o1
app1 o1 t2 ⇓ o1

For describing terminating evaluations, we use an inductive judgment of the form
e ⇓ o. The particular form e ⇓ ter b, simply written e ⇓ b, corresponds to the
same evaluation judgment as that defined previously. For describing diverging
evaluations, we use a coevaluation judgment, written e ⇓co o, which is defined
by taking a coinductive interpretation of the same set of rules as that defining
the inductive judgment e ⇓ o. The particular form e ⇓co div asserts that the
execution of e diverges.

The complete set of rules defining both e ⇓ o and e ⇓co o appears in Fig-
ure 2. One novelty is the last rule, which is used to propagate divergence out of
exception handlers. The rule captures the fact that try1 div t produces the out-
come div, but it is stated in a potentially more general way that will be useful
when adding errors as a new kind of behavior. Remark: in Coq, we currently
need to copy-paste all the rules in order to build one inductive definition and
one coinductive definition, however it would be easy to implement a Coq plug-in
to automatically generate the coinductive definition from the inductive one.

2.4 Properties of the Judgments

While we are ultimately only interested in the forms e ⇓ b and e ⇓co div, our
definitions syntactically allow for the forms e ⇓ div and e ⇓co b. It is worth
clarifying their interpretation. For the former, the situation is quite simple: the

Pretty-Big-Step Semantics 49

form e ⇓ div is derivable only when e is an intermediate term that carries a div.
In particular, t ⇓ div is never derivable.

Lemma 1. For any term t, t ⇓ div → False.

The interpretation of the form e ⇓co b is more subtle. On the one hand, the
coinductive judgment contains the inductive one, because any finite derivation
is also a potentially-infinite derivation. It is trivial to prove the following lemma.

Lemma 2. For any term e and outcome o, e ⇓ o → e ⇓co o.

On the other hand, due to coinduction, it is sometimes possible to derive e ⇓co b
even when e diverges. For example, considerω = app δ δ, where δ = absx (appxx);
one can prove by coinduction that, for any outcome o, the relation ω ⇓co o holds.
Nevertheless, the coevaluation judgment is relatively well-behaved, in the sense
that if e ⇓co o holds, then either e terminates on some behavior b, or e diverges.
This property is formalized in the next lemma.

Lemma 3. For any term e and outcome o, e ⇓co o → e ⇓ o ∨ e ⇓co div.

We have proved in Coq that the pretty-big-step semantics shown in Figure 2
yields an operational semantics adequate with respect to the standard big-step
evaluation judgment for terminating programs (t ⇒ b) and with respect to
the coinductive big-step evaluation judgment (t ⇒∞) introduced by Leroy and
Grall [8,9] for diverging programs. (The proof requires the excluded middle.)

Theorem 1 (Equivalence with big-step semantics). For any term t, and
for any behavior b (describing either a value or an exception),

t ⇓ b if and only if t ⇒ b and t ⇓co div if and only if t⇒∞.

All the results presented so far can be generalized to non-deterministic semantics.
In the particular case of a deterministic semantics, such as our call-by-value λ-
calculus, we can express the determinacy property as follows.

Lemma 4 (Determinacy). ∀eo1o2. e ⇓ o1 ∧ e ⇓co o2 → o1 = o2

As corollaries, we can prove that if a given term e evaluates to a behavior o1,
then it cannot evaluate to a different behavior o2 and it cannot diverge.

3 Error Rules and Type Soundness Proofs

3.1 Explicit Error Rules

When considering a deterministic language, one can express the type soundness
theorem in the form “if a term is well-typed, then it either terminates or diverges”.
However, for a non-deterministic language, such a statement does not ensure
soundness, because a term could execute safely in some execution but get stuck
in other executions. For a non-deterministic big-step semantics, the traditional
approach to proving type soundness consists of adding explicit error rules to the

50 A. Charguéraud

semantics, and then proving a theorem of the form “if a term is well-typed, then
it cannot evaluate to an error”.

Adding error rules to a pretty-big-step semantics turns out to be much easier
than for a big-step semantics, because we are able to reuse the abort rules for
propagating errors to the top level. To describe stuck terms in our language, it
suffices to add a behavior err, to state that it satisfies the predicate abort, and
to add two error rules, one for variables and one for stuck applications.

b := . . . | err abort err varx ⇓ err

∀xt. v1 �= absx t

app2 v1 v2 ⇓ err

3.2 The Generic Error Rule

A classic problem with the introduction of explicit error rules for proving type
soundness is that the theorem can be compromised if an error rule is missing.
Indeed, if we remove a few error rules, then it makes it easier to prove that “if a
term is well-typed, then it cannot evaluate to an error”. So, the omission of an
error rule may hide a flaw in the type system that we want to prove sound.

For a language as simple as the λ-calculus, the error rules are few. However, for
a more realistic language, they can be numerous. In such a case, it becomes fairly
easy to forget a rule and thereby compromise the adequacy of the type soundness
theorem. One could hope to be able to prove (say, in Coq) that a semantics is
not missing any error rules. Yet, as far as we know, there is no way of formally
stating this property. (The formulation “every term either evaluates to a value
or to an error, or diverges” is not appropriate, due to non-determinism.)

In what follows, we explain how a pretty-big-step semantics can be equipped
with a generic error rule, which directly captures the intuition that “a term
should evaluate to an error if no other evaluation rule can be applied”. Remark:
this intuition was at the source of the work by Gunter and Rémy [6] on partial
proof semantics, which consists of a specialized proof theory that allows describ-
ing derivation trees with exactly one unproved leaf; our approach at handling
error rules in a generic manner can be viewed as a realization of Gunter and
Rémy’s idea of partial proofs within a standard proof theory.

The generic error rule is defined in terms of the progress judgment, written e ↓,
which asserts that there exists at least one pretty-big-step evaluation rule whose
conclusion matches the term e. The rules defining the progress judgment can
be derived in a systematic manner from the pretty-big-step evaluation rules, as
described next. An evaluation rule has a conclusion of the form e ⇓ o, a number
of evaluation premises and some other premises. The corresponding progress rule
is obtained by changing the conclusion to e ↓ (i.e., dropping the outcome o) and
by removing all the evaluation premises. The progress judgment associated with
the semantics described in Figure 2 is defined in Figure 3.

Then, the generic error rule, shown below, simply asserts that “if a term e
cannot make progress (e ↓ is false) then e should evaluate to an error”.

¬ (e ↓)
e ⇓ err

Pretty-Big-Step Semantics 51

v ↓ app t1 t2 ↓
abort o

app1 o t2 ↓ app1 v1 t2 ↓
abort o

app2 v o ↓

app2 (absx t) v ↓ raise t ↓
abort o

raise1 o ↓ raise1 v ↓ try t1 t2 ↓

try1 v t ↓ try1 (exn v) t ↓
abort o ∀v. o �= exn v

try1 o t ↓

Fig. 3. Progress judgment

We have proved in Coq that using the generic error rule yields evaluation and
coevaluation judgments that are equivalent to those obtained with the traditional
approach to introducing explicit error rules.

There are two main benefits to using the generic error rule. First, deriving
the progress rules from the evaluation rules is easier than deriving explicit error
rules. Indeed, instead of having to find out which rules are needed to complete the
semantics, we can apply to each of the evaluation rules a very systematic process
—so systematic that we believe it could be automated by a Coq plug-in. Second,
forgetting a progress rule does not compromise the type soundness theorem.
Indeed, omitting a progress rule makes it easier to prove that a term evaluates to
an error, and therefore makes it harder (if not impossible) to prove the statement
of the type soundness theorem. To be fair, it should be acknowledged that adding
arbitrary progress rules can compromise type soundness. That said, we believe
that it is much more unlikely for a researcher to add arbitrary progress rules
than to omit a few legitimate rules.

3.3 Type Soundness Proofs

To give an example of a type soundness proof, we equip our λ-calculus with
simple types. For simplicity, we enforce exceptions to carry only values of type
int. A source program can be typed using the standard typing judgment, of the
form E 	 t : T . We write 	 t : T when the typing context E is empty. The
typing rules for terms are standard, so we do not show them.

To prove type soundness, we first need to consider a typing judgment for
intermediate terms, written 	 e : T , and another one for outcomes, written
	 o : T . The proposition 	 o : T asserts that the outcome o describes either
a value of type T , or an exception carrying a value of type int, or the outcome
div. Note that err, the error outcome, is never well-typed. The rules defining the
new typing judgments appear in Figure 4. The type soundness theorem states
that “if a closed term is well-typed, then it cannot evaluate to an error”.

Theorem 2 (Type soundness). For any t and T , 	 t : T → ¬ t ⇓ err.

The proof is conducted by induction on the preservation property: (e ⇓ o) →
(e : T) → (o : T). To see why the above proposition implies the type

52 A. Charguéraud

 v : T

 ret v : T

 v : int

 exn v : T div : T

 t : T

 trm t : T

 o : S → T t : S

 app1 o t : T

 v : S → T o : S

 app2 v o : T

 o : int

 raise1 o : T

 o : T t : int → T

 try1 o t : T

Fig. 4. Typing rules for outcomes and intermediate terms

soundness theorem, it suffices to instantiate e with t, instantiate o with err,
and observe that 	 err : T is equivalent to False. There are two particularly
interesting cases in the proof. First, when the evaluation rule is an abort rule,
we need to exploit the fact that a well-typed outcome satisfying abort admits
any type. Formally: (o : T) ∧ (abort o) → (o : T ′). Second, when the
evaluation rule is the error rule, we need to establish that if a term is well-typed
then it must satisfy the progress judgment. Formally: (e : T)→ (e ↓).

All the other proof cases are straightforward. Compared with the big-step
semantics, the pretty-big-step semantics leads to a type soundness proof that
involves a slightly larger number of cases, however these proof cases are typically
simpler, due to the fact that the evaluation rules have at most two premises. In
practice, we have found that having simpler proof cases makes the proofs easier
to complete and easier to automate.

In summary, the pretty-big-step semantics, by reusing its abort rules, reduces
the amount of work needed for adding error behaviors. It also allows for a generic
error rule that makes it faster and less error-prone to add all the error rules.
Moreover, even though it requires additional typing rules for intermediate terms,
it leads to proofs that involve cases that are simpler and easier to automate.

4 Traces

Traces are typically used to record the interactions of a program with its envi-
ronment, for example i/o operations. In what follows, we show how to extend
the pretty-big-step evaluation rules with traces. A trace describes a sequence of
effects. Here, an effect, written α, describes a read operation (inn), or a write
operation (outn), or the absence of an operation (ε). We use the ε effect to make
the evaluation rules productive with respect to traces. Productivity is needed in
particular to ensure that a diverging program that does not perform any i/o
cannot be associated with arbitrary traces. A trace can be finite or infinite. A
finite trace, written τ , consists of a list of effects. An infinite trace, written σ,
consists of a stream of effects (i.e., an infinite list). The outcome of a program
can be either “termination on a value with a finite trace” or “divergence with an
infinite trace”. These definitions are summarized below.

α := ε | inn | outn o := ter τ b | divσ (τ list of α, and σ stream of α)

In several evaluation rules, we need to append a finite trace to the head of a finite
or an infinite trace. We write τ · τ ′ and τ · σ the corresponding concatenation

Pretty-Big-Step Semantics 53

abort (ter τ (exn v)) abort (divσ)

v ⇓ ter [ε] v
t1 ⇓ o1 app1 o1 t2 ⇓ o

app t1 t2 ⇓ [ε] · o
abort o

app1 o t ⇓ [ε] · o

t2 ⇓ o2 app2 v1 o2 ⇓ o

app1 (ter τ v1) t2 ⇓ [ε] · τ · o
abort o

app2 v o ⇓ [ε] · o
[x → v] t ⇓ o

app2 (absx t) (ter τ v) ⇓ [ε] · τ · o

t ⇓ o1 read1 o1 ⇓ o

read t ⇓ [ε] · o
abort o

read1 o ⇓ [ε] · o read1 (ter τ tt) ⇓ ter ([ε] · τ · [inn])n

t ⇓ o1 write1 o1 ⇓ o

write t ⇓ [ε] · o
abort o

write1 o ⇓ [ε] · o write1 (ter τ n) ⇓ ter ([ε] · τ · [outn]) tt

Fig. 5. Pretty-big-step semantics with traces

operations. By extension, we define an operation, written τ · o, to concatenate a
finite trace τ to the trace contained in the outcome o. The updated definition for
abort and the evaluation rules appear in Figure 5. ([·] denotes a singleton list.)

With traces, the inductive interpretation of the rules is no longer needed
because, thanks to the productivity of the rules with respect to the trace, a
diverging expression cannot coevaluate to a terminating behavior. We have:

Lemma 5. For any finite trace τ , (e ⇓co ter τ v) ⇔ (e ⇓ ter τ v).

An important consequence of Lemma 5 is that, when the semantics includes
traces, we do not need the inductive judgment (e ⇓ o) anymore. In theory,
all our reasoning can be conducted using solely the coevaluation judgment. In
particular, we should be able to prove a program transformation correct with
respect to both terminating and diverging programs through a single coinductive
proof. In practice, though, coinductive reasoning in proof assistants such as Coq
or Agda remains problematic because they only accept statement of theorems
whose conclusion is a coinductive judgment and where all applications of the
coinduction hypothesis are guarded by constructors. As soon as we fall out of
this basic pattern, we need to resort to heavy encodings in order to transform
the statement and the proof in the appropriate form.

The verification of program transformations, one important applications of
formal semantics, almost systematically departs from the basic pattern. Their
correctness proof typically relies on a simulation diagram establishing that any
behavior exhibited by the compiled code is indeed a behavior of the original code.
Consider for example a source-to-source translation, written �·�. Its correctness
would typically be captured by a statement of the form (�t� ⇓co o) → ∃o′. (o′ ≈
o) ∧ (t ⇓co o′), where o′ ≈ o asserts that o′ and o describe the same behavior
and contain traces that are bisimilar up to insertion or deletion of a finite num-
ber of ε between every two items of the traces. (The equivalence relation ≈ is
defined coinductively, by a single rule with premise o ≈ o′ and with conclusion

54 A. Charguéraud

εn · [α] · o ≈ εm · [α] · o′.) Intuitively, such a statement could be established by
coinduction, performing a case analysis on the derivation of �t� ⇓co o and, in
each case, picking the right o′ to build the proof of t ⇓co o′.

Unfortunately, this form of reasoning currently cannot be mechanized in Coq
because the conclusion of the statement is not just a coinductive judgment; in-
deed, the conclusion starts with an existential quantifier and a conjunction. One
possible work-around consists in defining o′ as a function of o and t (this defi-
nition is non-constructive), and then proving o′ ≈ o and t ⇓co o′, through two
independent proofs. These two proofs have a chance of satisfying the guard con-
dition because they conclude on coinductive judgments. Yet, overall, the work-
around described here is extremely unpleasant. First, defining the function that
produces o′ amounts to building the core of a proof term by hand. Second, the
process requires one to go three times over the structure of the intended proof:
once for the function definition, and once for each of the two coinductive proofs.

We must therefore acknowledge that, with the support for coinduction cur-
rently provided by Coq, mechanizing proofs based on pretty-big-step trace se-
mantics appears to be unrealistic in practice. Nevertheless, we hope that further
developments of proof assistants could allow us to conduct the intended reason-
ing without resorting to painful encodings, either by automating the generation
of the encoding, or by somehow relaxing the guard condition. We should then be
able to reason about both terminating and diverging programs in a single pass.

5 Scaling Up to Real Languages

So far, we have only considered a toy λ-calculus with exceptions. In this section,
we explain how to set up pretty-big-step rules for more advanced programming
language constructs, such as effectful operations, tuples of arbitrary arity, and
C-style for loops. We also show how to handle constructs for which the order of
evaluation of the subterms needs to remain deliberately unspecified.

5.1 Factorization of the Abort Evaluation Rules

The pretty-big-step semantics of a realistic language may involve a fair number
of intermediate terms. For each intermediate term, we typically need to intro-
duce an abort rule, i.e., a rule with a premise of the form abort o, to propagate
exceptions, divergence and errors. Fortunately, it is possible to factorize all the
abort rules using the generic abort rule. This rule formalizes the following in-
tuition: if an intermediate term e is not an exception handler and if one of its
arguments is an outcome o that satisfies the predicate abort, then e should di-
rectly evaluate to o. The definition of the generic abort rule relies on an auxiliary
function, called getout. It is defined in such a way that getout e returns the out-
come contained in e (there is at most one), except for exception handlers, which
are treated specially. Formally:

getout (app1 o t) ≡ Some o
getout (app2 v o) ≡ Some o
getout (raise1 o) ≡ Some o

getout (trm t) ≡ None
getout (try1 o t) ≡ None

Pretty-Big-Step Semantics 55

The generic abort rule, shown below, replaces the three abort rules from Figure 2.

getout e = Some o abort o
e ⇓ o

Throughout the rest of this section, when we introduce new intermediate terms,
we assume the definition of getout to be extended accordingly.

5.2 Side Effects

We now extend the source language with side effects. When the evaluation of a
term terminates, it produces not just a value or an exception, but also an updated
memory store. We therefore update the grammar of outcomes as follows.

o := termb | div

The pretty-big-step evaluation judgment now takes the form e /m ⇓ o, asserting
that the evaluation of the term e in the store m has o for outcome. In particular,
the proposition t /m ⇓ term′ b corresponds to the traditional big-step judgment
t/m ⇒ b/m′ and, similarly, the proposition t /m ⇓ div corresponds to t/m ⇒∞.
The evaluation rules are extended so as to take memory stores into account. For
example, the first rules for reducing applications are as shown below. Observe
that the intermediate term app1 o1 t2 is evaluated in the store m in which t1
was evaluated, and not yet in the store produced by t1. Indeed, at this point,
we do not yet know whether the evaluation of t1 terminates or diverges. In the
particular case where t1 terminates, the store produced by the evaluation of t1
can be pulled out of the outcome o1 and used for the evaluation of t2.

t1 /m ⇓ o1 app1 o1 t2 /m ⇓ o
app t1 t2 /m ⇓ o

t2 /m ⇓ o2 app2 v1 o2 /m ⇓ o
app1 (termv1) t2 /m′ ⇓ o

We end this section with an example of a rule that modifies the store. Consider
a term ref t1. Its evaluation goes through an intermediate term ref1 o1. If o1 is a
value, then a memory cell is allocated at a fresh location. The updated store is
then returned together with the address of the new memory cell.

t1 /m ⇓ o1 ref1 o1 /m ⇓ o
ref t1 /m ⇓ o

l /∈ dom(m)

ref1 (termv) /m′ ⇓ ter (m[l �→ v]) l

Other rules accessing and updating the memory store follow a similar pattern.

5.3 C-Style for Loops

We now come back to the example of C-style for loops described in the intro-
duction, revisiting the evaluation rules from Figure 1 using a pretty-big-step se-
mantics. We introduce a single intermediate term, written “ for i o t1 t2 t3”, where
i ∈ {1, 2, 3}. The pretty-big-step evaluation rules, shown below, are significantly

56 A. Charguéraud

more concise than their big-step counterpart. Note that we included an abort
rule, even though it would typically be covered by the generic abort rule (§5.1).

t1 /m ⇓ o1 for 1 o1 t1 t2 t3 /m ⇓ o

for t1 t2 t3 /m ⇓ o for 1 (retm false) t1 t2 t3 /m′ ⇓ retm tt

t3 /m ⇓ o3 for 2 o3 t1 t2 t3 /m ⇓ o

for 1 (retm true) t1 t2 t3 /m′ ⇓ o

t2 /m ⇓ o2 for 3 o2 t1 t2 t3 /m ⇓ o

for 2 (retm tt) t1 t2 t3 /m′ ⇓ o

for t1 t2 t3 /m ⇓ o

for 3 (retm tt) t1 t2 t3 /m′ ⇓ o

abort o

for i o t1 t2 t3 /m ⇓ o

5.4 List of Subterms

Consider a tuple expression, written tuple t, where t denotes a list of terms of ar-
bitrary length, and assume a left-to-right evaluation order. The semantics needs
to describe the fact that if one of the subterms of the tuple raises an exception or
diverge, then the remaining subterms should not be evaluated. In what follows,
we describe a technique for evaluating an ordered list of subterms in a way that
is not specific to tuples, so that we are able to reuse the same rules for reducing
other language constructs that involve lists of subterms (e.g., records).

We introduce an intermediate term, written list1 t v K, where v represents
the list of values that have already been produced, t represents the list of terms
remaining to be evaluated, and K denotes the continuation describing what term
to transition to once all the subterms have been evaluated. Here, K is a logical
function that takes a list of values as arguments and produces an intermediate
term. In practice, K is usually a partially-applied constructor.

To evaluate tuple t, we evaluate list1 t nil (tuple1), where the continuation tuple1
indicates that, when we get the list of values v describing the results of the
terms t, we should evaluate the term tuple1 v. This latter term will immediately
evaluate to the value vtuple v. The corresponding evaluation rules are:

list1 t nil (tuple1) /m ⇓ o
tuple t /m ⇓ o tuple1 v /m ⇓ term (vtuple v)

It remains to describe the rules involved in the evaluation of list1 t v K. If t is
empty, we apply (in the logic) the continuation K to v and obtain the term
from which to continue the evaluation. Otherwise, t is of the form t1 :: t. In
this case, we evaluate the head term t1, obtaining some outcome o, and we then
evaluate the term list2 o t v K. If o corresponds to a value, we can save this value
at the tail of the list v and continue. Otherwise, we can apply the generic abort
rule to propagate this outcome directly, skipping the evaluation of the remaining
terms t. The corresponding evaluation rules are shown below.

(K v) /m ⇓ o

list1 nil vK /m ⇓ o

t1 /m ⇓ o1 list2 o1 t v K /m ⇓ o

list1 (t1 :: t) v K /m ⇓ o

list1 t (v ++ [v1])K /m ⇓ o

list2 (termv1) t v K /m′ ⇓ o

Pretty-Big-Step Semantics 57

5.5 Unspecified Order of Evaluation

Some programming languages choose to deliberately not specify the order of
evaluation of the subterms of particular language constructs. For example, Caml
does not specify the order of evaluation of the arguments of a function call. In
what follows, we explain how to describe the semantics of a list of subterms
without specifying the order of evaluation. We use a list r whose items are either
values or unevaluated terms. Formally, r := Trm t | Val v, and r := list r.

We start from an intermediate term ulist1 tK, where, as previously, t denotes
the list of subterms and K is a logical function that denotes the continuation. To
evaluate ulist1 tK, we evaluate another intermediate term, ulist2 rK, where r is
obtained by mapping the constructor Trm to all the elements of t. Then, we pick
any unevaluated term from the list r and evaluate it. We repeat this process until
either the evaluation of one of the term diverges or produces an exception, or
until all the items in r are values. The rules, shown below, involve an intermediate
term of the form ulist3 r1 o r2K, where o denotes the outcome that has just been
produced, and where r1 and r2 denote the prefix and the suffix of r, respectively.

ulist2 (map (Trm) t)K /m ⇓ o
ulist1 tK /m ⇓ o

t1 /m ⇓ o1 ulist3 r1 o1 r2K /m ⇓ o
ulist2 (r1 ++ [Trm t1] ++ r2)K /m ⇓ o

ulist2 (r1 ++ [Val v1] ++ r2)K /m ⇓ o
ulist3 r1 (termv1) r2K /m′ ⇓ o

(K v) /m ⇓ o
ulist2 (map (Val) v)K /m ⇓ o

5.6 Formalization of Core-Caml

To assess the ability of the pretty-big-step semantics to scale up to a realistic
programming language, we formalized the semantics of core-Caml, both in big-
step and in pretty-big-step style. By core-Caml, we refer to the subset of Caml
Light made of booleans, integers, tuples, algebraic data types, mutable records,
boolean operators (lazy and, lazy or, negation), integer operators (negation,
addition, subtraction, multiplication, division), comparison operator, functions,
recursive functions, applications, sequences, let-bindings, conditionals (with op-
tional else branch), for loops and while loops, pattern matching (with nested
patterns, as patterns, or patterns, and when clauses), raise construct, try-with
construct with pattern matching, and assertions. (The features missing from
Caml Light are: floats, mutual recursion, recursive values, with construct for
records, and arrays. Objects and modules are not covered either.)

Translating the big-step semantics into a pretty-big-step one following the
ideas described in this paper was straightforward and took little time. Apart from
adapting the rules, the only extra work required consisted of the definition of
outcomes and of the abort predicate (4 lines), the definition of the 28 intermediate
terms, and the definition of the auxiliary function getout using a simple pattern
matching with 22 cases (one case per intermediate term carrying an outcome).

The table shown below quantifies the improvement. It reports on the number
of evaluation rules, the number of evaluation premises, and the number of tokens

58 A. Charguéraud

(excluding head quantified variables, which are typically omitted in paper def-
initions). It shows that switching to the pretty-big-step semantics reduced the
number of the evaluation rules by 38%, reduced the total number of evaluation
premises by more than a factor of 2, and reduced the total size of the evaluation
rules (as counted by the number of tokens) by 40%.

rules premises tokens
Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

6 Related Work

Cousot and Cousot [2] proposed a coinductive big-step characterization of di-
vergence for λ-terms. Leroy and Grall [8,9] showed how to represent coinductive
big-step semantics in a theorem prover such as Coq, and used this semantics
to prove that nontrivial program transformations preserve diverging behaviors.
They justify the need to introduce separate coinductive rules by observing that
naively taking the coinductive interpretation of the standard evaluation rules
yields a coevaluation judgment that does not properly characterizes diverging
terms. Indeed, there exist terms that diverge but do not coevaluate. Leroy and
Grall also explained how to extend their semantics with traces, using two judg-
ments: t ⇒ v/τ asserts that the execution of t produces the value v and a finite
trace τ (a list), and t ⇒∞/σ asserts that the execution of t diverges producing
an infinite trace σ (a stream). We have shown in this paper, among other things,
how to factorize these two separate judgments into a single one.

Following upon earlierwork [2],Cousot andCousot further developed the notion
of bi-inductive semantics [3,4]. These semantics are able to characterize both ter-
minating and diverging executions using a common set of inference rules. Their ap-
proach is based on the construction of a least fixed point of a set of evaluation rules
with respect to a non-standard ordering, which corresponds neither to induction
nor coinduction. By contrast, we have shown in this paper how to achieve the same
goal using only the standard notions of induction and coinduction. In their work,
Cousot and Cousot also decompose the evaluation rule for application in separate
rules. However, their decomposition does not go as far as ours. For example, two
of their rules perform the evaluation of the left branch of an application, whereas
with the pretty-big-step semantics we only need one such rule.

Nakata and Uustalu [10] propose a coinductive relation that provides a big-
step semantics for both terminating and diverging programs, using possibly-
infinite traces (coinductive lists) that record all the intermediate memory states
of an execution. Formally, they define traces coinductively: φ := 〈m〉 | m ::: φ.
Their (coinductive) big-step evaluation judgment takes the form t/m ⇒ φ. Its
definition, whose key rules are shown below, is mutually-recursive with another
judgment, t/φ ∗⇒ φ′. The definition is quite subtle. It is explained next.

t1/m ⇒ φ t2/(m ::: φ)
∗⇒ φ′

(t1 ; t2)/m ⇒ φ′
t/m ⇒ φ

t/〈m〉 ∗⇒ φ

t/φ
∗⇒ φ′

t/(m ::: φ)
∗⇒ (m ::: φ′)

Pretty-Big-Step Semantics 59

To evaluate a sequence (t1 ; t2), we first evaluate t1 and obtain a trace φ. Using
the relation t2/(m ::: φ)

∗⇒ φ′, we ensure that the trace φ produced by t1 corre-
sponds to the prefix of the trace φ′ associated with the term (t1 ; t2). If the trace
φ is finite, then we reach the judgment t2/〈m′〉 ∗⇒ φ′′, where m′ denotes the
state produced by t1 and where φ′′ corresponds to what remains of the trace φ′
after stripping its prefix φ. We can then proceed to the evaluation of t2 in m′.
Otherwise, if the trace φ is infinite, then the third rule shown above applies
indefinitely, ensuring that the trace φ′ associated with the term (t1 ; t2) is equal
(up to bisimilarity) to the trace φ produced by t1.

The manipulation of traces involved with the pretty-big-step semantics is, in
our opinion, much simpler for several reasons. First, instead of working with
potentially-infinite lists, we use a syntactic disjunction between finite traces and
infinite traces, so it is always clear whether we are describing a finite or an infinite
execution. Second, we do not need to use an auxiliary, mutually-coinductive
judgment to traverse traces; instead, we use a simpler concatenation operation
that only needs to traverse finite traces. Third, applying Nakata and Uustalu’s
approach to a λ-calculus instead of a simple imperative language would require
all the rules to be stated in continuation-passing style, because the judgment
t/φ

∗⇒ φ′ would need to be generalized to the form K/φ
∗⇒ φ′, where K denotes

a continuation that expects the result of the previous computation (that is, the
result stored at the end of the trace φ) and produces the term to continue the
evaluation from. Such a systematic use of continuations would likely result in
fairly obfuscated rules.

Danielsson [5] revisits Nakata and Uustalu’s work by defining a corecursive
function that yields a big-step semantics for both terminating and diverging
programs. This function produces a value of type (Maybe Value)⊥, where the
Maybe indicates the possibility of an error and where the bottom represents
the partiality monad. The partiality monad involves two constructors: one that
carries a value, and one that “delays” the exhibition of a value. Formally, the
coinductive definition is A⊥ := nowA | later (A⊥). The partiality monad thus
corresponds to a degenerated version of potentially-infinite traces, where the
spine of a trace does not carry any information; only the tail of a trace, if any,
carries a value. Note that, to accommodate non-deterministic semantics, the type
(Maybe Value)⊥ needs to be further extended with the non-determinism monad.

In summary, Danielsson’s semantics for the λ-calculus consists of a reference
interpreter, defined in a formal logic. (It is actually not so straightforward to
convince the checker of the guard condition that the definition of the inter-
preter indeed yields a productive function.) Note that this interpreter should
only be used for specification, not for execution, because it is quite inefficient:
each bind operation needs to traverse the trace that carries the result that it is
binding. Specifying the semantics of a language via an interpreter departs quite
significantly from the traditional statement of a big-step semantics as a relation
between a term and a result. We find that pretty-big-step semantics remains
much more faithful to big-step semantics, and is thus more likely to be accepted
as the reference semantics of a programming language. Moreover, some forms of

60 A. Charguéraud

reasoning, such as reasoning by inversion, are typically easier to conduct when
the definition is a relation than when it is a function.

7 Conclusion

In this paper, we addressed the duplication problem associated with big-step
semantics by introducing pretty-big-step semantics. Pretty-big-semantics rely
on four key ingredients: (1) a breakdown of complex rules into a larger number
of simpler rules, (2) a grammar of intermediate terms for ensuring that rules
are applied in the appropriate order, (3) an explicit constant div to represent
divergence, and (4) an inductive and a coinductive interpretation of the same
set of reduction rules. Pretty-big-step semantics accommodate the introduction
of a generic error rule for conducting type soundness proofs, and they scale up
to realistic programming languages. Moreover, they can easily be extended with
traces, in which case the behavior of both terminating and diverging programs
is adequately captured by the coinductive evaluation judgment alone.

Acknowledgments. I am grateful to Xavier Leroy for very useful feedback.

References

1. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification.
PhD thesis, Université Paris-Diderot (2010)

2. Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpretation.
In: POPL, pp. 83–94 (1992)

3. Cousot, P., Cousot, R.: Bi-inductive structural semantics: (extended abstract).
Electronic Notes Theoretical Computer Sciences 192(1), 29–44 (2007)

4. Cousot, P., Cousot, R.: Bi-inductive structural semantics. Information and Com-
putation 207(2), 258–283 (2009)

5. Danielsson, N.A.: Operational semantics using the partiality monad. In: ICFP, pp.
127–138. ACM (2012)

6. Gunter, C.A., Rémy, D.: A proof-theoretic assessment of runtime type errors. Re-
search Report 11261-921230-43TM, AT&T Bell Laboratories (1993)

7. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

8. Leroy, X.: Coinductive Big-Step Operational Semantics. In: Sestoft, P. (ed.) ESOP
2006. LNCS, vol. 3924, pp. 54–68. Springer, Heidelberg (2006)

9. Leroy, X., Grall, H.: Coinductive big-step operational semantics. CoRR,
abs/0808.0586 (2008)

10. Nakata, K., Uustalu, T.: Trace-Based Coinductive Operational Semantics for
While. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 375–390. Springer, Heidelberg (2009)

11. Plotkin, G.D.: A structural approach to operational semantics. Internal Report
DAIMI FN-19, Department of Computer Science, Aarhus University (1981)

12. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (1994)

Language Constructs

for Non-Well-Founded Computation

Jean-Baptiste Jeannin1, Dexter Kozen1, and Alexandra Silva2

1 Cornell University, Ithaca, NY 14853-7501, USA
{jeannin,kozen}@cs.cornell.edu

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

alexandra@cs.ru.nl

Abstract. Recursive functions defined on a coalgebraic datatype C may
not converge if there are cycles in the input, that is, if the input object
is not well-founded. Even so, there is often a useful solution. Unfortu-
nately, current functional programming languages provide no support
for specifying alternative solution methods. In this paper we give nu-
merous examples in which it would be useful to do so: free variables,
α-conversion, and substitution in infinitary λ-terms; halting probabili-
ties and expected running times of probabilistic protocols; abstract in-
terpretation; and constructions involving finite automata. In each case
the function would diverge under the standard semantics of recursion.
We propose programming language constructs that would allow the spec-
ification of alternative solutions and methods to compute them.

Keywords: coalgebraic types, functional programming, recursion.

1 Introduction

Coalgebraic datatypes have become popular in recent years in the study of infi-
nite behaviors and non-terminating computation. One would like to define func-
tions on coinductive datatypes by structural recursion, but such functions may
not converge if there are cycles in the input; that is, if the input object is not
well-founded. Even so, there is often a useful solution that we would like to
compute.

For example, consider the problem of computing the set of free variables of a
λ-term. In pseudo-ML, we might write

type term = let rec fv = function

| Var of string | Var v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}

and this works provided the argument is an ordinary (well-founded) λ-term.
However, if we call the function on an infinitary term (λ-coterm), say

let rec t = App (Var "x", App (Var "y", t))

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 61–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 J.-B. Jeannin, D. Kozen, and A. Silva

•

x •

y

(1)

then the function will diverge, even though it is clear the answer should be {x, y}.
Note that this is not a corecursive definition: we are not asking for a greatest
solution or a unique solution in a final coalgebra, but rather a least solution
in a different ordered domain from the one provided by the standard semantics
of recursive functions. The standard semantics gives us the least solution in
the flat Scott domain (P(string)⊥, �) with bottom element ⊥ representing
nontermination, whereas we would like the least solution in a different CPO,
namely (P(string), ⊆) with bottom element ∅.

The coinductive elements we consider are always regular, that is, they have a
finite but possibly cyclic representation. This is different from a setting in which
infinite elements are represented lazily. A few of our examples, like substitu-
tion, could be computed by lazy evaluation, but most of them, for example free
variables, could not.

Theoretically, the situation is governed by diagrams of the form

C

FC

A

FA

h

γ

Fh

α (2)

describing a recursive definition of a function h : C → A. Here F is a functor
describing the structure of the recursion. To apply h to an input x, the function
γ : C → FC identifies the base cases, and in the recursive case prepares the
arguments for the recursive calls; the function Fh : FC → FA performs the
recursive calls; and the function α : FA → A assembles the return values from
the recursive calls into final value h(x).

A canonical example is the usual factorial function

let rec factorial = function

| 0 -> 1

| n -> n * factorial (n-1)

Here the abstract diagram (2) becomes

� �

�+ �× � �+ �× �

h

γ

id� + id� × h

α (3)

where the functor is FX = �+ �×X and γ and α are given by:

γ(0) = ι0() α(ι0()) = 1

γ(n+ 1) = ι1(n+ 1, n) α(ι1(c, d)) = cd

Language Constructs for Non-Well-Founded Computation 63

where ι0 and ι1 are injectors into the coproduct. The fact that there is one
recursive call is reflected in the functor by the single X occurring on the right-
hand side. The function γ determines whether the argument is the base case 0
or the inductive case n + 1, and in the latter case prepares the recursive call.
The function α combines the result of the recursive call with the input value
by multiplication. In this case we have a unique solution, which is precisely the
factorial function.

Theoretical accounts of this general idea have been well studied [1,2,3,9]. Most
of this work is focused on conditions ensuring unique solutions, primarily when
C is well-founded or when A is a final coalgebra. The account most relevant to
this study is the work of Adámek et al. [2], in which a canonical solution can
be specified even when it is not unique, provided various desirable conditions
are met; for example, when A is a complete CPO and α is continuous, or when
A is a complete metric space and α is contractive. Also closely related are the
work of Widemann [10] on coalgebraic semantics of recursion and cycle detection
algorithms and the work of Simon et al. [7,8] on coinductive logic programming,
which addresses many of the same issues in the context of logic programming.

Ordinary recursion over inductive datatypes corresponds to the case in which
C is well-founded. In this case, the solution h exists and is unique: it is the least
solution in the standard flat Scott domain. For example, the factorial function
is uniquely defined by (3) in this sense. If C is not well-founded, there can be
multiple solutions, and the one provided by the standard semantics of recursion is
typically not be the one we want. Nevertheless, the diagram (2) can still serve as
a valid definitional scheme, provided we are allowed to specify a desired solution.
In the free variables example, the codomain of the function (sets of variables) is
indeed a complete CPO under the usual set inclusion order, and the constructor
α is continuous, thus the desired solution can be obtained by a least fixpoint
computation.

The example (1) involving free variables of a λ-coterm fits this scheme with
the diagram

Term P(Var)

F (Term) F (P(Var))

fv

γ

idVar + fv2 + idVar × fv

α

where FX = Var+X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}
γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v
γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.

Here the domain of fv (regular λ-coterms) is not well-founded and the codomain
(sets of variables) is not a final coalgebra, but the codomain is a complete CPO
under the usual set inclusion order with bottom element ∅, and the desired
solution is the least solution in this order; it is just not the one that would be
computed by the standard semantics of recursive functions.

64 J.-B. Jeannin, D. Kozen, and A. Silva

Unfortunately, current programming languages provide little support for spec-
ifying alternative solutions. One must be able to specify a canonical method for
solving systems of equations over an F -algebra (the codomain) obtained from the
function definition and the input. We will demonstrate through several examples
that such a feature would be extremely useful in a programming language and
would bring coinduction and coinductive datatypes to a new level of usability in
accordance with the elegance already present for algebraic datatypes. Our ex-
amples include free variables, α-conversion, and substitution in infinitary terms;
halting probabilities, expected running times, and outcome functions of proba-
bilistic protocols; and abstract interpretation. In each case, the function would
diverge under the standard semantics of recursion.

In this paper we propose programming language constructs that would allow
the specification of alternative solutions and methods to compute them. These
examples require different solution methods: iterative least fixpoint computation,
Gaussian elimination, structural coinduction. We describe how this feature might
be implemented in a functional language and give mock-up implementations of
all our examples. In our implementation, we show how the function definition
specifies a system of equations and indicate how that system of equations might
be extracted automatically and then passed to an equation solver. In many cases,
we suspect that the process can be largely automated, requiring little extra work
on the part of the programmer.

Current functional languages are not particularly well suited to the manipula-
tion of coinductive datatypes. For example, in OCaml one can form coinductive
objects with let rec as in (1), but due to the absence of mutable variables, such
objects can only be created and not dynamically manipulated, which severely
limits their usefulness. One can simulate them with references, but this negates
the elegance of algebraic manipulation of inductively defined datatypes, for which
the ML family of languages is so well known. It would be of benefit to be able
to treat coinductive types the same way.

Our mock-up implementation with all examples and solvers is available from
[5].

2 Motivating Examples

In this section we present a number of motivating examples that illustrate the
usefulness of the problem. Several examples of well-founded definitions that fit
the scheme (2) can be found in the cited literature, including the Fibonacci func-
tion and various divide-and-conquer algorithms such as quicksort and mergesort,
so we focus on non-well-founded examples: free variables and substitution in λ-
coterms, probabilistic protocols, and abstract interpretation.

2.1 Substitution

We now describe another function on infinitary λ-terms: substitution. A typical
implementation for well-founded terms would be

Language Constructs for Non-Well-Founded Computation 65

let rec subst t y = function

| Var x -> if x = y then t else Var x

| App (t1,t2) -> App (subst t y t1, subst t y t2)

| Lam (x,s) -> if x = y then Lam (x,s)

else if x ∈ fv t then

let w = fresh ()

in Lam (w, subst t y (rename w x s))

else Lam (x, subst t y s)

where fv is the free variable function defined above and rename w x s is a
function that substitutes a fresh variable w for x in a term s.

let rec rename w x = function

| Var z -> Var (if z = x then w else z)

| App (t1,t2) -> App (rename w x t1, rename w x t2)

| Lam (z,s) -> if z = x then Lam (z,s)

else Lam (z, rename w x s)

Applied to a λ-coterm with a cycle, for example attempting to substitute a term
for y in (1), the computation would never finish. Nevertheless, this computation
fits the scheme (2) with C = A = term (the set of λ-coterms), functor

FX = term+X2 + string×X Fh = idterm + h2 + idstring × h

and γ and α defined by

γ(Var x) =

{
ι0(t) if x = y

ι0(Var x) otherwise

γ(App (t1, t2)) = ι1(t1, t2)

γ(Lam (x, s)) =

⎧⎪⎨⎪⎩
ι0(Lam (x, s)) if x = y

ι2(w, rename w x s) if x �= y and x ∈ fv t, where w is fresh

ι2(x, s) otherwise

α(ι0(s)) = s

α(ι1(s1, s2)) = App (s1, s2)

α(ι2(x, s)) = Lam (x, s)

In this case, even though the domain is not well-founded, the solution never-
theless exists and is unique up to observational equivalence. This is because the
definition of the function is corecursive and takes values in a final coalgebra.

2.2 Probabilistic Protocols

In this section, we present a few examples in the realm of probabilistic protocols.
Imagine one wants to simulate a biased coin, say a coin with probability 2/3 of
heads, with a fair coin. Here is a possible solution: flip the fair coin. If it comes up
heads, output heads, otherwise flip again. If the second flip is tails, output tails,

66 J.-B. Jeannin, D. Kozen, and A. Silva

otherwise repeat from the start. This protocol can be represented succinctly by
the following probabilistic automaton:

s

H t

T

1
2

1
2

1
2

1
2

(4)

Operationally, starting from states s and t, the protocol generates series that
converge to 2/3 and 1/3, respectively.

PrH(s) = 1
2 + 1

8 + 1
32 + 1

128 + · · · = 2
3

PrH(t) = 1
4 + 1

16 + 1
64 + 1

256 + · · · = 1
3 .

However, these values can also be seen to satisfy a pair of mutually recursive
equations:

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1
2 · PrH(s).

This gives rise to a contractive map on the unit interval, which has a unique
solution. It is also monotone and continuous with respect to the natural order
on the unit interval, therefore has a unique least solution.

One would like to define the probabilistic automaton (4) by

type pa = H | T | Flip of float * pa * pa

let rec s = Flip (0.5,H,t) and t = Flip (0.5,T,s)

and write a recursive program, say something like

let rec pr_heads = function

| H -> 1.

| T -> 0.

| Flip (p,u,v) -> p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

and specify that the extracted equations should be solved exactly by Gaussian
elimination, or by iteration until achieving a fixpoint to within a sufficiently
small error tolerance ε. We give implementations using both methods.

The von Neumann trick for simulating a fair coin with a coin of arbitrary
bias is a similar example. In this protocol, we flip the coin twice. If the outcome
is HT, we output heads. If the outcome is TH, we output tails. These outcomes
occur with equal probability. If the outcome is HH or TT, we repeat.

s

t u

H T

p 1− p

1− p p

p 1− p

Here we would define

Language Constructs for Non-Well-Founded Computation 67

let rec s = Flip (p,t,u) and t = Flip (p,s,H) and u = Flip (p,T,s)

but the typing and recursive function pr_heads are the same. Markov chains
and Markov decision processes can be modeled the same way.

Other functions on probabilistic automata can be computed as well. The ex-
pected number of steps starting from state s is the least solution of the equation

E(s) =

{
0 if s ∈ {H, T}
1 + p · E(u) + (1 − p) · E(v) if s = Flip(p, u, v).

We would like to write simply

let rec ex = function

| H -> 0.

| T -> 0.

| Flip (p,u,v) -> 1. +. p *. (ex u) +. (1 -. p) *. (ex v)

and specify that the extracted equations should be solved by Gaussian elimina-
tion or least fixpoint iteration from 0.

The coinflip protocols we have discussed all fit the abstract definitional scheme
(2) in the form

S �

FS F�

h

γ

Fh

α

where S is the set of states (a state can be either H, T, or a triple (p, u, v), where
p ∈ � and u, v ∈ S, the last indicating that it flips a p-biased coin and moves to
state u with probability p and v with probability 1− p), and F is the functor

FX = �+ �+ �×X2 Fh = id� + id� + id� × h2.

For both the probability of heads and expected running times examples, we can
take

γ(s) =

⎧⎪⎨⎪⎩
ι0() if s = H

ι1() if s = T

ι2(p, u, v) if s = (p, u, v).

For the probability of heads, we can take

α(ι0()) = 1 α(ι1()) = 0 α(ι2(p, a, b)) = pa+ (1 − p)b.

For the expected running time, we can take

α(ι0()) = α(ι1()) = 0 α(ι2(p, a, b)) = 1 + pa+ (1− p)b.

The desired solution in all cases is a least fixpoint in an appropriate ordered
domain.

68 J.-B. Jeannin, D. Kozen, and A. Silva

2.3 Abstract Interpretation

In this section we present our most involved example: abstract interpretation
of a simple imperative language. Our example follows Cousot and Cousot [6] as
inspired by lecture notes of Stephen Chong [4].

Consider a simple imperative language of while programs with integer expres-
sions a and commands c. Let Var be a countable set of variables.

a ::= n ∈ � | x ∈ Var | a1 + a2

c ::= skip | x := a | c1 ; c2 | if a then c1 else c2 | while a do c

For the purpose of tests in the conditional and while loop, an integer is considered
true if and only if it is nonzero. Otherwise, the operational semantics is standard,
in the style of [11]. A store is a partial function from variables to integers, an
arithmetic expression is interpreted relative to a store and returns an integer,
and a command is interpreted relative to a store and returns an updated store.

Abstract interpretation defines an abstract domain that approximates the
values manipulated by the program. We define an abstract domain for integers
that abstracts an integer by its sign. The set of abstract values is AbsInt =
{neg, zero, pos,�}, where neg, zero, and pos represent negative, zero, and positive
integers, repectively, and � represents an integer of unknown sign. The abstract
values form a join semilattice with join � defined by the following diagram:

�

zeroneg pos

(5)

The abstract interpretation of an arithmetic expression is defined relative to
an abstract store σ : Var ⇀ AbsInt, used to interpret the abstract values of
variables. We write AS = Var ⇀ AbsInt for the set of abstract stores. The
abstract interpretation of arithmetic expressions is given by:

A�n�σ =

⎧⎪⎨⎪⎩
pos if n > 0

zero if n = 0

neg if n < 0

A�x�σ = σ(x)

A�a1 + a2� =
⎧⎪⎨⎪⎩
A�a1�σ if A�a2�σ = zero

A�a2�σ if A�a1�σ = zero

A�a1�σ � A�a2�σ otherwise.

The abstract interpretation of commands returns an abstract store, which is an
abstraction of the concrete store returned by the commands. Abstract stores
form a join semilattice, where the join � of two abstract stores just takes the
join of each variable: (σ1 � σ2)(x) = σ1(x) � σ2(x). Commands other than the
while loop are interpreted as follows:

C�skip�σ = σ C�x := a�σ = σ[x �→ A�a�σ] C�c1 ; c2�σ = C�c2�(C�c1�σ)

Language Constructs for Non-Well-Founded Computation 69

C�if a then c1 else c2�σ =

⎧⎪⎨⎪⎩
C�c1�σ if A�a�σ ∈ {pos, neg}
C�c2�σ if A�a�σ = zero

C�c1�σ � C�c2�σ otherwise.

We would ideally like to define

C�while a do c�σ =

{
σ if A�a�σ = zero

σ � C�while a do c�(C�c�σ) otherwise.

Unfortunately, when A�a�σ �= zero, the definition is not well-founded, because
it is possible for σ and C�c�σ to be equal. However, it is a correct definition of
C�while a do c� as a least fixpoint in the join semilattice of abstract stores. The
existence of the least fixpoint can be obtained in a finite time by iteration because
the join semilattice of abstract stores satisfies the ascending chain condition
(ACC), that is, it does not contain any infinite ascending chains.

Given A�a� and C�c� previously defined, C�while a do c� satisfies the following
instantiation of (2):

AS AS

AS+ AS× AS AS+ AS× AS

C�while a do c�

γ

idAS + idAS × C�while a do c�

α

where the functor is FX = AS+ AS×X and

γ(σ) =

{
ι1(σ) if A�a�σ = zero

ι2(σ, C�c�σ) otherwise

α(ι1(σ)) = σ

α(ι2(σ, τ)) = σ � τ

The function C�while a do c� is the least function in the pointwise order that
makes the above diagram commute.

This technique allows us to define C�c� inductively on the structure of c. An
inductive definition can be used here because the set of abstract syntax trees is
well-founded.

The literature on abstract interpretation explains how to compute the least
fixpoint, and much research has been done on techniques for accelerating con-
vergence to the least fixpoint. This body of research can inform compiler opti-
mization techniques for computation with coalgebraic types.

2.4 Finite Automata

We conclude this section with a brief example involving finite automata. Suppose
we want to construct a deterministic finite automaton (DFA) over a two-letter
alphabet accepting the intersection of two regular sets given by two other DFAs
over the same alphabet. We might define states coalgebraically by

type state = State of bool * state * state

70 J.-B. Jeannin, D. Kozen, and A. Silva

where the first component specifies whether the state is an accepting state and
the last two components give the states to move to under the two input symbols.
The standard product construction is defined coalgebraically simply by

let rec product (s : state) (t : state) : state =

match s, t with

| State (b1,s1,t1), State (b2,s2,t2) ->

State (b1 && b2, product s1 t1, product s2 t2)

and we can compute it, provided we can solve the generated equations.

3 A Framework for Non-Well-Founded Computation

In this section we discuss our proposed framework for incorporating language
constructs to support non-well-founded computation. At a high level, we wish to
specify a function h uniquely using a finite set E of structural recursive equations.
The function is defined in much the same way as an ordinary recursive function
on an inductive datatype. However, the value h(x) of the function on a particular
input x is computed not by calling the function in the usual sense, but by
generating a system of equations from the function definition and then passing
the equations to a specified equation solver to find a solution. The equation
solver is either a standard library function or programmed by the user according
to an explicit interface.

The process is partitioned into several tasks as follows.

1. The left-hand sides of the clauses in the function definition determine syn-
tactic terms representing equation schemes. These schemes are extracted by
the compiler from the abstract syntax tree of the left-hand side expressions.
This determines (more or less, subject to optimizations) the function γ in
the diagram (2).

2. The right-hand sides of the clauses in the function definition determine the
function α in the diagram (2) (again, more or less, subject to optimizations).
These expressions essentially tell how to evaluate terms extracted in step 1
in the codomain. As in 1, these are determined by the compiler from the
abstract syntax trees of the right-hand sides.

3. At runtime, when the function is called with a coalgebraic element c, a finite
system of equations is generated from the schemes extracted in steps 1 and
2, one equation for each element of the coalgebra reachable from c. In fact,
we can take the elements reachable from c as the variables in our equations.
Each such element matches exactly one clause of the function body, and this
determines the right-hand side of the equation that is generated.

4. The equations are passed to a solver that is specified by the user. This
will presumably be a module that is programmed separately according to a
fixed interface and available as a library function. There should be a simple
syntactic mechanism for specifying an alternative solution method (although
we do not specify here what that should look like).

Language Constructs for Non-Well-Founded Computation 71

Let us illustrate this using our initial example of the free variables. Recall the
infinitary λ-term below and the definition of the free variables function from the
introduction:

•

x •

y

let rec fv = function

| Var v -> {v}
| App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam (x,t) -> (fv t) − {x}

(6)

Steps 1 and 2 would analyze the left-and right-hand sides of the three clauses in
the body at compile time to determine the equation schemes. Then at runtime, if
the function were called on the coalgebraic element pictured, the runtime system
would generate four equations, one for each node reachable from the top node:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}

where t and u are the unlabeled top and right nodes of the term above.
As noted, these equations have many solutions. In fact, any set containing

the variables x and y will be a solution. However, we are interested in the least
solution in the ordered domain (P(Var),⊆) with bottom element ∅. In this case,
the least solution would assign {x} to the leftmost node, {y} to the lowest node,
and {x,y} to the other two nodes.

With this in mind, we would pass the generated equations to an iterative
equation solver, which would produce the desired solution. In many cases, such
as this example, the codomain is a complete partial order and we have default
solvers to compute least fixpoints, leaving to the programmer the simple task
of indicating that this is the desired solution method. That would be an ideal
situation: the defining equations of (6) plus a simple tag would be enough to
obtain the desired solution.

3.1 Generating Equations

The equations are generated from the recursive function definition and the input
c, a coalgebraic element, in accordance with the abstract definitional scheme (2).
The variables can be taken to be the elements of the coalgebraic object reachable
from c. There are finitely many of these, as no infinite object can ever exist in
a running program. More accurately stated, the objects of the final coalgebra
represented by coalgebraic elements during program execution are all regular in
the sense that they have a finite representation. These elements are first collected
into a data structure (in our implementation, simply a list) and the right-hand
sides of the equations are determined by the structure of the object using pattern
matching. The object matches exactly one of the terms extracted in step 1.

4 Implementation

The examples of §2 show the need for new program constructs that would allow
the user to manipulate corecursive types with the same ease and elegance as we

72 J.-B. Jeannin, D. Kozen, and A. Silva

are used to for algebraic datatypes. It is the goal of this section to provide lan-
guage constructs that allow us to provide the intended semantics to the examples
above in a functional language like OCaml.

The general idea behind the implementation is as follows. We want to keep
the overhead for the programmer to a minimum. We want the programmer to
specify the function in the usual way, then at runtime, when the function is
evaluated on a given argument, a set of equations is generated and passed on
to a solver, which will find a solution according to the specification. In an ideal
situation, the programmer only has to specify the solver. For the examples where
a CPO structure is present in the codomain, such as the free variables example,
or when we have a complete metric space and a contractive map, we provide
the typical solution methods (least and unique fixpoint) and the programmer
only needs to tag the codomain with the intended solver. In other cases, the
programmer needs to implement the solver.

4.1 Equations and Solvers

Our mock-up implementation aims to allow the programmer to encode a partic-
ular instantiation of the general diagram (2) as an OCaml module. This module
can then be passed to an OCaml functor, Corecursive, that builds the desired
function. We discuss the structure of Corecursive later in this section.

The functor F is represented by a parameterized type ’b f. The structures
(C, γ) and (A,α), which form a coalgebra and an algebra, respectively, for the
functor F , are defined by types coalgebra and algebra, respectively. This allows
us to specify γ naturally as a function from coalgebra to coalgebra f and α as
a function from algebra f to algebra. In the free variables example, if VarSet
is a module implementing sets of strings, this is done as:

type ’b f = I1 of string | I2 of ’b * ’b | I3 of string * ’b

type coalgebra = Var of string

| App of coalgebra * coalgebra

| Lam of string * coalgebra

type algebra = VarSet.t

let gamma (c:coalgebra) : coalgebra f =

match c with

| Var v -> I1 v

| App(c1, c2) -> I2(c1, c2)

| Lam(x, c) -> I3(x, c)

let alpha (s:algebra f) : algebra =

match s with

| I1 v -> VarSet.singleton v

| I2(s1, s2) -> VarSet.union s1 s2

| I3(x, s) -> VarSet.remove x s

Variables are represented by strings and fresh variables are generated with a
counter. Equations are of the form variable = t, where the variables on the
left-hand side are elements of the domain and the terms on the right side are
built up from the constructors of the datatype, constants and variables.

Language Constructs for Non-Well-Founded Computation 73

In the fv example, the domain was specified by the following datatype:

type term =

| Var of string

| App of term * term

| Lam of string * term

Recall the four equations above defining the free variables of the λ-term (1) from
the introduction:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}

A variable name is generated for each element of the coalgebra encountered. For
example, here we write v1 for the unknown corresponding to the value of fv t;
v2 for x; v3 for u; and v4 for y. An equation is represented as a pair of a variable
and an element of type f variable. The intuitive meaning of a pair (v, w) is the
equation v = α(w). In the example above, we would have

("v1", I2("v2", "v3")) representing v1 = v2 ∪ v3

("v2", I1("x")) representing v2 = {x}
("v3", I2("v4", "v1")) representing v3 = v4 ∪ v1

("v4", I1("y")) representing v4 = {y}

The function solve can now be described. Its arguments are a variable v for
which we want a solution and a system of equations in which v appears. It
returns a value for v that satisfies the equations. In most cases the solution is
not unique, and the solve method determines which solution is returned.

For technical reasons, two more functions need to be provided. The function
equal provides an equality test on the coalgebra, which allows the equation
generator to know when it has encountered a loop. In most cases, this equality
is just the OCaml physical equality ==; this is necessary because the OCaml
equality = on coinductive objects does not terminate. In some other cases the
function equal is an equality function built from both = and ==.

The function fh can be seen either as an iterator on the functor f in the style
of folding and mapping on lists or as a monadic operator on the functor f. It
allows the lifting of a function from ’c (typically coalgebra) to ’a (typically
algebra) to a function from ’c f to ’a f, while folding on an element of type ’e.
It works by destructing the element of type ’c f to get some number (perhaps
zero) elements of type ’c, successively applying the function on each of them
while passing through the element of type ’e, and reconstructing an element of
type ’a f with the same constructor used in ’c f, returned with the final value
of the element of type ’e. In the example on free variables, the function fh is
defined as:

let fh (h: ’c * ’e -> ’a * ’e) : ’c f * ’e -> ’a f * ’e = function

| I1 v, e -> I1 v, e

| I2(c1, c2), e -> let a1, e1 = h (c1, e) in

let a2, e2 = h (c2, e1) in

I2(a1, a2), e2

| I3(x, c), e -> let a, e1 = h (c, e) in

I3(x, a), e1

74 J.-B. Jeannin, D. Kozen, and A. Silva

If we had access to an abstract representation of the functor f, analyzing it
allows to automatically generate the function fh. This is what we do in §5.

All this is summarized in the signature of a type SOLVER, used to specify one
of those functions:

module type SOLVER = sig

type ’b f

type coalgebra

type algebra

val gamma : coalgebra -> coalgebra f

val alpha : algebra f -> algebra

type variable = string

type equation = variable * (variable f)

val solve : variable -> equation list -> algebra

val equal : coalgebra -> coalgebra -> bool

val fh : (’c * ’e -> ’a * ’e) -> ’c f * ’e -> ’a f * ’e

end

Let us now define the OCaml functor Corecursive. From a specification of a
function as a module S of type SOLVER, it generates the equations to be solved
and sends them to S.solve. Here is how it generates the equations: starting from
an element c of the coalgebra, it gathers all the elements of the coalgebra that
are reachable from c, recursively descending with gamma and fh, and stopping
when reaching an element that is equal—in the sense of the function equal—to
an element that has already been seen. For each of those elements, it generates
an associated fresh variable and an associated equation based on applying gamma

to that element.
From an element c, generating the equations and solving them with solve

returns an element a in the coalgebra, the result of applying the function we
defined to c.

module Corecursive :

functor (S: SOLVER) -> sig

val main : S.coalgebra -> S.algebra

end

We will now explain the default solvers we have implemented and which are
available for the programmer to use. These solvers cover the examples we have
shown before: a least fixpoint solver, a solver that generates coinductive elements
and is used for substitution, and a Gaussian elimination solver.

4.2 Least Fixpoints

If the algebra A is a CPO, then every monotone function f on A has a least
fixpoint, by the Knaster–Tarski theorem. Moreover, if the CPO satisfies the

Language Constructs for Non-Well-Founded Computation 75

ascending chain condition (ACC), that is, if there does not exist an infinite
ascending chain, then this least fixpoint can be computed in finite time by iter-
ation, starting from ⊥A. Even if the ACC is not satisfied, an approximate least
fixpoint may suffice.

In the free variables example, the codomain (P(Var),⊆) is a CPO, and its
bottom element is ⊥A = ∅. It satisfies the ACC as long as we restrict ourselves
to the total set of variables appearing in the term. This set is finite because the
term is regular and thus has a finite representation.

To implement this, first consider the set of equations: each variable is defined
by one equation relating it to the other variables. We keep a guess for each
variable, initially set at ⊥A, and compute a next guess based on the equation
for each variable. This eventually converges and we can return the value of the
desired variable. Note that to implement this, the programmer needs to know
that A is a CPO satisfying the ACC, and needs to provide two things: a bottom
element ⊥A, and an equality relation on A that determines when a fixpoint is
achieved.

The same technique can be used to implement the solver for the abstract
interpretation example, as it is also a least fixpoint in a CPO. This CPO is the
subset of the join semilattice of abstract domains containing only the elements
greater than or equal to the initial abstract domain. The ACC is ensured by the
fact that the abstract domain is always of finite height. The bottom element is
the initial abstract domain. Much of the code is shared with the free variables
example. As pointed out before, only the bottom element of A and the equality
on A change.

More suprisingly, this technique can also be used in the probability examples.
Here the system of equations looks more like a linear system of equation on �.
Except in trivial extreme cases, the equations are contracting, thus we can solve
them by iterative approximation until getting close enough to a fixpoint. The
initial element ⊥A is 0. The equality test on A is the interesting part: since it
determines when to stop iterating, two elements of A are considered equal if and
only if they differ by less than ε, the precision of the approximation. This is
specified by the programmer in the definition of equality on A. Of course, such a
linear system could also be solved with Gaussian elimination, as presented below
in §4.4.

It can be seen from these examples that the least fixpoint solver is quite
generic and works for a large class of problems. We need only parameterize with
a bottom element to use as an initial guess and an equality test.

4.3 Generating Coinductive Elements and Substitution

Let us return to the substitution example. Suppose we wanted to replace y in
Fig. 1(b) by the term of Fig. 1(a) to obtain Fig. 1(c). The extracted equations
would be

v1 = App(v2, v3)

v2 = Var("x")

v3 = App(v4, v1)

76 J.-B. Jeannin, D. Kozen, and A. Silva

•

x x

(a)

•

x •

y

(b)

•

x •

•

x x

(c)

Fig. 1. A substitution example

v4 = App(Var "x", Var "x")

and we are interested in the value of v1. Finding such a v1 is easily done by
executing the following code in OCaml:

let rec v1 = App(v2, v3)

and v2 = Var("x")

and v3 = App(v4, v1)

and v4 = App(Var "x", Var "x")

in v1

This code can be easily generated (as a string of text) from the equations. Unfor-
tunately, there is no direct way of generating the element that this code would
produce. One workaround is to use the module Toploop of OCaml that provides
the ability to dynamically execute code from a string, like eval in Javascript.
But that is not a satisfying solution.

Another solution is to allow the program to manipulate terms by making all
subterms mutable using references:

type term =

| Var of string

| App of term ref * term ref

| Lam of string * term ref

This type allows the creation of the desired term by going down the equations and
building the terms progressively, backpatching if necessary when encountering
a loop. But this is also unsatisfactory, as we had to change the type of term to
allow references.

The missing piece is mutable variables, which are currently not supported
in the ML family of languages. A variable is mutable if it can be dynamically
rebound, as with the Scheme set! feature or ordinary assignment in imperative
languages. In ML, variables are only bound once when they are declared and
cannot be rebound.

References can simulate mutable variables, but this corrupts the typing and
forces the programmer to work at a lower pointer-based level. Moreover, there
are subtle differences in the aliasing behavior of references and mutable variables.
The language constructs we propose should ideally be created in a programming
language with mutable variables.

Language Constructs for Non-Well-Founded Computation 77

4.4 Gaussian Elimination

In many of the examples on probabilities and streams, a set of linear equations
is generated. One of the examples on probabilistic protocols of §2.2 requires us
to find a float var1 such that

var1 = 0.5 + 0.5 * var2

var2 = 0.5 * var1

In the case where the equations are contractive, we have already seen that the
solution is unique and we can approximate it by iteration. We have also imple-
mented a Gaussian elimination solver that can be used to get a more precise
answer or when the map is not contractive but the solution is still unique.

But what happens when the linear system has no solution or an infinite num-
ber of solutions? If the system does not have a solution, then there is no fixpoint
for the function, and the function is undefined on that input. If there are an
infinite number of solutions, it depends on the application. For example, in the
case of computing the probability of heads in a probabilistic protocol, we want
the least such solution such that all variables take values between 0 and 1.

For example, let us consider the following probabilistic protocol: Flip a fair
coin. If it comes up heads, output heads, otherwise flip again. Ignore the result
and come back to this last state, effectively flipping again forever. This protocol
can be represented by the following probabilistic automaton:

s

H t

1
2

1
2

1

The probability of heads starting from s and t, respectively, is given by:

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1 · PrH(t).

The set of solutions for these equations for PrH(t) is the interval [0, 1], thus the
set of solutions for PrH(s) is the interval [1

2 , 1]. The desired result, however, is
the least of those solutions, namely 1/2 for PrH(s), because the protocol halts
with result heads only with probability 1/2.

Again, the Gaussian solver is quite generic and would be applicable to a large
class of problems involving linear equations.

5 Future Work: Automatic Partitioning

In §4, we described a mock-up implementation that demonstrates the feasibility
of our approach. In this implementation, the programmer needs to provide the
elements of the SOLVER module. We now describe our ideas for future work, and
in particular, ideas to make the task of the programmer easier by automatically
generating some of those elements.

Providing all the elements to a SOLVER module requires from the programmer
a good understanding of the concepts explained in this paper and a method

78 J.-B. Jeannin, D. Kozen, and A. Silva

to solve equations. On the other hand, examples show that the same solving
techniques arise again and again. Ideally, we would like the programmer to have
to write only:

type term = let rec[...] fv = function

| Var of string | Var v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}

where the keyword rec has been parameterized by the name of a module im-
plementing the SOLVER interface for a particular codomain, such as a generic
iteration solver for CPOs or contractive maps or a Gaussian elimination solver
for linear equations.

This definition is almost enough to generate the SOLVER module. Only three
more things need to be specified by the programmer:

– the function equal on coalgebras, which is just == in most cases; and
– the two elements needed in the least fixpoint algorithm: a bottom element
⊥A and an equality test =A on the algebra A, written algebra in the code.

The other elements can be directly computed from a careful analysis of the
function definition:

– The function can be typed with the usual typing rules for recursive functions.
Then algebra is defined as its input type and coalgebra as its output type.

– An analysis of the abstract syntax trees of the clauses of the function defini-
tion can determine what is executed before the recursive calls, which com-
prises γ, and what is executed after the recursive calls, which comprises α.
An analysis of the arguments that are passed to the recursive calls, as well
as the variables that are still alive across the boundary between gamma and
alpha, determine the functor f.

– The function fh can be defined by induction on the structure of the abstract
syntax tree defining ’a f. The only difficult case is the product, where we
apply h to every element of type ’a in the product, passing through the
element of type ’e, and returning a reconstructed product of the results.

– The type equation is always defined in the same way.
– Finally, the solve function is generic for all functions solved as a least fix-

point by iteration, just depending on the bottom element and the equality
on the algebra.

6 Conclusion

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are sim-
ilar in many ways. Nevertheless, there are some important distinctions. Algebraic
types have a long history, are very well known, and are heavily used in modern
applications, especially in the ML family of languages. Coalgebraic types, on the
other hand, are the subject of more recent research and are less well known. Not

Language Constructs for Non-Well-Founded Computation 79

all modern languages support coalgebraic types—for example, Standard ML and
F# do not—and even those that do may not do so adequately.

The most important distinction is that coalgebraic objects can be cyclic,
whereas algebraic objects are always well-founded. Functions defined by struc-
tural recursion on well-founded data always terminate and yield a value under
the standard semantics of recursion, but not so on coalgebraic data. A more
subtle distinction is that constructors can be interpreted as functions under the
algebraic interpretation, as they are in Standard ML, but not under the coalge-
braic interpretation as in OCaml.

Despite these differences, there are some strong similarities. They are defined
in the same way by recursive type equations, algebraic types as initial solutions
and coalgebraic types as final solutions. Because of this similarity, we would like
to program with them in the same way, using constructors and destructors and
writing recursive definitions using pattern matching.

In this paper we have shown through several examples that this approach
to computing with coalgebraic types is not only useful but viable. For this to
be possible, it is necessary to circumvent the standard semantics of recursion,
and we have demonstrated that this obstacle is not insurmountable. We have
proposed new programming language features that would allow the specification
of alternative solutions and methods to compute them, and we have given mock-
up implementations that demonstrate that this approach is feasible.

The chief features of our approach are the interpretation of a recursive function
definition as a scheme for the specification of equations, a means for extracting
a finite such system from the function definition and its (cyclic) argument, a
means for specifying an equation solver, and an interface between the two. In
many cases, such as an iterative fixpoint on a codomain satisfying the ascending
chain condition, the process can be largely automated, requiring little extra work
on the part of the programmer.

We have mentioned that mutable variables are essential for manipulating coal-
gebraic data. Current functional languages in the ML family do not support
mutable variables; thus true coalgebraic data can only be constructed explicitly
using let rec, not programmatically. Moreover, once constructed, a coalgebraic
object cannot be changed dynamically. These restrictions currently constitute a
severe restriction the use of coalgebraic datatypes. One workaround is to simulate
mutable variables with references, but this is a grossly unsatisfactory alternative,
because it confounds algebraic elegance and forces the programmer to work at a
lower pointer-based level. A future endeavor is to provide a smoother and more
realistic implementation of these ideas in an ML-like language with mutable
variables.

Acknowledgments. We are grateful to Bob Constable, Edgar Friendly, Nate
Foster, Helle Hvid Hansen, Bart Jacobs, Jonathan Kimmitt, Xavier Leroy, An-
drew Myers, Stefan Milius, Ross Tate, and the anonymous referees for helpful
comments. Part of this work was done while the first two authors were visiting
Radboud University Nijmegen and the CWI Amsterdam.

80 J.-B. Jeannin, D. Kozen, and A. Silva

References

1. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. Theo-
retical Informatics and Applications 41, 447–462 (2007)

2. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput.
Sci. 2(5:4), 1–31 (2006)

3. Capretta, V., Uustalu, T., Vene, V.: Corecursive Algebras: A Study of General
Structured Corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 84–100. Springer, Heidelberg (2009)

4. Chong, S.: Lecture notes on abstract interpretation. Harvard University (2010),
http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf

5. CoCaml project (December 2012),
http://www.cs.cornell.edu/Projects/CoCaml/

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, pp. 238–252.
ACM Press, New York (1977)

7. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

8. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007)

9. Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced
Mathematics, vol. 59. Cambridge University Press (1999)

10. y Widemann, B.T.: Coalgebraic semantics of recursion on circular data structures.
In: Cirstea, C., Seisenberger, M., Wilkinson, T. (eds.) CALCO Young Researchers
Workshop (CALCO-jnr 2011), pp. 28–42 (August 2011)

11. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
http://www.cs.cornell.edu/Projects/CoCaml/

Laziness by Need

Stephen Chang

Northeastern University
stchang@ccs.neu.edu

Abstract. Lazy functional programming has many benefits that strict
functional languages can simulate via lazy data constructors. In recogni-
tion, ML, Scheme, and other strict functional languages have supported
lazy stream programming with delay and force for several decades. Un-
fortunately, the manual insertion of delay and force can be tedious and
error-prone.

We present a semantics-based refactoring that helps strict program-
mers manage manual lazy programming. The refactoring uses a static
analysis to identify where additional delays and forces might be needed
to achieve the desired simplification and performance benefits, once the
programmer has added the initial lazy data constructors. The paper
presents a correctness argument for the underlying transformations and
some preliminary experiences with a prototype tool implementation.

1 Laziness in a Strict World

A lazy functional language naturally supports the construction of reusable com-
ponents and their composition into reasonably efficient programs [12]. For ex-
ample, the solution to a puzzle may consist of a generator that produces an
easily-constructed stream of all possible solutions and a filter that extracts the
desired valid solutions. Due to laziness, only a portion of the possible solutions
are explored. Put differently, lazy composition appears to naturally recover the
desired degree of efficiency without imposing a contorted programming style.

Unfortunately, programming in a lazy language comes at a cost. Not only
are data constructors lazy, but all functions are as well. This pervasiveness of
laziness makes it difficult to predict the behavior and time/space performance of
lazy programs. As several researchers noticed [2,6,15,16,23], however, most pro-
grams need only a small amount of laziness. In response, people have repeatedly
proposed lazy programming in strict functional languages [1,8,20,25,27]. In fact,
Scheme [22] and ML [3] have supported manual stream programming with delay

and force for decades. Using delay and macros, a programmer can easily turn
an eager, Lisp-style list constructor into a lazy one [11], while force retrieves
the value from a delayed computation.

However, merely switching from eager constructors to lazy ones is often not
enough to achieve the performance benefits of laziness. The insertion of one
delay tends to require additional delays elsewhere in the program to achieve
the desired lazy behavior. Since these additional delay insertions depend on

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 81–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 S. Chang

the value flow of the program, it can be difficult to determine where to insert
them, especially in the presence of higher-order functions. In short, manual lazy
programming is challenging and error-prone.

In response, we introduce a static analysis-based refactoring that assists pro-
grammers with the task of inserting delays and accompanying forces. We imag-
ine a programmer who wishes to create a lazy generator and starts using lazy
constructs in the obvious places. Our transformation then inserts additional
delays and forces to achieve the desired lazy performance benefit.

The paper is organized as follows. The second section introduces some moti-
vating examples. Section 3 presents the analysis-based program transformation,
and section 4 argues its correctness. Section 5 sketches a prototype implemen-
tation, and section 6 describes real-world applications. Section 7 compares our
approach with other attempts at taming laziness. Finally, section 8 lists some
ideas for future work.

2 Motivating Examples

Nearly every modern strict programming language supports laziness, either via
delay and force, or in the form of a streams or other lazy data structure
library. None of these languages offer much help, however, in figuring out the
right way to use these forms. To illustrate the problems, this section presents
three examples in three distinct languages, typed and untyped. The first one,
in Racket [10], shows how conventional program reorganizations can eliminate
the performance benefits of laziness without warning. The second, in Scala [19],
demonstrates how laziness propagates across function calls. The third example
illustrates the difficulties of developing an idiomatic lazy n-queens algorithm in
a strict language like OCaml [14]. That is, the problems of programming lazily
in a strict language are universal across many languages.

2.1 Reorganizations Interfere with Laziness

Using delay and force occasionally confuses even the most experienced pro-
grammers. This subsection retells a recent story involving a senior Racket de-
veloper. A game tree is a data structure representing all possible sequences of
moves in a game. It is frequently employed in AI algorithms to calculate an op-
timal next move, and it is also useful for game developers wishing to experiment
with the rules of a game. For anything but the simplest games, however, the
multitude of available moves at each game state results in an unwieldy or even
infinite game tree. Thus, laziness is frequently utilized to manage such trees.

The Racket code to generate a game tree might roughly look like this:

;; A GameTree (short: GT) is one of:

;; -- (GT-Leaf GameState)

;; -- (GT-Node GameState Player [ListOf Move])

;; A Move is a (Move Name Position GameTree)

Laziness by Need 83

;; gen-GT : GameState Player -> GameTree

(define (gen-GT game-state player)

(if (final-state? game-state)

(GT-Leaf game-state)

(GT-Node game-state player (calc-next-moves game-state player))))

;; calc-next-moves : GameState Player -> [ListOf Move]

(define (calc-next-moves game-state player)

〈〈for each possible attacker and target in game-state:〉〉
(define new-state ...)

(define new-player ...)

(Move attacker target (gen-GT new-state new-player)))

A game tree is created with the gen-GT function, which takes a game state and
the current active player. If the given state is a final state, then a GT-Leaf node is
created. Otherwise, a GT-Node is created with the current game state, the current
player, and a list of moves from the given game state. The calc-next-moves

function creates a list of Move structures, where each move contains a new game
tree starting from the game state resulting from the move.

An upcoming, Racket-based programming book utilizes such a game tree.
Initially, only a small game is implemented, so Move is defined as a strict con-
structor. As the book progresses, however, the game tree becomes unwieldy as
more features are added to the game. In response, the third argument of the Move
structure is changed to be lazy, meaning the call to the Move constructor implic-
itly wraps the third argument with a delay.1 With the lazy Move constructor,
the code above generates only the first node of a game tree.

To prepare the book for typesetting, an author reorganized the definition of
calc-next-moves in a seemingly innocuous fashion to fit it within the margins
of a page:

;; calc-next-moves : GameState Player -> [ListOf Move]

(define (calc-next-moves game-state player)

〈〈for each possible attacker and target in game-state:〉〉
(define new-state ...)

(define new-player ...)

(define new-gt (gen-GT new-state new-player))

(Move attacker target new-gt))

The underlined code above pulls the generation of the game tree into a separate
definition. As the astute reader will recognize, the new game tree is no longer
created lazily. Even though the Move constructor is lazy in the third position,
the benefits of laziness are lost. Even worse, such a performance bug is easily
unnoticed because the program still passes all unit tests.

In contrast, our laziness transformation recognizes that the new-gt variable
flows into the lazy position of the Move constructor, and in turn, proposes a
delay around the construction of the new game tree.

1 Specifically, Move becomes a macro that expands to a private constructor call where
the third argument is delayed. This is a common idiom in Lisp-like languages [11].

84 S. Chang

2.2 Laziness Must Propagate

A 2009 blog post2 illustrates a related tricky situation in the following Scala [19]
example. Scala delays method arguments whose type is marked with =>, as in:3

def foo[A,B](a: A, b: => B): B = ...

When foo is called, its second argument is not evaluated until its value is needed
inside the function body. However, if another function, bar, calls foo:

def bar[C,A,B](c: C, a: A, b: B): B = { ... foo(a, b) }

the b argument is evaluated when bar is called, thus negating the benefit of
laziness in foo. To recover it, we must delay the third argument to bar:

def bar[C,A,B](c: C, a: A, b: => B): B = ...

If yet another function calls bar then that function must delay its argument as
well. For programs with complex call graphs, the required delay points may be
scattered throughout the program, making programmer errors more likely. Our
transformation is designed to help with just such situations.

2.3 Idiomatic Lazy Programming in a Strict Language

The n-queens problem makes an illustrative playground for advertising lazy pro-
gramming. An idiomatic lazy solution to such a puzzle may consist of just two
parts: a part that places n queens at arbitrary positions on an n by n chess
board, and a part for deciding whether a particular placement is a solution to
the puzzle. Given these two components, a one-line function calculates a solution:

let nqueens n = hd (filter isValid all_placements)

The all placements variable stands for a stream of all possible placements of
n queens; filter isValid eliminates placements with conflicting queens; and
hd picks the first valid one. Lazy evaluation guarantees that filter isValid

traverses all placements for just enough placements to find the first solution.
The approach cleanly separates two distinct concerns. While all placements

may ignore the rules of the puzzle, it is the task of isValid to enforce them. If the
components were large, two different programmers could tackle them in parallel.
All they would have to agree on is the representation of queen placements, for
which we choose a list of board coordinates (r, c). The rest of the section explains
how an OCaml [14] programmer may develop such a lazy algorithm. Here is
all placements: :

let process_row r qss_so_far =

foldr (fun qs new_qss -> (map (fun c -> (r,c)::qs) (rng n)) @ new_qss)

[] qss_so_far

let all_placements = foldl process_row [[]] (rng n)

2 http://pchiusano.blogspot.com/2009/05/

optional-laziness-doesnt-quite-cut-it.html
3 The => syntax specifies “by-name” parameter passing for this position but the dis-
tinction between “by-name” and “lazy” is inconsequential here.

http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html
http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html

Laziness by Need 85

Brackets denote lists, rng n is [1. . . n], :: is infix cons, and @ is infix append.
All possible placements are generated by adding one coordinate at a time. The
process row function, given a row r and a list of placements qss so far, dupli-
cates each placement in qss so far n times, adding to each copy a new coordinate
of r with a different column c, and then appends all these new placements to
the final list of all placements. The process row function is called n times, once
per row. The result of evaluating all placements looks like this:

[[(n,1);(n-1,1); ... ;(1,1)];

...;

[(n,n);(n-1,n); ... ;(1,n)]]

where each line represents one possible placement.
Since OCaml is strict, however, using all placementswith the nqueens func-

tion from earlier generates all possible placements before testing each one of
them for validity. This computation is obviously time consuming and performs
far more work than necessary. For instance, here is the timing for n = 8 queens:4

real 0m52.122s user 0m51.399s sys 0m0.468s

If the programmer switches to lazy lists to represent all placements, then only
a portion of the possible placements should be explored. Specifically, all instances
of cons (::) are replaced with its lazy variant, represented with ::lz below. In
this setting, lazy cons is defined using OCaml’s Lazy module and is cons with
a delayed rest list. It is also necessary to add forces where appropriate.5 For
example, here is append (@) and map with lazy cons ([] also represents the
empty lazy list):6

let rec (@) lst1 lst2 =

match force lst1 with

| [] -> lst2

| x::lzxs -> x::lzdelay (xs @ lst2)

let rec map f lst =

match force lst with

| [] -> []

| x::lzxs -> f x::lzdelay (map f xs)

Running this program, however, surprises our lazy-strict programmer:

real 1m3.720s user 1m3.072s sys 0m0.352s

With lazy cons and force, the program runs even slower than the strict version.
Using lazy cons näıvely does not seem to generate the expected performance
gains. Additional delays and forces are required, though it is not immedi-
ately obvious where to insert them. This step is precisely where our analysis-
based refactoring transformation helps a programmer. In this particular case,
our transformation would insert a delay in the foldr function:

4 Run on an Intel i7-2600k, 16GB memory machine using the Linux time command.
5 “Appropriate” here means we avoid Wadler et al.’s [27] “odd” errors.
6 OCaml’s delaying construct is lazy but for clarity and consistency with the rest of
the paper we continue to use delay. Also, in ML languages, the delay is explicit.

86 S. Chang

let rec foldr f base lst =

match force lst with

| [] -> base

| x::lzxs -> f x (delay (foldr f base xs))

This perhaps unobvious delay is needed because f’s second argument eventually
flows to a lazy cons in append (@). Without this delay, the list of all queen
placements is evaluated prematurely. With this refactoring, and an appropriate
insertion of forces, the lazy-strict programmer sees a dramatic improvement:

real 0m3.103s user 0m3.068s sys 0m0.024s

Lazy programmers are already familiar with such benefits, but our refactoring
transformation enables strict programmers to reap the same benefits as well.

3 Refactoring For Laziness

The heart of our refactoring is a whole-program analysis that calculates where
values may flow. Our transformation uses the results of the analysis to insert
delays and forces. Section 3.1 describes the core of our strict language. We then
present our analysis in three steps: section 3.2 explains the analysis rules for our
language; section 3.3 extends the language and analysis with lazy forms: delay,
force, and lazy cons (lcons); and section 3.4 extends the analysis again to
calculate the potential insertion points for delay and force. Finally, section 3.5
defines the refactoring transformation function.

3.1 Language Syntax

Our starting point is an untyped7 functional core language. The language is
strict and uses a standard expression notation:

e ∈ Exp = n | b | x | λ(x . . .).e | e e . . . | o e e | zero? e | not e | if e e e
| let x = e in e | null | cons e e | first e | rest e | null? e

n ∈ Z, b ∈ Bool = true | false, x ∈ Var, o ∈ Op = + | − | ∗ | / |<|>|=| or | and

There are integers, booleans, variables, λs, applications, boolean and arithmetic
primitives, conditionals, (non-recursive) lets, and eager lists and list operations.
Here are the values, where both components of a non-empty list must be values:

v ∈ Val = n | b | λ(x . . .).e | null | cons v v

A program p consists of two pieces: a series of mutually referential function
definitions and an expression that may call the functions:

p ∈ Prog = d . . . e d ∈ Def = define f(x . . .) = e

7 Standard type systems cannot adequately express the flow of laziness and thus cannot
solve the delay-insertion problems from section 2. A type error can signal a missing
force, but a type system will not suggest where to add performance-related delays.
Thus we omit types for this first step in our research.

Laziness by Need 87

3.2 Analysis Step 1: 0-CFA

Our initial analysis is based on 0-CFA [13,24,26]. The analysis assumes that
each subexpression has a unique label �, also drawn from Var, but that the set
of labels and the set of variables in a program are disjoint. The analysis computes
an abstract environment ρ̂ that maps elements of Var to sets of abstract values:

ρ̂ ∈ Env = Var→ P(v̂) � ∈ Var v̂ ∈ V̂al = val | λ(x . . .).� | cons � �

A set ρ̂(x) or ρ̂(�) represents an approximation of all possible values that can be
bound to x or observed at �, respectively, during evaluation of the program.

The analysis uses abstract representations of values, v̂, where val stands for
all literals in the language. In addition, λ(x . . .).� are abstract function values
where the body is represented with a label, and (cons � �) are abstract list values
where the �’s are the labels of the respective pieces. We overload the ·̂ notation
to denote a function that converts a concrete value to its abstract counterpart:

n̂ = val b̂ = val n̂ull = val ·̂ : Val→ V̂al

̂λ(x . . .).e� = λ(x . . .).� ̂
cons v�11 v�22 = cons �1 �2

We present our analysis with a standard [18], constraints-based specification,
where notation ρ̂ |= p means ρ̂ is an acceptable approximation of program p.
Figures 1 and 2 show the analysis for programs and expressions, respectively.

The [prog] rule specifies that environment ρ̂ satisfies program p = d . . . e if
it satisfies all definitions d . . . as well as the expression e in the program. The
[def] rule says that ρ̂ satisfies a definition if the corresponding abstract λ-value
is included for variable f in ρ̂, and if ρ̂ satisfies the function body as well.

In figure 2, the [num], [bool], and [null] rules show that val represents these
literals in the analysis. The [var] rule connects variables x and their labels �,
specifying that all values bound to x should also be observable at �. The [lam]
rule for an �-labeled λ says that its abstract version must be in ρ̂(�) and that
ρ̂ must satisfy its body. The [app] rule says that ρ̂ must satisfy the function
and arguments in an application. In addition, for each possible λ in the function
position, the arguments must be bound to the corresponding parameters of that λ
and the result of evaluating the λ’s body must also be a result for the application
itself. The [let] rule has similar constraints. The [op], [zero?], [not], and [null?]
rules require that ρ̂ satisfy a primitive’s operands and uses val as the result.
The [if] rule requires that ρ̂ satisfy the test expression and the two branches,
and that any resulting values in the branches also be a result for the entire

ρ̂ |= d . . . e iff [prog]

ρ̂ |=d d ∧ . . . ∧ ρ̂ |=e e

ρ̂ |=d define f(x . . .) = e� iff [def]

λ(x . . .).	 ∈ ρ̂(f) ∧ ρ̂ |=e e�

Fig. 1. 0-CFA analysis on programs

88 S. Chang

ρ̂ |=e n� iff val ∈ ρ̂() [num]

ρ̂ |=e b� iff val ∈ ρ̂() [bool]

ρ̂ |=e x� iff ρ̂(x) ⊆ ρ̂() [var]

ρ̂ |=e (λ(x . . .).e�00)� iff [lam]

λ(x . . .).	0 ∈ ρ̂() ∧ ρ̂ |=e e�00

ρ̂ |=e (e
�f
f e�11 . . .)� iff [app]

ρ̂ |=e e
�f
f ∧ ρ̂ |=e e�11 ∧ . . . ∧

(∀λ(x1 . . .).	0 ∈ ρ̂(f) :

ρ̂(1) ⊆ ρ̂(x1) ∧ . . . ∧
ρ̂(0) ⊆ ρ̂())

ρ̂ |=e (let x = e�11 in e�00)� iff [let]

ρ̂ |=e e�11 ∧ ρ̂(1) ⊆ ρ̂(x) ∧
ρ̂ |=e e�00 ∧ ρ̂(0) ⊆ ρ̂()

ρ̂ |=e (o e�11 e�22)� iff [op]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ val ∈ ρ̂()

ρ̂ |=e (zero? e�11)� iff [zero?]

ρ̂ |=e e�11 ∧ val ∈ ρ̂()

ρ̂ |=e (not e�11)� iff [not]

ρ̂ |=e e�11 ∧ val ∈ ρ̂()

ρ̂ |=e (if e�11 e�22 e�33)� iff [if]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ ρ̂(2) ⊆ ρ̂()

∧ ρ̂ |=e e�33 ∧ ρ̂(3) ⊆ ρ̂()

ρ̂ |=e null
� iff val ∈ ρ̂() [null]

ρ̂ |=e (null? e�11)� iff [null?]

ρ̂ |=e e�11 ∧ val ∈ ρ̂()

ρ̂ |=e (cons e�11 e�22)� iff [cons]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ (cons 	1 	2) ∈ ρ̂()

ρ̂ |=e (first e�11)� iff ρ̂ |=e e�11 ∧ [first]

(∀(cons 	2) ∈ ρ̂(1) : ρ̂(2) ⊆ ρ̂())

ρ̂ |=e (rest e�11)� iff ρ̂ |=e e�11 ∧ [rest]

(∀(cons 	2) ∈ ρ̂(1) : ρ̂(2) ⊆ ρ̂())

Fig. 2. Step 1: 0-CFA analysis on expressions

expression. The [cons] rule for an �-labeled, eager cons requires that ρ̂ satisfy
both arguments and that a corresponding abstract cons value be in ρ̂(�). Finally,
the [first] and [rest] rules require satisfiability of their arguments and that the
appropriate piece of any cons arguments be a result of the entire expression.

3.3 Analysis Step 2: Adding delay and force

Next we extend our language and analysis with lazy forms:

e ∈ Exp = . . . | delay e | force e | lcons e e

where lcons e1 e2
df≡ cons e1 (delay e2)

The language is still strict but delay introduces promises. A force term re-
cursively forces all nested delays. Lazy cons (lcons) is only lazy in its rest
argument and first and rest work with both lcons and cons values so that
rest (lcons v e) results in (delay e).

We add promises and lazy lists to the sets of values and abstract values, and ·̂
is similarly extended. The abstract representation of a delay replaces the labeled
delayed expression with just the label and the abstract lcons is similar.

Laziness by Need 89

v ∈ Val = . . . | delay e | lcons v e
v̂ ∈ V̂al = . . . | delay � | lcons � �

. . . ̂delay e� = delay � ̂lcons v�11 e�22 = lcons �1 �2 ·̂ : Val→ V̂al

Figure 3 presents the new and extended analysis rules. The [delay] rule speci-
fies that for an �-labeled delay, the corresponding abstract delay must be in
ρ̂(�) and ρ̂ must satisfy the delayed subexpression. In addition, the values of the
delayed subexpression must also be in ρ̂(�). This means that the analysis approx-
imates evaluation of a promise with both a promise and the result of forcing that
promise. We discuss the rationale for this constraint below. The [force] rule says
that ρ̂ must satisfy the argument and that non-delay arguments are propagated
to the outer � label. Since the [delay] rule already approximates evaluation of
the delayed expression, the [force] rule does not have any such constraints.

We also add a rule for lcons and extend the [first] and [rest] rules to handle
lcons values. The [lcons] rule requires that ρ̂ satisfy the arguments and requires a
corresponding abstract lcons at the expressions’s � label. The [first] rule handles
lcons values just like cons values. For the [rest] rule, a delay with the lcons’s
second component is a possible result of the expression. Just like the [delay] rule,
the [rest] rule assumes that the lazy component of the lcons is both forced and
unforced, and thus there is another constraint that propagates the values of the
(undelayed) second component to the outer label.

Implicit Forcing. In our analysis, delays are both evaluated and unevaluated.
We assume that during evaluation, a programmer does not want an unforced
delay to appear in a strict position. For example, if the analysis discovers an un-
forced delay as the function in an application, we assume that the programmer
forgot a force and analyze that function call anyway. This makes our analysis
quite conservative but minimizes the effect of any laziness-related errors in the
computed control flow. On the technical side, implicit forcing also facilitates the
proof of a safety theorem for the transformation (see subsection 4.3).

ρ̂ |=e (delay e�11)� iff [delay]

(delay 	1) ∈ ρ̂() ∧ ρ̂ |=e e�11 ∧ ρ̂(1) ⊆ ρ̂()

ρ̂ |=e (force e�11)� iff [force]

ρ̂ |=e e�11 ∧ (∀v̂ ∈ ρ̂(1), v̂ /∈ delay : v̂ ∈ ρ̂())

ρ̂ |=e (lcons e�11 e�22)� iff [lcons]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ (lcons 	1 	2) ∈ ρ̂()

ρ̂ |=e (first e�11)� iff . . . ∧ [first]

(∀(lcons 	2) ∈ ρ̂(1) :

ρ̂(2) ⊆ ρ̂())

ρ̂ |=e (rest e�11)� iff . . . ∧ [rest]

(∀(lcons 	2) ∈ ρ̂(1) :

(delay 	2) ∈ ρ̂() ∧
ρ̂(2) ⊆ ρ̂())

Fig. 3. Step 2: Analysis with lazy forms

90 S. Chang

(ρ̂, D̂) |=e (e
�f
f e�11 . . .)� iff [app]

(ρ̂, D̂) |=e e
�f
f ∧ (ρ̂, D̂) |=e e�11 ∧ . . . ∧

(∀λ(x1 . . .).	0 ∈ ρ̂(f) :

ρ̂(1) ⊆ ρ̂(x1) ∧ . . . ∧

(arg 	1) ∈ ρ̂(x1) ∧ . . .
1

∧

(∀v̂ ∈ ρ̂(0), v̂ /∈ arg : v̂ ∈ ρ̂())
2
)

(ρ̂, D̂) |=e (let x = e�11 in e�00)� iff [let]

(ρ̂, D̂) |=e e�11 ∧ ρ̂(1) ⊆ ρ̂(x) ∧

(arg 	1) ∈ ρ̂(x)
1

∧ (ρ̂, D̂) |=e e�00 ∧

(∀v̂ ∈ ρ̂(0), v̂ /∈ arg : v̂ ∈ ρ̂())
2

(ρ̂, D̂) |=e (delay e�11)� iff [delay]

(delay 	1) ∈ ρ̂() ∧

(ρ̂, D̂) |=e e�11 ∧ ρ̂(1) ⊆ ρ̂() ∧
(∀x ∈ fv(e1) : (∀(arg 	2) ∈ ρ̂(x) :

	2 ∈ D̂
3
∧ (darg 	2) ∈ ρ̂(x)

4
))

(ρ̂, D̂) |=e (lcons e�11 e�22)� iff [lcons]

(ρ̂, D̂) |=e e�11 ∧ (ρ̂, D̂) |=e e�22 ∧
(lcons 	1 	2) ∈ ρ̂() ∧
(∀x ∈ fv(e2) : (∀(arg 	3) ∈ ρ̂(x) :

	3 ∈ D̂
3
∧ (darg 	3) ∈ ρ̂(x)

4
))

Fig. 4. Step 3a: Calculating flow to lazy positions

3.4 Analysis Step 3: Laziness Analysis

Our final refinement revises the analysis to calculate three additional sets, which
are used to insert additional delays and forces in the program:

D̂ ∈ DPos = P(V ar), Ŝ ∈ SPos = P(V ar), F̂ ∈ FPos = P(V ar ∪ (V ar × V ar))

Intuitively, D̂ is a set of labels representing function arguments that flow to
lazy positions and Ŝ is a set of labels representing arguments that flow to strict
positions. Our transformation then delays arguments that reach a lazy position
but not a strict position. Additionally, F̂ collects the labels where a delayed
value may appear—both those manually inserted by the programmer and those
suggested by the analysis—and is used by the transformation to insert forces.

We first describe how the analysis computes D̂. The key is to track the flow of
arguments from an application into a function body and for this, we introduce
a special abstract value (arg �), where � labels an argument in a function call.

v̂ ∈ V̂al = . . . | arg �

Figure 4 presents revised analysis rules related to D̂. To reduce clutter, we express
the analysis result as (ρ̂, D̂), temporarily omitting Ŝ and F̂ . In the new [app] and
[let] rules, additional constraints (box 1) specify that for each labeled argument,
an arg abstract value with a matching label must be in ρ̂ for the corresponding
parameter. We are only interested in the flow of arguments within a function’s
body, so the result-propagating constraint filters out arg values (box 2).

Recall that D̂ is to contain labels of arguments that reach lazy positions.
Specifically, if an (arg �) value flows to a delay or the second position of an

Laziness by Need 91

(ρ̂, D̂, Ŝ, F̂) |=e (force e�11)� iff [force]

(ρ̂, D̂, Ŝ, F̂) |=e e�11 ∧
(∀v̂ ∈ ρ̂(1), v̂ /∈ delay : v̂ ∈ ρ̂()) ∧

(∀(arg 	2) ∈ ρ̂(1) : 	2 ∈ Ŝ)
5

(ρ̂, D̂, Ŝ, F̂) |=e S[e�] iff . . . ∧ [strict]

(∀(arg 	1) ∈ ρ̂() : 	1 ∈ Ŝ)
5

∧

(∃delay ∈ ρ̂() ⇒ 	 ∈ F̂)
6
∧

(∀(darg 	2) ∈ ρ̂() : (, 	2) ∈ F̂)
7

where S ∈ SCtx = [] e . . . | o [] e | o v [] | if [] e1 e2

| zero? [] | not [] | null? [] | first [] | rest []

Fig. 5. Step 3b: Calculating flow to strict positions

lcons, then � must be in D̂ (box 3) (fv(e) calculates free variables in e). If an
�-labeled argument reaches a lazy position, the transformation may decide to
delay that argument, so the analysis must additionally track it for the purposes
of inserting forces. To this end, we introduce another abstract value (darg �),

v̂ ∈ V̂al = . . . | darg �

and insert it when needed (box 4). While (arg �) can represent any argument,

(darg �) only represents arguments that reach a lazy position (i.e., � ∈ D̂).

Figure 5 presents revised analysis rules involving Ŝ and F̂ . These rules use the
full analysis result (ρ̂, D̂, Ŝ, F̂). Here, Ŝ represents arguments that reach a strict
position so the new [force] rule dictates that if an (arg �) is the argument of a

force, then � must be in Ŝ (box 5). However, a force is not the only expression
that requires the value of a promise. There are several other contexts where a
delay should not appear and the [strict] rule deals with these strict contexts
S: the operator in an application, the operands in the primitive operations, and
the test in an if expression. Expressions involving these strict positions have
three additional constraints. The first specifies that if an (arg �1) appears in any

of these positions, then �1 should also be in Ŝ (box 5). The second and third

additional constraints show how F̂ is computed. Recall that F̂ determines where
to insert forces in the program. The second [strict] constraint says that if any

delay flows to a strict position �, then � is added to F̂ (box 6). This indicates
that a programmer-inserted delay has reached a strict position and should be
forced. Finally, the third constraint dictates that if a (darg �2) value flows to a

strict label �, then a pair (�, �2) is required to be in F̂ (box 7), indicating that
the analysis may insert a delay at �2, thus requiring a force at �.

3.5 The Refactoring Transformation

Figure 6 specifies our refactoring as a function ϕ that transforms a program
p using analysis result (ρ̂, D̂, Ŝ, F̂). The ϕe function wraps expression e� with

92 S. Chang

ϕ : Prog× Env×DPos× SPos× FPos → Prog

ϕ[[(define f(x . . .) = e1) . . . e]]ρ̂D̂ŜF̂ = (define f(x . . .) = ϕe[[e1]]ρ̂D̂ŜF̂) . . . ϕe[[e]]ρ̂D̂ŜF̂

ϕe : Exp × Env×DPos× SPos× FPos → Exp

ϕe[[e
�]]ρ̂D̂ŜF̂ = (delay∗ (ϕe[[e]]ρ̂D̂ŜF̂)�)�1 , if 	 ∈ D̂, 	 /∈ Ŝ, 	1 /∈ dom(ρ̂) (†)

ϕe[[e
�]]ρ̂D̂ŜF̂ = (force (ϕe[[e]]ρ̂D̂ŜF̂)�)�1 , if 	 ∈ F̂ , 	1 /∈ dom(ρ̂), (‡)

or ∃	2.(, 	2) ∈ F̂ , 	2 ∈ D̂, 	2 /∈ Ŝ, 	1 /∈ dom(ρ̂)
. . .

Fig. 6. Transformation function ϕ

delay∗ if � is in D̂ and not in Ŝ. In other words, e is delayed if it flows to a
lazy position but not a strict position. With the following correctness section in
mind, we extend the set of expressions with delay∗, which is exactly like delay
and merely distinguishes programmer-inserted delays from those inserted by the
our transformation. The new delay∗ expression is given a fresh label �1. In two
cases, ϕe inserts a force around an expression e� . First, if � is in F̂ , it means �
is a strict position and a programmer-inserted delay reaches this strict position
and must be forced. Second, an expression e� is also wrapped with force if there

is some �2 such that (�, �2) is in F̂ and the analysis says to delay the expression

at �2, i.e., �2 ∈ D̂ and �2 /∈ Ŝ. This ensures that transformation-inserted delay∗s
are also properly forced. All remaining clauses in the definition of ϕe, represented
with ellipses, traverse the structure of e in a homomorphic manner.

4 Correctness

Our refactoring for laziness is not semantics-preserving. For example, non-termi-
nating programs may be transformed into terminating ones or exceptions may
be delayed indefinitely. Nevertheless, we can prove our analysis sound and the ϕ
transformation safe, meaning that unforced promises cannot cause exceptions.

4.1 Language Semantics

To establish soundness, we use Flanagan and Felleisen’s [9] technique, which
relies on a reduction semantics. The semantics is based on evaluation contexts,
which are expressions with a hole in place of one subexpression:

E ∈ Ctx = [] | v . . . E e . . . | o E e | o v E | let x = E in e | if E e e | zero? E

| not E | null? E | force E | cons E e | cons v E | lcons E e | first E | rest E

A reduction step �−→ is defined as follows, where → is specified in figure 7:

E[e] �−→ E[e′] iff e→ e′

Laziness by Need 93

A conventional δ function evaluates primitives and is elided. We again assume
that subexpressions are uniquely labeled but since labels do not affect evaluation,
they are implicit in the reduction rules, though we do mention them explicitly
in the theorems. Since our analysis does not distinguish memoizing promises
from non-memoizing ones, neither does our semantics. To evaluate complete
programs, we parameterize �−→ over definitions d . . ., and add a look-up rule:

E[f] �−→d... E[λ(x . . .).e], if (define f(x . . .) = e) ∈ d . . .

Thus, the result of evaluating a program p = d . . . e is the result of reducing e
with �−→d.... We often drop the d . . . subscript to reduce clutter.

Exceptions

Our → reduction thus far is partial, as is the (elided) δ function. If certain
expressions show up in the hole of the evaluation context, e.g., first null or
division by 0, we consider the evaluation stuck. To handle stuck expressions,
we add an exception exn to our semantics. We assume that δ returns exn for
invalid operands of primitives and we extend → with the exception-producing
reductions in figure 8.

The (apx) rule says that application of non-λs results in an exception. The
(fstx) and (rstx) rules state that reducing first or rest with anything but a
non-empty list is an exception as well. The (strictx) and (strictx∗) reductions
partially override some reductions from figure 7 and specify that an exception
occurs when an unforced promise appears in a context where the value of that
promise is required. These contexts are exactly the strict contexts S from figure 5.
We introduce dexn and dexn∗ to indicate when a delay or delay∗ causes an
exception; otherwise these tokens behave just like exn. We also extend �−→:

E[exn] �−→ exn

A conventional well-definedness theorem summarizes the language’s semantics.

(λ(x . . .).e) v . . . → e{x := v, . . .} (ap)

o v1 v2 → δ o v1 v2 (op)

let x = v in e → e{x := v} (let)

if false e1 e2 → e2 (iff)

if v e1 e2 → e1, v �= false (if)

zero? 0 → true (z0)

zero? v → false, v �= 0 (z)

not false → true (notf)

not v → false, v �= false (not)

null? null → true (nuln)

null? v → false, v �= null (nul)

first (cons v1 v2) → v1 (fstc)

first (lcons v e) → v (fstlc)

rest (cons v1 v2) → v2 (rstc)

rest (lcons v e) → delay e (rstlc)

force (delay e) → force e (ford)

force v → v, v �= delay e (forv)

Fig. 7. Call-by-value reduction semantics

94 S. Chang

v v1 . . . → exn, if v �= λ(x . . .).e (apx)

first v → exn, if v /∈ cons or lcons (fstx)

rest v → exn, if v /∈ cons or lcons (rstx)

S[delay e] → dexn (strictx)

S[delay∗ e] → dexn
∗ (strictx∗)

Fig. 8. Exception producing reductions

Theorem 1 (Well-Definedness). A program p either reduces to a value v;
starts an infinitely long chain of reductions; or reduces to exn.

4.2 Soundness of the Analysis

Before stating the soundness theorem, we first extend our analysis for exceptions:

(ρ̂, D̂, Ŝ, F̂) |=e exn
� [exn]

Lemma 1 states that �−→ preserves |=e. We use notation ρ̂ |=e e when we are not

interested in D̂, Ŝ, and F̂ , which are only used for transformation. This means
ρ̂ satisfies only the constraints from sections 3.2 and 3.3.

Lemma 1 (Preservation). If ρ̂ |=e e and e �−→ e′, then ρ̂ |=e e
′.

We now state our soundness theorem, where �−→→ is the reflexive-transitive closure
of �−→. The theorem says that if an expression in a program reduces to an �-
labeled value, then any acceptable analysis result ρ̂ correctly predicts that value.

Theorem 2 (Soundness).For all ρ̂ |= p, p = d . . . e, if e �−→→ d...E[v�], v̂ ∈ ρ̂(�).

4.3 Safety of Refactoring

We show that refactoring for laziness cannot raise an exception due to a delay
or delay∗ reaching a strict position. To start, we define a function ξ that derives
a satisfactory abstract environment for a ϕ-transformed program:

ξ[[ρ̂]]p = ρ̂′, where ξ : Env× Prog → Env

∀	, x ∈ dom(ρ̂) : ρ̂′() = ρ̂() ∪ {(delay∗ 	1) | (darg 	1) ∈ ρ̂(), (delay∗ e�11) ∈ p} (1)

ρ̂′(x) = ρ̂(x) ∪ {(delay∗ 	1) | (darg 	1) ∈ ρ̂(x), (delay∗ e�11) ∈ p}
∀(delay∗ e�11)� ∈ p, 	 /∈ dom(ρ̂) : (2)

ρ̂′() = ρ̂(1) ∪ {(delay∗ 	1)} ∪ {(delay∗ 	2) | (darg 	2) ∈ ρ̂(1), (delay
∗ e�22) ∈ p}

∀(force e�11)� ∈ p, 	 /∈ dom(ρ̂) : ρ̂′() = {v̂ | v̂ ∈ ρ̂(1), v̂ /∈ delay} (3)

The ξ function takes environment ρ̂ and a program p and returns a new envi-
ronment ρ̂′. Part 1 of the definition copies ρ̂ entries to ρ̂′, except darg values are
replaced with delay∗s when there is a corresponding delay∗ in p. Parts 2 and 3
add new ρ̂′ entries for delay∗s and forces not accounted for in ρ̂. When the
given p is a ϕ-transformed program, then the resulting ρ̂′ satisfies that program.

Laziness by Need 95

Lemma 2. If (ρ̂, D̂, Ŝ, F̂) |= p, then ξ[[ρ̂]]ϕ[[p]]
ρ̂D̂ŜF̂ |= ϕ[[p]]ρ̂D̂ŜF̂ .

Finally, theorem 3 states the safety property. It says that evaluating a trans-
formed program cannot generate an exception due to delays or delay∗s.

Theorem 3 (Safety). For all p and (ρ̂, D̂, Ŝ, F̂) |= p, if ϕ[[p]]ρ̂D̂ŜF̂ = d . . . e,
then e ��−→→ d... dexn, and e ��−→→ d... dexn

∗.

Proof. (Sketch) Using Soundness, the analysis rules in figure 5, and Lemma 2.

4.4 Idempotency

Our transformation is not idempotent. Indeed, it may be necessary to refactor
a program multiple times to get the “right” amount of laziness. For example:

let x = 〈long computation〉 in let y = 〈short computation involving x〉
in (delay y)

The long computation should be delayed but applying our transformation once
only delays the short computation. To delay the long computation, a second
transformation round is required. In practice, we have observed that one round
of laziness refactoring suffices to handle the majority of cases. However, section 6
presents a real-world example requiring multiple transformations so our tool
currently allows the programmer to decide how often to apply the refactoring.

5 A Prototype Implementation

We have implemented refactoring for laziness as a tool for Racket [10], in the
form of a plugin for the DrRacket IDE. It uses laziness analysis to automatically
insert delay and force expressions as needed, with graphical justification.

5.1 Constraint Solving Algorithm

Computing our laziness analysis requires two stages: (1) generate a set of con-
straints from a program, and (2) solve for the least solution using a conventional
worklist algorithm [18]. The graph nodes are the variables and labels in the pro-

gram, plus one node each for D̂, Ŝ, and F̂ . Without loss of generality, we use
only labels for the nodes and ρ̂ for the analysis result in our description of the
algorithm. There exists an edge from node �1 to �2 if there is a constraint where
ρ̂(�2) depends on ρ̂(�1); the edge is labeled with that constraint. Thus one can
view a node � as the endpoint for a series of data flow paths. To compute ρ̂(�), it
suffices to traverse all paths from the leaves to �, accumulating values according
to the constraints along the way.

The analysis result is incrementally computed in a breadth-first fashion by
processing constraints according a worklist of nodes. Processing a constraint

96 S. Chang

entails adding values to ρ̂ so the constraint is satisfied. The algorithm starts by
processing all constraints where a node depends on a value, e.g., val ∈ ρ̂(�);
the nodes on the right-hand side of these constraints constitute the initial work-
list. Nodes are then removed from the worklist, one at a time. When a node
is removed, the constraints on the out-edges of that node are processed and a
neighbor � of the node is added to the worklist if ρ̂(�) was updated while pro-
cessing a constraint. A node may appear in the worklist more than once, but
only a finite number of times, as shown by the following termination argument.

Termination and Complexity of Constraint Solving

Inspecting the constraints from section 3 reveals that an expression requires re-
cursive calls only for subexpressions. Thus, a finite program generates a finite
number of constraints. For a finite program with finitely many labels and vari-
ables, the set of possible abstract values is also finite. Thus, a node can only
appear in the worklist a finite number of times, so algorithm must terminate.

We observe in the constraint-solving algorithm that, (1) a node � is added to
the worklist only if ρ̂(�) is updated due to a node on which it depends being in
the worklist, and (2) values are only ever added to ρ̂; they are never removed. For
a program of size n, there are O(n) nodes in the dependency graph. Each node
can appear in the worklist O(n) times, and a data flow path to reach that node
could have O(n) nodes, so it can take O(n2) node visits to compute the solution
at a particular node. Multiplying by O(n) total nodes, means the algorithm may
have to visit O(n3) nodes to compute the solution for all nodes.

5.2 Laziness Refactoring Tool

Our prototype tool uses the result of the analysis and the ϕ function from sec-
tion 3.5 to insert additional delays and forces. In contrast to the mathematical
version of ϕ, its implementation avoids inserting delays and forces around
values and does not insert duplicate delays or forces.

We evaluated a number of examples with our tool including the n-queens
problem from section 2. Figure 9 (top) shows the program in Racket, including
timing information and a graphical depiction of the answer. Despite the use of
lcons,8 the program takes as long as an eager version of the same program (not
shown) to compute an answer. Figure 9 (bot) shows the program after our tool
applies the laziness transformation. When the tool is activated, it: (1) computes
an analysis result for the program, (2) uses the result to insert delays and
forces, highlighting the added delays in yellow and the added forces in blue,
and (3) adds arrows originating from each inserted delay, pointing to the source
of the laziness, thus explaining its decision to the programmer in an intuitive
manner. Running the transformed program exhibits the desired performance.

8 Though lcons is not available in Racket, to match the syntax of our paper, we
simulate it with a macro that wraps a delay around the second argument of a cons.

Laziness by Need 97

F
ig
.
9
.
E
va

lu
a
tin

g
n
-q
u
een

s
in

R
a
ck
et:

o
n
ly

la
zy

c
o
n
s
(to

p
),

a
fter

refa
cto

rin
g
(b

o
t)

98 S. Chang

6 Laziness in the Large

To further evaluate our idea and our tool, we examined the Racket code base
and some user-contributed packages for manual uses of laziness. We found several
erroneous attempts at adding laziness and we verified that our tool would have
prevented many such errors.9 We consider this investigation a first confirmation
of the usefulness of our tool. The rest of the section describes two of the examples.

The DMdA languages [5] allow students to write contracts for some data
structures. These contracts are based on Findler et al.’s lazy contracts [8]. The
contracts are primarily implemented via a constructor with a few lazy fields. Ad-
ditionally, several specialized contract constructors for various data structures
call the main constructor. However, since the specialized constructors are imple-
mented with ordinary strict functions, to preserve the intended lazy behavior,
the programmer must manually propagate the laziness to the appropriate argu-
ments of these functions, similar to the Scala example from section 2. Thus, a
small amount of laziness in the main contract constructor requires several more
delays scattered all throughout the program. Adding these delays becomes te-
dious as the program grows in complexity and unsurprisingly, a few were left
out. Our tool identified the missing delays, which the author of the code has
confirmed and corrected with commits to the code repository.

A second example concerns queues and deques [21] based on implicit recursive
slowdown [20, Chapter 11], where laziness enables fast amortized operations and
simplifies the implementation. The library contained several performance bugs,
as illustrated by this code snippet from a deque enqueue function:

define enqueue(elem dq) = ...

let strictprt = 〈extract strict part of dq〉
newstrictprt = 〈combine elem and strictprt〉
lazyprt = force 〈extract lazy part of dq〉
lazyprt1 = 〈extracted from lazyprt〉
lazyprt2 = 〈extracted from lazyprt〉

in Deque newstrictprt (delay 〈combine lazyprt1 and lazyprt2〉)

The function enqueues elem in deque dq, which has a lazy part and a strict
part. In one execution path, the lazy part is extracted, forced, and separated
into two additional pieces. Clearly, the forcing is unnecessary because neither of
the pieces are used before they are inserted back into the new deque. Worse, the
extra forcing slows the program significantly. For this example, activating our
tool twice fixes the performance bug. For a reasonably standard benchmark, the
fix reduced the running time by an order of magnitude. The authors of the code
have acknowledged the bug and have merged our fix into the code repository.

7 Related Work

The idea of combining strict and lazy evaluation is old, but most works involve re-
moving laziness from lazy languages. We approach strict-lazy programming

9 The examples were first translated to work with the syntax in this paper.

Laziness by Need 99

from the other, relatively unexplored, end of the spectrum, starting with a strict
language and then only adding laziness as needed. This seems worthwhile since
empirical studies indicate that most promises in a lazy language are
unneeded [6,15,16,23]. Starting with a strict language also alleviates many disad-
vantages of lazy evaluation such as difficulty reasoning about space/time
consumption.

The most well-known related work is strictness analysis [4,17], which calcu-
lates when to eagerly evaluate arguments without introducing non-termination.
With our work, calculating divergence properties is not sufficient since even ter-
minating programs may require additional laziness, as seen in examples from this
paper. Hence we take a different, flow-analysis-based approach.10 Researchers
have also explored other static [7] and dynamic [2,6,15] laziness-removal tech-
niques. However, these efforts all strive to preserve the program’s semantics. We
focus on the problem of strict programmers trying to use laziness, but doing
so incorrectly. Thus our transformation necessarily allows the semantics of the
program to change (i.e., from non-terminating to terminating), but hopefully in
a way that the programmer intended in the first place.

Sheard [25] shares our vision of a strict language that is also practical for
programming lazily. While his language does not require explicit forces, the
programmer must manually insert all required delay annotations.

8 Future Work

This paper demonstrates the theoretical and practical feasibility of a novel ap-
proach to assist programmers with the introduction of laziness into a strict con-
text. We see several directions for future work. The first is developing a modular
analysis. Our transformation requires the whole program and is thus unsatisfac-
tory in the presence of libraries. Also, we intend to develop a typed version of
our transformation and tool, so typed strict languages can more easily benefit
from laziness as well. We conjecture that expressing strictness information via
types may also provide a way to enable a modular laziness-by-need analysis.

Acknowledgements. Partial support provided by NSF grant CRI-0855140.
Thanks to Matthias Felleisen, Eli Barzilay, David Van Horn, and J. Ian Johnson
for feedback on earlier drafts.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs. MIT Press (1984)

2. Aditya, S., Arvind, Augustsson, L., Maessen, J.W., Nikhil, R.S.: Semantics of pH:
A parellel dialect of Haskell. In: Proc. Haskell Workshop, pp. 34–49 (1995)

10 Interestingly, we conjecture that our approach would be useful to lazy programmers
trying to insert strictness annotations, such as Haskell’s seq, to their programs.

100 S. Chang

3. Appel, A., Blume, M., Gansner, E., George, L., Huelsbergen, L., MacQueen, D.,
Reppy, J., Shao, Z.: Standard ML of New Jersey User’s Guide (1997)

4. Burn, G.L., Hankin, C.L., Abramsky, S.: Strictness analysis for higher-order func-
tions. Sci. Comput. Program. 7, 249–278 (1986)

5. Crestani, M., Sperber, M.: Experience report: growing programming languages for
beginning students. In: Proc. 15th ICFP, pp. 229–234 (2010)

6. Ennals, R., Peyton Jones, S.: Optimistic evaluation: an adaptive evaluation strat-
egy for non-strict programs. In: Proc. 8th ICFP, pp. 287–298 (2003)

7. Faxén, K.F.: Cheap eagerness: speculative evaluation in a lazy functional language.
In: Proc. 5th ICFP, pp. 150–161 (2000)

8. Findler, R.B., Guo, S.-Y., Rogers, A.: Lazy Contract Checking for Immutable Data
Structures. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083,
pp. 111–128. Springer, Heidelberg (2008)

9. Flanagan, C., Felleisen, M.: Modular and polymorphic set-based analysis: Theory
and practice. Tech. Rep. TR96-266, Rice Univ. (1996)

10. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2012-1, PLT Inc. (2012),
http://racket-lang.org/tr1/

11. Friedman, D., Wise, D.: Cons should not evaluate its arguments. In: Proc. 3rd
ICALP, pp. 257–281 (1976)

12. Hughes, J.: Why functional programming matters. Comput. J. 32, 98–107 (1989)
13. Jones, N.D.: Flow analysis of lambda expressions. Tech. rep., Aarhus Univ. (1981)
14. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml

system, release 3.12, Documentation and user’s manual. INRIA (July 2011)
15. Maessen, J.W.: Eager Haskell: resource-bounded execution yields efficient iteration.

In: Proc. Haskell Workshop, pp. 38–50 (2002)
16. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the Design of the R Lan-

guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 104–131. Springer,
Heidelberg (2012)

17. Mycroft, A.: Abstract interpretation and optimising transformations for applicative
programs. Ph.D. thesis, Univ. Edinburgh (1981)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2005)

19. Odersky, M.: The Scala Language Specification, Version 2.9. EPFL (May 2011)
20. Okasaki, C.: Purely Functional Data Structures. Cambridge Univ. Press (1998)
21. Hari Prashanth, K.R., Tobin-Hochstadt, S.: Functional data structures for Typed

Racket. In: Proc. Scheme Workshop (2010)
22. Rees, J., Clinger, W. (eds.): Revised3 Report on the Algorithmic Language Scheme.

ACM SIGPLAN Notices (December 1986)
23. Schauser, K.E., Goldstein, S.C.: How much non-strictness do lenient programs

require? In: Proc. 7th FPCA (1995)
24. Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,

Univ. Copenhagen (1988)
25. Sheard, T.: A pure language with default strict evaluation order and explicit lazi-

ness. In: 2003 Haskell Workshop: New Ideas Session (2003)
26. Shivers, O.: Control-flow analysis in scheme. In: Proc. PLDI, pp. 164–174 (1988)
27. Wadler, P., Taha, W., MacQueen, D.: How to add laziness to a strict language,

without even being odd. In: Proc. Standard ML Workshop (1998)

http://racket-lang.org/tr1/

FliPpr: A Prettier Invertible Printing System

Kazutaka Matsuda1 and Meng Wang2

1 The University of Tokyo
2 Chalmers University of Technology

Abstract. When implementing a programming language, we often write
a parser and a pretty-printer. However, manually writing both programs
is not only tedious but also error-prone; it may happen that a pretty-
printed result is not correctly parsed. In this paper, we propose FliPpr,
which is a program transformation system that uses program inversion
to produce a CFG parser from a pretty-printer. This novel approach
has the advantages of fine-grained control over pretty-printing, and easy
reuse of existing efficient pretty-printer and parser implementations.

1 Introduction

In this paper, we will discuss the implementation of a programming language,
say the following one

prog ::= rule1; . . . ; rulen

rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= x | C e1 . . . en | e1 ⊕ e2 | f e1 . . . en

which is a standard first-order functional language with data constructors C,
functions f and binary operators ⊕. Ignoring the semantics of the language for
the time being, we start with writing a parser and a pretty-printer to deal with
the syntax: the parser converts textual representations of programs into the AST,
and the pretty-printer converts the AST to nicely laid-out programs. Though
not often measured objectively, the prettiness of printing results is important:
a pretty-printer is central to the communication between a compiler and the
programmers, and the quality of it directly contributes to the productivity and
satisfaction of the users of the language.

Despite being developed separately, the parser and the pretty-printer are al-
ways expected to be consistent to each other: very informally, parsing a pretty-
printed program should succeed, and produces the same AST that is pretty-
printed. It is common knowledge that consistency properties like this between a
pair of tightly-coupled programs are hard to produce and maintain; and perhaps
less widely known that they are difficult to be tested effectively too, due to the
complexity of AST data [5].

In this paper, we are going to discuss the implementation of a language, which
has a more elaborated version of the above-presented syntax. The language can
be used to program pretty-printers, and at the same time through program inver-
sion techniques, obtain a consistent parser. We, as usual, manually implemented

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 101–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

102 K. Matsuda and M. Wang

a parser and a pretty-printer for the language, but with the hope that we, and
many others who read this paper, will not need to do it again for their own
language implementations.

Prior to this work, there has been a rich body of literature on exploring
correctness-by-construction techniques to automatically generate one or both
programs of the printer/parser pair, notably [2, 4, 17] . We have intentionally
omitted the prefix “pretty-” from the mentioning of printers here because few of
the existing work is actually producing pretty-printers in the sense of Hughes [10]
and Wadler [22].1

To be more precise about what we mean by “prettiness”, let us consider a
subtraction language e ::= 1 | e1−e2 that has a constant (1) and a left-associative
binary operator (−). We represent the syntax with the following AST datatype.

data E = One | Sub E E

Using the language we propose in this paper, which is based on Wadler’s li-
brary [10], one can define a pretty-printer as below.

ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line <> text "-" <> text " " <> pprP e2))

-- The suffix P in pprP stands for parentheses.
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> group (ppr e1 <> nest 2 (line
<> text "-" <> text " " <> pprP e2)) <> text ")"

The pretty-printing library functions are shown in slant sans serif. Roughly speak-
ing, text s converts a string s to a layout, d1 <>d2 is an infix binary operator that
concatenates two layouts d1 and d2, which binds looser than prefix applications,
and line starts a new line, but its behavior can be affected by surrounding nest
and group applications: nest n d inserts n-spaces after each lines in d, and group d
smartly chooses between the layout d and other layouts derivable from d by se-
lectively interpreting lines as single spaces. (In this paper, we write “space” for
the space character and write “whitespace” for the space character and the new-
line character. Other kinds of spaces such as horizontal tabs are not discussed
as they do not yield new insight.)

The function ppr pretty-prints Sub (Sub One One) (Sub One One) as

1 - 1 - (1 - 1) or
1 - 1

- (1 - 1)
or

1 - 1

- (1

- 1)

depending on the screen width that is used to render the result. This fine-grained
control from users over bracketing, spacing and indentation is clearly beyond
any technique based on mechanical traversals of ASTs, which is likely to rigidly

1 The Syn system [2] is capable of handling non-contextual layouts, which can be seen
as a limited form of prettiness.

FliPpr: A Prettier Invertible Printing System 103

produce 1 - 1 - (1 - 1) (with arbitrary line-wrapping) or even (1 - 1) -

(1 - 1) as the only printing result.
Knowing that prettiness cannot be generated automatically, in this paper we

propose a novel approach: the programmer provides a carefully turned pretty-
printer (which is slightly annotated with some additional information for pars-
ing), and our system invert it to obtain a consistent parser. We claim the fol-
lowing benefits of our approach:

– Fine-Grained Control over Pretty-Printing. Our language based on
Wadler’s library [22] offers the possibility of refined control over different
aspects of pretty-printing: spacing can be tuned; redundant bracketing can
be eliminated through the passing of fixity and precedence information; in-
dentation can be designed by nesting lines; and wrapping of lines can be
performed smartly.

– Efficiency. FliPpr is efficient in the sense that we can reuse existing efficient
implementation of pretty-printers and parsers. For pretty-printing, we can
use Wadler’s library [22]. For parsing, we can use any parser generator that
supports full CFG.

The technique of program inversion used in FliPpr is not new; it is a direct
consequence of our previous work [15]. The novelty of this paper lies in the de-
sign of the pretty-printing system, which makes the program inversion possible.
Specifically, in this work:

– We propose an invertible pretty-printing technique based on grammar-based
inversion [15], by which we can obtain a consistent parser from a pretty-
printer.

– We give a surface language such that a pretty-printer written in it can be
converted to a linear and treeless form by deforestation [21] which is suitable
for inversion [15].

– We implemented our idea as a program transformation tool that generates
parsers in Haskell2.

2 Overview

Surface Language

�(Sect. 4)
Core Language

�(Sect. 3)
CFG with Actions

Core
System

Fig. 1. Architecture of FliPpr

In this section, we present an overview of our
technique using the subtraction language from
the introduction as the running example. Figure 1
shows the overall picture of FliPpr. A user of our
system programs a pretty-printer in a surface lan-
guage, which is translated to a core language that
can be inverted. The example pretty-printer for
the subtraction language is simple enough not to
require any advanced features that the surface

2 Available at http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

104 K. Matsuda and M. Wang

language provides, and the translation from the surface language to the core
language is the identity operation in this case. Therefore, we focus on the core
system in this section and postpone the discussion of the surface language to
Sect. 4.

As a start, let’s revisit the pretty-printer ppr defined in the previous section.
If the function is inverted as it is, we can hope for no more than a parser that
only recognizes pretty strings. This is neither the fault of function ppr nor of the
inverter: a pretty-printer ppr (correctly) produces only pretty layouts, and an in-
verter cannot invent information that is not already carried by the function to be
inverted. To remedy this information mismatch, we instrument the pretty-printer
with additional information about non-pretty but nevertheless valid layouts.

2.1 Introducing Ugliness

Reinterpretation of line. A common source of prettiness is the clever interpre-
tation of lines either as a single space or a nicely indented new line depending
on the environment. This effect can be simply eliminated by reinterpreting line
as one or more whitespaces. Using this new interpretation in the derivation of
a parser enables us to parse certain non-pretty layouts. For example, now the
inverse of the pretty-printer can parse the following strings.

1 - 1 or
1

- 1

These strings do not satisfy our notion of prettiness defined by ppr, and will not
be produced by the pretty-printer, but will be accepted by the generated parser
through the reinterpretation of lines. Also note that this reinterpretation also
means that we can safely ignore group and nest during inversion, because their
sole purpose is to affect the behavior of lines.

Still, this solution alone is not enough. Strings like 1 - 1 and (1)- ((1))

remain unparsable: the pretty-printer has dictated that there is only a single
space between the operator and the second operand by using text " " instead of
line, and that there shouldn’t be redundant parentheses. We need to find a way
to alter these behaviors in parsing without losing pretty-printing.

Biased Choice. To annotate pretty-printers with information about non-pretty
layouts, we introduce the choice operator <+. In pretty-printing the operator
behaves as e1 <+ e2 = e1, ignoring the non-pretty alternative e2; in parser deriva-
tion the operator is interpreted as a nondeterministic choice, which accepts both
branches. The operator <+ binds looser than <> and has the following algebraic
properties.

Associativity e1 <+ (e2 <+ e3) = (e1 <+ e2) <+ e3
Distributivity-L (e1 <+ e2) <> e3 = e1 <> e3 <+ e2 <> e3
Distributivity-R e1 <> (e2 <+ e2) = e1 <> e2 <+ e1 <> e3

FliPpr: A Prettier Invertible Printing System 105

For example, one can define variants of (white)spaces with the choice operator
as follows.

nil = text "" <+ space -- (zero-or-more whitespaces in parsing)
space = (text " " <+ text "\n") <> nil -- (one-or-more whitespaces in parsing)

Here, nil and space pretty-print "" and " " respectively, but represent zero-or-
more and one-or-more whitespaces in parsing. We can now refactor our pretty-
printer ppr with the aim of obtaining more robust parsers.

ppr x = ppr x <+ text "(" <> nil <> ppr x <> nil <> text ")"
ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line′ <> text "-" <> space ′

<> pprP e2))

pprP x = pprP x <+ text "(" <> nil <> pprP x <> nil <> text ")"
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> nil <> group (ppr e1 <> nest 2 (line′

<> text "-" <> space ′ <> pprP e2)) <> nil <> text ")"

space ′ = space <+ text "" -- (zero-or-more whitespaces in parsing)
line′ = line <+ text "" -- (zero-or-more whitespaces in parsing)

Note that we have separated the original definitions of ppr and pprP into two
parts: the top level definitions introduce annotations for optional parentheses,
and the actual pretty-printing is handled by worker functions that are sub-
scripted. Optional whitespaces are also introduced by replacing text " " and
line with space ′ and line ′ respectively in the definitions.

This refactoring is semantic preserving with respect to pretty-printing, and at
the same time brings in necessary information for robust parsing. For example,
we can now expect the inverse program to parse strings like 1 - 1, (1)-
((1)), and (1 - (1)) correctly.3

2.2 Construction of CFG with Actions

So far, we have discussed how a user can provide a refactored pretty-printer that
behaves like the original, but with additional information for non-pretty strings
embedded. Our system FliPpr further transforms the program by removing the
layouting and replacing <+ with a nondeterministic choice ? to create an ugly-
printer solely for inversion.

ppr x = ppr x ? "("++ nil ++ ppr x++ nil ++ ")"

ppr One = "1"

ppr (Sub e1 e2) = ppr e1 ++ line′ ++ "-"++ space ′ ++ pprP e2
. . .

We postpone a detailed discussion of the transformation to Sect. 3. For now, it
is sufficient to know that the above program nondeterministically produces a
string that is valid for parsing, but not necessarily pretty.

3 To also make strings like " 1-1" parsable, we can add a declaration f x = nil <>
ppr x <>nil . However this addition does not post any new insight, and is omitted for
simplicity.

106 K. Matsuda and M. Wang

prog ::= rule1; . . . ; rulen

rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= text "string" | e1 <> e2 | line | nest n e | group e (Wadler’s Combinators)

| e1 <+ e2 (Biased Choice)
| f x1 . . . xn (Treeless Call)

Fig. 2. Syntax of the core language: f ranges over function, C ranges over constructors,
x and xis range over variables and n range over natural numbers

Then, using our previous work on grammar-based inversion [15], the program
can be inverted to construct the following grammar with actions (simplified for
presentation).

Ppr → Ppr {$1}
| "(" Nil Ppr Nil ")" {$3}

Ppr → 1 {One}
| Ppr Line ′ "-" Space ′ PprP {Sub $1 $5}

. . .

The correctness of the parser construction comes from our previous work [15].
Since FliPpr produces a CFG with actions, users have the choice of using any
parser generator that supports full CFG. In our implementation, we use Frost
et al. [8]’s top-down parser.

3 Core Language and Parser Construction

In this section, we give the formal definition of the core language of FliPpr, and
discuss parser construction by program inversion.

3.1 Syntax and Semantics

Figure 2 shows the syntax of our core language, a first-order functional language
similar to one found in the introduction. We include Wadler’s pretty-printing
combinators [22] and the biased choice as primitive operators, and place two
restrictions for later inversion:

– Function calls must be treeless [21]: they take only variables as arguments.
– Variable use must be linear : every bound variable in a rule is used exactly

once on the right-hand side. A notable exception is with <+. For e1 <+ e2, the
two branches are supposed to be both linear. Thus, they contain the same
set of free variables. For example, assuming f is linear, then g x = f x<+f x
is linear, but h x = line <+ f x and k x = line <+ text "s" are not.

For simplicity, we often omit the rule separator “;” if no confusion would arise.
We use vector notation x̃ for a sequence x1, . . . , xn. We abuse the notation to
write f x̃ for f x1 . . . xn.

FliPpr: A Prettier Invertible Printing System 107

∃(f p̃ = e). p̃Γ ′ = x̃Γ Γ ′ e ⇓ v

Γ f x̃ ⇓ v

Γ e1 ⇓ v1

Γ e1 <+ e2 ⇓ v1

Γ text "s" ⇓ text "s"

{Γ ei ⇓ vi}i=1,2

Γ e1 <> e2 ⇓ v1 <> v2 Γ line ⇓ line

Γ e ⇓ v

Γ nest n e ⇓ nest n v

Γ e ⇓ v

Γ group e ⇓ group v

Fig. 3. The call-by-value pretty-printing semantics of the language

∃(f p̃ = e). p̃Γ ′ = x̃Γ Γ ′ e ⇓ND s

Γ f x̃ ⇓ND s

Γ ei ⇓ND si

Γ e1 <+ e2 ⇓ND si
i = 1, 2

Γ text "s" ⇓ND "s"

{Γ ei ⇓ND si}i=1,2

Γ e1 <> e2 ⇓ND s1 ++ s2

s ∈
⋃

1≤i Si

Γ line ⇓ND s

Γ e ⇓ND s

Γ nest n e ⇓ND s

Γ e ⇓ND s

Γ group e ⇓ND s

Fig. 4. Nondeterministic printing semantics of the language

The formal pretty-printing semantics of the language is shown in Fig. 3. We
write Γ 	 e ⇓ v if under environment Γ , expression e evaluates to value v. Values
are closed expressions that only consist of Wadler’s combinators (i.e., we don’t
evaluate Wadler’s combinators). The environment Γ is a mapping from variables
to terms (i.e., expressions or patterns). We write tΓ for the term obtained from t
by replacing free variables x in t with Γ (x). Pattern matching is nondeterministic
in this semantics.

We do not define formally the semantics of Wadler’s combinators, as our dis-
cussion in this paper is not dependent on it. However, we define the reinterpre-
tation of the combinators and the biased choice <+ for parser generation, firstly
mentioned in Sect. 2, where lines are seen as one-or-more whitespaces and <+ as a
true nondeterministic choice. As shown in Fig. 4, the reinterpretation is defined
similarly to the pretty-printing semantics; the main difference is that it returns
a string nondeterministically, pretty or not. We write Γ 	 e ⇓ND s if, under the
environment Γ , e nondeterministically evaluates to a string s. Here, Si is the set
of i-long consecutive whitespaces, inductively defined by: S1 = {" ", "\n"} and
Sn+1 = {s1 ++ s2 | s1 ∈ S1, s2 ∈ Sn}, and ++ is the concatenation of two strings.
The possible evaluation results of the nondeterministic semantics, which covers
both pretty and non-pretty strings, is a super set of what Wadler’s combinators
may produce if evaluated in the original semantics. Thanks to treelessness and
linearity, the sets of strings defined by Le = {s | Γ 	 e ⇓ND s} for expressions e
are exactly those that are expressible by CFGs. This fact enables us to use CFG-
parsers for inverses, which will be shown in the rest of this section. Also note
that due to linearity, call-by-value and call-by-name coincide for the language,
even with nondeterminism (assuming that Wadler’s combinators and string op-
erations are strict). This is handy later when we require a call-by-value semantics

108 K. Matsuda and M. Wang

for program inversion [15], and a call-by-name semantics for fusion [21] in the
surface language (Sect. 4).

3.2 Parser Construction by Inversion

To invert programs written in the core language, we firstly perform a semantic-
preserving transformation to remove the pretty-printing combinators, and obtain
a syntax that is recognizable by our grammar-based inversion system [15].

Converting to Nondeterministic Programs. This step is done by “forget-
ting smart layouting mechanism”, through the following rewriting rules.

text "s" −→ "s"

nest n e −→ e
group e −→ e
line −→ space

e1 <> e2 −→ e1 ++ e2
e1 <+ e2 −→ e1 ? e2

Here, space is a rewritten version (according to the rules above) of its definition
in Sect. 2, i.e. the function defined by

space = (" " ? "\n") ++ nil nil = "" ? space

and the operator ? is a nondeterministic choice.
The formal semantics of the obtained nondeterministic programs is defined

straightforwardly by adding the following rules.

Γ 	 "s" ⇓ "s"

Γ 	 ei ⇓ v
Γ 	 e1 ? e2 ⇓ v

i = 1, 2
{Γ 	 ei ⇓ vi}i=1,2

Γ 	 e1 ++ e2 ⇓ v1 ++ v2

Their behaviors of "s", ? and ++ are the same as the reinterpretations of text "s",
<+ and <>, respectively; we use different symbols to clarify that the conversion
discards the pretty-printing semantics. Note that, since the language is linear
and treeless, the call-time choice and the run-time choice [19] do not differ.

We write f and e as the rewritten version of f and e. The following lemma
states that the rewriting is semantic preserving.

Lemma 1 (Semantic Preservation). Γ 	 e ⇓ND s iff Γ 	 e ⇓ s. ��

Grammar-Based Inversion. The rewritten programs can be processed to ob-
tain a grammar with actions4 that computes the inverse of the rewritten program
by using grammar-based inversion [15]. The basic idea of the inversion is to read
a rule of a program as a production rule of a grammar, and to use semantic
actions to track how variables (i.e., inputs) are passed.

In the inversion, we construct two sorts of non-terminals: Ff for functions
f and Ee for expressions e. For a function f that takes t1, . . . , tn and returns
s, Ff is used to parse string s, and the semantic action returns original inputs

4 In the original paper [15], transformations on parse trees (or more precisely, deriva-
tion trees of productions) are used, instead of semantic actions.

FliPpr: A Prettier Invertible Printing System 109

Rules of Ff

For function f , we generate:

Ff → Ee1 {let Γ = $1 in (p̃1)Γ}
. . .
| Een {let Γ = $1 in (p̃n)Γ}

if f has rules f p̃ = e1; . . . ; f p̃n = en.

Rules of Ee

For expression e, we generate:

Ee → Ff

{
let (t1, . . . , tn) = $1
in {x1 �→ t1, . . . , xn �→ tn}

}
if e = f x1 . . . xn

Ee → Ee1Ee2 {$1 � $2} if e = e1 ++ e2

Ee → "s" {∅} if e = "s"

Ee → Ee1 {$1}
| Ee2 {$1} if e = e = e1 ? e2

Here, � merges two environments assuming that their domains are disjoint. Note
that this disjoint property is guaranteed by linearity.

Fig. 5. Construction of CFG with actions

(t1, . . . , tn). For an expression e such that Γ 	 e ⇓ s, Ee is used to parse string s,
and the semantic action returns the original environment Γ . The generation of
the production rules and semantics actions are presented in Fig. 5. The grammar
in Sect. 2 is a simplified version of the grammar obtained by this generation.

We write �N�P(s) for the set of results returned by the semantics actions,
when s is parsed with start symbol N (the subscript P means “parse”). The
following lemma holds.

Lemma 2 (Correctness of Inversion)

– Γ 	 e ⇓ s and dom(Γ) = fv(e) iff Γ ∈ �Ee�P(s),
– {x1 �→ t1, . . . , xn �→ tn} 	 f x1 . . . xn ⇓ s iff (t1, . . . , tn) ∈ �Ff �P(s).

Proof. Follows from [15]. ��

Let ppr be a single-argument function defined in the core language, and parse
be a function defined by parse s = �Fppr �P(s). Then, the following theorem is a
special case of the above lemma.

Theorem 1. {x �→ t} 	 ppr x ⇓ND s iff t ∈ parse s. ��
The set parse s contains at most one element if ppr is injective. Note that

the inversion can produce arbitrary CFGs, and therefore FliPpr requires parser
generators that support full CFGs.

4 Surface Language: Making It More Flexible

The core language is restricted to be linear and treeless, which is expressive
enough for CFG parsing, but may be cumbersome to program in at times. In this

110 K. Matsuda and M. Wang

section, we present a surface language that has a relaxed form of the restrictions,
and through fusion techniques (specifically deforestation [21] or supercompila-
tion [20]), programs written in the surface language are transformed to treeless
and linear programs in the core language.

4.1 Problems with Programming in the Core Language

Let us consider extending the subtraction language with division and variables.

data E = · · · | Div E E | Var String

Recall that we used two mutually recursive functions ppr and pprP to control
bracketing issues around “-”. In general, when there are many operators with
different precedence levels, it suffices to use a function for each precedence level.
For example, assuming “-” has precedence-level 6 and “/” has precedence-level
7 as they do in Haskell, a pretty-printer can be written as follows.

ppr x = ppr5 x -- 5 is the lowest precedence level
. . .
ppr 5 (Sub x y) = . . . ppr6 x . . . text "-" . . . ppr7 y . . . -- (1)
ppr 5 (Div x y) = . . . ppr5 x . . . text "/" . . . ppr6 y . . . -- (2)
. . .
ppr 6 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 6 (Div x y) = . . . {- the RHS of (2) -} . . .
. . .
ppr 7 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 7 (Div x y) = text "(" <> nil <> . . . {- the RHS of (2) -} . . . <> nil <> text ")"

There are a lot of undesirable repetitions in the above definition largely due to
the treeless restriction.

Another problem that it is non-trivial to separate variable names with pre-
defined names. For example, let us consider pretty-printing for Var x. One may
be tempted to write ppr (Var x) = text x but a parser derived from the above
will parse “-” as Var "-", because there is no information in the above definition
that specifies valid variable names. We can improve the pretty-printer as follows.

ppr (Var x) = f x
f (’a’ : x) = text "a" <> g x

. . .
f (’z’ : x) = text "z" <> g x

g [] = text ""
g (’a’ : x) = text "a" <> g x

. . .
g (’z’ : x) = text "z" <> g x

Note that strings are represented as lists of characters as in Haskell. This function
ppr is partial and intentionally undefined for Var "-". In this definition, we have
successfully restricted variable names to range over lower-case English alphabets,
but in a very cumbersome way.

4.2 An Overview

To reduce the programming effort, we propose a surface language, which has
relaxed linearity and treelessness restrictions, and is equipped with a shorthand

FliPpr: A Prettier Invertible Printing System 111

notation for expressing name ranges. In this language, a pretty-printer for the
extended subtraction language can be written as follows.

ppr x = go 5 x
go i x = manyPars (go i x)
go i One = text "1"
go i (Var x) = text (x as [a-z]+)
go i (Sub x y) =

parIf (i ≥ 6) (group (go 5 e1 <> nest 2 (line′ <> text "-" <> space ′
<> go 6 e2)))

go i (Div x y) =
parIf (i ≥ 7) (group (go 6 e1 <> nest 2 (line′ <> text "/" <> space ′

<> go 7 e2)))

Here, manyPars and parIf are defined as:

parIf b d = if b then par d else d
manyPars d = d <+ par (manyPars d)
par d = text "(" <> nil <> d <> nil <> text ")"

This program differs from the one in the core language in the following ways:

1. The auxiliary functions manyPars , parIf and par are used and applied to
non-variable arguments, which enable users to avoid duplicating frequently-
occurring patterns such as text "(" <> nil <> . . . <> nil <> text ")".

2. Instead of embedding precedence-levels into function names, we pass them
as arguments and inspect them by if and ≤ for bracketing. (These were
previously impossible due to the linearity and treelessness restrictions.)

3. A new construct text (x as r) is used to avoid explicit recursion on strings.

Item 3 of the above is rather easy to deal with. For Item 1, we borrow the
idea of program fusion [14,20,21] to make sure that these auxiliary functions are
fused away. For Item 2, we use partial evaluation to erase statically-computable
arguments such as precedence-levels. The statically-computable arguments are
separated from the rest through types.

4.3 Surface Language

Figure 6 shows the syntax of the surface language. The treeless restriction is
replaced by a relaxed one that will be discussed towards the end of this subsec-
tion. The language has constants as expressions, such as the precedence levels of
operations found in the previous subsection. Used as arguments, such constants
can be eliminated at compilation time through partial evaluation; we call such
constants static information. The if branchings inspect static information, and
are eliminable statically as well.

We use a type system to distinguish static information (of type St) from
other kinds of values such as the input ASTs (of type AST) and the pretty-
printing results (of type Doc). The type system ensures that static information
are eliminable through partial-evaluation, and variable uses are linear. Formally,
primitive types τ and function types σ are defined by:

τ ::= AST | St | Doc σ ::= τ1 → · · · → τn → τ

112 K. Matsuda and M. Wang

prog ::= rule1 . . . rulen

rule ::= f p1 . . . pn = e
e ::= text "s" | e1 <> e2 | line | nest n e | group e | e1 <+ e2 (Combinators)

| text (x as r) (Annotated Text)
| x (Variable)
| f e1 . . . en (Call)
| if pred e1 . . . en then et else ef (Static Branching)
| c (Constant)

c ::= . . . any constants . . .
r ::= . . . regular expression . . .

Fig. 6. Syntax of the surface language: pred are Boolean predicates

Θ, Γ,Δ e : τ

Θ, Γ, {x : τ} x : τ Θ, Γ, ∅ x : Γ (x) Θ, Γ, ∅ c : St

Θ, Γ,Δ e : Doc

Θ, Γ,Δ nest n e : Doc

{Θ, Γ,Δi ei : Doc}1≤i≤n op= text "s", group, (<>), line

Θ, Γ,
⊎

1≤i≤n Δi op e1 . . . en : Doc

{Θ, Γ,Δ ei : Doc}i=1,2

Θ, Γ,Δ e1 <+ e2 : Doc Θ, Γ, {x : AST} text (x as r) : Doc

{Θ, Γ, ∅ ei : St}1≤i≤n {Θ, Γ,Δ eb : τ}b=t,f

Θ, Γ,Δ if pred e1 . . . en then et else ef : τ

{Θ, Γ,Δi ei : τi}1≤i≤n Θ(f) = τ1 → · · · → τn → Doc

Θ, Γ,
⊎

1≤i≤n Δi f e1 . . . en : Doc

Θ f p1 . . . pn = e

Θ(f) = τ1 → · · · → τn → Doc
∃Γ,Δ1, . . . ,Δn {Γ,Δi pi : τi}1≤i≤n dom(Γ) ⊆

⊎
1≤i≤n fv(pi)

Θ, Γ,
⊎

1≤i≤n Δi e : Doc

Θ f p1 . . . pn = e

Γ,Δ p : τ

Γ (x) = St

Γ, ∅ x : St

τ ∈ {AST,Doc}
Γ, {x : τ} x : τ

{Γ,Δi pi : τ}1≤i≤n τ ∈ {AST, St}
Γ,

⊎
1≤i≤n Δi C p1 . . . pn : τ

Fig. 7. Typing rules: here � represents disjoint union

Typing judgment Θ,Γ,Δ 	 e : τ reads that under function-type environment
Θ, non-linear type environment Γ and linear type environment Δ, e has type
τ . Similarly, we define Γ,Δ 	 p : τ and Θ 	 f p1 . . . pn = e for patterns and
declarations. Figure 7 shows the typing rules, which are mostly self-explanatory.
Notably, the uses of variables of type AST and Doc have to be linear, as dictated
by the rules. The linearity restriction of AST variables is inherited from the core
language, while that of Doc variables is required for the correctness of fusion; it is

FliPpr: A Prettier Invertible Printing System 113

known that the deforestation is not correct for non-linear and non-deterministic
programs [1]. A program is assumed to have a distinguished entry point function
of type AST → Doc. The type Doc is treated as a black box in the language;
nothing except Wadler’s combinators can handle Doc data. Only variables can
have type AST.

Treeless Restriction. We replace the universal treeless restriction of the core
language to a typed one: only arguments of type AST or Doc are restricted to
be variables. Moreover, we view programs in the surface language as multi-tier
systems [14]: every function is associated to a natural number called tier, and
every function call occurring in the body of a tier-i function must be to a tier-j
(≤ i) function. Tiers of functions are easily inferred by topologically sorting of
the call-graph. A program is called tiered-treeless if for every call of a tier-k
function f occurring in the body of a tier-k function, the arguments (of type
AST or Doc) passed to the call must be variables. The pretty-printer defined in
Sect. 4.2 is tiered-treeless: functions ppr , go and go belong to tier 3, function
manyPars belongs to tier 2, and other functions belong to tier 1.

We omit a formal semantics of the surface language, as it is a straightforward
extension of the core language. Similar to the case of the core language, the
evaluation results of the call-by-value and the call-by-name semantics coincide
in the surface language due to linearity.

4.4 Conversion to the Core Language

The surface language is elaborated to the core language through a number of
program transformations: (1) desugaring expressions of the form text (x as r),
(2) partial-evaluating static information, (3) fusing higher-tier functions. Steps
(1) and (2) above are straightforward adaptation of existing technologies, while
step (3) is new and uses a property specific to our surface language. In what
follows, we discuss the steps one by one.

Desugaring text (x as r). We firstly convert r to a deterministic automaton.
Then, we replace text (x as r) with fq0 x where q0 is an initial state of the
automaton, and, for each state q, a function fq is defined as follows: function fq
has a rule fq (’a’ : x) = fq′ x if the automaton has a transition rule (q, a, q′), and
has a rule fq [] = text "" if q is a final state of the automaton. For the example
in Sect. 4.2, the regular expression [a-z]+ can be expressed in a deterministic
automaton with two states, and the functions f and g correspond to the two
states.

Partial-Evaluating St-Expressions. A role of our type system is to perform
binding-time analysis; the expressions of type St can be statically evaluated,
assuming that predicate applications are terminating. Thus, a standard par-
tial evaluation suffices to eliminate all the St-expressions and thus we omit the

114 K. Matsuda and M. Wang

details. For the example in Sect. 4.2, we obtain the partially evaluated functions
as below.

ppr x = go5 x
. . .
go 5 (Sub x y) = . . . go5 x . . . go6 y . . .
go 5 (Div x y) = . . . go6 x . . . go7 y . . .
. . .
go 6 (Sub x y) = . . . go5 x . . . go6 y . . .
go 6 (Div x y) = par (. . . go6 x . . . go7 y . . .)
. . .
go 7 (Sub x y) = par (. . . go5 x . . . go6 y . . .)
go 7 (Div x y) = par (. . . go6 x . . . go7 y . . .)

Roughly speaking, thanks to the type AST → Doc of the entry point function,
the type system guarantees that every St-type expression must be a constant
itself or a part of some constant obtained by pattern-matching, and thus can
eliminated by partial-evaluation.

Fusing Functions to Obtain 1-Tier Programs. We show the transforma-
tion of 2-tiered programs to 1-tiered programs, with the understanding that the
procedure can be applied iteratively to transform m-tiered programs to 1-tiered
programs.

The transformation is done by deforestation [21]. Roughly speaking, defor-
estation (or, supercompilation [20]5) performs call-by-name evaluation of ex-
pressions; but instead of computing a value, it produces a new expression that
has the same behavior as the original one but with intermediate data structures
eliminated. Without loss of generality, we assume that AST arguments appear
before Doc arguments in function calls. The deforestation procedure D�e� is
defined as follows.

– D�op e1 . . . en� = op D�e1� . . . D�en�, where op ranges over text "s", (<>),
line, nest i, group and (<+).

– D�f x̃ ẽ� = fẽ x̃ z̃. Assuming x̃ have type AST (recall that only variables
have type AST), ẽ have type Doc, and {z̃} are the free variables in ẽ, the
newly generated function fẽ is defined as fẽ p̃ z̃ = D�e[ỹ �→ ẽ]� for each
corresponding rule f p̃ ỹ = e in the definition of f (with proper α-renaming).
Here, we do not repeatedly generate rules of fẽ if they are already generated
(up to renaming of the free variables in ẽ).

The above procedure follows from the original one [21], and is simplified to
suit the restricted surface language. The procedure terminates if the number of
functions fẽ generated in the latter case is finite. By using D�e�, we replace every
tier-2 rule f p̃ ỹ = e with f p̃ ỹ = D�e�.
Example 1. We deforest the pretty-printer defined in Sect. 4.2.

5 Because of the linearity, Wadler’s deforestation [21] and (positive) supercompila-
tion [20] coincide for the surface language.

FliPpr: A Prettier Invertible Printing System 115

The tier-2 function manyPars is transformed into the following.

manyPars d = d <+ parmanyPars d d
parmanyPars d d = text "(" <> nil <>manyPars d <> nil <> text ")"

And iteratively, we can now apply the procedure to the function go5 (reproduced
below), which is in tier-2 after the above transformation.

go5 x = manyPars (go 5 x)

After renaming parmanyPars d to parMP , we obtain the following tier-1 functions

go5 x = manyParsgo 5 x x

manyParsgo 5 x x = go 5 x <+ parMPgo 5 x x

parMPgo 5 x x = text "(" <> nil <> go 5 x <> nil <> text ")"

assuming calls go5 x are transformed too. This behavior is similar to inlining
except that the deforestation handles recursive functions such as manyPars . ��

Theorem 2 (Termination). For tier-2 expression e, D�e� terminates.

Proof (Sketch). All expressions ẽ in D�f x̃ ẽ� must be tier-2 expressions in the
original program or just variables, which implies the finiteness of the number of
functions fẽ generated in the deforestation process. ��

Theorem 3. The resulting tier-1 program is treeless and linear. ��

The correctness of the deforestation is known for call-by-name languages [18].
Note again that call-by-value and call-by-name coincide in our surface language.

In the deforestation process, we treatWadler’s combinators as constructors be-
cause Doc-values are black boxes. This is key to termination; if we allow pattern-
matching on Doc-values, then we can make a tiered-treeless program for which
deforestation runs infinitely. As a result, Theorem 2 can be generalized and D�e�
terminates for tier-n expression e. Also, since deforestation (supercompilation)
is a sort of partial-evaluation, the steps (2) and (3) of the transformation can be
performed at once. We omit a formal discussion on this for space reason.

5 An Involved Example

In the introduction, we advertised that “we, and many others who read this
paper, will not need to do it [writing both parser and pretty-printer] for their
own language implementations.”. In this section, we demonstrate the feasibility
of this goal by writing a pretty-printer for the core language in the surface
language, which, if fed to FliPpr, will generate a parser for the core language.

The ASTs of the core language can be expressed by the following datatype.

type Prog = [Rule]
data Rule = Rule String [Pat] Exp
data Exp = ECon String [Exp] | EOp Op Exp Exp | EVar String [Exp]
data Pat = PVar String | PCon String [Pat]
data Op = OCat | OAlt -- <> and <+

116 K. Matsuda and M. Wang

We leave out nest and text "s" for simplicity. In the datatype, we use EVar both
for variables and function calls to avoid ambiguity in grammars.

The overall principle of our pretty-printing is to insert breaks after =, and
before <> and <+, with 2-space indentation. We start with lists of rules, and insert
separators with optional whitespaces nil <> text ";" <> line ′ between individual
rules.

ppr x = pprRules x

pprRules [] = nil
pprRules (r : rs) = nil <> pRules r rs <> nil

pRules r′ [] = pprRule r′

pRules r′ (r : rs) = pprRule r′ <> nil <> text ";" <> line ′
<> pRules r rs

For each rule, its right-hand side may start a new line.

pprRule (Rule f ps e) =
group (var f <> space <> pprPats ps <> space ′

<> text "=" <> nest 4 (line′ <> pprExp e))

var x = text (x as [a-z][a-zA-Z0-9]*’*)

A list of patterns is treated in a similar way to a list of rules.

pprPats [] = text ""
pprPats (p : ps) = pPats p ps

pPats p′ [] = pprPat p′

pPats p′ (p : ps) = pprPat p′ <> space <> pPats p ps

Redundant parentheses in patterns are admissible to the generated parser,
but will not be produced by the pretty-printer.

pprPat p = manyPars (pprPat p)
pprPat (PVar x) = var x
pprPat (PCon c []) = con c
pprPat (PCon c (p : ps)) = par (con c <> space <> pPats p ps)

con f = text (x as [A-Z][a-zA-Z0-9]*’*)

Expressions are printed according to the precedence-levels and associativities
of the operators.

pprExp e = go 4 e

go i e = manyPars (go i e)
go i (ECon c []) = con c
go i (ECon c (e : es)) = parIf (i ≥ 9) (con c <> space <> pExps e es)
go i (EOp OAlt e1 e2) =

parIf (i ≥ 5) (group (go 5 e1 <> nest 2 (line′ <> text "<+" <> space ′ <> go 4 e2)))
go i (EOp OCat e1 e2) =

parIf (i ≥ 6) (group (go 6 e1 <> nest 2 (line′ <> text "<>" <> space ′
<> go 5 e2)))

go i (EVar f []) = var f
go i (EVar f (e : es)) = parIf (i ≥ 9) (var f <> space <> pExps e es)

Finally, a list of expressions printed in a similar way to a list of patterns.

pExps e′ [] = go 9 e′

pExps e′ (e : es) = go 9 e′ <> space <> pExps e es

FliPpr: A Prettier Invertible Printing System 117

6 Discussion

We discuss limitations and extensions of FliPpr.

Non-Structured Values in AST. ASTs may contain non-structured values such
as Int. It is easy to extend the core system to handle the issue. For example,
our implementation supports the syntax text (f x as r) where f is a bijection
between a non-structured value and a string representation of it. The bijections
can be read bidirectionally for either pretty-printing and parsing.

Higher-Order Functions. Higher-order functions, such as map, foldr and foldr1

are useful in writing pretty-printers. For example, pprRules and pprPats in
Sect. 5 can be more conveniently implemented by map and foldr1. However,
general use of higher-order functions in pretty-printing may produce grammars
that go beyond CFG. The linearity restriction is also affected, most of the higher-
order functions use the functional arguments more than once on the right-hand
sides.

In line with the spirit of the surface language, a way forward is to use higher-
order functions only when they can be fused away. A sufficient condition for
fusion is the absence of λ-abstractions and partial-applications. In other words,
functions must be treeless in the sense that intermediate function values are
prohibited, and all the higher-order values must be variables (function names).
We leave this extension as future work.

Spacing. We have demonstrated that careful use of whitespaces in the definition
of the pretty-printer is an effectively way to control the behavior of the generated
parser. For example, for pretty-printing constructor application in Sect. 5, we
wrote (con c <> space <> pExps e es); the use of space (representing one-or-more
whitespaces) allows us to parse “S Z” or “S Z” as valid strings. However, it
is difficult to express the use of spaces that are dynamically dependent on the
printing results of adjacent expressions, especially with nondeterminism. In the
above example, if we were to know that the argument of the application is printed
in parentheses as “(Z)”, then in some syntax the space between the constructor
and the argument can be omitted as in “S(Z)”. On the other hand, we cannot
simply replace space with space ′, because we don’t want to accept “SZ” as a
valid constructor application. One possible solution to the problem is to try to
extend the generate parsers with a lexing phase. But it may require some major
surgery to the current system.

Non-Linearity. In the literature of tree transducers [9], the discussion of linearity
can be separated into input- and output-linearity. In our case, variables of type
AST can be seen as inputs, and those of type Doc can be seen as outputs.

For AST variables, sometimes we want to pretty-print the same AST twice;
for example, an element e in XML is printed as <e>...</e>. A naive solution to
admit this behavior is to check the equivalence of values of duplicated variables
in semantic actions. More concretely, we relax to allow overlapping domains

118 K. Matsuda and M. Wang

in the operands, and define {x �→ v} {x �→ v} = {x �→ v}. This naive solution
works effectively for XML, because the number of possible ASTs is usually finite.
However, in general parsing becomes undecidable with non-linear use of AST
variables, as shown in [13] (Theorem 4.4). Thus, for this kind of non-linear uses,
a method that checks the finiteness of parse trees is required.

The non-linearity of Doc values has non-trivial interaction with nondetermin-
ism. In the absence of linearity, the call-by-value and the call-by-name seman-
tics may cease to coincide. This is a problem because call-by-value is suitable for
grammar-based inversion [15], but call-by-name is suitable for deforestation [18].
We also need to resort to grammars beyond CFGs, which may pose difficulties
in inversion. It is a challenging problem to find a sweet spot between obtaining
efficient inverses and supporting fusion in the surface language.

7 Related Work

Different approaches have been proposed to simultaneously derive a parser and a
printer from some intermediate descriptions. In particularly, one could start from
an annotated CFG specification to derive both a parser and a pretty-printer [2].
Compared to these systems, FliPpr offers finer control over pretty-printing. In
particular, we are able to deal with contextual information and to define auxiliary
functions like par in printing, which is made conveniently available by the surface
language. Other approaches include invertible syntax descriptions [17] based on
invertible programming, and BNFC-meta [4] based on meta programming. Both
work recognizes the importance of good printing, but is not able to support
pretty-printing.

There are also general-purpose bidirectional languages [3, 6, 11] that in the-
ory can be used to build the printer/parser pair from the definition of one of
them. Notably quotient lenses [7] are designed to include a representative of a
quotient before performing bidirectional conversions; in our case, roughly speak-
ing this quotient operation is the erasure of redundant whitespaces and paren-
theses. However, there is a gap between the theoretical possibility and practi-
cally execution. In particular, the pretty-printing libraries of Wadler [22] and
Hughes [10] are not only user-friendly but also highly optimized. Moreover, for
efficient parsing we have to perform whole-program analysis (as in conventional
parsing algorithms like LR-k) or use sophisticated data structures and memo-
ization [8,16]. It is not obvious how these sophisticated implementations can be
packed into a bidirectional program. In our approach, we avoid this problem by
using grammar-based inversion [15], which generates grammars and outsources
the parsing algorithms to selected parser generators.

There are a lot of discussions on how to make deforestation (supercompila-
tion) terminate (e.g., [12]) for Turing-complete languages. These approaches use
conditions to give up fusion, and reuse the already-generated deforested func-
tions. As a result, these approaches may fail to fuse some functions, and thus
are not suitable for our purpose. The completeness of deforestation, in the sense
whether all the nested calls are fused away, has not been the focus of study in

FliPpr: A Prettier Invertible Printing System 119

the literature. Notable exceptions are Wadler’s original work [21] and tree trans-
ducer fusion [1, 9, 14]. However, there is a gap between treeless functions and
tree transducers; especially, treeless functions can take multiple inputs. It is not
obvious how existing results can be directed applied in our case.

8 Conclusion

In this paper, we proposed a method to derive parsers from pretty-printers.
We start with a program written in a language equipped with Wadler’s pretty-
printing combinators [22], and an additional “choice” operator. The choice op-
erator allows us to enrich the pretty-printer with information about valid but
yet non-pretty strings, without changing the pretty-printing behavior. This en-
riched pretty-printer can be transformed and inverted using grammar-based in-
version [15] to produce a CFG parser. For the inversion to be possible, the
language is restricted to be linear and treeless [21]. We also provide a surface
language that has relaxed restrictions, which eases programming. The surface
language is transformed into the linear and treeless language through fusion.

We feel that the specific problem we addressed in this paper has much wider
implications. It suggests a general framework for program inversion problems
with “information mismatch”. A compression/decompression pair is another ex-
ample of this kind. For the example of runlength encoding, we want to decode
both A3B1 and A1A2B1 as AAAB, but an encoder “prefers” the former. Our re-
sult for pretty-printing/parsing benefits from Wadler’s combinators, in which
the “preference” is encapsulated in the combinators in a compositional way. It is
an interesting problem to see how the technique may apply in different contexts.

Acknowledgments. We thank Nils Anders Danielsson for his critical yet con-
structive comments on an earlier version of this work, without which the surface
language probably would not exist. We also thank Janis Voigtländer and Aki-
masa Morihata for their insightful comments on deforestation. This work was
partially supported by JSPS KAKENHI Grant Number 24700020. Part of this
research was done when the first author was visiting Chalmers Univeristy of
Technology supported by Study Program at the Overseas Universities by Grad-
uate School of Information Science and Technology, the University of Tokyo.

References

1. Baker, B.S.: Composition of Top-down and Bottom-up Tree Transductions. Infor-
mation and Control 41(2), 186–213 (1979)

2. Boulton, R.J.: Syn: A Single Language for Specifiying Abstract Syntax Tress, Lex-
ical Analysis, Parsing and Pretty-Printing. Technical Report UCAM-CL-TR-390,
University of Cambridge Computer Laboratory (1996)

3. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual Syntax for XML Languages.
Inf. Syst. 33(4-5), 385–406 (2008)

4. Dureg̊ard, J., Jansson, P.: Embedded Parser Generators. In: Haskell 2011: Proceed-
ings of the 2011 ACM SIGPLAN Haskell Symposium, pp. 107–117. ACM (2011)

120 K. Matsuda and M. Wang

5. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: Functional Enumeration of Algebraic
Types. In: Haskell 2012: Proceedings of the 2012 ACM SIGPLAN Haskell Sympo-
sium, pp. 61–72. ACM (2012)

6. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

7. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient Lenses. In: ICFP 2008: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 383–396. ACM (2008)

8. Frost, R.A., Hafiz, R., Callaghan, P.: Parser Combinators for Ambiguous Left-
Recursive Grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 167–181. Springer, Heidelberg (2008)

9. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree
Transducers, 1st edn. Springer-Verlag New York, Inc., Secaucus (1998)

10. Hughes, J.: The Design of a Pretty-Printing Library. In: Jeuring, J., Meijer, E.
(eds.) AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995)

11. Jansson, P., Jeuring, J.: Polytypic Data Conversion Programs. Sci. Comput. Pro-
gram. 43(1), 35–75 (2002)

12. Jonsson, P.A., Nordlander, J.: Positive Supercompilation for a Higher Order Call-
by-Value Language. In: POPL 2009: Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 277–288. ACM
(2009)

13. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-Order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL 2010: Proceed-
ings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 495–508. ACM (2010)

14. Kühnemann, A., Glück, R., Kakehi, K.: Relating Accumulative and Non-
accumulative Functional Programs. In: Middeldorp, A. (ed.) RTA 2001. LNCS,
vol. 2051, pp. 154–168. Springer, Heidelberg (2001)

15. Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A Grammar-Based Approach to
Invertible Programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
448–467. Springer, Heidelberg (2010)

16. Might, M., Darais, D., Spiewak, D.: Parsing with Derivatives: A Functional Pearl.
In: ICFP 2011: Proceeding of the 16th ACM SIGPLAN International Conference
on Functional Programming, pp. 189–195. ACM (2011)

17. Rendel, T., Ostermann, K.: Invertible Syntax Descriptions: Unifying Parsing and
Pretty Printing. In: Haskell 2010: Proceedings of the 2010 ACM SIGPLAN Haskell
Symposium, pp. 1–12. ACM (2010)

18. Sands, D.: Proving the Correctness of Recursion-Based Automatic Program Trans-
formations. Theor. Comput. Sci. 167(1&2), 193–233 (1996)

19. Søndergaard, H., Sestoft, P.: Non-Determinism in Functional Languages. Comput.
J. 35(5), 514–523 (1992)

20. Sørensen, M.H., Glück, R., Jones, N.D.: A Positive Supercompiler. J. Funct. Pro-
gram. 6(6), 811–838 (1996)

21. Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Theor. Com-
put. Sci. 73(2), 231–248 (1990)

22. Wadler, P.: A Prettier Printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming. Palgrave Macmillan (2003)

Slicing-Based Trace Analysis of

Rewriting Logic Specifications with iJulienne�

Maŕıa Alpuente1, Demis Ballis2, Francisco Frechina1, and Julia Sapiña1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,ffrechina,jsapina}@dsic.upv.es
2 DIMI, Università degli Studi di Udine,
Via delle Scienze 206, 33100 Udine, Italy

demis.ballis@uniud.it

Abstract. Wepresent iJulienne, a trace analyzer for conditional rewrit-
ing logic theories that can be used to compute abstract views of Maude ex-
ecutions that help users understand and debug programs. Given a Maude
execution trace and a slicing criterion which consists of a set of target sym-
bols occurring in a selected state of the trace, iJulienne is able to track
back reverse dependences and causality along the trace in order to incre-
mentally generate highly reduced program and trace slices that
reconstruct all and only those pieces of information that are needed to
deliver the symbols of interest. iJulienne is also endowed with a trace
querying mechanism that increases flexibility and reduction power and al-
lows program runs to be examined at the appropriate level of abstraction.

1 Introduction

Execution traces are an important source of information for program under-
standing and debugging. Standard tracers usually present execution histories
that mainly consist of low-level execution steps so that the relationship between
the executed program and the execution history is not easy to derive because
some key dependences that are naturally expressed at the programming language
level can be either scattered or omitted in the trace. This is particularly true for
those systems that are specified in Rewriting Logic (RWL) —a logic of change
that can deal naturally with highly nondeterministic concurrent computations.

Rewriting logic is efficiently implemented in the high-performance language
Maude. Execution traces generated by Maude are complex objects to deal with.
The traces typically include thousands of rewrite steps that are obtained by
applying the equations and rules of the considered specification (including all
the internal rewrite steps for evaluating the conditions of such equations/rules).

� This work has been partially supported by the EU (FEDER) and the Spanish
MEC project ref. TIN2010-21062-C02-02, and Generalitat Valenciana ref. PROME-
TEO2011/052, and was carried out during the tenure of D. Ballis’ ERCIM ”Alain
Bensoussan” Postdoctoral Fellowship. The research leading to these results has re-
ceived funding from the EU 7th Framework Programme (FP7/2007-2013) under
agreement n. 246016. F. Frechina is supported by FPU-ME grant AP2010-5681.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 121–124, 2013.
© Springer-Verlag Berlin Heidelberg 2013

122 M. Alpuente et al.

In addition, Maude traces are incomplete because algebraic axiom applications,
which implicitly occur in an equational simplification process that is hidden
within Maude’s matching modulo algorithm, are not recorded at all in the trace.
This provides a very low-level blueprint of program execution whose manual
inspection is frequently unfeasible or, in the best case, is an extremely labor-
intensive and time-consuming task.

This paper describes iJulienne, a slicing-based trace analysis tool that assists
the user in the comprehension and debugging of RWL theories that are encoded
in Maude. iJulienne is built on top of a trace slicer that implements the back-
ward conditional trace slicing algorithm described in [2,3,4]. Roughly speaking,
the trace slicing mechanism included in iJulienne rolls back the program exe-
cution (making all the rewrite and equational simplification steps explicit) while
tracking back only and all data in the trace that are needed to accomplish the
selected slicing criterion —that is, the data that contribute to producing the
set of target symbols that occur in the observed state of the trace. The core
trace slicer included within iJulienne is a totally redesigned implementation of
our slicing technique in [2,3] that supersedes and greatly improves the prelim-
inary system presented in [4]. In particular, the new trace analyzer iJulienne
is equipped with an incremental backward trace slicing algorithm that supports
stepwise refinements of the trace slice and achieves huge reductions in the size of
the trace. Starting from a Maude execution trace T , a slicing criterion S can be
attached to any given state of the trace and the computed trace slice T � can be
repeatedly refined by applying backward trace slicing w.r.t. increasingly restric-
tive versions of S. Furthermore, the system supports a cogent form of dynamic
program slicing [7] as follows. Given a Maude program M and a trace slice T �

for M, iJulienne is able to infer the minimal fragment of M (i.e., the program
slice) that is needed to reproduce T �. Finally, iJulienne is endowed with a
powerful and intuitive Web user interface that allows the slicing criteria to be
easily defined by either highlighting the chosen target symbols or by applying a
user-defined filtering pattern. A browsing facility is also provided that enables
forward and backward navigation through the trace (and the trace slice) and
allows the user to examine each state transition (and its corresponding sliced
counterpart) at different granularity levels.

2 iJulienne at Work

The iJulienne system is written in Maude and consists of about 250 Maude
function definitions. It can be invoked as a Maude command or used online
through a Java Web service. The tool is publicly available at [6] together with
several case studies which consider large execution traces, such as the counter-
examples delivered by the Maude LTLR model-checker [1]. A thorough experi-
mental evaluation of our slicing methodology can be found in [5].

To illustrate how iJulienne works in practice, we show a typical trace slicing
session on a Maude implementation of Blocks World —one of the most popu-
lar planning problems in artificial intelligence. We assume that there are some
blocks, placed on a table, that can be moved by means of a robot arm; the

Slicing-Based Trace Analysis with iJulienne 123

mod BLOCKS-WORLD is inc INT .
sorts Block Prop State .
subsort Prop < State .
ops a b c : -> Block .
op table : Block -> Prop . *** block is on the table
op on : Block Block -> Prop . *** first block is on the second block
op clear : Block -> Prop . *** block is clear
op hold : Block -> Prop . *** robot arm holds the block
op empty : -> Prop . *** robot arm is empty
op _&_ : State State -> State [assoc comm] .
op size : Block -> Nat .
vars X Y : Block .

eq [sizeA] : size(a) = 1 .
eq [sizeB] : size(b) = 2 .
eq [sizeC] : size(c) = 3 .

rl [pickup] : clear(X) & table(X) => hold(X) .
rl [putdown] : hold(X) => empty & clear(X) & table(X) .
rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .

endm

Fig. 1. BLOCKS-WORLD faulty Maude specification

goal of the robot arm is to produce one or more vertical stacks of blocks. In
our specification, which is shown in the Maude module BLOCKS-WORLD of Figure
1, we define a Blocks World system with three different kinds of blocks that
are defined by means of the operators a, b, and c of sort Block. Different blocks
have different sizes that are described by using the unary operator size. We also
consider some operators that formalize block and robot arm properties whose
intuitive meanings are given in the accompanying program comments.

The states of the system are modeled by means of associative and commutative
lists of properties of the form prop1&prop2& . . .&propn, which describe any
possible configuration of the blocks as well as the status of the robot arm. The
system behavior is formalized by four, simple rewrite rules that control the robot
arm. Specifically, the pickup rule describes how the robot arm grabs a block
from the table, while putdown rule corresponds to the inverse move. The stack
and unstack rules respectively allow the robot arm to drop one block on top
of another block and to remove a block from the top of a stack. Note that the
conditional stack rule forbids a given block B1 from being piled on a block B2 if
the size of B1 is greater than the size of B2.

Barely perceptible, the Maude specification of Figure 1 fails to provide a
correct Blocks World implementation. By using the BLOCKS-WORLDmodule, it is
indeed possible to derive system states that represent erroneous configurations.
For instance, the initial state

si = empty & clear(a) & table(a) & clear(b) & table(b) & clear(c) & table(c)

describes a simple configuration where the robot arm is empty and there are
three blocks a, b, and c on the table. It can be rewritten in 7 steps to the state

sf = empty & empty & table(b) & table(c) & clear(a) & clear(c) & on(a,b)

which clearly indicates a system anomaly, since it shows the existence of two
empty robot arms!

124 M. Alpuente et al.

To find the cause of this wrong behavior, we feed iJulienne with the faulty
rewrite sequence T = si →∗ sf, and we initially slice T w.r.t. the slicing cri-
terion that observes the two anomalous occurrences of the empty property and
the stack on(a, b) in State sf. This task can be easily performed in iJulienne by
first highlighting the terms that we want to observe in State sf with the mouse
pointer and then starting the slicing process. Alternatively, we can also query the
trace using an appropriate pattern, which extracts the considered target data by
means of pattern-matching, to State sf. iJulienne yields a trace slice which only
records those data that are strictly needed to produce the considered slicing cri-
terion. Also, it automatically computes the corresponding program slice, which
consists of the equations defining the size operator together with the pickup and
stack rules. This allows us to deduce that the malfunction is located in one or
more rules and equations that are included in the computed program slice.

The generated trace slice is then browsed backwards using the iJulienne’s
navigation facility in search of a possible explanation for the wrong behavior. Dur-
ing this phase, we found an inconsistent state that models a robot arm that is
holding block a and is empty at the same time. Therefore, we further refine the
trace slice by incrementally applying backward trace slicing to the detected, in-
consistent state w.r.t. the slicing criterion hold(a). This way, we achieve a trace
reduction of ∼90% in which we can easily observe that hold(a) only depends on
the clear(a) and table(a)properties. Furthermore, the computed program slice
includes the single pickup rule. Thus, we can conclude that: (i) the malfunction is
certainly located in the pickup rule (since the computed program slice only con-
tains that rule); (ii) the pickup rule does not depend on the status of the robot
arm (this is witnessed by the fact that hold(a) only relies on the clear(a) and
table(a) properties); (iii) by (i) and (ii), we can deduce that the pickup rule
is incorrect, as it never checks the emptiness of the robot arm before grasping a
block.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-Checking Web Applications
with Web-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 341–346. Springer, Heidelberg (2010)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewrit-
ing Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)

3. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward Trace Slicing for
Conditional Rewrite Theories. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 62–76. Springer, Heidelberg (2012)

4. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Julienne: A Trace Slicer for
Conditional Rewrite Theories. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 28–32. Springer, Heidelberg (2012)

5. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing
for Improving Maude Programs. Science of Comp. Progr. (to appear, 2013)

6. The ijulienne website (2013), http://safe-tools.dsic.upv.es/iJulienne
7. Korel, B., Laski, J.: Dynamic Program Slicing. Inf. Process. Lett. 29(3), 155–163

(1988)

http://safe-tools.dsic.upv.es/iJulienne

Why3 — Where Programs Meet Provers

Jean-Christophe Filliâtre1,2 and Andrei Paskevich1,2

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
2 INRIA Saclay – Île-de-France, Orsay, F-91893

Abstract. We present Why3, a tool for deductive program verification, and WhyML,
its programming and specification language. WhyML is a first-order language with
polymorphic types, pattern matching, and inductive predicates. Programs can
make use of record types with mutable fields, type invariants, and ghost code.
Verification conditions are discharged by Why3 with the help of various exist-
ing automated and interactive theorem provers. To keep verification conditions
tractable and comprehensible, WhyML imposes a static control of aliases that ob-
viates the use of a memory model. A user can write WhyML programs directly and
get correct-by-construction OCaml programs via an automated extraction mech-
anism. WhyML is also used as an intermediate language for the verification of C,
Java, or Ada programs. We demonstrate the benefits of Why3 and WhyML on non-
trivial examples of program verification.

1 Introduction

Why3 is a platform for deductive program verification [1]. It provides a rich language of
specification and programming, called WhyML, and relies on external theorem provers,
both automated and interactive, to discharge verification conditions. The tool comes
with a standard library of logical theories (integer and real arithmetic, sets and maps,
etc.) and of basic programming data structures. WhyML is used as an intermediate lan-
guage for the verification of C, Java, or Ada programs [2], in a similar fashion to the
Boogie language [3]. Besides, WhyML strives to be comfortable as a primary program-
ming language and inherits numerous high-level features from ML, listed below.

The specification component of WhyML, used to write program annotations and back-
ground logical theories, is presented in [4], and here we only mention the most es-
sential features. Why3 is based on first-order logic with rank-1 polymorphic types and
several extensions: recursive definitions, algebraic data types, and (co-)inductive predi-
cates. Pattern matching, let-expressions, and conditional expressions are allowed both
in terms and in formulas. A type, a function, or a predicate can be given a definition
or just declared as abstract symbols and then axiomatized. The specification language
of Why3 does not depend on any features of the programming language, and can serve
as a rich common format for theorem proving problems, readily suitable (via Why3) for
multiple automated and interactive provers, such as Alt-Ergo, CVC3, Z3, E, SPASS,
Vampire, Coq, or PVS. When a proof obligation is dispatched to a prover that does not
support some language features, Why3 applies a series of encoding transformations to,
for example, eliminate pattern matching or polymorphic types [5].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 125–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 J.-C. Filliâtre and A. Paskevich

2 Programming Language

WhyML can be seen as an ML dialect, with two important restrictions. Firstly, in order
to generate first-order proof obligations, WhyML is also limited to the first order: Nested
function definitions and partial application are supported, but higher-order functions are
not. Secondly, in order to keep proof obligations more tractable for provers and more
readable (hence debuggable) for users, WhyML uses no memory model and imposes a
static control of aliases instead. Every l-value in a program must have a finite set of
names and all these names must be known statically, at the time of generation of verifi-
cation conditions. In particular, recursive data types cannot have mutable components.
This restriction is not as limiting as it may seem, and we show in the next section that it
does not preclude us from writing and verifying complex algorithms and data structures.

WhyML functions are annotated with pre- and post-conditions for normal and excep-
tional termination, and WhyML loops are annotated with invariants. Recursive functions
and while-loops can be given variants (i.e. values that decrease at each recursive call or
iteration) to ensure termination. Statically checked assertions can be inserted at arbitrary
points in a program. Verification conditions are generated using a standard weakest-
precondition procedure. Every pure type, function or predicate introduced in the logical
component can be used in a WhyML program. For instance, the type of integers and basic
arithmetic operations are shared between specifications and programs.

The mutable state of a computation is embodied in mutable fields of record data
types. Mutable data types can be nested. For example, a polymorphic resizable array
can be modeled by a record with a mutable field containing an ordinary fixed-size array:

type rarray ’a = { mutable data: array ’a; mutable size: int }
invariant { 0 ≤ size ≤ data.length }

Here, the type is accompanied by an invariant, i.e. a logical property imposed on any
value of that type. Why3 assumes that any rarray passed as an argument to a program
function satisfies the invariant and it produces a proof obligation every time an rarray

is created or modified in a program. Notice that this requires that types with invariants
not be used in recursive data structures, just as mutable types.

An important feature of WhyML is ghost code, i.e. computations that only serve to
facilitate verification and that can be safely removed from a program without affecting
its final result. A ghost expression cannot be used in a non-ghost computation, it cannot
modify a non-ghost mutable value, and it cannot raise exceptions that would escape
into non-ghost code. However, a ghost expression can use non-ghost values and its
result can be used in program annotations. A classical use case for ghost code is that of
step counters to prove time complexity of an algorithm. It also serves to equip a data
structure with a ghost field containing a pure logical “view” for specification purposes.

3 Case Studies

We have used WhyML to verify a lot of non-trivial data structures and algorithms. Our
gallery (http://proval.lri.fr/gallery/why3.en.html) currently contains 67 case
studies. In this section, we illustrate three different kinds of verification.

http://proval.lri.fr/gallery/why3.en.html

Why3 — Where Programs Meet Provers 127

Verification of an Algorithm. Let us consider the Knuth-Morris-Pratt algorithm for
string searching [6]. A string is simply an array of characters. Arrays are imported from
the Why3 standard library. Conversely, the type of characters is declared as an abstract,
uninterpreted type character. The Knuth-Morris-Pratt algorithm is then implemented
as a function that receives two strings p and t and that returns, if any, the position of the
first occurrence of p in t and, otherwise, the length of t:

let kmp (p a: array character)
requires { 1 ≤ length p ∧ 0 ≤ length a }

ensures { first_occur p a result } = ...

where first_occur is a predicate introduced earlier in the specification. To get an
executable code, Why3 translates WhyML to OCaml. In the process, uninterpreted WhyML

types are either mapped to existing OCaml types or left as abstract data types. In the
example above, this results into the following OCaml function:

val kmp: character array → character array → Num.t

where array is the OCaml built-in type, character is an abstract data type, and Num.t
is the type of arbitrary precision integers from OCaml library. Such a mapping can be
customized at the user level. The key point here is genericity. Extracted code is pa-
rameterized w.r.t. uninterpreted symbols, such as the character type from the above
example. It is then possible to instantiate the extracted code in different ways, for ex-
ample by wrapping it into an OCaml functor.

Verification of a Data Structure. Let us implement hash tables (associative arrays) in
WhyML, using an uninterpreted type key for keys:

type t ’a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, ’a)); (* buckets *) }

where arrays and lists are imported from the Why3 standard library. Field data is de-
clared mutable, in order to allow dynamic resizing, for the case when the array holding
the buckets is replaced by a new, larger array. This operation changes the current set of
aliases and the type system of WhyML can detect and safely handle it. In particular, after
the resize, one cannot use any stale pointer to the old value of data. Also, the new value
of data must be fresh. The key point here is modularity: One can implement resizing
in a separate function and call it, for instance, from the add function that inserts a new
element in the table.

Specification of a Data Structure. There are data structures that cannot be implemented
in WhyML. Simply speaking, these are pointer-based data structures where mutable nodes
are arbitrarily nested, e.g. doubly-linked lists or mutable trees. Still we can easily model
such data structures and then verify the programs that use them. Let us consider, for
instance, a program building a perfect maze using a union-find data structure, as pro-
posed in the VACID-0 benchmark [7]. A union-find can be implemented in WhyML using
arrays. However, a more flexible implementation, with chains of pointers, is beyond the
scope of WhyML, and is simply modeled as follows:

type uf model { mutable contents: uf_pure }

128 J.-C. Filliâtre and A. Paskevich

There are three ideas here. First, the keyword model replaces the equal sign. This means
that type uf is not a record, as far as programs are concerned, but an abstract data type.
Inside specifications, though, it is a record and its field contents may be accessed.
Second, field contents is declared mutable, to account for the fact that uf is a mutable
data structure. Last, a pure data type uf_pure represents the immutable snapshot of the
contents of the union-find data structure.

We then declare and specify operations over type uf. For instance, the function find

that returns the representative of the class of a given element and may modify the struc-
ture (e.g. for path compression) can be specified as follows:

val find (u : uf) (x : elt) : elt writes {u}

ensures { result = repr u x ∧ same_repr u (old u) }

The key point here is encapsulation: Though we cannot implement the union-find data
structure, we can declare an interface data type to model it and then verify a client code
(in this case, a program building a maze). Any implementation of union-find could be
used without compromising the proof of the client code.

4 Future Work

The most immediate direction of our future development is the ability to verify that
a given implementation conforms to an interface. This amounts to establishing a re-
finement relation between WhyML modules, their data types and their functions, be they
defined or merely specified. We also plan to introduce some higher-order features in
the specification language, e.g. set comprehensions and sum-like operations, together
with suitable encodings to first-order logic. A more ambitious goal would be to accept
higher-order programs in WhyML, in order to bring it closer to functional programming.
Finally, our long-term goal is to merge the specification and programming languages,
in the spirit of PVS and ACL2. The challenge is two-fold. We want to allow imperative
constructions in pure functions, provided they do not break referential transparency.
Even more importantly, we want to state and prove theorems about WhyML programs,
beyond what is possible to express using pre- and postconditions.

References

1. Why3, a tool for deductive program verification, GNU LGPL 2.1, http://why3.lri.fr
2. Guitton, J., Kanig, J., Moy, Y.: Why Hi-Lite Ada? In: Boogie, pp. 27–39 (2011)
3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers. In:
Boogie, pp. 53–64 (2011)

5. Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 87–102.
Springer, Heidelberg (2011)

6. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal on
Computing 6, 323–350 (1977)

7. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invariants of data-
structures, edition 0. In: VSTTE (2010)

http://why3.lri.fr

Compositional Invariant Checking for Overlaid
and Nested Linked Lists�

Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

Univ Paris Diderot, Sorbonne Paris Cite, LIAFA CNRS UMR 7089, Paris
{cenea,sighirea}@liafa.univ-paris-diderot.fr,

vlad.saveluc@gmail.com

Abstract. We introduce a fragment of separation logic, called NOLL, for auto-
mated reasoning about programs manipulating overlaid and nested linked lists,
where overlaid means that the lists share the same set of objects. The distinguish-
ing features of NOLL are: (1) it is parametrized by a set of user-defined predicates
specifying nested linked list segments, (2) a “per-field” version of the separating
conjunction allowing to share object locations but not record field locations, and
(3) it can express sharing constraints between list segments. We prove that check-
ing the entailment between two NOLL formulas is co-NP complete using a small
model property. We also provide an effective procedure for checking entailment
in NOLL, which first constructs a Boolean abstraction of the two formulas in order
to infer all the implicit constraints, and then, it checks the existence of a homo-
morphism between the two formulas, viewed as graphs. We have implemented
this procedure and applied it on verification conditions generated from several
interesting case studies that manipulate overlaid and nested data structures.

1 Introduction

Reasoning about behaviors of programs that manipulate dynamic data structures is a
challenging problem because of the difficulty of representing (potentially infinite) sets
of configurations, and of manipulating these representations for the analysis of the exe-
cution of program statements. For instance, pre/post-condition reasoning requires being
able, given pre- and post-conditions φ resp. ψ, and a straight-line code P, (1) to com-
pute the (strongest) post-condition of executing P starting from φ, denoted post(P,φ),
and (2) to check that it entails ψ. Therefore, an important issue is to investigate logic-
based formalisms where pre/post conditions are expressible for the class of programs
under interest, and for which it is possible to compute effectively post-conditions, and
to efficiently check the entailment. The latter can be done either using theorem provers,
where user-provided tactics are needed to guide the proof system, or using decision pro-
cedures, when the given annotations are in a decidable fragment. An essential ingredient
in order to scale to large programs is being able to perform compositional reasoning and,
in this context, Separation Logic [17] (SL) has emerged as a fundamental approach. Its
main tool is the frame rule, which states that if the Hoare triple {φ}P{ψ} holds and P
does not alter free variables in σ then {φ∗σ}P{ψ∗σ} also holds, where ∗ denotes the

� This work has been partially supported by the French ANR project Veridyc and by FSMP.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 129–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

130 C. Enea, V. Saveluc, and M. Sighireanu

separating conjunction. Therefore, when reasoning about P one has to manipulate only
specifications for the heap region altered by P.

In this paper, we define a fragment of SL, called NOLL, suitable for compositional
reasoning about programs that manipulate overlaid and nested linked lists, built with
an arbitrary set of fields. Such data structures are used in low-level code to link objects
with respect to different aspects. For example, the network monitoring software Nagios
(www.nagios.com) manipulates hash-tables with closed addressing, implemented as
arrays of linked lists, where all the elements in the lists are also linked in the order of
their insertion time. Here, we have two overlaid data structures, i.e., which share a set
of objects: an array of linked lists and a singly-linked list.

To specify such data structures, NOLL is parametrized by a fixed, but arbitrary, set
of recursive predicates defined in a higher-order extension of NOLL and which are
expressive enough to specify various types of (nested) linked lists, e.g., singly-linked
lists of singly-linked lists, where all the elements point to some fixed object.

To specify that these list segments are overlapped, NOLL includes, besides the clas-
sical operator ∗, that we will call object separating conjunction, a field separating con-
junction operator ∗w. Both operators separate the heap into disjoint regions, the only
difference being the granularity of the separated heap cells. For ∗, a heap cell corre-
sponds to a heap object. For ∗w, a heap cell corresponds to a field from a heap object.
Thus, the ∗w operator allows to specify data structures sharing sets of objects as long
as they are built over disjoint sets of fields. In the example above, if ArrOfSl and Sl are
formulas specifying the array of lists, resp. the list, then ArrOfSl∗wSl expresses the fact
that the two structures share some objects.

However, ∗w alone is not enough to describe precisely overlaid data structures. In
the example above, we would also need to express the fact that the objects of the list
described by Sl are exactly all the list objects in ArrOfSl; let Sl type be their type. To
this, we index each atomic formula specifying list segments by a variable, called a set
of locations variable and interpreted as the set of all heap objects in the list segment.
The values of these new variables can be constrained in a logic that uses classical set
operators ⊆ and ∪. For example, the specification ArrOfSlα ∗w Slβ ∧α(Sl type) = β
constrains the set of objects in the linked list to be exactly the set of objects of type
Sl type in the array of linked lists. (A NOLL formula ϕ can also put constrains over
some set of locations variables, which are not associated to atomic formulas in ϕ.)

The semantics of the field separating conjunction ∗w allows us to establish another
frame rule, which is essential for compositional reasoning about overlaid data struc-
tures: if the Hoare triple {φ} P {ψ} holds then {φ∗w σ} P {ψ∗w σ} also holds, where
P is a straight-line code that does not alter fields described by σ, and the set of loca-
tions variables in σ are not bound to atomic formulas in φ or ψ. The consequences of
this frame rule are that, to reason about a program fragment P, one has to provide only
specifications for the data structures built with fields altered by P.

We prove that checking satisfiability of NOLL formulas is NP-complete and that the
problem of checking entailments between NOLL formulas is co-NP complete. The up-
per bound on the complexity of checking satisfiability/entailment is first proved using
a small model argument, and subsequently, following the approach in [8]. The sec-
ond proof provides also an effective decision procedure for proving the validity of an

Compositional Invariant Checking for Overlaid and Nested Linked Lists 131

entailment ϕ⇒ ψ by (1) computing a normal form for the two formulas and (2) check-
ing the existence of a homomorphism from the graph representation of the normal form
of ψ to the graph representation of the normal form of ϕ. The main advantages of this
decision procedure are: (i) by defining a Boolean abstraction for NOLL formulas, the
construction of the normal form is reduced to (un)satisfiability queries to a SAT solver
and (ii) checking the existence of a homomorphism between graph representations of
formulas can be done in polynomial time.

To summarize, this work makes the following contributions:

– defines a fragment of SL, called NOLL, that can be used to perform compositional
reasoning about overlaid and nested linked structures,

– proves that checking satisfiability, resp. entailment, of NOLL formulas is NP-
complete, resp. co-NP complete,

– defines effective procedures for checking satisfiability and entailment of NOLL for-
mulas based on SAT solvers, which are implemented in a prototype tool and proven
to be efficient in practice.

Related Work. SL has been widely used in the literature for the analysis and the veri-
fication of programs with dynamic data structures [1–8, 12, 13, 17, 19].

The NOLL fragment incorporates several existing features of SL: the separating con-
junction ∗ introduced in [12], the separating conjunction ∗w introduced in [6], and the
inductive predicates describing nested linked structures introduced in [1]. The set of lo-
cation variables are an abstraction of the sequences defined in [17]. However, [1, 6] use
these features in order to define abstract domains for program analysis. The (partial)
order relation on elements of these abstract domains can be seen as a sound, but not
complete, decision procedure for entailment.

The works in [2, 5, 8] introduce results concerning the decidability/complexity of
the satisfiability/entailment problem in fragments of SL. Berdine et al. [2] defines a
fragment that allows to reason about programs with singly-linked lists and proves that
the satisfiability of a formula can be decided in NP and that checking the validity of
an entailment between two formulas belongs to the co-NP complexity class. A decision
procedure for entailments in the same fragment is introduced in [16], which combines
SL inference rules with a superposition calculus to deal with (in)equalities between
variables. These complexity results were improved in [8] where it is proved that the
satisfiability/entailment problem for the previous fragment can be solved in polynomial
time. In fact, the procedure for checking entailments of NOLL formulas based on nor-
mal forms and graph homomorphism is inspired by the work in [8]. The differences
are that (a) the procedure for computing the normal form of a NOLL formula is based
on a new approach that uses Boolean abstractions (the procedure in [8] works only for
singly-linked lists and can not be extended to NOLL) and (b) the notion of graph homo-
morphism is extended in order to handle the two versions of the separating conjunction,
the constraints on set of locations variables, and more general recursive predicates.

The (sound) decision procedures for satisfiability/entailment introduced in [18, 15]
are also based on Boolean abstractions of formulas. As in our case, the Boolean ab-
stractions are used to transform logical validity into simpler decidable problems. How-
ever, they concern different types of logics: algebraic data types specifications for

132 C. Enea, V. Saveluc, and M. Sighireanu

reasoning about functional programs in [18] and a recursive extension of first-order
logic for reasoning about programs manipulating tree data structures in [15].

Semi-automatic frameworks for reasoning about programs within SL, based on the-
orem provers, have been defined in [7, 4, 13]. In this paper, we target a completely
automatic framework based on decision procedures.

2 Overview

In general, NOLL formulas have the form Π∧Σ∧Λ, where Π is the pure part, i.e., a
conjunction of equalities and inequalities between program variables expressing alias-
ing constraints, Σ is the spatial part specifying the data structures and the separation
properties, and Λ specifies the sharing constraints between the data structures. The ob-
jects building the data structures in the heap are sets of record fields, called simply fields
in the following.

ϕ := x �= NULL∧Hashα(x,y,NULL) ∗w Listβ(z,NULL)∧α(Sl type) = β (1)

Hash(in,out,dest) � (in = out)∨ (∃u,v. in �→ {(g,u);(h,v)} ∗ LowList(v,dest)
∗ Hash(u,out,dest))

(2)

LowList(in,out) � (in = out)∨ (∃u. in �→ {(s,u)} ∗ LowList(u,out)) (3)

List(in,out) � (in = out)∨ (∃u. in �→ {(f ,u)} ∗ List(u,out)) (4)

Fig. 1. NOLL specification of a hash table whose elements are shared with a list

Examples of NOLL Formulas: Fig. 1 contains a NOLL formula ϕ describing a list of
lists, using the predicate Hashα(x,y,NULL), such that the elements of the nested lists
are shared with another list, represented by the predicate Listβ(z,NULL). This is an ab-
straction of the hash table sharing all its elements with a singly-linked list, presented in
Sec. 1, in the sense that we use a linked list to represent the array structure.

The predicate Hashα(in,out,dest) has a recursive definition, written in a higher-
order extension of NOLL: either in = out, which means that the nested list segment is
empty, or in contains a field h pointing to an inner singly-linked list (in �→ {...;(h,v)}∗
LowList(v,dest)) and also a field g pointing to a new location u (in �→ {(g,u); ...}),
which is the starting point of another nested list segment. Note that the elements of the
lists described by LowList(v,dest) are linked by the field s. In general, we suppose that
variables and fields are typed. Thus, if Sl type is the type of the variables used in the
predicate LowList, all the objects in the nested lists are of type Sl type. Moreover, the
use of the object separating conjunction ∗ implies that all the nested lists are disjoint.

The overlapping property is expressed using two features of this logic. The first one
is the field separating conjunction operator ∗w which allows to share object locations
but not the locations of fields in these objects. The second feature is the ability to speak
about the set of all object locations in a list segment. This set of locations is given
by the interpretation of the variable that indexes some recursive predicate, e.g., α in
Hashα(. . .). These variables are constrained in the Λ part of a formula. For example,
α(Sl type) = β says that all the locations of type Sl type in the list of lists are also
present in the list starting in z (β stands for the set of locations in Listβ(z,NULL)).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 133

The operators ∗ and ∗w can be nested. This is essential to specify a similar data struc-
ture (considered in [11]) where the elements stored in a hash table are shared between
two disjoint linked lists (using the predicates from Fig. 1):

x �= NULL∧Hashα(x,y,NULL)∗w (Listβ(z,NULL)∗Listγ(u,NULL))∧α(Sl type) = β∪ γ,

xϕ1 : y z

xϕ2 : z

List

List

f

(a)

xϕ1 :

t

y

x,yϕ2 : t

List

f

f

(b)

Fig. 2.

where ∗ is used to specify the disjointness of the linked
lists starting in z and u.

Decision Procedure for Entailment: We define a proce-
dure for checking entailments of NOLL formulas, which is
based on the graph homomorphism approach in [8]. The
basic idea is to think of formulas as graphs, where nodes
represent variables (sets of equal variables) and edges rep-
resent list segments, and then, given ϕ1 and ϕ2 two for-
mulas, if there exists a homomorphism from ϕ2 to ϕ1 then
ϕ1 ⇒ ϕ2 holds. Roughly, the homomorphism is a function
mapping each node of ϕ2 to a node of ϕ1 representing at
least the same set of variables. It is required that this func-
tion defines a mapping from edges of ϕ2 to disjoint paths
in ϕ1. (Note that the homomorphism is unique.) For exam-
ple, there exists such a homomorphism from ϕ2 to ϕ1 in
Fig. 2(a), where a snaked edge labeled by List from x to
y denotes a predicate List(x,y), a straight edge labeled by
f from y to z denotes a points-to constraint y �→ {(f ,z)},
all these constraints are supposed to be separated by ∗, and

the dotted edges represent the homomorphism.
In order to be complete, this procedure needs that the formulas of an entailment

contain the maximum number of equalities and inequalities; in this case, we say that
the formula is in normal form. Also, if it contains an equality u = v then, it contains
no spatial constraint defining a list segment from u to v (as usual in separation logic,
u = v∧List(u,v) is equivalent to u = v). For example, although the entailment ϕ1 ⇒ ϕ2

in Fig. 2(b) holds, there exists no homomorphism from ϕ2 to ϕ1. (Because the field f
is already defined in x, the list segment using this field and starting in x is empty. Thus,
ϕ1 implies x = y, which is needed to show that ϕ1 ⇒ ϕ2.)

Boolean Abstractions of NOLL Formulas: Our first insight in defining such a decision
procedure is that the normal form of a NOLL formula ϕ = Π∧Σ∧Λ can be constructed
through a boolean abstraction of ϕ, denoted F(ϕ). For the moment, let us consider the
case when Λ = true. Then, the formula F(ϕ) is defined over a set of boolean variables
denoting (in)equalities between variables and atomic formulas from the spatial part Σ.

We illustrate the definition of F(ϕ) on the formula:

ϕ := List(x,y)∗List(x,z)∗ y �→ {(f , t)} ∗List(y,s). (5)

The set of boolean variables in F(ϕ) consists of:
– a variable [u = v], for every two variables u and v in ϕ,
– a variable [y, t, f] to represent the points-to constraint y �→ {(f , t)}, and
– a variable [List(u,v)], for every spatial constraint List(u,v) in ϕ.

134 C. Enea, V. Saveluc, and M. Sighireanu

In this case, the formula F(ϕ) � Feq∧F(Σ), where Feq encodes the reflexivity and the
transitivity of the equality relation, i.e.,∧

u,v,w variables in ϕ
[u = u] ∧ ([u = v]∧ [v = w])⇒ [u = w],

and F(Σ) models the spatial part of ϕ, i.e.,

F(Σ)� [y, t, f] ∧
∧

List(u,v) atom in ϕ
[List(u,v)]⊕ [u = v] ∧

∧
A,B atoms in Σ

F∗(A,B).

The sub-formula [y, t, f] ensures that the points-to constraint is satisfied by any model
of ϕ; the sub-formula [List(u,v)]⊕ [u = v] models the fact that in any model of ϕ,
either u = v or List(u,v) describes a non-empty list segment. The sub-formula F∗(A,B)
contains the in(equalities) implied by the use of ∗, i.e,

F∗(y �→ {(f , t)},List(u,v)) � ¬[y = u]∨ [u = v], for any u,v,
F∗(List(u1,v1),List(u2,v2)) � ¬[u1 = u2]∨ [u1 = v1]∨ [u2 = v2], for any u1,v1,u2,v2.

In general, the size of F(ϕ) is polynomial in the size of the formula ϕ. Also, ϕ is
satisfiable iff F(ϕ) is satisfiable.

Computing the Normal Form: The formula F(ϕ) can be used to compute the normal
form of ϕ since ϕ ⇒ (u = v) iff F(ϕ)⇒ [u = v], for any u and v. Thus, for any valid
entailment F(ϕ)⇒ [u= v], the equality u= v is added to ϕ, and all predicates describing
list segments between u and v are removed. For example, the normal form of ϕ in (5) is
y = s∧ x = z∧List(x,y)∗ y �→ {(f , t)} (the formula F(ϕ) implies [y = s] and [x = z]).

Handling Sharing Constraints: For NOLL formulas with sharing constraints, com-
puting the normal form before checking the existence of a graph homomorphism is not
enough. Besides (in)equalities, we may have implicit spatial constraints which are not
exposed in some formula. Consider the entailment ϕ1 ⇒ ϕ2, where:

ϕ1 := Listα(x,y)∗w LowListβ(n,m)∧β⊆ α (6)

ϕ2 :=
(
Listδ(x,n)∗Listγ(n,y)

)
∗w LowListβ′(n,m)∧β′ ⊆ δ∪ γ (7)

Note that β ⊆ α implies that n is a location on the list segment described by Listα(x,y)
and thus ϕ1 ⇒ ϕ2 holds. In this case, F(ϕ1) includes constraints over a set of boolean
variables [u ∈ ε] representing the fact that u is a location in the set of locations denoted
by ε, for any u and ε ∈ {α,β} (we defer the reader to Sec. 5 for more details).

In general, if the formula F(ϕ) implies [u ∈ ε], for some u and ε, then the graph rep-
resentation of ϕ includes some additional edges induced by the fact that u is a location
on the list segment indexed by ε. In this case, F(ϕ1)⇒ [n∈α] and the graph representa-
tion of ϕ1 completed with these additional edges is the graph G(ϕ1) in Fig. 3. Now, it is
easy to see that there exists a homomorphism from G(ϕ2) to G(ϕ1) (the homomorphism
must satisfy additional constraints explained in Sec. 6.3).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 135

xG(ϕ1) :

n

y

m

Listα

LowListβ

xG(ϕ1) :

n

y

m

Listα

LowListβ

Listα1

Listα2

x : G(ϕ2)

n

y

m

Listδ

Listγ

LowListβ′

Fig. 3. The graph representations G(ϕ1) resp. G(ϕ2) of the (normal forms of the) formulas in
eq. (6–7). G(ϕ1) is the graph representation of ϕ1 that includes the implicit spatial constraints.
Dotted edges represent the homomorphism proving that ϕ1 ⇒ ϕ2.

3 Logic NOLL

The logic NOLL is a multi-sorted fragment of Separation Logic [17]. Let T be a set of
sorts (corresponding to record types defined in the program), Flds a set of field names,
and τ a typing function mapping each field name into a function type over T . A field
f ∈ Flds is called recursive iff τ(f) = R−→R with R ∈ T and non-recursive, otherwise.
The set of recursive fields is denoted by Fldsrec.

Syntax: Let LVars and SetVars be two sets of variables, called location variables and
set of locations variables, respectively. We assume that the typing function τ associates
a sort, resp. a set of sorts, to every variable in LVars, resp. SetVars. For simplicity, we
assume that LVars contains the constant NULL. The syntax of NOLL is given in Fig. 4.

x,y,yi ∈ LVars location variables −→z ∈ LVars+ tuples of location variables
f , fi ∈ Flds field names α ∈ SetVars set of locations variables

R ∈ T sort P ∈ P list segment predicates
ϕ ::= Π∧Σ∧Λ NOLL formula
Π ::= true | x �= y | x = y |Π∧Π pure constraints
Σ ::= emp | x �→ {(f1,y1); . . . ;(fk,yk)} | Pα(x,y,

−→z) | Σ∗Σ | Σ∗w Σ spatial constraints
Λ ::= true | t ⊆ t ′ | x ∈ t | x �∈ t | Λ∧Λ sharing constraints
t ::= {x} | α | α(R) | t ∪ t ′ set of locations terms

Fig. 4. Syntax of NOLL formulas

An atomic points-to constraint x �→ {(f1,y1); . . . ;(fk,yk)} is used to specify the val-
ues of fields f1,. . ., fk in the location denoted by x: the value stored by the field fi is
yi, for all 1 ≤ i ≤ k. The fields shall be pairwise disjoint and the formula shall be well
typed, i.e., for any fi, τ(fi) = τ(x)→ τ(yi).

In every list segment constraint Pα(x,y,
−→z), P is a predicate from a fixed, but arbi-

trary, set P . The predicates in P have recursive definitions with the following syntax:

136 C. Enea, V. Saveluc, and M. Sighireanu

P(in,out,
−→
nhb) � (in = out) ∨

(∃u,−→v .Σ0(in,u∪−→v ∪
−→
nhb)∗Σ1(

−→v ,−→nhb) ∗ P(u,out,
−→
nhb))

Σ0(in,V) ::= in �→ θ, where θ⊆ {(f ,w) | f ∈ Flds,w ∈V}
Σ1(

−→v ,−→nhb) ::= emp | Q(v,b,
−→
b) | Σ1(

−→v ,−→nhb)∗Σ1(
−→v ,−→nhb) with b,

−→
b ⊆−→nhb, and Q ∈ P

where in,out,u ∈ LVars and
−→
nhb,−→v ,−→b ∈ LVars+. The definition of every P ∈ P is

well typed and satisfies the additional typing constraints τ(in) = τ(out) = τ(u), and
τ(in) �= τ(v), for every v∈−→v . Moreover, the definitions in P are not mutually recursive.

A predicate P(in,out,
−→
nhb) defines possibly empty list segments starting from in and

ending in out. The fields of each element in this list segment are defined by Σ0 while
the nested lists to which it points to are defined by Σ1. The parameters

−→
nhb are used to

define the “boundaries” of the nested list segment described by P, in the sense that every
location described by P belongs to a path between in and some location in out ∪−→nhb
(this path may be defined by more than one field). Every element of the list segment
described by P points to several nested lists, each one of them being described by a
predicate Q in P . The use of ∗ in the definition of P implies that the inner list segments
are disjoint. The typing constraints ensure bounded nesting.

For simplicity of the presentation, we have restricted ourselves to such inductive def-
initions, which are not expressive enough to describe doubly-linked lists or nested lists
containing cyclic lists on their inner levels. However, our techniques can be extended to
cover such cases. For example, to describe doubly-linked lists, one must allow further
points-to constraints and use a special type of existential variables representing the next
to last location in a doubly-linked list segment like, e.g., in [1].

For any predicate P, Σ0(P), resp. Σ1(P), denotes the sub-formula Σ0, resp. Σ1 of
P. Moreover, Flds0(P) denotes the set of fields of in that point to u according to the
formula Σ0(P), i.e., f ∈ Flds0(P) iff Σ0(P) = in �→ θ and (f ,u) ∈ θ.

In every spatial constraint Pα(x,y,
−→z), α is a set of locations variable, which is said

to be bounded to or to index the spatial constraint. The constraint Λ may contain set of
locations variables which are not bounded to some spatial constraint. For simplicity, we
assume that a variable in SetVars appears in Σ at most once. Also, we consider that all
atomic constraints in Λ are well typed, i.e., for any t ⊆ t ′ in Λ, τ(t) ⊆ τ(t ′) and for any
(x ∈ t) in Λ, τ(x) ∈ τ(t), where τ is extended to set of locations terms as usual.

In the following, we denote by LVars(ϕ) (and SetVars(ϕ)) the set of location variables
(resp. set of locations variables) used in ϕ. Also, atoms(ϕ) denotes the set of atomic
formulas in ϕ. Two atoms in Σ are object separated, resp. field separated, if their least
common ancestor in the syntactic tree of ϕ is ∗, resp. ∗w.

Semantics: Let Loc be a multi-sorted set of locations typed by the typing function τ,
and let LocR denote the set of locations in Loc of sort R.

A program heap is modeled by a pair C = (S,H), where S : LVars → Loc maps
location variables to locations in Loc and H : Loc×Flds⇀ Loc defines values of fields
for a subset of locations. Intuitively, each allocated object is denoted by a location in Loc
and then, H defines the fields for the allocated objects and S gives for each variable, the
object it points to. The set of locations l for which there exists f s.t. H(l, f) is defined
is called the set of locations in C, and denoted by Loc(C). The component S (resp. H)
of a heap C is denoted by SC (resp. HC).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 137

(C,J) |= ϕ1 ∧ϕ2 iff (C,J) |= ϕ1 and (C,J) |= ϕ2

(C,J) |= x = y iff S(x) = S(y)

(C,J) |= x �→ ∪i∈I{(fi,yi)} iff H(S(x), fi) = S(yi) for all i ∈ I

(C,J) |= Pα(x,y,
−→z) iff there exists k ∈ N s.t. (C,J) |= Pk

α(x,y,
−→z)

(C,J) |= P0
α(x,y,

−→z) iff S(x) = S(y) and J(α) = /0
(C,J) |= Pk+1

α (x,y,−→z) iff S(x) �= S(y) and there exists ρ : {u}∪−→v → Loc and J′ s.t.
(C[S �→ S∪ρ],J′) |= Σ0(x,u∪−→v ∪−→z)∗Σ1(

−→v ,−→z)∗Pk
α(u,y,

−→z),
img(ρ)∩img(S) = /0,
J′(α) = J(α)\ ({S(x)}∪ρ(−→v)), and J′(β) = J(β), for any β �= α

(C,J) |= Σ1 ∗Σ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗C2,
(C1,J) |= Σ1, and (C2,J) |= Σ2

(C,J) |= Σ1 ∗w Σ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗w C2,
(C1,J) |= Σ1, and (C2,J) |= Σ2

(C,J) |= x ∈ t iff S(x) ∈ [t]J
(C,J) |= t ⊆ t ′ iff [t]J ⊆ [t ′]J

Separation operators over program heaps:

C =C′ ∗C′′ iff Loc(C) = Loc(C′)∪Loc(C′′) and Loc(C′)∩Loc(C′′) =∅,
SC′

= SC |Loc(C′) and SC′′
= SC |Loc(C′′)

C =C′ ∗w C′′ iff dom(HC) = dom(HC′
)∪dom(HC′′

) and dom(HC′
)∩dom(HC′′

) =∅,
SC′

= SC |Loc(C′) and SC′′
= SC |Loc(C′′)

Interpretation of a term t, [t]J:

[{x}]J = {S(x)}, [α]J = J(α), [α(R)]J = J(α)∩LocR, [t ∪ t ′]J = [t]J ∪ [t ′]J .

Fig. 5. Semantics of NOLL formulas. dom(F) denotes the domain of the function F and S∪ ρ
denotes a new mapping K : dom(S)∪ dom(ρ)→ Loc s.t. K(x) = ρ(x), ∀x ∈ dom(ρ) and K(y) =
S(y), ∀y ∈ dom(S)).

NOLL interpretations are pairs (C,J), where C = (S,H) is a program heap and J :
SetVars→ 2Loc interprets variables in SetVars to finite subsets of Loc. We assume that
S, H, and J are well-typed w.r.t. τ. A NOLL interpretation (C,J) is a model of a formula
ϕ iff (C,J) |= ϕ, where |= is defined in Fig. 5 for its non trivial cases. For simplicity, we
consider the intuitionistic semantics of SL [17]: if a formula is true on a model then it
remains true for any extension of that model with more locations. Our techniques can
be adapted to work also for the non-intuitionistic semantics [10].

Note the difference between the two kinds of separation of heaps: C =C′ ∗C′′ holds
iff the set of locations in C′ and C′′ are disjoint while C =C′ ∗wC′′ holds iff the domains
of the H component in C′ and C′′ are disjoint.

W.l.o.g., we suppose that the sharing constraints in Λ are in a simplified form ob-
tained as follows. First, inclusion constraints are put in the form α⊆ t, where t contains
at most two set of locations variables. Second, for any atomic formula α⊆ t in Λ such
that α is bound to some spatial constraint Pα(x,y,

−→z), we remove from t (1) all the vari-
ables α′ such that α and α′ are bound to object separated spatial constraints and (2) all
the terms of the form {x} such that ϕ contains a points-to constraint x �→ θ, which is
object separated from the spatial constraint indexed by α. If t becomes empty then, the
equality x = y is added to ϕ.

138 C. Enea, V. Saveluc, and M. Sighireanu

We denote by [ϕ] the set of pairs (C,J) which are models of ϕ. The entailment be-
tween two NOLL formulas is denoted by ⇒ and it is defined by ϕ⇒ ψ iff [ϕ]⊆ [ψ].

Fragment MOLL: To illustrate some constructions in this paper, we consider the frag-
ment MOLL which does not allow to specify nested lists, but only overlaid multi-
linked lists. Formally, the fragment MOLL contains all the NOLL formulas defined
over a set of predicates P such that, for any P ∈ P , Σ1(P) = emp, i.e., P is defined

by P(in,out,
−→
nhb)� (in = out)∨ (∃u.Σ0(in,u∪

−→
nhb)∗P(u,out,

−→
nhb)).

4 A Model-Theoretic Procedure for Checking Entailment

We prove that satisfiability, resp. entailment checking, of NOLL formulas is NP-
complete, resp. co-NP complete. The upper bound for the complexity of satisfiability
is proved using a small model property: if ϕ ∈ NOLL has a model, then it has also a
model of size polynomial in the size of ϕ and P (the size of P is defined as the size
of all recursive definitions for predicates in P). The co-NP upper bound for entailment
checking is obtained by proving a small model property for formulas of the form ϕ �⇒ψ
(a model for this formula corresponds to a counter-example for ϕ⇒ ψ).

4.1 Satisfiability Problem

The NP lower bound of the satisfiability problem for NOLL formulas is given by the
next theorem. The proof is based on a reduction of 3SAT, the satisfiability problem for
CNF formulas with three literals in each clause, to the satisfiability problem for MOLL
formulas. The proof of this result is detailed in [10].

Theorem 1. The satisfiability problem for NOLL (MOLL) is NP-hard.

To prove the small model property for the NP upper bound, we use an abstraction of
the models of NOLL formulas by colored heap graphs. Intuitively, a model (C,J) of
a NOLL formula is represented by a colored graph where each location � from C is
represented by a set of graph nodes V�. V� is a singleton when � is the interpretation of
a location variable or it is not shared between list segments described in ϕ. Otherwise,
each node in V� represents a subset of fields at location � such that two nodes in V�
represent disjoint sets of fields. All nodes in V� are colored by � and are called sibling
nodes. The abstraction is built such that the sub-graphs corresponding to list segments
defined using different atoms of ϕ share only nodes which are interpretations of location
variables. Thus, we can collapse in these sub-graphs most of nodes and still obtain a
model of ϕ. The collapsed nodes shall not be colored by the interpretation of a location
variable, i.e., they are anonymous nodes. We show that for any model (C,J), one can
identify a set of anonymous nodes, whose size is polynomial in the size of ϕ and P ,
called crucial nodes, such that by collapsing all the non-crucial anonymous nodes one
can still obtain a model of ϕ. Formally,

Compositional Invariant Checking for Overlaid and Nested Linked Lists 139

Definition 1 (Colored heap graph). A colored heap graph over LVars, Flds, and
SetVars is a tuple G = (V,E,P ,L,S), where (1) V is a finite set of nodes, (2) E :
V × Flds ⇀ V is a set of edges, (3) P : LVars(ϕ) → V is a labeling of nodes with
location variables, (4) L : V → Loc is a coloring of nodes with locations, and (5)
S : SetVars→ 2V is an interpretation of variables in SetVars to sets of nodes.

Fig. 6 pictures a model of ϕ in eq. (1) and its colored heap graph abstraction. We denote
the components of a colored heap graph G using superscripts, e.g., the set V in G is
denoted by V G. The semantics of NOLL formulas on colored heap graphs is defined
similarly to the one on NOLL interpretations, except for ∗ and the constraints in Λ. A
colored heap graph G satisfies a formula ϕ1 ∗ ϕ2 iff G can be split into two disjoint
graphs G1 and G2 such that G1 |= ϕ1, G2 |= ϕ2, and for any two nodes v1 ∈ V G1 and
v2 ∈V G2 , LG1(v1) �= LG2(v2). Also, for any constraint Pα(x,y,

−→z), S(α) is interpreted
as the union of L(v), for all nodes v in the unique subgraph defined by Pα.

1

x

2 3 4

5 6 7

8 9

z

0

NULL

g

g

g

h
s s

s
h s

s

h s

f

f

ff

f

f

(a)

1

x

2s

x′

3s 4s

5 6s 7s

8z′ 9

z

0

NULL

7 f 4 f 3 f 2 f

y′

6 f

g

g

g

h
s s

s
h s

s
h s

f
f f f f

f

(b)

Fig. 6. A program heap satisfying ϕ in (1) and its colored heap graph. For any 0 ≤ n ≤ 9, the
nodes ns and n f in (b) are colored by the location n from (a). Primed variables x′,y′,z′ label
crucial nodes. A small model is obtained by collapsing filled nodes in (b).

Lemma 1. If a NOLL formula ϕ has a model (C,J) then it also has a model (Cs,Js) of
size polynomial in the size of ϕ and P .

Proof. (Idea) The proof builds a small model following the steps given in Fig. 7a.
Roughly, we show that anonymous locations from (C,J) can be collapsed until the list
segments are of bounded length. The bounds are determined by the sharing constraints
in ϕ and the levels of nesting in the definition of the recursive predicates. To collapse
anonymous locations on list segments, we use the colored heap graph abstraction. How-
ever, some distinguished set of crucial anonymous nodes shall not be collapsed because
this will invalidate spatial or sharing constraints in ϕ (an example is shown below). Also,
to preserve the truth value of sharing constraints, if a node is found crucial on some list
segment, then all its sibling nodes are also marked as crucial (this corresponds to the
fact that the small model contains all the fields for that location).

140 C. Enea, V. Saveluc, and M. Sighireanu

The procedure purify removes from (C,J) all the locations not involved in spatial
constraints from ϕ. This is possible because the minimal part of C satisfying some
spatial constraint is unique. splitLocations builds the colored heap graph abstraction
of (C′,J′) by splitting the nodes not labeled by location variables but shared between
several list segments described by predicates in ϕ. An example is given in Fig. 6.

1: (C′,J′) := purify(ϕ)(C,J)
2: G := splitLocations(C′,J′)

3: V ′ := crucialNodes(ϕ,G)

4: G′ := labelCrucial(G,V ′)

5: G′′ := collapseAnonymous(G′)

6: (Cs,Js) := mergeNodes(G′′)

(a) Steps for computing a small model

1x

2sx′

5

6s

0 NULL

2sx′

1x

0 NULL

g g g

h

s

h

s

h

s

collapse

(b) Example of collapsing

Fig. 7. Computing a small model for NOLL formulas

crucialNodes computes the set of crucial nodes V ′ as the closure under the sibling
relation of the set of (anonymous) nodes in G which are either (1) the successor of a
labeled node by a non recursive field (e.g., node 2s in Fig. 6), or (2) the source or the
target of a non recursive field on a fixed path between two nodes labeled by location
variables (e.g., node 8 in Fig. 6). Because the nesting of recursive predicates is bounded,
the size of the set V ′ is bounded by a polynomial in the size of ϕ and P (the number of
variables, the nesting depth, and the size of Flds). The crucial nodes are labeled with a
set of additional location variables LVars′ in labelCrucial.

Afterwards, the anonymous nodes (not labeled by variables in LVars(ϕ)∪LVars′) are
collapsed by collapseAnonymous in a bottom up manner, i.e., starting from the inner list
segments to the upper ones. Roughly, the collapsing removes a node (and the sub-graph
representing the nested, anonymous structure) if it is between two recursive fields (see
Fig. 7b). Intuitively, this process preserves a model of ϕ because no edges are added and
the nodes marked as important for the satisfaction of the spatial and sharing constraints
are kept. Due to the special syntax of predicates in P , we can compute for each list
segment the minimal number of anonymous nodes that must be preserved in order to
satisfy some given spatial constraint. This number depends only on the size of P and
it is obtained when all the spatial constraints in the predicate definition are interpreted
as list segments of length one. Thus, we obtain a colored heap graph G′′ where all
labeled nodes are preserved and with them some sub-graphs with a bounded number of
anonymous nodes. Finally, from G′′, a (small) model (Cs,Js) of ϕ is built, by applying
mergeNodes, which roughly merges sibling nodes in locations. �

Since the complexity of the model-checking problem for NOLL formulas is polynomial,
the following result holds.

Theorem 2. The satisfiability problem for NOLL is NP-complete.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 141

4.2 Entailment Problem

The colored heap graph abstraction is also used to prove a small counter-example prop-
erty for entailments ϕ⇒ψ when ϕ and ψ are in NOLL. The proof is similar to the proof
of Lemma 1, with two main differences. Let (C,J) be a counter-example for ϕ ⇒ ψ.
First, in purify, the locations not used in ϕ are removed from (C,J) except for locations
that are witnesses for some unsatisfied sharing constraint in ψ. It is enough to keep one
location per sharing constraint in ψ and thus, their number is bounded by the size of
ψ. We label these locations with variables from some set LVars′′. Second, crucialNodes
marks some additional nodes as crucial, in order to keep track if two list segments are
sharing at least one location and in order to distinguish between list segments of size 1
and list segments of size at least 2. However, this process adds at most one more node
per constraint, and thus the bound on the number of nodes is increased by a linear term
in the size of ϕ and ψ. This property and the NP-completeness of satisfiability imply:

Theorem 3. Checking the validity of an entailment between two NOLL formulas is co-
NP complete.

5 Computing the Normal Form

This section makes a first step towards the effective procedure for checking entailments
of NOLL formulas by presenting the procedure for computing the normal form of a
NOLL formula. We say that a NOLL formula is in normal form if it contains the max-
imum set of equalities and disequalities between location variables and the minimum
set of list segment constraints. Formally,

Definition 2 (Normal form). A NOLL formula ϕ = Π∧Σ∧Λ is in normal form iff:

– for any x,y ∈ LVars(ϕ), if ϕ ⇒ x = y, resp. ϕ ⇒ x �= y, then Π contains the atom
x = y, resp. x �= y, and

– for any atomic formula Pα(x,y,
−→z) in Σ, there exists a model (C,J) of ϕ such that

SC(x) �= SC(y).

The normal form of ϕ is a formula ϕ′ in normal form and equivalent to ϕ.

We now describe the main ideas behind the procedure that computes the normal form
and to this, we must define the class of reduced, explicit NOLL formulas.

A NOLL formula is called explicit if it contains x = y or x �= y, for any constraint
Pα(x,y,

−→z) in ϕ, and x ∈ α or x �∈ α, for any x and α in ϕ. Then, an explicit formula ψ
is called reduced if it does not contain both the atoms x = y and Pα(x,y,

−→z).
Any NOLL formula ϕ is equivalent to a disjunction of reduced, explicit formulas

ψ1∨ . . .∨ψn. The formulas ψi are obtained from ϕ by (1) adding in all possible ways
atoms x = y, x �= y, x∈α, and x �∈α until the obtained formula is explicit and then, (2) if
a formula contains x = y, by removing atoms Pα(x,y,

−→z) together with all occurrences
of α in the sharing constraints (e.g., every atom x ∈ α or β ⊆ α, where β indexes a
constraint Qβ(u,v,

−→w) and u �= v belongs to the formula, is replaced by false).
The equivalent formula ψ1 ∨ . . .∨ψn can be used to compute the normal form of ϕ

as follows. An atom x = y or x �= y is implied by ϕ iff this atom is included in all the

142 C. Enea, V. Saveluc, and M. Sighireanu

satisfiable formulas ψi. Also, for any P(x,y,−→z) in ϕ, there exists a model (C,J) of ϕ
s.t. SC(x) �= SC(y) iff this atom is included in some satisfiable ψi.

In general, the number of satisfiable formulas in the disjunction ψ1∨ . . .∨ψn may be
exponential w.r.t. the size of ϕ. However, all these formulas can be represented symbol-
ically as the satisfying assignments of a boolean formula, denoted by F(ϕ).

In order to simplify the presentation, we give below the construction of F(ϕ) only
for MOLL formulas where variables are of the same type; [10] gives the general case.
F(ϕ) is defined over the set of boolean variables BVars(F(ϕ)) defined in Tab. 1.

Table 1. Definition of the set BVars(F(ϕ)) of boolean variables used in F(ϕ)

[x = y] for every x,y ∈ LVars(ϕ)
[x,y, f] for every atom x �→ θ of ϕ with (f ,y) ∈ θ

[Pα(x,y,
−→z)] for every atom Pα(x,y,

−→z) of ϕ
[x ∈ α] for every x ∈ LVars(ϕ) and α ∈ SetVars(ϕ)

Given a satisfying assignment σ : BVars(F(ϕ)) → {0,1} for F(ϕ) such that
σ([x,y, f]) = 1, for any [x,y, f] ∈ BVars(F(ϕ)), we define the MOLL formula ψσ to
be ϕ to which the following transformations are applied:

– if σ([x = y]) is 0, resp. 1, then ψσ includes the pure constraint x �= y, resp. x = y,
– if σ([Pα(x,y,

−→z)]) = 0 then Pα(x,y,
−→z) and α are removed from ϕ,

– if σ([x ∈ α]) is 0, resp. 1, then x �∈ α, resp. x ∈ α, is added to ψσ.

Let ϕ = Π∧Σ∧Λ be a MOLL formula. The formula F(ϕ) is defined by:

F(ϕ) = F(Π)∧Feq∧F(Σ)∧Fdet ∧F(Λ)∧F∈, (8)

where F(Π), F(Σ), and F(Λ) encode the semantics of the atomic formulas of ϕ, Feq

encodes the reflexivity and the transitivity of the equality relation in Π, Fdet encodes
the semantics of the field separating conjunction, and F∈ encodes the properties of the
membership relation ∈. These sub-formulas are defined inductively on the syntax of
MOLL formulas. Most of them are not difficult to follow. We provide here some intu-
ition for the most interesting ones.

In F(Σ), an atom Pα(x,y,
−→z) is translated into F(Pα(x,y,

−→z)) = [Pα(x,y,
−→z)]⊕ [x =

y],where⊕ is the exclusive or. This expresses the fact that the atom is kept in a reduced,
explicit MOLL formula only if its endpoints are not equal.

The separation of fields (defined for locations which are interpretations of location
variables) induced by the use of the field separating conjunction is expressed in the
formula Fdet in Fig. 8. Thus, Fdet states that for any location variable x and any field
f ∈ Flds, at most one of the following conditions is true:

1. the reduced, explicit formula contains the equality x = x′ and a points-to constraint
x′ �→ θ such that (f ,y) ∈ θ, for some y,

2. the reduced, explicit formula contains the atoms x ∈ α and Pα(x′,y,
−→z) (therefore

it also includes x′ �= y), for some y and −→z , such that f ∈ Flds0(Pα).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 143

Fdet =
∧

for any [x1,y1, f], [x2,y2, f] ∈ BVars(F(ϕ)) different variables

[x1 = x2]∧ [x1,y1, f] ⇒ ¬[x2,y2, f] (9)∧
for any [x1,y1, f], [Pα(x2,y2,

−→z2)] ∈ BVars(F(ϕ)) s.t. f ∈ Flds0(P) and x ∈ LVars(ϕ)

[x1 = x]∧ [x ∈ α]∧ [x1,y1, f] ⇒ ¬[Pα(x2,y2,
−→z2)] (10)∧

for any [Pα(x1,y1,
−→z1)], [Qβ(x2,y2,

−→z2)] ∈ BVars(F(ϕ)) different variables

s.t. Flds0(P)∩Flds0(Q) �= /0 and x,x′ ∈ LVars(ϕ)
[x ∈ α]∧ [x′ ∈ β]∧ [x = x′]∧ [Pα(x1,y1,

−→z1)] ⇒ ¬[Qβ(x2,y2,
−→z2)] (11)

Fig. 8. Definition of Fdet for a MOLL formula ϕ = Π∧Σ∧Λ

Fig. 9 gives the main definitions of F(Λ). For instance, F(α1 ⊆α2) in eq. (14) expresses
the fact that if there exists some variable x such that x∈α1 is true then x∈α2 also holds.
In eq. (15), F∈ encodes the closure of ∈ under the equality, the fact that if a boolean
variable [x1 ∈ α] is true then the list segment bound to α in ϕ, if any, is not empty, and
if α is bound to a non-empty list segment Pα(x,y,

−→z) in ϕ, then α contains the first
element of the segment, i.e., x.

F(x ∈ α1) = [x ∈ α1] (12)

F(x ∈
⋃

1≤i≤n

{ui}) =
∨

1≤i≤n

[x = ui] (13)

F(α1 ⊆ α2) =
∧

x∈LVars(ϕ)
[x ∈ α1]⇒ [x ∈ α2] (14)

F∈ =
∧

u,v,α in ϕ

(
[u = v]∧ [u ∈ α]

)
⇒ [v ∈ α] (15)

∧
∧

x1,Pα(x,y,
−→z) in ϕ

(
[x1 ∈ α]⇒ [Pα(x,y,

−→z)]
)

∧
(
[Pα(x,y,

−→z)]⇒ [x ∈ α]
)

Fig. 9. Main definitions of F(Λ) and F∈ for a MOLL formula ϕ = Π∧Σ∧Λ

Proposition 1. The size of F(ϕ) is polynomial in the size of ϕ.

Proposition 2. Let ϕ be a NOLL formula. For any satisfying assignment σ of F(ϕ), ψσ
is an explicit, reduced, and satisfiable formula. Also, ϕ is equivalent to the disjunction
of ψσ, for all satisfying assignments σ of F(ϕ).

Theorem 4. The problem of computing the normal form of a formula ϕ is in co-NP.

Proof. To compute the maximum set of (in)equalities that should be included in the
normal form of ϕ, we iterate over every pair of location variables x, y in ϕ and check if
F(ϕ)⇒ [x= y] or F(ϕ)⇒¬[x = y] is valid. In the first (resp., second) case, x= y (resp.,
x �= y) is included in the normal form. When some equality x = y is added to the normal
form, the atoms Pα(x,y,

−→z) in ϕ are removed, and all occurrences of α are interpreted
as the empty set. Since we need to perform a polynomial number of Boolean formula
validity tests, the overall complexity of this procedure is co-NP time. �

144 C. Enea, V. Saveluc, and M. Sighireanu

6 An Effective Procedure for Checking Entailment

The procedure for checking the validity of the entailments ϕ ⇒ ψ be-
tween two NOLL formulas is detailed in Fig. 10. It has three main steps:

procedure CheckEntl(ϕ ⇒ ψ)
1: ϕ′ := the normal form of ϕ
2: ψ′ := the normal form of ψ
3: G1 := the complete NOLL graph of ϕ′
4: G2 := the NOLL graph of ψ′

5: h := the function h : V (G2)⇀V (G1) s.t.
varsG2(n)⊆ varsG1(h(n)), ∀n ∈V (G2)

6: return (h is total) and
(h is a homomorphism)

Fig. 10.

(a) compute (lines 1–2) the nor-
mal form of ϕ and ψ, denoted by
ϕ′ and ψ′, respectively, (b) com-
pute (line 3) additional spatial
constraints, which are implied
by ϕ, and (c) check (lines 3–6) if
the graph representation of ψ′ is
homomorphic to the graph rep-
resentation of both ϕ′ and the
additional constraints computed
in the previous step.
In the following, we first de-

scribe the step (b) above, then we define graph representations for NOLL formulas,
called (complete) NOLL graphs, and finally, we define the notion of homomorphism
between NOLL graphs. Moreover, we assume that ϕ and ψ are satisfiable. Otherwise,
Proposition 2 implies that a formula ϕ is satisfiable iff F(ϕ) is satisfiable, which allows
to decide in co-NP time entailments of the form ϕ⇒ ψ when ϕ or ψ is unsatisfiable.

6.1 Inferring Additional Spatial Constraints

In order to give an intuition about the additional spatial constraints deduced from ϕ,
recall the entailment ϕ1 ⇒ ϕ2, where ϕ1 and ϕ2 are defined in eq. (6–7) at page 134.
The entailment holds because the list segments linking x to n and n to y, and described
by Listδ(x,n) ∗ Listγ(n,y), exist in every model of ϕ1. To obtain a complete decision
procedure for entailment, such constraints must be made explicit before checking the
existence of a homomorphism between the two formulas viewed as graphs.

Observe that ϕ1 does not imply ϕ1 ∗w
(
Listδ(x,n)∗Listγ(n,y)

)
but, ϕ1∧

(
Listδ(x,n)∗

Listγ(n,y)
)
. Thus, these implicit constraints will be added only to the graph representa-

tion of NOLL formulas and not to the formula itself, as explained in Sec. 6.2.
For simplicity, we give the definition only for MOLL formulas ϕ. Let ξ be a set of

atoms in ϕ of the form Qβ(u,v,
−→w). For any such ξ, P (ξ) denotes the set of recursive

predicates in ξ, SetVars(ξ) denotes the set of variables β ∈ SetVars bounded to atoms in
ξ, and tξ is the term defined as the union of all variables in SetVars(ξ).

An atom Pα(x,y,
−→z) is called implicit in ξ iff one of the following holds:

– ξ consists of one atom Pβ(u,v,
−→z), the source of Pα is the same as the source of Pβ,

i.e., ϕ⇒ x = u, and the destination of Pα is included in the list segment defined by
Pβ, i.e., ϕ⇒ y ∈ β;

– (1) ϕ⇒ x∈ tξ, (2) tξ is a minimal term t such that ϕ⇒ x∈ t, i.e., for every other term
t ′, which is the union of the variables from a strict subset of SetVars(ξ), ϕ �⇒ x ∈ t ′,
(3) Flds0(P) =

⋂
Q∈P (ξ) Flds0(Q), and (4) ϕ⇒∧

Qβ(u,v,
−→z)∈ξ y = v.

Similarly, an atom x �→ {(f ,y)} is called implicit in ξ iff the conditions (1) and (2)
above hold, (3′) an atom u �→ θi with (f ,di) ∈ θi is included in the definition of Q, for
all Q ∈ P (ξ), and (4′) ϕ⇒∧

1≤i≤n y = di.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 145

For example, for ξ = {Listα(x,y)} a set of atoms in ϕ1 from eq. (6), the atom
Listδ(x,n) is implicit in ξ because β ⊆ α in ϕ1 implies that n ∈ α and the equality
x = x is trivially implied by ϕ1. Also, the atom Listγ(n,y) is implicit in ξ because the
conditions (1–4) above hold.

By definition, the Boolean abstraction F(ϕ) defined in Sec. 5 can be used to check
that ϕ implies the equalities and the sharing constraints in the above conditions. The
conditions (3) and (3′) can be checked syntactically. Thus, the computation of the im-
plicit spatial constraints for a formula is co-NP complete.

6.2 NOLL Graphs

We define NOLL graphs, a graph representation for NOLL formulas. Roughly, the nodes
of these graphs represent sets of equal location variables and the edges represent spatial
or difference constraints. The object separated spatial constraints are represented by a
binary relation Ω∗ over edges while the sharing constraints are kept unchanged.

Definition 3 (NOLL graph). Given a NOLL formula ϕ = Π∧Σ∧Λ over a set of pred-
icates P , the NOLL graph of ϕ, denoted G(ϕ), is a tuple (V,EP,ER,ED, �,Ω∗,Λ) or the
error graph ⊥, where:

– each node in V denotes an equivalence class over elements of LVars w.r.t. the equal-
ity relation defined in Π; the equivalence class of x is denoted by [x]. If Π contains
both x �= y and x = y then G is the error graph ⊥;

– EP ⊆ V ×Flds×V represents the points-to constraints: ([x], f , [y]) ∈ EP iff x �→ θ
with (f ,y) ∈ θ is an atomic formula in Σ;

– ER ⊆V ×P ×V+×V represents list segment constraints: ([x],Pα, [
−→z], [y]) ∈ ER iff

Pα(x,y,
−→z) is an atomic formula in Σ;

– ED ⊆V ×V represents inequalities: ([x], [y]) ∈ ED iff x �= y is an atom in Π;

– � : LVars−→V, called variable labeling, it is defined by �(x) = [x], for any x ∈ LVars;

– Ω∗ contains all pairs of edges in EP∪ER denoting object separated atoms in Σ.

In the following, V (G), denotes the set of nodes in the NOLL graph G. We use a sim-
ilar notation for all the other components of G. Also, for any n ∈ V (G), varsG(n) de-
notes the set of all the variables labeling the node n in G. The graph G(ϕ2) in Fig. 3
represents the NOLL graph of ϕ2, where V = {x,y,n,m}, EP = ED = /0, ER contains
the three edges corresponding to the three list segments, Ω∗ contains only one pair
〈([x],Listα, [n]),([n],Listβ′ , [y])〉, and Λ is β′ ⊆ δ∪ γ.

A graph representation for ϕ which includes an edge for each implicit spatial con-
straint of ϕ is called a complete NOLL graph. This representation has an additional
attribute Δ, which identifies the set of atoms where a spatial constraint is implicit in.

Definition 4 (complete NOLL graph). Given a NOLL formula ϕ=Π∧Σ∧Λ, the com-
plete NOLL graph of ϕ, denoted by G(ϕ) is a tuple (G,Δ) where:

– G is a NOLL graph where all components except ER, EP, Ω∗, and Λ are equal to
the components of G(ϕ);

– ER(G) (resp. EP(G)) includes ER(G(ϕ)) (resp. EP(G(ϕ))) and, for any atom
Pα(x,y,

−→z) (resp. x �→ {(f ,y)}) which is implicit in some set of atoms ξ, e =
([x],Pα, [

−→z], [y]) ∈ ER(G) (resp. e = ([x], f , [y]) ∈ EP(G));

146 C. Enea, V. Saveluc, and M. Sighireanu

– Ω∗(G) consists of Ω∗(G(ϕ)) plus all pairs (e,e′) s.t. e represents an implicit con-
straint in ξ and (e′,e′′) ∈Ω∗(G) for some e′′ representing an atom in ξ;

– Δ ⊆ (EP∪ER)× 2ER represents the relation between edges and the sets of list seg-
ments where they are implicit in, i.e., for every Pα(x,y,

−→z) (resp. x �→ {(f ,y)})
implicit in ξ, (([x],Pα, [

−→z], [y]),Eξ) ∈ Δ (resp. (([x], f , [y]),Eξ) ∈ Δ), where Eξ is
the set of edges representing the atoms in ξ;

– if Pα1(x,y,
−→z) and Pα2(y, t,

−→z) are implicit in ξ = {Pα(x, t,
−→z)} then, α = α1∪α2

is added to Λ.

The graph in the middle of Fig. 3 represents the complete NOLL graph of ϕ1, G(ϕ1),
where V = {x,y,n,m}, EP = ED = Ω∗ = /0, and EP contains the four edges: two edges
represent the spatial constraints in ϕ1, and the edges ([x],Listα1 , [n]) and ([n],Listα2 , [m])
represent implicit constraints in ξ = {Listα(x,y)}. Λ is β⊆ α∧α = α1∪α2 and Δ is the
relation {

(
([x],Listα1 , [n]),ξ),(([n],Listα2 , [m]),ξ)}.

6.3 NOLL Graph Homomorphism

Given a NOLL graph G1 and a complete NOLL graph G2, a homomorphism from G1 to
G2 is a mapping h : V (G1) �→V (G2), which:

1. preserves the labeling with location variables, i.e., varsG1(n) ⊆ varsG2(h(n)), for
any n ∈V (G1),

2. maps each difference, resp., points-to, edge of G1 to a difference, resp., points-to,
edge of G2, (e.g., for any (n, f ,n′) ∈ EP(G1), (h(n), f ,h(n′)) ∈ EP(G2)),

3. maps each edge representing a list segment in G1 to a path in G2 formed of edges
in EP(G2)∪ER(G2), and

4. satisfies the constraints required by the semantics of the separating conjunctions,
the special status of the implicit spatial constraints, and the sharing constraints.

To explain the mapping of edges in ER(G1) to paths of G2, let us consider the case of
an edge (n,Pα,m, p) ∈ ER(G1), where n,m, p ∈V (G1) and P is a MOLL predicate, i.e.,
P(in,out,b)� (in = out)∨ (∃u.Σ0(in,u∪b)∗P(u,out,b)). The definition of h requires
that there exists a sequence of nodes π= π1 . . .πk, k≥ 1, in G2 s.t. π1 = h(n), πk = h(p),
and for every two consecutive nodes πi and πi+1, either

– EP(G2) contains some set of edges between πi, πi+1, and h(m), which prove that
Σ0(xi,xi+1 ∪ xh(m)) holds, where xi, xi+1, and xh(m) are some variables labeling πi,
πi+1, and h(m), respectively, or

– there exists an edge (πi,P′β,
−→q ,πi+1) in ER(G2), representing a stronger predicate

than Pα, i.e., h(m) ∈ −→q and P′β(xi,xi+1,
−→z) ⇒ Pα(xi,xi+1,xh(m)), where xi, xi+1,

and xh(m) are as above, and−→z is a set of variables labeling−→q s.t. xh(m) ∈−→z (this is
possible because h(m) ∈ −→q). The entailment between recursive predicates can be
checked syntactically in polynomial time.

In the following, we explain the constraints required by the 4th item in the definition
of the homomorphism. For any edge e in EP(G1)∪ER(G1), we define a set used(e)⊆
EP(G2)∪2(ER(G2)×Flds), which represents all the edges/fields used in the path from G2

to which e is mapped by h. If e ∈ EP(G1) then used(e) = {e′}, where e′ is the edge of

Compositional Invariant Checking for Overlaid and Nested Linked Lists 147

G2 to which e is mapped by h. If e ∈ ER(G1) represents a list segment Pα then, used(e)
consists of (1) the set of points-to edges in the path associated to e and (2) the set of
pairs (e′, f), where e′ represents a list segment Qβ from the same path, if such an edge
exists, and f ∈ Flds0(P)∩Flds0(Q). When the path associated to e ∈ ER(G1) labeled
by Pα (resp. e ∈ EP(G1) labeled by f) contains an edge e′ representing a constraint
implicit in some ξ, i.e., (e′,Eξ) ∈ Δ(G2), then used(e) includes all pairs (e′′, f) with
e′′ ∈ Eξ labeled by Qβ ∈ ξ, and f ∈ Flds0(P)∩Flds0(Q) (resp. f ∈ Flds0(Q)).

Then, to express the semantics of ∗w, we require that used(e1)∩ used(e2) = /0, for
any two edges e1 and e2 in EP(G1)∪ER(G1). Concerning ∗, it is required that for any
two edges e1 and e2 in EP(G1)∪ER(G1) s.t. (e1,e2) ∈Ω∗(G1), we have that (e′1,e

′
2) ∈

Ω∗(G2), for any e′1 an edge appearing in used(e1) and e′2 an edge appearing in used(e2).
Finally, for the sharing constraints, the mapping by h of edges in ER(G1) to paths

in G2 defines a substitution Γ for set of locations variables in Λ(G1) to terms over set
of locations variables in Λ(G2). For example, the homomorphism in Fig. 3 defines the
substitution Γ(δ) = α1, Γ(γ) = α2, and Γ(β′) = β. Then, it is required that Λ(G2)⇒
Λ(G1)[Γ]. Such a formula belongs for instance, to the fragment of BAPA [14], and thus
its validity can be decided in NP-time. For the example in Fig. 3, we obtain the trivial
entailment β⊆ α∧α = α1∪α2 ⇒ β⊆ α1∪α2.

6.4 Checking Entailments of NOLL Formulas

The following theorem states the correctness and the complexity of the procedure
CheckEntl given in Fig. 10; the proof is given in [10].

Theorem 5. Given two NOLL formulas ϕ and ψ, ϕ ⇒ ψ holds iff CheckEntl(ϕ ⇒ ψ)
returns true. Moreover, the complexity of CheckEntl is co-NP time.

7 Experimental Results

We have implemented the procedure for entailment checking in a solver which takes as
input the specification of predicates in P and two formulas ϕ,ψ ∈ NOLL defined over
P and returns as result either the homomorphism found when ϕ ⇒ ψ or a diagnosis
explaining why the entailment is not valid. The diagnosis is given as a list of variables
or atomic spatial constraints in ϕ and ψ for which the conditions for the homomorphism
are not satisfied. The solver is implemented in C. It uses MiniSat [9] to compute normal
forms and an ad-hoc solver for the sharing constraints.

We have used this solver to check verification conditions generated for procedures
working on singly linked lists, doubly linked lists, and overlaid hash tables and lists in
the Nagios network monitoring example. We have considered mainly the procedures for
inserting or moving elements in these data structures. The post-condition computation
follows the standard approach: introducing primed variables to denote old values and
unfolding recursive predicates for statements that involve fields. To generate simpler
verification conditions, we use the frame rules for the separating conjunction operators.
In this way, the graph representations for the NOLL formulas have less than ten ver-
tices and twenty edges (including the inferred edges), and less than five set of locations
variables. Each verification condition is decided in less than 0.1 seconds.

148 C. Enea, V. Saveluc, and M. Sighireanu

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A Decidable Fragment of Separation Logic. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer,
Heidelberg (2004)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion Check-
ing with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

4. Bobot, F., Filliâtre, J.-C.: Separation Predicates: A Taste of Separation Logic in First-
Order Logic. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 167–181.
Springer, Heidelberg (2012)

5. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260. ACM
(2008)

7. Chlipala, A.: Mostly-automated verification of low-level programs in computational separa-
tion logic. In: PLDI, pp. 234–245. ACM (2011)

8. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable Reasoning in a
Fragment of Separation Logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

9. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Enea, C., Saveluc, V., Sighireanu, M.: Composite invariant checking for nested, overlaid
linked lists (2012), Extended version available as HAL-00768389 report

11. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data representation synthesis.
In: PLDI, pp. 38–49. ACM (2011)

12. Ishtiaq, S., O’Hear, P.W.: BI as an assertion language for mutable data structures. In: POPL,
pp. 14–26. ACM (2001)

13. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)

14. Kuncak, V., Nguyen, H.H., Rinard, M.: An Algorithm for Deciding BAPA: Boolean Al-
gebra with Presburger Arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, pp. 260–277. Springer, Heidelberg (2005)

15. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-structures.
In: POPL, pp. 123–136. ACM (2012)

16. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus = heap the-
orem prover. In: PLDI, pp. 556–566. ACM (2011)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp.
55–74. IEEE Computer Society (2002)

18. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstrac-
tions. In: POPL, pp. 199–210. ACM (2010)

19. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

A Discipline for Program Verification

Based on Backpointers and Its Use
in Observational Disjointness

Ioannis T. Kassios1,� and Eleftherios Kritikos2

1 ETH Zurich, Switzerland
ioannis.kassios@inf.ethz.ch

2 National Technical University of Athens, Greece
eleftherios.kritikos@gmail.com

Abstract. In the verification of programs that manipulate the heap,
logics that emphasize localized reasoning, such as separation logic, are
being used extensively. In such logics, state conditions may only refer to
parts of the heap that are reachable from the stack. However, the cor-
rect implementation of some data structures is based on state conditions
that depend on unreachable locations. For example, reference counting
depends on the invariant that “the number of nodes pointing to a certain
node is equal to its reference counter”. Such conditions are cumbersome
or even impossible to formalize in existing variants of separation logic.

In the first part of this paper, we develop a minimal programming
discipline that enables the programmer to soundly express backpointer
conditions, i.e., state conditions that involve heap objects that point to
the reachable part of the heap, such as the above-mentioned reference
counting invariant.

In the second part, we demonstrate the expressiveness of our method-
ology by verifying the implementation of concurrent copy-on-write lists
(CCoWL). CCoWL is a data structure with observational disjointness,
i.e., its specification pretends that different lists depend on disjoint parts
of the heap, so that separation logic reasoning is made easy, while its im-
plementation uses sharing to maximize performance. The CCoWL case
study is a very challenging problem, to which we are not aware of any
other solution.

1 Introduction

The advent of separation logic [1] has revolutionized reasoning about programs
with rich heap structure. The main motivation behind this line of work is local-
ized reasoning (also referred to as “reasoning in the small”). In particular, the
specifier is only allowed to talk about the locations of the heap s/he has explicit
permission to, completely ignoring the rest of the heap. In separation logic, a
state condition contains its own permissions. For example, x �→ 3 is a condition

� The first author was funded by the Hasler Foundation.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 149–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 I.T. Kassios and E. Kritikos

that not only expresses the fact that 3 is the content of memory location x, but
also that the programmer is permitted to read and write to x.

State conditions that contain their own permissions are called self-framing
[2–4]. A self-framing assertion has the important property that it cannot be
falsified by an unknown program. As a result, the localized verification of our
program cannot be falsified when this program is composed (sequentially, paral-
lelly, through method call, or through thread forking) with other programs. In
concurrent variants of separation logic, permissions can be split [5] (e.g., in frac-
tions [6]), thus enabling shared resources without data races. These well-known
extensions of separation logic, maintain this important property: all expressible
state conditions are self-framing.

Self-framing conditions cannot talk about objects that are unreachable by the
pointers of the program under verification. However, there are cases when such
conditions would be desirable.

For example, assume that we have a concurrent program operating on a graph.
Normally, none of its threads has access to the whole graph, because that would
mean that only one thread can perform changes, which defeats the purpose of
concurrency. Consider now the following examples of node invariants :

– Reference counting. The value of the reference counter of a node N is equal
to the number of nodes N ′ such that N ′.f = N .

– Priority Inheritance Protocol [7]. The priority of a node is the minimum of
its initial priority and the priority of the node pointing to it (see also [8]).

– The union-find structure. In this structure each node represents a set of
nodes. The set represented by a node N is {N} unioned with the sets rep-
resented by all nodes that point to N .

Assume that a thread T has access to a node N . The invariant of N involves
nodes that are unreachable from N , and therefore inaccessible to T . This makes
the invariant of N non-self-framing, and therefore inexpressible in existing vari-
ants of separation logic.

All the examples of node invariants that we mentioned are conditions which
may involve unreachable heap objects that point to reachable heap objects. We
call such conditions backpointer conditions. Our purpose is to enable the “rea-
soning in the small” style of separation logic, in verification problems that involve
backpointer conditions.

1.1 Contributions

In this paper, we propose an extension of separation logic with a minimal pro-
gramming discipline that makes it possible to express backpointer conditions in
a self-framing way. Our methodology enables the verification, in the localized
style of separation logic, of data structures with backpointer node invariants.

Furthermore, we use our technique to verify the case study of concurrent copy-
on-write lists (hence CCoWL). This is a challenging problem of observational
disjointness : the structure pretends that it supports mutually disjoint mutable

Backpointers and Observational Disjointness 151

sequences of integers, even though it uses data sharing under the hood, to en-
hance performance. The clients are happy to use the facilities of separation logic
to verify their programs as if the lists were actually heap-disjoint, but the verifier
of the implementation is faced with a challenging reference counting mechanism.
We are not aware of other solutions to the CCoWL verification problem.

1.2 Structure of the Paper

The paper is organized as follows: In Sect. 2, we motivate and introduce the
discipline of backpointers. In Sect. 3, we show how the discipline can be used to
verify CCoWLs, highlighting the most important parts of the implementation
and the correctness proof. In Sect. 4, we discuss the relationship of our method-
ology to related work and point out some possibilities for future work. Sect. 5
concludes.

Our online technical report [9] contains an appendix with the full specification,
implementation and correctness proof of the CCoWL example.

2 The Backpointers Discipline

In this section, we introduce the discipline of backpointers. We start by intro-
ducing the background (Sect. 2.1) on which we work, a framework for locking,
monitor invariants, and deadlock avoidance borrowed from Chalice [10]. We then
extend our language with the backpointer formalism (Sect. 2.2) and provide an
argument about the soundness of this extension (Sect. 2.3).

2.1 Background

Records and Locking. Our language supports mutable records. A monitor is
associated with each record and a monitor invariant is also associated with each
monitor. The monitor invariant is an expression written in separation logic with
fractional permissions.

Consider the following definition:

s t r u c t Pa i r
{

x , y : i n t

i n v a r i a n t ∃X,Y ∈ Z · t h i s . x �→X ∗ t h i s . y
0.5�−−→ Y ∧ X>0

}

The definition introduces a set Pa i r . The members of Pa i r are: (a) the special
record n u l l and (b) records r such that r . x and r . y are heap locations that
store integers.

152 I.T. Kassios and E. Kritikos

Assume that t h i s is a non-null record of type Pa i r . The monitor invariant
associated with t h i s asserts that t h i s . x stores a positive value. It also grants
write (full) access permission to t h i s . x and 50% permission to t h i s . y. In
general, when we write monitor invariants, t h i s refers to the current record and
may be omitted when referring to its fields.

We are interested in thread-modular verification. From the point of view of
the current thread, a record can be in one of the following three conditions: (a)
local, (b) shared and not held by the current thread, (c) shared and held by the
current thread. Fig. 1 shows all these conditions, together with the commands
that perform the transitions between them.

localr := new R;
shared

not held by T
shared

held by Tshare r;

acquire r;

release r;

Fig. 1. A record’s life cycle from the point of view of thread T

The invariant of a monitor is always true when the associated record is shared
but not held by any thread. To hold a record, a thread must acquire it. As long
as it holds the record, the thread may invalidate the monitor invariant but must
ensure that the invariant holds before it releases the record. Similarly, a thread
that shares a record must first ensure that the associated invariant holds.

Sharing and releasing means that the current thread loses all permissions
that are contained in the invariant. Acquiring means that the thread gains these
permissions and that it may furthermore assume that the invariant holds imme-
diately after the record is acquired.

The Chalice locking model has a simple mechanism to prevent cyclic depen-
dencies between “acquire” requests, and thus to prevent deadlock [10]. Assume
that Ord is a set equipped with a strict partial ordering � . We furthermore as-
sume that � is dense in the sense that if a� b then there exists c∈Ord such that
a� c� b. Every shared record is associated with a value in Ord called its lock-
level. A thread is allowed to acquire a record, only when that record is greater
in � than all the other records that the thread holds.

The rules that govern record creation, sharing, releasing and acquiring are
shown in Fig. 2. In it:

– l o c a l and sha r ed are abstract predicates that indicate that a record is
local or shared resp. The second argument of sha r ed equals the lock-level
of the record.

– Both predicates imply that their first argument, the record, is non-null:

sha r ed (r ,) ∨ l o c a l (r) ⇒ r�=nu l l

Backpointers and Observational Disjointness 153

– sha r ed is infinitely divisible, i.e.,

sha r ed (r ,μ) ⇐⇒ sha r ed (r ,μ) ∗ sha r ed (r ,μ)

This means that, unlike in Chalice, the lock-level of an object is immutable.

– Each shared record has a single lock-level:

sha r ed (r ,μ) ∗ sha r ed (r ,μ′) ⇒ μ=μ′

– If r, r′ are records, the notation r � r′ is a shorthand for:

∃μ ,μ′∈ Ord · sha r ed (r ,μ) ∗ sha r ed (r′ ,μ′) ∗ μ� μ′

We extend this notation to “compare” a record r to a set of records:

R � r ⇐⇒ ∀r′ ∈ R · r′ � r

Note that R� r ⇒ r �∈R
– Inv (r) is the monitor invariant of record r

– h e l d is a thread-local variable whose value is the set of all records held by
the current thread

– newRec is an abstract predicate describing the situation directly after a new
record is created. It gives access to all fields fi of the new record r, initializes
them to the default value of their type and asserts that r is local:

newRec (r) ⇐⇒ r.f1 �→d1 ∗ . . . ∗ r.fn �→dn ∗ l o c a l (r)

– The default value of all record types is nu l l

The share command can specify bounds for the lock-level of the record being
shared. We omit the rules for these variants of share for brevity.

Counting Permissions. Counting permissions are an important alternative to
fractional permissions. The idea is as follows. A counting permission is a natural
number n, or −1. At any given execution time, there is one thread that holds a
non-negative counting permission n to a heap location and n threads that hold
a −1 counting permission. We call the holder of counting permission n the main
thread for that heap location.

The main thread can give away −1 counting permissions, increasing its own
counting permission accordingly. The holders of −1 counting permissions may
return their counting permission to the main thread, decreasing its counting
permission accordingly. If n = 0, then the main thread is the only thread that
can access the location and thus has write privileges. Otherwise, all involved
threads have read-only access.

We do not need to invent new notation for counting permissions. Instead, we
introduce an infinitesimal fractional permission ε to stand for the −1 counting
permission. Then the counting permission n corresponds to fractional permission
1− nε. This approach is taken in the current Chalice permission model [11].

154 I.T. Kassios and E. Kritikos

{emp}
r :=new R

{newRec (r)}

{ l o c a l (r) ∗ Inv (r) ∗ h e l d �→O ∧ r �∈O}
share r

{sha r ed (r ,) ∗ h e l d �→O}

{sha r ed (r ,μ) ∗ h e l d �→O ∗ O � r}
acqu i re r

{sha r ed (r ,μ) ∗ h e l d �→O∪{ r } ∗ Inv (r)}

{sha r ed (r ,μ) ∗ h e l d �→O ∗ Inv (r) ∧ r∈O}
r e l e a s e r

{sha r ed (r ,μ) ∗ h e l d �→O−{ r }}

Fig. 2. Commands on records

2.2 Backpointers

To make the backpointer properties self-framing, we impose a restriction on the
assignments which may potentially invalidate such properties.

Tracked Fields. Our first step is to identify those reference-valued fields, whose
value influences backpointer invariants. We mark these fields as tracked, because
we want to track assignments to them.

s t r u c t C { t racked f :D ; }

Backpointer Definitional Axiom. Suppose now that a record type C has a tracked
field f of type D (where C,D are not necessarily different). To express back-
pointer properties, it should be possible to refer to “all allocated records of type
C that point to the record d of type D through the field f”. We write d.(C.f)−1

to refer to that set. In other words, the definitional axiom of backpointers is (for
every state σ):

�
∀c ∈ αC, d ∈ αD · c ∈ d.(C.f)−1 ⇔ c.f = d

�
(σ) (1)

where

– �E� (σ) evaluates expression E in state σ
– αT is the set of all non-null allocated records of type T in a given state

If C is clear from the context, we simply write d.f−1.

Backpointer Fields. The value of the expression (C.f)−1 is not associated with
any permission, which is what makes it non-self-framing. To fix this, we turn
(C.f)−1 into a field of D. This field has access permissions like any regular

Backpointers and Observational Disjointness 155

field. However, it is a ghost field: it does not appear in the actual program; it
is only part of its specification annotation. Furthermore, even explicit “ghost
assignments” to it are forbidden1.

Tracked Assignments. Assume now that record r points to record q through a
tracked field f . Consider the assignment:

r.f :=p

Notice that this assignment changes not only the value of r.f , but also that of
q.f−1 and p.f−1. The situation is depicted graphically in Fig. 3. Since the values
of two backpointer fields are changed, the thread that executes the assignment
must have full permission to those fields. In the case q or p are the nu l l reference,
then, of course, we do not require access to their backpointer fields.

We introduce two axiomatic rules for tracked assignments2. First, for the case
p �= q:

{
r=R�=nu l l ∧ p=P �=Q ∧ r.f �−→ Q

∗ (p�=nu l l ⇒ p.f−1 �−→ S1) ∗ (Q�=nu l l ⇒ Q.f−1 �−→ S2)

}
r.f :=p

{
r=R�=nu l l ∧ p=P �=Q ∧ r.f �−→ p

∗ (p�=nu l l ⇒ p.f−1 �−→ S1 − {r}) ∗ (Q�=n u l l ⇒ Q.f−1 �−→ S2 ∪ {r})
}

and second, for the contrived case p = q

{ r=R�=n u l l ∧ p=P ∧ r.f �−→ P ∗ (P �=n u l l ⇒ P.f−1 �−→ S) }
r.f :=p

{ r=R�=n u l l ∧ p=P ∧ r.f �−→ P ∗ (P �=n u l l ⇒ P.f−1 �−→ S) }

Example 1. In this simple example, we will show how the backpointers discipline
makes it possible to express reference counting, and how we can use reference
counting to protect shared data from mutation.

Suppose that we have two types C e l l and C l i e n t . Clients have a reference
field f to cells. Many clients may share a cell and we are interested in keeping
track of them. Therefore f is a tracked field:

s t r u c t C l i e n t { t racked f : C e l l ; }

1 In this sense, backpointer fields are like JML’s model fields [12]. Unlike model fields
however, backpointer fields are associated with permissions.

2 For simplicity, assume that r and p are local variables.

156 I.T. Kassios and E. Kritikos

r

q p

o1o2o3. . . o′1 o′2 o′3 . . .

q.f−1 p.f−1

f

Before

r

q p

o1o2o3. . . o′1 o′2 o′3 . . .

q.f−1 p.f−1

f

After

Fig. 3. Assignment to a tracked field r.f := p. This diagram depicts the case where p
is not equal to the original value q of r.f and where both p and q are non-null.

A cell has an integer field data and a reference counter r e fCoun t . If n clients
point to the cell, then each of them holds ε permission and 1−nε remains in the
monitor invariant of the cell. The reference counter must be equal to n. Using
the ghost field f −1 , the requirement is stably expressible:

s t r u c t C e l l
{

data , r e fCoun t : i n t ;

i n v a r i a n t ∃B · f −1 �→B ∗ r e fCoun t �→ |B | ∗ data
1−|B|ε�−−−−→

}

It is impossible for a client to add/remove a reference to a cell c without first
acquiring it (because one needs write access to c . f −1 to perform such an assign-
ment). After acquiring c, if the client wishes to release c, it must also update the
reference counter appropriately, since otherwise the monitor invariant of c will
not hold. Here is an example of a client which correctly adds a reference to a
cell:

acqu i re c ;
c l :=new C l i e n t ;
c l . f :=c ;
c . r e fCoun t := c . r e fCoun t +1;
r e l e a s e c ;

Backpointers and Observational Disjointness 157

Every client that references c holds an ε permission to c . data . For example,
in the above code, the client has gained an ε permission to c . data , because it
added a new reference to c.

A holder of an ε permission to c . data can probe the reference counter of c,
to see if it shares the cell with any other client. If the reference counter is 1,
then the holder may acquire the cell, combine its ε permission with the 1 − ε
permission to c . data, and obtain write permission to c . data . Here is a client
that does this correctly:

// he re : c . data
ε�−→

acqu i re c ;
i f (c . r e fCoun t e r =1)
{

// he re we can prove c . data �→
c . data :=42;

}

So long as the reference counter is greater than 1, it is not possible for a client
to gain write access to the data. �

2.3 Soundness

In this subsection, we give an brief informal argument to explain why the back-
pointers discipline is sound.

The extension of a specification and programming language with backpointers
imposes the soundness requirement that the definitional axiom of backpointers
(1) is a system invariant, i.e., a property that holds at any given state during
the execution of the program.

Consider a programming language that supports all the features that we have
introduced so far: mutable records, locking, assignment, conditionals, procedures,
sequential and parallel composition. Assume a standard small step semantics for
that programming language. The rule for field assignment in this language is

�e1 �= nu l l � (σ) ⇒ 〈e1.f := e2, σ〉� σ[(�e1� (σ).f) � �e2� (σ)] (2)

where 〈s, σ〉 is a configuration,� is the operational semantics relation and [·� ·]
is the update notation.

The introduction of backpointers entails the following change to the opera-
tional semantic rules:

– Rule (2) applies only when f is a non-tracked field
– Backpointers are introduced as ghost fields. Explicit assignments to them

are forbidden.
– If f is a tracked field, then (2) is replaced by the following rule

�e1 �= nu l l � (σ) ⇒ 〈e1.f := e2, σ〉� σ′[o.f � �e2� (σ)] (3)

where
o = �e1� (σ)

158 I.T. Kassios and E. Kritikos

σ′ =

{
σ′′[o.f−1 �

�
e1.f.f

−1
�
(σ)− {o}] if �e1.f �= n u l l � (σ)

σ′′ otherwise

σ′′ =

{
σ[�e2� (σ).f−1 �

�
e2.f

−1
�
(σ) ∪ {o}] if �e2 �= n u l l � (σ)

σ otherwise

– The rule for the creation of new records is revised as follows:
• The new record can only be assigned to a local variable3

• All reference-typed fields of the new record are initialized to nu l l and
all backpointer fields of the new record are initialized to ∅

To prove that (1) is a system invariant, we perform a standard induction on the
structure of the statements of the language. Notice that (1) can only be falsified
by rule (3) and by the creation of new records.

It is easy to see that (3) does not falsify (1). For the creation of new records,
we also assume that there are no dangling pointers, as is the case with languages
that support garbage collection. Under this assumption, the creation of new
records as described above does not falsify (1).

3 Concurrent Copy-on-Write Lists

We now turn our attention to a hard verification problem, that of concurrent
copy-on-write lists (CCoWL). We discuss how backpointers help us verify this
data structure.

In this section, we highlight the most important aspects of the verification.
As we commented above, the specifications, implementations, and proof outlines
for all the procedures can be found in [9].

3.1 Description of the Problem

A CCoWL data structure supports a record called list, which represents a mu-
table sequence of integers. One can create new empty sequences, insert items
at the beginning of an existing sequence, update an item at a specific index,
and copy one sequence to another. For simplicity, we restrict ourselves to the
operations mentioned here, which can already generate all possible graphs in the
underlying data structure.

The clients of lists, which may be one or more threads, are given the impres-
sion that every list is completely heap-disjoint from all the others and thus can
reason about mutations using ordinary separation logic. The specification of the
procedures that are available to the clients is shown in Fig. 4. In it, l i s t (l ,L) is
an abstract predicate that expresses the fact that the list record l represents the
integer sequence L, the operator ++ denotes concatenation, and the expression
L[i � v] denotes the sequence L with the content of index i updated to value v.
Indexes are zero-based.

3 Assignment to a field is considered syntactic sugar.

Backpointers and Observational Disjointness 159

{newRec (t h i s) ∗ h e l d �→O}
i n i tEmpty (t h i s)

{ l i s t (t h i s , []) ∗ h e l d �→O ∗ O � t h i s}

{newRec (t h i s) ∗ l i s t (other , L) ∗ h e l d �→O ∗ O � o t h e r}
copy (t h i s , o t h e r)

{ l i s t (t h i s , L) ∗ l i s t (other , L) ∗ h e l d �→O

∗ O � t h i s ∗ O � o t h e r}

{ l i s t (t h i s , L) ∗ h e l d �→O ∗ O � t h i s}
i n s e r t (t h i s , newValue)

{ l i s t (t h i s , [newValue]++L) ∗ h e l d �→O}

{ l i s t (t h i s , L) ∗ h e l d �→O ∗ O � t h i s ∧ 0≤i ndex <|L | }
s e t (t h i s , index , v a l u e)

{ l i s t (t h i s , L [i n d e x� va l u e]) ∗ h e l d �→O}

Fig. 4. Public Specification of CCoWLs

For example, consider the following client:

l i s t 1 :=new L i s t ;
i n i tEmpty (l i s t 1) ;
i n s e r t (l i s t 1 , 3) ; i n s e r t (l i s t 1 , 2) ; i n s e r t (l i s t 1 , 1) ;
l i s t 2 :=new L i s t ;
copy (l i s t 2 , l i s t 1) ;
s e t (l i s t 1 , 1 , 4) ;

We can use ordinary separation logic and the specifications of Fig. 4 to prove
that, at the end of the execution, l i s t 1 contains the sequence [1, 4, 3], and
l i s t 2 contains [1, 2, 3].
Behind the scenes however, the data structure performs lazy copying: all op-

erations are implemented with reference manipulations as long as this does not
influence the clients’ disjointness illusion. Copying happens only when necessary.

The underlying representation uses linearly linked lists of node records. First
the implementation creates such a linked list to represent that l i s t 1 contains
the sequence [1,2,3] (Fig. 5a). After that, a new list l i s t 2 is created and it is
initialized by copying l i s t 1 . The client may pretend that the lists are disjoint,
but the implementation is being lazy: it just sets the head node reference of
l i s t 2 to point to the head node of l i s t 1 , producing the situation in Fig. 5b.
Finally, the client sets the item 1 of l i s t 1 to 4. The change must influence only
l i s t 1 and not l i s t 2 . The implementation must now copy the first two nodes
of the common underlying structure, and then perform the set operation in a
way that ensures that l i s t 2 is not affected. The last node remains shared. The
final situation is shown in Fig. 5c.

160 I.T. Kassios and E. Kritikos

list1

1A :

2B :

3C :

list1

1A :

list2

2B :

3C :

list1

1A′ :

4B′ :

3C :

2B :

1A :

list2

(a) (b) (c)

Fig. 5. An example of CCoWL history

To achieve this copy-on-write effect, the nodes are equipped with a reference
counter. When a s e t operation occurs, then the affected list is traversed from
the head to the index where the update should happen. During the traversal,
the reference counter of all the nodes is examined. As long as the reference
count equals 1, the procedure knows that only one list is affected. As soon as
the procedure meets a reference count greater than 1, it knows that, from that
point on, more than one lists are affected. At that point, the procedure copies
the nodes of the list all the way to the index where the update should happen.

Starting from Fig. 5c, a s e t (l i s t 1 , 1 , 10) operation will only find ref-
erence counts of 1 in its way and will perform no copying. On the contrary,
s e t (l i s t 1 , 2 , 10) will find that the reference count of the node it is trying
to mutate is 2, thus it must copy this node, separating the two lists completely.

3.2 Record Definitions, Abstract Predicates, and Invariants

Our implementation contains L i s t and Node records. A L i s t record contains a
reference to a head node. The reference should be tracked, because it should be
counted in the reference count of the head node.

s t r u c t L i s t { t racked head : Node }

If head points to n u l l , then the list record represents the empty sequence.
A Node record contains a value, a tracked reference to the next node, and a

reference count. We defer the monitor invariant of nodes for later.

s t r u c t Node
{

va lue , r e fCoun t : i n t ;
t racked next : Node ;
i n v a r i a n t . . .

}

Backpointers and Observational Disjointness 161

We now define the abstract predicate l i s t . The definition uses the auxiliary
abstract predicate node :

pred i ca te l i s t (t h i s : L i s t , L :Z∗)
{

∃H ∈Node · sha r ed (t h i s ,) ∗ t h i s . head �→H
∗ ((node (H , L) ∗ t h i s �H) ∨ (H=nu l l ∧ L= []))

}

pred i ca te node (t h i s : Node , L :Z∗)
{

L�= [] ∧
∃N ∈Node ·

t h i s . v a l u e
ε�−→L [0] ∗ t h i s . next

ε�−→ N ∗ sha r ed (t h i s ,)
∗ ((node (N , L [1 . .]) ∗ t h i s �N) ∨ (N=nu l l ∧ | L |=1))

}

The predicate node traverses the structure following recursively the next refer-
ences of the node records it encounters. The represented sequence is not empty.
The first item L [0] of the sequence is stored in field va l u e . The rest of the se-
quence L [1 . .] is represented by the node pointed to by field next , if one exists.
The lock-order of node n is below that of n . next , because we intend to acquire
monitors of nodes in the order in which we traverse the structure. Similarly, the
lock-order of a list l is below that of l . head.

If a node record n is reachable from a list record l, then it contributes to the
value of the sequence that l represents. We then say that l is interested in n.

Note that each holder of a l i s t (l ,L) predicate has ε access to all the va l u e

and next fields of the nodes in which l is interested. The rest of the permissions
to these fields are in the monitors of their respective records. So, if a node record
interests n different lists, then it stores in its monitor 1 − nε permission to its
fields va l u e and next .

So far, this pattern is exactly the same as the one we have seen in Ex. 1. There
is however a complication: the reference counter of a node does not indicate how
many lists are interested in it. For example, consider Fig. 6, in which a possible
state of a CCoWL structure is shown. Both nodes A and B interest three lists,
however their reference counters are 2 and 1 respectively.

To deal with this problem, we introduce a ghost field in Node. This field counts
how many lists are interested in the current node. We call it t r an sRe fCoun t (for
transitive reference counter). In Fig. 6, we see not only the reference counters
but also the transitive reference counters of all the nodes.

We now know the following about the monitor invariant of the Node type:

– It grants permission 1 − T ε to the fields va l u e and next , where T is the
value of the transitive reference counter:

va l u e
1−Tε�−−−→ V ∗ next

1−Tε�−−−→ N

162 I.T. Kassios and E. Kritikos

list1

refCount = 2

transRefCount = 2

refCount = 2

transRefCount = 3
A:

refCount = 1

transRefCount = 3
B:

list2

refCount = 1

transRefCount = 1

list3

Fig. 6. Reference and Transitive Reference Counters in a CCoWL

– It grants full access to the fields head−1 and next −1 :

head−1 �→B1 ∗ next −1 �→B2

– The value of the reference counter is equal to |B1|+|B2|. The field r e fCoun t

is granted full access, as it should be possible for the thread that acquires
the node to update the reference counter correctly:

r e fCoun t �→|B1|+ |B2|

Notice that the value of the transitive reference counter is equal to the sum of
the transitive reference counters of all nodes that point to the current node plus
the number of list records that point directly to the current node. In order to
be able to express this condition, we must grant to the monitor invariant of the
current node read access to the t r an sRe fCoun t field of all the nodes that point
to the current node. We give them 0.5 permission:

∃F ∈Node→ Z · �n ∈ B2 ·n . t r an sRe fCoun t
0.5�−−→ F (n)

The value of the field t r an sRe fCoun t is given by

T = |B1| +
∑

n ∈ B2 ·F (n)

The permission to the field t r an sRe fCoun t cannot be 1, since, as we have
discussed above, the node N that follows the current one has 0.5 permission to
it. Therefore, the invariant conjunct that relates t r an sRe fCoun t to its value is:

t r an sRe fCoun t
0.5�−−→ T

The final detail: if N is nu l l , then there is no other node that has 0.5 permission
to the current node’s t r an sRe fCoun t field. In this case, the monitor invariant
of the current node should include the extra permission:

Backpointers and Observational Disjointness 163

N=n u l l ⇒ t r an sRe fCoun t
0.5�−−→ T

Putting it all together, the definition of Node, together with the monitor invari-
ant, is:

s t r u c t Node
{

va lue , r e fCoun t : i n t ;
ghost t r an sRe fCoun t : i n t ;
t racked next : Node ;
i n v a r i a n t ∃T ∈ Z , N ∈Node , B1 ∈ 2Head , B2 ∈ 2Node , F ∈Node→ Z ·

va l u e
1−Tε�−−−→ ∗ next

1−Tε�−−−→ N ∗ head−1 �→B1 ∗ next −1 �→B2

∗ r e fCoun t �→|B1|+ |B2| ∗ t r an sRe fCoun t
0.5�−−→ T

∗ (�n ∈ B2 ·n . t r an sRe fCoun t
0.5�−−→ F (n))

∗ (N=nu l l ⇒ t r an sRe fCoun t
0.5�−−→ T)

∧ T = |B1| +
∑

n ∈ B2 ·F (n)
}

3.3 Some Highlights of the Implementation

In this section, we discuss three interesting aspects of the implementation: how
lists gain and lose interest to nodes and how the updating procedure decides
how to substitute in-place update by copy-and-update.

Gaining Interest. In our procedures, the only place where a list gains interest
to new nodes is lazy list copying. When a list is copied, only the head refer-
ence of the target list changes. The target list gains interest to all the nodes of
the source list. To ensure that our bookkeeping is correct, we must update the
transitive reference counters of all these nodes. We do this with a ghost proce-
dure4 addOneToTransRefCount, which traverses the whole list and adds 1 to
all transitive reference counters.

Losing Interest. Our copy-and-update procedure node copy set takes as pa-
rameters (besides the obvious index/value pair) a source node t h i s and a
target node new node. The precondition of node copy set asserts that the
caller has a predicate node (t h i s , L) . Its postcondition returns a predicate
node (new node , L [i n d e x� va l u e]) . The predicate node (t h i s , L) of the
precondition is lost. Indeed, the permissions node (t h i s , L) are taken away
from the thread. Those monitors of the nodes to which the source list loses in-
terest obtain an extra ε permission to the corresponding va l u e and next field.
For the nodes to which no interest is lost, the thread maintains its ε permissions,
but they are now part of the node (new node , L [i n d e x� va l u e]) predicate.
In this way, no permission to fields va l u e and next is ever lost.

4 A ghost procedure updates the state by assigning only to ghost fields, and therefore
is not executed in the actual program.

164 I.T. Kassios and E. Kritikos

For example, consider the situation in Fig. 5b. The permission to the va l u e

and next fields that is stored in the monitor of nodes A,B,C is 1 − 2ε. There
is a thread that holds a l i s t (l i s t 1 , [1 , 2 , 3]) predicate, that grants ε per-
mission to the va l u e and next fields of these nodes. Now s e t (l i s t 1 , 1 , 4)

is called. Since the reference count of A is 2, a new node A′ is created and the
node copy set procedure is called with source A and target A′. The procedure
takes away the node (A , [1 , 2 , 3]) predicate of the caller and returns a new
node (A′ , [1 , 4 , 3]) predicate. The final state is shown in Fig. 5c.

List l i s t 1 lost interest in nodes A,B. The ε permissions to their va l u e and
next fields are returned from the node (A , [1 , 2 , 3]) predicate back to their
monitor, which now maintains 1−ε permission to these fields. The list maintained
interest to node C, so an ε permission to the va l u e and next fields of C is trans-
ferred from node (A , [1 , 2 , 3]) to node (A′ , [1 , 4 , 3]) . The monitor of C has
1− 2ε permission to those fields, as before. The predicate node (A′ , [1 , 4 , 3])

has ε permission to the va l u e and next fields of the newly generated A′ and B′

nodes. There was no loss of permission; only permission transfer.

Setting without Copying. As we have explained, the algorithm decides to start
the copy-and-update procedure once it sees a reference counter greater than 1.
To verify that this policy is indeed correct, we include a precondition to our
update-in-place procedure node set that the transitive reference counter of the
node it is applied to equals 1.

The algorithm calls node set on the next node, under the circumstance “I
have not yet seen a reference counter greater than 1 and the reference counter
of the next node is 1”. In our formalism, this is translated into:

t h i s . r e fCoun t �→1 ∗ t h i s . t r an sRe fCoun t
0.5�−−→1

∗ t h i s . next �→N ∗ N . r e fCoun t �→1 ∧ N �=nu l l

From this condition, together with the fact that Inv (t h i s) and Inv (N) hold,
one must prove that the value of the transitive reference counter of N is 1. In
the following, we explain how we prove this property.

Let B1 be the value of N . head−1 and B2 be the value of N . next −1 .
By the definitional axiom, we know that t h i s∈B2. By Inv (N) , we con-
clude that B2={ t h i s } and B1=∅. Again by Inv (N) , we get that the value of
N . t r an sRe fCoun t is equal to the value of t h i s . t r an sRe fCoun t , which is 1.

The above argument applies when node set recursively calls itself. Initially
however, it is procedure s e t (the update procedure on lists) that decides whether
it should call node set or node copy set on its head node. The argument for
this decision is similar.

4 Discussion

4.1 Related Work

Invariant Disciplines. An invariant discipline is a set of rules that speci-
fiers and programmers have to follow to ensure that some state (or history)

Backpointers and Observational Disjointness 165

conditions remain true throughout a computation (or at specific states thereof).
Some such conditions are independent of the program, for example, our method-
ology guarantees that the backpointer definitional axiom (1) holds in any state
σ. We call these conditions system invariants. Some other conditions are given
by the programmer, for example object or monitor invariants. There are several
flavors of treating program-specific invariants, mostly focusing on the special
case of object invariants [13]. Various forms of ownership [14, 15] are popular
invariant disciplines.

Parkinson [16] comments that object invariants are inflexible, in comparison
to the use of abstract predicates. Summers et al. [8] answer by making the case
for object invariants as an independent specification tool. Most of their argu-
ments have to do with the usefulness of object invariants in practical software
engineering contexts; but they also provide an example (the priority inheritance
protocol [7]) as one in which object invariants can turn a seemingly global prop-
erty (in our terminology, a backpointer property) into a local one. It seems,
the authors argue, that the priority inheritance protocol example is not easy to
handle with abstract predicates alone.

Our paper provides a monitor invariant discipline that can handle such back-
pointer examples. The discipline consists of restricting the use of assignments to
tracked fields. We have expressed our discipline not as a set of rules, as is com-
mon, but by using permissions in the separation logic style. Our proposal makes
it possible to treat backpointer conditions as special cases of separation logic
conditions, turning them into local properties, which supports the argument of
[8], in the concurrent case.

Our verification of CCoWLs is influenced by considerate reasoning [17], a
framework in which it is possible for a procedure to “notify” via specification
annotations all interested parties about the object invariants that it might break.
Our specification and implementation of addOneToTransRefCount is a direct
adaptation of their addToTotal method.

Observational Disjointness. While separation logic has been a revolution in the
specification of heap-intensive computations, it has been observed, especially
in the context of concurrency, that the association of separating conjunction
with actual heap separation is too restrictive: sometimes we want the client(s)
to “observe” disjointness, but, at the same time, allow the implementers the
opportunity to share heap under the hood.

In our work, we make use of a standard solution to loosen the heap disjoint-
ness requirement: fractional and counting permissions. Furthermore, our use of
backpointers permits us to maintain bookkeeping information about the clients
of observationally disjoint data structures. These two ingredients together suffice
for the verification of the CCoWL case study.

Concurrent abstract predicates [18] support the hidden sharing of state with
the use of capabilities, i.e., special predicates that allow exclusive access to a
shared region. This idea has been successfully applied to the specification and
verification of indexing structures [19]. The work presented here cannot substi-
tute for capabilities. On the other hand, it is not clear how one would handle

166 I.T. Kassios and E. Kritikos

the CCoWL example with CAPs. It seems that backpointers and CAPs are
orthogonal tools and could be integrated into a single specification language.

Fictional Separation Logic [20] is an ambitious mathematical framework that
allows the implementer to choose their own separation algebra as part of the
implementation. This idea completely decouples heap disjointness from sepa-
rating conjunction. The use of fractional permissions as well as other examples
of observational disjointness are shown to be special cases of this very general
methodology. The generality comes at the price of complexity at the part of the
implementer, so it remains an open question if this idea scales up to reasonably-
sized programs. Furthermore, it seems that fictional separation logic has no
provision for object and monitor invariants, nor does it provide the means of
mentioning unreachable parts of the heap, like we do.

In [21], the verification of snapshotable trees is proposed as a challenge. The
problem is very similar to the CCoWLs: the clients see a mutable tree and
immutable snapshots of previous states of that tree. A snapshot can be created
at any time. All snapshots and the tree appear to be heap-disjoint, but, in fact,
the implementation uses lazy copying and shares as much as possible. There are
four different versions of the structure, one of which is verified by the authors,
using whole-heap predicates (and therefore restricting it to sequential programs).

The fact that snapshots are immutable is a very crucial difference compared
to the CCoWL example, in which all lists are mutable. In the terminology of [22]
snapshotable trees are partially persistent, while CCoWLs are fully persistent.
The implementers of snapshotable trees need no permission accounting, because
they do not wish to reclaim write permissions to the part of the structure that
becomes immutable. Contrary to that, we ensure that no permissions are lost.
For example, suppose that exactly two lists l1, l2 are interested in a node n. At
this state, no thread can change the fields of n. Suppose now that l2 loses interest.
The fields of n become mutable again: the list l1 may gain write permissions to
them. To achieve this, the bookkeeping of backpointers is essential (see also
Sect. 3.3, “losing interest”).

4.2 Evaluation and Work in Progress

Two significant questions that have not been answered so far are (a) how ex-
pressive is the new specification language and (b) how automatable it is.

Expressiveness. In the Introduction, we have mentioned three examples, in which
backpointers seem useful. From these examples, we have focused on reference
counting, which we have used in a very complex example, CCoWLs, which we
have specified, implemented and verified.

It is worth mentioning that our CCoWL example is a fully-persistent data
structure [22]. It is a further research direction to investigate how much our
proof technique generalizes to fully-persistent data structures in general.

Besides reference counting and the CCoWLs, we have also specified, imple-
mented, and verified the priority inheritance protocol. We are currently working
on specifying union-find structures; a challenging problem for which backpointers
seem to be particularly promising.

Backpointers and Observational Disjointness 167

We believe that the potential of the methodology has not yet been fully ex-
plored and we expect new interesting case studies to be revealed as experience
accumulates.

Automation. We have implemented a prototype verifier for backpointers as an
extension of Chalice. We have tested it on a suite of 20 unit tests, observing
significant variation in verification times, which is undesirable.

To counter the problem we have experimented with various degrees of restrict-
ing the automation. For example, we have given the programmer the possibility
to control the triggering of backpointer and set theoretic axioms. We have also
introduced explicit annotations for the application of the frame rule, for the
framing of aggregate expressions.

The automation of the CCoWL case study has been extremely challenging.
At the time of this writing, our tool has verified all but one of the procedures
of the present example. The verification of most procedures happens within less
than 5 minutes, which is satisfactory. The procedure node set copy verifies in
90 minutes. The verification of one of the branches of the procedure node set

unfortunately seems not to terminate.
To conclude, the automation of the discipline does not yet deliver consistently

low verification times and seems to diverge in some cases. Much improvement
has been achieved since the beginning of the project, but further research is
required to achieve consistently satisfactory performance and less annotation.

5 Conclusion

We have introduced an invariant discipline to enhance the expressiveness of
separation logic with backpointer conditions. We have used our methodology
to specify and verify concurrent copy-on-write lists, a challenging case study of
observational disjointness, which, to the best of our knowledge, has not been
tackled before.

Acknowledgements. The authors are deeply grateful to P. Müller and to the
three anonymous ESOP reviewers, whose deep and insightful comments signifi-
cantly helped improve the quality of the paper.

References

1. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE Computer Society (2002)

2. Parkinson, M.J., Summers, A.J.: The Relationship between Separation Logic and
Implicit Dynamic Frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011)

3. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

168 I.T. Kassios and E. Kritikos

4. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL 2005, pp. 259–270 (2005)

6. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

7. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

8. Summers, A., Drossopoulou, S., Müller, P.: The need for flexible object invariants.
In: IWACO 2009, pp. 1–9. ACM (2009)

9. Kassios, I.T., Kritikos, E.: A discipline for program verification based on back-
pointers and its use in observational disjointness. Technical Report 772, Dept. of
Computer Science, ETH Zurich (2012),
http://pm.inf.ethz.ch/publications/getpdf.php?bibname

=Own&id=KassiosKritikos12.pdf

10. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

11. Heule, S., Leino, K.R.M., Müller, P., Summers, A.: Fractional permissions without
the fractions. In: FTfJP 2011 (2011)

12. Leavens, G., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In: Kilov,
I., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and
Systems, pp. 175–188. Kluwer (1999)

13. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A Unified Frame-
work for Verification Techniques for Object Invariants. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

14. Leino, K.R.M., Müller, P.: Object Invariants in Dynamic Contexts. In: Odersky,
M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

15. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

16. Parkinson, M.: Class invariants: the end of the road? In: IWACO 2007 (2007)
17. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite

Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328–344. Springer, Heidelberg (2010)

18. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

19. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse,
M.: A simple abstraction for complex concurrent indexes. In: OOPSLA 2011, pp.
845–864. ACM (2011)

20. Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012)

21. Mehnert, H., Sieczkowski, F., Birkedal, L., Sestoft, P.: Formalized Verification of
Snapshotable Trees: Separation and Sharing. In: Joshi, R., Müller, P., Podelski, A.
(eds.) VSTTE 2012. LNCS, vol. 7152, pp. 179–195. Springer, Heidelberg (2012)

22. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. In: STOC 1986, pp. 109–121. ACM (1986)

http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf

Modular Reasoning about Separation

of Concurrent Data Structures

Kasper Svendsen1, Lars Birkedal1, and Matthew Parkinson2

1 IT University of Copenhagen
{kasv,birkedal}@itu.dk

2 Microsoft Research Cambridge
mattpark@microsoft.com

Abstract. In a concurrent setting, the usage protocol of standard sep-
aration logic specifications are not refinable by clients, because standard
specifications abstract all information about potential interleavings. This
breaks modularity, as libraries cannot be verified in isolation, since the
appropriate specification depends on how clients intend to use the library.

In this paper we propose a new logic and a new style of specifica-
tion for thread-safe concurrent data structures. Our specifications allow
clients to refine usage protocols and associate ownership of additional
resources with instances of these data structures.

1 Introduction

Why? One of the challenges of specifying the abstract behavior of a library is
that the appropriate specification depends on the context in which the library
is going to be used. Consider a simple bag library with operations to push and
pop elements from the bag. In a sequential setting the standard separation logic
specification is:

{bage(x,X)} x.Push(y) {bage(x,X ∪ {y})}
{bage(x,X)} x.Pop() {ret. (X = ∅ ∧ ret = null ∧ bage(x,X)) ∨

(∃Y. X = Y ∪ {ret} ∧ bage(x,Y))}
bage(x,X) ∗ bage(x,Y)⇒ ⊥

Here bage is an abstract predicate, i.e., implicitly existentially quantified, so
that clients cannot depend on its definition [2], x is a reference to a bag object,
and X and Y range over multisets of elements. The implication in the third line
expresses that the bage predicate cannot be duplicated. Hence this specification
enforces that clients follow a strict usage protocol, with a single exclusive owner
of the bag object. On the other hand, this specification allows the owner of the
bag to track the exact contents of the bag. In other words, bage(x,X) asserts
full ownership of the bag and that the bag contains exactly the objects in the
multiset X.

Now consider a client of the bag library and suppose this client wants to
implement a bag of independent tasks scheduled for execution. This client might

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 169–188, 2013.
© Springer-Verlag Berlin Heidelberg 2013

170 K. Svendsen, L. Birkedal, and M. Parkinson

not care about the exact contents of the bag, only that each task in the bag
owns the resources necessary to perform its task. In addition, this client might
wish to share the bag to allow multiple users to schedule tasks for execution.
Thus this client might prefer the following specification for shared bags:

{bags(x,P) ∗ P(y)} x.Push(y) {bags(x,P)}
{bags(x,P)} x.Pop() {ret. bags(x,P) ∗ (ret = null ∨ P(ret))}

bags(x,P)⇒ bags(x,P) ∗ bags(x,P)

This specification allows more sharing, but it does not track the exact contents
of the bag. Instead, it allows clients to associate additional resources with each
element of the bag using the P predicate, and to freely share the bag as expressed
by the implication in the third line. Clients thus transfer P(y) to the bag when
pushing y, and receive P(ret) from the bag, when pop returns a non-null element.

In a sequential first-order setting without reentrancy, the standard separation
logic specification suffices. Using techniques from fictional separation logic [11],
clients can refine the standard specification to allow the additional sharing of
the shared bag specification. However, in a concurrent setting, it is easy to come
up with a non-thread-safe implementation (without synchronization), that sat-
isfies the standard specification (as it enforces a single exclusive owner), but not
the shared bag specification. Hence, in a higher-order concurrent setting with
reentrancy, this type of refinement is unsound!

What? The key challenge is to provide a logic that enables clients to refine
the specifications to their requirements in a concurrent setting. In this paper
we propose such a logic, called Higher-Order Concurrent Abstract Predicates
(HOCAP), and a new style of specification for thread-safe concurrent data struc-
tures.1 This style of specification allows clients to refine the usage protocol and
associate ownership of additional resources with instances of the data structure,
in a concurrent higher-order setting.

How? Observe first that while it is not sound to refine specifications to al-
low more sharing in a concurrent setting, it is sound to refine specifications to
permit less sharing. Thus we will start with a weak specification that allows
unrestricted sharing of instances of the data structure, and then let clients refine
this specification as needed.

To reason about sharing we partition the state into regions, with protocols
governing how the state in each region is allowed to evolve, following earlier
work on concurrent abstract predicates [5]. Our new program logic, HOCAP,
also uses phantom fields – a logical construct akin to auxiliary variables, that
only occur in the logic.

To support abstract refinement of library specifications, we propose to verify
the implementation using a region to share the concrete state of the implementa-
tion, with a fixed protocol that relates the concrete state of the implementation

1 We consider a concurrent data structure thread-safe if each of its methods has one
or more synchronization points, where the abstract effects of the method appear to
take affect. See Related Work for a discussion of the relation to linearizability.

Modular Reasoning about Separation of Concurrent Data Structures 171

with an abstract description of the state of the data structure. To refine this spec-
ification, clients define a region of their own, with a protocol on the abstract state
of the data structure. For soundness, these two regions must evolve in lock-step
and synchronize when the abstract state changes (in synchronization points).
We do so by giving each region a half permission to a shared phantom field;
synchronization can then be enforced since updating a phantom field requires
full permission. Half permissions have previously been used to synchronize local
and shared state [14]; here we are using it to synchronize two shared regions.

For the bag example, we introduce a phantom field cont that contains the
abstract state of the bag: a multiset of references to the elements in the bag.
The bag constructor also returns a half permission to the phantom field cont:

{emp}new Bag(){ret. bag(ret) ∗ retcont
1/2�−→ ∅}

Here retcont
1/2�−→ ∅ asserts partial ownership of the phantom cont field. Since the

client obtains half the cont permission upon calling the constructor, the library
cannot update the cont field on its own.

The protocol governing the bag x thus relates the concrete state of the bag
with its abstract state (the value of the cont field):

(∃X. xcont
1/2�−→ X ∗ list(x,X)) � (∃X. xcont

1/2�−→ X ∗ list(x,X))

This protocol permits any atomic update to the region containing the internal
state of bag x from a state satisfying the left side of � to a state satisfying the
right side.

To allow the library to update cont in synchronization points, we therefore
transfer the library’s half-permission to the client and require the client to update
the phantom field with the abstract effects of the method, and then transfer a
half-permission back to the library. When the client updates the phantom field,
the client is forced to prove that the abstract effects of the method is permitted
by whatever protocols the client may have imposed on the abstract state.

We express the update to the phantom cont field using a view-shift [4]. Concep-
tually, a view-shift corresponds to a step in the instrumented semantics that does
not change the concrete machine state. View-shifts, written P � Q, thus general-
ize assertion implication by allowing updates to phantom fields (given sufficient
permission) and ownership transfer between the local state and shared regions.

The bag push method thus requires the client to provide a view-shift, to
update the abstract state from X to X ∪ {y} in the synchronization point:

∀X. xcont
1/2�−→ X ∗ P � xcont

1/2�−→ X ∪ {y} ∗ Q
{bag(x) ∗ P}x.Push(y){bag(x) ∗ Q}

Here, P and Q are universally quantified and thus picked by the client. Hence,
the client can use P and Q to perform further updates of the instrumented state
in the synchronization point and relate the new abstract state with its local
state. We thus refer to P and Q as synchronization pre- and postconditions.

172 K. Svendsen, L. Birkedal, and M. Parkinson

Likewise, the bag pop operation requires two view-shifts; one, in case the bag
is empty in the synchronization point, and another, in case the bag is non-empty
in the synchronization point:

xcont
1/2�−→ ∅ ∗ P � xcont

1/2�−→ ∅ ∗ Q(null)
∀X. ∀y. xcont

1/2�−→ X ∪ {y} ∗ P � xcont
1/2�−→ X ∗ Q(y)

{bag(x) ∗ P}x.Pop(){bag(x) ∗Q(ret)}

Finally, the bag predicate is freely duplicable:

bag(x)⇒ bag(x) ∗ bag(x)

Note that since P and Q are universally quantified — our logic is higher or-
der — the client could potentially pick instantiations referring to the library’s
region, thus introducing self-referential region assertions. We can illustrate this
problem by instantiating P with an assertion that itself refers to the bag in the
specification of Push. Since bag(x) asserts that there exists a shared region that
owns half the xcont field, it follows that bag(x) ∗ xcont �→ ⇒ false. Hence, by

instantiating P with bag(x) ∗ xcont
1/2�−→ , we can derive the postcondition false

from the specification of Push.
To prevent this, we introduce a notion of region type and a notion of support,

as an over-approximation of the types of regions a given assertion refers to. Our
formal bag specification (presented in Section 3) thus imposes support restric-
tions on P and Q to ensure the client does not introduce self-referential region
assertions.

Another key challenge we address is higher-order protocols. Higher-order pro-
tocols are crucial to allow clients to associate ownership of additional resources
with shared data structures. For example, to derive the shared bag specifica-
tion from the generic specification, we use a second region with a protocol that
requires clients to transfer ownership of P(x), when pushing x into the bag:

(∃X. xcont
1/2�−→ X ∗ �y∈XP(y)) � (∃X. xcont

1/2�−→ X ∗ �y∈XP(y))

Again, P is a predicate variable and could be instantiated to refer to the state
and protocol of this and other regions – making the above protocol a higher-order
protocol. We also use region types to break a circularity introduced by higher-
order protocols. In particular, instead of assigning protocols to individual regions,
we assign parameterized protocols to region types. This allows us to reason about
higher-order protocols that refer to the region types – and thus, implicitly, the
protocol – of other regions. We show that this well-behaved subset of higher-order
protocols, called state-independent protocols, suffices for sophisticated libraries,
such as the Joins library [16].

To summarize, our new logic and specification methodology allows clients to
refine the usage protocol of the bag. It also allows clients to transfer ownership
of resources to the bag, by transferring them to a client region synchronized with
the abstract state of the bag.

Modular Reasoning about Separation of Concurrent Data Structures 173

More details and examples can be found in the extended version of this article,
which is available at http://www.itu.dk/people/kasv/hocap-ext.pdf.

Related Work. Jacobs and Piessens introduced the idea of parameterizing
the specification of concurrent methods with ghost code, to be executed in syn-
chronization points [10]. Here we build on their idea, using a much stronger logic
based on CAP [5], to address the main problem with their approach.

Instead of regions with protocols, Jacobs and Piessens use ghost objects –
data structures built from ghost variables – with handles that represent partial
information about the data structure and permissions to modify it. While these
handles provide support for reasoning about the state of shared ghost objects,
they lack the ability to associate ownership of additional state with ghost objects.
Instead, Jacobs and Piessens use the lock invariant of the lock protecting the
concurrent data structure to associate ownership of additional state.

However, this approach is problematic without proper storable locks. In par-
ticular, Jacobs and Piessens logic and model of storable locks only supports lock
labels parameterized over simple types (i.e., not assertions). This forces the client
to create the synchronization primitive, so that the client can pick a lock invari-
ant containing both the state of the concurrent data structure and any additional
resources the client may wish to associated with the data structure. This breaks
abstraction, by exposing internal implementation details to the client (the syn-
chronization primitive used) and it requires the client to reprove the shared bag
specification every time it is needed. Hence, Jacobs and Piessens cannot derive
the shared bag specification. We solve this problem using higher-order protocols.

CAP was designed to verify concurrent data structures [5]. However, the orig-
inal specifications and proofs are non-modular in the sense that implementations
have been verified against unrefinable specifications with fixed usage protocols.

Recently, Dodds et. al. introduced a higher-order variant of CAP to give a
generic specification for a library for deterministic parallelism [6]. While their
proofs make explicit use of nested region assertions and higher-order protocols,
the authors failed to recognize the semantic difficulties these features introduce.
Consequently, their reasoning is unsound. In particular, their higher-order rep-
resentation predicates are not stable.

Another approach for achieving modular reasoning is to prove concurrent
implementations to be contextual refinements of coarse-grained counterparts –
thus taking the coarse-grained counterparts as specifications. Previous efforts
for proving such contextual refinements have mostly focused on indirect proofs
through a linearizability property on traces of concurrent libraries [9,7]. So far,
this approach lacks support for transfer of ownership of resources between client
and library. More recently, there has been work on proving such contextual re-
finements directly, using logical relations [20]. Unless combined with a program
logic, both of these approaches restrict all reasoning to statements about contex-
tual refinement or contextual equivalence. As our approach demonstrates, if a
Hoare-style specification is what we are ultimately interested in, then contextual
refinement is unnecessary; what we really want is a generic specification that is
refinable by clients.

174 K. Svendsen, L. Birkedal, and M. Parkinson

Conceptually, linearizability aims to provide a fiction of atomicity to clients
of concurrent libraries. Our approach does not. Instead, we aim to allow clients
to reason about changes of the abstract state in synchronization points inside
concurrent libraries. To illustrate the distinction, consider an extension of the
bag library with a Push2(x, y) method that takes two elements and pushes
them one at a time (i.e., with the implementation Push(x); Push(y)). This
method is not linearizable, as it has two synchronization points. However, it still
has a natural specification expressed in terms of two view-shifts, one for each
synchronization point:

∀X. xcont
1/2�−→ X ∗ P � xcont

1/2�−→ X ∪ {y} ∗ Q
∀X. xcont

1/2�−→ X ∗ Q � xcont
1/2�−→ X ∪ {z} ∗ R

{bag(x) ∗ P}x.Push2(y,z){bag(x) ∗ R}
From this specification, a client can derive a natural shared bag specification:

{bags(x,P) ∗ P(y) ∗ P(z)}x.Push2(y, z){bags(x,P)}

Contributions. We propose a new style of specification for thread-safe concur-
rent data structures. Using protocol synchronization, this style of specification
allows clients to refine the usage protocol of concurrent data structures. More-
over, using nested region assertions and state-independent higher-order proto-
cols, our specification style allows clients to associate additional resources with
the data structure.

Technically, we realize the ideas by developing HOCAP, a higher-order separa-
tion logic for a subset of C� featuring named delegates and fork concurrency. The
logic allows two or more protocols to be synchronized and evolve in lock-step.
In addition, we support nested region assertions, state-independent higher-order
protocols, and guarded recursive assertions. We present a step-indexed model
of the logic and use it to prove the logic sound. We emphasize that unlike ear-
lier versions of CAP, our logic includes sufficient proof rules for carrying out all
proofs (including stability proofs) of examples in the logic, i.e., without passing
to the semantics.

Lastly, in the extended version we demonstrate the power and utility of the
logic by verifying a library for executing tasks in parallel, based on Doug Lea’s
Fork/Join framework [12]. We have also used the logic to specify and verify the
Joins library [16] and clients thereof, which will be described in a separate paper.

2 The Logic

Our logic is a general program logic for a subset of C�, featuring delegates referring
to namedmethods2 and an atomic compare-and-swap statement. New threads are

2 Anonymous delegates in C� may capture the l-values of free variables and hence the
semantics and logic for anonymous methods is non-trivial, see our earlier paper [18].
Those semantic issues are orthogonal to what we discuss in the present paper and
hence we omit anonymous delegates here.

Modular Reasoning about Separation of Concurrent Data Structures 175

allocated via a fork statement that forks a delegate. Each thread has a private
stack, but all threads share a common heap. We use an interleaving semantics.

The specification logic is an intuitionistic higher-order logic over a simply
typed term language, and the assertion logic an intutionistic higher-order sepa-
ration logic over the same simply typed term language. Types are closed under
the usual type constructors,→, ×, and +. Basic types include the type of asser-
tions, Prop, the type of specifications, Spec, the type of C� values, Val, and the
type of fractional permissions, Perm.

2.1 Concurrent Abstract Predicates

Recall that the basic idea behind CAP is to provide an abstraction of possible
interference from concurrently executing threads, by partitioning the state into
regions, with protocols governing how the state in each region is allowed to
evolve. Requiring all assertions to be stable – i.e., closed under protocols – and
proving all specifications with respect to arbitrary stable frames, then achieves
thread-local reasoning about shared mutable state.

Following earlier work on CAP [5], we use a shared region assertion, written

P
r,t,a

, which asserts that r is a region and that the resources in region r satisfy
the assertion P. Unlike earlier versions, the region assertion is also annotated
with a region type t and a protocol argument a, since we assign parameter-
ized protocols to region types instead of regions, as mentioned above. Region
assertions are freely duplicable and thus satisfy,

P
r,t,a ⇔ P

r,t,a ∗ P
r,t,a

(1)

Protocols consist of named actions and updates to a shared region require own-
ership of a named action justifying the update. Protocols are specified using
protocol assertions, written protocol(t, I). Here t is a region type and I is a para-
metric protocol. We use the following notation for a parametric protocol I with
parameter a and named actions α1, ..., αn:

I(a) = (α1 : (Δ1). P1 � Q1; · · · ;αn : (Δn). Pn � Qn)

Here Δi is a context of logical variables relating the action precondition Pi

with the action postcondition Qi. The action αi thus allows updates from states
satisfying Pi to states satisfying Qi. We use I(a)[αi] to refer to the definition of the
αi action in protocol I applied to argument a. Hence, I(a)[αi] = (Δi). Pi � Qi.

We use P
r,t,a

I
as shorthand for P

r,t,a
∗ protocol(t, I).

We can distinguish different client roles in protocols through ownership of
named actions. An action assertion [α]rπ asserts fractional ownership of the
named action α on region r with fraction π. Fractions are used to allow multiple
clients to use the same action. We can split or reassemble action assertions using
the following property,

[α]rp+q ⇔ [α]rp ∗ [α]rq (2)

where p, q, p+ q are terms of type Perm – permissions in (0, 1].

176 K. Svendsen, L. Birkedal, and M. Parkinson

An assertion p is stable if it is closed under interference from the environment.
In the absence of self-referential region assertions and higher-order protocols, the

region assertion, P
r,t,a

I
is stable if P is closed under all I(a) actions:3

∀ỹ. valid(P ∧ Pi(ỹ)⇒ ⊥) ∨ valid(Qi(ỹ)⇒ P)

for all i, where I(a)[αi] = (x̃). Pi(x̃) � Qi(x̃).

Example. To illustrate reasoning about sharing, consider a counter with read
and increment methods. Since the count can only be increased, this counter
satisfies the specification of a monotonic counter [15]:

{counter(x, n)} x.Increment() {counter(x, n+ 1)}
{counter(x, n)} x.Read() {ret. counter(x, ret) ∗ n ≤ ret}
counter(x, n)⇒ counter(x, n) ∗ counter(x, n)

Here counter(x, n) asserts that n is a lower-bound on the current count. Hence
we expect that this predicate can be freely duplicated, as expressed by the third
line above.

To verify a counter implementation against this specification, we place the
current count in a shared region, with a protocol that allows the current count
to be increased. Assertions about lower bounds are thus invariant under the
protocol. If the counter implementation maintains the current count in field
count, then we can specify the counter protocol as follows:

counter(x, n)
def
= ∃r, π. [incr]rπ ∗ ∃m. n ≤ m ∗ x.count �→ m

r,Counter,x

I

where I is a parametric protocol with parameter x and a single action incr, that
allows the count field of x to be increased:

I(x) = (incr : (m, k : N). x.count �→ m ∗ m ≤ k � x.count �→ k)

Here we have used a fixed region type Counter for the counter region r. Since
fractional permissions can always be split (2), and region assertions always dupli-
cated (1), it follows that counter(x, n)⇒ counter(x, n) ∗ counter(x, n), as required
by the specification. Since the shared region assertion in counter(x, n) contains
no self-referential region assertions or higher-order protocols, to prove it stable,
it suffices to show that,

∀m, k. valid((∃m : N. n ≤ m ∗ x.count �→ m) ∧ (x.count �→ m ∗m ≤ k) ⇒ ⊥) ∨
valid(x.count �→ k ⇒ (∃m : N. n ≤ m ∗ x.count �→ m))

This follows easily by case analysis on n ≤ k. Lastly, to verify the implementation
of Increment and Read, we have to prove they satisfy the protocol, namely that
they do not decrease the current count. This is easy.

3 This is a formula in the specification logic; P and Q are assertions and for an assertion
P, valid(P) is the specification that expresses that P is valid in the assertion logic.

Modular Reasoning about Separation of Concurrent Data Structures 177

2.2 Higher-Order Concurrent Abstract Predicates

As the above example illustrates, we can use CAP to reason about a shared
counter by imposing a protocol on the shared count field. Since this is a protocol
on a primitive resource (the count field), first-order CAP suffices. To reason
about examples, such as the shared bag, which associates ownership of general
resources – through the P predicate – with a shared bag, we need Higher-Order
CAP. In particular, to define the bags predicate requires region and protocol
assertions containing the predicate variable P.

To support modular reasoning about region and protocol assertions contain-
ing predicate and assertion variables, ideally, we want to treat predicate and
assertion variables as black boxes. For instance, consider the assertion,

Q
def
= P

r,t,−
∗ protocol(t, I) (3)

where I is the parametric protocol I(−) = (τ : P � P) expressed in terms of the
assertion variable P. Treating P as a black box, Q is clearly stable if P is stable,
as Q asserts that P holds of the resources in region r, which is clearly closed
under the protocol I. However, in general P could itself be instantiated with
region and protocol assertions, introducing the possibility of self-referential re-
gion assertions and turning I into a higher-order protocol. This makes reasoning
significantly more challenging. In particular, some self-referential region asser-
tions do not admit modular stability proofs: it is possible to instantiate P with
stable assertions for which Q is not stable. Furthermore, higher-order protocols
introduce a circularity in the definition of the model.

Self-referential Region Assertions. To see how self-referential region as-
sertions can break the modularity of stability proofs, consider assertion P below:

P
def
= x �→ 0 ∗ y �→ 0

r′,t′,−
∗ protocol(t′, J),

where J is the protocol with a single α action that allows the y variable to be
changed from 0 to 1, provided region r owns variable x and x is zero:

J(−) =
(
α : x �→ 0

r,t,− ∗ y �→ 0 � x �→ 0
r,t,− ∗ y �→ 1

)
Then P is stable, because P asserts full ownership of the x variable, ensuring
that the environment cannot perform the α action, as x cannot also be owned
by region r. However, the region assertion Q defined above is not stable when

instantiated with this P, as P
r,t,−

asserts that region r does own x, thus allowing
the environment to perform the α action. As this example illustrates, some self-
referential region assertions thus do not admit modular stability proofs. A similar
problem occurs when reasoning about atomic updates to shared regions.

178 K. Svendsen, L. Birkedal, and M. Parkinson

Support. To ensure modular reasoning about stability and atomic updates
to shared regions, we require clients to explicitly prove that their instantia-
tions of predicate variables do not introduce self-referential region assertions. To
facilitate these proofs, we introduce a notion of support, which gives an over-
approximation of the types of regions a given assertion refers to.

An assertion P is supported by a set of region types A, if P is invariant under
arbitrary changes to the state and protocol of any region of a region type not
in A. To support modular reasoning about hierarchies of concurrent libraries,
instead of reasoning directly in terms of sets of regions, we introduce a partial
order on region types and reason in terms of upwards-closed sets of region types.
More formally, we introduce a new type, RType, of region types with a partial
order ≤ : RType × RType → Spec, with a bottom element ⊥ : RType and
finite meets. We say that an assertion P is dependent on region type t if it is
supported by the set of region types greater than or equal to t. We introduce two
new specification assertions, dep, indep : RType×Prop→ Spec for asserting that
an assertion is dependent and independent of a given region type, respectively.
The inference rules for dep and indep are fairly natural. For instance, if P is

dependent on region type t1, then P
r,t2,a

is dependent on the greatest lower
bound, of t1 and t2.

Whenever we reason about region assertions, P
r,t,a

we thus require that P is
independent of the region type t. This excludes self-referential region assertions
through protocols (such as in (3)), and through nested region assertions (such

as P
r,t,a

r,t,a

).

Stability. General higher-order protocols would introduce a circularity in the
definition of the model. We break this circularity by exploiting the indirection
of region types – i.e., that we assign protocols to region types instead of indi-
vidual regions. This allows us to support protocols with assertions about the
region types of regions, but without assertions about the protocols assigned to
those region types. Technically, we enforce this restriction by ignoring protocol
assertions in action pre- and postconditions when interpreting protocols. The
parameterized higher-order protocol I,

I(x) = (x �→ 0 ∗ protocol(t, J) � x �→ 1 ∗ protocol(t, J))

is thus interpreted as I(x) = (x �→ 0 � x �→ 1). The interpretation simply ignores
the protocol(t, J) assertion (See definition of act in the technical report [19]).

In the absence of self-referential region assertions, a region assertion P
r,t,a

I
is

stable under the α action, if P is closed under the action pre- and postcondition
of the α action of I(a) and I is a first-order protocol. If I is a higher-order proto-

col, then the assertion P
r,t,a

I
is stable under the α action, if P is closed under the

Modular Reasoning about Separation of Concurrent Data Structures 179

action pre- and postcondition of the α action of I(a) and P is also protocol-pure.
We thus have the following proof rule for stability:

I(a)[α] = (x̃).Ip(x̃) � Iq(x̃) ∀x̃. valid(P ∧ Ip(x̃) ⇒ ⊥) ∨ valid(Iq(x̃) ⇒ P)
indept(P) indept(Q) stable(P ∗ Q) pureprotocol(P) purestate(Q)

stablerα

(
P

r,t,a

I
∗Q

) SA

Here pureprotocol and purestate are propositions in the specification logic;
pureprotocol(P) expresses that P is invariant under any changes to protocols and
purestate(P) expresses that P is invariant under any change to the local or shared
state. The SA proof rule thus allows us to prove stability of region assertions, by
first “pulling out” any protocol assertions, Q, from the region assertion. We say
that an assertion is expressible using state-independent protocols if the protocol
assertions can be “pulled out” in this sense. Formally,

sip
def
= λP : Prop. ∃Q,R : Prop. valid(P⇔ Q ∗ R) ∧ pureprotocol(Q) ∧ purestate(R)

In particular, if P ⇔ Q ∗ R and purestate(R), then P
r,t,a

I
⇔ Q

r,t,a

I
∗ R. Thus, if

sip(P), then P
r,t,a

I
can be rewritten to a form that satisfies the pureprotocol premise

of the SA rule. Expressibility using state-independent protocols is closed under
conjunction and separating conjunction, but in general not under disjunction
or existential quantification. To achieve closure under existential quantification,
∃x : X. P(x), we have to impose a stronger restriction on the predicate family P.
Namely, P has to be uniformly expressible using state-independent protocols:

usipX
def
= λP : X → Prop. ∃R : Prop. ∃Q : X → Prop. purestate(R) ∧

∀x ∈ X. (P(x) ⇔ Q(x) ∗ R) ∧ pureprotocol(Q(x))

Then we have that usipX(P)⇒ sip(∃x ∈ X. P(x)).

2.3 View-Shifts

Phantom State. Proofs in Hoare logic often employ auxiliary variables [13],
as an abstraction of the history of execution and state. To support this style
of reasoning, without changing the formal operational semantics, we instrument
our abstract semantics with phantom fields.

We thus extend our logic with a phantom points-to assertion, written xf
p�→ v,

which asserts partial ownership, with fraction p, of the phantom field f on object
x, and that the current value of the phantom field is v.

Phantom fields live in the instrumented state and are thus updated through

view-shifts. Updating a phantom field requires full ownership of the field (xf
1�→

v1 �⊥ xf
1�→ v2).

4 A fractional phantom field permission can be split and re-
assembled arbitrarily. As a partial fraction only confers read-only ownership, two

4 The view-shift is annotated with the ⊥ region type; we explain the reason for such
annotations on view-shifts in the following.

180 K. Svendsen, L. Birkedal, and M. Parkinson

partial fractional assertions must agree on the current value of a given phantom

field (xf
p1�→ v1 ∗ xf

p2�→ v2 ⇒ v1 = v2). To create a phantom field f we require that
the field does not already exist, so that we can take full ownership of the field.
We thus require all phantom fields of an object o to be created simultaneously
when o is first constructed (in the proof rule for constructors, see the technical
report [19]).

Simultaneous Updates. To support synchronization of two regions by split-
ting ownership of a common phantom field, we need to update the value of the
phantom field in both regions simultaneously. Previous versions of CAP have
only supported sequences of independent updates to single regions. To support
synchronization of protocols we thus extend CAP with support for simultaneous
updates of multiple regions.

We have chosen a semantics that requires that updates of regions have the
same action granularity (you cannot have one simultaneous update of two re-
gions, where the update of one region is justified by one action, and the update of
the other region is justified by two actions). This is a choice; it simplifies stabil-
ity proofs, but it means that we must explicitly track the regions that may have
been updated by a view-shift. We thus index the view-shift relation with a region
type t. The indexed view-shift relation, �t, thus describes a single update that,
in addition to updating the local state, may update multiple shared regions with
region types not greater than or equal to t, where each update must be justified
by a single action. The indexed view-shift relation is thus not transitive.

Figure 1 contains a selection of proof rules for view-shifts. The two main
rules, VSNOpen and VSOpen, are used to open a region, to allow access to the
resources in that shared region. Both rules allow us to open a region and perform
a nested view-shift on the contents of that region. This is how we reason about
simultaneous updates to multiple regions in the logic. Rule VSNOpen allows
the nested view-shift to modify further regions, while VSOpen does not (note
the use of region type ⊥ on the nested view shift in VSOpen). Both rules require
a proof the update is possible –

P1 ∗ P2 �t1	t2 Q1 ∗ Q2 and P1 ∗ P2 �⊥ Q1 ∗ Q2,

respectively – and a proof that the update is allowed by the protocol, denoted

P1

r,t1,a

I
∗ P2 �r,t2 Q1

r,t1,a

I
∗ Q2

and explained below.
Since actions owned by shared regions cannot be used to perform updates

to shared regions, the VSNOpen rule further requires that P1 does not assert
ownership of any local action permissions (pureperm(P1)). This ensures that no
local action permissions from P1 were used to justify any actions performed in
the nested view-shift. Since VSOpen does not allow the nested view-shift to
update any regions, this restriction is unnecessary for the VSOpen rule.

Modular Reasoning about Separation of Concurrent Data Structures 181

pureperm(P1) indept1�t2
(P1,P2,Q1,Q2) t2 �≤ t1

P1

r,t1,a

I
∗ P2 �r,t2 Q1

r,t1,a

I
∗Q2 P1 ∗ P2 �t1�t2 Q1 ∗Q2

P1

r,t1,a

I
∗ P2 �t2 Q1

r,t1,a

I
∗Q2

VSNOpen

indept1�t2
(P1,P2,Q1,Q2) t2 �≤ t1

P1

r,t1,a

I
∗ P2 �r,t2 Q1

r,t1,a

I
∗ Q2 P1 ∗ P2 �⊥ Q1 ∗Q2

P1

r,t1,a

I
∗ P2 �t2 Q1

r,t1,a

I
∗Q2

VSOpen

P �t Q stable(R)

P ∗ R �t Q ∗ R
VSFrame

P �t1 Q t1 ≤ t2

P �t2 Q
VSWeaken

Fig. 1. Selected view-shift proof rules

Update Allowed. The update allowed relation, P �r,t Q, asserts that the
update described by P and Q to region r is justified by an action owned by P.

Thus the basic proof rule for the update allowed relation is:

indept2(P(ṽ),Q(ṽ)) t2 �≤ t1 I(a)[α] = (x̃). P(x̃) � Q(x̃)

P(ṽ)
r,t1,a

I
∗ [α]rπ �r,t2 Q(ṽ)

r,t1,a

I
∗ [α]rπ

UAAct

Since the update allowed relation simply asserts that any update described by
P and Q is allowed, it satisfies a slightly non-standard rule of consequence, that
allows strengthening of both the pre- and postcondition. From this non-standard
rule-of-consequence, it follows that the update allowed relation satisfies a frame
rule that allows arbitrary changes to the context:

P ⇒ P′ P′ �r,t Q′ Q ⇒ Q′

P �r,t Q
UAConseq

P �s,t Q

P ∗ R1 �s,t Q ∗ R2

UAF

3 Concurrent Bag

We now return to the concurrent bag from the introduction, and show how
to formalize the informal specification from the introduction. Next, we show
how to derive the two bag specifications from the introduction, using protocol
synchronization, nested region assertions, and higher-order protocols.

Specification. In the introduction we proposed a refineable bag specification
with phantom variables to force protocol synchronization and with view-shifts
to synchronize client and library in synchronization points. In the formal speci-
fication we restrict the synchronization pre- and postconditions, P and Q, using

182 K. Svendsen, L. Birkedal, and M. Parkinson

region types, to ensure that the client’s instantiation does not introduce self-
referential region assertions. Upon creation of new bag instances, the client picks
a region type t for that bag instance and the client is then required to prove that
all its synchronization pre- and postconditions are independent of region type t.
The formal refinable bag specification is:

{emp}new Bag(){ret. bag(t, ret) ∗ retcont
1/2�−→ ∅}

stable(P) stable(Q) indept(P) indept(Q)

∀x. xcont
1/2�−→ ∅ ∗ P(x) �t xcont

1/2�−→ ∅ ∗ Q(x, null)

∀X. ∀x, y. xcont
1/2�−→ X ∪ {y} ∗ P(x) �t xcont

1/2�−→ X ∗ Q(x, y)

{bag(t, x) ∗ P(x)}x.Pop(){ret. bag(t, x) ∗Q(x, ret)}

stable(P) stable(Q) indept(P) indept(Q)

∀X. ∀x, y. xcont
1/2�−→ X ∗ P(x, y) �t xcont

1/2�−→ X ∪ {y} ∗ Q(x, y)

{bag(t, x) ∗ P(x, y)}x.Push(y){bag(t, x) ∗ Q(x, y)}

bag(t, x) ⇔ bag(t, x) ∗ bag(t, x) dept(bag(t, x))

The indept assumptions on the synchronization pre- and postconditions ensure
that P and Q do not introduce self-referential region assertions. Furthermore,
the index on the view-shifts, �t, ensures that the granularity of actions match
between the library and any client protocols.

Exclusive Owner. We now show how to derive the standard specification with
a single exclusive owner. This specification is very simple to derive; we simply
let the exclusive owner of the bag keep the 1/2 permission of the phantom field
containing the abstract state of the bag: bage(t, x,X)

def
= bag(t, x) ∗ xcont

1/2�−→ X.

Shared Bag. The derivation of the shared bag specification is more inter-
esting, as it uses both protocol synchronization and higher-order protocols. We
begin by formalizing the shared bag specification in our logic:

depr(P)

depr�t(bags(t, x,P))

stable(P) indept(P) usipVal(P)

{emp}new Bag(){ret. bags(t, ret,P)}

{bags(t, x,P) ∗ P(y)}x.Push(y){bags(t, x,P)}

{bags(t, x,P)}x.Pop(){ret. bags(t, x,P) ∗ (ret = null ∨ P(ret))}

bags(t, x,P) ⇔ bags(t, x,P) ∗ bags(t, x,P)

This corresponds to the specification from the introduction, except with restric-
tions on predicate P to ensure it is expressible using state-independent protocols
and does not introduce self-referential protocol or region assertions.

Modular Reasoning about Separation of Concurrent Data Structures 183

With these restrictions on P we can now derive the shared bag specification
from our generic specification. The idea is to introduce a new region containing
the state associated with each element currently in the bag:

bags(t, x,P)
def
= ∃r : RId. ∃π : Perm. ∃t1, t2 : RType.

t ≤ t1 ∧ t ≤ t2 ∧ t1 �≤ t2 ∧ t2 �≤ t1 ∧ indept(P) ∧ usip(P) ∧

bag(t1, x) ∗ q(x,P)
r,t2,x

I(P)
∗ [Upd]rπ

q(x,P)
def
= ∃X : Pm(Val). xcont

1/2�−→ X ∗ �y∈XP(y)

I(P)(x)
def
= (Upd : q(x,P) � q(x,P))

The parametric protocol I(P) allows the bag to be changed arbitrarily, provided
the region still contains the state associated with each element currently in the
bag. From the assumption that each P(x) is stable and that usipVal(P) it follows
that q(x,P) is stable and sip(q(x,P)). Hence, there exists R, S : Prop such that
q(x,P) ⇔ R ∗ S, pureprotocol(S) and purestate(R). Thus, bags(t, x,P) is equivalent
to the following assertion:

∃r, π, t1, t2. t ≤ t1 ∧ t ≤ t2 ∧ t1 �≤ t2 ∧ t2 �≤ t1 ∧ bag(t1, x) ∗ S
r,t2,x

I(P)
∗ R ∗ [Upd]rπ

Hence, to prove bags(t, x,P) stable, it suffices to prove stability of S
r,t2,x

I(P)
∗ R.

Applying rule SA, it thus suffices to prove,

valid(q(x,P) ∧ S ⇒ ⊥) ∨ valid(q(x,P)⇒ S)

and the right disjunct follows easily from the assumption that q(x,P)⇔ R ∗ S.
To derive the shared bag specification for push, we thus have to transfer the

resources associated with the element being pushed, P(y), to the client region
containing the element resources. We thus instantiate P and Q in the generic

bag specification with P(y) ∗ q(x,P)
r,t2,x

I(P)
∗ [Upd]rπ and q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ,

respectively.
We thus have to provide a view-shift to synchronize the abstract state of the

library protocol with our client protocol r:

∀X : Pm(Val). xcont
1/2�−→ X ∗ P(y) ∗ q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ �t1

xcont
1/2�−→ (X ∪ {y}) ∗ q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ

Since xcont
1/2�−→ X ∗ P(y) ∗ [Upd]rπ and q(x,P) are all independent of region type

t, by rule VSOpen it suffices to prove that the change to region r is allowed and
possible. The update is easily shown to be allowed by the Upd action, using the
UAAct rule and update action frame rule (UAF). To show the possibility of
the view shift it suffices to prove that:

xcont
1/2�−→ X ∗ P(y) ∗ ∃Z : Pm(Val). xcont

1/2�−→ Z ∗�z∈ZP(z) ∗ [Upd]rπ �⊥

xcont
1/2�−→ (X ∪ {y}) ∗ ∃Z : Pm(Val). xcont

1/2�−→ Z ∗ �z∈ZP(z) ∗ [Upd]rπ

which follows easily, as xcont
1/2�−→ X ∗ xcont

1/2�−→ Z⇒ X = Z.

184 K. Svendsen, L. Birkedal, and M. Parkinson

Note that to provide a view-shift to synchronize the abstract state of the
library protocol with the client protocol, we were essentially forced to update
the phantom field cont in the client region, which in turn forced us to transfer
ownership of P(y) to the client region.

4 Semantics

In this section we sketch the model and the interpretation of our logic. Due to lack
of space, we focus on parts presented in Section 2. The full model, interpretation
and accompanying soundness proof can be found in the technical report [19].

The presentation of the model is strongly inspired by the Views framework
presentation [4]. The model is an instance of the Views framework extended
with step-indexing to model guarded recursion, and thread local state to model
dynamic allocation of threads.

The basic structure of the model is defined below. Assertions are modeled as
step-indexed predicates on instrumented states (M). Instrumented states con-
sist of three components, a local state, a shared state and an action model. The
local state specifies the current local resources. The shared state is further par-
titioned into regions and each region consists of a local state, a region type and
a protocol parameter. The action model maps region types to parameterized
protocols, which are functions from a tuple containing a protocol argument, a
region identifier and an action identifier to an action. Lastly, actions are modeled
as certain step-indexed relations on shared states. In particular, actions are not
relations on shared states and action models, and thus do not support general
higher-order protocols. Actions do however support state-independent protocols,
through the region type indirection.

LState
def
= Heap × PHeap ×Cap SState

def
= RId ⇀ (LState × RType× Val)

M def
= LState × SState × AMod AMod

def
= RType ⇀ ((Val× RId× AId) → Act)

Cap
def
= {f ∈ RId× AId → [0, 1] | ∃R ⊆fin RId. ∀r ∈ RId \R. ∀α ∈ AId. f(r, α) = 0}

Act
def
= {R ∈ P(N× SState × SState) |

∀(i, s1, s2) ∈ R. ∀j ≤ i. ∀r ∈ RId \ dom(s2). ∀n ∈ RType. ∀l, l′ ∈ LState.

s1 ≤ s2 ∧ (j, s1, s2) ∈ R ∧ (j, s1, s2[r
→ (l′, n)]) ∈ R ∧
(j, s1[r
→ (l, n)], s2[r
→ (l′, n)]) ∈ R}

Prop
def
= {U ∈ P(N×M) | ∀(i,m1) ∈ U. ∀j ≤ i. ∀m2 ∈ M.

(m1 =j m2 ∨m1 ≤ m2) ⇒ (j,m2) ∈ U}
Spec

def
= {U ∈ P(N) | ∀i ∈ U. ∀j ≤ i. j ∈ U}

The semantics of both the assertion logic and specification logic is step-indexed.
The specification logic is step-indexed to allow reasoning about mutual recursion.
The assertion logic is step-indexed to support nested triples (which embed specifi-
cations in the assertion logic) [17] and guarded recursive predicates [1,3]. Specifi-
cations are thus modeled as downwards closed subsets of numbers, and assertions

Modular Reasoning about Separation of Concurrent Data Structures 185

are modeled as step-indexed predicates on instrumented states, that are down-
wards closed in the step-index and upwards closed inM. The upwards closure in
M ensures that assertions are closed under allocation of new regions and protocols
(the ordering ≤ onM is defined as expected). To define guarded recursive func-
tions and predicates, the types of our logic are modeled as sets with a step-indexed
equivalence relation, =i, and terms and predicates are modeled as non-expansive
functions. However, as this part of the model is mostly orthogonal to CAP, we will
elide the details, which can be found in the technical report [19].

Comparison with Previous Models of CAP. The original model of (first-
order) CAP [5] employed a syntactic treatment of actions to break a circularity
in the definition of worlds. Our model follows the previous model of higher-
order CAP (without higher-order protocols) [6] in treating actions semantically.
However, to support higher-order protocols we introduce a new indirection, in the
form of region types. Actions are thus relations on shared states, which include
the region types of allocated regions. Actions can thus implicitly refer to the
protocol on regions through the region type indirection. While previous work has
only considered CAP for a first-order programming language, our HOCAP is for
a higher-order programming language. We thus step-index both the specification
and assertion logic, instead of just the specification logic.

Model Operations. Separating conjunction is interpreted as the lifting of the
partial commutative •M function to Prop (point-wise in the step-index). The •M
function expresses how to compose two instrumented states. Two instrumented
states are combinable if they agree on the shared state and action model, by com-
bining their local states, using •LState. Local states are combined using the stan-
dard combination function, •
, on disjoint partial functions, on the heap and phan-
tom heap component, and by point-wise summing up the action permissions.

While assertions are modeled as step-indexed predicates on instrumented
states, which include phantom fields, protocols, and regions, the operational
semantics operates on concrete states, which are simply heaps. The main sound-
ness theorem (Theorem 1) expresses that any step in the concrete semantics
has a corresponding step in the instrumented semantics. This is expressed in
terms of an erasure function, '−(∈ M ⇀ Heap, that erases the instrumenta-
tion from an instrumented state. The erasure of an instrumented state is simply
the combination of the local state and all shared regions.

)(l, s)* def
= l •LState

∏
r∈dom(s)

s(r).l

'(l, s, ς)(def
=

{
h if (h, ph, c) =)(l, s)* and π1(dom(ph)) ⊆ objs(h)

undef otherwise

Interference. The interference relation RA
i ⊆ M×M describes possible in-

terference from the environment. It is defined as the reflexive, transitive closure
of the single-action interference relation, R̂A

i (defined below), that describes pos-
sible environment interference using at most one action on each region. Defining

186 K. Svendsen, L. Birkedal, and M. Parkinson

RA
i as the reflexive, transitive closure of R̂A

i forces a common action granularity
on updates to multiple regions with protocols referring to each other. In addition
to the step-index i ∈ N, the single-action interference relation is also indexed by
a set A ∈ P(RType) of region types of those regions that are allowed to change
and that actions justifying those changes are allowed to depend on.

(l1, s1, ς1) R̂
A
i (l2, s2, ς2) iff l1 = l2 ∧ s1 ≤ s2 ∧ ς1 ≤ ς2 ∧ �(l1, s1)� defined ∧

(∀r ∈ dom(s1). s1(r) = s2(r) ∨ (∃α. s1(r).t ∈ A ∧
(�(l1, s1)�.c)(r, α) < 1 ∧ (i, s1|A, s2|A) ∈ ς1(s1(r).t)(s1(r).a, r, α)))

s|A def
= λr ∈ RId.

{
s(r) if r ∈ dom(s) and s(r).t ∈ A

undef otherwise

In particular, the R̂A
i relation expresses that the environment is not allowed to

change the local state (l1 = l2), but it is allowed to allocate new regions and
protocols (s1 ≤ s2 and ς1 ≤ ς2). Furthermore, the environment is allowed to
update the resources of any region r with a region type in A (s1(r).t ∈ A),
provided the update is justified by an action α that is partially owned by the
environment ()(l1, s1)*(r, α) < 1).

An assertion is stable if it is closed under interference to all region types:

stable(p)
def
= {i ∈ N | ∀j ≤ i. ∀(m1,m2) ∈ RRType

j . (j,m1) ∈ p⇒ (j,m2) ∈ p}

Previous models of CAP have only permitted multiple independent updates,
whereas our model supports multiple dependent updates. Previous models thus
lack the A-index that we use to enforce a common action granularity on updates
to multiple dependent regions.

View-Shifts. View-shifts describe a step in the instrumented semantics that
correspond to a no-op in the concrete semantics. To perform a view-shift from p
to q we thus have to prove that for every concrete state c in the erasure of some
instrumented state m ∈ p there exists an instrumented state m′ ∈ q such that c
is in the erasure of m′.

p �t q
def
= {i ∈ N | ∀m ∈ M. ∀j ∈ N. 0 ≤ j ≤ i ⇒

 p ∗ {(j,m)}!j ⊆ q ∗ {(j,m′) | m R̂
{t′|t 	≤t′}
j m′}!j}

To allow framing on view-shifts (rule VSFrame in Section 2.3) we bake in
framing under certain stable frames. The frames in question depend on the
region index t ∈ RType. In particular, �t permits a single simultaneous update
of multiple regions with region types not greater than or equal to t, each justified
by a single action. Hence, we require that �t is closed under arbitrary frames
that are stable under a single simultaneous update of multiple regions with
region types not greater than or equal to t, each justified by a single action, i.e.,
R̂{t

′|t�≤t′}.

Support. In Section 2.2 we introduced specification logic assertions indep and
dep, to internalize a notion of region type support in the logic, to allow explicit

Modular Reasoning about Separation of Concurrent Data Structures 187

proofs of the absence of self-referential region assertions. Their meaning is defined
in terms of the following supp assertion, which asserts that p is supported by the
set of region types A ∈ P(RType). Formally, suppA(p) asserts that p is closed
under arbitrary shared states that agree on all regions of type A (s|A = s′|A)
and arbitrary action models that are A equivalent (ς ≡A ς ′).

suppA(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀s′. ∀ς ′.

s|A = s′|A ∧ ς ≡A ς ′ ⇒ (j, (l, s′, ς ′)) ∈ p}

Intuitively, two action models are considered A-equivalent if they agree on the
regions of types in A (but they are allowed to differ on regions of types not in
A). An assertion p is then dependent on region type t ∈ RType if p is supported
by the set of region types greater than or equal to t, and independent if it is
supported by the set of region types not greater than or equal to t:

dept(p)
def
= supp{t′|t≤t′}(p) indept(p)

def
= supp{t′|t�≤t′}(p)

Purity. To reason about state-independent protocols and nested view-shifts we
have introduced several types of purity; namely, state, protocol and permission
purity. Since our assertion logic is intuitionistic, we interpret purity as closure
under arbitrary changes to the state, protocols, and permissions, respectively. For

instance, pureprot(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀ς ′. (j, (l, s, ς ′)) ∈ p}.

Soundness. The main soundness theorem expresses that for any derivable
Hoare triple, {p}c̄{q}, if c̄ is executed with a local stack s as thread t, with a
global heap h that is in the erasure of some instrumented state in p(s), then, if
t (and any threads t may have forked) terminates, then the terminal heap h′ is
in the erasure of some instrumented state in q(s′), where s′ is the terminal stack
of t.

Theorem 1. If Γ 	 (Δ).{P}c̄{Q} then for all ϑ ∈ [[Γ]], thread identifiers t ∈
TId, stacks s ∈ [[Δ]], and heaps h ∈ '[[Γ ;Δ 	 P : Prop]](ϑ, s)(, if

(h, {(t, s, c̄)})→ (h′, {(t, s′, skip)} T ′)

and T ′ is irreducible then h′ ∈ '[[Γ ;Δ 	 Q : Prop]](ϑ, s′)(.

5 Conclusion and Future Work

We have proposed a new style of specification for thread-safe data structures
that allows the client to refine the specification with a usage protocol, in a
concurrent setting. We have shown how to apply it to the bag and concurrent
runner example. To realize this style of specification we have presented a new
higher-order separation logic with Concurrent Abstract Predicates, that sup-
ports state-independent higher-order protocols and synchronization of multiple
regions. We have also used the logic to specify and verify Joins, a sophisticated
library implemented using higher-order code and shared mutable state.

188 K. Svendsen, L. Birkedal, and M. Parkinson

We have demonstrated that our logic and style of specification scales to imple-
mentations of fine-grained concurrent data structures without helping [8]. Future
work includes investigating concurrent data structures that use helping.

References

1. Appel, A., Melliès, P.-A., Richards, C., Vouillon, J.: A very modal model of a
modern, major, general type system. In: Proc. of POPL (2007)

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-Hyperdoctrines, Higher-order Sepa-
ration Logic, and Abstraction. ACM TOPLAS (2007)

3. Birkedal, L., Møgelberg, R., Schwinghammer, J., Støvring, K.: First Steps in Syn-
thetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. In: Proc. of
LICS (2011)

4. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
Compositional Reasoning for Concurrent Programs. In: Proceedings of POPL
(2013)

5. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

6. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: Proceedings of POPL, pp. 259–270 (2011)

7. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for Concurrent Ob-
jects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer,
Heidelberg (2009)

8. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12, 463–492 (1990)

10. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: Proceedings of POPL, pp. 271–282 (2011)

11. Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012)

12. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, JAVA 2000, pp. 36–43. ACM (2000)

13. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cor-
nell (1975)

14. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking
stack. SIGPLAN Not. 42(1) (2007)

15. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of
TLDI, pp. 73–86 (2011)

16. Russo, C.V.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 260–274. Springer, Heidelberg (2007)

17. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare Triples and
Frame Rules for Higher-Order Store. LMCS 7(3:21) (2011)

18. Svendsen, K., Birkedal, L., Parkinson, M.: Verifying Generics and Delegates. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 175–199. Springer, Heidel-
berg (2010)

19. Svendsen, K., Birkedal, L., Parkinson, M.: Higher-order Concurrent Abstract Pred-
icates. Technical report, IT University of Copenhagen (2012),
http://www.itu.dk/people/kasv/hocap-tr.pdf

20. Turon, A., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical Relations
for Fine-Grained Concurrency. In: Proceedings of POPL (2013)

http://www.itu.dk/people/kasv/hocap-tr.pdf

Ribbon Proofs for Separation Logic

John Wickerson1, Mike Dodds2, and Matthew Parkinson3

1 Technische Universität Berlin, Germany
2 University of York, United Kingdom

3 Microsoft Research Cambridge, United Kingdom

Abstract. We present ribbon proofs, a diagrammatic system for proving program
correctness based on separation logic. Ribbon proofs emphasise the structure of a
proof, so are intelligible and pedagogical. Because they contain less redundancy
than proof outlines, and allow each proof step to be checked locally, they may be
more scalable. Where proof outlines are cumbersome to modify, ribbon proofs
can be visually manoeuvred to yield proofs of variant programs. This paper in-
troduces the ribbon proof system, proves its soundness and completeness, and
outlines a prototype tool for validating the diagrams in Isabelle.

1 Introduction

A program proof should not merely certify that a program is correct; it should explain
why it is correct. A proof should be more than ‘true’: it should be informative, and it
should be intelligible. This paper does not contribute new methods for proving more
properties of more programs, but rather, a new way to present such proofs. Building on
work by Bean [2], we present a system that produces program proofs in separation logic
that are readable, scalable, and easily modified.

A program proof in Hoare logic [15] is usually presented as a proof outline, in which
the program’s instructions are interspersed with ‘enough’ assertions to allow the reader
to reconstruct the derivation tree. Since emerging circa 1971, the proof outline has be-
come the de facto standard in the literature on both Hoare logic (e.g. [1, 16, 25, 28]) and
its recent descendant, separation logic (e.g. [3, 8–11, 14, 17, 18, 20, 27, 31]). Its great
triumph is what might be called instruction locality: that one can verify each instruction
in isolation (by confirming that the assertions immediately above and below it form a
valid Hoare triple) and immediately deduce that the entire proof is correct.

Yet proof outlines also suffer several shortcomings, some of which are manifested
in Fig. 1a. This proof outline concerns a program that writes to three memory cells,
which separation logic’s ∗-operator deems distinct. First, it is highly repetitive: ‘x �→ 1’
appears three times. Second, it is difficult to interpret the effect of each instruction,
there being no distinction between those parts of an assertion that are actively involved
and those that are merely in what separation logic calls the frame. For instance, line 4
affects only the second conjunct of its preceding assertion, but it is difficult to deduce
the assignment’s effect because two unchanged conjuncts are also present. Of course,
these are only minor problems in our toy example, but they quickly become devastating
when scaled to serious programs.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 189–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 J. Wickerson, M. Dodds, and M. Parkinson

1
{
x �→ 0 ∗ y �→ 0 ∗ z �→ 0

}
2 [x]:=1;
3
{
x �→ 1 ∗ y �→ 0 ∗ z �→ 0

}
4 [y]:=1;
5
{
x �→ 1 ∗ y �→ 1 ∗ z �→ 0

}
6 [z]:=1;
7
{
x �→ 1 ∗ y �→ 1 ∗ z �→ 1

}
(a) A proof outline

x �→ 0 y �→ 0 z �→ 0

[x]:=1
x �→ 1

[y]:=1
y �→ 1

[z]:=1
z �→ 1

(b) A ribbon proof

Fig. 1. A simple example

The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.

frame
x �→ 1 ∗ z �→ 0

-

⎡⎢⎢⎢⎢⎣
{
x �→ 1 ∗ y �→ 0 ∗ z �→ 0

}{
y �→ 0

}
[y]:=1;{
y �→ 1

}
⎤⎥⎦- small axiom

for heap update{
x �→ 1 ∗ y �→ 1 ∗ z �→ 0

}
Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assignments
update different memory cells. They are thus independent, and amenable to reordering
or parallelisation. One can imagine obtaining a proof of the transformed program by
simply sliding the left-hand column downward and the right-hand column upward. The
corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
triples {p} c {q}, and often neglect the details of entailments between assertions, p⇒ q,

Ribbon Proofs for Separation Logic 191

even though such entailments often encode important insights about the program being
verified. Ribbon proofs treat both types of judgement equally, within the same system.

There are many recent extensions of separation logic (e.g. [7–11, 14, 17, 20, 23, 31])
to which our ribbon proof technology can usefully be applied; indeed, ribbons have
already aided the development of a separation logic for relaxed memory [5]. All of
these program logics are based on increasingly complex reasoning principles, of which
clear explanations are increasingly vital. We propose ribbon proofs as the ideal device
for providing them.

Comparison with Bean’s System. Bean [2] introduced ribbon proofs as an extension
of Fitch’s box proofs [12] to handle the propositional fragment of bunched implications
logic (BI) [24]. BI being the basis of separation logic’s assertion language [18], his sys-
tem can be used to prove entailments between propositional separation logic assertions.
Our system expands Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. It is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing degree of flexibility.

Contributions and Paper Outline. We describe a diagrammatic proof system that
enables a natural presentation of separation logic proofs. We prove it sound and com-
plete with respect to separation logic (Sect. 3). We also give an alternative, graphical
formalisation (Sect. 4), which is sound in the absence of the frame rule’s side-condition.

We describe a prototype tool (Sect. 5) for mechanically checking ribbon proofs with
the Isabelle proof assistant. Given a small proof script for each basic step, our tool
assembles a script that verifies the entire diagram. Such tediums as the associativity and
commutativity of ∗ are handled in the graphical structure, leaving the user to focus on
the interesting parts of the proof.

We discuss (Sect. 6) extensions to handle concurrent separation logic, possible appli-
cations to parallelisation, and connections to proof nets, bigraphs and string diagrams.

We begin by introducing our ribbon proof system with the aid of an example. Fur-
ther examples can be found in Wickerson’s PhD dissertation [33]. Of those, our ribbon
proof of the Version 7 Unix memory manager demonstrates that our system can present
readable proofs of more complex programs than those considered in this paper.

2 An Example

Let us consider a simple program for in-place reversal of a linked list.
Figure 3a presents a proof of this program as a proof outline (adapted from [27]).

For a binary relation r, we write x ṙ y for x r y ∧ emp, where emp describes an empty
heap. We write ε for the empty sequence, (−)† for sequence reversal, and · for cons
and concatenation. We define the list αx predicate by induction on the length of the
sequence α:

list ε x
def
= (x

.
= nil) list (i · α′)x def

= (∃x′. x �→ i, x′ ∗ list α′ x′),

where x �→ y, z abbreviates (x �→ y) ∗ (x+ 1 �→ z).

192 J. Wickerson, M. Dodds, and M. Parkinson

(a)
while (...) {

}

A

B

C

≈

A

B

C

(b)

if (...) {

} else {

}

A

B

C

D

≈

A

B
C

D

Fig. 2. While-loops and if-statements, pictorially

The invariant (line 5) states that x and y are linked lists representing two sequences
α and β such that the initial sequence α0 is obtained by concatenating the reverse of
β onto α. Our proof outline seeks to clarify the proof by making minimal changes
between successive assertions, despite this making the proof large and highly redundant.
Alternatively, intermediate assertions can be elided, but this can make the proof hard to
follow. Either way, proof outlines do not make the structure of the proof clear.

Figure 3b presents a ribbon proof for the same program. It comprises

– steps, each labelled with an instruction (black) or a justification of an entailment
(dark grey),

– ribbons (light grey), each labelled with an assertion, and
– existential boxes, which delimit the scope of logical variables.

The ribbon proof advances vertically, and the resources (memory cells) being operated
upon are distributed horizontally across the ribbons. Instructions are positioned accord-
ing to the resources they access, not merely according to the syntax of the program, as in
the proof outline. Horizontal separation between ribbons corresponds to the separating
conjunction of the assertions on those ribbons; that is, parallel ribbons refer to disjoint
sets of memory cells. Because ∗ is commutative, we can ‘twist’ one ribbon over another.
The resource distribution is not only unordered, but also non-uniform, so the width of
a ribbon is not proportional to the amount of resource it describes. In particular, the
assertion ‘x ˙�= nil’ obtained upon entering the while-loop describes no memory cells
at all; it merely states that the program variable x is not the null pointer. A gap in the
diagram (e.g. above the ‘y:=nil’ step) corresponds to the ‘emp’ assertion.

While-loops are special steps that contain further nested steps. The loop invariant
is the collection of ribbons and existential boxes entering the top of the loop. This
collection must be recreated at the end of the loop body, so that one could roll the
proof into the shape drawn in Fig. 2a. If-statements are not depicted in our example, but
appear in Wickerson’s PhD dissertation [33]. They are treated straightforwardly: the
ribbons and boxes entering the then-branch must match those entering the else-branch,
and likewise at the two exit points, so that the proof could be cut and folded into the
three-dimensional shape suggested in Fig. 2b.

After the ‘z:=[x+1]’ step, the assertion ‘list α z’ is not needed for a while. In a proof
outline, this assertion would either be temporarily removed via an explicit application
of the frame rule or, as is done in Fig. 3a, redundantly repeated at every intermediate

Ribbon Proofs for Separation Logic 193

1
{
list α0 x

}
2 y:=nil;
3

{
list α0 x ∗ list ε y

}
4 // Choose α := α0 and β := ε
5 while

{
∃α, β. list α x ∗ list β y ∗ α0

.
= β† · α

}
(x!=nil) {

6

{
∃α, β. x ˙�= nil ∗ list α x ∗ list β y
∗ α0

.
= β† · α

}
7 // Unfold list def

8

{
∃α, β. (∃α′, i, Z. x �→ i, Z ∗ list α′ z
∗ α .

= i · α′) ∗ list β y ∗ α0
.
= β† · α

}
9 // Choose α := α′

10

{
∃α, β, i, Z. x �→ i, Z ∗ list αZ
∗ α0

.
= β† · (i · α) ∗ list β y

}
11 z:=[x+1];

12

{
∃α, β, i. list α z ∗ x �→ i, z
∗ α0

.
= β† · (i · α) ∗ list β y

}
13 // Reassociate i

14

{
∃α, β, i. list α z ∗ x �→ i, z
∗ α0

.
= (i · β)† · α ∗ list β y

}
15 [x+1]:=y;

16

{
∃α, β, i. list α z ∗ x �→ i, y
∗ α0

.
= (i · β)† · α ∗ list β y

}
17 // Fold list def

18

{
∃α, β, i. list α z ∗ list (i · β) x
∗ α0

.
= (i · β)† · α

}
19 // Choose β := (i · β)
20

{
∃α, β. list α z ∗ list β x ∗ α0

.
= β† · α

}
21 y:=x;
22

{
∃α, β. list α z ∗ list β y ∗ α0

.
= β† · α

}
23 x:=z;
24

{
∃α, β. list α x ∗ list β y ∗ α0

.
= β† · α

}
25 }

26

{
∃α, β. x .

= nil ∗ list α x ∗ list β y
∗ α0

.
= β† · α

}
27 // Unfold list def
28

{
∃α, β. α .

= ε ∗ list β y ∗ α0
.
= β† · α

}
29 // Concatenate empty sequence
30

{
∃β. list β y ∗ α0

.
= β†}

31 // Fold list def
32

{
list α†

0 y
}
(a) A proof outline

while (x!=nil) {

}

list α0 x
y:=nil

list ε y
Choose α := α0 and β := ε

∃α
∃β

list α x list β y α0
.
=

β† · α

x ˙�= nil

Unfold list def
∃α′, i, Z. x �→ i, Z

∗ list α′ Z
∗ α .

= i · α′

Choose α := α′

∃α
∃i

∃Z. x �→ i, Z
∗ list αZ

α0
.
= β†

· (i · α)
z:=[x+1]

Reassoc-
iate i

list α z x �→ i, z

[x+1]:=y α0
.
=

(i·β)† ·αx �→ i, y
Fold list def
list (i · β) x

Choose β := (i · β)
list β x α0

.
=

β† · α∃β
y:=x

x:=z list β y
list α x

x .
= nil

Unfold list def
α

.
= ε

Concatenate empty sequence
α0

.
= β†

Fold list def
list α†

0 y

(b) A ribbon proof

Fig. 3. Two proofs of list reverse

194 J. Wickerson, M. Dodds, and M. Parkinson

point. In the ribbon proof, it slides discreetly down the left-hand side. This indicates
that the assertion is inactive without suggesting that it has been removed.

The proof outline obscures the usage of the logical variables α and β. The witness
for α changes after line 8, then stays the same until line 24; meanwhile, β’s witness is
constant through lines 5 to 18 before becoming the previous witness prepended with
i. This structure can only be spotted through careful examination of the proof outline
(aided by the textual hints on lines 9 and 19). The scoping of logical variables in the
ribbon proof, through the use of existential boxes, is far more satisfactory. Boxes extend
horizontally across several ribbons, but also vertically to indicate the range of steps over
which the same witness is used. Horizontally, existential boxes must be well-nested;

while (...) {

}

∃α
∃β

∃α
∃β

Fig. 4. Existential boxes,
vertically overlapping

this corresponds to the static scoping of existential quan-
tifiers in assertions. Vertically, however, boxes may over-
lap. Figure 4 depicts how the boxes for α and β overlap in
Fig. 3b. As explained in Sect. 3.1, such ‘overlaps’ are for-
mally treated as entailment steps of the form ∃x. ∃y. p ⇒
∃y. ∃x. p. Similarly, boxes may be stretched horizontally
(see, for instance, immediately below the loop in Fig. 3b)
in accordance with the entailment p ∗ (∃x. q) ⇒ ∃x. p ∗ q
(for x not in p). We thus obtain an intriguing proof struc-
ture – present in neither the proof outline nor the underlying
derivation tree – in which the scopes of logical variables do
not follow the program’s syntactic structure, but are instead
dynamically scoped. Section 6 contains further discussion.

We close this section by explaining a shortcoming in the proof system as currently
presented. One nicety of Fig. 3b is that the ‘Reassociate i’ entailment, being horizon-
tally separated from its neighbouring proof steps, can clearly be moved a little earlier
or later. (Close inspection is necessary to discover this from the proof outline.) But
similar reasoning allows the assignments ‘y:=x’ and ‘x:=z’ to be swapped, unsoundly.
We ensure our proof system is sound either by forbidding such manoeuvres altogether
(Sect. 3) or by encoding variable dependencies into the ribbons themselves (Sect. 4).

3 Formalisation

Let us now formalise the concepts introduced in the previous section. We introduce in
Sect. 3.1 a two-dimensional syntax for diagrams, and explain how it can generate the
pictures we have already seen. We present the rules of our diagrammatic proof system
in Sect. 3.2. We relate ribbon proofs to separation logic in Sect. 3.3.

Proofs performed by hand are annotated with ��, while those mechanically verified
using the Isabelle proof assistant are annotated with , and can be viewed online at:
http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Definition 1 (Assertions). Let p range over a set of ordinary separation logic asser-
tions, containing at least the following constructions:

Assertion
def
= {p ::= emp | p ∗ p | ∃x. p | . . .}.

http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Ribbon Proofs for Separation Logic 195

SL{p} c {q} wr(c) ∩ rd(r) = ∅
SL{p ∗ r} c {q ∗ r}

(p, c, q) ∈ Axioms

SL{p} c {q}
SL{p} c {q}

SL{∃x. p} c {∃x. q}

SL{p1} c {q1}
SL{p2} c {q2}

SL{p1 ∨ p2} c {q1 ∨ q2}

SL{p′} c {q′}
p ⇒ p′ q′ ⇒ q

SL{p} c {q}

SL{p} c1 {q}
SL{p} c2 {q}

SL{p} c1 or c2 {q}

SL{p} c1 {q} SL{q} c2 {r}
SL{p} c1;c2 {r} SL{p} skip {p}

SL{p} c {p}
SL{p} loop c {p}

Fig. 5. Proof rules for commands

Definition 2 (Commands). Let c range over the commands of a sequential program-
ming language, containing at least sequential composition (which is associative), skip
(the unit of sequential composition), and non-deterministic choice and looping:

Command
def
= {c ::= c ; c | skip | c or c | loop c | . . .}.

If a primitive ‘assumeb’ command is available (where b is a pure assertion; that is,
independent of the heap) then standard if-statements and while-loops can be derived:

if b then c1 else c2
def
= (assume b ; c1) or (assume¬b ; c2)

while b do c def
= loop(assume b ; c) ; assume¬b.

We assume a separation logic comprising the rules given in Fig. 5 plus a set of Axioms.
In the first rule, the frame rule, the rd and wr functions respectively extract the sets of
program variables read and written.

Remark 1. We do not consider Hoare logic’s conjunction rule in this paper. Conjunc-
tion and universal quantification can still appear inside individual ribbon assertions. We
could design graphical analogues (which would resemble our treatment of disjunction
and existential quantification) but this would complicate our graphical language with
constructs that are seldom used in separation logic proofs.

3.1 Syntax of Diagrams

We present a syntax that can generate the pictures seen in the preceding section. Each
diagram is built up as a sequence of rows, each containing a single proof step. We thus
refer to such diagrams as ‘stratified’. (Section 4 will present an alternative formalisa-
tion that does not impose such strict sequentiality.) We begin by introducing interfaces,
which are the top and bottom boundaries through which diagrams can be composed.

Definition 3 (Interfaces). An interface is either a single ribbon labelled with an asser-
tion, an empty interface (shown as whitespace in pictures), two interfaces side by side,
or an existential box wrapped around an interface:

Interface
def
= {P ::= p | ε | P P | ∃xP }.

196 J. Wickerson, M. Dodds, and M. Parkinson

⎛⎜⎜⎜⎜⎝
list
(i · β) x

α0
.
=

(i · β)† · α
Choose β := (i · β)

list β x α0
.
= β† · α∃β

∃i∃β

, list α z

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

list α z list β x α0
.
= β† · α

Extend scope of β

list α z list β x α0
.
= β† · α

∃β

∃β
, ε

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃β

⎛⎜⎝ list β x
y:=x
list β y

, list α z α0
.
= β† · α

⎞⎟⎠
⎛⎜⎝ list α z

x:=z
list α x

, list β y α0
.
= β† · α

⎞⎟⎠
, ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Stratified

Choose β := (i · β)

x:=z
y:=x

list β xlist α z

list (i · β) x α0
.
= (i · β)† · α

α0
.
= β† · α

α0
.
= β† · αlist β xlist α z

list αx list β y

∃i

Extend scope of β

∃β

∃β

∃β

(b) Graphical (see Sect. 4)

Fig. 6. Two ways to parse a fragment of Fig. 3b

The asn function maps an interface to the assertion it represents:

asn p = p

asn ε = emp

asn (P Q) = asn P ∗ asn Q
asn ∃xP = ∃x. asn P.

When clarity demands it, we shall write P ⊗Q instead of P Q, and hence ⊗i∈IPi for
iterated composition. We equate interfaces up to (P Q)R = P (QR), P ε = ε P =
P and P Q = QP . Since ⊗ commutes, ribbon ‘twisting’ is merely a presentational
artefact.

A diagram can be thought of as a mapping between two interfaces.

Definition 4 (Diagrams). A diagram D ∈ Diagram is a non-empty list of rows ρ ∈
Row. When space permits, we align the list elements in a single column without punc-
tuation. A row is a pair (γ, F) comprising a cell γ ∈ Cell and a frame F ∈ Interface.
The syntax of cells is as follows:

Cell
def
= {γ ::= P | c

P

P
| ∃xD |

P

D

or
D

P

|

P
loop
D

P

}.

To illustrate how this syntax is used, Fig. 6a shows a term of Diagram that corresponds
to a fragment of the picture in Fig. 3b. Note that the cell in each row is always pushed
to the left-hand side. In the concrete pictures, it can be moved to allow corresponding
ribbons in different rows to be aligned, and hence for redundant labels to be removed.
Each entailment p ⇒ q is handled as the basic step

{
p
}
skip

{
q
}

. Rather than write
‘skip’, we label such a step with a justification of the entailment, and colour it dark
grey to emphasise those steps that actually contain program instructions. Concerning

Ribbon Proofs for Separation Logic 197

RIBBON

cel P : P → P

BASIC
SL{asn P} c {asn Q}

cel c
P

Q
: P → Q

EXISTS

diaD : P → Q

cel ∃xD : ∃xP → ∃xQ

CHOICE

diaD : P → Q

diaE : P → Q

cel

P

D

or
E

Q

: P → Q

LOOP

dia D : P → P

cel

P
loop
D

P

: P → P

ROW

cel γ : P → Q
wr(γ) ∩ rd(F) = ∅

row(γ,F) : P ⊗ F → Q⊗ F

MAIN
∀i ≤ k.row ρi : Pi → Pi+1

dia[ρ0, . . . , ρk] : P0 → Pk+1

Fig. 7. Proof rules for stratified ribbon diagrams

existential boxes: the operations of extending, contracting and commuting are really
the entailments depicted informally below. Having to show these entailments explicitly
would make Fig. 3b much more repetitive. (We are working on an improved formalisa-
tion that supports these operations directly – see Sect. 6 for further discussion.)

p q∃x
def
=

p q

Extend x’s scope

p q∃x

∃x
if x is
not free
in p

p∃y∃x
def
=

p

Swap x and y

p∃x∃y

∃y∃x

3.2 Proof Rules for Diagrams

There are two pertinent questions to be asked of a given ribbon diagram. The first ques-
tion is: is it a valid proof? This subsection develops a provability judgement to answer
this. The second question – if this ribbon diagram is deemed valid, what does it prove?
– is addressed in the next subsection.

The rules given in Fig. 7 define provability judgements for cells (cel), for rows
(row) and for diagrams (dia). Each judgement ascribes a type, which comprises the
top and bottom interfaces of that object.

The ROW and MAIN rules recall Hoare logic’s sequencing rule and separation logic’s
frame rule. They embody the ‘locally checkable’ nature of ribbon proofs: that the entire
diagram is valid if each row is valid in isolation, and that a row is valid if its active cell
is valid and writes no program variable that is read elsewhere in the row.

The BASIC rule corresponds to an ordinary separation logic judgement	SL{p} c {q}.
This judgement may be arbitrarily complex, so a ribbon diagram may be no easier to
check than a traditional proof outline. This is intentional. Our formalisation allows p
and q to be minimised, by framing common fragments away, but does not demand this.
The command c can be reduced to skip or some primitive command, but this may not
be desirable if one requires only a high-level overview proof. A ribbon diagram can

198 J. Wickerson, M. Dodds, and M. Parkinson

com[(γ0, F0), . . . , (γk, Fk)]
= com γ0 ; · · · ; com γk

com P = skip com ∃xD = com D

com c
P

Q
= c com

P
loop
D

Q

= loop(com D)
com

P

D

or
E

Q

= (com D)
or(com E)

Fig. 8. Extracting a command from a stratified diagram

thus be viewed as a flexible combination of diagrammatic and traditional proofs, with
the BASIC rule as the interface between these two levels.

We remark that these proof rules provide only limited mechanisms for building new
diagrams from old. Diagrams can be wrapped in existential boxes, or put inside choice
or loop diagrams, but not stacked vertically or placed side by side. One can define
operations for composing elements of Diagram in sequence or in parallel, and hence
additional proof rules for diagrams so composed. The process is straightforward, and
described in Wickerson’s PhD dissertation [33].

3.3 Semantics of Diagrams

A stratified ribbon diagram denotes a Hoare triple. The pre- and postconditions of this
triple are the assertions represented by the diagram’s top and bottom interfaces. The
command being proved is extracted by composing the labels on all of the proof steps
in top-to-bottom order. Figure 8 defines the function responsible for this extraction. We
hence obtain the following soundness result for ribbon proofs.

Theorem 1 (Soundness – stratified diagrams). Separation logic can encode any prov-
able ribbon diagram.

	diaD : P → Q =⇒ 	SL{asn P} com D {asn Q}.
Proof. By mutual rule induction on 	cel, 	row, and 	dia.

Ribbon diagrams are trivially complete, because the BASIC rule can be invoked right
at the root of the proof tree. In fact, ribbon diagrams remain complete even when the
BASIC rule can occur only immediately beneath an axiom or the rule of consequence.

Theorem 2 (Completeness – stratified diagrams). A strengthened ribbon proof sys-
tem in which the BASIC rule is replaced by

(asn P, c, asn Q) ∈ Axioms

cel c
P

Q
: P → Q

and
asn P ⇒ asn Q

cel skip
P

Q

: P → Q

can encode any separation logic proof.

	SL{p} c {q} =⇒ ∃D,P,Q. c∈com D ∧ p=asn P ∧ q=asn Q ∧ 	diaD : P→Q

Proof. By rule induction on 	SL. ��

Ribbon Proofs for Separation Logic 199

The main problem with the formalisation given in this section is that it sacrifices much
of the flexibility we expect in our ribbon diagrams. It is often sound to tweak the layout
of a diagram by sliding steps up or down or reordering ribbons, but by thinking of our
diagrams as sliced into a sequence of rows, we rule out all such manoeuvres.

4 Graphical Formalisation

We now give an alternative formalisation, in which diagrams are represented not as a
sequence of rows, but as graphs.

Our ‘graphical’ diagrams are more flexible than their ‘stratified’ cousins, but extra
precautions must be taken to ensure soundness. The core difficulty is the side-condition
on the frame rule: that the command writes no program variable in the frame. With strat-
ification, the frame is clearly delimited, so this condition is easily checked. Without it,
this check would become more global: a command may affect a ribbon that appears far
above or below itself in a laid-out diagram. Our simple solution is to require henceforth
that the frame rule has no side-condition. This requirement could be met by abolishing
program variables altogether, leaving only the heap and numerical constants. A more
practical alternative, explored later in this section, is to use the variables-as-resource
paradigm [4].

Our graphs are nested, directed, acyclic hypergraphs. Ribbons correspond to nodes,
and basic steps to hyperedges. Existential boxes are represented as single nodes that
contain a nested graph. Likewise, choice diagrams and loop diagrams are represented
by single hyperedges that contain, respectively, one or two nested graphs.

Definition 5 (Graphical diagrams, assertion-gadgets and command-gadgets). Let
V be an infinite set of node-identifiers. We define a language of assertion-gadgets,
command-gadgets and graphical diagrams as follows.

AsnGadget = {A ::= p | G∃x } ComGadget = {C ::= c |
G

or
G

|
loop
G

}

GDiagram = {G | ΛG ∈ VG → AsnGadget, EG ⊆fin P(VG)× ComGadget× P(VG),
VG ⊆fin V , acyclic(G) and linear(G), where G = (VG, ΛG, EG)}

The definitions are mutually recursive, and are well-formed because the definienda (left-
hand sides) appear only positively in the definientia (right-hand sides).1 The first of
these equations defines an assertion-gadgetA ∈ AsnGadget to be either a ribbon or an
existential box. The second defines a command-gadget C ∈ ComGadget to be either a
basic step, a choice diagram, or a loop diagram. The third equation defines a graphical
diagram G ∈ GDiagram to be a triple (VG, ΛG, EG) that comprises:

– a finite set VG ⊆fin V of node identifiers;
– a labelling ΛG : VG → AsnGadget that associates each node identifier with an

assertion-gadget; and

1 This is true even for the occurrence of ComGadget in the definiens of GDiagram, because the
set in which it appears is finite.

200 J. Wickerson, M. Dodds, and M. Parkinson

– a finite set EG ⊆fin P(VG)×ComGadget×P(VG) of hyperedges (v, C,w), each
comprising a set v of tail identifiers, a command-gadget C, and a set w of head
identifiers,

and which satisfies the following two properties.

ACYCLICITY: Let us write v −	 w if v ∈ v and w ∈ w for some (v, C,w) ∈ EG.
Then define acyclic(G) to hold iff the transitive closure of −	 is irreflexive.

LINEARITY: Define linear (G) to hold iff the hyperedges in EG have no common heads
and no common tails. (This forbids the duplication or merging of ribbons, in ac-
cordance with p⇒ p ∗ p and p ∗ p⇒ p being invalid in separation logic.)

Remark 2. We could represent our diagrams by a single graph, with dedicated ‘parent’
edges to simulate the nesting hierarchy. However, mindful of our Isabelle formalisa-
tion, and that “reasoning about graphs [. . .] can be a real hassle in HOL-based theorem
provers” [34], we prefer to use an algebraic datatype to depict the hierarchy.

Figure 6b presents a term of GDiagram that corresponds to a fragment of the picture in
Fig. 3b. Unlike Fig. 6a, this representation does not impose a strict ordering between the
‘y:=x’ and ‘x:=z’ instructions. As such, this proof is invalid; the figure serves merely
to demonstrate how the graphical syntax is used.

The problem is that the graph does not take into account dependencies on program
variables. To address this, let us remove the side-condition on the frame rule in our
axiomatisation 	SL of separation logic (Fig. 5). The new proof system thus obtained
shall be written as 	∗SL. We shall now develop proof rules for graphical diagrams, and
show them to be sound and complete with respect to 	∗SL. Section 4.3 describes the
application of ribbon proofs to variables-as-resource, which is one instance of 	∗SL.

4.1 Proof Rules for Graphical Diagrams

Proof rules for graphical diagrams, command-gadgets and assertion-gadgets are de-
fined in Fig. 9, which refers to the top and bot functions defined below. The judgement
	graG : P → Q means that the diagram G, precondition P , and postcondition Q
form a valid proof. The interfaces P and Q are always equal to top(G) and bot(G)
respectively, so we sometimes omit them. The judgements for command-gadgets and
assertion-gadgets are similar, the latter without interfaces.

Definition 6 (Top and bottom interfaces). These functions extract interfaces from
assertion-gadgets and from diagrams. For assertion-gadgets:

top p = p bot p = p top G∃x = ∃xtopG bot G∃x = ∃xbot G .

For diagrams:

top(G) = ⊗v∈initials G top(ΛG v) bot(G) = ⊗v∈terminals G bot(ΛG v)

where initials(G) = VG \
⋃

(_,_,v)∈EG
v and terminals(G) = VG \

⋃
(v,_,_)∈EG

v.

As was the case for stratified diagrams, one can define operations for composing ele-
ments of GDiagram in sequence or parallel, and hence additional proof rules for graph-
ical diagrams so composed [33].

Ribbon Proofs for Separation Logic 201

GRIBBON

asn p

GBASIC
∗
SL{asn P} c {asn Q}
com c : P → Q

GEXISTS
gra G

asn G∃x

GCHOICE
gra G1 : P → Q
gra G2 : P → Q

com
G1

or
G2

: P → Q

GLOOP
gra G : P → P

com loop
G

: P → P

GMAIN
∀v ∈ VG.asn ΛG v

∀(v, C,w) ∈ EG.com C : ⊗v∈v bot(ΛG v) → ⊗w∈w top(ΛG w)

gra G : top(G) → bot(G)

Fig. 9. Proof rules for graphical diagrams

coms(G) = {c0 ; · · · ; ck−1 ; skip | ∃[x0, . . . , xk−1] ∈ linG.∀i < k. ci ∈ coms xi}

coms p = {skip} coms G∃x = coms G coms c = {c}

coms

G1

or
G2

=
{c1 or c2 |
c1 ∈ coms G1,
c2 ∈ coms G2}

coms
loop
G

= {loop c | c ∈ coms G}

Fig. 10. Extracting commands from a diagram

4.2 Semantics of Graphical Diagrams

Since graphical diagrams have a parallel nature, but our language is only sequential, it
follows that each graphical diagram proves not a single command, but a set of com-
mands, each one a linear extension of the partial order imposed by the diagram. The
coms function defined in Fig. 10 is responsible for extracting this set from a given di-
agram. Each command is obtained by picking an ordering of command- and assertion-
gadgets that is compatible with the partial order defined by the edges (this is the purpose
of the lin function defined below), then recursively extracting a command from each
gadget and sequentially composing the results.

Definition 7 (Linear extensions). For a diagram G, we define lin G as the set of all
lists [x0, . . . , xk−1] of AsnGadgets and ComGadgets, for which there exists a bijection
π : k → VG ∪ EG that satisfies, for all (v, C,w) ∈ EG:

∀v ∈ v. π−1(v) < π−1(v, C,w) ∀w ∈ w. π−1(v, C,w) < π−1(w)

and where, for all i < k: xi = ΛG(v) if π(i) = v, and xi = C if π(i) = (v, C,w).

By ACYCLICITY, every diagram admits at least one linear extension.

Theorem 3 (Soundness – graphical diagrams). Separation logic without the side-
condition on the frame rule can encode any provable ribbon diagram:

	graG : P → Q =⇒ ∀c ∈ coms G.	∗SL{asn P} c {asnQ}.
Proof. By mutual induction on 	gra, 	com and 	dia. See [33] for details.

202 J. Wickerson, M. Dodds, and M. Parkinson

Theorem 4 (Completeness – graphical diagrams). A strengthened ribbon proof sys-
tem in which the GBASIC rule is replaced by

(asn P, c, asn Q) ∈ Axioms

com c : P → Q
and

asn P ⇒ asn Q

com skip : P → Q

can encode any proof in separation logic without the side-condition on the frame rule.

	∗SL{p} c {q} =⇒ ∃G,P,Q. c∈coms G ∧ p=asn P ∧ q=asn Q ∧ 	graG : P→Q

Proof. By rule induction on 	∗SL. ��

4.3 Using Variables-as-Resource

The variables-as-resource paradigm [4] treats program variables a little like separa-
tion logic treats heap cells. Each program variable x is associated with a piece of re-
source, all of which (written Own1(x)) must be held to write to x, and some of which
(Ownπ(x) for some 0 < π ≤ 1) must be held to read it. This treatment replaces the
use of rd and wr sets in Fig. 5. The variables-as-resource proof system is an instance of
separation logic without the side-condition on the frame rule, and can be obtained from
	∗SL simply by selecting an appropriate Axioms set.

Figure 11 exhibits a ribbon proof, conducted using variables-as-resource, of the list-
reversal program from Sect. 2. Variables-as-resource dictates that every assertion in the
proof is accompanied by one Own predicate per program variable it mentions. For in-
stance, the precondition list α0 x is paired with some of x’s resource. The extra shading
is merely syntactic sugar; for instance:

x, 12y x �→ i, y def
= Own1(x) ∗Own .5(y) ∗ x �→ i, y .

The other preconditions – the resources associated with y and z – entitle the program
to write to these program variables in due course. Note that at the entry to the while
loop, part of x’s resource is required in order to carry out the test of whether x is zero.
At various points in the proof, variable resources are split or combined, but their total is
always conserved.

Figure 11 introduces a couple of novel visual features: ribbons may pass ‘under-
neath’ basic steps to reduce the need for twisting (see the three ‘Choose . . . ’ steps), and
horizontal space is conserved by writing some assertions sideways. The diagram can be
laid out in several ways, unconstrained by the stratification strategy of the previous sec-
tion, so there exists the potential to use the same diagram to justify several variations of
a program. Recall the shortcoming of Fig. 3b: that it misleadingly suggested that ‘y:=x’
and ‘x:=z’ could be safely permuted. Figure 11 forbids this by inserting a ribbon be-
tween them labelled ‘x’. On the other hand, both figures agree that the ‘Reassociate i’
step can be safely manoeuvred up or down a little.

Ribbon Proofs for Separation Logic 203

while (x!=nil) {

}

list α0 xx yz
Split x y:=nil

1
2
x list α0 x1

2
x list ε yy

Choose α := α0 and β := ε

∃α ∃β list α x1
2
x list β yy α0

.
= β† · α

x ˙�=nil1
2
x

Unfold list def

∃α′, i, Z. x �→ i, Z ∗
list α′ Z ∗ α .

= i · α′
x

Choose α := α′

∃Z. x �→ i, Z ∗ list αZx α0
.
=

β† · (i · α)
∃α

∃i
z:=[x+1] Split y

list α z1
2
z x �→ i, zx, 1

2
z 1

2
y

list
β
y

1
2
y

[x+1]:=y Reassoc. i

x �→ i, yx, 1
2
y1

2
z α0

.
=

(i · β)† · α
Combine z Fold list def

list α zz list (i · β) xx y
Choose β := (i · β)

list β xx α0
.
= β† · α∃β

y:=x

list β yyx
x:=z

list α x1
2
x z1

2
x

x .
=nil1

2
x

Unfold list def

x α
.
= ε

Concatenate empty seq.

α0
.
= β†

Fold list def

list α†
0 yy

Fig. 11. A ribbon proof of list reverse using variables-as-resource

204 J. Wickerson, M. Dodds, and M. Parkinson

4.4 Stratified or Graphical?

We have presented two alternative formalisations of ribbon diagrams.
The stratified version supports traditional separation logic (with its side-condition on

the frame rule), and the formalisation is simpler, but its proof objects are less manoeu-
vrable. Concrete pictures should be drawn carefully so they can be successfully parsed
into a sequence of rows.

The graphical version works with any separation logic whose frame rule has no side-
conditions, variables-as-resource being one example. Another example is Views [7],
which can encode a wide variety of program logics. The use of variables-as-resource
requires much splitting, distributing and re-combining of the resources associated with
each program variable, and this is perhaps an unnecessary burden if one seeks merely
to present a proof of a particular program. (Figure 11 is significantly larger and fid-
dlier than Fig. 3b, which does not use variables-as-resource.) However, one seeking to
explore potential optimisations, or to analyse the dependencies between various com-
ponents of a program, should consider investing in variables-as-resource.

5 Tool Support

Several properties of ribbon proofs make them a potentially appealing partner for auto-
matic verification tools based on separation logic, such as Bedrock [6] and VeriFast [19].
Because ribbon proofs can be decomposed both horizontally and vertically, into inde-
pendent proof blocks, they may suggest more opportunities for modular verification.
One problem with automation is that users can lose track of their position in the proof:
ribbons could provide an interface to the proof as it develops. Moreover, when automa-
tion fails, partial ribbon proofs could be used to view and guide the process manually.
Ribbon proofs also shift the bureaucracy of rearranging assertions (in accordance with
the associativity and commutativity of ∗) from the individual proof steps into the sur-
rounding graphical structure, where it is more naturally handled.

To demonstrate the potential of ribbon proofs to complement automation, we have
developed a prototype tool whose inputs are a ribbon diagram and a collection of small
Isabelle proof scripts, one for each basic step. Our tool uses our Isabelle formalisation
of Thm. 1 and the proof rules of Fig. 7 to assemble the proof scripts for the individual
commands into a single script that verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands and a collection of
axioms about lists, our tool has successfully verified a number of small ribbon proofs,
among them Fig. 3b. All of the proof scripts for the individual basic steps are small, and
they can often be discharged without manual assistance. Individual proof scripts can be
checked in any order – even concurrently. This feature recalls recent developments in
theorem proving that allow proofs to be processed in a non-serial manner [32].

The input to the tool is a graphical ribbon diagram, following Defn. 5. Our tool
begins by converting this graphical diagram into a stratified diagram, resolving any
ambiguity about the node order by reference to the order of their input. (By taking
this approach, we avoid having to invest in variables-as-resource.) It outputs a pictorial
representation of the graph it has verified, laid out using the dot tool in the Graphviz
library. Clicking on any basic step loads the corresponding proof script, which can then

Ribbon Proofs for Separation Logic 205

{
x �→ 0 ∗ y �→ 0 ∗ z �→ 0

}
[x]:=1;{
x �→ 1 ∗ y �→ 0 ∗ z �→ 0

}{
y �→ 0 ∗ z �→ 0

}
[y]:=1;{
y �→ 1 ∗ z �→ 0

}
[z]:=1;{
y �→ 1 ∗ z �→ 1

}

⎤⎥⎥⎥⎥⎦- frame
x �→ 1

{
x �→ 1 ∗ y �→ 1 ∗ z �→ 1

}
(a)

{
x �→ 0 ∗ y �→ 0 ∗ z �→ 0

}{
x �→ 0 ∗ y �→ 0

}
[x]:=1;{
x �→ 1 ∗ y �→ 0

}
[y]:=1;{
x �→ 1 ∗ y �→ 1

}

⎤⎥⎥⎥⎥⎦- frame
z �→ 0

{
x �→ 1 ∗ y �→ 1 ∗ z �→ 0

}
[z]:=1;{
x �→ 1 ∗ y �→ 1 ∗ z �→ 1

}
(b)

Fig. 12. Two alternatives to the proof outline in Fig. 1a

be edited. When a step’s proof is admitted by Isabelle, the corresponding node in the
pictorial representation is marked with a tick; a failed or incomplete proof is marked
with a cross. The picture below illustrates this on a snippet of Fig. 6b, and also shows
the proof script for one of the steps.

x:=z
y:=x

list β xlist α z

list α x list β y

lemma listrev_lem13:

"	 {list (lvar “α”) (pvar “z”)}
“x” := (pvar “z”)
{list (lvar “α”) (pvar “x”)}"

by (auto simp add: assign_axiom)

✓

In the current prototype, the user must supply the input in textual form, but in the fu-
ture, we intend to enable direct interaction with the graphical representation, perhaps
through a framework for diagrammatic reasoning such as Diabelli [30]. We envisage an
interactive graphical interface for exploring and modifying proofs, that allows steps to
be collapsed or expanded to the desired granularity – whether that is the fine details of
every rule and axiom, or a coarse bird’s-eye view of the overall structure of the proof.

The ribbon proofs in this paper have all been laid out manually (and we are preparing
a public release of the LATEX macros we use to do this) but there is scope for additional
tool support for discovering pleasing layouts automatically.

6 Related and Further Work

Ribbon proofs are more than just a pretty syntax; they are a sound and complete proof
system. Proof outlines have previously been promoted from a notational device to a for-
mal system by Schneider [28], and by Ashcroft, who remarks that “the essential prop-
erty of [proof outlines] is that each piece of program appears once” [1]. Very roughly
speaking, ribbon proofs extend this property to each piece of assertion.

When constructing a proof outline, one can reduce the repetition by ‘framing off’
state that is unused for several instructions. For instance, Fig. 12a depicts one variation
of Fig. 1a obtained by framing off x during the latter two instructions; another option is
to frame off z during the first two (Fig. 12b). It is unsatisfactory that there are several
different proof outlines for what is essentially the same proof. More pragmatically, de-
ciding among these options can be difficult with large proof outlines. Happily, each of

206 J. Wickerson, M. Dodds, and M. Parkinson

while true {
x:=new();
with buff when !full {
full:=true;
c:=x;

}
}

(a) Code for ‘producer’ thread

while true {
with buff when full {
full:=false;
y:=c;

}
dispose(y);
}

(b) Code for ‘consumer’ thread

while true {

with buff when full {

}

}

(full ∧ c �→ _) ∨ (¬full ∧ emp)

full

full ∧ c �→ _

c �→ _ full ∧ emp

full := false

¬full ∧ empy := c

y �→ _ (full ∧ c �→ _) ∨ (¬full ∧ emp)

dispose(y)

(c) Ribbon proof for ‘consumer’ thread (mock-up)

Fig. 13. Concurrency example: a single-cell buffer

these options yields the same ribbon proof (Fig. 1b). We note a parallel here with proof
nets [13], which are a graphical mechanism for unifying proofs in linear logic that differ
only in uninteresting ways, such as the order of rule applications.

The graphical structures in Defn. 5 resemble Milner’s bigraphs [22]. Assertions and
commands are nodes, the deductions of the proof form the link graph, and existential
boxes, choices and loops form the place graph. In fact, our diagrams correspond to
binding bigraphs, in which links may not cross place boundaries. Relaxing this restric-
tion may enable a model of the ‘dynamic’ scoping of existential boxes exhibited in
Fig. 4, which our current formalisation dismisses as a purely syntactic artefact.

Ribbon proofs can be understood as objects of a symmetric monoidal category, and
our pictures as string diagrams, which are widely used as graphical languages for such
categories [29]. In future work we intend to investigate this categorical semantics of rib-
bon proofs; in particular, the use of traces [21] to model the loop construction depicted
in Fig. 2a, and coproducts to model if-statements and existential boxes.

Another avenue for future work is the connection between ribbon proofs and Raza et
al.’s labelled separation logic [26]. Labelled separation logic seeks to justify compiler
reorderings by analysing the dependencies between program statements, and checking
that these are not violated. The dependencies are detected by first labelling each com-
ponent of each assertion with the commands that access it, and then propagating these
labels through program proofs. Raza’s labels recall the columns in our ribbon diagrams:
each ribbon and each command occupies one or more columns of a diagram, and com-
mands that occupy common columns (modulo twisting) may share a dependency.

We have so far considered only sequential programs, but our proofs have a dis-
tinctly concurrent flavour. It may be possible to extend ribbon proofs to concurrent
separation logic [23] as follows. Figure 13 gives a program (adapted from [23]) in
which two threads communicate through a shared buffer at location c. The resource

Ribbon Proofs for Separation Logic 207

invariant (full ∧ c �→ _) ∨ (¬full ∧ emp) protected by the lock buff signifies that
c is shared exactly when full is set. Figure 13c imagines a ribbon proof of the ‘con-
sumer’ thread. The resource invariant is initially in a protected ribbon, inaccessible to
the thread (as suggested by the hatching). Upon entering the critical region, the ribbon
becomes available, and upon leaving it, the resource invariant is re-established and the
ribbon is inaccessible once again.

Beyond concurrent separation logic, we intend to apply our system to more ad-
vanced separation logics. It has already aided the development of a logic for relaxed
memory [5]; other candidates handle fine-grained concurrency [8, 10, 11, 31], dynamic
threads [9], storable locks [14], loadable modules [20] and garbage collection [17]. In-
creasingly complicated logics for increasingly complicated programming features make
techniques for intuitive construction and clear presentation ever more crucial.

7 Conclusion

Ribbon proofs are an attractive and practical approach for constructing and presenting
proofs in separation logic or any derivative thereof. They contain less redundancy than
a proof outline, and express the intent of the proof more clearly. Each step of the proof
can be checked locally, by focusing only on the relevant resources. They are useful
pedagogically for explaining how a simple proof is constructed, but also scale to more
complex programs (as demonstrated in [33]), and have aided the development of a sepa-
ration logic for relaxed memory [5]. They show graphically the distribution of resource
in a program, and in particular, which parts of a program operate on disjoint resources,
and this may prove useful for exploring parallelisation opportunities.
Acknowledgements. Wickerson was supported by a DAAD postdoctoral scholarship
and EPSRC grant F019394/1. Dodds was supported by EPSRC grants EP/H005633/1
and EP/F036345. Figure 2 was drawn by Rasmus Petersen. We thank him, Nick Ben-
ton, Richard Bornat, Matko Botinčan, Daiva Naudžiūnienė, Peter O’Hearn, Andy Pitts,
Noam Rinetzky and the anonymous reviewers for suggestions and encouragement.

References

[1] Ashcroft, E.A.: Program verification tableaus. Technical Report CS-76-01, University of
Waterloo (1976)

[2] Bean, J.: Ribbon Proofs - A Proof System for the Logic of Bunched Implications. PhD
thesis, Queen Mary University of London (2006)

[3] Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting in sepa-
ration logic. In: POPL 2005. ACM Press (2005)

[4] Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. In: MFPS
XXI. ENTCS, vol. 155 (2006)

[5] Bornat, R., Dodds, M.: Abducing barriers for Power and ARM. Draft (2012)
[6] Chlipala, A.: Mostly-automated verification of low-level programs in computational sepa-

ration logic. In: PLDI 2011. ACM Press (2011)
[7] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: Composi-

tional reasoning for concurrent programs. In: POPL 2013. ACM Press (2013)
[8] Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent

Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504–528.
Springer, Heidelberg (2010)

[9] Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-Guarantee Reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg (2009)

208 J. Wickerson, M. Dodds, and M. Parkinson

[10] Feng, X.: Local rely-guarantee reasoning. In: POPL 2009. ACM Press (2009)
[11] Feng, X., Ferreira, R., Shao, Z.: On the Relationship Between Concurrent Separation Logic

and Assume-Guarantee Reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 173–188. Springer, Heidelberg (2007)

[12] Fitch, F.B.: Symbolic Logic: An Introduction. Ronald Press Co. (1952)
[13] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50 (1987)
[14] Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for Storable

Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 19–37. Springer,
Heidelberg (2007)

[15] Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969)

[16] Hoare, C.A.R.: Proof of a program: Find. Communications of the ACM 14(1) (1971)
[17] Hur, C.-K., Dreyer, D., Vafeiadis, V.: Separation logic in the presence of garbage collection.

In: LICS 2011. IEEE Computer Society (2011)
[18] Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: POPL

2001. ACM Press (2001)
[19] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast:

A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer,
Heidelberg (2011)

[20] Jacobs, B., Smans, J., Piessens, F.: Verification of Unloadable Modules. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 402–416. Springer, Heidelberg (2011)

[21] Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. of the Cambridge
Philosophical Society 119(3) (1996)

[22] Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press
(2009)

[23] O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci. 375(1-3)
(2007)

[24] O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. B. Symb. Log. 5(2) (1999)
[25] Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informat-

ica 6 (1976)
[26] Raza, M., Calcagno, C., Gardner, P.: Automatic Parallelization with Separation Logic. In:

Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer, Heidelberg (2009)
[27] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS 2002.

IEEE Computer Society (2002)
[28] Schneider, F.B.: On Concurrent Programming, ch. 4. Springer (1997)
[29] Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures

for Physics, vol. 813, ch. 4. Springer (2011)
[30] Urbas, M., Jamnik, M.: Diabelli: A Heterogeneous Proof System. In: Gramlich, B., Miller, D.,

Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 559–566. Springer, Heidelberg (2012)
[31] Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic. In:

Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007)

[32] Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In:
UITP 2010. ENTCS, vol. 285 (2012)

[33] Wickerson, J.: Concurrent Verification for Sequential Programs. PhD thesis, University of
Cambridge (2013)

[34] Wu, C., Zhang, X., Urban, C.: A Formalisation of the Myhill-Nerode Theorem Based on
Regular Expressions (Proof Pearl). In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk,
F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg (2011)

Abstract Refinement Types

Niki Vazou1, Patrick M. Rondon2, and Ranjit Jhala1

1 UC San Diego
2 Google

Abstract. We present abstract refinement types which enable quantification over
the refinements of data- and function-types. Our key insight is that we can avail
of quantification while preserving SMT-based decidability, simply by encod-
ing refinement parameters as uninterpreted propositions within the refinement
logic. We illustrate how this mechanism yields a variety of sophisticated means
for reasoning about programs, including: parametric refinements for reasoning
with type classes, index-dependent refinements for reasoning about key-value
maps, recursive refinements for reasoning about recursive data types, and in-
ductive refinements for reasoning about higher-order traversal routines. We have
implemented our approach in a refinement type checker for Haskell and present
experiments using our tool to verify correctness invariants of various programs.

1 Introduction

Refinement types offer an automatic means of verifying semantic properties of pro-
grams by decorating types with predicates from logics efficiently decidable by modern
SMT solvers. For example, the refinement type {v: Int | v > 0} denotes the ba-
sic type Int refined with a logical predicate over the “value variable” v. This type
corresponds to the set of Int values v which additionally satisfy the logical predicate,
i.e., the set of positive integers. The (dependent) function type x:{v:Int| v >
0} -> {v:Int| v < x} describes functions that take a positive argument x and
return an integer less than x. Refinement type checking reduces to subtyping queries of
the form Γ 	 {τ :ν | p} + {τ :ν | q}, where p and q are refinement predicates. These
subtyping queries reduce to logical validity queries of the form [[Γ]] ∧ p⇒ q, which can
be automatically discharged using SMT solvers [6].

Several groups have shown how refinement types can be used to verify properties
ranging from partial correctness concerns like array bounds checking [27,23] and data
structure invariants [16] to the correctness of security protocols [2], web applications
[14] and implementations of cryptographic protocols [10].

Unfortunately, the automatic verification offered by refinements has come at a price.
To ensure decidable checking with SMT solvers, the refinements are quantifier-free
predicates drawn from a decidable logic. This significantly limits expressiveness by
precluding specifications that enable abstraction over the refinements (i.e., invariants).
For example, consider the following higher-order for-loop where set i x v returns
the vector v updated at index i with the value x.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 209–228, 2013.
© Springer-Verlag Berlin Heidelberg 2013

210 N. Vazou, P.M. Rondon, and R. Jhala

for :: Int -> Int -> a -> (Int -> a -> a) -> a
for lo hi x body = loop lo x

where loop i x
| i < hi = loop (i+1) (body i x)
| otherwise = x

initUpto :: Vec a -> a -> Int -> Vec a
initUpto a x n = for 0 n a (\i -> set i x)

We would like to verify that initUpto returns a vector whose first n elements are
equal to x. In a first-order setting, we could achieve the above with a loop invariant
that asserted that at the ith iteration, the first i elements of the vector were already
initalized to x. However, in our higher-order setting we require a means of abstracting
over possible invariants, each of which can depend on the iteration index i. Higher-
order logics like Coq and Agda permit such quantification over invariants. Alas, validity
in such logics is well outside the realm of decidability, and hence their use precludes
automatic verification.

In this paper, we present abstract refinement types which enable abstraction (quan-
tification) over the refinements of data- and function-types. Our key insight is that we
can preserve SMT-based decidable type checking by encoding abstract refinements as
uninterpreted propositions in the refinement logic. This yields several contributions:

– First, we illustrate how abstract refinements yield a variety of sophisticated means
for reasoning about high-level program constructs (§2), including: parametric re-
finements for type classes, index-dependent refinements for key-value maps, re-
cursive refinements for data structures, and inductive refinements for higher-order
traversal routines.

– Second, we demonstrate that type checking remains decidable (§3) by showing a
fully automatic procedure that uses SMT solvers, or, to be precise, decision proce-
dures based on congruence closure [19], to discharge logical subsumption queries
over abstract refinements.

– Third, we show that the crucial problem of inferring appropriate instantiations for
the (abstract) refinement parameters boils down to inferring (non-abstract) refine-
ment types (§3), which we have previously automated via the abstract interpretation
framework of Liquid Types [23].

– Finally, we have implemented abstract refinements in HSOLVE, a new Liquid Type-
based verifier for Haskell. We present experiments using HSOLVE to concisely
specify and verify a variety of correctness properties of several programs ranging
from microbenchmarks to some widely-used libraries (§4).

2 Overview

We start with a high level overview of abstract refinements, by illustrating how they can
be used to uniformly specify and automatically verify various kinds of invariants.

Abstract Refinement Types 211

2.1 Parametric Invariants

Parametric Invariants via Type Polymorphism. Suppose we had a generic compar-
ison (<=):: a -> a -> Bool as in OCAML. We could use it to write:

max :: a -> a -> a
max x y = if x <= y then y else x

maximum :: [a] -> a
maximum (x:xs) = foldr max x xs

In essence, the type given for maximum states that for any a, if a list of a values is
passed into maximum, then the returned result is also an a value. Hence, for example,
if a list of prime numbers is passed in, the result is prime, and if a list of even numbers
is passed in, the result is even. Thus, we can use refinement types [23] to verify

type Even = {v:Int | v % 2 = 0 }

maxEvens :: [Int] -> Even
maxEvens xs = maximum (0 : xs’)
where xs’ = [x | x <- xs, x ‘mod‘ 2 = 0]

Here the % represents the modulus operator in the refinement logic [6] and we type
the primitive mod :: x:Int -> y:Int -> {v: Int | v = x % y}. Ver-
ification proceeds as follows. Given that xs :: [Int], the system has to verify that
maximum (0 : xs’):: Even. To this end, the type parameter of maximum is
instantiated with the refined type Even, yielding the instance:

maximum :: [Even] -> Even

Then, maximum’s argument should be proved to have type [Even]. So, the type pa-
rameter of (:) is instantiated with Even, yielding the instance:

(:) :: Even -> [Even] -> [Even]

Finally, the system infers that 0 :: Even and xs’ :: [Even], i.e., the arguments of
(:) have the expected types, thereby verifying the program. The refinement type instan-
tiations can be inferred from an appropriate set of logical qualifiers using the abstract
interpretation framework of Liquid Types [23]. Here, once v%2 = 0 is added to the
set of qualifiers, either manually or (as done by our implementation) by automatically
scraping predicates from refinements appearing in specification signatures, the refine-
ment type instantiations, and hence verification, proceed automatically. Thus, parametric
polymorphism offers an easy means of encoding second-order invariants, i.e., of quan-
tifying over or parametrizing the invariants of inputs and outputs of functions.

Parametric Invariants via Abstract Refinements. Instead, suppose that the com-
parison operator was monomorphic, and only worked for Int values. The resulting
(monomorphic) signatures

max :: Int -> Int -> Int
maximum :: [Int] -> Int

212 N. Vazou, P.M. Rondon, and R. Jhala

preclude the verification of maxEvens (i.e., typechecking against the signature shown
earlier). This is because the new type of maximum merely states that some Int is
returned as output, and not necessarily one that enjoys the properties of the values in
the input list. This is a shame, since the property clearly still holds. We could type

max :: forall t <: Int. t -> t -> t

but this route would introduce the complications that surround bounded quantification
which could render checking undecidable [22].

To solve this problem, we introduce abstract refinements which let us quantify or
parameterize a type over its constituent refinements. For example, we can type max as

max :: forall <p::Int->Bool>. Int<p> -> Int<p> -> Int<p>

where Int<p> is an abbreviation for the refinement type {v:Int | p(v)}. Intu-
itively, an abstract refinement p is encoded in the refinement logic as an uninterpreted
function symbol, which satisfies the congruence axiom [19]

∀X,Y : (X = Y)⇒ P (X) = P (Y)

Thus, it is trivial to verify, with an SMT solver, that max enjoys the above type: the
input types ensure that both p(x) and p(y) hold and hence the returned value in
either branch satisfies the refinement {v:Int | p(v)}, thereby ensuring the output
type. By the same reasoning, we can generalize the type of maximum to

maximum :: forall <p :: Int -> Bool>. [Int<p>] -> Int<p>

Consequently, we can recover the verification of maxEvens. Now, instead of instan-
tiating a type parameter, we simply instantiate the refinement parameter of maximum
with the concrete refinement {\v -> v % 2 = 0}, after which type checking pro-
ceeds as usual [23]. Later, we show how to retain automatic verification by inferring
refinement parameter instantiations via liquid typing (§ 3.4).

Parametric Invariants and Type Classes. The example above regularly arises in prac-
tice, due to type classes. In Haskell, the functions above are typed

(<=) :: (Ord a) => a -> a -> Bool
max :: (Ord a) => a -> a -> a
maximum :: (Ord a) => [a] -> a

We might be tempted to ignore the typeclass constraint and treat maximum as [a] ->
a. This would be quite unsound, as typeclass predicates preclude universal quantifica-

tion over refinement types. Consider the function sum :: (Num a)=> [a] -> a
which adds the elements of a list. The Num class constraint implies that numeric op-
erations occur in the function, so if we pass sum a list of odd numbers, we are not
guaranteed to get back an odd number.

Thus, how do we soundly verify the desired type of maxEvenswithout instantiating
class predicated type parameters with arbitrary refinement types? First, via the same
analysis as the monomorphic Int case, we establish that

max:: forall <p::a->Bool>. (Ord a)=> a<p> -> a<p> -> a<p>
maximum:: forall <p::a ->Bool>. (Ord a) => [a<p>] -> a<p>

Abstract Refinement Types 213

Next, at the call-site for maximum in maxEvens we instantiate the type variable a
with Int, and the abstract refinement p with {\v -> v % 2 = 0} after which, the
verification proceeds as described earlier (for the Int case). Thus, abstract refinements
allow us to quantify over invariants without relying on parametric polymorphism, even
in the presence of type classes.

2.2 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-
dependent invariants of key-value maps. To this end, we develop a small library of
extensible vectors encoded, for purposes of illustration, as functions from Int to some
generic range a. Formally, we specify vectors as

data Vec a <dom :: Int -> Bool, rng :: Int -> a -> Bool>
= V (i:Int<dom> -> a <rng i>)

Here, we are parameterizing the definition of the type Vec with two abstract refine-
ments, dom and rng, which respectively describe the domain and range of the vector.
That is, dom describes the set of valid indices, and r specifies an invariant relating each
Int index with the value stored at that index.

Creating Vectors. We can use the following basic functions to create vectors:

empty :: forall <p::Int->a->Bool>.Vec<{_ -> False}, p> a
empty = V (_ -> error "Empty Vec")

create :: x:a -> Vec <{_ -> True}, {_ v -> v = x}> a
create x = V (_ -> x)

The signature for empty states that its domain is empty (i.e., is the set of indices sat-
isfying the predicate False), and that the range satisfies any invariant. The signature
for create, instead, defines a constant vector that maps every index to the constant x.

Accessing Vectors. We can write the following get function for reading the contents
of a vector at a given index:

get :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d> -> Vec<d, r> a -> a<r i>

get i (V f) = f i

The signature states that for any domain d and range r, if the index i is a valid index,
i.e., is of type, Int<d> then the returned value is an a that additionally satisfies the
range refinement at the index i. The type for set, which updates the vector at a given
index, is even more interesting, as it allows us to extend the domain of the vector:

set :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d>

-> a<r i>
-> Vec<d && {\k -> k != i}, r> a
-> Vec<d, r> a

set i v (V f) = V (\k -> if k == i then v else f k)

214 N. Vazou, P.M. Rondon, and R. Jhala

The signature for set requires that (a) the input vector is defined everywhere at d
except the index i, and (b) the value supplied must be of type a<r i>, i.e., satisfy the
range relation at the index i at which the vector is being updated. The signature ensures
that the output vector is defined at d and each value satisfies the index-dependent range
refinement r. Note that it is legal to call get with a vector that is also defined at the
index i since, by contravariance, such a vector is a subtype of that required by (a).

Initializing Vectors. Next, we can write the following function, init, that “loops”
over a vector, to set each index to a value given by some function.

initialize :: forall <r :: Int -> a -> Bool>.
(z: Int -> a<r z>)

-> i: {v: Int | v >= 0}
-> n: Int
-> Vec <{\v -> 0 <= v && v < i}, r> a
-> Vec <{\v -> 0 <= v && v < n}, r> a

initialize f i n a
| i >= n = a
| otherwise = initialize f (i+1) n (set i (f i) a)

The signature requires that (a) the higher-order function f produces values that satisfy
the range refinementr, and (b) the vector is initialized from 0 to i. The function ensures
that the output vector is initialized from 0 through n. We can thus verify that

idVec :: Vec <{\v -> 0<=v && v<n}, {\i v -> v=i}> Int
idVec n = initialize (\i -> i) 0 n empty

i.e., idVec returns a vector of size n where each key is mapped to itself. Thus, abstract
refinement types allow us to verify low-level idioms such as the incremental initializa-
tion of vectors, which have previously required special analyses [12,15,5].

Null-Terminated Strings. We can also use abstract refinements to verify code which
manipulates C-style null-terminated strings, represented as Char vectors for ease of
exposition. Formally, a null-terminated string of size n has the type

type NullTerm n
= Vec <{\v -> 0<=v<n}, {\i v -> i=n-1 => v=’\0’}> Char

The above type describes a length-n vector of characters whose last element must be
a null character, signalling the end of the string. We can use this type in the specifi-
cation of a function, upperCase, which iterates through the characters of a string,
uppercasing each one until it encounters the null terminator:

upperCase :: n:{v: Int| v>0} -> NullTerm n -> NullTerm n
upperCase n s = ucs 0 s where
ucs i s = case get i s of

’\0’ -> s
c -> ucs (i + 1) (set i (toUpper c) s)

Abstract Refinement Types 215

Note that the length parameter n is provided solely as a “witness” for the length of the
string s, which allows us to use the length of s in the type of upperCase; n is not used
in the computation. In order to establish that each call to get accesses string s within
its bounds, our type system must establish that, at each call to the inner function ucs,
i satisfies the type {v: Int | 0 <= v && v < n}. This invariant is established
as follows. First, the invariant trivially holds on the first call to ucs, as n is positive
and i is 0. Second, we assume that i satisfies the type {v: Int | 0 <= v &&
v < n}, and, further, we know from the types of s and get that c has the type

{v: Char | i = n - 1 => v = ’\0’}. Thus, if c is non-null, then i cannot
be equal to n - 1. This allows us to strengthen our type for i in the else branch to
{v: Int | 0 <= v && v < n - 1} and thus to conclude that the value i +
1 recursively passed as the i parameter to ucs satisfies the type {v: Int | 0
<= v && v < n}, establishing the inductive invariant and thus the safety of the

upperCase function.

Memoization. Next, let us illustrate how the same expressive signatures allow us to
verify memoizing functions. We can specify to the SMT solver the definition of the
Fibonacci function via an uninterpreted function fib and an axiom:

measure fib :: Int -> Int
axiom: forall i. fib(i) = i<=1 ? 1 : fib(i-1) + fib(i-2)

Next, we define a type alias FibV for the vector whose values are either 0 (i.e., unde-
fined), or equal to the Fibonacci number of the corresponding index.

type FibV = Vec<{_->True},{\i v-> v!=0 => v=fib(i)}> Int

Finally, we can use the above alias to verify fastFib, an implementation of the Fi-
bonacci function which uses a vector to memoize intermediate results

fastFib :: n:Int -> {v:Int | v = fib(n)}
fastFib n = snd $ fibMemo (create 0) n

fibMemo :: FibV -> i:Int -> (FibV, {v: Int | v = fib(i)})
fibMemo t i

| i <= 1 = (t, 1)
| otherwise = case get i t of

0 -> let (t1, n1) = fibMemo t (i-1)
(t2, n2) = fibMemo t1 (i-2)
n = n1 + n2

in (set i n t2, n)
n -> (t, n)

Thus, abstract refinements allow us to define key-value maps with index-dependent
refinements for the domain and range. Quantification over the domain and range refine-
ments allows us to define generic access operations (e.g., get, set, create, empty)
whose types enable us establish a variety of precise invariants.

216 N. Vazou, P.M. Rondon, and R. Jhala

2.3 Recursive Invariants

Next, we turn our attention to recursively defined datatypes, and show how abstract
refinements allow us to specify and verify high-level invariants that relate the elements
of a recursive structure. Consider the following refined definition for lists:

data [a] <p :: a -> a -> Bool> where
[] :: [a]<p>
(:) :: h:a -> [a<p h>]<p> -> [a]<p>

The definition states that a value of type [a]<p> is either empty ([]) or constructed
from a pair of a head h::a and a tail of a list of a values each of which satisfies the
refinement (p h). Furthermore, the abstract refinement p holds recursively within the
tail, ensuring that the relationship p holds between all pairs of list elements.

Thus, by plugging in appropriate concrete refinements, we can define the following
aliases, which correspond to the informal notions implied by their names:

type IncrList a = [a]<{\h v -> h <= v}>
type DecrList a = [a]<{\h v -> h >= v}>
type UniqList a = [a]<{\h v -> h != v}>

That is, IncrList a (resp. DecrList a) describes a list sorted in increasing (resp.
decreasing) order, and UniqList a describes a list of distinct elements, i.e., not con-
taining any duplicates. We can use the above definitions to verify

[1, 2, 3, 4] :: IncrList Int
[4, 3, 2, 1] :: DecrList Int
[4, 1, 3, 2] :: UniqList Int

More interestingly, we can verify that the usual algorithms produce sorted lists:

insertSort :: (Ord a) => [a] -> IncrList a
insertSort [] = []
insertSort (x:xs) = insert x (insertSort xs)

insert :: (Ord a) => a -> IncrList a -> IncrList a
insert y [] = [y]
insert y (x:xs)

| y <= x = y : x : xs
| otherwise = x : insert y xs

Thus, abstract refinements allow us to decouple the definition of the list from the actual
invariants that hold. This, in turn, allows us to conveniently reuse the same underlying
(non-refined) type to implement various algorithms unlike, say, singleton-type based
implementations which require up to three different types of lists (with three different
“nil” and “cons” constructors [24]). This, makes abstract refinements convenient for
verifying complex sorting implementations like that of Data.List.sort which, for
efficiency, use lists with different properties (e.g., increasing and decreasing).

Abstract Refinement Types 217

Multiple Recursive Refinements. We can define recursive types with multiple pa-
rameters. For example, consider the following refined version of a type used to encode
functional maps (Data.Map):

data Tree k v <l :: k->k->Bool, r :: k->k->Bool>
= Bin { key :: k

, value :: v
, left :: Tree <l, r> (k <l key>) v
, right :: Tree <l, r> (k <r key>) v }

| Tip

The abstract refinements l and r relate each key of the tree with all the keys in the left
and right subtrees of key, as those keys are respectively of type k <l key> and k
<r key>. Thus, if we instantiate the refinements with the following predicates

type BST k v = Tree<{\x y -> x> y},{\x y-> x< y}> k v
type MinHeap k v = Tree<{\x y -> x<=y},{\x y-> x<=y}> k v
type MaxHeap k v = Tree<{\x y -> x>=y},{\x y-> x>=y}> k v

then BST k v, MinHeap k v and MaxHeap k v denote exactly binary-search-
ordered, min-heap-ordered, and max-heap-ordered trees (with keys and values of types
k and v). We demonstrate in (§ 4) how we use the above types to automatically verify
ordering properties of complex, full-fledged libraries.

2.4 Inductive Invariants

Finally, we explain how abstract refinements allow us to formalize some kinds of struc-
tural induction within the type system.

Measures. First, let us formalize a notion of length for lists within the refinement logic.
To do so, we define a special len measure by structural induction

measure len :: [a] -> Int
len [] = 0
len (x:xs) = 1 + len(xs)

We use the measures to automatically strengthen the types of the data constructors[16]:

data [a] where
[] :: forall a.{v:[a] | len(v) = 0}
(:) :: forall a.a -> xs:[a] -> {v:[a]|len(v)=1+len(xs)}

Note that the symbol len is encoded as an uninterpreted function in the refinement
logic, and is, except for the congruence axiom, opaque to the SMT solver. The mea-
sures are guaranteed, by construction, to terminate, and so we can soundly use them as
uninterpreted functions in the refinement logic. Notice also, that we can define multiple
measures for a type; in this case we simply conjoin the refinements from each measure
when refining each data constructor.

218 N. Vazou, P.M. Rondon, and R. Jhala

With these strengthened constructor types, we can verify, for example, that append
produces a list whose length is the sum of the input lists’ lengths:

append :: l:[a] -> m:[a] -> {v:[a]|len(v)=len(l)+len(m)}
append [] zs = zs
append (y:ys) zs = y : append ys zs

However, consider an alternate definition of append that uses foldr

append ys zs = foldr (:) zs ys

where foldr :: (a -> b -> b)-> b -> [a] -> b. It is unclear how to
give foldr a (first-order) refinement type that captures the rather complex fact that
the fold-function is “applied” all over the list argument, or, that it is a catamorphism.
Hence, hitherto, it has not been possible to verify the second definition of append.

Typing Folds. Abstract refinements allow us to solve this problem with a very ex-
pressive type for foldr whilst remaining firmly within the boundaries of SMT-based
decidability. We write a slightly modified fold:

foldr :: forall <p :: [a] -> b -> Bool>.
(xs:[a] -> x:a -> b <p xs> -> <p (x:xs)>)

-> b<p []>
-> ys:[a]
-> b<p ys>

foldr op b [] = b
foldr op b (x:xs) = op xs x (foldr op b xs)

The trick is simply to quantify over the relationship p that foldr establishes between
the input list xs and the output b value. This is formalized by the type signature, which
encodes an induction principle for lists: the base value b must (1) satisfy the relation
with the empty list, and the function op must take (2) a value that satisfies the relation-
ship with the tail xs (we have added the xs as an extra “ghost” parameter to op), (3) a
head value x, and return (4) a new folded value that satisfies the relationship with x:xs.
If all the above are met, then the value returned by foldr satisfies the relation with the
input list ys. This scheme is not novel in itself [3] — what is new is the encoding, via
uninterpreted predicate symbols, in an SMT-decidable refinement type system.

Using Folds. Finally, we can use the expressive type for the above foldr to verify
various inductive properties of client functions:

length :: zs:[a] -> {v: Int | v = len(zs)}
length = foldr (_ _ n -> n + 1) 0

append :: l:[a] -> m:[a] -> {v:[a]| len(v)=len(l)+len(m)}
append ys zs = foldr (_ -> (:)) zs ys

The verification proceeds by just (automatically) instantiating the refinement parameter
p of foldr with the concrete refinements, via Liquid typing:

{\xs v -> v = len(xs)} -- for length
{\xs v -> len(v) = len(xs) + len(zs)} -- for append

Abstract Refinement Types 219

Expressions e ::= x | c | λx : τ .e | e e | Λα.e | e [τ] | Λπ : τ .e | e [e]

Abstract Refinements p ::= true | p ∧ π e

Basic Types b ::= int | bool | α

Abstract Refinement Types τ ::= {v : b〈p〉 | e} | {v : (x : τ) → τ | e}
Abstract Refinement Schemas σ ::= τ | ∀α.σ | ∀π : τ.σ

Fig. 1. Syntax of Expressions, Refinements, Types and Schemas

3 Syntax and Semantics

Next, we present a core calculus λP that formalizes the notion of abstract refinements.
We start with the syntax (§ 3.1), present the typing rules (§ 3.2), show soundness via a
reduction to contract calculi [17,1] (§ 3.3), and inference via Liquid types (§ 3.4).

3.1 Syntax

Figure 1 summarizes the syntax of our core calculus λP which is a polymorphic λ-
calculus extended with abstract refinements. We write b, {v : b | e}, and b〈p〉 to abbre-
viate {v : b〈true〉 | true}, {v : b〈true〉 | e}, and {v : b〈p〉 | true} respectively. We say a
type or schema is non-refined if all the refinements in it are true. We write z to abbrevi-
ate a sequence z1 . . . zn.

Expressions. λP expressions include the standard variables x, primitive constants c, λ-
abstraction λx : τ .e, application e e, type abstraction Λα.e, and type application e [τ].
The parameter τ in the type application is a refinement type, as described shortly. The
two new additions to λP are the refinement abstraction Λπ : τ .e, which introduces a
refinement variable π (together with its type τ), which can appear in refinements inside
e, and the corresponding refinement application e [e].

Refinements. A concrete refinement e is a boolean valued expression e drawn from
a strict subset of the language of expressions which includes only terms that (a) nei-
ther diverge nor crash, and (b) can be embedded into an SMT decidable refinement
logic including the theory of linear arithmetic and uninterpreted functions. An abstract
refinement p is a conjunction of refinement variable applications of the form π e.

Types and Schemas. The basic types of λP include the base types int and bool and
type variables α. An abstract refinement type τ is either a basic type refined with an ab-
stract and concrete refinements, {v : b〈p〉 | e}, or a dependent function type where the
parameter x can appear in the refinements of the output type. We include refinements for
functions, as refined type variables can be replaced by function types. However, type-
checking ensures these refinements are trivially true. Finally, types can be quantified
over refinement variables and type variables to yield abstract refinement schemas.

220 N. Vazou, P.M. Rondon, and R. Jhala

Well-Formedness Γ � σ

Γ � true(v)
WF-TRUE

Γ � p(v) Γ � π e v : bool

Γ � (p ∧ π e)(v)
WF-RAPP

Γ, v : b � e : bool Γ, v : b � p(v) : bool

Γ � {v : b〈p〉 | e}
WF-BASE

Γ � e : bool Γ � τx Γ, x : τx � τ

Γ � {v : (x : τx)→ τ | e}
WF-FUN

Γ, π : τ � σ

Γ � ∀π : τ.σ
WF-ABS-π

Γ, α � σ

Γ � ∀α.σ WF-ABS-α

Subtyping Γ � σ1 � σ2

SMT-Valid([[Γ]] ∧ [[p1 v]] ∧ [[e1]]⇒ [[p2 v]] ∧ [[e2]])

Γ � {v : b〈p1〉 | e1} � {v : b〈p2〉 | e2}
$-BASE

Γ � τ2 � τ1 Γ, x2 : τ2 � τ ′
1[x2/x1] � τ ′

2

Γ �
{
v : (x1 : τ1) → τ ′

1 | e1
}
�

{
v : (x2 : τ2)→ τ ′

2 | true
} $-FUN

Γ, π : τ � σ1 � σ2

Γ � ∀π : τ.σ1 � ∀π : τ.σ2
$-RVAR

Γ � σ1 � σ2

Γ � ∀α.σ1 � ∀α.σ2
$-POLY

Type Checking Γ � e : σ

Γ � e : σ2 Γ � σ2 � σ1 Γ � σ1

Γ � e : σ1
T-SUB

Γ � c : tc (c)
T-CONST

x : {v : b〈p〉 | e} ∈ Γ

Γ � x : {v : b〈p〉 | e ∧ v = x}
T-VAR-BASE

x : τ ∈ Γ

Γ � x : τ
T-VAR

Γ, x : τx � e : τ Γ � τx

Γ � λx : τx.e : (x : τx) → τ
T-FUN

Γ � e1 : (x : τx) → τ Γ � e2 : τx

Γ � e1 e2 : τ [e2/x]
T-APP

Γ, α � e : σ

Γ � Λα.e : ∀α.σ T-GEN Γ � e : ∀α.σ Γ � τ

Γ � e [τ] : σ[τ/α]
T-INST

Γ, π : τ � e : σ Γ � τ

Γ � Λπ : τ.e : ∀π : τ.σ
T-PGEN

Γ � e : ∀π : τ.σ Γ � λx : τx.e
′ : τ

Γ � e
[
λx : τx.e

′] : σ[π � λx : τx.e
′]

T-PINST

Fig. 2. Static Semantics: Well-formedness, Subtyping and Type Checking

3.2 Static Semantics

Next, we describe the static semantics of λP by describing the typing judgments and
derivation rules. Most of the rules are standard [21,23,17,2]; we discuss only those
pertaining to abstract refinements.

Judgments. A type environment Γ is a sequence of type bindings x : σ. We use
environments to define three kinds of typing judgments:

– Wellformedness judgments (Γ 	 σ) state that a type schema σ is well-formed
under environment Γ , that is, the refinements in σ are boolean expressions in the
environment Γ .

Abstract Refinement Types 221

– Subtyping judgments (Γ 	 σ1 + σ2) state that the type schema σ1 is a subtype
of the type schema σ2 under environment Γ , that is, when the free variables of σ1
and σ2 are bound to values described by Γ , the set of values described by σ1 is
contained in the set of values described by σ2.

– Typing judgments (Γ 	 e : σ) state that the expression e has the type schema
σ under environment Γ , that is, when the free variables in e are bound to values
described by Γ , the expression e will evaluate to a value described by σ.

Wellformedness Rules. The wellformedness rules check that the concrete and ab-
stract refinements are indeed bool-valued expressions in the appropriate environment.
The key rule is WF-BASE, which checks, as usual, that the (concrete) refinement e is
boolean, and additionally, that the abstract refinement p applied to the value v is also
boolean. This latter fact is established by WF-RAPP which checks that each refinement
variable application π e v is also of type bool in the given environment.

Subtyping Rules. The subtyping rules stipulate when the set of values described by
schema σ1 is subsumed by the values described by σ2. The rules are standard except for
+-VAR, which encodes the base types’ abstract refinements p1 and p2 with conjunctions
of uninterpreted predicates [[p1 v]] and [[p2 v]] in the refinement logic as follows:

[[true v]]
.
= true

[[(p ∧ π e) v]] .
= [[p v]] ∧ π([[e1]], . . . , [[en]], v)

where π(e) is a term in the refinement logic corresponding to the application of the
uninterpreted predicate symbol π to the arguments e.

Type Checking Rules. The type checking rules are standard except for T-PGEN and
T-PINST, which pertain to abstraction and instantiation of abstract refinements. The
rule T-PGEN is the same as T-FUN: we simply check the body e in the environment
extended with a binding for the refinement variable π. The rule T-PINST checks that the
concrete refinement is of the appropriate (unrefined) type τ , and then replaces all (ab-
stract) applications of π inside σ with the appropriate (concrete) refinement e′ with the
parameters x replaced with arguments at that application. Formally, this is represented
as σ[π
 λx : τ .e′] which is σ with each base type transformed as

{v : b〈p〉 | e}[π
 z]
.
= {v : b〈p′′〉 | e ∧ e′′}

where (p′′, e′′)
.
= Apply(p, π, z, true, true)

Apply replaces each application of π in p with the corresponding conjunct in e′′, as

Apply(true, ·, ·, p′, e′) .
= (p′, e′)

Apply(p ∧ π′ e, π, z, p′, e′) .
= Apply(p, π, z, p′ ∧ π′ e, e′)

Apply(p ∧ π e, π, λx : τ .e′′, p′, e′)
.
= Apply(p, π, λx : τ .e′′, p′, e′ ∧ e′′[e, v/x])

222 N. Vazou, P.M. Rondon, and R. Jhala

In other words, the instantiation can be viewed as two symbolic reduction steps: first re-
placing the refinement variable with the concrete refinement, and then “beta-reducing”
concrete refinement with the refinement variable’s arguments. For example,

{v : int〈π y〉 | v > 10}[π
 λx1 : τ1.λx2 : τ2.x1 < x2]
.
= {v : int | v > 10 ∧ y < v}

3.3 Soundness

As hinted by the discussion about refinement variable instantiation, we can intuitively
think of abstract refinement variables as ghost program variables whose values are
boolean-valued functions. Hence, abstract refinements are a special case of higher-order
contracts, that can be statically verified using uninterpreted functions. (Since we focus
on static checking, we don’t care about the issue of blame.) We formalize this notion by
translating λP programs into the contract calculus FH of [1] and use this translation to
define the dynamic semantics and establish soundness.

Translation. We translate λP schemes σ to FH schemes 〈|σ|〉 as by translating abstract
refinements into contracts, and refinement abstraction into function types:

〈|true v|〉 .
= true 〈|∀π : τ.σ|〉 .

= (π : 〈|τ |〉) → 〈|σ|〉
〈|(p ∧ π e) v|〉 .

= 〈|p v|〉 ∧ π e v 〈|∀α.σ|〉 .
= ∀α.〈|σ|〉

〈| {v : b〈p〉 | e} |〉 .
= {v : b | e ∧ 〈|p v|〉} 〈|(x : τ1)→ τ2|〉 .

= (x : 〈|τ1|〉)→ 〈|τ2|〉

Similarly, we translate λP terms e to FH terms 〈|e|〉 by converting refinement abstraction
and application to λ-abstraction and application

〈|x|〉 .
= x 〈|c|〉 .

= c
〈|λx : τ .e|〉 .

= λx : 〈|τ |〉.〈|e|〉 〈|e1 e2|〉 .
= 〈|e1|〉 〈|e2|〉

〈|Λα.e|〉 .
= Λα.〈|e|〉 〈|e [τ] |〉 .

= 〈|e|〉 〈|τ |〉
〈|Λπ : τ .e|〉 .

= λπ : 〈|τ |〉.〈|e|〉 〈|e1 [e2] |〉 .
= 〈|e1|〉 〈|e2|〉

Translation Properties. We can show by induction on the derivations that the type
derivation rules of λP conservatively approximate those of FH. Formally,

– If Γ 	 τ then 〈|Γ |〉 	H 〈|τ |〉,
– If Γ 	 τ1 + τ2 then 〈|Γ |〉 	H 〈|τ1|〉 <: 〈|τ2|〉,
– If Γ 	 e : τ then 〈|Γ |〉 	H 〈|e|〉 : 〈|τ |〉.

Soundness. Thus rather than re-prove preservation and progress for λP , we simply use
the fact that the type derivations are conservative to derive the following preservation
and progress corollaries from [1]:

– Preservation: If ∅ 	 e : τ and 〈|e|〉 −→ e′ then ∅ 	H e′ : 〈|τ |〉
– Progress: If ∅ 	 e : τ , then either 〈|e|〉 −→ e′ or 〈|e|〉 is a value.

Note that, in a contract calculus like FH, subsumption is encoded as a upcast. How-
ever, if subtyping relation can be statically guaranteed (as is done by our conservative
SMT based subtyping) then the upcast is equivalent to the identity function and can be
eliminated. Hence, FH terms 〈|e|〉 translated from well-typed λP terms e have no casts.

Abstract Refinement Types 223

3.4 Refinement Inference

Our design of abstract refinements makes it particularly easy to perform type inference
via Liquid typing, which is crucial for making the system usable by eliminating the
tedium of instantiating refinement parameters all over the code. (With value-dependent
refinements, one cannot simply use, say, unification to determine the appropriate instan-
tations, as is done for classical type systems.) We briefly recall how Liquid types work,
and sketch how they are extended to infer refinement instantiations.

Liquid Types. The Liquid Types method infers refinements in three steps. First, we cre-
ate refinement templates for the unknown, to-be-inferred refinement types. The shape of
the template is determined by the underlying (non-refined) type it corresponds to, which
can be determined from the language’s underlying (non-refined) type system. The tem-
plate is just the shape refined with fresh refinement variables κ denoting the unknown
refinements at each type position. For example, from a type (x : int)→ intwe create
the template (x : {v : int | κx})→ {v : int | κ}. Second, we perform type checking
using the templates (in place of the unknown types.) Each wellformedness check be-
comes a wellformedness constraint over the templates, and hence over the individual
κ, constraining which variables can appear in κ. Each subsumption check becomes a
subtyping constraint between the templates, which can be further simplified, via syn-
tactic subtyping rules, to a logical implication query between the variables κ. Third,
we solve the resulting system of logical implication constraints (which can be cyclic)
via abstract interpretation — in particular, monomial predicate abstraction over a set
of logical qualifiers [9,23]. The solution is a map from κ to conjunctions of qualifiers,
which, when plugged back into the templates, yields the inferred refinement types.

Inferring Refinement Instantiations. The key to making abstract refinements practi-
cal is a means of synthesizing the appropriate arguments e′ for each refinement appli-
cation e [e′]. Note that for such applications, we can, from e, determine the non-refined
type of e′, which is of the form τ1 → . . .→ τn → bool. Thus, e′ has the template
λx1 : τ1. . . . λxn : τn.κ where κ is a fresh, unknown refinement variable that must
be solved to a boolean valued expression over x1, . . . , xn. Thus, we generate a well-
formedness constraint x1 : τ1, . . . , xn : τn 	 κ and carry out typechecking with tem-
plate, which, as before, yields implication constraints over κ, which can, as before, be
solved via predicate abstraction. Finally, in each refinement template, we replace each
κ with its solution eκ to get the inferred refinement instantiations.

4 Evaluation

In this section, we empirically evaluate the expressiveness and usability of abstract re-
finement types by exploring the process of typechecking a set of challenging benchmark
programs using a prototype type checker for Haskell. (We defer the task of extending
the metatheory to a call-by-name calculus to future work.)

HSOLVE. We have implemented abstract refinement in HSOLVE, a refinement type
checker for Haskell. HSOLVE verifies Haskell source one module (.hs file) at a time. It
takes as input:

224 N. Vazou, P.M. Rondon, and R. Jhala

Table 1. (LOC) is the number of non-comment Haskell source code lines as reported by sloc-
count, (Specs) is the number of lines of type specifications, (Annot) is the number of lines of
other annotations, including refined datatype definitions, type aliases and measures, required for
verification, (Time) is the time in seconds taken for verification.

Program LOC Specs Annot Time (s)
Micro 32 19 4 2
Vector 56 56 2 14
ListSort 29 4 1 3
Data.List.sort 71 3 1 8
Data.Set.Splay 136 15 11 15
Data.Map.Base 1399 119 31 235
Total 1723 216 50 277

– A target Haskell source file, with the desired refinement types specified as a special
form of comment annotation,

– An (optional) set of type specifications for imported definitions; these can either be
put directly in the source for the corresponding modules, if available, or in special
.spec files otherwise. For imported functions for which no signature is given,
HSOLVE conservatively uses the non-refined Haskell type.

– An (optional) set of logical qualifiers, which are predicate templates from which
refinements are automatically synthesized [23]. Formally, a logical qualifier is a
predicate whose variables range over the program variables, the special value vari-
able ν, and wildcards �, which HSOLVE instantiates with the names of program
variables. Aside from the qualifiers given by the user, HSOLVE also uses qualifiers
mined from the refinement type annotations present in the program.

After analyzing the program, HSOLVE returns as output:

– Either SAFE, indicating that all the specifications indeed verify, or UNSAFE, indi-
cating there are refinement type errors, together with the positions in the source
code where type checking fails (e.g., functions that do not satisfy their signatures,
or callsites where the inputs don’t conform to the specifications).

– An HTML file containing the program source code annotated with inferred refine-
ment types for all sub-expressions in the program. The inferred refinement type for
each program expression is the strongest possible type over the given set of logi-
cal qualifiers. When a type error is reported, the programmer can use the inferred
types to determine why their program does not typecheck: they can examine what
properties HSOLVE can deduce about various program expressions and add more
qualifiers or alter the program as necessary so that it typechecks.

Implementation. HSOLVE verifies the contents of a single file (module) at a time
as follows. First, the Haskell source is fed into GHC, which desugars the program to
GHC’s “core” intermediate representation [26]. Second, the desugared program, the
type signatures for the module functions (which are to be verified) and the type sig-
natures for externally imported functions (which are assumed to hold) are sent to the
constraint generator, which traverses the core bindings in a syntax-directed manner to

Abstract Refinement Types 225

generate subtyping constraints. The resulting constraints are simplified via our sub-
typing rules (§ 3) into simple logical implication constraints. Finally, the implication
constraints, together with the logical qualifiers provided by the user and harvested from
the type signatures, are sent into an SMT- and abstract interpretation-based fixpoint
computation procedure that determines if the constraints are satisfiable [13,9]. If so, the
program is reported to be safe. Otherwise, each unsatisfiable constraint is mapped back
to the corresponding program source location that generated it and a potential error is
reported at that line in the program.

Benchmarks. We have evaluated HSOLVE over the following list of benchmarks
which, in total, represent the different kinds of reasoning described in § 2. While we
can prove, and previously have proved [16], many so-called “functional correctness”
properties of these data structures using refinement types, in this work we focus on the
key invariants which are captured by abstract refinements.

– Micro, which includes several functions demonstrating parametric reasoning with
base values, type classes, and higher-order loop invariants for traversals and folds,
as described in § 2.1 and § 2.4;

– Vector, which includes the domain- and range-generic Vec functions and several
“clients” that use the generic Vec to implement incremental initialization, null-
terminated strings, and memoization, as described in § 2.2;

– ListSort, which includes various textbook sorting algorithms including insert-,
merge- and quick-sort. We verify that the functions actually produce sorted lists,
i.e., are of type IncrList a, as described in § 2.3;

– Data.List.sort, which includes three non-standard, optimized list sorting al-
gorithms, as found in the base package. These employ lists that are increasing and
decreasing, as well as lists of (sorted) lists, but we can verify that they also finally
produce values of type IncrList a;

– Data.Set.Splay, which is a purely functional, top-down splay set library from
the llrbtree package. We verify that all the interface functions take and return
binary search trees;

– Data.Map.Base, which is the widely-used implementation of functional maps
from the containers package. We verify that all the interface functions preserve
the crucial binary search ordering property and various related invariants.

Table 1 quantitatively summarizes the results of our evaluation. We now give a qualita-
tive account of our experience using HSOLVE by discussing what the specifications and
other annotations look like.

Specifications are Usually Simple. In our experience, abstract refinements greatly
simplify writing specifications for the majority of interface or public functions. For
example, for Data.Map.Base, we defined the refined version of the Tree ADT
(actually called Map in the source, we reuse the type from § 2.3 for brevity), and then
instantiated it with the concrete refinements for binary-search ordering with the alias
BST k v as described in § 2.3. Most refined specifications were just the Haskell types
with the Tree type constructor replaced with the alias BST. For example, the type
of fromList is refined from (Ord k)=> [(k, a)] -> Tree k a to (Ord
k)=> [(k, a)] -> BST k a. Furthermore, intra-module Liquid type inference
permits the automatic synthesis of necessary stronger types for private functions.

226 N. Vazou, P.M. Rondon, and R. Jhala

Auxiliary Invariants Are Sometimes Difficult. However, there are often rather thorny
internal functions with tricky invariants, whose specification can take a bit of work. For
example, the function trim in Data.Map.Base has the following behavior (copied
verbatim from the documentation): “trim blo bhi t trims away all subtrees that
surely contain no values between the range blo to bhi. The returned tree is either
empty or the key of the root is between blo and bhi.” Furthermore blo (resp. bhi)
are specified as option (i.e., Maybe) values with Nothing denoting −∞ (resp. +∞).
Fortunately, refinements suffice to encode such properties. First, we define measures

measure isJust :: Maybe a -> Bool
isJust (Just x) = true
isJust (Nothing) = false

measure fromJust :: Maybe a -> a
fromJustS (Just x) = x

measure isBin :: Tree k v -> Bool
isBin (Bin _ _ _ _) = true
isBin (Tip) = false

measure key :: Tree k v -> k
key (Bin k _ _ _) = k

which respectively embed the Maybe and Tree root value into the refinement logic,
after which we can type the trim function as

trim :: (Ord k) => blo:Maybe k
-> bhi:Maybe k
-> BST k a
-> {v:BST k a | bound(blo, v, bhi)}

where bound is simply a refinement alias

refinement bound(lo, v, hi)
= isBin(v) => isJust(lo) => fromJust(lo) < key(v)
&& isBin(v) => isJust(hi) => fromJust(hi) > key(v)

That is, the output refinement states that the root is appropriately lower- and upper-
bounded if the relevant terms are defined. Thus, refinement types allow one to formalize
the crucial behavior as machine-checkable documentation.

Code Modifications. On a few occasions we also have to change the code slightly,
typically to make explicit values on which various invariants depend. Often, this is for
a trivial reason; a simple re-ordering of binders so that refinements for later binders can
depend on earlier ones. Sometimes we need to introduce “ghost” values so we can write
the specifications (e.g., the foldr in § 2.4). Another example is illustrated by the use
of list append in quickSort. Here, the append only produces a sorted list if the

Abstract Refinement Types 227

two input lists are sorted and such that each element in the first is less than each element
in the second. We address this with a special append parameterized on pivot

append :: pivot:a
-> IncrList {v:a | v < pivot}
-> IncrList {v:a | v > pivot}
-> IncrList a

append pivot [] ys = pivot : ys
append pivot (x:xs) ys = x : append pivot xs ys

5 Related Work

The notion of type refinements was introduced by Freeman and Pfenning [11], with
refinements limited to restrictions on the structure of algebraic datatypes, for which
inference is decidable. Our present notion of refinement types has its roots in the in-
dexed types of Xi and Pfenning [27], wherein data types’ ranges are restricted by in-
dices, analogous to our refinement predicates, drawn from a decidable domain; in the
example case explored by Xi and Pfenning, types were indexed by terms from Pres-
burger arithmetic. Since then, several approaches to developing richer refinement type
systems and accompanying methods for type checking have been developed. Knowles
and Flanagan [17] allow refinement predicates to be arbitrary terms of the language
being typechecked and present a technique for deciding some typing obligations stati-
cally and deferring others to runtime. Findler and Felleisen’s [8] higher-order contracts,
which extend Eiffel’s [18] first-order contracts — ordinary program predicates acting
as dynamic pre- and post-conditions — to the setting of higher-order programs, eschew
any form of static checking, and can be seen as a dynamically-checked refinement type
system. Bengtson et al. [2] present a refinement type system in which type refinements
are drawn from a decidable logic, making static type checking tractable. Greenberg et
al. [1] gives a rigorous treatment of the metatheoretic properties of such a refinement
type system.

Refinement types have been applied to the verification of a variety of program prop-
erties [27,7,2,10]. In the most closely related work to our own, Kawaguchi et al. [16]
introduce recursive and polymorphic refinements for data structure properties. The
present work unifies and generalizes these two somewhat ad-hoc notions into a single,
strictly and significantly more expressive mechanism of abstract refinements.

A number of higher-order logics and corresponding verification tools have been de-
veloped for reasoning about programs. Example of systems of this type include NuPRL
[4], Coq [3], F� [25] and Agda [20] which support the development and verification
of higher-order, pure functional programs. While these systems are highly expressive,
their expressiveness comes at the cost of making logical validity checking undecidable.
To help automate validity checking, both built-in and user-provided tactics are used to
attempt to discharge proof obligations; however, the user is ultimately responsible for
manually proving any obligations which the tactics are unable to discharge.

228 N. Vazou, P.M. Rondon, and R. Jhala

References

1. Belo, J.F., Greenberg, M., Igarashi, A., Pierce, B.C.: Polymorphic Contracts. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 18–37. Springer, Heidelberg (2011)

2. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement types for
secure implementations. ACM TOPLAS 33(2), 8 (2011)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer
(2004)

4. Constable, R.L.: Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall (1986)

5. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic
and scalable array content analysis. In: POPL, pp. 105–118 (2011)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

7. Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA (2007)

8. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP, pp. 48–59 (2002)
9. Flanagan, C., Joshi, R., Leino, K.R.M.: Annotation inference for modular checkers. Infor-

mation Processing Letters (2001)
10. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic verification. In:

CCS, pp. 341–350 (2011)
11. Freeman, T., Pfenning, F.: Refinement types for ML. In: PLDI (1991)
12. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In:

POPL, pp. 338–350 (2005)
13. Graf, S., Saı̈di, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
14. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.

In: IEEE Symposium on Security and Privacy, pp. 115–130 (2011)
15. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.

(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)
16. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In: PLDI, pp.

304–315 (2009)
17. Knowles, K.W., Flanagan, C.: Hybrid type checking. ACM TOPLAS 32(2) (2010)
18. Meyer, B.: Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River (1992)
19. Nelson, G.: Techniques for program verification. Technical Report CSL81-10, Xerox Palo

Alto Research Center (1981)
20. Norell, U.: Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers, SE-412 96 Göteborg, Sweden (September 2007)
21. Ou, X., Tan, G., Mandelbaum, Y., Walker, D.: Dynamic Typing with Dependent Types. In:

Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IFIP, vol. 155, pp. 437–450. Springer,
Boston (2004)

22. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
23. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI (2008)
24. Sheard, T.: Type-level computation using narrowing in omega. In: PLPV (2006)
25. Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., Yang, J.: Secure distributed

programming with value-dependent types. In: ICFP, pp. 266–278 (2011)
26. Vytiniotis, D., Peyton Jones, S.L., Magalhães, J.: Equality proofs and deferred type errors: a

compiler pearl. In: ICFP, pp. 341–352 (2012)
27. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types. In: PLDI

(1998)

Constraining Delimited Control with Contracts�

Asumu Takikawa1, T. Stephen Strickland2, and Sam Tobin-Hochstadt1

1 Northeastern University
2 University of Maryland, College Park

Abstract. Most programming languages provide abstractions for non-local con-
trol flow and access to the stack by using continuations, coroutines, or generators.
However, their unrestricted use breaks the local reasoning capability of a pro-
grammer. Gradual typing exacerbates this problem because typed and untyped
code co-exist. We present a contract system capable of protecting code from con-
trol flow and stack manipulations by unknown components. We use these con-
tracts to support a gradual type system, and we prove that the resulting system
cannot blame typed components for errors.

1 Ubiquitous Continuations

Delimited continuations [6, 10, 12, 18, 19, 26, 27] enable the expression of many useful
programming constructs such as coroutines, engines, and exceptions as libraries. Their
expressive power stems from three key operations on the control stack: (1) marking a
stack frame with a prompt; (2) jumping to a marked frame, discarding the context in
between; and (3) re-attaching the slice of the control stack that the jump discarded.
Continuations are not the only operations that manipulate the stack. In particular, con-
tinuation marks [4] provide the ability to (4) annotate a stack frame with data that
can be dynamically accessed and updated from subsequent frames. They are used to
implement features like general stack inspection for debugging, dynamic binding, and
aspect-oriented programming as libraries [4, 22, 23].

Many dynamically-typed languages support delimited continuations and related con-
trol operators such as coroutines or generators [15, 20], and some also support contin-
uation marks [5, 15]. Their lack of static typing, however, implies that a programmer
could easily misuse manipulations of the stack to jump to the wrong place or anno-
tate a frame with the wrong kind of data. Gradual typing addresses just these kinds
of problems. Gradually typed languages allow programmers to type parts of their pro-
grams statically but leave other parts untyped. Even better, they provide strong dynamic
guarantees about the safety of the combination of typed and untyped code [24, 32]. In
particular, a gradually typed language does not allow untyped code to cause a run-time
violation of the type invariants in the typed code.

Unfortunately, naïvely combining delimited continuations, continuation marks, and
gradual typing fails to maintain the benefits of gradual typing. The numerous type sys-
tems proposed for delimited continuations [2, 6, 11, 18, 20, 21] can prevent an ill-typed

� Supported in part by NSF CRI-0855140, SHF-1064922, CCF-0915978, the Mozilla Founda-
tion, and the DARPA CRASH program.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 229–248, 2013.
© Springer-Verlag Berlin Heidelberg 2013

230 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

re-attachment of a continuation or an ill-typed continuation jump. However, these type
systems alone are not sufficient for gradual typing, because of the need for dynamic
enforcement. Ordinarily, gradual type systems dynamically protect a typed component
from its untyped context with a contract [14] that monitors the flow of values across
the boundary [31]. Continuations, however, allow an untyped component to bypass the
contract protection at the component boundary by jumping over the contract. After the
jump, the untyped code could arrive in the middle of a typed component on the con-
trol stack and deliver an ill-typed value. Similarly, a continuation mark allows untyped
code to update a stack annotation in typed code with an ill-typed value. In other words,
continuations and continuation marks establish illicit communication channels between
components. For the invariants of the typed language to hold, these channels require
additional protection [9].

In this paper, we equip a gradually typed language with typed delimited control op-
erators and continuation marks while maintaining the soundness of the entire system.
To support this gradual type system, we introduce and formalize control contracts that
mediate continuation jumps between prompts and their clients. We implement them in
the Racket programming language [15] using control chaperones based on Strickland
et al. [28]’s chaperone framework. Control chaperones allow a programmer to redirect
communication between a prompt and a corresponding jump, inserting contract checks
in between. For continuation marks, we offer an analogous pair of continuation mark
key contracts and continuation mark key chaperones.

We also prove a soundness theorem for the combined language using Dimoulas et
al’s complete monitoring [9] technique. The key idea is to split a program into typed
and untyped components via ownership annotations on values. Using these annotations,
we impose a single owner policy which ensures that, at any given point, all of the
values in the program are owned only by the typed or untyped portion of the program.
Components may transfer ownership of a value only through the use of a contract,
guaranteeing that no value changes hands without being checked. We prove that our
contract system is a complete monitor and use this result to show that the gradual type
system is sound.

2 Types and Contracts for Control Operators

To illustrate how delimited continuations and continuation marks cause problems for
gradual typing, we present a series of examples using Sitaram’s % and fcontrol oper-
ators [26]. The following example illustrates a simple use of the % operator to install a
prompt and then a use of fcontrol to jump to that prompt, aborting part of the stack.
The diagram on the right depicts the control flow of the example on the stack:

> (+ 2 (% (+ 1 (fcontrol 7))
(λ (nat con) (+ 1 nat))))

10

(+ 2 [])
(% [] ((nat con) nat))

(+ 1 [])
(fcontrol 7)

Constraining Delimited Control with Contracts 231

The evaluation of this example starts at (fcontrol 7), which immediately discards
the current continuation up to the prompt (i.e., the third frame in the diagram). After
discarding the continuation, fcontrol calls the handler, the λ expression argument
to %, with two arguments: the value passed to fcontrol (i.e., 7) and the discarded
continuation reified as a function, i.e., (λ (x) (+ 1 x)). In this case, the handler just
increments the first argument by one and returns, ignoring the reified continuation. The
% operator then returns the result of the handler to its context.

The handler in this example is simple, but in general prompt handlers allow the pro-
grammer to specify arbitrary computations. The correspondence between the prompt
handler and fcontrol matches the correspondence between exception handlers and
throwing an exception [26]. In other words, continuation operators like fcontrol gen-
eralize exceptions [18].

One major difference between fcontrol and most exception interfaces is that in-
stead of throwing the continuation away, the handler can also re-install the continuation:

> (% (+ 1 (fcontrol 2))
(λ (v k) (+ v (k 8))))

11

(% [] ((v k) (+ v (k 8))))
(+ 1 [])

(fcontrol 2)

Here the handler calls its second argument, the reified continuation, instead of ignoring
it. Since the continuation is a value, the handler just calls it like any other function. In
fact, the handler could choose to return the continuation or apply it multiple times. The
presence of the reified continuation makes fcontrol a higher-order control operator,
as opposed to exceptions, which usually only provide first-order control

2.1 Types for Delimited Control

To implement a type system for delimited control, we must provide a means to type-
check % and fcontrol. Each handler, however, may provide a different interface to its
corresponding fcontrol. That is, they expect different types of input from a jump. In
order to give a precise type for these handlers, we need to keep different logical uses of
fcontrol separate and type-check them separately.1

To distinguish prompts with conflicting uses, control operators in the literature of-
ten allow the programmer to annotate prompts with prompt tags [11, 16, 18, 26]. For
example, an implementation of coroutines and an implementation of exceptions might
both install prompts on the stack. However, the stack changes coordinated by these li-
braries are “logically different” [26], even if they use the same operators, and should
not interfere with one another.

Prompt tags also provide a convenient means to type-check separate uses of fcon-
trol [18]. The type of a prompt tag determines the valid types of values that an ap-
plication of fcontrol can send to the corresponding prompt’s handler. The prompt
tag type also specifies the return type of the handler and the prompt’s body. The % and
fcontrol operators can be used with prompt tags to allow fine-grained control over
what prompt is targeted:

1 A type and effect system for delimited control [2, 6] could provide more precise types. How-
ever, an effect system would require intrusive run-time monitoring to enforce with contracts.

232 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

(define handler-1 (λ (v k) (string-append v "0")))
(define handler-2 (λ (v k) (k 1)))

> (% (number->string (% (+ 1 (fcontrol "10" prompt-tag-1))
handler-2 prompt-tag-2))

handler-1 prompt-tag-1)
"100"

Since the call to fcontrol uses prompt-tag-1, the jump arrives at the outermost
prompt, which is tagged with prompt-tag-1. The jump triggers handler-1, associ-
ated with the outer prompt. Notably, the jump does not invoke handler-2. It is vital
that the programmer does not use the wrong prompt tag here, because the handlers
expect different types: a string for handler-1 and an integer for handler-2.

Using a type system for prompt tags, we could declare that prompt-tag-1 has the
type (Prompt String (Integer -> String) String). The first two types mean
that the handler expects to receive a string and a function that takes integers and returns
strings. The third type corresponds to the return type of the body and handler. This
matches our example, since fcontrol sends the string "10" and the continuation from
fcontrol to the outer prompt expects an integer and produces a string. Both the body
(using number->string) and the handler clearly produce strings as well.

2.2 Gradual Typing, the Broken Variant

In a language with gradual typing, a typed component may import unknown functions
from an untyped component:

#lang typed/racket
(require/typed [g : Integer -> String] from "untyped.rkt")

(% (string-length (g 2))
(λ ([v : Integer] [k : Integer -> Integer])

(+ v (k 8))))

In this example, the typed component imports a function g that is specified to have the
type Integer -> String, which is valid for its use in the prompt expression. The
gradual type system enforces the type for g with the generated contract (-> integer?
string?). It blames the untyped component if its export fails to uphold the contract.
Imports from untyped components and exports to untyped components are always pro-
tected with contracts translated from the corresponding type [31]. The type system pre-
vents the typed component from misapplying the function.

Unfortunately, this naïve model of interaction fails in the presence of control opera-
tors, as demonstrated by the following untyped component:

#lang racket
(provide g)
(define (g x) (fcontrol "bad"))

Constraining Delimited Control with Contracts 233

The use of the fcontrol operator in the body of g immediately transfers control to the
handler function when the typed module invokes g. Since this control transfer bypasses
the contract boundary, the string "bad" is passed to the + operation, which causes a
run-time failure that the type system should have prevented. The failure stems from the
lack of protection on the communication channel between fcontrol and %.

(% [] ((v k) (+ v (k 8))))
(string-length []) typed

contract: String

(fcontrol “bad”) untyped

Generally speaking, the usual strategy of applying contracts to just the component im-
ports and exports does not adequately protect the typed code from invalid uses of control
operators within untyped code. In particular, the abort-like behavior of fcontrol al-
lows it to directly communicate with the handler in the typed code, without first passing
through a contract check at the component boundary.

With higher-order programming, the illicit communication may also take place using
control operators in the opposite direction, as in the following pair of components:

#lang typed/racket
(provide g)

(define: (g) : Void (fcontrol h))
(define: (h [y : Integer]) : Integer (+ 1 y))

#lang racket
(require g from "typed.rkt")
(% (+ 1 (g)) (λ (v k) (v "bad")))

Here, the typed component exports a function g that uses a control operator to jump to
the prompt, passing its handler a function. The untyped component calls g inside of a
prompt whose handler misapplies the returned function to the string "bad" instead of
an integer. Again, we depict this situation with a diagram:

(% [] ((v) (v “bad”)))
(+ 1 []) untyped

contract: Void

(fcontrol ((y) (+ y 2))) typed

This stack illustrates a situation similar to the last diagram except that the typed and
untyped components have swapped roles. Furthermore, notice that the contract on the
stack is Void because the contract system checks the return value of g, because exports
from typed components are wrapped with a contract.

On the surface, this may not seem like a problem; after all, the untyped component
is free to do anything it likes with values since it is not beholden to a type system.

234 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

Unfortunately, fcontrol has smuggled the function h across the contract boundary.
Since h originates from typed code, applying it should not cause an error that the type
system could prevent. In the top frame, however, the untyped component applies h to
a value "bad" that the function does not expect, causing the addition (+ 1 y) to fail.
This shows that higher-order programming requires protection for communication in
both directions between typed and untyped components. To make gradual typing work,
we must account for and protect all extra channels of communication.

2.3 Gradual Typing, Fixed

In order to fix our naïve gradual type system, we reuse the key insight from the gradual
typing literature: the dynamic semantics must protect all possible channels of communi-
cation between typed and untyped components [9]. We instantiate this research insight
for stack abstractions by installing contract checks on prompt tags that activate when
control operators cross component boundaries. A prompt tag is a capability for com-
municating between two stack frames in a program. Thus, only components that have
access to a given tag are allowed to communicate with the matching prompt, enabling
the programmer to leverage lexical scope to limit access. However, the capability nature
of prompt tags only determines who can communicate over the channel, but not what
can be communicated across the channel.

To enable prompt tags to protect the data communicated via control operators, we
equip prompt tags with contracts that trigger when a control operator transfers a value
to the matching prompt. Since prompt tags function as capabilities, a component can be
assured that only components with access to the corresponding prompt tag can jump to
its prompts. Thus, as long as typed prompt tags are always exported with appropriate
contracts, other components cannot jump to them without incurring contract checks.
We formally characterize the translation of types to contracts in section 4.

For the problematic example from before, we revise the typed component to create
and export a prompt tag. The untyped component can import and use the tag to jump to
the typed component’s prompt:

#lang typed/racket
(require/typed [g : Integer -> Integer] from "untyped.rkt")
(provide pt)

(pt : (Prompt Integer (Integer -> String) Integer))
(define pt (make-prompt-tag))

(% (string-length (g 2))
(λ ([v : Integer] [k : Integer -> Integer])

(+ v (k 8)))
pt)

As before, the prompt tag type describes the type of the two values that fcontrol
sends to the handler and the result type of the handler. In the untyped code, the call to
fcontrol uses the prompt tag from the typed code:

Constraining Delimited Control with Contracts 235

#lang racket
(require pt from "typed.rkt")
(provide g)
(define (g x) (fcontrol "bad" pt))

Now, the type system installs a contract on uses of the exported tag in untyped code
that corresponds to the type (Prompt Integer (Integer -> Integer)). When
the function g aborts the continuation using the fcontrol operator, the "bad" value
is checked with the Integer contract. The contract check fails and blames the un-
typed component for not providing an Integer to the prompt’s handler. Pictorially, the
fix adds a second contract boundary between the use of fcontrol and its matching
prompt:

(% [] ((v k) (+ v (k 8))))
(string-length []) typed

contract: String

(fcontrol “bad”) untyped
contract: Int

With the second contract boundary, all possible paths between the untyped and typed
components are protected. This ensures that no unmonitored communication can occur
between the components. In other words, the contract system completely monitors all
communication between components, thus ensuring the safety of typed code that uses
continuation operations.

2.4 Continuation Marks

The stack also offers non-local data storage to the programmer. Continuation marks are
a language feature that enables this view, allowing the association of a key-value storage
cell with each of the continuation frames that make up the stack. In turn, continuation
marks enable other language features and tools such as debuggers, dynamic binding,
and aspect-oriented programming [3, 4, 33].

A continuation mark is added to the current continuation frame with the wcm form
(short for with-continuation-mark) and accessed with the ccm form (short for
current-continuation-marks):

> (wcm ’key 7 (+ 1 (first (ccm ’key))))
8

Continuation marks consist of a key and an associated value, which are passed to the
wcm operation. The ccm operation returns a list of the marks stored in the continuation
associated with some key. The previous example demonstrates a simple case of setting
and accessing a mark. As with continuations, continuation marks allow non-local com-
munication of data through the stack, and thus require new forms of protection from the
contract system. More concretely, continuation marks can be set in an untyped compo-
nent and then accessed later in a typed component:

236 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

#lang racket
(require g from "typed.rkt")
(define key (make-continuation-mark-key))
(wcm key "bad" (g 7))

#lang typed/racket
(require/typed [key : (Mark Integer)] from "untyped.rkt")
(provide g)
(define (g x) (+ x (first (ccm key))))

In this example, the untyped component stores a string in the continuation mark with
a new continuation mark key. The typed component imports the key with a type that
requires integers in the mark storage for the key. However, the untyped component has
already violated this assumption by storing a string in the mark. This demonstrates
another example of an unprotected stack-based channel of communication.

Our solution for continuation mark protection is similar to the solution for delimited
continuations. First, instead of allowing any value as a key for marks, we require the use
of a prompt-tag-like key type, which we call a continuation mark key. This key acts as
a capability for accessing the data contained in the mark. Using the same technique as
prompt tags, we attach contracts to this key so that the continuation mark operations can
introduce contract checks based on the key’s contract. The following diagram illustrates
the example above (on the left) and our solution (right):

(wcm (...) []) untyped

contract: Int

(+ x [])
(ccm key)

typed

(wcm (...) []) untyped

contract: Int

(+ x [])
(ccm key)

typed

contract: Int

The new circle attached to the top stack frame illustrates a storage cell for the continua-
tion mark on that frame. The cell might store many values, up to one for each key. The
arrow from the cell depicts the flow of a value from the cell to the continuation frame
that requests it using the ccm operation. As with continuations, this flow bypasses the
ordinary contract boundary on the stack. The diagram on the right shows the fix in the
form of an extra contract boundary that is established for accesses to the continuation
mark store. In short, the contract system must protect all possible channels of interaction
between the typed and untyped portions of the program.

From a contract system design perspective, continuation marks are similar to mutable
reference; both enable non-local communication. Moreover, contracts for references
and marks have related semantics. Mutable references need specialized support from
the contract system to ensure that all access to the reference is protected by a contract [9,
28]. This extra protection amounts to wrapping the reference with a guard that redirects
reads or writes to the reference and injects appropriate contract checking. Similarly,
continuation mark key contracts wrap the key with a guard that redirects reads or writes
to the continuation mark. Our formal model characterizes these guards and contracts
more precisely.

Constraining Delimited Control with Contracts 237

3 Formalizing Contracts for Stack Abstractions

To explain our design and to validate its soundness, we present a formal model of a
gradually typed λ-calculus extended with low-level operations on stacks. The low-level
operators faithfully macro-express [13] the high-level operators. We chose our model’s
operators to match the production libraries used in both Racket [16] and in Guile [17]
in order to demonstrate the model’s practical applicability. Further details are available
in a technical report [30].

Dybvig et al. [11] identify a template of five key operations that are necessary for
delimited continuations: (1) construction of a delimiter, (2) delimiting a continuation,
(3) capturing a continuation, (4) aborting a continuation, and (5) re-instating a continu-
ation. Our model provides each of the elements in the template above. In our case, (1)
corresponds to prompt tag creation and (5) to function application. The remaining three
are provided as distinct operations %, call/comp, and abort, detailed below.

Our language is Dimoulas et al’s CPCF [8], extended with Flatt et al’s continuation
operators [16]. We augment this model with an adaptation of Gunter et al. [18]’s type
system for delimited control and a type system for continuation marks based on similar
ideas. For dynamic invariant enforcement, we add contracts for delimited continuations
and continuation marks.

Figure 1 presents the core grammar of the model. Programs consist of a tuple with an
expression and a store. The store tracks the allocation of prompt tags and continuation
mark keys. Expressions include straightforward PCF operations, list operations, and a
set of control operators. The language is parameterized over a set of basic data types
and primitive unary and binary operations such as addition, subtraction, and so on.

The key control operators are (% e1 e2 v), (abort e1 e2), and (call/comp v e), which
correspond to delimiting the continuation, aborting the continuation, and capturing the
continuation respectively. For continuation marks, the (call/cm e1 e2 e3) and (ccm e) op-
erations model the setting of continuation marks and access of marks respectively.

P ::= <e, >
 ::= | (key) | (tag)
e ::= x | v | (e e) | (if e e e) | ((x : t) e)

 | (unop e) | (binop e e) | (cons e e)
 | (case e (null = e) ((cons x x) = e))
 | (prompt-tag) | (cm-key)
 | (% e e v) | (abort e e)
 | (wcm w e) | (ccm e)
 | (call/comp e e) | (call/cm e e e)
 | (update mk e); e
 | (error)

v ::= b | ((x : t) e) | pt | mk
 | (cons v v) | null
 | call/comp | call/cm

t ::= B | (t t) | (Prompt t t)
 | (Mark t) | (List t)

pt ::= tag
mk ::= key
E ::= M | (wcm w M)
M ::= [] | (if E e e) | (E e) | (v E)

 | (unop E) | (binop E e) | (binop v E)
 | (case E (null = e) ((cons x x) = e))
 | (cons E e) | (cons v E)
 | (update mk E); e
 | (% e E v) | (% E pt v)
 | (abort E e) | (abort v E)
 | (call/comp E e) | (call/comp v E)
 | (call/cm E e e) | (call/cm v E e)

Fig. 1. Core grammar and evaluation contexts

238 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

 | e2 : t1
 | e1 : (Prompt t1 t2)

 | (abort e1 e2) : t
 [TAbort]

 | e1 : ((t3 t2) t3)
 | e2 : (Prompt t1 t2)

 | (call/comp e1 e2) : t3
 [TCallComp]

 | e1 : (Mark t1)
 | e2 : t1 | e3 : t2

 | (call/cm e1 e2 e3) : t2
 [TCallCM]

 | e : (Mark t)

 | (ccm e) : (List t)
 [TCCM]

 | e1 : t2
 | v : (t1 t2)

 | e2 : (Prompt t1 t2)

 | (% e1 e2 v) : t2
 [TPrompt]

 | e : t
 | mk : (Mark t1) ...

 | v : t1 ...

 | (wcm ((mk v) ...) e) : t
 [TWCM]

Fig. 2. Typing rules

Our continuation operators suffice to encode high-level operators such as % and
fcontrol. For example, here is a macro encoding of fcontrol:

(fcontrol v p) = (call/comp (λ (k) (abort v k)) p)

The static semantics of the model is straightforward. For delimited continuations, we
adapt the prompt types of Gunter et al.’s cupto system [18]. The major type judgments
are shown in figure 2. A judgment | e : t separates the environment typing from
the store typing . The store typing straightforwardly keeps track of the types of al-
located prompt tags and mark keys. Prompt tag types (Prompt t1 t2) are parameterized
by two types: t1 for the argument type expected by the handler function and t2 for the
body of the prompt. The rule for prompt expressions requires that, given an appropriate
prompt tag, the body and the handler both produce a result of type t2 and that the han-
dler accepts an argument of type t1. Conversely, an abort must carry a value of type t2
for a given prompt tag and may result in any type, since control never returns.

Meanwhile, the call/comp operator captures a continuation up to a prompt with the
given prompt tag and passes it to its handler. The return type t3 of call/comp is the return
type of its argument function. Since the current continuation has a hole of type t3, and
since the type of the expression up to the prompt is dictated by the prompt tag type
t2, the type rule also requires that call/comp’s argument expects an argument type of
(t3 t2).

Continuation mark keys have a type (Mark t) where t is type of the value to be stored
in the mark. The rule for wcm requires that all of the key-value pairs it stores are consis-
tently typed; that is, the value stored is well-typed with respect to the mark key’s type
parameter. Similarly, call/cm requires that the specified mark key and value match and
that its result type is the result type of its body. The ccm operation, used to extract the
mark values, returns a list containing the values of the type stored in the mark.

Constraining Delimited Control with Contracts 239

e ::=
 | (mon l,l

l ctc e)
 | (ctc-error l

l)
 | (check l

l e v)
pt ::=

 | (PG l,l
l ctc pt)

mk ::=
 | (MG l,l

l ctc mk)
ctc ::= (flat ((x : t) e))

 | (ctc ctc)
 | (prompt-tag/c ctc)
 | (mark/c ctc)
 | (list/c ctc)

t ::=
 | (Con t)

M ::=
 | (mon l,l

l ctc E)
 | (check l

l E v)

(mon k,l
j (flat vf) v) (check k

j (vf v) v)
(mon k,l

j (ctca ctcr) v)
((x1 : t)

(((x2 : t) (mon k,l
j ctcr (v x2)))

(mon l,k
j ctca x1)))
 where v = ((x : t) e)

(mon k,l
j (list/c ctc) null) null

(mon k,l
j (list/c ctc) (cons v1 v2))

(cons (mon k,l
j ctc v1) (mon k,l

j (list/c ctc) v2))

(mon k,l
j (prompt-tag/c ctc) vp) (PG k,l

j ctc vp)

(mon k,l
j (mark/c ctc) vm) (MG k,l

j ctc vm)

(check l
j #t v) v

(check l
j #f v) (ctc-error l

j)

Fig. 3. Contracts and monitors

We specify the dynamic semantics in an operational style using evaluation con-
texts [12], omitting straightforward rules for conventional operations. The evaluation
contexts, shown in figure 1, follow the form of the expression grammar. The contexts
are stratified into two non-terminals E and M to ensure that adjacent wcm frames in the
context are merged before further reduction. These merge steps simplify the rest of the
operational rules and have precedent in the continuation mark literature [4, 16].

The contract system, based on CPCF, adds additional constructs to the language. The
additional constructs and reduction rules for contracts are shown in figure 3. Contracts
are applied using both monitors and guards. A monitor (mon k,l

j ctc e) represents a term
e protected by a contract ctc. The labels k and l indicate the server and client parties,
respectively, that entered into the contract. The final label j indicates the component that
the contract belongs to [9]. Since monitored terms are not values, we need additional
guard terms for prompt tags and continuation mark keys, because guarded tags and keys
may appear in positions that expect values. Guards, like monitors, include a contract and
server, client, and contract labels for the involved parties. A monitor or guard and its
labels delineate the boundary between two components: server and client. Boundaries
play a key role when we prove that no values pass between components (i.e., across a
monitor or guard) without appropriate contract protection.

Monitors with a flat contract, i.e., one that the contract system can immediately
check, reduce to a check expression that runs the contract predicate and either raises a
contract error or returns the checked value. Monitors for functions reduce to a wrapped
function that checks both the domain and range contracts. For prompt tags and mark
contracts, the monitors respectively reduce to a prompt tag or mark key guard.

Figure 4 shows the key rules for continuations and continuation marks, which war-
rant additional explanation. The make-prompt-tag and make-cm-key terms reduce to fresh
prompt tag and mark key values, respectively, allocating them in the store. A prompt
that contains a value reduces to the value itself.

240 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

When a prompt contains an abort, the reduction relation takes the prompt’s handler
and applies it to the aborted value (via [abort]). The notation Ept means that the context E
does not contain a prompt tagged with the prompt tag pt. The rule additionally wraps
the aborted value with any necessary contracts using the wrap+ and wrap- metafunctions.
Respectively, these metafunctions wrap the values with the contract checks that are ne-
cessitated by the prompt tag of the prompt and the tag used by the abort. This rule
only triggers when the prompt tag on the prompt side and the abort side are equiva-
lent modulo any contract guards. An abort where the surrounding context contains no
matching prompt tag gets stuck. Like Gunter et al. [18], we isolate this error case, which
is difficult to rule out without a type and effect system, in our theorems.

Within a prompt, call/comp reifies the continuation as ((x : t) Ept[x]) and applies v
to this function. As with aborts, the rule only triggers when the prompt tags on both
sides are the same.

Continuation mark frames (wcm w v) are discarded when the body is a value and re-
duce to the value itself. When two continuation mark frames are directly adjacent in the
form (wcm w1 (wcm w2 e)), the frames are merged. The metafunction takes the innermost
value for any given continuation mark key for the resulting store.

For continuation captures and setting a continuation mark, a continuation mark frame
is allocated unless one already exists in the continuation. These are used to ensure that
subsequent updates to the marks can be carried out. A call/cm operation that sets or
updates a continuation mark reduces to an intermediate update term that first applies
any necessary contract checks and then sets or updates the mark value. Continuation
marks are actually updated via the [wcm/update/set] and [wcm/update/add] rules. The values
stored in a continuation mark are extracted with the ccm expression for a given mark key.
If the key is unguarded, the reduction rule uses a metafunction to retrieve the relevant
values stored in the continuation’s mark frames. If a guard exists, the ccm term reduces
to a contract check wrapped around a new ccm term.

Notice that the only rules that involve both contracts and control operators are those
that potentially cross into another component across a monitor or guard. Specifically,
these are the [abort], [ccm/guard], and [call/cm] rules. None of the other control rules involve
contracts, demonstrating the one key intuition behind our formalism: only the opera-
tions that set up communication across component boundaries need additional attention
from the contract system. The proof technique in the next section justifies this intuition.

4 Complete Monitoring and the Blame Theorem

To show that our contract system comprehensively protects all of the communication
channels in the language, we prove that the contract system satisfies the complete moni-
toring property [9]. Essentially, this property requires that the values in the language are
always owned and manipulated by a single component at a time. Values only flow to a
different component under the auspices of the contract system. Expressions that attempt
to smuggle values without the contract system’s knowledge would get stuck. We prove
that the reduction relation is a complete monitor in order to show the blame theorem,
which informally states that the contract system does not find the typed component at
fault for any violation of types turned into contracts.

Constraining Delimited Control with Contracts 241

<E[(prompt-tag)], > <E[tag], (tag)> [prompt-tag]

 where tag

(% v1 pt v2) v1 [prompt]

(% Ept[(abort pt v)] pt1 vh) (vh E+[E-[v]]) [abort]

 where E+ = wrap+[[pt1]] , E- = wrap-[[pt, []]] , pt =pt pt1

(% Ept[(wcm w (call/comp v pt))]
pt1 vh)

(% Ept[(wcm w (v ((x : t) Ept[x])))]
pt1 vh)

 [call/comp]

 where pt =pt pt1

<E[(cm-key)], > <E[key], (key)> [mark-key]

 where key

(wcm w v) v [wcm/v]

(wcm w1 (wcm w2 e)) (wcm (w1 w2) e) [wcm/merge]

<E[(call/cm v1 v2 e)], > <E[(wcm () (call/cm v1 v2 e))], > [wcm/intro/cm]

 where E E1[(wcm w [])]

(wcm w (call/cm mk v e)) (wcm w (update mk1 e1); e) [call/cm]

 where (mk1 e1) = push[[mk, v]]

(wcm ((key1 v1) ...
(key2 v2) (key3 v3) ...)

(update key2 v4); e)

(wcm ((key1 v1) ...
(key2 v4) (key3 v3) ...)
e)

 [wcm/set]

(wcm ((key1 v1) ...)
(update key2 v2); e)

(wcm ((key1 v1) ... (key2 v2)) e) [wcm/add]

 where key2 (key1 ...)

<E[(ccm key)], > <E[marks[[E, key, null]]], > [ccm]

(ccm (MG k,l
j ctc mk)) (mon k,l

j (list/c ctc) (ccmmk)) [ccm/guard]

wrap+[[(PG k,l
j ctc pt)]] = (mon k,l

j ctc wrap+[[pt]])
wrap+[[tag]] = []

wrap-[[(PG k,l
j ctc pt), E]] = wrap-[[pt, (mon l,k

j ctc E)]]
wrap-[[tag, E]] = E

Fig. 4. Control reductions

Judgment Description
; ; l e Well-formed source terms
; ; (l ...); (l ...); l ctc Well-formed contracts
; ; l e Loosely well-formed terms
 ~ Well-formed store

S, S | G e : t Well-typed mixed terms (sec. 5)
S, S | G e Well-formed mixed terms (sec. 5)

Fig. 5. Judgments

242 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

l = (tag)

; ; l tag
 [WPromptTag]

l = (key)

; ; l key
 [WKey]

; ; l e

; ; l |e|l
 [WOwn]

; ; k e
; ; (k); (l); j ctc

; ; l (mon k,l
j ctc |e|k)

 [WMon]

; ; k v
; ; (k l); (k l); j ctc

; ; l (PG k,l
j ctc v)

 [WPromptGuard]

; ; l e
; ; (key) v ...

; ; l (wcm ((key v) ...) e)
 [WWCM]

; ; k key
; ; k v ; ; l e

; ; l (update k key v); e
 [WUpdate]

; ; j e

; ; (k ...); (l ...); j (flat |e|j) k...
 [WCFlat]

; ; (l ...); (k ...); j ctc1

; ; (k ...); (l ...); j ctc2

; ; (k ...); (l ...); j (ctc1 ctc2)
 [WCFun]

Fig. 6. Selected well-formed source program and contract rules

A proof of complete monitoring requires an annotation of values and expressions
with ownership labels, using the component labels that contracts already use. In addi-
tion, we annotate contracts with obligation labels to show which components are re-
sponsible for which parts of the contract:

e ::=
 | |e|l
 | (update l mk e); e

v ::=
 | |v|l

ctc ::=
 | (flat ((x : t) e)) l...

The proof that our reduction relation is a complete monitor utilizes the traditional sub-
ject reduction technique. First, we describe how to set up the subject. We use several
judgments, listed in figure 5, to enforce the necessary properties from the contract sys-
tem. The judgment ; ; l e checks that source programs are well-formed with respect
to the ownership annotations. We omit the details of several judgments; see the sepa-
rate appendix for additional rules. Figure 6 presents a key subset of the rules for our
model. Essentially, the judgment ensures that terms that set up a contract boundary, i.e.,
monitors, guards, and so on, contain sub-terms with matching ownership. For example,
a monitor must be well-formed under its server label and its sub-term must be well-
formed under the monitor’s client label with an appropriate annotation. Guards set up a
contract boundary in a similar fashion.

The judgment also features a store environment . We use this environment to stati-
cally track the ownership of prompt tags and continuation mark keys. Since these values
are unique and originate in a single component, we say that their ownership is deter-
mined purely by their mapping in the store. This ensures that any given tag or mark key
appears only in the component that created them unless transported to another compo-
nent via a contract.

Constraining Delimited Control with Contracts 243

(((x : t) e) l v l) |e[x := |v|l]|l []

(% Ept
k [(wcm w (call/comp v k pt k))]
pt1 l vh l)

(% Ept
k [(wcm w (|v|k |(cont E)|k))]
pt1 l vh l)

 [call/comp]

 where pt =pt pt1

(% Ek[(abort pt k v k)] pt1 l vh l) (|vh|l E+
j [E-

k[|v|k]]) [abort]

 where E+
j = wrap+[[pt1]] , E-

k = wrap-[[pt, []]] , pt =pt pt1

(wcm w (call/cm mk l v l e)) (wcm w (update k key e1); e) [call/cm]

 where (key e1 k) = push[[mk, v]]

Fig. 7. Select reduction rules with annotations

In the case of monitors and guards, we also require that their contract is well-formed
using the judgment ; ; (k ...); (l ...); j ctc. The third and fourth parts of the judgment
indicate the components that should be responsible for the positive and negative parts
of a contract, respectively. The fifth label indicates the component that should own
the contract. Flat contracts are well-formed when their obligations match up with the
positive parties and their code matches the contract party. Function contracts swap the
positive and negative obligations for the domain contract. In all other cases, we require
that sub-contracts are appropriately well-formed.

For some terms in a reduction sequence, the well-formedness condition is too strict.
Most commonly, terms that reduce to monitored expressions can cause well-formedness
to fail, even though a few additional steps of reduction corrects this failure. To han-
dle this situation, we extend well-formedness to a loose well-formedness judgment
; ; l e, which is preserved by reduction.

Finally, we require with the judgment ~ that the program store is well-formed
with respect to the store environment, meaning all of the statically known tags and
keys are allocated with the correct owners. This requirement prevents a situation where
unallocated tags or keys appear in an expression or where the environment records the
wrong ownership.

To guarantee that the preservation lemma actually holds, we also modify the reduc-
tion rules to propagate the ownership annotations appropriately. Figure 7 shows a subset
of the revised reduction rules. We rely on the notation v l, which means the value v may
be wrapped with zero or more ownership annotations, all with the label l. In the rules,
we take any possibly annotated values and replace them in the contractum with the
value wrapped in a single annotation, ensuring the annotation remains in future steps.
One interesting case is the [call/cm] rule. The rule utilizes a modified push metafunction
that guides the value v through several contract boundaries to reach the component that
the mark key lives in. Each boundary traversal wraps the value with an additional mon-
itor. The modified metafunction additionally returns the final owner of the component
v after wrapping, which we need to annotate the update term.

With the judgments in mind, we formalize the complete monitoring property.

244 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

Definition 1. A reduction relation is a complete monitor if for all well-typed terms e0
such that ; ; l0 e0,

– <e0, > →* <v, >, or
– for all e1 and stores 1 such that <e0, > →* <e1, 1>, there exists an e2 and 2

such that <e1, 1> → <e2, 2>, or
– <e0, > →* <Ept[(abort v pt)], 1>, or
– <e0, > →* <e1, 1> →* <(ctc-error k

j), 2> where e1 is of the form
El[(mon k,l

j (flat v) l... |v|k)] and k ∈ (l ...).

Theorem 1. The reduction relation → is a complete monitor.

The proof follows a standard subject reduction strategy with two main lemmas: progress
and preservation. We list the key lemmas below but omit details of the proof cases,
which are similar to those presented by Dimoulas et al. [9].

Lemma 1. For all e0, 0, and 0 such that l ; ; 0 el and 0 ~ 0, then either

– e0 = v,
– e0 = (ctc-error k

j),
– there exists an e1 and 1 such that <e0, 0> → <e1, 1>, or
– <e0, 0> = <Ept[(abort v pt)], 0>.

Lemma 2. For all <e0, 0> → <e1, 1> and there exists 0 such that l ; ; 0l el and
0 ~ 0, then for some 1 ⊇ 0, 1; ; l e1.

The culmination of the formalism is the Blame Theorem. Informally, the key idea of
the Blame Theorem is that the contract system never blames the typed components of a
mixed program for a contract error. Again, we first require some setup in order to state
the theorem. The technique that we use here is detailed in Dimoulas et al. [9].

First, we set up an untyped sister language of our original typed language in order to
have mixed programs. The untyped language shares the syntax and current operational
semantics, but omits type annotations. Second, we isolate any stuck states that occur
due to type errors and reduce them to contract errors blaming the component. For the
contract system, we also require that flat contracts are picked from a pool of built-in
contracts that exactly correspond to the base datatypes we use: integers, strings, etc.

In the mixed language, monitors allow the embedding of expressions from other
components as before. We now limit the server and client labels to and for typed
and untyped components. In other words, untyped components are embedded in a typed
component with server and client labels and , respectively. For embedding in the
other direction, the labels are reversed.

To ensure that components are well-formed, we require that the typed portions of any
mixed program are well-typed and require that all components respect the ownership
annotations as before. Furthermore, we need to guarantee that all component bound-
aries are protected by the correct contracts. We formalize this notion in the judgments
S, S | G e and S, S | G e : t with store typing S, an environment S for tracking un-
typed locations, and type environment G. Our notion of store consistency requires that
untyped and typed locations are tracked disjointly [7]. These judgments rely on the
mapping between types and contracts, presented in figure 8.

Finally, we can state and prove the Blame Theorem:

Constraining Delimited Control with Contracts 245

T[(ctc1 ctc2)] = (T[ctc1] T[ctc2])

T[(prompt-tag/c ctc)] = (Prompt T[ctc])
T[(mark/c ctc)] = (Mark T[ctc])
T[(list/c ctc)] = (List T[ctc])

Fig. 8. Contract-type translation

Theorem 2. For all untyped terms e0 such that , | e0 and ; ; e0, <e0, >
does not reduce to a configuration of the form <(ctc-error j), >.

The proof follows by subject reduction, again with two main lemmas [7, 9].

5 Implementing Stack Protection

In addition to demonstrating the theoretical soundness of our design, we also describe
its implementation in a production language.2 Our implementation technique builds
on Strickland et al’s chaperone framework [28]. Chaperones act as proxies for values
that behave the same as the originals, modulo additional exceptions. This allows the
enforcement of a desirable property of contracts: a contracted value should behave the
same as the uncontracted value except for the possibility of contract errors.

To implement our control contracts, we modified the Racket runtime system to pro-
vide additional primitive operations such as chaperone-continuation-prompt-tag
and chaperone-continuation-mark-key. Both prompt tag and mark key chaper-
ones take two function arguments that are called when continuation and continuation
mark operations are used, respectively. For the prompt tag case, one function is inter-
posed on the application of a prompt handler and the other is interposed on a continua-
tion abort. For continuation marks, one function is interposed on retrieval from a mark
and the other is interposed on insertion into a mark.

Prompt and mark operations in the runtime coordinate with chaperones by checking
if the prompt tag or mark key, respectively, is a chaperone and then using the appro-
priate interposition function if so. The interposition function receives the aborted value
in the continuation case and the stored mark value in the case of continuation marks.
The result of the interposition function is then used in place of the original value. If the
prompt tag or mark key is not chaperoned, the operation proceeds normally.

6 Related Work

Types for delimited control. We use a variation of Gunter et al. [18]’s type system for
the cupto delimited control operator. Although their type system does not support con-
tinuation marks, it inspired our solution. The main difference is our choice of primitives:

2 Contracts for control are available in Racket 5.3 and higher. A development version of Typed
Racket supports delimited control and continuation marks.

246 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

abort and call/comp are lower-level than cupto [15]. In addition, our type construc-
tors for prompt tags take two arguments instead of one. This allows the handler to return
a different type than its argument.

Many type systems for delimited control, following Danvy and Filinksi, use a type
and effect system [2, 6]. These type systems support result type modification and stat-
ically eliminating continuation jumps to missing prompts. Our design choices make
different compromises, based on two pragmatic considerations: simplicity of the sys-
tem and the difficulty of dynamically enforcing effect typing with contracts.

Gradual typing and the Blame Theorem. Many researchers have constructed models of
gradual typing: both functional and object-oriented [1, 24, 25, 29, 31]. The soundness
theorem for gradual typing originates from Tobin-Hochstadt and Felleisen [31] and was
christened the “Blame Theorem” in Wadler and Findler [34]. Our proof technique for
this central theorem of gradual typing comes from Dimoulas et al. [9]. In general, the
idea of complete monitoring also provides the intuition for the design of a contract
system for gradual typing.

7 Conclusion

Virtually every modern programming language provides facilities for accessing and
manipulating the stack, with exceptions, generators, and stack inspection as just a few
examples. However, these facilities add non-local flows to programs, defeating the in-
variants programmers expect of their code. This problem is particularly acute in gradu-
ally typed languages, where type invariants are enforced with software contracts.

In this paper, we show that contracts, originally designed to mediate between caller
and receiver, extend naturally to these non-local constructs. We equip Racket’s delim-
ited control and continuation mark operations with a gradual type system enforced at
the boundaries by contracts. This system maintains type soundness in arbitrary com-
position with untyped code, as proved via the blame theorem. The implementation of
control contracts in Racket leverages the existing chaperone framework for implement-
ing contracts.

Acknowledgments. The authors wish to thank Aaron Turon and Stephen Chang for
comments on early drafts. Christos Dimoulas gave valuable advice on the formalism.
Matthias Felleisen also provided his feedback and insight on continuations.

References

[1] Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for All. In: Proc. ACM Sym. Prin-
ciples of Programming Languages, pp. 201–214 (2011)

[2] Asai, K., Kameyama, Y.: Polymorphic Delimited Continuations. In: Shao, Z. (ed.) APLAS
2007. LNCS, vol. 4807, pp. 239–254. Springer, Heidelberg (2007)

[3] Clements, J.: Portable and High-level Access to the Stack with Continuation Marks. PhD
dissertation, Northeastern University (2006)

[4] Clements, J., Flatt, M., Felleisen, M.: Modeling an Algebraic Stepper. In: Proc. European
Sym. on Programming, pp. 320–334 (2001)

Constraining Delimited Control with Contracts 247

[5] Clements, J., Sundaram, A., Herman, D.: Implementing Continuation Marks in Javascript.
In: Proc. Wksp. Scheme and Functional Programming (2008)

[6] Danvy, O., Filinski, A.: Abstracting Control. In: Proc. LISP and Functional Programming,
pp. 151–160 (1990)

[7] Dimoulas, C.: Foundations for Behavioral Higher-Order Contracts. PhD dissertation,
Northeastern University (2012)

[8] Dimoulas, C., Felleisen, M.: On Contract Satisfaction in a Higher-Order World. Trans.
Programming Languages and Systems 33(5), 16:1–16:29 (2011)

[9] Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete Monitors for Behavioral Con-
tracts. In: Proc. European Sym. on Programming, pp. 214–233 (2012)

[10] Draves, R.P.: Control Transfer in Operating System Kernels. PhD dissertation, Carnegie
Mellon University (1994)

[11] Dybvig, K., Peyton-Jones, S., Sabry, A.: A Monadic Framework for Delimited Continua-
tions. J. Functional Programming 17(6), 687–730 (2007)

[12] Felleisen, M.: The Theory and Practice of First-Class Prompts. In: Proc. ACM Sym. Prin-
ciples of Programming Languages, pp. 180–190 (1988)

[13] Felleisen, M.: On the Expressive Power of Programming Languages. Science of Computer
Programming 17(1-3), 35–75 (1991)

[14] Findler, R.B., Felleisen, M.: Contracts for Higher-Order Functions. In: Proc. ACM Intl.
Conf. Functional Programming, pp. 48–59 (2002)

[15] Flatt, M., PLT: Reference: Racket. PLT Inc., PLT-TR-2010-1 (2010),
http://racket-lang.org/tr1/

[16] Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding Delimited and Composable Control
to a Production Programming Environment. In: Proc. ACM Intl. Conf. Functional Program-
ming, pp. 165–176 (2007)

[17] Free Software Foundation. Guile Reference Manual: Prompts (2012),
http://www.gnu.org/software/guile/manual/html_node/Prompts.html

[18] Gunter, C.A., Didier, R., Riecke, J.G.: A Generalization of Exceptions and Control in ML-
like Languages. In: Proc. ACM Intl. Conf. Functional Programming Languages and Com-
puter Architecture, pp. 12–23 (1995)

[19] Hieb, R., Kent Dybvig, R., Anderson, C.W.: Subcontinuations. In: LISP and Symbolic
Computation, pp. 83–110 (1994)

[20] James, R.P., Sabry, A.: Yield: Mainstream Delimited Continuations. In: Proc. Theory and
Practice of Delimited Continuations, pp. 20–32 (2011)

[21] Kiselyov, O., Shan, C.-C.: A Substructural Type System for Delimited Continuations. In:
Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 223–239. Springer, Heidelberg
(2007)

[22] Kiselyov, O., Shan, C.-C., Sabry, A.: Delimited Dynamic Binding. In: Proc. ACM Intl.
Conf. Functional Programming, pp. 26–37 (2006)

[23] Pettyjohn, G., Clements, J., Marshall, J., Krishnamurthi, S., Felleisen, M.: Continuations
from Generalized Stack Inspection. In: Proc. ACM Intl. Conf. Functional Programming,
pp. 216–227 (2005)

[24] Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Proc. Wksp. Scheme
and Functional Programming (2006)

[25] Siek, J.G., Taha, W.: Gradual Typing for Objects. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

[26] Sitaram, D.: Handling Control. In: Proc. ACM Conf. Programming Language Design and
Implementation, pp. 147–155 (1993)

[27] Sitaram, D., Felleisen, M.: Control Delimiters and their Hierarchies. In: LISP and Symbolic
Computation, pp. 67–99 (1990)

http://racket-lang.org/tr1/
http://www.gnu.org/software/guile/manual/html_node/Prompts.html

248 A. Takikawa, T.S. Strickland, and S. Tobin-Hochstadt

[28] Stephen Strickland, T., Tobin-Hochstadt, S., Findler, R.B., Flatt, M.: Chaperones and Im-
personators: Run-time Support for Reasonable Interposition. In: Proc. ACM Conf. Object-
Oriented Programming, Systems, Languages and Applications (2012)

[29] Takikawa, A., Stephen Strickland, T., Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.:
Gradual Typing for First-Class Classes. In: Proc. ACM Conf. Object-Oriented Program-
ming, Systems, Languages and Applications (2012)

[30] Takikawa, A., Stephen Strickland, T., Tobin-Hochstadt, S.: Constraining Delimited Control
with Contracts. Northeastern University, NU-CCIS-13-01 (2013)

[31] Tobin-Hochstadt, S., Felleisen, M.: Interlanguage Migration: from Scripts to Programs. In:
Proc. Dynamic Languages Symposium, pp. 964–974 (2006)

[32] Tobin-Hochstadt, S., Felleisen, M.: The Design and Implementation of Typed Scheme. In:
Proc. ACM Sym. Principles of Programming Languages, pp. 395–406 (2008)

[33] Tucker, D.B., Krishnamurthi, S.: Pointcuts and Advice in Higher-Order Languages. In:
Proc. Intl. Conf. on Aspect-Oriented Software Development, pp. 158–167 (2003)

[34] Wadler, P., Findler, R.B.: Well-typed Programs Can’t be Blamed. In: Proc. European Sym.
on Programming, pp. 1–15 (2009)

Verifying Concurrent Memory Reclamation
Algorithms with Grace

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang

1 IMDEA Software Institute
2 Tel-Aviv University
3 University of Oxford

Abstract. Memory management is one of the most complex aspects of mod-
ern concurrent algorithms, and various techniques proposed for it—such as haz-
ard pointers, read-copy-update and epoch-based reclamation—have proved very
challenging for formal reasoning. In this paper, we show that different memory
reclamation techniques actually rely on the same implicit synchronisation pat-
tern, not clearly reflected in the code, but only in the form of assertions used to
argue its correctness. The pattern is based on the key concept of a grace period,
during which a thread can access certain shared memory cells without fear that
they get deallocated. We propose a modular reasoning method, motivated by the
pattern, that handles all three of the above memory reclamation techniques in a
uniform way. By explicating their fundamental core, our method achieves clean
and simple proofs, scaling even to realistic implementations of the algorithms
without a significant increase in proof complexity. We formalise the method us-
ing a combination of separation logic and temporal logic and use it to verify
example instantiations of the three approaches to memory reclamation.

1 Introduction

Non-blocking synchronisation is a style of concurrent programming that avoids the
blocking inherent to lock-based mutual exclusion. Instead, it uses low-level synchro-
nisation techniques, such as compare-and-swap operations, that lead to more complex
algorithms, but provide a better performance in the presence of high contention among
threads. Non-blocking synchronisation is primarily employed by concurrent implemen-
tations of data structures, such as stacks, queues, linked lists and hash tables.

Reasoning about concurrent programs is generally difficult, because of the need to
consider all possible interactions between concurrently executing threads. This is espe-
cially true for non-blocking algorithms, where threads interact in subtle ways through
dynamically-allocated data structures. In the last few years, great progress has been
made in addressing this challenge. We now have a number of logics and automatic
tools that combat the complexity of non-blocking algorithms by verifying them thread-
modularly, i.e., by considering every thread in an algorithm in isolation under some
assumptions on its environment and thus avoiding explicit reasoning about all thread
interactions. Not only have such efforts increased our confidence in the correctness of
the algorithms, but they have often resulted in human-understandable proofs that eluci-
dated the core design principles behind these algorithms.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 249–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

250 A. Gotsman, N. Rinetzky, and H. Yang

However, one area of non-blocking concurrency has so far resisted attempts to give
proofs with such characteristics—that of memory management. By their very nature,
non-blocking algorithms allow access to memory cells while they are being updated
by concurrent threads. Such optimistic access makes memory management one of the
most complex aspects of the algorithms, as it becomes very difficult to decide when it
is safe to reclaim a memory cell. Incorrect decisions can lead to errors such as memory
access violations, corruption of shared data and return of incorrect results. To avoid this,
an algorithm needs to include a protocol for coordinating between threads accessing
the shared data structure and those trying to reclaim its nodes. Relying on garbage
collection is not always an option, since non-blocking algorithms are often implemented
in languages without it, such as C/C++.

In recent years, several different methods for explicit memory reclamation in non-
blocking algorithms have been proposed:

– Hazard pointers [12] let a thread publish the address of a node it is accessing as a
special global pointer. Another thread wishing to reclaim the node first checks the
hazard pointers of all threads.

– Read-copy-update (RCU) [11] lets a thread mark a series of operations it is perform-
ing on a data structure as an RCU critical section, and provides a command that waits
for all threads currently in critical sections to exit them. A thread typically accesses
a given node inside the same critical section, and a reclaimer waits for all threads to
finish their critical sections before deallocating the node.

– Epoch-based reclamation [5] uses a special counter of epochs, approximating the
global time, for quantifying how long ago a given node has been removed from the
data structure. A node that has been out of the data structure for a sufficiently long
time can be safely deallocated.

Despite the conceptual simplicity of the above methods, their implementations in non-
blocking algorithms are extremely subtle. For example, as we explain in §2, the protocol
for setting a hazard pointer is more involved than just assigning the address of the
node being accessed to a global variable. Reasoning naturally about protocols so subtle
is very challenging. Out of the above algorithms, only restricted implementations of
hazard pointers have been verified [14,6,3,16], and even in this case, the resulting proofs
were very complicated (see §6 for discussion).

The memory reclamation algorithms achieve the same goal by intuitively similar
means, yet are very different in details. In this paper, we show that, despite these differ-
ences, the algorithms actually rely on the same synchronisation pattern that is implicit—
not clearly reflected in the code, but only in the form of assertions used to argue its cor-
rectness. We propose a modular reasoning method, formalising this pattern, that handles
all three of the above approaches to memory reclamation in a uniform way. By explicat-
ing their fundamental core, we achieve clean and simple proofs, scaling even to realistic
implementations of the algorithms without a significant increase in proof complexity.

In more detail, we reason about memory reclamation algorithms by formalising the
concept of a grace period—the period of time during which a given thread can access
certain nodes of a data structure without fear that they get deallocated. Before deallo-
cating a node, a reclaimer needs to wait until the grace periods of all threads that could
have had access to the node pass. Different approaches to memory reclamation define

Verifying Concurrent Memory Reclamation Algorithms with Grace 251

1 int *C = new int(0);

2 int inc() {

3 int v, *s, *n;

4 n = new int;

5 do {

6 s = C;

7 v = *s;

8 *n = v+1;

9 } while

10 (!CAS(&C,s,n));

11 // free(s);

12 return v;

13 }

14 int *C = new int(0);

15 int *HP[N] = {0};

16 Set detached[N] = {∅};
17 int inc() {

18 int v, *n, *s, *s2;

19 n = new int;

20 do {

21 do {

22 s = C;

23 HP[tid-1] = s;

24 s2 = C;

25 } while (s != s2);

26 v = *s;

27 *n = v+1;

28 } while(!CAS(&C,s,n));

29 reclaim(s);

30 return v; }

31 void reclaim(int *s) {

32 insert(detached[tid-1],s);

33 if (nondet()) return;

34 Set in_use = ∅;
35 while (!isEmpty(

36 detached[tid-1])) {

37 bool my = true;

38 int *n =

39 pop(detached[tid-1]);

40 for (int i = 0;

41 i < N && my; i++)

42 if (HP[i] == n)

43 my = false;

44 if (my) free(n);

45 else insert(in_use, n);

46 }

47 moveAll(detached[tid-1],

48 in_use); }

(a) (b) (c)

Fig. 1. A shared counter: (a) an implementation leaking memory; (b)-(c) an implementation based
on hazard pointers. Here tid gives the identifier of the current thread.

the grace period in a different way. However, we show that, for the three approaches
above, the duration of a grace period can be characterised by a temporal formula of a
fixed form “η since μ”, e.g., “the hazard pointer has pointed to the node since the node
was present in the shared data structure”. This allows us to express the contract between
threads accessing nodes and those trying to reclaim them by an invariant stating that a
node cannot be deallocated during the corresponding grace period for any thread. The
invariant enables modular reasoning: to prove the whole algorithm correct, we just need
to check that separate threads respect it. Thus, a thread accessing the data structure has
to establish the assertion “η since μ”, ensuring that it is inside a grace period; a thread
wishing to reclaim a node has to establish the negation of such assertions for all threads,
thus showing that all grace periods for the node have passed. Different algorithms just
implement code that establishes assertions of the same form in different ways.

We formalise such correctness arguments in a modular program logic, combining
one of the concurrent versions of separation logic [17,4] with temporal logic (§3). We
demonstrate our reasoning method by verifying example instantiations of the three ap-
proaches to memory reclamation—hazard pointers (§4), RCU (§5) and epoch-based
reclamation [7, §D]. In particular, for RCU we provide the first specification of its inter-
face that can be effectively used to verify common RCU-based algorithms. Due to space
constraints, the development for epochs is deferred to [7, §D]. As far as we know, the
only other algorithm that allows explicitly returning memory to the OS in non-blocking
algorithms is the Repeat-Offender algorithm [8]. Our preliminary investigations show
that our method is applicable to it as well; we leave formalisation for future work.

2 Informal Development

We start by presenting our reasoning method informally for hazard pointers and RCU,
and illustrating the similarities between the two.

252 A. Gotsman, N. Rinetzky, and H. Yang

2.1 Running Example

As our running example, we use a counter with an increment operation inc that can be
called concurrently by multiple threads. Despite its simplicity, the example is represen-
tative of the challenges that arise when reasoning about more complex algorithms.

The implementation shown in Figure 1a follows a typical pattern of non-blocking
algorithms. The current value of the counter is kept in a heap-allocated node pointed
to by the global variable C. To increment the counter, we allocate a new memory cell n
(line 4), atomically read the value of C into a local pointer variable s (line 6), dereference
s to get the value v of the counter (line 7), and then store v’s successor into n (line 8).
At that point, we try to change C so that it points to n using an atomic compare-and-
swap (CAS) command (line 10). A CAS takes three arguments: a memory address (e.g.,
&C), an expected value (s) and a new value (n). It atomically reads the memory address
and updates it with the new value if the address contains the expected value; otherwise,
it does nothing. The CAS thus succeeds only if the value of C is the same as it was
when we read it at line 6, thus ensuring that the counter is updated correctly. If the
CAS fails, we repeat the above steps all over again. The algorithm is memory safe, i.e.,
it never accesses unallocated memory cells. It is also functionally correct in the sense
that every increment operation appears to take effect atomically. More formally, the
counter is linearizable with respect to the expected sequential counter specification [9].
Unfortunately, the algorithm leaks memory, as the node replaced by the CAS is never
reclaimed. It is thus not appropriate for environments without garbage collection.

A Naive Fix. One can try to prevent memory leakage by uncommenting the free com-
mand in line 11 of Figure 1a, so that the node previously pointed to by C is deallocated
by the thread that changed C’s value (in this case we say that the thread detached the
node). However, this violates both memory safety and linearizability. To see the former,
consider two concurrent threads, one of which has just read the value x of C at line 6,
when the other executed inc to completion and reclaimed the node at the address x.
When the first thread resumes at line 7 it will access an unallocated memory cell.

The algorithm also has executions where a memory fault does not happen, but inc
just returns an incorrect value. Consider the following scenario: a thread t1 running inc
gets preempted after executing line 7 and, at that time, C points to a node x storing v; a
thread t2 executes inc, deallocating the node x and incrementing the counter to v+1; a
thread t3 calls inc and allocates x, recycled by the memory system; t3 stores v+2 into
x and makes C point to it; t1 wakes up, its CAS succeeds, and it sets the counter value
to v + 1, thereby decrementing it! This is a particular instance of the well-known ABA
problem: if we read the value A of a global variable and later check that it has the value
A, we cannot conclude, in general, that in the meantime it did not change to another
value B and then back to A. The version of the algorithm without free in line 11 does
not suffer from this problem, as it always allocates a fresh cell. This algorithm is also
correct when executed in a garbage-collected environment, as in this case the node x in
the above scenario will not be recycled as long as t1 keeps the pointer s to it.

2.2 Reasoning about Hazard Pointers

Figure 1b shows a correct implementation of inc with explicit memory reclamation
based on hazard pointers [12]. We assume a fixed number of threads with identifiers

Verifying Concurrent Memory Reclamation Algorithms with Grace 253

from 1 to N . As before, the thread that detaches a node is in charge of reclaiming it.
However, it delays the reclamation until it is assured that no other thread requested that
the node be protected from reclamation. A thread announces a request for a node to be
protected using the array HP of shared hazard pointers indexed by thread identifiers. Ev-
ery thread is allowed to write to the entry in the array corresponding to its identifier and
read all entries. To protect the location s, a thread writes s into its entry of the hazard
array (line 23) and then checks that the announcement was not too late by validating
that C still points to s (line 25). Once the validation succeeds, the thread is assured that
the node s will not be deallocated as long as it keeps its hazard pointer equal to s. In
particular, it is guaranteed that the node s remains allocated when executing lines 26–
28, which ensures that the algorithm is memory safe. This also guarantees that, if the
CAS in line 28 is successful, then C has not changed its value since the thread read it at
line 24. This prevents the ABA problem and makes the algorithm linearizable.

The protection of a node pointed to by a hazard pointer is ensured by the behaviour of
the thread that detaches it. Instead of invoking free directly, the latter uses the reclaim
procedure in Figure 1c. This stores the node in a thread-local detached set (line 32) and
occasionally performs a batched reclamation from this set (for clarity, we implemented
detached as an abstract set, rather than a low-level data structure). To this end, the
thread considers every node n from the set and checks that no hazard pointer points to
it (lines 40–43). If the check succeeds, the node gets deallocated (line 44).

Reasoning Challenges. The main idea of hazard pointers is simple: threads access-
ing the shared data structure set hazard pointers to its nodes, and threads reclaiming
memory check these pointers before deallocating nodes. However, the mechanics of
implementing this protocol in a non-blocking way is very subtle.

For example, when a thread t1 deallocates a node x at line 44, we may actually
have a hazard pointer of another thread t2 pointing to x. This can occur in the following
scenario: t2 reads the address x from C at line 22 and gets preempted; t1’s CAS detaches
x and successfully passes the check in lines 40–43; t2 wakes up and sets its hazard
pointer to x; t1 deallocates x at line 44. However, such situations do not violate the
correctness, as the next thing t2 will do is to check that C still points to x at line 25.
Provided x has not yet been recycled by the memory system, this check will fail and the
hazard pointer of t2 will have no force. This shows that the additional check in line 25
is indispensable for the algorithm to be correct.

It is also possible that, before t2 performs the check in line 25, x is recycled, allocated
at line 19 by another thread t3 and inserted into the shared data structure at line 28.
In this case, the check by t2 succeeds, and the element can safely be accessed. This
highlights a subtle point: when t3 executes the CAS at line 28 to insert x, we might
already have a hazard pointer pointing to x. This, however, does not violate correctness.

Our Approach. We achieve a natural reasoning about hazard pointers and similar pat-
terns by formalising the main intuitive concept in their design—that of a grace period.
As follows from the above explanation, a thread t can only be sure that a node x its
hazard pointer points to is not deallocated after a moment of time when both the haz-
ard pointer was set and the node was pointed to by C. The grace period for the node x
and thread t starts from this moment and lasts for as long as the thread keeps its hazard
pointer pointing to x. Informally, this is described by the following temporal judgement:

254 A. Gotsman, N. Rinetzky, and H. Yang

“the hazard pointer of thread t has pointed to x since C pointed to x”, (1)

where since is a temporal connective with the expected interpretation: both of the facts
connected were true at some point, and since then, the first fact has stayed true. We can
thus specify the contract between threads accessing nodes and those trying to reclaim
them by the following invariant that all threads have to respect:

“for all t and x, if the hazard pointer of thread t has pointed to x since
C pointed to x, then x is allocated.”

(2)

It is this invariant that justifies the safety of the access to a shared node at line 26. On
the other hand, a thread that wants to deallocate x when executing reclaim checks that
the hazard pointers of other threads do not point to x (lines 40–43) only after detaching
the node from the shared data structure, and it keeps the node in the detached set until
its deallocation. Thus, even though threads can set their hazard pointers to x after the
reclaimer executes the check in lines 40–43, they cannot do this at the same time as C
points to x. Hence, when the reclaimer deallocates x at line 44, we know that

“for all t, C has not pointed to x since the hazard pointer of t did not
point to x.”

(3)

Clearly, (3) is inconsistent with (1). Therefore, no thread is inside a grace period for x
at the time of its deallocation, and the command in line 44 does not violate invariant (2).

More formally, let us denote the property “the hazard pointer of thread t points to
node x” by ηt,x, “C points to node x” by μx, and “x is allocated” by λx. Then (1) is
(ηt,x since μx), (2) is (∀t, x. (ηt,x since μx) =⇒ λx), and (3) is (∀t.¬μx since ¬ηt,x).
The combination of (1) and (3) is inconsistent due to the following tautology:

∀η, μ. (η since μ) ∧ (¬μ since ¬η) =⇒ false. (4)

The above argument justifies the memory safety of the algorithm, and (as we show in
§4) the absence of memory leaks. Moreover, (2) guarantees to a thread executing inc

that, when the CAS in line 28 succeeds, the node s has not been reallocated, and so the
ABA problem does not occur.

We have achieved a simple reasoning about the algorithm by defining the duration of
a grace period (1), the protocol all threads follow (2), and the fact a reclaimer establishes
before deallocating a node (3) as temporal formulas of particular forms. We find that
the above reasoning with temporal facts of these forms is applicable not only to our
example, but also to uses of hazard pointers in other data structures [7, §B], and in fact,
to completely different approaches to memory reclamation, as we now illustrate.

2.3 Reasoning about Read-Copy-Update

Read-Copy-Update (RCU) [11] is a non-standard synchronisation mechanism used in
Linux to ensure safe memory deallocation in data structures with concurrent access. So
far, there have been no methods for reasoning about programs with RCU. We now show
that we can use our temporal reasoning principle based on grace periods to this end.

Verifying Concurrent Memory Reclamation Algorithms with Grace 255

1 bool rcu[N] = {0};

2 rcu_enter() {〈rcu[tid-1]=1〉RCUtid
;}

3 rcu_exit() {〈rcu[tid-1]=0〉RCUtid
;}

4 sync() {

5 bool r[N] = {0};

6 for(int i = 0; i < N; i++)

7 〈r[i] = rcu[i]〉Id;
8 for(int i = 0; i < N; i++)

9 if(r[i]) {while(〈rcu[i]〉Id);}
10 }

;

synct1

t2

t3

t4

t5

rcu enter;S1; rcu exit rcu enter;S2; rcu exit

rcu enter;S3; rcu exit rcu enter;S4; rcu exit

rcu enter;S5; rcu exit

rcu enter;S6; rcu exit

Fig. 2. An abstract RCU implementation and an illustration of the semantics of sync. Blocks
represent the time spans of RCU critical sections or an execution of sync.

1 int *C = new int(0);

2 bool rcu[N] = {0};

3 Set detached[N] = {∅};
4

5 void reclaim(int* s) {

6 insert(detached[tid-1], s);

7 if (nondet()) return;

8 sync();

9 while (!isEmpty(detached[tid]))

10 free(pop(detached[tid])); }

15 int inc() {

16 int v, *n, *s;

17 n = new int; rcu_enter();

18 do {

19 rcu_exit(); rcu_enter();

20 s = C; v = *s; *n = v+1;

21 } while (!CAS(&C,s,n));

22 rcu_exit();

23 reclaim(s);

24 return v; }

Fig. 3. Counter with RCU-based memory management

RCU Primer. RCU provides three commands: rcu enter, rcu exit and sync. The
rcu enter and rcu exit commands delimit an RCU critical section. They do not ensure
mutual exclusion, so multiple threads can be in their critical sections simultaneously.
Instead of enforcing mutual exclusion, RCU provides the sync command, which records
the identifiers of the threads currently in critical sections and waits until all of them exit
the sections. Note that if a new thread enters a critical section while sync is waiting, the
command does not wait for the completion of its section. For example, when t1 calls
sync in the execution in Figure 2, it has to wait for critical sections S1, S5 and S6 to
finish. However, it does not wait for S2 or S4, as they start after sync was called.

Figure 2 shows an abstract implementation of the RCU primitives, formalising the
above description of their semantics (for now, the reader should disregard the anno-
tations in the figure). A concrete optimised RCU implementation would simulate the
abstract one. Whether every thread is inside or outside an RCU critical section is deter-
mined by its entry in the rcu array.

RCU-Based Counter. Figure 3 gives the implementation of the running example using
RCU. Its overall structure is similar to the implementation using hazard pointers. In
inc, we wrap an RCU critical section around the commands starting from the read
of the global variable C at line 20 and including all memory accesses involving the
value read up to the CAS at line 21. The correctness of the algorithm is ensured by
having reclaim call sync at line 8, before deallocating the detached nodes. This blocks
the thread until all critical sections that existed at the time of the call to sync finish.
Since, when sync is called, the nodes to be deallocated have already been moved to
the thread-local detached set, newly arriving inc operations have no way of gaining

256 A. Gotsman, N. Rinetzky, and H. Yang

a reference to one of these nodes, which guarantees the safety of their deallocation. We
can similarly argue that an ABA problem does not occur, and thus, the algorithm is
linearizable. We can formulate the contract among threads as follows:

“for all t and x, if thread t has stayed in a critical section since it saw C

pointing to x, then x is allocated,”
(5)

which is of the same form as (2). Here, a grace period for a thread, specified by the
‘since’ clause, lasts for as long as the thread stays in its critical section. During the time
span of sync, every thread passes through a point when it is not in a critical section.
Hence, after executing line 8, for every node x to be deallocated we know:

“for all t, C has not pointed to x since t was not in a critical section,” (6)

which is of the same form as (3). As before, this is inconsistent with the ‘since’ clause
of (5), which guarantees that deallocating x will not violate (5).

Pattern. The algorithms using hazard pointers and read-copy-update fundamentally
rely on the same synchronisation pattern, where a potentially harmful race between
threads accessing nodes and those trying to reclaim them is avoided by establishing an
assertion of the form (ηt,x since μx) before every access, and (¬μx since ¬ηt,x) before
every deallocation. This implicit pattern is highlighted not by examining the syntactic
structure of different memory management implementations, but by observing that the
arguments about their correctness have the same form, as can be seen in our proofs.

3 Abstract Logic

Reasoning about highly concurrent algorithms, such as the example in §2, is conve-
nient in logics based on rely-guarantee [10,15], which avoids direct reasoning about all
possible thread interactions in a concurrent program by specifying a relation (the guar-
antee condition) for every thread restricting how it can change the program state. For
any given thread, the union of the guarantee conditions of all the other threads in the
program (its rely condition) restricts how those threads can interfere with it, and hence,
allows reasoning about this thread in isolation.

The logic we use to formalise our verification method for memory reclamation
algorithms uses a variant of rely-guarantee reasoning proposed in SAGL [4] and
RGSep [17]—logics for reasoning about concurrent programs that combine rely-
guarantee reasoning with separation logic. These partition the program heap into several
thread-local parts (each of which can only be accessed by a given thread) and the shared
part (which can be accessed by all threads). The partitioning is defined by proofs in the
logic: an assertion in the code of a thread restricts its local state and the shared state.
Thus, while reasoning about a thread, we do not have to consider local states of other
threads. Additionally, the partitioning is dynamic, meaning that we can use ownership
transfer to move some part of the local state into the shared state and vice versa. Rely
and guarantee conditions are then specified as relations on the shared state determining
how the threads change it. This is in contrast with the original rely-guarantee method,
in which rely and guarantee conditions are relations on the whole program state. We
use RGSep [17] as the basis for the logic presented in this section. Our logic adds just
enough temporal reasoning to RGSep to formalise the verification method for algo-
rithms based on grace periods that we explained in §2.

Verifying Concurrent Memory Reclamation Algorithms with Grace 257

3.1 Preliminaries

Programming Language. We formalise our results for a simple language:

C ::= α | C;C | C + C | C∗ | 〈C〉 P ::= C1 ‖ . . . ‖ CN

A program P is a parallel composition of N threads, which can contain primitive com-
mands α ∈ PComm, sequential composition C;C′, nondeterministic choice C + C′,
iteration C∗ and atomic execution 〈C〉 of C. We forbid nested atomic blocks. Even
though we present our logic for programs in the above language, for readability we use
a C-like notation in our examples, which can be easily desugared [7, §A].

Separation Algebras. To reason about concurrent algorithms, we often use permis-
sions [1], describing ways in which threads can operate on an area of memory. We
present our logic in an abstract form [2] that is parametric in the kind of permissions
used. A separation algebra is a set Σ, together with a partial commutative, associative
and cancellative operation ∗ on Σ and a unit element ε ∈ Σ. The property of cancella-
tivity says that for each θ ∈ Σ, the function θ ∗ · : Σ ⇀ Σ is injective. In the rest of the
paper we assume a separation algebra State with the operation ∗. We think of elements
θ ∈ State as portions of program states and the ∗ operation as combining such portions.

Primitive Commands. We assume that the semantics of every primitive command
α ∈ PComm, executed by thread t, is given by a transformer f t

α : State→ P(State)�.
Here P(State)� is the set of subsets of State with a special element � used to denote
an error state, resulting, e.g., from dereferencing an invalid pointer. For our logic to be
sound, we need to place certain standard restrictions on f t

α, deferred to [7, §A].

Notation. We write g(x)↓ to mean that the function g is defined on x, and g(x)↑ that
it is undefined on x. We also write for an expression whose value is irrelevant.

3.2 Assertion Language

Assertions in the logic describe sets of worlds, comprised of the local state of a thread
and a history of the shared state. Local states are represented by elements of a separa-
tion algebra (§3.1), and histories, by sequences of those. Our assertion language thus
includes three syntactic categories, for assertions describing states, histories and worlds.

Logical Variables. Our logic includes logical variables from a set LVar = LIVar
LSVar; variables from LIVar = {x, y, . . .} range over integers, and those from LSVar =
{X,Y, . . .}, over memory states. Let LVal = State ∪ Z be the set of values of logical
variables, and LInt ⊆ LVar→ LVal, the set of their type-respecting interpretations.

Assertions for States. We assume a language for denoting subsets of State× LInt:

p, q ::= true | ¬p | p⇒ q | X | ∃x. p | ∃X. p | emp | p ∗ q | . . .
The interpretation of interesting connectives is as follows:

θ, i |= emp ⇐⇒ θ = ε θ, i |= X ⇐⇒ θ = i(X)

θ, i |= p ∗ q ⇐⇒ ∃θ′, θ′′. (θ′ ∗ θ′′ = θ) ∧ (θ′, i |= p) ∧ (θ′′, i |= q)

The assertion emp denotes an empty state; X , the state given by its interpretation; and
p ∗ q, states that can be split into two pieces such that one of them satisfies p and the
other, q. We assume that ∗ binds stronger than the other connectives.

258 A. Gotsman, N. Rinetzky, and H. Yang

Assertions for Histories. A history is a non-empty sequence recording all shared states
that arise during the execution of a program: ξ ∈ History = State+. We denote the
length of a history ξ by |ξ|, its i-th element by ξi, and its i-th prefix, by ξ|i (so that∣∣ξ|i∣∣ = i.) We refer to the last state ξ|ξ| in a history ξ as the current state. We define
assertions denoting subsets of History× LInt:

τ, Υ ::= true | ¬τ | τ1 ⇒ τ2 | ∃x. τ | ∃X. τ | p | τ1 since τ2 | τ ! p
ξ, i |= p ⇐⇒ ξ|ξ|, i |= p
ξ, i |= τ1 since τ2 ⇐⇒ ∃i ∈ {1, ..., |ξ|}. (ξ|i, i |= τ2) ∧ ∀j ∈ {i, ..., |ξ|}. (ξ|j , i |= τ1)
ξ, i |= τ ! p ⇐⇒ ∃ξ′, θ. (ξ = ξ′θ) ∧ (ξ′, i |= τ) ∧ (θ, i |= p)

The assertion p denotes the set of histories of shared states, whose last state satisfies p;
the box signifies that the assertion describes a shared state, as opposed to a thread-local
one. The assertion (τ1 since τ2) describes those histories where both τ1 and τ2 held at
some point in the past, and since then, τ1 has held continuously. The assertion τ ! p (τ
extended with p) describes histories obtained by appending a state satisfying p to the
end of a history satisfying τ . It is easy to check that (4) from §2 is indeed a tautology.

Assertions for Worlds. A world consists of a thread-local state and a history of shared
states such that the combination of the local state and the current shared state is defined:

ω ∈World = {(θ, ξ) ∈ State× History | (θ ∗ ξ|ξ|)↓}. (7)

We define assertions denoting subsets of World× LInt:

P,Q ::= p | τ | true | ¬P | P ⇒ Q | ∃x. P | ∃X.P | P ∗Q
θ, ξ, i |= p ⇐⇒ θ, i |= p θ, ξ, i |= τ ⇐⇒ ξ, i |= τ

θ, ξ, i |= P ∗Q ⇐⇒ ∃θ′, θ′′. (θ = θ′ ∗ θ′′) ∧ (θ′, ξ, i |= P) ∧ (θ′′, ξ, i |= Q)

An assertion P ∗Q denotes worlds in which the local state can be divided into two parts
such that one of them, together with the history of the shared partition, satisfies P and
the other, together with the same history, satisfiesQ. Note that ∗ does not split the shared
partition, p does not restrict the shared state, and τ does not restrict the thread-local one.

3.3 Rely/Guarantee Conditions and the Temporal Invariant

Actions. The judgements of our logic include guarantee G and rely R conditions, de-
termining how a thread or its environment can change the shared state, respectively.
Similarly to RGSep [17], these are sets of actions of the form l | p ∗X � q ∗X , where
l, p and q are assertions over states, and X is a logical variable over states. An action
denotes a relation in P(State× State× State):

�l | p∗X � q∗X� = {(θl, θp, θq) | ∃i. (θl, i |= l)∧(θp, i |= p∗X)∧(θq, i |= q∗X)},
and a rely or a guarantee denotes the union of their action denotations. We write R ⇒
R′ for �R� ⊆ �R′�. Informally, the action l | p ∗X � q ∗X allows a thread to change
the part of the shared state that satisfies p into one that satisfies q, while leaving the rest
of the shared state X unchanged. The assertion l is called a guard: it describes a piece
of state that has to be in the local partition of the thread for it to be able to perform
the action. We omit l when it is emp. Our actions refer explicitly to the unchanged part
X of the shared state, as we often need to check that a command performing an action

Verifying Concurrent Memory Reclamation Algorithms with Grace 259

f tid
α (�p�) ⊆ �q�

R,G, Υ �tid {p}α {q} LOCAL

P ∧ Υ ⇒ P ′ R ⇒ R′ G′ ⇒ G Q′ ∧ Υ ⇒ Q
R′, G′, Υ �tid {P ′}C {Q′}
R,G, Υ �tid {P}C {Q} CONSEQ

R,G, Υ �tid {P}C {Q}
F is stable under R ∪G and Υ

R,G, Υ �tid {P ∗ F}C {Q ∗ F} FRAME

Q ⇒ Υ P , Q are stable under R and Υ
∅, G, true �tid {P} 〈C〉a {Q}
R,G, Υ �tid {P} 〈C〉a {Q} SHARED-R

p ⇒ l ∗ true {l | ps � qs} ⇒ {a} a ∈ G ∅, ∅, true �tid {p ∗ ps}C {q ∗ qs}
∅, G, true �tid {p ∧ τ ∧ ps } 〈C〉a {q ∧ ((τ ∧ ps)
 qs)}

SHARED

R1, G1, Υ �1 {P1}C1 {Q1} . . . Rn, Gn, Υ �n {Pn}Cn {Qn}
Rtid =

⋃{Gk | 1 ≤ k ≤ n ∧ k �= tid} P1 ∗ . . . ∗ Pn ⇒ Υ Pk, Qk stable under Rk and Υ

� {P1 ∗ . . . ∗ Pn}C1 ‖ . . . ‖ Cn {Q1 ∗ . . . ∗Qn} PAR

Fig. 4. Proof rules of the logic

preserves global constraints on it (see §4.3). We require that p and q in l | p∗X � q∗X
be precise. An assertion r for states is precise [13], if for every state θ and interpretation
i, there exists at most one substate θ1 satisfying r, i.e., such that θ1, i |= r and θ = θ1∗θ2
for some θ2. Informally, a precise assertion carves out a unique piece of the heap.

Temporal Invariant. Rely/guarantee conditions describe the set of actions that threads
can perform at any point, but do not say anything about temporal protocols that the
actions follow. We describe such protocols using a temporal invariant, which is an
assertion Υ over histories of the shared state. Every change to the shared state that a
thread performs using one of the actions in its guarantee has to preserve Υ ; in return,
a thread can rely on the environment not violating the invariant. We require that Υ be
insensitive to logical variables, i.e., ∀ξ, i, i′. (ξ, i |= Υ) ⇐⇒ (ξ, i′ |= Υ).

Stability. When reasoning about the code of a thread in our logic, we take into account
the interference from the other threads in the program, specified by the rely R and the
temporal invariant Υ , using the concept of stability. An assertion over worldsP is stable
under an action l | ps � qs and a temporal invariant Υ , if it is insensitive to changes to
the shared state permitted by the action that preserve the invariant:

∀θ, θs, θ′s, θl, i, ξ. ((θ, ξθs, i |= P) ∧ (ξθs, i |=Υ) ∧ (ξθsθ
′
s, i |=Υ) ∧

(θl, θs, θ
′
s) ∈ �l | ps � qs� ∧ (θ ∗ θl ∗ θs)↓ ∧ (θ ∗ θ′s)↓) =⇒ (θ, ξθsθ

′
s, i |= P).

(8)

This makes use of the guard l: we do not take into account environment transitions when
the latter cannot possibly own the guard, i.e., when θl is inconsistent with the current
thread-local state θ and the current shared state θs. An assertion is stable underR and Υ ,
when it is stable under every action in R together with Υ . We only consider assertions
that are closed under stuttering on histories: (θ, ξθsξ′, i |= P)⇒ (θ, ξθsθsξ

′, i |= P).

3.4 Proof System

The judgements of the logic are of the formR,G, Υ 	tid {P}C {Q}. Here P andQ are
the pre- and postcondition of C, denoting sets of worlds; G describes the set of atomic
changes that the thread tid executing C can make to the shared state; R, the changes to
the shared state that its environment can make; and Υ , the temporal invariant that both

260 A. Gotsman, N. Rinetzky, and H. Yang

have to preserve. The judgement guarantees that the commandC is safe, i.e., it does not
dereference any invalid pointers when executed in an environment respecting R and Υ .

The proof rules of our logic are given in Figure 4. We have omitted the more standard
rules [7, §A]. We have a single axiom for primitive commands executing on the local
state (LOCAL), which allows any pre- and postconditions consistent with their seman-
tics. The axiom uses the expected pointwise lifting of the transformers f t

α from §3.1
to assertion denotations, preserving the interpretation of logical variables. The CON-
SEQ rule looks as usual in rely/guarantee, except it allows strengthening the pre- and
postcondition with the information provided by the temporal invariant Υ .

By convention, the only commands that can operate on the shared state are atomic
blocks, handled by the rules SHARED-R and SHARED. The SHARED-R rule checks that
the atomic block meets its specification in an empty environment, and then checks that
the pre- and postcondition are stable with respect to the actual environmentR, and that
the postcondition implies the invariant Υ . Note that to establish the latter in practice,
we can always add Υ to the precondition of the atomic block using CONSEQ.

SHARED handles the case of an empty rely condition, left by SHARED-R. It is the
key rule in the proof system, allowing an atomic command C to make a change to
the shared state according to an action l | ps � qs. The action has to be included
into the annotation a of the atomic block, which in its turn, has to be permitted by
the guarantee G. The annotations are part of proofs in our logic. For the logic to be
sound, we require that every atomic command in the program be annotated with the
same action throughout the proof. SHARED also requires the thread to have a piece of
state satisfying the guard l in its local state p. It combines the local state p with the
shared state ps, and runs C as if this combination were in the thread’s local state. The
rule then splits the resulting state into local q and shared qs parts. Note that SHARED

allows the postcondition of the atomic block to record how the shared state looked like
before its execution: the previous view ps of the shared state and the assertion τ about
its history are extended with the new shared state qs with the aid of ! (§3.1).

The FRAME rule ensures that if a commandC is safe when run from states in P , then
it does not touch an extra piece of state described by F . Since F can contain assertions
constraining the shared state, we require it to be stable under R ∪G and Υ .

PAR combines judgements about several threads. Their pre- and postconditions in
the premisses of the rule are ∗-conjoined in the conclusion, which composes the local
states of the threads and enforces that they have the same view of the shared state.

3.5 Soundness

Let us denote by Prog the set of programs P with an additional command done,
describing a completed computation. The language of §3.1 has a standard small-step
operational semantics, defined by a relation −→: Config × Config, which transforms
configurations from the set Config = (Prog × State) ∪ {�}. (Note that this semantics
ignores the effects of weak memory consistency models, which are left for future work.)
We defer the definition of −→ to [7, §A]. The following theorem is proved in [7, §E].

Theorem 1 (Soundness). Assume 	 {P}P {Q} and take θl, θs and i such that
θl, θs, i |= P . Then (P , θl ∗ θs) �−→∗� and, whenever (P , θl ∗ θs) −→∗ (done ‖
. . . ‖ done, θ′), for some θ′l, θ

′
s and ξ we have θ′ = θ′l ∗ θ′s and θ′l, ξθ

′
s, i |= Q.

Verifying Concurrent Memory Reclamation Algorithms with Grace 261

4 Logic Instantiation and Hazard Pointers

As explained in §2, proofs of algorithms based on grace periods, use only a restricted
form of temporal reasoning. In this section, we describe an instantiation of the abstract
logic of §3 tailored to such algorithms. This includes a particular form of the tempo-
ral invariant (§4.2) and a specialised version of the SHARED rule (SHARED-I below)
that allows us to establish that the temporal invariant is preserved using standard state-
based reasoning. We present the instantiation by the example of verifying the concurrent
counter algorithm with hazard pointers from §2.

4.1 Assertion Language

Permissions. We instantiate State to RAMe = N ⇀fin ((Z× {1,m}) ∪ {e}). A state
thus consists of a finite partial function from memory locations allocated in the heap to
the values they store and/or permissions. The permission 1 is a full permission, which
allows a thread to perform any action on the cell; the permission m is a master per-
mission, which allows reading and writing the cell, but not deallocating it; and e is an
existential permission, which only allows reading the cell and does not give any guar-
antees regarding its contents. The transformers f t

α over RAMe are given in [7, §A].
We define ∗ on cell contents as follows: (u,m) ∗ e = (u, 1); undefined in all other

cases. This only allows a full permission to be split into a master and an existential one,
which is enough for our purposes. For θ1, θ2 ∈ RAMe, θ1 ∗ θ2 is undefined, if for some
x, we have θ1(x)↓, θ2(x)↓, but (θ1(x) ∗ θ2(x))↑. Otherwise,

θ1∗θ2= {(x,w) | (θ1(x)=w∧θ2(x)↑)∨(θ2(x)=w∧θ1(x)↑)∨(w= θ1(x)∗θ2(x))}.

State Assertions. To denote elements of RAMe, we extend the assertion language for
predicates over states given in §3.2: p ::= . . . | E �→ F | E �→m F | E �→e , where
E,F range over expressions over integer-valued logical variables. The semantics is as
expected; e.g., [�E�i : (�F �i, 1)], i |= E �→ F and x �→ u⇔ x �→m u ∗ x �→e .

Conventions. We assume that logical variables t, t′, . . . range over thread identifiers in
{1, . . . , N}. We write A[k] for A + k, and truee for ∃A. �x∈A x �→e , where � is the
iterated version of ∗. We adopt the convention that global variables are constants, and
local variables are allocated at fixed addresses in memory. For a local variable var of
thread tid, we write var � P for ∃var . (&var+ tid − 1) �→ var ∗ P , where &var is
the address of the variable. Note that here var is a program variable, whereas var is a
logical one. We use a similar notation for lists of variables V .

4.2 Actions and the Temporal Invariant

The actions used in the proof of the running example and the rely/guarantee conditions
constructed from them are given in Figure 5. Id allows reading the contents of the shared
state, but not modifying it, and HPtid allows modifying the contents of the t-th entry in
the hazard pointer array. The rely Rtid and the guarantee Gtid are set up in such a way
that only thread tid can execute HPtid.

Inc allows a thread to change the node pointed to by C from x to y, thus detaching
the old node x. Note that y �→ occurs on the right-hand side of Inc, but not on its

262 A. Gotsman, N. Rinetzky, and H. Yang

X � X (Id) x �→m | x �→e ∗X � X (Take)

HP[tid−1] �→ ∗X � HP[tid−1] �→ ∗X (HPtid)

C �→ x ∗ x �→ ∗X � C �→ y ∗ y �→ ∗ x �→e ∗X (Inc)

Gtid = {HPtid, Inc,Take, Id}; Rtid =
⋃

{Gk | 1 ≤ k ≤ N ∧ k �= tid}

ΥHP ⇐⇒ ∀x, t. ((HP[t − 1] �→ x ∗ true since C �→ x ∗ x �→ ∗ true) ⇒ x �→e ∗ true)

Fig. 5. Rely/guarantee conditions and the temporal invariant used in the proof of the counter
algorithm with hazard pointers

left-hand side. Hence, the thread executing the action transfers the ownership of the
node y (in our example, initially allocated in its local state) into the shared state. Since
x �→ occurs on the left-hand side of Inc, but only x �→e occurs on its right-hand side,
the thread gets the ownership of x �→m . This is used to express the protocol that the
thread detaching the node will be the one to deallocate it. Namely, Take allows a thread
to take the remaining existential permission from the shared state only when it has the
corresponding master permission in its local state. The existential permission left in
the shared state after a thread executes Inc lets concurrently running threads access the
detached node until it is deallocated.

Threads can only execute Take and other actions when these do not violate the tem-
poral invariant ΥHP in Figure 5. Temporal invariants used for proofs of algorithms based
on grace periods are of the form “∀x, t. (g since r)⇒ c”, where “g since r ” defines
the duration of the grace period for a thread t and a location x, and c gives the prop-
erty that has to be maintained during the grace period. In our example, the invariant
formalises (2): if a hazard pointer of t has pointed to a node x continuously since C

pointed to x, then an existential permission for x is present in the shared state.

4.3 Proof Outlines and a Derived Rule for Grace Periods

The proof outline for the running example is shown in Figures 6 and 7. In the figure,
we write CASa,b(addr,v1,v2) as a shorthand for the following, where the assume
command “assumes” its parameter to be non-zero [7, §A]:

if (nondet()) {〈assume(*addr == v1); *addr = v2〉a; return 1; }

else { 〈assume(*addr != v1)〉b; return 0; }

The bulk of the proof employs standard state-based reasoning of the kind performed in
RGSep [17]. Temporal reasoning is needed, e.g., to check that every command changing
the shared state preserves the temporal invariant ΥHP (the premiss Q⇒ Υ in SHARED-
R). We start by discussing the proof outline of inc in Figure 6 in general terms; we
then describe the handling of commands changing the shared state in detail.

Verifying inc. Let H ⇔ (�t HP[t−1] �→) and I ⇔ H ∗ ∃y. C �→ y ∗ y �→ ∗ truee .
The pre- and postcondition of inc in Figure 6 thus state that the shared state always
contains the hazard pointer array, the pointer at the address C and the node it identifies.
Additionally, we can have an arbitrary number of existential permissions for nodes that
threads leave in the shared state in between executing Inc and Take. We also have an
assertion Ftid, defined later, which describes the thread-local detached set.

Verifying Concurrent Memory Reclamation Algorithms with Grace 263

1 int *C = new int(0), *HP[N] = {0};

2 Set detached[N] = {∅};
3 int inc() {

4 int v, *n, *s, *s2;

5 {V � Ftid ∧ I}
6 n = new int;

7 do {

8 {V � n
→ ∗ Ftid ∧ I}
9 do {

10 {V � n
→ ∗ Ftid ∧ I}
11 〈s = C〉Id;
12 {V � n
→ ∗ Ftid ∧ I}
13 〈HP[tid-1] = s〉HPtid

;

14 {V � n
→ ∗ Ftid ∧ I ∧
15 HP[tid− 1]
→ s ∗ true }
16 〈s2 = C〉Id;
17 {V � n
→ ∗ Ftid ∧ I ∧

18 (HP[tid− 1]
→ s ∗ true

19 since C
→ s2 ∗ s2
→ ∗ true)}
20 } while (s != s2);

21 {V � n
→ ∗ Ftid ∧ I ∧ s
→e ∗ true ∧
22 (HP[tid− 1]
→ s ∗ true

23 since C
→ s ∗ s
→ ∗ true)}
24 〈v = *s〉Id;
25 *n = v+1;

26 {V � n
→ ∗ Ftid ∧ I ∧ s
→e ∗ true ∧
27 (HP[tid− 1]
→ s ∗ true

28 since C
→ s ∗ s
→ ∗ true)}
29 } while (!CASInc,Id(&C, s, n));

30 {V � s
→m ∗ Ftid ∧ I ∧ s
→e ∗ true }
31 reclaim(s);

32 {V � Ftid ∧ I}
33 return v; }

Fig. 6. Proof outline for inc with hazard pointers. Here V is v, n, s, s2 , my , in use , i.

At line 11 of inc, the current thread reads the value of C into the local variable
s. For the postcondition of this command to be stable, we do not maintain any cor-
relation between the values of C and s, as other threads might change C using Inc at
any time. The thread sets its hazard pointer to s at line 13. The postcondition includes
HP[tid− 1] �→ s ∗ true , which is stable, as Rtid and Gtid (Figure 5) allow only the cur-
rent thread to execute HPtid.

At line 16, the thread reads the value of C into s2. Right after executing the command,
we have HP[tid− 1] �→ s ∗ true ∧ C �→ s2 ∗ s2 �→ ∗ true . This assertion is unstable,
as other threads may change C at any time using Inc. We therefore weaken it to the
postcondition shown by using the tautology (η ∧ μ) ⇒ (η since μ). It is easy to check
that an assertion (η since μ) is stable if η is. Since HP[tid− 1] �→ s ∗ true is stable, so
is the postcondition of the command in line 16. After the test s != s2 in line 20 fails,
the since clause in this assertion characterises the grace period of the thread tid for the
location s, as stated by ΥHP. This allows us to exploit ΥHP at line 23 using CONSEQ,
establishing s �→e ∗ true . This assertion allows us to access the node at the address s
safely at line 24.

If the CAS in line 29 is successful, then the thread transfers the ownership of the
newly allocated node n to the shared state, and takes the ownership of the master per-
mission for the node s; the existential permission for s stays in the shared state. The
resulting assertion s �→m ∧ s �→e ∗ true is stable, because the only action that can
remove s �→e from the shared state, Take, is guarded by s �→m . Since the current
thread has the ownership of s �→m and s �→m ∗ s �→m is inconsistent, the condition
(θ ∗ θl ∗ θs)↓ in (8), checking that the guard is consistent with the local state, implies
that the action cannot be executed by the environment, and thus, the assertion is stable.

Derived Rule for Grace Periods. To check that the commands in lines 13 and 29 of
inc preserve ΥHP, we use the following rule SHARED-I, derived from SHARED [7, §A]:

264 A. Gotsman, N. Rinetzky, and H. Yang

p ⇒ l ∗ true a = (l | p′s � q′s) ∈ G ps ⇒ p′s qs ⇒ q′s
∅, ∅, true tid {p ∗ (ps ∧ ¬(g ∧ r))}C {q ∗ (qs ∧ (g ∧ r ⇒ c))}
∅, ∅, true tid {p ∗ (ps ∧ g ∧ c)}C {q ∗ (qs ∧ (g ⇒ c))}

∅, G, true tid {p ∧ ps ∧ ((g since r) ⇒ c)}〈C〉a {q ∧ qs ∧ ((g since r) ⇒ c)}

This gives conditions under which 〈C〉 preserves the validity of an assertion of the form

(g since r)⇒ c (9)

and thus allows us to prove the preservation of a temporal invariant of the form (9) using
standard Hoare-style reasoning. In the rule, ps describes the view of the shared partition
that the current thread has before executingC, and qs, the state in whichC leaves it. The
rule requires that the change from ps to qs be allowed by the annotation a = (l | p′s �
q′s), i.e., that ps ⇒ p′s and qs ⇒ q′s. It further provides two Hoare triples to be checked
of C, which correspond, respectively, to the two cases for why (g since r) ⇒ c may
hold before the execution of C: ¬(g since r) or (g since r) ∧ c .

As in SHARED, the two Hoare triples in the premiss allow the command inside the
atomic block to access both local and shared state. Consider the first one. We can assume
¬(g ∧ r) in the precondition, as it is implied by ¬(g since r). Since g since r
does not hold before the execution of C, the only way to establish it afterwards is by
obtaining g∧ r. In this case, to preserve (9), we have to establish c, which motivates the
postcondition. Formally: ((¬(g since r)) ! g ∧ r ⇒ c)⇒ ((g since r)⇒ c).

Consider now the second Hoare triple. Its precondition comes from the tautology
((g since r) ∧ c) ⇒ g ∧ c . We only need to establish c in the postcondition when
g since r holds there, which will only be the case if g continues to hold after C
executes: (((g since r) ∧ c) ! g ⇒ c)⇒ ((g since r)⇒ c).

Preserving the Temporal Invariant. We illustrate the use of SHARED-I on the com-
mand in line 29 of Figure 6; the one in line 13 is handled analogously. We consider
the case when the CAS succeeds, i.e., C is {assume(C == s); C = n;}. Let P
and Q be the pre- and postconditions of this command in lines 26 and 30, respec-
tively. We thus need to prove Rtid, Gtid, Υ 	tid {P} 〈C〉Inc {Q}. We first apply CON-
SEQ to strengthen the precondition of the CAS with Υ , and then apply SHARED-R.
This rule, in particular, requires us to show that the temporal invariant is preserved:
∅, Gtid, true 	tid {P ∧ Υ} C {Q ∧ Υ}. Let us first strip the quantifiers over x and t in
Υ using a standard rule of Hoare logic. We then apply SHARED-I with

g = (HP[t−1] �→ x ∗ true); r = (C �→ x ∗ x �→ ∗ true); c = (x �→e ∗ true);
ps = (H ∗ ∃y.C �→ y ∗ y �→ ∗ truee); p = n �→ ;
qs = (H ∗ ∃y.C �→ y ∗ y �→ ∗ s �→e ∗ truee); q = s �→m .

We consider only the first Hoare triple in the premiss of SHARED-I, which corresponds
to g since r being false before the atomic block. The triple instantiates to

{n �→ ∗ ((H ∗ ∃y.C �→ y ∗ y �→ ∗ truee) ∧ ¬(HP[t− 1] �→x ∗ true ∧ C �→ x ∗x �→ ∗ true))}
assume(C == s); C = n; {s �→m ∗ (H ∗ ∃y.C �→ y ∗ y �→ ∗ s �→e ∗ truee) ∧

(((HP[t−1] �→ x ∗ true)∧ (C �→ x ∗x �→ ∗ true))⇒ (x �→e ∗ true))}

Recall that when the CAS at line 29 inserts a node into the shared data structure, we
already might have a hazard pointer set to the node (§2). The postcondition of the above

Verifying Concurrent Memory Reclamation Algorithms with Grace 265

1 void reclaim(int *s) { {V � s
→m ∗ Ftid ∧ s
→e ∗ true ∧ I}
2 insert(detached[tid-1], s);

3 if (nondet()) return;

4 Set in_use = ∅;
5 while (!isEmpty(detached[tid-1])) {

6 {V � ∃A. detached[tid− 1]
→ A ∗D(A) ∗D(in use) ∧A �= ∅ ∧ I}
7 bool my = true;

8 Node *n = pop(detached[tid-1]);

9 {V � my ∧ ∃A. detached[tid− 1]
→A ∗D(A) ∗D(in use) ∗ n
→m ∧ n
→e ∗ true ∧ I}
10 for (int i = 0; i < N && my; i++) {

11 {V � my ∧ ∃A. detached[tid− 1]
→ A ∗D(A) ∗D(in use) ∗ n
→m ∗ n
→e ∗ true ∧
12 0 ≤ i < N ∧ I ∧ H ∗ ∃y. y �= n ∧ C
→ y ∗ y
→ ∗ truee ∧
13 ∀0 ≤ j < i. (∃y. y �= n ∧ C
→ y ∗ y
→ ∗ truee since ∃x. x �= n ∧ HP[j]
→ x ∗ true)}
14 if (〈HP[i] == n〉Id) my = false;

15 }

16 if (my) {

17 {V � ∃A. detached[tid− 1]
→ A ∗D(A) ∗D(in use) ∗ n
→m ∧ n
→e ∗ true ∧ I ∧
18 ∀t.¬ C
→ n ∗ true since ¬ HP[t− 1]
→ n ∗ true }
19 〈 ; 〉Take
20 {V � ∃A. detached[tid− 1]
→ A ∗D(A) ∗D(in use) ∗ n
→ ∧ I}
21 free(n);

22 } else { insert(in_use, n); }

23 } {V � detached[tid− 1]
→ ∅ ∗D(in use) ∧ I}
24 moveAll(in_use, detached[tid-1]); {V � Ftid ∧ I}
25 }

Fig. 7. Proof outline for reclaim with hazard pointers. V is v, n, s, s2 , my , in use , i.

triple states that, in this case, we need to establish the conclusion of the temporal invari-
ant. This is satisfied, as x �→ ⇔ x �→m ∗ x �→e .

Verifying reclaim. We now explain the proof outline in Figure 7. The predicate Ftid

describes the detached set of thread tid:

D(A) ⇐⇒ �x∈A(x �→m ∧ x �→e ∗ true);
Ftid ⇐⇒ ∃A. detached[tid− 1] �→ A ∗D(A).

(10)

Ftid asserts that thread tid owns the tid-th entry of the detached array, which stores the
set A of addresses of detached nodes; D(A) asserts that, for every x ∈ A, the thread
has the master permission for x in its local state, and the shared state contains the
existential permission for x. The assertion Ftid is stable, since, as we explained above,
so is x �→m ∧ x �→e ∗ true . We assume the expected specifications for set operations.

The core of reclaim is the loop following the pop operation in line 8, which checks
that the hazard pointers do not point to the node that we want to deallocate. The as-
sertion in line 13 formalises (3) and is established as follows. If the condition on the
pointer HP[i] in line 14 fails, then we know that ∃x. x �= n ∧ HP[i] �→ x ∗ true . Recall
that, according to (7), §3.2, the combination of the local and the shared states has to
be consistent. Then, since we have n �→m in our local state, we cannot have C point-
ing to n: in this case the full permission n �→ would be in the shared state, and
n �→ ∗ n �→m is inconsistent. Hence, ∃y. y �= n ∧ C �→ y ∗ y �→ ∗ true . By the
tautology (η ∧ μ)⇒ (η since μ), we obtain the desired assertion:

∃y. y �= n ∧ C �→ y ∗ y �→ ∗ true since ∃x. x �= n ∧ HP[i] �→ x ∗ true . (11)

266 A. Gotsman, N. Rinetzky, and H. Yang

Since n �→m ∧ ∃y. y �= n ∧ C �→ y ∗ y �→ ∗ true is stable, so is the loop invariant.
At line 19, we use (11) and (4) to show that the existential permission for the node n
can be safely removed from the shared state. After this, we recombine it with the local
master permission to obtain n �→ , which allows deallocating the node.

Absence of Memory Leaks. According to Theorem 1, the above proof establishes
that the algorithm is memory safe. In fact, it also implies that the algorithm does not
leak memory. Indeed, let P be the program consisting of any number of inc operations
running in parallel. From our proof, we get that P satisfies the following triple:

 {L ∗ (�t detached[t− 1] �→ ∅) ∧ (�t HP[t− 1] �→ 0) ∗ ∃y.C �→ y ∗ y �→ 0 }
P {L ∗ (�t Ft) ∧ (�t HP[t− 1] �→) ∗ ∃y.C �→ y ∗ y �→ ∗ truee },

where L includes the local variables of all threads. The assertion truee in the postcon-
dition describes an arbitrary number of existential permissions for memory cells. How-
ever, physical memory cells are denoted by full permissions; an existential permission
can correspond to one of these only when the corresponding master permission is avail-
able. Every such master permission comes from some Ft, and hence, the corresponding
cell belongs to detached[t− 1]. Thus, at the end of the program, any allocated cell is
reachable from either C or one of the detached sets.

Extensions. Even though we illustrated our proof technique using the idealistic ex-
ample of a counter, the technique is also applicable both to other algorithms based on
hazard pointers and to different ways of optimising hazard pointer implementations. In
[7, §B], we demonstrate this on the example of a non-blocking stack with several op-
timisations of hazard pointers used in practice [12]: e.g., the pointers are dynamically
allocated, reclaim scans the hazard list only once, and the detached sets are repre-
sented by lists with links stored inside the detached elements themselves. The required
proof is not significantly more complex than the one presented in this section.

In [7, §C], we also present an adaptation of the above proof to establish the lineariz-
ability of the algorithm following the approach in [17] (we leave a formal integration of
the two methods for future work). The main challenge of proving linearizability of this
and similar algorithms lies in establishing that the ABA problem described in §2 does
not occur, i.e., when the CAS in line 29 of Figure 6 is successful, we can be sure that
the value of C has not changed since we read it at line 16. In our proof this is easy to es-
tablish, as between lines 16 and 29, all assertions are stable and contain s �→e ∗ true ,
which guarantees that s cannot be recycled.

5 Formalising Read-Copy-Update

RCU Specification. We start by deriving specifications for RCU commands in our
logic from the abstract RCU implementation in Figure 2; see Figure 8. The formula
S(tid, 1) states that the thread tid is in a critical section, and S(tid, 0), that it is outside
one. We use the identity action Id and an action RCUtid allowing a thread tid to enter
or exit a critical section. The latter is used to derive the specification for rcu enter
and rcu exit (see Figure 2). To satisfy the premisses of the SHARED-R rule in these
derivations, we require certain conditions ensuring that the RCU client will not corrupt

Verifying Concurrent Memory Reclamation Algorithms with Grace 267

Let S(tid, k) = rcu[tid− 1] �→ k ∗ true and

X � X (Id) rcu[tid− 1] �→ ∗X � rcu[tid− 1] �→ ∗X (RCUtid)

Then, R, {RCUtid}, Υ tid {S(tid, 0) ∧ emp} rcu enter() {S(tid, 1) ∧ emp};
R, {RCUtid}, Υ tid {S(tid, 1) ∧ emp} rcu exit() {S(tid, 0) ∧ emp};
R, {Id}, Υ tid {p ∧ τ} sync() {p ∧ ∀t. τ since S(t, 0)},

where 1. R ⇒ {(rcu[tid− 1] �→ x ∗ true) � (rcu[tid− 1] �→ x ∗ true)};
2. Υ is stable under {Id,RCUtid} and true; and
3. p ∧ τ is stable under R ∪ {Id} and Υ .

Fig. 8. Specification of RCU commands

the rcu array. First, we require that the rely R does not change the element of the
rcu array for the thread tid executing the RCU function (condition 1). In practice, R
includes the actions RCUk for k �= tid and actions that do not access the rcu array.
Second, we require that Υ be preserved under the actions that RCU functions execute
(condition 2).

The specification for sync is the most interesting one. The precondition p ∧ τ is
required to be stable (condition 3), and thus holds for the whole of sync’s duration.
Since, while sync is executing, every thread passes through a point when it is not in a
critical section, we obtain ∀t. τ since S(t, 0) in the postcondition. (We mention the local
state p in the specification, as it helps in checking stability; see below.) The derivation
of the specification from Figure 2 is straightforward: e.g., the invariant of the loop in
line 8 is r, i � p ∧ ∀t. (t < i + 1 ∨ r[t − 1] = 0) ⇒ (τ since S(t, 0)). As usual, here
we obtain the since clause by weakening: (τ ∧ S(tid, 0))⇒ (τ since S(tid, 0)).

Verification of the RCU-Based Counter. Since this RCU-based algorithm is simi-
lar to the one using hazard pointers, most actions in relies and guarantees are reused
from that proof (Figure 5): we let Gtid = {Id, Inc,Take,RCUtid} and Rtid =

⋃
{Gk |

1 ≤ k ≤ N ∧ k �= tid}. The following invariant formalises (5):

ΥRCU ⇐⇒ ∀x, t. (S(t, 1) since C �→ x ∗ x �→ ∗ true)⇒ x �→e ∗ true .

The proof outline for the RCU-based counter is given in Figure 9. The assertion Ftid is
the same as for hazard pointers and is defined by (10) in §4. The assertion I describes
the state invariant of the algorithm:

I ⇐⇒ (�t rcu[t− 1] �→) ∗ ∃y. C �→ y ∗ y �→ ∗ truee .

The key points are as follows. After reading C at line 12, we obtain an unsta-
ble assertion S(tid, 1) ∧ C �→ s ∗ s �→ ∗ true , which we weaken to a stable one
(S(tid, 1) since C �→ s ∗ s �→ ∗ true). Then ΥRCU yields s �→e ∗ true , which jus-
tifies the safety of dereferencing s at line 15. The same assertion in line 17 would let us
rule out the ABA problem in a linearizability proof. We get the assertion in line 35 from
the tautology x �→m ⇒ ¬C �→ x ∗ x �→ ∗ true . At line 36, we apply the specifica-
tion of sync with τ = (�x∈A x �→e) ∗ true ∧ (�x∈A ¬C �→ x ∗ x �→ ∗ true) and
p = (�x∈A x �→m). The resulting since clause formalises (6) and allows us to justify
that the Take action in line 41 does not violate ΥRCU.

268 A. Gotsman, N. Rinetzky, and H. Yang

1 int *C=new int(0); bool rcu[N]={0};

2 Set detached[N]={∅};
3 int inc() {

4 int v, *n, *s;

5 {V � Ftid ∧ I ∧ S(tid, 0)}}
6 n = new int;

7 {V � n
→ ∗ Ftid ∧ I ∧ S(tid, 0)}}
8 rcu_enter();

9 do { {V � n
→ ∗ Ftid ∧ I ∧ S(tid, 1)}
10 rcu_exit();

11 rcu_enter();

12 〈s = C〉Id;
13 {V � n
→ ∗ Ftid ∧ I ∧ s
→e ∗ true ∧
14 (S(tid, 1) since C
→ s ∗ s
→ ∗ true)}
15 〈v = *s〉Id;
16 *n = v+1;

17 {V � n
→ ∗ Ftid ∧ I ∧ s
→e ∗ true

18 (S(tid, 1) since C
→ s ∗ s
→ ∗ true)}
19 } while (!CASInc,Id(&C, s, n));

20 rcu_exit();

21 {V � s
→m ∗ Ftid ∧ I ∧ S(tid, 0) ∧
22 s
→e ∗ true }
23 reclaim(s);

24 {V � Ftid ∧ I ∧ S(tid, 0)}
25 return v; }

26 void reclaim(int* s) {

27 {V � s
→m ∗ Ftid ∧ I ∧ S(tid, 0) ∧
28 s
→e ∗ true }
29 insert(detached[tid-1], s);

30 if (nondet()) return;

31 {V � I ∧ S(tid, 0) ∧
32 ∃A. detached[tid− 1]
→ A ∗
33 (�x∈A x
→m) ∧
34 (�x∈A x
→e) ∗ true ∧
35 (�x∈A ¬C
→ x ∗ x
→ ∗ true)}
36 sync();

37 {V � I ∧ S(tid, 0) ∧
38 ∃A. detached[tid− 1]
→ A ∗
39 �x∈A((x
→m ∧ x
→e ∗ true) ∧ ∀t.
40 ¬C
→ x ∗ x
→ ∗ true since S(t, 0))}
41 〈 ; 〉Take
42 {V � I ∧ S(tid, 0) ∧
43 ∃A. detached[tid− 1]
→ A ∗
44 (�x∈A x
→)}
45 while (!isEmpty(detached[tid]))

46 free(pop(detached[tid]));

47 {V � Ftid ∧ I ∧ S(tid, 0)}
48 }

Fig. 9. Counter with an RCU-based memory management. Here V is v, n, s.

Like for hazard pointers, this proof implies that the algorithm does not leak memory,
and that the ABA problem does not occur.

6 Related Work

Out of the three techniques for memory reclamation that we consider in this paper, only
restricted versions of the non-blocking stack with hazard pointers that we handle in [7,
§B] have been verified: in concurrent separation logic [14], a combination of separation
logic and temporal logic [6], a reduction-based tool [3] and interval temporal logic [16].
These papers use different reasoning methods from the one we propose, none of which
has been grounded in a pattern common to different algorithms.

Among the above-mentioned verification efforts, the closest to us technically is the
work by Fu et al. [6], which proposed a combination of separation logic and tempo-
ral logic very similar to the one we use for formalising our method. We emphasise
that we do not consider the logic we present in §3 as the main contribution of this pa-
per, but merely as a tool for formalising our reasoning method. It is this method that
is the main difference of our work in comparison to Fu et al. The method used by
Fu et al. to verify a non-blocking stack with hazard pointers leads to a complicated
proof that embeds a lot of implementation detail into its invariants and rely/guarantee
conditions. In contrast, our proofs are conceptually simple and technically straightfor-
ward, due to the use of a strategy that captures the essence of the algorithms consid-
ered. Fu et al. also handle only an idealistic implementation of hazard pointers, where

Verifying Concurrent Memory Reclamation Algorithms with Grace 269

deallocations are not batched, and many assertions in the proof inherently rely on this
simplification. We do not think that their proof would scale easily to the implementation
that batches deallocations (§2), let alone other extensions we consider [7, §B].

Having said that, we fully acknowledge the influence of the work by Fu et al. In par-
ticular, we agree that a combination of temporal and separation logics provides a useful
means of reasoning about non-blocking algorithms. We hope that our formalisation of
powerful proof patterns in such a combined logic will motivate verification researchers
to adopt the pattern-based approach in verifying other complex concurrent algorithms.

Acknowledgements. We thank the following people for discussions and comments:
Richard Bornat, Sungkeun Cho, Byron Cook, Wonchan Lee, Paul McKenney, Peter
O’Hearn, Matthew Parkinson, Mooly Sagiv, Viktor Vafeiadis, Jonathan Walpole, Eran
Yahav and Kwangkeun Yi.

References

1. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

2. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic. In: LICS
(2007)

3. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL (2009)
4. Feng, X., Ferreira, R., Shao, Z.: On the Relationship Between Concurrent Separation Logic

and Assume-Guarantee Reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 173–188. Springer, Heidelberg (2007)

5. Fraser, K.: Practical lock-freedom. PhD Thesis. University of Cambridge (2004)
6. Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about Optimistic Concurrency Using

a Program Logic for History. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 388–402. Springer, Heidelberg (2010)

7. Gotsman, A., Rinetzky, N., Yang, H.: Verifying concurrent memory reclamation algorithms
with grace. Technical Report 7/13, School of Computer Science, Tel-Aviv University (2013),
http://www.cs.tau.ac.il/~maon

8. Herlihy, M., Luchangco, V., Moir, M.: The Repeat Offender Problem: A Mechanism for
Supporting Dynamic-Sized, Lock-Free Data Structures. In: Malkhi, D. (ed.) DISC 2002.
LNCS, vol. 2508, pp. 339–353. Springer, Heidelberg (2002)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS (1990)

10. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)
11. McKenney, P.: Exploiting deferred destruction: an analysis of read-copy-update techniques

in operating system kernels. PhD Thesis. OGI (2004)
12. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Trans. Parallel Distrib. Syst. (2004)
13. O’Hearn, P.: Resources, concurrency and local reasoning. TCS (2007)
14. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking stack. In:

POPL (2007)
15. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:

Logics and Models of Concurrent Systems (1985)
16. Tofan, B., Schellhorn, G., Reif, W.: Formal Verification of a Lock-Free Stack with Hazard

Pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 239–255.
Springer, Heidelberg (2011)

17. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD Thesis. University of
Cambridge (2008)

http://www.cs.tau.ac.il/~maon

Interleaving and Lock-Step Semantics
for Analysis and Verification of GPU Kernels�

Peter Collingbourne1,��, Alastair F. Donaldson1, Jeroen Ketema1, and Shaz Qadeer2

1 Imperial College London
peter@pcc.me.uk, {afd,jketema}@imperial.ac.uk

2 Microsoft Research
qadeer@microsoft.com

Abstract. We study semantics of GPU kernels — the parallel programs that run
on Graphics Processing Units (GPUs). We provide a novel lock-step execution
semantics for GPU kernels represented by arbitrary reducible control flow graphs
and compare this semantics with a traditional interleaving semantics. We show for
terminating kernels that either both semantics compute identical results or both
behave erroneously.

The result induces a method that allows GPU kernels with arbitrary reducible
control flow graphs to be verified via transformation to a sequential program that
employs predicated execution. We implemented this method in the GPUVerify
tool and experimentally evaluated it by comparing the tool with the previous ver-
sion of the tool based on a similar method for structured programs, i.e., where
control is organised using if and while statements. The evaluation was based on
a set of 163 open source and commercial GPU kernels. Among these kernels, 42
exhibit unstructured control flow which our novel method can handle fully auto-
matically, but the previous method could not. Overall the generality of the new
method comes at a modest price: Verification across our benchmark set was 2.25
times slower overall; however, the median slow down across all kernels was 0.77,
indicating that our novel technique yielded faster analysis in many cases.

1 Introduction

Graphics Processing Units (GPUs) have recently found application in accelerating
general-purpose computations, e.g., in image retrieval [23] and machine learning [3].
If an application exhibits significant parallelism it may be possible to extract the com-
putational core of the application as a kernel and offload this kernel to run across the
parallel hardware of a GPU, sometimes beating CPU performance by orders of magni-
tude. Writing kernels for massively parallel GPUs is challenging, requiring coordination
of a large number of threads. Data races and mis-synchronisation at barriers (known as
barrier divergence) can lead to erroneous and non-deterministic program behaviours.
Worse, they can lead to bugs which manifest only on some GPU architectures.

Substantial effort has been put into the design of tools for rigorous analysis of GPU
kernels [7,16,8,17,15]. In prior work [7], we presented a verification technique and
tool, GPUVerify, for analysis of data races and barrier divergence in OpenCL [13] and
� This work was supported by the EU FP7 STREP project CARP (project number 287767).

�� Peter Collingbourne is currently employed at Google.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 270–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Interleaving and Lock-Step Semantics for GPU Kernels 271

CUDA [21] kernels. GPUVerify achieves scalability by reducing verification of a paral-
lel kernel to a sequential program verification task. This is achieved by transforming
kernels into a form where all threads execute in lock-step in a manner that still fa-
cilitates detection of data races and barrier divergence arising due to arbitrary thread
interleavings.

Semantics and program transformations for lock-step execution have been formally
studied for structured GPU kernels where control flow is described by if and while
constructs [7]. In this setting, the hierarchical structure of a program gives rise to a sim-
ple, recursive algorithm for transforming control flow into predicated form so that all
threads execute the same sequence of statements. Lock-step semantics for GPU kernels
where control flow is described by an arbitrary reducible control flow graph (CFG),1

has not been studied. Unlike structured programs, arbitrary CFGs do not necessarily
exhibit a hierarchical structure, thus the existing predication-based approach cannot be
directly extended. Furthermore, it is not possible in to efficiently pre-process an arbi-
trary CFG into a structured form [9].

The restriction to structured programs poses a serious limitation to the design of GPU
kernel analysis techniques: kernels frequently exhibit unstructured control flow, either
directly, e.g., through switch statements, or indirectly, through short-circuit evaluation
of Boolean expressions. Dealing with CFGs also enables analysis of GPU kernels after
compiler optimisations have been applied, bringing the analysis closer to the code ac-
tually executed by the GPU. It allows for the reuse of existing compiler infrastructures,
such as Clang/LLVM, which use CFGs as their intermediate representation. Reusing
compiler infrastructures hugely simplifies tool development, removing the burden of
writing a robust front-end for C-like languages.

We present a traditional interleaving semantics and a novel lock-step semantics for
GPU kernels described by CFGs. We show that if a GPU kernel is guaranteed to termi-
nate then the kernel is correct with respect to the interleaving semantics if and only if
it is correct with respect to the lock-step semantics, where correct means that all execu-
tion traces are free from data races, barrier divergence, and assertion failures. Our novel
lock-step semantics enables the strategy of reducing verification of a multithreaded GPU
kernel to verification of a sequential program to be applied to arbitrary GPU kernels, and
we have implemented this method in the GPUVerify tool. We present an experimental
evaluation, applying our new tool to a set of 163 open source and commercial GPU ker-
nels. In 42 cases these kernels exhibited unstructured control flow either (a) explicitly
(e.g., through switch statements), or (b) implicitly due to short-circuit evaluation. In
the case of (a), these kernels had to be manually simplified to be amenable to analysis
using the original version of GPUVerify. In the case of (b), it turned out that the seman-
tics of short-circuit evaluation of logical operators was not handled correctly in GPU-
Verify. Our new, more general implementation handles all these kernels accurately and
automatically. Our results show that GPUVerify continues to perform well: compared
to the original version that was limited to structured kernels [7], verification across our

1 Henceforth, whenever we refer to a CFG we shall always mean a reducible CFG. For a definition
of reducibility we refer the reader to [1]. We note that irreducibility is uncommon in practice. In
particular, we have never encountered a GPU kernel with an irreducible control flow graph, and
whether irreducible control flow is supported at all is implementation-defined in OpenCL [13].

272 P. Collingbourne et al.

__kernel void
scan(__global int *sum) {
int offset = 1, temp;
while (offset < TS) {
if (tid >= offset)
temp = sum[tid - offset];

barrier();
if (tid >= offset)
sum[tid] = sum[tid] + temp;

barrier();
offset *= 2;

}
}

(a) A correct kernel

__kernel void
scan(__global int *sum) {
int offset = 1, temp;
while (offset <= tid) {
temp = sum[tid - offset];
barrier();
sum[tid] = sum[tid] + temp;
barrier();
offset *= 2;

}
}

(b) A kernel with barrier divergence

Fig. 1. Two OpenCL kernels

benchmark set was 2.25 times slower overall, but the median slow down across all ker-
nels was 0.77, indicating that our novel technique yields faster analysis in many cases.

In summary, our main contributions are:

– A novel operational semantics for lock-step execution of GPU kernels with arbi-
trary reducible control flow.

– A proof-sketch that this semantics is equivalent to a traditional interleaving seman-
tics for terminating GPU kernels.

– A revised implementation of GPUVerify which uses our lock-step semantics to
reduce verification of a multithreaded kernel to a sequential verification task.

After presenting a small example to provide some background on GPU kernels and
illustrate the problems of data races and barrier divergence (Sect. 2), we present the
interleaving semantics (Sect. 3), our novel lock-step semantics (Sect. 4) and a proof-
sketch showing that the semantics are equivalent for terminating kernels (Sect. 5). We
then discuss the implementation in GPUVerify, and present our experimental results
(Sect. 6). We end with related work and conclusions (Sect. 7).

2 A Background Example

We use an example to illustrate the key concepts from GPU programming and provide
an informal description as to how predicated lock-step execution works for structured
programs. We return to this example when presenting interleaving and lock-step seman-
tics for kernels described as CFGs in Sects. 3 and 4.

Threads, Barriers, and Shared Memory. Figure 1a shows an OpenCL kernel2 to be
executed by TS threads, where TS is a power of two. The kernel implements a scan
(or prefix-sum) operation on the sum array so that at the end of the kernel we have,
for all 0 ≤ i < TS , sum[i] = Σi

j=0 old(sum)[j], where old(sum) refers to the
sum array at the start of the kernel. All threads execute this kernel function in parallel,

2 For ease of presentation we use a slightly simplified version of OpenCL syntax, and we assume
that all threads reside in the same work group and that this work group is one dimensional. Our
implementation, described in Sect. 6, supports OpenCL in full.

Interleaving and Lock-Step Semantics for GPU Kernels 273

and threads may follow different control paths or access distinct data by querying their
unique thread id, tid. Communication is possible via shared memory; the sum array
is marked as residing in global shared memory via the global qualifier. Threads
synchronise using a barrier-statement, a collective operation that requires all threads
to reach the same syntactic barrier before any thread proceeds past the barrier.

Data Races and Barrier Divergence. Two common defects from which GPU kernels
suffer are data races and barrier divergence. In Fig. 1a, accesses to sum inside the
loop are guarded so that on loop iteration i only threads with id at least 2i−1 access
the sum array. If either of the barriers in the example were omitted the kernel would
be prone to a data race arising due to thread t1 reading from sum[t1 − offset],
while thread t2 writes to sum[t2], where t2 = t1 − offset. The kernel of Fig. 1b
aims to optimise the original example by reducing branches inside the loop: threads are
restricted to only execute the loop body if their id is sufficiently large. This optimisation
is erroneous; given a barrier inside a loop, the OpenCL standard requires that either
all threads or zero threads reach the barrier during a given loop iteration, otherwise
barrier divergence occurs and behaviour is undefined. In Fig. 1b, thread 0 will not enter
the loop at all and thus will never reach the first barrier, while all other threads will
enter the loop and reach the barrier. Unfortunately, on an NVIDIA 9400M the kernel of
Fig. 1b behaves identically to the kernel of Fig. 1a, meaning that this barrier divergence
bug would not be detected on this platform. This is problematic because the erroneous
kernel code is not portable across architectures which support OpenCL (e.g., the kernel
fails to produce correct results with Intel’s SDK for OpenCL).

Lock-Step Predicated Execution. We informally describe lock-step execution for struc-
tured programs as used by GPUVerify [7] and which we here generalise to CFGs.

To achieve lock-step execution, GPUVerify transforms kernels into predicated

__kernel void
scan(__global int *sum) {
bool p, q;
int offset = 1, temp;
p = (offset < TS);
while (∃ t :: t.p) {
q = (p && tid >= offset);
q ⇒ temp = sum[tid - offset];
p ⇒ barrier();
q ⇒ sum[tid] = sum[tid] + temp;
p ⇒ barrier();
p ⇒ offset *= 2;
p ⇒ p = (offset < TS);

}
}

Fig. 2. Lock-step predicated execution
for structured kernel of Fig. 1a

form [2]. The example of Fig. 2 illustrates the
effect of applying predication to the kernel of
Fig. 1a. A statement of the form e ⇒ stmt is
a predicated statement which is a no-op if e is
false, and has the same effect as stmt if e is
true. Observe that the if statements in the body
of the loop have been predicated: the condition
(which is the same for both statements) is eval-
uated into a Boolean variable q, the conditional
statements are removed and the statements pre-
viously inside the conditionals are predicated by
the associated Boolean variable. Predication of
the while loop is achieved by evaluating the
loop condition into a Boolean variable p, pred-
icating all statements in the loop body by p, and recomputing p at the end of the loop
body. The loop condition is replaced by a guard which evaluates to false if and only if
the predicate variable p is false for every thread. Thus all threads continue to execute the
loop until each thread is ready to leave the loop; when the loop condition becomes false
for a given thread the thread simply performs no-ops during subsequent loop iterations.

274 P. Collingbourne et al.

In predicated form, the threads do not exhibit any diverging behaviour due to execu-
tion of different branches, and thus the kernel can be regarded as a sequential, vector
program. GPUVerify exploits this fact to reduce GPU kernel verification to a sequen-
tial program verification task. The full technique, described in [7], involves considering
lock-step execution of an arbitrary pair of threads, rather than all threads.

The example illustrates that predication is easy to perform at the level of structured
programs built hierarchically using if and while statements. However, predication does
not directly extend to the unstructured case, and unstructured control flow cannot be
efficiently pre-processed into structured form [9]. Hence, we present a program trans-
formation for predicated execution of GPU kernels described as CFGs.

3 Interleaving Semantics for GPU Kernels

We introduce a simple language for describing GPU kernels as CFGs.

3.1 Syntax

A kernel is defined over a set of variables Var = Vs Vp with Vs the shared vari-
ables and Vp the private variables. Variables take values from a domain D. Kernels
are expressed using a syntax that is identical to the core of the Boogie programming
language [5], except that it includes an additional barrier statement:

Program ::= Block+

Block ::= BlockId : Stmts gotoBlockId+ ;

Stmts ::= ε | Stmt ; Stmts

Stmt ::= Var := Expr | havocVar | assumeExpr | assertExpr | skip | barrier

Here, ε is an empty sequence of statements. The form of expressions is irrelevant, except
that we assume (a) equality testing (=), (b) the standard Boolean operators, and (c) a
ternary operator Expr1 ?Expr2 :Expr 3, which — like the operator from C — evaluates
to the result of Expr2 if Expr1 is true and to the result of Expr3 otherwise.

Thus, a kernel consists of a number of basic blocks, with each block consisting of
a number of statements followed by a goto that non-deterministically chooses which
block to execute next based on the providedBlockIds; non-deterministic choice in com-
bination with assumes at the beginning of blocks is used to model branching.

Because gotos only appear at the end of blocks there is a one-to-one correspondence
between kernels and CFGs. We assume that all kernels have reducible CFGs, which
means that cycles in a CFG are guaranteed to form natural loops. A natural loop has
a unique header node, the single entry point to the loop, and one or more back edges
going from a loop node to the header [1].

We assume that each block in a kernel is uniquely labelled and that there is a block la-
belled Start . This is the block from which execution of each thread commences. More-
over, no block is labelled End ; instead the occurrence of End in a goto signifies that
the program may terminate at this point. The first statement of a block is always an
assume and only variables from Vp appear in the guard of the assume. No other
assumes occur in blocks and the first statement of Start is assume true. Observe
that any kernel can be easily pre-processed to satisfy these restrictions.

Interleaving and Lock-Step Semantics for GPU Kernels 275

Start : offset := 1 ; I2 : assume tid ≥ offset ;
gotoW,Wend ; sum[tid] := sum[tid] + temp ;

W : assume offset < TS ; gotoB2 ;
goto I1, I

′
1 ; I ′2 : assume tid < offset ;

I1 : assume tid ≥ offset ; gotoB2 ;
temp := sum[tid − offset] ; B2 : barrier ;

Start

W

I1 I1

B1

Wlast

Wend

I2 I2

B2

gotoB1 ; gotoWlast ;
I ′1 : assume tid < offset ; Wlast : offset := 2 · offset ;

gotoB1 ; gotoW,Wend ;
B1 : barrier ; Wend : assume offset ≥ TS ;

goto I2, I
′
2 ; gotoEnd ;

Fig. 3. The kernel of Fig. 1a encoded in our kernel language and its CFG

Figure 3 shows the kernel of Fig. 1a encoded in our simple programming language,
where we omit assume true for brevity. Remark that an array is being used; we could
easily add arrays to our GPU kernel semantics but, again for brevity, we do not.

3.2 Operational Semantics

We now define a small-step operational semantics for our kernel programming language,
which is based on interleaving the steps taken by individual threads.

Individual Threads. The behaviour of individual threads and the non-barrier statements
executed by these threads is presented in Figs. 4a and 4b.

The operational semantics of a thread t is defined in terms of triples 〈σ, σt, bt〉, where
σ : Vs → D is the shared store, σt : Vp → D is the private store of thread t, and bt is
the statement or sequence of statements the thread will reduce (i.e., execute) next.

In Fig. 4a, (σ, σt)[v �→ val] denotes a pair of stores equal to (σ, σt) except that v
(which we assume occurs in either σ or σt) has been updated and is equal to val . The
evaluation of an expression e given (σ, σt) is denoted (σ, σt)(e). The labels on arrows
allow us to observe (a) changes to stores and (b) the state of stores upon termination. A
label is omitted when the stores do not change, e.g., in the case of the SKIP rule.

The symbols
√

, E , and ⊥ indicate, resp., termination, error, and infeasible. These
are termination statuses which signify that a thread (or later kernel) has terminated
with that particular status. Below, termination always means termination with status
termination; termination with status error or infeasible is indicated explicitly.

The ASSIGN and SKIP rules of Fig. 4a are standard. The HAVOC rule updates the
value of a variable v with an arbitrary value from the domain D of v. The ASSERTT

and ASSUMET rules are no-ops if the assumption or assertion (σ, σt)(e) holds. If the
assumption or assertion does not hold, ASSERTF and ASSUMEF yield, resp., E and ⊥.

In Fig. 4b, s denotes a statement and b denotes the body of a block, i.e., a sequence of
statements followed by a goto. The SEQB and SEQE,I rules define reduction of s ; b in
terms of reduction of s. The GOTO and BLOCK rules specify how reduction continues
once the end of a block is reached. The END rule specifies termination of a thread.

276 P. Collingbourne et al.

val = (σ, σt)(e)

P � 〈σ, σt, v := e〉 (σ,σt)→ (σ, σt)[v �→ val]

ASSIGN

val ∈ D

P � 〈σ, σt,havoc v〉 (σ,σt)→ (σ, σt)[v �→ val]

HAVOC

a ∈ {assert, assume} (σ, σt)(e)

P � 〈σ, σt, a e〉 → (σ, σt)

ASSERTT

ASSUMET

¬(σ, σt)(e)

P � 〈σ, σt, assume e〉 (σ,σt)→ ⊥
ASSUMEF

¬(σ, σt)(e)

P � 〈σ, σt, assert e〉
(σ,σt)→ E

ASSERTF
P � 〈σ, σt, skip〉 → (σ, σt)

SKIP

(a) Statement rules

P � 〈σ, σt, s〉
(σ,σt)→ (τ, τt)

P � 〈σ, σt, s ; b〉
(σ,σt)→ 〈τ, τt, b〉

SEQB
P � 〈σ, σt, s〉

(σ,σt)→ e e ∈ {E,⊥}

P � 〈σ, σt, s ; b〉
(σ,σt)→ e

SEQE,I

1 ≤ i ≤ n

P � 〈σ, σt, gotoB1, . . . , Bn ;〉 → 〈σ, σt, Bi〉
GOTO

(B : b) ∈ P

P � 〈σ, σt, B〉 → 〈σ, σt, b〉
BLOCK

P � 〈σ, σt,End〉 σ,σt→ √ END

(b) Thread rules

T�σ |t = 〈σt, bt〉 P � 〈σ, σt, bt〉
(σ,σt)→ 〈τ, τt, ct〉

P � 〈σ, T�σ〉
(σ,�σ)→ 〈τ, T�σ [〈τt, ct〉]t〉

THREADB

T�σ|t = 〈σt, bt〉 P � 〈σ, σt, bt〉
(σ,σt)→ √

P � 〈σ, T�σ〉
(σ,�σ)→ 〈σ, T�σ [〈σt,

√〉]t〉
THREADT

T�σ |t = 〈σt, bt〉 P � 〈σ, σt, bt〉
(σ,σt)→ s s ∈ {E,⊥}

P � 〈σ, T�σ〉
(σ,�σ)→ s

THREADE,I

∀ 1 ≤ t ≤ TS : T�σ|t = 〈σt,
√〉

P � 〈σ, T�σ〉
(σ,�σ)→ √ TERMINATION

(c) Interleaving rules

T�σ |t = 〈(βt, σt),barrier et ; bt〉 ∧ ¬(σ, σt)(et)

P � 〈σ, T�σ〉 → 〈σ, T�σ[〈(βt, σt), bt〉]t〉
BARRIERSKIP

∀ t : T�σ |t = 〈(βt, σt),barrier et ; bt〉 ∧ (σ, σt)(et) ∀ t1, t2 : βt1 = βt2

P � 〈σ, T�σ〉 → 〈σ, 〈(β1, σ1), b1〉, . . . , 〈(βTS , σTS), bTS 〉〉
BARRIERS

∀ t : T�σ |t = 〈(βt, σt),barrier et ; bt〉 ∧ (σ, σt)(et) ∃ t1, t2 : βt1 �= βt2

P � 〈σ, T�σ〉
(σ,�σ)→ E

BARRIERF

(d) Synchronisation rules; barrier variables βt1 and βt2 enforce OpenCL conditions B1 and B2

Fig. 4. Interleaving operational semantics

Interleaving and Lock-Step Semantics for GPU Kernels 277

Interleaving. Fig. 4c, we give our interleaving semantics for a kernel P given thread
count TS . The semantics is defined over tuples 〈σ, 〈σ1, b1〉, . . . , 〈σTS , bTS〉〉, where σ
is the shared store, σt is the private store of thread t, and bt is the statement or sequence
of statements thread t will reduce next. A thread cannot access the private store of any
other thread, while the shared store is accessible by all threads. In the figure, T�σ denotes
(〈σ1, b1〉, . . . , 〈σTS , bTS〉), where "σ = (σ1, . . . , σTS). Moreover, T�σ|t denotes 〈σt, bt〉
and T�σ[〈σ′, b〉]t denotes T�σ with the t-th element replaced by 〈σ′, b〉.

The THREADB rule defines how a single step is performed by a single thread, cf. the
rules in Fig. 4b. The THREADT rule defines termination of a single thread, where the
thread enters the termination state

√
from which no further reduction is possible. The

THREADE,I rule specifies that a kernel terminates with status error or infeasible if one
of the threads terminates as such. The TERMINATION rule specifies that a kernel termi-
nates once all threads have terminated. As steps might be possible in multiple threads,
the THREAD rules are non-deterministic and, hence, define an interleaving semantics.

We define a reduction of a kernel P as sequence of applications of the operational
rules where each thread starts reduction from Start and where the initial shared store is
some σ and the initial private store of thread t is some σt. A reduction is maximal if it is
either infinite or if termination with status termination, error, or infeasible has occurred.

Our interleaving semantics effectively has a sequentially consistent memory model,
which is not the case for GPUs in practice. However, because our viewpoint is that GPU
kernels that exhibit data races should be regarded as erroneous, this is of no consequence.

Barrier Synchronisation. When we define lock-step predicated execution of barriers in
Sect. 4 we will need to model execution of a barrier by a thread in a disabled state. In
preparation for this, let us say that a barrier statement has the form barrier e, where
e is a Boolean expression. In Sect. 4, e will evaluate to true if and only if the barrier
is executed in an enabled state. The notion of thread-enabledness is not relevant to our
interleaving semantics: we can view a thread as always being enabled. Thus we regard
the barrier syntax of our kernel programming language as short for barrier true.

Figure 4d defines the rules for (mis-)synchronisation between threads at barriers. Our
aim here is to formalise the conditions for correct barrier synchronisation in OpenCL,
which are stated informally in the OpenCL specification as follows [13]:

B1. If barrier is inside a conditional statement, then all [threads] must enter the con-
ditional if any [thread] enters the conditional statement and executes the barrier.

B2. If barrier is inside a loop, all [threads] must execute the barrier for each iteration
of the loop before any are allowed to continue execution beyond the barrier.

The rules of Fig. 4d capture these conditions using a number of special barrier variables
that we assume are implicit in definition of each kernel:

– Every thread has a private variable vbarrier. We assume that each barrier appearing
in the kernel has a unique id. The variable vbarrier of each thread t is initialised to a
special value (−) different from every barrier id. When t reaches a barrier, vbarrier
is set to the id of that barrier, and it is reset to (−) after reduction of the barrier.

– For every loop L in the kernel, every thread has a private loop counter variable vL.
The variable vL of each thread t is initialised to zero, incremented each time the
header node for L is reduced by t, and reset to zero on exit from L.

278 P. Collingbourne et al.

The variable vbarrier codifies that each thread is synchronising on the same barrier, cap-
turing condition B1 above. The loop counters codify that each thread must have exe-
cuted the same number of loop iterations upon synchronisation, capturing B2.

In Fig. 4d, we express the private store of a thread t as a pair (βt, σt), where βt
records the barrier variables for the thread and σt the values of all other private variables.
The BARRIERSKIP rule specifies that barrier e is a no-op if e is false . Although this
can never occur for kernels written directly in our kernel programming language, our
equivalence proof in Sect. 5 requires this detail to be accounted for.

The BARRIERS rule specifies that reduction continues beyond a barrier if all threads
are at a barrier and the barrier variables agree across threads. The BARRIERF rule spec-
ifies that a kernel should terminate with error if the threads have reached barriers with
disagreeing barrier variables: this means that one of B1 or B2 has been violated and
thus barrier divergence has occurred.

Data Races. We say that a thread t is responsible for a step in a reduction if a THREAD

rule (see Fig. 4c) was employed in the step and the premise of the rule was instantiated
with t. Moreover, we say that a thread t accesses a variable v in a step if t is responsible
for the step and if in the step either (a) the value of v is used to evaluate an expression
or (b) v is updated. The definition is now as follows:

Definition 3.1. Let P be a kernel. Then, P has data race if there is a maximal reduction
ρ of P , distinct threads t and t′, and a shared variable v such that: ρ does not end in
the infeasible status ⊥; t updates v during ρ; t′ accesses v during ρ; no application of
BARRIERS occurs between the accesses (i.e., no barrier separates them).

Terminating and Race Free Kernels. We say that a kernel P is (successfully) termi-
nating with respect to the interleaving semantics if all maximal reductions of P are
finite and do not end with status error. We say that P is race free with respect to the
interleaving semantics if P has no data races according to Definition 3.1.

4 Lock-Step Semantics for GPU Kernels

We define lock-step execution semantics for GPU kernels represented as arbitrary CFGs
in two stages. First, in Sect. 4.1, we present a transformation which turns the program
executed by a single thread into a form where control flow is flattened: all branches,
except for loop back edges, are eliminated. Then, in Sect. 4.2, we use the transformation
to express lock-step execution of all threads in a kernel as a sequential vector program.

To avoid many corner cases we assume that kernels always synchronise on a
barrier immediately preceding termination. This is without loss of generality, as threads
implicitly synchronise on kernel termination. In addition, if a block B ends with
gotoB1, . . . , Bn then at most one of B1, . . . , Bn is a loop head. A kernel can be triv-
ially preprocessed to satisfy these restrictions.

Sort Order. Predication of CFGs involves flattening control flow, rewriting branches
by predicating blocks and executing these blocks in a linear order. Intuitively, for a
kernel exhibiting control flow corresponding to an if-then-else statement s, this linear
order must arrange blocks such that statements preceding s occur before the statements

Interleaving and Lock-Step Semantics for GPU Kernels 279

inside s, which in turn must precede the statements occurring after s. However, if state-
ments s1 and s2 occur, resp., in the then and else branches of s, then the order in which
the blocks associated with s1 and s2 appear does not matter.

For arbitrary CFGs without loops any topological sort gives a suitable order: it en-
sures that if block B is a predecessor of C in the original CFG then B will be executed
before C in the predicated program. In the presence of loops the order must ensure that
once execution of the blocks in a loop commences this loop will be executed completely
before any node outside the loop is executed.

Formally, we require a total order ≤ on blocks satisfying the following conditions:

– For all blocks B and C, if there is a path from B to C in the CFG, then B ≤ C
unless a back edge occurs on the path.

– For all loops L, if B ≤ D and B,D ∈ L, then C ∈ L for all B ≤ C ≤ D.

A total order satisfying the above conditions always can always be computed: Consider
any innermost loop of the kernel and perform a topological sort of the blocks in the loop
body (disregarding back edges). Replace the loop body by an abstract block. Repeat
until no loops remain and perform a topological sort of resulting CFG. The sort order is
now the order obtained by the final topological sort where one recursively replaces each
abstract node by the nodes it represents, i.e., if B ≤ L ≤ D with L an abstract node,
then for any C ≤ C′ in the loop body represented by L one defines B ≤ C ≤ C′ ≤ D.

Considering the kernel of Fig. 3, we have thatL = {W, I1, I
′
1, B1, I2, I

′
2, B2,Wlast}

is a loop and that Start ≤ W ≤ I1 ≤ I ′1 ≤ B1 ≤ I2 ≤ I ′2 ≤ B2 ≤ Wlast ≤ Wend

satisfies our requirements; reversing I1 and I ′1, and also I2 and I ′2, is possible.
In what follows we assume that a total order satisfying the above conditions has been

chosen, and we refer to this order as the sort order. For a block B we use next(B) to
denote the block that follows B in the sort order. If B is the final block in the sort order
we define next(B) to be End , the block label denoting thread termination.

4.1 Predication of a Single Thread

We now describe how predication of the body of a kernel thread is performed.

Predication of Statements. To predicate statements, we introduce a fresh private variable
vactive for each thread, to which we assign BlockIds; the assigned BlockId indicates

Table 1. Predication of statements

Original form Predicated form

v := e ; v := (vactive = B) ? e : v ;
havoc v ; havoc vhavoc ;

v := (vactive = B) ? vhavoc : v ;
assert e ; assert (vactive = B)⇒ e ;
skip ; skip ;
barrier ; barrier (vactive = B) ;

the block that needs to be executed.
If the value of vactive is not equal to
the block that is currently being ex-
ecuted, all statements in the block
will effectively be no-ops. In the
case ofbarrier this follows by the
BARRIERSKIP rule of Fig. 4d.

Assuming the BlockId of the
current block is B, predication of
statements is defined in Table 1,
except for assume statements which are dealt with below at the level of blocks. In
the case of havoc, the variable vhavoc is fresh and private.

280 P. Collingbourne et al.

Table 2. Predication of blocks

Original form Predicated form

B : assume guard(B) ; B : π(ss)
ss vnext :∈ {B1, . . . , Bn} ;
gotoB1, . . . , Bn ; assume (vactive = B)

⇒
∧n

i=1 ((vnext = Bi)⇒ guard(Bi)) ;
(B is not the last node of a loop vactive := (vactive = B) ? vnext : vactive ;
according to the sort order) goto next(B) ;

B : assume guard(B) ; B : π(ss)
ss vnext :∈ {B1, . . . , Bn} ;
gotoB1, . . . , Bn ; assume (vactive = B)

⇒
∧n

i=1 ((vnext = Bi)⇒ guard(Bi)) ;
(B is the last node of a loop ac- vactive := (vactive = B) ? vnext : vactive ;
cording to the sort order) gotoBback, Bexit ;

Bback : assume vactive = Bhead ;
gotoBhead ;

Bexit : assume vactive �= Bhead ;
goto next(B) ;

Predication of Blocks. Let π(s) denote the predicated form of a single statement s, and
π(ss) the pointwise extension to a sequence of statements ss. Predication of blocks
is defined by default as in the top row of Table 2 (see also Fig. 5). Here, vnext is
a fresh, private variable, and vnext :∈ {B1, . . . , Bn} is shorthand for havoc vnext ;
assume

∨n
i=1(vnext = Bi). Furthermore, guard(B) denotes the expression that oc-

curs in the assume that is required to occur at the beginning of block B.
At the end of the predicated block, vactive is set to the value of the block to be reduced

next, while actual reduction continues with block next(B), as specified by the sort
order. The assume that ‘guards’ the block to be reduced next is moved into the block
currently being reduced. Moving guards does not affect behaviour, but only shortens
traces that end in infeasible; this is needed to properly handle barrier divergence in
lock-step kernels.

The above method does not deal correctly with loops: no block can be executed
more than once as no back-edges are occur. As such, we predicate block a B in a special
manner if B belongs to a loopL and B occurs last in the sort order among all the blocks
of L. Assume Bhead is the header of L. The block B is predicated as in the bottom row
of Table 2, where Bback and Bexit are fresh (see again Fig. 5). Our definition of the
sort order guarantees that Bhead is always sorted first among the blocks of L. By the
introduction of Bback, reduction jumps back to Bhead if L needs to be reduced again,
otherwise reduction will continue beyond L by definition of Bexit.

Predication of Kernels. Predicating a complete kernel P now consists of three steps:
(1) Compute a sort order on blocks as detailed above; (2) Predicate every block with
respect to the sort order, according to the rules of Table 2; (3) Insert the assignment
vactive := Start at the beginning of π(Start). The introduction of vactive := Start
ensures that the statements from π(Start) are always reduced first.

Interleaving and Lock-Step Semantics for GPU Kernels 281

B2 : barrier (vactive = B2) ;
vnext :∈ {Wlast} ;
vactive := (vactive = B2) ? vnext : vactive ;
gotoWlast ;

Wlast : offset :=
(vactive = Wlast) ? (2 · offset) : offset ;

vnext :∈ {W,Wend} ;
vactive := (vactive = Wlast) ? vnext : vactive ;
assume (vactive = Wlast)⇒ (((vnext = W)⇒ (offset < TS))

∧((vnext = Wend)⇒ (offset ≥ TS)))
gotoWback,Wexit ;

Wback : assume vactive = W ;
gotoW ;

Wexit : assume vactive �= W ;
gotoWend ;

Wend : gotoEnd ;

Fig. 5. Predication of part of the kernel of Fig. 3

4.2 Lock-Step Execution of All Threads

We now use the predication scheme of Sect. 4.1 to define a lock-step execution semantics
for kernels. We achieve this by encoding the kernel as a sequential program, each state-
ment of which is a vector statement that performs the work of all threads simultaneously.
To enable this, we first extend our programming language with these vector statements.

Vector Statements. We extend our language as follows:

Stmt ::= · · · | Var∗ := Expr∗ | havocVar∗ | Var := ψ((Expr × Expr)∗)

The vector assignment simultaneously assigns values to multiple variables, where the
variables assigned to are assumed to be distinct and where the number of expressions is
equal to the number of variables. Similarly, the vector havoc havocs multiple variables,
which are are assumed to be distinct. The ψ-assignment is used to model simultaneous
writes to a shared variable by all threads. It takes a sequence (e1, e′1), . . . , (en, e

′
n), with

each ei a Boolean, and non-deterministically assigns to the variable v a value from the
set {σ(e′i) | 1 ≤ i ≤ n ∧ σ(ei)} (if the set is empty, v is left unchanged).

The semantics for the new statements is presented in Fig. 6, where 〈ei〉ni=1 denotes
(e1), . . . , (en) and [vi �→ val i]

n
i=1 denotes [v1 �→ val1] · · · [vn �→ valn].

Lock-Step Execution. To encode a kernel P as a single-threaded program φ(P) which
effectively executes all threads in lock-step, we assume for every private variable v
from P that there exists a variable vt in φ(P) for each 1 ≤ t ≤ TS . For each shared
variable v from P we assume there exists an identical variable in φ(P). Construction
of a lock-step program for P starts from π(P) — the predicated version of P .

Statements. The construction for the predicated statements from Table 1 is presented
in Table 3a. In the table, φt denotes a map over expressions which replaces each private
variable v by vt. Note that for every thread t, there exists a variable vactive,t, as variables

282 P. Collingbourne et al.

∀i : vali = (σ, σt)(ei)

P � 〈(σ, σt), 〈vi〉ni=1 := 〈ei〉ni=1〉
(σ,σt)→ (σ, σt)[vi �→ vali]

n
i=1

ASSIGNS

∀i : vali ∈ D

P � 〈(σ, σt),havoc 〈vi〉ni=1〉
(σ,σt)→ (σ, σt)[vi �→ vali]

n
i=1

HAVOCS

∃i : σ(ei) ∧ val = (σ, σt)(e
′
i)

P � 〈σ, v := ψ(〈ei, e′i〉
n
i=1)〉

(σ,σt)→ σ[v �→ val]

ψT

∀ i : ¬(σ, σt)(ei)

P � 〈(σ, σt), v := ψ(〈ei, e′i〉
n
i=1)〉 → (σ, σt)

ψF

Fig. 6. Operational semantics for vector statements

freshly introduced by the predication scheme of Sect. 4.1 are private. Hence, we always
know for each thread which block to reduce next. We discuss each statement in turn.

With respect to assignments, we distinguish between assignments to private and
shared variables. For a private variable v, the assignment is replaced by a vector assign-
ment to the variables vt, where φt is applied to e as appropriate. For a shared variable
v, it is not obvious which value needs to be assigned to v, as there might be multiple
threads t with vactive,t = B; we non-deterministically pick the value from one of the
threads with vactive,t = B, employing a ψ-assignment.

In the case of a havoc followed by an assignment, there is again a case distinction
between private and shared variables. For a private variable, the havoc and assignment
are simply replaced by corresponding vector statements. For a shared variable, a vector
havoc is used to produce an arbitrary value for each thread, and then the value asso-
ciated with one of the threads t with vactive,t = B is non-deterministically assigned
employing ψ.

In the case of assert, we test whether (vactive,t = B)⇒φt(e) holds for each thread
1 ≤ t ≤ TS . The skip statement remains a no-op.

Lock-step execution of a barrier statement with condition vactive = B translates
to an assertion checking that if vactive,t = B holds for some thread t then it must
hold for all threads. We call these assertions barrier assertions. We shall sketch in
Sect. 5 that checking for barrier divergence in this manner is equivalent to checking
for barrier divergence in the interleaving semantics of Sect. 3. However, contrary to the
interleaving case, there is no need to consider barrier variables in the lock-step case.

The last three rows of Table 3a consider statements that do not originate from Table 1
but that do occur in blocks: Initially, each vactive,t is assigned to Start ; assignments to
vactive are vectorised, where :∈ is extended in the obvious way to non-deterministically
assign values from multiple sets to multiple variables; assume is dealt with as assert.

Blocks. The lock-step construction for blocks is presented in Table 3b, where φ(ss)
denotes the lock-step form of a sequence of statements.

If a block is not sorted last among the blocks of a loop (see the top row of Table 3b),
we simply apply the lock-step construction to the statements in the block. If a block
is sorted last among blocks in a loops L (see the bottom row of Table 3b) then the

Interleaving and Lock-Step Semantics for GPU Kernels 283

Table 3. Lock-step construction

(a) Statements

Predicated form Lock-step form

v := (vactive = B) ? e : v ; v private 〈vt〉TS
t=1 := 〈(vactive,t = B) ? φt(e) : vt〉TS

t=1 ;
v shared v := ψ(〈vactive,t = B,φt(e)〉TS

t=1) ;

havoc vhavoc ; v private
havoc 〈vhavoc,t〉TS

t=1 ;
v := (vactive = B) ? vhavoc : v ; 〈vt〉TS

t=1 := 〈(vactive,t = B) ? vhavoc,t : vt〉TS
t=1 ;

v shared
havoc 〈vhavoc,t〉TS

t=1 ;
v := ψ(〈vactive,t = B, vhavoc,t〉TS

t=1) ;

assert (vactive = B)⇒ e ; assert
∧TS

t=1((vactive,t = B)⇒ φt(e))

skip ; skip ;

barrier (vactive = B) ; assert
(∨TS

t=1(vactive,t = B)
)
⇒

(∧TS
t=1(vactive,t = B)

)
;

vactive := Start ; 〈vactive,t〉TS
t=1 := 〈Start〉TS

t=1 ;

vnext :∈ {B1, . . . , Bn} ; 〈vnext,t〉TS
t=1 :∈ 〈{B1, . . . , Bn}〉TS

t=1 ;

assume (vactive = B)⇒ e ; assume
∧TS

t=1((vactive,t = B)⇒ φt(e))

(b) Blocks

Predicated form Lock-step form

B : ss B : φ(ss)
gotonext(B) ; gotonext(B) ;

B : ss B : φ(ss)
gotoBback, Bexit ; gotoBback, Bexit ;

Bback : assume vactive = Bhead ; Bback : assume
∨TS

t=1(vactive,t = Bhead) ;
gotoBhead ; gotoBhead ;

Bexit : assume vactive �= Bhead ; Bexit : assume
∧TS

t=1(vactive,t �= Bhead) ;
gotonext(B) ; gotonext(B) ;

successors of the block in the predicated program are Bback, which leads to the loop
header, and Bexit, which leads to a node outside the loop. Our goal is to enforce the
rule that no thread should leave the loop until all threads are ready to leave the loop,
as discussed informally in Sect. 2 and illustrated for structured programs by the guard
of the while loop in Fig. 2. To achieve this, the bottom row of Table 3b employs an
assume in Bback requiring that vactive = Bhead for some thread, and an assume in
Bexit requiring vactive �= Bhead for all threads. A concrete example is given in Fig. 7.

Lock-Step Semantics and Data Races. Having completed our definition of the lock-step
construction φ(P) for a kernel P , we now say that the lock-step semantics for P is the
interleaving semantics for φ(P), with respect to a single thread (i.e., with TS = 1).
Barrier divergence is captured via the introduction of barrier assertions. This leaves to
define data races in lock-step execution traces.

Say that thread t is enabled during a reduction step if the statement being reduced
occurs in block B and vactive,t = B holds at the point of reduction and let v be a
variable. A thread t reads v during a reduction step if t is enabled during the step and
if the step involves evaluating an expression containing v. A thread t writes v during a

284 P. Collingbourne et al.

B2 : assert
(∨TS

t=1(vactive,t = B2)
)
⇒

(∧TS
t=1(vactive,t = B2)

)
;

〈vnext,t〉TS
t=1 :∈ 〈{Wlast}〉TS

t=1 ;
〈vactive,t〉TS

t=1 := 〈(vactive,t = B2) ? vnext,t : vactive,t〉TS
t=1 ;

gotoWlast ;
Wlast : 〈offset t〉TS

t=1 := 〈(vactive,t = Wlast) ? (2 · offset t) : offset t〉TS
t=1 ;

〈vnext,t〉TS
t=1 :∈ 〈{W,Wend}〉TS

t=1 ;

assume
∧TS

t=1((vactive,t = Wlast)⇒ (((vnext,t = W)⇒ (offset t < TS))
∧((vnext,t = Wend)⇒ (offset t ≥ TS)))) ;

〈vactive,t〉TS
t=1 := 〈(vactive,t = Wlast) ? vnext,t : vactive,t〉TS

t=1 ;
gotoWback,Wexit ;

Wback : assume
∨TS

t=1(vactive,t = W) ;
gotoW ;

Wexit : assume
∧TS

t=1(vactive,t �= W) ;
gotoWend ;

Wend : gotoEnd ;

Fig. 7. Part of the lock-step program for the kernel of Fig. 3

reduction step if t is enabled during the step and if the statement being reduced is an
assignment to v. In the case of a write, if multiple threads are enabled then v will be
updated non-deterministically using one of the values supplied by the enabled threads.
Nevertheless, we regard all enabled threads as having written to v.

A data race in a lock-step program is defined as follows:

Definition 4.1. Let φ(P) be the lock-step form of a kernel P . Then, φ(P) has a data
race if there is a maximal reduction ρ of φ(P), distinct threads t and t′, and a shared
variable v such that: ρ does not end in infeasible; t writes v during ρ and t′ either
reads or writes v during ρ; the accesses are not separated by a barrier assertion (i.e.,
no barrier is reduced between the accesses).

Terminating and Race Free Kernels. We say that a kernel P is terminating with respect
to the lock-step semantics if all maximal reductions of φ(P) are finite and do not end
with status error. We say that P is race free with respect to the lock-step semantics if
φ(P) has no data races according to Definition 4.1.

5 Equivalence between Interleaving and Lock-Step Semantics

We can now prove our main result, an equivalence between the interleaving semantics
of Sect. 3 and lock-step semantics of Sect. 4. Our result applies to well-formed kernels:

Definition 5.1. A kernel P is well-formed if for every block B in P if B ends with
gotoB1, . . . , Bn, then

∨n
i=1 guard(Bi) is a tautology.

Well-formedness implies that whenever a thread reduces a goto, the guard of at least
one block that can be reached via the goto is guaranteed to hold. Recall from Sect. 3.1
that guards of assume statements refer only to private variables, thus it is not possible
for another thread to invalidate the guard of an assume between reduction of a goto
and evaluation of the guard. Well-formedness is guaranteed to hold if the CFG for P is
obtained from a kernel written in a C-like language such as OpenCL or CUDA.

Interleaving and Lock-Step Semantics for GPU Kernels 285

Theorem 5.2. Let P be a well-formed kernel and let φ(P) be the lock-step version
of P . Then, P is race free and terminating with respect to the interleaving semantics
iff P is race free and terminating with respect to the lock-step semantics. Moreover, if
race-freedom holds then for every terminating reduction of P there exists a terminating
reduction of φ(P), and vice versa, such that every shared variable v has the same value
at the end of both reductions.

To see why well-formedness is required, consider the following kernel, where each thread
t has a private variable tid whose value is t and where v is shared and v′ is private:

Start : assume true B1 : assume tid = 1 ∧ v′ = 5 ; B2 : assume tid �= 1 ;
v := 4 ; v′ := v ; gotoEnd ; v := 5 ;
gotoB1, B2 ; gotoEnd ;

The interleaving semantics allows for reduction of assume tid = 1 ∧ v′ = 5 after
all assignments in all threads have taken place. Hence, if the assignment of 4 to v by
thread 1 is not last among the assignments to v, then v′ = 5 evaluates to true, and
eventually termination occurs with a data race. In the case of lock-step execution and
assuming the sort order Start ≤ B1 ≤ B2, we have that assume tid = 1 ∧ v′ = 5 is
always reduced immediately after v := 4 ; v′ := v ;. Hence, reduction always terminates
with infeasible and no data race occurs.

That termination is required follows by adapting the counterexamples from [12,11]
showing that CUDA hardware does not necessarily schedule threads from a non-
terminating kernel in a way that that is fair from an interleaving point-of-view.

The proof of the theorem proceeds by showing that P and its predicated form π(P)
are stutter equivalent, and then establishing a relationship between π(P) and φ(P).

Equivalence of P and π(P). To show that P and π(P) are stutter equivalent [14],
we define a denotational semantics of kernels in terms of execution traces [5], i.e., se-
quences of tuples (σ, "σ) = (σ, σ1, . . . , σTS) with σ the shared store and σt the private
store of thread t.

Definition 5.3. Let ρ be a maximal reduction. The denotation or execution trace D(ρ)
of ρ is the sequence of →-labels of ρ together with the termination status of ρ if ρ
terminates. Let (b1, . . . , bTS) be a tuple of block labels. The denotationD(b1, . . . , bTS)
of (b1, . . . , bTS) is the set of denotations of all maximal reductions of (b1, . . . , bTS)
for all initial stores σ, σ1, . . . , σt not terminating as infeasible. Let P be a kernel. The
denotationD(P) of P is D(Start , . . . ,Start).

Observe that infeasible traces are not included in the denotations of (b1, . . . , bTS) andP ;
these traces do not constitute actual program behaviour.

Stutter equivalence is defined on subsets of variables, where a restriction of a
store σ to a set of variables V is denoted by σ�V and, where given a tuple (σ, "σ) =
(σ, σ1, . . . , σTS), the restriction (σ, "σ)�V is (σ, "σ)�V = (σ�V , σ1�V , . . . , σTS �V).

Definition 5.4. Let V be a set of variables. Define the map δV over execution traces
as the map that replaces every maximal subsequence (σ1, "σ1) (σ2, "σ2) · · · (σn, "σn) · · ·
where (σ1, "σ1)�V = (σ2, "σ2)�V = . . . = (σn, "σn)�V = . . . by (σ1, "σ1).

286 P. Collingbourne et al.

Let Σ and T be execution traces. The traces are stutter equivalent with respect to V ,
denoted Σ ∼V

st T , iff:

– Σ and T are both finite with equal termination statuses and δV (Σ) = δV (T);
– Σ and T are both infinite and δV (Σ) = δV (T).

Let P and Q be kernels. The kernels are stutter equivalent with respect to V , denoted
P ∼V

st Q, iff for every Σ ∈ D(P) there is a T ∈ D(Q) with Σ ∼V
st T , and vice versa.

Theorem 5.5. If P is a kernel with variables V , then π(P) ∼V
st P , where π(P) is the

predicated form of P . A data race occurs in P iff a data race occurs in π(P) where,
during reduction of neither of the two statements causing the data race, vactive �= B
with B is the block containing the statement.

The above result follows immediately by a case distinction on the statements that may
occur in kernels once we establish the following lemma, which is a direct consequence
of our construction and the first requirement on the sort order of blocks.

Lemma 5.6. Let P be a kernel with variables V . For any thread t and each block B of
P , if (σ, σt) is a store of t and (σ̂, σ̂t) is a store of in t in π(P) such that σ̂�V = σ and
σ̂(vactive) = B, then

1. if the reduction of B is immediately followed by the reduction of a block C, then
there exists a reduction of π(B) such that vactive is equal to C at the end of π(B)
and eventually π(C) is reduced with vactive equal to C;

2. if the reduction of π(B) ends with vactive equal to C, then there exists a reduction
of B that is immediately followed by the reduction of a block C.

Soundness and Completeness. Theorem 5.2 is now proved as follows.

Proof (Sketch). For termination and race-freedom of φ(P), it suffices by Theorem 5.5
to consider π(P) — the predicated form of P . Reason by contradiction and construct
for a reduction of φ(P) which is either infinite or has data race, a reduction of π(P)
that also is either infinite or has a data race: Replace each statement and goto from
the right-hand columns of Table 3 by a copy of the statement or goto in the left-hand
column and reduce, where we introduce a copy for each thread. That a reduction of a
barrier assertion can be replaced by BARRIERS follows as no statements from outside
loops can be reduced while we are inside a loop (cf. the second requirement on sort
order of blocks) and by the guards of blocks having been moved during predication to
the end of the block preceding it in execution. The remainder of the theorem follows
by permuting steps of different threads so the reverse transformation from above can be
applied. ��

6 Implementation and Experiments

Implementation in GPUVerify. We have implemented the predication technique de-
scribed here in GPUVerify [7], a verification tool for OpenCL and CUDA kernels built

Interleaving and Lock-Step Semantics for GPU Kernels 287

on top of the Boogie verification engine [6] and Z3 SMT solver [19]. GPUVerify previ-
ously employed a predication technique for structured programs. Predication for CFGs
has allowed us to build a new front-end for GPUVerify which takes LLVM interme-
diate representation (IR) as input; IR directly corresponds to a CFG. This allows us
to compile OpenCL and CUDA kernels using the Clang/LLVM framework and per-
form analysis on the resulting IR. Hence, tricky syntactic features of C-like languages
are taken care of by Clang/LLVM. Analysing kernels after compilation and optimisa-
tion also increases the probity of verification, opening up the opportunity to discover
compiler-related bugs.

Experimental Evaluation. To assess the performance overhead in terms of verification
time for our novel predication scheme and associated tool chain we compared our new
implementation (GPUVerify II) with the original structured one (GPUVerify I).

We compared the tool versions using 163 OpenCL and CUDA kernels drawn from
the AMD Accelerated Parallel Processing SDK v2.6 [4] (71 OpenCL kernels), the
NVIDIA GPU Computing SDK v2.0 [20] (20 CUDA kernels), Microsoft C++ AMP
Sample Projects [18] (20 kernels translated from C++ AMP to CUDA) and Rightware’s
Basemark CL v1.1 suite [22] (52 OpenCL kernels, provided to us under an academic
license). These kernels were used for analysis of GPUVerify I in [7], where several of
the kernels had to be manually modified before they could be subjected to analysis: 4
kernels exhibited unstructured control flow due to switch statements, and one featured
a do-while loop which was beyond the scope of the predication scheme of [7]. Further-
more, unstructured control flow arising from short-circuit evaluation of logical opera-
tors had been overlooked in GPUVerify I, which affected 30 kernels. In GPUVerify II
all kernels are handled uniformly as a consequence of our novel predication scheme in
combination with the use of Clang/LLVM, which encodes short-circuit evaluation using
unstructured control flow.

All experiments were performed on a PC with a 3.6 GHz Intel i5 CPU, 8 GB RAM
running Windows 7 (64-bit), using Z3 v4.1. All times reported are averages over 3
runs. Both tool versions and all our benchmarks, except the commercial Basemark CL
kernels, are available online to make our results reproducible.3

The majority of our benchmark kernels could be automatically verified by both GPU-
Verify I and GPUVerify II; 22 kernels were beyond the scope of both tools and resulted
in a failed proof attempt. Key to the usability of GPUVerify is its response time, the
time the tool takes to either report successful verification vs. a failed proof attempt.
Comparing GPUVerify I and GPUVerify II we found that across the entire benchmark
set the analysis time taken by GPUVerify II was 2.25 times that of GPUVerify I, with
GPUVerify II taking on average 2.53 times longer than GPUVerify per kernel. However,
the median slow down associated with GPUVerify II was 0.77, i.e., a speed up of 1.3.

The average, median and longest analysis time across all kernels were 4.3, 1.7 and
157 seconds, resp., for GPUVerify I, and 9.6, 1.4 and 300 seconds, resp., for GPUVer-
ify II. For 124 of the 163 kernels (76%), GPUVerify II was marginally (though not sig-
nificantly) faster than GPUVerify I. For a further 21 kernels (13%) GPUVerify II was
up to 50% slower than GPUVerify I. The remaining 18 kernels (11%) caused the slow

3 http://multicore.doc.ic.ac.uk/tools/GPUVerify

http://multicore.doc.ic.ac.uk/tools/GPUVerify

288 P. Collingbourne et al.

down on average. In each case the difference lay in constraint solving times; the SMT
queries generated by our CFG-based tool chain can be somewhat more complex than in
the structured case. The most dramatic example is a kernel which was verified by GPU-
Verify I and GPUVerify II in 3 and 202 seconds, resp., a slow-down for GPUVerify II of
70 times. This kernel exhibits a large number of shared memory accesses. In the LLVM
IR processed by GPUVerify II these accesses are expressed as many separate, contiguous
loads and stores, requiring reasoning about race-freedom between many pairs of opera-
tions. The structured approach of GPUVerify I captures these accesses at the abstract
syntax tree level, allowing a load/store from/to a contiguous region to be expressed as a
single access, significantly simplifying reasoning. This illustrates that there are benefits
to working at the higher level of abstract syntax trees, and suggests that optimisations in
GPUVerify II to automatically identify and merge contiguous memory accesses might
be beneficial.

7 Related Work and Conclusion

Related Work. Interleaving semantics for GPU kernels has been defined by [15,17,12].
These are similar to our semantics except that [15,12] do not give a semantics for barri-
ers. Contrary to our lock-step approach, [15,17] battle the state space explosion due to
arbitrary interleavings of threads by considering one particular schedule.

In [11,12], a semantics of CUDA kernels is defined that tries to model NVIDIA hard-
ware as faithfully as possible. The focus is not on predicated execution (although it does
figure briefly in [11]), but on so-called immediate post-dominator re-convergence [10],
a method to continue lock-step execution of threads as soon as possible after branch
divergence has occurred between threads.

In addition to the above and similar to us, [12] shows for terminating kernels that
CUDA execution of kernels can be faithfully simulated by certain interleaving thread
schedules. The reverse is not shown; our analysis is that such a result is difficult to
establish due to data races that occur in the examples of [12].

Conclusion. Our lock-step semantics for GPU kernels expressed as arbitrary reducible
CFGs enables automated analysis of a wider class of GPU kernels than previous tech-
niques for structured programs, and allows for the analysis of compiled kernel code, af-
ter optimisations have been applied. Our soundness and completeness result establishes
an equivalence between our lock-step semantics and a traditional semantics based on
interleaving, and our implementation in GPUVerify and associated experimental evalu-
ation demonstrate that our approach is practical.

Because our kernel programming language supports non-deterministic choice and
havocking of variables it can express an over-approximation of a concrete kernel. In
future work we plan to exploit this, investigating the combination of source-level ab-
straction techniques such as predicate abstraction with our verification method.

The well-formedness restriction of Definition 5.1 means that our equivalence result
does not apply to kernels that exhibiting ‘dead end’ paths. This is relevant if such paths
are introduced through under-approximation, e.g., unwinding a loop by a fixed number
of iterations in the style of bounded model checking. We plan to investigate whether it
is possible to relax these well-formedness conditions under certain circumstances.

Interleaving and Lock-Step Semantics for GPU Kernels 289

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Pearson Education, 2nd edn. (2007)

2. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control dependence to data
dependence. In: POPL 1983, pp. 177–189 (1983)

3. Alshawabkeh, M., Jang, B., Kaeli, D.: Accelerating the local outlier factor algorithm on a
GPU for intrusion detection systems. In: GPGPU-3, pp. 104–110 (2010)

4. AMD: AMD Accelerated Parallel Processing (APP) SDK,
http://developer.amd.com/sdks/amdappsdk/pages/default.aspx

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE
2005, pp. 82–87 (2005)

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

7. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a verifier for
GPU kernels. In: OOPSLA 2012, pp. 113–132 (2012)

8. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic Testing of OpenCL Code. In: Eder,
K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218. Springer,
Heidelberg (2012)

9. DeMillo, R.A., Eisenstat, S.C., Lipton, R.J.: Space-time trade-offs in structured program-
ming: An improved combinatorial embedding theorem. J. ACM 27(1), 123–127 (1980)

10. Fung, W.W., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling for
efficient GPU control flow. In: MICRO 2007, pp. 407–418 (2007)

11. Habermaier, A.: The model of computation of CUDA and its formal semantics. Tech. Rep.
2011-14, University of Augsburg (2011)

12. Habermaier, A., Knapp, A.: On the Correctness of the SIMT Execution Model of GPUs. In:
Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 316–335. Springer, Heidelberg (2012)

13. Khronos Group: The OpenCL specification, version 1.2 (2011)
14. Lamport, L.: What good is temporal logic? In: Information Processing 1983, pp. 657–668

(1983)
15. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels

by test amplification. In: PLDI 2012, pp. 383–394 (2012)
16. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:

FSE 2010, pp. 187–196 (2010)
17. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic

verification and test generation for GPUs. In: PPoPP 2012, pp. 215–224 (2012)
18. Microsoft Corporation: C++ AMP sample projects for download,

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/
01/30/c-amp-sample-projects-for-download.aspx

19. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

20. NVIDIA: CUDA Toolkit Release Archive,
http://developer.nvidia.com/cuda/cuda-toolkit-archive

21. NVIDIA: NVIDIA CUDA C Programming Guide, Version 4.2 (2012)
22. Rightware Oy: Basemark CL, http://www.rightware.com/en/

Benchmarking+Software/Basemark%99+CL
23. Zhu, F., Chen, P., Yang, D., Zhang, W., Chen, H., Zang, B.: A GPU-based high-throughput

image retrieval algorithm. In: GPGPU-5, pp. 30–37 (2012)

http://developer.amd.com/sdks/amdappsdk/pages/default.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://developer.nvidia.com/cuda/cuda-toolkit-archive
http://www.rightware.com/en/Benchmarking+Software/Basemark%99+CL
http://www.rightware.com/en/Benchmarking+Software/Basemark%99+CL

Verifying Concurrent Programs

against Sequential Specifications�

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

LIAFA, Université Paris Diderot
{abou,mje,cenea,jhamza}@liafa.univ-paris-diderot.fr

Abstract. We investigate the algorithmic feasibility of checking whether
concurrent implementations of shared-memory objects adhere to their
given sequential specifications; sequential consistency, linearizability, and
conflict serializability are the canonical variations of this problem. While
verifying sequential consistency of systems with unbounded concurrency
is known to be undecidable, we demonstrate that conflict serializabil-
ity, and linearizability with fixed linearization points are EXPSPACE-
complete, while the general linearizability problem is undecidable.

Our (un)decidability proofs, besides bestowing novel theoretical re-
sults, also reveal novel program explorations strategies. For instance, we
show that every violation to conflict serializability is captured by a con-
flict cycle whose length is bounded independently from the number of
concurrent operations. This suggests an incomplete detection algorithm
which only remembers a small subset of conflict edges, which can be
made complete by increasing the number of remembered edges to the
cycle-length bound. Similarly, our undecidability proof for linearizability
suggests an incomplete detection algorithm which limits the number of
“barriers” bisecting non-overlapping operations. Our decidability proof
of bounded-barrier linearizability is interesting on its own, as it reduces
the consideration of all possible operation serializations to numerical con-
straint solving. The literature seems to confirm that most violations are
detectable by considering very few conflict edges or barriers.

1 Introduction

A key class of correctness criteria for concurrent systems is adherence to bet-
ter established sequential specifications. Such criteria demand that each concur-
rent execution of operations corresponds, at the level of abstraction described
by the operations’ specification, to some serial sequence of the same opera-
tions permitted by the specification. For instance, given a conventional speci-
fication of a mathematical set, a concurrent execution in which the operations
add(a), remove(b), is empty(true), remove(a), add(b) overlap could be permitted,
though one with only the operations add(a) and remove(b) could not.

Variations on this theme of criteria are the accepted correctness conditions for
various types of concurrent systems. In the context of processor memory architec-
tures, sequential consistency (SC) [24] allows only executions of memory access

� The proofs to many of our technical results appear in an extended report [7].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 290–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verifying Concurrent Programs against Sequential Specifications 291

operations for which the same operations taken serially adhere to the specification
of individual memory registers—i.e., where each load reads the last-written value.
Additionally, any two operations of the serialization carried out by the same pro-
cess must occur in the same order as in the original concurrent execution. In the
context of concurrent data structure implementations, linearizability [21] demands
additionally that two operations which do not overlap in the original concurrent
execution occur in the same order in any valid serialization.

The same kinds of criteria are also used in settings where operation specifica-
tions are less abstract. For transactional systems (e.g., databases, and runtime
systems which provide atomic sections in concurrent programs), (strict) serializ-
ability [28] allows only executions for which the same transactions taken serially
adhere to the specification of an entire (random-access) memory observable by
the transactions; additionally, transactions executed by the same process (or
which did not overlap, in the strict case) are obliged to occur in the same or-
der in any valid serialization. Practical considerations, such as the complexity
of determining whether a given trace is serializable, have generated even more
restrictive notions of serializability. Conflict serializability (Papadimitriou [28]
calls this property “DSR”) demands additionally—viewing a serialization as a
reordering of actions which untangles the operations of a concurrent execution—
that no two conflicting actions are reordered in the serialization. The typical
definition of “conflict” relates accesses to the same memory location or region,
with at least one being a store.

In this work we investigate the fundamental questions about the algorithmic
feasibility of verifying concurrent programs with respect to sequential specifica-
tions. While our results consider programs with unbounded concurrency aris-
ing from, e.g., dynamic thread-creation, they, as do most other (un)decidability
results concerning concurrent program analysis, apply to programs where the
domain of data values is either finite, or reduced by a finitary abstraction.

While the problem of determining whether a given concurrent system is se-
quentially consistent with respect to a given sequential specification is known to
be undecidable, even when the number of concurrent processes is bounded [1],
the decidability of the analogous questions for (conflict) serializability and lin-
earizability, for unbounded systems of concurrent processes, remains open. (Alur
et al. [1] have proved both of these problems decidable1, resp., in PSPACE and
EXPSPACE, when the number of concurrent processes is bounded.) In this work
we establish these decidability and complexity results for unbounded systems,
and as byproduct, uncover program exploration strategies which prioritize the
discovery of naturally-occurring property violations.

Our first result, of Section 3, is that conflict serializability is decidable, and com-
plete for exponential space. Since existing techniques rely on cycle detection in an
exhaustive exploration of possible conflict relations (graphs) among concurrent op-
erations [17], allowing for an unbounded number of concurrent operations renders
these techniques inapplicable to verification, since the unbounded set of possible
conflict graphs cannot generally be enumerated in finite time. Contrarily, here we

1 The correct decidability proof for serializability is due to Farzan andMadhusudan [17].

292 A. Bouajjani et al.

demonstrate that every cyclic conflict graph contains a cycle which is bounded in-
dependently of the number of concurrent operations; this cycle length is instead
bounded as a linear function in the number of memory locations. This suggests
that an incomplete cycle detection algorithm which only remembers a small sub-
set of conflict edges canbemade complete by increasing the number of remembered
edges to the given cycle-length bound. Even so, we expect that most violations to
conflict serializability can be efficiently detected by remembering very few conflict
edges: those we have seen reported in the literature are expressed with length 2
cycles [13, 19], and for systems satisfying certain supposedly-common symmetry
conditions, any violationmust occur with only two threads [19].

Our second result, of Section 4, is that the static linearizability problem, in
which the so-called “linearization points” of operations which modify the shared-
object state are fixed to particular implementation actions, is also decidable, and
complete for exponential space. Informally, a linearization point of an operation
in an execution is a point in time where the operation is conceptually effectuated;
given the linearization points of each operation, the only valid serialization is
the one which takes operations in order of their linearization points. Although
static linearizability is a stronger criterion than linearizability, it is based on a
fairly-well established proof technique [21] which is sufficiently weak to prove
linearizability of many common concurrent data-structure algorithms [31].

Turning to the general problem, in Section 5, we show that verifying lineariz-
ability for unbounded concurrent systems is undecidable. Our proof is a reduction
from a reachability problem on counter machines, and relies on imposing an un-
bounded number of “barriers”which bisect non-overlapping operations in order to
encode an unbounded number of zero-tests of the machines’ counters. Informally,
a barrier is a temporal separation between two non-overlapping operations, across
which valid serializations are forbidden from commuting those operations.

Besides disarming our proof of undecidability, bounding the amount of bar-
riers reveals an incomplete algorithm for detecting linearizability violations, by
exploring only those expressed with few barriers. Similarly to the small-cycle
case in conflict serializability, we expect that most violations to linearizability
are detectable with very few barriers; indeed the naturally-occurring bugs we are
aware of, including the infamous “ABA” bug [26], induce violations with zero or
one barrier. Our decidability proof of bounded-barrier linearizability in Section 6
is interesting on its own, since it effectively reduces the problem of considering
all possible serializations of an unbounded number of operations to a numerical
constraint solving problem. Using a simple prototype implementation leveraging
SMT-based program exploration, we use this reduction to quickly discover bugs
known in or injected into textbook concurrent algorithms.

To summarize, the contributions of thisworkare thefirst known(un)decidability
results for (§3) conflict serializability, (§4) static linearizability, (§5) lineariz-
ability, and (§6) bounded-barrier linearizability, for systems with unbounded
concurrency. Furthermore, besides substantiating these theoretical results our
proofs reveal novel prioritized exploration strategies, based on cycle- and barrier-
bounding. Since most known linearizable systems are also static-linearizable,

Verifying Concurrent Programs against Sequential Specifications 293

combining static-linearizability with bounded-barrier exploration ought to pro-
vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of op-
erations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concur-
rent or distributed data structures, and less conventionally, to the atomic code
sections of concurrent programs, or to the SQL implementations of database
transactions. A library is then simply the collection of API implementations, or
transactional code. Usually concurrent data structure libraries and transactional
runtime systems are expected to ensure that executed operations are logically
equivalent to some understood serial behavior, regardless of how clients concur-
rently invoke their methods or transactions; the implication is that such systems
should function correctly for a most-general client which concurrently invokes
an unbounded number of methods with arbitrary timing. In what follows we
formalize these notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = 〈Q,Σ, I, F, ↪→〉 with labeled transitions
〈m1, v1〉 a

↪−→ 〈m2, v2〉 between method-local states m1,m2 ∈ Q paired with
finite-domain shared-state valuations v1, v2 ∈ V . The initial and final states
I, F ⊆ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a par-
ticular method (resp., library) by subscripting, e.g., the states and symbols QM

and ΣM (resp., QL and ΣL). Though here we suppose an abstract notion of
shared-state valuations, in later sections we interpret them as valuations to a
finite set of finite-domain variables.

A client of a library L is a finite automaton C = 〈Q,Σ, �0, ↪→〉 with initial
state �0 ∈ Q and transitions ↪→ ⊆ Q × Σ × Q labeled by the alphabet Σ =
{M(m0,mf) : M ∈ L,m0,mf ∈ QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ΣC . The
most general client C� = 〈Q,Σ, �0, ↪→〉 of a library L nondeterministically calls
L’s methods in any order: Q = {�0} and ↪→ = Q×Σ ×Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing
a copy of a given client C; note that any shared memory program with an un-
bounded number of finite-state threads can be modeled using a suitably-defined
client C. A configuration c = 〈v, u〉 of L[C] is a shared memory valuation v ∈ V ,
along with a map u mapping each thread t ∈ N to a tuple u(t) = 〈�,m0,m〉,

294 A. Bouajjani et al.

Internal

u1(t) = 〈	,m0,m1〉
〈m1, v1〉

a
↪−−→ 〈m2, v2〉

u2 = u1 (t �→ 〈	,m0,m2〉)

〈v1, u1〉
〈a,t〉−−−→
L[C]

〈v2, u2〉

Call

u1(t) = 〈	1,⊥,⊥〉

m0 ∈ IM 	1
M(m0,mf)

↪−−−→C 	2
u2 = u1 (t �→ 〈	1,m0,m0〉)

〈v, u1〉
call(M,m0,t)−−−−−−−−→

L[C]
〈v, u2〉

Return

u1(t) = 〈	1,m0,mf 〉

mf ∈ FM 	1
M(m0 ,mf)

↪−−−→C 	2
u2 = u1 (t �→ 〈	2,⊥,⊥〉)

〈v, u1〉
ret(M,mf ,t)
−−−−−−−→

L[C]
〈v, u2〉

Fig. 1. The transition relation →L[C] for the library-client composition L[C]

composed of a client-local state � ∈ QC , along with initial and current method
states m0,m ∈ QL ∪ {⊥}; m0 = m = ⊥ when thread t is not executing a
library method. In this way, configurations describe the states of arbitrarily-many
threads executing library methods. The transition relation→L[C] of L[C] is listed

in Figure 1 as a set of operational steps on configurations. A configuration 〈v, u〉
of L[C] is called v0-initial for a given v0 ∈ V when v = v0 and u(t) = 〈�0,⊥,⊥〉
for all t ∈ N, where �0 is the initial state of client C. An execution of L[C] is a
sequence ρ = c0c1 . . . of configurations such that ci →L[C] ci+1 for all 0 ≤ i < |ρ|,
and ρ is called v0-initial when c0 is.

We associate to each concurrent system L[C] a canonical vector addition sys-
tems with states (VASS),2 denoted AL[C], whose states are the set of shared-
memory valuations, and whose vector components count the number of threads
in each thread-local state; a transition of AL[C] from 〈v1,n1〉 to 〈v2,n2〉 updates
the shared-memory valuation from v1 to v2 and the local state of some thread t
from u1(t) to u2(t) by decrementing the u1(t)-component of n1, and increment-
ing the u2(t)-component, to derive n2. Several of our proof arguments in the
following sections invoke the canonical VASS simulation of a concurrent system,
which we define fully in our extended report [7].

A call action of thread t is a symbol call(M,m, t), a return action is a symbol
ret(M,m, t), and an internal action is a symbol 〈a, t〉. We write σ to denote a
sequence of actions, and τ to denote a trace—i.e., a sequence of actions labeling
some execution. AnM [m0,mf]-operation θ (or more simply,M -operation, or just
operation) of a sequence σ is a maximal subsequence of actions of some thread t
beginning with a call action call(M,m0, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M,mf , t); mf =
∗ when θ does not end in a return action. When θ ends with a return action, we
say θ is completed, and otherwise θ is pending; a sequence σ is complete when
all of its operations are completed. Two operations θ1 and θ2 of σ overlap when
the minimal subsequence of σ containing both θ1 and θ2 is neither θ1 · θ2 nor
θ2 · θ1. Two non-overlapping operations θ1 followed by θ2 in σ are called serial
when θ1 is completed; note that all operations of the same thread are serial. A
sequence σ is (quasi) serial when no two (completed) operations of σ overlap.

A (strict) permutation of an action sequence σ containing operations Θ is an
action sequence π with operations Θ such that every two same-thread operations

2 See our extended report [7] for a standard definition of VASS.

Verifying Concurrent Programs against Sequential Specifications 295

(resp., every two serial operations) of σ occur in the same serial order in π. Note
that π itself is not necessarily a trace of a system from which σ may be a trace.

2.2 Conflict Serializability

The notion of “conflict serializability” is a restriction to the more liberal “seri-
alizability” [28]: besides requiring that each concurrent execution of operations
corresponds to some serial sequence, a “conflict relation,” relating the individ-
ual actions of each operation, must be preserved in deriving that serial sequence
from a permutation of actions in the original concurrent execution. Both notions
are widely accepted correctness criteria for transactional systems.

We fix a symmetric3 relation ≺ on the internal library actions ΣL called the
conflict relation. Although here we assume an abstract notion of conflict, in
practice, two actions conflict when both access the same memory location, and
at least one affects the value stored in that location; e.g., two writes to the same
shared variable would conflict. A permutation π of a trace τ is conflict-preserving
when every pair 〈a1, t1〉 and 〈a2, t2〉 of actions of τ appear in the same order in
π whenever a1 ≺ a2. Intuitively, a conflict-preserving permutation w.r.t. the
previously-mentioned notion of conflict is equally executable on a sequentially-
consistent machine.

Definition 1 (Conflict Serializability [28]). A trace τ is conflict serializable
when there exists a conflict-preserving serial permutation of τ .

This definition extends to executions, to systems L[C] whose executions are all
conflict serializable, and to libraries L when C is the most general client C�.

2.3 Linearizability

Contrary to (conflict) serializability, linearizability [21] is more often used in con-
texts, such as concurrent data structure libraries, in which an abstract specifica-
tion of operations’ serial behavior is given explicitly. For instance, linearizability
with respect to a specification of a concurrent stack implementation would re-
quire the abstract push(·) and pop(·) operations carried out in a concurrent trace
τ correspond to some serial sequence σ of push(·)s and pop(·)s, in which each
pop(a) can be matched to a previous push(a); Figure 2 illustrates an automaton-
based specification of a two-element unary stack. Note that linearizability does
not require that a corresponding reordering of the trace τ can actually be ex-
ecuted by this stack implementation, nor that the implementation could have
even executed these operations serially.

A specification S of a library L is a language over the specification alphabet

ΣS
def
= {M [m0,mf] : M ∈ L,m0,mf ∈ QM}.

In this work we assume specifications are regular languages; in practice, spec-
ifications are prefix closed. We refer to the alphabet containing both symbols

3 All definitions of conflict that we are aware of assume symmetric relations.

296 A. Bouajjani et al.

qε qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-
element stacks containing the (abstract)
value a, given as the language of a finite
automaton, whose operation alphabet indi-
cates both the argument and return values.

qε qa qa,a

push[a, ∗],
push[a, true]

pop[·, ∗],
pop[·, true]

pop[·, ∗],
pop[·, true]

push[a, ∗],
push[a, true]

pop[·, false]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

Fig. 3. The pending closure of the stack
specification from Figure 2

M [m0,mf] and M [m0, ∗] for each M [m0,mf] occurring in ΣS as the pending-
closed alphabet of S, denoted ΣS .

Informally, a libraryL is linearizablew.r.t. a specificationS when the operations
of any concurrent trace can be serialized to a sequence of operations belonging to
S, which must preserve the order between non-overlapping operations. However,
the presence of pending operations introduces a subtlety: a trace may be consid-
ered linearizable by supposing that certain pending operations have already been
effectuated—e.g., a trace of a concurrent stack implementation in which push(a) is
pending and pop(a) has successfully completed is linearizable—while simultane-
ously supposing that other pending operations are ignored—e.g., a trace in which
push(a) is pending and pop(a) returned false is also linearizable. To account for the
possible effects of pending operations, we define a completion of a (quasi) serial se-
quence σ = θ1θ2 . . . θi of operations to be any sequence f(σ) = f(1)f(2) . . . f(i)
for some function f preserving completed operations (i.e., f(j) = θj when θj
is completed), and either deleting (i.e., f(j) = ε) or completing (i.e., f(j) =
θj · ret(M,mf , t), for some mf ∈ QM) eachM [m0, ∗] operation of some thread t.
Note that a completion of a (quasi) serial sequence σ is a complete serial sequence.
Finally, the S-image of a serial sequence σ, denoted σ | S, maps eachM [m0,mf]-
operation θ to the symbolM [m0,mf] ∈ ΣS .

Definition 2 (Linearizability [21]). A trace τ is S-linearizable when there ex-
ists a completion4 π of a strict, quasi-serial permutation of τ such that (π|S)∈S.
This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C�.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a quasi-
serial sequence whose completion (shown) excludes the pending push operation,
and whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]
belongs to the stack specification from Figure 2.

4 Some works give an alternative yet equivalent definition using the completion of a
strict, quasi-serial permutation of the S-image, rather than the S-image of a comple-
tion.

Verifying Concurrent Programs against Sequential Specifications 297

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)
· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace τ with four threads executing four completed and
one pending operation, along with a completion of a strict, quasi-serial permutation of
τ (ignoring internal actions)

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given quasi-serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(σ | S) ∈ Σ

∗
S : ∃σ′ ∈ Σ∗

S . (σ
′ | S) ∈ S and σ′ is a completion of σ}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ΣS \ ΣS correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ΣS \ΣS correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complica-
tion of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace τ is S-linearizable if and only if there exists a strict, quasi-
serial permutation π of τ such that (π | S) ∈ S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [17], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alterna-
tive structure witnessing non-conflict-serializability, whose size remains bounded

298 A. Bouajjani et al.

θ1 θ2
θ3

θ4

θ5

a1 b1a2 b2
a3 b3

a4

b4

(a)

θ1

θ2

θ3θ4

θ5

(b)

θ1
θ2

θ3
θ4

θ5

a1
b1a2

b2

a3
b3

a4
b4

(c)

θ1

θ2

θ3θ4

θ5

(d)

Fig. 5. Conflict-violation witness embeddings and their corresponding conflict graph
cycles over five operations θ1, θ2, θ3, θ4, θ5. (a) Thewitness 〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉
is notminimalwhen b2 = b3, since 〈a1, b1〉 〈a2, b3〉 〈a4, b4〉 is also awitness. (c)Thewitness
〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉 is not minimal when b2 = b3, since 〈b3, a2〉 〈a2, b2〉 〈a3, b3〉
is also a witness. The conflict graphs of (a) and (c) are shown in (b) and (d).

independently of the number of concurrent threads, and which we use to prove
EXPSPACE-completeness of conflict-serializability.

Definition 3 (Conflict-Graph [28]). The conflict graph of a trace τ is the
directed graph Gτ = 〈Θ,E〉 whose nodes Θ are the operations of τ , and which
contains an edge from θ1 to θ2 when either:

– θ1 and θ2 are serial and θ1 occurs before θ2 in τ , or
– there exist a conflicting pair of actions a1 and a2 of θ1 and θ2, resp., such

that a1 ≺ a2 and a1 occurs before a2 in τ .

Although a trace is serializable if and only if its conflict graph is acyclic [17], the
size of the conflict graph grows with the number of concurrent operations.

An embedding of a sequence of conflicting action pairs 〈a1, b1〉 . . . 〈ak, bk〉, into
a trace τ , is a function f from {ai, bi : 1 ≤ i ≤ k} to the actions of τ , such that:

– each f(ai) is executed by a different thread,
– f(bi) and f(aη(i)) are actions of the same thread,
– f(ai) precedes f(bi) in τ , and
– f(bi) precedes f(aη(i)) in τ when f(bi) and f(aη(i)) are of different operations,

for each 1 ≤ i ≤ k, where η(i) = (i mod k) + 1. A conflict-violation witness for
a trace τ is a sequence w for which there exists an embedding into τ .

Example 2. Figure 5a pictures the embeddings of two conflict-violation witnesses
containing 4 action pairs, corresponding to a cycle θ1θ2θ3θ4θ5θ1 in the conflict
graph of Figure 5c associated to the same trace.

The key to decidability of conflict-serializability is that any conflict cycle con-
structed from two occurrences of the same conflicting action a ∈ ΣL can be
short-circuited into a smaller conflict cycle.

Lemma 3. A trace τ of a library L (w.r.t. some client C) is not conflict serial-
izable iff there exists a conflict-violation witness for τ of size at most |ΣL|+ 1.

Verifying Concurrent Programs against Sequential Specifications 299

Proof. As a direct consequence of our definition, τ is not conflict serializable iff
there exists a witness w embedded into τ by some f . (Each w embedded in τ
defines a conflict graph cycle, and vice-versa). We show that if some bi besides
b1 repeats in w, then there exists an even smaller witness w′.

For any i, j ∈ N such that 1 < i < j ≤ |w| and bi = bj , we consider the two
possibilities:

– Suppose f(bj) occurs after f(ai) in τ . Then there exists a smaller conflict-
violation witness for τ :

w′ = 〈a1, b1〉 . . . 〈ai, bi〉 〈aj+1, bj+1〉 . . . 〈ak, bk〉 .

The illustration of Figure 5a exemplifies this case when b2 = b3.
– Suppose f(bj) occurs before f(ai) in τ . Then, leveraging the fact that ≺ is

symmetric, there exists a smaller conflict-violation witness for τ :

w′ = 〈bj , ai〉 〈ai, bi〉 . . . 〈aj , bj〉 .

The illustration of Figure 5b exemplifies this case when b2 = b3.

In either case w is not minimal unless |w| ≤ |ΣL|+ 1. ��
As we have considered an abstraction notion of actions which constitute a fi-
nite set ΣL, Lemma 3 would hold equally well for libraries accessing an un-
bounded shared memory, given an equivalence relation whose quotient set is
finite—e.g., by partitioning memory into a finite number of regions—which is
obtained in practice by abstraction.

As soon as conflict cycles are bounded, the set of all possible cycles is finitely
enumerable. We use this fact to prove that conflict serializability is decidable
in exponential space by reduction to state-reachability in VASS, using an ex-
tension to the canonical VASS AL[C] of a given system L[C] (see Section 2.1).
We augment the states of AL[C] to store a (bounded) conflict violation witness
w, which is chosen nondeterministically, and incrementally validated as AL[C]

simulates the behavior of L[C]. This algorithm is asymptotically optimal, since
state-reachability in VASS is also polynomial-time reducible to checking conflict
serializability. Our full proof is listed in an extended report [7].

Theorem 1. The conflict serializability problem for unbounded concurrent sys-
tems is EXPSPACE-complete.

Although exploring all possible conflict cycles up to the bound |ΣL|+1 yields a
complete procedure for deciding conflict serializability, we believe that in prac-
tice incomplete methods—e.g., based on constraint solving—using much smaller
bounds could be more productive. The existing literature on verification of con-
flict serializability seems to confirm that violations are witnessed with very small
cycles; for instance, two different violations on variations to the Transactional
Locking II transactional memory algorithm reported by Guerraoui et al. [19] and
Dragojević et al. [13] are witnessed by cycles formed by just two pairs of con-
flicting actions between two operations. Furthermore, Guerraoui et al. [19] show
that any violation to conflict serializability in practically-occurring transactional
memory systems must occur in an execution with only two threads.

300 A. Bouajjani et al.

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2, Herlihy and Wing [21] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ effects become instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions
in method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concur-
rently executing operations, and it may even reside outside of the operation’s
execution. Vafeiadis [31] observed that in practice such complicated linearization
points arise mainly for “read-only” operations, which do not modify a library’s
abstract state; a typical example being the contains-operation of an optimistic
set [27], whose linearization point may reside in a concurrently executing add-
or remove-operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a methodM of a library L and m0,mf ∈ QM , anM [m0,mf]-operation
θ is read-only for a specification S if and only if for all w1, w2, w3 ∈ Σ∗

S,

1. If w1 ·M [m0,mf] · w2 ∈ S then w1 ·M [m0,mf]
k · w2 ∈ S for all k ≥ 0, and

2. If w1 ·M [m0,mf] · w2 ∈ S and w1 · w3 ∈ S then w1 ·M [m0,mf] · w3 ∈ S.

The first condition is a sort of idempotence of M [m0,mf] w.r.t. S, while the
second says that M [m0,mf] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M [m0,mf] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M [m0,mf] is a self-loop.
For instance, the specification in Fig. 2 dictates that pop[·, false] is read-only.

The control graph GM = 〈QM , E〉 is the quotient of a method M ’s transition
system by shared-state valuations V : 〈m1, a,m2〉 ∈ E iff 〈m1, v1〉 ↪→a

M 〈m2, v2〉
for some v1, v2 ∈ V . A function LP : L → ℘(ΣL) is called a linearization-point
mapping when for each M ∈ L:

1. each symbol a ∈ LP(M) labels at most one transition of M ,
2. any directed path in GM contains at most one symbol of LP(M), and
3. all directed paths in GM containing a ∈ LP(M) reach the same ma ∈ FM .

An action 〈a, i〉 of anM -operation is called a linearization point when a ∈ LP(M),
and operations containing linearization points are said to be effectuated ; LP(θ)
denotes the unique linearization point of an effectuated operation θ. A read-
points mapping RP : Θ → N for an action sequence σ with operations Θ maps
each read-only operation θ to the index RP(θ) of an internal θ-action in σ.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

Verifying Concurrent Programs against Sequential Specifications 301

An action sequence σ is called effectuated when every completed operation of
σ is either effectuated or read-only, and an effectuated completion σ′ of σ is
effect preserving when each effectuated operation of σ also appears in σ′. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence σ, we say a permutation π of σ is point preserving when every two
operations of π are ordered by their linearization/read points in σ.

Definition 4. A trace τ is 〈S, LP〉-linearizable when τ is effectuated, and there
exists a read-points mapping RP of τ , along with an effect-preserving completion
π of a strict, point-preserving, and serial permutation of τ such that (π | S) ∈ S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C�.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is 〈S, LP〉-linearizable for some mapping LP.

Example 3. The execution of Example 1 is 〈S, LP〉-linearizable with an LP which
assigns points denoted by ×s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide 〈LP, S〉-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specifica-
tion automaton AS , updating its state when operations are effectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation θ is enabled in AS at some point during θ’s execution, our
reachability query ensures that each effectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure for
static-linearizability, leveraging Savitch’s Theorem. Our proof in our extended re-
port [7] also demonstrates asymptotic optimality, since VASS state-reachability
is also polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent sys-
tems with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

302 A. Bouajjani et al.

machines to linearizability of unbounded concurrent systems. Technically, given
a counter machine A, we construct a library LA and a specification SA such
that LA[C

�] is not SA-linearizable exactly when A has an execution reaching
the given target state. In what follows we outline our simulation of A, ignoring
several details in order to highlight the crux of our reduction. Our full proof is
listed in an extended report [7].

In our simulation ofA the most general client C� invokes an arbitrary sequence
of methods from the library LA containing a transition method T[t] for each
transition t of A, and an increment method I[ci], a decrement method D[ci], and
a zero-test method Z[ci], for each counter ci of A. As our simulation should
allow only concurrent traces which correspond to executions of A, and C� is a
priori free to invoke operations at arbitrary times, we are faced with constructing
the library LA and specification SA so that only certain well-formed concurrent
traces are permitted. Our strategy is essentially to build LA to allow only those
traces corresponding to valid sequences of A-transitions, and to build SA to
allow only those traces, which either do not reach the target state of A, or which
erroneously pass some zero-test—i.e., on a counter whose value is non-zero.

Figure 6 depicts the structure of our simulation, on an A-execution where
two increments are followed by two decrements and a zero test, all on the same
counter c1. Essentially we simulate each execution by a trace in which:

1. A sequence t1t2 . . . ti of A-transitions is modeled by a pairwise-overlapping
sequence of T[t1] · T[t2] · · ·T[ti] operations.

2. Each T[t]-operation has a corresponding I[ci], D[ci], or Z[ci] operation, de-
pending on whether t is, resp., an increment, decrement, or zero-test transi-
tion with counter ci.

3. Each I[ci] operation has a corresponding D[ci] operation.
4. For each counter ci, all I[ci] and D[ci] between Z[ci] operations overlap.
5. For each counter ci, no I[ci] nor D[ci] operations overlap with a Z[ci] opera-

tion.
6. The number of I[ci] operations between two Z[ci] operations matches the

number of D[ci] operations.

The library LA ensures Properties 1–4 using rendezvous synchronization, with
six types of signals: a T/T signal between T[·]-operations, and for each counter
ci, T/I, T/D, and T/Z signals between T[·]-operations and, resp., I[ci], D[ci],
and Z[ci] operations, an I/D signal between I[ci] and D[ci] operations, and a
T/C signal between T[t] operations and I[ci] or D[ci] operations, for zero-testing
transitions t. An initial operation (not depicted in Figure 6) initiates a T/T
rendezvous with some T[t] operation. Each T[t] operation then performs a ren-
dezvous sequence: when t is an increment or decrement of counter ci, then T[t]
performs a T/T rendezvous, followed by a T/I, resp., T/D for counter ci, followed
by a final T/T rendezvous; when t is a zero-test of counter ci, T[t] performs a
T/T rendezvous, followed by some arbitrary number of T/Cs for ci, followed by a
T/Z for ci, and finally a last T/T rendezvous. Each I[ci] operation performs T/I,
then I/D, and finally T/C rendezvous for counter ci, while each D[ci] operation
performs I/D, then T/D, and finally T/C rendezvous for ci; the Z[ci] operations

Verifying Concurrent Programs against Sequential Specifications 303

T[inc c1]

T[inc c1] T[dec c1]

T[dec c1]

T[jz c1 ..]

T[...]

I[c1]

I[c1]

D[c1]

D[c1]

Z[c1]
T/I T/I T/D T/D T/C

I/D I/D

T/ZT/TT/T T/T T/T T/T

Fig. 6. The LA simulation of an A-execution with two increments followed by two
decrements and a zero-test of counter c1. Operations are drawn as horizontal lines con-
taining rendezvous actions drawn as circles. Matching rendezvous actions are connected
by dotted lines labeled by rendezvous type. Time advances to the right.

perform a single T/Z rendezvous for ci. T/T rendezvousing ensures Property 1,
T/I, T/D, and T/Z rendezvousing ensures Property 2, I/D rendezvousing en-
sures Property 3, and T/C rendezvousing ensures Property 4. Note that even
in the case where not all pending I[ci] and D[ci] operations perform T/C ren-
dezvous with a concurrent T[t] operation, where t is a zero-test transition, at the
very least, they overlap with all other pending I[ci] and D[ci] operations having
performed T/I, resp., T/D, rendezvous since the last Z[ci] operation.

The trickier part of our proof is indeed ensuring Properties 5 and 6. There
we leverage Property 4: when all I[ci] and D[ci] operations between two Z[ci]
operations overlap, every permutation of them, including those alternating be-
tween I[ci] and D[ci] operations, is strict, i.e., is permitted by the definition of
linearizability. Our specification SA takes advantage of this in order to match
the unbounded number of I[ci] and D[ci] operations using only bounded memory.

Lemma 5. The specification SA accepting all sequences which either do not end
with a transition to the target state, or in which the number of alternating I[ci]
and D[ci] operations between two Z[ci] operations are unequal, is regular.

Lemma 5 gives a way to ensure Properties 5 and 6, since any trace which is
SA-linearizable either does not encode an execution to A’s target state, or re-
spects Property 5 while violating Property 6—i.e., the number of increments and
decrements between zero-tests does not match—or violates Property 5: in the
latter case, where some I[ci] or D[ci] operation θ1 overlaps with an Z[ci] operation
θ2, θ1 can always be commuted over θ2 to ensure that the number of I[ci] and
D[ci] operations does not match in some interval between Z[ci] operations. Thus
any trace which is not SA-linearizable must respect both Properties 5 and 6.
It follows that any trace of LA which is not SA-linearizable guarantees Proper-
ties 1–6, and ultimately corresponds to a valid execution of A, and visa versa,
thus reducing counter machine state-reachability to SA-linearizability.

Theorem 3. The linearizability problem for unbounded concurrent systems with
regular specifications is undecidable.

304 A. Bouajjani et al.

6 Deciding Bounded Barrier Linearizability

Our proof in Section 5 that verifying linearizability is undecidable relies on con-
structing an unbounded amount of “barriers” bisecting serial operations in order
to encode unboundedly-many zero-tests of a counter machine. Besides disarming
our undecidability proof, bounding the number of barriers leads to an interest-
ing heuristic for detecting violations to linearizability, based on the hypothesis
that many violations occur in executions expressed with few barriers. In this sec-
tion we demonstrate not only that the bounded-barrier linearizability problem is
decidable, but that when restricting exploration to bounded-barrier executions,
checking linearizability reduces to a constraint solving problem on the valuations
of counters counting the number of each operation occurring in a finite number
of barrier-separated intervals. Similarly to how context-bounding reduces the
problem of exploring concurrent program interleavings to sequential program
behaviors [22], barrier-bounding reduces the problem of exploring concurrent
operation serializations to counter-constraint solving.

Formally, a barrier of a trace τ is an index 0 < B < |τ | such that τ(B) is a
call action, and the nearest preceding non-internal action of τ is a return action.
An interval is a maximal integer interval I = [i1, i2] of τ -indices containing no
barriers except i1, in the case that i1 > 0; we index the intervals of a trace
sequentially from 0, as I0, I1, . . . , Ik. The span of an operation θ of τ is the pair
〈Ii, Ij〉 of intervals such that θ begins in Ii and ends in Ij—and Ij = ω when θ
is pending. The trace τ of Example 1 contains two barriers, B1 and B2, where
τ(B1) = call(pop, ·, t1) and τ(B2) = call(push, a, t3), thus dividing τ into three
intervals, I0 = [0, B1 − 1], I1 = [B1, B2 − 1], and I2 = [B2, |τ | − 1]; the span of,
e.g., the operation of threads t2 and t4 are, resp., 〈I0, I1〉 and 〈I0, ω〉. Note that
the spans of two serial operations of a trace are disjoint.

Definition 6. The system L[C] is 〈S, k〉-linearizable when every trace of L[C]
with at most k barriers is S-linearizable.

In what follows we develop the machinery to reduce this bounded-barrier lineariz-
ability problem to a reachability problem on systems which count the number
of each operation spanning each pair of intervals.

An interval-annotated alphabet Σ̇
def
= Σ × N × (N ∪ {ω}) attaches (non-zero)

interval indices to each symbol of Σ, and an interval-annotated sequence σ̇ ∈ Σ̇∗

is k-bounded when i1 ≤ k and either i2 ≤ k or i2 = ω for each symbol 〈a, i1, i2〉
of σ̇. The homomorphism ḣ : Σ̇ → Σ maps each symbol 〈a, , 〉 to ḣ(〈a, , 〉) = a.
An interval-annotated sequence σ̇ is timing consistent when i1 ≤ i2, i3 ≤ i4, and
i1 ≤ i4 for any symbol 〈 , i1, i2〉 occurring before 〈 , i3, i4〉 in σ̇.

We say that the sequence over the interval-annotated (and pending closed,
see Section 2.4) specification alphabet σ̇ ∈ Σ̇∗

S is consistent when σ̇ is timing
consistent, and i2 = ω iffmf = ∗, for all symbols 〈M [m0,mf], i1, i2〉 of σ̇. The (k-
bounded) interval-annotated specification Ṡ of a specification S is the language
containing all consistent interval-annotated sequences σ̇ such that h(σ̇) ∈ S.
For example, we obtain the 1-bounded interval-annotated specification from

Verifying Concurrent Programs against Sequential Specifications 305

the specification of Figure 3 by attaching the interval indices 〈1, ω〉 to each
pop[·, ∗] and push[a, ∗] symbol, and 〈1, 1〉 to each pop[·, false], pop[·, true], and
push[a, true] symbol.

Lemma 6. The k-bounded interval-annotated specification Ṡ, of a regular spec-
ification S, is also regular.

Proof. For any given k > 0 the set W ⊆ Σ̇∗
S of k-bounded consistent interval-

annotated sequences is regular. As regular languages are closed under inverse
homomorphism and intersection, Ṡ = W ∩ ḣ−1(S) is also regular. ��
To relate traces to an interval-annotated specification Ṡ, we define the interval-
annotated S-image σ̇ of an action sequence σ as the multiset σ̇ : Σ̇S → N map-
ping each 〈M [m0,mf], i1, i2〉 ∈ Σ̇S to the number of occurrences of M [m0,mf]-
operations in σ with span 〈i1, i2〉.
Example 4. The interval-annotated image τ̇ of the trace τ from Example 1 maps
the interval-annotated symbols

push[a, true][1, 1], push[a, ∗][1, ω], pop[·, true][1, 2],
pop[·, false][2, 3], and push[a, true][3, 3]

to 1, and the remaining symbols of Σ̇S to zero.

Annotating operations with the intervals in which they occur allows a compact
representation of specifications’ ordering constraints, while abstracting away the
order of same-interval operations—as they are free to commute. To realize this
abstraction, we recall that the Parikh image of a sequence σ ∈ Σ∗ is the multiset
Π(σ) : Σ → Nmapping each symbol a ∈ Σ to the number of occurrences of a in σ.
The Parikh image of a language L ⊆ Σ∗ are the images Π(L)

def
= {Π(σ) : σ ∈ L}

of sequences in L. We prove the following key lemma in our extended report [7].

Lemma 7. A trace τ with at most k barriers is S-linearizable iff τ̇ ∈ Π(Ṡ),
where Ṡ is the (k+1)-bounded interval-annotated specification of S.

Lemma 7 essentially allows us to reduce the bounded-barrier linearizability prob-
lem to a reachability problem: given a trace τ with at most k barriers, τ is lineariz-
able so long as its image τ̇ is included in the Parikh image of the (k+1)-bounded
specification Ṡ. In effect, rather than considering all possible serializations of
τ , it suffices to keep count of the number of pending and completed operations
over each span of intervals, and ensure that these counts continually remain
within the semi-linear set of counts allowed by the specification. For the pur-
poses of our results here, we keep these counts by increasing the dimension of the
canonical vector addition system AL[C] (see Section 2.1) of a given system L[C].
Furthermore, since Bouajjani and Habermehl [6] prove that checking whether
reachable VASS configurations lie within a semi-linear set is itself reducible to
VASS reachability, and the Parikh image of a regular set is a semi-linear, en-
suring these counts continually remain within those allowed by the specification
is therefore reducible to VASS reachability. In fact, our proof in our extended
report [7] shows this reduction-based procedure is asymptotically optimal, since
VASS reachability is also polynomial-time reducible to to 〈S, k〉-linearizability.

306 A. Bouajjani et al.

Theorem 4. The bounded-barrier linearizability problem for unbounded concur-
rent systems with regular specifications is decidable, and asymptotically equiva-
lent to VASS reachability.

Theorem 4 holds for any class of specifications with semi-linear Parikh images,
including, e.g., context-free languages. Furthermore, though Theorem 4 leverages
our reduction from serializations to counting operations for decidability with
unbounded concurrent systems, in principle this reduction applies to any class
of concurrent systems, including infinite-data systems—without any guarantee
of decidability—provided the ability to represent suitable constraints on the
counters of annotated specification alphabet symbols. We believe this reduction
is valuable whether or not data and/or concurrency are bounded, since we avoid
the explicit enumeration of possible serializations.

As a proof of concept, we have implemented a prototype of our reduction. First
we instrument a given library implementation (written in Boogie) with (1) auxil-
iary counters, counting the number of each operation within each bounded span,
(2) with Presburger assertions over these counters, encoding the legal specifica-
tion images, and (3) with a client nondeterministically invoking methods with ar-
bitrary arguments. As a second step we translate this instrumented (concurrent)
program to a sequential (Boogie) program, encoding a subset of delay-bounded
executions [16], then discover assertion violations using an SMT-based sequential
reachability engine [23]. Note that the bounded-barrier reduction, which treats
operation serialization, composes naturally with the bounded-delay reduction,
which treats operation interleaving. Furthermore, the reduction to SMT allows
us to analyze infinite-data implementations; e.g., we analyze an unbounded stack
with arbitrary data values, according to a specification which ensures each pop
is preceded by a matching push—which is context-free, thus has a semi-linear
Parikh image—while ignoring the pushed and popped values.

We have applied our prototype to discover bugs known in or manually-injected
into several textbook concurrent data structure algorithms; the resulting lineariz-
ability violations are discovered within a few seconds to minutes. Besides evidence
to the practical applicability of our reduction algorithm, our small set of experi-
ments suggests that many linearizability violations occur with very few barriers;
we discover violations arising from the infamous “ABA” bug [26], along with bugs
injected into a 2-lock queue, a lock-coupling set, and Treiber’s stack, in executions
without any barriers. For instance, in an improperly-synchronized Treiber-style
stack algorithm, two concurrent pop(a) operations may erroneously remove the
same element added by one concurrent push(a) operation; however, no serializa-
tion of pop(a), pop(a), and push(a) is included in our stack specification.

Of course, some violations do require barriers. A very simple example is a
violation involving one pop(a) serial with one push(a) operation, though since
pop(a) and push(a) are not concurrent, a bug causing this violation is unlikely.
More interestingly, a lost update due to improper synchronization between two
concurrent inc() operations in a zero-initialized counter can only be observed
as a linearizability violation when a barrier prevents, e.g., a subsequent read(1)
operation from commuting over an inc() operation.

Verifying Concurrent Programs against Sequential Specifications 307

7 Related Work

Papadimitriou [28] and Gibbons and Korach [18] studied variations on the prob-
lems of deciding serializability, sequential consistency, and linearizability for sin-
gle concurrent traces, finding the general problems to be NP-complete, and
pointing out several PTIME variants, e.g., when serializations must respect a
suitable conflict-order. Alur et al. [1] studied the complexity of similar decision
problems for all traces of finite-state concurrent systems: while sequential con-
sistency already becomes undecidable for finite-state systems—though Bingham
[4] proposes certain decidable pathology-omitting variations—checking conflict
serializability is declared PSPACE-complete5 while linearizability is shown to be
in EXPSPACE. Our work considers the complexity of these problems for systems
where the number of concurrent operations is unbounded.

Though many have developed techniques for proving linearizability [33, 2, 32,
3, 25, 14, 27, 31, 34, 10], we are not aware of decidability or complexity results for
the corresponding linearizability and static linearizability verification problems
for unbounded systems. While a few works propose testing-based detection of
linearizability violations [9, 11, 10], they rely on explicit enumeration of possible
serializations; prioritizing the search for violations with few barriers, and the
resulting reduction to numerical constraint solving, are novel.

Several works have also developed techniques for verifying sequential consis-
tency [20, 29, 5, 8] and serializability [12, 30, 17, 19, 15]; Farzan and Madhusudan
[17] demonstrate a complete technique for verifying conflict serializability with a
bounded number of concurrent operations, and while Guerraoui et al. [19] identify
symmetry conditions on transactional systems with which conflict serializability
can be verified completely, for an unbounded number of concurrent operations,
they propose no means of checking that these symmetry conditions hold on any
given system. On the contrary, we show that verifying conflict serializability with-
out bounding the number of concurrent operations is EXPSPACE-complete.

References

[1] Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)

[2] Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison Under Ab-
straction for Verifying Linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

[3] Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quan-
tification for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)

[4] Bingham, J.: Model Checking Sequential Consistency and Parameterized Proto-
cols. PhD thesis, The University of British Columbia (August 2005)

5 The correct proof of PSPACE-completeness is given by Farzan and Madhusudan
[17].

308 A. Bouajjani et al.

[5] Bingham, J.D., Condon, A., Hu, A.J., Qadeer, S., Zhang, Z.: Automatic Verifi-
cation of Sequential Consistency for Unbounded Addresses and Data Values. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 427–439. Springer,
Heidelberg (2004)

[6] Bouajjani, A., Habermehl, P.: Constrained Properties, Semilinear Systems, and
Petri Nets. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 481–497. Springer, Heidelberg (1996)

[7] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. Technical report (January 2013)

[8] Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI 2007: Proc. ACM
SIGPLAN 2007 Conf. on Programming Language Design and Implementation,
pp. 12–21. ACM (2007)

[9] Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pp. 330–340. ACM (2010)

[10] Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

[11] Burnim, J., Necula, G.C., Sen, K.: Specifying and checking semantic atomicity for
multithreaded programs. In: ASPLOS 2011: Proc. 16th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pp. 79–90. ACM
(2011)

[12] Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD 2007: Proc. 7th Intl. Conf. on Formal
Methods in Computer-Aided Design, pp. 37–44. IEEE Computer Society (2007)

[13] Dragojević, A., Guerraoui, R., Kapalka, M.: Dividing transactional memories by
zero. In: TRANSACT 2008: Proc. 3rd ACM SIGPLANWorkshop on Transactional
Computing. ACM (2008)

[14] Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying Linearizabil-
ity Proofs with Reduction and Abstraction. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

[15] Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: PLDI 2010: Proc. 2010 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pp. 134–145. ACM (2010)

[16] Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pp. 411–422. ACM (2011)

[17] Farzan, A., Madhusudan, P.: Monitoring Atomicity in Concurrent Programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer,
Heidelberg (2008)

[18] Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

[19] Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distributed Computing 22(3), 129–145 (2010)

[20] Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying Sequential Consistency
on Shared-Memory Multiprocessor Systems. In: Halbwachs, N., Peled, D.A. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 301–315. Springer, Heidelberg (1999)

[21] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

Verifying Concurrent Programs against Sequential Specifications 309

[22] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[23] Lal, A., Qadeer, S., Lahiri, S.K.: A Solver for Reachability Modulo Theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

[24] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

[25] Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model Checking Linearizability via Re-
finement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
321–337. Springer, Heidelberg (2009)

[26] Michael, M.M.: ABA prevention using single-word instructions. Technical Report
RC 23089, IBM Thomas J. Watson Research Center (January 2004)

[27] O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC 2010: Proc. 29th Annual Symp. on Princi-
ples of Distributed Computing, pp. 85–94. ACM (2010)

[28] Papadimitriou, C.H.: The serializability of concurrent database updates. J.
ACM 26(4), 631–653 (1979)

[29] Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741 (2003)

[30] Taşıran, S.: A compositional method for verifying software transactional memory
implementations. Technical Report MSR-TR-2008-56, Microsoft Research (April
2008)

[31] Vafeiadis, V.: Automatically Proving Linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010)

[32] Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
PLDI 2008: Proc. ACM SIGPLAN 2008 Conf. on Programming Language Design
and Implementation, pp. 125–135. ACM (2008)

[33] Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: PPOPP 2005: Proc. ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pp. 61–71. ACM (2005)

[34] Zhang, S.J.: Scalable automatic linearizability checking. In: ICSE 2011: Proc. 33rd
Intl. Conf. on Software Engineering, pp. 1185–1187. ACM (2011)

On Distributability in Process Calculi�

Kirstin Peters1, Uwe Nestmann1, and Ursula Goltz2

1 TU Berlin, Germany
2 TU Braunschweig, Germany

Abstract. We present a novel approach to compare process calculi and
their synchronisation mechanisms by using synchronisation patterns and
explicitly considering the degree of distributability. For this, we propose a
new quality criterion that (1) measures the preservation of distributabil-
ity and (2) allows us to derive two synchronisation patterns that sepa-
rate several variants of pi-like calculi. Precisely, we prove that there is
no good and distributability-preserving encoding from the synchronous
pi-calculus with mixed choice into its fragment with only separate choice,
and neither from the asynchronous pi-calculus (without choice) into the
join-calculus.

1 Introduction

The pi-calculus is a well-known and frequently used process calculus to model
concurrent systems. Therein, intuitively, the degree of distributability corres-
ponds to the amount of parallel components that can act independently. Prac-
tical experience has shown that it is not possible to implement every pi-calculus
term—not even every asynchronous one—in an asynchronous setting while pre-
serving its degree of distributability. To overcome these problems, the join-cal-
culus was introduced as a model of distributed computation [12]. It employs a
locality principle by ensuring that there is always exactly one immobile receiver
for each communication channel. More precisely, for every name, exactly one
receiver is defined at the time of the name’s creation, and communication occurs
only on so-defined channels [7].

Most of the existing approaches that analyse the distributability of concur-
rent systems use special formalisms often equipped with an explicit notion of
location, e.g. [2] in Petri nets or the distributed pi-calculus [9]. In contrast to
these approaches, we analyse (similarly to [17,25]) the potential of a formalism
to describe distributed systems without an explicit allocation of locations to
processes. Instead, we abstract from a particular distribution and consider dis-
tributability and, thus, all possible explicitly-located variants of a calculus. We
do so, because we consider the expressive power of languages, not just individual
terms. Moreover, we obtain results for a larger number of process calculi.

In order to measure whether an encoding respects the degree of distribution,
usually the homomorphic translation of the parallel operator, i.e., � P | Q � =

� Supported by the DFG (German Research Foundation), grants NE-1505/2-1 and
GO-671/6-1.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 310–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Distributability in Process Calculi 311

� P � | � Q �, is used as a criterion (see e.g. [17,5,11]). Such an encoding naturally
preserves the parallel structure of terms and, thus (at least for process calculi
such as CSP or the pi-calculus), the degree of distribution. However, the opposite
is not true. In [19], the first two authors present an encoding that preserves the
degree of distribution although it does not translate the parallel operator homo-
morphically. In this sense, the homomorphic translation of the parallel operator
is too strict—at least for separation results. It rightly forbids the introduction
of coordinators that reduce the degree of distribution. But it also forbids proto-
cols that handle communications of parallel components without sequentialising
them or reducing the degree of distribution in another sense. Moreover, the ho-
momorphic translation of the parallel operator is not always suited to reason
about distribution in process calculi as, for example, the join-calculus: there, it
is not always possible to separate distributable subterms by means of a paral-
lel operator (see the discussion in Section 3). To overcome this problem, [19]
presents a first formulation of a new criterion to more succinctly measure the
preservation of distributability in process calculi like the pi-calculus. We gener-
alise this criterion to reason about arbitrary process calculi. Moreover, we show
that the distributability of processes implies also distributability of executions.
This leads to a new proof method for separation results.

As a result, we obtain a difference between the distributability of the asyn-
chronous pi-calculus (πa) and the join-calculus (J), elucidated by the non-exis-
tence of a good and distributability-preserving encoding from πa into J. Interest-
ingly, the difference between these two calculi is captured by a synchronisation
pattern that was already used in [25] when studying the distributability of Petri
nets. Moreover, we shed more light on the difference between the synchronous
pi-calculus with mixed choice (πm) and its fragment with only separate choice
(πs) already considered in [17,8,19] by capturing this difference within a novel
synchronisation pattern. Hence, these calculi, although they all have the same
abstract expressive power [7,16,19], embody different levels of synchronisation.

Overview.We start with some general definitions on process calculi in §2. In §3,
we propose a new criterion to reason about the preservation of distributability.
§4 then introduces the first synchronisation pattern and separates πa and J. A
second synchronisation pattern and separation between πm and πs is presented
in §5. We conclude with §6. Proofs and additional material can be found in [20].

2 Process Calculi

Within this paper we compare different variants of the pi-calculus and the join-
calculus as they are described e.g. in [14,13] and [7], respectively. We provide a
short introduction into process calculi in general and these variants in particular.

Assume a countably-infinite set N , whose elements are called names. We use
lower case letters a, b, c, . . . , a′, a1, . . . to range over names. Moreover, let τ /∈ N
and N = {n | n ∈ N } be the set of co-names (used in the pi-calculus). A process
calculus is a language L = 〈 P , �−→ 〉 that consists of a set of process terms P
(its syntax) and a relation �−→: P×P on process terms (its semantics). We often

312 K. Peters, U. Nestmann, and U. Goltz

refer to process terms also simply as processes or as terms and use upper case
letters P,Q,R, . . . , P ′, P1, . . . to range over them.

The syntax is usually defined by a context-free grammar defining operators,
i.e., functions op : Nn × Pm → P . An operator of arity 0, i.e., m = 0, is a
constant. The arguments that are again process terms are called subterms of P .

Definition 1 (Subterms). Let 〈 P , �−→ 〉 be a process calculus and P ∈ P.
The set of subterms of P = op (x1, . . . , xn, P1, . . . , Pm) is defined recursively as
{P } ∪ {P ′ | ∃i ∈ { 1, . . . ,m } . P ′ is a subterm of Pi }.
Hence every term is a subterm of itself and constants have no further subterms.
We require that each process calculus defines at least the empty process as con-
stant and the parallel operator as binary operator. Moreover, we add the special
constant to each process calculus. Its purpose is to denote success (or success-
ful termination) which allows us to compare the abstract behaviour of terms in
different process calculi as described in Section 2.1. Another typical operator is
the restriction of scopes of names. A scope defines an area in which a particular
name is known and can be used. For several reasons, it can be useful to restrict
the scope of a name. For instance to forbid interaction between two processes or
with an unknown and, hence, potentially untrusted environment. Names whose
scope is restricted such that they cannot be used from outside the scope are
denoted as bound names. The remaining names are called free names. Accord-
ingly, we assume three sets—the sets of names n(P) and its subsets of free names
fn(P) and bound names bn(P)—with each term P . In the case of bound names,
their syntactical representation as lower case letters serves as a place holder for
any fresh name, i.e., any name that does not occur elsewhere in the term. To
avoid name capture or clashes, i.e., to avoid confusion between free and bound
names or different bound names, bound names can be mapped to fresh names
by α-conversion. We write P ≡α Q if P and Q differ only by α-conversion.

We use σ, σ′, σ1, . . . to range over substitutions. A substitution is a finite
mapping from names to names defined by a set { y1/x1, . . . , yn/xn } of renamings,
where the x1, . . . , xn are pairwise distinct. The application of a substitution on
a term { y1/x1, . . . , yn/xn } (P) is defined as the result of simultaneously replacing
all free occurrences of xi by yi for i ∈ { 1, . . . , n }, possibly applying α-con-
version to avoid capture or name clashes. For all names N \ { x1, . . . , xn } the
substitution behaves as the identity mapping. We sometimes omit the paren-
theses, i.e., σ(P) = σP . We naturally extend substitutions to co-names, i.e.,
∀n ∈ N . σ(n) = σ(n) for all substitutions σ.

To reason about environments of process terms, we use functions on pro-
cess terms called contexts. More precisely, a context C ([·]1, . . . , [·]n) : Pn → P
with n holes is a function from n process terms into a process term, i.e., given
P1, . . . , Pn ∈ P , the term C (P1, . . . , Pn) is the result of inserting P1, . . . , Pn in
that order into the n holes of C.

We consider three variants of the pi-calculus—the full pi-calculus πm including
mixed choice, its subcalculus πs with only separate choice, and the asynchronous
pi-calculus πa—, and the join-calculus J. Their process terms are given by the
sets Pm, Ps, Pa, and PJ, respectively.

On Distributability in Process Calculi 313

Definition 2 (Syntax). The sets of process terms are given by
Pm ::= P1 | P2 | | (νn)P | !P |

∑
i∈I πi.Pi

π ::= y〈z〉 | y(x) | τ

Ps ::= P1 | P2 | | (νn)P | !P |
∑

i∈I π
O
i .Pi |

∑
i∈I π

I
i .Pi

πO ::= y〈z〉 | τ and πI ::= y(x) | τ

Pa ::= 0 | P1 | P2 | | (νn)P | !P | y〈z〉 | y(x) .P | τ.P

PJ ::= 0 | P1 | P2 | | y 〈z〉 | defD inP
J ::= y (x) | J1 | J2 and D ::= J ' P | D1 ∧D2

for some names n, x, y, z ∈ N and a finite index set I .

The interpretation of the defined terms is as usual. In all languages the empty
process is denoted by 0 and P1 | P2 defines parallel composition. Within the pi-
calculi restriction (νn)P restricts the scope of the name n to the definition of P
and !P denotes replication. The process term

∑
i∈I πi.Pi represents finite guarded

choice; as usual, the sum
∑

i∈{ 1,...,n } πi.Pi is sometimes written as π1.P1+ . . .+

πn.Pn and 0 abbreviates the empty sum, i.e., where I = ∅. The input prefix
y(x) is used to describe the ability of receiving the value x over link y and,
analogously, the output prefix y〈z〉 describes the ability to send a value z over
link y. The prefix τ describes the ability to perform an internal, not observable
action. The choice operators of πm and πs require that all branches of a choice
are guarded by one of these prefixes. We omit the match prefix, because it does
not influence the results.

In Ps within a single choice term either there are no input or no output
guards, i.e., we have input- and output-guarded choice, but no mixed choice.
Apart from that, Pm and Ps define the same processes. πm and πs represent
synchronous variants of the pi-calculus. Asynchronous variants were introduced
independently by [10] and [3]. In asynchronous communication, a process has no
chance to directly determine (without a hint by another process) whether a value
sent by it was already received or not. Hence, output actions are not allowed
to guard a process different from 0. Also, the interpretation of output guards
within a choice construct is delicate. We use the standard variant of πa, where
choice is not allowed at all. Since Pa has no choice, we include 0 as a primitive.

In PJ the operator y 〈z〉 describes an output prefix similar to Pa. A definition
defD inP defines a new receiver on fresh names, where D consists of one or
several elementary definitions J ' P connected by ∧, J potentially joins several
reception patterns y (x) connected by |, and P is a process. Note that defD inP
unifies the concepts of restriction, input prefix, and replication of the pi-calculus.
Moreover, [7] define the core join-calculus cJ as a subcalculus of J that restricts
definitions to the form def y1 (x1) | y2 (x2)'P1 inP2, i.e., in cJ definitions consist
of a single elementary definition of exactly two reception patterns.

As usual, the continuation 0 is often omitted, so e.g. y(x).0 becomes y(x).
In addition, for simplicity in the presentation of examples, we sometimes omit
an action’s object when it does not effectively contribute to the behaviour of a
term, e.g. y(x) .0 is written as y.0 or just y, and def y (x)'0 in y 〈z〉 is abbreviated
as def y ' 0 in y. Moreover, let (νx̃)P abbreviate the term (νx1) . . . (νxn)P .

314 K. Peters, U. Nestmann, and U. Goltz

The definitions of free and bound names are completely standard, i.e., names
are bound by restriction and as parameter of input and n(P) = fn(P) ∪ bn(P)
for all P . In the join-calculus the definition defD inP binds for all elementary
definitions Ji ' Pi in D and all join pattern yi,j (xi,j) in Ji the received variables
xi,j in the corresponding Pi and the defined variables yi,j in P . By convention,
the received variables of composed join patterns have to be pairwise distinct.

To compare process terms, process calculi usually come with different well-
studied equivalence relations (see [23] for an overview). A special kind of equiva-
lence with great importance to reason about processes are congruences, i.e., the
closure of an equivalence with respect to contexts. Process calculi usually come
with a special congruence ≡ ⊆ P × P called structural congruence. Its main pur-
pose is to equate syntactically different process terms that model quasi-identical
behaviour. In the pi-calculus structural congruence is usually provided by a set
of equivalence equations. For the above variants we have:
P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P |!P
(νn) 0 ≡ 0 (νn) (νm)P ≡ (νm) (νn)P P | (νn)Q ≡ (νn) (P | Q) if n /∈ fn(P)

The entanglement of input prefix and restriction within the definition operator
of the join-calculus limits the flexibility of relations defined by sets of equivalence
equations. Instead structural congruence is given by an extension of the chemical
approach in [1] by the heating and cooling rules. They operate on so-called so-
lutions R 	 M, where R and M are multisets. We have (1) 	 P | Q � 	 P,Q,
(2) D ∧ E 	 � D,E 	, and (3) 	 defD inP � σdv(D) 	 σdv(P), where only
elements—separated by commas—that participate in the rule are mentioned and
σdv instantiates the defined variables in D to distinct fresh names. Then P ≡ Q
if P and Q differ only by applications of the �-rules, i.e., if 	 P � 	 Q.

We assume that the semantics is given as an operational semantics consist-
ing of inference rules defined on the operators of the language [22]. For many
process calculi, the semantics is provided in two forms, as reduction semantics
and as labelled semantics. We assume that at least the reduction semantics �−→
is given as part of the definition, because its treatment is easier in the context of
encodings. A single application of the reduction semantics is called a (reduction)
step and is written as P �−→ P ′. If P �−→ P ′ we say P ′ is a derivative of P .
Moreover, let P �−→ (or P ��−→) denote the existence (absence) of a step from
P , i.e., P �−→ � ∃P ′ ∈ P . P �−→ P ′ and P ��−→ � ¬ (P �−→), and let �=⇒
denote the reflexive and transitive closure of �−→. A sequence of reduction steps
is called a reduction. We write P �−→ω if P has an infinite sequence of steps.
We also use execution to refer to a reduction starting from a particular term. A
maximal execution of a process P is a reduction starting from P that cannot be
further extended, i.e., that is either infinite or of the form P �=⇒ P ′ ��−→.

The semantics of the above variants of the pi-calculus is given by the axioms
(. . .+ τ.P + . . .) �−→ P (. . .+ y(x) .P + . . .) | (. . .+ y〈z〉 .Q+ . . .) �−→ { z/x }P | Q
for πm and πs, the axioms

τ.P �−→ P y(x) .P | y〈z〉 �−→ { z/x }P
for πa, and the three rules

P �−→ P ′

P | Q �−→ P ′ | Q
P �−→ P ′

(νn)P �−→ (νn)P ′
P ≡ Q Q �−→ Q′ Q′ ≡ P ′

P �−→ P ′

On Distributability in Process Calculi 315

that hold for all three variants πm, πs, and πa. The operational semantics of J
is given by the heating and cooling rules (see structural congruence) and the
reduction rule J ' P 	 σrv(J) �−→ J ' P 	 σrv(P), where σrv substitutes the
transmitted names for the distinct received variables.

We distinguish between dynamic and static operators. Intuitively, dynamic
operators define terms that can perform steps, while static operators define con-
nections between terms and side conditions on the reductions of their respective
subterms. Moreover, we denote the parts of a term that are removed in reduction
steps as capabilities. Usually, the reduction of dynamic operators is described by
the axioms of the reduction semantics, while the remaining inference rules and
the structural congruence describe the interplay with static operators. Accord-
ingly, the dynamic operators of the above calculi are prefix and choice, because
these operators are removed in the axioms of the respective reductions semantics,
while 0, , parallel composition, restriction, and replication are static operators.
Note that we consider the definition operator of the join-calculus as dynamic,
because e.g. a reduction of def J 'P ′ inP copies the elementary definition J 'P ′

and removes J if P contains the required outputs.
Furthermore, we distinguish between operators that allow for reductions of

their subterms and those that require to be reduced first. We denote an operator
as guard if at least one of its subterms cannot be used to perform a step before
the guard itself is reduced. Its subterm(s) that cannot perform steps before the
guard is reduced are denoted as guarded subterms. The other subterms, if there
are any, as well as the subterms of operators that are not guards are denoted
as unguarded subterms. Guards model sequential behaviour. To our intuition
a purely sequential component cannot be cut into pieces to occupy different
locations. Hence guarded subterms are not distributable until their guards are
removed. However, there are process calculi, as the join-calculus, where a single
operator combines different needs and guards only some of its subterms. Section 3
explains how we deal with such operators in the definition of distributability.

The capabilities of the pi-calculus are the prefixes, where the capability of a
choice is the conjunction of the prefixes of all its branches—considered as sin-
gle capability. Prefixes and thus also choice are guards, and all their subterms
are guarded. The capabilities of the join-calculus are outputs and (compositions
of) reception pattern, where the capability of a definition defD inP is the con-
junction of all compositions of reception patterns in D. In def (J1 ' P1) ∧ . . . ∧
(Jn ' Pn) inP the subterms P1, . . . , Pn are guarded while P is an unguarded
subterm. Reception patterns are matched against outputs in order to instanti-
ate and unguard an instance of a guarded subterm. Note that the distinction
into static and dynamic operators, guards, and capabilities are decisions made
with the design of a process calculus. We use guards and capabilities to define
distributability in Section 3. Hence, we require that all process calculi explicitly
distinguish their guards, guarded subterms, and capabilities.

Replication or recursion can be provided by dynamic or static operators, e.g.
defD inP in J is a dynamic and !P in πm a static operator. Also the semantics
can be given by a reduction rule or a rule of structural congruence. In both cases,

316 K. Peters, U. Nestmann, and U. Goltz

recursion or replication distinguishes itself from other operators by the fact that
(one of) its subterms can be copied within rules of structural congruence or
by reduction rules while the operator itself is usually never removed during
reductions. We call such operators and capabilities recurrent.

In order to formalise the identification of sequential components, we assume
for each process calculus a so-called labelling on the capabilities of processes.
The labelling has to ensure that (1) each capability has a label (2) no label
occurs more than once in a labelled term, (3) a label disappears only when the
corresponding capability is reduced in a reduction step, and (4), once it has dis-
appeared, it will not appear in the execution any more. A labelling method that
satisfies these conditions for processes of the pi-calculus is presented in [4] (cf.
[20]). Note that such a labelling can be derived from the syntax tree of processes.
We require that, once the labelling of a term is fixed, the labels are preserved
by the rules of structural congruence as well as by the reduction semantics of
the respective calculus. Because of recurrent operators, new subterms with fresh
labels for their capabilities may arise from applications of structural congruence
or reduction rules. Since we need the labels only to distinguish syntactically sim-
ilar components of a term, and to track them alongside reductions, we do not
restrict the domain of the labels nor the method used to obtain them as long as
the resulting labelling satisfies the above properties for all terms and all their
derivatives in the respective calculus. Due to space constraints, and in order not
to clutter the development with the details of labelling, we prefer to argue at the
corresponding informal level. More precisely, we assume that all processes in the
following are implicitly labelled. Remember that we need these labels only to dis-
tinguish between syntactical equivalent capabilities, e.g. to distinguish between
the left and the right y in y | y.

2.1 Encodings and Quality Criteria

Let LS = 〈 PS, �−→S 〉 and LT = 〈 PT, �−→T 〉 be two process calculi, denoted as
source and target language. An encoding from LS into LT is a function � · � :
PS → PT. Encodings often translate single source term steps into a sequence or
pomset of target term steps. We call such a sequence or pomset an emulation of
the corresponding source term step.

To analyse the quality of encodings and to rule out trivial or meaningless
encodings, they are augmented with a set of quality criteria. In order to provide
a general framework, Gorla in [8] suggests five criteria well suited for language
comparison. Accordingly, we consider an encoding to be “good”, if it satisfies
the following conditions:

(1) Compositionality: The translation of an operator op is the same for all oc-
currences of that operator in a term, i.e., it can be captured by a context.

(2) Name Invariance: The encoding does not depend on particular names.
(3) Operational Correspondence: Every computation of a source term can be

emulated by its translation, i.e., S �=⇒S S
′ implies � S � �=⇒T3 � S′ � (com-

pleteness), and every computation of a target term corresponds to some
computation of the corresponding source term (soundness).

On Distributability in Process Calculi 317

(4) Divergence Reflection: The encoding does not introduce divergence.
(5) Success Sensitiveness : A source term and its encoding answer the tests for

success in exactly the same way, i.e., S ⇓� iff � S � ⇓�.

Note that the second criterion is not necessary to derive the separation results of
this paper. Also note that a behavioural equivalence 3 on the target language is
assumed for the definition of name invariance and operational correspondence.
Its purpose is to describe the abstract behaviour of a target process, where
abstract refers to the behaviour of the source term. By [8] the equivalence 3 is
often defined in the form of a barbed equivalence (as described e.g. in [15]) or
can be derived directly from the reduction semantics and is often a congruence,
at least with respect to parallel composition. We require only that 3 is a weak
reduction bisimulation, i.e., for all T1, T2 ∈ PT such that T1 3 T2, for all T1 �=⇒T

T ′1 there exists a T ′2 such that T2 �=⇒T T ′2 and T ′1 3 T ′2.
We choose may-testing to instantiate the test for success in success sensi-

tiveness, i.e., P ⇓�, if it is reducible to a process containing a top-level un-
guarded occurrence of . However, as we claim, this choice is not crucial. We
have n() = fn() = bn() = ∅. Moreover, we write P ⇓�!, if P reaches success
in every finite maximal execution. Note that success sensitiveness only links the
behaviours of source terms and their literal translations, but not of their deriva-
tives. To do so, Gorla relates success sensitiveness and operational correspon-
dence by requiring that the equivalence on the target language never relates two
processes with different success behaviours, i.e., P ⇓� and Q �⇓� implies P �3 Q.

3 Distributability

Within this section, we discuss and fix the notions of distributability and preser-
vation of distributability in the context of process calculi. Intuitively, a dis-
tribution of a process means the extraction (or: separation) of its (sequential)
components and their association to different locations. However, we do not con-
sider locations explicitly; we just focus on the possible division of a process term
into components. Accordingly, a process P is distributable into P1, . . . , Pn, if
we find some distribution that extracts P1, . . . , Pn from within P onto different
locations. Preservation of distributability then means that the target term is at
least as distributable as the source term.

3.1 Distributable Processes

The most important operator to implement distributability is the parallel oper-
ator. Indeed we consider distributability as a special case of parallel composition
with a stricter notion of independence, which becomes visible if we compare
calculi. So, first of all, two subterms are distributable if they are parallel.

Unfortunately, the converse of that statement—two subterms are not dis-
tributable if they are not parallel—is usually not true. The main reason for this
is scoping of names. Consider for example the term (νx) (P | Q) in the pi-calcu-
lus. Although the outermost operator is not the parallel operator, the processes

318 K. Peters, U. Nestmann, and U. Goltz

P and Q are nonetheless distributable. More precisely, for all considered variants
of the pi-calculus, two subterms are distributable if they are (modulo ≡) com-
posed in parallel under some restrictions; see the notion of standard form of the
pi-calculus [13]. Hence, (1) we consider distributability modulo structural con-
gruence, and (2) we allow to remove toplevel restrictions and parallel operators
to separate the distributable components.

In the case of the join-calculus, the situation is worse. Again, the problematic
operator is responsible for scoping of names. But in the case of the join-calculus
scoping is realised by definitions that at the same time represent the input capa-
bilities of the calculus. Consider the term R = def a '0 in (def b ' c 〈a〉 in (a | b)).
It is constructed of two nested definitions. Intuitively, it represents the combina-
tion of the two processes def a '0 in a and def b 'c 〈a〉 in b but, because of c 〈a〉, we
cannot get rid of the nesting of the definitions—not even modulo structural con-
gruence. The best we can achieve is R ≡ def a ' 0 in ((def b ' c 〈a〉 in b) | a). Note
that def b ' c 〈a〉 in b is not guarded within R. Because of that, the cooling and
heating rules, which model structural congruence of the join-calculus, allow us to
derive 	 R � b'c 〈a〉 	 def a '0 in a, b as well as 	 R � a'0 	 def b 'c 〈a〉 in b, a.
This reason is enough for us to consider def a ' 0 in a and def b ' c 〈a〉 in b as
distributable within R. Formally, each J-term J is distributable into the terms
J1, . . . , Jn ∈ J if, for all 1 ≤ i ≤ n, there exists some multisets R,M such that
	 J � R 	 Ji,M and there are no two capabilities in J1, . . . , Jn with the same
label. Note that we can define structural congruence for all process calculi by
a chemical abstract machine, but that this kind of special consideration is only
necessary because definitions in the join-calculus are guards that have unguarded
subterms. Hence, we assume that, (at least) for all process calculi that contain
a guard with unguarded subterms, structural congruence is given by a chemical
abstract machine.

Note that this example on the join-calculus illuminates that we consider dis-
tributability as an irreversible predicate. There is no possibility to restore from
a given set of distributable components the original process term, because by
the separation of the components we irreversibly loose their original connec-
tions. Thus, we cannot beyond doubt conclude that the terms def a ' 0 in a and
def b ' c 〈a〉 in b originally belong to R. Similarly, we cannot conclude that the
terms P and Q were originally subterms of the pi-calculus term (νx) (P | Q),
because we lost the information about the restriction. However, these lost infor-
mation, i.e., the connections between distributable components in the original
term, are already captured by the other criteria on the quality of an encoding.

Another important observation is that, because of !P ≡ P | !P , different
copies of a recursive term are distributable in the pi-calculus, whereas there is
no such ≡-rule for definitions in the join-calculus. This reflects a fundamental
design decision in the join-calculus, namely that the receptors of a given channel
are forced to reside at the same location [7,12]. Note that this design deci-
sion marks the main difference between the join-calculus and the asynchronous
pi-calculus. Accordingly, we require that this design decision is made explicit
within the structural congruence of the calculus. A recurrent operator is called

On Distributability in Process Calculi 319

distributable if such a ≡-rule is provided and, otherwise, as not distributable,
i.e., !P is distributable but J-term definitions are not distributable.

Definition 3 (Distributability). Let 〈 P , �−→ 〉 be a process calculus, ≡ be its
structural congruence, and P ∈ P. P is distributable into P1, . . . , Pn ∈ P if
there exists P ′ ∈ P with P ′ ≡ P such that
1. for all 1 ≤ i ≤ n, Pi contains at least one capability or constant different

from 0 and Pi is an unguarded subterm of P ′ or, in case ≡ is given by a
chemical approach, 	 P ′ � R 	 Pi,M for some multisets R,M,

2. in P1, . . . , Pn there are no two occurrences of the same capability, i.e., no
label occurs twice, and

3. each guarded subterm and each constant (different from 0) of P ′ is a subterm
of at least one of the terms P1, . . . , Pn.

The degree of distributability of P is the maximal number of distributable sub-
terms of P .

Hence, we can split a process into its sequential components or larger subterms,
e.g. each term is distributable into itself. This allows us to analyse the behaviour
of distributable subterms. Note that we do not allow to distribute the empty
process, because otherwise usually every process is distributable into infinitely
many empty processes. The same holds for subterms not containing any capa-
bility or constant different from 0, as e.g. in the term 0 | 0. Of course, !P is
distributable into arbitrary many copies of P (and one !P). However, since none
of the later counterexamples contains replication, this decision is not crucial.

Hence a pi-term P is distributable into P1, . . . , Pn if P ≡ (νã) (P1 | . . . | Pn).
The PJ-term def a ' 0 in (def b ' c 〈a〉 in (a | b)) is distributable into def a ' 0 in a
and def b ' c 〈a〉 in b, but e.g. also into def a ' 0 in 0, def b ' c 〈a〉 in 0, a, and b,
because 	 def a ' 0 in (def b ' c 〈a〉 in (a | b)) � def a in 0, def b in c 〈a〉 	 a | b �
def a in 0, def b in c 〈a〉 	 a, b� 	 def a ' 0 in 0, def b ' c 〈a〉 in 0, a, b.

3.2 Preservation of Distributability

Note that an encoding can always trivially ensure that the encoding has at
least as much distributable components by introducing new subterms without
any behaviour. Hence, it does not suffice to reason only about the degree of
distributability, i.e., about the number of distributable components. Instead we
require that the encodings of distributable source term parts and their corre-
sponding parts in the encoding are related by 3. By doing so we relate the def-
inition of the preservation of distributability to operational completeness, i.e., a
semantical criterion that ensures the preservation of the behaviour of the source
term (part). We require that each target term part has to be able to emulate at
least all behaviour of the respective source part. As a side effect we require that
whenever a part of a source term can solve a task independently of the other
parts—i.e., it can reduce on its own—then the respective part of its encoding
must also be able to emulate this reduction independently of the rest of the
encoded term. This reflects the intuition that distribution adds some additional
requirements on the independence of parallel terms.

320 K. Peters, U. Nestmann, and U. Goltz

Definition 4 (Preservation of Distributability). An encoding � · � : PS →
PT preserves distributability if for every S ∈ PS and for all terms S1, . . . , Sn ∈
PS that are distributable within S there are some T1, . . . , Tn ∈ PT that are dis-
tributable within � S � such that Ti 3 � Si � for all 1 ≤ i ≤ n.

In essence, this requirement is a distributability-enhanced adaptation of opera-
tional completeness. It respects both the intuition on distribution as separation
on different locations—an encoded source term is at least as distributable as the
source term itself—as well as the intuition on distribution as independence of
processes and their executions—implemented by Ti 3 � Si �.

To ensure that the new criterion is not in conflict with the framework of Gorla,
it suffices to show the existence of encodings that satisfy all six criteria. Such
encodings are presented in [16] and [19]. Moreover, [19] shows that in case of
the pi-calculus every good encoding that translates the parallel operator and
restriction homomorphically and preserves structural congruence also preserves
distributability. Not surprisingly, the most crucial requirement here is the ho-
momorphic translation of the parallel operator. However, this holds only in case
of process calculi as the pi-calculus, where distributable terms can be separated
modulo ≡ by parallel operators.

Thus, the (semantic) criterion formalised in Definition 4 can be considered to
be at most as hard as the (syntactic) criterion on the homomorphic translation
of the parallel operator. To see that it is not an equivalent requirement, but
indeed strictly weaker, [19] refers to an encoding from πm (without replication)
into π2

a , the asynchronous pi-calculus augmented with a two-level polyadic syn-
chronisation by Carbone and Maffeis [5]. This encoding is good and preserves
distributability but it does not translate the parallel operator homomorphically.
Moreover, [5] proves that there is no good encoding from πm into π2

a that trans-
lates the parallel operator homomorphically; this separation result does not rely
on replication, i.e., it also implies that there is no such encoding from πm without
replication into π2

a .

3.3 Distributable Reductions

As discussed above, the criterion in Definition 4 requires not only the preser-
vation of the distributability of processes but also the preservation of the dis-
tributability of steps or executions of the respective distributable processes. In
order to obtain an alternative way to prove the preservation of distributability,
we make this intuition explicit. More precisely, we show that an operationally
complete encoding that preserves distributability always also preserves the dis-
tributability between sequences of source term steps. To do so, we define first
what it means for two steps or executions to be distributable.

If a single process—of an arbitrary process calculus—can perform two different
steps, i.e., steps on capabilities with different labels, then we call these steps
alternative to each other. Two alternative steps can either be in conflict or not;
in the latter case, it is possible to perform both of them in parallel, according to
some assumed step semantics.

On Distributability in Process Calculi 321

Definition 5 (Distributable Steps). Let 〈 P , �−→ 〉 be a process calculus and
P ∈ P a process. Two alternative steps of P are in conflict, if performing one
step disables the other step, i.e., if both reduce the same not recurrent capability.
Otherwise they are parallel. Two parallel steps of P are distributable, if each
recurrent capability reduced by both steps is distributable, else the steps are local.

Remember that the “same” means “with the same label”, i.e., in y | y.P1 | y.P2

the two steps on y are in conflict but y | y.P1 | y.P2 | y and y | !y.P1 | y can both
perform two parallel steps on y. Moreover, the reductions on channel a and b
are parallel in a | b | a.P1 | b.P2, but they are in conflict in a | b | a.P1 + b.P2,
because choice counts as a single capability which is reduced in both steps.

Also note that in contrast to parallel steps, distributable steps can reduce
the same recurrent capability only if it is distributable. In many process calculi
such as πa, two steps are distributable iff they are parallel, because all recurrent
capabilities are distributable. However, there are also process calculi as J in which
these notions indeed refer to quite different situations. Thus, for the comparison
with these calculi, their intuitive distinction is useful.

In the join-calculus, two alternative steps that reduce the same definition but
do not compete for some output, as e.g. the reduction of x 〈u〉 and x 〈v〉 in
def x (z) ' y 〈z〉 in (x 〈u〉 | x 〈v〉), can be considered as parallel steps; they do not
compete for the input capability, because it is recurrent. However, we can not
consider these two steps as distributable, as this would imply that the definition
itself is distributable which—by design—is not intended in J: there is always
exactly one receiver for each defined name [7].

Next we define parallel and distributable sequences of steps.

Definition 6 (Distributable Executions). Let 〈 P , �−→ 〉 be a process cal-
culus, P ∈ P, and let A and B denote two executions of P . A and B are in
conflict, if a step of A and a step of B are in conflict, else A and B are parallel.

Two parallel sequences of steps A and B are distributable, if each pair of a
step of A and a step of B is distributable.

In πa, two sequences of steps A and B of a process P are parallel iff P ≡
(νx̃) (P1 | P2) such that P1 can perform A while P2 can perform B, i.e., if A :
P �−→ PA,1 �−→ . . . �−→ PA,n and B : P �−→ PB,1 �−→ . . . �−→ PB,m then,
for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m, there exists P ′A,i, P

′
B,j ∈ P such that

PA,i ≡ (νx̃)
(
P ′A,i | P2

)
and PB,j ≡ (νx̃)

(
P1 | P ′B,j

)
. Again, two sequences of

steps are distributable iff they are parallel. Unfortunately, in the join-calcu-
lus two processes able to perform parallel sequences of steps cannot always be
separated by a parallel operator in this way; even if they do not reduce the
same definition. The reason is again the restriction caused by definitions. In the
term def a 'P1 in (def b ' c 〈a〉 in (a | b)) the reduction of a is independent of the
reduction of b. Hence, these two steps are parallel and even distributable. But,
because of c 〈a〉, we cannot get rid of the nesting of these two definitions.

Although the definitions of distributable processes in Definition 3 and dis-
tributable executions in Definition 6 are quite different, they are closely related.
Two executions of a term P are distributable iff P is distributable into two

322 K. Peters, U. Nestmann, and U. Goltz

a b c

Fig. 1. A fully reachable pure M in Petri nets

subterms such that each performs one of these executions. Hence, an opera-
tionally complete encoding is distributability-preserving only if it preserves the
distributability of sequences of source term steps. The proofs of this and the
following results can be found in [20].

Lemma 1 (Distributability-Preservation). An operationally complete en-
coding � · � : PS → PT that preserves distributability also preserves distributabil-
ity of executions, i.e., for all source terms S ∈ PS and all sets of pairwise
distributable executions of S, there exists an emulation of each execution in this
set such that all these emulations are pairwise distributable in � S �.

4 Separation by the Synchronisation Pattern M

[24] analyses the possibility to implement a (synchronous) Petri net specification
within an asynchronous setting. They find a semi-structural property called M
that distinguishes distributable Petri nets from those nets that may only under
additional assumptions on the underlying system structure be implemented in a
fully asynchronous and distributed setting.

An M, as visualised in Figure 1, describes a Petri net that consists of two
parallel transitions and one transition that is in conflict with both of the former.
In other words, it describes a situation where either two parts of the net can pro-
ceed independently or they synchronise to perform a single transition together.
We denote such descriptions of special situations of synchronisation as synchro-
nisation pattern. [24,25] states that a Petri net specification can be implemented
in an asynchronous, fully distributed setting iff it does not contain a fully reach-
able pure M. Accordingly, they denote such Petri nets as distributable. They
also present a description of a fully reachable pure M as a property of a step
transition system which allows us to directly use this pattern to reason about
process calculi.

A first analysis shows that we find the M also in the asynchronous pi-cal-
culus (see Example 1 below). This reflects earlier observations in [12]: it is not
possible to implement the pi-calculus and even its asynchronous fragment in an
asynchronous and fully distributed setting. To overcome these problems the join-
calculus was introduced as a model of distributed computation [7,12]. Mutual
encodings between the (core) join-calculus and the asynchronous pi-calculus have
shown that they have the same expressive power [7]. Here, we show a difference
with respect to the degree of distributability. Hence, we explain what exactly
distinguishes both calculi. It turns out that this distinction is well described by

On Distributability in Process Calculi 323

the synchronisation pattern M, i.e., what distinguishes the asynchronous pi-cal-
culus and the join-calculus is the ability to express conflicts between distributable
steps. This lack in expressiveness in turn allows fully distributed implementations
of the join-calculus.

4.1 The Synchronisation Pattern M

If we compare the asynchronous pi-calculus and the join-calculus, the most ob-
vious difference is that in J any channel can appear only once in input position.
As a consequence, two conflicting steps in the join-calculus can only compete
for different output messages but not for different input capabilities, as it is the
case in πa. Repeating this argument, all steps of a chain of conflicting steps in
the join-calculus are tied to the same definition, i.e., are not distributable.

Lemma 2. For all P ∈ PJ and all lists S = [s1, . . . , sn] of steps of P such that
for all 1 ≤ i < n the step si is in conflict with the step si+1, all steps in S are
pairwise local and reduce the same definition.

In contrast, in πa, it is very easy to find such a list of conflicting steps of which
some are distributable, by combining conflicts on outputs and inputs.

Example 1. Consider P = y〈u〉 | y(x) .P1 | y〈v〉 | y(x) .P2 with P ∈ Pa. P can
perform four different alternative steps modulo structural congruence:

P �−→ { u/x }P1 | y〈v〉 | y(x) .P2 (s1)

P �−→ y(x) .P1 | y〈v〉 | { u/x }P2 (s2)

P �−→ y〈u〉 | y(x) .P1 | { v/x }P2 (s3)

P �−→ y〈u〉 | { v/x }P1 | y(x) .P2 (s4)

The step s1 is in conflict with step s2, since both compete for the first output
y〈u〉. Similarly, step s2 and s3 compete for the second input y(x) .P2, and step
s3 and step s4 compete for the second output, i.e., P has a chain S = [s1, . . . , s4]
of conflicting steps. But s1 and s3 as well as s2 and s4 are distributable in P .

Thus, the ability to express distributable conflicts separates the asynchronous
pi-calculus from the join-calculus. However, the preservation of distributability
in Definition 4 does not require to preserve the distributability of conflicts but
only of processes and their executions. On the other side, the structure used in
[24] to identify distributable Petri nets strongly relies on the notion of conflict.
More precisely, an M arises from the combination of two parallel steps and a
third step that is in conflict with both of the former.

Definition 7 (Synchronisation Pattern M). Let 〈 P , �−→ 〉 be a process cal-
culus and P ∈ P such that:
1. P can perform at least three alternative reduction steps a : P �−→ Pa, b :

P �−→ Pb, and c : P �−→ Pc such that Pa, Pb, and Pc are pairwise different.
2. Moreover, the steps a and c are parallel in P .
3. But b is in conflict with both a and c.

324 K. Peters, U. Nestmann, and U. Goltz

In this case, we denote the process P as M. If the steps a and c are distributable
in P , then we call the M non-local. Otherwise, the M is called local.

We observe, that the P of Example 1 represents a non-local M in πa, because
we can choose the step s1 as a, s2 as b, and s3 as c. In contrast, the term Q =
def x (z) | y (z′) ' z 〈z′〉 in (x 〈u〉 | x 〈v〉 | y 〈u〉 | y 〈v〉) is a local M in the (core)
join-calculus. Indeed, all M in the join-calculus are local, because, by Lemma 2,
the step b forces its conflicting counterparts to reduce the same definition.

Lemma 3. All M in the join-calculus are local.

Thus, the asynchronous pi-calculus and the join-calculus do also differ by the
ability to express a non-local M. As described in [24], a language that cannot ex-
press a non-local M can be considered as distributable. Accordingly, as intended
by its design, the join-calculus is distributable. We show that the pi-calculus is
not distributable—not even in its asynchronous and choice-free fragment.

4.2 Distributability of the Pi-calculus

To show that the examined difference forbids distributability-preserving encod-
ings, we have to show that it is not possible to express the abstract behaviour
of all non-local M in the join-calculus with respect to our requirements on good
and distributability-preserving encodings. We use the M of Example 1 as running
counterexample S. In the framework of Gorla, source terms and their encodings
are compared by their ability to reach success. To distinguish the conflicting step
b = s2 from the parallel steps a = s1 and c = s3, we instantiate P1 with x, P2

with x | x, and place the observer O = u.v.v. in parallel to P . Hence,

S = (y〈u〉 | y(x) .x) | (y〈v〉 | y(x) . (x | x) | u.v.v.) (E1)

reaches success iff S performs both of the distributable steps a and c. Note
that any good encoding that preserves distributability has to translate E1 such
that the emulations of the steps a and c are again distributable. However, the
encoding can translate these two steps into sequences of steps, which allows to
emulate the conflicts with the emulation of b by two different distributable steps.
We show that every distributability-preserving encoding has to distribute b and,
afterwards, that this distribution of b violates the criteria of a good encoding.

Lemma 4. Every encoding � · � : Pa → PJ that is good (except for composition-
ality) and distributability-preserving has to split up the conflict in S given by E1
of b with a and c such that there exists a maximal execution in � S � in which a
is emulated but not c, and vice versa.

Lemma 4 describes a partial deadlock. If the emulation of b and with it the
conflicts with the emulation of a and c are distributed, the encoded term can
make the wrong decision and, thus, result in one successful emulation (of a or c)
but two deadlocked emulation attempts of the respective other two steps. Since
there is no maximal execution of E1 with a but not c (or vice versa), such an

On Distributability in Process Calculi 325

encoding cannot be considered as a good encoding. In the setting used so far,
we cannot observe the difference in the abstract behaviour of E1 and � E1 �.

One reason is the weak requirements on 3. A success respecting bisimulation,
in its simplest case, cannot distinguish between more than three different cases:
success is not reachable, success is always reachable, and success is reachable
in some but not all maximal executions. To prove non-existence of distribution-
preserving encodings it suffices to require that 3 is not trivial, e.g. by requiring
that it distinguishes more than two observables. In this case, we have to modify
E1, i.e., choose a suitable instantiation of P1, P2, and the observer, such that
� Sa �, � Sb �, � Sc �, and � Sac � are pairwise distinguished by 3, where Sac is the
result of performing a and c in S. Then, the maximal execution that emulates a
but not c contradicts operational correspondence. Note that in this case we do
not need compositionality at all.

Another way is to make use of compositionality. Remember that the best
known encoding from the asynchronous pi-calculus into the join-calculus in
[7] is not compositional, but consists of an inner, compositional encoding sur-
rounded by a fixed context—the implementation of so-called firewalls—that is
parametrised on the free names of the source term. Actually, it is this surround-
ing context that reduces the degree of distributability, because different steps on
the same channel name have to synchronise on a firewall. The following result
captures this and similar encodings.

Theorem 1. There is no good and distributability-preserving encoding from πa
into J. There is no distributability-preserving encoding from πa into J that is
good except for compositionality but consists of an inner compositional encoding
surrounded by a fixed context parametrised on the free names of the source term.

4.3 Distributability in Other Calculi

Above, first an absolute result, i.e., a result that refers to the properties of a
single language, is derived in Lemma 2. It clarifies which property distinguishes
the source and the target language, i.e., the reason why the target language
does not contain the synchronisation pattern M. Then, the existence of the M
in the source language is shown by an example, which is subsequently used
as counterexample. Lemma 4 uses properties of the target language—basically
the absolute result in Lemma 2—to show that any encoding has to split the
conflict in the counterexample. Finally, Theorem 1 reasons about some properties
of the source language to show that the split of the conflict in the encoded
counterexample violates the criteria of a good encoding. This argumentation
provides a guideline for similar considerations in other languages.

Note that the synchronisation pattern does not only describe the difference
between two languages as an abstraction of a particular situation of synchro-
nisation but it also serves as an abstract description of the properties of the
counterexample. This allows us to separate more clearly between the argumen-
tation for the source and the target language in the above proofs. Hence, to
change the source language it usually suffices to find an example with the prop-
erties required by the synchronisation pattern. In case of the target language

326 K. Peters, U. Nestmann, and U. Goltz

we have to revise the absolute result and Lemma 4, i.e., we have to show why
the new target language can not express the synchronisation pattern modulo the
criteria required on an encoding. As example, we exhibit a separation between
two simple variants of CSP in [20,18]. The splitting of arguments on the source
and the target languages simplifies also the comparison of multiple languages,
because not every pair has to be checked.

5 Another Synchronisation Pattern

In the last section we compare different process calculi by their ability to ex-
press the synchronisation pattern M. We learn that the different synchronisation
mechanisms of the calculi lead to differences in the expressive power with respect
to specific kinds of conflicts. By [17,8,21,19], we also know that the restriction
in the choice operator leads to a separation result between πm and πs. However,
in [17] and [8] the homomorphic translation of the parallel operator was used to
derive this separation result and in [21,19] the proof was unsatisfactory, because
it reveals not much intuition on why the counterexamples lead to the difference.
In order to provide more intuition on this separation result and on the difference
in the expressive power of πm and πs with respect to conflicts, we show that the
calculi can be distinguished by a new synchronisation pattern similar to the M.
Not surprisingly, the new pattern combines again conflicting and distributable
steps. Interestingly, it reflects a well-known standard problem in the area of
distributed systems, namely the problem of the dining philosophers [6].

We start with a simple observation on the asynchronous pi-calculus. Without
choice each reduction step reduces exactly one output and one input. So all
conflicts in πa are on steps on the same link. With separate choice a single step
can reduce more than a single out- or input. But if we consider steps between
two distributable subprocesses then each reduction step reduces only outputs
in one subprocess and only inputs in the other. As a consequence, a chain of
conflicting steps can build an M by alternating input and output capabilities as
visualised in Example 1. But, by this method, no circle of odd length can be
constructed as it is represented by the synchronisation pattern �.

Definition 8 (Synchronisation Pattern �). Let 〈 P , �−→ 〉 be a process cal-
culus and P ∈ P such that:
1. P can perform at least five alternative reduction steps i : P �−→ Pi for

i ∈ { a, b, c, d, e } such that the Pi are pairwise different.
2. Moreover, the steps a, b, c, d, and e form a circle such that a is in conflict

with b, b is in conflict with c, c is in conflict with d, d is in conflict with e,
and e is in conflict with a. Finally,

3. every pair of steps in { a, b, c, d, e } that is not in conflict is parallel in P .
In this case, we denote the process P as �. The synchronisation pattern � is
visualised by the Petri net in Figure 2. If all pairs of parallel steps in { a, b, c, d, e }
are distributable in P , then we call the � non-local. Otherwise, it is called local.

Note that in the pi-calculus every � and every M is non-local. To see the connec-
tion with the dining philosophers problem, consider the places in Figure 2 as the

On Distributability in Process Calculi 327

e

d

c

ba

Fig. 2. The Synchronisation Pattern � in Petri nets

chopsticks of the philosophers, i.e., as resources, and the transitions as eating
operations, i.e., as steps consuming resources. Each step needs mutually exclu-
sive access to two resources and each resource is shared among two subprocesses.
If both resources are allocated simultaneously, eventually exactly two steps are
performed. As shown in the following, a fully distributable implementation of
that pattern requires the expressive power of mixed choice.

By Example 1 we know that πs can express distributable conflicts, but πs can-
not express a circle of such conflicts that is of odd degree greater than four as it
is depicted by �. Note that smaller circles do not have parallel, i.e., distributable,
steps. Hence, � represents the smallest example of the problematic structure but
separation can principally be proved for any such structure of odd degree and
at least five steps. The main argument is that πs can build chains of conflicts by
alternating conflicts between output and input capabilities, but without mixed
choice no cycle of odd degree can be obtained this way.

Lemma 5. There is no � in πs.

In contrast to πs, πm can express the synchronisation pattern � as the example

S = a+ b.S1 | b+ c.S2 | c+ d.S3 | d+ e.S4 | e+ a.S5 (E3)

shows. We use this example as counterexample. Similar to Section 4.2, we show
that each encoding of the counterexample requires that at least one conflict has
to be distributed and that this violates the requirements on a good encoding.

Theorem 2. No good encoding from πm into πs preserves distributability.

Note that we could derive the same result if, as in Section 4.2, we allow for
a not compositional encoding that consists of an inner compositional encoding
surrounded by a fixed context parametrised on the free names of the source term.
Moreover, since the synchronisation pattern � includes the pattern M—more
precisely it consists of three cyclic overlapping M—separation results derived on
these two patterns (with respect to the same quality criteria) automatically lead
to a lattice. Here, by Theorem 1 and Theorem 2, no good encoding from πm into
J preserves distributability.

Also note, that the E3 is in fact a CCS-term. Hence, we can apply the same
line of argument to show separation between the corresponding variants of CCS.

328 K. Peters, U. Nestmann, and U. Goltz

Moreover, we can show that there is no good and distributability-preserving
encoding from πa into CCS with mixed choice.

6 Conclusion

As main contributions, we (1) propose a new criterion to reason about the degree
of distribution which is better suited than the common homomorphic translation
of the parallel operator. Then, (2) we present a new separation result that clarifies
the difference between the asynchronous pi-calculus and the join-calculus. More-
over, we (3) show that the proof method of this result is in general well suited to
reason about the expressive power of synchronisation mechanisms by discussing
how it can be transferred with little effort to compare other source and target
languages (cf. [20,18]). And (4) we present two generally formulated synchroni-
sation patterns that expose the power of different synchronisation mechanisms
in the pi-calculus family but can be used in a similar manner to reason about
and to classify synchronisation mechanisms in other process calculi.

Note that [16] presents a good encoding from πs into πa that translates the
parallel operator homomorphically, i.e., that preserves distributability. More-
over, [7,19] present good (but not distributability-preserving) encodings between
J and πa, and from πm into πa. Combining these positive results and the new
separation results on the two synchronisation patterns, we obtain a hierarchy
of distributability between pi-like calculi. The synchronous pi-calculus (πm), the
asynchronous pi-calculus (πa), and the join-calculus (J) all have the same ab-
stract expressive power, but there exists no good and distributability-preserving
encoding from πm into πa, and neither from πa into J.

Of course we do not believe that these two patterns already capture all kinds
of synchronisation mechanisms in process calculi. In further research we want
to analyse e.g. what kind of synchronisation patterns are expressed by polyadic
synchronisation in [5] or by the synchronisation mechanisms described in [11].

In case of separation results, a natural next step to improve the results is to
go back to particular distributions in terms, in order to examine the problematic
set of distributed terms in the source language. This way a positive result for a
sublanguage of the source language can be derived. An exhaustive analysis may
even lead to an exact borderline between distributable and not distributable
languages. Note that the results in [25] go in this direction for the area of Petri
nets. This kind of consideration is beyond the scope of this paper but another
interesting topic of further research.

References

1. Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proc. of POPL.
SIGPLAN-SIGACT, pp. 81–94 (1990)

2. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite,
I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012)

On Distributability in Process Calculi 329

3. Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (1992)
4. Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing seman-

tics. Logical Methods in Computer Science 5(2), 1–27 (2009)
5. Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in

π-Calculus. Nordic Journal of Computing 10(2), 70–98 (2003)
6. Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informat-

ica 1(2), 115–138 (1971)
7. Fournet, C., Gonthier, G.: The Reflexive CHAM and the Join-Calculus. In: Proc.

of POPL. SIGPLAN-SIGACT, pp. 372–385 (1996)
8. Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for

Process Calculi. Information and Computation 208(9), 1031–1053 (2010)
9. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press (2007)

10. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

11. Laneve, C., Vitale, A.: The Expressive Power of Synchronizations. In: Proc. of
LICS, pp. 382–391 (2010)

12. Lévy, J.-J.: Some Results in the Join-Calculus. In: Ito, T., Abadi, M. (eds.) TACS
1997. LNCS, vol. 1281, pp. 233–249. Springer, Heidelberg (1997)

13. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, New York (1999)

14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II.
Information and Computation 100(1), 1–77 (1992)

15. Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

16. Nestmann, U.: What is a “Good” Encoding of Guarded Choice? Information and
Computation 156(1-2), 287–319 (2000)

17. Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the
Asynchronous π-calculus. Mathematical Structures in Computer Science 13(5),
685–719 (2003)

18. Peters, K.: Translational Expressiveness. PhD thesis, TU Berlin (2012),
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495

19. Peters, K., Nestmann, U.: Is It a “Good” Encoding of Mixed Choice? In: Birkedal,
L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012)

20. Peters, K., Nestmann, U., Goltz, U.: On Distributability in Process Calculi (Ap-
pendix). Technical Report, TU Berlin (2013),
http://www.mtv.tu-berlin.de/fileadmin/a3435/pubs/distProcCal.pdf

21. Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the
Asynchronous Pi-Calculus. In: Proc. of EXPRESS. EPTCS, vol. 64, pp. 89–103
(2011)

22. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60, 17–140 (2004); (An earlier version of this paper
was published as technical report at Aarhus University in 1981)

23. van Glabbeek, R.: The Linear Time – Branching Time Spectrum I: The Semantics
of Concrete, Sequential Processes. Handbook of Process Algebra, 3–99 (2001)

24. van Glabbeek, R., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous
Interaction in Distributed Systems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS
2008. LNCS, vol. 5162, pp. 16–35. Springer, Heidelberg (2008)

25. van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On Distributability of Petri
Nets. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 331–345. Springer,
Heidelberg (2012)

http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-37495
http://www.mtv.tu-berlin.de/fileadmin/a3435/pubs/distProcCal.pdf

Behavioral Polymorphism and Parametricity
in Session-Based Communication

Luı́s Caires1, Jorge A. Pérez1, Frank Pfenning2, and Bernardo Toninho1,2

1 CITI and Departamento de Informática, FCT, Universidade Nova de Lisboa
2 Computer Science Department, Carnegie Mellon University

Abstract. We investigate a notion of behavioral genericity in the context of ses-
sion type disciplines. To this end, we develop a logically motivated theory of
parametric polymorphism, reminiscent of the Girard-Reynolds polymorphic λ-
calculus, but casted in the setting of concurrent processes. In our theory, poly-
morphism accounts for the exchange of abstract communication protocols and
dynamic instantiation of heterogeneous interfaces, as opposed to the exchange of
data types and dynamic instantiation of individual message types. Our polymor-
phic session-typed process language satisfies strong forms of type preservation
and global progress, is strongly normalizing, and enjoys a relational parametricity
principle. Combined, our results confer strong correctness guarantees for commu-
nicating systems. In particular, parametricity is key to derive non-trivial results
about internal protocol independence, a concurrent analogous of representation
independence, and non-interference properties of modular, distributed systems.

1 Introduction

Modern distributed systems are typically conceived as decentralized collections of
software artifacts which execute intricate communication protocols. These large-scale
systems must meet strict correctness and trustworthiness requirements. Emerging tech-
nologies—such as service-oriented computing and subscription-based, cost-sharing plat-
forms (e.g. cloud computing)—promise to be effective towards achieving these goals,
while reducing costs and enhancing business agility. They also pose new challenges for
system construction: communicating systems should behave properly even when de-
ployed in open, highly dynamic environments, such as third-party infrastructures.

In this communication-oriented context, genericity—one of the fundamental princi-
ples in software engineering—is a most relevant concern. Indeed, genericity promotes
modular protocol specifications, therefore facilitating system verification and evolu-
tion/maintenance. It allows for convenient representations of, for instance, families of
protocols which differ only in the format of the exchanged messages (as in, e.g., proto-
cols for file distribution which behave correctly independently of the transferred items).
This “message genericity” is most useful and appears to be well-understood.

Nevertheless, and partly due to the widespread adoption of technologies such as
those hinted at above, distributed systems nowadays exhibit fairly sophisticated incar-
nations of genericity, which often go well beyond message genericity. Indeed, systems
are increasingly generic with respect to arbitrary communication protocols, which may
be known and instantiated only at runtime. Here we refer to this kind of genericity as
behavioral genericity; we find it to be a very common concept in several settings:

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 330–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Behavioral Polymorphism and Parametricity in Session-Based Communication 331

– Critical web applications (such as banking portals) are increasingly being deployed
into service-oriented architectures. As such, upgrade actions (e.g., replacing a
service provider) often involve the dynamic reconfiguration of communication in-
terfaces/protocols. These changes should be transparent to clients. To this end, web
applications should be conceived as generic with respect to such interfaces/protocols.

– Online application stores are infrastructures for the distribution of software appli-
cations. They should concurrently interact with (i) developers willing to add new
(i.e. unknown) applications to the store and (ii) clients wishing to remotely exe-
cute/buy/download available applications. In order to operate securely and reliably,
the store needs to be generic with respect to the behavior of clients and applications.

– Cloud-based services admit highly dynamic, flexible architectures. In fact, these ser-
vices are elastic, for they acquire computing resources when demand is high, and re-
lease them when they are no longer needed. For such scaling policies to be effective,
services need to be generic with respect to their underlying coordination protocols,
as these may well depend on the system’s architecture at a given time.

Many other distributed software systems exhibit forms of behavioral genericity in the
context of disciplined, structured communications. Reasoning about these systems and
their correctness is extremely hard, essentially because the required abstractions should
enforce independence with respect to arbitrary complex behaviors, and not just over
messages. Models and techniques for data/message genericity are thus simply inade-
quate for this task. This calls for novel reasoning techniques, which may effectively
support the analysis of behavioral genericity in complex distributed protocols.

Here we rise to this challenge in the context of session-based concurrency [17,18],
a foundational approach to communication correctness. In session-based concurrency,
dialogues between participants are structured into sessions, the basic units of communi-
cation; interaction patterns are abstracted as session types, which are statically checked
against specifications. Session types ensure protocols in which actions always occur in
dual pairs: when one partner sends, the other receives; when one partner offers a selec-
tion, the other chooses; when a session terminates, no further interaction may occur.

In this paper, we develop a session types discipline able to cope with behavioral
genericity. Our system includes impredicative universal and existential quantification
over sessions: this results in parametric polymorphism—in the sense of the Girard-
Reynolds polymorphic λ-calculus [23,13]—defined in a session-based, concurrent set-
ting. In our theory, universal and existential quantification correspond to the input and
output of a session type, respectively. As session types may describe arbitrarily complex
communication protocols, our theory of polymorphic processes enables an expressive
form of abstract protocol communication. As a key distinguishing feature, our devel-
opments follow naturally from the interpretation of session types as intuitionistic linear
logic propositions given in [6,7]. This allows us to obtain central technical results for
polymorphic, session-typed processes in a remarkably elegant way:

1. Polymorphic processes respect session typed specifications in a deadlock-free way.
These two central—and non trivial—correctness guarantees follow from our type
preservation and global progress results (Theorems 1 and 2).

2. Polymorphic processes never engage into infinite internal behavior. In fact, well-
typed processes are strongly normalizing (Theorem 5). The proof of this important

332 L. Caires et al.

(and arguably expected) result is via the reducibility candidates technique, by relying
on an elegant generalization of the linear logical relations of [20].

3. Polymorphic processes enjoy a principle of relational parametricity in the context of
a behavioral type theory (Theorem 8). In Section 6, we illustrate how parametricity
allows us to formally justify properties of behavioral genericity and representation
independence, which in our case means behavioral independence on representation
protocols. Parametricity also enables a sound and complete characterization of typed
contextual equivalence (Theorem 9).

To our knowledge, relational parametricity (in the sense of Reynolds [24]) has not been
previously investigated in the context of a rich behavioral type theory for processes,
such as session types. In the realm of concurrent processes, genericity via (existential)
polymorphism was first investigated by Turner [27], in the context of a simply-typed
π-calculus. Berger et al. [1,2] were the first to study a π-calculus with parametric poly-
morphism based on universal and existential quantification over types. In the setting of
session types, support for genericity has been obtained mainly via bounded polymor-
phism [12,10,9], which extends session types with a form of (universal) quantification
over types, controlled via subtyping. While useful to reason about protocols with mes-
sage genericity, bounded polymorphism is insufficient to support behavioral genericity.
Recently, Wadler [28] proposed a logic-based session type theory which includes the
natural typing rules for second-order quantifiers and may support polymorphism of the
kind we consider here; however, no analysis of behavioral genericity is identified. Our
results thus provide substantial evidence of how a logically motivated approach offers
appropriate, powerful tools for actually reasoning about behavioral genericity in com-
plex protocols. In passing, we establish rather strong connections between well-known
foundational results and polymorphically typed concurrent processes.

In the remainder of this introduction, we briefly describe the logical interpretation
of [6] and illustrate the potential of our model of polymorphic sessions with an ex-
ample. Our ongoing research program on logical foundations for session-based con-
currency [6,26,21,7,20,8] builds upon an interpretation of intuitionistic linear logical
propositions as session types, sequent proofs as π-calculus processes [25], and cut
elimination as process communication. In the resulting Curry-Howard correspondence,
well-typed processes enjoy strong forms of type preservation and global progress [6,7],
and are strongly normalizing [20]. The interpretation endows channel names with types
(logic propositions) that describe their session protocol. This way, e.g., an assignment
x:A�B denotes a session x that first inputs a name of typeA, and then behaves as type
B on x; dually, x:A ⊗ B denotes a session x that first outputs a name of type A and
then behaves as type B on x. Other constructors are given compatible interpretations;
in particular, !A is the type of a shared server offering sessions of typeA. Given a linear
environmentΔ and an unrestricted environment Γ , a type judgment in our system is of
the form Γ ;Δ 	 P :: z:C, where Γ,Δ, and z:C have pairwise disjoint domains. Such
a judgment is intuitively read as: process P offers session C along channel z, provided
it is placed in a context providing the sessions declared in Γ and Δ.

Here we uniformly extend the system of [6] with two new kinds of session types,
∀X.A and∃X.A, corresponding to impredicative universal and existential quantification

Behavioral Polymorphism and Parametricity in Session-Based Communication 333

over sessions. As mentioned above, they are interpreted as the input and output of a
session type, respectively. As an example, consider the polymorphic session type:

CloudServer � ∀X.!(api�X)�!X

which represents a simple interface for a cloud-based application server. In our theory,
this is the session type of a system which first inputs an arbitrary type (say GMaps);
then inputs a shared service of type api�GMaps. Each instance of this service yields
a session that when provided with the implementation of an API will provide a behavior
of type GMaps; finally becoming a persistent (shared) server of type GMaps. Our ap-
plication server is meant to interact with developers who, by building upon the services
it offers, implement their own applications. In our framework, the dependency between
the cloud server and applications may be expressed by the typing judgment

· ; x:CloudServer 	 DrpBox :: z:dbox (1)

Intuitively, (1) says that to offer behavior dbox on z, the file hosting service represented
by process DrpBox relies on a linear behavior described by type CloudServer provided
on x (no shared behaviors are required). The rôle of behavioral genericity should be
clear from the following observation: to support interaction with developers such as
DrpBox—which implement all kinds of behaviors, such as dbox above—any process
realizing type CloudServer should necessarily be generic on such expected behaviors.

The above example illustrates how the combination of polymorphism and linear-
ity enables very fine-grained specifications of interactive behavior via types. Indeed,
as just discussed, impredicative quantification enforces that every cloud server imple-
mentation must be agnostic to the specific behavior of the actual applications it will
provide, whereas linearity allows us to reason precisely about behavior and session us-
age (e.g., the only way the server can provide the behavior X is by making use of
session api�X). In Section 3 we develop this example further, demonstrating how the
expressiveness and flexbility of polymorphic session types is captured in process spec-
ifications. Then, in Section 6 we illustrate how to exploit parametricity, strong normal-
ization, and other properties of well-typed processes to reason about such specifications.
In fact, we show how by merely exploiting the shape of its (polymorphic) type, we are
able to analyze the observable behavior of a generic cloud-based server.

For space reasons, most proofs are omitted. An associated technical report [5] gives
full technical details, and reports further developments which connect our work with
impredicative polymorphism in the functional setting via an encoding of System F.

2 Polymorphic Session Types

We consider a synchronous π-calculus [25] extended with binary guarded choice, chan-
nel links, and prefixes for type input/output. The syntax of processes/types is as follows:

Definition 1 (Processes, Session Types). Given an infinite setΛ of names (x, y, z, u, v),
the set of processes (P,Q,R) and session types (A,B,C) is defined by

P ::= x〈y〉.P | x(y).P | !x(y).P | P | Q | (νy)P | 0
| x〈A〉.P | x(X).P | x.inl;P | x.inr;P | x.case(P,Q) | [x↔ z]

A ::= 1 | A�B | A⊗B | A�B | A⊕B | !A | X | ∀X.A | ∃X.A

334 L. Caires et al.

The guarded choice mechanism and the channel link construct are as in [6,26,20]. In-
formally, channel links “re-implement” an ambient session on a different channel name,
thus defining a renaming operation (see below). Moreover, channel links allow a simple
interpretation of the identity rule. Polymorphism is represented by prefixes for input
and output of types, denoting the exchange of abstract communication protocols.

We identify processes up to consistent renaming of bound names, writing ≡α for
this congruence. We write P{x/y} for the process obtained from P by capture avoiding
substitution of x for y in P , and fn(P) for the free names of P . Session types are directly
generated from the language of linear propositions. Structural congruence expresses
basic identities on the structure of processes, reduction expresses internal behavior of
processes, and labeled transitions define interaction with the environment.

Definition 2. Structural congruence is the least congruence relation generated by the
following laws: P | 0 ≡ P ; P ≡α Q⇒ P ≡ Q; P | Q ≡ Q | P ; P | (Q | R) ≡
(P | Q) | R; (νx)(νy)P ≡ (νy)(νx)P ; x �∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q);
(νx)0 ≡ 0; and [x↔ y] ≡ [y ↔ x].

Definition 3. Reduction (P → Q) is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} x〈A〉.Q | x(Y).P → Q | P{A/Y }
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P x.inl;P | x.case(Q,R)→ P | Q
(νx)([x↔ y] | P)→ P{y/x} (x �= y) x.inr;P | x.case(Q,R)→ P | R
Q→ Q′ ⇒ P | Q→ P | Q′ P → Q⇒ (νy)P → (νy)Q
P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q

A transition P
α−−→ Q denotes that P may evolve to Q by performing the action rep-

resented by label α. In general, an action α (α) requires a matching α (α) in the en-
vironment to enable progress. Labels include: the silent internal action τ , output and
bound output actions x〈y〉 and (νz)x〈z〉, respectively, and input action x(y). Also, they
include labels pertaining to the binary choice construct (x.inl, x.inl, x.inr, and x.inr),
and labels describing output and input of types (denoted x〈A〉 and x(A), respectively).

Definition 4 (Labeled Transition System). The relation labeled transition (P
α−→ Q)

is defined by the rules in Fig. 1, subject to the side conditions: in rule (res), we require
y �∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we require
y �∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We write ρ1ρ2 for the composition of relations ρ1, ρ2. Weak transitions are defined as
usual: we write =⇒ for the reflexive, transitive closure of

τ−→. Given α �= τ , notation
α

=⇒ stands for =⇒ α−→=⇒ and
τ

=⇒ stands for =⇒.

Type System. Our type system assigns session types to communication channels. Our
session type language (cf. Definition 1) corresponds exactly to second-order linear
logic, and our typing rules capture this correspondence in a precise way. We define
two judgments: Ω;Γ ;Δ 	 P :: x:A and Ω 	 A type. Context Ω keeps track of type
variables that can be introduced by the polymorphic type constructors;Γ records persis-
tent sessions u:B, which can be invoked arbitrarily often along channel u; Δ maintains
the sessions x:B that can be used exactly once on channel x. When empty, Γ,Δ, and

Behavioral Polymorphism and Parametricity in Session-Based Communication 335

(out)

x〈y〉.P x〈y〉−−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(outT)

x〈A〉.P x〈A〉−−−→ P

(inT)

x(Y).P
x(B)−−−→ P{B/Y }

(id)

(νx)([x ↔ y] | P)
τ−→ P{y/x}

(par)

P
α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)

P
α−→ Q

(νy)P
α−→ (νy)Q

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(open)

P
x〈y〉−−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(lout)

x.inl;P
x.inl−−→ P

(rout)

x.inr;P
x.inr−−→ P

(lin)

x.case(P,Q)
x.inl−−→ P

(rin)

x.case(P,Q)
x.inr−−→ Q

Fig. 1. π-calculus Labeled Transition System

Ω are often denoted by ‘·’. Judgment Ω 	 A type defines well-formedness of types:
it denotes that A is a well-formed type with free variables registered in Ω. The rules
for type well-formedness are straightforward (see [5]). Our main typing judgment thus
states that process P implements a session of type A along channel x, provided it is
composed with processes providing sessions linearly in Δ and persistently in Γ , such
that the types occurring in the judgment are well-formed according to Ω.

The typing rules for our polymorphic session calculus are given in Fig. 2. We use
T, S for right-hand-side singleton environments (e.g., z:C). Rules pertaining to the
propositional fragment extend those introduced in [6] with context Ω. The rules in the
last two rows of Fig. 2 explain how to provide and use sessions of a polymorphic type.
More precisely, rule (T∀R) describes the offering of a session of universal type ∀X.A
by inputing an arbitrary type, bound to X , and proceeding as A, which may bind the
type variable X , regardless of what the actual received type is. Rule (T∀L) says that
the use of type ∀X.A consists of the output of a type B—well-formed under type con-
text Ω—which then warrants the use of the session as A{B/X}. The existential type is
dual: providing an existentially typed session ∃X.A (cf. rule (T∃R)) is accomplished by
outputting a well-formed type B and then providing a session of type A{B/X}. Using
an existential session ∃X.A (cf. rule (T∃L)) implies inputing a type and then using the
session as A, agnostic to what the actual received type can be. Note that in the presence
of polymorphism the identity rule (Tid) (not present in [6,7], but used in [26,21,20]) is
necessary, since it is the only way of typing a session with a type variable.

As usual, in the presence of type annotations in binders, type-checking is decidable
in our system (these are omitted for readability). We consider π-calculus terms up to
structural congruence, and so typability is closed under ≡ by definition. The system
enjoys the usual properties of equivariance, weakening, and contraction in Γ , as well
as name coverage (free names of a process are bound by the contexts or the right-hand-
side) and regularity (free variables of types are bound in the type variable context).

Correspondence with Second-Order Linear Logic. Our type system exhibits a tight
correspondence with a sequent calculus presentation of intuitionistic second-order lin-
ear logic. Informally, if we erase the processes and channel names from the typing

336 L. Caires et al.

(Tid)

Ω;Γ ;x:A [x ↔ z] :: z:A

(T1L)

Ω;Γ ;Δ P :: T

Ω;Γ ;Δ, x:1 P :: T

(T1R)

Ω;Γ ; · 0 :: x:1

(T⊗L)

Ω;Γ ;Δ, y:A,x:B P :: T

Ω;Γ ;Δ,x:A⊗B x(y).P :: T

(T⊗R)

Ω;Γ ;Δ P :: y:A Ω;Γ ;Δ′ Q :: x:B

Ω;Γ ;Δ,Δ′ (νy)x〈y〉.(P | Q) :: x:A⊗B

(T�L)

Ω;Γ ;Δ P :: y:A Ω;Γ ;Δ′, x:B Q :: T

Ω;Γ ;Δ,Δ′, x:A�B (νy)x〈y〉.(P | Q) :: T

(T�R)

Ω;Γ ;Δ, y:A P :: x:B

Ω;Γ ;Δ x(y).P :: x:A�B

(Tcut)

Ω;Γ ;Δ P :: x:A Ω;Γ ;Δ′, x:A Q :: T

Ω;Γ ;Δ,Δ′ (νx)(P | Q) :: T

(Tcut!)

Ω;Γ ; · P :: y:A Ω;Γ, u:A;Δ Q :: T

Ω;Γ ;Δ (νu)(!u(y).P | Q) :: T
(T!L)

Ω;Γ, u:A;Δ P{u/x} :: T

Ω;Γ ;Δ,x:!A P :: T

(Tcopy)

Ω;Γ, u:A;Δ, y:A P :: T

Ω;Γ, u:A;Δ (νy)u〈y〉.P :: T

(T!R)

Ω;Γ ; · Q :: y:A

Ω;Γ ; · !x(y).Q :: x:!A
(T⊕L)

Ω;Γ ;Δ, x:A P :: T Ω;Γ ;Δ,x:B Q :: T

Ω;Γ ;Δ,x:A⊕B x.case(P,Q) :: T

(T�R)

Ω;Γ ;Δ P :: x:A Ω;Γ ;Δ Q :: x:B

Ω;Γ ;Δ x.case(P,Q) :: x:A � B
(T�L1)

Ω;Γ ;Δ,x:A P :: T

Ω;Γ ;Δ,x:A � B x.inl;P :: T

(T⊕R1)

Ω;Γ ;Δ P :: x:A

Ω;Γ ;Δ x.inl;P :: x:A⊕B
(T∀L)

Ω B type Ω;Γ ;Δ,x : A{B/X} P :: T

Ω;Γ ;Δ,x : ∀X.A x〈B〉.P :: T

(T∀R)

Ω,X;Γ ;Δ P :: z:A

Ω;Γ ;Δ z(X).P :: z:∀X.A
(T∃L)

Ω,X;Γ ;Δ,x:A P :: T

Ω;Γ ;Δ,x : ∃X.A x(X).P :: T

(T∃R)

Ω B type Ω;Γ ;Δ P :: x:A{B/X}
Ω;Γ ;Δ x〈B〉.P :: x:∃X.A

Fig. 2. The Type System. Rules (T�L2)-(T⊕R2), analogous to (T�L1)-(T⊕R1), are omitted.

derivations we obtain precisely sequent proofs in intuitionistic second-order linear logic.
This correspondence (detailed in [5]) is made precise by defining a faithful proof term
assignment for the sequent calculus and a typed extraction function that maps these
proof terms to process typing derivations, as reported in [6] for the propositional case.

Notice that the correspondence goes beyond the mapping of proof inferences to typ-
ing derivations. We can show that process reductions can be mapped to proof conver-
sions arising from the standard proof-theoretic cut elimination procedure. This induces
a strong form of subject reduction on well-typed processes (see below). Furthermore,
we can classify all proof conversions arising in this manner as reductions, structural
congruences, or as observational equivalences on well-typed processes. See [6,20] for
details of the correspondence of proof conversions and their process interpretation.

Subject Reduction and Progress. The deep logical foundations allow us to establish
strong properties of process behavior through typing. We now discuss and state subject
reduction and global progress for our system. Subject reduction (Theorem 1) follows

Behavioral Polymorphism and Parametricity in Session-Based Communication 337

from a simulation between reductions in the typed π-calculus and proof conversions
that arise naturally in proof theory. This ensures that our interpretation is not arbitrary,
but rather captures the actual dynamics of proofs. Subject reduction, together with linear
typing, ensures session fidelity; the proof follows closely that of [6,7], extending it with
lemmas that characterize process/proof reductions at universal and existential types.

Theorem 1 (Subject Reduction/Type Preservation). If Ω;Γ ;Δ 	 P :: z:A and
P → Q then Ω;Γ ;Δ 	 Q :: z:A.

As for global progress (Theorem 2), also in this case the proof is an orthogonal exten-
sion from that of [6,7], requiring a series of inversion lemmas and the following notion
of live process. For any P , define live(P) if and only if P ≡ (νñ)(π.Q | R), for some
process R, a sequence of names ñ, and a non-replicated guarded process π.Q.

Theorem 2 (Progress). If ·; ·; · 	 P :: x:1 and live(P) then ∃Q s.t. P → Q.

3 The Cloud Application Server, Revisited

To illustrate the expressiveness and flexibility that we obtain via polymorphic ses-
sions, here we present concurrent specifications associated to the cloud-based appli-
cation server described in the Introduction. Below, for the sake of clarity, we abbreviate
bound outputs (νy)x〈y〉as x〈y〉. Recall the type for the cloud-based application server:
CloudServer � ∀X.!(api � X) � !X . Then, following the logic interpretation just
introduced, a process which realizes type CloudServer on name x is the following:

CSx � x(X).x(y).!x(w).y〈v〉.v〈a〉.(Pa | [w ↔ v])

where Pa is a process implementing the server API along channel a. Process CSx ex-
pects a protocol description X (a session type) and a session y, which is a persistent
implementation of X that requires the API provided by the server. CSx will then cre-
ate a replicated service that can provide the behavior X after delivering to y the API
implementation that is represented by process Pa.

What does an application to be published in the cloud server look like? Let us assume
a simple process, noted Convw, representing a file conversion service which, by using
a suitable API, takes a file and generates its PDF version (e.g., performing OCR on
images and generating the PDF of the text): a:api 	 Convw :: w:file�(pdf ⊗ 1).

In order to publish the conversion service into our application server, developers need
to harmonize its requirements (as described by the left-hand side typing) with those
of the server infrastructure CSx. To this end, we define a “wrapper” process which
contains Convw and is compatible with CSx (where conv � file�(pdf ⊗ 1)):

x:CloudServer 	 PubConv z :: z: !conv

PubConv z � x〈conv〉.x〈y〉.(!y(w).w(a).Convw | [x↔ z])

Process PubConv z first sends protocol/type conv to the cloud server, followed by a
session y that consists of a persistent service, that when given the API will produce a
session of type conv. After these communication steps, the cloud server session now

338 L. Caires et al.

provides the full behavior of conv along x, and so the client forwards x along the
endpoint channel z, thus providing !conv along z by making use of the functionality
provided by the server. By combining the above processes, we obtain:

·; · 	 (νx)(CS x | PubConv z) :: z: !conv (2)

representing the publication of our file conversion service in the cloud-based infrastruc-
ture. Behavioral genericity is in the fact that publishing any other service would require
following exactly the same above procedure. Assume, for instance, a service Mapsn:

a:api 	 Mapsn :: n:addr� (AMaps � GMaps)

which when provided a value of type addr (representing an address), it offers a choice
between map services AMaps (vector-based maps) and GMaps (raster-based maps). Let
maps � addr� (AMaps�GMaps). Clearly, the behavior described by types conv and
maps is very different. Still, their relationship with the server at x is exactly the same—
they are equally independent. Indeed, by proceeding exactly as we showed above for
process Convw, we can produce a wrapper process PubMapsz and then obtain:

·; · 	 (νx)(CS x | PubMapsz) :: z: !maps (3)

The parametric behavior of CSx can be thus witnessed by comparing (2) and (3) above.
In Section 6 we illustrate how to use parametricity to formally justify properties of
behavioral genericity/representation independence for processes such as those above.

The above example can be extended to illustrate the interplay of behavioral gener-
icity and concurrency. A more realistic cloud-based platform is one which is always
available on a certain name u. This can be represented in our framework by stating

·; · 	 !u(x).CS x :: u: !CloudServer

and by slightly modifying our assumptions on processes PubConv z and PubMapsz , in
such a way that they become two clients of the persistent server on u:

u:CloudServer ; · 	 u〈x〉.PubConvz :: z: !conv

(The client for PubMapsz is similar.) Our typing system ensures that interactions be-
tween the server !u(x).CS x and clients such as the two above will be consistent, safe,
and finite. Moreover, these interactions exploit behavioral genericity without interfering
with each other, and respecting resource usage policies declared by typing.

Above we have considered a very simple interface type for the cloud-based server.
Our framework allows us to represent much richer interfaces. For instance, the type
CloudServerAds � ∀X.!(api � X) � !(X � AdListings) captures a more sophis-
ticated server which provides its API but forces the resulting system to feature an
advertisement service. Type AdListings encodes a listing of advertisements that the ap-
plication server “injects” into the service—this injection is represented with a choice �,
so as to model the ability of a client to choose to watch an advertisement. It is not diffi-
cult to extend this mechanism with further functionalities, such as providing the server
developers/clients with an administrator service not exposed to the external clients.

Behavioral Polymorphism and Parametricity in Session-Based Communication 339

Having illustrated the expressiveness of polymorphic session-typed processes, it is
legitimate to investigate the correctness guarantees they enjoy. In the next section, we
establish strong normalization, a desirable liveness property for mobile code. Then, in
Section 5, we develop a theory of relational parametricity for session-typed processes.

4 Polymorphic Session-Typed Processes Are Strongly Normalizing

In this section, we show that well-typed processes of our polymorphic language are
(compositionally) strongly normalizing (terminating). Hence, in addition to adhering
to the behavior prescribed by session types in a deadlock-free way (cf. Theorems 1
and 2), our well-typed, polymorphic processes never engage into infinite computations
(Theorem 5). This property is practically meaningful in the context of distributed com-
puting, as it may be used to certify that mobile polymorphic code will not attempt, e.g.,
a denial-of-service attack by exhausting the resources of a remote service.

Our proof builds on the well-known reducibility candidates technique [14], and gen-
eralizes the linear logical relations for session typed processes given in [20] to the im-
predicative polymorphic setting. Technically, the proof is in two stages: we first define
a logical predicate inductively on the linear type structure; then, we show that all well-
typed processes are in the predicate.

Below, we say that a process P terminates (written P⇓) if there is no infinite re-
duction sequence starting with P . The logical predicate uses the following extension to
structural congruence with the so-called sharpened replication axioms [25].

Definition 5. We write ≡! for the least congruence relation on processes which results
from extending structural congruence≡ (Def. 2) with the following axioms:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2.
(νu)(!u(y).P | (νv)(!v(z).Q | R))

≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))

3. (νu)(!u(y).Q | P) ≡! P if u �∈ fn(P)

Intuitively, ≡! allows us to properly “split” processes: axioms (1) and (2) represent
the distribution of shared servers among processes, while (3) formalizes the garbage
collection of shared servers which can no longer be invoked by any process. It is worth
noticing that ≡! expresses sound behavioral equivalences in our typed setting (see [6]).

We now define a notion of reducibility candidate at a given type: this is a predicate
on well-typed processes which satisfies some crucial closure conditions. As in Girard’s
proof, the idea is that one of the particular candidates is the “true” logical predicate.
Below and henceforth, · 	 P :: z:A stands for a process P which is well-typed under
the empty typing environment.

Definition 6 (Reducibility Candidate). Given a type A and a name z, a reducibility
candidate at z:A, written R[z:A], is a predicate on all processesP such that · 	 P :: z:A
and satisfy the following:

(1) If P ∈ R[z:A] then P⇓. (2) If P ∈ R[z:A] and P =⇒ P ′ then P ′ ∈ R[z:A].
(3) If for all Pi such that P =⇒ Pi we have Pi ∈ R[z:A] then P ∈ R[z:A].

340 L. Caires et al.

As in the functional case, the properties required for our reducibility candidates are ter-
mination (1), closure under reduction (2), and closure under backward reduction (3).

The Logical Predicate. Intuitively, the logical predicate captures the terminating be-
havior of processes as induced by typing. This way, e.g., the meaning of a terminating
process of type z:∀X.A is that after inputing an arbitrary type B, a terminating process
of type z:A{B/X} is obtained. As we consider impredicative polymorphism, the main
technical issue is that A{B/X} may be larger than ∀X.A, for any measure of size.

The logical predicate is defined inductively, and is parameterized by two mappings,
denoted ω and η. Given a context Ω, we write ω : Ω to denote that ω is an assignment
of closed types to variables in Ω. We write ω[X �→ A] to denote the extension of ω
with a new mapping of X to A. We use a similar notation for extensions of η. We write
ω̂(P) (resp. ω̂(A)) to denote the application of the mapping ω to free type-variables in
P (resp. in A). We write η : ω to denote that η is an assignment of functions taking
names to reducibility candidates, to type variables in Ω (at the types in ω).

It is instructive to compare the key differences between our development and the
notion of logical relation for functional languages with impredicative polymorphism,
such as System F. In that context, types are assigned to terms and thus one maintains
a mapping from type variables to reducibility candidates at the appropriate types. In
our setting, since types are assigned to channel names, we need the ability to refer to
reducibility candidates at a given type at channel names which are yet to be determined.
Therefore, when we quantify over all types and all reducibility candidates at that type,
intuitively, we need to “delay” the choice of the actual name along which the candidate
must offer the session type. A reducibility candidate at type A which is “delayed” in
this sense is denoted as R[−:A], where ‘−’ stands for a name to be instantiated later on.

We thus define a sequent-indexed family of process predicates: a set of processes
T ω
η [Γ ;Δ 	 T] satisfying some conditions is assigned to any sequent of the form
Ω;Γ ;Δ 	 T , provided both ω:Ω and η:ω. The predicate is defined inductively on
the structure of the sequents: the base case considers sequents with an empty left-hand
side typing (abbreviated T ω

η [T]), whereas the inductive case considers arbitrary typing
contexts and relies on principles for process composition (cf. rules (Tcut) and (Tcut!)).

Definition 7 (Logical Predicate - Base Case). For any type A and name z, the logical
predicate T ω

η [z:A] is inductively defined by the set of all processes P such that · 	
ω̂(P) :: z:ω̂(A) and satisfy the conditions in Figure 3.

Definition 8 (Logical Predicate - Inductive Case). For any sequent Ω;Γ ;Δ 	 T
with a non-empty left hand side environment, we define T ω

η [Γ ;Δ 	 T] (with ω : Ω and
η : ω) as the set of processes inductively defined as follows:

P ∈T ω
η [Γ ; y:A,Δ 	 T] iff ∀R ∈ T ω

η [y:A].(νy)(ω̂(R) | ω̂(P)) ∈ T ω
η [Γ ;Δ 	 T]

P ∈T ω
η [u:A,Γ ;Δ 	 T] iff ∀R ∈ T ω

η [y:A].(νu)(!u(y).ω̂(R) | ω̂(P)) ∈ T ω
η [Γ ;Δ 	 T]

Definitions 7 and 8 are the natural extension of the linear logical relations in [20] to the
case of impredicative polymorphic types. Notice how the interpretation of the variable
type includes the instantiation at name z of the reducibility candidate given by η(X).

Behavioral Polymorphism and Parametricity in Session-Based Communication 341

P ∈ T ω
η [z:X] iff P ∈ η(X)(z)

P ∈ T ω
η [z:1] iff ∀P ′.(P =⇒ P ′ ∧ P ′ �−→) ⇒ P ′ ≡! 0

P ∈ T ω
η [z:A�B] iff ∀P ′y.(P

z(y)
=⇒ P ′) ⇒ ∀Q ∈ T ω

η [y:A].(νy)(P ′ | Q) ∈ T ω
η [z:B]

P ∈ T ω
η [z:A⊗B] iff ∀P ′y.(P

(νy)z〈y〉
=⇒ P ′) ⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ T ω

η [y:A] ∧ P2 ∈ T ω
η [z:B])

P ∈ T ω
η [z:!A] iff ∀P ′.(P =⇒ P ′) ⇒ ∃P1.(P

′ ≡! !z(y).P1 ∧ P1 ∈ T ω
η [y:A])

P ∈ T ω
η [z:∀X.A] iff (∀B,P ′,R[−:B]. (B type ∧ P

z(B)
=⇒ P ′) ⇒ P ′ ∈ T ω[X �→B]

η[X �→R[−:B]][z:A])

P ∈ T ω
η [z:∃X.A] iff (∃B,R[−:B].(B type ∧ P

z〈B〉
=⇒ P ′) ⇒ P ′ ∈ T ω[X �→B]

η[X �→R[−:B]][z:A])

Fig. 3. Logical predicate (base case). Definitions for T ω
η [z:A ⊕ B] and T ω

η [z:A�B] are as
expected; see [5] for details.

The clause for the universal ∀X.A denotes that a terminating session of universal type
must be able to input any type and then be terminating at the open type A, where the
meaning of the type variable can be any possible candidate of appropriate type (which
includes the actual logical predicate). The clause for the existential is dual.

Proving Strong Normalization. Using the above logical predicate, the proof of strong
normalization of well-typed processes follows the one presented in [20]. Roughly, the
idea is to define a notion of logical representatives of the dependencies specified in the
left-hand side typing. Such representatives simplify reasoning, as they allow to move
from predicates for sequents with non empty left-hand side typings to predicates with
an empty left-hand side typing, provided processes have been appropriately closed.

The theorem below ensures that T ω
η [Γ ;Δ 	 T] is indeed a reducibility candidate,

and thus it implies termination.

Theorem 3 (The Logical Predicate is a Reducibility Candidate). If Ω 	 A type,
ω : Ω, and η : ω then T ω

η [z:A] is a reducibility candidate at z:ω̂(A).

With the technical machinery appropriately defined, we can show the Fundamental The-
orem, stating that all well-typed processes belong to the logical predicate.

Theorem 4 (Fundamental Theorem). If Ω;Γ ;Δ 	 P :: T then, for all ω : Ω and
η : ω, we have that ω̂(P) ∈ T ω

η [Γ ;Δ 	 T].
We state the main result of this section, which follows as a consequence of the Funda-
mental Theorem above: all well-typed polymorphic processes terminate.

Theorem 5 (Strong Normalization). If Ω;Γ ;Δ 	 P ::T then ω̂(P)⇓, for every ω:Ω.

5 Relational Parametricity for Session-Typed Processes

The cloud-based server given in Section 3 calls for the need for formally asserting that
a server with type u : !CloudServer must behave “the same” independently of the arbi-
trary types of its clients. In general, the characterization of any well-behaved notion of

342 L. Caires et al.

type genericity has been captured by some kind of parametricity property, in particular
relational parametricity, as introduced by Reynolds [24]. The principle of relational
parametricity allows us to formally support reasoning about non-trivial properties of
processes, such as observational equivalence under changes of representation, which
have important consequences on our setting, where types actually denote process be-
haviors, and the abstraction result implies observational equivalence of a composite
system under change of some internal (representation) protocol (not just data) types.

In this section we thus establish for the first time a relational parametricity result for
a session-typed process calculus, based on our underlying logically founded approach.

We first introduce a form of logical equivalence, noted ≈L, which formalizes a re-
lational parametricity principle (Theorem 8) along the lines of Reynolds’ abstraction
theorem [24] (see [16]). Logical equivalence also allows us to characterize barbed con-
gruence, noted ∼=, in a sound and complete way (Theorem 9). Notice that while ≈L

corresponds to the natural extension of T ω
η [Γ ;Δ 	 T] (cf. Definition 8) to the binary

setting, ∼= represents the form of contextual equivalence typically used in concurrency.

Barbed Congruence. We begin by introducing barbed congruence. It is defined as the
largest equivalence relation on typed processes that is (i) closed under internal actions;
(ii) preserves barbs— arguably the most basic observable on the behavior of processes;
and is (iii) contextual, i.e., preserved by every admissible process context. We make
these three desiderata precise, defining first a suitable notion of type-respecting relations
in our setting. Below, we use S to range over sequents of the form Ω;Γ ;Δ 	 T .

Definition 9 (Type-respecting relations). A (binary) type-respecting relation over pro-
cesses, written {RS}S , is defined as a family of relations over processes indexed by S.
We often write R to refer to the whole family. Also, Ω;Γ ;Δ 	 P RQ ::T stands for

(i) Ω;Γ ;Δ 	 P :: T and Ω;Γ ;Δ 	 Q :: T and (ii) (P,Q) ∈ RΩ;Γ ;Δ�T .

We omit the definitions of reflexivity, transitivity, and symmetry for type-respecting
relations; we will say that a type-respecting relation that enjoys the three properties is
an equivalence. In what follows, we will often omit the adjective “type-respecting”.

We now define τ -closedness, barb preservation, and contextuality.

Definition 10 (τ -closed). RelationR is τ -closed if Ω;Γ ;Δ 	 PRQ :: T and P → P ′

imply there exists a Q′ such that Q =⇒ Q′ and Ω;Γ ;Δ 	 P ′RQ′ :: T .

The following definition of observability predicates, or barbs, extends standard presen-
tations with observables for labeled choice and selection, and type input and output:

Definition 11 (Barbs). Let Ox = {x, x, x.inl, x.inr, x.inl, x.inr} be the set of basic
observables under name x. Given a well-typed process P , we write: (i) barb(P, x), if

P
(νy)x〈y〉−−−−−→ P ′; (ii) barb(P, x), if P

x〈A〉−−−→ P ′, for some A,P ′; (iii) barb(P, x),

if P
x(A)−−−→ P ′, for some A,P ′; (iv) barb(P, x), if P

x(y)−−−→ P ′, for some y, P ′;
(v) barb(P, α), if P

α−→ P ′, for some P ′ and α ∈ Ox \ {x, x}. Given some o ∈ Ox,
we write wbarb(P, o) if there exists a P ′ such that P =⇒ P ′ and barb(P ′, o) holds.

Behavioral Polymorphism and Parametricity in Session-Based Communication 343

Definition 12 (Barb preserving relation). RelationR is a barb preserving if, for every
name x, Ω;Γ ;Δ 	 P RQ :: T and barb(P, o) imply wbarb(Q, o), for any o ∈ Ox.

In an untyped setting, a relation is said to be contextual if it is closed under any well-
formed process context C (i.e., a process with a hole). In our case, contexts are typed,
and the set of well-formed process contexts (i.e., processes with a typed hole) can be
mechanically derived from the typing rules, by exhaustively considering all possibili-
ties for typed holes. This way, e.g., rules (Tcut) and (Tcut!) are the basis for defining
parallel contexts. The operation of “filling in” the hole of a context with a process can
be handled by an additional typing rule available to contexts, which checks that the type
of the process matches that of the hole. For space reasons, we refrain from reporting the
complete formal definition of typed process contexts; see [5] for details. Based on these
intuitions, we define a contextual relation as follows:

Definition 13 (Contextuality). Relation R is contextual if Ω;Γ ;Δ 	 P RQ :: T
implies Ω;Γ ;Δ′ 	 C[P]RC[Q] :: T ′, for every Δ′, T ′ and typed context C.

Definition 14 (Barbed Congruence). Barbed congruence, noted ∼=, is the largest
equivalence on well-typed processes that is τ -closed, barb preserving, and contextual.

Logical Equivalence. We now define our notion of logical equivalence for well-typed
processes: it arises as a natural extension of the logical predicate of Definition 8 to the
relational setting. We begin by defining the crucial notion of equivalence candidate: an
equivalence relation on well-typed processes satisfying certain basic closure conditions.

Definition 15 (Equivalence Candidate). Let A,B be types. An equivalence candidate
R at z:A and z:B, notedR :: z:A⇔B, is a binary relation on processes such that, for
every (P,Q) ∈ R :: z:A⇔B both · 	 P :: z:A and · 	 Q :: z:B hold, together with
the following conditions:

1. If (P,Q) ∈ R :: z:A⇔ B, · 	 P ∼= P ′ :: z:A, and · 	 Q ∼= Q′ :: z:B then
(P ′, Q′) ∈ R :: z:A⇔B.

2. If (P,Q) ∈ R :: z:A⇔B then, for all P0 such that P0 =⇒ P , we have (P0, Q) ∈
R :: z:A⇔B. Similarly for Q: If (P,Q) ∈ R :: z:A⇔B then, for all Q0 such that
Q0 =⇒ Q then (P,Q0) ∈ R :: z:A⇔B.

We often write (P,Q) ∈ R :: z:A⇔B as P RQ :: z:A⇔B.

While item (1) says that equivalence candidates are closed with respect to ∼=, item (2)
can be shown to be redundant. As in our definition of logical predicate, we require
some auxiliary notation. We recall that ω : Ω denotes a type substitution ω that assigns
a closed type to type variables in Ω. Given two type substitutions ω : Ω and ω′ : Ω,
we define an equivalence candidate assignment η between ω and ω′ as a mapping of
a delayed (in the sense of the mapping η of Section 4) equivalence candidate η(X) ::
−:ω(X)⇔ω′(X) to the type variables in Ω. We write η(X)(z) for the instantiation of
the (delayed) equivalence candidate with the name z. We write η : ω⇔ ω′ to denote
that η is a (delayed) equivalence candidate assignment between ω and ω′.

We define a sequent-indexed family of process relations, that is, a set of pairs of
processes (P,Q), written Γ ;Δ 	 P ≈L Q :: T [η : ω⇔ω′], satisfying some conditions,

344 L. Caires et al.

P ≈L Q :: z:X[η : ω⇔ω′] iff (P,Q) ∈ η(X)(z)

P ≈L Q :: z:1[η : ω⇔ω′] iff ∀P ′, Q′. (P =⇒ P ′ ∧ P ′ �−→ ∧ Q =⇒ Q′ ∧Q′ �−→) ⇒
(P ′ ≡! 0 ∧Q′ ≡! 0)

P ≈L Q :: z:A�B[η : ω⇔ω′] iff ∀P ′, y. (P
z(y)−−−→ P ′) ⇒ ∃Q′.Q

z(y)
=⇒ Q′ s.t.

∀R1, R2. R1 ≈L R2 :: y:A[η : ω⇔ω′]

(νy)(P ′ | R1) ≈L (νy)(Q
′ | R2) :: z:B[η : ω⇔ω′]

P ≈L Q :: z:A⊗B[η : ω⇔ω′] iff ∀P ′, y. (P
(νy)z〈y〉−−−−−→ P ′) ⇒ ∃Q′.Q

(νy)z〈y〉
=⇒ Q′ s.t.

∀R1, R2, n. y:A R1 ≈L R2 :: n:1[η : ω⇔ω′]

(νy)(P ′ | R1) ≈L (νy)(Q
′ | R2) :: z:B[η : ω⇔ω′]

P ≈L Q :: z:!A[η : ω⇔ω′] iff ∀P ′. (P
z(y)−−−→ P ′) ⇒ ∃Q′.Q

z(y)
=⇒ Q′ ∧

∀R1, R2, n. y:A R1 ≈L R2 :: n:1[η : ω⇔ω′]

(νy)(P ′ | R1) ≈L (νy)(Q
′ | R2) :: z:!A[η : ω⇔ω′]

P ≈L Q :: z:∀X.A[η : ω⇔ω′] iff ∀B1, B2, P
′,R :: −:B1⇔B2. (P

z(B1)−−−−→ P ′) ⇒

∃Q′.Q
z(B2)
=⇒ Q′, P ′ ≈L Q

′ :: z:A[η[X �→ R] : ω[X �→ B1]⇔ω′[X �→ B2]]

P ≈L Q :: z:∃X.A[η : ω⇔ω′] iff ∃B1, B2,R :: −:B1⇔B2. (P
z〈B〉−−−→ P ′) ⇒

∃Q′.Q
z〈B〉
=⇒ Q′, P ′ ≈L Q

′ :: z:A[η[X �→ R] : ω[X �→ B1]⇔ω′[X �→ B2]]

Fig. 4. Logical equivalence (base case). Definitions for P ≈L Q :: z:A � B[η : ω ⇔ ω′] and
P ≈L Q :: z:A⊕B[η : ω⇔ω′] are as expected; see [5] for details.

is assigned to any sequent of the form Ω;Γ ;Δ 	 T , with ω : Ω, ω′ : Ω and η : ω⇔ω′.
As in the definition of the logical predicate, logical equivalence is defined inductively
on the structure of the sequents: the base case considers empty left-hand side typings,
whereas the inductive case which considers arbitrary typing contexts.

Definition 16 (Logical Equivalence - Base Case). Given a type A and mappings
ω, ω′, η, we define logical equivalence, noted P ≈L Q :: z:A[η : ω ⇔ ω′], as the
largest binary relation containing all pairs of processes (P,Q) such that (i) · 	 ω̂(P) ::
z:ω̂(A); (ii) · 	 ω̂′(Q) :: z:ω̂′(A); and (iii) satisfies the conditions in Figure 4.

Definition 17 (Logical Equivalence - Inductive Case). Let Γ,Δ be non empty typing
environments. Given the sequent Ω;Γ ;Δ 	 T , the binary relation on processes Γ ;Δ 	
P ≈L Q :: T [η : ω⇔ω′] (with ω, ω′ : Ω and η : ω⇔ω′) is inductively defined as:

Γ ;Δ, y : A P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],
Γ ;Δ (νy)(ω̂(P) | ω̂(R1)) ≈L (νy)(ω̂

′(Q) | ω̂′(R2)) :: T [η : ω⇔ω′]
Γ, u : A;Δ P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],

Γ ;Δ (νy)(ω̂(P) | !u(y).ω̂(R1)) ≈L (νy)(ω̂
′(Q) | !u(y).ω̂′(R2)) :: T [η : ω⇔ω′]

This way, logical equivalence turns out to be a generalization of the logical predicate
T ω
η [Γ ;Δ 	 T] (Definition 7) to the binary setting. The key difference lies in the

Behavioral Polymorphism and Parametricity in Session-Based Communication 345

definition of candidate (here called equivalence candidate), which instead of guaran-
teeing termination, enforces closure under barbed congruence.

Theorem 6 below is the binary analog of Theorem 4 (Fundamental Theorem). Its
proof is similar: we establish that logical equivalence is one of the equivalence candi-
dates, and then show that well-typed processes are logically equivalent to themselves.

Theorem 6 (Logical Equivalence is an Equivalence Candidate). The relation P ≈L

Q :: z:A[η : ω⇔ω′] is an equivalence candidate at z:ω̂(A) and z:ω̂′(A).

The final ingredient for our desired parametricity result is the following theorem:

Theorem 7 (Compositionality). Let B be any type. Also, let R :: −:ω̂(B)⇔ ω̂′(B)
stand for logical equivalence (cf. Definition 16).
Then, P ≈L Q :: z:A{B/X}[η : ω⇔ω′] if and only if

P ≈L Q :: z:A[η[X �→ R] : ω[X �→ ω̂(B)]⇔ω′[X �→ ω̂′(B)]]

We now state the main result of the section; its proof depends on a backward closure
property, and on Theorems 6 and 7.

Theorem 8 (Relational Parametricity). If Ω;Γ ;Δ 	 P :: z:A then, for all
ω, ω′ : Ω and η : ω⇔ω′, we have Γ ;Δ 	 ω̂(P) ≈L ω̂′(P) :: z:A[η : ω⇔ω′].

Remarkably, by appealing to parametricity and contextuality of logical equivalence,
we can show that ≈L and ∼= coincide. This result establishes a definitive connection
between the usual barb-based notion of observational equivalence from concurrency
theory, and the logical equivalence induced by our logical relational semantics (see [5]).

Theorem 9 (Logical Equivalence and Barbed Congruence coincide). Relations ≈L

and ∼= coincide for well-typed processes. More precisely:

1. If Γ ;Δ 	 P ≈L Q :: z:A[η : ω⇔ω′] holds for any ω, ω′ : Ω and η : ω⇔ω′, then
Ω;Γ ;Δ 	 P ∼= Q :: z:A

2. If Ω;Γ ;Δ 	 P ∼= Q :: z:A then Γ ;Δ 	 P ≈L Q :: z:A[η : ω⇔ ω′] for some
ω, ω′ : Ω and η : ω⇔ω′.

6 Using Parametricity to Reason about the Cloud Server

Here we illustrate a simple application of our parametricity result for reasoning about
concurrent polymorphic processes. We are interested in studying a restaurant finding
system; such an application is expected to rely on some maps application, to be up-
loaded to a cloud server. In our example, we would like to consider two different imple-
mentations of the system, each one relying on a different maps service. We assume that
the two implementations will comply with the expected specification for the restaurant
service, even if each one uses a different maps service (denoted by closed types AMaps
and GMaps). This assumption may be precisely expressed by the judgment

s:!(api�X)�!X 	 C1 ≈L C2 :: z:rest[ηr : ω1⇔ω2] (4)

346 L. Caires et al.

where ηr(X) = R, ω1(X) = AMaps, and ω2(X) = GMaps, where R is an equiva-
lence candidate that relates AMaps and GMaps, i.e., R : AMaps⇔ GMaps. The type
of the restaurant finding application is denoted rest; it does not involve type variable
X . Also, we assume X does not occur in the implementations C1, C2. Intuitively, the
above captures the fact that C1 and C2 are similar “up to” the relation R.

By exploiting the shape of type CloudServer, we can ensure that any process S such
that · 	 S :: s:CloudServer behaves uniformly, offering the same generic behavior
to its clients. That is to say, once the server is instantiated with an uploaded appli-
cation, the behavior of the resulting system will depend only on the type provided
by the application. Recall the polymorphic type of our cloud server: CloudServer �
∀X.!(api � X) � !X . Based on the form of this type and combining inversion on
typing and strong normalization (Theorem 5), there is a process SBody such that

S
s(X)−−−→ SBody X ; ·; · 	 SBody :: s:!(api�X)�!X (5)

hold. By parametricity (Theorem 8) on (5), we obtain

· 	 ω̂(SBody) ≈L ω̂
′(SBody) :: s:!(api�X)�!X [η : ω⇔ω′]

for any ω, ω′, and η. In particular, it holds for the ηr, ω1 and ω2 defined above:

· 	 ω̂1(SBody) ≈L ω̂2(SBody) :: s:!(api�X)�!X [ηr : ω1⇔ω2] (6)

By Definition 17, the formal relationship between C1 and C2 given by (4) implies

· 	 (νs)(ω̂1(R1) | C1) ≈L (νs)(ω̂2(R2) | C2) :: z:rest[ηr : ω1⇔ω2]

for any R1, R2 such that R1 ≈L R2 :: s:!(api�X)�!X [ηr : ω1⇔ω2]. In particular, it
holds for the two processes related in (6) above. Combining these two facts, we have:

· 	 (νs)(ω̂1(SBody) | C1) ≈L (νs)(ω̂2(SBody) | C2) :: z:rest[ηr : ω1⇔ω2]

Since rest does not involve X , using Theorem 7 we actually have:

· 	 (νs)(ω̂1(SBody) | C1) ≈L (νs)(ω̂2(SBody) | C2) :: z:rest[∅ : ∅⇔∅] (7)

Now, given (7), and using backward closure of ≈L under reductions (possible because
of Theorem 6 and Definition 15), we obtain:

· 	 (νs)(S | s〈AMaps〉.C1) ≈L (νs)(S | s〈GMaps〉.C2) :: z:rest[∅ : ∅⇔∅]

Then, using Theorem 9, we finally have

· 	 (νs)(S | s〈AMaps〉.C1) ∼= (νs)(S | s〈GMaps〉.C2) :: z:rest

This simple, yet illustrative example shows how one may use our parametricity results
to reason about the observable behavior of concurrent systems that interact under a
polymorphic behavioral type discpline.

Behavioral Polymorphism and Parametricity in Session-Based Communication 347

7 Related Work

To our knowledge, our work is the first to establish a relational parametricity principle
(in the sense of Reynolds [24]) in the context of a rich behavioral type theory for con-
current processes. Combined with parametricity, our type preservation, progress, and
strong normalization results therefore improve upon previous works on polymorphism
for session types ([12,10,4,28,9,15], see below) by providing general, logic-based foun-
dations for the analysis of behavioral genericity in structured communications.

By extending the notion of subtyping in [11], Gay [12] studied a form of bounded
polymorphism associated to branch/choice types: each branch is quantified by a type
variable with upper and lower bounds. Forms of unbounded polymorphism can be
enabled via special types Bot and Top. Dezani et al. [10] studied bounded polymor-
phism for a session-typed, object-oriented language. Bono and Padovani [3,4] rely on
unbounded polymorphism in a session types variant that is used to ensure correct (copy-
less) message-passing programs. Dardha et al. [9] develop an encoding of session types
into linear/variant types; it can be extended to handle session types with existential
parametric polymorphism (as in the π-calculus [25,27], see below) and bounded poly-
morphism (as in [12]). Goto et al. [15] develop a model of session polymorphism, in
which session types are modeled as labeled transition systems which may incorporate
deductive principles; polymorphism relies upon suitable deductions over transitions.

Most related to our developments are works by Berger et al. [1,2] and Wadler [28].
Berger et al. [1,2] proposed a polymorphically typed π-calculus with universal and
existential quantification. Their system is not based on session types but results from
combining so-called action types with linearity and duality principles. In their setting,
enforcing resource usage disciplines entails a dedicated treatment for issues such as,
e.g., sequentiality/causality in communications and type composition; in contrast, in
the context of session-typed interactions, our logic-based approach offers general prin-
ciples for handling such issues (e.g., typed process composition via cut). As in our case,
they prove strong normalization of well-typed processes using reducibility candidates;
however, due to the differences on typing, the proofs in [1,2] cannot be compared to our
developments. In particular, our application of the reducibility candidates technique
generalizes the linear logical relations we defined in [20]. While in [1] a parametric-
ity result is stated, the journal paper [2] develops a behavioral theory based on generic
transitions together with a fully abstract embedding of System F. Here again detailed
comparisons with our proofs are difficult, because of the different typing disciplines
considered in each case. Wadler [28] proposed an interpretation of session types as
classical linear logic (along the lines of [7]). His system supports the kind of parametric
polymorphism we develop here. However, the focus of [28] is not on the theory of para-
metric polymorphism. In particular, it does not address proof techniques for behavioral
genericity nor establishes a relational parametricity principle, as we do here.

In a broader context—and loosely related to our work—Turner [27] studied impred-
icative, existential polymorphism for a simply-typed π-calculus (roughly, the discipline
in which types describe the objects names can carry). In processes, polymorphism is ex-
pressed as explicit type parameters in input/output prefixes. Sangiorgi and Pierce [22]
proposed a behavioral theory for Turner’s framework. Neither of these works address
strong normalization nor study relational parametricity. Building upon [22], Jeffrey and

348 L. Caires et al.

Rathke [19] show that weak bisimulation is fully abstract for observational equivalence
for an asynchronous polymorphic π-calculus. Recently, Zhao et al. [30] studied linear-
ity and polymorphism for (variants of) System F. They prove relational parametricity
via logical relations for open terms, but no concurrent interpretation is considered.

8 Concluding Remarks

In this paper, we have presented a systematic study of behavioral genericity for con-
current processes. Our study is in the context of session types—a rich behavioral type
theory able to precisely describe complex communication protocols. Our work naturally
generalizes recent discoveries on the correspondence between linear logic propositions
and session types [6,7,20]. Previous works on genericity for concurrent processes ap-
peal to various forms of polymorphism. In contrast to most of such works, and by
developing a theory of impredicative, parametric polymorphism, we are able to for-
mally connect the concept of behavioral parametricity with the well-known principle
of relational parametricity, as introduced by Reynolds [24]. Since in our framework
polymorphism accounts for the exchange of abstract protocols, relational parametricity
enables us to effectively analyze concurrent systems which are parametric on arbitrarily
complex communication disciplines. In addition to enjoying a relational parametricity
principle, well-typed processes in our system respect session types in a deadlock-free
way and are strongly normalizing. This unique combination of results confers very
strong correctness guarantees for communicating systems. As a running example, we
have illustrated how to specify and reason about a simple polymorphic cloud-based
application server. In future work we would like to explore generalizations of our rela-
tional parametricity result so as to address security concerns (along the lines of [29]).

Acknowledgments. This research was supported by the Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program, under grants INTERFACES NGN-44 / 2009 and SFRH / BD
/ 33763 / 2009, and CITI; and by the Army Research Office under Award No. W911NF-
09-1-0273. We thank the anonymous reviewers for their useful comments.

References

1. Berger, M., Honda, K., Yoshida, N.: Genericity and the π-Calculus. In: Gordon, A.D. (ed.)
FOSSACS 2003. LNCS, vol. 2620, pp. 103–119. Springer, Heidelberg (2003)

2. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Inf. 42(2-3), 83–141
(2005)

3. Bono, V., Padovani, L.: Polymorphic endpoint types for copyless message passing. In: Proc.
of ICE 2011. EPTCS, vol. 59, pp. 52–67 (2011)

4. Bono, V., Padovani, L.: Typing copyless message passing. Logical Methods in Computer
Science 8(1) (2012)

5. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Relational parametricity for polymorphic
session types. Tech. rep., CMU-CS-12-108, Carnegie Mellon Univ. (April 2012)

6. Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236. Springer, Heidelberg
(2010)

7. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types (2012), under
Revision - http://www.cs.cmu.edu/˜fp/papers/sessions12.pdf

http://www.cs.cmu.edu/~fp/papers/sessions12.pdf

Behavioral Polymorphism and Parametricity in Session-Based Communication 349

8. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: TLDI 2012, pp.
1–12. ACM, New York (2012)

9. Dardha, O., Giachino, E., Sangiorgi, D.: Session Types Revisited. In: PPDP, pp. 139–150.
ACM (2012)

10. Dezani-Ciancaglini, M., Giachino, E., Drossopoulou, S., Yoshida, N.: Bounded Session Types
for Object Oriented Languages. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2006. LNCS, vol. 4709, pp. 207–245. Springer, Heidelberg (2007)

11. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42, 191–225
(2005)

12. Gay, S.J.: Bounded polymorphism in session types. Math. Struc. in Comp. Sci. 18(5), 895–
930 (2008)

13. Girard, J.Y.: Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination de coupures dans l’analyse et la théorie des types. In: Proc. of the 2nd Scandi-
navian Logic Symposium, pp. 63–92. North-Holland Publishing Co. (1971)

14. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press (1989)

15. Goto, M., Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: An Extensible Approach to Ses-
sion Polymorphism (2012), http://fpl.cs.depaul.edu/projects/xpol/

16. Harper, R.: Practical Foundations for Programming Languages. Cambridge University Press
(2012)

17. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

18. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

19. Jeffrey, A., Rathke, J.: Full abstraction for polymorphic pi-calculus. Theor. Comput.
Sci. 390(2-3), 171–196 (2008)

20. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear Logical Relations for Session-Based
Concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 539–558. Springer, Hei-
delberg (2012)

21. Pfenning, F., Caires, L., Toninho, B.: Proof-Carrying Code in a Session-Typed Process Cal-
culus. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 21–36. Springer,
Heidelberg (2011)

22. Pierce, B.C., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus. J.
ACM 47(3), 531–584 (2000)

23. Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium, Proceed-
ings Colloque sur la Programmation, pp. 408–423. Springer, London (1974)

24. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason, R.E.A. (ed.)
Information Processing 1983, pp. 513–523. Elsevier Science Publishers B. V. (1983)

25. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, New York (2001)

26. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic linear type
theory. In: Proc. of PPDP 2011, pp. 161–172. ACM, New York (2011)

27. Turner, D.: The polymorphic pi-calculus: Theory and implementation. Tech. rep., ECS-
LFCS-96-345, Univ. of Edinburgh (1996)

28. Wadler, P.: Propositions as sessions. In: Thiemann, P., Findler, R.B. (eds.) ICFP, pp. 273–286.
ACM (2012)

29. Washburn, G., Weirich, S.: Generalizing parametricity using information-flow. In: LICS, pp.
62–71. IEEE Computer Society (2005)

30. Zhao, J., Zhang, Q., Zdancewic, S.: Relational Parametricity for a Polymorphic Linear
Lambda Calculus. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 344–359. Springer,
Heidelberg (2010)

http://fpl.cs.depaul.edu/projects/xpol/

Higher-Order Processes, Functions,

and Sessions: A Monadic Integration

Bernardo Toninho1,2, Luis Caires2, and Frank Pfenning1

1 Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA
2 CITI and Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Lisboa, Portugal

Abstract. In prior research we have developed a Curry-Howard inter-
pretation of linear sequent calculus as session-typed processes. In this
paper we uniformly integrate this computational interpretation in a func-
tional language via a linear contextual monad that isolates session-based
concurrency. Monadic values are open process expressions and are first
class objects in the language, thus providing a logical foundation for
higher-order session typed processes. We illustrate how the combined
use of the monad and recursive types allows us to cleanly write a rich
variety of concurrent programs, including higher-order programs that
communicate processes. We show the standard metatheoretic result of
type preservation, as well as a global progress theorem, which to the best
of our knowledge, is new in the higher-order session typed setting.

1 Introduction

In prior work, we have developed a Curry-Howard interpretation of an intu-
itionistic linear sequent calculus, where linear propositions correspond to ses-
sion types [11], sequent proofs to process expressions, and cut reduction to
synchronous concurrent computation [4]. This π-calculus based system supports
input and output of channels along channels, choice and selection, replicated
input, generation of new channels, and message forwarding. Its logical origin
led to straightforward generalizations to support data input and output [19] as
well as polymorphism [20,6], incorporated as type input and output. This leaves
open the question of how to fully and uniformly incorporate the system into a
complete functional calculus to support higher-order, message-passing concur-
rent computation. In this paper we make a proposal for such an integration and
explore its expressive power. We feel that the latter is particularly important,
since it is not a priori clear how significantly our session-based (typed) commu-
nication restricts the π-calculus, or how easy it is to fully combine functional and
concurrent computation while preserving the ability to reason about programs
in the two paradigms.

Besides all the constructs of the π-calculus mentioned above, our language in-
cludes recursive types and, most importantly, a contextual monad to encapsulate

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 350–369, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 351

open concurrent computations, which can be passed in functional computation
but also communicated between processes in the style of higher-order processes,
providing a uniform symmetric integration of both higher-order functions and
processes. We allow the construction of recursive processes, which is a common
motif in applications. As the examples demonstrate, the various features combine
smoothly, allowing concise implementations of diverse examples such as streams
and stream transducers, higher-order programs with process passing, polymor-
phic stacks and process networks for binary counting, among others we omit due
to length constraints.

The rest of the paper is organized as follows: Section 2 sets up the necessary
background for the presentation of our language. Sections 3.1 through 3.9 present
the constructs of our language, intermixed with examples illustrating some of
the key features of the constructs. Section 4 details two extended examples:
a process implementation of stacks and a process network implementation of
a binary counter. Section 5 discusses the metatheory of our language and we
present some concluding remarks in Section 6.

2 Processes, Session Types and Functional Computation

In this section we introduce the preliminaries and notation necessary for the
introduction of our language. We begin with the notion of session-typed process.
We conceive of a process P as offering a specified service A along a channel c.
The session type A prescribes the communication pattern along channel c. We
have written this as P :: c : A. The process P may use services offered by other
processes, each with their specified session types, leading to a linear sequent :

c1:A1, . . . , cn:An 	 P :: c:A

where each of the channels ci must be used linearly in P and in accordance with
its session type Ai. We will abbreviate linear channel contexts with Δ. Note that
the order in which the channels are listed is irrelevant, and they can be renamed
consistently in the whole sequence as long as all channel names remain distinct.
As we will see, to cover the full generality of our language, our typing judgment
must account not only for linear channels Δ, but also shared channels which
we maintain in a context Γ , and (functional) variables, which we maintain in a
context Ψ , thus making our process typing judgment: Ψ ;Γ ;Δ 	 P :: c:A.

Our goal is to combine session typed processes and functional computation,
to enable potentially sophisticated reasoning about concurrent programs by ex-
ploiting our Curry-Howard foundations. One of the first issues that arises is how
to treat the channels c and ci of the process typing judgment: One solution is to
map channels to ordinary functional variables, forcing the entire language to be
linear, which is a significant departure from typical approaches. Moreover, even
if linear variables are supported, it is unclear how to restrict their occurrences
so they are properly localized with respect to the structure of running processes.

Our solution is to encapsulate processes in a contextual monad so that each
process is bundled with all channels (both linear and shared – the latter we cover

352 B. Toninho, L. Caires, and F. Pfenning

in Section 3.9) it uses and the one that it offers. This is a linear counterpart to
the contextual comonad presented in [15].

In our presentation in the following sections, we specify execution of concur-
rent programs in the form of a substructural operational semantics [17], for con-
venience of presentation. We rely on the following predicates: the linear propo-
sition execP denotes the state of a linear process expression P ; !execP denotes
the state of a persistent process (which must always be a replicating input); and
!evalM V expresses that the functional term M evaluates to value V without
using linear resources.

The rules that make up our substructural operational semantics, for those
unfamiliar with this style, can be seen as a form of multiset rewrite rules [7] where
the pattern to the left of the � arrow describes a state which is consumed and
transformed into the one to the right. Existentials are used to generate names.
Names or predicates marked with ! are not linear and thus not consumed as part
of the rewrite (aptly modeling replication). The use of connectives from linear
logic in this style of presentation, namely � to denote the state transformation,
⊗ to combine linear propositions from the context, and ! to denote persistence
should not be confused with our session type constructors.

3 Combining Sessions and Functions

In this section we provide first an overview of the constructs of our language
and then some details on each. The types of the language are separated into a
functional part and a concurrent part, which are mutually dependent on each
other. In types, we refer to functional type variables t, process type variables X ,
labels lj , and channel names a. We briefly note the meaning of the each session
type from the perspective of a provider.

τ, σ ::= τ → σ | . . . | ∀t. τ | μt. τ | t (ordinary functional types)
| {a:A← ai:Ai} process offering A along channel a,

using channels ai offering Ai

A,B,C ::= τ ⊃ A input value of type τ and continue as A
| τ ∧ A output value of type τ and continue as A
| A � B input channel of type A and continue as B
| A⊗B output fresh channel of type A and continue as B
| 1 terminate

| �{lj : Aj} offer choice between lj and continue as Aj

| ⊕{lj : Aj} provide one of the lj and continue as Aj

| !A provide replicable service A
| μX.A | X recursive process type

a ::= c | !u linear and shared channels

The functional types consist of functions types, polymorphic and recursive types
and some additional standard constructs such as base types, products and sums

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 353

that we have omitted for brevity. The novelty here is the contextual monadic
type {a:A ← ai:Ai}, denoting the type of a process expression offering session
A along channel a, using the channels ai at types Ai. Channels a can either be
linear (denoted by c or d) or shared (denoted by !u or !v).

At the level of session types we have value input τ ⊃ A and value output
τ ∧ A, referring back to the functional layer. We also have recursive process
types, absent from our prior work, which allows us to write some interesting
concurrent programs. Next we summarize the terms M,N and process expres-
sions P,Q of the language. Many of the process expressions have a continuation,
which is separated from the first action by a semicolon (‘;’). To explicate the
binding structure we have indicated the scope of variables that are bound using
subscripts. An overlined expression abbreviates an indexed sequence.

M,N ::= λx:τ.Mx | M N | fix x.Mx | . . . (usual functional constructs)
| a ← {Pa,ai} ← a1, . . . , an process providing a, using a1, . . . , an

P,Q ::= a ← M ← a1, . . . , an;Pa compose process computed by M
in parallel with Pa, communicating
along fresh channel a

| x ← input c;Qx input a value x along channel c
| _ ← output c M ;P output value of M along channel c

| d ← input c;Qd input channel d along channel c
| _ ← output c (d ← Pd);Q output a fresh channel d along c

| close c close channel c and terminate
| _ ← wait c;P wait for closure of c

| output c !(d ← Pd) output a replicable d along c and terminate
| !u ← input c;Q!u input shared channel u along c

| case c of lj ⇒ Pj branch on selection of lj along c
| _ ← c.lj ;P select label lj along c

| c ← copy !u;Pc spawn a copy of !u along c

| fwd c1 c2 forward between c1 and c2

The functional part of the language contains ordinary λ-abstraction, application,
recursion, and the usual constructors for sum, product, and recursive types,
omitted here for brevity. The main construct of interest is the internalization
of process expressions through the contextual monadic construct a ← {P} ←
a1, . . . an, denoting a process P using channels ai to provide along a.

Among the process expressions, the analogue of the monadic bind construct
is a←M ← a1, . . . , an;Pa. It denotes the composition of the monadic object M
(using channels ai), spawning a new process that provides along a fresh channel
for a, that will run in parallel with Pa. Typing enforces that if a is shared, all
channels ai must also be shared (otherwise we could violate linearity).

Using linear and persistent composition of monadic objects, we subsume direct
process composition and provide a more uniform way of integrating composition

354 B. Toninho, L. Caires, and F. Pfenning

of processes and functional computation. Monadic composition ultimately re-
duces to ordinary process composition during the computation.

Since we only provide a fixpoint operator at the functional level, writing re-
cursive processes can only be done by writing a recursive function that returns
an object of monadic type. We will see this pattern in our examples.

We write Ψ = (x1:τ1, . . . , xn:τn) for the context declaring ordinary (func-
tional) variables, Δ = (c1:Ai, . . . , cn:An) and Γ = (!u1:B1, . . . , !un:Bn) for linear
and shared channels, respectively. The order of declarations in all three forms of
contexts is irrelevant, but all variables or channel names must be distinct.

Ψ � M : τ term M has type τ
Ψ ;Γ ;Δ 	 P :: c:A process P offers A along c
Δ = lin(ai:Ai) Δ consists of the linear channels ci:Ai in ai:Ai

Γ = shd(ai:Ai) Γ consists of the shared channels !ui:Ai in ai:Ai

3.1 The Contextual Monad

We first detail our contextual monad, for now restricted to offering a service of
type A along a linear channel c. It is embedded in the functional language with
type {c:A← ai:Ai} and value constructor c← {Pc,ai

} ← a1, . . . , an.
A monadic value denotes a runnable process offering along channel c and

using channels a1, . . . , an, serving both as a way of referring to processes in the
functional layer and as a way of communicating processes in the process layer.
The typing rule for the monad is:

Δ = lin(ai:Ai) Γ = shd(ai:Ai) Ψ ;Γ ;Δ 	 P :: c:A

Ψ � c← {Pc,ai} ← ai:Ai : {c : A← ai:Ai}
{ }I

The monadic bind operation implements process composition. In the simplest
case, c←M ;Qc composes the process underlying the monadic value M (which
offers along c) with Qc (which uses c and offers d). More generally, composition
can refer to monadic values that use multiple channels: c←M ← a1, . . . , an;Qc.
When writing code we often omit the semicolon, instead writing the continuation
starting on the next line. The typing rule for the monadic bind is:

Δ = lin(ai:Ai) Γ ⊇ shd(ai:Ai) Ψ � M : {c:A ← ai:Ai} Ψ ; Γ ;Δ′, c:A � Qc :: d:D

Ψ ; Γ ;Δ,Δ′ � c ← M ← ai;Qc :: d:D
{ }E

The shared channels need not all be used, because shared channels are not linear.
On the other hand, linear names ci must exactly match all names in Δ, enforcing
linearity. The operational semantics for executing a monadic bind are:

exec (c←M ← ai ; Qc)⊗ !evalM (c← {Pc,ai
} ← ai)

� {∃c′. exec (Pc′,ai)⊗ exec (Qc′)}

Executing a bind evaluates M to a value of the appropriate form, which must
contain a process expression P . We then create a fresh channel c′ and execute

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 355

of Pc′,ai
itself, in parallel with Qc′ . In the value of M , the channels c and ai are

all bound names, so we rename them implicitly to match the interface of M in
the monadic composition.

3.2 Value Communication (∧ and ⊃)

Communicating a value of the functional language (as opposed to communicating
a channel, which is slightly different, see Section 3.5) is expressed at the type level
as τ ∧A and τ ⊃ A, corresponding to offering to send and receive values of type
τ , respectively. Note that τ is not a session type, although we can communicate
session-typed terms by using a monadic type. The language construct for such
an output is _← output c M ;P with the typing rules:

Ψ � M : τ Ψ ;Γ ;Δ 	 P :: c : A

Ψ ;Γ ;Δ 	 _← output c M ; P :: c : τ ∧ A ∧R

Ψ � M : τ Ψ ; Δ, c:A 	 P :: d : D

Ψ ;Γ ;Δ, c:τ ⊃ A 	 _← output c M ; P :: d : D
⊃L

Theoretically, these are just trivial reformulations of the usual rules of the
session-based process calculus, for example, as in [5]. We have therefore labeled
them with their names from the linear sequent calculus.

When a process in the context provides a value output along a channel c, we
can input it along c and bind a value variable x, written as x ← input c ; Q.
The same construct applies when we wish to define a session that offers to input
a value. The typing rules are:

Ψ, x:τ ;Γ ;Δ, c:A 	 Qx :: d : D

Ψ ;Γ ;Δ, c:τ ∧ A 	 x← input c ; Qx :: d : D
∧L

Ψ, x:τ ; Γ ;Δ 	 Qx :: c : A

Ψ ; Γ ;Δ 	 x← input c ; Qx :: c : τ ⊃ A
⊃R

At this point we have two typing rules each for input and output. This is
because input c either provides a service along c : τ ⊃ A or uses a service offered
along c : τ ∧ A, and dually for output. A type-checker can always tell whether
a process provides or uses a channel, so there is no ambiguity. The rule that
governs the semantics for these constructs is:

exec (_← output c M ; P)⊗ exec (x← input c ; Qx)⊗ !evalM V
� {exec (P)⊗ exec (QV)}

In accord with the call-by-value semantics of the functional language, the term
that is to be output must be reduced to a value V , after which an input and an
output can synchronize, both continuations proceed and the bound variable x is
instantiated with the appropriate value.

356 B. Toninho, L. Caires, and F. Pfenning

3.3 Forwarding and Termination

In the underlying proof theory of the linear sequent calculus, we can satisfy an
offer c:A by using a channel d:A of identical type through the identity rule:

Ψ ;Γ ; d:A 	 fwd c d :: c:A
id

In the monadic formulation it is natural to write d (which is consumed) on the
left, and c (which is provided) on the right. Operationally, the construct just
forwards inputs or outputs along c to d and vice versa. Note that there is no
process continuation here, since the offer of A along c has been satisfied in full
by d:A. It therefore only appears as the last line in a monadic expression. The
semantics of forwarding is:

exec (fwd c d) � {c = d}

The rule applies a global substitution of d for c in the current context represent-
ing the state of all processes. In a spatially distributed situation, this cannot be
directly implemented. One strategy is to send d along c, tagged as a forwarded
channel. In essence, the process offering along c tells its client that it should now
interact with the process offering d and then terminates. For this to work, the
client must be able to discriminate such a message. Fortunately, since channels
are session-typed and have only two endpoints, this does not require a broadcast
or a complex protocol.

The process type 1, the multiplicative unit of linear logic, maps to termination.
The corresponding process constructor is close c with typing rule:

Ψ ;Γ ; · 	 close c :: c : 1
1R

According to the rules of linear logic, the linear channel context must be empty.
Thus, communication along all channels that a process uses must be properly
terminated before the process itself terminates. Conversely, if we are using a
channel of type 1 we can wait for its underlying process to terminate with the
wait construct: _← wait c ; P .

Ψ ;Γ ;Δ 	 P :: d : D

Ψ ;Γ ;Δ, c:1 	 _← wait c ; P :: d : D
1L

The substructural operational semantics rule for these constructs is:

exec (close c)⊗ exec (_← wait c ; P) � {exec (P)}

Termination is straightforward. When we wait upon a channel that is being
closed (as the name implies, wait is blocking – and so is close), the two oper-
ations are consumed and the continuation is executed.

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 357

3.4 Example: Streams

We want to produce an infinite stream of integers, starting at a given number
n and counting up. This requires a coinductive type, defined as a recursive type
(we distinguish between functional and session type definitions with type and
stype, respectively).

stype intStream = int /\ intStream

In order to produce such a stream, we write a recursive function producing a
process expression:

nats : int -> {c:intStream}

c <- nats x =

{ _ <- output c x

c’ <- nats (x+1)

fwd c c’ }

This an example of a function definition. We take some liberties with the syn-
tax of these definitions for readability. In particular, we list interface channels
on the left-hand side of the definition. In this formulation, every recursive call
starts a new process with a new channel c′. Both for conciseness of notation
and efficiency we provide a short-hand: if a tail-call of the recursive function
provides a new channel which is then forwarded to the original offering channel,
we can reuse the name directly, making the last line of the function above simply
c <- nats (x+1).

It looks as if, for example, calling nats 0 might get into an infinite loop.
However, communication in our language is synchronous, so the output will
block until a matching consumer inputs the numbers.

We can now construct a stream transducer. As an example, we write a filter
that takes a stream of integers and produces a stream of integers, retaining only
those satisfying a given predicate q : int→ bool:

filter : (int -> bool) -> { d:intStream <- c:intStream }

d <- filter q <- c =

{ x <- input c

case q x

of true => _ <- output d x

d <- filter q <- c

| false => d <- filter q <- c }

The filter function is recursive, but not a valid coinductive definition unless
we can show that filter will be true for infinitely many elements of the stream.

3.5 Linear Channel Communication (⊗ and �)

An essential aspect of the π-calculus is the ability to pass channels among pro-
cesses. This operation belongs to the process layer, since the functional layer can

358 B. Toninho, L. Caires, and F. Pfenning

not track the proper linear use of such channels. In a session-typed system we
enable processes to send and receive fresh communication channels, along which
some particular session will be carried out. The types that capture this behavior
are A ⊗ B, denoting a channel which offers to output a fresh channel of type
A and continue as B; and A � B, which is the type for a channel that offers
to input a fresh channel of type A in order to provide a continuation of type
B (we will use * for ⊗ when writing examples). The programming construct
that achieves this is: _ ← output c (d ← P) ; Q which outputs a fresh channel
along c and spawns process P which offers some behavior along the fresh channel
(bound in P as d). All available channels will be used in exactly one of the two
processes P and Q. The typing rules are:

Ψ ;Γ ;Δ 	 Pd :: d : A Ψ ;Γ ;Δ′ 	 Q :: c : B

Ψ ;Γ ;Δ,Δ′ 	 _← output c (d← Pd) ; Q :: c : A⊗B
⊗R

Ψ ;Γ ;Δ 	 Pd :: d : A Ψ ;Γ ;Δ′, c:B 	 Q :: e : E

Ψ ;Γ ;Δ,Δ′, c:A � B 	 _← output c (d← Pd) ; Q :: e : E
�L

Two rules apply for this form of output: offering an output and interacting with
the environment that contains a session of � type. Note how in both rules the
left premise ensures that process P indeed provides A along d, whereas the right
premise types the continuation, where c is now offered (resp. used) as B.

Correspondingly, the construct to input fresh channels is d← input c ; Rd.

Ψ ;Γ ;Δ, d:A, c:B 	 Rd :: e : E

Ψ ;Γ ;Δ, c:A⊗B 	 d← input c ; Rd :: e : E
⊗L

Ψ ;Γ ;Δ, d:A 	 Rd :: c : B

Ψ ;Γ ;Δ 	 d← input c ; Rd :: c : A � B
�R

The semantics for these constructions is defined as:

exec (_← output c (d← Pd) ; Q)⊗ exec (d← input c ; Rd)
� {∃d′. exec (Pd′)⊗ exec (Q)⊗ exec (Rd′)}

When an input and an output along the same channel meet, a fresh channel
d′ is generated and passed to the continuation of the input and the process Q
which is spawned and now offers along that channel, resulting in three parallel
processes: the continuation of the input Rd′ , the offering process Pd′ and the
continuation of the output Q (where d′ cannot occur by construction).

3.6 Choice and Branching (� and ⊕)

A common idiom when writing concurrent programs is to offer alternative be-
havior, where a client selects which behavior the server executes. In our system
this is embodied by the labelled choice type �{l1:A1, . . . , lk:Ak}, where the li
are labels allowing other processes to select behaviors. Dually, it is also common
for clients to be able to branch on alternative behavior, decided by the server.

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 359

From the server perspective, this is usually referred to as internal choice, in op-
position to external choice which corresponds to choices made by the client, and
is represented by the type ⊕{l1:A1, . . . , lk:Ak}.

To offer a choice to a client along a channel c we use a case construct:
case c of l1 ⇒ P1, . . . ,⇒ lk ⇒ Pk Such a construct waits for a selection of
a label lj on channel c, after which it will continue as the process Pj . Similarly, a
client that is interacting with a server that offers an internal choice must branch
on the possible outcomes of the server choice, which is also represented by the
case construct. The typing rules are:

Ψ ;Γ ;Δ 	 P1 :: c : A1 . . . Ψ ;Γ ;Δ 	 Pk :: c : Ak

Ψ ;Γ ;Δ 	 case c of lj ⇒ Pj :: c : �{lj : Aj}
�R

Ψ ;Γ ;Δ, c:A1 	 P1 :: d : D . . . Ψ ;Γ ;Δ, c:Ak 	 Pk :: d : D

Ψ ;Γ ;Δ, c:⊕ {lj : Aj} 	 case c of lj ⇒ Pj :: d : D
⊕L

In linear logic terminology, the types � and ⊕ are additive. This means that the
linear channels available to the processes in the premises are the same. Note how,
in the first rule, the channel c to the right of the turnstyle arrow is the same
in all the premises, denoting that after the selection takes place, the selected
behavior will be carried out along the same channel. In the second rule, each
branch is typed in a context where the channel c has committed to a choice.

To perform a selection of a label lj on a channel, or to make a particular
internal choice lj along c, we use the process construct _ ← c.lj ; P . After
performing such a selection, c will offer the behavior assigned to li. The typing
rules for this construct are:

Ψ ;Γ ;Δ, c:Aj 	 P :: d : D

Ψ ;Γ ;Δ, c: � {lj : Aj} 	 _← c.lj ; P :: d : D
�L

Ψ ;Γ ;Δ 	 P :: c : Aj

Ψ ;Γ ;Δ 	 _← c.lj ; P :: c : ⊕{lj : Aj}
⊕R

Finally, the operational semantics rule is:

exec (_← c.lj ; P)⊗ exec (case c of lj ⇒ Qj) � {exec (P)⊗ exec (Qj)}

Essentially, choices and selection block until both can be found along the same
channel, after which the synchronization takes place and the continuation of the
selection P and the corresponding selected process Qi are executed concurrently.

3.7 Example: An App Store

Our contextual monad allows us to write functions that produce processes, but
it also enables us to write process expressions that, through communication
and composition of monadic values, communicate and execute actual processes.
This contrasts with previous work where only purely functional values could be
communicated in the functional layer [19] (also in the language of [20], while there

360 B. Toninho, L. Caires, and F. Pfenning

is no distinction between functional and process expressions, it is not completely
clear how one can in effect communicate suspended processes).

To clarify this, consider an App Store service that sells applications to its
customers. These applications are not necessarily functional, in that they may
communicate with the outside world. We can model such a service using monadic
types as follows, using Choice {...} as our concrete syntax for �{. . .}:
stype AppStore = Choice {weather: {c:Weather <- d:API, e:GPS } /\ 1

travel: {c:Travel <- d:API } /\ 1

game: {c:Game <- d:API } /\ 1}

The type above describes a simplified App Store service, which offers three differ-
ent applications to its customers (for simplicity, assume they are free): a weather
forecast application, a travel information application, and a game. Upon selec-
tion from the client, the store will send to it the corresponding application.
All the applications depend on a proprietary API that is not present locally in
clients and is accessed remotely. Furthermore, the weather forecast application
also makes use of a GPS connection to locate the user. These restrictions and
dependencies are made precise by the contextual regions of the monadic types.
The code for a client that downloads the weather application and runs it is:

ActivateGPS : unit -> {g:GPS}

WeatherClient : unit -> {c:Weather <- a:AppStore,d:API}

c <- WeatherClient() <- a:AppStore, d:API =

{ _ <- a.weather

w <- input a

_ <- wait a

g <- ActivateGPS()

c <- w <- d, g }

Note that unit -> t is isomorphic to t. The client requires an existing con-
nection with the AppStore service and the connection with the API, which we
assume is established by some other means. The client then performs the ap-
propriate selection and download from the store. To run the application, it first
makes use of a local function that activates its GPS module, supplying a chan-
nel handle g which is used to fulfill the required dependencies of the weather
application. This simple example shows how we can cleanly integrate communi-
cation and execution of open process expressions into our functional language.
It is straightforward to extend this example to more complex interfaces.

3.8 Example: A List Process

We exemplify the usage of branching by defining a type for a process imple-
mentation of a list. The process can either behave as the empty list (i.e. offer
no behavior) or as a list with a head and a tail, modelled by the output of the
head element of the list, followed by the output of a fresh channel consisting of
the handle to the tail list process. The type employs data polymorphism in the
elements of the list. We write Or {...} as concrete syntax for ⊕{. . . }.

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 361

stype List t = Or {nil: 1, cons: t /\ (List t * 1)}

maintained We can now define two functions, Nil and Cons: the first produces
a process that corresponds to the empty list and the second, given a value v of
type t will produce a process that expects to interact with a channel l denoting
a list of t’s, such that it will implement, along channel c, a new list with v as
its head.

Nil : unit -> {c:List t} Cons : t -> {c:List t <- l:List t}

c <- Nil () = c <- Cons v <- l =

{ _ <- c.nil { _ <- c.cons

close c _ <- output c v

} _ <- output c (l’ <- fwd l l’)

close c }

Note that the Cons function, after sending the cons label along channel c and
outputting v, it will output a fresh channel l’ that is meant to represent the
tail of the list, which is actually present along channel l. Thus, the function will
also spawn a process that will forward between l and l’.

3.9 Sharing and Replication (!)

All the process type constructors we have described thus far have been purely
linear, in the sense that they represent behavior that must take place exactly
once. Shared channels !u allow behavior to be replicated.

Shared channels appear in our language in two roles: we can bind a monadic
expression to a shared channel, provided the monadic expression does not depend
on linear channels; and we can use a channel of type !A, which we make precise
shortly. A monadic expression that does not depend on any linear channels can
be bound to a persistent channel !u ← M ← !u1, . . . , !un ; P . where M is an
expression of monadic type, conforming to the linearity restriction mentioned
above. Type-theoretically, this is reminiscent of the cut! principle:

Γ ⊆ !ui:Bi Ψ � M : {!u:A← !ui:Bi} Ψ ; Γ, u:A;Δ 	 Q!u :: c : C

Ψ ;Γ ;Δ 	 !u←M ← !ui ; Q!u :: c : C
{ }E!

The idea is that the monadic process underlying M will be replicated as many
times as uses of u take place. The semantics for this form of bind are:

exec (!u←M ← !ui ; Q!u)⊗ !evalM (c← {Pc,!ui
} ← !ui)

� {∃u. !exec (c← input !u ;Pc,!ui
)⊗ exec (Q!u)}

A persistent bind forces the evaluation of the monadic object and then spawns
a replicating process that will input on the generated (shared) channel u a fresh
channel c. Each such channel c will be used for communication between replicas
of P and its clients. This process is spawned in parallel with the continuation
Q!u which can trigger replications of P as needed.

362 B. Toninho, L. Caires, and F. Pfenning

Using a shared channel is accomplished by c ← copy !u ; P . The copy con-
struct triggers the creation of a new process that implements the behavior as-
cribed to !u along a fresh linear channel that is bound to c. The typing rule for
copy explicates this concept:

Ψ ;Γ, u:A;Δ, c:A 	 Qc :: d : D

Ψ ;Γ, u:A;Δ 	 c← copy !u ; Qc :: d : D
copy

And the semantics are:

!exec (d← input !u ; Pd)⊗ exec (c← copy !u ; Qc) � {∃c′. exec(Pc′)⊗ exec(Qc′)}

Note that the process performing an input along !u persists, since the proposition
!exec is persistent in the metalanguage of SSOS.

We internalize sharing at the process type level as !A, the type of a linear
channel that can be promoted to a shared channel of type A. The constructs
below may appear somewhat complex, but arise entirely from a Curry-Howard
interpretation of intuitionistic linear logic. We provide a channel c:!A of such a
type with the construct output c !(d← Pd). Note that there is no continuation,
and the subterm is preceded by a ‘!’. To use a channel of type !A, we input the
fresh shared channel !u← input c ; Qu.

The idea is that we will output along c a fresh channel !u′ which will be of a
shared nature. It is along !u′ that subsequent interactions will take place, and
thereafter all communication along c has terminated. The process expression
Pd will then implement some behavior that will be replicated whenever (and
only if) the fresh shared channel u′ that was output is used. The typing rules,
corresponding to the !R and !L from dual intuitionistic linear logic, are:

Ψ ;Γ ; · Pd :: d : A

Ψ ;Γ ; · output c !(d ← Pd) :: c : !A
!R

Γ, u:A;Δ Qu :: d : D

Γ ;Δ, c:!A !u ← input c ; Qu :: d : D
!L

Note that Pd may not depend on any linear channels, so that it can be replicated
as needed. The semantics for these forms of input and output are:

exec (output c !(d← Pd))⊗ exec (!u← input c ; Q!u)
� {∃!u′. !exec (d← input !u′ ; Pd)⊗ exec (Q!u′)}

4 Extended Examples

In this section we cover two slightly larger examples that showcase some of the
expressiveness of our language. We will first show how to define two different
implementations of stacks using monadic processes and how our Curry-Howard
basis allows for simple and elegant programs. Secondly, we will describe the
implementation of a binary counter as a network of communicating processes.

Stacks. We begin by defining the stack session type. We write t => s as con-
crete syntax for τ ⊃ A:

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 363

stype Stack t = Choice {push: t => Stack t

pop: Or {none: unit /\ Stack t

some:t /\ Stack t}

dealloc: 1}

The Stack recursive type denotes a channel along which a process offers the
choice between three operations: push, which will then expect the input of an
element that will be the new top of the stack; pop, which outputs either the top
element or unit (if the stack is empty); and dealloc, which fully deallocates the
stack and thus has type 1.

We present two distinct implementations of type Stack: stack1 makes use of
functional lists to maintain the stack; the second implementation stack2, more
interestingly, uses the list processes from Section 3.8 to implement the stack as
a network of communicating processes.

stack1 : list t -> {c:Stack t}
c <- stack1 nil = | c <- stack1 (v::l) =
{ case c of { case c of

push => v <- input c push => v’ <- input c
c <- stack1 (v::nil) c <- stack1 (v’::v::l)

pop => _ <- c.none pop => _ <- c.some
_ <- output c () _ <- output c v
c <- stack1 nil c <- stack1 l

dealloc => close c } dealloc => close c }

The code above consists of a function, taking a list and producing a monadic
object indexed by the given list. We define the function by branching on the
structure of the list, as usual. We can, for instance, create an empty stack by
calling stack1 with the empty list.

As mentioned above, our second implementation makes use of the list pro-
cesses of Section 3.8. We begin by defining a function deallocList, whose pur-
pose is to fully terminate a process network implementing a list. This means
recursively consuming the list session and terminating it:

deallocList : unit -> {c:1 <- l:List t}

c <- deallocList () <- l =

{ case l of

nil => _ <- wait l

close c

cons => v <- input l

l’ <- input l

_ <- wait l

c <- deallocList () <- l’ }

We define our second stack implementation by making use of the Cons, Nil and
deallocList functions. The function stack2 below produces a monadic stack
process with an underlying process network implementing the list itself:

364 B. Toninho, L. Caires, and F. Pfenning

stack2 : unit -> {c:Stack t <- l:List t}

c <- stack2 () <- l =

{ case c of

push => v <- input c

l’ <- Cons v <- l

c <- stack2 <- l’

pop => case l of

nil => _ <- wait l

_ <- c.none

_ <- out c ()

l’ <- Nil ()

c <- stack2 () <- l’

cons => v <- input l

l’ <- input l

_ <- wait l

_ <- c.some

_ <- out c v

c <- stack2 () <- l’

dealloc => c <- deallocList () <- l }

The monadic process specified above begins by offering the three stack oper-
ations: push, pop and dealloc. The first inputs along the stack channel the
element that is to be pushed onto the stack and calls on the Cons function to
produce a monadic process that appends to the list session l the new element,
binding the resulting list process to l′ and making a recursive call. The pop case
needs to branch on whether or not the list session l encodes the empty list. If
such is the case (nil), it waits for the termination of l, signals that the stack
is empty and calls upon the Nil function to reconstruct an empty list for the
recursive call; if not (cons), it inputs the element from the list session and the
continuation list l′. It then outputs the received element and proceeds recursively.
Finally, deallocList calls out to the list deallocation function.

Bit Counter Network As above, we begin with the interface type:

stype Counter = Choice {inc: Counter

val: nat /\ Counter

halt: 1}

The Counter session type provides three operations: an inc operation, which
increments its internal state; a val operation, which just outputs the counter’s
current value and a halt operation which terminates the counter.

One way to implement such a counter is through a network of communicating
processes, each storing a single bit of the bit string that encodes the value of the
counter. We do this by defining two mutually recursive functions epsilon and
bit. The former encodes the empty bit string, abiding to the counter interface.
Notably, in the inc branch, a new bit process is spawned with value 1. To do this,
we make a recursive call to the epsilon function, bound to channel d, and then
simply call the bit function with argument 1, also providing it with the channel
d. The bit function encodes an actual bit element of the bit string. It takes a

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 365

number as an argument which is the 1 or 0 value of the bit and constructs a
process expression that provides the counter interface along channel c by having
access to the process encoding the previous bit in the string along channel d.

bit : nat -> {c:Counter <- d:Counter} epsilon : unit -> {c:Counter}

c <- bit b <- d = c <- epsilon () =

{ case c of { case c of

inc => case b of inc => d <- epsilon ()

0 => c <- bit 1 <- d c <- bit 1 <- d

1 => _ <- d.inc

c <- bit 0 <- d

val => _ <- d.val val => _ <- output c 0

n <- input d c <- epsilon ()

_ <- output c (2*n+b)

c <- bit b <- d

halt => _ <- d.halt halt => close c }

_ <- wait d

close c }

A bit b outputs the counter value by polling the previous bit for its counter
value n and then outputting 2n+ b. This invariant ensures an adequate binary
encoding of the counter. Termination triggers the cascade termination of all bits
by sending a termination message to the previous bit, waiting on the channel
and then terminating. The increment case simply recurses with value 1 if the bit
is 0; otherwise it sends an increment message to the previous bit to encode the
carry and recurses with value 0.

5 Metatheory

For the functional part of the language, we presuppose a standard call-by-value
semantics. We could also use call-by-name, but for communication across chan-
nels, especially if distributed, one would not want to pass potentially large com-
putations and the data structures they still rely on. If the functional language
is overlaid with a termination checker (for examples, along the lines of Abel’s
proposal [1]), then the two should semantically coincide in any case. Since this
is standard, we focus on the interesting new constructs: the monad, and the
process expressions contained in them.

From the perspective of the functional language, an encapsulated process
expression is a value and is not executed. Instead, functional programs can be
used to construct concurrent programs which can be executed at the top-level,
or with a special built-in construct such as run, which would have type

run : {c:1} -> unit

Not accidentally, this is analogous to Haskell’s I/O monad [16], even if our lan-
guage is call-by-value.

We now summarize the expected preservation and progress theorems. In or-
der to state the type preservation theorem we must be able to talk about the

366 B. Toninho, L. Caires, and F. Pfenning

types and channels during the execution of the processes, not just for a process
expression P . An elegant way to accomplish this is to annotate each execP with
the channel c along which P offers its output and its type A. This exploits the
observation that every process offers a service along exactly one channel, and
for every channel there is exactly one process providing a service along it. This
extended form is written execP cA. The rules given above can be updated in a
straightforward fashion, and the original rules can be recovered by erasure. The
annotations fix the role of every channel in a communication as either offered
or used, and we can check if the whole process state Ω is well-typed according
to a signature of (linear and shared) channels Σ. We write |= (Σ ; Ω) :: c0 : 1
if process state Ω uses channels in Σ accordingly and offers 1 along an initial
channel c0 that is offered but not used anywhere. Initially, we have a closed
process expression P0 and |= (· ; execP0 c0 1) :: c0 : 1 (without loss of gener-
ality since using composition we can introduce well-typed processes offering an
arbitrary type, regardless of the type of c0). Overall, a pair consisting of the cur-
rently available channels and the process state evolves via multiset rewriting [7]
to another pair, potentially containing new channels and the new process state.

Theorem 1 (Type Preservation).

(i) If · � M : τ and !evalM V then V is a value and · � V : τ .
(ii) If |= (Σ ; Ω) :: c0 : 1 and (Σ ; Ω) −→∗ (Σ′ ; Ω′) then |= (Σ′ ; Ω′) :: c0 : 1.

Type preservation is fairly straightforward to prove, given the strong logical
foundations of our language. We require the typical substitution property for
the functional portion of the language. As for processes, the proof requires us to
relate typing derivations of process expressions to typings of the global executing
process state. This turns out to be easy, since substructural operational semantics
breaks down the global state into its local process expressions.

Theorem 2 (Progress). Assume for every term M such that · � M : τ
there exists a value V with !evalM V . Then for every well-typed process state
|= (Σ ; Ω) :: c0 : 1, either Ω = (!Ω′′, exec (close c0) c0 1) where !Ω′′ consists of
propositions of the form !execP , or (Σ ; Ω) −→ (Σ′ ; Ω′) for some Σ′ and Ω′.

Progress is, as usual, slightly harder to prove. Once we account for the internal
transitions of processes and functional evaluation, we note that in a well-typed
state Ω, persistent processes (which always perform a replicating input) can
never block. Due to linear well-typing of the state, we can therefore restrict
attention to the remaining k+1 processes that offer communication along k+1
channels, but using only k channels since c0 does not have a match. Now we
perform an induction on k. If P0 is blocked on c0, it must have the form stated
in the theorem (by inversion on its typing) and we are done. If not, it must be
blocked on some other channel, say, c1. Now the process P1 offering c1 is either
blocked on c1, in which case it can communicate with P0 and we can make a
transition, or it must be blocked on some other c2. We proceed in this way until
we must come to Pk, which must be blocked on ck and can communicate with
Pk−1 since no other linear channel ck+1 remains on which it could be blocked.

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 367

It is easy to modify the operational semantics to employ a small-step semantics
for the functional layer, which ensures progress for the full language without
relying on termination of functional computation.

We now return to consideration of what we have called the linear contextual
monad. In general, a monad consists of a type constructor M supporting two
operations usually called return and bind. The return operation allows for any
value in the language to be made into a monadic object, whereas bind is a form
of composition. These operations are expected to satisfy certain equational laws.
Specifically, return is both a left and right unit for bind, and bind is associative.

Using our monadic introduction and composition constructs, we can reproduce
similar laws. First, if we consider the process expression: c ← {c ← Pc};Qc, it
is straightforward to see, using our semantics, that it behaves as just both Pc

and Qc executing in parallel. This is a form of left identity, and captures the
computational effects of binding. Secondly, we can reconstruct a right identity
law by observing that the term: {c← (d←M ; fwd c d)} always behaves like M .
This is reminiscent of an η-conversion law, but one must note that in the presence
of non-termination, evaluating the expression M might not terminate, whereas
the monadic expression is always a value. However, any context that uses both
expressions will not be able to distinguish them, regardless of non-termination.
Finally, it is easy to see that our composition construct is associative.

Taking the category theory perspective, these constructions are somewhat
reminiscent of the work on Arrows [12], itself a special case of Relative Monads
[2], which are monadic constructions for functors that are not endomorphic. A
closer work, also rich in category theoretical foundations is that of Benton [3],
where two functors F and G are defined, forming an adjunction between intu-
itionistic and linear functional calculi. Our construction is in essence a contextual
variant of G, albeit with some slight differences, specifically the fact that we em-
ploy a let-style elimination and we bridge a functional and a process calculus,
instead of two functional calculi.

6 Related Work and Conclusion

Our language is similar to the higher-order session typed calculi of [14]. How-
ever, our logical foundation makes the system substantially simpler, and the
contextual monad allows for a cleaner integration of higher-order communica-
tion, which they accomplish by passing λ-abstractions. Furthermore, we obtain
a global progress result, which is not present in [14].

A language with similar goals to ours is Wadler’s GV [20], which is itself
based on a session-typed functional language created by Gay and Vasconce-
los [10]. GV is also a session-typed functional language, essentially consisting
of a simply typed, linear λ-calculus extended with primitives for session-typed
communication. A point of divergence of GV and our language is that GV is
itself linear, whereas we base our functional language in a traditional λ-calculus
equipped with a linear contextual monad that isolates communication and lin-
ear typing. Naturally, making the whole language linear avoids the need for the
monad, since it becomes possible to write functions that, for instance, take a

368 B. Toninho, L. Caires, and F. Pfenning

data value and a channel and send the piece of data along the channel (this is
so because essentially all terms in GV can be translated to session-typed linear
processes). On the other hand, the pervasively concurrent semantics means it is
further from a practical integration of concurrency into an existing functional
language. Another significant difference between the two approaches is that the
underlying type theory of GV is classical, whereas ours is intuitionistic. Monads
are intuitionistic in their logical form [9], which therefore makes the intuitionis-
tic form of linear logic a particularly good candidate for a monadic integration
of functional and concurrent computation based on a Curry-Howard correspon-
dence. We believe our natural examples demonstrate this clearly. Prior work by
Mazurak and Zdancewic [13] indicates that control operators may be a better
candidate than a contextual monad for classical linear logic, if the functional
character of the underlying language is to be fully preserved.

The language F∗ [18] shares similar goals and ideas, but it is aimed at security
properties and distributed computation, while we aim at concurrency. Instead of
linear types, F∗ uses affine types and its concurrency primitives are not based on
a Curry-Howard correspondence. The various language levels, including commu-
nication, are separated not by a monad but through a complex kinding system
that controls their interaction. Our language design aims to be a stepping stone
towards full dependent verification (as traditional in type theory) and allowing
for dynamic verification. F∗ makes several interesting contributions with respect
to this tradeoff, in particular the use of value-dependent types.

Finally, there are a number of language features we have given short thrift
here in order to concentrate on our essential contributions. One is the possibility
of asynchronous communication. Work by DeYoung et al. [8] shows that this
is consistent with a Curry-Howard approach although some programs we wrote
here (like infinite stream producers) would have to be rewritten to account for the
change in the operational semantics. Polymorphism [20,6] for process expressions
is largely orthogonal and manageable as long as types are explicitly passed.

Future Work. Our main goal for future work is the generalization of the system
we have presented here to a full dependent type theory that integrates reason-
ing about both functional and concurrent computation. Dependent types in the
purely functional setting are a well understood concept, however the generaliza-
tion to our language is far from straightforward since we move to a setting where
session types can be indexed not only by purely functional terms, but also by
session typed processes through the monadic type from the functional language.
Similarly, dependent types in the functional layer share this feature. This means
that type equality (crucial for type conversion in dependent type theories), which
ultimately reduces to term equality, requires a suitable notion of process equality.
While we obviously want a decidable equality, it is not clear what other criteria
this notion of equality should obey. Moreover, reasoning about processes is typ-
ically done both inductively and coinductively, so to be able to internalize this
reasoning in the language we require a primitive notion of coinductive reasoning,
as well as a proper theory of inductive and coinductive definitions applied to our
session typed setting. We plan to tackle these challenges in future work.

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 369

Acknowledgments. Support for this research was provided by the Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) through the Carnegie Mellon Portugal Program, under grants SFRH / BD
/ 33763 / 2009 and INTERFACES NGN-44 / 2009, and CITI; and by the Army
Research Office under Award No. W911NF-09-1-0273

References

1. Abel, A.: Type-based termination, inflationary fixed-points, and mixed inductive-
coinductive types. In: Proceedings of FICS 2012, pp. 1–11 (2012)

2. Altenkirch, T., Chapman, J., Uustalu, T.: Monads Need Not Be Endofunctors. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 297–311. Springer, Heidelberg
(2010)

3. Benton, P.N.: A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models
(Extended Abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 121–135. Springer, Heidelberg (1995)

4. Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

5. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Types
in Language Design and Implementation, pp. 1–12 (2012)

6. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Relational parametricity for
polymorphic session types. Tech. Rep. CMU-CS-12-108, Carnegie Mellon Univ.
(2012)

7. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Information and Computation 207(10), 1044–1077 (2009)

8. DeYoung, H., Caires, L., Pfenning, F., Toninho, B.: Cut reduction in linear logic
as asynchronous session-typed communication. In: Computer Science Logic (2012)

9. Fairtlough, M., Mendler, M.: Propositional lax logic. Information and Computa-
tion 137(1), 1–33 (1997)

10. Gay, S., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Programming 20(1), 19–50 (2010)

11. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

12. Hughes, J.: Generalising monads to arrows. Sci. of Comp. Prog. 37, 67–111 (1998)
13. Mazurak, K., Zdancewic, S.: Lolliproc: to concurrency from classical linear logic

via curry-howard and control. In: ICFP, pp. 39–50 (2010)
14. Mostrous, D., Yoshida, N.: Two Session Typing Systems for Higher-Order Mobile

Processes. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 321–335.
Springer, Heidelberg (2007)

15. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. Transac-
tions on Computational Logic 9(3) (2008)

16. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Principles
of Prog. Lang., POPL 1993, pp. 71–84 (1993)

17. Pfenning, F., Simmons, R.J.: Substructural operational semantics as ordered logic
programming. In: Logic in Comp. Sci., pp. 101–110 (2009)

18. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: ICFP, pp. 266–278 (2011)

19. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: Prin. Pract. Decl. Program., pp. 161–172 (2011)

20. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286 (2012)

Concurrent Flexible Reversibility�

Ivan Lanese1, Michael Lienhardt2, Claudio Antares Mezzina3, Alan Schmitt4,
and Jean-Bernard Stefani4

1 Focus Team, University of Bologna/Inria, Italy
2 PPS Laboratory, Paris Diderot University, France

3 SOA Unit, FBK, Trento, Italy
4 Inria, France

{lanese,lienhard}@cs.unibo.it, mezzina@fbk.eu,

{alan.schmitt,jean-bernard.stefani}@inria.fr

Abstract. Concurrent reversibility has been studied in different ar-
eas, such as biological or dependable distributed systems. However, only
“rigid” reversibility has been considered, allowing to go back to a past
state and restart the exact same computation, possibly leading to diver-
gence. In this paper, we present croll-π, a concurrent calculus featuring
flexible reversibility, allowing the specification of alternatives to a com-
putation to be used upon rollback. Alternatives in croll-π are attached to
messages. We show the robustness of this mechanism by encoding more
complex idioms for specifying flexible reversibility, and we illustrate the
benefits of our approach by encoding a calculus of communicating trans-
actions.

1 Introduction

Reversible programs can be executed both in the standard, forward direction as
well as in the backward direction, to go back to past states. Reversible program-
ming is attracting much interest for its potential in several areas. For instance,
chemical and biological reactions are typically bidirectional, and the direction
of execution is fixed by environmental conditions such as temperature. Simi-
larly, quantum computations are reversible as long as they are not observed.
Reversibility is also used for backtracking in the exploration of a program state-
space toward a solution, either as part of the design of the programming language
as in Prolog, or to implement transactions. We are particularly interested in the
use of reversibility for modeling and programming concurrent reliable systems.
In this setting, the main idea is that in case of an error the program backtracks
to a past state where the decisions leading to the error have not been taken yet,
so that a new forward execution may avoid repeating the (same) error.

Reversibility has a non trivial interplay with concurrency. Understanding this
interplay is fundamental in many of the areas above, e.g., for biological or reliable
distributed systems, which are naturally concurrent. In the spirit of concurrency,

� This work has been partially supported by the French National Research Agency
(ANR), projects REVER ANR 11 INSE 007 and PiCoq ANR 10 BLAN 0305.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 370–390, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Concurrent Flexible Reversibility 371

independent threads of execution should be rolled-back independently, but causal
dependencies between related threads should be taken into account.

This form of reversibility, termed causal consistent, was first introduced by
RCCS [11], a reversible variant of CCS. RCCS paved the way to the definition of
reversible variants of more expressive concurrent calculi [8, 18, 20, 22]. This line
of research considered rigid, uncontrolled, step-by-step reversibility. Step-by-step
means that each single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. Uncontrolled means that there is no hint as
to when to go forward and when to go backward, and up to where. Rigid means
that the execution of a forward step followed by the corresponding backward step
leads back to the starting state, where an identical computation can restart.

While these works have been useful to understand the basics of concurrent
reversibility in different settings, some means to control reversibility are required
in practice. In the literature four different forms of control have been proposed:
relating the direction of execution to some energy parameter [2], introducing
irreversible actions [12], using an explicit rollback primitive [17], and using a
superposition operator to control forward and backward execution [24].

With the exception of [24], these works were based on causal consistent, rigid
reversibility. However, rigid reversibility may not always be the best choice. In the
setting of reliable systems, for instance, rigid reversibility means that to recover
from an error a past state is reached. From this past state the computation that
lead to the error is still possible. If the error was due to a transient fault, retrying
the same computation may be enough to succeed. If the failure was permanent,
the program may redo the same error again and again.

Our goal is to overcome this limitation by providing the programmer with
suitable linguistic constructs to specify what to do after a causal consistent
backward computation. Such constructs can be used to ensure that new forward
computations explore new possibilities. To this end, we build on our previous
work on roll-π [17], a calculus where concurrent reversibility is controlled by the
roll γ operator. Executing it reverses the action referred by γ together with all the
dependent actions. Here, we propose a new calculus called croll-π, for compen-
sating roll-π, as a framework for flexible reversibility. We attempt to keep croll-π
as close as possible to roll-π while enabling many new possible applications. We
thus simply replace roll-π communication messages a〈P 〉 by messages with al-
ternative a〈P 〉÷ c〈Q〉. In forward computation, a message a〈P 〉÷ c〈Q〉 behaves
exactly as a〈P 〉. However, if the interaction consuming it is reversed, the origi-
nal message is not recreated—as would be the case with rigid reversibility—but
the alternative c〈Q〉 is released instead. Our rollback and alternative message
primitives provide a simple form of reversibility control, which always respects
the causal consistency of reverse computation. It contrasts with the fine-grained
control provided by the superposition constructs in [24], where the execution of
a CCS process can be constrained by a controller, possibly reversing given past
actions in a way that is non-causally consistent.

Our contributions are as follows. We show that the simple addition of alter-
natives to roll-π greatly extends its expressive power. We describe how messages

372 I. Lanese et al.

with alternative allow for programming different patterns for flexible reversibil-
ity. Then, we show that croll-π can be used to model the communicating transac-
tions of [13]. Notably, the tracking of causality of croll-π is more precise than the
one in [13], thus allowing to improve on the original proposal by avoiding some
spurious undo of actions. Additionally, we study some aspects of the behavioral
theory of croll-π, including a context lemma for barbed congruence. This allows
us to reason about croll-π programs, in particular to prove the correctness of the
encodings of primitives for flexible reversibility and of the transactional calculus
of [13]. Finally, we present an interpreter, written in Maude [10], for a small
language based on croll-π.

Outline. Section 2 gives an informal introduction to croll-π. Section 3 defines the
croll-π calculus, its reduction semantics, and it introduces the basics of its be-
havioral theory. Section 4 presents various croll-π idioms for flexible reversibility.
Section 5 outlines the croll-π interpreter in Maude and a solution for the Eight
Queens problem. Section 6 presents an encoding and an analysis of the Trans-
CCS constructs from [13]. Section 7 concludes the paper with related work and a
mention of future studies. The paper includes short proof sketches for the main
results. We refer to the online technical report [16] for full proofs.

2 Informal Presentation

Rigid reversibility in roll-π. The croll-π calculus is a conservative extension of the
roll-π calculus introduced in [17].1 We briefly review the roll-π constructs before
presenting the extension added by croll-π. Processes in roll-π are essentially pro-
cesses of the asynchronous higher-order π-calculus [25], extended with a rollback
primitive. Processes in roll-π cannot directly execute, only configurations can. A
configuration is essentially a parallel composition of tagged processes along with
memories tracking past interactions and connectors tracing causality informa-
tion. In a tagged process of the form k : P , the tag k uniquely identifies the
process P in a given configuration. We often use the term key instead of tag.

The uniqueness of tags in configurations is achieved thanks to the following
reduction rule that defines how parallel processes are split.

k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

In the above reduction, | is the parallel composition operator and ν is the re-
striction operator, both standard from the π-calculus. As usual, the scope of
restriction extends as far to the right as possible. Connector k ≺ (k1, k2) is used
to remember that the process tagged by k has been split into two sub-processes
identified by the new keys k1 and k2. Thus complex processes can be split into
threads, where a thread is either a message, of the form a〈P 〉 (where a is a chan-
nel name), a receiver process (also called a trigger), of the form a(X) 'γ P , or a
rollback instruction of the form roll k, where k is a key.

1 The version of roll-π presented here is slightly refined w.r.t. the one in [17].

Concurrent Flexible Reversibility 373

A forward communication step occurs when a message on a channel can be
received by a trigger on the same channel. It takes the following form (roll-π is
an asynchronous higher-order calculus).

(k1 : a〈P 〉) | (k2 : a(X) 'γ Q) −→ νk. k : Q{P,k/X,γ} | [μ; k]

In this forward step, keys k1 and k2 identify threads consisting respectively of
a message a〈P 〉 on channel a and a trigger a(X) 'γ Q expecting a message on
channel a. The result of the message input yields, as in higher-order π, the body
of the trigger Q with the formal parameter X instantiated by the received value,
i.e., process P . Message input also has three side effects: (i) the tagging of the
newly created process Q{P,k/X,γ} by a fresh key k; (ii) the creation of a memory
[μ; k], which records the original two threads,2 μ = (k1 : a〈P 〉) | (k2 : a(X)'γQ),
together with key k; and (iii) the instantiation of variable γ with the newly
created key k (the trigger construct is a binder both for its process parameter
and its key parameter).

In roll-π, a forward computation, i.e., a series of forward reduction steps as
above, can be perfectly undone by backward reductions triggered by the oc-
currence of an instruction of the form roll k, where k refers to a previously
instantiated memory. In roll-π, we have for instance the following forward and
backward steps, where M = (k1 : a〈Q〉) | (k2 : a(X) 'γ X | roll γ):

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→M

The communication between threads k1 and k2 in the first step and the split of
process k into k3 and k4 are perfectly undone by the third (backward) step.

More generally, the set of memories and connectors of a configuration M
provides us with an ordering <: between the keys of M that reflects their causal
dependency: k′ <: k means that key k′ has key k as causal descendant. Thus,
the effects of a rollback can be characterized as follows. When a rollback takes
place in a configuration M , triggered by an instruction kr : roll k, it suppresses
all threads and processes whose tag is a causal descendant of k, as well as all
connectors k′ ≺ (k1, k2) and memories m = [k1 : τ1 | k2 : τ2; k

′] whose key k′

is a causal descendant of k. When suppressing such a memory m, the rollback
operation may release a thread ki : τi if ki is not a causal descendant of k (at
least one of the threads of m must have k as causal antecedent if k′ has k as
causal antecedent). This is due to the fact that a thread that is not a causal
descendant of k may be involved in a communication (and then captured into
a memory) by a descendant of k. This thread can be seen as a resource that is
taken from the environment through interaction, and it should be restored in
case of rollback. Finally, rolling-back also releases the content μ of the memory
[μ; k] targeted by the roll, reversing the corresponding communication step.

2 Work can be done to store memories in a more efficient way. We will not consider
this issue in the current paper; an approach can be found in [20].

374 I. Lanese et al.

Flexible reversibility in croll-π. In roll-π, a rollback perfectly undoes a computa-
tion originated by a specific message receipt. However, nothing prevents the same
computation from taking place again and again (although not necessarily in the
same context, as independent computations may have proceeded on their own
in parallel). To allow for flexible reversibility, we extend roll-π with a single new
construct, called a message with alternative. In croll-π, a message may now take
the form a〈P 〉÷C, where alternative C may either be a message c〈Q〉÷ 0 with
null alternative or the null process 0. When the message receipt of k : a〈P 〉÷C
is rolled-back, configuration k : C is released instead of the original k : a〈P 〉, as
would be the case in roll-π. (Only the alternative associated to the message in the
memory [μ; k] targeted by the roll is released: other processes may be restored,
but not modified.) For example, if M = (k1 : a〈Q〉÷0) | (k2 : a(X) 'γ X | roll γ)
then we have the following computation, where the communication leading to
the rollback becomes disabled.

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→
k1 : 0 | (k2 : a(X) 'γ X | roll γ)

We will show that croll-π is powerful enough to devise various kinds of alterna-
tives (see Section 4), whose implementation is not possible in roll-π (cf. Theo-
rem 2). Also, thanks to the higher-order aspect of the calculus, the behavior of
roll-π can still be programmed: rigid reversibility can be seen as a particular case
of flexible reversibility. Thus, the introduction of messages with alternative has
limited impact on the definition of the syntax and of the operational semantics,
but it has a strong impact on what can actually be modeled in the calculus and
on its theory.

3 The croll-π Calculus: Syntax and Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually-disjoint sets: the set N of names, the set K of keys, the
set VK of key variables, and the set VP of process variables. N denotes the set
of natural numbers. We let (together with their decorated variants): a, b, c range
over N ; h, k, l range over K; u, v, w range over N ∪K; γ range over VK; X,Y, Z
range over VP . We denote by ũ a finite set u1 . . . un.

Syntax. The syntax of the croll-π calculus is given in Figure 1. Processes, given
by the P,Q productions, are the standard processes of the asynchronous higher-
order π-calculus [25], except for the presence of the roll primitive, the extra
bound tag variable in triggers, and messages with alternative that replace roll-π
messages a〈P 〉. The alternative operator ÷ binds more strongly than any other
operator. Configurations in croll-π are given by the M,N productions. A config-
uration is built up from tagged processes k : P , memories [μ; k], and connectors

Concurrent Flexible Reversibility 375

P,Q ::= 0 | X | νa.P | (P | Q) | a(X) γ P | a〈P 〉÷C | roll k | roll γ

M,N ::= 0 | νu.M | (M | N) | k : P | [μ; k] | k ≺ (k1, k2) C ::= a〈P 〉÷ 0 | 0

μ ::= (k1 : a〈P 〉÷C) | (k2 : a(X) γ Q)

a, b, c ∈ N X, Y, Z ∈ VP γ ∈ VK u, v, w ∈ N ∪K h, k, l ∈ K

Fig. 1. Syntax of croll-π

k ≺ (k1, k2). In a memory [μ; k], we call μ the configuration part of the memory
and k its key. P denotes the set of croll-π processes and C the set of croll-π con-
figurations. We let (together with their decorated variants) P,Q,R range over P
and L,M,N range over C. We call thread a process that is either a message with
alternative a〈P 〉÷C, a trigger a(X)'γP , or a rollback instruction roll k. We let τ
and its decorated variants range over threads. We write

�
i∈I Mi for the parallel

composition of configurations Mi for each i ∈ I (by convention
�

i∈I Mi = 0 if
I = ∅), and we abbreviate a〈0〉 to a.

Free identifiers and free variables. Notions of free identifiers and free variables
in croll-π are standard. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) 'γ P binds the process variable X and the key variable γ with scope P .
We denote by fn(P) and fn(M) the set of free names and keys of process P and
configuration M , respectively. Note in particular that fn(k : P) = {k} ∪ fn(P),
fn(roll k) = {k}. We say that a process P or a configuration M is closed if it
has no free (process or key) variable. We denote by Pcl and Ccl the sets of closed
processes and configurations, respectively. We abbreviate a(X) 'γ P , where X is
not free in P , to a 'γ P ; and a(X) 'γ P , where γ is not free in P , to a(X) ' P .

Remark 1. We have no construct for replicated processes or internal choice in croll-π:

as in the higher-order π-calculus, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Reduction Semantics

The reduction semantics of croll-π is defined via a reduction relation −→, which
is a binary relation over closed configurations (−→ ⊂ Ccl×Ccl), and a structural
congruence relation≡, which is a binary relation over configurations (≡ ⊂ C×C).
We define configuration contexts as “configurations with a hole •”, given by the
grammar: C ::= • | (M | C) | νu.C. General contexts G are just con-
figurations with a hole • in a place where an arbitrary process P can occur.
A congruence on processes or configurations is an equivalence relation R that

376 I. Lanese et al.

(E.ParC) M | N ≡ N | M (E.ParA) M1 | (M2 | M3) ≡ (M1 | M2) | M3

(E.NilM) M | 0 ≡ M (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.M ≡ νv. νu.M (E.NewP) (νu.M) | N ≡ νu. (M | N)

(E.α) M =α N =⇒ M ≡ N (E.TagC) k ≺ (k1, k2) ≡ k ≺ (k2, k1)

(E.TagA) νh. k ≺ (h, k3) | h ≺ (k1, k2) ≡ νh. k ≺ (k1, h) | h ≺ (k2, k3)

Fig. 2. Structural congruence for croll-π

(S.Com)

μ = (k1 : a〈P 〉÷C) | (k2 : a(X) γ Q2)

(k1 : a〈P 〉÷C) | (k2 : a(X) γ Q2) −→ νk. (k : Q2{P,k/X,γ}) | [μ; k]

(S.TagN) k : νa.P −→ νa. k : P

(S.TagP) k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

(S.Roll)

k <: N complete(N | [μ; k] | (kr : roll k)) μ′ = xtr(μ)

N | [μ; k] | (kr : roll k) −→ μ′ | N�k

(S.Ctx)

M −→ N

C[M] −→ C[N]
(S.Eqv)

M ≡ M ′ M ′ −→ N ′ N ′ ≡ N

M −→ N

Fig. 3. Reduction rules for croll-π

is closed for general or configuration contexts: P RQ =⇒ G[P]RG[Q] and
M RN =⇒ C[M]RC[N].

Structural congruence ≡ is defined as the smallest congruence on configura-
tions that satisfies the axioms in Figure 2, where t =α t′ denotes equality of
t and t′ modulo α-conversion. Axioms E.ParC to E.α are standard from the
π-calculus. Axioms E.TagC and E.TagA model commutativity and associativ-
ity of connectors, in order not to have a rigid tree structure. Thanks to axiom
E.NewC, νũ. A stands for νu1 . . . un. A if ũ = u1 . . . un.

Configurations can be written in normal form using structural congruence.

Lemma 1 (Normal form). Given a configuration M , we have:

M ≡ νñ.
�

i

(ki : Pi) |
�

j

[μi; kj] |
�

l

kl ≺ (k′l, k
′′
l)

The reduction relation −→ is defined as the smallest binary relation on closed
configurations satisfying the rules of Figure 3. This extends the näıve semantics of

Concurrent Flexible Reversibility 377

roll-π introduced in [17],3 and outlined here in Section 2, to manage alternatives.
We denote by =⇒ the reflexive and transitive closure of −→.

Reductions are either forward, given by rules S.Com, S.TagN, and S.TagP,
or backward, defined by rule S.Roll. They are closed under configuration con-
texts (rule S.Ctx) and under structural congruence (rule S.Eqv). The rule for
communication S.Com is the standard communication rule of the higher-order
π-calculus with the side effects discussed in Section 2. Rule S.TagN allows re-
strictions in processes to be lifted at the configuration level. Rule S.TagP allows
to split parallel processes. Rule S.Roll enacts rollback, canceling all the effects
of the interaction identified by the unique key k, and releasing the initial con-
figuration that gave rise to the interaction, where the alternative replaces the
original message. This is the only difference between croll-π and roll-π: in the lat-
ter, the memory μ was directly released. However, this small modification yields
significant changes to the expressive power of the calculus, as we will see later.

The rollback impacts only the causal descendants of k, defined as follows.

Definition 1 (Causal dependence). Let M be a configuration and let TM
be the set of keys occurring in M . Causal dependence <:M is the reflexive and
transitive closure of <M , which is defined as the smallest binary relation on TM
satisfying the following clauses:

– k <M k′ if k ≺ (k1, k2) occurs in M with k′ = k1 or k′ = k2;
– k <M k′ if a thread k : P occurs (inside μ) in a memory [μ; k′] of M .

If the configuration M is clear from the context, we write k <: k′ for k <:M k′.
A backward reduction triggered by roll k involves all and only the descendants

of key k. We ensure they are all selected by requiring that the configuration is
complete, and that no other term is selected by requiring k-dependence.

Definition 2 (Complete configuration). A configuration M is complete,
denoted as complete(M), if, for each memory [μ; k] and each connector k′ ≺
(k, k1) or k′ ≺ (k1, k) that occurs in M there exists in M either a connector
k ≺ (h1, h2) or a tagged process k : P (possibly inside a memory).

A configuration M is k-dependent if all its components depend on k.

Definition 3 (k-dependence). Let M be a configuration such that:

M ≡ νũ.
�

i∈I(ki : Pi) |
�

j∈J [μj ; kj] |
�

l∈L kl ≺ (k′l, k
′′
l) with k /∈ ũ.

Configuration M is k-dependent, written k <: M by overloading the notation for
causal dependence among keys, if for every i in I ∪ J ∪ L, we have k <:M ki.

Rollback should release all the resources consumed by the computation to be
rolled-back which were provided by other threads. They are computed as follows.

3 We extend the näıve semantics instead of the high-level or the low-level semantics
(also defined in [17]) for the sake of simplicity. However, reduction semantics corre-
sponding to the high-level and low-level semantics of roll-π can similarly be specified.

378 I. Lanese et al.

Definition 4 (Projection). Let M be a configuration such that:
M ≡ νũ.

�
i∈I(ki : Pi) |

�
j∈J [k

′
j : Rj | k′′j : Tj; kj] |

�
l∈L kl ≺ (k′l, k

′′
l) with

k /∈ ũ. Then:

M	k = νũ.
� �

j′∈J′
k′j′ : Rj′

�
|
� �

j′′∈J′′
k′′j′′ : Tj′′

�

where J ′ = {j ∈ J | k �<: k′j} and J ′′ = {j ∈ J | k �<: k′′j }.

Intuitively, M	k consists of the threads inside memories in M which are not
dependent on k.

Finally, and this is the main novelty of croll-π, function xtr defined below
replaces messages from the memory targeted by the roll by their alternatives.

Definition 5 (Extraction function).

xtr(M | N) = xtr(M) | xtr(N) xtr(k : a〈P 〉÷C) = k : C

xtr(k : a(X) 'γ Q) = k : a(X) 'γ Q

No other case needs to be taken into account as xtr is only called on the contents
of memories.

Remark 3. Not all syntactically licit configurations make sense. In particular, we ex-

pect configurations to respect the causal information required for executing croll-π

programs. We therefore work only with coherent configurations. A configuration is co-

herent if it is obtained by reduction starting from a configuration of the form νk. k : P

where P is closed and contains no roll h primitive (all the roll primitives should be of

the form roll γ).

3.3 Barbed Congruence

We define notions of strong and weak barbed congruence to reason about croll-π
processes and configurations. Name a is observable in configuration M , denoted
as M ↓a, if M ≡ νũ. (k : a〈P 〉÷C) | N , with a �∈ ũ. We write MR↓a, where R is
a binary relation on configurations, if there exists N such that MRN and N ↓a.
The following definitions are classical.

Definition 6 (Barbed congruences for configurations). A relation R ⊆
Ccl×Ccl on closed configurations is a strong (respectively weak) barbed simula-
tion if whenever M RN ,

– M ↓a implies N ↓a (respectively N =⇒↓a);
– M −→M ′ implies N −→ N ′ (respectively N =⇒ N ′) with M ′RN ′.

A relation R ⊆ Ccl × Ccl is a strong (weak) barbed bisimulation if R and R−1

are strong (weak) barbed simulations. We call strong (weak) barbed bisimilarity
and denote by ∼ (≈) the largest strong (weak) barbed bisimulation. The largest
congruence for configuration contexts included in ∼ (≈) is called strong (weak)
barbed congruence, denoted by ∼c (≈c).

Concurrent Flexible Reversibility 379

The notion of strong and weak barbed congruence extends to closed and open
processes, by considering general contexts that form closed configurations.

Definition 7 (Barbed congruences for processes). A relation R ⊆ Pcl ×
Pcl on closed processes is a strong (resp. weak) barbed congruence if whenever
PRQ, for all general contexts G such that G[P] and G[Q] are closed configura-
tions, we have G[P] ∼c G[Q] (resp. G[P] ≈c G[Q]).

Two open processes P and Q are said to be strong (resp. weak) barbed con-
gruent, denoted by P ∼o

c Q (resp. P ≈o
c Q) if for all substitutions σ such that

Pσ and Qσ are closed, we have Pσ ∼c Qσ (resp. Pσ ≈c Qσ).

Working with arbitrary contexts can quickly become unwieldy. We offer the
following Context Lemma to simplify the proofs of congruence.

Theorem 1 (Context lemma). Two processes P and Q are weak barbed con-
gruent, P ≈o

c Q, if and only if for all substitutions σ such that Pσ and Qσ are
closed, all closed configurations M , and all keys k, we have: M | (k : Pσ) ≈M |
(k : Qσ).

The proof of this Context Lemma is much more involved than the corresponding
one in the π-calculus, notably because of the bookkeeping required in dealing
with process and thread tags. It is obtained by composing the lemmas below.

The first lemma shows that the only relevant configuration contexts are par-
allel contexts.

Lemma 2 (Context lemma for closed configurations). For any closed
configurations M,N , M ∼c N if and only if, for all closed configurations L,
M | L ∼ N | L. Likewise, M ≈c N if and only if, for all L, M | L ≈ N | L.

Proof. The left to right implication is immediate, by definition of ∼c. For the
other direction, the proof consists in showing that R = {〈C[M],C[N]〉 | ∀L,M |
L ∼ N | L} is included in ∼. The weak case is identical to the strong one. ��

We can then prove the thesis on closed processes.

Lemma 3 (Context lemma for closed processes). Let P and Q be closed
processes. We have P ≈c Q if and only if, for all closed configuration contexts
C and k �∈ fn(P,Q), we have C[k : P] ≈ C[k : Q].

Proof. The left to right implication is clear. One can prove the right to left direc-
tion by induction on the form of general contexts for processes, using Lemma 4
below for message contexts. ��

Lemma 4 (Factoring). For all closed processes P , all closed configurations M
such that M{P /X} is closed, and all c, t, k0, k

′
0 �∈ fn(M,P), we have

M{P/X} ≈c νc, t, k0, k
′
0.M{c/X} | k0 : t〈YP 〉 | k′0 : YP

where YP = t(Y) ' (c ' P) | t〈Y 〉 | Y .

We then deal with open processes.

380 I. Lanese et al.

Lemma 5 (Context lemma for open processes). Let P and Q be (possibly
open) processes. We have P ≈o

c Q if and only if for all closed configuration
contexts C, all substitutions σ such that Pσ and Qσ are closed, and all k �∈
fn(P,Q), we have C[k : Pσ] ≈ C[k : Qσ].

Proof. For the only if part, one proceeds by induction on the number of bindings
in σ. The case for zero bindings follows from Lemma 3. For the inductive case,
we write P[•] for a process where an occurrence of 0 has been replaced by •, and
we show that contexts of the form P = a〈R〉 | a(X) ' P′[•] where a is fresh and
P = a〈R〉 | a(X)'γ P′[•] where a is fresh and X never occurs in the continuation
actually enforce the desired binding.

For the if part, the proof is by induction on the number of triggers. If the
number of triggers is 0 then the thesis follows from Lemma 3. The inductive
case consists in showing that equivalence under substitutions ensures equivalence
under a trigger context. ��

Proof (of Theorem 1). A direct consequence of Lemma 5 and Lemma 2. ��

4 croll-π Expressiveness

4.1 Alternative Idioms

The message with alternative a〈P 〉 ÷ C triggers alternative C upon rollback.
We choose to restrict C to be either a message with 0 alternative or 0 itself in
order to have a minimal extension of roll-π. However, this simple form of alter-
native is enough to encode far more complex alternative policies and constructs,
as shown below. We define the semantics of the alternative idioms below by
only changing function xtr in Definition 5. We then encode them in croll-π and
prove the encoding correct w.r.t. weak barbed congruence. More precisely, for
every extension below the notion of barbs is unchanged. The notion of barbed
bisimulation thus relates processes with slightly different semantics (only xtr

differs) but sharing the same notion of barbs. Since we consider extensions of
croll-π, in weak barbed congruence we consider just closure under croll-π con-
texts. By showing that the extensions have the same expressive power of croll-π,
we ensure that allowing them in contexts would not change the result. Every
encoding maps unmentioned constructs homomorphically to themselves. After
having defined each alternative idiom, we freely use it as an abbreviation.

Arbitrary alternatives. Messages with arbitrary alternative can be defined by
allowing C to be any process Q. No changes are required to the definition of
function xtr. We can encode arbitrary alternatives as follows, where c is not free
in P,Q.

a〈P 〉÷Q�aa = νc. a〈
P �aa〉 ÷ c〈
Q�aa〉 ÷0 | c(X) ' X

Proposition 1. P ≈c
P �aa for any closed process with arbitrary alternatives.

Concurrent Flexible Reversibility 381

R = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪ Id

R1 = {〈k : a〈P 〉 ÷Q | L , k : (νc. a〈P 〉 ÷ c〈Q〉÷0 | c(X) � X) | L〉}
R2 = {〈k : a〈P 〉 ÷Q | L , νc k1 k2. k ≺ (k1, k2) | k1 : a〈P 〉 ÷ c〈Q〉÷0 | k2 : c(X) � X | L〉}
R3 = {〈νh. [k : a〈P 〉 ÷Q | k′ : a(X) �γ R; h] | L′′ ,

νc k1 k2 h. k ≺ (k1, k2) | [k1 : a〈P 〉 ÷ c〈Q〉÷0 | k′ : a(X) �γ R; h] | k2 : c(X) � X | L′′〉}
R4 = {〈k : Q | L′′′ , νc k1 k2. k ≺ (k1, k2) | k1 : c〈Q〉 ÷0 | k2 : c(X) � X | L′′′〉}
R5 = {〈k : Q | L′′′ , νc k1 k2 h. k ≺ (k1, k2) | [k1 : c〈Q〉 ÷0 | k2 : c(X) � X;h] | h : Q | L′′′〉}

Fig. 4. Bisimulation relation for arbitrary alternatives

Proof. We consider just one instance of arbitrary alternative, the thesis will
follow by transitivity.

Thanks to Lemma 5 and Lemma 2, we only need to prove that for all closed
configurations L and k �∈ fn(P), we have k : a〈P 〉 ÷Q | L ≈ k : (νc. a〈P 〉 ÷
c〈Q〉÷0 | c(X) ' X) | L. We consider the relation R in Figure 4 and prove that
it is a weak barbed bisimulation. In every relation, L is closed and k /∈ fn(P).

In R1, the right configuration can reduce via rule S.TagN followed by S.TagP.
These lead to R2. Performing these reductions is needed to match the barb
and the relevant reductions of the left configuration, thus we consider directly
R2. In R2 the barbs coincide. Rollbacks lead to the identity. The only possible
communication is on a, and requires L ≡ L′ | k′ : a(X)'γR. It leads toR3, where
L′′ = L′ | R{P,h/X,γ}. In R3 the barbs coincide too. All the reductions can be
matched by staying in R3 or going to the identity, but for executing a roll with
key h. This leads to R4, where L

′′′ is closed. From R4 we can always execute the
internal communication at c leading to R5. The thesis follows from the result
below, whose proof requires again to find a suitable bisimulation relation.

Lemma 6. For each configuration M k-dependent and complete such that k′, t,
k1, k2 /∈ fn(M) we have M ≈c νk′ t k1 k2. k ≺ (k1, k2) | [k1 : t〈Q〉 ÷ C | k2 :
t(X) ' R; k′] |M{k′

/k}. ��

Proofs concerning other idioms follow similar lines, and can be found in the
online technical report [16].

A particular case of arbitrary alternative a〈P 〉 ÷Q is when Q is a message
whose alternative is not 0. By applying this pattern recursively we can write
a1〈P1〉 ÷ . . .÷ an〈Pn〉 ÷Q. In particular, by choosing a1 = · · · = an and P1 =
· · · = Pn we can try n times the alternative P before giving up by executing Q.

Endless retry. We can also retry the same alternative infinitely many times, thus
obtaining the behavior of roll-π messages. These messages can be integrated into
croll-π semantics by defining function xtr as the identity on them.

a〈P 〉�er = νt. Y | a〈
P �er〉 ÷ t〈Y 〉 Y = t(Z) ' Z | a〈
P �er〉 ÷ t〈Z〉

382 I. Lanese et al.

Proposition 2. P ≈c
P �er for any closed process with roll-π messages.

As corollary of Proposition 2 we thus have the following.

Corollary 1. croll-π is a conservative extension of roll-π.

Triggers with alternative. Until now we attached alternatives to messages. Sym-
metrically, one may attach alternatives to triggers. Thus, upon rollback, the
message is released and the trigger is replaced by a new process.

The syntax for triggers with alternative is (a(X)'γQ)÷b〈Q′〉÷0. As for mes-
sages, we use a single message as alternative, but one can use general processes
as described earlier. Triggers with alternative are defined by the extract clause
below.

xtr(k : (a(X) 'γ Q)÷ b〈Q′〉÷ 0) = k : b〈Q′〉÷ 0

Interestingly, messages with alternative and triggers with alternative may coex-
ist. The encoding of triggers with alternative is as follows.

(a(X)'γQ)÷b〈Q′〉÷0�at = νc d. c÷d÷0 | (c'γ a(X)'
Q�at) | (d' b〈
Q′�at〉÷0)

Proposition 3. P ≈c
P �at for any closed process with triggers with alterna-
tive.

4.2 Comparing croll-π and roll-π

While Corollary 1 shows that croll-π is at least as expressive as roll-π, a natural
question is whether croll-π is actually strictly more expressive than roll-π or not.
The theorem below gives a positive answer to this question.

Theorem 2. There is no encoding
•� from croll-π to roll-π such that for each
croll-π configuration M :

1. if M has a computation including at least a backward step, then
M� has a
computation including at least a backward step;

2. if M has only finite computations, then
M� has only finite computations.

Proof. Consider configurationM = νk. k : a÷b÷0 | a'γ roll γ. This configuration
has a unique possible computation, composed by one forward step followed by
one backward step. Assume towards a contradiction that an encoding exists and
consider
M�.
M� should have at least a computation including a backward
step. From roll-π loop lemma [17, Theorem 1], if we have a backward step, we
are able to go forward again, and then there is a looping computation. This is
in contrast with the second condition of the encoding. The thesis follows. ��

The main point behind this result is that the Loop Lemma, a cornerstone of
roll-π theory [17] capturing the essence of rigid rollback (and similar results
in [8, 18, 20, 22]), does not hold in croll-π. Naturally, the result above does not
imply that croll-π cannot be encoded in HOπ or in π-calculus. However, these
calculi are too low level for us, as hinted at by the fact that the encoding of
a simple reversible higher order calculus into HOπ is quite complex, as shown
in [18].

Concurrent Flexible Reversibility 383

Qi � (acti(Z) pi〈i, 1〉÷ . . .÷ pi〈i, 8〉÷ fi〈0〉÷ 0 |
(pi(xi) γi !ci〈xi〉÷ 0 | acti+1〈0〉 | fi+1(Y) roll γi |
�i−1

j=1
cj(yj) if err(xi,yj) then roll γi))

err((x1, x2), (y1, y2)) � (x1 = y1 ∨ x2 = y2 ∨ |x1 − y1| = |x2 − y2|)

Fig. 5. The i-th queen

5 Programming in croll-π

A main goal of croll-π is to make reversibility techniques exploitable for appli-
cation development. Even if croll-π is not yet a full-fledged language, we have
developed a proof-of-concept interpreter for it. To the best of our knowledge, this
is the first interpreter for a causal-consistent reversible language. We then put
the interpreter at work on a few simple, yet interesting, programming problems.
We detail below the algorithm we devised to solve the Eight Queens problem [3,
p. 165]. The interpreter and the code for solving the Eight Queens problem
are available at http://proton.inrialpes.fr/~mlienhar/croll-pi/implem,
together with examples of encodings of primitives for error handling, and an
implementation of the car repair scenario of the EU project Sensoria.

The interpreter for croll-π is written in Maude [10], a language based on both
equational and rewriting logic that allows the programmer to define terms and
reduction rules, e.g., to execute reduction semantics of process calculi. Most
of croll-π’s rules are straightforwardly interpreted, with the exception of rule
S.Roll. This rule is quite complex as it involves checks on an unbounded num-
ber of interacting components. Such an issue is already present in roll-π [17],
where it is addressed by providing an easier to implement, yet equivalent, low-
level semantics. This semantics replaces rule S.Roll with a protocol that sends
notifications to all the involved components to roll-back, then waits for them to
do so. Extending the low-level semantics from roll-π to croll-π simply requires
the application of function xtr to the memory targeted by the rollback. We do
not detail the low-level semantics of croll-π here, and refer the reader to [17] for
a detailed description in the setting of roll-π. Our Maude interpreter is based on
this low-level semantics, extended with values (integers and pairs) and with the
if-then-else construct. It is fairly concise (less than 350 lines of code).

The Eight Queens problem is a well-known constraint-programming problem
which can be formulated as follows: how to place 8 queens on an 8×8 chess board
so that no queen can directly capture another? We defined an algorithm in croll-π
where queens are concurrent entities, numbered from 1 to 8, all executing the
code schema shown in Figure 5. We use x to indicate a pair of integer variables
(x1, x2), and replicated messages !ci〈x〉 ÷ 0 to denote the encoding of a parallel
composition of an infinite number of messages ci〈x〉 ÷ 0 (cf. Remark 1).

http://proton.inrialpes.fr/~mlienhar/croll-pi/implem

384 I. Lanese et al.

The queens are activated in numeric order. The i-th queen is activated by a
message on channel acti from its predecessor (a message on act1 is needed to
start the whole computation). When a queen is activated it looks for its position
by trying sequentially all the positions in the i-th row of the chess board. To try
a position, it sends it over channel pi. Then, the position is made available on
channel ci and the next queen is activated. Finally, the position is checked for
compatibility with the positions of previous queens. This is done by computing
(in parallel) err(xj,xi) for each j < i. If a check fails, roll γi rolls-back the
choice of the position of queen i. The alternatives mechanism allows to try the
next position. If no suitable position is available, the choice of position of queen
i − 1 is rolled-back (possibly recursively) by the communication over fi. Note
that a roll-back of queen j makes all queens i with i > j restart, since previously
discarded positions may now be acceptable. This is obtained thanks to activation
messages establishing the needed causal dependencies. When the computation
ends, messages on ci contain positions which are all compatible.

6 Asynchronous Interacting Transactions

This section shows how croll-π can model in a precise way interacting transac-
tions with compensations as formalized in TransCCS [13]. Actually, the natural
croll-π encoding improves on the semantics in [13], since croll-π causality tracking
is more precise than the one in TransCCS, which is based on dynamic embedding
of processes into transactions. Thus croll-π avoids some spurious undo of actions,
as described below. Before entering the details of TransCCS, let us describe the
general idea of transaction encoding.

We consider a very general notion of atomic (but not necessarily isolated)
transaction, i.e., a process that executes completely or not at all. Informally, a
transaction [P,Q]γ with name γ executing process P with compensation Q can
be modeled by a process of the form:

[P,Q]γ = νa c. a÷ c÷ 0 | (a 'γ P) | (c ' Q)

Intuitively, when [P,Q]γ is executed, it first starts process P under the rollback
scope γ. Abortion of the transaction can be triggered in P by executing a roll γ.
Whenever P is rolled-back, the rollback does not restart P (since the message
on a is substituted by the alternative on c), but instead starts the compensation
process Q. In this approach commit is implicit: when there is no reachable roll γ,
the transaction is committed. From the explanation above, it should be clear that
in the execution of [P,Q]γ , either P executes completely, i.e., until it reaches
a commit, or not at all, in the sense that it is perfectly rolled-back. If P is
ever rolled-back, its failed execution can be compensated by that of process Q.
Interestingly, and in contrast with irreversible actions used in [12], our rollback
scopes can be nested without compromising this all-or-nothing semantics.

Let us now consider an asynchronous fragment of TransCCS [13], removing
choice and recursion. Dealing with the whole calculus would not add new diffi-
culties related to rollback, but only related to the encoding of such operators in

Concurrent Flexible Reversibility 385

(R-Comm) a | a.P −→ P
(R-Emb)

k /∈ fn(R)

�P k Q� | R −→ �P | R k Q | R�

(R-Co) �P | co k k Q� −→ P (R-Ab) �P k Q� −→ Q

and is closed under active contexts νa. •, • | Q and �• kQ�, and structural congruence.

Fig. 6. Reduction rules for TransCCS

higher-order π. The syntax of the fragment of TransCCS we consider is:

P ::= 0 | νa. P | (P | Q) | a | a.P | co k | �P 'k Q�
Essentially, it extends CCS with a transactional construct �P 'kQ�, executing a
transaction with body P , name k and compensation Q, and a commit operator
co k.

The rules defining the semantics of TransCCS are given in Figure 6. Structural
congruence contains the usual rules for parallel composition and restriction. Keep
in mind that transaction scope is a binder for its name k, thus k does not occur
outside the transaction, and there is no name capture in rules R-Co and R-Emb.

A croll-π transaction [P,Q]γ as above has explicit abort, specified by roll γ,
where γ is used as the transaction name, and implicit commit. TransCCS takes
different design choices, using non-deterministic abort and programmable com-
mit. Thus we have to instantiate the encoding above.

Definition 8 (TransCCS encoding). Let P be a TransCCS process. Its en-
coding
•�t in croll-π is defined as:

νa. P �t = νa.
P �t
P | Q�t =
P �t |
Q�t
a�t = a

a.P �t = a '
P �t
co l�t = l(X) ' 0
0�t = 0

�P 'l Q��t = [νl.
P �t | l〈roll γ〉 | l(X) ' X,
Q�t]γ
Since in croll-π only configurations can execute, the behavior of P should be
compared with νk. k :
P �t.

In the encoding, abort is always possible since at any time the only occur-
rence of the roll in the transaction can be activated by a communication on l.
On the other hand, executing the encoding of a TransCCS commit disables the
roll related to the transaction. This allows to garbage collect the compensation,
and thus corresponds to an actual commit. Note, however, that in croll-π the
abort operation is not atomic as in TransCCS since the roll related to a trans-
action first has to be enabled through a communication on l, disabling in this
way any possibility to commit, and then it can be executed. Clearly, until the
roll is executed, the body of the transaction can continue its execution. To make
abort atomic one would need the ability to disable an active roll, as could be done

386 I. Lanese et al.

using a (mixed) choice such as (roll k) + (l ' 0). In this setting an output on
l would commit the transaction. Adding choice would not make the reduction
semantics more difficult, but its impact on behavioral equivalence has not been
studied yet.

The relation between the behavior of a TransCCS process P and of its transla-
tion
P �t is not immediate, not only because of the comment above on atomicity,
but also because of the approximate tracking of causality provided by TransCCS.
TransCCS tracks interacting processes using rule (R-Emb): only processes inside
the same transaction may interact, and when a process enters the transaction it
is saved in the compensation, so that it can be restored in case of abort. How-
ever, no check is performed to ensure that the process actually interacts with
the transaction code. For instance, a process a | a.P may enter a transaction
�Q'kR� and then perform the communication at a. Such a communication would
be undone in case of abort. This is a spurious undo, since the communication
at a is not related to the transaction code. Actually, the same communication
could have been performed outside the transaction, and in this case it would not
have been undone.

In croll-π encoding, a process is “inside” the transaction with key k if and only
if its tag is causally dependent on k. Thus a process enters a transaction only by
interacting with a process inside it. For this reason, there is no reduction in croll-π
corresponding to rule (R-Emb), and since no process inside the transaction is
involved in the reduction at a above, the reduction would not be undone in case
of abort, since it actually happens “outside” the transaction. Thus our encoding
avoids spurious undo, and computations in croll-π correspond to computations in
TransCCS with minimal applications of rule (R-Emb). These computations are
however very difficult to characterize because of syntactic constraints. In fact,
for two processes inside two parallel transactions k1 and k2 to interact, either k1
should move inside k2 or vice versa, but in both the cases not only the interacting
processes move, as minimality would require, but also all the other processes
inside the same transactions have to move. Intuitively, TransCCS approximates
the causality relation, which is a dag, using the tree defined by containment.
The spurious reductions undone in TransCCS can always be redone so to reach
a state corresponding to the croll-π one. In this sense croll-π minimizes the set
of interactions undone.

We define a notion of weak barbed bisimilarity t≈cπ relating a TransCCS
process P and a croll-π configuration M . First, we define barbs in TransCCS by
the predicate P ↓a, which is true in the cases below, false otherwise.

a↓a νb. P ↓a if P ↓a ∧ a �= b
P | P ′↓a if P ↓a ∨ P ′↓a �P 'k Q�↓a if P ↓a ∧ a �= k

Here, differently from [13], we observe barbs inside the transaction body, to have
a natural correspondence with croll-π barbs.

Definition 9. A relation R relating TransCCS processes P and croll-π config-
urations M is a weak barbed bisimulation if and only if for each (P,M) ∈ R:

Concurrent Flexible Reversibility 387

1. if P ↓a then M =⇒↓a;
2. if M ↓a then P =⇒↓a;
3. if P −→ P1 is derived using rule (R-Ab) then M =⇒ M ′, P1 =⇒ P2 and

P2RM ′;
4. if P −→ P1 is derived without using rule (R-Ab) then M =⇒ M ′ and

P1RM ′;
5. if M −→ M ′ then either: (i) PRM ′ or (ii) P −→ P1 and P1RM ′ or (iii)

M ′ −→M ′′, P −→ P1 and P1RM ′′.

Weak barbed bisimilarity t≈cπ is the largest weak barbed bisimulation.

The main peculiarities of the definition above are in condition 3, which captures
the need of redoing some reductions that are unduly rolled-back in TransCCS,
and in case (iii) of condition 5, which forces atomic abort.

Theorem 3. For each TransCCS process P , P t≈cπ νk. k :
P �t.
Proof. The proof has to take into account the fact that different croll-π configura-
tions may correspond to the same TransCCS process. In particular, a TransCCS
transaction �P'kQ� is matched in different ways ifQ is the original compensation
or if part of it is the result of an application of rule (R-Emb).

Thus, in the proof, we give a syntactic characterization of the set of croll-π
configurations
P �p matching a TransCCS process P . Then we show that νk. k :

P �t ∈
P �p, and that there is a match between reductions of P and the weak
reductions of each configuration in
P �p. The proof, in the two directions, is by
induction on the rule applied to derive a single step. ��

7 Related Work and Conclusion

We have presented a concurrent process calculus with explicit rollback and min-
imal facilities for alternatives built on a reversible substrate analogous to a Lévy
labeling [4] for concurrent computations. We have shown by way of examples
how to build more complex alternative idioms and how to use rollback and al-
ternatives in conjunction to encode transactional constructs. In particular, we
have developed an analysis of communicating transactions proposed in Tran-
sCCS [13]. We also developed a proof-of-concept interpreter of our language and
used it to give a concurrent solution of the Eight Queens problem.

Undo or rollback capabilities in sequential languages have a long history (see
[19] for an early survey). In a concurrent setting, interest has developed more
recently. Works such as [9] introduce logging and process group primitives as
a basis for defining fault-tolerant abstractions, including transactions. Ziarek et
al. [26] introduce a checkpoint abstraction for concurrent ML programs. Field
et al. [15] extend the actor model with checkpointing constructs. Most of the
approaches relying instead on a fully reversible concurrent language have already
been discussed in the introduction. Here we just recall that models of reversible
computation have also been studied in the context of computational biology,
e.g., [8]. Also, the effect of reversibility on Hennessy-Milner logic has been studied

388 I. Lanese et al.

in [23]. Several recent works have proposed a formal analysis of transactions,
including [13] studied in this paper, as well as several other works such as [21, 5, 7]
(see [1] for numerous references to the line of work concentrating on software
transactional memories). Note that although reversible calculi can be used to
implement transactions, they offer more flexibility. For instance, transactional
events [14] only allow an all-or-nothing execution of transactions. Moreover, no
visible side-effect is allowed during the transaction, as there is no way to specify
how to compensate the side-effects of a failed transaction. A reversible calculus
with alternatives allows the encoding of such compensations.

With the exception of the seminal work by Danos and Krivine [12] on RCCS,
we are not aware of other work exploiting precise causal information as pro-
vided by our reversible machinery to analyze recovery-oriented constructs. Yet
this precision seems important: as we have seen in Section 6, it allows us to
weed out spurious undo of actions that appear in an approach that relies on a
cruder transaction “embedding” mechanism. Although we have not developed a
formal analysis yet, it seems this precision would be equally important, e.g., to
avoid uncontrolled cascading rollbacks (domino effect) in [26] or to ensure that,
in contrast to [15], rollback is always possible in failure-free computations. Al-
though [9] introduces primitives able to track down causality information among
groups of processes, called conclaves, it does not provide automatic support for
undoing the effects of aborted conclaves, while our calculus directly provides a
primitive to undo all the effects of a communication.

While encouraging, our results in Section 6 are only preliminary. Our concur-
rent rollback and minimal facilities for alternatives provide a good basis for un-
derstanding the “all-or-nothing” property of transactions. To this end it would be
interesting to understand whether we are able to support both strong and weak
atomicity of [21]. How to support isolation properties found, e.g., in software trans-
actional memory models, in a way that combines well with these facilities remains
to be seen. Further, we would like to study the exact relationships that exist be-
tween these facilities and the different notions of compensation that have appeared
in formalmodels of computation for service-oriented computing, such as [5, 7]. It is
also interesting to compare with zero-safe Petri nets [6], since tokens in zero places
dynamically define transaction scopes as done by communications in croll-π.

From a practical point of view, we want both to refine the interpreter, and
to test it against a wider range of more complex case studies. Concerning the
interpreter, a main point is to allow for garbage collection of memories which
cannot be restored any more, so to improve space efficiency.

References

[1] Abadi, M., Harris, T.: Perspectives on Transactional Memory. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 1–14. Springer, Hei-
delberg (2009)

[2] Bacci, G., Danos, V., Kammar, O.: On the Statistical Thermodynamics of Re-
versible Communicating Processes. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.)
CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011)

Concurrent Flexible Reversibility 389

[3] Rouse Ball, W.W.: Mathematical Recreations and Essays, 12th edn. Macmillan,
New York (1947)

[4] Berry, G., Lévy, J.-J.: Minimal and optimal computations of recursive programs.
J. ACM 26(1) (1979)

[5] Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compen-
sations in flow composition languages. In: POPL 2005. ACM (2005)

[6] Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual
token approaches. Information and Computation 156(1-2) (2000)

[7] Butler, M., Hoare, T., Ferreira, C.: A Trace Semantics for Long-Running Trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP25. LNCS,
vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

[8] Cardelli, L., Laneve, C.: Reversible structures. In: CMSB 2011. ACM (2011)
[9] Chothia, T., Duggan, D.: Abstractions for fault-tolerant global computing. Theor.

Comput. Sci. 322(3) (2004)
[10] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-

sada, J.F.: Maude: specification and programming in rewriting logic. Theor.
Comp. Sci. 285(2) (2002)

[11] Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

[12] Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

[13] de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583.
Springer, Heidelberg (2010)

[14] Donnelly, K., Fluet, M.: Transactional events. Journal of Functional Programming
18(5-6) (2008)

[15] Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: POPL 2005. ACM
(2005)

[16] Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility (TR) (2012),
http://www.cs.unibo.it/~lanese/publications/

%20fulltext/TR-crollpi.pdf.gz

[17] Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility
in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

[18] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

[19] Leeman, G.B.: A formal approach to undo operations in programming languages.
ACM Trans. Program. Lang. Syst. 8(1) (1986)

[20] Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A Reversible Abstract Ma-
chine and Its Space Overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012)

[21] Moore, K.F., Grossman, D.: High-level small-step operational semantics for trans-
actions. In: POPL 2008. ACM (2008)

http://www.cs.unibo.it/~lanese/publications/%20fulltext/TR-crollpi.pdf.gz
http://www.cs.unibo.it/~lanese/publications/%20fulltext/TR-crollpi.pdf.gz

390 I. Lanese et al.

[22] Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1-2) (2007)

[23] Phillips, I., Ulidowski, I.: A logic with reverse modalities for history-preserving
bisimulations. In: EXPRESS 2011. EPTCS, vol. 64 (2011)

[24] Phillips, I., Ulidowski, I., Yuen, S.: A Reversible Process Calculus and the Mod-
elling of the ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds.) RC
2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

[25] Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

[26] Ziarek, L., Jagannathan, S.: Lightweight checkpointing for concurrent ML. J.
Funct. Program. 20(2) (2010)

Structural Lock Correlation

with Ownership Types

Yi Lu, John Potter, and Jingling Xue

Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales, Sydney, NSW 2052, Australia
{ylu,potter,jingling}@cse.unsw.edu.au

Abstract. Concurrent object-oriented programming languages coordi-
nate conflicting memory accesses through locking, which relies on
programmer discipline and suffers from a lack of modularity and compile-
time support. Programmers typically work with large libraries of code
whose locking behaviours are not formally and precisely specified; thus
understanding and writing concurrent programs is notoriously difficult
and error-prone. This paper proposes structural lock correlation, a new
model for establishing structural connections between locks and the mem-
ory locations they protect, in an ownership-based type and effect system.
Structural lock correlation enables modular specification of locking. It of-
fers a compiler-checkable lock abstraction with an enforceable contract at
interface boundaries, leading to improved safety, understandability and
composability of concurrent program components.

1 Introduction

Despite the progress in modern multicore architectures, it remains a challenge
to develop better programming languages for concurrent programming. This is
especially so for concurrent object oriented programming, where the combina-
tion of shared object memory and the endemic use of object aliasing pose special
challenges. Data races are a common problem, which occur when two concurrent
computations can access the same memory location without synchronisation and
one of those accesses is a write. Races often imply violations of program invari-
ants; achieving race freedom is crucial for the safety of concurrent programs.

Most concurrent object-oriented languages use mutual exclusion locks to syn-
chronise concurrent memory accesses to avoid data races. But programming with
locks is not easy: too little locking may not preserve program safety, while too
much locking compromises concurrency and increases the chances of deadlock.
A fundamental difficulty is that locking is a whole program requirement, which
is hard to localise to a single class or module. All code that accesses shared
memory, regardless of who developed it or where it is deployed, must be coordi-
nated. Unfortunately the programmer typically works with large libraries whose
locking behaviours are not precisely specified and checked. Understanding and
writing properly synchronised code is notoriously difficult and error-prone.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 391–410, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

392 Y. Lu, J. Potter, and J. Xue

Type systems for safe locking [9,10,3,2,8] (sometimes called lock types) have
been used to enforce a fixed locking discipline across all code—all accesses to a
shared object (or its fields) must hold a programmer-specified lock—this “mem-
ory guarded-by lock” relationship is called lock correlation. While quite useful,
fixed lock correlations are often less flexible. For example, in lock type systems,
once lock correlations are specified, those locks must be acquired even in sequen-
tial code where they are clearly unnecessary. This highlights the lack of context
sensitivity in lock types. Moreover, as part of interface specification, locks re-
quired in lock correlations must be published unnecessarily; this tends to break
the abstraction and information hiding principles underlying good software de-
sign, or may inhibit the use of fine-grained locks.

In this paper we present an effect-based approach for modular reasoning
about locking behaviours, by specifying lock correlations as computational ef-
fects, called lock effects, or simply effects. Furthermore, by adopting an effect
system based on ownership types [23,7,5], we are able to exploit the ownership
tree structure to track lock correlations, even when we hide details of the locks
and effects in lock effect abstractions. Memory side-effects are modelled as collec-
tions of subtrees in the object ownership tree. For every computation, we capture
an approximation of the actual memory side-effects together with any locks that
may be held while those effects are occurring. Ownership permits precise local
descriptions of effects, which may depend on localised, private data. We can also
easily abstract the details of effects, by approximating the actual effect using
owners of the objects involved. This allows coarser, but still potentially useful
information about local computations to be exported to a broader setting.

Lock effects help programmers choose locks as needed, depending on context.
But modular specification of lock correlations is not easy: previous approaches
are either not modular or encourage the breakdown of program abstractions.
The problem of how to abstract lock details remains. Our solution is a new
concept, structural lock correlation, where the side-effects are entirely within the
ownership subtree rooted at the lock. In structural lock correlation, the lock owns
the correlated side-effects. The major benefit of this concept is that it allows lock
abstraction that preserves structural lock correlation. To reason about conflicting
effects, the only detail about the lock that needs to be preserved is its ownership
depth, or rank as we call it.

A trivial example illustrates some of these ideas; we also highlight another
benefit of structural lock correlations in checking race freedom for concurrent
computations. For simplicity, we use par as a lexically scoped parallel task con-
struct [12,1] to introduce concurrency, and a sync expression analogous to Java’s
synchronised statements, typical of related work in this area:

par {

sync (l1) { o1.f = ... };

sync (l2) { o2.f = ... };

}

Each of the two tasks synchronises on a lock before updating an object. The
two lock correlations are: <l1::o1> and <l2::o2>. To show that the tasks cannot

Structural Lock Correlation with Ownership Types 393

conflict (race), it is sufficient to know either (i) o1 and o2 must not alias, implying
that they are distinct objects, or (ii) l1 and l2 must alias, implying that the two
object accesses are made mutually exclusive by a common lock.

With ownership there is a third way to show safety of the two tasks. Suppose
we know that l1 owns o1 and l2 owns o2. Then we can conclude that this code
is safe: if l1 and l2 are not aliases, then o1 and o2 are not, because they are in
distinct ownership subtrees. if l1 and l2 are aliases, then two tasks are correctly
synchronised. Essentially this just relies on the ownership structure; we do not
need object encapsulation or reference confinement, often enforced in ownership
type systems. This third way of showing safety is why structural lock correlation
is useful, especially when we combine it with a form of lock abstraction.

Such lock abstraction enables better support for modular specification of lock
correlations, facilitating understanding about locking requirements. Program-
mers, or compilers, can reason about where locking is needed or not. Lock ef-
fects provide an enforceable contract at interface boundaries, contributing to
improved safety and composability for concurrent program components, at least
for those which admit a structural locking policy.

The paper is organised as follows. Section 2 discusses background and in-
formally introduces our model. Section 3 explains the model with examples.
Section 4 formally presents a core language and associated type and effect sys-
tem. Section 5 presents a dynamic semantics and some properties of the type
system. Section 6 discusses related work. Section 7 concludes the paper.

2 A Model of Structural Lock Correlation

We briefly review relevant concepts from ownership types and effects, before we
introduce our model for structural lock correlation.

2.1 Ownership-Based Effects

Ownership types provide static information about object structures. Effect sys-
tems provide various kinds of behavioural abstractions, most commonly dealing
with memory access. Ownership-based effects use ownership trees to specify the
extent of effects. Considerable work has been published on ownership-based ef-
fects with various applications, for example [23,7,5,20,3,6,4,16,15,17,1]. Unlike
early papers on ownership types [23,7,5,20], we do not use ownership to encap-
sulate objects, with owners as access monitors for the objects they own. Rather,
we use ownership here purely to establish structural relationships between ob-
jects; every object has a fixed owner, being another object or world, the top of
the ownership tree. As usual for ownership type systems, object types specify
their ownership context k which may be world, a class owner parameter p or a
final expression including this (later, we provide a detailed syntax in the formal
system of Section 4). Direct ownership is the covering relation for object con-
tainment: we write k1 + k2 to say that k1 is inside k2, so that + is the reflexive,
transitive closure of the (acyclic) ownership relation.

394 Y. Lu, J. Potter, and J. Xue

We adopt simple defaults to reduce annotation requirements. Class definitions
with a single ownership parameter may omit the parameter and use the keyword
owner within the class in its place. In type declarations, omitted owners default
to owner; thus, by default, objects refer to other objects as peers, having the
same owner. So, by default, we attain relatively flat ownership structures, with
explicit use of this as owner to specify containment.

Side-effects ε are similar to those in JOE [6]; they are writes by default, with
reads optional. Side-effects are expressed as regions π which are levelled forests
of ownership trees. Used as a region, the ownership context k denotes the whole
subtree of objects (reflexively) owned by k. Similarly, the region k+n denotes
the levelled forest of all ownership trees at depth n below k, that is, the set of all
objects whose n’th owner is inside k. For convenience, we use the keyword peer
to abbreviate region owner+1, which contains all objects with the same owner
as this. Intuitively, based on the underlying object sets, we have the following
subregion relations: this � peer � owner as illustrated on the left of Fig. 1.

Ownership allows us to summarise effects that occur inside an object using a
single identifier k to denote the whole set of objects which would not otherwise
be statically expressible (conventional region-based effect systems use regions for
the same purpose). When we cannot name an ownership context because it is
out of scope, we do not want to lose any effects specified with it. The role of k+n
is to provide ownership abstraction so that we can lift effect specifications to a
wider scope, basing the specification on a context higher up in the ownership
tree. Regions are just sets of objects, so the notion of subregion follows naturally,
which then leads to a standard notion of side-effect abstraction.

‘peer’

world

owner

‘world+2’

‘this’

this � peer � owner � world this) peer) world+2

Fig. 1. Comparison of ownership effect abstraction and lock abstraction. Nodes are
objects; upward edges link objects to their owners in the ownership tree. On the left,
shaded polygons are side-effect regions named in quotation marks. On the right, shaded
polygons are lock contexts that bound an existentially abstracted lock.

Structural Lock Correlation with Ownership Types 395

2.2 Structural Lock Correlation

Our lock effects L::ε denote lock correlations where the lockset L guards the
side-effect ε. We have two kinds of lock correlations: arbitrary and structural.
Arbitrary lock correlations are conventional, being analogous to lock correlations
used in lock types. They require a fixed, concrete lock or lockset to guard the
effect. They can be abstracted by taking a subset of the lockset and/or an ab-
stracted side-effect. To maintain useful information about the lock guards, we
do not want to remove them from the specification, but that is the only way
locks can be abstracted for arbitrary lock correlations. This is the problem with
the conventional kind of lock correlation: locks cannot (usefully) be abstracted.

In structural lock correlations the lock must own all of the associated side-
effects. A structural lock is bracketed to distinguish it from an arbitrary lock. For
example, the lock effect [ω]::ε indicates that the structural lock ω is held when
side-effect ε occurs, where ω contains ε. Two structural lock correlations with
structural locks at the same rank (depth in the ownership tree) are guaranteed
to be correctly synchronised. Two locks at the same rank in the ownership tree
are either aliased, in which case, mutual exclusion is provided, or not, in which
case, the objects they own cannot be aliased.

It follows that it is safe to abstract structural locks to a superset of locks at
the same level. We overload the k+n syntax to denote a lock context comprising
all locks (objects) whose n’th owner is k. The right-hand part of Fig. 1 illustrates
structural lock abstraction,8, capturing the nesting of lock contexts at the same
rank; it is defined formally in Section 4. Recall that peer abbreviates owner+1.

Structural lock correlations allow knowledge of the fixed correlation between
the lockset and side-effect to be retained when structural locks and side-effects
are abstracted. This allows us to lift lock effects to scopes where we cannot pre-
cisely name the actual locks or side-effects. It is the key to achieving modularity
in our specifications of lock effects.

3 Examples

We illustrate structural lock correlation with a simple bank account with a bal-
ance field and customers with a collection of accounts in Fig. 2 (see also [10,3]).
Customers can deposit given amounts into an account with a given index. We
provide a variety of deposit methods to illustrate varying granularities of lock-
ing: the depositA method provides no synchronisation, depositB synchronises on
this, and depositC synchronises on the account to be modified.

The Customer class has different locking policies for its different methods.
We would like to specify lock effects so that clients will know how to use the
different methods safely. In this paper we focus on lock effects rather than the
underlying concurrency model. In order to demonstrate concurrent executions
in the client code above, we use a simple par construct, which supports fork-join
style parallelism [12,1]. In each of the par blocks above, the two customers, c
and d, attempt to deposit concurrently.

396 Y. Lu, J. Potter, and J. Xue

class Account { int balance = 0; }

class Customer {

private final Account[] accounts;

...

void depositA(int i, int x) {

Account acct = account[i];

acct.balance += x;

}

void depositB(int i, int x) {

Account acct = account[i];

sync (this) acct.balance += x;

}

void depositC(int i, int x) {

final Account acct = account[i];

sync (acct) acct.balance += x;

} }

// CLIENT CODE

Customer c, d; int i, j, x, y;

...

// case SeqA

c.depositA(i, x); d.depositA(j, y);

// case ParA

par { c.depositA(i, x);

d.depositA(j, y); }

// case ParB

par { c.depositB(i, x);

d.depositB(j, y); }

// case ParC

par { c.depositC(i, x);

d.depositC(j, y); }

Fig. 2. A bank accounts example with different granularities of locking

Note that the client code in case ParA is unsafe, because the operation += is
not atomic and there is no synchronisation. If c and d are aliased, referring to
the same customer, and if the account indices i and j are the same, then there
is a possible data race on the account balance. Any attempt to check correct
synchronisation should be able to detect this error.

In lock types, all shared variables must be guarded by a specified lock, which
yields a fixed lock correlation. Case SeqA may be erroneously flagged as an error
even if it is single threaded, because the balance is not guarded. This highlights
the lack of context sensitivity in lock types. Either ParB or ParCmay be accepted
by lock types when a corresponding lock (either the customer or the account) is
specified to guard balance. But the lock correlation specification is fixed, so lock
types cannot accept both ParB and ParC simultaneously. We demonstrate how
lock effects with structural lock correlation can deal with all these cases.

Structural Lock Correlation without Ownership We first illustrate our
lock effects without any real ownership structure, where (by default), all objects
are owned by world. The method effects for the three methods are:

depositA has effect <peer>

depositB has effect <this::peer>

depositC has effect <[peer]::peer>

Note that we do not consider the read effect on field accounts in method effects
because the field is read-only and causes no conflict.

The effect for depositA indicates no lockset. The actual effect of the method
could be expressed more precisely, within the method, as <acct>, but such an
effect is not visible outside the method, as the local variable is out of scope. To
export the effect from the method body, we abstract it to <peer>, since both the
customer and the account objects are owned by the same (default) owner.

Structural Lock Correlation with Ownership Types 397

The effect for depositB indicates we are locking this, and the side-effect is
the same as for depositA. When a client makes a call on a customer’s depositB

method, this is replaced by the actual customer, so the client knows that the call
will acquire a lock on the customer object to guard its effect. This demonstrates
the use of an arbitrary lock; there is no structural correlation, because the effect
on the account is not contained within the lock of the customer.

The effect of depositC demonstrates a structural lock correlation. Inside the
body of depositC, the lock effect is simply <acct::acct>. Because acct is in-
side acct (+ is reflexive), we are permitted to abstract the arbitrary lock acct

to a structural lock [acct]. So, by the same effect abstraction as above, the
method effect becomes <[peer]::peer>. Despite the fact that the lock effects are
no longer precise, the structural lock correlation is preserved. This abstract form
of specification states that a method call will protect any of its effects (which
must be within the peer forest) by acquiring some lock within the band of peers.

For the client, case SeqA is accepted, because the calls are made sequentially.
Case ParA is rejected as it should be, because the side effects of the calls may
conflict. In case ParB, c and d are the actual locks that are acquired. We also see
that the effects of the two calls are the same, so they may conflict. Unfortunately
the customers c and d may be different, this case must be rejected conservatively.

Case ParC is OK, perhaps surprisingly at the first glance. The reason is simple:
we know both calls acquire a lock within the band of peers—the locks may be
the same, or not. But we also know that the effect of each call is contained
within the respective locks (that’s the structural correlation at work). With the
flat ownership of this example, that actually implies that the effect is the same
as the lock (as we saw before we abstracted the method body effect above).
There are two cases. If the locks are the same object, then they prevent the two
calls from running concurrently—so there’s no conflict. On the other hand, if
the locks are not the same, then the effects are not the same—so no conflict.

For simplicity, when the structural lock is the same as the side-effect in a
lock effect, we often omit the side-effect. For example, we write <[peer]> as a
shorthand for <[peer]::peer>.

Structural Lock Correlation with Ownership. Now we can fix case ParB
by using ownership types to establish a structural correlation between a lock
(the customer) and its effects (the customer’s accounts). Within the Customer

class, we declare that all the accounts are owned by this customer:

private final Account<this>[] accounts;

The new method effects for the three methods are:

depositA has effect <this+1>

depositB has effect <[this]::this+1>

depositC has effect <[this+1]>

The effect for depositA indicates the account object is owned by the customer.
For the same reason, the effect for depositB can now be written as a structural

398 Y. Lu, J. Potter, and J. Xue

Programs P ::= C e

Classes C ::= class c〈p〉 [extends t]opt {[final]opt t f ; M}
Types t ::= c〈k〉
Methods M ::= t m(t x) ϕ {e}
Expressions e ::= z | new t | e.f | e.f = e | e.m(e) | sync e e | par e e
Variables z ::= x | this
Effects ϕ ::= ∅ | ε | L::ϕ | ϕ ∪ ϕ
Side-effects ε ::= rd π | π
Regions π ::= k | k+n | e→f
Owner contexts k ::= world | p | e
Locksets L ::= ∅ | e | [ω] | L ∪ L
Lock contexts ω ::= k | k+n
Environments Γ ::= ∅ | Γ, p | Γ, z : t
Identifiers c, p, f,m, x
Ownership depth n ∈ N

k+0 ≡ k ∅::ϕ ≡ ϕ L::∅ ≡ ∅
L::L′::ϕ ≡ (L ∪ L′)::ϕ L::(ϕ ∪ ϕ′) ≡ L::ϕ ∪ L::ϕ′

Fig. 3. Abstract syntax, with syntactic equivalences (≡).

lock correlation <[this]::this+1>. Similarly, the effect of depositC can be written
as <[this+1]::this+1> or the shorthand <[this+1]>.

The same analysis results for SeqA and ParA are obtained as before. However,
both ParB and Par C are now accepted as being correctly synchronised. In ParB,
we know that the calls will acquire c and d as locks; they may or may not be
aliased. If they are aliased, then both calls attempt to acquire the same lock.
Now if they are not aliased, the two calls may run concurrently. The effect of
each call is contained within the associated lock. We know that both customers
are at the same ownership rank, and so, because they are distinct, the structure
of ownership effects ensures that the two effects do not overlap, as required for
safety. ParC can be argued similarly, but now the lock is some account object
inside the customer, its owner. In brief, our motto is: each lock protects its own.

4 The Type System for Structural Lock Correlation

We present a small Java-like language, similar to those used in other ownership
type systems [23,7,6,4,16,15,17], and incorporate lock effects.

The syntax for the core language is given is in Fig. 3. The identifiers name
classes, ownership parameters, fields, methods and formal arguments of methods
respectively. A program is a collection of classes with a main expression. Each
class has a list of ownership parameters, an optional super type, and a list of field
declarations and method definitions. Fields may be optionally declared final, as in
Java. Types are simply classes with actual ownership bindings. Methods declare a
return type and a single argument (for simplicity) and a lock effect corresponding
to the method body. Expressions are straightforward, with reading of variables
and fields, field assignments and method calls. There is no explicit sequential

Structural Lock Correlation with Ownership Types 399

construct (e; e)—assignment and method calls already demonstrate sequential
evaluation of subexpressions. For simplicity, like most formal type and effect
systems, we omit conditionals and loops. The parallel construct is used to present
formal properties about data races in a concurrent setting; formally it is simpler
to illustrate soundness for our techniques using lexically scoped parallelism as
provided by par, but this choice is not fundamental to our approach. A sync e1 e2
expression synchronises on the object referenced by e1 to guard against other
concurrent execution while evaluating e2.

The lock effects ϕ record the correlation L::ε between the possible side-effects
on memory and the set of locks (if any) guarding those memory accesses. The
syntactic equivalences defined in Fig. 3 ensure that lock effects can always be
normalised as a set of L::ε lockset/side-effect correlations. In the lockset syntax
L, e is an arbitrary lock, while [ω] is the existential abstraction of a lock partici-
pating in a structural lock correlation. Side-effects are captured as read or write
effects on a region of memory. A region π is an ownership subtree k, a levelled
forest k+n, or a named object field e→f . Named object fields allow fine-grained
effects to be identified; as a side-effect they represent access to a single named
field. Ownership contexts k have an ownership relation; they are either object-
valued expressions, ownership parameters, or the fixed ownership root world.
Every expression/object/type has an associated owner. The ownership-based re-
gion k denotes the tree of objects owned by the context k, directly or indirectly.
The forest k+n denotes all trees rooted at ownership depth n inside k, which we
can describe in terms of iterated ownership, as {e | owner iΓ (e) = k for i ≥ n}.
The owner of e is formally defined in the next section, and is dependent on the
typing environment Γ for e. We merge cases, by noting that ownership trees k+0
and k are identical regions.

The ownership type system is largely standard, except that we do not enforce
encapsulation[23,7,5,20,3,6]. Alternatively, existential ownership, based on our
earlier scheme [16,15] could provide for more liberal reference to owned objects.
We could also extend our system with constraints for disjointness and rank
equivalence on ownership parameters for extra expressiveness. We omit such
extensions in this paper to focus on the key novelty: structural lock correlation.

Well-formed Program, Class and Method 	 P 	 C Γ 	M
[PROGRAM]

 C
∅ e : t ! ϕ

 C e

[CLASS]

Γ = p, this : c〈p〉 Γ M
Γ t, t owner(c〈p〉) = owner(t)

 class c〈p〉 [extends t]opt {[final]opt t f ; M}
[METHOD]

Γ t, t′ Γ, x : t′ e : t ! ϕ defin(Γ (this), this) = ... [extends t′′]opt
method(m, t′′, this, x) = t0 t′0 ϕ′... t ≤ t0 t′0 ≤ t′ Γ ϕ � ϕ′

Γ t m(t′ x) ϕ {e}

Our type and effects system starts with top-level constructs. The judgements
are given for a fixed program P . By [PROGRAM], a well-formed program has well-
formed classes and a well-typed main expression. In [CLASS], a class checks its
supertype, method definitions and field types in an environment containing the

400 Y. Lu, J. Potter, and J. Xue

class’s ownership parameters and a self-type binding for this. As is standard in
ownership types, the owner of the class is the same as in its supertype; this pre-
vents ownership information from being lost in type subsumption. With a slight
abuse of notation, we omit those parts of the rule’s antecedent that rely on the
optional supertype when it is not present. Rule [METHOD] uses the auxiliary defi-
nitions to look up method definitions with appropriate bindings. The rule checks
that a method body has the declared return type and effect, given the argument
type declarations. A method is covariant in its return type and effect, and con-
travariant in its arguments; this is checked relative to the inherited version of
the method, if any, instantiated with the self-type and method arguments.

[LOOKUP-DEFIN]

L = class c〈p〉 ...
defin(c〈k〉, e) = [k/p, e/this]L

[LOOKUP-FIELDS]

defin(t, e) = ... extends t′ {[final]opt t f ... }
fields(t, e) = [final]opt t f,fields(t

′, e)

[LOOKUP-METHOD]

defin(t, e) = ... t′ m(t′′ x) ϕ {e′′} ...

method(m, t, e, e′) = t′ t′′ [e′/x]ϕ [e′/x]e′′

[LOOKUP-OWNER]

Γ e : t ! ϕ

ownerΓ (e) = owner(t)

[LOOKUP-METHOD-EXT]

defin(t, e) = ... extends t′ { ... ;M} (... m(...) ...) /∈ M

method(m, t, e, e′) = method(m, t′, e, e′)

[LOOKUP-OWNER-TYPE]

owner(c〈k ...〉) = k

The auxiliary lookup functions resolve type instances for fields and methods se-
lected in a target application, by binding this and its type appropriately. The
recursive definition [LOOKUP-FIELDS] unwinds inherited field definitions, terminat-
ing when a top-level class with no supertype is reached. Method lookup is split
into separate recursive and base cases. The first context parameter of a type is
its owner [LOOKUP-OWNER-TYPE]; the owner of an object denoted by an arbitrary
expression is determined from the type of the expression [LOOKUP-OWNER].

Expression Typing Γ 	 e : t ! ϕ
[SELECTION]

Γ e : t ! ϕ
(t′ f) ∈ fields(t, e)

Γ e.f : t′ ! ϕ ∪ rd e→f

[UPDATE]

Γ e : t ! ϕ Γ e′ : t′ ! ϕ′

(t′ f) ∈ fields(t, e) Γ t′

Γ e.f = e′ : t′ ! ϕ ∪ ϕ′ ∪ e→f

[FINAL]

Γ e : t ! ϕ
(final t′ f) ∈ fields(t, e)

Γ e.f : t′ ! ϕ

[CALL]

Γ e : t ! ϕ Γ e′ : t′ ! ϕ′ Γ t′

method(m, t, e, e′) = t′′ t′ ϕ′′ ...
Γ e.m(e′) : t′′ ! ϕ ∪ ϕ′ ∪ ϕ′′

[VARIABLE]

z : t ∈ Γ

Γ z : t ! ∅

[NEW]

Γ t

Γ new t : t ! ∅
[PARALLEL]

Γ e : t ! ϕ Γ e′ : t′ ! ϕ′

Γ ϕ # ϕ′

Γ par e e′ : t′ ! ϕ ∪ ϕ′

[SYNCHRONISATION]

Γ e Γ e′ : t ! ϕ
Γ sync e e′ : t ! e::ϕ

[SUBSUMPTION]

Γ e : t′ ! ϕ′ t′ ≤ t
Γ ϕ′ � ϕ

Γ e : t ! ϕ

The form of judgment for expressions is more or less standard for effect systems,
where each rule checks both the type and the behavioural effect for expressions.
The type judgements are unsurprising. [SYNCHRONISATION] states that the type of
sync e e′ is the same as e′, its guard (lock) expression e must be final thus having

Structural Lock Correlation with Ownership Types 401

no effect itself, and the lock e is correlated with the effect of e′. [SYNCHRONISATION]

is the only rule that affects the lock part of an effect. [PARALLEL] also yields the
type of the second expression, in line with our (arbitrary) choice of the value of
a par pair.

In general, the effect of an expression takes the union of its subexpression
effects, with any additional effect of the particular kind of expression. Only
object field access yields a side-effect: a read effect on the field in [SELECTION]

and a write in [UPDATE]; these are the most specific side-effects, and can be
abstracted via [SUBSUMPTION] which allows a subeffect to be replaced by a super
effect in a judgment, thus losing precision, but possibly extending the visibility
of the effect to a broader scope. In [CALL] the target binding of the method
definition determines the additional lock effect ϕ′′ of the call execution. Finally
[PARALLEL] asserts that a par effect is simply the union of the subeffects of the
parallel subexpressions. However, this judgment is only valid if the two subeffects
do not conflict: ϕ # ϕ′, as discussed in the next section.

Well-formed Types and Subtyping Γ 	 t 	 t ≤ t

[TYPE]

Γ 	 k
Γ 	 c〈k〉

[SUBTYPE-EXT]

defin(c〈k〉,) = . . . extends t

	 c〈k〉 ≤ t

[SUBTYPE-REFL]

	 t ≤ t

[SUBTYPE-TRANS]

	 t ≤ t′′ 	 t′′ ≤ t′

	 t ≤ t′

The rules for well-formed types and subtypes are standard for ownership types.
Types can only be formed from well-formed contexts, and class inheritance
and parameter substitution provides the base for the subtype relation. Well-
formedness of types is checked wherever type declarations are explicit (in [CLASS]

and [METHOD]) and wherever object references are created or bound (in [NEW],
[UPDATE] and [CALL]).

Well-formed Contexts and Final Expressions Γ 	 k Γ 	final e : t

[CONTEXT-FORMAL]

p ∈ Γ

Γ p

[CONTEXT-WORLD]

Γ world

[CONTEXT-FINAL]

Γ final e : t

Γ e

[FINAL-VARIABLE]

z : t ∈ Γ

Γ final z : t

[FINAL-FIELD]

Γ final e : t (final t′ f) ∈ fields(t, e)

Γ final e.f : t′

Only final expressions are allowed as well-formed contexts by [CONTEXT-FINAL].
Variables (read-only method parameters and this) are final, as are final field
expressions, where the target object is accessed via another final expression.

Nonconflict Γ 	 ϕ # ϕ

[NONCONF-SIDEEFF]

Γ ε # ε′

Γ L::ε # L′::ε′

[NONCONF-ARBITRARY]

Γ e

Γ e::ε # e::ε′

[NONCONF-STRUCTURAL]

Γ ω ≈ ω′

Γ [ω]::ε # [ω′]::ε′

[NONCONF-LOCKSET]

Γ L′::ε # ϕ L′ ⊆ L

Γ L::ε # ϕ

[NONCONF-∅]

Γ ∅ # ϕ

[NONCONF-UNION]

Γ ϕ # ϕ′ Γ ϕ # ϕ′′

Γ ϕ # ϕ′ ∪ ϕ′′

[NONCONF-SYM]

Γ ϕ′ # ϕ

Γ ϕ # ϕ′

402 Y. Lu, J. Potter, and J. Xue

Nonconflicting lock effects offer race-free concurrency. We presume that lock
effects have been normalised to a set of lockset/side-effect correlations. The
first three rules handle base cases, dealing with nonconflict between a pair of
correlations, in three distinct ways: (i) by [NONCONF-SIDEEFF], if the side-effects
are nonconflicting; (ii) by [NONCONF-ARBITRARY], if the same arbitrary lock exists
in the lockset; and (iii) by [NONCONF-STRUCTURAL], if there are two structural
locks with the same rank. Case (i) lifts nonconflict for side-effects to nonconflict
for lock effects. Case (ii) is the standard notion that concurrent memory access
must be protected by a common lock. Case (iii) is the key novelty. The structural
lock correlation tells us that both side-effects are each protected by their own lock
at the same ownership rank. There are two possibilities: either both existential
locks are the same, in which case we are back to case (ii), or the two existential
locks are distinct, in which case the corresponding ownership trees do not overlap.
But being structural locks, each tree contains their respective side-effects, and
so we are back to case (i). So there are no conflicts for both possibilities. By
[NONCONF-UNION], all correlation pairs in the cross product of two lock effects
must be nonconflicting in order for the two effects to be nonconflicting.

Subeffecting Γ 	 ϕ � ϕ

[SUBEFF-STRUCTURAL]

Γ ε � e

Γ e::ε � [e]::ε

[SUBEFF-ABSTRACT]

Γ ω) ω′

Γ [ω]::ε � [ω′]::ε

[SUBEFF-LOCKSET]

L′ ⊆ L Γ ε � ε′

Γ L::ε � L′::ε′

[SUBEFF-TRANS]

Γ ϕ � ϕ′′ Γ ϕ′′ � ϕ′

Γ ϕ � ϕ′

[SUBEFF-UNION]

Γ ϕ � ϕ′′ Γ ϕ′ � ϕ′′′

Γ ϕ ∪ ϕ′ � ϕ′′ ∪ ϕ′′′

The rule [SUBEFF-STRUCTURAL] asserts that e is acting as a structural lock in
the lock effect: it owns its correlated effect. Such a lock can be replaced by the
existential form [e]. Of itself, this is of little use, but by [SUBEFF-ABSTRACT] these
structural locks may be abstracted, by moving up the ownership tree (see [RANK-

OWNER] as discussed below), while preserving the rank where the actual lock
exists; again, this abstraction increases the scope where the effects are visible.
These two rules are the only means by which abstract structural correlations are
introduced. Such abstraction preserves lock correlation and rank equivalence of
the locks in a structural lock (see Lemmas 2 and 3 in Section 5). By [SUBEFF-

LOCKSET] we can move to a supereffect by removing parts of the lock (because it is
safe to lose locking information in supereffects), or by abstracting the side-effect.

Lock Abstraction and Rank Equivalence Γ 	 ω 8 ω Γ 	 ω ≈ ω

[LOCK-ABSTRACT]

ownern−m
Γ (k) = k′ m ≤ n

Γ k+m) k′+n

[RANK-OWNER]

∃i · owner i−m
Γ (k) = owner i−n

Γ (k′)
Γ k+m ≈ k′+n

Recall that when k+n is a region π, it denotes the forest of subtrees at ownership
rank n below k. However, when k+n is a lock context ω, it is used to assert that

Structural Lock Correlation with Ownership Types 403

a structural lock exists at a rank n below k. In other words, allowed contexts
for the lock are the roots of the region’s forest. That is, the ω interpretation of
k+n is {e | ownernΓ (e) = k}.

The [RANK-OWNER] rule asserts that two lock contexts are at the same rank, if
they are at the same rank below a common owner. Intuitively, we can abstract a
structural lock to another lock context which contains all of the possible contexts
of the original lock context. This loses precision about the possible values, by
allowing extra contexts. However, in order to be able to reason about nonconflict
of structural locks, we must ensure that all of the contexts are at the same rank.
Hence [LOCK-ABSTRACT] defines Γ 	 k+m 8 k′+n for m ≤ n so that k′ is the
owner of k at the rank that ensures that both lock contexts appear at rank n
below k′. Because k′ owns k, k′+n contains all of k+m, as required.

Structural lock abstraction preserves structural lock correlation, as already
noted. It is worth noting that lock abstraction is only possible for locksets com-
prising a singleton (structural) lock. Any other (arbitrary) locks must be elided
before the abstraction is allowed; if those locks are actually needed to demon-
strate nonconflict for lock effects, then it is pointless to elide them, and hence
pointless to aim for structural lock abstraction. This impacts on the design of
synchronisation policies: to achieve abstraction of the locks, it is necessary, at
least in our model, to focus on the use of ownership for structural locking, and
avoid mixing structural and arbitrary locking.

Side-Effects Disjointness and Subsumption Γ 	 ε � ε Γ 	 ε # ε

[SUB-SIDE-EFF-RD]

Γ π � π′

Γ rd π � rd π′

[SUB-SIDE-EFF-RD-WR]

Γ π � π′

Γ rd π � π′

[SIDE-EFF-RD]

Γ rd π # rd π′

[SIDE-EFF-RD-WR]

Γ π # π′

Γ rd π # π′

Read side-effects may be subsumed by default (write) side-effects. Read side-
effects do not conflict with each other. A read (or write) side-effect will not
conflict with another write side-effect if their corresponding regions are disjoint.

Region Disjointness and Subsumption Γ 	 π � π Γ 	 π # π

[SUBREG-FOREST]

∃ i · i+m ≥ n
owner i

Γ (k) = k′

Γ k+m � k′+n

[SUBREG-FIELD]

Γ e

Γ e→f � e

[SUBREG-WORLD]

Γ π � world

[DISJOINT-FIELD]

f �= f ′

Γ e→f # e′→f ′

[DISJOINT-FIELD-ALIAS]

Γ e⊗ e′

Γ e→f # e′→f ′

[DISJOINT-RANK-EQ]

Γ k ≈ k′ Γ k ⊗ k′

Γ k # k′

[DISJOINT-SUBREGION]

Γ π � π′′ Γ π′ � π′′′

Γ π′′ # π′′′

Γ π # π′

By [SUBREG-FOREST], Γ 	 k+m � k′+n just when k is owned by k′, ensuring
that the k region (subtree) is a subset of the k′ subtree. The rank inequality
ensures that k+m has a deeper ownership rank than k′+n, thus ensuring that
k+m’s region (forest) is a subset of k′+n’s. [LOCK-ABSTRACT] is a special case of

404 Y. Lu, J. Potter, and J. Xue

[SUBREG-FOREST] with i = n−m. [SUBREG-FIELD] deals with a special case where
the named field is subsumed by the target expression/context it belongs to.

Two named fields are disjoint as regions just when they have distinct names,
or they belong to two objects accessed via expressions which must not be aliased.
The rule [DISJOINT-SUBREGION] asserts that subregions are disjoint if correspond-
ing super regions are (that is, disjointness is preserved by forming subregions).
Intuitively this matches the ownership tree model with subregions correspond-
ing to subsetting of subtrees. To show disjointness we can apply this rule to
lift one or both subregions to super regions k and k′ at the same rank. This is
clearly possible for regions of the form k+m and e→f . Then we test for disjoint-
ness by testing for non-aliasing of the two region roots k and k′, according to
[DISJOINT-RANK-EQ].

Nonaliasing Γ 	 k ⊗ k Γ 	 t⊗ t

[NONALIAS-OWNER-LEFT]

ownerΓ (k) = k′

Γ k ⊗ k′

[NONALIAS-OWNER-RIGHT]

ownerΓ (k
′) = k

Γ k ⊗ k′

[NONALIAS-CONTEXT]

∃i ∈ 1..n · Γ ki ⊗ k′
i

Γ c〈k1..n〉 ⊗ c〈k′
1..n〉

[NONALIAS-CLASS]

c �= c′ class c ... [extends c′′〈...〉]opt ...
class c′ ... [extends c′′〈...〉]opt ...

Γ c〈k〉 ⊗ c′〈k′〉

[NONALIAS-TYPE]

Γ e : t ! ε
Γ e′ : t′ ! ε′

Γ t⊗ t′

Γ e⊗ e′

[NONALIAS-SUBTYPE]

 t ≤ t′′ t′ ≤ t′′′

Γ t′′ ⊗ t′′′

Γ t⊗ t′

We provide an ad hoc collection of rules that use a variety of simple techniques
to show that two expressions must not alias the same object context. More ad-
vanced types for reasoning about nonaliasing exist (e.g. linearity or uniqueness),
but we omit them to keep our model simpler for both formalism and program-
mers. An object cannot alias the objects it owns. Types cannot be aliased if any
of their context parameters cannot alias, or if they have distinct class names and
a common superclass, or are both top level classes, so that one cannot be a sub-
type of the other. [NONALIAS-CLASS] should be understood to mean the optional
superclass is the same for both classes (that is, both are present and the same,
or both are absent).

We show how to type check ParB in the bank example with structural lock cor-
relation and ownership in Section 3, where we already know the method depositB

has lock effect <[this]::this+1>. Because c and d are owned by the same (de-
fault) owner, they have the same type Customer<owner>. By [LOOKUP-OWNER],
we have owner(c) = owner(d). Then by [RANK-OWNER], we have c ≈ d. When
depositB is called in ParB, by [LOOKUP-METHOD], the two calls have the lock ef-
fects <[c]::c+1> and <[d]::d+1>. By [NONCONF-STRUCTURAL], we have <[c]::c+1>
<[d]::d+1>. Finally by [PARALLEL], we find par c.depositB() d.depositB() is
well-typed. Note that, our type system allows non-final expressions in types and
effects via substitution (e.g. c and d), but they are only used to look up their
static types at compile time, and do not depend on runtime identities.

Structural Lock Correlation with Ownership Types 405

5 Dynamic Semantics

In this section, we define the dynamic behaviour of our language, and demon-
strate that a well-typed program cannot exhibit data races.

Locations l
Variables z ::= ... | l
Expressions e ::= ... | synced l e

Objects o ::= f �→ l

Heaps H ::= l �→ ot

Fig. 4. Extended syntax for dynamic semantics

The extended syntax which includes features required for the dynamic se-
mantics is defined in Fig. 4. The syntax of variables is extended with runtime
locations l. Since variables may appear in the syntax of expressions, contexts
and environments (which may contain location typing), we do not define addi-
tional typing rules for locations except [NONALIAS-LOCATION]. Synchronised state
synced l e indicates the lock l has been acquired when evaluating e. A heap H
is a mapping from locations to objects with their types; an object o maps its
fields to locations. In order to formalise the key properties of the type system,
we establish a connection between the static and dynamic semantics by includ-
ing ownership in the dynamic semantics (preserved in the types of objects in
the heap). But the ownership information does not affect how expressions are
evaluated so it does not have to be available at runtime.

Additional auxiliary definitions for dynamic semantics and properties are
given below. [STATE] defines the consistency between type environments and
runtime heaps; location typing provided in the type environment must match
locations and their types in the heap which are well-formed by [OBJECT].

[NONALIAS-LOCATION]

l �= l′

Γ l ⊗ l′

[SYNCHRONISED]

Γ e : t ! ϕ

Γ synced l e : t ! l::ϕ

[STATE]

Γ e : t ! ϕ

H = l �→ ot Γ l �→ ot
Γ (H ;L; e) : t ! ϕ

[OBJECT]

Γ l : t ! ∅ Γ t Γ l : t ! ∅ fields(t, l) = ... t f

Γ l �→ (f �→ l)t

We present a small step operational semantics in Fig. 5 where each reduction
step is considered atomic. Evaluation states contain a heap, a lock store and an
expression to be evaluated. The lock store records all locks that are currently
held. Like in the formalism of lock types [9], locks are not reentrant; that is,
an expression cannot reacquire a lock that it already holds. The evaluation of a
program starts in an initial state, ∅; ∅; e, where e is the body of the main method
with empty heap and lock store. Evaluation then takes place according to the
rules which specify the behaviour of the various constructs in the language.

We use the conventional form of evaluation contexts to reduce the number of
evaluation rules:

E ::= [] | E.f | E.f = e | l.f = E | E.m(e)
| l.m(E) | sync E e | par E e | par e E

406 Y. Lu, J. Potter, and J. Xue

which defines the order of evaluation of subexpressions in compound terms, ex-
cept for parallel expressions which evaluate nondeterministically via their choice
of subexpression—this is a standard way to model concurrency [9,8,1].

[EVAL-SELECTION]

H(l) = ot (t′ f) ∈ fields(t, l)

H ;L; l.f
rd l→f−−−−→ H ;L;H(l)(f)

[EVAL-FINAL]

H(l) = ot (final t′ f) ∈ fields(t, l)

H ;L; l.f −−→ H ;L;H(l)(f)

[EVAL-UPDATE]

H ′ = H [l �→ H(l)[f �→ l′]]

H ;L; l.f = l′
l→f−−−→ H ′;L; l′

[EVAL-CALL]

H(l) = ot method(m, t, l, l′) = ... e

H ;L; l.m(l′) −−→ H ;L; e

[EVAL-NEW]

l /∈ dom(H) H1 = H, l �→ ∅t [final]opt t f = fields(t, l)

∀i ∈ 1..|f | · Hi;L; new ti −−→ Hi+1;L; li H ′ = H|f|+1

H ;L; new t −−→ H ′[l �→ (f �→ l)t];L; l

[EVAL-ACQUISITION]

l /∈ L

H ;L; sync l e −−→ H ;L ∪ l; synced l e

[EVAL-SYNCED]

H ;L; e
ϕ−−→ H ;L′; e′

H ;L; synced l e
l::ϕ−−→ H ;L′; synced l e′

[EVAL-RELEASE]

L′ = L \ l
H ;L; synced l l′ −−→ H ;L′; l′

[EVAL-JOIN]

H ;L; par l l′ −−→ H ;L; l′

[EVAL-CONTEXT]

H ;L; e
ϕ−−→ H ′;L′; e′

H ;L;E[e]
ϕ−−→ H ′;L′;E[e′]

Fig. 5. Small step operational semantics: H ;L; e
ϕ−−→ H ;L; e

The label ϕ on the transition is the effect that takes place during the transition
(when ∅, it may be omitted). For simplicity, in [EVAL-NEW], we adopt the object
creation semantics from [4] where all fields are initialised with new objects. This
may not be the case in practice, but it does not affect our results because it
has no side-effect. In [EVAL-ACQUISITION], the premise blocks unless the lock to
be acquired is not held (i.e. not in the lock store); after the lock is acquired
(recorded in synced l) the expression e becomes active and may progress by
[EVAL-SYNCED]. Note [EVAL-SYNCED] yields an effect guarded by the acquired lock
l; this corresponds to [SYNCHRONISATION] in the static semantics. [EVAL-RELEASE]

removes a lock from the held lockset. [EVAL-JOIN] ensures the order of sequential
execution. The reduction rules for other expressions are standard.

Finally, we formalise some of the key properties of the type system and sketch
their proofs. Theorem 1 asserts preservation of types and effects over the reduc-
tion of well-typed expressions.

Theorem 1 (Preservation)

If Γ 	 (H ;L; e) : t ! ϕ and H ;L; e
ϕ′
−−→ H ′;L′; e′, then Γ 	 (H ′;L′; e′) : t ! ϕ and

Γ 	 ϕ′ � ϕ.

Proof. The proof proceeds by structural induction on the derivation of term
evaluation with a set of substitution lemmas, which is largely standard as seen
in [5,6,14].

Structural Lock Correlation with Ownership Types 407

Theorem 2 states that parallel expressions have no conflict effects during their
execution. Since parallel expressions are lexically structured, this theorem applies
to any possible interleaves.

Theorem 2 (Nonconflict)

If Γ 	 (H ;L; par e1 e2) : t ! ϕ, H ;L; e1
ϕ1−−→ H1;L1; e

′
1 and H ;L; e2

ϕ2−−→
H2;L2; e

′
2, then Γ 	 ϕ1 # ϕ2.

Proof. By [STATE], we have Γ 	 par e1 e2 : t ! ϕ. By [PARALLEL], we have
Γ 	 e1 : t1 ! ϕ′1, Γ 	 e2 : t2 ! ϕ′2 and Γ 	 ϕ′1 # ϕ′2. From [STATE], we know
Γ 	 (H ;L; e1) : t1 ! ϕ′1 and Γ 	 (H ;L; e2) : t2 ! ϕ′2. By Theorem 1, we can have
Γ 	 ϕ1 � ϕ′1 and Γ 	 ϕ2 � ϕ′2. Finally, by Lemma 1, we have the result.

Lemma 1 (Subeffects preserve nonconflict)
If Γ 	 ϕ1 � ϕ′1, Γ 	 ϕ2 � ϕ′2 and Γ 	 ϕ′1 # ϕ′2, then Γ 	 ϕ1 # ϕ2.

Proof. By induction on the derivations ofΓ 	 ϕ#ϕ. Case [NONCONF-STRUCTURAL]

uses Lemmas 2 and 3. Other cases are straightforward.

Lemma 2 (Lock abstraction preserves subeffects and rank) If Γ 	 ω 8
ω′, then Γ 	 ω � ω′ and Γ 	 ω ≈ ω′.

Proof. By [LOCK-ABSTRACT],ω=k+m andω′=k′+n hold, where ownern−m
Γ (k)=

k′ and 0 ≤ m ≤ n. Choosing i = n in [RANK-OWNER] shows Γ 	 ω ≈ ω′. Finally,
choosing i = n−m in [SUBREG-FOREST] shows Γ 	 ω � ω′.

Lemma 3 (Lock abstraction preserves structural correlation)
If Γ 	 ω 8 ω′ and Γ 	 ε � ω, then Γ 	 ε � ω′.

Proof. By Lemma 2 and [SUBEFF-TRANS].

Lemma 4 (Sub-side-effects preserve disjointness)
If Γ 	 ε1 � ε′1, Γ 	 ε2 � ε′2 and Γ 	 ε′1 # ε′2, then Γ 	 ε1 # ε2.

Proof. Easy induction on the derivations of Γ 	 ε # ε.
Data race freedom means that parallel expressions cannot cause conflicting

side-effects without synchronisation. We formalise race freedom to show that
arbitrary interleaves of evaluations do not cause conflicting side-effects [8]. To
facilitate the proofs, we introduce a lockset lookup function locks(e) which sim-
ply extracts all the locks currently held by e (i.e. all synced l in e).

Theorem 3 (Race freedom)
Given H ;L; par e1 e2 is reachable from the initial state and Γ 	 (H ;L; par e1 e2) :

t ! ϕ, if H ;L; e1
L1::ε1−−−−→ H1;L1; e

′
1 and H ;L; e2

L2::ε2−−−−→ H2;L2; e
′
2, then Γ 	

ε1 # ε2.

Proof. By Lemma 5, we have locks(e1) ∩ locks(e2) = ∅. By Lemma 6, we have
L1 ⊆ locks(e1) and L2 ⊆ locks(e2). By set disjointness, we have L1 ∩ L2 = ∅.
By Theorem 2, we have Γ 	 L1::ε1 # L2::ε2. By [NONCONF-SIDEEFF], we have the
result.

408 Y. Lu, J. Potter, and J. Xue

Lemma 5 (Mutual exclusion)
If H ;L; par e1 e2 is reachable from the initial state, then locks(e1)∩locks(e2) = ∅.

Proof. Easy induction on the derivation of term evaluation. The only interesting
case is [EVAL-ACQUISITION], which ensures at any time a lock can only be acquired
at most once.

Lemma 6 (Lockset)

If H ;L0; e
L::ε−−−→ H ′;L′0; e

′, then L ⊆ locks(e).

Proof. Let L = l::L′, we need to show (l ∪L′) ⊆ locks(e). We have l ⊆ locks(e)
by [EVAL-SYNCED] and L′ ⊆ locks(e) by induction.

6 Related Work

In earlier type systems for safe locking [9,10], shared fields are guarded by a fixed
lock. This follows the recommended programming practice, where program an-
notations are added to data declarations, to document which locks are intended
to guard which data. Any code accessing a field must hold the specified lock,
regardless of its context. Requiring a fixed lock to protect certain data is in-
flexible as it does not allow clients to devise their own synchronisation policies.
For modularity, lock type systems ask the programmer to annotate a method
declaration with a requires clause to specify the locks that must be held at each
call-site of the method. The specified locks are then used to check to see if the
method body is race-free or not. This requires effects to set up a precondition
for the method, thereby placing a restriction on where this method can be used.
In contrast, lock effects describe the computational behaviour of a method body.

Instead of associating locks with fields, [11] associates locks with hierarchical
regions, protecting state across many objects. A lock object can be the object
itself or one of its final fields; it may also be renamed to hide its representation
from clients. Method effects can be specified as annotations in terms of requires
clauses or side effects. Like lock types, it does not offer lock abstraction and is
not context sensitive in checking unsynchronised access to state.

SafeJava [3,2] relies on the object encapsulation enforced by an owners-as-
dominators type system to provide a clear point for access control for safe lock-
ing. SafeJava is an extension to the lock types model, where the guarded-by
requirement is specified implicitly for every field: the required lock is always the
root of the ownership tree that the field belongs to. Only access to the root
objects’ fields and methods needs to be directly synchronised. Using universes
types, [8] follows a fine-grained ownership-based locking convention, where an
object’s corresponding lock is its direct owner rather than any transitive root
owner. But different levels of object access do not rely on higher-level locks, and
must be separately synchronised. In general, these approaches rely on encapsu-
lation, while our effect-based approach simply describes the effects of code and
places no restriction on references. Our own work in [18] explores how to use

Structural Lock Correlation with Ownership Types 409

ownership types to infer synchronisation requirement for structured parallelism.
It does not consider explicit locks and does not use lock effects.

Locksmith [24] is a static race checker for C programs. It performs a whole-
program analysis, based on an effect system, to accumulate lock correlation
constraints, which are then resolved to ensure that all memory accesses are con-
sistently protected by a common lock. Locksmith’s lock correlations are intended
to be inferred by a static analysis tool—they are not geared towards modular
specification of locking requirements, but rely on a global program analysis.

Chord [22] is a static race checker for Java programs, based on a context-
sensitive may alias analysis. Unlike Locksmith, Chord omits linearity checking,
and unsoundly assumes must-aliasing of locks at the same allocation site in order
to reduce the number of false positives produced. The later work [21] adds a
disjoint reachability analysis to distinguish correlated lock/object pairs allocated
at the same allocation site but in different iterations of a loop. Intuitively, if a lock
reaches (via one or more field dereferences) an object and they were allocated in
the same iteration, then locks allocated in different iterations must reach different
objects at the same allocation site. This introduces a form of conditional must-not
aliasing relation: two objects are not aliased under the assumption that their
respective protecting locks are not aliased. The structural lock correlation we
propose in this paper achieves a form of conditional must-not aliasing relation
by exploiting ownership structure, and establishes such a relation in terms of
modular specifications enabled by ownership-based lock effects.

7 Conclusion

Concurrent programs are difficult to reason about. Usually their behaviours are
only informally and imprecisely specified. Our effect-based model supports mod-
ular checking of lock usage. Programmers must express their high-level design
intentions via effect contracts on methods, thus helping to avoid intention-related
bugs—the most dominant bug category in real-world applications [13]. We rely
on lock correlations where structural locks protect data they own. Structural lock
correlation is preserved through abstraction, as checked by the ownership-based
type and effect system. Our approach is flexible, allowing locking requirements to
be satisfied differently in different contexts. Lock effects also serve as an enforce-
able contact at interface boundaries, contributing to safety and composability of
program components.

This paper does not consider unstructured threads. Our paper [19] explored
reasoning about threads in order to track what side-effects may occur in parallel.
We capture the effects of active threads in a form that mimics the tree structure
of thread creation; it then compares these effects with those of any subsequent
expressions to detect potential interference in a flow-sensitive manner. Such a
technique can be adapted to the ownership-based effects described in this paper
to detect data races between threads, but we leave that for future work.

Acknowledgements. This research is supportedbyAustralianResearchGrants,
DP0987236 and DP130101970.

410 Y. Lu, J. Potter, and J. Xue

References

1. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for
Deterministic Parallel Java. In: OOPSLA (2009)

2. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: OOPSLA (2002)

3. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java programs.
In: OOPSLA (2001)

4. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple Ownership. In:
OOPSLA (2007)

5. Clarke, D.: Object Ownership and Containment. PhD thesis, The University of
New South Wales, Sydney, Australia (2001)

6. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and disjointness of type
and effect. In: OOPSLA (2002)

7. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
OOPSLA (1998)

8. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universe Types for Race Safety.
In: VAMP (2007)

9. Flanagan, C., Abadi, M.: Types for Safe Locking. In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 91–108. Springer, Heidelberg (1999)

10. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: PLDI (2000)
11. Greenhouse, A., Scherlis, W.L.: Assuring and evolving concurrent programs: an-

notations and policy. In: ICSE (2002)
12. Lea, D.: A Java fork/join framework. In: Java Grande (2000)
13. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes - a comprehensive study

on real world concurrency bug characteristics. In: ASPLOS (2008)
14. Lu, Y.: Object Validity, Effects and Accessibility with Ownership. PhD thesis, The

University of New South Wales, Sydney, Australia (2008)
15. Lu, Y., Potter, J.: On Ownership and Accessibility. In: Thomas, D. (ed.) ECOOP

2006. LNCS, vol. 4067, pp. 99–123. Springer, Heidelberg (2006)
16. Lu, Y., Potter, J.: Protecting representation with effect encapsulation. In: POPL

(2006)
17. Lu, Y., Potter, J., Xue, J.: Validity Invariants and Effects. In: Ernst, E. (ed.)

ECOOP 2007. LNCS, vol. 4609, pp. 202–226. Springer, Heidelberg (2007)
18. Lu, Y., Potter, J., Xue, J.: Ownership Types for Object Synchronisation. In: Jhala,

R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 18–33. Springer, Heidel-
berg (2012)

19. Lu, Y., Potter, J., Zhang, C., Xue, J.: A Type and Effect System for Determinism
in Multithreaded Programs. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
518–538. Springer, Heidelberg (2012)

20. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling represen-
tation exposure. In: PLFP (1999)

21. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
POPL (2007)

22. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI
(2006)

23. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

24. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-
ysis for race detection. In: PLDI (2006)

Taming Confusion for Modeling

and Implementing Probabilistic Concurrent
Systems�

Joost-Peter Katoen1,2 and Doron Peled3

1 Software Modeling and Verification Group
RWTH Aachen University
D-52056 Aachen, Germany

2 Formal Methods and Tools Group
University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands
3 Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel

Abstract. In concurrent systems, the choice of executing the next tran-
sition depends both on the timing between the agents that make in-
dependent or collaborative interactions available, and on the conflicts
(nondeterministic choices) with other transitions. This creates a chal-
lenging modeling and implementation problem. When the system needs
to make also probabilistic choices, the situation becomes even more com-
plicated. We use the model of Petri nets to demonstrate the modeling
and implementation problem. The proposed solution involves adding se-
quential observers called agents to the Petri net structure. Distributed
probabilistic choices are facilitated in the presence of concurrency and
nondeterminism, by selecting agents that make the choices, while guar-
anteeing that their view is temporarily stable. We provide a distributed
scheduling algorithm for implementing a system that allows distributed
probabilistic choice.

1 Introduction

Adding probabilities in the presence of concurrency and nondeterminism is chal-
lenging. Autonomous models in which branching probabilities and nondeter-
minism coexist are well understood. A prominent example is Markov decision
processes (MDPs) [21]. Probabilistic automata (PAs) [23], a slight generalization
of MDPs, have been equipped with parallel composition in a CSP-like fashion.
They constitute a framework for concurrent systems that exhibit both nondeter-
ministic and probabilistic behavior. Examples of such systems are randomized

� The first author is supported by the FP7 MEALS and SENSATION projects. The
second author is supported by ISF grant 126/12 “Efficient Synthesis of Control for
Concurrent Systems”.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 411–430, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

412 J.-P. Katoen and D. Peled

ba

p1

p3

c

p5p4

p2

ba

p1

p3
p4 p5

c

p2π1 π2

Fig. 1. A Petri net (left) covered by agents (right)

distributed algorithms and network security protocols. There is however a serious
anomaly [17]: for concurrent PAs, a global scheduler may establish strong corre-
lations between the behavior of system components and, e.g., resolve choices in
one PA based on the outcome of a coin flip in the other.

An example illustrates the issue. Assume two scientists want to write a paper
for a forthcoming important conference. Given the deadline, each can be involved
in only one paper. Each scientist has his own idea that can be materialized into a
single-authored paper a or c. They also have a joint idea for a paper b. The Petri
net in Figure 1(left) depicts this situation. As they face a tough choice, they
want to use some probabilistic measures to make the decision, e.g., a fair coin.
The difficulty in modeling is that the available choices for such a decision may
differ depending on the concurrent scheduling. If, say, the outcome of the flipped
coin by the first author yields paper a, the selection of the other author is no
more probabilistic; he has no choice but to write his own paper c. While writing
two independent papers is concurrent, the selection by one author affects (e.g.,
removes) the alternative(s) for the other; this phenomenon is called confusion in
Petri nets.

Such a subtle interplay between concurrency and probabilistic choices has
recently led to various proposals to remedy or control this phenomenon, e.g.,
token-based schemes [7] and distributed schedulers [11], with impacts in the
context of quantitative security [3] and testing theory [10]. In this paper, we
start from an expressive concurrency model—Petri nets—and equip them with
branching probabilities. An important advantage of Petri nets is that the arti-
facts that affect the aforementioned problem such as independence, conflict (or
confusion), and concurrency are well studied. (Our concepts can be however also
demonstrated similarly with other models.) The challenge with Petri nets is to
deal with confusion. Indeed, various earlier proposals for probabilistic Petri nets
restrict the semantics and/or their analysis to confusion-free nets [2,18,25]. Con-
fusion describes a situation where a nondeterministic choice between transitions
is affected (i.e., possibilities are added or removed) by firing an independent
transition. This situation is problematic as, e.g., a probabilistic decision can be
altered potentially without being observed.

Our proposal is to add information about the structure of a net, by defining
what we call agents. The transitions of a net are covered by a set of (possi-
bly intersecting) agents. Agents represent processes, observers, or component

Taming Confusion in Probabilistic Concurrent Systems 413

automata, which can make both nondeterministic and probabilistic decisions
based on their “local” information. The selection of the next agent that can
resolve a choice is done nondeterministically, and is supposed to be done by a
scheduler. Adding agents to Petri nets yields, what we refer to as, covered nets.
In Figure 1(right), the two agents π1 and π2, indicated by contours that encapsu-
late their transitions and places, model the two scientists. The selection between
which scientist may decide first, say π1, is done globally and nondeterministi-
cally. Agent π1 can control transitions a and b and observe all places except p5,
i.e., all the input and output places related to its transitions.

Contributions of this paper. The technical contributions of this paper are:

– An extension of Petri nets with agents. Agents resolve choices based on a
local state of the net, as opposed to resolving choices based on global state
information (as is usual in net theory).

– A semantics for these nets with a two-level control mechanism: a (global)
selection of an agent followed by a (local) choice by this agent. Under this
semantics, concurrency occurs when an agent’s transition does not affect the
choices available to another agent. In contrast with standard net semantics,
it identifies confusion as an additional source of dependency.

– The applicability of this framework to a novel notion of probabilistic Petri
nets where agents are responsible to resolve probabilistic choices locally.
This provides a novel and clean treatment of concurrency in the presence of
branching probabilities, and naturally yields an MDP.

– A distributed algorithm for selecting a set of agents that can resolve their
choices in an independent, concurrent fashion. The algorithm is based on a
structural analysis of the net (thus is efficient), is deadlock free, and relies on
low-level atomicity assumptions. To the best of our knowledge, this is the first
algorithm that implements distributed scheduling of concurrent probabilistic
systems.

2 Preliminaries

Petri nets. We start by introducing some basic concepts and notations of Petri
nets; for more details, see e.g., [22].

Definition 1 (Syntax). A 1-safe Petri net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The states of N are defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P ×T)∪ (T ×P) is a bipartite relation between places and transitions.
– s0 ∈ S (i.e., s0 ⊆ P) is the initial state.

For a transition t ∈ T , let the set •t of input places be {p ∈ P | (p, t) ∈ E}, and
the set t• of output places be {p ∈ P | (t, p) ∈ E}. Similarly, for a place p ∈ P ,
we denote by p• the transitions {t ∈ T | (p, t) ∈ E}, and by •p the transitions
{t ∈ T | (t, p) ∈ E}.

414 J.-P. Katoen and D. Peled

Definition 2 (Enabled Transition). A transition t ∈ T is enabled in a state
s, denoted s[t〉, if •t ⊆ s and t• ∩ s ⊆ •t. The set of enabled transitions in a
state s is denoted en(s). A state s is in deadlock if en(s) = ∅.

Definition 3 (Fired Transition). A transition t ∈ en(s), i.e., s[t〉, can fire
(or execute) from state s to state s′, denoted by s[t〉s′, if s′ = (s \• t) ∪ t•.

Transitions are visualized as lines, places as circles, and the relation E is repre-
sented using arrows. The net in Figure 3 has places p1, p2, . . . , p9 and transitions
a, b, c, d, e, and f . We depict a state by putting a full circle, called a token, in-
side each place of that state, leaving the other places empty. The net in Figure 3
has the initial state s0 = {p1, p2, p9}. The transitions that are enabled in s0 are
a and b. If we fire transition a from that state, the token from place p1 will be
removed, and a token will be placed in p3. All other tokens reside in their places.

Definition 4 (Execution). An execution of a Petri net N is a maximal (i.e., it
cannot be extended) alternating sequence of states and transitions s0t1s1t2s2 . . .,
where s0 is the initial state of N and for all i ≥ 0, si[ti+1〉si+1 holds.

If it is clear from the context, we sometimes use just the sequence of states as
executions. A state is reachable in a Petri net N if it occurs in at least one
of its executions. The state graph of N is a digraph where the nodes represent
reachable states of N and the edges represent the firing relation. Figure 4 depicts
the state graph for the Petri net in Figure 3.

Decomposition into disjoint places. A composition of Petri nets, see Fig-
ure 2 (which can also be seen as a decomposition), was given, e.g., by
Mazurkiewicz [19]. It combines different Petri nets by unifying their compo-
nents. This can be seen as synchronizing the executions of transitions of the
components that have the same name. The places of the components are dis-
joint, but this condition can be relaxed (e.g., when modeling systems with shared
variables).

Definition 5 (Composition). Let N1, N2, . . . , Nn be Petri nets, where N i =
(P i, T i, Ei, si0). Then the Mazurkiewicz composition of these nets is the net

N = (
⋃

1≤i≤n

P i,
⋃

1≤i≤n

T i,
⋃

1≤i≤n

Ei,
⋃

1≤i≤n

si0)

This kind of decomposition is also present in the component-based platform BIP
(Behavior, Interaction, Priority) [6]. There, the finite state components may be
engaged in internal or collaborative transitions. For a distributed implementa-
tion, a synchronization algorithm is required for selecting an interaction among
several choices, dealing with the complication of guaranteeing a consistent inter-
action in the presence of different choices by the different participants. Specif-
ically, it is essential to prevent the situation where a component is committed
to an interaction, while another participant has meanwhile selected a conflicting
interaction. A scheduler such as α-core [20] (that algorithm contains a small

Taming Confusion in Probabilistic Concurrent Systems 415

a

p3

p1

b c

p4

p2

b cba

p3 p4

p1 p2

N2N1

Fig. 2. Petri net composition/decomposition

error, which is corrected in [13]) provides such a guarantee by performing a
two-phase exchange of messages for requesting an interaction and committing
to it by all participants. In the next section, we propose another perspective on
decomposing nets. The key to this decomposition is the concept of an agent.

3 Covering Petri Nets by Agents

This section introduces covered Petri nets, i.e., nets whose transitions are com-
pletely covered by agents. Agents act as entities that resolve nondeterministic
(and later in Section 4, probabilistic) choices in a net. They do so on the basis of
their local view of the state of the net. Executions of covered nets include in each
step an agent that selects one of its enabled transition. It is nondeterministically
determined when an agent (which has an enabled transition) gets its turn.

Covered Petri Nets. We first recapitulate some standard notions on transitions.

Definition 6 (Dependent, Conflicting Transition). Transitions t1, t2 ∈ T
are dependent (see [19]) if (•t1 ∪ t1

•) ∩ (•t2 ∪ t2
•) �= ∅. Let D ⊆ T × T be the

dependence relation. Transitions t1, t2 ∈ T are independent if (t1, t2) �∈ D. Let
I = (T × T) \D.

Dependent transitions t1 and t2 are conflicting if (•t1 ∩ •t2) ∪ (t1
•∩ t2•) �= ∅.

(We often call the transitions that are dependent but not conflicting sequential.)

Dependent transitions have some common place. They are conflicting if they
share some input or some output place. For example, the transitions a and b in
Figure 1(left) are dependent (and conflicting), and so are transitions b and c.
The transitions a and c are independent.

In order to facilitate probabilistic choices in Petri nets (see Section 4), we
extend nets with agents that make decisions based on a partial view of the state
of the net. This yields covered Petri nets.

Definition 7 (Covered Petri Net). A covered Petri net (in short CPN)
C = (N,Π) is a net N = (P, T,E, s0) and a set Π ⊂ 2T of nonempty sets
of transitions with T =

⋃
π∈Π π satisfying:

1. If t, t′ ∈ π and (t, t′) ∈ I, then for no reachable state s of N , t, t′ ∈ en(s).

416 J.-P. Katoen and D. Peled

b

d

f

a

c

e

p3

p5
p9

p2p1

p4

π1
π2

π3

p7

p6

p8

Fig. 3. A Petri net for mutual exclusion

2. For each p ∈ P , there is a π ∈ Π such that •p ⊆ π, and for any other
π′ ∈ Π, |•p ∩ π′| ≤ 1. The same holds when replacing •p by p•.

The sets of transitions in Π satisfying the above constraints are called agents.

Covering of Petri nets appears in [14]. Agents are nonempty and together cover
all transitions of the net. A transition can belong to several agents, e.g., when it
models a synchronization between agents. For instance, in Figure 1, transition
b belongs to both agents π1 and π2. Let us explain the above definition in some
more detail. The first constraint asserts that no two independent transitions in
agent π can ever be executed from the same state1. Stated differently, transi-
tions of an agent that can be simultaneously enabled are dependent. The second
constraint requires that all input transitions of a place are captured by an agent;
the same holds for all its output transitions. In addition, any other agent in Π
contains at most one input transition (and similarly, for output transitions).

Example 1. The net in Figure 3 is covered byΠ = {π1, π2, π3} with the left agent
π1 = {a, c, e}, the right agent π2 = {b, d, f}, and the third agent π3 = {c, d, e, f}.
Remark that all transitions of agent π3 are shared with some other agent. The
set of agents Π ′ = {π1, π2} does not cover the net as •p9 = {e, f} is not captured
by a single agent, i.e., there is no single agent π with •p9 ⊆ π.

The constraint on the places of the CPN reflects the goal of agents to resolve
a choice. Only if p• ⊆ π (•p ⊆ π, respectively), agent π can resolve the choice
between transitions that require p to have (not have, respectively) a token. This

1 This restriction, which we find natural, can be alleviated, but this requires a change
in the algorithm presented in Section 5.

Taming Confusion in Probabilistic Concurrent Systems 417

explains the choice of agents in Figure 1: π1 = p1
• = {a, b}, and π2 = p2

• =
{b, c}. In Figure 5, π1 = {b, c} can execute c, while π2 = p1

•= {a, b} makes the
choice between a and b.

Definition 8 (Neighborhood). The neighborhood ngb(T ′) of a set T ′ ⊆ T of
transitions is the set of places

⋃
t∈T ′(•t ∪ t•).

We will visually represent the separation of transitions of a Petri net into agents
using a contour line that encapsulates the neighborhood of its agents. The
neighborhood of agent π1 in Figure 3 is {p1, p3, p5, p7, p9}. Place p9 belongs
to the neighborhood of all indicated agents (i.e., π1, π2 and π3), and acts as a
semaphore.

Definition 9 (Local Information). The local information of agent π ∈ Π of
a CPN C = (N,Π) in state s of N , denoted s)π, is defined by s)π= s ∩ ngb(π).

In the net in Figure 3, the local information of π1 in any state s equals
s ∩ {p1, p3, p5, p7, p9}. In the initial state s0, s0)π1 equals {p1, p9}. After exe-
cuting transition b, the local information of π1 does not change. The subsequent
execution of transition d removes p9 from the local information of π1. The local
information of an agent represents the limited view it has regarding the state of
the system. This is formalized in the following lemma:

Lemma 1. Let CPN C = (N,Π). For states s and s′ of N , and π ∈ Π we have:

1. If s)π= s′)π, then en(s) = en(s′).

2. If s[t〉s′ for transition t ∈ π, then s \ ngb(π) = s′ \ ngb(π).

CPN Executions. We now define the concept of executions for CPNs. A CPN
execution involves not only the states and the enabled transitions fired from
them (as for an execution of a Petri net, cf. Definition 4), but also the agents
that are selected to decide which of their enabled transition will be fired. We
call such a scheduling agent centric and in Section 5 provide an algorithm for
implementing such scheduling. The basic principle of selecting agents is to give
priority to agents that have a more complete view of a nondeterministic choice in
the net. This is formalized by the notion of subsumption. Let CPN C = (N,Π)
with π, π′ ∈ Π .

Definition 10 (Subsumption). An agent π subsumes an agent π′ over tran-
sition t ∈ π ∩ π′, denoted π 9t π

′, if the following conditions hold:

1. For each state s such that t ∈ en(s), |en(s) ∩ π′| = 1, i.e., there is no
alternative choice for π′ in s besides t, and

2. There is at least one state s such that t ∈ en(s) and |en(s) ∩ π| > 1, i.e., π
has a nondeterministic choice in s that includes t.

418 J.-P. Katoen and D. Peled

b

db

d

a

p3, p2, p9

p5, p2 p1, p6

p3, p6p5, p4

π3π1

π2

π2

π2π3

π3

π1

π1

π3

π3 π3

π3

π3

p1, p2, p9

p1, p4, p9

p3, p4, p9

p3, p8, p9p7, p4, p9

p5, p8

p7, p8, p9

ef

p7, p6

π3

a

c

b ac

e

d

f

c

Fig. 4. State graph for the net (mutual exclusion) in Figure 3

In the following definition, an execution of a CPN only allows a transition t to
be fired by an agent π′ if there is no other agent π that subsumes π′ over t. That
is to say, if π 9t π

′, agent π′ will never be selected to make a decision to fire
transition t. The justification for this notion is that its view is more restricted
than that of agent π, which observes more alternatives to t.

In Figure 3, we have that π3 9c π1 and (by symmetry) π3 9d π2. In the
notion of CPN execution defined below, agent π3 resolves the nondeterministic
choice between c and d, rather than agents π1 or π2. In a sense, we can remove
the transitions c and d from the scope of agent π1 and π2, respectively. However,
this will create a hole in the structure of the agent π1 and π2. (The same applies
to the choice between the transitions e and f , although in this case the choice is
somewhat fake as it is clear from the structure of the net that only one of these
transitions can be enabled in all states.)

Definition 11 (CPN Execution). An execution of a CPN C = (N,Π) is a
maximal sequence s0[π1|t1〉s1[π2|t2〉s2 . . . where s0 is the initial state of N , for
all i ≥ 0, si[ti+1〉si+1, πi ∈ Π, ti ∈ πi and there is no π ∈ Π such that π 9ti πi.

Taming Confusion in Probabilistic Concurrent Systems 419

The choice between admissible agents (agents that currently have an enabled
transition t and that are not subsumed by another one over t) is performed in a
nondeterministic way.

The subsumption relation π 9t π
′ is static: it does not depend on the current

state. For simplicity of the presentation, we will remove henceforth from the
description of an agent the transitions that it cannot execute due to subsumption.
Thus, this leaves, for the CPN in Figure 3, π1 = {a} and π2 = {b}.

Confusion and Weak Places. In the sequel of this section, we recall some stan-
dard notions from Petri net theory (such as confusion and concurrency), and
introduce some new notions that become relevant for the scheduling algorithm
in Section 5.

Definition 12 (Confusion). The quadruple (t1, t2, t3, s) is a confusion occur-
rence in state s if transitions t1 and t2 are conflicting, (t1, t3) ∈ I, t1, t3 ∈ en(s),
and the execution of t3 (from s) changes the enabledness of t2.

2 The pair
(t, t′) ∈ T × T is a confusion if there exists some transition t′′ ∈ T and a
state s where (t, t′′, t′, s) is a confusion occurrence.

Confusion appears in the nets in Figures 1 and 5. These are two classical ex-
amples of confusion, where the first one is symmetric and the second one is
asymmetric. In Figure 1, (a, b, c, s0) and (c, b, a, s0) are confusion occurrences
for the initial state s0 = {p1, p2}. The former is due to the fact that a and b
are conflicting and the firing of c disables b; the second is due to the conflict be-
tween c and b and firing a disables b. This gives (a, c) and (c, a) as (symmetric)
confusions, respectively. In Figure 5, (a, b, c, s0) is a confusion occurrence for the
initial state s0 = {p1, p2} as firing c enables b. Thus, (a, c) is a confusion. Since
(c, a) is not a confusion, this confusion is asymmetric. A confusion occurrence
may not be detectable by considering the local information of an agent; e.g., in
the net of Figure 5, neither agent π1 nor agent π2 can locally detect that the
current (initial) state is a confusion occurrence.

Definition 13 (Confusion Pivot). A place p ∈ P is pivotal for a confusion
(t, t′), if there is a confusion occurrence (t, t̂, t′, s) such that firing t′ from s
changes the value of a place p ∈ •t̂ ∪ t̂•. We denote the pivotal places for a con-
fusion (t, t′) by pivotal(t, t′). For T ′ ⊆ T , let pivot(T ′) =

⋃
t′∈T ′,t∈T pivotal(t′, t).

Intuitively, the pivot places are the places that are changing during the occur-
rence of the confusion, to create or to eliminate some choice, by the firing of an
independent transition. In Figure 1, pivot(π1) = {p2} and pivot(π2) = {p1}. In
Figure 5, p5 is pivotal for the confusion (a, c), resulting in pivot(π2) = {p5}.

Definition 14 (Concurrent Transitions). Independent transitions t and t′

are concurrent if neither (t, t′) nor (t′, t) is a confusion. Let C ⊆ T × T be the
symmetric and irreflexive concurrency relation.

2 That is, t2 ∈ en(s) and t2 �∈ en(s′), or t2 �∈ en(s) and t2 ∈ en(s′), where s[t3〉s′.

420 J.-P. Katoen and D. Peled

The notion of concurrent transitions is pessimistic: two transitions t and t′ may
be in confusion, yet t′ can execute independently of t without affecting its con-
flicts.

Definition 15 (Weak Places). For CPN C = (N,Π) and π ∈ Π, let
weak(π) = ngb(π) ∩

⋃
π′∈Π\{π} ngb(π

′).

Thus, the places in weak(π) are in the part of the neighborhood of an agent π
that can be changed by transitions fired by agents other than π. For example,
in Figure 1, weak(π1) = {p1, p2, p4}, and in Figure 5, weak(π1) = {p5}.

b

c

a

π2

p1

p3
p4

p5

p2

π1

p3, p2 p1, p4

p3, p4 p5

p1, p2

π2

π1π2

π1 b
ac

ca

Fig. 5. A Petri net with confusion and its state graph

4 Probabilistic Covered Petri Nets

In this section, we extend the notion of covered Petri nets with branching proba-
bilities. This naturally gives rise to a Petri net model that can be used to describe
Markov decision processes [21] at a high level of abstraction. The nondeterminis-
tic choices in the MDPs correspond to the selection of (enabled) agents whereas
the agents are responsible for resolving the probabilistic choices (based on their
local view).

Probabilistic CPNs. In the sequel, for countable set T , let Dist(T) be the set of
probability distributions over T , and Dist⊥(T) be the set of distribution functions
that for some elements in T may be undefined, i.e., yield the value ⊥. Functions
μ ∈ Dist⊥(T) thus are of type T �→ [0, 1]∪{⊥} and satisfy

∑
t∈T,μ(t) �=⊥ μ(t) = 1.

Definition 16 (Probabilistic CPN). A probabilistic CPN D = (N,Π, f) is
a CPN (N,Π) equipped with a function f : Π × S → Dist⊥(T) satisfying for all
π ∈ Π and s ∈ S:

1. f(π, s)(t) = ⊥ iff t �∈ en(s) ∩ π.
2. For each s′ ∈ S, f(π, s) = f(π, s′) whenever s)π= s′)π.

Taming Confusion in Probabilistic Concurrent Systems 421

Intuitively speaking, the function f assigns to a pair (π, s) a probability distri-
bution over the enabled transitions in state s (of N) that are “visible” by the
agent π. The first clause asserts that f is undefined only for transitions that are
disabled for agent π. The second clause requires that an agent π, whose local
views in states s and s′ coincide, chooses a given transition in these states with
equal probability. That is to say, the probability distribution over the enabled
transitions only depends on the local information of the agent.

Example 2. Consider the CPN in Figure 1(right) and agent π1 with ngb(π1) =
P \ {p5} and let state s = {p1, p2}. Assume π1 has a fair coin, yielding
f(π1, s)(a) = f(π1, s)(b) =

1
2 . The same distribution for π1 applies to the state

s′ = {p1, p2, p5}, since s)π1= s′)π1 . Now, consider agent π2 with ngb(π2) =
P \ {p3}. Agent π2 may select an enabled transition in s by flipping a biased
coin, say, f(π2, s)(b) = 1

3 and f(π2, s)(c) = 2
3 . Note that the transition b is

common to the two agents, but its firing probabilities may differ, depending on
which agent selects b. If π1 is selected first to resolve the choice between a and
b, and it selects to fire a, subsequently, we obtain the state s′′ = {p2, p3} and
π2 has a new local information view, namely {p2}. Thus, it now only has the
possibility to choose c, yielding f(π2, s

′′)(c) = 1.

Example 3. Figure 3 represents a simple randomized mutual exclusion algo-
rithm [4] where access to the critical section is arranged by an arbiter. In the
initial state, agent π1 can decide to fire transition a. By symmetry, agent π2 can
do the same for b. However, to fire transition c or d—acquiring access to the
critical section—we use a third agent π3 that acts as arbiter. If only c (or only
d) is enabled, then π3 decides to fire this transition. In case both c and d are
enabled, i.e., in the state {p3, p4, p9}, the agent π3 flips a fair coin (say) yielding
probability 1

2 for transition c and d.

From probabilistic CPNs to MDPs. In the following, we show that probabilistic
CPNs naturally give rise to MDPs (Markov Decision Processes [21]). In the sequel
we also show that there is a one-to-one relationship between probabilistic CPN
adversaries and (traditional) adversaries for MDPs. Let us start by recalling the
notion of MDPs [21]. As we consider 1-safe Petri nets, it suffices to consider
finite-state MDPs.

Definition 17 (Markov Decision Process). A Markov decision process
(MDP) is a tuple (Q,Act,P, q0) where

– Q is a finite set of states with initial state q0 ∈ Q.
– Act is a finite set of actions.

– P : Q×Act×Q �→ [0, 1] with for each q ∈ Q,α ∈ Act,
∑
q′∈Q

P(q, α, q′) ∈ {0, 1}.

An action α is enabled in state q iff P(q, α, q′) > 0 for some q′ ∈ Q.

The intuitive semantics of an MDP is as follows. In state q, one of its enabled
actions is selected nondeterministically. As usual, we assume that for every state

422 J.-P. Katoen and D. Peled

this set is nonempty. After having selected action α, say, in state q, the next
state is randomly determined. More precisely, the probability of moving to state
q′ (which may equal q) is P(q, α, q′). An MDP execution is thus an alternating
sequence of states and actions q0α1q1α2 . . . such that αi+1 is enabled in state
qi. Probabilistic CPNs can be viewed as a modeling formalism for MDPs in the
following way.

Definition 18 (The MDP of a probabilistic CPN). Let D = (N,Π, f) be
a probabilistic CPN with N = (P, T,E, s0). The MDP of D, denoted mdp(D), is
the tuple (S,Act,P, s0), where S = 2P , Act = Π, and

P(s, π, s′) =
∑

{f(π, s)(t) | t ∈ π, s[t〉s′ and for no π′ ∈ Π, π′ 9t π}.

Stated in words, the states of mdp(D) are the states of the net N . Its actions are
the agents. This corresponds to the intuition that an agent is selected nondeter-
ministically, which resolves the probabilistic choice. The transition probabilities
in mdp(D) correspond to the function f , provided the selected agent has the
privilege to resolve the probabilistic choice. As several transitions in a given
state of the net may result in the same target state, we take the sum over all
individual probabilities of these transitions.

Adversaries. As the former of the previous examples showed, the probability of
a transition occurrence may depend on the agent that has been selected. This
suggests to define a probability measure over the behaviours of a probabilistic
CPN that is subject to a given selection of agents. In order to do so, we resort
to the standard notion of an adversary [21] (sometimes also called scheduler or
strategy) and adapt this to our setting.

Definition 19 (MDP Adversary). An adversary (strategy) for an MDP is a
function A that maps execution fragments q0 q1 . . . qn of the MDP such that the
action A(q0 q1 . . . qn) is enabled in qn.

An adversary thus selects an enabled action in the final state of a given execution
fragment of the MDP.3 The basic idea of an adversary for a probabilistic CPN is
that it takes as argument a prefix of an execution and maps this onto an agent
that can extend this prefix.

Definition 20 (Adversary for a probabilistic CPN). An adversary A
for a probabilistic CPN C = (N,Π, f) is a function that maps a prefix ρ =
s0[π1|t1〉s1 . . . sn−1[πn|tn〉sn of an execution of C onto an agent πn+1 ∈ Π such
that ρ[πn+1|tn+1〉sn+1 is a prefix of an execution of C for some tn+1 ∈ πn+1.

An adversary thus selects after a finite execution fragment of the covered net
which agent is to resolve the next probabilistic choice. (The random choice,

3 These are also called deterministic adversaries [21]. Our setting can easily be gen-
eralized to randomized adversaries that select agents according to a probability dis-
tribution. This falls however outside the scope of this paper.

Taming Confusion in Probabilistic Concurrent Systems 423

i.e., the selection of transition tn+1 is done by the selected agent, not by the
adversary.) An A-execution is an execution s0[π1|t1〉s1[π2|t2〉s2 . . . of the proba-
bilistic CPN such that for all i ≥ 0, πi+1 = A (s0[π1|t1〉s1 . . . si−1[πi|ti〉si). That
is to say, an A-execution is the execution fragment of the probabilistic CPN
in which adversary A decides on every step which agent is to make a selec-
tion. A probability measure can now be defined on A-executions in the following
way. The probability of the execution fragment s0 is one, and the probabil-
ity of s0[π1|t1〉s1 . . . sn−1[πn|tn〉sn is defined as the product f(s0, π1)(t1) · . . . ·
f(sn−1, πn)(tn). An alternative way of looking at this, is that an adversary A
imposed on a probabilistic CPN yields an infinite Markov chain in which states
correspond to finite execution fragments and transition probabilities are deter-
mined by the agent selected by adversary A in the current state.

Example 4. Consider the CPN of Figure 3 and let s0 = {p1, p2, p9} with A(s0) =
π1. As π1 can only select transition a, this yields the execution fragment ρ1 =
s0[π1|a〉s1 with s1 = s0 \ {p1} ∪ {p3}. Let A(ρ1) = π2. As π2 has a single choice,
it selects transition b yielding ρ2 = s0[π1|a〉s1[π2|b〉s2 with s2 = {p3, p4, p9}. Now
only π3 has a choice between enabled transitions. If π3 randomly selects cwe obtain
ρ3 = s0[π1|a〉s1[π2|b〉s2[π3|c〉s3. Assuming as before that π3 flips a fair coin to
resolve the choice between c and d, we obtain that the probability of execution
fragment ρ3 = f(s0, π1)(a) · f(s1, π2)(b) · f(s2, π3)(c) which equals 1·1· 12 .

It is not difficult to see that an adversary of a probabilistic CPN corresponds
directly to an adversary for its MDP. This immediately yields:

Lemma 2. The Markov chain induced by adversary A on probabilistic CPN D
is isomorphic to the Markov chain induced by A on the MDP mdp(D).

A probabilistic CPN can thus be considered as a high-level (and possibly suc-
cinct) representation of an MDP. The MDP loses the structural information of
the CPN, much as the state graph of a net. A measure over sets of infinite A-
executions can be defined in the standard way using a cylinder set construction,
see, e.g., [4, Ch. 10]. A measurable set of A-executions of a probabilistic CPN for
a given adversary A is called an event. Based on the probability measure over A-
executions one can now define the maximal, and dually the minimal, probability
of certain events of interest. For instance, for set G ⊆ S of states, let ♦G denote
the set of executions of a CPN that at some point reach some state in G. The set
♦G is measurable (and thus an event). The maximal probability of ♦G stands
for the supremum over all possible agent selections (by any kind of adversary de-
fined above) of eventually reaching G. In a similar way, the minimal probability
is defined as the infimum over all possible agent selections to reach G. This can
be generalized towards arbitrary LTL-formulas rather than simply reachability
properties. Due to the above lemma, there is a direct relation between the occur-
rence probabilities in a probabilistic CPN to those in its MDP. Model-checking
algorithms for MDPs [4, Ch. 10] can thus be exploited to calculate quantitative
bounds such as the minimal and maximal probability of a reachability property
♦G, or of a temporal logic formula in LTL (or probabilistic CTL). The details of

424 J.-P. Katoen and D. Peled

these algorithms fall outside the scope of this paper; it suffices here that the key
numerical component is solving a system of linear inequations, whereas for LTL
model checking of MDPs the construction of an automaton on infinite words is
an additional important ingredient.

5 A Distributed Scheduling Algorithm for Making
Probabilistic Choices

We described in this paper a Petri net based model that allows concurrency, non
deterministic choice (among agents) and probabilistic choices. In order to show
how distributed scheduling of probabilistic choices, as required by our model,
can be achieved, we provide now an algorithm for implementing systems based
on CPNs. The algorithm concretizes the possible schedulers of Def. 20.

Our algorithm is by no means the only possible way of implementing a system
described as a probabilistic CPN, or the most efficient one. As identified in [7],
it is important to provide a temporarily stable view for an agent that makes
a probabilistic decision; the choices that this agent has must not change after
the agent has finished collecting the information about its choices and before
a probabilistic choice is made. In component-based systems [6,20] there is a
similar difficulty in synchronization algorithms that guarantee a selection of an
interaction. However, here the problem is to stabilize the interaction in which
agents participate, rather than selecting a single interaction. Thus the approach
is agent centric instead of interaction centric.

Requirements. We impose the following requirements on the distributed schedul-
ing algorithm.

Concurrency. The algorithm allows concurrent probabilistic choices. (The al-
gorithm in [7] allows only a single agent to make a choice; this is established by
passing a token among the agents.)

Semaphores. The scheduling is implemented using semaphores. Only standard
lock and free operators of semaphores are allowed. If needed, semaphore opera-
tions can be imitated by message passing.

Efficiency. A simple analysis of the structure of the Petri net, i.e., the graph
between transition and places, and the partitioning into agents, in time quadratic
in the size of the net, is performed once. This establishes the interactions that
will be needed at run time.

Fine granularity. Atomicity is not assumed at a coarse granularity. Realisti-
cally we cannot assume that the local information of an agent needs to be ex-
amined atomically. While gathering this information, some of the checked places
may have gained or lost a token. Thus, several actions may be needed in setting
up the conditions for the correct firing of a transition according to the semantics
of the CPN.

Taming Confusion in Probabilistic Concurrent Systems 425

Liveness. No deadlock is introduced. In fact, the algorithm does not limit the
executions and admits exactly the set of executions of the CPN.

Finite memory. The scheduling decisions for agents are based only on the
current state of the execution and the value of the semaphores.

Partial view. The scheduling is based on the local information of agents and
not on the global states [8].

The scheduling algorithm. The idea is to assign a semaphore to certain places of
the net. We will henceforth relate interchangeably in notation, when clear from
context, semaphores and the places they are associated with. Prior to firing a
transition, a phase of locking semaphores associated with a set of places is carried
out. This set is precisely defined below. The capturing of semaphores provides
a temporarily stable view of an agent regarding the (probabilistic) choices that
it needs to make. When an agent π makes a probabilistic decision, it needs to
stabilize some tokens of weak(π) (this subset is defined precisely below), as the
value of these places can affect π’s set of choices. For the scheduling algorithm,
we use a set of semaphores related to the weak places:

sem(Π) =
⋃
π∈Π

weak(π).

It is of course important to minimize the number of semaphores an agent is
required to lock. Capturing weak(π) before firing a transition by π would indeed
guarantee a stable environment for a probabilistic choice, but may incur need-
less overhead and severely restricts the concurrency by locking semaphores that
are not relevant in the current state. We therefore propose a smaller subset of
semaphores needed to be locked by agent π in state s so as for π to make a
(probabilistic) choice:

capture(π, s) = weak(π) ∩ (ngb(en(s) ∩ π) ∪ pivot(en(s) ∩ π)).

Thus, capture(π, s) includes two sets of places:

weak(π) ∩ ngb(en(s) ∩ π) are the places that π may change by firing the next
transition and can affect other agents; also, changing these places by firing
a transition by another agent would affect their enabledness for π, and

weak(π)∩pivot(en(s)∩π) are the places that other agents can change and may
alter the choices available to π.

For our algorithm we assume the existence of a partial order, denoted ≺, on
the set of semaphores sem(Π) such that no two semaphores that are in weak(π)
for some π ∈ Π are unordered. We do neither assume that an agent collects
its local information or acquires all needed semaphores atomically, nor that it
changes all places involved in firing a transition atomically. However, we assume
the existence of a mechanism by which an agent π can set an interrupt that
informs it if a place was changed after its value has been inspected. By requiring
that changing the value of a (weak) place p is done only after p’s semaphore is
acquired, we can safely assume that an agent knows the correct value of p when
it holds its semaphore. Our algorithm now proceeds in two phases:

426 J.-P. Katoen and D. Peled

Phase 1. Each agent checks which of its transitions are enabled. It is not neces-
sary that this is done atomically; rather, a lookup through the places (rep-
resented by variables, message queues, etc.) is performed. An interrupt that
reports a change in the value of a place that has been already checked in
this phase, causes a restart of this phase.

Phase 2. Agent π locks the semaphores capture(π, s) in an ascending order
according to the partial order ≺. If there is an interrupt announcing a change
in the value of a place p that was checked in Phase 1 before p’s semaphore
is locked, all the semaphores locked by π so far are released in descending
order (according to ≺), and Phase 1 is restarted.

If agent π has acquired all semaphores in capture(π, s), it randomly selects one of
its enabled transition. It is important to note that capture(π, s) = capture(π, s′)
when s)π= s′)π. That is, capture(π, s) depends only on the local information
of π. This allows calculating capture(π, s) during the execution of the algorithm
locally by π.

Example 5. Consider the net in Figure 5. Agent π2 has one weak place: p5. In
the initial state s0 = {p1, p2}, weak(π2)∩ngb(en(s0)∩π2) = ∅ because the places
ngb(en(s0) ∩ π2) = ngb({a}) = {p1, p3} are not weak (as they belong only to
π2). However, as p5 is pivotal to the confusion (a, c), capture(π2, s0) is in this
case weak(π2) ∩ pivot(en(s0) ∩ π2) = {p5}. Thus, in order for π2 to maintain a
stable situation with respect to the choices it can make (in this case, just firing
a), π2 must lock the semaphore for place p5. Now agent π1 cannot fire transition
c: in order to do that from s0, it needs to lock capture(π1, s0), which is, in this
case, weak(π1)∩ ngb(en(s0)∩ π1) = {p5}. Note that π2 needs to lock p5 because
it is pivotal to a confusion with transition a, whereas π1 needs to lock p5 because
it may want to change it by firing c. The set of semaphores that an agent needs
to lock is dependent on its local information; when p1 does not have a token,
agent π2 does not need to lock the semaphore for p5.

Lemma 3. An agent π cannot change a place by firing a transition without
capturing the corresponding semaphore for that place.

Proof. Follows immediately from the need for an agent to lock, before firing the
next transition, the semaphores for capture(π, s). This set includes weak(π) ∩
ngb(en(s) ∩ π). �

While no change occurs to the semaphores in capture(π, s), agent π has a
stable set of choices, as proved by the following result.

Lemma 4. A change to the set of currently enabled transitions of an agent π
in a state s, i.e., en(s)∩ π, by firing a transition t by another agent π′ (possibly
t ∈ π ∩ π′) in state s involves a change to some place in capture(π, s).

Proof. Distinguish two cases.

1. t depends on some transition t′ ∈ en(s) ∩ π. By Def. 6, a state-change by t
implies a change of a common place with ngb(t′) ⊆ ngb(en(s) ∩ π). As t is
executed by agent π′ �= π, this place also belongs to weak(π).

Taming Confusion in Probabilistic Concurrent Systems 427

2. t is independent of all the transitions in en(s) ∩ π. As (by assumption) t
changes the enabled transitions of π in en(s) ∩ π while being independent
of (all of) them, firing t enables some new transition of π, which, by the
definition of agents, depends on some already enabled transition of π. Thus,
by Def. 12, (t′, t) is a confusion for some t′ ∈ en(s)∩π. By Def. 13, some place
p ∈ pivot(en(s) ∩ π) is altered by t to cause the enabledness of a transition
of π in conflict with t′. As t �∈ π, p is in weak(π). �

Note how the need to lock a semaphore associated with a pivotal place due to
a confusion can reduce concurrency between independent transitions. This is in
accordance with Definition 14.

Lemma 5. The scheduling algorithm does not introduce a deadlock.

Proof. Capturing semaphores in ascending order and releasing them in descend-
ing order is a solution for a generalized mutual exclusion problem, suggested
originally by Dijkstra for the dining philosophers problem. See [24] for its cor-
rectness, including deadlock freeness. Note that if Phase 1 restarts, some progress
must have occurred, as a place was changed by firing some transition. �
Lemma 6. The scheduling algorithm admits exactly the set of CPN executions.

Proof. Clearly, any execution of the net under the obtained scheduler must
conform to the semantics of execution of the Petri nets. Conversely, for each ex-
ecution of the CPN, we have a behavior of the scheduling algorithm in which the
two phases related to the firing of each transition are clearly separated, where
the capturing of the semaphores and the firing of a transition do not interleave
(although the scheduling algorithm also allows interleaving of semaphore cap-
turing, checking places and firing transitions in other ways). �
The above algorithm determines a possible schedule of the agents to fire en-
abled transitions: any agent that has acquired the necessary semaphores can
randomly choose one of its enabled transitions. Note that it is possible that sev-
eral agents are in a position to carry out a random selection, in case they all
acquired their semaphores. In this case, an agent can be picked nondeterminis-
tically. That is to say, the algorithm determines a possible adversary (scheduler)
A for the probabilistic CPN at hand. The following result asserts that the com-
puted schedule yields indeed probabilities (for LTL formulas) that fall inside the
scope of the minimal and maximal probabilities that are typically determined
by model-checking algorithms for MDPs.

Theorem 1. For probabilistic CPN D and LTL formula ϕ, the probability of
satisfying ϕ for any obtained schedule by our tho-phase algorithm is within the
probability bounds of the MDP mdp(D) satisfying ϕ.

Proof. Based on Lemmas 3, 4 and 5, the obtained adversaries for D by our
algorithm correspond to a subset of the adversaries of the MDP mdp(D). �
For various events of interest, such as the earlier mentioned reachability events
of the form ♦G, the minimal and maximal probabilities are attained by a sim-
ple class of adversaries, the so-called memoryless adversaries. An adversary A

428 J.-P. Katoen and D. Peled

of a probabilistic CPN is memoryless whenever its decision for execution frag-
ment s0[π1|t1〉 . . . [πn|tn〉sn only depends on sn. That is, a memoryless adversary
selects for every visit to state sn the same action regardless of the execution frag-
ment before reaching sn.

Theorem 2. Our scheduling algorithm admits any memoryless adversary.

Proof (sketch). An agent can only get its turn whenever it has acquired all
semaphores. Acquiring the semaphores is based on the local information of an
agent in a given state of the net. The decision whether an agent can perform a
transition or not is memoryless. In case several agents can perform a transition
(i.e., they have all acquired their necessary semaphores), the order between these
agents is to be determined by the adversary. Our algorithm does not restrict
this ordering: any memoryless order of admissible agents is allowed. A selected
enabled agent then performs a (local) probabilistic choice. �

6 Related Work

The most well known extensions of Petri nets with randomness are (generalized)
stochastic Petri nets (GSPNs) [18]. There, transitions are equipped with rates,
i.e., parameters of exponential distributions. In stochastic Petri nets (SPNs) all
transitions have a rate—concurrency becomes a random phenomenon and con-
fusion is absent. Due to immediate transitions in GSPNs, confusion re-appears.
This is partially tackled using weights (resolving choices probabilistically based
on a global state), but the analysis of GSPNs is basically restricted to confusion-
free nets. Recently, a semantics of GSPNs with confusion has been proposed
using stochastic real-time games [9,12].

The few works on probabilistic Petri nets treat probabilistic branching quite
differently. In [2], probabilities are attached to outgoing edges of places. Alter-
natively, weights are assigned to edges [25]; here, choices are resolved in a proba-
bilistic way whereas independent transitions fire in any order. A relation is shown
between confusion-free weighted nets and Mazurkiewicz equivalence. Kudlek [15]
focuses, instead, on the expressive power of the formalism, whereas [1] proposes
truly concurrent probabilistic Petri nets. Here, the likelihood of processes is de-
fined on partial orders, not on firing sequences. An MDP interpretation to nets
is given in [5]. There, an extended Petri net model includes explicit transitions
that indicate where a nondeterministic choice and where a probabilistic choice
starts. Processes subscribe to such a choice, and the choice is made globally.
To our knowledge, the treatment of probabilities in nets using the concept of
agents—resolving probabilistic choices locally—is new.

The fact that global schedulers establish strong correlations between the be-
havior of system components (i.e., agents) has been observed earlier in [7,17]. To
get around this problem [7] proposes switched probabilistic I/O automata. By
passing a token between agents, one of the agents may make a probabilistic deci-
sion. This token-based scheme however restricts concurrency. In our model, con-
current nondeterministic and probabilistic decisions are possible. Concurrency is

Taming Confusion in Probabilistic Concurrent Systems 429

restricted only by confusions, which correspond to potential changes to the avail-
able choices. Also in testing theory and security analysis, it has been recognized
that the resolution of local choices within a component using global knowledge
yields undesirable and counterintuitive behavior. Our two-level scheduling mech-
anism in which agents are selected based on global state information, whereas
agents select based on their local perspective, is closely related to that of dis-
tributed schedulers [11]. In contrast to our case, the selection of components
there can be probabilistic. (As mentioned earlier, our framework can be easily
extended to random agent selection.) Agent scheduling is also a principle used
in the setting of quantitative security [3]. We are unaware of any concrete dis-
tributed algorithms realizing this kind of scheduling. In our case, we complement
the theoretical setting with such algorithm.

7 Epilogue

In this paper, we enhanced Petri nets with agents covering the net transitions.
The local view of an agent in a covered net consists of the neighborhood (input
and output places) of its transitions. In a step of a net execution, an agent is non-
deterministically selected which—based on its local view—resolves a (probabilis-
tic) decision. This provides an elegant and robust basis for resolving probabilis-
tic choices in a nondeterministic setting. It is shown that probabilistic covered
nets can be viewed as high-level descriptions of MDPs. Finally, we presented a
distributed scheduling algorithm (based on semaphores) for implementing such
nets. Our algorithm is obtained by a simple structural analysis of net. Confu-
sions, in our view, are no longer an obstacle for implementing Petri nets. Rather,
they are an artifact reducing concurrency, similar to the notion of dependency in
trace theory [19]. In fact, the identification and analysis of confusions provides
a basis for our algorithm.

We used in this paper Petri nets to demonstrate the main concepts involved
in modeling and implementing distributed probabilistic scheduling. In particu-
lar, confusion was originally observed in Petri nets and has a simple and clean
formal presentation within this model. Nevertheless, our modeling concepts and
scheduling algorithm can be easily adapted to other models that include concur-
rency and probabilistic choice.

Acknowledgments. The authors thank Barbara Jobstmann and Gadi Tauben-
feld for valuable discussions.

References

1. Abbes, S.: The (True) Concurrent Markov Property and Some Applications to
Markov Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 70–89. Springer, Heidelberg (2005)

2. Albanese, M.: A constrained probabilistic Petri net framework for human activity
detection in video. IEEE Trans. on Multimedia 10(6), 982–996 (2008)

430 J.-P. Katoen and D. Peled

3. Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding
in probabilistic concurrent systems. TCS 412(28), 3072–3089 (2011)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
5. Beccuti, M., Franceschinis, G., Haddad, S.: Markov Decision Petri Net and Markov

Decision Well-Formed Net Formalisms. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN
2007. LNCS, vol. 4546, pp. 43–62. Springer, Heidelberg (2007)

6. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

7. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: Parallel
composition via distributed scheduling. TCS 365(1-2), 83–108 (2006)

8. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. In: PROBMIV, pp. 19–32 (1999)

9. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and Composition in a
Stochastic World. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

10. Georgievska, S., Andova, S.: Probabilistic may/must testing: retaining probabilities
by restricted schedulers. Formal Asp. Comput. 24(4-6), 727–748 (2012)

11. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed
probabilistic systems. ENTCS 253(3), 45–71 (2009)

12. Katoen, J.-P.: GSPNs revisited: Simple semantics and new analysis algorithms. In:
Application of Concurrency to System Design, pp. 6–11 (2012)

13. Katz, G., Peled, D.: Code Mutation in Verification and Automatic Code Correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010)

14. Katz, G., Peled, D., Schewe, S.: Synthesis of Distributed Control through Knowl-
edge Accumulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 510–525. Springer, Heidelberg (2011)

15. Kudlek, M.: Probability in Petri nets. Fund. Inf. 67(1-3), 121–130 (2005)
16. Lehmann, D.J., Rabin, M.O.: On the advantages of free choice: A symmetric and

fully distributed solution to the dining philosophers problem. In: POPL, pp. 133–
138 (1981)

17. Lynch, N.A., Segala, R., Vaandrager, F.W.: Observing branching structure through
probabilistic contexts. SIAM J. Comp. 37(4), 977–1013 (2007)

18. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley (1995)

19. Mazurkiewicz, A.: Introduction to trace theory. In: Diekert, V., Rozenberg, G.
(eds.) The Book of Traces. World Scientific (1995)

20. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for multiparty
synchronization. Concurrency - Practice and Experience 16(12), 1173–1206 (2004)

21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (2005)

22. Rozenberg, G., Thiagarajan, P.S.: Petri Nets: Basic Notions, Structure, Behaviour.
In: Rozenberg, G., de Bakker, J.W., de Roever, W.-P. (eds.) Current Trends in
Concurrency. LNCS, vol. 224, pp. 585–668. Springer, Heidelberg (1986)

23. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

24. Taubenfeld, G.: Synchronization Algorithms for Concurrent Programming. Pren-
tice Hall (2006)

25. Varacca, D., Nielsen, M.: Probabilistic Petri nets and Mazurkiewicz equivalence
(2003) (unpublished manuscript)

Model-Checking Higher-Order Programs

with Recursive Types

Naoki Kobayashi1 and Atsushi Igarashi2

1 The University of Tokyo
2 Kyoto Univeristy

Abstract. Model checking of higher-order recursion schemes (HORS,
for short) has been recently studied as a new promising technique for
automated verification of higher-order programs. The previous HORS
model checking could however deal with only simply-typed programs, so
that its application was limited to functional programs. To deal with a
broader range of programs such as object-oriented programs and multi-
threaded programs, we extend HORS model checking to check properties
of programs with recursive types. Although the extended model checking
problem is undecidable, we develop a sound model-checking algorithm
that is relatively complete with respect to a recursive intersection type
system and prove its correctness. Preliminary results on the implemen-
tation and applications to verification of object-oriented programs and
multi-threaded programs are also reported.

1 Introduction

The model checking of higher-order recursion schemes (HORS for short) [15]
has been recently studied as a new technique for automated verification of
higher-order functional programs [9,14,16,13]. HORS is essentially a simply-
typed higher-order functional program with recursion for generating (possibly
infinite) trees, and the goal of HORS model checking is to decide whether the
tree generated by a given HORS satisfies a given property. The idea of apply-
ing the HORS model checking is to transform a given functional program M
to a HORS G that generates a tree describing possible outputs or event se-
quences of the program [9]; verification of the program is then reduced to HORS
model checking, to decide whether the tree generated by G represents valid out-
puts or event sequences. Based on this idea, various verification problems for
functional programs have been reduced to it [9,14,16]. By combining it with
predicate abstraction, a software model checker for functional programs can be
constructed [16,13].

The above approach to automated verification of functional programs, how-
ever, cannot be smoothly extended to support other important programming
language features, such as objects and concurrency. Object-oriented programs
often use (mutually) recursive interfaces, which cannot be naturally modeled
by HORS (which are simply-typed functional programs). In fact, even Feather-
weight Java (FJ) [5] (with only objects as primitive data) is Turing complete [22].

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 431–450, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

432 N. Kobayashi and A. Igarashi

As for concurrency, the model checking of concurrent pushdown systems [20] is
undecidable. These imply that there cannot be a sound and complete reduction
from verification problems for object-oriented or recursive concurrent programs
to HORS model checking. These situations are in sharp contrast to the case
for functional programs, for which we have a sound and complete reduction to
HORS model checking, as long as the programs use only finite base types (such
as booleans, but not unbounded integers) [9].

The present paper aims to overcome the above limitations by introducing an
extension of HORS model checking, where models, i.e., higher-order recursion
schemes, are extended with recursive types. The extended higher-order recursion
schemes, called μHORS, are essentially the simply-typed λ-calculus extended
with tree constructors, (term-level) recursion, and recursive types, which is Tur-
ing complete. The model checking of μHORS (μHORS model checking for short)
is undecidable, but we can develop a sound (but incomplete) model checking pro-
cedure. The procedure uses the result that HORS model checking can be reduced
to a type checking problem in an intersection type system [9,11,24], and solves
the type checking problem. Although the procedure is incomplete (as μHORS
model checking is undecidable) and may not terminate, it is relatively complete
with respect to a certain recursive intersection type system: any program that is
typable in the type system is eventually proved correct. The procedure incorpo-
rates a novel reduction of the intersection type checking to SAT solving, which
may be of independent interest and applicable to ordinary HORS checking.

Being armed with μHORS model checking, we can construct a fully auto-
mated verification tool (or so called a “software model checker”) for various
programming languages. Given a program, we first apply a kind of program
transformation to get a μHORS that generates a tree describing all the possible
program behaviors of interest, and then use μHORS model checking to check
that the tree describes only valid behaviors. As a proof of concept, we have
implemented a prototype of the μHORS model checker and a translator from
Featherweight Java (FJ) programs [5] to μHORS. Preliminary experiments show
that we can indeed use the μHORS model checker to verify small but non-trivial
object-oriented programs.

For the space restriction, we omit some examples and proofs, which are found
in an extended version [10].

2 Preliminaries

This section introduces μHORS, defines model checking problems for them, and
reduces it to a type-checking problem in a recursive intersection type system.

2.1 Recursive Intersection Types

Before introducing μHORS model checking, we first formalize recursive intersec-
tion types. We fix a finite set Q of base types below, and use the meta-variable
q for its elements. We use the meta-variable α for type variables.

Model-Checking Higher-Order Programs with Recursive Types 433

Definition 1. A (recursive intersection) type is a pair (E,α), where E is a
finite set of equations of the form αi = σ1 → · · · → σm → q, and σ is of
the form

∧
{α1, . . . , αk}. Here m and k may be 0. We use the meta-variable τ

for recursive intersection types. We write Tv(τ) for the set of type variables
occurring in τ . A recursive intersection type τ = (E,α) is closed if, for every
α ∈ Tv(τ), (α = θ) ∈ E for some θ. When (α = θ) ∈ E, we write E(α) for θ.

We identify types up to renaming of type variables. For example, ({α = q}, α)
is the same as ({β = q}, β). Thus, for two closed types τ0 and τ1, we always
assume that Tv(τ0)∩Tv(τ1) = ∅. We often write α1 ∧ · · · ∧αk or

∧
i∈{1,...,k} αi

for
∧
{α1, . . . , αk} and write � for

∧
∅. Intuitively, (E,α) denotes the (recur-

sive) type α that satisfies the equations in E. For example, ({α = α → q}, α)
represents the recursive type μα.(α → q) in the usual notation. We often use
this term notation for recursive intersection types. By abuse of notation, when
E(α) =

∧
i∈I1 αi → · · · →

∧
i∈Ik αi → q, we write

∧
i∈I1 (E,αi) → · · · →∧

i∈Ik(E,αi) → q for (E,α). For example, when E = {α0 = α1 → q0, α1 = q1},
(E,α0) is also written as (E,α1)→ q0 or q1 → q0. The type σ1 → · · · → σm → q
describes functions that take m arguments of types σ1, . . . , σm, and return a
value of type q. The type α1∧· · ·∧αk describes values that have all of the types
α1, . . . , αk. For example, if Q = {q1, q2}, the identity function on base values
(λx.x in the λ-calculus notation) would have types (q1 → q1) ∧ (q2 → q2).

We define the subtyping relation τ0 ≤ τ1, which intuitively means, as usual,
that any value of type τ0 can be used as a value of type τ1.

Definition 2 (subtyping). Let τ = (E′′, α) and τ ′ = (E′, α′) be closed types,
and let E = E′′∪E′. The type τ is a subtype of τ ′, written τ ≤ τ ′, if there exists
a binary relation R on Tv(τ)∪Tv(τ ′) such that (i) (α, α′) ∈ R and (ii) for every
(α0, α

′
0) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that E(α0) = σ1 → · · · →

σm → q and E(α′0) = σ′1 → · · · → σ′m → q, with (σ′1, σ1), . . . , (σ
′
m, σm) ∈ R∧.

Here, R∧ is:
{(
∧
{α′1, . . . , α′k′},

∧
{α1, . . . , αk}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.α′jRαi}.

We write τ ∼= τ ′ if τ ≤ τ ′ and τ ′ ≤ τ .

Example 1. Let τ0 = ({α0 = α0 → q}, α0) and τ1 = ({α1 = α2 → q, α2 =
α1 ∧ α3 → q, α3 = q}, α1). τ1 ≤ τ0 holds, with the relation {(α1, α0), (α0, α2)}
as a witness.

2.2 μHORS

We introduce below μHORS and its model checking problem, and reduce the lat-
ter to a type checking problem. To our knowledge, the notion of μHORS is new,
but it is a subclass of the untyped HORS studied by Tsukada and Kobayashi [24],
and the reduction from μHORS model checking to type checking (Theorem 1)
is a corollary of the result of [24]. We shall therefore quickly go through the
definitions and results; more formal definitions (apart from recursive types) and
intuitions are found in [15,9,24].

434 N. Kobayashi and A. Igarashi

μHORS and Model Checking Problems. The set of basic types (called
sorts) is the subset of recursive intersection types, where Q is a singleton set {o}
(where o is the type of trees) and there is no intersection: in σ =

∧
{α1, . . . , αk},

k is always 1. Below we often use the following term representation of sorts:

κ ::= α | κ1 → · · · → κ� → o | μα.κ.
Let Σ be a ranked alphabet, i.e., a map from symbols to their arities. An element
of dom(Σ) is used as a tree constructor. A sort environment is a map from
variables to sorts. The set of applicative terms of type κ under a sort environment
K is inductively defined by the following rules:

K, x : κ 	 x : κ K 	 a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

K 	 t1 : κ1 K 	 t2 : κ2 κ1 ∼= (κ2 → κ)

K 	 t1 t2 : κ

As usual, applications are left-associative, so that t1 t2 t3 means (t1 t2) t3.
A μHORS G is a quadruple (N , Σ,R, S) where: (i) N is a map from variables

(called non-terminals) to sorts; (ii) Σ is a ranked alphabet, where dom(N) ∩
dom(Σ) = ∅; (iii) R is a map from non-terminals to a λ-term of the form
λx1. · · ·λx�.t where t is an applicative term; (iv) S, called the start symbol, is a
non-terminal such that N (S) = o. If N (F) = κ1 → · · · → κk → o and R(F) =
λx1. · · ·λx�.t, then it must be the case that k = � and N , x1 :κ1, . . . , x� :κ� 	 t : o.

The (possibly infinite) tree generated by G, written by Tree(G), is defined as
the limit of infinite fair reductions of S [15] where the reduction relation −→
is defined by: (i) F t1 · · · t� −→ [t1/x1, . . . , t�/x�]t if R(F) = λx1. · · ·λx�.t; and
(ii) a t1 · · · t� −→ a t1 · · · ti−1 t

′
i ti+1 · · · t� if ti −→ t′i for some i ∈ {1, . . . , �}.

See [15] for the formal definition of Tree(G).
Notation 1 We write ũ for a sequence u1 · · ·u�. λx̃.t stands for λx1. · · ·λx�.t,
and [s̃/x̃]t for [s1/x1, . . . , s�/x�]t (with the understanding that s̃ and x̃ have the
same length �). We often write the four components of G as NG , ΣG ,RG , SG,
and omit the subscript if it is clear from context. We often write R as a set
of rewriting rules {F1 x1 · · · x�1 → t1, . . . , Fm x1 · · · x�m → tm} if R(Fi) =
λx1. · · ·λx�i .ti for each i ∈ {1, . . . ,m}.
Example 2. Consider μHORS G1 = (N1, Σ1,R1, S) where N1 = {S �→ o, F �→
(o → o)}, Σ1 = {a �→ 2, b �→ 1, c �→ 0}, and R1 = {S → F c, F x →
a x (F (b x))}. S is rewritten as follows, and the tree in Figure 1 is generated:
S −→ F c −→ a c (F (b c)) −→ a c (a (b c) (F (b (b c))) −→ · · · .
Example 3. Consider μHORS G2 = (N2, Σ1,R2, S) where Σ1 is as given in
Example 2, and: N2 = {S �→ o, F �→ (o → o), G �→ μα.(α → o→ o)} and
R2 = {S → F c, F x → GGx, Gg x → a x (g g (b x))}. This is the same as G1
except that recursive types are used instead of term-level recursion. S is reduced
as below, and the same tree as Tree(G1) is generated.
S −→ F c −→ GG c −→ a c (GG (b c)) −→ a c (a (b c) (GG (b (b c))) −→ · · ·

Model-Checking Higher-Order Programs with Recursive Types 435

a

c a

b

c

a

b2

c

a

· · · · · ·

Fig. 1. The tree generated by G1 of Example 2

Remark 1. A tree node that is never instantiated to a terminal symbol is ex-
pressed by the special terminal symbol⊥ (with arity 0). For example, for μHORS
G3 = (N3, Σ1,R3, S) where N3 = {S �→ o, F �→ μα.(α→ o)} and R3 = {S →
F F, F x→ xx}, Tree(G3) is a singleton tree ⊥. ��

As usual [15,9], we use (top-down) tree automata to express properties of the
tree generated by higher-order recursion schemes. For a ranked alphabet Σ,
a Σ-labeled tree T is a map from sequences of natural numbers (which repre-
sent paths of the tree) to dom(Σ), such that (i) its domain dom(T) is non-
empty and closed under the prefix operation, and (ii) if π ∈ dom(T) then
{j | πj ∈ dom(T)} = {1, . . . , Σ(T (π))}. A (deterministic) trivial automa-
ton B is a quadruple (Σ,Q, δ, q0), where Σ is a ranked alphabet, Q is a fi-
nite set of states, δ, called a transition function, is a partial map from Q ×
dom(Σ) to Q∗ such that |δ(q, a)| = Σ(a), and q0 is the initial state. A Σ-
labeled tree T is accepted by B if there is a Q-labeled tree R (called a run
tree) such that: (i) dom(T) = dom(R); (ii) R(ε) = q0; and (iii) for every
π ∈ dom(R), δ(R(π), T (π)) = R(π1) · · ·R(πΣ(T (π))). For a trivial automa-
ton B = (Σ,Q, δ, q0) (with ⊥ �∈ dom(Σ)), we write B⊥ for the trivial automaton
(Σ ∪ {⊥ �→ 0}, Q, δ ∪ {(q,⊥) �→ ε) | q ∈ Q}, q0). We often write ΣB, QB, δB, qB,0
for the four components of B, and omit the subscript if it is clear from context.
Trivial automata are sufficient for describing safety properties: see [12] for the
logical characterization.

Example 4. Let B1 = (Σ1, {q0, q1}, δ, q0) where Σ1 is as given in Example 2 and
δ is given by: δ(q0, a) = q0q0, δ(q0, b) = δ(q1, b) = q1, and δ(q0, c) = δ(q1, c) = ε.
It accepts a Σ1-labeled (ranked) tree T if and only if a does not occur below b.
In particular, B1 accepts the tree shown in Figure 1. ��

The μHORS model checking is the problem of checking whether Tree(G) is ac-
cepted by B⊥, given a μHORS G and a trivial automaton B. The problem is in
general undecidable [24]. We give a sound type system for checking that Tree(G)
is accepted by B⊥. The set of recursive intersection types is as given in Sec-
tion 2.1, where the set Q of base types is the set of states of B. Intuitively, a
state q is regarded as the type of trees accepted by B⊥ from the state q [9].

The type judgment relations Γ 	B t : τ and Γ 	B (G, t) : τ (where Γ , called
a type environment, is a set of type bindings of the form x : τ) are defined by:

436 N. Kobayashi and A. Igarashi

τ ≤ τ ′

Γ, x : τ 	B x : τ ′
δB(q, a) = q1 · · · qk q1 → · · · → qk → q ≤ τ

Γ 	B a : τ

Γ 	B t1 :
∧

i∈I τi → τ
Γ 	B t2 : τ ′i and τ ′i ≤ τi (for every i ∈ I)

Γ 	B t1t2 : τ

Γ, x : τ1, . . . , x : τ� 	B t : τ
x does not occur in Γ

Γ 	B λx.t :
∧

i∈{1,...,�} τi → τ

∀(F : τ) ∈ Γ.(Γ 	B R(F) : τ)

	B R : Γ

	B RG : Γ Γ 	B t : τ

Γ 	B (G, t) : τ

The following theorem is a special case of the soundness of Tsukada and
Kobayashi’s infinite intersection type system for untyped HORS [24].

Theorem 1 (soundness). Let B be a trivial automaton (Σ,Q, δ, qB,0) and G
be a μHORS. If Γ 	B (G, SG) : qB,0, then Tree(G) is accepted by B⊥.

Example 5. Recall G1 and G2 in Examples 2 and 3, and B1 in Example 4. Γ1 	B1

(G1, S) : q0 and Γ2 	B1 (G2, S) : q0 hold for Γ1 = {S : q0, F : (q0 ∧ q1)→ q0} and
Γ2 = Γ1 ∪ {G : μα.(α→ (q0 ∧ q1)→ q0)}. ��

Given a type environment Γ , a μHORS G, and an automaton B, it is decidable
whether Γ 	B (G, SG) : qB,0 holds. Thus, Γ can be used as a certificate for
Tree(G) being accepted by B. The converse of the theorem above does not hold,
i.e., there is a μHORS G such that Tree(G) is accepted by B⊥ but Tree(G) is
not well-typed. We have the following properties on the (un)decidability of type
checking. See [10] for a proof.

Theorem 2. 1. Given a type environment Γ , a μHORS G, and a trivial au-
tomaton B, it is decidable whether Γ 	B (G, SG) : qB,0 holds.

2. Given a μHORS G and a trivial automaton B, it is undecidable whether there
exists Γ such that Γ 	B (G, SG) : qB,0 holds.

3 Model Checking μHORS

We now describe the main result of this paper: a model checking procedure for
μHORS. We shall develop a procedure Check that satisfies:

Check(G,B) =
{
Γ ′ such that Γ ′ 	B (G, SG) : qB,0 if ∃Γ.Γ 	B (G, SG) : qB,0
No (with a counterexample) if Tree(G) is not accepted by B⊥

By Theorem 2, the procedure Check can only be a semi-algorithm: it may not
terminate if Tree(G) is accepted by B⊥ but ∃Γ.Γ 	B (G, SG) : qB,0 does not hold.

An obvious approach would be to run (i) a sub-procedure FindCert(G,B) to
enumerate all the finite type environments Γ and output Γ if Γ 	B (G, SG) : qB,0
holds, and in parallel, (ii) a sub-procedure FindCE(G,B) to reduce G in a fair
manner and output No if a partially generated tree is not accepted by B⊥. The
first sub-procedure FindCert is, however, too non-deterministic to be used in
practice.

Model-Checking Higher-Order Programs with Recursive Types 437

We describe below a more realistic procedure for FindCert(G,B) that out-
puts Γ such that Γ 	B (G, SG) : qB,0 if there is any, and may diverge otherwise.
As FindCert can incrementally find the types of non-terminals, we can use
them to improve FindCE as well, by removing well-typed terms from the search
space. As such interaction between FindCert and FindCE is the same as the
case without recursive types [8], we focus on the discussion of FindCert below.

3.1 Type Inference Procedure

We first give an informal overview of the idea of FindCert. Since it is easy to
check whether a given Γ is a valid certificate (i.e. whether Γ 	B (G, SG) : qB,0
holds), the main issue is how to find candidates for Γ . As in the algorithm
for HORS without recursive types [8], the idea of finding Γ is to extract type
information by partially reducing a given recursion scheme, and observing how
each non-terminal symbol is used. For example, suppose that S is reduced as
follows. S : q0 −→∗ C1[F G : q1] −→∗ C2[Gt : q2] −→∗ C3[t : q1]. Here, we have
annotated each term with a state of the property automaton; t : q means that
the tree generated by t should be accepted from q. From the reduction sequence,
we know t should have type q1, from which we can guess that G should have
type q1 → q2, and we can further guess that F should have type (q1 → q2)→ q1.
This way of guessing types is complete for HORS (without recursive types) [8].
In the presence of recursive types, however, we need a further twist, to obtain
(relative) completeness. For example, suppose S is reduced as follows. S :q0 −→∗

C1[F t1 : q1] −→∗ C2[t1 t2 : q0] −→∗ C3[t2 t3 : q1] −→∗ C4[t3 t4 : q0] −→∗ · · ·. This
kind of calling chain terminates for ordinary HORS (since the terms are simply-
typed), but may not terminate for μHORS because of recursive types. (For
example, consider a variation of G3 in Remark 1, where the rule for F is replaced
by F x → x (I x), with the new rule I x → x. Then, we have an infinite calling
chain: S −→∗ F (I F) −→∗ (I F) (I (I F)) −→∗ (I (I F)) (I (I (I F))) −→∗ · · ·.)
Thus, we would obtain an infinite set of type equations:

αF = αt1 → q1 αt1 = αt2 → q0 αt2 = αt3 → q1 αt3 = αt4 → q0 · · ·
(where αt represents the type of term t). To address this problem, we introduce
an equivalence relation ∼ on terms, and consider reductions modulo ∼. In the
example above, if we choose ∼ so that t2n−1 ∼ t2n+1 and F ∼ t2n ∼ t2n+2, then
we would have finite equations α[F] = α[t1] → q1 and α[t1] = α[F] → q0 (where [t]
is the equivalence class containing t), from which we can infer μα.(α → q0)→ q1
as the type of F . As we show in Theorem 3 later, this way of type inference
is complete if a proper equivalence relation ∼ is given as an oracle. It is not
complete in general, but Theorem 4 ensures that no matter how ∼ is chosen, we
can “amend” the inferred type environment to obtain a correct type environment.
Based on the theorem, we can develop a complete procedure for FindCert.

We now turn to describe the idea more formally. Let Tm be the set of (well-
sorted) closed terms constructed from non-terminals and terminals of G, and ∼
be an equivalence relation on Tm that induces a finite set of equivalence classes.
We write [t]∼ for the equivalence class containing t, i.e., {t′ | t ∼ t′}, and omit
the subscript if clear from context. Intuitively, the equivalence relation t1 ∼ t2

438 N. Kobayashi and A. Igarashi

means that t1 and t2 behave similarly with respect to the given automaton B.
For the moment, we assume that ∼ is given as an oracle. Throughout the paper,
we consider only equivalence relations that equate terms of the same sort, i.e.,
t ∼ t′ implies N 	 t : κ⇐⇒ N 	 t′ : κ for every κ.

We define the extended reduction relation (X ,U) −→∼ (X ′,U ′) as the least
relation closed under the rules below, where X is a set of terms and U is a set
of pairs consisting of a term and an automaton state or a special element fail.
In rule R-NT, STm(t) denotes the set of all subterms of t.

(a t1 · · · t�, q) ∈ U δ(q, a) = q1 · · · q�
(X ,U) −→∼ (X ,U ∪ {(t1, q1), . . . , (t�, q�)})

(R-Const)

(a t1 · · · t�, q) ∈ U δ(q, a) is undef. or |δ(q, a)| �= �

(X ,U) −→∼ (X ,U ∪ {fail})
(R-F)

(F t̃, q) ∈ U R(F) = λx̃.u

(X ,U) −→∼ (X ∪ STm([t̃/x̃]u),U ∪ {([t̃/x̃]u, q)})
(R-NT)

(t t1 · · · tk, q) ∈ U t ∼ t′ t′ ∈ X
(X ,U) −→∼ (X ,U ∪ {(t′ t1 · · · tk, q)})

(R-Eq)

The main differences from the reduction relation t −→ t′ in Section 2.2 are: (i)
each term t (of sort o) is coupled with its expected type, (ii) such pairs are kept
in the U component after reductions (in other words, (t, q) ∈ U means that t
should generate a tree accepted by B from state q), (iii) the X component keeps
all the sub-terms that have occurred so far, and (iv) a subterm in a head position
can be replaced by another term belonging to the same equivalence class (see
rule R-Eq above). In rule R-Const, (a t1 · · · t�, q) being an element of U means
that a t1 · · · t� should generate a tree of type q (i.e., should be accepted by B
from the state q). The premise δ(q, a) = q1 · · · q� means that the i-th subtree
should have type qi, so that we add (ti, qi) to the second component. Rule R-F

is applied when (a t1 · · · t�, q) is in the second set but no tree having a as its
root can be accepted from the state q. The condition |δ(q, a)| �= � actually never
holds, by the assumption that ∼ equates only terms of the same sort. R-NT is
the rule for reducing non-terminals. As mentioned above, rule R-Eq is used to
replace a head of a term with an equivalent term with respect to ∼. Extended
reduction sequences are in general infinite, and non-deterministic.

Example 6. Recall G2 in Example 3. Let ∼(1) be the least congruence relation
that satisfies b(c) ∼ c. Then, by using ∼(1) as ∼, we can reduce ({S}, {(S, q0)})
as follows:

(S, q0) (F c, q0) (G G c, q0) (a c (G G (b c)), q0) (G G (b c), q0)

(c, q0) (a (b c) (G G (b (b c))), q0)(b c, q0)(c, q1) ...

Here, we have omitted the X -component, and shown only elements relevant
to reductions instead of the whole U-component. In the figure, dashed arrows

Model-Checking Higher-Order Programs with Recursive Types 439

represent reductions by using rule R-Eq, and solid arrows represent reductions
obtained by the other rules. From an infinite fair reduction sequence, we obtain
the following set as U :

{(F (bk c), q0), (GG (bk c), q0), (b
k c, q0), (b

k c, q1) | k ≥ 0}
∪{(S, q0)} ∪ {(a (bk c) (GG (b� c)), q0) | k, � ≥ 0} ��

The goal below is to construct a candidate of type environment Γ that satisfies
Γ 	B G : q0, from a fair reduction sequence (where a reduction sequence is fair if
every enabled reduction is eventually reduced). The idea of the construction of
Γ is similar to the case for ordinary HORS [8]. For example, in Example 6 above,
from the pairs (c, q0) and (c, q1), we can guess that the type of c is q0∧q1. From
the pair (F c, q0), we guess that the return type of F is q0, so that the type of
F is q0 ∧ q1 → q0. The actual construction is, however, more involved than [8]
because of the presence of recursive types and the term equivalence relation ∼.

Let (X0,U0) −→∼ (X1,U1) −→∼ · · · be a fair reduction sequence where X0 =
{S} and U0 = {(S, q0)}, and let X and U be

⋃
i∈ω Xi and

⋃
i∈ω Ui respectively.

We prepare a type variable α[t0],...,[tk],q for each (t0t1 · · · tk, q) ∈ U . Intuitively,
α[t0],...,[tk],q is the type of t0 in t0 t1 · · · tk : q. Let E be:

{α[t0],[t1],...,[tk],q = σ[t1] → · · · → σ[tk] → q | (t0 t1 · · · tk, q) ∈ U},

where σ[t] =
∧
{α[t],[t′1],...,[t

′
�],q

′ | (t t′1 · · · t′�, q′) ∈ U}. We define the type environ-
ment ΓX ,U ,∼ as {F : (E,α[F],[t1],...,[tk],q) | (F t1 · · · tk, q) ∈ U}. By the condition
that ∼ induces a finite number of equivalence classes, ΓX ,U ,∼ is finite.

Example 7. From the reductions in Example 6, we get the following type equa-
tions:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0 → αc,q0 ∧ αc,q1 → q0

Thus, the extracted type environment (in the usual term representation) is:

{S : q0, F : (q0 ∧ q1)→ q0, G : μα.(α→ (q0 ∧ q1)→ q0)}. ��

The theorem below (see [10] for a proof) ensures that if G is typable and if ∼ is
properly chosen, ΓX ,U ,∼ is a proper witness. For a type environment Γ , we define
the equivalence relation ∼Γ by: ∼Γ= {(t1, t2) | ∀τ.(Γ 	 t1 : τ ⇐⇒ Γ 	 t2 : τ)}.
Theorem 3. If Γ 	B (G, SG) : qB,0 and ∼⊆∼Γ , then ΓX ,U ,∼ 	B (G, SG) : qB,0.
Example 8. Recall G2 in Example 3, and Γ2 = {S : q0, F : (q0 ∧ q1) → q0, G :
μα.(α→ (q0 ∧ q1)→ q0)} in Example 5. The relation ∼ in Example 6 satisfies
the assumption ∼⊆∼Γ2 of Theorem 3, and ΓX ,U ,∼ 	B1 (G2, S) : q0 holds indeed.

Theorem 3 cannot be directly used for type inference, since we do not know
∼Γ in advance. We shall prove below (in Theorem 4) that even if ∼ is not a
subset of ∼Γ , we can “amend” the type environment to get a valid one, by using
the refinement relation � below. Intuitively, τ1 � τ2 means that τ1 is obtained
from τ2 by removing some intersection types. Note that unlike subtyping, the
refinement relation is co-variant in the function type constructor (→).

440 N. Kobayashi and A. Igarashi

Definition 3 (refinement). Let τ0 = (E0, α0) and τ1 = (E1, α1) be closed
types, and let E = E0 ∪ E1. The type τ0 is a refinement of τ1, written τ0 � τ1,
if there exists a binary relation R on Tv(τ1)∪Tv(τ2) such that (i) (τ0, τ1) ∈ R
and (ii) for every (τ ′0, τ

′
1) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that

E(α′0) = σ1 → · · · → σm → q and E(α′1) = σ′1 → · · · → σ′m → q, with
(σ1, σ

′
1), . . . , (σm, σ

′
m) ∈ R�. Here, R� is defined as:

{(
∧
{α1, . . . , αk},

∧
{α′1, . . . , α′k′}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.αiRα′j}.

We write Γ1 � Γ2 if dom(Γ1) ⊆ dom(Γ2) and for every x : τ1 ∈ Γ1, there exists
τ2 such that x : τ2 ∈ Γ2 and τ1 � τ2.

Example 9. Let τ1 be q1 → q2 and τ2 be (q1 ∧ q0) → q2. Then τ1 � τ2 and
τ1 → q0 � τ2 → q0 hold. Note that τ1 ≤ τ2 but τ1 → q0 �≤ τ2 → q0. ��
Theorem 4. Suppose Γ 	B (G, SG) : qB,0. Let ∼ be an equivalence relation on
Tm and (X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · be a fair reduction
sequence, with (X0,U0) = ({S}, {(S, qB,0)}). Let U =

⋃
i Ui and X =

⋃
iXi.

Then, there exists Γ ′ such that Γ ′ � ΓX ,U ,∼ and Γ ′ 	 (G, S) : qB,0,
The proof is given in the extended version [10]. Intuitively, Theorem 4 holds
because, if ∼ is not a subset of ∼Γ , we only get extra reduction sequences,
whose effect is only to add extra type bindings and elements in intersections.
Thus, by removing the extra nodes and edges (using the refinement relation
from right to left), we can obtain a proper type environment.

Example 10. Recall Example 6. Let ∼(2) be ∼(1) ∪{(GG, b), (b, GG)}. In ad-
dition to the reductions in Example 6, we obtain the extra reduction sequence:
(b c, q1) → (GG c, q1) → (a c (GG (b c)), q1) → fail. From the reductions, we
obtain the following type equations:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0∧αG,G,c,q1 → αc,q0 ∧ αc,q1 → q0
αG,G,c,q1 = αG,G,c,q1 ∧ αG,G,c,q1 → αc,q0 ∧ αc,q1 → q1

The part obtained from the extra reduction sequence is underlined. By ignoring
that part, we get the same equations as Example 7, hence obtaining the correct
type environment: {S : q0, F : (q0 ∧ q1)→ q0, G : μα.(α→ (q0 ∧ q1)→ q0)}. ��
Theorem 4 yields the procedure FindCert in Figure 2. The condition ∃Γ ′.Γ ′ 	B
(G, S) : qB,0 ∧ Γ ′ � Γ is in general undecidable because of the presence of
recursive types. Thus, we bound the size (i.e., the number of type constructors)
of Γ ′ by v, and gradually increase the bound. An algorithm to check whether
there exists Γ ′ such that |Γ ′| < v and Γ ′ 	B (G, S) : qB,0 ∧ Γ ′ � Γ is discussed
in Section 3.2. By Theorem 4, we have:

Theorem 5 (relative completeness). If Γ 	B (G, S) : qB,0 for some finite
recursive type environment Γ , then FindCert(G, S, qB,0) eventually terminates
and outputs Γ ′ such that Γ ′ 	B (G, S) : qB,0.
To see the termination, notice that by the condition that ∼ induces a finite
number of equivalence classes, there exists m such that ΓX ,U ,∼ = ΓXm,Um,∼ in
Theorem 4.

Model-Checking Higher-Order Programs with Recursive Types 441

FindCert(G,B) = Rep(G,B, {S}, {(S, qB,0)}, {(S, S)}, 1)
Rep(G,B,X ,U ,∼, v) =

let (X ,U) −→�
∼ (X ′,U ′) in let ∼′ = expandEq(∼,X ′) in

if Γ ′B(G, S):qB,0 for some Γ ′�ΓX ′,U′,∼′ and |Γ ′| ≤ v then return Γ ′

else Rep(G,B,X ′,U ′,∼′, v + 1)

Fig. 2. A type inference procedure. (|Γ | denotes the largest type size in Γ .)

3.2 Type Checking by SAT Solving

We now discuss the sub-algorithm for FindCert, to check whether there exists
Γ ′ such that |Γ ′| ≤ v and Γ ′ 	B (G, S) : qB,0 ∧ Γ ′ � Γ .

We first rephrase the condition |Γ ′| ≤ v∧Γ ′ � Γ . For a set E = {α1 = σ1,1 →
· · ·σ1,m1 → q1, . . . , αn = σn,1 → · · ·σn,mn → qn}, we write E(k) for:

{α(1)
1 = σ

(k)
1,1 → · · ·σ(k)

1,m1
→ q1, . . . , α

(1)
n = σ

(k)
n,1 → · · ·σ(k)

n,mn → qn, . . . ,

α
(k)
1 = σ

(k)
1,1 → · · ·σ(k)

1,m1
→ q1, . . . , α

(k)
n = σ

(k)
n,1 → · · ·σ(k)

n,mn → qn, },

obtained by preparing k copies for each type variable. Here, for σ =
∧
{α1, . . . , α�},

σ(k) represents
∧
{α(1)

1 , . . . , α
(1)
� , . . . , α

(k)
1 , . . . , α

(k)
� }. Clearly, (E,αi) ∼= (E(k), α

(1)
i).

We write Γ (k) for {x : (E(k), α(i)) | x : (E,α) ∈ Γ, 1 ≤ i ≤ k}.
We write E �s E

′ if E is obtained from E′ by removing some elements from
intersections, i.e., if E = {α1 =

∧
S1,1 → · · ·

∧
S1,m1 → q1, . . . , αn =

∧
Sn,1 →

· · ·
∧
Sn,mn → qn} and E′ = {α1 =

∧
S′1,1 → · · ·

∧
S′1,m1

→ q1, . . . αn =∧
S′n,1 → · · ·

∧
S′n,mn

→ qn} with Si,j ⊆ S′i,j for every i, j. It is pointwise
extended to Γ �s Γ

′ by: Γ �s Γ
′ ⇐⇒ ∀x : (E,α) ∈ Γ, ∃x : (E′, α) ∈ Γ ′.E �s E

′.
Then, Γ ′ � Γ is equivalent to ∃k.Γ ′ �s Γ

(k) (up to renaming of type variables).
Thus, the condition |Γ ′| ≤ v ∧ Γ ′ � Γ in the algorithm can be replaced by
Γ ′ �s Γ

(v) without losing completeness.
To check whether there exists Γ ′ such that Γ ′ 	B (G, S) : qB,0 and Γ ′ �s

Γ (k), we attach a boolean variable to each type binding and each element of
an intersection in Γ (k), to express whether Γ ′ has the corresponding binding or
element. Thus, an annotated type environment is of the form {x1 :b1 τ1, . . . , xm :bm

τm}, where each type equation in τ1, . . . , τm is now of the form:
α =
∧

i∈I1 b1,iα1,i → · · · →
∧

k∈Ik bk,iαk,i → q.
Given an assignment function f for boolean variables, the type environment
f(Δ) is given by:

f(Δ) = {xi : f(ρi) | xi :bi ρi ∈ Δ ∧ f(bi) = true}
f(E,α) = ({α = f(ξ1)→ · · · → f(ξk)→ q | (α = ξ1 → · · · → ξk → q) ∈ E}, α)
f(
∧

i∈I biαi) =
∧
{αi | i ∈ I, f(bi) = true}

Let Δ be the type environment obtained by attaching boolean variables to Γ (k).
Then, the condition Γ ′ �s Γ

(k) ∧ Γ ′ 	B (G, S) : qB,0 is reduced to: “Is there a
boolean assignment f such that f(Δ) 	B (G, S) : qB,0?” It can be expressed as a
SAT problem as follows. We first introduce additional boolean variables: (i) For

442 N. Kobayashi and A. Igarashi

each rule F �→ λx1. · · ·λxk.t ∈ R, a subterm s of t, a type binding F :b ξ1 →
· · · → ξk → q ∈ Δ, and a type ρ in Δ, we prepare a variable bΔ,x1:ξ1,...,xk:ξk�s:ρ,
which expresses whether f(Δ,x1 : ξ1, . . . , xk : ξk) 	B s : f(ρ) should hold. (ii) For
each pair (ρ1, ρ2) of types occurring in Δ, we introduce bρ1≤ρ2 , which expresses
whether f(ρ1) ≤ f(ρ2) should hold. Now, the existence of a boolean assignment
function f such that f(Δ) 	B (G, S) : qB,0 is reduced to the satisfiability of the
conjunction of all the following boolean formulas. We write F :

∧
j∈{1..n} bjρj ∈ Δ

for F :b1 ρ1, . . . , F :bn ρn ∈ Δ below. For simplicity, we omit type equations E
and identify α and E(α) below.

(i)
∨
{bi | S :bi qB,0 ∈ Δ}.

(ii) b⇒ bΔ,x1:ξ1,...,xk:ξk�t:q
for each F :b ξ1 → · · · → ξk → q ∈ Δ such that R(F) = λx1, . . . , xk.t.

(iii) bΔ′,x:
∧

j∈J bjρj�x:ρ ⇒
∨

j∈J (bj ∧ bρj≤ρ), for each bΔ′,x:
∧

j∈J bjρj�x:ρ.

(iv) bΔ′�a:ρ ⇒
∨
{bq1→···→qk→q≤ρ | δ(a, q) = q1 · · · qk}, for each bΔ′�a:ρ.

(v) bΔ′�t1t2:ρ ⇒
∨
(bΔ′�t1:(

∧
j∈J bjρj)→ρ ∧ (

∧
j∈J (bj ⇒

∨
(bΔ′�t2:ρ′ ∧ bρ′≤ρj)))),

for each bΔ′�t1t2:ρ.

(vi) b(
∧

i∈I biρi)≤(
∧

j∈J bjρ′
j)
⇒
∧

j∈J (bj ⇒
∨

i∈I(bi ∧ bρi≤ρ′
j
)),

for each b(
∧

i∈I biρi)≤(
∧

j∈J bjρ′
j)
.

(vii) bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ ⇒ k = m ∧ q = q′ ∧
∧

i∈{1,...,k} bξ′i≤ξi ,
for each bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ .

The first condition (i) ensures that S :qB,0 ∈ f(Δ). The condition (ii) ensures that
each type binding in f(Δ) is valid (i.e., 	B R : f(Δ)). The next three conditions
(iii)-(v) express the validity of a type judgment f(Δ,x1:ξ1, . . . , xk :ξk) 	B t : f(ρ),
corresponding to the typing rules for variables, constants, and applications. The
last two conditions express the validity of a subtype relation.

By the above construction, there exists a boolean assignment function f such
that f(Δ) 	 (G, S) : qB,0 if and only if the conjunction of the above boolean
formulas is satisfiable. The latter can be solved by using a SAT solver.

Example 11. Recall ΓX (2),U(2),∼(2) in Example 10. By adding it with boolean

variables, we obtain Δ = {S : q0, F : (q0 ∧ q1) → q0, G :b0 τ0, G :b1 τ1)}, where
τi = (b2τ0∧b3τ1)→ (q0∧q1)→ qi for i ∈ {0, 1}. (Here, for the sake of simplicity,
we have added boolean variables only to critical parts.) From the typing of G,
we get the following boolean constraints:

bi ⇒ bΔ′�a x (g g (bx)):qi (for i ∈ {0, 1}) bΔ′�a x (g g (b x)):q0 ⇒ bΔ′�g g:q0∧q1→q0

bΔ′�ax (g g (bx)):q1 ⇒ false bΔ′�g:τ0 ⇒ b2 bΔ′�g:τ1 ⇒ b3
bΔ′�g g:q0∧q1→q0 ⇒ (bΔ′�g:τ0 ∧ (b2 ⇒ bΔ′�g:τ0) ∧ (b3 ⇒ bΔ′�g:τ1))

Here, Δ′ = Δ ∪ {g :b2 τ0, g :b3 τ1, x : q0, x : q1}. The above conditions are satisfied
by f such that f(b0) = f(b2) = true and f(b1) = f(b3) = false. Thus, we get
Γ ′ = f(Δ) = {S : q0, F : (q0 ∧ q1) → q0, G : τ0} where τ0 = τ0 → (q0 ∧ q1) → q0.
We have Γ ′ 	B1 (G2, S) : q0 as required. ��

Model-Checking Higher-Order Programs with Recursive Types 443

4 Applications

This section discusses two applications of μHORS model checking: verification of
(functional) object-oriented programs and that of higher-order multi-threaded
programs. Those programs can be verified via reduction to μHORS model check-
ing. In both applications, the translation from a source program to μHORS is
just like giving the semantics of the source program (in terms of the λ-calculus).
This comes from the expressive power of the model of μHORS model checking
(i.e., μHORS), which is the main advantage of our approach.

4.1 Model-Checking Functional Objects

In this section, we discuss how to reduce verification problems for (functional)
object-oriented programs. The idea is to transform a program into μHORS that
generates a tree representing all the possible action sequences1 of the source
program. The translation is sound and complete in the sense that all and only
action sequences that occur are represented in the tree. Properties that can be
checked include: reachability (i.e., whether program execution reaches certain
program points), order of method invocations, and whether downcasts may fail.
In a full version [10], we give a formal translation from (a call-by-value variant
of) Featherweight Java (FJ) [5] to μHORS.

We use the following classes that represent natural numbers with methods
for addition (add) and predecessors (pred) as a running example. The state-
ment fail; signals a global action that denotes a failure. Method rand non-
deterministically returns a natural number that is equal to or greater than the
argument; � denotes a non-deterministic choice operator. The main expression
to be executed takes a predecessor of a (non-deterministically chosen) non-zero
natural number.

class Nat extends Object {
Nat add(Nat n) { fail; }
Nat pred() { fail; }
Nat rand(Nat n) { return n�new S(this.rand(n)); } }

class Z extends Nat { Nat add(Nat n) { return n; } }
class S extends Nat {
Nat p;

Nat add(Nat n) { Nat p’ = this.p.add(n); return new S(p’); }
Nat pred() { return this.p; } }

// main expression

new Z().rand(new Z()).add(new S(new Z())).pred();

To verify program execution does not fail, we translate the program to a
μHORS that generates the tree representing all the possible global events, like:
br e (br e · · ·). Here, br and e represent non-deterministic branch (caused by

1 The source language has a construct to signal a global action, as well as a non-
deterministic choice operator.

444 N. Kobayashi and A. Igarashi

�) and program termination, respectively. Then, it suffices to check that the
tree does not contain fail by using μHORS model checking.

Translation to μHORS. The main ideas of translation are: (i) to express an
object as a record (or tuple) of functions that represent methods [2], and (ii)
to represent each method in the continuation passing style (CPS) in order to
correctly reflect the evaluation order and action sequences to μHORS. For ex-
ample, an object of class S is expressed by a tuple 〈S add , S pred , S rand〉 of
functions S add , S pred and S rand that represent methods add, pred, and rand

defined or inherited in class S, respectively.2 A function that represents a method
takes an argument that represents “self” and a continuation argument, as well
as ordinary arguments of the method. In general, a method of the form

C0 m(C1 x1, ..., Cn xn) { return e; }
is represented by the λ-term λx1. · · ·λxn.λthis .λk. [[e]]k where k is the continu-
ation parameter and [[e]]k denotes the translation of e, which passes the result
of method execution to k. For example, method add in class S is represented by
non-terminal S add , whose body is

λn.λthis.λk. [[Nat p’ = ...; return new S(p’);]]k

Then, method invocation is expressed as self-application [7]. For example, in-
vocation of add on an S object with a Z object as an argument is expressed
by

S add 〈Z add , Z pred , Z rand〉 〈S add , S pred , S rand〉 k
where k is the current continuation. Note that S add is applied to a tuple that
contains itself.

To deal with fields, each method is further abstracted by values of fields of
this. So, the body of S add is in fact

λp.λn.λthis.λk. [[Nat p’ = ...; return new S(p’);]]k,

where p stands for this.p inside the method body. Although this scheme only
supports field access of the form this.f, field access to any expressions other
than this can be expressed by using “getter” methods. A non-terminal rep-
resenting a method will be applied to initial field values when an object is
instantiated. For example, object instantiation new S(p’) is represented by
〈S add p′, S pred p′, S rand p′〉. By using pattern-matching for λ, method add

in class S is expressed by the following two rules:

S add �→ λ〈pa, pp, pr〉.λ〈na, np, nr〉.λ〈thisa, thisp, thisr〉.λk.
pa 〈na, np, nr〉 〈pa, pp, pr〉 (F k),

F �→ λk′.λ〈p′a, p′p, p′r〉.
k′ 〈S add 〈p′a, p′p, p′r〉, S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉

where F stands for the continuation of the variable definition Nat p’ = ...;.

2 μHORS does not have tuples as primitives but all the tuples can be eliminated.
Tuples as function arguments can be eliminated by currying and there is no function
that returns tuples, thanks to the CPS representation. See the full version for details.

Model-Checking Higher-Order Programs with Recursive Types 445

A global action a such as fail is represented by a tree node a; non-deterministic
choice is by the node br of arity 2. The (translation of the) main expression is given
as the initial continuation a constant function that returns the tree node e of arity
0. So, in order to verify that the program does not fail, it suffices to verify that
the generated tree consists only of nodes br and e.

We address the problem of the lack of subtyping in μHORS as follows. We
represent every object as a tuple of the same length �, where � is the number
of the methods defined in the whole program. If a certain method is undefined,
we just insert a dummy function λx̃.λk.fail in the corresponding position of
the tuple. The dummy function just outputs fail to signal NoSuchMethodError
whenever it is called.

The resulting encoding of an object is well-typed. Let {m1, . . . ,m�} be all
the method names in the program, and {n1, . . . , n�} be their arities. Then, the
encoding of every object would have the same recursive sort κo, given by:

κo = κm1 × · · · × κm�
κmi = κo → · · ·κo︸ ︷︷ ︸

ni

→ κo → (κo → o)︸ ︷︷ ︸
type of continuation

→ o

The source program execution yields a sequence of global actions a1a2 · · · an
if and only if the tree generated by the translation has a path labeled with
a1a2 · · · an (ignoring br). Thus safety property verification of FJ programs is
reduced to μHORS model checking.

4.2 Model-Checking Higher-Order Multi-threaded Programs

This section discusses how to apply the extended HO model checking to ver-
ification of multi-threaded programs, where each thread may use higher-order
functions and recursion. For the sake of simplicity, we discuss only programs
consisting of two threads, whose syntax is given by:

P (programs) ::= M1 ||M2

M (threads) ::= () | a | x | fun(f, x,M) |M1M2 |M1�M2

A program P = M1 ||M2 executes two threads M1 and M2 concurrently, where
M1 andM2 are (call-by-value) higher-order functional programs with side effects.
The expression a performs a global action a, and evaluates to the unit value
(). We keep global actions abstract, so that various synchronization primitives
and shared memory can be modeled. The expression fun(f, x,M) describes a
recursive function f such that f(x) = M . When f does not occur in M , we
write λx.M for fun(f, x,M). We also write let x = M1 in M2 for (λx.M2)M1,
and further abbreviate it to M1;M2 when x does not occur in M2. M1�M2

evaluates M1 or M2 non-deterministically. The formal semantics is given in [10].
The goal of verification is, given a programM and a property ψ on global action
sequences, to check whether all the possible action sequences of M satisfy ψ.

Example 12. Let M be the following thread:

let sync f = lock; f(); unlock; sync f in let cr x = enter; exit in sync cr,

446 N. Kobayashi and A. Igarashi

which models a thread acquiring a global lock before entering a critical section.
We may then wish to verify that the global actions enter and exit can occur
only alternately, as long as lock and unlock occur alternately. ��

We can reduce verification problems for multi-threads to extended HO model
checking problems by transforming a given program to a μHORS that generates
a tree describing all the possible global action sequences. The ideas of the trans-
formation are: (i) transform each thread to CPS (continuation-passing style) to
correctly model the order of actions, as in [9], and (ii) apply each thread to a
scheduler, and let a thread pass the control to the scheduler non-deterministically
after each global action. The translation from programs to μHORS is:

(M1 ||M2)
†=br (Sched (M1

† λx.e) (M2
† λx.e)) (Sched (M2

† λx.e) (M1
† λx.e))

()
†
= λk.λg.k e g x† = λk.λg.k x g fun(f, x,M)

†
= λk.λg.k fun(f, x,M †) g

(M1M2)
†
= λk.λg.M1

† (λf.M2
†λx.f x k) g

(M1�M2)
†
= λk.λg.br (M1

† k g) (M2
† k g) a† = λk.λg.a (br (k e g) (g (k e)))

Here, the non-terminal Sched is defined by the rule Sched x y → x (Sched y),
which schedules x first, passing to it the global continuation Sched y (which will
schedule y next). The terminal symbol br represents a non-deterministic branch.
On the righthand side of the last translation rule, a and e are terminal symbols
of arity 1 and 0 respectively. The program M1 || M2 is translated to a tree-
generating program, which either schedules M1 then M2, or M2 then M1. Apart
from the global action (the last rule), the translation of a thread is essentially
the standard call-by-value CPS transformation except that a global continuation
is passed as an additional parameter. The global action a is transformed to a
tree node a, followed by a non-deterministic branch (expressed by br). The
first branch evaluates the local continuation, while the second branch yields the
control to the other thread by invoking the global continuation g.

By the definition of the transformation above, it should be clear that (i) if
P is simply-typed, then P † is a well-typed μHORS, and (ii) P has a sequence
of global actions a1a2 · · · an if and only if the tree generated by P † has a path
labeled with a1a2 · · · an (with br ignored). Thus, verification of multi-threaded
programs has been reduced to μHORS model checking; see [10] for more details.

Context-bounded model checking Qadeer and Rehof [19] showed that model
checking of concurrent pushdown systems (or multi-threaded programs with
first-order recursion) is decidable if the number of context switches is bounded
by a constant. Our translation given above yields a generalization of the result:
context-bounded model checking of multi-threaded, higher-order recursive pro-
grams is decidable. To obtain the result, it suffices to replace the scheduler Sched
with Sched � given below, which allows only � context switches:

Sched0 x y → e Sched i+1 x y → x (Sched i y)

Then Sched i’s have the following non-recursive types:

Sched2m : σm → σm → o Sched2m+1 : σm+1 → σm → o

Model-Checking Higher-Order Programs with Recursive Types 447

where σ0 = � and σi+1 = (σi → o)→ o. Thus, for the modified encoding P †� , we
have: (i) If P is simply-typed, then P †� is a well-typed μHORS without recursive
types, and (ii) P with context-bound � has a sequence of global actions a1a2 · · · an
if and only if the tree generated by P †� has a path labeled with a1a2 · · · an (with
br ignored). As an immediate corollary of the above properties and the decid-
ability of HORS model checking [15], we obtain that context-bounded model
checking of multi-threaded higher-order programs is decidable.3

5 Implementation and Experiments

We have implemented a prototype model checker RTRecS for μHORS based on
the procedure FindCert described in Section 3. As the underlying SAT solver,
we have used MiniSat 2.2 (http://minisat.se/MiniSat.html). We have also
implemented a translator from FJ programs to μHORS based on Section 4.1.

The implementation is based on the procedure FindCert in Figure 2, except
for the following points. RTRecS first performs an equality-based flow analy-
sis [17] before model checking, and uses it as the equivalence relation ∼. U is also
over-approximated by using the result of the flow analysis; thus, in the current
implementation, the reductions of terms (3rd line in Figure 2) are performed
only for finding a counter-example, without using the rule R-Eq.

Table 1 summarizes the result of preliminary experiments. (For space re-
striction, we omit some results, which are found in [10].) The programs used
for the experiments and the web interface for our prototype are available at
http://www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/. The columns “#lines” and
“#rules” show the number of lines of the source FJ program (if applicable) and
the number of the rules of μHORS. The column “#states” shows the numer
of states of the property automaton. The column “k” shows k of Γ ′ �s Γ (k)

in Section 3.2. The column “#sat” shows the number of sat clauses (i.e., the
number of disjunctive formulas in conjunctive normal form) for the final call of
the SAT solver. The column “time” shows the running time (excluding the time
for translation from FJ to μHORS, which is anyway quite small).
G1 and G2 are from Examples 2 and 3, where the checked property is expressed

by B1 in Example 4. Thread is the μHORS obtained from Example 12. The other
programs were obtained from FJ programs, based on the translation discussed in
Section 4.1, and except for Twofiles, we verified that the programs do not fail
(where the meaning of “failure” depends on each program, as explained below).
Pred is the running example in Section 4. The next six are list-manipulating
programs (implemented as objects), which are small but non-trivial programs.
(In fact, L-filter and L-risers are object-oriented versions of benchmark pro-
grams of the PMRS verification tool [16].) For example, L-filter creates a list
of natural numbers in a non-deterministic manner, filters out 0, and checks that
the resulting list consists only of non-zero elements (and fails if it does not hold).
See [10] for more details.

3 We have considered only programs with two threads, but this restriction can be
easily relaxed by using the same technique as Qadeer and Rehof [19].

http://minisat.se/MiniSat.html
http://www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/

448 N. Kobayashi and A. Igarashi

Table 1. Experimental Results (CPU: Intel(R) Xeon(R) 3GHz, Memory: 8GB). Times
are in seconds.

programs #lines #rules #states k #sat time

G1 – 2 2 1 27 0.001

G2 – 3 2 1 49 0.002

Thread – 9 5 1 38,171 0.580

Pred 21 15 1 1 157 0.005

L-append 20 30 1 1 165 0.006

L-map 43 182 1 1 738 0.235

L-app-map 43 212 1 1 1,546 0.391

L-even 25 87 1 1 249 0.025

L-filter 59 122 1 2 5,964 0.491

L-risers 73 64 1 2 17,419 0.445

Twofiles 28 21 5 2 739,867 13.86

Twofileswas prepared as an example of verification of temporal properties. It
is an object-oriented version of the program that accesses two files: one for read-
only, and the other for write-only [9]. We verify that the read-only (write-only,
resp.) file is closed after some reads (writes, resp.).

Ourmodel checkerRTRecS could successfully verify all the programs.The ver-
ification time and the size of SAT formulas were significantly larger for Twofiles
compared with other programs. The explosion of the size of SAT formulas for
Twofiles is due to the size of the automaton for describing the temporal prop-
erty, which blows up the number of candidates of types to be considered. More
optimizations are necessary for avoiding this problem. The number k was surpris-
ingly small for all the benchmark programs; this indicates that our choice of ∼
based on the equality-based flow analysis provided a good approximation of types.
Overall, the experimental results above are encouraging; we are not aware of other
fully-automated (i.e. requiring no annotations), sound (i.e. no false negatives) ver-
ification tools that can verify all the programs above.

6 Related Work

The model checking of HORS has recently emerged as a new technique for verifi-
cation of higher-order programs [15,9,14,16,13]. Except Tsukada and Kobayashi’s
work [24], however, all the previous studies dealt with simply-typed recursion
schemes, which are not suitable for modeling objects. Tsukada and Kobayashi [24]
studied model checking of untyped HORS and reduced it to a type checking prob-
lem for an infinite intersection type system. The latter problem is however unde-
cidable and they did not provide any realistic procedure for model checking.

Several methods for model-checking functional programs have been proposed
recently [21,9,14,16,25], and some of them [21,14,16] support recursive data struc-
tures (like lists). However, it is not clear how to extend them to support general
recursive types (including negative occurrences of recursive type variables). Fur-
thermore, many of them require annotations [21,25] and are less precise.

Model-Checking Higher-Order Programs with Recursive Types 449

There are previous studies on model checking of object-oriented programs [3,4].
To our knowledge, however, they are based on finite state model checking; Java
programs are either (i) abstracted to finite state models and then finite state
model checkers are used to verify the abstract models, or (ii) directly model
checked, but with an incomplete state exploration. In the former case, because
of the huge semantic gap between object-oriented programs and finite state sys-
tems, a lot of information is lost by the translation from Java programs to mod-
els. In the latter case, a “model checker” is used mainly as a bug detection tool,
instead of a verification tool. In contrast, our method uses μHORS as models,
which are as expressive as source programs. No information is lost by the trans-
lation from FJ to μHORS, and no false alarms can be generated (although the
model checker may not terminate for some valid programs). There are also other
methods for verification or static analysis of object-oriented programs [1,18,23].
In general, they either require human intervention [1] or are fully automated
but less precise than model checking. See [10] for more detailed discussion. Rowe
and Bakel [22] proposed an intersection type system for reasoning about object-
oriented programs, but did not give an automated verification algorithm.

There are many studies on model checking of recursive parallel programs [19,6],
which obtain decidable fragments by restricting synchronization primitives or
applying approximations. It is interesting to see whether each result can be ex-
tended to higher-order, recursive parallel programs (besides context-bounded
model checking discussed in Section 4.2).

Acknowledgments. We thank Noriaki Nakano and anonymous reviewers for
useful comments. This work is partially supported by Kakenhi 23220001.

References

1. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte,
W., Venter, H.: The Spec# Programming System: Challenges and Directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008)

2. Cardelli, L.: A semantics of multiple inheritance. Info. Comput. 76(2/3), 138–164
(1988)

3. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from Java source code. In: ICSE,
pp. 439–448 (2000)

4. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
pathfinder. STTT 2(4), 366–381 (2000)

5. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Prog. Lang. Syst. 23(3), 396–450 (2001)

6. Kahlon, V.: Reasoning about Threads with Bounded Lock Chains. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 450–465. Springer,
Heidelberg (2011)

7. Kamin, S.N., Reddy, U.S.: Two semantic models of object-oriented languages. In:
Gunter, C.A., Mitchell, J.C. (eds.) Theoretical Aspects of Object-Oriented Pro-
gramming, ch. 13, pp. 463–496. The MIT Press (1993)

450 N. Kobayashi and A. Igarashi

8. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

9. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proc. of POPL, pp. 416–428 (2009)

10. Kobayashi, N., Igarashi, A.: Model-checking higher-order programs with recursive
types (2012), An extended version available from
http://www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/

11. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188 (2009)

12. Kobayashi, N., Ong, C.-H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4)
(2011)

13. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and cegar for higher-order
model checking. In: Proc. of PLDI (2011)

14. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. In: Proc. of POPL, pp. 495–508
(2010)

15. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90 (2006)

16. Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proc. of POPL, pp. 587–598 (2011)

17. Palsberg, J.: Equality-based flow analysis versus recursive types. ACM Trans. Prog.
Lang. Syst. 20(6), 1251–1264 (1998)

18. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
Proc. of POPL, pp. 75–86 (2008)

19. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Prog. Lang. Syst. 22(2), 416–430 (2000)

21. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI 2008, pp. 159–169
(2008)

22. Rowe, R., Van Bakel, S.: Approximation Semantics and Expressive Predicate As-
signment for Object-Oriented Programming (Extended Abstract). In: Ong, L. (ed.)
TLCA 2011. LNCS, vol. 6690, pp. 229–244. Springer, Heidelberg (2011)

23. Skalka, C.: Types and trace effects for object orientation. Higher-Order and Sym-
bolic Computation 21(3), 239–282 (2008)

24. Tsukada, T., Kobayashi, N.: Untyped Recursion Schemes and Infinite Intersection
Types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 343–357. Springer,
Heidelberg (2010)

25. Unno, H., Tabuchi, N., Kobayashi, N.: Verification of Tree-Processing Programs via
Higher-Order Model Checking. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461,
pp. 312–327. Springer, Heidelberg (2010)

http://www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/

Counterexample-Guided Precondition Inference�

Mohamed Nassim Seghir and Daniel Kroening

Computer Science Department, University of Oxford

Abstract. The precondition for an assertion inside a procedure is useful
for understanding, verifying and debugging programs. As the procedure
might be used in multiple calling-contexts within a program, the precon-
dition should be sufficiently general to enable re-use. We present an ex-
tension of counterexample-guided abstraction refinement (CEGAR) for
automated precondition inference. Starting with an over-approximation
of both the set of safe and unsafe states, we iteratively refine them until
they become disjoint. The resulting precondition is then necessary and
sufficient for the validity of the assertion, which prevents false alarms.
We have implemented our approach in a tool called P-Gen. We present
experimental results on string and array-manipulating programs.

1 Introduction

Software model checking is a popular technique for program verification. A di-
verse range of tools based on this approach have been developed (e.g., SLAM [1],
BLAST [20], MAGIC [7], SATABS [8] and TERMINATOR [11]) and suc-
cessfully applied to real-world software. The key to effectiveness of these tools
is abstraction, and predicate abstraction [16] is a well-established instance. The
predicate discovery in tools implementing it is driven by counterexample-guided
abstraction refinement [9], commonly known as CEGAR.

Most of the tools above answer the usual verification question: “given an asser-
tion at some program location, is this assertion always valid?” When considering
just a fragment of a program containing an assertion, we can ask a slightly dif-
ferent question: “In which context is the assertion valid?” The code fragment
might be a procedure that is called at different program locations, hence the
computed context should be as general as possible to be reusable at the different
call sites. A simple and straightforward way to infer a precondition is to compute
a conservative abstraction of the set of unsafe states, i.e., those states that can
reach an error, and using its complement as precondition. The problem with
this approach is that an over-approximation of the set of unsafe states might
include safe states as well, resulting in an over-conservative precondition. The
abstraction must then be refined by removing some of the safe states. This can-
not always be performed in an enumerative fashion, as the set of safe states is
often infinite.

� Supported by ERC project 280053, EPSRC project EP/H017585/1, the EU FP7
STREP PINCETTE and the ARTEMIS VETESS project.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 451–471, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

452 M.N. Seghir and D. Kroening

We propose a solution to this problem based on the abstraction (and thus
generalization) of both the set of safe and unsafe states. Our approach is based
on the CEGAR paradigm: starting with an over-approximation of both sets,
we iteratively refine them until they become disjoint. Thus, the resulting pre-
condition is sufficient and also necessary for the validity of the assertion. This
guarantees the absence of false alarms, as the violation of the precondition by
some calling context entails the violation of the assertion within the procedure.
Our contributions are summarized as follows:

– A novel approach to generate exact preconditions, i.e., necessary and suffi-
cient. Thus, the precondition is independent from the calling context. Most
of the approaches in the literature generate preconditions that are only suffi-
cient, thus the precondition often has to be re-adjusted if it is not satisfied by
some calling context. In our case, a violation of the precondition will result
in a real error, and we thus avoid false alarms.

– An implementation of the approach using ingredients that are common to
most CEGAR-based verification tools. Thus, our technique represents a
generic scheme for extending other tools to infer preconditions.

– A simple predicate inference mechanism for algorithms that manipulate ar-
rays used on top of the standard predicate refinement procedure. This simple
technique generates predicates that are often adequate to obtain the right
program invariant and subsequently obtain the desired precondition.

The remainder of this paper is organized as follows: Section 2 illustrates our
approach by means of examples. Section 3 introduces background material. Sec-
tion 4 describes our approach for precondition inference and the refinement tech-
nique used in the CEGAR loop. Section 5 presents experimental results and
Section 6 discusses related work.

2 Examples

Consider the program copy given in Figure 1(a). It takes as parameters two
arrays a and b and the length b l of array b. The program copies the elements of
array b in the range {0, . . . , b l − 1} to the corresponding range in array a. The
access to array a is safe if the index expression is in the range {0, . . . , a l − 1},
where a l is the length of array a. It is trivial to see that the lower bound is
not violated. Let us then focus on the upper bound. The safety condition with
regards to the upper bound is expressed by the assertion at location �2. Our goal
is to find a precondition for procedure copy that guarantees that this assertion is
never violated. The precondition must be expressed only using program elements
visible at the entry-point of the procedure, i.e., it must be a predicate over the
procedure parameters and the global variables. The precondition should also be
exact, i.e., it should neither be too strong nor too weak.

Transformation to reachability. We will now illustrate our approach to precon-
dition inference. We use standard notation and formally represent programs in

Counterexample-Guided Precondition Inference 453

void copy(int a[], int b [], int b l)
{

int i ;
	0 : i = 0;
	1 : while(i < b l)

{
	2 : assert(i < a l);

a[i] = b[i];
i++;

}
}

void copy 2(int a [], int b [])
{

int i ;
	0 : i = 0;
	1 : while(b[i] != 0)

{
	2 : assert(i < a l);

a[i] = b[i];
i++;

}
}

(a) (b)

Fig. 1. Two simple programs that copy a range of elements from array b to array a. In
procedure copy, the limit of the range to be copied is explicitly given via b l. In copy 2,
the range is implicitly delimited via the sentinel value 0.

terms of transition constraints over primed and unprimed program variables.
The set of transition constraints corresponding to program copy (Figure 1(a)) is
given in Figure 2(a) and the associated control flow graph is given in Figure 2(b).
The program counter is modeled explicitly using the variable pc, which ranges
over the set of control locations. The assertion in the original program is replaced
with a conditional branch whose condition is the negation of the assertion and
whose target is the error location �E . The special location �F is the final location,
and has no successor.

Observe that the error location is only reachable if i ≥ a l evaluates to true
at location �2. The final location �F is reached in paths without error. The
transition τ0 corresponds to the initialization of variable i. The transition τ1
represents the entrance to the loop and τ2 the exit from the loop. The assertion
is modeled via the transition τ3, which conditionally alters the control flow to
the error location. Finally, the transition τ4 models the remainder of the loop
body after the assert statement. Arrays a and b are represented by uninterpreted
function symbols, and a[x := e] denotes function update (the expression is equal
to a where the xth element has been replaced by e).

Over-approximating the unsafe states. It is in general not possible to enumerate
all the traces of a program. In our example, the program contains a cycle 〈τ1; τ4〉
(Figure 2(b)) that can be unfolded an indefinite number of times, leading to
an infinite number of traces. A solution to this problem is to provide a back-
wards inductive invariant : an invariant that includes all error states and which
is inductive under the application of wp1. Predicate abstraction [16] is a suitable

1 wp(τ, ϕ) is the weakest precondition for the formula ϕ with respect to statement
(transition constraint) τ . It extends to a sequence of statements (trace) π.

454 M.N. Seghir and D. Kroening

τ0 : pc = 	0 ∧ i′ = 0 ∧ pc′ = 	1
τ1 : pc = 	1 ∧ i < b l ∧ i′ = i ∧ pc′ = 	2
τ2 : pc = 	1 ∧ i ≥ b l ∧ i′ = i ∧ pc′ = 	F
τ3 : pc = 	2 ∧ i ≥ a l ∧ i′ = i ∧ pc′ = 	E
τ4 : pc = 	2 ∧ i < a l ∧ a′ = a[i := b(i)]

∧i′ = i+ 1 ∧ pc′ = 	1

	0

	1

	F

τ2

	2

	E

τ3

τ1

τ0
τ4

(a) (b)

Fig. 2. Transition constraints for program copy (a) and the corresponding graphical
representation (b) or the control flow graph

technique for building such an invariant. The key challenge when applying pred-
icate abstraction is the choice of predicates.

Naive approaches for inferring predicates, e.g., based on weakest precon-
ditions, often diverge [22]. In our example, suppose that we first obtain the
error path τ0; τ1; τ3 from the abstract model. The analysis of this path via
wp, i.e., wp(τ0; τ1; τ3, pc = �E), gives us the formula 0 < b l ∧ 0 ≥ a l. We
add the predicates 0 < b l and 0 ≥ a l and set the precondition ϕ to be
0 ≥ b l ∨ 0 < a l. If we unfold the loop once more we obtain the error trace
τ0; τ1; τ4; τ1; τ3. We have wp(τ0; τ1; τ4; τ1; τ3, pc = �E) ≡ 1 < b l ∧ 1 ≥ a l.
This new trace is not covered by the previous one, as it is still feasible un-
der our precondition ϕ. We then update ϕ to rule out the new trace to obtain
(0 ≥ b l ∨ 0 < a l) ∧ (1 ≥ b l ∨ 1 < a l). After unfolding the loop j times, we
obtain wp(τ0; 〈τ1; τ4〉j ; τ1; τ3, pc = �E) ≡ j < b l ∧ j ≥ a l and the precondition

ϕ ≡
∧
j>0

j ≥ b l ∨ j < a l .

We can continue to unfold the loop, every time generating a new trace that
is not covered by the previous ones. To address this divergence, we go beyond
the syntactic approach to predicate discovery and use techniques to infer more
general facts. For example, by linearly combining the predicates 0 < b l and
0 ≥ a l (from the first iteration) we deduce a l < b l. This new predicate is a
backwards invariant at location �0 with respect to the program, i.e.,

(
∨
j>0

wp(πj , pc = �E)) ⇒ (pc = �0 ⇒ a l < b l) .

Thus, the predicate a l < b l over-approximates the set of states that reach the
error location. The precondition ϕ is then simply chosen to be a l ≥ b l, i.e., the
complement of that set.

Counterexample-Guided Precondition Inference 455

Over-approximating the Safe States. When over-approximating the set of states
that reach the error location, we always include all error states but may include
some safe entry states as well. It means that the precondition, which is the com-
plement of the computed set, may exclude safe traces and is thus unnecessarily
strong. To tune the precision of the abstracted set of error states, our new algo-
rithm also over-approximates the set of entry states that reach the final location
�F (the safe states). We then check the intersection of this set with the (over-
approximation of the) states that reach the error location. If the intersection is
empty, we conclude that our current set of unsafe states does not include any
safe state.

As we did for the error location, we obtain the over-approximation of the set
of states reaching the final location given as the state formula a l ≥ b l∨0 ≥ b l.
The intersection of this set with the set of unsafe states (a l < b l) is obtained
by forming the conjunction:

(a l ≥ b l ∨ 0 ≥ b l) ∧ (a l < b l) .

The formula above has satisfying assignments, which means that the two sets
are not disjoint. As a l ≥ b l and a l < b l are inconsistent, the intersection can
only be in 0 ≥ b l. Thus, from 0 ≥ b l we can reach both the error and final
location. This outcome is caused by insufficient precision of the abstraction. Let
us consider two traces, πE = τ0; τ1; τ3 leading to the error location, and πF =
τ0; τ2 leading to the final location. We have wp(πE , pc = �E) ≡ 0 < b l ∧ 0 ≥ a l
and wp(πF , pc = �F) ≡ 0 ≥ b l. Thus, πE is not feasible from states with 0 ≥ b l,
which means that the set of unsafe states is not precise enough. It is then refined
by adding the predicate b l > 0, which makes the two sets disjoint. The final
precondition ϕ is given by

0 ≥ b l ∨ a l ≥ b l .

The precondition ϕ is now necessary and sufficient, meaning that it does not
allow any state to reach the error location and does not exclude any state that
reaches the final location.

Inferring quantified preconditions. Let us consider a slightly modified version
of the previous program copy, which is given in Figure 1(b). In this example,
the range of elements to be copied from array b to a is not explicit, as it is
indicated via a sentinel value (0 in the example). After going through the different
steps described for the previous example, our method succeeds in inferring the
precondition

(b[0] = 0) ∨ (∃x ∈ {0, . . . , a l}. b[x] = 0) .

Observe that the precondition inferred by the algorithm is not equivalent to
∃x ∈ {0, . . . , a l}. b[x] = 0; it is weaker. This is due the possibility of skipping
the loop when b[i] �= 0 is false, regardless of the value of a l. This implies that runs
from states in which b[0] = 0 are safe. This case is expressed via the first disjunct
of the precondition above. We will re-visit the second example in Section 4 to
illustrate our refinement procedure.

456 M.N. Seghir and D. Kroening

3 Preliminaries

In this section, we provide background on counterexample-guided abstraction
refinement for predicate abstraction.

Program. To aid the formal presentation, we assume that a program is given as
a set T C of transition constraints τ . A transition constraint τ is a formula of the
form

g(X) ∧ x′1 = e1(X) ∧ . . . ∧ x′n = en(X) (1)

where X = 〈x1, . . . , xn〉 is a tuple (vector) of program variables, which include
the program counter pc. In (1), unprimed variables refer to the program state be-
fore performing the transition and primed ones represent the program state after
performing the transition. Formula g(X) is called the guard and the remaining
conjuncts of τ are the update or assignment.

Representing States Symbolically. Let us write V = {x1, . . . , xn} for the set
of variables of the program (including the program counter pc). For a variable
x ∈ V , Type(x) is the type (range) of x and σ(x) is a valuation of x such that
σ(x) ∈ Type(x). The variable pc ranges over the set of all program locations.
Given X (a tuple of the variables), a program state is the valuation σ(X) =
〈σ(x1), . . . , σ(xn)〉.

A set of program states S is represented symbolically by means of the char-
acteristic function of S. The formula ϕ represents the set of all those states that
correspond to a satisfying assignment of ϕ, i.e., {σ(X) |ϕ[σ(X)/X]}2. We will
use sets and their characteristic functions interchangeably. Symbolic states (for-
mulas) are partially ordered via the implication operator ⇒, i.e., ϕ′ ≤ ϕ means
ϕ′ ⇒ ϕ.

State transformer. For a formula ϕ, the application of the operator pre with
respect to the transition constraint τ returns a formula representing the set of
all predecessor states of ϕ under the transition constraint τ , formally

pre(τ, ϕ(X)) ≡ g(X) ∧ ϕ[〈e1(X), . . . , en(X)〉/X] .

For the whole program T C, pre is given by

pre(ϕ(X)) ≡
∨

τ∈T C
pre(τ, ϕ(X)) .

For a trace π = τ1; . . . ; τn, we have

pre(τ1; . . . ; τn, ϕ) = pre(τ1, . . . pre(τn−1, pre(τn, ϕ))) .

If pre(π, ϕ) is not equivalent to false, then the trace π is feasible.

2 The notation f [Y/X] represents the expression obtained by replacing all occurrences
of every variable from the vector X in f with the corresponding variable (value) from
Y . It naturally extends to a collection (set or list) of expressions.

Counterexample-Guided Precondition Inference 457

(Un)Safe states To ease the presentation, let us assume that the program con-
tains a single error location �E and a single final location �F (�E �= �F).

3 We
denote by bad the set of error states, which is simply given by pc = �E. Similarly,
we call final the set of final states, which is represented by pc = �F .

The set of safe states safe contains all states from which a final state is reach-
able. Formally,

safe ≡ lfp(pre, final) (2)

where lfp(pre, ϕ) denotes the least fixpoint of the operator pre above ϕ. Similarly,
unsafe is the set of all states from which an error (bad) state is reachable:

unsafe ≡ lfp(pre, bad) . (3)

The least fixpoints represent inductive backwards invariants, which we denote
by ψbad and ψfinal, respectively. The invariants are inductive under pre, i.e.,

– bad ≤ ψbad and final ≤ ψfinal

– pre(ψbad) ≤ ψbad and pre(ψfinal) ≤ ψfinal

In the absence of non-determinism in the program, the sets of unsafe and safe
states are disjoint, and we have

unsafe ∧ safe ≡ false .

Predicate Abstraction. Predicate abstraction consists of approximating a state
ϕ with a formula ϕ′ constructed as a Boolean combination of predicates taken
from a set P . Here, the term approximation means that any model that satisfies
ϕ must satisfy ϕ′. Thus, a suitable approximation is obtained via the logical
implication “⇒”, i.e., ϕ′ is the strongest Boolean combination built up from
predicates taken from the finite set P such that ϕ⇒ ϕ′.

Defining the abstraction function α as being the strongest Boolean combina-
tion of predicates in P is not practical because of the exponential complexity
of the problem. Therefore, we use a lightweight version of α that consists of
building the strongest conjunction of predicates in P :

α(ϕ) ≡
∧

p | p ∈ P ∧ ϕ⇒ p .

Let us have D� the domain of formulas built up from the finite set of predicates
P . The domain D� is not closed under pre, therefore, we define pre� under which
D� is closed. Let us associate the concretization function γ : D� → D to α, we
simply choose γ to be the identity function. Functions α and γ form a Galois
connection with respect to ≥ (⇐) being the partial order relation for both D
and D�. Formally speaking

∀x ∈ D ∀y ∈ D�. α(x) ≥ y ⇔ x ≥ γ(y) .

3 In case of multiple assertions, we add an edge from each assertion (guarded with
the negation of the assertion) to 	E. Similar treatment can be applied in the case of
multiple return locations.

458 M.N. Seghir and D. Kroening

Hence, we define pre� : D� → D�, the abstract version of pre, as follows:

pre�(ϕ) ≡ α(pre(γ(ϕ))) ,

and thus

pre�(τ, ϕ) = α(pre(τ, ϕ)) =
∧

p | p ∈ P ∧ pre(τ, ϕ)⇒ p .

As seen for pre, the operator pre� also extends to traces. Henceforth, whenever
we write pre�P we mean that the abstraction (image) is computed by considering
predicates from the set P .

The lattice of abstract states (L,⇒) is finite as the set of predicates is finite.
Therefore, lfp(pre�, bad) (lfp(pre�, final)), the least fixpoint for pre� above bad
(final) in L, is computable.

4 Precondition Inference

The precondition inference problem can be described as the computation of a
formula ϕ such that:

lfp(pre, bad) ∧ ϕ ≡ false (4)

The fixpoint for the preimage-operator pre is in general not computable, we thus
compute the least fixpoint for pre�. As we have lfp(pre, bad) ≤ lfp(pre�, bad), it is
sufficient to show that

lfp(pre�, bad) ∧ ϕ ≡ false

to conclude the validity of (4). The precondition ϕ can then be simply chosen as
the negation of lfp(pre�, bad) projected on the entry location. One problem with
this approach is that due to the abstraction we may exclude some of the safe,
terminating runs. A second challenge is the choice of predicates. We have seen in
the illustrative example that a bad choice of predicates can lead to divergence.
In what follows, we present a new CEGAR-based algorithm for precondition in-
ference that guarantees that all safe executions are included in the precondition.
We also propose a predicate discovery mechanism that goes beyond the approach
based on weakest precondition.

4.1 Counterexample-Guided Precondition Inference

Our goal is to increase the precision of the set of unsafe states unsafe�, making
it free of safe states. This is non-trivial, since we cannot enumerate safe states,
as there are in general infinitely many. Hence, we need to construct the set of
safe states by over-approximating them as well. Our idea consists of building
abstractions of increasing precision of both the set of safe and unsafe states until
they become disjoint. We propose an implementation of this idea by extending
the classical CEGAR paradigm, where its main ingredients are instantiated in
our setting with the following:

Counterexample-Guided Precondition Inference 459

(a) (b) (c)

Fig. 3. Illustration of the main phases of algorithm InferPrecond. Dashed arrows indi-
cate that the trace is spurious.

– Abstraction: we abstract both the set of safe and unsafe states.
– Counterexample: in our context, a counterexample is two abstract traces,

a safe one and an unsafe one, beginning with a common initial state.
– Counterexample simulation: checks if the two traces can be concretized

to effectively share a common concrete initial state. This is only possible in
the presence of non-determinism in the program. The check is carried out by
computing the weakest precondition for each trace. Hence, the counterex-
ample is spurious if the two preconditions are disjoint.

– Refinement: the spurious counterexample is ruled out by adding predicates
that refine the abstraction such that the two traces cannot share their initial
state.

– Termination criterion: the iterative process stops when the two abstrac-
tions (of safe and unsafe states) are disjoint.

We present algorithm InferPrecond (Algorithm 1), which implements a counter-
example-guided abstraction refinement loop for precondition inference. The al-
gorithm starts with an over-approximation of both the set of safe and unsafe
states (lines 5 and 6), denoted by safe� and unsafe�, respectively. It iteratively
refines them until their projections onto the initial location become disjoint, i.e.,
(safe� ∧ unsafe� ∧ pc = �0) ≡ false (Figure 3(c)). The computed precondition is
then the set of safe states projected onto the initial location �0 (line 8 of the
algorithm).

The refinement process is applied whenever safe� and unsafe� intersect, i.e.,
when we have a bad trace and a safe one sharing their initial state. In Figure 3(a),
safe� and unsafe� intersect, but the analysis reveals that the initial state is in
reality in safe, thus the (dashed) trace in unsafe� is the one that is spurious.
After refining unsafe�, we obtain the abstraction in Figure 3(b). The two sets
still intersect, however this time the spurious trace is in safe�, as the initial state
belongs to unsafe. The refinement process is carried out by calling the procedure
Refine at line 14. This procedure takes as parameters two traces, one leading to
the error location and another one leading to the final location, and returns a
new set of predicates. We describe this procedure in detail in the next section.

460 M.N. Seghir and D. Kroening

Algorithm 1. InferPrecond

Input: set of transition constraints (program) T C
Output: formula (precondition)

1 Var P : set of predicates;

2 Var safe�, unsafe�: formula;
3 P := ∅;
4 while true do

5 unsafe� := lfp(pre�P , bad);

6 safe� := lfp(pre�P , final);

7 if (safe� ∧ unsafe� ∧ pc = 	0) ≡ false then

8 return (safe� ∧ pc = 	0);

9 Let πE and πF two traces s.t. pre�P (πE, bad) ∧ pre�P (πF , final) �≡ false;
10 if pre(πE, bad) ∧ pre(πF , final) �≡ false then
11 print(”warning: non-determinism in program”);
12 exit;

13 else
14 P := P ∪ Refine(πE, πF);

Proposition 1. The precondition ϕ computed by algorithm InferPrecond
(a) guarantees the non-reachability of bad states and (b) the non-exclusion of
safe terminating traces.

Proof. (a) ϕ guarantees non-reachability of bad states. As computed by algo-
rithm InferPrecond, ϕ ≡ safe� ∧ pc = �0. Let us assume that there are states in
ϕ from which a bad state can be reached. Thus, there is an error trace πE such
that

pre(πE , bad) ∧ safe� ∧ pc = �0 �≡ false (5)

We also know that
pre(πE , bad)⇒ unsafe� , (6)

as lfp(pre, bad) ≤ lfp(pre�, bad). From (5) and (6) we obtain

unsafe� ∧ safe� ∧ pc = �0 �≡ false ,

which contradicts the return condition at line 7 of algorithm InferPrecond.

(b) ϕ does not exclude safe terminating traces. Let us assume that ϕ excludes
a given safe terminating trace πF from �0 to �F , which means that

pre(πF , final) ∧ safe� ≡ false

or
pre(πF , final)⇒ ¬safe� . (7)

We also have
pre(πF , final)⇒ safe� , (8)

Counterexample-Guided Precondition Inference 461

as lfp(pre, final) ≤ lfp(pre�, final). From (7) and (8) we conclude pre(πF , final) ≡
false, which means that such a trace πF is not feasible. ��

As program model checking is not decidable, we have no guarantee for termi-
nation of algorithm InferPrecond. However, whenever it terminates, the previous
proposition holds.

4.2 Refinement for Precondition Inference

The main goal of refinement is to generate the minimal possible set of predicates
that rule out a maximum number of spurious traces. Hence, the generated pred-
icates must be as general as possible. We present procedure Refine, which takes
as parameters two traces, one trace πE leading to the error location, and another
one πF leading to the final location. The returned result is a set of predicates P
that enables the verifier to show the following:

pre�P (πE , bad) ∧ pre�P (πF , final) ≡ false .

The procedure Refine relies on several other procedures: atoms, MinCorePrio and
ExtractNewPreds. The procedure atoms is simply defined as

atoms(ϕ1 ∧ . . . ∧ ϕn) = {ϕ1, . . . , ϕn} .

It takes a conjunction ϕ and returns the set of its conjuncts.
The procedure MinCorePrio takes three arguments. The first one is a conjunc-

tion ϕ, the second one is an arbitrary formula ϕ′ and the third one is a list L of
formulas. As precondition, ϕ and ϕ′ must be inconsistent. The procedure com-
putes a minimal core of the conjunction ϕ that is inconsistent with the second
argument ϕ′. There is usually more than one core that can be returned. This
choice can be controlled by means of L, the third argument. MinCorePrio gives
priority to the set of formulas in L to appear in the resulting minimal core, as
illustrated by Algorithm 3. The list L is sorted in ascending order according the
priority of its elements. The algorithm proceeds by eliminating irrelevant pred-
icates (conjuncts) of lesser priority (front) first. A predicate is irrelevant if its
removal does not have an impact on the inconsistency of the new conjunction
with ϕ′. The lowest priority is given to basic predicates in ϕ by storing them in
the front of the list L (line 6). The consistency test at line 12 of the algorithm
is carried out by calling a theorem prover.

Finally, procedure ExtractNewPreds implements a heuristic for predicate infer-
ence. It takes a conjunction as argument and returns a list of predicates sorted
in ascending order of their likely importance to the convergence of the main CE-
GAR loop. We will describe this procedure in more details later in this section.

Back to the main procedure Refine, we see that it first computes the weakest
precondition (pre) for each of the two traces taken as parameters (lines 4 and 5)
to obtain formulas ψE and ψF . It then applies ExtractNewPreds to augment ψE

and ψF with new facts induced by the two formulas (lines 6, 7, 9, 10). Finally,
the minimal unsatisfiabile cores of ψE and of ψF are computed (lines 8 and 11)

462 M.N. Seghir and D. Kroening

Algorithm 2. Refine

Input: two traces πE and πF

Output: set of predicates P
1 Var P (initially empty), SE, SF : set of formulas;
2 Var Pnew : list of formulas;
3 Var ψE , ψF : formula;
4 ψE := pre(πE , bad);
5 ψF := pre(πF , final);
6 Pnew := ExtractNewPreds(ψE);
7 ψE := ψE ∧ (

∧
p∈Pnew

p);

8 ψE := MinCorePrio(ψE , ψF , Pnew);
9 Pnew := ExtractNewPreds(ψF);

10 ψF := ψF ∧ (
∧

p∈Pnew
p);

11 ψF := MinCorePrio(ψF , ψE , Pnew);
12 P := P ∪ atoms(ψE) ∪ atoms(ψF) ;
13 Let πE = τ1; . . . ; τi;
14 Let πF = τ ′

1; . . . ; τ
′
j ;

15 Let SE =
⋃i

k=1{ϕk} s.t. ϕk ≡ pre(τk; . . . ; τi, bad);

16 Let SF =
⋃j

k=1{ϕ
′
k} s.t. ϕ′

k ≡ pre(τ ′
k; . . . ; τ

′
j , final);

17 foreach k in range {1, . . . , i− 1} do
18 Pnew := ExtractNewPreds(ϕk+1);
19 ϕk+1 := ϕk+1 ∧ (

∧
p∈Pnew

p);

20 ψE := MinCorePrio(ϕk+1[X
′/X], τk ∧ ¬ψE , Pnew [X

′/X]);
21 P := P ∪ atoms(ψE[X/X ′]) ;

22 foreach k in range {1, . . . , j − 1} do
23 Pnew := ExtractNewPreds(ϕ′

k+1);
24 ϕ′

k+1 := ϕ′
k+1 ∧ (

∧
p∈Pnew

p);

25 ψF := MinCorePrio(ϕ′
k+1[X

′/X], τ ′
k ∧ ¬ψF , Pnew [X

′/X]);
26 P := P ∪ atoms(ψF [X/X ′]) ;

27 return P ;

and conjuncts appearing in either of them are added to the set of predicates
(line 12).

In the next phase of the algorithm, the two formulas ψE and ψF are used to
guide the inference of new predicates from states (ϕk’s and ϕ′k’s) belonging to
the error trace πE (first loop, lines 17–21) and to the safe one πF (second loop,
lines 22–26). Along each trace and for each triple of pre-state ψ, transition τ and
post-state ϕ, we want to compute the minimal core ϕm of ϕ augmented with facts
inferred via ExtractNewPreds such that pre(τ, ϕm)⇒ ψ, i.e., ϕm[X ′/X]∧τ∧¬ψ ≡
false. This amounts to computing the minimal core of ϕm[X ′/X] with respect
to τ ∧ ¬ψ, as performed in lines 20 and 25 of the algorithm.

The procedure ExtractNewPreds is applied to the states of πE and πF , i.e., the
ϕk’s and ϕ′k’s of each trace. These states are obtained via a backward analysis
of πE and πF during the initial phase of the algorithm (lines 4 and 5). As
mentioned earlier, the operator pre (also wp in our case) is limited in inferring

Counterexample-Guided Precondition Inference 463

Algorithm 3. MinCorePrio

Input: ϕ a conjunction of formulas, ϕ′ a formula, L a list of formulas
Output: a conjunction of formulas

1 Var ϕ′′: formula;
2 Var S: set of formulas;
3 Var L,L′: list of formulas;
4 S := atoms(ϕ);
5 L′ := L;
6 add elements of S to L′ in the front;
7 add elements of L to S;
8 foreach formula ϕL ∈ L′ do
9 if S − {ϕL} = ∅ then

10 return ϕL;

11 ϕ′′ :=
∧

ϕ | ϕ ∈ S − {ϕL};
12 if ϕ′′ ∧ ϕ′ ≡ false then
13 S := S − {ϕL};

14 ϕ′′ :=
∧

ϕ | ϕ ∈ S;

15 return ϕ′′;

relevant predicates, as it fails to generalize. Therefore, procedure MinCorePrio
biases the computation of the minimal core by giving priority to predicates
found via ExtractNewPreds, which are more likely to be general.

4.3 Predicate Inference

The procedure ExtractNewPreds plays a key role in our approach. It is based
on a system of inference rules in the spirit of [23], where an interpolation pro-
cedure [19] is used to find predicates, followed by the application of a system
of inference rules to deduce range predicates. In [23], the interpolant provides a
concise description of the cause of infeasibility of traces, thus the base formula is
already minimal. However, the application of the inference rules may introduce
redundancies. In our case, MinCorePrio is applied after inferring the new facts,
hence, it prevents the inundation of the system with irrelevant predicates. This
is not just an optimization: during our experiments, this step has often made
the difference between termination and divergence. The system of inference rules
that we are using is given in Figure 4.

Predicate inference system. Divergence of the refinement process is often caused
by predicates over variables that are increasing or decreasing (counters). This
leads to the generation of sequences of constants when loops are effectively un-
folded. Another cause of divergence are arrays with counter variables in their
index expressions. A simple solution, advocated by [22], is to (initially) discard
such predicates.

464 M.N. Seghir and D. Kroening

c1.e+ e1 ≥ 0 , −c2.e+ e2 ≥ 0

c2.e1 + c1.e2 ≥ 0
(elim)

x− e ≥ 0 , −x + e ≥ 0

x = e
(eq)

(c1, c2 > 0)

ϕ(x) , x = e

ϕ(e)
(sub)

ϕ(i), ¬ϕ(j) (i < j)

∃x ∈ {i, . . . , j}. ϕ(x), ∃x ∈ {i, . . . , j}. ¬ϕ(x)
(exist)

∃x ∈ {i, . . . , j}. ϕ(x), j ≤ k

∃x ∈ {i, . . . , k}. ϕ(x)
(ext r)

∃x ∈ {i, . . . , j}. ϕ(x), k ≤ i

∃x ∈ {k, . . . , j}. ϕ(x)
(ext l)

ϕ(i)

∀x ∈ {i}. ϕ(x)
(univ)

∀x ∈ {j, . . . , i}. ϕ(x) , ∀x ∈ {i+ 1, . . . , k}. ϕ(x)

∀x ∈ {j, . . . , k}. ϕ(x)
(link)

i and j are integer variables appearing
in a linear index expression in ϕ (¬ϕ).

Fig. 4. Rules for predicate inference

The aim of the system of rules of Figure 4 is to eliminate likely diverging
sequences of predicates whenever possible by inferring new predicates that are
more general. Among the symbols used in the system, e refers to linear terms, x
is a variable and ϕ is a formula. The rule elim linearly combines two constraints
to eliminate common variables. Rule eq infers equality constraints, which might
be used by rule sub to substitute occurrences of variables with equal terms.
The rule univ builds a quantified formula and link bridges the intervals of two
quantified formulas. Finally, the rule exist produces two existentially quantified
formulas and the rules ext r and ext l extend the interval of an existentially
quantified formula from the right and the left, respectively.

The procedure ExtractNewPreds (Algorithm 4) applies the rules of the infer-
ence system to the conjuncts of the formula given as argument and returns a
list of predicates sorted in ascending order of priority. A predicate p1 has higher
priority than predicate p2 if p1 is produced by a rule where p2 appears as one of
its antecedents. The procedure starts with the list of basic predicates that are
extracted from the formula given as argument. These predicates have the lowest
priority. It then keeps applying the rules to predicates in the list until saturation,
i.e., until no new predicates are produced. The code fragment from line 13 to 17
stores the new predicates according to their priority, i.e., in a position of the list
that is beyond the positions of the associated antecedents.

The algorithm terminates as the two rules elim and eq are only applied to
basic predicates (condition at line 12). Thus, they will be called a finite number
of times generating a finite number of linear constraints. All other rules will
generate a finite number of predicates, as they all depend on linear constraints.
We furthermore do not consider nested array expressions. The order in which
the rules are applied does not matter.

Illustration. Let us illustrate the application of procedure Refine to program
copy 2 of Figure 1(b). We call Refine with the error trace 〈�0, �1, �2, �1, �2, �E〉
and the safe trace 〈�0, �1, �2, �1, �F 〉, which both enter the loop in program copy 2

Counterexample-Guided Precondition Inference 465

Algorithm 4. ExtractNewPreds

Input: formula ϕ
Output: list of formulas

1 Var S, Sb: set of formulas;
2 Var L,L′: list of formulas;
3 Var R: list of inference rules;
4 Sb := atoms(ϕ);
5 insert elements of Sb in L′;
6 R := {ELIM,EQ,UNIV,SUB, LINK,EXIST,EXT L,EXT R};
7 repeat
8 L := L′;
9 foreach rule r ∈ R do

10 Let k be the number of premises of r;

11 foreach tuple t ∈ Lk do
12 if (r �∈ {ELIM,EQ}) ∨ (∀i ∈ {1, . . . , k}. ti ∈ Sb) then
13 S := r(t);
14 Let pos = max{posj | j ∈ {1, . . . , k} ∧ L[posj] = tj};
15 foreach predicate p ∈ S do
16 if p �∈ L′ then
17 insert p after position pos in L′;

18 until L = L′;
19 return L;

once. The analysis of these two traces is illustrated in Figure 5. The upper
table shows results for the error trace and the lower one for the safe trace. In
both tables, the first column contains the suffix of the trace that is analyzed
backwards using the weakest precondition. The result is shown in the second
column. Finally, the third column shows the new predicates that are inferred
using the information from the second column. The superscript associated with
each predicate is its priority. At the initial location, which corresponds to the
second line in both tables, the predicate ∀x ∈ {0, . . . , a l}. b[x] �= 0 is the one
with the highest priority for the error trace. It is inferred via the application of
the rule univ followed by sub.

For the safe trace, we have two predicates of the highest priority, namely ∃x ∈
{0, . . . , a l}. b[x] �= 0 and ∃x ∈ {0, . . . , a l}. b[x] = 0. They are both generated by
applying rules exist and ext r successively. The refinement procedure selects
the second predicate as it is the one which separates the two initial states. The
selected predicates are underlined in both tables. Going one step backward from
the initial location �0 to location �1 in both traces, the selected predicates are
∀x ∈ {i, . . . , a l}. b[x] �= 0 and ∃x ∈ {i, . . . , a l}. b[x] = 0 for the error and
safe trace, respectively. These are the predicates on which the ones selected
at the initial location �0 depend. One can assert that these two predicates are
backwards invariants with respect to the cycle 〈�1, �2, �1〉. They thus cover an
infinite number of traces.

466 M.N. Seghir and D. Kroening

Error trace WP New predicates

�1, �2, �1, �2, �E i+ 1 ≥ a l, b[i+ 1] �= 0, i < a l a l = i+ 1〈1〉, ∀x ∈ [i, i + 1]. b[x] �= 0〈1〉

b[i] �= 0 ∀x ∈ [i, a l]. b[x] �= 0〈2〉

�0, �1, �2, �1, �2, �E 1 ≥ a l, b[1] �= 0, 0 < a l a l = 1〈1〉, ∀x ∈ [0, 1]. b[x] �= 0〈1〉

b[0] �= 0 ∀x ∈ [0, a l]. b[x] �= 0〈2〉

Safe trace WP New predicates

�1, �2, �1, �F b[i] �= 0, i+ 1 ≤ a l, b[i + 1] = 0 ∃x ∈ [i, i + 1]. b[x] �= 0〈1〉, ∃x ∈ [i, i+ 1]. b[x] = 0〈1〉

∃x ∈ [i, a l]. b[x] �= 0〈2〉, ∃x ∈ [i, a l]. b[x] = 0〈2〉

�0, �1, �2, �1, �F b[0] �= 0, 1 ≤ a l, b[1] = 0 ∃x ∈ [0, 1]. b[x] �= 0〈1〉, ∃x ∈ [0, 1]. b[x] = 0〈1〉

∃x ∈ [0, a l]. b[x] �= 0〈2〉, ∃x ∈ [0, a l]. b[x] = 0〈2〉

Fig. 5. Illustration of algorithm Refine on program copy 2. The underlined predicates
are selected by the refinement process. The superscript is the priority of each predicate.

5 Experimental Results

Implementation. We have implemented our precondition inference technique in
the P-Gen4 tool. P-Gen takes as input a C program containing a procedure
annotated with an assertion to be verified. As output, it returns a formula that
represents the set of pre-states from which the specified assertion holds for any
execution.

Experiments. We performed experiments using a desktop computer with 3.7GB
of RAM and a quad-core processor with 2.83GHz, running Linux. P-Gen uses
several theorem provers to compute the abstraction and analyze counterexam-
ples. We have initially used Yices [15] and Simplify [14], but observed limitations
when handling quantified formulas. These limitations often lead to the diver-
gence of CEGAR, as the refinement procedure picks up a set of quantifier-free
predicates instead of a quantified predicate, and thus fails to generalize. We have
subsequently integrated Z3 [13] and used it running as a standalone process com-
municating with P-Gen through pipes. The Z3 theorem prover was able to decide
many queries that were not handled by the two other theorem provers.

The results of our experiments are summarized in Table 1. The column “Pre-
cond.” shows the type of precondition inferred (“Q” stands for quantified and
“S” stands for simple, i.e., quantifier-free). The column “Iter.U.” (“Iter.S.”) gives
the number of iterations performed by CEGAR to compute the set of unsafe
(safe) states and column “Pred.U.” (“Pred.S.”) gives the number of predicates
inferred to abstract the set of unsafe (safe) states. Our tool is based on lazy
abstraction [20], we therefore provide the average number of predicates per lo-
cation instead of the total number of predicates. This number is an indicator
for memory consumption, as predicates are encoding program states. Finally,
column “Alt.” refers to the number of alternations between the two abstractions

4 http://www.cs.ox.ac.uk/people/nassim.seghir/pgen-web-page

http://www.cs.ox.ac.uk/people/nassim.seghir/pgen-web-page

Counterexample-Guided Precondition Inference 467

Table 1. Experimental results for routines taken from the C string library (upper part)
and from real-world programs (lower part)

Program Precond. Iter.U. Pred.U. Iter.S. Pred.S. Alt. Time (s)

memcmp Q + S 5 5 8 3 2 23.64
strcat Q 4 4 4 3 2 0.77
memchr Q + S 5 4 8 3 2 77.30
strlen Q 4 4 4 3 2 0.80

memcpy S 3 2 3 2 1 0.17
memmove S 5 4 9 2 2 0.91
strchr Q 5 7 7 4 2 1.92
r strcat Q 5 2 3 2 2 9.02
strcspn Q 5 6 7 4 2 7.30
strspn Q 5 6 7 4 2 7.05

my strcmp Q 5 7 7 4 2 2.70
my strcpy Q 4 4 4 3 2 1.41

AllNotNull Q + S 6 5 5 3 2 2.07
perfc copy info S 7 2 13 2 2 1.94

bitmap shift right S 15 13 26 5 2 41.60
mvswap S 7 5 8 4 3 0.70

BZ2 hbAssignCodes S 8 4 6 4 2 0.73

(i.e., the number of times the procedure switches between the abstraction of
unsafe states and the abstraction of safe states).

The upper part of the table relates to implementations of routines from the C
string library5. The last two procedures, my strcmp and my strcpy, are modified
versions of the original strcmp and strcpy. In the lower part of the table, we have
AllNotNull, which was used by Cousot et al. as illustration [12]. Our tool infers
a precondition equivalent to the one proposed in their paper. The procedures
mvswap and BZ2 hbAssignCodes are taken from the source code of the com-
pression program Bzip26. The procedures perfc copy info and bitmap shift right
belong to the Xen Hypervisor7.

Although the refinement heuristic performs well in most of the cases, some-
times it does not select adequate predicates in early stages of the iterative process
(as for memchr, memcmp and bitmap shift right), resulting in high time consump-
tion. However, due to the precision of the precondition, this cost can often be
amortised when checking code that uses the functions.

6 Related Work

The work presented in this paper is linked to several topics: predicate abstraction,
invariant generation, counterexample-guided refinement,modular verificationand

5 http://en.wikibooks.org/wiki/C_Programming/Strings.
6 http://www.bzip.org/
7 http://www.xen.org/products/xenhyp.html

http://en.wikibooks.org/wiki/C_Programming/Strings
http://www.bzip.org/
http://www.xen.org/products/xenhyp.html

468 M.N. Seghir and D. Kroening

precondition inference. Along these axes, we elaborate on some related work from
the literature.

The combination of predicate abstraction [16] with counterexample-guided
abstraction refinement [9] has been pioneered by the SLAM [1] tool at Mi-
crosoft, and has subsequently been implemented in many other tools, including
BLAST [20], MAGIC [7], ARMC [25], F-SOFT [21] and SATABS [8]. The
DASH [2] and SYNERGY [17] algorithms are variants of this approach, as they
are based on program testing to refine abstractions. Even closer to our approach,
the tool YASM [18] combines over- and under-approximations to prove or re-
fute program properties. However, all these tools and methods aim at checking
the validity of a given assertion. In contrast, we use CEGAR to compute a pre-
condition under which the assertion is valid. Our technique represents a general
scheme for extending the previously mentioned tools to infer preconditions, as
it uses ingredients that are common to all of them.

Moy proposed a technique to infer preconditions [24] using a combination of
state-of-the-art techniques such as abstract interpretation, weakest preconditions
and quantifier elimination. While his technique is stronger than many existing
ones, it is unable to infer quantified preconditions. Our technique is able to infer
universally- as well as existentially-quantified preconditions. Blanc and Kroening
proposed a technique to optimize the simulation of SystemC code [3]. It consists
of inferring conditions that are sufficient for the commutativity of pairs of pro-
cesses. Like our algorithm, theirs also is based on CEGAR. However, they have
no guarantee that the inferred precondition is exact. Our method does provide
this guarantee.

Taghdiri proposed an approach for generating approximations of relations
(over pre- and post-states) induced by functions [28]. A function specification
(relation) is computed with respect to a context that includes the property to
be verified, thus the specification may lack generality. Moreover, the number of
times loops are unrolled is bounded, making the approach unsuitable for proving
the absence of bugs. Our technique over-approximates the set of all behaviors.
Thus, the preconditions computed by our method guarantee safety.

Sankaranarayanan et al. presented a technique that combines test and machine
learning to infer likely data preconditions over a set of predicates [27]. In many
cases, they were able to learn preconditions that ensure safe executions. However,
as their technique is based on testing, it can only suggest preconditions, but does
not guarantee their soundness.

In the context of abstract interpretation, Cousot et al. formulated the contract
inference problem for intermittent assertions precisely [12]. The precondition ex-
tracted by their method does not exclude safe runs even when a non-deterministic
choice could lead to bad ones. Our treatment of non-determinism is different,
as we report a warning to the user. The method described in [12] as well as [4]
and [26] rely on some predefined abstract domains. In our approach, the preci-
sion of the abstraction is automatically tuned as required by means of CEGAR.
We can also enhance the refinement process by introducing new inference rules,
without having to implement new transformers.

Counterexample-Guided Precondition Inference 469

Calcagno et al. presented a technique based on Bi-Abduction to infer pre-
and post-specifications of the heap [6]. One of the major advantages of their
approach is scalability. Similar to their approach, we intend to complete the
picture by integrating our method into an inter-procedural reasoning framework.
Although we can deal with pointers, the properties handled by their technique
are out of the scope for our tool as we do not have a theory to reason about
heap properties. On the other side, contrary to our approach, the preconditions
they compute are not exact, meaning that they might have to be refined. In the
context of termination, Bozga et al. [5], proposed a method to generate exact
preconditions for a restricted class of programs. Other techniques for inferring
preconditions for termination are applicable to a larger set of programs [10],
however they only generate sufficient preconditions.

7 Conclusion

We have presented a new method for precondition inference based on counter-
example-guided abstraction refinement. Given a procedure containing an asser-
tion, our method infers a formula that is sufficient for the validity of the specified
assertion and exclusively refers to state variables visible at the entry point of
the procedure. The inferred precondition is independent of the context, making
it reusable. The computed precondition is also necessary for the validity of the
assertion, i.e., it does not exclude any safe runs of the procedure. Hence, we avoid
false alarms, as the violation of the precondition corresponds to a real error.

Our technique is based on ingredients commonly used in CEGAR-based as-
sertion checkers, and it thus represents a general scheme for extending other
verification tools to infer preconditions. Moreover, we believe that we can take
advantage of components from other tools, such as advanced refinement mech-
anisms, which can be integrated seamlessly into our algorithm. Preliminary
experimental results are encouraging, as we are able to generate exact precon-
ditions (quantified as well as quantifier-free) for string- and array-manipulating
programs.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

2. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA, pp. 3–14 (2008)

3. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In:
Proceedings of ICCAD 2008, pp. 356–363. IEEE (2008)

4. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In:
PLDI, pp. 46–55 (1993)

5. Bozga, M., Iosif, R., Konečný, F.: Deciding Conditional Termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012)

470 M.N. Seghir and D. Kroening

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300 (2009)

7. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: ICSE, pp. 385–395 (2003)

8. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Formal Methods in System Design (FMSD) 25, 105–127
(2004)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Condi-
tional Termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 328–340. Springer, Heidelberg (2008)

11. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

12. Cousot, P., Cousot, R., Logozzo, F.: Precondition Inference from Intermittent As-
sertions and Application to Contracts on Collections. In: Jhala, R., Schmidt, D.
(eds.) VMCAI 2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011)

13. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Lab. (2003)

15. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

16. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: SIGSOFT FSE, pp. 117–127
(2006)

18. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A Software Model-Checker for Verifi-
cation and Refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 170–174. Springer, Heidelberg (2006)

19. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244 (2004)

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

21. Ivancic, F., Shlyakhter, I., Gupta, A., Ganai, M.K.: Model checking C programs
using F-SOFT. In: ICCD, pp. 297–308 (2005)

22. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Re-
finement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

23. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

Counterexample-Guided Precondition Inference 471

24. Moy, Y.: Sufficient Preconditions for Modular Assertion Checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008)

25. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

26. Rival, X.: Understanding the Origin of Alarms in Astrée. In: Hankin, C., Siveroni,
I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)

27. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306
(2008)

28. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE, pp. 144–153
(2004)

Information Reuse
for Multi-goal Reachability Analyses�

Dirk Beyer1, Andreas Holzer2, Michael Tautschnig3,4, and Helmut Veith2

1 University of Passau, Germany
2 Vienna University of Technology, Austria

3 University of Oxford, UK
4 Queen Mary, University of London, UK

Abstract. It is known that model checkers can generate test inputs as witnesses
for reachability specifications (or, equivalently, as counterexamples for safety
properties). While this use of model checkers for testing yields a theoretically
sound test-generation procedure, it scales poorly for computing complex test
suites for large sets of test goals, because each test goal requires an expensive
run of the model checker. We represent test goals as automata and exploit re-
lations between automata in order to reuse existing reachability information for
the analysis of subsequent test goals. Exploiting the sharing of sub-automata in
a series of reachability queries, we achieve considerable performance improve-
ments over the standard approach. We show the practical use of our multi-goal
reachability analysis in a predicate-abstraction-based test-input generator for the
test-specification language FQL.

1 Introduction

Consider the problem of performing many reachability queries on a program that is
given as source code. This problem is common in white-box test generation [3, 12, 13],
where the goal is to obtain inputs for different paths in a given program. If, for instance,
we want to achieve basic-block coverage, we will for each basic block b generate a test-
goal that asks if there is a program execution that reaches b and, ultimately, the program
exit. In previous work, we designed the coverage-specification language FQL [20, 22],
which provides a concise specification of complex coverage criteria. Such a coverage
criterion is then translated into a (possibly huge) set of test goals (cf. Table 2). Each such
test goal is represented as a finite automaton, called test-goal automaton, and specifies a
reachability query. Test-goal automata often have overlapping parts, i.e., identical parts
of the automata, which let us reuse analysis results across several queries. In this paper,
we present an approach that exploits the automaton structure of reachability queries
to efficiently reuse information when solving multiple queries. In order to define the
potentially shared behavior of two automata A and A′, we introduce the notion of simi-
larity of A and A′ modulo a set X of transitions, where X is a subset of the transitions

� This work was supported by the Canadian NSERC grant RGPIN 341819-07, by the Aus-
trian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF),
by the Vienna Science and Technology Fund (WWTF) grant PROSEED, and by the EPSRC
project EP/H017585/1.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 472–491, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Information Reuse for Multi-goal Reachability Analyses 473

of A′. If A simulates A′ modulo X , then we also have trace containment modulo X .
That is, each sequence of transitions starting in an initial state of A′ and not including a
transition from X is also a sequence of transitions in A. This enables us to reason about
reachability of program executions in A′ based on the reachability results for A as long
as we are investigating transition sequences shared by both automata. Using this notion
of similarity, we face two challenges: (i) how can we maximize the overlapping parts of
automata (for two automata we can always achieve similarity modulo X by choosing a
sufficiently large X , but the bigger X is, the less information we can reuse), and (ii) in
which order shall we process the automata to achieve a minimal number of reachability
analysis runs?

The alphabet of a test-goal automaton is a finite set of observations of a program exe-
cution. An observation can be, for example, a specific code location that is visited during
the execution or a predicate over program states. Each (partial) program execution can
be mapped to a word over these observations and for each test-goal automaton we want
to determine whether it describes a (partial) execution in the given program. Figure 2
shows a symbolic representation of the state space of program P given in Figure 1.
Each node consists of a program location and a description of the heap and the stack
when entering that program location. The edges correspond to the execution of program
statements and each target node represents the strongest postcondition of the respective
statement when applied to the source node. For the moment, we restrict ourselves to

1 if (x > 10)
2 f1 = false ;
3 else
4 f1 = true ;
5 if (x == 100)
6 f2 = false ;
7 if (f1)
8 s = f2 ;
9 else

10 s = f1 ;

Fig. 1. Example
program P

observe only code locations (for simplicity, represented by line
numbers). Then, the observable sequences of P are 〈1, 2, 5, 7, 10〉,
〈1, 2, 5, 6, 7, 10〉, and 〈1, 4, 5, 7, 8〉. P satisfies test-goal automatonA1

(cf. Figure 3) but not test-goal automata A2 and A3 (cf. Figure 4).
Due to recursion and loops it is generally undecidable whether a

test goal is satisfiable on an arbitrary program. We use reachability
analyses, e.g., CEGAR-based predicate abstraction [7, 17], to approx-
imate the set of executions of a program until we either (i) have found
a partial program execution that is described by a word in the lan-
guage of the test-goal or (ii) we have shown that there is no such
execution. The test-goal automaton guides the reachability analysis,
i.e., the analysis tracks program and automaton states simultaneously

4 x ≤ 10

5 x ≤ 10 ∧ f1

7 x ≤ 10 ∧ f1

8 x ≤ 10 ∧ f1

11 x ≤ 10 ∧ f1

2 x > 10

5 x > 10 ∧ ¬f1

7 x > 10 ∧ x �= 100 ∧ ¬f1

10 x > 10 ∧ x �= 100 ∧ ¬f1

11 x > 10∧x �= 100∧¬f1∧¬s

6 x = 100 ∧ ¬f1

7 x = 100 ∧ ¬f1 ∧ ¬f2

10 x = 100 ∧ ¬f1 ∧ ¬f2

11 x = 100∧¬f1∧¬f2∧¬s

1 true

Fig. 2. Reachable state space of P (cf. Figure 1)

474 D. Beyer et al.

q0 q1A1
6

1, 2, 4, 5 1 true

q0
4 x ≤ 10 q0

5 x ≤ 10 ∧ f1 q0

2 x > 10q0

5 x > 10 ∧ ¬f1q0

6 x = 100 ∧ ¬f1q1

Fig. 3. State space of P restricted by A1

4 x ≤ 10 q1

5 x ≤ 10 ∧ f1 q1

7 x ≤ 10 ∧ f1 q1

8 x ≤ 10 ∧ f1 q1

2 x > 10q0

5 x > 10 ∧ ¬f1q0

7 x > 10 ∧ x �= 100∧ ¬f1q0

10 x > 10 ∧ x �= 100∧ ¬f1q0

6 x = 100 ∧ ¬f1 q0

7 x = 100 ∧ ¬f1 ∧ ¬f2 q0

10 x = 100 ∧ ¬f1 ∧ ¬f2 q0

1 true

q0

p0 p1 p2 p3A3
4 6 7

1, 2, 5, 6,
7, 8, 10

1, 2, 4, 5,
7, 8, 10 8, 10 8, 10

q1q0 q2A2
4 6

1, 2, 5, 6,
7, 8, 10

1, 2, 4, 5,
7, 8, 10 8, 10

7

Fig. 4. State space of P restricted by automaton A2

and stops exploring the state space if there is no possible transition in the program state
space or no possible next automaton transition (cf. the reduced state space in Fig. 3).

First, let us consider the case where the set X of excluded automaton transitions is
empty, i.e., X = ∅. Then simulation modulo X amounts to the standard definition of
simulation [25]. Let H ⊆ Q′ × Q be a relation between the set of states Q′ of an au-
tomaton A′ and the set of states Q of an automaton A such that for each (p, q) ∈ H
there is for each outgoing transition (p, a, p′) an outgoing transition (q, a, q′) such that
(p′, q′) ∈ H . We call H a simulation relation. We say that q simulates p if (p, q) ∈ H
and we say that A simulates A′ if for each initial state p of A′, there is an initial state q
of A such that q simulates p. For example, in Fig. 4, automaton A2 simulates automa-
ton A3. The simulation relation H = {(p0, q0), (p1, q1), (p2, q2), (p2, q3)} witnesses
this fact. The fact that A2 simulates A3 implies that each finite sequence of transitions
starting in an initial state of A3 corresponds to an equivalent sequence of transitions
starting in an initial state of A2. From the state space given in Fig. 4, we know that state
q2 is not reachable in A2 and since H relates p3 only to q2, we can conclude that p3 is
not reachable as well and that therefore no accepting trace in A3 exists.

In general, test-goal automata do not simulate each other. For example, consider the
situation where a reachability analysis involving A3 is performed. Then, each node in

Information Reuse for Multi-goal Reachability Analyses 475

Fig. 4 labeled with q0 would be labeled with p0 and each node labeled with q1 would
be labeled with p1. The automaton A3 does not simulate A2 (e.g., A2 accepts a word
〈4, 6, 7, 7〉which is not accepted by A3). Nevertheless, we can still reuse the reachabil-
ity information obtained for A3 when solving A2: Let A′2 be the automaton A2 where
the transition (q2, 7, q2) is removed. Then, A3 simulates A′2, witnessed by the relation
H ′ = {(q0, p0), (q1, p1), (q2, p2)}, and we say that A3 simulates A2 modulo the transi-
tion set {(q2, 7, q2)}. From the fact that state p2 is not reachable we can conclude that
q2 is not reachable and that therefore A2 is unsatisfiable. Based on the set of excluded
transitions one skips parts of the already analyzed state space (those parts which involve
these transitions) or continues state-space exploration at points that have been skipped
during the previous state space exploration.

In Sect. 4, we combine automaton-based reasoning techniques as introduced above
into an approach for multi-goal reachability analysis. Before that, we will formally in-
troduce the automata that we use for representing reachability queries (cf. Sect. 2) and
discuss our automaton-based reasoning techniques individually (cf. Sect. 3). We imple-
mented the test-input generator CPA/TIGER, which is based on predicate-abstraction.
We show in our experiments (cf. Sect. 5) that we significantly improve over a naive ap-
proach to multi-goal reachability analysis by applying our information reuse techniques.
Furthermore, we compare our implementation with existing test generation tools. In
Sect. 6 we discuss related work and show how our approach can be integrated into
other test generation methods. Finally, we conclude and discuss future work in Sect. 7.

2 Test-Goal Automata

1

2 4

5

6

7

8 10

11

x > 10 x ≤ 10

f1 := false f1 := true

x �= 100

x = 100

f2 := false

f1 ¬f1

s := f2 s := f1

Fig. 5. CFA P0 for code in Fig. 1

We first introduce our program representation, then de-
fine test-goal automata, and finally discuss how we rep-
resent information gathered by a reachability analysis.

Programs. We represent a program as a control-flow
automaton (CFA) [5]. A CFA (L,E) is a directed, la-
beled graph, that consists of a finite set L of nodes and
a finite set E ⊆ L × Ops × L of edges. A node � ∈ L
models a program location (program counter valuation)
and an edge (�, op, �′) ∈ E models a program transfer
(control flows from location � to �′, while performing
program operation op). A program operation op ∈ Ops
is either an assignment or an assume operation 1. Pro-
gram operations can read from, and write to, a finite set
of integer and Boolean variables. Figure 5 shows the
CFA representing the source code shown in Fig. 1.

A program state c is a mapping from program
counter and program variables to values. We denote the

1 Our implementation performs an interprocedural analysis (i.e., handles function call and func-
tion return), but for simplicity of presentation we limit the formalization to flat programs over
integer and Boolean variables.

476 D. Beyer et al.

set of all program states by C. A set of program states is represented by a state predi-
cate ϕ over the program counter and program variables. We denote the set of state predi-
cates byΦ. We write c |= ϕ (and say, c satisfies state predicateϕ) if program state c ∈ C
is in the state set represented by ϕ ∈ Φ, and we write [[ϕ]] = {c ∈ C | c |= ϕ} for the
set of concrete states represented by ϕ. The concrete semantics of a program opera-
tion op ∈ Ops is given by the strongest postcondition SPop, i.e., for a set of states
represented by ϕ, the set of successor states is represented by ϕ′ = SPop([[ϕ]]). A pro-
gram execution is a sequence c0

e0→ c1 . . . ci
ei→ ci+1 . . . of program states ci, for i ≥ 0,

and consecutive CFA edges ei = (�i, opi, �i+1), for i ≥ 0, such that ci+1 ∈ SPopi(ci)

holds for each ci
ei→ ci+1. We call a program execution complete if either the pro-

gram location of the last state of the execution coincides with the program exit or the
execution is infinite. Otherwise, we call the program execution partial.

Test-Goal Automata. A test goal describes a set of program traces. Test goals refer
to the syntactic structure and semantics of a program. We characterize program traces
syntactically by referring to CFA edges, and semantically by using state predicates. For
example, a test goal can require to find a program execution (identified by an input
assignment) to a particular program location (specified by a CFA edge), or to evaluate
a certain expression to a specific value (specified by a CFA edge and a state predicate).
We represent a test goal by a test-goal automaton:

A test-goal automaton (TGA) A = (Q,Σ,Δ, I, F) is a nondeterministic finite au-
tomaton, with a finite set Q of states, an alphabetΣ ⊆ E×Φ consisting of pairs of CFA
edges and state predicates, a transition relation Δ ⊆ Q×Σ ×Q, a set I ⊆ Q of initial
states, and a set F ⊆ Q of accepting states. We write q

a−→ q′ in case (q, a, q′) ∈ Δ.

We say that A accepts a program execution c0
e0−→ c1 · · ·

en−1−→ cn if there is a sequence

q0
(e0,ψ0)−→ q1 · · ·

(en−1,ψn−1)−→ qn of TGA transitions starting in an initial state q0 ∈ I and

ending in a final state qn ∈ F such that ci+1 |= ψi holds for each qi
(ei,ψi)−→ qi+1. The

last condition ci+1 |= ψi means that if there is a program transition from state ci to state
ci+1, then the state predicate ψi is evaluated on the successor state ci+1. By adding an
additional initial CFA edge, one can also restrict the initial program state.

Example. Figure 6 shows a TGA with initial state q and final state p. The automaton
requires that Line 11 (represented by CFA edge (8, s:=f2, 11)) is visited during a pro-
gram execution and that flag s is true after executing the statement s := f2. Due to the
self-loops at q and p there are no restrictions to a program execution other than the one
stated above. An execution satisfying this test goal has to make both variables f1 and f2
true and therefore x can’t have the value 100 in that execution. Figure 7 shows the set of
TGAs representing basic-block coverage on program P0 given in Fig. 5. For simplicity,

q p

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((8, s:=f2, 11), s)
((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

Fig. 6. Example test-goal automaton A10

Information Reuse for Multi-goal Reachability Analyses 477

q p

((1, 2), true)
. . .

((10, 11), true)

((2, 5), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((4, 5), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((6, 7), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((8, 11), true)

((1, 2), true)
. . .

((10, 11), true)

q

p

((1, 2), true)
. . .

((10, 11), true)

((10, 11), true)

((1, 2), true)
. . .

((10, 11), true)

Fig. 7. Example test-goal automata for basic-block coverage

we omitted the operations labeling the CFA edges. For each entry of a basic block, i.e.,
CFA edges (2, 5), (4, 5), (6, 7), (8, 11), and (10, 11), there is a respective automaton.

Representing Reachability Information. For our approach we consider reachability
analyses that represent the reachable state space of a program by an abstract reach-
ability graph (ARG) as it is done for example in predicate-abstraction-based model
checkers [5, 6]. Let P = (L,E) be a CFA and let A = (Q,Σ, δ, q0, F) be a test-
goal automaton. An abstract reachability graph GP,A = (S, T, s0) consists of a finite
set S ⊆ ID × L × Q × D of abstract states, where ID is a set of identifiers and D
is an abstract data domain whose elements describe the heap and stack, finitely many
transitions T ⊆ S × (E × Φ)× S between these abstract states, and an initial abstract
state s0. The identifier is required to distinguish abstract states with otherwise equal
values, which may be produced, e.g., by the ARG transformations of Sect. 3. To sim-
plify the presentation, however, we omit the identifier in the remainder of this paper. An
abstract state s ∈ S induces a state predicate ϕs over the same program location and a
heap and stack described by the valuation in the abstract domain. Via ϕs we obtain a
set [[s]] of concrete program states. Given an abstract state s, all concrete states in [[s]]
share the same program location, denoted by �(s), and test-goal automaton state, de-
noted by q(s). For the initial state it holds that q(s0) = q0. Let t ∈ T be the transition
(s, (e, ϕ), s′), then t has a corresponding CFA edge, i.e., (�(s), e, �(s′)) ∈ E, and t has
a corresponding TGA transition (q(s), (e, ϕ), q(s′)) ∈ δ. We denote (�(s), e, �(s′)) by
tP and denote (q(s), (e, ϕ), q(s′)) by tA. Then, each sequence t1t2 . . . tn of transitions
in G corresponds to a sequence 〈tP 1, tP 2, . . . , tP n〉 of CFA edges and to a sequence
〈tA1, tA2, . . . , tAn〉 of TGA transitions. Note, the reverse direction does not necessar-
ily hold since a reachability analysis might terminate its state space exploration without
explicitly enumerating all sequences of CFA edges or TGA transitions.

Figure 8 shows an example of an ARG G obtained by a reachability analysis for the
CFA depicted in Figure 5 and the TGA depicted in Figure 6. An ARG is a finite unwind-
ing of the reachable state space. The unwinding stops in case no new behavior can be ob-
served. In order to obtain a finite unwinding, abstraction might be applied. Paths through
the ARG might be merged at points with the same program location and automaton
state (cf. [6] for a detailed elaboration and formalization of merge and stop operators).

478 D. Beyer et al.

1 q true

2 q x > 10 4 q x ≤ 10

5 q true

6 q x = 100

7 q true

8 q true 10 q true

11 q true11 p s

Witness of
Reachability

Fig. 8. Example ARG GP0,A10 for CFA P0 (see
Figure 5) and TGA A10 (see Figure 6)

In the given example, the ARG G con-
tains the accepting state (11, p, s) (with
s abstracting from f1 and f2 of a
concrete execution of the program). We
denote the directed acyclic graph reach-
ing this state as the witness of reacha-
bility of (11, p, s). A witness is feasible
if there exists a real program execution
encoded in the witness and infeasible
otherwise. The witness given in Figure 8
(enclosed in a dotted line) is feasible,
e.g., the input x = 10, f2 = true causes
an execution following the program path
〈1, 4, 5, 7, 8, 11〉which is accepted by the
TGA given in Figure 6.

In Section 3, we discuss how to turn
an ARG GP,A1 obtained for a TGA A1

into an ARG GP,A2 for a TGA A2.

3 Reasoning on Test Goals

As input to a multi-goal reachability analysis we are given a CFA (L,E) and a set
{A1, A2, . . . , An} of test-goal automata Ai. One way to tackle this problem is to in-
voke a reachability analysis for each test-goal automaton Ai individually. This ap-
proach would have to rediscover lots of information again and again when analysing
the program with respect to different test-goal automata. Therefore, we will now dis-
cuss a notion of simulation that enables us to identify information that is reusable across
reachability analyses for different test-goal automata.

Relating Test-Goal Automata. We relate test-goal automata by adapting the notion of
similarity [25] to identify the transitions that violate the similarity of two automata:

Definition 1 (Similarity modulo X). Given two TGA A1 = (Q1, Σ, δ1, q0, F1) and
A2 = (Q2, Σ, δ2, p0, F2) and a set X ⊆ δ2 of automaton transitions in A2, we call
a relation H ⊆ Q2 × Q1 a simulation relation modulo X from A1 to A2 if H is
a simulation relation from A1 to Ā2 = (Q2, Σ, δ2 \ X, p0, F2). This means that for
each (p, q) ∈ H and for each transition (p, a, p′) ∈ (δ2 \ X) there is a transition
(q, a, q′) ∈ δ1 s.t. (p′, q′) ∈ H .

Example. Figure 9 shows two test goal automata A1 and A2. There, the relation H =
{(p0, q0), (p1, q1), (p2, q2)} is a simulation relation moduloX = {(p1, c, p2)} from A1

to A2. Each sequence of transitions contained in the automaton Ā2, as defined above,
is also reflected by a corresponding sequence in A1. Note, sets other then the chosen X
could be used to establish similarity from A1 to A2, e.g., by adding more transitions of
A2 to X . However, in order to increase the reuse of gathered reachability information
small X are preferable.

Information Reuse for Multi-goal Reachability Analyses 479

q0 q1 q2A1: p0 p1 p2A2:

b, c

a

a

b

a, b, c b, c

a

a

c

a, b, c

Fig. 9. {(p0, q0), (p1, q1), (p2, q2)} is a simulation relation modulo {(p1, c, p2)} from A1 to A2

Algorithm 3.1. transform — Transform an ARG into another ARG
Input: TGA A1 = (Q1, Σ, δ1, q0, F1) and A2 = (Q2, Σ, δ2, p0, F2), initial abstract state s̄0,

automaton transition (p0, ((, op, 	
′), ϕ), p′) ∈ δ2 (where q(s̄0) = p0 and 	(s̄0) =),

simulation relation H modulo set of transitions X , ARG GP,A1 , worklist WA1 .
Output: Transformed ARG and worklist for further state-space exploration.
1: S′ ←

⋃
s∈S H(s)

2: T ′ ←
⋃

t∈T H(t)
3: if there is an abstract state s′0 ∈ S′ such that q(s′) = p0 and [[s′0]] ⊇ [[s̄0]] then
4: choose such an s′0
5: S′ ← {s′ ∈ S′ | s′ is reachable from s′0 via T ′}
6: T ′ ← {t ∈ T ′ | t is reachable from s′0 via T ′}
7: W ← {〈s′, d〉 | (, q, ψ)︸ ︷︷ ︸

=s′

∈ S′, (q, ((,op, 	′), ϕ), q′)︸ ︷︷ ︸
=d

∈ X}

8: W ← W ∪
⋃

〈ŝ,d̂〉∈WA1

(
(H(ŝ) ∩ S′)×H(d̂)

)
9: return 〈(S′, T ′, s′0),W 〉

10: else
11: return 〈({s̄0}, ∅, s̄0), {(p0, ((, op, 	′), ϕ), p′)}〉

Reusing Reachability Information. Using simulation relations, we can transform a
given ARG GP,A1 for a TGA A1 into an ARG GP,A2 for a TGA A2. We first describe
the general principle of this transformation and then point out how to efficiently apply
it when analysing multiple automata in a row.

Algorithm 3.1 takes an ARG GP,A1 = (S, T, s0) and transforms it into an
ARG GP,A2 based on a simulation relation H from a TGA A1 to TGA A2 modulo
a set of transitions X . To compute the transformation we furthermore need the two
TGA A1 = (Q1, Σ, δ1, q0, F1) and A2 = (Q2, Σ, δ2, p0, F2), the abstract state s̄0
(with q(s̄0) = p0 and �(s̄0) = �), where we will start with the information reuse,
and a TGA transition (p0, ((�, op, �

′), ϕ), p′) ∈ δ2 whose role we will discuss later in
the context of Algorithm 4.3. For the moment, omitting it does not affect the over-
all understanding of the transformation process. Given these inputs, we will obtain an
ARG GP,A2 = (S′, T ′, s′0). Before we discuss the algorithm, we will first define the
sets H(s) and H(t), for s ∈ S and t ∈ T , by

H(s) = {s′ | (p, q(s)) ∈ H and s′ coincides with s except that q(s′) = p}

and, for t = (s1, (e, ϕ), s
′
1),

H(t) = {(s2, (e, ϕ), s′2) | s2 ∈ H(s1), s
′
2 ∈ H(s′1), (q(s2), (e, ϕ), q(s

′
2)) ∈ δ2 \X}.

The set X controls how many transitions from T can be reused, i.e., the largerX is, the
less reachability information can be reused. In Lines 1 and 2 of the algorithm we define

480 D. Beyer et al.

u v w

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((5, x �= 100, 7),¬f2)

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((8, s:=f2, 11), s)

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

1 u true

2 u x > 10 4 u x ≤ 10

5 u true

6 u x = 100

7 u true

8 u true 10 u true

11 u true

1 v true

2 v x > 10 4 v x ≤ 10

5 v true

6 v
x =
100

7 v true

8 v true 10 v true

11 v true11 w s

(u, ((5, x �= 100, 7),¬f2), v)

Fig. 10. ARG GP0,A11 obtained from GP0,A10 (cf. Figure 8) using the simulation relation H =
{(u, q), (v, q), (w, p)} modulo X = {(u, ((5, x �= 100, 7),¬f2), v)}

the set of transformed abstract states S′ =
⋃

s∈S H(s) and the set of transformed ARG
transitions T ′ =

⋃
t∈T H(t) by simply translating all abstract states and all transitions

ofGP,A1 . This might lead to many subparts of the resulting ARG not being connected to
the initial abstract state. In Lines 5 and 6 we will restrict these two sets to the reachable
part only (in the implementation the transformation is only done for the reachable part
of the new ARG). But, in order to determine the reachable part of the newly generated
ARG, we first have to determine what the initial abstract state will be. We do this based
on the given abstract state s̄0. We describe our algorithms from the point of view of
an overapproximating reachability analysis, which leads to the condition that an initial
abstract state s′0 has to contain all concrete states of s̄0, i.e., [[s′0]] ⊇ [[s̄0]]. The concepts
behind the algorithms given in this paper also work for an underapproximating analy-
sis, but one has to use a dual reasoning, e.g., we would need the condition [[s′0]] ⊆ [[s̄0]]
instead. In case there is no such abstract state s′0, then we can’t reuse any information
and we return the ARG ({s̄0}, ∅, s̄0). The role of the transition (p0, ((�, op, �

′), ϕ), p′)
is explained in the discussion of Algorithm 4.3 and we therefore skip it for the moment.
Assume there is a suitable abstract state s′0, then we restrict S′ and T ′, as discussed
above, to the part reachable from s′0. Lines 7 and 8 create a worklist W which contains
abstract states and TGA transitions which have to be further explored. The transforma-
tion of these worklists will be explained in the discussion of Algorithm 4.3.

Figure 10 shows the ARG GP0,A11 obtained from ARG GP0,A10 by using the
simulation relation {(u, q), (v, q), (w, p)} modulo {(u, ((5, x �= 100, 7),¬f2), v)}.
The resulting worklist is {〈(5, u, true), (u, ((5, x �= 100, 7),¬f2), v)〉}. First, the left
part of ARG GP0,A11 is computed, and then, a reachability analysis determines the

Information Reuse for Multi-goal Reachability Analyses 481

Algorithm 3.2. Compute H , X
Input: A = (Q,Σ,Δ, q0, F), A′ = (Q′, Σ,Δ′, p0, F ′).
Output: H and X such that A simulates A′ modulo X .
1: H ← {(p0, q0)}, H ′ ← ∅
2: X ← ∅, X ′ ← ∅
3: while H �= H ′ or X �= X ′ do
4: H ′ ← H
5: X ′ ← X
6: if there is a (p, q) ∈ H s.t. there is a (p, a, p′) ∈ Δ′ \X but no (q, a, q′) ∈ Δ then
7: X ← X ∪ {(p, a, p′)}
8: if there is a (p, q) ∈ H s.t. there is a (p, a, p′) ∈ Δ′ \ X but (p′, q′) �∈ H for all

(q, a, q′) ∈ Δ then
9: choose a subset U ⊆ {q′ | (q, a, q′) ∈ Δ}

10: if U �= ∅ then
11: H ← H ∪ {(p′, q′) | q′ ∈ U}
12: else
13: X ← X ∪ {(p, a, p′)}
14: return (H,X)

abstract state (7, v, true) as successor of (5, u, true) along TGA transition (u, ((5, x �=
100, 7),¬f2), v). Then we again use reachability information from ARG GP0,A10 this
time starting in abstract state (7, v, true). The DAG enclosed in the dotted line describes
the witness after these three steps ‘information reuse’ — ‘reachability analysis’ — ‘in-
formation reuse’. In Section 4 we describe how to combine these steps in an algorithm
for multi-goal reachability analysis.

Computing Simulation-Modulo-X Relations. The amount of possible information
reuse is determined by (i) the set X of transitions and (ii) the relation H . The bigger X
is, the bigger H can be chosen, but at the same time the number of reusable transitions
in an ARG decreases. Since the transitions encode the actual reachability information
we have to find a balance between the size of X and the size of H .

Algorithm 3.2 computes, given two TGA A and A′, a set X of transitions of A′ such
that A simulates A′ modulo X . Furthermore, it computes a corresponding relation H .
The algorithm starts in the initial states p0 and q0 of A′ and A, respectively. Initially, the
relationH only contains the tuple (p0, q0). Then, for each transition (p0, a, p

′) outgoing
from p0 we check whether we can find a transition (q0, a, q

′) outgoing from q0 labeled
with a as well. If there is no such transition, then A can’t simulate A′ wrt. to this
transition and we have to add (p0, a, p

′) to X . Algorithm 3.2 is parametric wrt. its
behavior if there are such transitions: If (p′, q′) is not contained in H yet, the algorithm
can decide whether it wants to add it to H at all. A bigger relation H might blow up the
resulting translated state space. If the algorithm decides not to add any possible (p′, q′)
to H , then the transition (p, a, p′) has to be excluded, i.e., it has to be added to X .
Otherwise, at least one of the (p′, q′) are added to H . Depending on which (p′, q′) are
added to H the final H and X can vary. In our implementation (cf. Section 5) we have
implemented a breadth-first search which adds all possible (p′, q′) to H . The automata
we consider in our experiments have a tree-like structure and the different (p′, q′) do

482 D. Beyer et al.

Algorithm 4.1. Multi-Goal Reachability Analysis
Input: Program P, a sequence of TGAA1, A2, . . . ,Ai, . . . , An (see Section 4), an initial program

location 	0, and an initial data state d0.
Output: Determines for each 1 ≤ i ≤ n whether P satisfies Ai and, if so, computes inputs.
1: for i = 1 → n do
2: s0 ← (0, q0, d0) where q0 is the initial state of Ai

3: if Ai is covered by an existing test input contained in the test suite then
4: continue
5: determine-feasibility(P , Ai, s0) // Algorithm 4.2

not interfere with each other in the later exploration. The algorithm then continues with
the elements added newly to H .

Note that the symbols in Σ are actually interdependent, because they are tuples of
CFA edges and state predicates. In case there is a transition (p, a, p′) and a transition
(q, b, q′) for (p, q) ∈ H and a �= b we might still have a simulation in case the CFA
edges of a and b are the same and the state predicate of b is weaker than the state
predicate of a. For simplicity of presentation, we omitted this case. In case of using
an underapproximating reachability analysis one would dually require that the state
predicate of b is stronger than the state predicate of a.

4 Multi-goal Reachability Analysis

In Section 3, we discussed how we can identify shared behavior of two TGA by sim-
ulation relations and how we can translate reachability information of one TGA into
reachability information for another one. Now, we will use simulation relations as foun-
dation for a reasoning engine that reuses already obtained reachability information. The
input to our multi-goal reachability analysis is a sequence of TGA A1, A2, . . . , An. At
the end of this section, we will discuss how to exploit concise specifications of sets of
TGA and how to obtain an order on these sets.

Algorithm 4.1 shows the main loop of our multi-goal reachability analysis. Its input
is a program P , a sequence of TGA A1, . . . , An, the initial program location �0, and
an initial abstract data state d0 describing the heap and stack at program entry. For
each test-goal automaton Ai, we first check whether we already have inputs inducing a
program execution that satisfies Ai and, if so, we skip Ai from further analysis and we
continue with Ai+1. We do this check by simply executing the program simultaneously
with the TGA Ai with given inputs. If the execution reaches an accepting state of Ai,
then, the inputs cover Ai. If Ai is not covered, we will perform a feasibility check.

Feasibility Check. Algorithm 4.2 realizes the feasiblity check of a TGA. For storing
already gathered reachability information we assume a database that stores quadruples
〈A,GP,A,WA, isFeasible〉 where A is a TGA, GP,A is the ARG obtained for A, and
WA is a worklist containing the abstract states of GP,A where state-space exploration
has to continue in order to exhaustively investigate the state space, and isFeasible is
either FEASIBLE or INFEASIBLE, depending on whether P satisfies A or not. If WA �=
∅ then the state space didn’t have to be exhaustively explored to determine the value of

Information Reuse for Multi-goal Reachability Analyses 483

Algorithm 4.2. determine-feasibility — Determine Feasibility of TGA
Input: CFA P , TGA A = (Q,Σ,Δ, q(s0), F), initial abstract state s0
Output: Computes whether A is feasible on P and, if so, determines inputs.
1: W ← {〈s0, (q(s0), (((s0), op, 	′), ϕ), q′)〉 | (q(s0), (((s0), op, 	′), ϕ), q′) ∈ Δ}
2: GP,A ← ({s0}, ∅, s0)
3: while W �= ∅ do
4: pick 〈s, (q, ((, op, 	′), ϕ), q′)〉 ∈ W and remove it from W
5: 〈G′

P,A,W
′〉 ← reuse(s, (q, ((, op, 	′), ϕ), q′), A) // Algorithm 4.3

6: insert G′
P,A into GP,A at s

7: 〈GP,A,W
′〉 ← reach(W ′, A,GP,A)

8: W ← W ∪W ′

9: if there is an s′ ∈ GP,A such that q(s′) ∈ F then
10: wit ← witness(s′, GP,A)
11: if wit is feasible then
12: derive inputs from wit and store them in test suite
13: store 〈A,GP,A,W, FEASIBLE〉 in reachability database
14: return FEASIBLE

15: else
16: 〈GP,A,W 〉 ← refine(GP,A, wit,W)
17: store 〈A,GP,A, ∅, INFEASIBLE〉 in reachability database
18: return INFEASIBLE

isFeasible . A worklist is a set of tuples of abstract states and TGA transitions. A tuple
〈s, (q, ((�, op, �′), ϕ), q′)〉 requires a state-space exploration starting in abstract state s,
where q(s) = q and �(s) = � holds, and performed along CFA edge (�, op, �′) (the
postcondition ϕ has to be considered by the reachability analysis as well).

The algorithm maintains a worklist W and an ARG GP,A. Worklist W is initialized
with all transitions potentially leaving the initial abstract state. At the beginning, GP,A

only consists of the initial abstract state s0. As long as W is not empty, the algorithm
picks an element from the worklist and performs a state-space exploration. Before ap-
plying a reachability analysis the algorithm tries to reuse already computed reachability
information. We call Algorithm 4.3 with the chosen abstract state and transition as well
as the current TGA. The algorithm returns an ARG G′P,A and a worklist W ′. G′P,A

represents the reachability information reusable at abstract state s and W ′ contains the
exploration points where reachability information is missing. In case no reuse is pos-
sible, the ARG containing only state s is returned and the worklist contains the tuple
which was initially picked at Line 4. After calling Algorithm 4.3, the returned sub-ARG
is inserted into GP,A at abstract state s. As already mentioned, W ′ contains the tuples
where state-space exploration has to continue, therefore a reachability analysis is called
with the task of exploring all points in W ′. The reachability analysis might decide to
return before having explored all tuples (or none at all) in W ′. It returns an updated
ARG and an updated worklist. The worklist W ′ might be non-empty if the reachability
analysis found a witness for the feasibility of A or if we first want to check whether we
can reuse some reachability information for the tuples in W ′. We therefore add W ′ to
W for later processing.

484 D. Beyer et al.

Algorithm 4.3. reuse — Reuse Stored Reachability Information
Input: Abs. state s, TGA A = (Q,Σ,Δ, q, F), transition (q, ((, op, 	′), ϕ), q′) ∈ Δ.
Output: ARG and worklist
1: let q̂ be a new state, i.e., q̂ �∈ Q
2: if q ∈ F then
3: F ′ ← F � {q̂}
4: else
5: F ′ ← F
6: A′ ← (Q � {q̂}, Σ,Δ � {(q̂, ((, op, 	′), ϕ), q′)}, q̂, F ′)
7: choose a tuple 〈Ā,GP,Ā,W, f〉 from the database
8: if 〈Ā,GP,Ā,W, f〉 exists then
9: compute H , X such that Ā simulates A′ modulo X // Algorithm 3.2

10: if (q, ((, op, 	′), ϕ), q′) �∈ X then
11: 〈GP,A′ ,W 〉 ← transform(Ā, A′, s, (q̂, ((, op, 	′), ϕ), q′),H,X,GP,Ā,W)

// Algorithm 3.1
12: replace each occurrence of q̂ in GP,A′ and W by q
13: return 〈GP,A′ ,W 〉
14: return 〈({s}, ∅, s), {〈s, (q, ((, op, 	′), ϕ), q′)〉}〉

Lines 10 to 16 deal with the case where an abstract state with an accepting automaton
state is found. Then, a witness is extracted and its feasibility is checked (the ARG
encodes all information necessary to exactly represent the program paths in the witness
as a formula ψ). If the witness is feasible we derive inputs from the model of ψ and
store these inputs in the test suite. Furthermore, we extend our reachability information
database by the tuple 〈A,GP,A,W, FEASIBLE〉. Then, we return to the main multi-goal
reachability analysis algorithm. If the witness is infeasible it means the reachability
analysis was not precise enough during state-space exploration and we therefore refine
the precision of the analysis based on the infeasible witness. This may result in a change
in the ARG as well as in the worklist. In our implementation we use a reachability
analysis based on predicate abstraction and CEGAR [7, 17].

After all elements in W are finally processed, we know that P does not satisfy A and
store the according information in the database (cf. Line 17).

Reusing Stored Reachability Information. In order to determine reusable stored
information, we first transform the given TGA A into a TGA A′ which is the same as A
except that a new state q̂ and a transition (q̂, ((�, op, �′), ϕ), q′) is added. By doing this,
we ensure that the resulting reused ARG starts with the automaton transition passed
to Algorithm 4.3. In case q is an accepting state we also make q̂ an accepting state.
In Line 7, a quadruple 〈Ā, GP,Ā,W, f〉 is chosen from the reachability information
database. The choice is parametric, i.e., one can use different strategies to select a
quadruple, e.g., one can actually compute the maximal possible reuse for each stored
quadruple and select the optimal one, or one can apply computationally cheaper
heuristics based on the structure of the TGA stored in the quadruples. In case a strategy
would decide not to reuse any information, it can just select some entry in the database
and choose X such that no information reuse will happen. If the database is empty, the

Information Reuse for Multi-goal Reachability Analyses 485

algorithm returns the ARG containing only the passed abstract state s and adds the tuple
〈s, (q, ((�, op, �′), ϕ), q′)〉 to the worklist again.

Enumerating Test-Goal Automata. Algorithm 4.1 assumes a fixed order on the se-
quence of TGA. This is not a requirement for our approach. Actually, one of the central
features of our multi-goal reachability analysis approach is not having all TGA avail-
able in advance in contrast to our previous test input generator FSHELL, where initially
all TGA are encoded into the program. Depending on the nature of the TGA, this can
drastically reduce the scalability of FSHELL, e.g., TGA encoding specific subpaths of
the program decrease the performance considerably (cf. Table 1 in Section 5). FSHELL

and CPA/TIGER derive their TGA from concise coverage specifications given in FQL.
Concise means, the size of the specification might be logarithmic in the number of re-
sulting TGA. But, the more concise the specification is, the more sharing the TGA have.
This enables us to skip whole sets of TGA where we can infer infeasibility from other
TGA (because the reason of infeasibility is in the shared part of these TGA).

In general, we could compare all TGA with each other and order the queries cor-
responding to the size of the resulting sets X . One can use computationally cheaper
heuristics based on structural properties of the TGA and the program, e.g., an analysis
of program dominators can exploit hidden connections between TGA. In Algorithm 4.2,
the call to Algorithm 4.3 is interleaved with a reachability analysis. The degree of infor-
mation reuse greatly varies based on the precision the analysis provides and the strate-
gies that are used for computing simulation relations. Therefore, the order of TGA
might be dynamically changed based on the results of the reachability analysis. In our
implementation, we used a fixed order based on similarity of TGA and the structure of
the CFA (see discussion of Table 5 in Sect. 5). We leave a systematic investigation of
dynamic orders as future work.

5 Experiments

We implemented the tool CPA/TIGER to evaluate the performance of our approach.
We use the Java-based verification framework CPACHECKER in order to reuse stan-
dard model-checking technology, and integrate our concepts as configurable program
analyses. To demonstrate the capabilities of the new implementation, we compare it to
the existing FQL backends FSHELL 1 [19] and FSHELL 2 [21]. Both versions are based
on the C bounded model checker CBMC [9] and were implemented in C++. FSHELL

takes as input a C program and an FQL query. FSHELL 1 instruments a C program with
automata derived from an FQL query, whereas FSHELL 2 encodes these automata di-
rectly into the SAT-formula representing the C program under scrutiny. Since FSHELL 1
and 2 are based on bounded model checking (BMC), they require an explicit specifica-
tion of loop bounds for programs with unbounded loops. For a fair comparison one has
to consider that FSHELL 2 is written in C++ whereas CPA/TIGER is written in Java
and additionally proves infeasibility of test goals.

Path Coverage in Programs with Unbounded Loops. To compare the scalability of
the three tools in the context of different path lengths, we studied a small (26 lines
of code) locking/unlocking example. The lock/unlock happens inside a loop that is

486 D. Beyer et al.

Table 1. n-bounded path coverage on locks 1

n Nr. of test goals Loop bound FSHELL 1 t[s] FSHELL 2 t[s] CPA/TIGER t[s]

1 7 2 .6 .8 2.8
2 31 3 11. .3 2.1
3 127 4 390. .6 3.3
4 511 5 - 1.4 5.1
5 2047 6 - 15. 9.6
6 8191 7 - 230. 24.
7 32767 8 - 4600. 94.

only bounded by an input parameter, hence unwinding limits had to be specified for
FSHELL 1 and 2, as stated in the loop-bound column in Table 1. We use FQL queries
cover PATHS(ID, n), where n ranges from 1 to 8, to specify n-bounded path cov-
erage, i.e., these queries require test suites that cover each path in the program that
repeats a CFA edge at most n times. The test-goal automata that are generated from
these queries are mostly deterministic. Consequently, the guidance by test-goal au-
tomata yields very efficient analyses, which makes CPA/TIGER scale much better
than FSHELL 2, which cannot exploit the fact of a highly deterministic guidance.
FSHELL 1 cannot complete the experiments for n > 3 within a time limit of 15 minutes.
CPA/TIGER scales sublinearly with the number of test goals, whereas the BMC-based
approaches of FSHELL 1 and 2 are not well-suited for such programs and queries.

(Basic Block)2 Coverage in Programs with Unbounded Loops. (Basic block)2 cov-
erage requires every pair of basic blocks to be covered by some test case and thereby is
a better approximation of (unbounded) path coverage than simple basic-block coverage.
Table 2 compares FSHELL 2 and CPA/TIGER with respect to (basic block)2 coverage
and (basic block)3 coverage. In both cases, for loop bounds of 20, CPA/TIGER outper-
forms FSHELL 2. The FQL query cover @BASICBLOCKENTRY->@BASICBLOCKENTRY

expresses this coverage criterion.

NT-Drivers. Table 3 summarizes the comparison of FSHELL 2 and CPA/TIGER with
respect to simplified NT-drivers and basic block, (basic block)2, and nodes-(basic
block)2 coverage. Nodes-(basic block)2 coverage is similar to (basic block)2 cover-

Table 2. (Basic block)2 and (basic block)3 coverage

Source LOC Nr. of test goals FSHELL 2 (LB 20) t[s] CPA/TIGER t[s]

BB2 BB3 BB2 BB3 BB2 BB3

locks 5 70 961 29791 22. 720. 7.2 120.
locks 6 81 1296 46656 31. 2100. 8.6 280.
locks 7 92 1681 68921 38. 3300. 12. 540.
locks 8 103 2116 97336 57. 3800. 14. 1200.
locks 9 114 2601 132651 64. 6700. 20. 1300.

Information Reuse for Multi-goal Reachability Analyses 487

Table 3. Basic block, (basic block)2, and nodes-(basic block)2 coverage on NT-Drivers

Source LOC Nr. of Test Goals FSHELL 2 (LB 3) t[s] CPA/TIGER t[s]

BB BB2 NBB2 BB BB2 NBB2 BB BB2 NBB2

kbfilter1 771 118 13924 33124 2.9 7.3 1500. 7.9 36. 200.
kbfilter2 1352 203 41209 100489 5.2 24. 2700. 14. 97. 770.
kbfilter3 1349 202 40804 99856 5.1 19. 2500. 18. 95. 770.

floppy1 1510 209 43681 123904 3.5 21. 8600. 25. 140. 1100.
floppy2 1529 209 43681 124609 3.8 20. 11000. 23. 130. 1200.
floppy3 2198 291 84681 237169 12. 58. 10000. 46. 310. 3300.
floppy4 2198 291 84681 238144 13. 59. 11000. 41. 270. 3300.

cdaudio1 2997 420 176400 499849 48. 100. 11000. 95. 740. 11000.
cdaudio2 2992 417 173889 495616 26. 110. 9600. 100. 770. 12000.

diskperf 1477 202 40804 114244 4.7 27. 15000. 45. 280. 2000.

Table 4. Achieved line coverage

Source CPA/TIGER FSHELL 2
Line Coverage [%] Test Cases Line Coverage [%] Test Cases

kbfilter1 88.46 26 88.85 25
kbfilter2 90.83 48 90.83 49
kbfilter3 90.36 48 90.36 48

floppy1 91.37 26 91.37 21
floppy2 89.40 28 89.81 22
floppy3 93.52 61 93.94 51
floppy4 93.67 60 93.67 51

cdaudio1 86.65 77 87.28 69
cdaudio2 86.42 75 87.04 69

diskperf 86.49 27 83.66 21

age but only requires one CFA node of each basic block. For basic block and (basic
block)2 coverage FSHELL 2 performs better, but, for nodes-(basic block)2 coverage
CPA/TIGER performs better. CPA/TIGER does not implement some optimizations for
coverage criteria involving nodes which are already implemented for coverage criteria
involving CFA edges. Preliminary experiments showed that we can expect a speed-up
factor between 2 and 3 for NBB2 coverage.

Achieved Coverage. Table 4 compares the coverage achieved by the test generators
CPA/TIGER and FSHELL 2. Due to overapproximation by predicate abstraction (no
bit-precision) there are cases in which CPA/TIGER misses a test case and does not
achieve the same coverage as FSHELL 2. On the other hand there is also the last case
in Table 4 where CPA/TIGER achieves a higher coverage than FSHELL 2 because of
insufficient loop unwindings.

Effects of Information Reuse. In Table 5 we show the effects of the information
reuse approach described in this paper. Column A gives the runtime of CPA/TIGER

488 D. Beyer et al.

Table 5. Effects of CPA/TIGER Optimizations exemplified on BB2 Coverage

Source A t[s] B t[s] C t[s] D t[s] E t[s] F t[s]

kbfilter1 36. 34. 60. 72. 800. 48.
kbfilter2 97. 110. 230. 300. 3700. 170.
kbfilter3 95. 110. 230. 350. 3800. 160.

floppy1 140. 160. 300. 290. 14000. 390.
floppy2 130. 140. 310. 300. 13000. 360.
floppy3 310. 380. 920. 1200. >15000. 670.
floppy4 270. 350. 920. 1100. >15000. 610.

cdaudio1 740. 1100. 2400. 3000. >15000. 2300.
cdaudio2 770. 1100. 2400. 2900. >15000. 2300.

diskperf 280. 260. 470. 550. >15000. 1700.

A: all optimizations enabled, B: without automaton optimization, C: without infeasibility
propagation, D: inverted order of test goals, E: without ARG reuse, F: without predicate reuse

with all optimizations enabled. Besides the described reachability information reuse,
CPA/TIGER also performs several other optimizations. Column B shows the runtime
without a TGA minimization step, in column C, the runtime for a fast infeasibility
propagation technique is given. By infeasibility propagation we mean that we can infer
from the infeasibility of a TGA the infeasibility of other TGA in case we can show that
the feasibility of these automata would imply the feasibility of the infeasible automaton
(e.g., by exploiting domination information). Column D shows the effect of different
enumeration orders for test-goal automata. The default enumeration strategy for test-
goal automata is based on a breadth-first search of the underlying CFA – column D
shows the runtime when inverting the order. We also did experiments using a depth-first
enumeration of test goals but this strategy was not beneficial. The reuse of parts of the
ARG causes the biggest impact in the performance of CPA/TIGER (column E). The
last column (F) shows the runtime when not reusing predicates from earlier runs.

Availability. CPA/TIGER is free software and available from the CPACHECKER2

web page. FSHELL3 is available as binary for several platforms. The experimental
data that are discussed in this article are available on the supplementary webpage
http://cpachecker.sosy-lab.org/cpa-tiger.

6 Related Work

In our multi-goal reachability analysis approach we unify query-driven program test-
ing (e.g., [20]) with monitor-based safety checking (e.g., [4, 26]). An extension of
BLAST embeds path automata in a relational querying language, for specifying safety

2 http://cpachecker.sosy-lab.org
3 http://code.forsyte.de/fshell

http://cpachecker.sosy-lab.org/cpa-tiger/
http://cpachecker.sosy-lab.org
http://code.forsyte.de/fshell

Information Reuse for Multi-goal Reachability Analyses 489

verification problems [4, 5], but not test coverage, as a set of single-goal reachability
queries. In a model-based setting, automata-based specifications of coverage were pre-
sented by Blom et al. [8] for test-case generation using the model checker UPPAAL [23].
In contrast to directed testing [12] —where ‘directed’ means directed by branching con-
ditions and randomization— the directedness in our approach stems from user-defined
coverage specifications which separate the control from algorithmic issues.

The test-input generator FSHELL [19,20] encodes many TGA into a formula describ-
ing a finite unrolling of a program and tries to determine which of the TGA are feasible.
Due to the underlying BMC engine of FSHELL, FSHELL can not determine whether a
TGA is infeasible (it can only achieve that for a specific unrolling), while CPA/TIGER is
able to infer infeasibility as well. Furthermore, the architecture of CPA/TIGER enables
the combination of different kinds of reachability analysis (under- and overapproxima-
tion as well as different abstraction techniques). We see FSHELL as an complementary
test input generation technique which we plan to integrate into the CPA/TIGER archi-
tecture.

Our approach generalizes the concepts of summaries where usually pre- and post-
conditions for specific code parts are encoded. In principle, the summarized code part
can be arbitrary, but so far summaries were usually generated at function level [1,2,11].
In this work, we propose the shared behavior of automata as criterion for summariz-
ing and storing reachability information. Albarghouthi et al. [1] divide a reachability
query into subqueries in order to parallelize the computation of one reachability anal-
ysis whereas our approach enables a parallelized analysis of different TGA as well. At
the moment CPA/TIGER supports a very simple parallelization strategy: it splits the
sets of test goals and performs separate multi-goal reachability analyses for these sub-
sets of TGA. But, except for test inputs, we do not exchange any information between
these analysis runs at the moment. Our approach has one potential benefit: the single
reachability analyses do not have to finish in order to make reachability information
available to other queries. We consider [1, 2, 11] as orthogonal work which is relevant
in the context of the reachability analysis we perform. Their summarization and paral-
lelization approach is only of limited use when we want to reason about information
reuse across different reachability queries.

Extreme model checking [16] investigates the possible information reuse across dif-
ferent versions of a program. They reexplore a subtree of an abstract reachability tree
at abstract states where their abstraction was affected by code changes. In constrast
to our approach, they fix the specification across different analysis runs. In multi-goal
reachability analysis the specification changes but the code remains the same. In their
approach, only the prefix of an abstract reachability tree can be reused. We can reuse
more than a prefix of an abstract reachability graph since we do not deal with code
changes but changes in the specifications. As soon as the specifications behave the same
for some part of the program, we can reuse the respective reachability information.

Different notions of simulation are used in work minimizing specifications given as
Büchi automata [10, 27]. The simulation relations are formulated between the origi-
nal automaton and a minimized version of it. In simulation modulo transition sets, we
capture the situation that only parts of a specification are simulated by another automa-
ton. Furthermore, we deal with automata over finite words instead of the infinite word

490 D. Beyer et al.

automata used in the above mentioned work. We use simulation relations to identify
shared parts of two automata and not to minimize an automaton. CPA/TIGER never-
theless performs some simple minimization steps in order to speed-up the reachability
analysis process and increase the precision of the simulation relation computation.

Existing model-checking technology has been applied to test-case generation in a
number of other projects, such as Java PathFinder [28] or SAL2 [15]. Recently, model
checking and testing were given a more uniform view, combining over-approximating
and under-approximating analyses [14] and using interpolation [24]. For hardware de-
signs, [18] presented a coverage-driven test generation approach. As in our approach
they reason about reachability as well as unreachability of coverage states (for a fixed
coverage criterion) but use different techniques to achieve that: they use BDDs for en-
coding the state space and underapproximate the set of unreachable coverage states.

7 Conclusion and Future Work

This paper presents an approach for reusing reachability information based on the au-
tomaton structure of reachability queries. We introduced simulation modulo a transition
set as central concept for identifying shared information of queries. This notion enables
us to dynamically query for reachability information in a way similar to databases.

Future research on multi-goal reachability analysis based on our approach of infor-
mation reuse has a theoretical and a practical side: on the theory side, a deeper inves-
tigation of how temporal logics and automata can be used to infer more facts from ex-
isting reachability information is of interest; on the practical side, our approach enables
the parallelization of the reachability-analysis step and the information-reuse reasoning
step which we have not investigated in depth yet. Furthermore, our approach enables
the use of offline storage of reachability information which we want to investigate to
improve scalability to large programs. At the moment, CPA/TIGER integrates over-
and underapproximation in a very simplistic way. Since FSHELL 2 and CPA/TIGER

showed complementary strengths in the experiments, a deeper investigation on how to
combine over- and underapproximations in reachability analyses is needed.

References

1. Albarghouthi, A., Kumar, R., Nori, A.V., Rajamani, S.K.: Parallelizing Top-down Interpro-
cedural Analyses. In: Proc. PLDI, pp. 217–228. ACM (2012)

2. Anand, S., Godefroid, P., Tillmann, N.: Demand-Driven Compositional Symbolic Execu-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating Tests from
Counterexamples. In: Proc. ICSE, pp. 326–335. IEEE (2004)

4. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST Query Lan-
guage for Software Verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
2–18. Springer, Heidelberg (2004)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker BLAST.
Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

6. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Precision Ad-
justment. In: Proc. ASE, pp. 29–38. IEEE (2008)

Information Reuse for Multi-goal Reachability Analyses 491

7. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-block En-
coding. In: Proc. FMCAD 2010, pp. 189–198. FMCAD Inc. (2010)

8. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and Generating Test Cases Using
Observer Automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
125–139. Springer, Heidelberg (2005)

9. Clarke, E., Kröning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

10. Etessami, K., Wilke, T., Schuller, R.A.: Fair Simulation Relations, Parity Games, and State
Space Reduction for Büchi Automata. SIAM J. Comput. 34(5), 1159–1175 (2005)

11. Godefroid, P.: Compositional Dynamic Test Generation. In: Proc. POPL, pp. 47–54. ACM
(2007)

12. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: Proc.
PLDI, pp. 213–223. ACM (2005)

13. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated Whitebox Fuzz Testing. In: Proc.
NDSS, pp. 151–166. The Internet Society (2008)

14. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional May-must Program
Analysis: Unleashing the Power of Alternation. In: Proc. POPL, pp. 43–56. ACM (2010)

15. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating Efficient Test Sets with a Model
Checker. In: Proc. SEFM, pp. 261–270. IEEE (2004)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme Model Checking. In:
Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 332–358.
Springer, Heidelberg (2004)

17. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. POPL, pp.
58–70. ACM (2002)

18. Ho, P.H., Shiple, T., Harer, K., Kukula, J., Damiano, R., Bertacco, V., Taylor, J., Long, J.:
Smart Simulation using Collaborative Formal and Simulation Engines. In: Proc. ICCAD, pp.
120–126. IEEE Press (2000)

19. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FSHELL: Systematic Test Case Gen-
eration for Dynamic Analysis and Measurement. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

20. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-Driven Program Testing. In:
Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 151–166. Springer,
Heidelberg (2009)

21. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How Did You Specify Your Test Suite.
In: Proc. ASE, pp. 407–416. ACM (2010)

22. Holzer, A., Tautschnig, M., Schallhart, C., Veith, H.: An Introduction to Test Specification
in FQL. In: Barner, S., Kröning, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 9–22.
Springer, Heidelberg (2010)

23. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. J. Softw. Tools Technol.
Transfer 1(1-2), 134–152 (1997)

24. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili, T., Cook,
B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg (2010)

25. Milner, R.: An Algebraic Definition of Simulation Between Programs. In: Proc. IJCAI 1971,
pp. 481–489. Morgan Kaufmann Publishers Inc. (1971)

26. Šerý, O.: Enhanced Property Specification and Verification in BLAST. In: Chechik, M., Wirs-
ing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 456–469. Springer, Heidelberg (2009)

27. Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

28. Visser, W., Pasareanu, C.S., Khurshid, S.: Test Input Generation with Java PathFinder. In:
Proc. ISSTA, pp. 97–107. ACM (2004)

Quarantining Weakness�

Compositional Reasoning under Relaxed Memory Models
(Extended Abstract)

Radha Jagadeesan1, Gustavo Petri2, Corin Pitcher1, and James Riely1

1 DePaul University
2 Purdue University

1 Introduction

In sequential computing, every method of an object can be described in isolation via
preconditions and postconditions. However, reasoning in a concurrent setting requires a
characterization of all possible interactions across method invocations. Herlihy and Wing
[1990]’s notion of linearizability simplifies such reasoning by intuitively ensuring that
each method invocation “takes effect” between its invocation and response events.

This approach had two basic shortcomings. Firstly, in Herlihy and Wing’s definition
of linearizability, the interfaces are not expressive enough to codify external calls ema-
nating from the component. Thus, objects are closed and passive.

Secondly, the definitions are for a memory model with a global total order on mem-
ory operations, thus satisfying sequential consistency (SC). SC is not realized by all ar-
chitectures or runtime systems [Adve and Gharachorloo 1996; Adve and Boehm 2010],
motivating models of relaxed memory in hardware, such as TSO [Sewell et al. 2010],
PSO [SPARC, Inc. 1994], Power [Sarkar et al. 2011], and runtime systems, such as
Java [Manson et al. 2005; Sevcík 2008] and C++ [Boehm and Adve 2008; Batty et al.
2011]. This has motivated recent definitions of linearizability specific to the TSO
[Burckhardt et al. 2012; Gotsman et al. 2012] and C11 [Batty et al. 2013] memory
models.

We propose new definitions to address both of these limitations. Our methodology
aims to keep the interfaces free of the intricacies of particular relaxed memory models.
Our approach has the following characteristics.

(1) We model calls to component functions process-algebraically. This allows us
to treat callbacks and to give a symmetric definition of composition between clients
and libraries. Thus, our definitions encompass active components (that can evolve au-
tonomously even without input from the environment) and open components (that
invoke methods on components provided by the environment) and environment assump-
tions (pre/postconditions and the permitted sequences of method calls to a component).

(2) Our definitions are not specific to a particular memory model. Rather, we iden-
tify the criteria that a relaxed memory model needs to satisfy in order to fit into our
framework: the examples that satisfy our criteria include SC, TSO, PSO and a variant
of the Java Memory Model (JMM).

� Research supported by NSF 0916741.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 492–511, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quarantining Weakness 493

We establish an abstraction theorem: a component can safely be substituted for its in-
terface in a non-interfering program. Moreover, for special classes of programs, we
simplify the reasoning further by quarantining the effects of relaxed memory, allowing
programmers to program to sequential interfaces, even when the code has data races.
Recall the definition of data race free (DRF) models: Informally, a program is DRF if
no SC execution of the program leads to a state in which a write happens concurrently
with another operation on the same location. A DRF model requires that the program-
mer’s view of relaxed computation coincides with SC computations for programs that
are DRF. TSO, PSO and the JMM are all DRF models. We establish the following.

(1) If a stateful component is DRF and the underlying memory model satisfies the
DRF requirement, our notion of linearizability usually coincides with that of
Herlihy and Wing, so classical techniques to verify linearizability can be used directly.
Thus, in many cases, our definitions permit the use of standard proof techniques.

(2) If a client is DRF, and the underlying memory model satisfies the DRF re-
quirement, the client can ignore all memory model subtleties when using a library that
is linearizable as per our definitions, even if the library itself is racy. More precisely, it
is sound for the client to reason solely with the sequential interface of the component,
as in [Herlihy and Wing 1990].

Rest of the paper. In Section 2, we describe background material on linearizability in
order to clarify the difficulties caused by relaxed memory. We discuss related work
in Section 3 and develop our semantic framework in Sections 4–6. We define lineariz-
ability in Section 7 and provide several examples. In Section 8, we turn to techniques
for establishing linearizability under relaxed memory using techniques developed for
sequential consistency. In Section 9–10, we establish the basic properties of lineariz-
ability. Many definitions and all proofs are elided in this extended abstract.

2 Background: Linearizability

To illustrate the issues that arise when reasoning compositionally, we describe the
specification and implementation of a lock and a one-place buffer implemented using
the lock.
Specifying the lock. To begin, we give the specification of a lock using an regular ex-
pression. We use regular expressions informally; the actual specifications are sets of
traces. Let s and t be thread identifiers. Because we are interested in overlapping exe-
cutions, we separate call and return into separate actions: 〈s?call f u〉 represents a call
by s to function f with argument u, and 〈s!ret f v〉 represents the corresponding return
with result v. (The ? and ! indicate that these are calls in to the lock and returns out; we
shall see the symmetric case shortly.)

((〈s?call rl〉〈s!ret rl〉)+〈t?call aq〉〈t!ret aq〉)∗

According to the specification, the lock is initially in its “acquired” state. Only af-
ter one or more calls to the “release” method rl, can the lock be “reacquired” using
aq. This regular expression is not meant to refer to specific concrete thread names s
and t. Rather, it is meant to convey the idea that calls and returns have matching thread
names.

494 R. Jagadeesan et al.

Let Ψlock be the prefix-closed set of traces that satisfy this regular expression. This is
a “sequential” specification of the lock, in that no two function calls overlap.

We now turn to implementation of the lock. Here we use an atomic variable, which
we define to be similar to volatile variables in Java, with an additional compare-and-set
(cas): w.cas(u,v) returns false if w �= u, otherwise it returns true and sets w to v.

atomic w=1; fun rl() { w=0; }
fun aq() { do skip until w.cas(0,1); }

(Lock)

Initially, calls to aq will spin, only returning after another thread calls rl. In the vocab-
ulary of [Lamport 1979], a call to rl happens-before the return from aq. The happens-
before relation allows a partial order to be recovered from the total order prescribed
by a trace: actions of a single thread are ordered sequentially, but actions of different
threads are unordered. Inter-thread order requires synchronization, which is we imple-
ment using atomic variables, such as w.

Every write to an atomic variable happens-before every subsequent read of the same
atomic. An unsuccessful cas acts like a read, whereas a successful cas acts like both
a read and a write. In traces, atomics produce three types of action: writes produce
〈s rel w〉 actions, reads produce 〈s acq w〉 actions, and successful cas produce 〈s cas w〉
actions; unsuccessful cas produce nothing. The happens-before relation orders every
〈rel w〉 and 〈cas w〉 with every subsequent 〈acq w〉 and 〈cas w〉. These relations are
based on the identity, w, of the atomic.

Let Φlock be the set of implementation traces generated by the implementation code
above. These include traces of the form

((〈s?call rl〉〈s rel w〉〈s!ret rl〉)+〈t?call aq〉〈t cas w〉〈t!ret aq〉)∗.

(This regular expression is not exhaustive, since the implementation also generates over-
lapping function calls; however, it is sufficient for the discussion at hand.)

Herlihy and Wing [1990] propose linearizability as a way to relate the implementa-
tion of a concurrent component to its specification. An implementation is linearizable
if for every trace of the implementation, there exists a trace in the specification such
that (1) each thread makes the same method invocations in the same order, and (2) the
order of non-overlapping invocations is preserved. We write Φlock � Ψlock to indicate
that Φlock is a valid implementation of Ψlock in this sense.

Specifying the buffer. We now give the specification and implementation of a one-place
buffer using Lock. The buffer’s sequential specification can be given as follows.

(〈s?call put v〉〈s!ret put〉 〈t?call get〉〈t!ret get v〉)∗

As before, let Ψbuf be the prefix-closed set of traces that satisfy this regular expression.
The implementation of the one place buffer uses two locks. We use subscripts to

distinguish them. One of the locks has interface acqempty/relempty (initially “released”,
with w==0) and the other has interface acqfull/relfull (initially “acquired” with w==1).
Thus, the buffer is initially empty. (Note that two “instances of a class” are represented
here as two separate components.)

var x=0; fun put(z) { acqempty(); x=z; relfull(); }
fun get() { acqfull(); let z=x; relempty(); return z; }

(Buffer)

Quarantining Weakness 495

Let Φbuf be the set of traces derived from this implementation, including traces such as

(〈s?call put v〉
〈s!call acqempty〉〈s?ret acqempty〉〈s wr x v〉〈s!call relfull〉〈s?ret relfull〉

〈s!ret put〉〈t?call get〉
〈t!call acqfull〉〈t?ret acqfull〉〈t rd x v〉〈t!call relempty〉〈t?ret relempty〉

〈t!ret put v〉)∗.

This trace contains actions of the form 〈s!call f u〉 which represent a call out to another
component; likewise, 〈s?ret f v〉 represents the corresponding return. In this case, the
implementation is using services provided by other components.

We would like to be able to verify the correctness of Buffer using the sequen-
tial specification of Lock. That is, conclude Φbuf � Φlock � Ψbuf from Φbuf �Ψlock �
Ψbuf , where � is a suitable notion of composition. Herlihy and Wing validate this ap-
proach under SC semantics. Burckhardt, Gotsman, Musuvathi, and Yang [2012] show
that Herlihy and Wing’s results fail for relaxed memory models and adapt them to TSO.
Here we provide a different solution to that problem.

Traditional linearizability fails here, because it is impossible to establish the premise
Φbuf �Ψlock � Ψbuf . To see why, observe that any reasonable definition Φbuf �Ψlock

admits the following trace under relaxed memory. (For brevity, the calls to the locks are
shown as elipses.)

〈s?call put 1〉· · ·〈s wr x 1〉· · ·〈s!ret put〉〈t?call get〉· · ·〈t rd x 1〉· · ·〈t!ret get 1〉
〈r?call put 2〉· · ·〈r wr x 2〉· · ·〈r!ret put〉〈t?call get〉· · ·〈t rd x 1〉· · ·〈t!ret get 1〉 (†)

The final call to get returns a stale value. The race on variable x is not resolved, and
thus the earlier write on x remains visible.

Of course, if one looks at the specification of Lock, the problem is immediately
apparent: it’s too weak! In relaxed models, data structures have memory effects which
are not captured by their functional interface. Indeed, the documentation in APIs such
as java.util.concurrent [Sun Microsystems 2004] pays significant attention to exactly
this fact. These APIs detail the happens-before behavior of the methods using happens-
before edges that go from the beginning of one method activation to the end of another
(or a set of others); that is, from call to return.

We allow happens-before to be captured in specifications by introducing names, a,
on actions. Each 〈?call〉 gets a unique name, and each 〈!ret〉 gets a set of names. The
interpretation is that 〈s?call f "u a〉 happens-before 〈t!ret f "v A〉 if a ∈ A.

With this addition, Lock can be specified as follows

((〈r?call rl〉〈r!ret rl〉)∗ 〈s?call rl a〉〈s!ret rl〉〈t?call aq〉〈t!ret aq {a}〉)∗

This specification is now strong enough to deduce happens-before edges from each put
to get that it enables, and vice versa. Thus, in trace (†) above, the write to x in the
first put is no longer visible to the second get. More generally, we are able to establish
Φbuf �Ψlock �Ψbuf .

496 R. Jagadeesan et al.

3 Related Work

We discuss the most closely related papers here, referring to others in context.
Herlihy and Wing [1990] defined linearizability. From a client perspective, the set of
linearizations of a linearizable object is an operational refinement of the object
[Filipovic, O’Hearn, Rinetzky, and Yang 2010], i.e. the client is unable to distinguish
the implementation from the specification. Thus, a client of a linearizable object can take
an atomic view of method invocations. The verification method for object linearizability
relies on finding linearization points for methods. For each function call, the lineariza-
tion point is the moment at which the function appears to execute atomically. Com-
position of non-interfering objects preserves linearizability. Gotsman and Yang [2012]
mitigate the stricture of interference-freedom in this framework using ownership ideas.

The papers cited above make a sharp distinction between clients and libraries; clients
are permitted to make method invocations and libraries accept method invocations.
Thus, they are unable to describe the interface of open components such as a thread
pool that relies on an external bounded buffer library. In contrast, our enhanced no-
tion of interfaces is able to describe such components. In terms of implementations,
our library can both make and receive method invocations in external interactions, in
addition to also being able to invoke internal library methods. Indeed, we stop short
of adding full objects, as suggested by Filipovic, O’Hearn, Rinetzky, and Yang [2010],
only to avoid cluttering the presentation with heavy syntactic machinery.

The definition of linearizability relies on an SC view of shared memory.
Batty, Dodds, and Gotsman [2013] address linearizability in the context of the C/C++
memory models. When specialized to SC, their definition of linearizability is stricter
than that of Herlihy and Wing. In contrast, when specialized to SC, our definitions are
not stricter.

In TSO, an update to a variable might be buffered and may not be seen by a reader
in a different thread until the update is committed to the main memory. Burckhardt et al.
[2012] address linearizability for the TSO memory model. In contrast both to
Herlihy and Wing and to our definitions, their paper incorporates two extra actions for
each method invocation in the sequential specification of an object: one to record when
buffer updates made by the client are seen by the library, and the other to record when
the updates made by library are committed to main memory. In our work we main-
tain the atomicity of methods of Herlihy and Wing by only associating call and return
actions with each method invocation.

More generally, our methodology keeps the interface of a component free of the
intricacies of the particular relaxed memory model under consideration. In this paper,
we are thus able to address SC, TSO, PSO and a JMM variant. In particular, our analysis
of TSO is subtle enough to address all the examples of Burckhardt et al. [2012], even
though, from a purely formal TSO perspective, there is clearly greater expressiveness
in their definition. Consequently, any data race free client can work precisely against a
SC interface in our setting, whereas Gotsman, Musuvathi, and Yang [2012] explore the
conditions on compilation necessary to validate the use of SC interfaces under TSO.

Quarantining Weakness 497

4 Traces

The semantics of a component is given by a set of traces, defined below. We build the
syntax from the following disjoint sets. Let u, v ∈ Z range over values, a, b ∈ Act over
action names, A, B ⊆ Act over sets of action names, f , g ∈ Fun over function names,
F ⊆ Fun over sets of function names, s, t ∈ Thrd over thread names (including the
reserved thread names “tinit” and “tcom”) and S, T ⊆ Thrd over sets thread names. Let
η ∈ Fun Thrd range over names, which include both function and thread names, and
H, G over sets of names.

Traces are strings of actions. These are divided into communication actions, de-
scribed below, and memory actions, described in Section 5. For now, let Mem be the set
of all memory actions.

α, γ ::= 〈s!call f "u a A〉 | 〈s?call f "u a A〉 | 〈s.call f "u a A〉
| 〈s?ret f "u a A〉 | 〈s!ret f "u a A〉 | 〈s.ret f "u a A〉 | · · ·

Communication actions include seven components, discussed below: thread identifier
s, polarity in {!, ?, .}, action type in {call, ret}, function name f , vector of arguments
or return values"u, definition a, and use set A.

We typically elide the uninteresting parts of an action; missing parts are existentially
quantified. For example, we write 〈!call f "u a A〉 to abbreviate (∃s)〈s!call f "u a A〉, and
similarly for other abbreviations such as 〈s!call〉, 〈call f 〉, 〈s! f 〉 and 〈!〉.

The thread identifier identifies the thread that performed the action.
As in Jeffrey and Rathke [2005], call and return actions include a polarity. Actions

containing a “?” are input; those containing “!” are output; actions containing “.” are
internal, as are memory actions. Input actions are offered by quiescent threads, whereas
all others are initiated by active threads. Two actions are complementary if one is an
input, the other an output and they are identical when action names and “?” and “!” are
ignored. If α ∈ {〈!〉, 〈?〉}, we say α is I/O.

Actions 〈!call f 〉 and 〈?ret f 〉 occur in the traces of components that do not define
f ; whereas 〈?call f 〉, 〈!ret f 〉, 〈.call f 〉 and 〈.ret f 〉 occur those that do. Action 〈?call〉
represents a call from outside the component, whereas 〈.call〉 represents a call from the
component to itself. Thus, input and output actions cause a shift across the boundary of
the component for that thread, whereas the internal actions do not.

Call actions include the vector of actual parameters. Return actions include a vector
of return values. Several examples require multiple return values. An obvious general-
ization would be to support first-class tuples, but this would complicate the presentation.

The action names decorating actions are used to specify ordering properties
(Section 5). Each action defines a unique action name a. For the purposes of defin-
ing traces and trace composition, these names are mere decorations: we identify traces
up to the renaming of action names. In 〈? A〉, the set A contains names defined by “!”
actions and represents an order relied upon by the component. In 〈! A〉, the set A con-
tains names defined by “?” actions and represents an order guaranteed the component.
In 〈. A〉, the set A contains names defined by “.” actions and represent the interaction
of two components, one which relies upon A and one which guarantees it. In opera-
tionally generated traces, A is empty for any 〈! A〉 or 〈. A〉; these sets or nonempty
when working with specification interfaces.

498 R. Jagadeesan et al.

Definition 4.1 (Trace). For any given thread, define a single-threaded balanced trace to
be one generated by the following grammar.

B ::= A | Q (Single-threaded balanced trace)

A ::= 〈.call f 〉 A 〈.ret f 〉 | A A | ε (Active trace)
| 〈!call f 〉 Q 〈?ret f 〉 | M

Q ::= 〈?call f 〉 A 〈!ret f 〉 | Q Q | ε (Quiescent trace)

M ∈ Mem (Memory action)
(We elide uninteresting metavariables within actions. Because they are single-threaded,
all actions have the same thread name.)

A balanced trace is any interleaving of single-threaded balanced traces with distinct
thread names. A trace is a trace of actions that is well-formed and is also a prefix of a
balanced trace. Let σ , ρ , π range over traces. �

We give an inductive characterization of traces in the full version of this paper.
We expose, and nest, calls and returns as with VPLs [Alur and Madhusudan 2009].

As seen from the grammar, prefixes of single-threaded balanced trace are divided into
two polarities: quiescent and active. By convention, ε is quiescent. For all other traces,
the polarity is determined by the first action of the trace: if it is 〈?call〉, then the trace is
quiescent; otherwise the trace is active.

Traces have three forms of bracketing, indexed by thread: call/return, input/output
and output/input. (Internal actions provide no interesting bracketing other than call/
return.) In the trace 〈s?call f 〉〈s!call g〉〈s?ret g〉〈s!ret f 〉, the call/return matches are
〈s?call f 〉/〈s!ret f 〉 and 〈s!call g〉/〈s?ret g〉; the input/output matches are 〈s?call f 〉/
〈s!call g〉 and 〈s?ret g〉/〈s!ret f 〉; the output/input match is 〈s!call g〉/〈s?ret g〉.

Here are some further examples: 〈s!〉〈s?〉 is a trace, but 〈s!〉〈s!〉 is not. 〈s!〉〈t?〉〈s?〉
is a trace, but 〈s!〉〈s?〉〈s?〉 is not. 〈s?〉〈s.〉 is a trace, but 〈s!〉〈s.〉 is not.

Definition 4.2. Define the function thrd to return the thread name occurring inside an
action and thrds to return the set of threads in a sequence of actions. Similarly, define
the partial functions fun and funs to return the function name. For example, if α =
〈s!call f "u a A〉, then thrd(α) = s and fun(α) = f .

Given a trace σ , define the thread projection σ |s of that trace, which includes only
the actions attributed to thread s; this is always a prefix of a single-threaded balanced
trace. Define the following functions over traces.

intern(α1 · · ·αn)
�
= { f | ∃i. αi = 〈?call f 〉 or αi = 〈.call f 〉}
∪{s | (σ |s) �= ε is an active trace} \ {tinit, tcom}

extern(α1 · · ·αn)
�
= { f | ∃i. αi = 〈!call f 〉}
∪{s | (σ |s) �= ε is an quiescent trace}

These definitions lift to trace sets via set union. When interpreted over trace sets, intern
identifies the functions and threads defined by the component, whereas extern identifies
the functions and threads mentioned in a component, but not defined by it.

Quarantining Weakness 499

A trace σ is coherent if intern(σ)∩ extern(σ) = /0. We assume that all traces are
coherent. We also assume other well-formedness criteria, detailed in the full version of
this paper.

A set Σ of traces is coherent if intern(Σ)∩ extern(Σ) = /0. Note that this is stronger
than requiring only that each individual trace be coherent. Let Φ , Ψ range over coherent
sets of traces.

A trace is sequential if it can be extended in such a way that every 〈s?〉 is followed by
actions exclusively by s, up to a terminating 〈s!〉. A trace set is sequential if it contains
only sequential traces.

A trace set is an interface if it contains only I/O actions. �

5 Memory Actions and Memory Orders

Our approach is parametric with respect to the specific memory model considered. For
concreteness, we will consider four models here: seq, hb, tso and pso. To keep the
formalism simple, we assume that (1) memory stores only integers, (2) atomics provide
the only form of synchronization and (3) components are specified as sets of functions,
variables and threads.

Let z ∈ Reg range over registers (local variables), x, y ∈ DataVar over data variables
and w ∈ SyncVar over synchronization variables. We use the general term variable to
include data variables and synchronization variables, but not registers. Memory actions
are as follows.

α, γ ::= · · · | 〈s wr x u a〉 | 〈s rd x u a〉 | 〈com s x a〉
| 〈s rel w〉 | 〈s acq w〉 | 〈s cas w〉

For data variables, the actions record writes, reads and commits. For synchronization
variables, the actions record releases, acquires and compare-and-sets. Action names
(metavariable a, as before) are used to record relations between data actions. Commit
actions are used by buffering models, such as tso and pso, to indicate the point at which
a write is moved from the local buffer to main memory. Non-buffering models, such as
seq and hb, have no commit actions.

Neither initializations nor commits are performed by the program, but by the un-
derlying operational machinery. Initialization actions are normal writes attributed to
the reserved pseudo-thread “tinit”. Commit actions are only performed by the reserved
pseudo-thread “tcom”; thus we simply define thrd(〈com s x a〉) = tcom. In 〈com s x a〉,
the identifiers s and x are redundant with the corresponding 〈s wr x u a〉.

Synchronization variables carry memory effects whereas data variables do not. Reg-
isters are used to write programs, but are not shared between threads; thus, we do not
require actions relating to registers.

The name a is defined in 〈wr a〉 and used in 〈rd a〉 and 〈com a〉. We expect that
every write action is committed at most once and that the redundant information in read
and commit actions should match the corresponding write. In addition, initialization
writes by thread “tinit” must appear at the beginning of a trace. These bookkeeping
requirements are included in the notion of well-formed trace, formalized in the full
version of this paper. Most of the requirements are unsurprising. We note only that

500 R. Jagadeesan et al.

well-formedness does not require that a read be proceeded by the matching write, since
this is not true under all of the models we consider.

Example 5.1. Consider the following traces, each containing actions from three differ-
ent threads (eliding initialization and commit actions).

〈s wr x a〉〈t wr x b〉〈r rd x b〉 (a)
〈t wr x b〉〈s wr x a〉〈r rd x b〉 (b)
〈s wr x a〉〈r rd x b〉〈t wr x b〉 (c)

〈s wr x a〉〈s wr y b〉〈t wr x c〉〈t wr y d〉〈r rd y d〉〈r rd x a〉 (d)

– Under seq, reads and writes are atomic; thus, a read must be fulfilled by the previous
write. Only trace (a) is allowable; the others require that a read see a stale write.

– Under tso, writes are placed in a buffer which is not visible to other threads; for any
given thread, the buffered writes are committed to main memory in FIFO order, but
the order between threads is nondeterministic. Thus, traces (a) and (b) are allowable.

– pso is similar to tso, except that each thread has a separate buffer for each variable.
Thus, traces (a), (b) and (d) are allowable.

– Under hb, a write may be seen by a reader even before it is generated by the writer.
Thus, all four executions are allowable. �

Example 5.2. Consider the following unsynchronized implementation of a one place
buffer (on the left) and client (on the right).

var y=0
fun put (z){y=z}
fun wait (z){do skip until y==z}

var x=0
thrd s {x=1;put(3);wait(4);let z′ =x}
thrd t {wait(3);x=2;put(4)}

Ignoring initialization and commits, here is a single trace of the library and of the client,
each in isolation. (The label sets decorating return actions are specification elements.
Those on the library output actions are guarantees, whereas those on client input actions
are relies.)

〈s?call put 3 a〉〈s wr y 3〉〈s!ret /0〉
〈t?call wait 3 b〉〈t rd y 3〉〈t!ret {a}〉
〈t?call put 4 c〉〈t wr y 4〉〈t!ret /0〉
〈s?call wait 4 d〉〈s rd y 4〉〈s!ret {c}〉

〈s wr x 1〉〈s!call put 3 a〉〈s?ret /0〉
〈t!call wait 3 b〉〈t?ret {a}〉〈t wr x 2〉
〈t!call put 4 c〉〈t?ret /0〉
〈s!call wait 4 d〉〈s?ret {c}〉〈s rd x 1〉

Composing the traces, we have the following trace (on the left), which, if we elide “.”
actions, is equivalent to the trace on the right.

〈s wr x 1〉〈s.call put 3 a〉〈s wr y 3〉〈s.ret /0〉
〈t.call wait 3 b〉〈t rd y 3〉〈t.ret {a}〉〈t wr x 2〉
〈t.call put 4 c〉〈t wr y 4〉〈t.ret /0〉
〈s.call wait 4 d〉〈s rd y 4〉〈s.ret {c}〉〈s rd x 1〉

〈s wr x 1〉〈s wr y 3〉
〈t rd y 3〉〈t wr x 2〉
〈t wr y 4〉〈s rd y 4〉
〈s rd x 1〉

Ignoring calls and returns, under what circumstances should such a trace be allowed?
On the one hand, it is clearly not allowed under sequential semantics, since 〈s rd x 1〉

does not see the most recent write. On the other hand, it is clearly allowed under a
happens-before semantics, since there is no synchronization between thread s and t.

Quarantining Weakness 501

For tso and pso, the situation is less obvious. In fact, pso will allow the trace, but
tso will not. The difference is that tso enforces an ordering between 〈t wr x 2〉 and
〈t wr y 4〉, whereas pso does not.

Moving from the combined trace back to the trace of the library in isolation, for each
memory model, we may ask “does the library implementation meets its specification?”
In this case, the answer is positive for seq and tso, and negative for pso and hb.

Similarly, moving from the combined trace back to the trace of the client in isolation,
for each memory model, we may ask “is the final client read valid?” For this question,
the answers are reversed: valid for pso and hb, and invalid for seq and tso. �

To formalize these properties, we introduce a notion of memory ordering, which is
derivable from a trace. Recall that tinit is a reserved name.

Definition 5.3. The partial function var is undefined for commit and nonmemory ac-
tions and otherwise returns the variable mentioned: var(α)

�
= x if α ∈ {〈wr x〉, 〈rd x〉};

var(α)
�
= w if α ∈ {〈rel w〉, 〈acq w〉, 〈cas w〉}; and var(α) is undefined otherwise.

From a trace σ = α1 · · ·αn, we derive several relations.

– i <σ
rf j if αi = 〈wr a〉, α j = 〈rd a〉 (reads-from relation)

– i <σ
cb j if αi = 〈wr a〉, ∃� < j. α� = 〈com a〉 (committed-before relation)

– i <σ
rely j if αi = 〈! a〉, α j = 〈? A∪{a}〉 or αi = 〈. a〉, α j = 〈. A∪{a}〉 (rely order)

– i <σ
guar j if αi = 〈? a〉, α j = 〈! A∪{a}〉 or αi = 〈. a〉, α j = 〈. A∪{a}〉 (guarantee)

– i <σ
init j if i < j, thrd(αi) = tinit �= thrd(α j) (init order)

– i <σ
thrd j if i < j, thrd(αi) = thrd(α j) �∈ {tinit, tcom} (thread order)

– i <σ
var j if i < j, var(αi) = var(α j) (variable order)

– i <σ
sync j if i < j, αi ∈ {〈rel w〉,〈cas w〉}, α j ∈ {〈acq w〉,〈cas w〉}

– i <σ
wr j if i′ < j′, αi′ = 〈com a〉, α j′ = 〈com b〉, αi = 〈wr x a〉, α j = 〈wr x b〉

Here, <sync is synchronization order and <wr is (unbuffered) write order.
Using these relations, we define four memory orders and two commit orders.

– Define <σ
seq to be the transitive closure of (<σ

thrd∪<σ
rely∪<σ

init∪<σ
var).

– Define <σ
hb to be the transitive closure of (<σ

thrd∪<σ
rely∪<σ

init∪<σ
sync).

– Define <σ
tso to be the least transitive relation that includes (<σ

rely∪<σ
init∪<σ

sync) and
satisfies the following, where σ = α1 · · ·αn.
(1) If thrd(αi) �= thrd(α j) then i <σ

tso j whenever i <σ
rf j or i <σ

wr j.
(2) If thrd(αi) = thrd(α j) then i<σ

tso j whenever i< j, αi �= 〈com〉, α j �= 〈com〉, and
either (a) αi �= 〈wr〉, (b) α j �= 〈rd〉, or (c) αi = 〈wr a〉, α j = 〈rd a〉 and i <σ

cb j.
– Define <σ

pso similarly to <σ
tso, replacing clause (b) with (b′) and adding (d):

(b′) α j /∈ {〈rd〉,〈wr〉}, (d) α j = 〈wr x〉 and αi ∈ {〈rd〉,〈wr x〉}.
– Define i <σ

compso j whenever i < j and one of the following holds.
(1) ∃a. αi = 〈wr a〉 and α j = 〈com a〉. (2) ∃a,s, t. s �= t, αi = 〈com s a〉 and α j =
〈t rd a〉. (3) ∃s. αi = 〈com s〉 and α j ∈ {〈s rel〉,〈s cas〉}. (4) ∃i′ < j′ < i. ∃a,b. αi′ =
〈wr a〉, α j′ = 〈s!call b〉, αi = 〈com a〉, α j = 〈?ret B〉 and b ∈ B. (5) ∃x. αi = 〈com x〉
and α j = 〈com x〉.

– Define <σ
comtso similarly to <σ

compso, adding (6) ∃s. αi = 〈com s〉 and α j = 〈com s〉.

Let W range over the memory orders in {seq, hb, tso, pso}.
For each W, define �σ

W similarly to <σ
W , simply replacing <σ

rely with <σ
guar . �

502 R. Jagadeesan et al.

The memory orders relate actions that affect the visibility of values. The (nontransitive)
commit orders, <σ

comtso and <σ
compso, relate commit actions to conflicting actions.

All four memory orders include <rely, which specifies orderings guaranteed by the
environment, and <init, which specifies initialization. Initial writes are performed by
the reserved thread “tinit”. For traces of interfaces (which include only I/O actions), the
four memory orders coincide.

The definitions of <seq and <hb are standard. Relative to hb, clause (1) of the defi-
nition of <tso captures tso’s stronger inter-thread dependencies, and clause (2) captures
tso’s weaker intra-thread dependencies. Two actions of the same thread are ordered un-
less the first is a write and the second is a read; in this case, they are ordered if the write
is committed before the read. With respect to tso, the definition of <pso removes the
ordering between writes of different variables by the same thread.

For each W, we define an operational semantics. The order-theoretic properties that
require are W-consistency (no stale reads) and W-closure (no stalled threads).

A trace is W-consistent if none of its read actions are matched with stale writes.

Definition 5.4. Trace σ = α1 · · ·αn is W-consistent if <σ
W is antisymmetric and ∀i, j ∈

[1, n]. α j = 〈rd x〉 and i <σ
rf j imply j �<σ

W i and (� ∃k. αk = 〈wr x〉 and i <σ
W k <σ

W j). A
semantic function is W-consistent if every trace it produces is W-consistent. �

A trace set is W-closed if, whenever σ is an allowed trace, then any interleaving
consistent with <σ

W is also allowed. For example, the following trace is seq-closed, but
not tso-, pso- or hb-closed: 〈tinit wr x〉〈s wr y〉〈t wr y〉.

Definition 5.5. Trace ρ = γ1 · · ·γn is a W-permutation of σ = α1 · · ·αn via δ , if δ is an
injective total function in [1, n]→ [1, n] such that ∀i, j ∈ [1, n].we have that (1) αi �= 〈?〉
implies γδ (i) = αi, (2) αi = 〈? A〉 implies γδ (i) = αi{[B/A]} and B⊆ A, (3) thrd(αi) = tinit

implies δ (i) = i, (4) i<σ
thrd j iff δ (i)<ρ

thrd δ (j), (5) i<σ
W j iff δ (i)<ρ

W δ (j), and (6) i< j
iff δ (i)< δ (j) whenever ∃w. w = var(αi) = var(α j). When W = tso, we additionally
require (7) i <σ

comtso j iff δ (i)<ρ
comtso δ (j), and similarly for pso. �

Definition 5.6. Trace set Φ is W-closed if whenever σ ∈Φ and ρ is an W-permutation
of σ , then ρ ∈Φ . A semantic function is W-closed if every set it produces is W-closed.�

6 Components

Components, M, N, are built using abstractions, Λ , and expressions, C, D. A compo-
nent declares variables (with an initial value), threads (with an initial expression) and
functions (with an abstraction). In addition to base components, there are component
constructors for composition and restriction.

Λ ::= ("z){C}
C, D ::= u | z | x | w | x=C | w=C | w.cas(C,D) | let"z=C;D | · · ·
M, N ::= M ||N | M \ f | var x1=u1; · · · var x�=u�; atomic w1=v1; · · · atomic wm=vm;

thrd s1 C1; · · · thrd sn Cn; fun f1 Λ1 · · · fun f j Λ j

Data variables are introduced by the keyword var; synchronization variables are intro-
duced by the keyword atomic; registers are introduced by abstractions and let;-express-
ions. When unspecified, variables initially hold 0. It is important to note that the formal

Quarantining Weakness 503

parameters to a function are registers, not shared variables. We require that each com-
ponent uniquely declare every function and thread name that occurs within it. Variables
that are declared in more than one subcomponent are shared, allowing the possibility of
interference.

Definition 6.1. A component is well formed if (1) it contains at most one declaration
for each thread and function name, and (2) all declarations of a variable agree on the
initial value. Two components are compatible if their composition is well formed. �

Henceforth we consider only well formed components.
For a base component M = “var "x="u;atomic "w="v;thrd "s "C;fun "f "Λ”, define funs

(M)
�
= "f and thrds(M)

�
= "s. For aggregate components, define funs(M || N) = funs

(M)∪ funs(N) and funs(M\ f) = funs(M), and similarly for thrds. Note that funs returns
the set of functions defined by a component, regardless of whether those functions are
restricted. For a well formed component M ||N, we have that funs(M)∩ funs(N) = /0.

Definition 6.2. For each memory order <W , the full version of this paper provides a
corresponding operational semantics, defined as a partial function OW . If thrds(M)∩S
= /0 then OW�M�(S) returns a set traces that is coherent, W-consistent and W-closed. �

In OW�M�(S), the threads of thrds(M) are initially active in the component (and quies-
cent in the environment) whereas the threads of S are initially active in the environment
(and quiescent in the component). The operational semantics are unsurprising. We com-
ment only on the role of commit actions. These have a clear operational interpretation
under tso and pso; however, both seq- and hb-consistency ignore commit actions. Both
Oseq and Ohb generate a commit action immediately after each write. This ensures that
Oseq traces are tso-consistent; we do not attempt to interpret Ohb traces under tso.

To understand the examples, it is important to understand how the operational se-
mantics generates actions from expressions involving memory. (1) Register writes do
not create actions; neither do reads. (2) Data variable writes create 〈wr〉 actions; reads
create 〈rd〉 actions. 〈com〉 actions are generated immediately after a write in seq and
hb; they are generated nondeterministically by tso and pso. (3) Synchronization vari-
able writes create 〈rel〉 actions; reads create 〈acq〉 actions. Successful cas operations
create 〈cas〉 actions; unsuccessful cas operations do not create actions.

7 Linearizability

Linearizability is defined in terms of I/O permutations.

Definition 7.1. Write α ≈ γ if either α = γ or α = 〈! A〉 and γ = α{[B/A]}.
Trace σ =α1 · · ·αn has I/O-permutation ρ = γ1 · · ·γm via δ , if δ is an injective partial

function over [1, n]→ [1,m] such that

– ∀i ∈ [1, n]. if αi is I/O then ∃k ∈ [1, m].αi ≈ γk and δ (i) = k, and
– ∀k ∈ [1, m]. if γk is I/O then ∃i ∈ [1, n]. αi ≈ γk and δ (i) = k. �

Definition 7.2 (Linearizability). Define Φ �W Ψ if every σ = α1 · · ·αn ∈ Φ has an I/O
permutation ρ = γ1 · · ·γm ∈Ψ via δ , such that

504 R. Jagadeesan et al.

– ∀i, j ∈ [1, n]. if αi, α j are I/O and δ (i) �ρ
W δ (j) then either i <σ

W j or i �σ
W j, and

– ∀i, j ∈ [1, n]. if αi, α j are I/O and i <σ
W j then δ (i)< δ (j). �

The first condition ensures that the orderings required by the specification are preserved
in the implementation. The last condition ensures that the ordering on I/O actions in the
implementation is reflected in the specification. As the next example illustrates, this
is different from the traditional requirement that the ordering on non-overlapping I/O
actions be reflected in the specification.

Example 7.3. As a simple example, consider the following unsynchronized counter.

var x;
fun inc() { let tmp=x; tmp=tmp+1; x=tmp; return tmp }

(Inc)

At first glance, we might expect this implementation to satisfy a specification which
requires that the return values be non-decreasing; that is, we expect traces of form

〈s?call inc〉〈s!ret u0〉 〈t?call inc〉〈t!ret u1〉 〈r?call inc〉〈r!ret u2〉 · · ·

where ui ≥ ui−1. Although this specification contains no ordering on actions, the imple-
mentation does not satisfy it, for seq, tso or pso, due to the lack of synchronization. To
see this, consider a call by one thread with overlapping and following calls by another.

Our results allow us to consider whether the implementation satisfies the specifica-
tion if clients are constrained so that each thread may call inc() at most once. In this
case, we can answer affirmatively for all four models.

To illuminate the definition of linearizability, consider the following traces. (We elide
the commit actions that immediately follow each write.) Inc generates the first trace
under all memory models, but the second, only under hb.

〈t?call inc〉〈s?call inc〉〈s rd x 0 init〉〈s wr x 1 a〉〈s!ret 1〉〈t rd x 1 a〉〈t wr x 2 b〉〈t!ret 2〉
〈t?call inc〉〈t rd x 1 a〉〈t wr x 2 b〉〈t!ret 2〉 〈s?call inc〉〈s rd x 0 init〉〈s wr x 1 a〉〈s!ret 1〉

For each W ∈ {seq, tso,pso}, the first trace is linearizable under �W , whereas the second
trace is not. The write and subsequent read of the shared variable creates order between
threads (condition (2c) and (2d) for tso and pso) and thus we have 〈t?call inc〉 <W
〈s!ret 1〉 in the second trace. This causes the last clause of Definition 7.2 to fail.

Touching a shared data variable creates no ordering under hb, and therefore both
traces are linearizable under �hb. This would not be the case if we were to adopt the
traditional requirement for linearizability: that the order of non-overlapping method
calls be respected. This would also not be the case if the last clause of Definition 7.2
required δ (i) <ρ

W δ (j) rather than δ (i) < δ (j), since (<
ρ
W) is the empty relation for

every specification trace ρ . �

Example 7.4. Suppose we have an implementation trace of the form

〈s?call inc〉〈s!ret u0 a /0〉 〈t?call inc {a}〉〈t!ret u1 b〉 〈r?call inc {b}〉〈r!ret u2〉 · · ·

where the client has imposed ordering between each method return and the subsequent
call. The definition of linearizability requires that the specification have exactly the
same use sets, and thus the same client ordering. In this case, the specification may be
more constrained. For example, it might require that ui > ui−1. �

Quarantining Weakness 505

Example 7.5. The following example is drawn from java.lang.String.hashCode. The
specification requires that every call to hashCode return the same value. The imple-
mentation has a benign write-write data race.

var hash;
fun hashCode() { let h=hash;
if h!=0 then { return h } else { let h=42; hash=h; return h } }

(Hash)

Here, we set hash to 42; in a real implementation, the value is derived from immutable
fields of the object. hash is always set to the same value, regardless of the number of
threads that call hashCode simultaneously. The intended sequential interface specifica-
tion for Hash is:

(〈s?call hashCode〉〈s!ret hashCode 42〉)∗

Hash satisfies its sequential specification under all memory models. �

We consider two implementations of an atomic pair, inspired by an example in
[Burckhardt et al. 2012]. The specification requires that the get return the pair of values
specified by the preceding set:

(〈s?call set (u, v) a〉〈s!ret〉 (〈t?call get〉〈t!ret (u, v) {a}〉)∗)∗

Example 7.6. The first implementation is fully synchronized using locks.

var x1; var x2; atomic lock;
fun set(z1,z2) { do skip until lock.cas(0,1); x1=z1; x2=z2; lock=0 }
fun get() { do skip until lock.cas(0,1); let z1=x1; let z2=x2; lock=0; return z1,z2 }

(Pair1)

Pair1 is linearizable under all memory models. The cas on the atomic variable provides
the required order relation. The linearization point can be chosen to be the successful
cas operation in both the methods. The specification also requires an order relationship
from the call of set to the return of get as seen in the subsequence 〈s?call set (v1,v2) a〉
· · · 〈t!ret get (v1,v2) {a}〉. The order from the write of the atomic variable lock in set to
the successful cas on lock in get establishes this relationship in the implementation. �

Example 7.7. The second implementation uses locking for set, but not get. The version
variable i is odd if and only if there is a write in progress.

var x1; var x2; var i; atomic lock;
fun set(z1,z2) { do skip until lock.cas(0,1); i++; x1=z1; x2=z2; i++; lock=0 }
fun get() { while (1){ let j=i; if even(j) then let z1=x1; let z2=x2;

if j==i then return z1,z2 } }

(Pair2)

Pair2 exemplifies a publication idiom characteristic of tso, allowing data races between
writes and reads. Pair2 is also not linearizable under pso or hb.

Pair2 is linearizable under tso. A candidate linearization point for set is the first
increment of i. The linearization point for get is the successful check of the counter
i. Pair1 and Pair2 share the same specification, so the specification requires the same
order relationship from the call of set to the return from get. The second condition of
the definition of <tso on the counter i, from the write in set to the read in get, yields the
required order. Neither pso nor hb provide this ordering. �

506 R. Jagadeesan et al.

Example 7.8. The next example is an “active” component, which implements an asyn-
chronous function handler. This can be seen as a simplified thread pool, with a single,
one-shot thread. Let v′ be the result of performing the operation op on v.

〈s?call send v a〉〈s!ret true〉 ((〈t?call get〉〈t!ret v′ {a}〉) | 〈r?call send u〉〈r?ret false〉)∗

The first call to send succeeds, and calls to get return a value derived from its parameter.
Subsequent calls to send return false.

var x; var y; atomic lock; atomic start; atomic stop;
fun send(z){ do { if (start==1) then return false } until lock.cas(0,1);

x=z; start=1; return true }
fun get() { do skip until stop==1; return y }
thread wrk { do skip until start==1; y=op(x); stop=1 }

(Async)

Async satisfies its sequential specification for all four memory models.
A candidate linearization point for send is the successful cas or reading start==1,

depending on which path is taken. The linearization point for the worker thread wrk and
get is the point of exit from the loops, via the variables start and stop, respectively. The
specification requires an order relationship as seen in the subsequence 〈s?call send v a〉
· · · 〈t!ret v′ {a}〉. The implementation establishes this by combining two order relations
yielded by atomic variables: start links send to wrk and stop links wrk to get. �

Example 7.9. Async can be generalized to a thread pool which satisfies interface traces
such as the following, where let v′ be the result of performing some computation on v
and j is a job identifier.

〈s?call send v a〉〈s!ret j〉〈r?call get j〉〈r!ret v′ {a}〉

If the thread pool generates unique job identifiers, then it should be able to guarantee
the happens-before relation given in the specification.

We describe an implementation parameterized on a bounded buffer and map. The
bounded buffer holds waiting jobs and the map holds waiting results. Due to the com-
plexity of the possible interleavings, we give exemplary traces rather than complete
specifications. The implementation is straightforward.

The bounded buffer is an adaption ofBuffer given in the introduction. To accomodate
the example, the buffer holds pairs of values. If the buffer is FILO, then the sequential
interface will include traces such as the following.

〈s?call bput (1, 10) a〉〈s!ret〉 〈t?call bput (1, 10) b〉〈t!ret〉
〈r?call bget〉〈r!ret (1, 10) {b}〉 〈q?call bget〉〈q!ret (1, 10) {a}〉

Note that the same value is put twice, by different threads. The use sets in the get
actions indicate the FILO order, even though the values do not.

The map is similar. Here is an example showing a value that is retrieved twice.

〈s?call mput (1, 10) a〉〈s!ret〉 〈t?call mput (1, 10) b〉〈t!ret〉
〈r?call mget 1〉〈r!ret 10 {b}〉 〈q?call mget 1〉〈q!ret 10 {b}〉

Assuming a bounded buffer and map, the general thread pool has traces such as the
following. For clarity, we show the function name on return actions.

〈s?call send v a〉 〈s!call bput (v, j) b〉〈s?ret bput〉 〈s!ret send j〉
〈wrk!call bget〉〈wrk?ret bget (v, j) {b}〉〈wrk!call mput (j, v′) c〉〈wrk?ret mput〉

〈r?call get j〉 〈r!call mget j〉〈r?ret mget v′ {c}〉 〈r!ret get v′ {a}〉

Quarantining Weakness 507

The first line shows a client calling send with argument v. The thread pool creates a new
job id j, stores the job in the buffer and returns j. Subsequently, the second line show a
worker thread retrieving the job from the buffer, computing v′, and storing the result in
the map. Finally, the third line shows a client thread retrieving the result using a call to
get j; in response, the thread pool retrieves j from the map and returns the corresponding
value. In 〈!ret {a}〉, the decoration is a guarantee, similar to the decorations in previous
examples: the thread pool guarantees that there will be memory effects between the call
and corresponding return.

Consider the projection of this trace of the thread pool on the methods of the bounded
buffer. We get:

〈s!call bput (v, j) b〉〈s?ret bput〉 〈wrk!call bget〉〈wrk?ret bget (v, j) {b}〉

The sequence of calls to the buffer methods, and the values returned by them, line
up with the trace of the buffer presented above. Furthermore, so do the label sets. In
〈s!call bput (v, j) b〉 and 〈wrk?ret bget (v, j) {b}〉, the label b indicates an assumption
made by the thread pool on the bounded buffer. In the matching actions, 〈s?call bput
(v, j) b〉 and 〈wrk!ret bget (v, j) {b}〉), the label b indicates a guarantee provided by
the bounded buffer interface to the thread pool. Here one can recognize the semantic
ingredients necessary for a full higher-order multiplicative linear logic of interfaces,
perhaps in the style of Interaction Categories [Abramsky et al. 1996]. In this paper,
however, we do not pursue this further. �

8 Proving Linearizability

We explore methods to quarantine data race free programs from the subtleties of relaxed
memory models. First, we define a component to be locally sequential consistent when
its SC traces provide a complete description of all its traces—or in the terminology of
[Filipovic et al. 2010], when the set of its SC traces is an operational refinement of all
of its traces.

Definition 8.1. Define σ ∼W ρ when (1) σ = σ0γ1σ1 · · ·γnσn and ρ = ρ 0γ1ρ 1 · · ·γnρ n

for some "σ , "ρ , "γ such that each "σ and "ρ contains only write and commit actions, and
(2) for every read action α , σα is W -consistent if and only if ρ α is W -consistent.

A set of traces Φ is locally sequentially consistent (LSC) for W if

∀σ ∈Φ. ∃σ ′ ∈Φ. σ ∼W σ ′ and σ ′ is seq-consistent. �

Intuitively, a set is LSC if every trace can be matched by a seq-consistent trace in the
set, where all non-write/non-commit actions must match exactly and in the same order
(condition 1), and the reads available at the end are the same (condition 2).

Example 8.2. Inc is not LSC for any of the weak models. Hash is LSC for all four
memory models. This demonstrates that LSC does not require the absence of data races.

Pair1 and Async are LSC for all four memory models; however, Pair2 is not LSC
under any of the relaxed models. To see this, consider traces in which there is a com-
pleted call to set with parameters (1,1) and a subsequent call to get returning (1,1).

508 R. Jagadeesan et al.

In every such trace, the write actions must occur before the call to get. Of these traces,
choose one in which the loop in get initially fails because i �= j. This trace will not be
equivalent to any SC trace, since it must see a stale value. �

We describe a sufficient condition to establish that a set is LSC.

Definition 8.3. Actions conflict if one is a write to a data variable and the other is a read
or write to the same variable. Trace σ = α1α1 · · ·αn is locally data race free (LDRF) if
whenever αi and α j conflict then either i <σ

hb j or j <σ
hb i. A set of traces is LDRF if

every member is LDRF. �

Example 8.4. All of the examples from Section 7 are LDRF for all four memory mod-
els, with the exception of Inc, Hash and Pair2, which are not LDRF for any model. �

Proposition 8.5. Any trace that is LDRF and W-consistent is also seq-consistent. �

Proposition 8.5 demonstrates that to establish that a component is LSC, it suffices to
show that all of its traces are LDRF. This, in turn, can be established by various standard
techniques for detecting data races. For tso, there is a weaker condition, “triangular race
freedom”, that suffices to establish that a component is LSC [Owens 2010].

In order to reason about a program using the SC semantics, we must ensure that
the weak semantics is consistent with Oseq, in the sense that any seq-consistent trace
generated by the weak semantics can also be generated by Oseq. All of the semantic
functions we consider have this property.

Definition 8.6. A semantic function S is consistent with Oseq if whenever σ ∈S �M�
(S) and σ is seq-consistent then σ ∈ Oseq�M�(S). �

LSC components can be quarantined. For LSC programs, it is sometimes possible to
use traditional SC techniques to reason about linearizability, even in a relaxed setting.
The restrictions should be unsurprising to readers familiar with [Filipovic et al. 2010],
which states that “OSC observationally refines OSA iff OSC is linearizable with respect
to OSA, assuming that client operations may use at least one shared global variable.”
For such programs, our results allow proof techniques developed in the SC setting to
apply to relaxed models.

A trace is I/O-ordered for W if there is a <W order between every input and output.
Formally, σ = α1 · · ·αn is I/O-ordered for W if whenever αi and α j are input/output
bracketed (Section 4) then i <σ

W j. Let erase(σ) be the trace derived from σ by replac-
ing every name set occurring in return actions by the empty set; this has the effect of
removing all of the happens-before relations from an interface.

Proposition 8.7. Let S be a semantic function that is W-consistent and consistent
with Oseq. Let Ψ be a sequential interface. Let S �M�(S) be I/O-ordered and LSC for
W. Then Oseq�M�(S) �seq erase(Ψ) implies S �M�(S) �W Ψ . �

Here Oseq�M�(S) �seq erase(Ψ) is similar to traditional linearizability. The use of erase
(Ψ) ensures that the proof obligation is indeed the traditional one: ordering require-
ments are removed. Touchiness of the implementation and sequentiality of the specifi-
cation are required to ensure that the order can be recovered.

In Corollary 10.4, we show that LSC clients can be isolated from the subtleties of
relaxed memory used in the implementations of (even racy) libraries.

Quarantining Weakness 509

9 Composition

In order to state properties of linearizability, we must first define semantic versions of
restriction and composition. Restriction is straightforward.

Definition 9.1. Let incalls(α1 · · ·αn)
�
= { f | ∃i. α = 〈?call f 〉}.

Then Φ \F
�
= {σ ∈Φ | incalls(σ)∩F = /0}. �

Definition 9.2. An action sequence π is a collapsed interleaving of σ and ρ if there
exists a π ′ such that (1) all actions of tinit occur at the beginning of π ′, (2) π ′ is an
interleaving of σ and ρ , and (3) π is derived from π ′ by (3a) replacing every subse-
quence 〈s!call f "u a A〉〈s?call f "u a A〉 by 〈s.call f "u a A〉, and (3b) replacing every
subsequence 〈s!ret"u a A〉〈s?ret"u a A〉 by 〈s.ret"u a A〉. �

Definition 9.3 (Composition). Let intern(Φ) = H and intern(Ψ) = G. If H ∩G = /0,
then define Φ �Ψ to be the set of traces, π , such that extern(π)∩ (H ∪G) = /0, and π
is a collapsed interleaving of some σ ∈Φ and ρ ∈Ψ . �

In the full version of this paper, we provide an inductive characterization of composition
and discuss its properties.

Example 9.4. Here are some single threaded examples to illustrate the definition. We
elide the thread identifier. {〈?call f 〉}�{〈?call f 〉} and {〈wr〉}�{〈wr〉} are undefined
because their intern overlap; the first pair on f, the second, on the thread identifier.

Composition forces complete synchronization on invocations of functions that are
defined in either component, but permits interleaving of invocations of functions that
are undefined in both components. Let C perform prefix closure.

C {〈?call f 0〉〈!ret〉}�C {〈wr〉} = C {〈wr〉}
C {〈?call f 0〉〈!ret〉}�C {〈!call f 1〉} = C {ε }
C {〈?call f 0〉〈!ret〉}�C {〈!call f 0〉〈?ret〉}= C {〈.call f 0〉〈.ret〉}
C {〈?call f 0〉〈!ret〉}�C {〈?call g 0〉〈!ret〉}= C {〈?call g〉〈!ret 0〉〈?call f 〉〈!ret 0〉,

〈?call f 〉〈!ret 0〉〈?call g〉〈!ret 0〉}

Consider the following traces, where α11–α32 are arbitrary memory actions. Both the
first and second traces include calls to f, which is defined by third trace. The first trace
also includes a call to g, which is defined by the second trace.

α11〈!call g〉〈?ret〉α12〈!call f〉〈?ret〉
〈?call g〉α21〈!call f〉〈?ret〉α22〈!ret〉
〈?call f〉α31〈!ret〉〈?call f〉α32〈!ret〉

The first two compose to α11〈.call g〉α21〈!call f〉〈?ret〉α22〈.ret〉α12〈!call f〉〈?ret〉.
Composing the second and third gives 〈?call f〉α31〈!ret〉〈?call g〉α21〈.call f〉α32〈.ret〉
α22〈!ret〉 and 〈?call g〉α21〈.call f〉α31〈.ret〉α22〈!ret〉〈?call f〉α32〈!ret〉.
Composing the first and third gives α11〈!call g〉〈?call f〉α31〈!ret〉〈?ret〉α12〈.call f〉α32

〈.ret〉. Composing all three gives

α11〈.call g〉α21〈.call f〉α31〈.ret〉α22〈.ret〉α12〈.call f〉α32〈.ret〉. �

510 R. Jagadeesan et al.

Example 9.5. For any single trace, the order of cross-thread actions is fixed. Thus, com-
posing 〈s?call f〉〈t wr〉 and 〈s!call f〉 produces only 〈s.call f〉〈t wr〉. �

10 Properties of Linearizability

We present the results using the most general client. More general results can be found
in the appendix.

Definition 10.1 (Interference freedom). Two components are interference free if they
are compatible (Definition 6.1) and declare disjoint variables. �

Definition 10.2 (Compositionality). A semantic function S is compositional if
(1) S �M \F�(S) = S �M�(S)\F and,
(2) S �M ||N�(S)⊆S �M�(S)�S �N�(S), whenever M and N are interference free.�

Proposition 10.3 (Abstraction). Let S be coherent, compositional and W-closed. Let
ML and MC be interference free. If S �ML�(S) �W ΨL and S �MC�(S)�ΨL �W ΨC then
S �MC ||ML�(S) �W ΨC. �

Consider the Lock discussed in the introduction. If we are given that (1) the lock imple-
ments its specification (that is, S �Lock�(S) �W Ψlock) and (2) the one place buffers
implements its specification when it uses the lock specification (that is, S �Buffer�
(S)�Ψlock �W Ψbuf), then the theorem allows us to deduce that the implementation
of the buffer realizes its specification (S �Buffer ||Lock�(S) �W Ψbuf).

Corollary 10.4 (Quarantining weakness). Let S be coherent, compositional and W-
closed. Let ML and MC be interference free. Let ΨL and ΨC be sequential interfaces.
Suppose ΨL = erase(ΨL), S �MC�(S) is LSC and either (1) erase(ΨC) =ΨC or (2) S
�MC�(S) is I/O-ordered. If S �ML�(S) �W ΨL and S �MC�(S)�ΨL �seq ΨC then S
�MC ||ML�(S) �W ΨC. �

Corollary 10.4 demonstrates that well-synchronized clients (that do not depend on the
library for synchronization), are not affected by data races in the library. Consider the
unsynchronized counter Inc from Examples 7.3-7.4. A fully-synchronized client can
safely use the library without regard to its data races; for example, a fully-synchronized
counter can be built using the unsynchronized one.

11 Conclusion

This paper investigates reasoning about concurrent data structures, with a special focus
on isolating the complexity wrought by relaxed memory models. We have presented
an adaptation of linearizability that accounts for relaxed memory and provided ways to
reason compositionally. Our treatment is parametric with respect to the memory model,
with the required properties of the memory model confined to a couple of key properties.
We have been able to address SC, TSO, PSO and (a variant of) the JMM in this style.

Quarantining Weakness 511

References

Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations of typed con-
current programming. In: NATO ASI DPD, pp. 35–113 (1996)

Adve, S.V., Boehm, H.-J.: Memory models: a case for rethinking parallel languages and hard-
ware. Commun. ACM 53, 90–101 (2010)

Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. Computer 29(12),
66–76 (1996)

Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:

POPL, pp. 55–66. ACM (2011)
Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: POPL (2013)

(to appear)
Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model. In: PLDI, pp.

68–78. ACM (2008)
Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Correctness on the

TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 87–107. Springer,
Heidelberg (2012)

Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., Vitek, J.: Plan B: A buffered
memory model for Java. In: POPL (2013) (to appear)

Ferreira, R., Feng, X., Shao, Z.: Parameterized Memory Models and Concurrent Separation
Logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–286. Springer, Hei-
delberg (2010)

Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theoretical
Comp. Sci. 411, 4379–4398 (2010)

Gotsman, A., Yang, H.: Linearizability with Ownership Transfer. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer, Heidelberg (2012)

Gotsman, A., Musuvathi, M., Yang, H.: Show No Weakness: Sequentially Consistent Specifica-
tions of TSO Libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 31–45.
Springer, Heidelberg (2012)

Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

Jagadeesan, R., Pitcher, C., Riely, J.: Generative Operational Semantics for Relaxed Memory
Models. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 307–326. Springer, Heidel-
berg (2010)

Jeffrey, A., Rathke, J.: A fully abstract testing semantics for concurrent objects. Theoretical
Comp. Sci. 338, 17–63 (2005)

Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess pro-
gram. IEEE Trans. Comput. 28(9), 690–691 (1979)

Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL, pp. 378–391 (2005)
Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO. In:

D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer, Heidelberg (2010)
Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding power multiproces-

sors. In: PLDI, pp. 175–186. ACM (2011)
Sevcík, J.: Program Transformations in Weak Memory Models. PhD thesis, Laboratory for Foun-

dations of Computer Science, University of Edinburgh (2008)
Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous and usable

programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)
SPARC, Inc.: The SPARC Architecture Manual (version 9). Prentice-Hall, Inc., Upper Saddle

River (1994)
Sun Microsystems (2004), http://docs.oracle.com/javase/1.5.0/

docs/api/java/util/concurrent/atomic/package-summary.html

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html

Software Verification for Weak Memory
via Program Transformation�

Jade Alglave1,2, Daniel Kroening2, Vincent Nimal2, and Michael Tautschnig2,3

1 University College London
2 University of Oxford

3 Queen Mary, University of London

dedicated to the memory of Kohei Honda

Abstract Multiprocessors implement weak memory models, but program veri-
fiers often assume Sequential Consistency (SC), and thus may miss bugs due
to weak memory. We propose a sound transformation of the program to verify,
enabling SC tools to perform verification w.r.t. weak memory. We present experi-
ments for a broad variety of models (from x86-TSO to Power) and a vast range of
verification tools, quantify the additional cost of the transformation and highlight
the cases when we can drastically reduce it. Our benchmarks include work-queue
management code from PostgreSQL.

1 Introduction

Current multi-core architectures such as Intel’s x86, IBM’s Power or ARM implement
weak memory models for performance reasons, allowing optimisations such as instruc-
tion reordering, store buffering or write atomicity relaxation [3]. These models make
concurrent programming and debugging extremely challenging, because the execution
of a concurrent program might not be an interleaving of its instructions, as would be
the case on a Sequentially Consistent (SC) architecture [21]. As an instance, the lock-
free signalling code in the open-source database PostgreSQL failed regression tests on
a PowerPC cluster, due to the memory model. We study this bug in detail in Sec. 5.

This observation highlights the crucial need for weak memory aware verification.
Yet, most existing work assume SC, hence might miss bugs specific to weak memory.
Recent work addresses the design or the adaptation of existing methods and tools to
weak memory [25,29,17,13,23,11,2], but often focuses on one specific model or cannot
handle the write atomicity relaxation of Power/ARM: generality remains a challenge.

Since we want to avoid writing one tool per architecture of interest, we propose a
unified method. Given a program analyser handling SC concurrency for C programs, we
transform its input to simulate the possible non-SC behaviours of the program whilst
executing the program on SC. Essentially, we augment our programs with arrays to
simulate (on SC) the buffering and caching scenarios due to weak memory.

� Supported by ERC project 280053, EPSRC project EP/G026254/1 and the Semiconductor
Research Coropration (SRC) under task 2269.002.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 512–532, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Software Verification for Weak Memory via Program Transformation 513

The verification problem for weak memory models is known to be hard (e.g. non-
primitive recursive for TSO), if not undecidable (e.g. for RMO-like models) [9]. This
means that we cannot design a complete verification method. Yet, we can achieve sound-
ness, by implementing our tools in tandem with the design of a proof, and by stressing
our tools with test cases reflecting subtle points of the proof.

We also aim for an effective and unified verification setup, where one can easily plug
a tool of choice. This paper meets these objectives by making three new contributions:

1. To design our transformation, we define in Sec. 3 an abstract state machine that we
prove (in the Coq proof assistant) equivalent to the framework of [8] (recalled in
Sec. 2). We also explain how this equivalence proof allows us to design a drastically
improved transformation with a speed-up of more than two orders of magnitude.

2. Sec. 4 describes our implementation, highlighting the generality of our approach:
we support a broad variety of models (x86/TSO, PSO, RMO and Power) and all
concurrency-aware program analysers for C programs (cf. experiments below).

3. Sec. 5 details our experiments. i) We systematically validate our implementation
w.r.t. our theoretical study with 555 litmus tests exercising weak memory arte-
facts. We study the overhead and validate the viability of our transformation us-
ing Blender [20], CheckFence [13], ESBMC [14], MMChecker [17], Poirot [1],
SatAbs [15], and Threader [16]. ii) We verify an excerpt of the relational database
software PostgreSQL, which has a bug specific to Power. iii) Our transformation
easily scales to systems code from the Linux kernel or the Apache HTTP server,
and also industrial code.

We provide the source and documentation of our tools, our benchmarks, experimental
reports, Coq proofs and their typeset sketches online: www.cprover.org/wmm/

Related Work. We focus here on the verification problem, i.e., detecting the behaviours
that are buggy, not all the non-SC ones. This problem is non-primitive recursive for
TSO [9]. It is undecidable if read/write or read/read pairs can be reordered, as in RMO-
like models [9]. Forbidding causal loops restores decidability; relaxing write atomicity
makes the problem undecidable again [10].

Existing solutions use various bounds over the objects of the model [11,19], over-
approximate the possible program behaviours [20,18], or relinquish termination [22].
For TSO, [2] presents a sound and complete solution. We present a provably sound
method that allows to lift any SC method or tool to a large spectrum of weak memory
models, ranging from x86 to Power. We build an operational model; [24] presented
such a model, but theirs is restricted to TSO. Given the undecidability of the problem,
we cannot provide completeness, as we focus on soundness. We do not use any bound
in our theoretical model (Sec. 3), but our implementation uses finite buffers (Sec. 4).

Our approach also reduces the amount of instrumentation in a provably sound man-
ner. Unlike [11], we only instrument selected shared memory accesses. For TSO this
would follow immediately from [12], but we generalise to models such as Power.

www.cprover.org/wmm/

514 J. Alglave et al.

sb
P0 P1

(a)x ← 1 (c)y ← 1
(b)r1 ← y (d)r2 ← x

Final state? r1=0; r2=0

(a)Wx1

(b)Ry0

(c)Wy1

(d)Rx0

po
fr

po
fr

Fig. 1. Store Buffering (sb)

iriw
P0 P1 P2 P3

(a)r1 ← x (c)r3 ← y (e)x ← 1 (f)y ← 1
(b)r2 ← y (d)r4 ← x

Final state? r1=1; r2=0; r3=1; r4=0;

(a)Rx1

(b)Ry0

(c)Ry1

(d)Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

Fig. 2. Independent Reads of Independent Writes (iriw)

2 Context: Axiomatic Memory Model

In an operational view, weak memory effects occur as follows: A processor can commit
a write first to a store buffer, then to a cache, and finally to memory. When a write
hits the memory, all the processors agree on its value. But while the write is in transit
through store buffers and caches, a read can occur before the value is actually available
to all processors from the memory.

To describe such scenarios, we use the framework of [8], which provably embraces
several (weak) architectures: SC [21], Sun TSO (i.e. the x86 model [24]), PSO and
RMO, Alpha, and a fragment of Power. At the core of this framework we use relations
over read and write memory events. We introduce this framework on litmus tests, as
shown in Fig. 1. The left-hand side of the figure shows a multi-threaded program. The
shared variables x and y are initialised to zero. A store instruction (e.g. x ← 1 on P0)
gives rise to a write event ((a)Wx1), and a load (e.g. r1 ← y on P0) to a read event
((b)Ry0). The property of interest is whether there exists an execution of the program
such that the final state is r1=0 and r2=0. To determine this, we study the event graph,
given on the right-hand side of the figure. An architecture allows an execution when
it represents a global happens-before order over all processors. A cycle in an event
graph is a violation of global happens before, unless the architecture relaxes any of
the relations contributing to this cycle. Thus, if the graph has a cycle, we check if the
architecture may relax some relations. Such a relaxation makes the graph acyclic, which
implies that the architecture allows the final state.

In SC, nothing is be relaxed, thus the cycle in Fig. 1 forbids the execution. On the
other hand, x86 relaxes the program order (po in Fig. 1) between writes and reads, thus
the forbidding cycle no longer exists, and the given final state can be observed.

Formalisation. An event is a read or a write memory access, composed of a unique
identifier, a direction R for read or W for write, a memory address, and a value. We
represent each instruction by the events it issues. In Fig. 2, we associate the store x← 1
on processor P2 with the event (e)Wx1. We define two utility functions on events:

Software Verification for Weak Memory via Program Transformation 515

proc(e) returns the processor executing the event e, and addr(e) yields the address of
a read or write event e.

A set of events E and their program order po form an event structure E � (E, po).
po is a per-processor total order over the events of E. We write dp ⊆ po for the relation
that models the dependencies between instructions, e.g. an address dependency occurs
when computing the address of a load or store from the value of a preceding load.

We represent the communication between processors leading to the final state via
an execution witness X � (ws, rf), which consists of two relations over the events.
First, the write serialisation ws is a per-address total order on writes which models
the memory coherence widely assumed by modern architectures. It links a write w to
any write w′ to the same address that hits the memory after w. Second, the read-from
relation rf links a write w to a read r such that r reads the value written by w.

Given a pair of writes (w′, w) ∈ ws and a read-from pair (w′, r) ∈ rf, we are to
complete global happens before: w′ happens beforew by ws and r reads from w′ by rf.
Thus r is to happen before w, as otherwise it would have to read from w. To that aim,
we derive the from-read relation fr from ws and rf. A read r is in fr with a write w
when the write w′ from which r reads hit the memory before w did. Formally, we have:
(r, w) ∈ fr � ∃w′, (w′, r) ∈ rf ∧ (w′, w) ∈ ws.

In Fig. 2, the specified outcome corresponds to the execution on the right if each
memory location initially holds 0. If r1=1 in the end, the read (a) obtained its value
from the write (e) on P2, hence (e, a) ∈ rf. If r2=0 in the end, the read (b) obtained its
value from the initial state, thus before the write (f) on P3, hence (b, f) ∈ fr. Similarly,
we have (f, c) ∈ rf from r3=1, and (d, e) ∈ fr from r4=0.

Relaxed or safe. We model the scenario of reads to occur in advance, as described at
the beginning of this section, by some subrelation of the read-from rf being relaxed, i.e.
not included in global happens before. When a processor can read from its own store
buffer [3] (the typical TSO/x86 scenario), we relax the internal read-from rfi. When two
processors P0 and P1 can communicate privately via a cache (a case of write atomicity
relaxation [3]), we relax the external read-from rfe, and call the corresponding write
non-atomic. This is the main particularity of Power or ARM, and cannot happen on
TSO/x86. Some program-order pairs may be relaxed (e.g. write-read pairs on x86, and
all but dp ones on Power), i.e. only a subset of po is guaranteed to occur in this order.
This subset constitutes preserved program order, ppo.

When a relation may not be relaxed, we call it safe. Architectures provide special
fence (or barrier) instructions to prevent weak behaviours. Following [8], the relation
fence ⊆ po induced by a fence is non-cumulative when it only orders certain pairs
of events surrounding the fence, i.e. fence is safe. The relation fence is cumulative
when it additionally makes writes atomic, e.g. by flushing caches. In our axiomatic
model, this amounts to making sequences of external read-from and fences (rfe; fence
or fence; rfe) safe, even though rfe alone would not be safe for the architecture. We
denote the union of fence and the additional cumulativity by ab.

Architectures. An architecture A determines the set safeA of the relations safe on A,
i.e. the relations embedded in global happens before. Following [8], we always consider
the write serialisation ws and the from-read relation fr safe. SC relaxes nothing, i.e. rf

516 J. Alglave et al.

and po are safe. TSO authorises the reordering of write-read pairs and store buffering
but nothing else. Fences are safe by design, thus ab ⊆ safeA.

Finally, an execution (E,X) is valid on A when the three following conditions hold.
1. SC holds per address, i.e. the communication and the program order for accesses with
same address po-loc are compatible: uniproc(E,X) � acyclic(ws ∪ rf ∪ fr ∪ po-loc).
2. Values do not come out of thin air, i.e. there is no causal loop: thin(E,X) �
acyclic(rf ∪ dp). 3. There exists a linearisation of events in global happens before, i.e.
the safe relations do not form a cycle:ghb(E,X) � acyclic((ws ∪ rf ∪ fr∪po) ∩ safeA).
Formally:

validA(E,X) � uniproc(E,X) ∧ thin(E,X) ∧ ghb(E,X)

3 Simulating Weak Behaviours on SC

We develop a provably correct instrumentation strategy for programs. To this end, we
first give an operational description of memory models in terms of an abstract state
machine (Sec. 3.1). We then show in Sec. 3.3 the equivalence of the axiomatic model
of Sec. 2 and the abstract machine. We explain in Sec. 3.4 how this equivalence proof
guides our instrumentation strategy.

3.1 Abstract Machine

We define a non-deterministic state machine that reads a sequence of labels. The ma-
chine has a designated bad state ⊥, and all other states of the machine represent system
configurations, i.e. the memory, write buffers, and the set of pending reads. We write
addr, evt, and rln for the types of memory addresses, events and relations, respectively.

Definition 1 (State). A state of the machine is either ⊥ or a triple (m, b, rs), where

– the memory (m : addr → evt) maps a memory address � to a write to �;
– the write buffer (b : rln evt) is a total order over writes to the same address; the

buffer has a special symbol ⊥b, placed before all events in the buffer;
– the read set (rs : set evt) is a set of read events.

We have a single set of reads, but one totally ordered buffer per address. Existing form-
alisations [24,11] use per-thread buffers, whereas our buffers are solely per-address ob-
jects. This allows us to model not only store buffering (which per-thread objects would
allow), but also caching scenarios (fully non-atomic stores) as exhibited by iriw+dps,
i.e. the iriw test of Fig. 2 with dependencies between the reads on P0 and P1 to prevent
their reordering.

The machine performs transitions depending on delay and flush labels. Intuitively, a
delay label pushes an object in the write buffer or read set. A flush label makes it exit
the write buffer or read set. The details of transitions are described below.

Definition 2 (Label). For a write eventw, d(w(w)) denotes its delay label, and f(w(w))
its flush label. For a read event r, its delay label (with direction r, read) is denoted by
d(r(w, r)), and its flush is denoted by f(r(w, r)).

Software Verification for Weak Memory via Program Transformation 517

updm(m, w) � x �→ if addr(x) = addr(w) then w else x

updb(b, w) � b∪{(w1, w2) | w1 = ⊥b ∨ ((⊥b, w1) ∈ b∧ addr(w1) = addr(w))∧

w2 = w}

updrs(rs, r) � rs∪{r}

delb(b, w) � {(w1, w2) | (w1, w2) ∈ b∧w1 	= w ∧ w2 	= w}

delrs(rs, r) � {e | e ∈ rs∧e 	= r}

last(b, w) � (¬(∃w′
, (⊥b, w

′) ∈ b) ∧ w = ⊥b)∨

((∃w′
, (⊥b, w

′) ∈ b) ∧ (⊥b, w) ∈ b∧¬(∃w′
, (w′

, w) ∈ b))

rfm(m, b, w) � w = m(addr(r)) ∧ rr(b, {w | (w, r) ∈ po-loc}) = ∅

WRITE TO BUFFER

�

s
d(w(w))
−−−−−→ (m,updb(b, w), rs)

DELAY READ

�

s
d(r(w,r))
−−−−−−→ (m, b,updrs(rs, r))

WRITE FROM BUFFER TO MEMORY

rr(b, {e | (e,w) ∈ ppo ∪ ab}) = ∅ ∧ (W1)
rs∩{e | (e, w) ∈ ppo ∪ ab} = ∅ ∧ (W2)

rs∩{r | (r,w) ∈ po-loc} = ∅ ∧ (W3)
last(rr(b, {e | addr(e) = �}), w) (W4)

s
f(w(w))
−−−−−→ (updm(m, w),delb(b, w), rs)

READ FROM SET

r ∈ rs∧ (R1)
rs∩{r | (r,w) ∈ dp} = ∅ ∧ (R2)

rr(b, {e | (e, r) ∈ ppo ∪ ab}) = ∅ ∧ (R3)
rs∩{e | (e,w) ∈ ppo ∪ ab} = ∅ ∧ (R4)[

rfm(m, b, w) ∨ (R5)
(w 	= m(addr(r)) ∧ w ∈ b∧ visible(w, r))

]
(R6)

s
f(r(w,r))
−−−−−→ (m, b,delrs(rs, r))

Fig. 3. The abstract machine

A set L of labels is well-formed w.r.t. an event structure E when: in d(w(w)) or
f(w(w)), w is a write of E; in d(r(w, r)) or f(r(w, r)), w is a write of E and r a
read of E, both with the same address; any event of E has a unique corresponding flush
label in L; when a flush label belongs to L, so does its delay counterpart.

Transitions. We write s
l−→ s′ to denote that the machine can make a transition from

state s to state s′ reading label l. Let the machine be in a state (m, b, rs). Given a label,
the machine performs transitions from one state to another if the conditions described
below are fulfilled. Otherwise, the machine transitions to ⊥ (it gets stuck).

In Fig. 3, we give the formal definition of the transitions of our machine. We need to
define a few auxiliary functions, also formally defined in Fig. 3. We update the memory
with a write w via updm(m, w), a buffer with a write w via updb(b, w), and a set
with a read r via updrs(rs, r). We delete a write w from a buffer via delb(b, w) and
we delete a read r from a set via delrs(rs, r). We write rr(R,S) for the restriction of a
relation R to a set S, i.e. {(x, y) | (x, y) ∈ R ∧ x ∈ S ∧ y ∈ S}. We pick the last write
to an address � of a buffer via last(b, w). In prose, the transitions are as follows. To
avoid ambiguity in wording, we write “r-before” or “r-after” to express before or after
w.r.t. the relation r.

518 J. Alglave et al.

– Write to buffer: a write d(w(w)) to address � can always enter the buffer b, taking
its place b-after all the writes to � that are already in b.

– Delay read: a read d(r(w, r)) can always enter the read set rs.
– Write from buffer to memory: a write f(w(w)) to address � exits the buffer b and

updates the memory at � if:

• there is no event e in the buffer nor in the read set which is ppo ∪ ab-before w
(Conditions (W1) and (W2));

• and there is no read from � in the buffer which is po-before w (Cond. (W3));
• and there is no write to � in the buffer which is b-before w (Condition (W4)).

– Read from set: a read f(r(w, r)) from � (Condition (R1)) exits the read set if:

• there is no read in the read set that is dp-before w (Condition (R2));
• and there is no event in the buffer or in the read set that is ppo ∪ ab-before r

(Conditions (R3) and (R4));
• and either w is in memory, and there is no write to � in the buffer that is po-

before r (Condition (R5));
• or if w is not in memory,w is in the buffer and is visible to r (a notion defined

below) (Condition (R6)).

To define a write w as visible to a read r, we need a few auxiliary functions. We define
the part of the buffer visible to a read r as follows: br � {w | (⊥b, w) ∈ b∧((rfi ⊆
safeA) ⇒ proc(w) = proc(r)) ∧ ((rfe ⊆ safeA) ⇒ proc(w) �= proc(r))))}. Now, w
is visible to r when:

w and r share the same address �;
w is in the part of the buffer visible to r, namely if rfi (resp. rfe) is safe then w cannot

be on the same (resp. a different) thread as r (w ∈ br);
w is b-before the first write wa to � that is po-after r;
w is equal to, or b-after, the last write wb to � that is po-before r.

All states except ⊥ are accepting states. Thus, the abstract machine accepts a sequence

p of labels l0, l1, . . . if there is a sequence of states s0, s1, . . . such that si
li−→ si+1 and

si �= ⊥ for all i.

Definition 3 (Accepting sequence). A sequence p is a total order over L compatible
with the program order, i.e. for two events (x, y) ∈ po, their delay labels appear in the
same order in p. It is accepting iff the sequence p is accepted by the abstract machine.

3.2 Illustration Using Examples

We illustrate the machine by revisiting the sb test of Fig. 1 for TSO and the iriw test of
Fig. 2 for Power. Fig. 4 and 5 reproduce on the left the event graphs from Fig. 1 and 2.
On the right, they show the counterparts in the abstract machine. We explain the labels
on the arrows in the next section (§“From the axiomatic model to the machine”). We
use the following graphical conventions. In the axiomatic world (i.e. on the left of our
figures), we reflect a pair that an architecture relaxes by a dashed arrow. For example,
in the sb test of Fig. 4 on TSO, the write-read pairs (a, b) and (d, c) can be relaxed.

Software Verification for Weak Memory via Program Transformation 519

(a)Wx1

(b)Ry0

(c)Wy1

(d)Rx0

po
fr

po
fr

(a) Axiomatic model

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

de

se sese

(b) Machine

Fig. 4. Revisiting sb on TSO with our machine

(a)Rx1

(b)Ry0

(c)Ry1

(d)Rx0

(e)Wx1 (f)Wy1

dp dp

rf

fr

rf

fr

(a) Axiomatic model

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

d(e)

f(e)

d(f)

f(f)

se

se

se

de

se

se

(b) Machine

Fig. 5. Revisiting iriw+dps on Power with our machine

Likewise, in the iriw+dps test of Fig. 5 on Power, the read-from pairs (e, a) and (f, c)
can be relaxed (as opposed to the read-read pairs (a, b) on P0 and (c, d) on P1, which
are safe because of dependencies).

In any given execution, the abstract machine may choose to relax any pair that is not
safe. Such pairs are depicted with a dashed arrow. Pairs that the machine does not relax
are depicted with a thick arrow.

In Fig. 1, the pairs (a, b) on P0 and (c, d) on P1 are relaxed on TSO. Our machine
may simulate the behaviour permitted on TSO by following the scenario in Fig. 4(b),
which corresponds to the path d(a) → d(b) → d(c) → d(d) → f(b) → f(c) →
f(d)→ f(a). In the figure, the label “se” corresponds to a safe exit, and “de” to a delay
exit, which are formalised below. The machine delays all events w.r.t. program order. In
this scenario, the machine chooses to relax the pairs (a, b) by flushing the read b before
the write a, ensuring that the registers r1 and r2 hold 0 in the end.

In Fig. 2, assume dependencies between the reads on P0 and P1, so that (a, b) on
P0 and (c, d) on P1 are safe on Power. Yet (e, a) and (f, c) may be relaxed on Power,
because Power has non-atomic writes. Our machine may simulate the weak behaviour
exhibited on Power by following Fig. 5(b), which corresponds to the path d(e) →
d(a) → f(a) → d(b) → f(b) → d(f) → f(f) → d(c) → f(c) → d(d) → f(d) →
f(e). Since (a, b) and (c, d) are safe on Power, our machine flushes a before b (resp. c
before d). Since (b, f) ∈ fr (resp. (d, e) ∈ fr), which is always safe, the machine flushes
b before f (resp. d before e), ensuring that b and d read from memory, thus r2 and r4
hold 0 in the end. Finally, in this scenario, the machine chooses to relax the pairs (e, a)
by flushing a before e, ensuring that r1 and r3 hold the value 1 in the end.

520 J. Alglave et al.

3.3 Equivalence of the Axiomatic Model and the Abstract Machine

We now prove the equivalence of the axiomatic model of Sec. 2 and the machine defined
in Sec. 3.1. We first show that we can build an execution valid in the axiomatic model
from any path of labels accepted by the machine (Thm. 1). We then show that we
can build a path of labels accepted by the machine from any execution that is valid
in axiomatic model (Thm. 2).

Theorem 1 (From the machine to the axiomatic model). Let E be an event structure
and L be a set of labels well-formed w.r.t. E. Then there exists an execution witness
valid for E, if there is an accepting sequence p over L.

Let ptoX(p, L) denote the execution witness of Thm. 1. Recall from Sec. 2 that an
execution witness is a pair of write serialisation and read-from map. Intuitively, we build
these as follows. The write serialisation gathers the pairs of writes to the same address
according to the order of their flushed parts in the accepting sequence p: {(w1, w2) |
addr(w1) = addr(w2) ∧ (f(w(w1)), f(w(w2))) ∈ p}. For the read-from map, we
simply gather the pairs given by the labels of L: {(w, r) | addr(w) = addr(r) ∧
f(r(w, r)) ∈ L}.

Proof (Thm. 1). We need to show that (E, ptoX(p, L)) passes the uniproc, thin and
ghb checks. The three proofs follow the same lines, thus we focus on the first for brevity.

The execution passes the uniproc check iff for all (x, y) ∈ po-loc, we do not have
(y, x) ∈ rf∪fr∪ws∪(ws; rf)∪(fr; rf) [4, App. A]. By contradiction take (x, y) ∈ po-loc
and (y, x) ∈ rf ∪ fr ∪ rf. We proceed by case disjunction over (y, x) ∈ rf ∪ fr ∪ ws ∪
(ws; rf) ∪ (fr; rf). We write � for the address shared by x and y.

If (y, x) ∈ rf, f(r(y, x)) is in L. Since p is accepting, the Read from set transition on
f(r(y, x)) does not block. Hence y is in memory, or y is in the buffer and visible to x.
If y is in memory, y has been flushed, i.e. the Write from buffer to memory transition
on f(w(y)) did not block. Hence there is no read from � po-before y in the set. Yet
(x, y) ∈ po-loc, and x is still in the set when y is in memory, a contradiction. If y is in
the buffer and visible to x, y is in the buffer before the first write to � po-after x. Yet,
(x, y) ∈ po-loc, a contradiction.

For brevity, we present only the rf case; all the other cases are similar, using the
premises of the rules of the machine. For example the (y, x) ∈ ws case uses the Write
from buffer to memory rule, in particular the fact that y exits the buffer if there is no
write to � before it in the buffer; yet x is still in there. The (y, x) ∈ fr case uses the
Read from set rule, in particular the fact that if the write w from which x reads is in
memory, then there is no write to � po-before y in the buffer; yet x is in there. If w is
in the buffer, we use the fact that w is equal to, or in the buffer after, the last write to �
po-before x, which will block the flush of w, a contradiction. ��

For the other direction, we first build labels from the events of E. We augment our
events with directions: a write w becomes w(w) and r becomes r(w, r), where (w, r) ∈
rf. Then we split an augmented event e into its delayed part d(e), and its flushed part
f(e). We write labels(E,X) for the labels built from the events of E.

Then we form the delay pairs of (E,X), as follows. We build the relation ndelay
over the events of E, such that: ((ws∪ rf∪ fr)∩ safeA) ⊆ ndelay; ndelay is transitive;

Software Verification for Weak Memory via Program Transformation 521

ndelay is irreflexive; if (x, y) �∈ ndelay then (y, x) ∈ ndelay. The delay pairs are the
pairs (x, y) of events of E that are not in ndelay.

Given (E,X) and a choice of delay pairs, we build an accepting path p as follows,
with e, e1, and e2 denoting augmented events:

Delay before flush we always delay an event e before we flush it, i.e. (d(e), f(e)) ∈ p;
Enter (e1, e2) ∈ po enter the buffer or set in this order, i.e. (d(e1), d(e2)) ∈ p;
Rf a write enters before we flush a read from it, i.e. (d(e1), f(e2)) ∈ p if (e1, e2) ∈ rf;
Safe Exit (e1, e2) ∈ ndelay are flushed in the same order, i.e. (f(e1), f(e2)) ∈ p.
Delay Exit (e1, e2) �∈ ndelay are flushed in the opposite order, i.e. (f(e2), f(e1)) ∈ p.

Reconsider Fig. 4(b) and 5(b). We omit the arrows corresponding to the first three cases
to ease the reading of the figures. In Fig. 4(b), we chose (a, b) to be a delay pair, hence
we flush them b before a, following the delay exit rule. On the contrary, (b, c), (c, d)
and (d, a) are not delay pairs, hence we flush b before c, c before d and d before a,
following the safe exit rule. The same explanation applies in Fig. 5 to the pair (e, a)
being delayed, and (a, b), (f, c), (c, d) and (d, e) being safe.

We build Xtop(E,X, ndelay) as above. As ndelay is transitive and irreflexive,
Xtop(E,X, ndelay) is acyclic. Hence the transitive closure (Xtop(E,X, ndelay))+

is a partial order of the labels. Any linearisation lin((Xtop(E,X, ndelay))+) of this
transitive closure forms an actual path, which we show accepting when 1. X is valid 2.
this linearisation has finite prefixes, in which case we say that (E,X) has finite prefixes:

Theorem 2 (From the axiomatic model to the machine). For any valid execution
(E,X) with finite prefixes, there is an accepting path p over labels L well-formed w.r.t.
E.

Proof. We need to show that no transition can block the machine. The Write to buffer
and Delay read transitions are trivial since they can never block.

For the Write from buffer to memory case, suppose as a contradiction that the trans-
ition blocks on a write w to an address �. If there is e ppo ∪ ab-before w in the buffer
or the set, (e, w) cannot be a delay pair (because ppo and ab are safe), i.e. should be
flushed in order, contradicting the presence of e in the buffer or the set. Otherwise, there
is in the set a read r from � po-before w. Therefore (r, w) is in fr, thus safe, hence can-
not be a delay pair, and the same argument applies. Finally, if there is a write w′ to �
before w in the buffer; one can show that (w′, w) is in ws, hence w′ should be flushed
before w, a contradiction.

For the Read from set case, suppose as a contradiction that the transition blocks on a
read (w, r) with address �. If there is a read r′ dp-beforew in the set, one can show that
r′ should be flushed before r, and r should be flushed before r′ (i.e. a thin-air cycle in
X), a contradiction. If there is an event ppo ∪ ab-before r in the buffer or the set, the
reasoning is the same as above in the write case. If w is in memory and there is a write
to � po-before r in the buffer, we create a uniproc cycle, a contradiction. If w is in the
buffer and not visible to r, there are two cases. Either w is not on a thread whose buffer
r can read w.r.t. A, in which case (w, r) do not form a delay pair and should be flushed
in this order, contradicting the presence of w in the buffer. Or w is in the buffer after the
first write to � po-after r (or before the last write to � po-before r), in which case we
create a uniproc cycle. ��

522 J. Alglave et al.

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

se se

de

se

(a) Machine ((b, c) delay)

m(a)

m(b)

d(c)

f(c)

m(d)

se
se

de

se

(b) One pair only

Fig. 6. Choices for instrumenting sb for TSO

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

d(e)

f(e)

d(f)

f(f)

se

se

se

se

se

de

(a) (f, c) delay

m(a)

m(b)

d(c)

f(c)

m(d)

m(e) d(f)

f(f)

se

se

se

se

se

de

(b) One pair only

Fig. 7. Choices for instrumenting iriw+dps for Power

3.4 Instrumentation

Thm. 2 leaves freedom in the instrumentation strategy. We can exploit the choice of
delay pairs and the choice of the linearisation of Xtop(E,X) in order to reduce the
overhead of running or verifying an instrumented program.

Choice of delay pairs. The conditions on the ndelay relation restrict the choice of delay
pairs. We have to put at least all the safe pairs into ndelay, by the first condition.

Since ndelay is transitive and irreflexive, it is acyclic. An execution (E,X) presents
a cycle iff it is not SC (if it is SC, all pairs are safe and there is no cycle). [7, Thm.1]
shows that an execution is valid on A but not on SC iff it contains critical cycles1.
Thus we can put all pairs in ndelay, except one unsafe pair per critical cycle, which
corresponds to the last condition over ndelay.

In Fig. 4(b), we build an accepting path corresponding to the axiomatic execution of
Fig. 4(a) by choosing the unsafe pair (a, b) on the cycle to be a delay. In Fig. 6(a), we
choose the unsafe pair (c, d). Similarly for Fig. 5(a), we can build an accepting path

1 We recall here the definition of [7]. Two events (x, y) are competing, written (x, y) ∈ cmp, if
they are from distinct processors, to the same address, and at least one of them is a write (e.g.
in Fig. 2, the read (a) from x on P0 and the write (e) to x on P2). A cycle σ ⊆ cmp∪po
is critical when it is not a cycle in (cmp ∪ (ppo∩ safeA)

+) and it satisfies the two following
properties: (i) Per processor, there are at most two memory accesses (x, y) on this processor
and addr(x) �= addr(y). (ii) For a given memory address x, there are at most three accesses
relative to x, and these accesses are from distinct processors ((w,w′) ∈ cmp, (w, r) ∈ cmp,
(r,w) ∈ cmp or {(r, w), (w, r′)} ⊆ cmp). Fig. 2, shows a critical cycle of iriw on Power.

Software Verification for Weak Memory via Program Transformation 523

corresponding to the axiomatic execution of Fig. 5(a) by choosing e.g. (e, a) as delay
(cf. Fig. 5(b)). In Fig. 7(a), we choose (f, c) as delay.

Our examples are symmetric, thus the choice of which pair to delay should not make
a difference. In Fig. 1, (a, b) and (c, d) are write-read pairs. Similarly in Fig. 2, (e, a)
and (f, c) are of the same nature, namely rfe pairs. For asymmetric examples, the chosen
delayed pair can make a crucial difference (cf. Sec. 5), if the instrumentation of one pair
causes more execution or verification time overhead than the other.

Choice of the linearisation. Thm. 2 accepts any linearisation of (Xtop(E,X, ndelay))+.
Yet, some require less instrumentation than others. Consider Fig. 6(a) and (b): in both
we choose to delay the pair (c, d). On the left, we can pick any interleaving (compatible
with Xtop) of the delayed and flushed events to instantiate Thm. 2, e.g. d(a)→ d(b)→
d(c)→ d(d)→ f(b)→ f(d)→ f(c)→ f(a).

On the right, we write m(e) when the delayed and flushed part of an event happen
without intervening events in between. Observe that in this case, the event e occurs
w.r.t. memory: if it is a read, it reads from the memory; if it is a write, it writes to
memory. In Fig. 6(b), we pick a particular interleaving, namely the one where all events
are w.r.t. memory, except for the event c. This interleaving requires to instrument only
one instruction, as opposed to all of them on the left.

Similarly in Fig. 7(a) and (b), we choose in both cases to delay the pair (f, c). On
the left, we instrument all instructions. On the right, we instrument only the pair (f, c).

4 Implementation

4.1 Overview

We implemented the transformation technique of Sec. 3. Our tool reads a concurrent C
program, possibly with inline assembly mfence, sync, or lwsync instructions (cf.
Sec. 2). It generates a new concurrent C program augmented with C equivalents of write
buffers and read sets of Sec. 3.1. The transformation proceeds in three main steps:

1. We devise an abstract event structure, as defined below, the concretisation of which
amounts to all event structures (cf. Sec. 2) of the program.

2. Given an architecture, we identify potential critical cycles in this structure.
3. We instrument unsafe pairs in the cycle, as described in Sec. 3.4.

The resulting program is then passed to any SC program analyser.
The first two steps guide the program transformation of the third step, in order to

reduce the overhead for subsequent verification. As our experiments confirm (Sec. 5),
we drastically improve verification performance over instrumenting all instructions.

4.2 Abstract Event Structures

As described in Sec. 3, we can choose to delay only one pair per critical cycle. To do so,
all critical cycles need to be identified first. Sec. 2 defines cycles over events and event
structures, which use concrete addresses and values, and thus correspond to concrete

524 J. Alglave et al.

execution traces. As the enumeration of all traces is infeasible, we compute a conser-
vative, over-approximate set of possible cycles using static analysis. In this program
analysis we introduce abstract events, which summarise all concrete events that have
the same process identifier, program counter, direction and memory address. We extend
the definition of event structure to abstract event structures, which are identical except
that they use abstract events.

Statements to abstract events. The derivation of an abstract event structure from a
non-branching multi-threaded program is straight-forward. For each thread, decompose
each statement into abstract events, extracting all writes or reads of shared memory.
For an assignment to a location designated by a pointer variable, consider the example
*(&x+z) = y;, where &x denotes the address of x and *p the value held at address
p. We first read y, then read z and finally we write to the object pointed to by &x+z,
which is determined using an alias analysis2. If the precision of the alias analysis is in-
sufficient to determine the object, we assume that this write can target any of the objects
in the program.

1 void∗ thread 1 (void∗) {
2 int r1 ;
3 x = 2;
4 r1 = y;
5 y = 2;
6}
7 void∗ thread 2 (void∗) {
8 int r2 , r3 ;
9 y = 1;

10 r2 = z;
11 r3 = x;
12}

Wx

Ry

Wy

Wy

Rz

Rx

po

po

po

pocom

com

com

Wx

Ry

Wy

Wy

Rz

Rx

po

po

po

po

po

fr

fr

com

Fig. 8. The program on the left contains an sb cycle (cf. Fig. 1). We build the abstract event graph
in the middle, and indeed detect the cycle in the graph, on the right.

Abstract event graph. In order to devise SC cycles that become critical cycles on a
weaker architecture, we look for cycles in ws ∪ fr ∪ rf ∪ po (definition of SC, [5, Thm.
3]). Abstract events in each thread are ordered by program order, po, which we derive
as described below. As we do not use concrete values, we compute over-approximations
of the relations ws, rf and fr. We further abstract from directed edges and use undirected
edges in these over-approximations. We call the abstract event structure equipped with
over-approximations of ws, rf and fr an abstract event graph. We compute the over-
approximations as follows:

– the internal rf, fr and ws pairs (relating two events on the same thread) are already
covered by po edges;

2 The alias analysis we use is known to be sound for the weak architectures we consider [6].

Software Verification for Weak Memory via Program Transformation 525

– the external rf, fr and ws pairs (relating two events from different threads) are ab-
stracted by undirected external communications, denoted by com, and relate any
pair of write-read, read-write or write-write between two distinct threads.

Fig. 8 depicts this first step in the middle, which is the resulting abstract event graph of
the program shown on the left-hand side. A concretisation of the abstract event graph
may yield critical cycles. Fig. 8 shows an example of a critical cycle on the right-hand
side. Whether this cycle can be fully concretised to an execution witness, filling in
concrete values in all abstract events, is left as task to a verification back end.

Control flow. To build an abstract event graph for branching programs, we consider the
if-then-else branches, loops and function calls. Functions are analysed as if they were
inlined, thus recursion is not handled. For if-then-else, po in the abstract event graph
follows both of the branches separately, and then joins at the end of the condition. For
loops or backward jumps and given a pair (x, y) ∈ po, the back-edge may render x
reachable from y as well. We thus include copies of x and y in the abstract event graph,
such that (y, x) in po if such a back-edge exists. By [7] it suffices to use a single copy,
as a critical cycle does not require more than two events in program order per thread.

The analysis proceeds in a forward manner along the control-flow graph of a given
program. For each statement recorded in a node of the control-flow graph, the abstract
events are computed. When preserved program order is defined via dp (cf. Sec. 2),
possible dependencies between abstract events are recorded as well.

4.3 Detecting Critical Cycles

Given the abstract event graph of a program, we need to compute an over-approximate
set of critical cycles. To increase scalability of this procedure, we first identify all
strongly connected components (SCCs) in the graph using Tarjan’s 1972 algorithm [27],
which is linear in the size of the abstract event graph. The detection of critical cycles
can then be performed in parallel and independently for each SCC, as no cycle can span
multiple SCCs. The SCCs also offer first insights about the program under test: two
distinct SCCs will refer to two parts of the code that are independently accessing and
updating shared memory.

Detecting all the critical cycles in an SCC. Our cycle computation is based on Tarjan’s
1973 algorithm [28]. The abstract event graph, however, does not encode the transitive
closure of po. Thus, we first extract candidate cycles by picking at most two abstract
events per thread, which are guaranteed to be (transitively) linked by program order.
For each candidate cycle we then perform additional filtering, as such a cycle need not
be critical: a candidate is guaranteed to be not critical if it does not contain any unsafe
pair for the given architecture, or is a cycle in uniproc or thin-air. All of these checks
need to be performed a-posteriori for a complete cycle.

Tarjan’s original algorithm is worst-case exponential in the number of vertices (ab-
stract events), and our subsequent filtering adds additional complexity. To deal with
this complexity, we soundly limit the exploration using properties of critical cycles,
such as all program-order pairs per address in a critical cycle being one of write-write,
read-write, write-read or read-write-read [4].

526 J. Alglave et al.

4.4 Selecting and Instrumenting Delay Pairs

The above cycle detection yields candidates for unsafe pairs of abstract events to be
delayed in each cycle. Following Sec. 3.4, we instrument one pair to delay per cycle.
We may select these pairs arbitrarily, but we describe below a weighted instrumentation
that decidedly reduces verification time, as we show in Sec. 5.

We first normalise the program such that all shared memory accesses appear in
assignments only; any reads in branching conditions or function call parameters are
moved to temporary variables as follows: if (φ(x)) ...; �−→ tmp = φ(x); if(tmp) ...; for
an expression φ over a shared memory address x. In the following, we thus restrict
ourselves to assignment statements.

For each memory address x of events in unsafe pairs we introduce an array b(x).
In addition to the properties described in Sec. 3.1, we also keep track of the originating
thread of the write to x. We introduce an additional pointer for each local variable
reading from a shared memory address, i.e. an r such that r = x;. In a pair to delay, in
one of the critical cycles or after, we equip r with a pointer rs(r), which implements
the read set of Sec. 3.1. We now describe the instrumentation of writes, then reads.
To soundly over-approximate all possible behaviours, all instrumented operations are
guarded by if (∗) , expressing non-deterministic choice.

Instrumenting writes. We implement here the two operations associated to the weak-
memory effects of a write w, as defined in Sec. 3.1: (1) delaying a write, d(w(w)), by
appending to the buffer, and (2) flushing a write, f(w(w)), removing it from the buffer.
A delayed write amounts to appending an element to the array:

x = smthg; �−→ if(∗) b(x).push(smthg,thread.number); else x = smthg;

According to Sec. 3.1, each delay is accompanied by a flush. Yet the point in time when
the flush happens is not determined. We would thus need to add non-deterministic flush
instructions at each statement in the program. This transformation would make the pro-
gram highly non-deterministic, and very hard for a model checker to analyse. Therefore,
we insert flushes only where they might have an effect, i.e. before each potential read
from the address that was written to, and make them flush a non-deterministic number
of writes in FIFO-manner. The function take implements the semantics of “write from
buffer to memory” of Fig. 3 on C arrays for a non-deterministic number of elements,
and returns the resulting in-memory value at address x.

smthg = x; �−→ if(∗) x = b(x).take(thread.number); smthg = x;

Instrumenting reads. Here we are to implement the two operations for reads: delaying
a read d(r(w, r)) and reading from the set, f(r(w, r)). We delay a read by recording the
memory address to be read from. Note that, given our program normalisation, our reads
manifest as assignments to local variables. For a local variable r1, we delay the read of
x as follows:

r1 = x; �−→ if(∗) rs(r1) = &x; else r1 = x;

Software Verification for Weak Memory via Program Transformation 527

Input: the edges to instrument E, the cycles Cj

Problem: minimise
∑

ei∈E d(ei) ∗ xi

s.t. ∀j,
∑

ei∈Cj∩E xi >= 1 (ensures soundness)
where
ei is a pair to potentially instrument,
xi is a Boolean variable stating whether we instrument ei,
and d() is the cost of an instrumentation.
Output: the xi, stating which pairs to instrument

Fig. 9. Mixed integer programming problem to choose the pairs to instrument

For flushing the read, considerations analogous to the write case are made: we flush
non-deterministically upon an actual read (then of r1) only, instead of every program
point. The flush dereferences the address previously recorded:

r2 = r1 ; �−→ if(rs(r1) != 0 && ∗) { r1 = ∗rs(r1); rs(r1) = 0;} r2 = r1;

4.5 Weighted Selection of Unsafe Pairs

Above, we selected an arbitrary unsafe pair per cycle, as this suffices to reveal all
weak-memory effects (cf. Sec. 3). We do observe, however, that the choice of pairs
has a strong effect on verification time. We thus assign an empirically devised cost d
to candidate pairs. With our implementation, we chose d(poW*)=1 (pairs in program
order where the first event is a write), d(poRW)=2 (read-write pairs in program order),
d(rfe)=2 (write-read pairs on different threads), d(poRR)=3 (read-read pairs in program
order). Given a set E of pairs to delay in the graph with critical cycles Cj , we solve the
mixed integer programming problem of Fig. 9. Our experiments show that this encoding
yields a speedup of 26% over all architectures with an SC bounded model-checker.

5 Experimental Results

We exercised our method and measured its cost using 8 tools. We considered 5 ANSI-C
model checkers: a bounded model checker based on CBMC; SatAbs, a verifier based on
predicate abstraction, using Boom as the model checker for the Boolean program; ES-
BMC, a bounded model checker; Threader, a thread-modular verifier; and Poirot, which

0 20 40 60 80 100

Blender

CheckFence

CBMC

ESBMC

MMChecker

Poirot

SatAbs

Threader

Distribution of verification outcomes [%]

ok

error/timeout
wrong result
Timeout: 900s

Fig. 10. All tools on all litmus tests and models

implements a context-bounded trans-
lation to sequential programs. These
tools cover a broad spectrum of
symbolic algorithms for verifying
SC programs. We also experi-
mented with Blender, CheckFence,
and MMChecker. We ran our exper-
iments on Linux 2.6.32 64-bit ma-
chines with 3.07 GHz (only Poirot
was run on a Windows system). Fur-
ther details on the results are avail-
able on our web page.

528 J. Alglave et al.

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Weighted

In
st
ru
m
en
ta
ti
on

p
ro
p
os
ed

b
y
A
ti
g
et

al
.

(a) All accesses [11] vs. weighted selection

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Weighted

A
ll
p
ai
rs

(b) All pairs vs. weighted selection

Fig. 11. Comparison of verification times of CBMC (seconds) for different instrumentations

Validation. First, we systematically validate our setup using 555 litmus tests expos-
ing weak memory artefacts (e.g. instruction reordering, store buffering, write atomicity
relaxation) in isolation. The diy tool automatically generates x86, Power and ARM as-
sembly programs implementing an idiom that cannot be reached on SC, but can be
reached on a given model. For example, sb (Fig. 1) exhibits store buffering, thus the
final state can be reached on any weak model, from TSO to Power.

Each litmus test comes with an assertion that models the SC violation exercised
by the test, e.g. the outcomes of Fig. 1 and 2. Thus, verifying a litmus test amounts
to checking whether the model under scrutiny can reach the specified outcome. We
then convert these tests automatically into C code, leading to programs of 48 lines on
average, involving 2 to 4 threads.

These examples provide assurance that we soundly implement the theory of Sec. 3:
we verify each test w.r.t. SC, i.e. without transformation, then w.r.t. TSO, PSO, RMO,
and Power. Despite the tests being small, they provide challenging concurrent idioms to
verify. Fig. 10 compares the tools on all tests and models. Most tools, with the exception
of Blender, CBMC and SatAbs, time out or give wrong results on a vast majority of
tests. Blender only expectedly fails on tests involving lwsync fences; CBMC and
SatAbs return spurious results in 1.5% of the tests, caused by the over-approximation
in the implementation of our instrumentation.

Fig. 11 compares the verification time using CBMC over all litmus families (e.g. rfe
tests exercise store atomicity, podwr tests exercise the write-read reordering) for dif-
ferent instrumentation options. First, with the restriction to TSO, Fig. 11(a) compares
the instrumentation of all shared memory accesses proposed in [11] to the weighted
transformation (Sec. 4.5). On average, we observe a more than 300-fold speedup in
verification time. In addition, the reduced instrumentation also yields 246 fewer spuri-
ous results. We also quantify the specific benefit of the weighted selection of pairs in
Fig. 11(b). We compare the cost of the instrumentation of all pairs on critical cycles
with that of the weighted transformation (Sec. 4.5) for all models, tools and tests. The
average speedup over all models and tests is still more than one order of magnitude. We
give the detailed results for all experiments online.

Software Verification for Weak Memory via Program Transformation 529

We also verified several TSO examples that have been used in the literature (details
are online). Note that these examples in fact only exhibit idioms already covered by our
litmus tests (e.g. Dekker corresponds to the sb test of Fig. 1). Furthermore, we applied
the instrumentation to code taken from the Read-Copy-Update algorithm in the Linux
kernel and scheduling code in the Apache HTTP server, as well as industrial code from
IBM. We observe that the instrumentation tool completes even on such code of up to
28,000 lines in less than 1 second, and in 32 seconds on IBM’s code. We now study one
real-life example in detail, an excerpt of the relational database software PostgreSQL.

Worker Synchronization in PostgreSQL. Mid 2011, PostgreSQL developers observed
that a regression test occasionally failed on a multi-core PowerPC system.3 The test
implements a protocol passing a token in a ring of processes. Further analysis drew
the attention to an interprocess signalling mechanism. It turned out that the code had
already been subject to an inconclusive discussion in late 2010.4

1 #define WORKERS 2
2 volatile Bool latch [WORKERS];
3 volatile Bool flag [WORKERS];
4 void worker(int i)
5{ while(! latch [i]);
6 for (;;)
7 { assert (! latch [i] || flag [i]);
8 latch [i] = 0;
9 if (flag [i])

10 { flag [i] = 0;
11 flag [(i+1)%WORKERS] = 1;
12 latch [(i+1)%WORKERS] = 1; }
13 while(! latch [i]); } }

Listing 1. Token passing in pgsql.c

The code in Listing 1 is an inlined version of
the problematic code, with an additional asser-
tion in line 7. Each element of the array “ latch ”
is a Boolean variable stored in shared memory
to facilitate interprocess communication. Each
working process waits to have its latch set and
then expects to have work to do (from line 9
onwards). Here, the work consists of passing
around a token via the array “ flag ”. Once the
process is done with its work, it passes the token
on (line 11), and sets the latch of the process the
token was passed to (line 12).

Starvation seemingly cannot occur: when a
process is woken up, it has work to do (has
the token). Yet, the PostgreSQL developers ob-

served that the wait in line 13 (which in the original code is bounded in time) would
time out, thus signalling starvation of the ring of processes. The developers identified
the memory model of the platform as possible culprit: it was assumed that the processor
would at times delay the write in line 11 until after the latch had been set.

We transform the code of Listing 1 for two workers under Power. The event graphs
show two idioms: lb (load buffering) and mp (message passing), in Fig. 12 and 13. The
code fragments on the left-hand side give the corresponding line numbers in Listing 1.

The lb idiom contains the two if statements controlling the access to both critical
sections. Since the lb idiom is yet unimplemented by Power machines (despite being
allowed by the architecture [26]), we believe that this is not the bug observed by the
PostgreSQL developers. Yet, it might lead to actual bugs on future machines.

In contrast, the mp case is commonly observed on Power machines (e.g. 1.7G/167G
on Power 7 [26]). The mp case arises in the PostgreSQL code by the combination

3 http://archives.postgresql.org/pgsql-hackers/
2011-08/msg00330.php

4 http://archives.postgresql.org/
pgsql-hackers/2010-11/msg01575.php

http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php
http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php
http://archives.postgresql.org/pgsql-hackers/2010-11/msg01575.php
http://archives.postgresql.org/pgsql-hackers/2010-11/msg01575.php

530 J. Alglave et al.

pgsql (lb)
Worker 0 Worker 1

(9)if(flag[0]) (9)if(flag[1])
(11)flag[1]=1; (11)flag[0]=1;

Observed: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf

Fig. 12. An lb idiom detected in pgsql.c

pgsql (mp)
Worker 0 Worker 1

(11)flag[1]=1; (5)while(!latch[1]);
(12)latch[1]=1; (9)if(flag[1])

Observed: latch[1]=1; flag[1]=0

W flag[1]

W latch[1]

R latch[1]

R flag[0]

po
rf

po
fr

Fig. 13. An mp idiom detected in pgsql.c

of some writes in the critical section of the first worker, and the access to the critical
section of the second worker; the relevant code lines are in Fig. 13.

We first check the fully transformed code with SatAbs. After 21.34 seconds, SatAbs
provides a counterexample (given online), where we first execute the first worker up to
line 13. All accesses are w.r.t. memory, except at lines 11 and 12, where the values 0
and 1 are stored into the buffers of flag[0] and flag[1]. Then the second worker starts,
reading the updated value 1 of latch[1]. It exits the blocking while (line 5) and reaches
the assertion. Here, latch[1] still holds 1, and flag[1] still holds 0, as Worker 0 has not
yet flushed the write waiting in its buffer. Thus, the condition of the if is not true, the
critical section is skipped, and the program arrives at line 13, without having authorised
the next worker to enter the critical section, and loops forever.

As mp can arise on Power e.g. because of non-atomic writes, we know by Sec. 3.4
that we only need to transform one rfe pair of the cycle, and relaunch the verification.
SatAbs spends 1.29 seconds to check it (and finds a counterexample, as previously).

PostgreSQL developers discussed fixes, but only committed comments to the code
base, as it remained unclear whether the intended fixes were appropriate. We proposed
a provably correct patch solving both lb and mp. After discussion with the developers5,
we improved it to meet the developers’ desire to maintain the current API. The final
patch introduces two lwsync barriers: after line 8 and before line 12.

6 Conclusion

We have presented a provably sound method to verify concurrent software w.r.t. weak
memory. Our contribution allows to lift SC methods and tools to a wide range of weak
memory models (from x86 to Power), by means of program transformation.

5 http://archives.postgresql.org/
pgsql-hackers/2012-03/msg01506.php

http://archives.postgresql.org/pgsql-hackers/2012-03/msg01506.php
http://archives.postgresql.org/pgsql-hackers/2012-03/msg01506.php

Software Verification for Weak Memory via Program Transformation 531

Our approach crucially relies on the definition of a generic operational model equi-
valent to the axiomatic one of [8]. We do not favour any style of model in particular,
but we highlight the importance of the availability of several equivalent mathematical
styles to model semantics as intricate as weak memory. In addition, operational models
are often the style of choice in the verification community; we contribute here to the
vocabulary to tackle the verification problem w.r.t. weak memory.

Our extensive experiments and in particular the PostgreSQL bug demonstrate the
practicability of our approach from several different perspectives. First, we confirmed
a known bug (mp), and validated the fix proposed by the developers, including an eval-
uation of different synchronisation options. Second, we found an additional idiom (lb),
which will cause a bug on future Power machines; our fix repairs it already.

References

1. http://research.microsoft.com/en-us/projects/poirot/
2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-Example

Guided Fence Insertion under TSO. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial. IEEE Com-
puter 29, 66–76 (1995)

4. Alglave, J.: A Shared Memory Poetics. Ph.D. thesis, Université Paris 7 and INRIA (2010)
5. Alglave, J.: A Formal Hierarchy of Weak Memory Models. In: FMSD (2012)
6. Alglave, J., Kroening, D., Lugton, J., Nimal, V., Tautschnig, M.: Soundness of Data Flow

Analyses for Weak Memory Models. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp.
272–288. Springer, Heidelberg (2011)

7. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)

8. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 258–272. Springer, Heidel-
berg (2010)

9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL (2010)

10. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s Decidable about Weak
Memory Models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46. Springer,
Heidelberg (2012)

11. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO Analysis. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer,
Heidelberg (2011)

12. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding Robustness against Total Store Ordering.
In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp.
428–440. Springer, Heidelberg (2011)

13. Burckhardt, S., Alur, R., Martin, M.K.: Checkfence: Checking consistency of concurrent data
types on relaxed memory models. In: PLDI (2007)

14. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based context-
bounded model checking. In: ICSE. pp. 331–340. ACM (2011)

15. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-Aware Predicate Abstraction
for Shared-Variable Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)

http://research.microsoft.com/en-us/projects/poirot/

532 J. Alglave et al.

16. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier for Multi-
threaded Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 412–417. Springer, Heidelberg (2011)

17. Huynh, T.Q., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–491. Springer,
Heidelberg (2006)

18. Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java Memory Model-Aware Model Checking.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 220–236. Springer,
Heidelberg (2012)

19. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD
(2010)

20. Kuperstein, M., Vechev, M., Yahav, E.: Partial-Coherence Abstractions for Relaxed Memory
Models. In: PLDI (2011)

21. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on a Multi-
processor. IEEE Trans. Comput. 46(7), 779–782 (1979)

22. Linden, A., Wolper, P.: A Verification-Based Approach to Memory Fence Insertion in Re-
laxed Memory Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823,
pp. 144–160. Springer, Heidelberg (2011)

23. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer, Heidelberg
(2010)

24. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

25. Park, S., Dill, D.: An executable specification, analyzer and verifier for RMO. In: SPAA
(1995)

26. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding Power multi-
processors. In: PLDI (2011)

27. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. (1972)
28. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput.

(1973)
29. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-Model-Sensitive Data Race Analysis.

In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 30–45.
Springer, Heidelberg (2004)

Checking and Enforcing Robustness against TSO

Ahmed Bouajjani1, Egor Derevenetc2,3, and Roland Meyer3

1 LIAFA, University Paris 7
2 Fraunhofer ITWM

3 University of Kaiserslautern
abou@liafa.univ-paris-diderot.fr,
{derevenetc,meyer}@cs.uni-kl.de

Abstract. We present algorithms for checking and enforcing robustness
of concurrent programs against the Total Store Ordering (TSO) memory
model. A program is robust if all its TSO computations correspond to
computations under the Sequential Consistency (SC) semantics.

We provide a complete characterization of non-robustness in terms of
so-called attacks: a restricted form of (harmful) out-of-program-order ex-
ecutions. Then, we show that detecting attacks can be parallelized, and
can be solved using state reachability queries under the SC semantics in a
suitably instrumented program obtained by a linear size source-to-source
translation. Importantly, the construction is valid for an unbounded num-
ber of memory addresses and an arbitrary number of parallel threads. It
is independent from the data domain and from the size of store buffers
in the TSO semantics. In particular, when the data domain is finite and
the number of addresses is fixed, we obtain decidability and complexity
results for robustness, even for a parametric number of threads.

As a second contribution, we provide an algorithm for computing an
optimal set of fences that enforce robustness. We consider two criteria of
optimality: minimization of program size and maximization of its perfor-
mance. The algorithms we define are implemented, and we successfully
applied them to analyzing and correcting several concurrent algorithms.

1 Introduction

Sequential Consistency (SC) [21] is a natural shared-memory model where the
actions of different threads are interleaved while the program order between
actions of each thread is preserved. For performance reasons, however, modern
multiprocessors implement weaker memory models relaxing program order. For
instance, the common store-to-load relaxation, which allows loads to overtake
earlier stores, reflects the use of store buffers. It is actually the main feature of
the TSO (Total Store Ordering) model adopted, e.g., in x86 machines [28].

Nonetheless, programmers often assume that memory accesses are performed
according to SC, where they are instantaneous and atomic. This assumption
is safe for data-race-free programs [3], but in many situations data-race-freedom
does not apply. This is, for instance, the case of programs implementing synchro-
nization operations, concurrency libraries, and other performance-critical system
services employing lock-free synchronization. These programs are designed to be

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 533–553, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

534 A. Bouajjani, E. Derevenetc, and R. Meyer

robust against relaxations, i.e., relaxations should not introduce behaviors that
are impossible under SC. Memory fences must be included appropriately in pro-
grams to prevent non-SC behaviors. Getting such programs right is a notoriously
difficult and error-prone task. Therefore, important issues in this context are (1)
checking robustness of a program against the relaxations of a memory model,
and (2) identifying a set of program locations where it is necessary to insert
fences to ensure robustness.

In this paper we address these two issues in the case of TSO. We consider a
general setting without any bounds on the shared-memory size, nor on the size of
the store buffers in the TSO semantics, nor on the number of threads. This allows
us to reason about robustness of general algorithms without assuming any fixed
values for these parameters that depend on the actual machine’s implementation.
Moreover, we tackle these issues for general programs, independently from the
domain of data they manipulate.

Robustness against memory models has been addressed first by Burckhardt
and Musuvathi in [10] (actually, for TSO only), and subsequently by Burnim et
al. in [11]. Alglave and Maranget developed a general framework for reasoning
about robustness against memory models in [4,5] (where the term stability is
used instead of robustness). Roughly, these works are based on characterizing
robustness in terms of acyclicity of a suitable happens-before relation. In that,
they follow Shasha and Snir [29] who introduced a notion of trace that captures
the control and data dependencies between events of an SC computation, and
established that computations that are not SC have a cyclic happens-before
relation. We adopt here the same notion of (trace-)robustness, i.e., a program is
robust if every TSO computation has the same trace as some SC computation.

From an algorithmic point of view, the existing works mentioned above do
not provide decision procedures for robustness. [10,11] provide testing procedures
based on enumerating TSO runs and checking that they do not produce happens-
before cycles. Clearly, while these procedures can establish non-robustness, they
can never prove a program robust. On the other hand, [5] provides a sound
over-approximate static analysis that allows for proving robustness, but may
also inaccurately conclude to non-robustness and insert fences unnecessarily. We
are interested here in developing an approach that allows for precise checking of
trace-robustness, and for optimal fence insertion (in a sense defined later).

In our previous work [9], trace-robustness against TSO has been proven to be
decidable and PSpace-complete, even for unbounded store buffers, in the case
of a fixed number of threads and assuming a fixed number of shared variables,
ranging over a finite data domain. The method that shows this decidability
and complexity result does not provide a practical algorithm: it is based on a
non-deterministic, bounded enumeration of computations. Moreover, it does not
carry over to the general setting we consider here. Therefore, in this paper we
propose a novel approach to checking robustness that is fundamentally different
from [9]. We provide a general, source-to-source reduction of the trace-robustness
problem against TSO to the state reachability problem under the SC semantics.
In other words, we show that trace-robustness is not more expensive than SC

Checking and Enforcing Robustness against TSO 535

state reachability, which is the unavoidable problem to be solved by any precise
decision algorithm for concurrent programs. This is the key contribution of the
paper from which we derive other results, such as decidability results in particular
cases, as well as an algorithm for efficient fence insertion.

To establish our reduction, we first provide a complete characterization of non-
robustness in terms of so-called feasible attacks. An attack is a pair of load and
store instructions of a thread, called the attacker, whose reordering may lead to
a non-SC computation. In that case we say the attack is feasible, because it has
a (TSO) witness computation. The special form of witness computations allows
us to detect them by solving an SC state reachability query in an instrumented
program. The fact that only the SC semantics (of the instrumented program)
needs to be considered for detecting non-SC behaviors (of the original program)
is important: it relieves us of examining TSO computations, which obliges one to
encode (somehow) the contents of store buffers (as in, e.g., [10,11]). Interestingly,
the feasibility checks for different attacks can be parallelized, which speeds up
the decision procedure. Overall, we provide a reduction of the TSO robustness
problem to a quadratic number (in the size of the program) of state reachability
queries under the SC semantics in linear-size instrumented programs of the same
type as the original one. Our construction is source-to-source and is valid for (1)
an unbounded number of memory addresses/variables, (2) an arbitrary data
domain, (3) an arbitrary number of threads, and (4) unbounded store buffers.

With this reduction, we can harness all techniques and tools that are available
for solving SC reachability queries (either exactly, or approximately) in various
classes of concurrent programs, regardless of decidability and complexity issues.
It also yields decision algorithms for significant classes of programs. Assume
we have a finite number of memory addresses, and the data domain is finite.
Then, for a fixed number of threads, a direct consequence of our reduction is
that the robustness problem is decidable and in PSpace since it is polynomially
reducible to state reachability in finite-state concurrent programs. Therefore,
we obtain in this case a simple robustness checking algorithm which matches
the complexity upper bound proven in [9]. Our construction also provides an
effective decision algorithm for the up to now open case where the number of
threads is parametric. In this case, SC state reachability queries can be solved
in vector addition systems with states (VASS), or equivalently as coverability
in Petri nets, which is known to be decidable [27] and EXPSpace-hard [24]. In
both cases (fixed and parametric number of threads) the decision algorithms do
not assume bounded store buffers.

As last contribution, we address the issue of enforcing robustness by fence
insertion. Obviously, inserting a fence after each store ensures robustness, but
it also ruins all performance benefits that a relaxed memory model brings. A
natural requirement on the set of fences is irreducibility, i.e., minimality wrt. set
inclusion. Since there may be several irreducible sets enforcing robustness, it is
natural to ask for a set that optimizes some notion of cost. We assume that we
have a cost function that defines the cost of inserting a fence at each program
location. For instance, by assuming cost 1 for all locations, we optimize the size

536 A. Bouajjani, E. Derevenetc, and R. Meyer

of the fence set. Other cost functions reflect the performance of the resulting
program. We propose an algorithm which, given a cost function, computes an
optimal set of fences. The algorithm is based on 0/1-integer linear programming
and exploits the notion of attacks to guide the selection of fences.

We implemented the algorithms (using SPIN as a back-end SC reachability
checker), and applied them successfully to checking and correcting a number of
examples, including mutual exclusion protocols and concurrent data structures.
The experiments we have carried out show that our approach is quite effective:
(1) many of the attacks to be examined can be discarded by simple syntactic
checks (e.g., the presence of a fence between the store and load instructions), and
those that require solving reachability queries are handled in few seconds, (2) the
fence insertion procedure finds efficiently optimal sets of fences, in particular, it
can handle the version of the Non-Blocking Write protocol [18] described in [25]
(where the write is guarded by a Linux x86 spinlock) for which Owens’ method
based on so-called triangular data races (see below) inserts unnecessary fences.

Related Work. There are only few results on decidability and complexity of
relaxed memory models. Reachability under TSO has been shown to be decidable
but non-primitive recursive [7] in the case of a finite number of threads and a
finite data domain. In the same setting, trace-robustness has been shown to be
PSpace-complete [9] using a combinatorial approach.

Alur et al. have shown that checking sequential consistency of a concurrent
implementation wrt. a specification is undecidable in general [6]. This result
does not contradict our findings: we consider here the special case where the
implementation is the TSO semantics and the specification is the SC semantics of
the same program. In [15], the problem of deciding whether a given computation
is SC feasible has been proven NP-complete. Robustness is concerned with all
TSO computations, instead.

As mentioned above, the problem of checking and enforcing trace-robustness
against weak memory models has been addressed in [10,11,5], but none of these
works provide (sound and complete) decision procedures. Owens proposes in [25]
a notion of robustness that is stronger than trace-robustness, based on detecting
triangular data races. This allows for sound trace-robustness checking but, as
Owens shows in his paper, in some cases leads to unnecessary fences which
can be harmful for performance. Moreover, the notion of triangular data races
comes without an algorithm for checking it1. Complexity considerations (using
the techniques in [9]) show that detecting triangular data races requires solving
state reachability queries under SC. Therefore, as we show here, checking trace-
robustness is not more expensive than detecting triangular data races.

State-based robustness (which preserves the reachable states) is a weaker ro-
bustness criterion, but does not preserve path properties in contrast to trace-
robustness, and is of significantly higher complexity (non-primitive recursive
as it can be deduced from [7], instead of PSpace). It has been addressed in a

1 Citation from [25]: “... formal reasoning directly on traces can be tedious, so a pro-
gram logic or sound static analyzer specialized to proving triangular-race freedom
might make the application of TRF more convenient.”

Checking and Enforcing Robustness against TSO 537

precise manner in [2,23], where symbolic decision procedures together with fence
insertion algorithms are provided. The same issue is addressed in [19,20] using
over-approximate reachability analysis based on abstractions of the store buffers.

Finally, let us mention work that considers the dual approach: starting from a
robust program, remove unnecessary fences [30]. This work is aimed at compiler
optimizations and does not provide a decision procedure for robustness. It can
also not find an optimal set of fences that enforce trace-robustness.

2 Parallel Programs

Syntax. We consider parallel programs with shared memory as defined by the
grammar in Figure 1. Programs have a name and consist of a finite number of
threads. Each thread has an identifier and a list of local registers it operates on.
The thread’s source code is given as a finite sequence of labelled instructions.
More than one instruction can be marked by the same label; this allows us to im-
plement conditional branching, iteration, and non-determinism in a lightweight
syntax. The instruction set includes loads from memory to a local register, stores
to memory, memory fences to control the TSO store buffers, local computations,
and assertions. Figure 2 provides a sample program.

〈prog〉 ::= program 〈pid〉 〈thrd〉∗
〈thrd〉 ::= thread 〈tid〉

regs 〈reg〉∗
init 〈label〉
begin 〈linst〉∗ end

〈linst〉 ::= 〈label〉: 〈inst〉; goto 〈label〉;
〈inst〉 ::= 〈reg〉 ← mem[〈expr〉]

| mem[〈expr〉] ← 〈expr〉
| mfence

| 〈reg〉 ← 〈expr〉
| assert 〈expr〉

〈expr〉 ::= 〈fun〉(〈reg〉∗)

Fig. 1. Syntax of parallel programs

program Dekker

thread t1 regs r1 init l0 begin

l0: mem[x] ← 1; goto l1;
l1: r1 ← mem[y]; goto l2;
end

thread t2 regs r2 init l′0 begin

l′0: mem[y] ← 1; goto l′1;
l′1: r2 ← mem[x]; goto l′2;
end

Fig. 2. Simplified version of Dekker’s mu-
tex algorithm. Under SC, it is impossible
that r1 = r2 = 0 when both threads reach
l2 and l′2.

We assume a program comes with two sets: a data domain DOM and a function
domain FUN. The data domain should contain value zero: 0 ∈ DOM. Moreover,
we assume that all values from DOM can be used as addresses. Each memory lo-
cation accessed by loads and stores is identified by such an address, and memory
locations identified by different addresses do not overlap. The set FUN contains
functions that are defined on the data domain and can be used in the program.
Note that we do not make any finiteness assumptions.

TSO Semantics. Fix a program P with threads THRD := {t1, . . . , tn}. Let
each thread ti have the initial label l0,i and declare registers ri. We define the
set of variables as the union of addresses and registers: VAR := DOM∪∪i∈[1,n]ri.
We denote the set of all instruction labels that occur in threads by LAB.

538 A. Bouajjani, E. Derevenetc, and R. Meyer

The TSO semantics we define is operational, in terms of labelled transitions
between states. On the x86 TSO architecture, each thread effectively has a local
FIFO buffer that keeps stores for later execution [26,28,10,11]. Therefore, a state
is a triple s = (pc, val, buf) where the program counter pc : THRD→ LAB holds,
for each thread, the label of the instruction(s) to be executed next. The valuation
val : VAR → DOM gives the values of registers and memory locations. The third
component buf : THRD→ (DOM × DOM)∗ is the (per thread) buffer content: a
sequence of address-value pairs a← v.

In the initial state s0 := (pc0, val0, buf0) the program counter is set to the
initial labels, pc0(ti) := l0,i for all ti ∈ THRD, registers and addresses hold value
zero, val0(x) := 0 for all x ∈ VAR, and all buffers are empty, buf0(t) := ε for all
t ∈ THRD. Here, ε denotes the empty sequence.

Instructions yield transitions between states that are labelled by actions from
ACT := THRD × ({isu, loc} ∪ ({ld, st} × DOM× DOM)). An action consists of
the thread id and the actual arguments of the executed instruction. We use loc
to abstract assignments and asserts that are local to a thread. An issue action
isu indicates that a store was executed by a thread. The store action (t, st, a, v)
gives the moment when the store becomes visible in memory.

The TSO transition relation −→TSO is the smallest relation between TSO states
that is defined by the rules in Table 1. The rules repeat, up to notation and
support for locked instructions, Figure 1 from [26]. The first two rules implement
loads from the buffer and from the memory, respectively. By the third rule,
store instructions enqueue write operations to the buffer. The fourth rule non-
deterministically dequeues and executes them on memory. The fifth rule defines
that memory fences can only be executed when the buffer is empty. The last two
rules refer to local assignments and assertions. We omit locked instructions to
keep things simple. Introducing them is straightforward and does not affect the
results. Indeed, our implementation supports them [1].

The set of TSO computations contains all sequences of actions that lead from
the initial TSO state to a state where all buffers are empty:

CTSO(P) := {τ ∈ ACT∗ | s0
τ−→TSO s for some TSO state

s = (pc, val, buf) with buf(t) = ε for all t ∈ THRD}.

The requirement of empty buffers is not important for our results but rather
a modelling choice. Figure 3 presents a TSO computation of Dekker’s program
where the store of the first thread is delayed past the load.

τ =(t1, isu)(t1, ld, y, 0)(t2, isu)(t2, st, y, 1) (t2, ld, x, 0) (t1, st, x, 1)

Fig. 3. A TSO computation of Dekker’s algorithm. The arc connects the issue action
with the corresponding delayed store action of the first thread.

SC Semantics. Under SC [21], stores are not buffered and hence states are pairs
(pc, val). The rules for SC transitions are appropriately simplified TSO rules. To
avoid case distinctions between TSO and SC in the definition of traces, a store

Checking and Enforcing Robustness against TSO 539

Table 1. TSO transition rules, assuming pc(t) = l, an instruction 〈instr〉 at label l
with destination l′, and pc′ := pc[t := l′]. We use ↓ to denote projection and ∗ for any
value, i.e., buf(t) ↓ (a ← ∗) is the list of address-value pairs in the buffer of thread t
that have address a.

〈instr〉 = r ← mem[fa(ra)], a = fa(val(ra)), buf(t)↓(a ← ∗) = β · (a ← v)

(pc, val, buf)
(t, ld, a, v)−−−−−−→TSO (pc′, val[r := v], buf)

〈instr〉 = r ← mem[fa(ra)], a = fa(val(ra)), buf(t)↓(a ← ∗) = ε, v = val(a)

(pc, val, buf)
(t, ld, a, v)−−−−−−→TSO (pc′, val[r := v], buf)

〈instr〉 = mem[fa(ra)] ← fv(rv), a = fa(val(ra)), v = fv(val(rv))

(pc, val, buf)
(t, isu)−−−→TSO (pc′, val, buf[t := buf(t) · (a ← v)])

buf(t) = (a ← v) · β
(pc, val, buf)

(t, st, a, v)−−−−−−→TSO (pc, val[a := v], buf[t := β])

〈instr〉 = mfence, buf(t) = ε

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val, buf)

〈instr〉 = r ← f(r)

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val[r := f(val(r))], buf)

〈instr〉 = assert f(r), f(val(r)) �= 0

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val, buf)

instruction generates two actions: an issue followed by the store. Memory fences
have no effect under SC. We denote the set of all SC computations of P by

CSC(P) := {σ ∈ ACT∗ | s0
σ−→SC s for some SC state s}.

3 TSO Robustness

Robustness ensures that the behaviour of a program does not change when it is
run on TSO hardware as compared to SC. We study trace-based robustness as
in [29,10,11,5,9]. Traces capture the essence of a computation: the control and
data dependencies among actions. More formally, consider some computation
α ∈ CSC(P) ∪ CTSO(P). The trace Tr(α) is a graph where the nodes are labelled
by the actions in α (stores and issue yield one node). The arcs are defined by the
following relations. We have a per thread t ∈ THRD total order →t

po that gives
the order in which the actions of t where issued. Similarly, we have a per address
a ∈ DOM total order →a

st that gives the ordering of all stores to a. We call the
unions→po := ∪t∈THRD →t

po and→st := ∪a∈DOM →a
st the program order and the

store order of the trace. Finally, there is a source relation →src that determines
the store from which a load receives its value. By Trmm(P) := Tr(Cmm(P)) with
mm ∈ {SC,TSO} we denote the set of all SC/TSO traces of program P . The
TSO robustness problem checks whether the sets coincide.

540 A. Bouajjani, E. Derevenetc, and R. Meyer

Given: A parallel program P .
Problem: Does TrTSO(P) = TrSC(P) hold?

Since inclusion TrSC(P) ⊆ TrTSO(P) always holds, we only have to check the
reverse inclusion. We call a computation τ ∈ CTSO(P) violating if its trace is
not among the SC traces of the program, i.e., Tr(τ) /∈ TrSC(P). Violating TSO-
computations employ cyclic accesses to addresses that SC is unable to serialize
[29]. These cyclic accesses are made visible using a conflict relation from loads
to stores. Intuitively, ld→cf st means that st overwrites the value that ld reads.
The union of all four relations is commonly called happens-before relation of the
trace, →hb := →po ∪ →st ∪ →src ∪ →cf .

Lemma 1 ([29]). Consider TSO trace Tr(τ) ∈ TrTSO(P). Then Tr(τ) ∈ TrSC(P)
iff →hb is acyclic.

Consider computation τ in Figure 3. The load from thread t1 conflicts with
the store from t2 because the load reads the initial value of y while the store
overwrites it. The situation with the load from t2 and the store from t1 is sym-
metric. Together with the program order, the conflict relations produce a cycle:

(t1, st, x, 1)Tr(τ) :

(t1, ld, y, 0) (t2, st, y, 1)

(t2, ld, x, 0)
po po

cf

cf

Indeed, there is no SC computation with this trace, as predicted by Lemma 1.
Lemma 1 does not provide a method for finding cyclic traces. We have re-

cently shown that TSO robustness is decidable, in fact, PSpace-complete [9].
The algorithm underlying this result, however, is based on enumeration and not
meant to be implemented. The main contribution of the present work is a novel
and practical approach to checking robustness.

The only concept we keep from our earlier work are minimal violations. A
minimal violation is a violating computation that uses a minimal total number
of delays. Interestingly, for minimal violations the following holds.

Lemma 2 (Locality [9,8]). In a minimal violation, only one thread delays
stores.

Consider the computation in Figure 3. It relies on a single delay in thread t1 and,
indeed, is a minimal violation. As predicted by the lemma, the second thread
writes to its buffer and immediately flushes it.

4 Attacks on TSO Robustness

Our approach to checking TSO robustness combines two insights. We first
rephrase robustness in terms of a simpler problem: the absence of feasible attacks.
We then devise an algorithm that checks attacks for feasibility. Interestingly, SC
reachability techniques are sufficient for this purpose. Together, this yields a
sound and complete reduction of TSO robustness to SC reachability.

The notion of attacks is inspired by the shape of minimal violations. We show
that if a program is not robust, then there are violations of the form shown in

Checking and Enforcing Robustness against TSO 541

τ = isustA ldA stAτ1 τ2 τ3 τ4

Fig. 4. TSO witness for the attack (tA, stinst, ldinst). It satisfies the following con-
straints. (W1) Only the attacker delays stores. (W2) Store stA is an instance of stinst.
It is the first store of the attacker that is delayed. Load ldA is an instance of ldinst.
It is the last action of the attacker that is overstepped by stA. So τ2 contains loads,
assignments, asserts, and issues, but no fences and stores of the attacker. It may con-
tain arbitrary helper actions. (W3) We require ldA →+

hb act for every action act in
ldA · τ3 · stA. An issue + store of a helper is counted as one action act. (W4) Sequence
τ4 only consists of stores of the attacker that were issued before ldA and that have been
delayed. (W5) All these stores st satisfy addr(st) �= addr(ldA), i.e., ldA has not read
its value early.

Figure 4: one thread, the attacker, delays a store action stA past a later load
action ldA in order to break robustness. The remaining threads become helpers
and provide a happens-before path from ldA to stA. This yields a happens-before
cycle and shows non-robustness.

Thread, store instruction stinst of stA, and load instruction ldinst of ldA are
syntactic objects. The idea of our approach is to fix these three parameters,
the attack, prior to the analysis. The algorithm then tries to find a witness
computation that proves the attack feasible.

Definition 1. An attack A = (tA, stinst, ldinst) consists of a thread tA ∈ THRD
called attacker, a store instruction stinst and a load instruction ldinst. A TSO
witness for A is a computation of the form in Figure 4, i.e., it satisfies (W1)
to (W5). If a TSO witness exists, the attack is called feasible.

In Dekker’s algorithm, there is an attack A = (tA, stinst, ldinst) with tA = t1,
stinst the store at l0, and ldinst the load at l1. A TSO witness for this attack is
the computation τ from Figure 3. With reference to Figure 4, we have τ1 = ε,
isustA = (t1, isu), τ2 = ε, ldA = (t1, ld, y, 0), τ3 = (t2, isu) · (t2, st, y, 1) · (t2, ld, x, 0),
stA = (t1, st, x, 1), τ4 = ε. The program also contains a symmetric attack A′ with
t2 as the attacker.

Although TSO witnesses are quite restrictive computations, robustness can
be reduced to verifying that no attack has a TSO witness.

Theorem 1 (Complete Characterization of Robustness with Attacks).
Program P is robust iff no attack is feasible, i.e., no attack admits a TSO witness.

Proof. The existence of a TSO witness implies non-robustness of the program.
Indeed, a TSO witness comes with a happens-before cycle stA →+

po ldA →+
hb stA.

We argue that also the reverse holds: if a program is not robust, there is a feasible
attack. Assume P is not robust. We construct a TSO witness computation.
Among the violating computations, we select τ ∈ CTSO(P) where the number of
delays is minimal. The computation need not be unique. By Lemma 2, in τ only
one thread tA uses its buffer and (W1) holds. We elaborate on the shape of τ .

542 A. Bouajjani, E. Derevenetc, and R. Meyer

Initially, the attacker executes under SC so that stores immediately follow
their issues. This computation is embedded into τ1 in Figure 4. Eventually, the
attacker starts delaying stores. Let stA be the first store that is delayed. It gets
reordered past several loads, the last of which being ldA. This shows (W2).

Consider the helper actions in τ3. To see that we can assume (W3), first
note that ldA →+

hb stA holds. If there was no such path, stA could be placed
before ldA without changing the trace. This would save a delay, in contradiction
to minimality of τ . Assume τ3 = τ ′3 · act · τ ′′3 where act is the first action so
that ldA �→+

hb act. Then act is independent from all actions in ldA · τ ′3. We find a
computation with the same trace where act is placed before ldA.

With cycle stA →+
po ldA →+

hb stA, computation τ4 only needs to contain the
stores of the attacker that have been delayed past ldA. Since these stores are
non-blocking, the helpers can stop with the last action in τ3. We can moreover
assume ldA to be the program order last action of the attacker. (W4) holds.

We now argue that ldA has not read its value early from any of the delayed
stores, (W5). Towards a contradiction, assume ldA obtained its value from st in
τ4 = τ41 · st · τ42. There is a computation τ ′ where we avoid the early read: it
replaces τ4 by τ41 · st · ldA · τ42. The traces of τ and τ ′ coincide, but τ ′ saves the
delay of st past ldA. A contradiction to minimality.

It is readily checked that τ is a TSO witness for the attack (tA, stinst, ldinst)
where stinst and ldinst are the instructions that stA and ldA are derived from. ��
Since the number of attacks is only quadratic in the size of the program, we
can just enumerate them and check whether one admits a TSO witness. To
check whether a witness exists, we employ the instrumentation described in the
following section.

5 Instrumentation

Consider program P with attack A = (tA, stinst, ldinst). TSO witnesses for A only
make limited use of the store buffers, to an extent that allows us to characterize
them by SC computations in a program PA that is instrumented for attack A. By
instrumentation we mean that PA replaces every thread by a modified version.
Capturing TSO witnesses with a program that runs under SC is difficult for
two reasons. First, TSO has unbounded store buffers which can delay arbitrarily
many stores. Second, the happens-before dependence that the helpers create
may involve an arbitrary number of actions. Our instrumentation copes with
both problems, using the following tricks.

To handle store buffering, we instrument the attacker thread (Section 5.1).
Essentially, we emulate store buffering under SC using auxiliary addresses. To
explain the idea, consider the TSO witness in Figure 4. When the instrumented
attacker executes the delayed stores stA · τ4 under SC, they occur right behind
their issue actions. To mimic store buffering, these stores now access auxiliary
addresses that the other threads do not load. As a result, the stores remain
invisible to the helpers. This is as intended: the delayed stores stA ·τ4 in Figure 4
are also never accessed by helper threads. But how many auxiliary addresses do
we need to faithfully simulate buffers? It is sufficient to have a single auxiliary

Checking and Enforcing Robustness against TSO 543

address per address in the program. The reason is that a load always reads the
most recent store to its address that is held in the buffer.

To build up a happens-before path from ldA to stA, we instrument the helper
threads (Section 5.2). The question is how to decide whether a new action act is in
happens-before relation with an earlier action act′ so that ldA →∗

hb act
′ →∗

hb act.
What is the information we need about the earlier actions in order to append act?
It is sufficient to know two facts. Has the thread already contributed an action
act′? This information ensures act′ →∗

po act, and can be kept in the control flow
of the thread. Moreover, we keep track of whether the path contains a load or
store access to the address addr (act). If there was a load access act′ = ld, we
can add a store act = st and get ld →∗

hb st. If there was a store, we are free to
add a load or a store. Hence, we need one auxiliary address per address in the
program for this access information: no access, load access, store access.

Consider the TSO witness for Dekker given in Figure 3. Instead of buffering
(t1, st, x, 1), the instrumentation immediately executes the store after its issue
action. But instead of address x, the action accesses the auxiliary address (x, d)
that is invisible to the other threads. So, the SC computation of the instrumented
program roughly looks like this:

(t1, isu) · (t1, st, (x, d), 1) · (t1, ld, y, 0)
(1)
· (t2, isu)(t2, st, y, 1)

(2)
· (t2, ld, x, 0).

At moment (1), we know that there has been a load access to address y. At
moment (2), address y has even seen a store. At the end of the computation,
address y has seen a store and address x has seen a load.

The store of t2 can be appended since it is in happens-before relation with the
attacker’s load. The following load can be added as t2 has contributed the pre-
vious store. The search terminates here since the helper’s load accesses address
x that was used by the store from the attack.

5.1 Instrumentation of the Attacker

The instrumentation emulates the buffering of stores in a TSO witness (Fig-
ure 4). Starting from stA, the stores are replaced by stores stauxA to auxiliary
addresses (a, d) that are only visible to the attacker. As long as a has not been
written, (a, d) holds the initial value 0. Once the attacker stores v into a, we
set mem[(a, d)] = (v, d). In this way, (a, d) always holds the most recent store.
A load r ← mem[a] of the attacker reads a value v from the buffer whenever
mem[(a, d)] = (v, d); otherwise mem[(a, d)] = 0 and the load obtains the value
v = mem[a] from memory. We turn to the translation.

Let tA declare registers r∗, have initial location l0, and define instructions
〈linst〉∗ that contain stinst and ldinst from the attack. The instrumentation is

[[tA]] := thread t̃A regs r∗ init l0

begin 〈linst〉∗ [[stinst]]A1 [[ldinst]]A1 [[〈linst〉]]∗A2 end.

It introduces a copy of the source code [[〈linst〉]]∗A2 where the stores are replaced
by accesses to the auxiliary addresses. To move to the code copy, the attacker
uses an instrumented version [[stinst]]A1 of stinst.

544 A. Bouajjani, E. Derevenetc, and R. Meyer

[[l1: mem[e1] ← e2; goto l2;]]A1 := l1: mem[(e1, d)] ← (e2, d); goto l̃x; (1)

l̃x: mem[astA] ← e1; goto l̃2;

[[l1: r ← mem[e]; goto l2;]]A1 := l̃1: assert mem[(e, d)] = 0; goto l̃x1; (2)

l̃x1: mem[hb] ← true; goto l̃x2;

l̃x2: mem[(e, hb)] ← lda; goto l̃x3;

[[l1: mem[e1] ← e2; goto l2;]]A2 := l̃1: mem[(e1, d)] ← (e2, d); goto l̃2; (3)

[[l1: r ← mem[e]; goto l2;]]A2 := l̃1: assert mem[(e, d)] = 0; goto l̃x1; (4)

l̃x1: r ← mem[e]; goto l̃2;

l̃1: assert mem[(e, d)] �= 0; goto l̃x2;

l̃x2: (r, d) ← mem[(e, d)]; goto l̃2;

[[l1: local; goto l2;]]A2 := l̃1: local; goto l̃2; (5)

[[l1: mfence; goto l2;]]A2 := (6)

Fig. 5. Instrumentation of the attacker

The translation of instructions is defined in Figure 5. We make a few remarks.
The instrumentation (1) of stinst saves the address used in the store in a fresh
address astA . For the sake of readability, Equation (4) uses memory accesses
in asserts. Equation (6) deletes fences, as they forbid to delay stA over ldA.
Equation (2) checks that the load used in the attack has not read its value
early, sets an auxiliary happens-before address (e, hb) to access level load, lda,
and halts the attacker. We postpone the definition of access levels until the
translation of helpers. The equation also sets a flag hb that forbids helpers to
execute actions not contributing to the happens-before path. Figure 6 illustrates
the instrumentation on our running example.

5.2 Instrumentation of Helpers

In TSO witnesses, all helper actions after ldA are in happens-before relation with
ldA, by (W3). To ensure this, we use Lemma 3. The proof from left to right is by
definition of happens-before. For the reverse direction, note that happens-before
is stable under insertion. Consider st→src ld. A happens-before relation remains
valid in any computation that places actions between st and ld.

Lemma 3. Consider τ = τ1 · act1 · τ2 ∈ CSC(P) where for all act2 in τ2 we have
act1 →∗

hb act2. Computation τ · act satisfies act1 →∗
hb act iff

(i) there is an action act2 in act1 · τ2 with thread(act2) = thread(act) or
(ii) act is a load whose address is stored in act1 · τ2 or
(iii) act is a store (with issue) whose address is loaded or stored in act1 · τ2.
The lemma suggests the following instrumentation. For every helper t, we track
whether it has executed an action that depends on ldA. The idea is to use the
control flow. Upon detection of this first action, the thread moves to a copy of
its code. All actions from this copy stay in happens-before relation with ldA.

Checking and Enforcing Robustness against TSO 545

thread t̃1 regs r1 init l0 begin

/* Original code */

l0: mem[x] ← 1; goto l1;
l1: r1 ← mem[y]; goto l2;

/* Instrumented stinst */

l0: mem[(x, d)] ← (1, d); goto l̃x;
l̃x: mem[astA] ← x; goto l̃1;

/* Instrumented ldinst */

l̃1: assert mem[(y, d)] = 0; goto l̃x1;
l̃x1: mem[hb] ← true; goto l̃x2;
l̃x2: mem[(y, hb)] ← lda; goto l̃x3;
end

/* Instrumented copy of the store */

l̃0: mem[(x, d)] ← (1, d); goto l̃1;

/* Instrumented copy of the load */

l̃1: assert mem[(y, d)] = 0; goto l̃x4;
l̃x4: r1 ← mem[y]; goto l̃2;
l̃1: assert mem[(y, d)] �= 0; goto l̃x5;
l̃x5: (r1, d) ← mem[(y, d)]; goto l̃2;

Fig. 6. Attacker instrumentation of thread t1 in Dekker from Figure 2. The attack’s
store is the store at label l0, the load is the load at label l1.

It remains to decide whether an action act allows a thread to move to the
code copy. According to Lemma 3, this depends on the earlier accesses to the
address a = addr (act). We introduce auxiliary happens-before addresses (a, hb)
that provide this access information. The addresses (a, hb) range over the domain
{0, lda, sta} of access types. It is sufficient to keep track of the maximal access
type wrt. the ordering 0 (no access) < lda (load access) < sta (store access).

For the definition, consider a helper thread t that declares registers r∗, has
initial label l0, and defines instructions 〈linst〉∗. The instrumented thread is

[[t]] := thread t̃ regs r̃, r∗ init l0

begin [[〈linst〉]]∗H0 [[〈ldstinst〉]]∗H1 [[〈linst〉]]∗H2 [[〈l〉]]∗H3 end.

The instrumentation of the original code [[〈linst〉]]H0 forces helpers to either enter
the code copy or stop when the hb flag is raised. To move to the code copy,
we instrument the subsequence 〈ldstinst〉∗ of all load and store instructions in
〈linst〉∗. The code copy is [[〈linst〉]]∗H2. Let 〈l〉∗ be all labels used by the thread.
The additional instructions [[〈l〉]]∗H3 raise a success flag when a TSO witness has
been found.

The translation of instructions is given in Figure 7. We make some remarks.
Transitions to the code copy check the auxiliary addresses for whether the current
action is in happens-before relation with ldA. Loads in Equation (8) check for an
earlier store access to their address, Lemma 3(ii). Stores in Equation (9) require
that the address has seen at least a load, Lemma 3(iii). They set the access level
to sta. Loads and stores in the code copy maintain the auxiliary addresses to
contain the maximal access types, Equations (12) and (11). Note the auxiliary
register r̃ that ensures we do not overwrite the address. At every label of the code
copy we add a check, Equation (13), whether the address used in the attack’s
store has been accessed in the code copy. If so, a success flag is raised.

546 A. Bouajjani, E. Derevenetc, and R. Meyer

[[l1: instr; goto l2;]]H0 := l1: assert mem[hb] = 0; goto lx; (7)

lx: instr; goto l2;

[[l1: r ← mem[e]; goto l2;]]H1 := l1: assert mem[(e, hb)] = sta; goto l̃x; (8)

l̃x: r ← mem[e]; goto l̃2;

[[l1: mem[e1] ← e2; goto l2;]]H1 := l1: assert mem[(e1, hb)] ≥ lda; goto l̃x1; (9)

l̃x1: mem[e1] ← e2; goto l̃x2;

l̃x2: mem[(e1, hb)] ← sta; goto l̃2;

[[l1: local/mfence; goto l2;]]H2 := l̃1: local/mfence; goto l̃2; (10)

[[l1: mem[e1] ← e2; goto l2;]]H2 := l̃1: mem[e1] ← e2; goto l̃x; (11)

l̃x: mem[(e1, hb)] ← sta; goto l̃2;

[[l1: r ← mem[e]; goto l2;]]H2 := l̃1: r̃ ← e; goto l̃x1; (12)

l̃x1: r ← mem[r̃]; goto l̃x2;

l̃x2: mem[(r̃, hb)] ← max{lda, mem[(r̃, hb)]}; goto l̃2;

[[l]]H3 := l̃: r̃ ← mem[astA]; goto l̃x1; (13)

l̃x1: r̃ ← mem[(r̃, hb)]; goto l̃x2;

l̃x2: assert r̃ �= 0; goto l̃x3;

l̃x3: mem[suc] ← true; goto l̃x4;

Fig. 7. Instrumentation of helpers

5.3 Soundness and Completeness

The flag indicates that the SC computation corresponds to a TSO witness, and
we call (pc, val) with val(suc) = true a goal configuration. The instrumentation
thus reduces feasibility of attack A to SC reachability of a goal configuration in
program PA. The instrumentation is sound and complete. If a goal configuration
is reachable, we can reconstruct a TSO witness for the attack. In turn, every
TSO witness ensures the goal configuration is reachable.

Theorem 2 (Soundness and Completeness [8]). Attack A is feasible in
program P iff program PA reaches a goal configuration under SC.

In combination with Theorem 1, we can check robustness by inspecting all PA.

Theorem 3 (From TSO Robustness to SC Reachability). Program P is
robust iff no instrumentation PA reaches a goal configuration under SC.

The instrumentation we provide is linear in size. Then, it follows from Theorem 3
that checking robustness for programs over finite data domains is in PSpace.
The problem is actually PSpace-complete due to the lower bound in [9].

6 TSO Robustness for Parameterized Programs

We extend the study of robustness to parameterized programs. A parameterized
program represents an infinite family of instance programs that replicate the

Checking and Enforcing Robustness against TSO 547

threads multiple times. Syntactically, parameterized programs coincide with the
parallel programs we introduced in Section 2: they have a name and declare a
finite set of threads t1, . . . , tk. The difference is in the semantics. A parameterized
program defines, for every vector I = (n1, . . . , nk) ∈ Nk, an instance program
P(I) that declares ni copies of thread ti.

In the parameterized setting, the robustness problem asks for whether all
instances of a given program are robust:

Given: A parameterized program P .
Problem: Does TrTSO(P(I)) = TrSC(P(I)) hold for all instances P(I) of P?

The problem is interesting because libraries usually cannot make assumptions on
the number of threads that use their functions. They have to guarantee proper
functioning for any number.

We reduce robustness for parameterized programs to a parameterized version
of reachability, based on the following insight. A parameterized program is not
robust if and only if there is an instance P(I) that is not robust. With Theorem 1,
instance P(I) is not robust if and only if there is an attack A that is feasible.
With the instrumentation from Section 5 and Theorem 2, this feasibility can be
checked as reachability of a goal configuration in P(I)A.

Algorithmically, it is impossible to instrument all (infinitely many) instance
programs. Instead, the idea is to instrument directly the parameterized program
P towards the attack A. Using the constructions from Section 5, we modify every
thread and again obtain program PA, which is now parameterized.

Actually, for the attacker we have to be slightly more careful. In an instance
program, only one copy of the thread should act as the attacker, the remaining
copies must behave like helpers. Therefore, we instrument the thread not only
as an attacker, but also as a helper. To ensure that only one copy of the attacker
delays stores, we add an additional flag variable. Before starting an attack, the
thread checks this variable. If it contains the initial value, the thread sets the
flag and starts delaying stores. If it has a different value, the thread continues to
run sequentially. This check requires an atomic test-and-set operation which can
be implemented on x86 by the lock cmpxchg instruction. Support for locked
instructions is immediate to add to our programming model.

Modulo these two changes, the instances PA(I) coincide with the instrumenta-
tions P(I)A. Together with the previous argumentation this justifies the following
theorem.

Theorem 4. A parameterized program P is not robust iff there is an attack A
so that an instance PA(I) of program PA reaches a goal configuration under SC.

Reachability of a goal configuration in one instance of PA can be reformulated
as a coverability problem for Petri nets, which is known to be decidable [27].
The key observation in the reduction to Petri nets is that threads in instance
programs never use their identifiers, simply because they are copies of the same
source code. This means there is no need to track the identity of threads, it
is sufficient to count how many instances of a thread are in each state — a
technique known as counter abstraction [14].

548 A. Bouajjani, E. Derevenetc, and R. Meyer

Theorem 5 ([8]). Robustness for parameterized programs over finite data do-
mains is decidable and EXPSpace-hard — already for Boolean programs.

For the lower bound, we in turn encode the coverability problem for Petri nets
into robustness for parameterized programs [24].

7 Fence Insertion

To ease the presentation, we return to parallel programs. Since the algorithm
only relies on a robustness checker, it carries over to the parametric setting.

Our goal is to insert a set of fences that ensure robustness of the resulting
program. By inserting a fence at label l we mean the following modification of
the program. Introduce a fresh label lf . Then, translate each instruction l: inst;
goto l′; into lf: inst; goto l′;. Finally, add an instruction l: mfence; goto lf;.

We call a set of labels F in program P a valid fence set if inserting fences at
these labels yields a robust program. We say that F is irreducible if no strict
subset is a valid fence set. In general, however, we look for a valid fence set which
is optimal in some sense, and pose the fence computation problem as follows:

Given: A program P and a strictly positive cost function C : LAB→ R+.
Problem: Compute a valid fence set F with Σl∈FC(l) minimal.

Since we assume C to be strictly positive, every optimal fence set is irreducible.
We consider two criteria of optimality: minimization of program size and

maximization of program performance. By solving the problem for C ≡ 1 we
compute a fence set of minimal size, thus minimizing the code size of the fenced
program. Maximization of program performance requires minimizing the number
of times memory fence instructions are executed: practical measurements [1]
show that it is impossible to save CPU cycles by executing more fences, but
with less stores in the TSO buffer. For this, C(l) is defined as the frequency
at which instructions labeled by l occur in executions of the original program
P . Concrete values of C can be either estimated by profiling or computed by
mathematical reasoning about the program.

From a complexity point of view, fence computation is at least as hard as
robustness. Indeed, robustness holds if and only if the optimal valid fence set is
F = ∅. Actually, since fence sets can be enumerated, computing an optimal valid
fence set does not require more space than checking robustness. Notice that this
also holds in the parameterized case.

Theorem 6. For programs over finite domains, fence computation is PSpace-
complete. In the parameterized case, it is decidable and EXPSpace-hard.

In the remainder of the section, we give a practical algorithm for computing
optimal valid fence sets.

7.1 Fence Sets for Attacks

We say that a label l is involved in the attack A = (tA, stinst, ldinst) if it belongs
to some path in the control flow graph of tA from the destination label of stinst
to the source label of ldinst. We denote the set of all such labels by LA.

Checking and Enforcing Robustness against TSO 549

We call a set of labels FA an eliminating fence set for attack A if adding fences
at all labels in FA eliminates the attack. Dekker’s algorithm has two eliminating
fence sets: FA = {l1} eliminates the only attack by t1, and FA′ = {l′1} eliminates
the only attack by t2. Actually, the sets are irreducible: no strict subset eliminates
the attack. Note that any irreducible eliminating set FA satisfies FA ⊆ LA.

Lemma 4. Every irreducible valid fence set F can be represented as a union of
irreducible eliminating fence sets for all feasible attacks.

Proof. By Theorem 1, fence set F eliminates all feasible attacks. Therefore, it
includes some irreducible eliminating fence set FA for every feasible attack A.
By irreducibility, F cannot contain labels outside the union of these FA sets. ��

In compliance with the lemma, in Dekker’s program F = FA ∪ FA′ .
Lemma 4 is useful for fence computation since optimal fence sets are always

irreducible. All irreducible eliminating fence sets for attacks can be constructed
by an exhaustive search through all selections of labels involved in the attack.

Note that this search may raise an exponential number of reachability queries.
In practice this rarely constitutes a problem. First, attacks seldom involve a large
number of labels, so the number of candidates is small. Second, the reachability
checks can be avoided if a candidate fence set covers all the ways in the control
flow graph from stinst to ldinst.

7.2 Computing an Optimal Valid Fence Set

To choose among the sets FA, we set up a 0/1-integer linear programming (ILP)
problem MP · xP ≥ bP . The optimal solutions f(xP) → min correspond to
optimal fence sets. Here, 0/1 means the variables are Boolean.

We define inequalities that encode the feasible attacks with their corrections.
Consider attack A for which we have determined the irreducible eliminating
fence sets F1, . . . ,Fn. For each set, we introduce a variable xFi and set up
Inequality (14)(left). It selects a fence set to eliminate the attack.∑

1≤i≤n

xFi ≥ 1
∑
l∈Fi

xl≥ |Fi|xFi f(xP) :=
∑
l∈LAB

C(l)xl. (14)

When Fi has been chosen, we insert a fence at each of its labels l. We add further
variables xl, and encode this insertion by Inequality (14)(center). By definition
of the ILP, the variables xFi and xl will only take Boolean values 0 or 1. So if
xFi is set to 1, the inequality requires that all xl with l ∈ Fi are set to 1.

Our goal is to select fences with minimal costs. We encode this into the objec-
tive function (14)(right). An optimal solution x∗ of the resulting 0/1-ILP denotes
the fence set F(x∗) := {l ∈ LAB | x∗l = 1}.

Theorem 7. F(x∗) is valid and optimal, and thus solves fence computation.

550 A. Bouajjani, E. Derevenetc, and R. Meyer

8 Experimental Evaluation

We implemented our algorithms in a prototype called Trencher [1]. The tool
performs the reduction of robustness to SC reachability given in Section 5 and
computes a minimal fence set as described in Section 7. Trencher executes
independent reachability queries in parallel and uses SPIN [17] as back-end model
checker. With Trencher, we have performed a series of experiments.

8.1 Examples

The first class of examples are mutual exclusion protocols that are implemented
via shared variables. These protocols are typically not robust under TSO and
require additional fences after stores to synchronization variables. We studied
robust and non-robust instances of Dekker and Peterson for two threads, as well
as Lamport’s fast mutex [22] for three threads. Moreover, we checked the CLH
and MCS locks: robust list-based queue locks that use compare-and-set [16].

As second class of examples, we considered concurrent data structures.
The Lock-Free Stack is a concurrent stack implementation using compare-and-
swap [16]. Cilk’s THE WSQ is a work stealing queue from the implementation
of the Cilk-5 programming language [13].

Finally, we considered miscellaneous concurrent algorithms that are known to
be sensitive to program order relaxations. We analysed several instances of the
Non-Blocking Write protocol [18]. NBWL is the spinlock + non-blocking write
example considered by Owens in Section 8 of [25]. Finally, our tool discovered the
known bug in Java’s Parker implementation that is due to TSO relaxations [12].

8.2 Benchmarking

We executed Trencher on the examples, using a machine with Intel(R)
Core(TM) i5 CPU M 560 @ 2.67GHz (4 cores) running GNU/Linux. Table 2
summarizes the results. The columns T, L, and I give the numbers of threads,
labels, and instructions in the examples. RQ is the number of reachability queries
raised by Trencher. Provided the example is robust, this number is equal to
the number of attacks (tA, stinst, ldinst). NR1 is the number of verification queries
that were answered negatively by Trencher itself, without running SPIN. Such
queries correspond to attacks where stinst cannot be delayed past ldinst because
of memory fences or locked instructions in between. NR2 and R are the numbers
of queries that are answered negatively/positively by the external model checker.
Hence, RQ = NR1 + NR2 + R. F is the number of fences inserted.

The column Spin gives the total CPU time taken by SPIN and Clang, the C
compiler, to produce a verifier executable (pan). The column Ver provides the
total CPU time taken by Trencher and the external verifier. Real is the wall-
clock time in seconds of processing an example. All times are given in seconds.

Checking and Enforcing Robustness against TSO 551

Table 2. Benchmarking results. The test inputs are available online [1].

Program T L I RQ NR1 NR2 R F Spin Ver Real

Peterson (non-robust) 2 14 18 23 2 12 9 2 7.7 0.5 2.9

Peterson (robust) 2 16 20 12 12 0 0 0 0.0 0.0 0.0

Dekker (non-robust) 2 24 30 95 12 28 55 4 31.7 2.1 14.2

Dekker (robust) 2 32 38 30 30 0 0 0 0.0 0.0 0.0

Lamport (non-robust) 3 33 36 36 9 15 12 6 14.4 6.0 5.9

Lamport (robust) 3 39 42 27 27 0 0 0 0.0 0.0 0.0

CLH Lock (robust) 7 62 58 54 48 6 0 0 4.9 0.2 1.6

MCS Lock (robust) 4 52 50 30 26 4 0 0 2.9 0.4 0.9

Lock-Free Stack (robust) 4 46 50 14 14 0 0 0 0.0 0.0 0.0

Cilk’s THE WSQ (non-robust) 5 86 79 152 141 8 3 3 10.0 18.0 7.4

NBW2 (non-robust) 2 21 19 15 9 5 1 1 2.5 0.2 0.8

NBW3 (robust) 2 22 20 15 15 0 0 0 0.0 0.0 0.0

NBW4 (robust) 3 25 22 9 7 2 0 0 0.7 0.1 0.4

NBWL (robust) 4 45 45 30 26 4 0 0 2.7 0.2 0.7

Parker (non-robust) 2 9 8 2 0 1 1 1 0.5 0.0 0.3

Parker (robust) 2 10 9 2 2 0 0 0 0.0 0.0 0.0

8.3 Discussion

The analysis of robust algorithms is particularly fast. They typically only have a
small number of attacks that have to be checked by a model checker. The robust
versions of Dekker and Peterson do not have such attacks at all. In the CLH and
MCS locks, their number is less than 20%.

In some examples (non-robust Dekker, CLH Lock, NBW2, NBW4), up to
94% of the CPU time was spent on generating verifiers. This leaves room for
improvement by switching to a model checker without compilation phase. For
some examples (LamNR, CLH Lock), the wall-clock time constitutes 1/3 to 1/4
of the CPU time (4-cores). This confirms good parallelizability of the approach.

Remarkably, our trace-based analysis can establish robustness of the NBWL
example, as opposed to the earlier analysis via triangular data races which has
to place a fence [25].

We note that there is a reduction of TSO robustness to a single SC reachability
query, again in an instrumented program of linear size. The idea is to let each
thread act as an attacker and as a helper, and to apply [[−]]A1 to all loads and
stores rather than to a single attack. This alternative reduction is implemented
in Trencher, but it performed worse in our experiments because of a higher
degree of non-determinism and the lack of parallelization options.

Acknowledgements. The second author was granted by the Competence Cen-
ter High Performance Computing and Visualization (CC-HPC) of the Fraunhofer
Institute for Industrial Mathematics (ITWM). The work was partially supported
by the PROCOPE project ROIS: Robustness under Realistic Instruction Sets.

552 A. Bouajjani, E. Derevenetc, and R. Meyer

References

1. Trencher: a tool for checking and enforcing robustness against TSO,
http://concurrency.cs.uni-kl.de/trencher.html

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
Example Guided Fence Insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

4. Alglave, J.: A Shared Memory Poetics. PhD thesis, University Paris 7 (2010)

5. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

6. Alur, R., McMillan, K., Peled, D.: Model-Checking of Correctness Conditions for
Concurrent Objects. In: LICS, pp. 219–228. IEEE Computer Society Press (1996)

7. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the Verification
Problem for Weak Memory Models. In: POPL, pp. 7–18. ACM (2010)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. CoRR, abs/1208.6152 (2012), http://arxiv.org/abs/1208.6152

9. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding Robustness against Total Store
Ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

10. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory
Models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

11. Burnim, J., Sen, K., Stergiou, C.: Sound and Complete Monitoring of Sequential
Consistency for Relaxed Memory Models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

12. Dice, D.: A race in locksupport park() arising from weak memory models (Novem-
ber 2009),
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

13. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. SIGPLAN Not. 33(5), 212–223 (1998)

14. German, S.M., Sistla, P.A.: Reasoning about systems with many processes.
JACM 39, 675–735 (1992)

15. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comp. 26(4), 1208–
1244 (1997)

16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. MKP (2008)

17. Holzmann, G.J.: The model checker SPIN. IEEE Tr. Soft. Eng. 23, 279–295 (1997)

18. Kopetz, H., Reisinger, J.: The Non-Blocking Write Protocol NBW: A Solution to
a Real-Time Synchronisation Problem. In: IEEE Real-Time Systems Symposium,
pp. 131–137. IEEE Computer Society Press (1993)

19. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-Coherence Abstractions for Re-
laxed Memory Models. In: PLDI, pp. 187–198. ACM (2011)

20. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

21. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comp. 28(9), 690–691 (1979)

22. Lamport, L.: A fast mutual exclusion algorithm. ACM Tr. Comp. Sys. 5(1) (1987)

http://concurrency.cs.uni-kl.de/trencher.html
http://arxiv.org/abs/1208.6152
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

Checking and Enforcing Robustness against TSO 553

23. Linden, A., Wolper, P.: A Verification-Based Approach to Memory Fence Insertion
in Relaxed Memory Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011.
LNCS, vol. 6823, pp. 144–160. Springer, Heidelberg (2011)

24. Lipton, R.: The reachability problem requires exponential space. Technical Re-
port 62, Yale University (1976)

25. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

26. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO (extended
version). Technical Report CL-TR-745, University of Cambridge (2009)

27. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comp. Sci. 6, 223–231 (1978)

28. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

29. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM TOPLAS 10(2), 282–312 (1988)

30. Vafeiadis, V., Zappa Nardelli, F.: Verifying Fence Elimination Optimisations. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011)

GADTs Meet Subtyping�

Gabriel Scherer and Didier Rémy

INRIA, Rocquencourt

Abstract. While generalized algebraic datatypes (GADTs) are now con-
sidered well-understood, adding them to a language with a notion of
subtyping comes with a few surprises. What does it mean for a GADT
parameter to be covariant? The answer turns out to be quite subtle.
It involves fine-grained properties of the subtyping relation that raise
interesting design questions. We allow variance annotations in GADT
definitions, study their soundness, and present a sound and complete al-
gorithm to check them. Our work may be applied to real-world ML-like
languages with explicit subtyping such as OCaml, or to languages with
general subtyping constraints.

1 Introduction

In languages that have a notion of subtyping, the interface of parametrized
types usually specifies a variance. It defines the subtyping relation between two
instances of a parametrized type from the subtyping relations that hold between
their parameters. For example, the type α list of immutable lists is expected
to be covariant : we wish σ list ≤ σ′ list as soon as σ ≤ σ′.

Variance is essential in languages with parametric polymorphism whose pro-
gramming idioms rely on subtyping, in particular object-oriented languages, or
languages with structural datatypes such as extensible records and variants, de-
pendently typed languages with inductive types (to represent positivity require-
ments), or additional information in types such as permissions, effects, etc. A last
reason to care about variance is its use in the relaxed value restriction [Gar04]:
while a possibly-effectful expression, also called an expansive expression, cannot
be soundly generalized in ML—unless some sophisticated enhancement of the
type system keeps track of effectful expressions—it is always sound to generalize
type variables that only appear in covariant positions, as they may not classify
mutable data. Therefore, it is important for extensions of type definitions, such
as generalized algebraic datatypes (GADTs), to support it as well through a
clear and expressive definition of parameter covariance.

For example, consider the following GADT of well-typed expressions:

type +α exp =

| Val : α→ α exp

| Int : int→ int exp

| Thunk : ∀β. β exp ∗ (β → α)→ α exp

| Prod : ∀βγ. β exp ∗ γ exp→ (β ∗ γ) exp
� Part of this work has been done at IRILL.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 554–573, 2013.
© Springer-Verlag Berlin Heidelberg 2013

GADTs Meet Subtyping 555

Is it safe to say that exp is covariant in its type parameter? It turns out that,
using the subtyping relation of the OCaml type system, the answer is “yes”.
But, surprisingly to us, in a type system with a top type �, the answer would be
“no”. We introduce this example in details in §2—and present some interesting
counter-examples of incorrect variance annotations.

Verifying variance annotations for simple algebraic datatypes is straightfor-
ward: it suffices to check that covariant type variables appear only positively
and contravariant variables only negatively in the types of the arguments of
the datatype constructors. GADTs can be formalized as extensions of datatypes
where constructors have typed arguments, but also a set of existential variables
and equality constraints. Then, the simple check of algebraic datatypes appar-
ently becomes a searching problem: witnesses for existentials must be found so
as to satisfy the equality constraints. That is, there is a natural correctness crite-
rion (already present in previous work); however, it is expressed in a “semantic”
form that is not suitable for a simple implementation in a type checker. We
present this semantic criterion in §3 after reviewing the formal framework of
variance-based subtyping.

The main contribution of our work, described in §4, is to develop a syn-
tactic criterion that ensures the semantics criterion. Our solution extends the
simple check of algebraic datatypes in a non-obvious way by introducing two
new notions. First, upward and downward-closure of type constructors explains
how to check that a single equality constraint is still satisfiable in presence of
variance (but also raises interesting design issues for the subtyping relation).
Second, zipping explains when witnesses exist for existential variables, that is,
when multiple constraints using the same existential may soundly be used with-
out interfering with each other. These two properties are combined into a new
syntactic judgment of decomposability that is central to our syntactic criterion.
We prove that our syntactic criterion is sound and complete with respect to the
semantic criterion. The proof of soundness is relatively direct, but completeness
is much harder.

We discuss the implication of our results in §5, in particular the notion of
upward and downward-closure properties of type constructors, on the design of
a subtyping relation. We also contrast this approach, motivated by the needs of a
language of a ML family, with a different and mostly orthogonal approach taken
by existing object-oriented languages, namely C+ and Scala, where a natural no-
tion of GADTs involves subtyping constraints, rather than equality constraints.
We can re-evaluate our syntactic criterion in this setting: it is still sound, but
the question of completeness is left open.

In summary, we propose a syntactic criterion for checking the soundness of
variance annotations of GADTs with equality constraints in a language with
subtyping. Our work is directly applicable to the OCaml language, but our
approach can also be transposed to languages with general subtyping constraints,
and raises interesting design questions. A long version of the present article,
containing the detailed proofs and additional details and discussion, is available
online [SR].

556 G. Scherer and D. Rémy

2 Examples

Let us first explain why it is reasonable to say that α exp is covariant. Informally,
if we are able to coerce a value of type α into one of type α′ (we write (v :> α′)
to explicitly cast a value v of type α to a value of type α′), then we are also
able to transform a value of type α exp into one of type α′ exp. Here is some
pseudo-code1 for the coercion function:

let coerce : α exp→ α′ exp = function

| Val (v : α) -> Val (v :> α′)
| Int n -> Int n

| Thunk β (b : β exp) (f : β → α) ->

Thunk β b (fun x -> (f x :> α′))
| Prod β γ ((b, c) : β exp ∗ γ exp) ->

(* if β ∗ γ ≤ α′, then α′ is of the form β′ ∗ γ′
with β ≤ β′ and γ ≤ γ′ *)

Prod β′ γ′ ((b :> β′ exp), (c :> γ′ exp))

In the Prod case, we make an informal use of something we know about the
OCaml type system: the supertypes of a tuple are all tuples. By entering the
branch, we gain the knowledge that α must be equal to some type of the form
β ∗ γ. So from α ≤ α′ we know that β ∗ γ ≤ α′. Therefore, α′ must itself be a
pair of the form β′ ∗γ′. By covariance of the product, we deduce that β ≤ β′ and
γ ≤ γ′. We may thus conclude by casting at types β′ exp and γ′ exp, recursively.

Similarly, in the Int case, we know that α must be an int and therefore an
int exp is returned. This is because we know that, in OCaml, no type is above
int: if int ≤ τ , then τ must be int.

What we use in both cases is reasoning of the form2: “if T [β] ≤ α′, then I know

that α′ is of the form T [β
′
] for some β

′
”. We call this an upward closure property:

when we “go up” from a T [β], we only find types that also have the structure of
T . Similarly, for contravariant parameters, we would need a downward closure

property: T is downward-closed if T [β] ≥ α′ entails that α′ is of the form T [β
′
].

Before studying a more troubling example, we define the classic equality type
(α, β) eq and the corresponding casting function cast : ∀αβ.(α, β) eq→ α→ β:

type (α, β) eq = let cast r =

| Refl : ∀γ. (γ, γ) eq match r with Refl -> (fun x -> x)

Notice that it would be unsound3 to define eq as covariant, even in only one
parameter. For example, if we had type (+α,=β) eq, from any σ ≤ τ , we could
subtype (σ, σ) eq into (τ, σ) eq, allowing a cast from any value of type τ back
into one of type σ, which is unsound in general.

1 The variables β′ and γ′ of the Prod case are never really defined, only justified at
the meta-level, making this code only an informal sketch.

2 We write T [β] for a type expression T that may contain free occurrences of variables
β and T [σ] for the simultaneous substitution of σ for β in T .

3 This counterexample is due to Jeremy Yallop.

GADTs Meet Subtyping 557

As a counter-example, the following declaration is incorrect: the type α bad

cannot be declared covariant.

type +α bad =

| K : < m : int > → < m : int > bad

let v = (K (object method m = 1 end) :> < > bad)

This declaration uses the OCaml object type < m : int >, which qualifies ob-
jects having a method m returning an integer. It is a subtype of object types
with fewer methods, in this case the empty object type < >, so the alleged co-
variance of bad, if accepted by the compiler, would allow us to cast a value of
type < m : int > bad into one of type < > bad and thus have the above value
v of type <> bad. However, if such a value v existed, we could produce an equal-
ity witness (< >, <m : int>) eq that allows to cast any empty object of type
< > into an object of type < m : int >, but this is unsound, of course!

let get_eq : α bad→ (α, < m : int >) eq = function

| K _ -> Refl (* locally α = < m : int > *)

let wrong : < > -> < m : int > =

let eq : (< >, < m : int >) eq = get_eq v in cast eq

It is possible to reproduce this example using a different feature of the OCaml
type system named private type abbreviation4: a module using a type type s = τ
internally may describe its interface as type s = private τ . This is a compromise
between a type abbreviation and an abstract type: it is possible to cast a value
of type s into one of type τ , but not, conversely, to construct a value of type
s from one of type τ . In other words, s is a strict subtype of τ : we have s ≤
τ but not s ≥ τ . Take for example type file_descr = private int: this
semi-abstraction is useful to enforce invariants by restricting the construction of
values of type file_descr, while allowing users to conveniently and efficiently
destruct them for inspection at type int. Using an unsound but quite innocent-
looking covariant GADT datatype, one is able to construct a function to cast any
integer into a file_descr, which defeats the purpose of this abstraction—see
the extended version of this article for the full example.

The difference between the former, correct Prod case and those two latter
situations with unsound variance is the notion of upward closure. The types α∗β
and int used in the correct example were upward-closed. On the contrary, the
private type file_descr has a distinct supertype int, and similarly, the object
type < m:int > has a supertype < > with a different structure (no method m).

Finally, the need for covariance of α exp can be justified either by applications
using subtyping on data (for example object types or polymorphic variants), or
by the relaxed value restriction. If we used the Thunk constructor to delay a
computation returning an object of type < m : int >, that is itself of type
< m : int > exp, we may need to see it as a computation returning the empty
object < >. We could also wish to define an abstract interface through a module
boundary that would not expose any implementation detail about the datatype;
for example, using Product to implement a list interface.

4 This counterexample is due to Jacques Garrigue.

558 G. Scherer and D. Rémy

module Exp : sig

type α exp

val inj : α -> α exp

val pair : α exp -> β exp -> (α ∗ β) exp

val fst : (α ∗ β) exp -> α exp

end

What would then be the type of Exp.inj []? In presence of the value restriction,
this application cannot be generalized, and we get a weak polymorphic type
?α list Exp.exp for some non-generalized inference variable ?α. If we change
the interface to express that Exp.exp is covariant, then we get the expected
polymorphic type ∀α.α list Exp.exp.

3 A Formal Setting

3.1 The Subtyping Relation

Ground types consist of base type q, types τ p, function types τ1 → τ2, product
types τ1 ∗ τ2, and a set of algebraic datatypes σ t. We also write σ and ρ for
types, σ for a sequence of types (σi)i∈I , and we use prefix notation for datatype
parameters, as is the usage in ML. Datatypes may be user-defined by toplevel
declarations of the form:

type vα t = K1 of τ
1[α] | . . . Kn of τn[α]

This is a disjoint sum: the constructors Kc represent all possible cases and each
type τc[α] is the domain of the constructor Kc. Applying Kc to an argument e of
a corresponding ground type τ [σ] constructs a term of type σ t. Values of this
type are deconstructed using pattern matching clauses of the form Kc x → e,
one for each constructor.

The sequence vα is a binding list of type variables αi along with their variance
annotation vi. Variances range in the set {+,−,=,��}. We may associate a
relation (≺v) between types to each variance v:

– ≺+ is the covariant relation (≤);
– ≺− is the contravariant relation (≥), the symmetric of (≤);
– ≺= is the invariant relation (=) defined as the intersection of (≤) and (≥);
– ≺�� is the irrelevant relation (��), i.e. the full relation such that σ �� τ holds

for all types σ and τ .

Given a reflexive transitive relation (�) on base types, the subtyping relation
on ground types (≤) is defined by the inference rules of Figure 1, which, in
particular, give their meaning to the variance annotations vα. The judgment
type vα t simply means that the type constructor t has been previously defined
with the variance annotation vα. Notice that the rules for arrow and prod-
uct types, sub-Fun and sub-Prod, can be subsumed by the rule for datatypes
sub-Constr. Indeed, one can consider them as special datatypes (with a specific

GADTs Meet Subtyping 559

sub-Refl

σ ≤ σ

sub-Trans

σ1 ≤ σ2 σ2 ≤ σ3

σ1 ≤ σ3

sub-Fun

σ ≥ σ′ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

sub-Prod

σ ≤ σ′ τ ≤ τ ′

σ ∗ τ ≤ σ′ ∗ τ ′

sub-Constr

type vα t ∀i, σi ≺vi σ
′
i

σ t ≤ σ′
t

sub-P

σ ≤ σ′

σ p ≤ σ′
p

sub-PQ

σ p ≤ q

Fig. 1. Subtyping relation

dynamic semantics) of variance (−,+) and (+,+), respectively. For this rea-
son, the following definitions will not explicitly detail the cases for arrows and
products.

The rules sub-P and sub-PQ were added for the explicit purpose of introduc-
ing some amount of non-atomic subtyping in our relation. For two fixed type
constructors p (unary) and q (nullary), we have σ p ≤ q for any σ. Note that
q is not a top type as it is not above all types, only above the σ p. Of course,
we could add other such type constructors, but those are enough to make the
system interesting and representative of complex subtype relation.

As usual in subtyping systems, we could reformulate our judgment in a syntax-
directed way, to prove that it admits good inversion properties: if σ t ≤ σ′ t
and type vα t, then one can deduce that for each i, σi ≺vi σ

′
i.

The non-atomic rule sub-PQ ensures that our subtyping relation is not “too
structured” and is a meaningful choice for a formal study applicable to real-
world languages with possibly top or bottom types, private types, record width
subtyping, etc. In particular, the type constructor p is not upward-closed (and
conversely q is not downward-closed), as used informally in the examples and
defined for arbitrary variances in the following way:

Definition 1 (Constructor closure). A type constructor α t is v-closed if,
for any type sequence σ and type τ such that σ t ≺v τ hold, then τ is necessarily
equal to σ′ t for some σ′.

3.2 The Algebra of Variances

If we know that σ t ≤ σ′ t, that is σ t ≺+ σ′ t, and the constructor t has
variable vα, an inversion principle tells us that σi ≺vi σ

′
i for each i. But what if

we only know σ t ≺u σ
′ t for some variance u different from (+)? If u is (−), we

get the reverse relation σi :vi σ
′
i. If u is (��), we get σi �� σ′i, that is, nothing.

This outlines a composition operation on variances u.vi, such that if σ t ≺u σ
′ t

then σi ≺u.vi σ
′
i holds. It is defined by the table in figure 3.2.

This operation is associative and commutative. Such an operator, and the
algebraic properties of variances explained below, have already been used by
other authors, for example [Abe06].

There is a natural order relation between variances, which is the coarser-than
order between the corresponding relations: v ≤ w if and only if (≺v) ⊇ (≺w);

560 G. Scherer and D. Rémy

i.e. if and only if, for all σ and τ , σ ≺w τ implies σ ≺v τ .
5 This reflexive, partial

order is described by the lattice diagram in figure 3.2. All variances are smaller
than = and bigger than ��.

v.w = + − �� w

= = = = ��
+ = + − ��
− = − + ��
�� �� �� �� ��
v

Fig. 2. Variance composition table

= ��

+
��

��
−

��
��

Fig. 3. Variance order diagram

From the order lattice on variances we can define join ∨ and meet ∧ of vari-
ances: v∨w is the biggest variance such that v∨w ≤ v and v∨w ≤ w; conversely,
v ∧ w is the lowest variance such that v ≤ v ∧ w and w ≤ v ∧ w. Finally, the
composition operation is monotone: if v ≤ v′ then w.v ≤ w.v′ and v.w ≤ v′.w.

We often manipulate vectors vα of variable associated with variances, which
correpond to the “context” Γ of a type declaration. We extend our operation
pairwise on those contexts: Γ ∨Γ ′ and Γ ∧Γ ′, and the ordering between contexts
Γ ≤ Γ ′. We also extend the variance-dependent subtyping relation (≺v), which
becomes an order (≺Γ) between vectors of type of the same length: σ ≺vα σ′

holds when we have σi ≺vi σ
′
i for all i.

3.3 A Judgment for Variance of Type Expressions

We define a judgment to check the variance of a type expression. Given a context
Γ of the form vα, that is, where each variable is annotated with a variance, the
judgment Γ 	 τ : v checks that the expression τ varies along v when the variables
of τ vary along their variance in Γ . For example, (+α) 	 τ [α] : + holds when
τ [α] is covariant in its variable α. The inference rules for the judgment Γ 	 τ : v
are defined on Figure 4.

The parameter v evolves when going into subderivations: when checking Γ 	
τ1 → τ2 : v, contravariance is expressed by checking Γ 	 τ1 : (v.−). Previous
work (on variance as [Abe06] and [EKRY06], but also on irrelevance as in [Pfe01])
used no such parameter, but modified the context instead, checking Γ/− 	 τ1
for some “variance cancellation” operation vw/ (see [Abe06] for a principled
presentation). Our own inference rules preserve the same context in the whole
derivation and can be more easily adapted to the decomposability judgment
Γ 	 τ : v ⇒ v′ that we introduce in §4.4.

5 The reason for this order reversal is that the relations occur as hypotheses, in negative
position, in definition of subtyping: if we have v ≤ w and type vα t, it is safe to
assume type wα t, since σ ≺w σ′ implies σ ≺v σ′, which implies σ t ≤ σ′ t. One
may also see it, as Abel notes, as an “information order”: knowing that σ ≺+ τ
“gives you more information” than knowing that σ ≺�� τ , therefore �� ≤ +.

GADTs Meet Subtyping 561

vc-Var

wα ∈ Γ w ≥ v

Γ α : v

vc-Constr

Γ type wα t ∀i, Γ σi : v.wi

Γ σ t : v

Fig. 4. Variance assignment

A semantics for variance assignment. This syntactic judgment Γ 	 τ : v cor-
responds to a semantic property about the types and context involved, which
formalizes our intuition of “when the variables vary along Γ , the expression τ
varies along v”. We also give a few formal results about this judgment.

Definition 2 (Interpretation of the variance checking judgment)
We write �Γ 	 τ : v� for the property: ∀σ, σ′, σ ≺Γ σ′ =⇒ τ [σ] ≺v τ [σ

′].

Lemma 1 (Correctness of variance checking)
Γ 	 τ : v is provable if and only if �Γ 	 τ : v� holds.

Lemma 2 (Monotonicity)
If Γ 	 τ : v is provable and Γ ≤ Γ ′ then Γ ′ 	 τ : v is provable.

Lemma 3 (Principality). For any type τ and any variance v, there exists a
minimal context Δ such that Δ 	 τ : v holds. That is, for any other context Γ
such that Γ 	 τ : v, we have Δ ≤ Γ .

We can generalize inversion of head type constructors (§3.1) to whole type ex-
pressions. The most general inversion is given by the principal context.

Theorem 1 (Inversion). For any type τ [α], variance v, and type sequences σ
and σ′, the subtyping relation τ [σ] ≺v τ [σ

′] holds if and only if the judgment Γ 	
τ : v holds for some context Γ such that σ ≺Γ σ′. Furthermore, if τ [σ] ≺v τ [σ

′]
holds, then σ ≺Δ σ′ holds, where Δ is the minimal context such that Δ 	 τ : v.

3.4 Variance Annotations in ADTs

As a preparation for the difficult case of GADTs, we first present our approach
in the well-understood case of algebraic datatypes. We exhibit a semantic cri-
terion that justifies the correctness of a variance annotation; then, we propose
an equivalent syntactic judgment. Of course, we recover the usual criterion that
covariant variables should only occur positively.

In general, an ADT definition of the form

type vα t =
∣∣
c∈C Kc of τ

c[α]

cannot be accepted with any variance vα t. For example, the
declaration (type vα inv = Fun of α → α) is only sound when v is invari-
ant. Accepting a variance assignment vα determines the relations between closed
types σ and σ′ under which the relation σ t ≤ σ′ t is correct.

562 G. Scherer and D. Rémy

In the definition of +α exp we justified the covariance of exp by the existence
of a coercion function. We now formalize this idea for the general case. To check
the correctness of σ t ≤ σ′ t we check the existence of a coercion term that
turns a closed value q of type σ t into one of type σ′ t that is equal to q up to
type information. We actually search for coercions of the form:

match (q : σ t) with |c∈C Kc(x : τc[σ])→ Kc(x :> τc[σ′])

Note that erasing types gives an η-expansion of the sum type, i.e. this is really a
coercion. Hence, such a coercion exists if and only if it is well-typed, that is, each
cast of the form (x : τc[σ] :> τc[σ′]) is itself well-typed. This gives our semantic
criterion for ADTs.

Definition 3 (Semantic soundness criterion for ADTs)
We accept the ADT definition of vαt with constructors (Kc of τ

c[α])c∈C if

∀c ∈ C, ∀σ, ∀σ′, σ t ≤ σ′ t =⇒ τc[σ] ≤ τc[σ′]

The syntactic criterion for ADTs. We notice that this criterion is exactly the
semantic interpretation of the variance checking judgment (Definition 2): the
type type vα t is accepted if and only if the judgment vα 	 τc : (+) is derivable
for each constructor type τc[α].

This syntactic criterion coincides with the well-known alogrithm implemented
in type checkers6: checking positive occurences of a variable α corresponds to a
proof obligation of the form vα 	 α : +, which is valid only when α has variance
(+) or (=) in Γ ; checking negative occurences correspond to a proof obligation
vα 	 α : −, etc. This extends seamlessly to irrelevant variables, which must
appear only under irrelevant context vα 	 α : ��—or not at all.

3.5 Variance Annotations in GADTs

A general description of GADTs. When used to build terms of type α t, a
constructor K of τ behaves like a function of type ∀α.(τ → α t). Notice that
the codomain is exactly α t, the type t instantiated with parametric variables.
GADTs arise by relaxing this restriction, allowing constructors with richer types
of the form ∀α.(τ → σ t). See for example the declaration of constructor Prod
in the introduction:

| Prod : ∀βγ. β exp ∗ γ exp→ (β ∗ γ) exp

Instead of being just α exp, the codomain is now (β ∗ γ) exp. We moved from
simple algebraic datatypes to so-called generalized algebraic datatypes. This
approach is natural and convenient for the users, so it is exactly the syntax
chosen in languages with explicit GADTs support, such as Haskell and OCaml,

6 One should keep in mind that this criterion suffers the usual bane of static typing,
it can reject programs that do not go wrong: type −α weird = K of α ∗⊥. For more
details, see the beginning of the §4 in the long version of this article.

GADTs Meet Subtyping 563

and is reminiscent of the inductive datatype definitions of dependently typed
languages.

However, for the formal study of GADTs, a different formulation based on
equality constraints is preferred. We use the following equivalent presentation,
already present in previous works [SP07]. We force the codomain of the con-
structor Prod to be α t again, instead of (β ∗γ) t, by adding an explicit equality
constraint α = β ∗ γ.

type α exp =

| Val of ∃β[α = β]. β
| Int of [α = int]. int
| Thunk of ∃βγ[α = γ]. β exp ∗ (β → γ)
| Prod of ∃βγ[α = β ∗ γ]. β exp ∗ γ exp

In the rest of the paper, we extend our former core language with such definitions.
This does not impact the notion of subtyping, which is defined on GADT type
constructors with variance type vα t just as it previously was on simple ADT
type constructors. What needs to be changed, however, is the soundness criterion
for checking the variance of type definitions

The correctness criterion. We must adapt our semantic criterion for datatype
declarations (Definition 3) from simple ADTs to GADTs. Again, we check under
which relations between σ and σ′ the subtyping relation σ t ≤ σ′ t holds for
some GADT definition vα t.

The difference is that a constructor Kc that had an argument of type τc[α]
in the simple ADT case, now has the more complex type ∃β[D[α, β]].τc[β], for
a set of existential variables β and a set of equality constraints D—of the form
(αi = Ti[β])i∈I for a family of type expressions (Ti[β])i∈I . Given a closed value
q of type σ t, the coercion term is:

match (q : σ t) with |c∈C Kc(x : τc[ρc])→ Kc(x :> τc[ρ′c])

We do not need to consider the dead cases: we only match on the constructors
for which there exists an instantiation ρc of the existential variables β such that
the constraint D[σ, ρ], i.e.

∧
i∈I σi = Ti[ρc], holds. To type-check this term, we

need to find another instantiation ρ′c that verifies the constraints D[σ′, ρ′]. This
coercion type-checks only when τc[ρc] ≤ τc[ρ′c] holds. This gives our semantic
criterion for GADTs:

Definition 4 (Semantic soundness criterion for GADTs). We accept the
GADT definition of type vα t with constructors (Kc of ∃β[D[α, β]].τc[α])c∈C,
if for all c in C we have:

∀σ, σ′, ρ,
(
σ t ≤ σ′ t ∧D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]

)
(Req)

As for ADTs, this criterion ensures soundness: if, under some variance annota-
tion, a datatype declaration satisfies it, then the implied subtyping relations are
all expressible as coercions in the language, and therefore correct. Whereas the

564 G. Scherer and D. Rémy

simpler ADT criterion was already widely present in the literature, this one is less
known; it is however present in the previous work of Simonet and Pottier [SP07]
(presented as a constraint entailment problem).

Another way to understand this criterion would be to define constrained exis-
tential types of the form ∃β[D[α, β]].τ [β] as first-class types and, with the right
notion of subtyping for those, require that σ t ≤ σ′ t imply (∃β[D[σ, β]].τ [β]) ≤
(∃β[D[σ′, β]].τ [β]). The (easy) equivalence between those two presentations is
detailed in the work of Simonet and Pottier [SP07].

4 Checking Variances of GADT

4.1 Expressing Decomposability

If we specialize Req to the Prod constructor of the α exp example datatype, i.e.
Prod of ∃βγ[α = β ∗ γ]β exp ∗ γ exp, we get:

∀σ, σ′, ρ1, ρ2,(
σ exp ≤ σ′ exp ∧ σ = ρ1 ∗ ρ2 =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1 ∗ ρ′2 ∧ ρ1 ∗ ρ2 ≤ ρ′1 ∗ ρ′2)

)
We can substitute equalities and use the (user-defined) covariance to simplify
the subtyping constraint σ exp ≤ σ′ exp into σ ≤ σ′:

∀σ′, ρ1, ρ2,
(
ρ1∗ρ2 ≤ σ′ =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1 ∗ρ′2 ∧ ρ1 ≤ ρ′1 ∧ ρ2 ≤ ρ′2)

)
(1)

This is the upward closure property mentioned in the introduction. The preceed-
ing transformation is safe only if any supertype σ′ of a product ρ1 ∗ ρ2 is itself
a product, i.e. is of the form ρ′1 ∗ ρ′2 for some ρ′1 and ρ′2.

More generally, for a type Γ 	 σ and a variance v, we are interested in a closure
property of the following form, where the notation (ρ : Γ) simply classifies type
vectors ρ that have exactly one type ρi for each variable in Γ :

∀(ρ : Γ), σ′, σ[ρ] ≺v σ
′ =⇒ ∃(ρ′ : Γ), σ′ = σ[ρ′]

Here, the context Γ represents the set of existential variables of the constructor
(β and γ in our example). We can easily express the condition ρ1 ≤ ρ′1 and
ρ2 ≤ ρ′2 on the right-hand side of the implication by considering a context Γ
annotated with variances (+β,+γ), and using the context ordering (≺Γ). Then,
(1) is equivalent to:

∀(ρ : Γ), σ′, σ[ρ] ≺v σ
′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ′ ∧ σ′ = σ[ρ′]

Our aim is now to find a set of inference rules to check decomposability; we
will later reconnect it to Req. In fact, we study a slightly more general relation,
where the equality σ[ρ′] = σ′ on the right-hand side is relaxed to an arbitrary
relation σ[ρ′] ≺v′ σ′:

GADTs Meet Subtyping 565

Definition 5 (Decomposability). Given a context Γ , a type expression σ[β]
and two variances v and v′, we say that σ is decomposable under Γ from vari-
ance v to variance v′, which we write Γ � σ : v � v′, if the following property
holds:

∀(ρ : Γ), σ′, σ[ρ] ≺v σ
′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ′ ∧ σ[ρ′] ≺v′ σ′

We use the symbol � rather than 	 to highlight the fact that this is just a
logic formula, not the semantic interpretation of a syntactic judgment—we will
introduce one later in section 4.4.

Remark that, due to the positive occurrence of the relation ≺Γ in the propo-
sition Γ � τ : v � v′ and the anti-monotonicity of ≺Γ , this formula is “anti-
monotone” with respect to the context ordering Γ ≤ Γ ′. This corresponds to
saying that we can still decompose, but with less information on the existential
witness ρ′.

Lemma 4 (Anti-monotonicity)
If Γ � τ : v � v′ holds and Γ ′ ≤ Γ , then Γ ′ � τ : v � v′ also holds.

4.2 Variable Occurrences

In the Prod case, the type whose decomposability was considered is β ∗ γ (in
the context β, γ). In this very simple case, decomposability depends only on the
type constructor for the product. In the present type system, with very strong
invertibility principles on the subtyping relation, both upward and downward
closures hold for products. In the general case, we require that this specific type
constructor be upward-closed.

In general, the closure of the head type constructor alone is not enough to
ensure decomposability of the whole type. For example, in a complex type ex-
pression with subterms, we should consider the closure of the type constructors
appearing in the subterms as well. Besides, there are subtleties when a variable
occurs several times.

For example, while β ∗ γ is decomposable from (+) to (=), β ∗ β is not: ⊥∗⊥
is an instantiation of β ∗ β, and a subtype of, e.g., int ∗ bool, which is not
an instance7 of β ∗ β. The same variable occurring twice in covariant position
(or having one covariant and one invariant or contravariant occurence) breaks
decomposability.

On the other hand, two invariant occurrences are possible: β ref ∗ β ref

is upward-closed (assuming the type constructor ref is invariant and upward-
closed): if (σ ref ∗ σ ref) ≤ σ′, then by upward closure of the product, σ′ is
of the form σ′1 ∗ σ′2, and by its covariance σ ref ≤ σ′1 and σ ref ≤ σ′2. Now
by invariance of ref we have σ′1 = σ ref = σ′2, and therefore σ′ is equal to
σ ref ∗ σ ref, which is an instance of β ref ∗ β ref.

7 We use the term instance to denote the replacement of all the free variables of a
type expression under context by closed types—not the specialization of an ML type
scheme.

566 G. Scherer and D. Rémy

Finally, a variable may appear in irrelevant positions without affecting closure
properties; β ∗ (β irr) (where irr is an upward-closed irrelevant type, defined
for example as type α irr = int) is upward closed: if σ ∗ (σ irr) ≤ σ′, then σ′

is of the form σ′1 ∗ (σ′2 irr) with σ ≤ σ′1 and σ �� σ′2, which is equiconvertible to
σ′1 ∗ (σ′1 irr) by irrelevance, an instance of β ∗ (β irr).

4.3 Context Zipping

The intuition to think about these different cases is to consider that, for any σ′,
we are looking for a way to construct a “witness” σ′ such that τ [σ′] = σ′ from
the hypothesis τ [σ] ≺v σ

′. When a type variable appears only once, its witness
can be determined by inspecting the corresponding position in the type σ′. For
example, in α ∗ β ≤ bool ∗ int, the mapping α �→ bool, β �→ int gives the
witness pair bool, int.

However, when a variable appears twice, the two witnesses corresponding to
the two occurrences may not coincide. (Consider for example β∗β ≤ bool∗int.)
If a variable βi appears in several invariant occurrences, the witness of each
occurrence is forced to be equal to the corresponding subterm of τ [σ], that is σi,
and therefore the various witnesses are themselves equal, hence compatible. On
the contrary, for two covariant occurrences (as in the β ∗ β case), it is possible
to pick a σ′ such that the two witnesses are incompatible—and similarly for one
covariant and one invariant occurrence. Finally, an irrelevant occurrence will
never break closure properties, as all witnesses (forced by another occurrence)
are compatible.

To express these merging properties, we define a zip operation v1 v2, that
formally expresses which combinations of variances are possible for several oc-
currences of the same variable; it is a partial operation (for example, it is not
defined in the covariant-covariant case, which breaks the closure properties) with
the following table:

v w = + − �� w

= = =
+ +
− −
�� = + − ��
v

4.4 Syntactic Decomposability

Equipped with the zipping operation, we introduce a judgment Γ 	 τ : v ⇒ v′ to
express decomposability, syntactically, defined by the inference rules on Figure 5.
We also define its semantic interpretation �Γ 	 τ : v ⇒ v′�. The judgment and
its interpretation were co-designed, so keeping the interpretation in mind is the
best way to understand the subtleties of the inference rules. We use zipping,
which requires correct variances, to merge sub-derivations into larger ones, so,
in addition to decomposability, the interpretation also ensures that v is a correct

GADTs Meet Subtyping 567

sc-Triv

v ≥ v′ Γ τ : v

Γ τ : v ⇒ v′

sc-Var

wα ∈ Γ w = v

Γ α : v ⇒ v′

sc-Constr

Γ type wα t : v-closed Γ = �i Γi ∀i, Γi σi : v.wi ⇒ v′.wi

Γ σ t : v ⇒ v′

Fig. 5. Syntactic decomposablity

variance for τ under Γ . This subtlety is why we have two different properties for
decomposability, Γ � τ : v � v′ and �Γ 	 τ : v ⇒ v′�.
Definition 6 (Interpretation of syntactic decomposability)
We write �Γ 	 τ : v ⇒ v′� for the conjunction of properties �Γ 	 τ : v� and
Γ � τ : v � v′.

To understand the inference rules, the first thing to notice is that the present
rules are not completely syntax-directed: we first check whether v ≥ v′ holds,
and if not, we apply syntax-directed inference rules; existence of derivations is
still easily decidable. If v ≥ v′ holds, satisfying Γ � τ : v � v′ (Definition 5)
is trivial: τ [σ] ≺v τ ′ implies τ [σ] ≺v′ τ ′, so taking σ for σ′ is always a correct
witness, which is represented by Rule sc-Triv. The other rules then follow the
same structure as the variance-checking judgment.

Rule sc-Var is very similar to vc-Var, except that the condition w ≥ v is re-
placed by a stronger equality w = v. This difference comes from the fact that the
semantic condition for closure checking (Definition 2) includes both a variance
check, which is monotonic in the context (Lemma 2) and the decomposability
property, which is anti-monotonic (Lemma 4), so the present judgment must be
invariant with respect to the context.

The most interesting rule is sc-Constr. It checks first that the head type
constructor is v-closed (according to Definition 1); then, it checks that each
subtype is decomposable from v to v′, with compatible witnesses, that is, in an
environment family (Γi)i∈I that can be zipped into a unique environment Γ .

Lemma 5 (Soundness of syntactic decomposability)
If the judgment Γ 	 τ : v ⇒ v′ holds, then �Γ 	 τ : v ⇒ v′� holds.

Completeness is the general case is however much more difficult and we only
prove it when the right-hand side variance v′ is (=). In other words, we take back
the generality that we have introduced in §4.1 when defining decomposability.

Lemma 6 (Completeness of syntactic decomposability)
If �Γ 	 τ : v ⇒ v′� holds for v′ ∈ {=,��}, then Γ 	 τ : v ⇒ v′ is provable.

Lemma 6 is an essential piece to finally turn the semantic criterion Req into a
purely syntactic form.

568 G. Scherer and D. Rémy

Theorem 2 (Algorithmic criterion). Given a variance annotation (viαi)i∈I
and a constructor declaration of type (∃β

[∧
i∈I αi = Ti[β]

]
. τ [β]), the soundness

criterion Req for this constructor is equivalent to

∃Γ, (Γi)i∈I , Γ 	 τ : (+) ∧ Γ =
i∈I

Γi ∧ ∀i ∈ I, Γi 	 Ti : vi ⇒ (=)

The three parts of this formula can be explained to a user, as soon as the
underlying semantic phenomenons (variable interference through zipping, and
upward- and downward-closure) have been understood—there is no way to get
around that. They are best read from right to left. The last part on the (Ti)i∈I is
the decomposability requirement that failed in our example with < m : int >:
the type expressions equated with a covariant variable should be upward-closed,
and those equated with a contravariant one downward-closed. The zipping part
checks that the equations do not create interference through shared existential
variables, as in type (+α, =β) eq = Refl of ∃γ[α = γ, β = γ]. Finally, the
variance check corresponds to the classic variance check on argument types of
ADTs. One can verify that in presence of a simple ADT, this new criterion
reduces to the simple syntactic criterion.

This presentation of the correctness criterion only relies on syntactic judg-
ments. It is pragmatic in the sense that it suggests a simple and direct imple-
mentation, as a generalization of the check currently implemented in type system
engines—which corresponds to the Γ 	 τ : (+) part.

To compute the contexts Γ and (Γi)i∈I existentially quantified in this formula,
one can use a variant of our syntactic judgments where the environment Γ is
not an input, but an output of the judgment; in fact, one should return for each
variable α the set of possible variances for this judgment to hold. For example,
the query (? 	 α ∗ β ref : +) should return (α �→ {+,=};β �→ {=}). Defining
those algorithmic variants of the judgments is routine. The sets of variances
corresponding to the decomposability of the (Ti)i∈I (? 	 Ti : vi ⇒ (=)) should
be zipped together and intersected with the possible variances for τ , returned by
(? 	 τ : +). The algorithmic criterion is satisfied if and only if the intersection
is not empty; this can be decided in a simple and efficient way.

5 Discussion

5.1 Upward and Downward Closure in a ML Type System

In the type system we have used so far, all type constructors but p and q are both
upward and downward-closed. This simple situation, however, does not hold in
general: richer subtyping relations will have weaker invertibility properties. As
soon as a bottom type ⊥ is introduced, for example, such that that for all type σ
we have ⊥ ≤ σ, downward-closure fails for all types – but ⊥ itself. For example,
products are no longer downward-closed: Γ 	 σ ∗ τ ≥ ⊥ does not implies that
⊥ is equal to some σ′ ∗ τ ′. Conversely, if one adds a top type �, bigger than all
other types, then most type are not upward-closed anymore.

GADTs Meet Subtyping 569

In OCaml, there is no ⊥ or � type8. However, object types and polymorphic
variants have subtyping, so they are, in general, neither upward nor downward-
closed. Finally, subtyping is also used in private type definitions, which were
demonstrated in the example. Our closure-checking relation therefore degener-
ates into the following, quite unsatisfying, picture:

– no type is downward-closed because of the existence of private types;
– no object type but the empty object type is upward-closed;
– no arrow type is upward-closed because its left-hand-side would need to be

downward-closed;
– datatypes are upward-closed if their components types are.

From a pragmatic point of view, the situation is not so bad; as our main practical
motivation for finer variance checks is the relaxed value restriction, we care about
upward-closure (covariance) more than downward-closure (contravariance). This
criterion tells us that covariant parameters can be instantiated with covariant
datatypes defined from sum and product types (but no arrow), which would
satisfy a reasonable set of use cases.

5.2 A Better Control on Upward and Downward-Closure

There is a subtle design question here. Decomposability is fundamentally a
negative statement on the subtyping relation, guaranteeing that some types
have no supertypes of a different structure. It is therefore not necessarily pre-
served by addition to the subtyping relation – our system, informally, is non-

-monotone in the subtyping relation.
This means that if we adopt the correctness criterion above, we must be

careful in the future not to enrich the subtyping relation too much. Consider
private types for example: one could imagine a symmetric concept of a type
that would be strictly above a given type τ ; we will name those types invisible
types (they can be constructed, but not observed). Invisible types and GADT
covariance seem to be working against each other: if the designer adds one,
adding the other later will be difficult.

A solution to this tension is to allow the user to locally guarantee negative
properties about subtyping (what is not a subtype), at the cost of selectively
abandoning the corresponding flexibility. Just as object-oriented languages have
final classes that cannot be extended any more, we would like to be able to de-
fine some types as downward-closed (respectively upward-closed), that cannot
later be made private (resp. invisible). Such declarations would be rejected
if the defining type, for example an object type, already has subtypes (resp.
supertypes), and would forbid further declarations of types below (resp. above)
the defined type, effectively guaranteeing downward (resp. upward) closure.

8 A bottom type would be admissible, but a top type would be unsound in OCaml,
as different types may have different runtime representations. Existential types, that
may mix values of different types, are constructed explicitly through a boxing step.

570 G. Scherer and D. Rémy

Finally, upward or downward closure is a semantic aspect of a type that we
must have the freedom to publish through an interface: abstract types could
optionally be declared upward-closed or downward-closed.

5.3 Subtyping Constraints and Variance Assignment

We will now revisit our example of strongly typed expressions in the introduction.
A simple way to get such a type to be covariant would be, instead of proving
delicate, non-monotonic upward-closure properties on the tuple type involved in
the equation α = β ∗ γ, to change this definition so that the resulting type is
obviously covariant:

type +α exp =

| Val of ∃β[α ≥ β]. β
| Int of [α ≥ int]. int
| Thunk of ∃βγ[α ≥ γ]. β exp ∗ (β → γ)
| Prod of ∃βγ[α ≥ β ∗ γ]. β exp ∗ γ exp

We have turned each equality constraint α = T [β] into a subtyping constraint
α ≥ T [β]. For a type α′ such that α ≤ α′, we get by transitivity that α′ ≥ T [β].
This means that α exp trivially satisfies the correctness criterion Req. Formally,
instead of checking Γ 	 Ti : vi ⇒ (=), we are now checking Γ 	 Ti : vi ⇒
(+), which is significantly easier to satisfy: when vi is itself + we can directly
apply the sc-Triv rule. Note that this only works in the easy direction: while
Γ 	 Ti : (+) ⇒ (+) is easy to check, Γ 	 Ti : (+) ⇒ (−) is just as hard as
Γ 	 Ti : (+) ⇒ (=). In particular, an equality (σ = σ′) is already equivalent to
a pair of inequalities (σ ≤ σ′ ∧ σ ≥ σ′).

While this different datatype gives us a weaker subtyping assumption when
pattern-matching, we are still able to write the classic function eval : α exp→ α,
because the constraints α ≥ τ are in the right direction to get an α as a result.

let rec eval : α exp→ α = function

| Val β (v : β) -> (v :> α)
| Int (n : int) -> (n :> α)
| Thunk β γ ((v : β exp), (f : β → γ)) ->

(f (eval v) :> α)
| Prod β γ ((b : β exp), (c : γ exp)) ->

((eval b, eval c) :> α)

This variation on GADTs, using subtyping instead of equality constraints, has
been studied by Emir et al [EKRY06] in the context of the C+ programming
language—it is also expressible in Scala. However, using subtyping constraints
in GADTs has important practical drawbacks in a ML-like language. While
typed object-oriented programming languages tend to use explicit polymorphism
and implicit subtyping, ML uses implicit polymorphism and explicit subtyping
(when present). Thus in ML, equality constraints can be implicitly used while
subtyping constraints must be explicitly used: unification-based inference favors
bidirectional equality over unidirectional subtyping. This makes GADT defini-
tions based on single subtyping constraints less convenient to use, because of

GADTs Meet Subtyping 571

the corresponding syntactic burden, and this is probably the reason why the
notion of GADTs found in functional languages use only equality constraints.
Subtyping constraints need also be explicit in the type declaration, forcing the
user out of the convenient “generalized codomain type” syntax.

Finally, weakening equality constraints into a subtyping constraint in one
direction is not always possible; sometimes the strictly weaker expressivity of the
type forbids important uses. One must then use an equality constraint, and use
our decomposability-based reasoning to justify the variance annotation. Consider
the following example:

type +α tree =

| Node of ∃β[α = β list]. (β tree) list
let append : α tree ∗ α tree→ α tree = function

| Node β1 (l1 : β1 tree list), Node β2 (l2 : β2 tree list) ->

Node (List.append l1 l2)

We know that the two arguments of append have the same type α tree. When
matching on the Node constructors, we learn that α is equal to both β1 list and
β2 list, from which we can deduce that β1 is equal to β2 by non-irrelevance of
list. The concatenation of the lists l1 and l2 type-checks because this equal-
ity holds. If we used a type system without the decomposability criterion, we
would need to turn the constructor constraint into ∃β[α ≥ β list] to preserve
covariance of α tree . We wouldn’t necessarily have β1 and β2 equal anymore,
so (List.append l1 l2), hence the definition of append would not type-check.
We would need decomposability-based reasoning to deduce, from α ≥ β list

and the fact that list is upward-closed, that in fact α = β′ list for some β′.
This demonstrates that single subtyping constraints and our novel decom-

posability check on equality constraints are of incomparable expressivity: each
setting handles programs that the other cannot type-check. From a theoretical
standpoint, we think there is value in exploring the combination of both systems:
using subtyping constraints rather than equalities, but also using decomposabil-
ity to deduce stronger equalities when possible.

Note that while our soundness result directly transposes to a type-system with
decomposability conditions on subtyping rather than equality constraints, our
completeness result is special-cased on equality constraints. Completeness in the
case of subtyping constraints is an open question.

6 Related Work

Simonet andPottier [SP07] have studiedGADTs in a general frameworkHMG(X),
inspired by HM(X). They were interested in type inference using constraints, so
considered GADTs with arbitrary constraints rather than type equalities, and
considered the case of subtyping with applications to information flow security
in mind. Their formulation of the checking problem for datatype declarations,
as a constraint-solving problem, is exactly our semantic criterion and is not
amenable to a direct implementation. Correspondingly, they did not encounter

572 G. Scherer and D. Rémy

any of the new notions of upward and downward-closure and variable interfer-
ence (zipping) discussed in the present work. They define a dynamic semantics
and prove that this semantic criterion implies subject reduction and progress.
However, we cannot directly reuse their soundness result as they work in a set-
ting where all constructors are upward- and downward-closed (their subtyping
relation is atomic). We believe this is only an artifact of their presentation and
their proof should be easily extensible to our setting.

Emir, Kennedy, Russo and Yu [EKRY06] studied the soundness of an object-
oriented calculus with subtyping constraints on classes and methods. Previous
work [KR05] had established the correspondence between equality constraints on
methods in an object-oriented style and GADT constraints on type constructors
in functional style. Through this surprisingly non-obvious correspondence, their
system matches our presentation of GADTs with subtyping constraints and eas-
ier variance assignment, detailed in §5.3. They provide several usage examples
and a full soundness proof using a classic syntactic argument. However, they
do not consider the more delicate notions of decomposability, and their system
therefore cannot handle some of the examples presented here.

7 Future Work

Experiments with v-closure of type constructors as a new semantic property. In
a language with non-atomic subtyping such as OCaml, we need to distinguish
v-closed and non-v-closed type constructors. This is a new semantic property
that, in particular, must be reflected through abstraction boundaries: we should
be able to say about an abstract type that it is v-closed, or not say anything.

How inconvenient in practice is the need to expose those properties to have
good variance for GADTs? Will the users be able to determine whether they
want to enforce v-closure for a particular type they are defining?

Completeness of variance annotations with domain information. The way we
present GADTs using equality constraints instead of the codomain syntax is well-
known to practictioners, under the form of a “factoring” transformation where
an arbitrary GADT is expressed as a simple ADT, using the equality GADT
(α, β) eq as part of the constructor arguments to reify equality information.

This transformation does not work anymore with our current notion of GADTs
in presence of subtyping. Indeed, all we can soundly say about the equality type
(α, β) eq is that it must be invariant in both its parameters; using (α, Ti[β]) eq
as part of a constructor type would force the paramter α to be invariant.

We think it would possible to re-enable factoring by eq by considering domain
information, that is, information on constraints that must hold for the type to
be inhabited. If we restricted the subtyping rule with conclusion σ t ≤ σ′ t to
only cases where σ t and σ′ t are inhabited—with a separate rule to conclude
subtyping in the non-inhabited case—we could have a finer variance check, as we
would only need to show that the criterion Seq holds between two instances of
the inhabited domain, and not any instance. If we stated that the domain of the

GADTs Meet Subtyping 573

type (α, β) eq is restricted by the constraint α = β, we could soundly declare the
variance (��α,��β) eq on this domain—which no longer prevents from factoring
out GADTs by equality types.

8 Conclusion

Checking the variance of GADTs is surprisingly more difficult (and interesting)
than we initially thought. We have studied a novel criterion of upward and
downward closure of type expressions and proposed a corresponding syntactic
judgment that is easily implementable. We presented a core formal framework
to prove both its correctness and its completeness with respect to a natural
semantic criterion.

This closure criterion exposes important tensions in the design of a subtyping
relation, for which we previously knew of no convincing example in the context of
ML-derived programming languages. We have suggested new language features
to help alleviate these tensions, whose convenience and practicality is yet to be
assessed by real-world usage.

Considering extensions of GADTs in a rich type system is useful in practice;
it is also an interesting and demanding test of one’s type system design.

References

Abe06. Abel, A.: Polarized subtyping for sized types. Mathematical Structures in
Computer Science (2006); Goguen, H., Compagnoni, A. (eds.) Special issue
on subtyping

EKRY06. Emir, B., Kennedy, A., Russo, C.V., Yu, D.: Variance and Generalized
Constraints for C# Generics. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 279–303. Springer, Heidelberg (2006)

Gar04. Garrigue, J.: Relaxing the Value Restriction. In: Kameyama, Y., Stuckey,
P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 196–213. Springer, Heidelberg
(2004)

KR05. Kennedy, A., Russo, C.V.: Generalized algebraic data types and object-
oriented programming. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (2005),
http://research.microsoft.com/pubs/64040/gadtoop.pdf

Pfe01. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal
type theory. In: Proceedings of the 16th IEEE Symposium on Logic in Com-
puter Science, LICS 2001, June 16-19, Boston University, USA (2001)

SP07. Simonet, V., Pottier, F.: A constraint-based approach to guarded alge-
braic data types. ACM Transactions on Programming Languages and Sys-
tems 29(1) (January 2007)

SR. Scherer, G., Rémy, D.: GADTs meet subtyping. Long version, available elec-
tronically, http://gallium.inria.fr/~remy/gadts/

http://research.microsoft.com/pubs/64040/gadtoop.pdf
http://gallium.inria.fr/~remy/gadts/

A Data Driven Approach for Algebraic Loop

Invariants�

Rahul Sharma1, Saurabh Gupta2, Bharath Hariharan2,
Alex Aiken1, Percy Liang1, and Aditya V. Nori3

1 Stanford University
{sharmar,aiken,pliang}@cs.stanford.edu

2 University of California at Berkeley
{sgupta,bharath2}@eecs.berkeley.edu

3 Microsoft Research India
adityan@microsoft.com

Abstract. We describe a Guess-and-Check algorithm for computing
algebraic equation invariants of the form ∧ifi(x1, . . . , xn) = 0, where
each fi is a polynomial over the variables x1, . . . , xn of the program. The
“guess” phase is data driven and derives a candidate invariant from data
generated from concrete executions of the program. This candidate in-
variant is subsequently validated in a “check” phase by an off-the-shelf
SMT solver. Iterating between the two phases leads to a sound algo-
rithm. Moreover, we are able to prove a bound on the number of decision
procedure queries which Guess-and-Check requires to obtain a sound
invariant. We show how Guess-and-Check can be extended to generate
arbitrary boolean combinations of linear equalities as invariants, which
enables us to generate expressive invariants to be consumed by tools that
cannot handle non-linear arithmetic. We have evaluated our technique on
a number of benchmark programs from recent papers on invariant gen-
eration. Our results are encouraging – we are able to efficiently compute
algebraic invariants in all cases, with only a few tests.

Keywords: Non-linear, loop invariants, SMT.

1 Introduction

The task of generating loop invariants lies at the heart of any program verifica-
tion technique. A wide variety of techniques have been developed for generating
linear invariants, including methods based on abstract interpretation [8,13] and
constraint solving [7,11], among others.

Recently, researchers have also applied these techniques to the generation of
non-linear loop invariants [23,17,21,22,18]. These techniques discover algebraic
invariants, that is, invariants of the form

∧ifi(x1, . . . , xn) = 0

� This work was supported by NSF grant CCF-0915766.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 574–592, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Data Driven Approach for Algebraic Loop Invariants 575

where each fi is a polynomial defined over the variables x1, . . . , xn of the pro-
gram. Note that algebraic invariants implicitly handle disjunctions: if f1 =
0 ∨ f2 = 0 is an invariant then f1 = 0 ∨ f2 = 0 ⇔ f1f2 = 0. Thus, alge-
braic invariants are as expressive as arbitrary boolean combinations of algebraic
equations.

Most previous techniques for algebraic loop invariants are based on Gröbner
bases computations, which cause a considerable slowdown [4]. Therefore, there
has been recent interest in techniques for generating algebraic invariants that
do not use Gröbner bases [4,18] (see Section 7). In this paper, we address the
problem of invariant generation from a data driven perspective. In particular,
we use techniques from linear algebra to analyze data generated from execu-
tions of a program in order to efficiently “guess” a candidate invariant. This
phase can leverage test suites of programs for data generation. This guessed
invariant is subsequently checked for validity via a decision procedure. Our al-
gorithm Guess-and-Check for generating algebraic invariants calls these guess
and check phases iteratively until it finds the desired invariant. Failure to prove
that a candidate is an invariant results in counterexamples or more data that
are used to refine the guess in the next iteration. Furthermore, we are also able
to prove a bound on the number of iterations of Guess-and-Check.

Our guess and check data driven approach for computing invariants has a
number of advantages:

– Checking whether the candidate invariant is an invariant is done via a de-
cision procedure. Our belief is that using a decision procedure to check the
validity of a candidate invariant can be much more efficient than using it to
infer an actual invariant.

– Since the guess phase operates over data, its complexity is largely indepen-
dent of the complexity or size of the program (the amount of data depends
on the number of variables in scope). This is in contrast to approaches based
on static analysis, and therefore it is at least plausible that a data driven
approach may work well even in situations that are difficult for static anal-
ysis. Moreover, the guess step just involves basic matrix manipulations, for
which very efficient implementations exist.

There are major drawbacks, both theoretical and practical, with most previous
techniques for algebraic invariants. First, these techniques either restrict pred-
icates on branches to either equalities or dis-equalities [6,17], or cannot handle
nested loops [15,22], or interpret program variables as real numbers [23,4,21].
It is well known that the semantics of a program assuming integer variables, in
the presence of division and modulo operators, is not over-approximated by the
semantics of the program assuming real variables. Therefore, these approaches
may not produce correct invariants in cases where the program variables are
actually integers. Our technique does not suffer from these drawbacks: our check
phase can consume a rich syntax and answer queries over both integers and reals
(see Section 4.2). Moreover, since these techniques can find algebraic invariants,
they can find non-linear invariants representing boolean combinations of linear

576 R. Sharma et al.

equalities. If a loop has the invariant y = x ∨ y = −x then these techniques can
find the invariant x2 = y2 that is semantically equivalent to the linear invariant:

x = y ∨ x = −y ⇔ (x+ y)(x− y) = 0⇔ x2 = y2

But if the invariant is to be consumed by a verification tool that works over linear
arithmetic (as most tools do), then x2 = y2 is not useful. A simple extension
to our technique allows us to extract an equivalent (disjunctive) linear invariant
from an algebraic invariant when such a linear invariant exists. This extension
is possible as our technique is data driven (see Section 5.1).

It is also interesting to note that our algorithm is an iterative refinement proce-
dure similar to the counterexample-guided abstraction refinement (CEGAR) [5]
technique used in software model checking. In CEGAR, we start with an over-
approximation of program behaviors and perform iterative refinement until we
have either found a proof of correctness or a bug. Guess-and-Check is dual
to CEGAR – we start with an under-approximation of program behaviors and
add more behaviors until we are done. Most techniques for invariant discovery
using CEGAR-like techniques have no termination guarantees. Since we focus
on the language of polynomial equalities for invariants, we are able to give a
termination guarantee for our technique.

Our main contribution is a new sound data driven algorithm for computing
algebraic invariants. Specifically:

– We provide a data driven algorithm for generation of invariants restricted to
conjunctions of algebraic equations. We observe that a known algorithm [18]
is a suitable fit for our guess step. We formally prove that this algorithm
computes an under-approximation of the algebraic loop invariant. That is,
if G is the guess or candidate invariant, and I is an invariant then G ⇒ I.
This guess will contain all algebraic equations constituting the invariants
and possibly more spurious equations.

– We augment our guessing procedure with a decision procedure to obtain a
sound algorithm. If the decision procedure successfully answers the queries
made, then the output is an invariant and we do generate all valid invariants
up to a given degree d. Moreover we are able to prove a bound on the number
of decision procedure queries.

– Using the observation that a boolean combination of linear equalities with d
disjunctions (in DNF form) is equivalent to an algebraic invariant of degree
d [17,26], we describe an algorithm to generate an equivalent linear invariant
from an algebraic invariant.

– We evaluate our technique on benchmark programs from various papers on
generation of algebraic loop invariants and our results are encouraging—
starting with a small amount of data, Guess-and-Check terminates on all
benchmarks in one iteration, that is, our first guess is an actual invariant.

The remainder of the paper is organized as follows. Section 2 motivates and in-
formally illustrates the Guess-and-Check algorithm over an example program.
Section 3 introduces the background for the technical material in the paper. Sec-
tion 4 presents the Guess-and-Check algorithm for algebraic invariants and

A Data Driven Approach for Algebraic Loop Invariants 577

also proves its correctness and termination. Section 5 describes some extensions:
our technique for obtaining disjunctive linear invariants from algebraic invariants
and a discussion about richer theories such as arrays. Section 6 evaluates our
implementation of the Guess-and-Check algorithm on several benchmarks for
algebraic loop invariants. Section 7 surveys related work and, finally, Section 8
concludes the paper.

2 Overview of the Technique

We will illustrate our technique over the example program shown in Figure 1.
Our objective is to compute the loop invariant for the loop in this program.
Informally, a loop invariant over-approximates the set of all possible program
states that are possible at a loop head. This method can be generalized to obtain
invariants at any program point. This program has a loop (lines 3 – 6) that is
non-deterministic. In line 2 and 6, we have instrumentation code that writes
the program state (the values of the variables x and y) to a log file. The loop
invariant for this program is I ≡ y+ y2 = 2x. Since our approach is data driven,
the starting point is to run the program with test inputs and accumulate the
resulting data (in other words, the resulting program states) in a log. Assume
that the program execution exercises the loop once. On such an execution, we
obtain program states x = y = 0 and x = y = 1.

1: assume(x=0 && y=0);

2: writelog(x, y);

3: while (nondet()) do

4: y := y+1;

5: x := x+y;

6: writelog(x, y);

Fig. 1. Example for algebraic invariants.

1: if (x >= 0) then y := x

2: else y := -x;

3: writelog(x, y);

4: while (y>=0 && nondet()) do

5: if(x >= y) then

6: y := y+1; x := x+1;

7: else y := y+1; x := x-1;

8: writelog(x, y);

Fig. 2. Example for (disjunctive)
linear invariants.

It turns out that for our technique to work, we need to assume an upper
bound d on the degree of the polynomials that constitute the invariant. For
this example, we assume that d = 2, which allows us to exhaustively enumerate
all the monomials over the program variables up to the chosen degree. For our
example, "α = {1, x, y, y2, x2, xy} is the set of all monomials over the variables x
and y with degree less than or equal to 2. The number of monomials of degree d
in n variables is large:

(
n+d−1

d

)
. Heuristics exist to discard the monomials that

are unlikely to be a part of an invariant [24].
Using "α and the program states, we construct a data matrix A that is a 2× 6

matrix with one row corresponding to each program state and six columns, one
for each monomial in "α. Every entry in jth column of A represents the value of
the jth monomial over the program execution. Therefore,

578 R. Sharma et al.

A =
1 x y y2 x2 xy
1 0 0 0 0 0
1 1 1 1 1 1

(1)

As we will see in Section 4.1, we can employ the null space of A to compute a
candidate invariant I as follows. If {b1, b2, . . . , bk} is a basis for the null space of
the data matrix A, then

I ≡
k∧

i=1

([1, x, y, y2, x2, xy]bi = 0) (2)

is a candidate invariant that is logically stronger than the strongest algebraic
invariant. The null space of A is defined by four basis vectors, representing four
algebraic equations:

I ≡ x = y ∧ x = y2 ∧ x = x2 ∧ x = xy (3)

Next, in the check phase, we check whether I as specified by Equation 3 is
actually an invariant. Abstractly, if L ≡ while B do S is a loop, then to check
if I is a loop invariant, we need to establish the following conditions:

1. If ϕ is a precondition at the beginning of L, then ϕ⇒ I.
2. Furthermore, executing the loop body S with a state satisfying I∧B, always

results in a state satisfying the invariant I.

The above checks for validating I are performed by an off-the-shelf decision
procedure [16]. For our example, we first check whether the precondition at the
beginning of the loop implies I:

(x = 0 ∧ y = 0)⇒ (x = y = x2 = y2 = xy)

This condition is indeed valid, and therefore we check whether I is inductive (we
obtain the predicate representing the loop body via symbolic execution [14]):

((x = y = x2 = y2 = xy) ∧ y′ = y + 1 ∧ x′ = x+ y′)⇒(x′ = y′ = x′2 = y′2 = x′y′)

This predicate is not valid, and we obtain a counterexample x′ = 3, y′ = 2 at
line 3 of the program. Let us assume that we generate more program states by
executing the loop for three iterations and starting with x = 3 and y = 2. As a
result, we get a data matrix (that also includes the rows from the previous data
matrix) as shown:

A =

1 x y y2 x2 xy
1 0 0 0 0 0
1 1 1 1 1 1
1 3 2 4 9 8
1 6 3 9 36 18
1 10 4 16 100 40

(4)

A Data Driven Approach for Algebraic Loop Invariants 579

As with the earlier iteration, we require the basis of the null space of A and this
is defined by the single vector: [0, 2,−1,−1, 0, 0]. Therefore, from Equation 2, it
follows that the candidate invariant is I ≡ 2x− y − y2 = 0.

Now, the conditions that must hold for I to be a loop invariant are:

1. (x = 0 ∧ y = 0)⇒ y + y2 = 2x, and
2. (y + y2 = 2x ∧ y′ = y + 1 ∧ x′ = x+ y′)⇒ (y′ + y′2 = 2x′)

both of which are deemed to be valid by the check phase, and therefore I ≡
y + y2 = 2x is the desired loop invariant.

Following a similar approach, we can infer the algebraic invariant x2 = y2 for
Figure 2. In Section 5.1, we show a data-driven procedure to generate equivalent
linear invariants from algebraic invariants and use the same to infer the linear
invariant y = x ∨ y = −x for Figure 2.

3 Preliminaries

We consider programs belonging to the following language of while programs:

S ::= x:=M | S; S | if B then S else S | while B do S

where x is a variable over a countably infinite sort loc of memory locations, M
is an expression, and B is a boolean expression. Expressions in this language are
either of type int or bool.

A monomial α over the variables "x = x1, . . . xn is a term of the form α("x) =
xk1
1 xk2

2 . . . xkn
n . The degree of a monomial is

∑n
i=1 ki. A polynomial f(x1, . . . , xn)

defined over n variables "x = x1, . . . , xn is a weighted sum of monomials and has
the following form.

f("x) =
∑
k

wkx
k1
1 xk2

2 . . . xkn
n =

∑
k

wkαk (5)

where αk = xk1
1 xk2

2 . . . xkn
n is a monomial. We are interested in polynomials over

rationals, that is, ∀k . wk ∈ Q. The degree of a polynomial is the maximum
degree over its constituent monomials: maxk {degree(αk) | wk �= 0}.

An algebraic equation is of the form f("x) = 0, where f is a polynomial. Given
a loop L = while B do S defined over variables "x = x1, . . . , xn together with
a precondition ϕ, a loop invariant I is the strongest predicate such that ϕ⇒ I
and {I∧B}S{I}. Any predicate I satisfying these two conditions is an invariant
for L. If we do not impose the condition that we need the strongest invariant,
then the trivial predicate I = true is a valid invariant. In this section, we will
focus on algebraic invariants for a loop. An algebraic invariant I is of the form
∧ifi("x) = 0, where each fi is a polynomial over the variables "x of the loop.

3.1 Matrix Algebra

This section reviews basic linear algebra. Readers familiar with matrix algebra
may safely skip this section.

580 R. Sharma et al.

The span of a set of vectors {x1, x2, . . . , xn}, xi ∈ Qm, is the set of all vectors
that can be expressed as a linear combination of {x1, x2, . . . , xn}. Therefore,

span({x1, x2, . . . , xn}) = {v | v =
n∑

i=1

αixi, αi ∈ Q} (6)

For any P = span(x1, . . . , xn) ⊆ Qm, if every vector v ∈ P can be writ-
ten as a linear combination of vectors from a linearly independent set B =
{b1, b2, . . . , bk}, and B is minimal, then B forms a basis of P , and k is called the
dimension of the set P .

The range of a matrix A ∈ Qm×n is the span of the columns of A. That is,

range(A) = {v ∈ Qm | v = Ax, x ∈ Qn} (7)

The dimension of range(A) is called rank(A). The null space of a matrix A ∈
Qm×n is the set of all vectors that equal to 0 when multiplied by A. More
precisely,

NullSpace(A) = {x ∈ Qn | Ax = 0} (8)

The dimension of NullSpace(A) is called its nullity. For instance, the matrix

A =

⎡⎣1 2 −3
3 5 9
5 9 3

⎤⎦ has a null space spanned by

⎧⎨⎩
⎡⎣−3318

1

⎤⎦⎫⎬⎭ with nullity(A) = 1.

A basis for the null space of a m× n matrix can be computed in time O(m2n).
A subspace of Qn, spanned by a basis B, are the vectors x that satisfy Ax = 0,
where A is a basis for the null space of B. From the fundamental theorem of
linear algebra, for any matrix A ∈ Qm×n, we know

rank(A) + nullity(A) = n (9)

4 The Guess-and-Check Algorithm

The Guess-and-Check algorithm is described in Figure 3. The algorithm takes
as input a while program L, a precondition ϕ on the inputs to L, and an upper
bound d on the degree of the desired invariant, and returns an algebraic loop
invariant I. If L = while B do S, then recall that I is the strongest predicate
such that

ϕ⇒ I and {I ∧B}S{I} (10)

As the name suggests, Guess-and-Check consists of two phases.

1. Guess phase : this phase processes the data in the form of concrete program
states at the loop head to compute a data matrix, and uses linear algebra
techniques to compute a candidate invariant.

A Data Driven Approach for Algebraic Loop Invariants 581

Guess-And-Check(L,ϕ,d)
Returns: A loop invariant I for L.

1: "x := vars(L)
2: Tests := TestGen(ϕ,L)
3: logfile := 〈〉
4: for "t ∈ Tests do
5: logfile := logfile :: Execute(L, "x = "t)
6: end for
7: repeat
8: I := Guess(logfile,d)
9: (done,"t) := Check(I, L, ϕ)
10: if ¬done then
11: logfile := logfile :: t
12: end if
13: until done
14: return I

Guess(logfile,d)
Returns: A candidate invariant

1: if logfile = 〈〉 then
2: return false
3: end if
4: A := DataMatrix (logfile, d)
5: B := Basis(NullSpace(A))
6: if B = ∅ then
7: // No non-trivial invariant
8: return true
9: end if
10: return CandidateInvariant(B)

Fig. 3. Guess-and-Check computes an algebraic invariant of degree d for an input
while program L with a precondition ϕ

2. Check phase (line 9): this phase uses an off-the-shelf decision procedure for
checking if the candidate invariant computed in the guess phase is indeed a
true invariant (using the conditions in Equation 10) [16].

The Guess-and-Check algorithm works as follows. In line 1, "x represents the
input variables of the while program L. The procedure TestGen is any test
generation technique that generates a set of test inputs Tests that satisfy the
precondition ϕ. Alternatively, our technique could also employ an existing test
suite for Tests. The variable logfile maintains a sequence of concrete program
states at the loop head of L. Line 3 initializes logfile to the empty sequence.
Lines 4–13 perform the main computation of the algorithm. First, the program
L is executed over every test "t ∈ Tests via the call to Execute in line 5. Execute
runs a loop till termination (or for a timeout to avoid non-terminating execu-
tions) on a test input and generates a sequence of states at the loop head. E.g.,
Execute(while(x! = 0) do x−−, x = 2) will generate states {x = 2, x = 1, x = 0}
for the data matrix. Note that this sequence also include the states that violate
the loop guard. The call to Guess (line 8) constructs a matrix A with one row
for every program state in logfile and one column for every monomial from the
set of all monomials over "x whose degree is bounded above by d (as informally
illustrated in Section 2). The (i, j)th entry of A is the value of the jth monomial
evaluated over the program state represented by the ith row.

Next, using off-the-shelf linear algebra solvers, we compute the basis for the
null space of A. If B is empty, then this means that there is no algebraic equa-
tion, of given degree d, that the data satisfies and we return true. Otherwise, the
candidate invariant represented by B is given to the checking procedure Check in

582 R. Sharma et al.

line 9. The procedure Check uses off-the-shelf SMT solvers [16] to check whether
the candidate invariant I satisfies the conditions in Equation 10. If so, then I
is an invariant and the procedure terminates by returning I. Otherwise, Check
returns a counter-example in the form of a test input "t that explains why I is not
an invariant – the computation is repeated with this new test input "t, and the
process continues until we have found an invariant. Note that, as in Section 2, we
can also add the states generated by Execute(L, "x = "t) to logfile (instead of just
adding "t). In either case, the size of logfile strictly increases in every iteration.

In summary, the guess and check phases of Guess-and-Check operate iter-
atively, and in each iteration if the actual invariant cannot be derived, then the
algorithm automatically figures out the reason for this and corrective measures
are taken in the form of generating more test inputs (this corresponds to the case
where the data generated is insufficient for guessing a sound invariant). In the
next section, we will formally show the correctness of the Guess-and-Check

algorithm – we prove that it is a sound and we bound the number of iterations
of Guess-and-Check (the loop consisting of lines 7 to 13 of Figure 3).

4.1 Connections between Null Spaces and Invariants

In the previous section, we have seen how Guess-and-Check computes an
algebraic invariant over monomials "α that consist of all monomials over the
variables of the input while program with degree bounded above by d. The
starting point for proving correctness of Guess-and-Check is the data matrix
A as computed in line 1 of Guess procedure of Figure 3.

An invariant I ≡ ∧k
i (w

T
i "α = 0) has the property that for each wi, 1 ≤ i ≤ k,

wT
i aj = 0 for each row aj ∈ Qn of A – in other words, Awi = 0. This shows that

each wi is a vector in the null space of the data matrix A. Conversely, any vector
in NullSpace(A) is a reasonable candidate for being a part of an invariant.

We make the observation that a candidate invariant will be a true invariant if
the dimension of the space spanned by the set {wi}1≤i≤k equals nullity(A). We
will assume, without loss of generality, that {wi}1≤i≤k is a linearly independent
set. Then, by definition, the dimension of the space spanned by {wi}1≤i≤k is k.

Consider an n-dimensional space where each axis corresponds to a monomial
of "α. Then the rows of the matrix A are points in this n-dimensional space. Now
assume that wT "α = 0 is an invariant, that is, k = 1. This means that all rows aj
of A satisfy wT aj = 0. In particular, the points corresponding to the rows of A
lie on an n−1 dimensional subspace defined by wT "α = 0. If the data or program
states generated by the test inputs Tests (line 2 in Figure 3) is insufficient, then A
might not have rows spanning the n−1 dimensions. Therefore, from Equation 9,
we have n − rank(A) = nullity(A) ≥ 1 if the invariant is a single algebraic
equation. Generalizing this, we can say that nullity(A) is an upper bound on
the number of algebraic equations in the invariant. The following lemma and
theorem formalize this intuition.

Lemma 1 (Invariant is in null space). If ∧k
i w

T
i "α = 0 is an invariant, and

A is the data matrix, then all wi lie in NullSpace(A).

A Data Driven Approach for Algebraic Loop Invariants 583

Proof. This follows from the fact that for every wi, 1 ≤ i ≤ k, Awi = 0.

Therefore, the null space of the data matrix A gives us the subspace in which
the invariants lie. In particular, if we arrange the vectors that form the basis
for NullSpace(A) as columns in a matrix V , then range(V) defines the space of
candidate invariants.

Theorem 1. If ∧k
i=1w

T
i "α = 0 is an invariant with the set {w1, w2, . . . , wk}

forming a linearly independent set, A is the data matrix and nullity(A) = k,
then any basis for NullSpace(A) forms an invariant.

Proof. Let B = [v1 · · · vk] be a matrix with each vi, 1 ≤ i ≤ k being a column
vector, and with span({v1, . . . , vk}) equal to NullSpace(A). That is, {v1, . . . , vk}
is a basis for NullSpace(A). From Lemma 1, we know that every wi, 1 ≤ i ≤ k,
lies in span({v1, . . . , vk}). This means that every wi, 1 ≤ i ≤ k, can be written
as wi = Bui for some vector ui ∈ Qk. Therefore, if BT "α = 0 then uTi B

T "α = 0,
which implies that wT

i "α = 0, 1 ≤ i ≤ k.
Observe that {w1, w2, . . . , wk} form a basis for NullSpace(A), and therefore

every vj , 1 ≤ j ≤ k, can be written as a linear combination of vectors from
{w1, w2, . . . , wk}. From this, it follows that ∧k

i=1w
T
i "α = 0 =⇒ vTj "α = 0 for all

1 ≤ j ≤ k. Thus, ∧k
i=1w

T
i "α = 0⇔ ∧k

j=1v
T
j "α = 0.

Theorem 1 precisely defines the implementation of the “guess” step. Further-
more, Theorem 1 also states that we need to have enough data represented
by the data matrix A so that nullity(A) equals k, the dimension of the space
spanned by {wi}1≤i≤k. If this is indeed the case, then I ≡ ∧k

j=1v
T
j "α = 0 will

be an invariant. On the other hand, if the data is not enough, then Lemma 1
guarantees that the candidate invariant I is a sound under-approximation of
the loop invariant. If the null space is zero-dimensional, then only the trivial
invariant true constitutes an invariant over conjunction of polynomial equations
that has degree less than or equal to d.

The question of how much data must be generated in order to attain nullity(A)
= k is an empirical one. In our experiments, we were able to generate invariants
using a relatively small data matrix for various benchmarks from the literature.

4.2 Check Candidate Invariants

Computing the null space of the data matrix provides us a way for proposing
candidate invariants. The candidates are complete; they do not miss any al-
gebraic equations. But they might be unsound. They might contain spurious
equations. To obtain soundness, we will use a decision procedure analogous to
the technique proposed in [25].

Theorem 2 (Soundness). If the algorithm Guess-and-Check terminates and
the underlying decision procedure for checking candidate invariants (Check) is
sound, then it returns an invariant.

Next, we prove that the algorithm Guess-and-Check terminates.

584 R. Sharma et al.

Theorem 3 (Termination). If the underlying decision procedure Check is
sound and complete, then the algorithm Guess-and-Check will terminate after
at most n iterations, where n is the total number of monomials whose degree is
bounded by d.

Proof. Let A ∈ Qm×n be the data matrix computed in line 4 in the Guess
procedure of Figure 3. If the candidate invariant I computed in line 8 of Guess-

and-Check is an invariant (that is, done = true), then Guess-and-Check

terminates.
Therefore, let us assume that I is not an invariant, and let "t be the test or

counterexample that violates the candidate invariant as computed in line 9 of the
algorithm. As a result,Guess-and-Check adds "t to A – call the resulting matrix
Â. By construction, we also know that "t �∈ range(AT). Therefore, it follows that
rank(Â) = rank(A) + 1. More generally, adding a counter-example to the data
matrix A necessarily increases its rank by 1. From Equation 9, we know that the
rank of A is bounded above by n, which implies that Guess-and-Check will
terminate in at most n iterations.

Note that since we are concerned with integer manipulating programs, a sound
and complete decision procedure for Check cannot exist: the queries are in Peano
arithmetic which is undecidable. However, for our experiments, we found that the
Z3 [16] SMT solver sufficed (see Section 6). Z3 has limited support for non-linear
integer arithmetic: It combines extensions on top of simplex and reduction to
SAT (after bounding) for these queries. One might try to achieve completeness
for Guess-and-Check by giving up soundness. Just as [23,4,21], if we interpret
program variables as real numbers then Z3 does have a sound and complete
decision procedure for non-linear real arithmetic [12] that has been demonstrated
to be practical. Since Z3 supports both non-linear integer and real arithmetic,
we can easily combine or switch between the two, if desired (see Section 6).

4.3 Nested Loops

Guess-and-Check easily extends to nested loops, while maintaining soundness
and termination properties. Given a program with M loops, we construct data
matrices for each loop. Let the number of columns of the data matrix of ith loop
be denoted by ni. We run tests and generate candidate invariants "I at all loop
heads. Next, the candidate invariants are checked simultaneously. For checking
the candidate invariant of an outer loop, the inner loop is replaced by its can-
didate invariant and a constraint is generated. For checking the inner loop, the
candidate invariant of the outer loop is used to compute a pre-condition. If a
counter-example is obtained then it generates more data and invariant com-
putation is repeated. We continue these guess and check iterations until the
check phase passes for all the loops; thus, on termination the output consists
of sound invariants for all loops. Also, the initial candidate invariants "I are
under-approximations of the actual invariants by Lemma 1, a property that is
maintained throughout the procedure and allows us to conclude that when the

A Data Driven Approach for Algebraic Loop Invariants 585

procedure terminates the output invariants are the strongest possible over alge-
braic equations. To prove termination, note that each failed decision procedure
query increases the rank of some data matrix for some loop, which implies that
the number of decision procedure queries which can fail is bounded by

∑M
i=1 ni.

Hence, if N = max ni then the total number of decision procedure queries is
bounded by M2N .

5 Extensions

In this section we discuss two extensions of our technique. We first discuss how
algebraic invariants can be converted to equivalent linear invariants. Then we
discuss how our approach can be extended to compute invariants over more
expressive theories, such as the theory of arrays.

5.1 From Algebraic to Linear Invariants

Conventional invariant generation techniques for linear equalities [13] do not han-
dle disjunctions. Using disjunctive completion to obtain disjunctions of equalities
entails a careful design of the widening operator. Techniques for generation of
non-linear invariants can generate algebraic invariants that are equivalent to a
boolean combination of linear equalities. But if these invariants are to be con-
sumed by a tool that understands only linear arithmetic, it is important to
obtain the original linear invariant from the algebraic invariant. For example,
verification engines like [10] are based on linear arithmetic and cannot use non-
linear predicates for predicate abstraction. It is not obvious how this step can be
performed since the discovered polynomials might not factor into linear factors.

Since our approach is data driven, we can solve this problem using stan-
dard machine learning techniques. Here is another perspective on converting
algebraic to linear invariants. Assume that the algebraic invariant is equivalent
to a boolean combination of linear equalities. Express this linear invariant in
DNF form. For instance, for the program in Figure 2, we have the DNF formula
y = −x∨y = x. The rows of the data matrix A are satisfying assignments of this
DNF formula. Hence, each row satisfies some disjunct: each row of A satisfies
y = −x or y = x. If we create partitions of our data such that the states in each
partition satisfy the same disjunct, then all the states of a single partition will
lie on a subspace: they will satisfy some conjunction of linear equalities. The aim
is to find the subspaces in which the states lie. Since a subspace represents a
conjunction of linear equalities, a disjunction of all such subspaces can represent
an invariant that is a boolean combination of linear equalities.

The problem of obtaining boolean combinations of linear equalities that a
given data matrix satisfies is called subspace segmentation in the machine learn-
ing community. This problem arises in applications such as face clustering, video
segmentation, motion segmentation, and several algorithms have been proposed
over the years. In this section we will apply the algorithm of Vidal, Ma, and

586 R. Sharma et al.

Sastry [26] to obtain linear invariants from algebraic invariants. The main insight
is that the derivative of the polynomials constituting the algebraic invariant
evaluated at a program state characterizes the subspace in which the state lies.

The derivative of the polynomial corresponding to the algebraic invariant for
Figure 2, that is, x2 − y2 is [2x,−2y]: the first entry is partial derivative w.r.t.
x and the second entry is the partial derivative w.r.t. y. Running the program
with test input x ∈ {−1, 1} for say 4 iterations each will results in a data matrix
A with 10 rows. The first and last rows are shown:

A =
1 x y y2 x2 xy
1 −1 1 1 1 −1
1 5 5 25 25 25

(11)

Evaluating the derivative at first state of A gives us [−2,−2]. This shows that
the first state belongs to −2x− 2y = 0 i.e. x = −y. Evaluating at the last state
gives us [10,−10], which shows that the last state belongs to 10x− 10y = 0 or
x = y. The other 8 states of A (not shown in Equation 11) also belong to x = y
or x = −y and we return the disjunction of these two predicates as the candidate
invariant. The relationship between the boolean structure of a linear invariant
and its equivalent algebraic invariant can be described as follows: the number of
conjunctions in the linear invariant (in CNF form) corresponds to the number
of conjunctions in the algebraic invariant, and the number of disjunctions in
the linear invariant (in DNF form) corresponds to the degree of the algebraic
invariant.

Now we explain why this approach works. We sketch the proof from [26] for
the case when there is a single algebraic equation f("x) = 0, that is, the invariant
is a disjunction of linear equalities. The case of multiple algebraic equations is
similar. Say the invariant is ∨iw

T
i "x = 0 ⇔

(∏
iw

T
i "x
)
= 0 ≡ f("x) = 0. The

derivative of f("x), denoted by ∇f("x), is a vector of |"x| elements where the lth

element of the vector is a partial derivative with respect to the lth variable:

(∇f("x))l =
∂f("x)

∂xl
.

Now using,
∇ (f("x)g("x)) = (∇f("x)) g("x) + f("x) (∇g("x))

and

∇wT "x =

[
∂w1x1
∂x1

, . . . ,
∂wnxn
∂xn

]T
= w where |"x| = n

we obtain:

∇f("x) = ∇
(∏

i

wT
i "x

)
=
∑
i

wi

∏
j �=i

(wT
j "x)

Say a program state a satisfies wT
k a = 0. Then (∇f)(a) is a scalar multiple of wk

because
∏

j �=i w
T
j a = 0 for i �= k. Hence evaluating the derivative at a program

state provides the subspace in which the state lies. For more details see [26].

A Data Driven Approach for Algebraic Loop Invariants 587

Next we remove from A the states that lie in the same subspace. Next, if A still
contains a program state then we can repeat by finding the derivative at that
state. In the end we get a collection of subspaces that contain every state of the
original data-matrix. A union of these subspaces gives us a boolean combination
of linear equalities.

Theorem 4. Given an algebraic invariant I = NullSpace(A) equivalent to a
linear invariant, the procedure of [26] finds a linear invariant equivalent to I.

Note that this conversion is unsound if no equivalent linear invariant exists.
Hence the linear predicate should be checked for equivalence with the algebraic
invariant; this check can be performed using a decision procedure. Note that we
are able to easily incorporate the technique of [26] with Guess-and-Check as
our technique is data driven. Also, this conversion just requires differentiating
polynomials symbolically, that can be performed linearly in the size of the in-
variant, and evaluating the derivative at all points in the data matrix. The latter
operation is just a matrix multiplication. Hence this algorithm is quite efficient.

5.2 Richer Theories

An interesting question is whether the algorithm Guess-and-Check general-
izes to richer theories beyond polynomial arithmetic. It is indeed possible and
requires careful design of the representation of data. For instance, if we want to
infer invariants in the theory of linear arithmetic and arrays, we can have an
additional column in the data matrix for values obtained from arrays. Similarly,
we can have a variable that stores the value returned from an uninterpreted
function and assign it a column in the data matrix. Hence it is possible to use
our technique to infer conjunctions of equalities in richer theories too if we know
the constituents of the invariants, analogous to invariant generation techniques
based on templates.

In order to illustrate how the Guess-and-Check technique would work for
programs with arrays, consider the example program shown in Figure 4. We want
to prove that the assertion in line 6 holds for all inputs to the program. Assume
that we log the values of a[i] and i after every iteration and that the degree
bound is d = 1. The data matrix that Guess-and-Check constructs has three
columns and let us assume that we run a single test with input n = 1 resulting
in rows corresponding to program states induced by this input at the loop head.
The data matrix A is shown in Figure 5. The null space of A is defined by the
basis vector B = [0, 1,−1]T , and therefore we obtain the invariant a[i] = i that
is sufficient to prove that the assertion holds.

Our approach of using a dynamic analysis technique to generate data in the
form of concrete program states and augmenting it with a decision procedure
to obtain a sound technique is a general one. Similar ideas have been used for
computing interpolants [25]. We can also take the method for discovering array
invariants or polynomial inequalities of [18] and extend it to a sound procedure
in a similar fashion.

588 R. Sharma et al.

1: (i,a[0]) = (0,0);

2: assume (n > 0);

3: while (i != n) do

4: i := i+1;

5: a[i] := a[i-1]+1;

6: done

7: assert(a[n] == n);

Fig. 4. Example with arrays

A =
1 i a[i]

1 0 0
1 1 1

Fig. 5. Data for n=1

Table 1. Name is the name of the benchmark; #vars is the number of variables in
the benchmark; deg is the user specified maximum possible degree of the discovered
invariant; Data is the number of times the loop under consideration is executed over all
tests; #and is the number of algebraic equalities in the discovered invariant; Guess is
the time taken by the guess phase of Guess-and-Check in seconds. Check is the time
in seconds taken by the check phase of Guess-and-Check to verify that the candidate
invariant is actually an invariant. The last column represents the total time.

Name #vars deg Data #and Guess (s) Check (s) Total (s)

Mul2 [23] 4 2 75 1 0.0007 0.010 0.0107
LCM/GCD [23] 6 2 329 1 0.004 0.012 0.016
Div [23] 6 2 343 3 0.454 0.134 0.588
Bezout [21] 8 2 362 5 0.765 0.149 0.914
Factor [21] 5 3 100 1 0.002 0.010 0.012
Prod [22] 5 2 84 1 0.0007 0.011 0.0117
Petter [22] 2 6 10 1 0.0003 0.012 0.0123
Dijkstra [22] 6 2 362 1 0.003 0.015 0.018
Cubes [20]. 4 3 31 10 0.014 0.062 0.076
geoReihe1 [20] 3 2 25 1 0.0003 0.010 0.0103
geoReihe2 [20] 3 2 25 1 0.0004 0.017 0.0174
geoReihe3 [20] 4 3 125 1 0.001 0.010 0.011
potSumm1 [20] 2 1 10 1 0.0002 0.011 0.0112
potSumm2 [20] 2 2 10 1 0.0002 0.009 0.0092
potSumm3 [20] 2 3 10 1 0.0002 0.012 0.0122
potSumm4 [20] 2 4 10 1 0.0002 0.010 0.0102

6 Experimental Evaluation

We evaluate the Guess-and-Check algorithm on a number of benchmarks from
the literature. All experiments were performed on a 2.5GHz Intel i5 processor
system with 4 GB RAM running Ubuntu 10.04 LTS.

Benchmarks. The benchmarks over which we evaluated the Guess-and-Check

algorithm are from a number of recent research papers on inferring algebraic
invariants [21,22,23]. These are shown in the first column of Table 1. These
programs were implemented in C for data generation.

A Data Driven Approach for Algebraic Loop Invariants 589

Evaluation. We now describe our implementation and our experimental results
of Table 1. For a detailed description of the implementation please see [24]. The
second column of Table 1 shows the number of variables in each benchmark
program. The third column shows the given upper bound for the degree of the
polynomials in the inferred invariant.

The fourth column shows the number of rows of the data matrix. The data
or tests are generated naively; each input variable is allowed to take values from
1 to N where N is between 5 and 20 for the experiments. Hence if there are
two input variables we have N2 tests. These tests are executed till termination
to generate data. While it is possible to generate tests more intelligently, using
inputs from a very small bounding box demonstrates the generality of our tech-
nique by not tying it to any symbolic execution engine. Note that including all
the states reaching the loop head, over all tests, can include redundant states
that do not affect the output. Since the algorithms for null space computation
are quite efficient, we do not attempt to identify and remove redundant states.
If needed, heuristics like considering a random subset of the states [18] can be
employed to keep the size of data matrices small. The fifth column shows the
number of algebraic equations in the discovered loop invariant. For most of the
programs, a single algebraic equation was sufficient. The null space and the ba-
sis computations were performed using off-the-shelf linear algebra algorithms in
MATLAB. Guess-and-Check finds invariants equivalent to those reported in
the earlier papers [20,21,22,23]. The time (in seconds) taken by the guess phase
of Guess-and-Check is reported in the sixth column of Table 1.

We use Z3 [16] for checking that the proposed invariants are actually invari-
ants (implementation of Check procedure in the Guess-and-Check algorithm).
Theorem prover Z3 was able to easily handle the simple queries made by Guess-

and-Check, because once an invariant has been obtained, the constraint en-
coding that the invariant is inductive is quite a simple constraint to solve and
our naively generated tests were sufficient to generate an actual invariant. For all
programs, except Div, we declare the variables as integers. So even though these
queries are in Peano arithmetic, and can contain integer division and modulo
operators, the decision procedure is able to discharge them. For Div the invariant
that [23] finds is inductive only if the variables are over reals. When we execute
Guess-and-Check on Div, where the queries are in Peano arithmetic, we ob-
tain the trivial invariant true after three guess-and-check iterations. Next, we lift
the variables to reals when querying Z3. Now, we discover the invariant found
by [23] in one guess-and-check iteration and this is the result shown in Table 1.
By the soundness of our approach, we conclude that an approach producing a
non-trivial algebraic invariant for this benchmark can be unsound for integer
manipulating programs containing division or modulo operators.

Finally, the time taken by Guess-and-Check on these benchmarks is com-
parable to the state-of-the-art correct-by-construction invariant generation tech-
niques [4]. Since these benchmarks are small and the time taken by both our
technique and [4] is less than a second on these programs, a comparison of run
times may not be indicative of performance of either approach on larger loops.

590 R. Sharma et al.

For these benchmarks, our algorithm is significantly faster than any algorithm
using Gröbner bases. For instance, on the benchmark factor, [22] takes 55.4
seconds, while [21] takes 2.61 seconds. We discover the same invariant in 0.012
seconds. However, the exact timings must be taken with a grain of salt (we are
running on a newer generation of hardware). See Section 7 for a more detailed
comparison with the previous work. We leave the collection of a hard benchmark
suite for algebraic invariant generation tools as future work.

7 Related Work

We now place the Guess-and-Check algorithm in the context of existing work
on discovering algebraic loop invariants. Major benefits of our data driven ap-
proach include finding sound invariants for integer manipulating programs, con-
suming a rich syntax (depends only on the decision procedure), and extracting
linear invariants from algebraic invariants in time linear in the data, that in-
creases the applicability of our algorithm. Sankaranarayanan et al. [23] describe
a constraint based technique that uses user-defined templates for computing al-
gebraic invariants. Their objective is to find an instantiation of these templates
that satisfies the constraints and results in an invariant. The constraints they
use contain quantifiers and therefore the cost of solving them is quite high.

Abstract interpretation based techniques either ignore [15,22] or restrict con-
ditions on branches to equalities or dis-equalities [17,6,21,4]. The techniques
of [6,21,22,15] use Gröbner bases computations and [17] has no upper complex-
ity bound. Cachera et al. [4] provide an algorithm that does not use Gröbner
bases but interprets variables as taking values over the real numbers. In contrast,
we handle programs with division and modulo operations soundly. Bagnara et
al. [3] introduce new variables for monomials and generate linear invariants over
them by abstract interpretation. Amato et al. [2] analyze data from program
executions to tune their abstract interpretation.

Nguyen et al. [18] have proposed a dynamic analysis for inference of candidate
invariants. They do not provide any formal characterization of the output of
their algorithm and do not prove any soundness and completeness theorems.
The Daikon tool [9] generates likely invariants from tests and templates. Our
approach is similar in that it is also based on analyzing data from tests. Daikon
does not provide any formal guarantees such as soundness and completeness
over the invariants it generates. In the context of Daikon, it is interesting to
note from [19] that very few test cases suffice for invariant generation. Indeed,
this has been our experience with Guess-and-Check as well.

8 Conclusion

We have presented a sound data driven algorithm for discovering algebraic equa-
tion invariants. We use linear algebra techniques to guess an invariant from the
data generated from program runs, and use decision procedures for non-linear
arithmetic to validate these candidate invariants.

A Data Driven Approach for Algebraic Loop Invariants 591

We are able to formally prove that the guessed invariant under-approximates
the actual invariant, as well as bound the number of iterations of Guess-and-

Check. Thus, the key novelty of the Guess-and-Check approach is the data
driven analysis together with formal guarantees of soundness and termination.
Our guarantees are stronger than some of the previous techniques, since we
do not lift integral variables of programs to reals. Moreover, the data driven
approach facilitates transformation of algebraic invariants to linear invariants.
We have also informally shown how our approach can be extended to more
expressive theories such as arrays.

We have implemented the Guess-and-Check algorithm and evaluated it on
a number of benchmarks from recent papers on invariant generation and our
results are encouraging. Future work includes incorporating the Guess-and-

Check algorithm into a mainstream program verification engine [10] that can
consume the candidate invariants as relevant predicates for proofs and a bug-
finding engine [1] that can use the candidate invariants to abstract loops by
their sound under-approximations and obtain better coverage. Since these tools
generally work over linear arithmetic, the transformation from algebraic to linear
invariants will play a critical role.

Acknowledgements. We thank the anonymous reviewers for their constructive
comments. We thank Divya Gupta and Hristo Paskov for helpful discussions.

References

1. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: PASTE, pp. 43–48 (2007)

2. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. J. Symb. Comput. 47(12), 1533–1560 (2012)

3. Bagnara, R., Rodŕıguez-Carbonell, E., Zaffanella, E.: Generation of Basic Semi-
algebraic Invariants Using Convex Polyhedra. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 19–34. Springer, Heidelberg (2005)

4. Cachera, D., Jensen, T., Jobin, A., Kirchner, F.: Inference of Polynomial Invariants
for Imperative Programs: A Farewell to Gröbner Bases. In: Miné, A., Schmidt, D.
(eds.) SAS 2012. LNCS, vol. 7460, pp. 58–74. Springer, Heidelberg (2012)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Colón, M.A.: Approximating the Algebraic Relational Semantics of Imperative Pro-
grams. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 296–311. Springer,
Heidelberg (2004)

7. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Us-
ing Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96 (1978)

9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

592 R. Sharma et al.

10. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: SIGSOFT FSE, pp. 117–127 (2006)

11. Gupta, A., Majumdar, R., Rybalchenko, A.: From Tests to Proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

12. Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

13. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151
(1976)

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

15. Kovács, L.: A Complete Invariant Generation Approach for P-solvable Loops. In:
Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp.
242–256. Springer, Heidelberg (2010)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

18. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE, pp. 683–693 (2012)

19. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA, pp. 229–239 (2002)

20. Petter, M.: Berechnung von polynomiellen invarianten. Master’s thesis, Fakultät
für Informatik, Technische Universität München (2004)

21. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Science of Computer Pro-
gramming 64(1), 54–75 (2007)

22. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. Journal of Symbolic Computation 42(4), 443–476 (2007)

23. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL, pp. 318–329 (2004)

24. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: A data driven ap-
proach for algebraic loop invariants. Tech. Report MSR-TR-2012-97, Microsoft
Research (2012)

25. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as Classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

26. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA).
IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

Automatic Type Inference for Amortised

Heap-Space Analysis

Martin Hofmann and Dulma Rodriguez

1 University of Munich
martin.hofmann@ifi.lmu.de

2 Monoidics Ltd
dulma.rodriguez@monoidics.com

Abstract. We present a fully automatic, sound and modular heap-space
analysis for object-oriented programs. In particular, we provide type infer-
ence for the system of refinement types RAJA, which checks upper bounds
of heap-space usage based on amortised analysis. Until now, the refined
RAJA types had to be manually specified. Our type inference increases
the usability of the system, as no user-defined annotations are required.

The type inference consists of constraint generation and solving. First,
we present a system for generating subtyping and arithmetic constraints
based on the RAJA typing rules. Second, we reduce the subtyping con-
straints to inequalities over infinite trees, which can be solved using an
algorithm that we have described in previous work. This paper also
enriches the original type system by introducing polymorphic method
types, enabling a modular analysis.

Keywords: Type systems, resource analysis, memory management.

1 Introduction

We study the problem of predicting the dynamic memory allocation of an object-
oriented program in a freelist-based memory model. In short, we compute a
number N such that at any point in the execution of the program the number
of “new” instructions executed thus far minus the number of “free” instructions
executed thus far does not exceed N . This (perhaps) seemingly simple task is
complicated by the following factors:

– The computed bound N should be symbolic, i.e. a closed form expression in
the size of the input which is provided, e.g., as a list of strings;

– The control flow of the program depends on the input and on the shape of
intermediate data structures like lists or trees;

– The control flow strongly depends on dynamic class tags as is common in
class-based object-oriented programming.

We remark that there is nothing special about “new” and “free”; one can in
just the same way count the number of “tick” instructions and in this way
obtain upper bounds on execution time, or indeed on the expenditure of any
other quantifiable resource (number of open connections, text messages sent,
real money spent, etc.).

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 593–613, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

594 M. Hofmann and D. Rodriguez

The need for resource prediction has been widely recognised [1–3] and is
also intuitively plausible. Just think of software running on small, resource-
constrained devices such as smart cards, microcontrollers, phones, or software
running on large servers shared between many users as in cloud computing. While
there is still some way to go until we can serve these applications at industrial
level, there has been considerable progress in the last years.

Approaches based on recurrence solving [1, 4, 5] or on abstract interpreta-
tion [6, 2, 3] have matured to a point where programs of several hundred lines of
code can be automatically analysed. These techniques work under the assump-
tion that control-flow is either fixed or determined by some easily obtainable
numeric parameters such as length or size of input or linear arithmetic functions
thereof. Other dependencies of the control flow are over-approximated by simply
taking the maximum over all possible runs. This works well for programs which
use arrays that are allocated at the beginning with a given size and processed
with a simple iteration pattern. This is very useful in embedded systems or sci-
entific computing where most programs have such a shape. It does not work
well with object-oriented programs where resource behaviour depends on the
dynamic class tags of objects, such as when functional data structures such as
lists or trees are implemented using the Composite pattern.

In previous work [7–10] we and others argued that the method of amortised
analysis [11, 12] might be of help here. Therein, data structures are assigned
non-negative numbers, called potential, in an a priori arbitrary fashion. If done
cleverly, it then becomes possible to obtain constant bounds on the “amortised
cost” of an individual operation, that is, its actual resource usage plus the differ-
ence in potential of the data structure before and after performing the operation.
This makes it possible to take into account the effect that an operation might
have on the resource usage of subsequent operations and also to merely add up
amortised costs without having to explicitly track size and shape of intermediate
data structures.

In traditional amortised analysis [11] where the emphasis lies on the manual
analysis of algorithms, the potentials were ascribed to particular data structures
such as union-find trees by some formula that must be manually provided. When
amortised analysis is used for automatic resource analysis one uses refined types
to define the potentials — typing rules then ensure that potential and actual
resource usage is accounted for correctly. Combined with type inference, it then
allows for an automatic inference of the potential functions.

In amortised resource analysis for statically typed functional programs the
data structures remain fixed (e.g. lists or trees) and only the potential functions
must be found. In the object-oriented case, even the data structures themselves
must be discovered by the analysis because objects can be used for just anything
be it lists, trees, graphs, etc. As a result, automatic inference becomes consider-
ably more challenging unless one is willing to accept user annotations specifying
the way in which objects are to be used, for instance in the form of separation
logic annotations [13].

Automatic Type Inference for Amortised Heap-Space Analysis 595

Here, we investigate how far we can go without requiring any such annota-
tions. We build upon a system of refinement types for amortised analysis for a
Java-like language called Resource Aware JAva (RAJA) [7]. This is a powerful
type system that can capture the heap-space requirements of many programs.
Moreover, the type system takes aliasing into account, which means that the re-
source analysis based on this system is sound for programs which contain shared
or even cyclic data structures. In previous work [8], we have described a type
checking algorithm for RAJA and an implementation capable of checking user
supplied typing annotations which were still quite cumbersome and difficult to
come up with and this hindered practical use.

In this paper, we remove this obstacle and show how the refinement types
can be inferred, so as to make the analysis fully automatic and eliminate the
burden of manual annotations from the programmer. The main contributions of
this paper are as follows:

1. We provide for the first time fully automatic amortised resource inference
for object-oriented programs, which is sound and modular.

2. We reduce the problem of type inference for RAJA to the problem of sat-
isfiability of inequalities over infinite trees labelled with non-negative real
numbers.

3. We validate the type system RAJA and the type inference algorithm with a
publicly available implementation and experimental evaluation.

In previous work [14] we presented the novel problem of satisfiability of arith-
metic constraints over infinite labelled trees. Moreover, we provided a heuristic
algorithm for constraint solving, which consists of reducing the constraints to an
equivalent finite set of linear arithmetic constraints. This was possible in many
cases when the solutions were regular trees.

The fact that we can only solve constraints when their solutions are regular
trees implies that our analysis is restricted to linear bounds. We shall explain
this connection later when we describe how we obtain the bounds from the
infinite trees. Since this problem has only been described recently, it is still
unknown whether it is decidable. If it is decidable and an algorithm for solving
the constraints was found, we would be able to compute non-linear bounds with
the same method.

The type system that we present in this paper is a slightly modified version of
the original type system from [7]: we present syntax-directed typing rules that
make the system more suitable for automatic type inference. We also introduce
polymorphic method types that enable a modular analysis. However, we do not
allow polymorphic recursion since it would cause many difficulties to the type
inference and we have not found useful examples where it is required.

This paper is organised as follows. In the next section we give an informal
presentation of the system and show its use in some examples. In Section 3 we
describe briefly our target language FJEU and we introduce formally the typing
system RAJA. Section 4 describes the type inference algorithm. In Section 5
we show experimental results. Finally we review related work and conclude in
Section 6.

596 M. Hofmann and D. Rodriguez

1 ab s t ra c t c l a s s L i s t {
2 ab s t ra c t L i s t copy () ; ab s t r a c t DList toDList (DList prev) ;}
3 c l a s s Ni l extends L i s t {
4 L i s t copy () { re turn t h i s ; }
5 DList toDList (DList prev) { re turn new DNil () ;}}
6 c l a s s Cons extends L i s t { Li s t next ; i n t elem ;
7 L i s t copy () {
8 Cons r e s = new Cons () ;
9 r e s . elem = t h i s . elem ;

10 r e s . next = t h i s . next . copy () ; re turn r e s ; }
11 DList toDList (DList prev) {
12 DCons r e s = new DCons () ;
13 r e s . elem = t h i s . elem ;
14 r e s . next = t h i s . next . toDList (r e s) ;
15 r e s . prev = prev ; re turn r e s ; }}
16 ab s t ra c t c l a s s DList { }
17 c l a s s DNil extends DList { }
18 c l a s s DCons extends DList { i n t elem ; DList next ; DList prev ;}
19 c l a s s Main {
20 Li s t main copy (L i s t l i s t) { re turn l i s t . copy () ;}
21 DList ma in d l i s t (L i s t l i s t) { re turn l i s t . toDList (new DNil ()) ;} }

Fig. 1. Example program

2 Informal Presentation and Examples

We aim to statically analyse the heap-space consumption of class-based object-
oriented programs. Since we wish to abstract from concrete memory models, we
assume a simple freelist based model where we maintain a set of free memory
units, the freelist. When creating an object, a heap unit required to store it is
taken from the freelist, provided it contains enough units. When deallocating an
object, the unit returns to the freelist. We remark that we deallocate objects
explicitly by means of a free expression, since we assume no garbage collection.
We also assume that any attempt to access a previously deallocated object leads
to immediate abortion of the program and all resource predictions are on condi-
tion that no such abortion takes place. Static analysis for preventing such illicit
accesses is an orthogonal problem and not addressed in this paper.

We also note that we can treat free -instructions as no-ops and use a garbage
collector. Assuming that the garbage collector discovers all deallocation oppor-
tunities and that it is invoked whenever the freelist becomes short then our
inferred bounds are also valid in the presence of garbage collection. We have not
explored this avenue in detail, however.

We then demonstrate the front end of our method with a couple of small
examples. Fig. 1 shows a method for copying a singly-linked-list and a method
for converting a singly-linked-list into a doubly-linked-list. Here we use Java
syntax to simplify the understanding of the programs; the syntax of our target
language FJEU is slightly different. Consider the method main copy. Running
the analysis yields the following results; no annotations by the programmer are
required. The length of the input refers to the length of the list given as argument
to the method.

Program will execute successfully with a free-list >= |input|

Automatic Type Inference for Amortised Heap-Space Analysis 597

It is clear that the heap-space consumption of this program is exactly the length
of the list. When we analyse the method main dlist we obtain the following:

Program will execute successfully with a free-list >= 2 + |input|

Here the heap-space consumption is the length of the list plus the two DNil
objects that represent the two ends of the doubly-linked list.

Our goal is to find (statically) an upper bound on the initial size of the freelist
so that the given program can be executed without running out of memory. We
seek to assign data structures a potential that can be used to pay for any object
creation. Then, the potential of the data structures in their initial state will
represent an upper bound on the total heap consumption of the program.

We wish to assign different objects of the same class different potentials, thus,
we need to refine the notion of classes. We introduce the views, a set of names,
which, together with the classes, build the appropriate refined types to which we
will assign potential. Moreover, since classes are compound types consisting of
fields and methods, we need to give refined types for these also. A refined type
consist of a class C and a view r, written Cr. The potential function ♦(.) assigns
each refined type a potential, which is a non-negative real number. The functions
Aget(· , ·) and Aset(· , ·) assign views to the fields, where Aget(Cr, a) represents the
view used when reading the field a of class C under the view r, and Aset(Cr, a)
is the view used when writing a.

Thus, views consist of a set of names, together with maps ♦(·),Aget(· , ·) and
Aset(· , ·). Alternatively, we can see them as infinite trees, where nodes are labelled
by a tuple of non-negative real numbers (one number for each class in the given
program), and edges are labelled with elements of the set

{C.a.get, C.a.set |C is a class and a is a field of C}

For instance, if we assume that the only class in the program is Cons and g
denotes Cons.next.get and s denotes Cons.next.set, then the following tree rep-
resents a view: 1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s

This view is regular, because it contains only finitely many different subtrees.
We define an inequality relation� on views, which is covariant in the get subtrees
and contravariant in the set subtrees. We also define subtyping over refined types:
Cr is a subtype of Ds iff C is a subclass of D and r � s.

A monomorphic method type for a methodm consists of views for the method’s
arguments, a view for its result and two numbers representing the potential con-
sumed and released by the method respectively. More concretely, if a method

m has a type Cr0 ;Er1
1 , . . . , E

rj
j

n/n′
−−→Hrj+1 , this means that it is defined in the

598 M. Hofmann and D. Rodriguez

Nil.copy() = Nilvself q1/q2−−−→Listvres & vself � vres

Cons.copy() = Consvself q1/q2−−−→Listvres &
Aget(Consvself, next) � vself ∧ ♦(Consvself) ≥ ♦(Consvres) + 1

Main.main copy() = Mainvself ; Listvl q1/q2−−−→Listvres & vl � vres
Aget(Consvl, next) � vl ∧ ♦(Consvl) ≥ ♦(Consvres) + 1

♦(·) rich poor

List, Nil,Main 0 0

Cons 1 0

Consrich Conspoor

Aget(· , next) rich poor
Aset(· , next) rich poor

Fig. 2. RAJA types for the copy example

refined type Cr0 and may be called with arguments v1 :E
r1
1 , . . . , vj :E

rj
j , whose

associated potential will be consumed as well as an additional potential of n. The
return value will be of type Hrj+1 , carrying an according potential. In addition
to this, a potential of n′ units will be returned.

Polymorphic method types are like monomorphic RAJA method types, but
views and numbers replaced by variables and constraints upon them. A polymor-
phic method type consists of view variables for its arguments, a view variable for
its result and two number variables. Moreover, it contains a conjunction of sub-
typing and linear arithmetic constraints that capture the resource consumption
of the method. The subtyping constraints show how the views for the arguments
and result relate. For instance, the constraint Aget(Cv, a) � w means that given
a valuation π that maps view variables to views π = {v �→ r, w �→ s}, the get
view of the field a of class C under the view r must be a subtype of s.

One run-time object can have several refined types at once, since it can be
regarded through different views at the same time. The overall potential of a
run-time configuration is the (possibly infinite) sum over all access paths in
scope that lead to an actual object. Thus, if an object has several access paths
leading to it (aliasing), it may make several contributions to the total potential.
Our type system has an explicit contraction rule: If a variable is used more than
once, the associated potential is split by assigning different views to each use.

Analysis of List Copy. In the following, we wish to illustrate the system by
showing the details of the analysis of main copy from Fig. 1. We shall explain a
simplified form of the constraints obtained by analysing the program. We assume
that for each method, we assign the view variable vself to the variable this and
the view variable vres to the result of the function. When analysing the body of
Nil.copy, we obtain the constraint vself � vres (line 4). Further, in the method
Cons.copy, line 8 produces the constraint ♦(Consvself) ≥ ♦(Consvres) + 1, because
the current object needs to pay for the creation of the new Cons object and also
for its potential. Moreover, since the method is called recursively with the next
item in the list (line 10), the refined type of the next node must be a subtype
of the refined type of the current node, which is expressed in the constraint
Aget(Consvself, next) � vself . The method List.copy is abstract, so we obtain no
constraints. However, a virtual call to it may be resolved to a call to Nil.copy()
or to Cons.copy(). Thus, to ensure soundness, we need to add the constraints

Automatic Type Inference for Amortised Heap-Space Analysis 599

of Cons.copy() and Nil.copy() to List.copy(). Then, when we call the method
List.copy() in main copy, we obtain the appropriate constraints after variable
substitution (see Fig. 2).

The valuation π = ({vself �→ rich, vres �→ poor}, {q1 �→ 0, q2 �→ 0}) builds
the best possible solution for the constraints. Our algorithm infers the following

monomorphic method type for main copy: Mainrich; Listrich 0/0−→Listpoor. This type
says that the heap consumption of main copy is bounded by the potential of the
list l. The potential of l is calculated as the sum over all access paths starting
from l and not leading to null. Each of these has a dynamic type: Cons, or Nil
for the end of the list. Each also has a view that can be computed by chaining
the view of l along the get views, which is the view rich in each case. For each
access path, we look up the potential annotation of its dynamic type under its
view. Given ♦

(
Consrich

)
= 1 and ♦

(
Nilrich

)
= 0, this is 1 in every case except for

the path leading to Nil. The resulting sum is the length of the list |l|.
Now, imagine that the view rich was defined differently, as the first element

of the following family of views:

♦
(
Consrichi

)
= 2i,Aget

(
Consrichi, next

)
= richi+1,A

set
(
Consrichi, next

)
= richi+1, i ≥ 0

Then, the potential of the list l would be 2|l| − 1, thus we could obtain an
exponential bound for the heap requirements of the method. Also notice that
the view rich would not be regular. Therefore, we cannot compute such bounds
at the moment, because of the restrictions of our constraint solver.

To conclude this example, we wish to give an intuition for the need for refined
types. Imagine that we could give potential only to the class Cons. Line 8 would
then produce the constraint ♦(Cons) ≥ ♦(Cons) + 1, which is unsatisfiable. We
require more sophisticated types to achieve a more refined behaviour: a Cons
object with potential 1 can be copied, but the result is a Cons object with
potential 0, which cannot.

3 System RAJA

FJ with Update. Our formal model of Java, FJEU, is an extension of Feath-
erweight Java (FJ) [15] with attribute update, conditional and explicit deallo-
cation. An FJEU program P = (C ,main) consists of a partial finite map from
class names to class definitions C , and a distinguished method main to be exe-
cuted when running the program. We write S(C) to denote the super-class D of
C, provided that C has a super-class. We write A(C) to denote the ordered set
of fields of C, including inherited ones. We write C.a to denote the class type
of each field a of class C. Similarly we write Meth(C) to denote the set of all
defined method names of C, including inherited ones. For a method name m of
class C we write Mbody(C,m) to denote the term that comprises the method body
of method m and C.m to denote the method type of m in class C. If otherwise m
is not defined in C, then Mbody(C,m) = Mbody(D,m) and C.m = D.m, provided
that D is the super class of C. Each class has only one implicit constructor,
which sets all class attributes to a null value.

600 M. Hofmann and D. Rodriguez

We now extend FJEU to an annotated version, Resource Aware JAva (RAJA).
We set D = R+

0 ∪ {∞}, i.e., the set of non-negative real numbers together with
an element∞. Ordering and addition on R+

0 extend to D by∞+x = x+∞ =∞
and x ≤ ∞.

Definition 1. We define the set V of views coinductively by

– ♦(·) assigns to each view r ∈ V and class C ∈ C a number ♦(Cr).
– Aget(· , ·) assigns to each view r ∈ V and class C ∈ C and field a ∈ A(C) a

view s = Aget(Cr, a).
– Aset(· , ·) assigns to each view r ∈ V and class C ∈ C and field a ∈ A(C) a

view s′ = Aset(Cr, a).

The following inequality relation� is covariant in the get views and contravariant
in the set views.

Definition 2 (r � s). Let r, s ∈ V . We define r � s coinductively by

∀C ∈ C .♦(Cr) ≥ ♦(Cs)

∀C ∈ C ∀a ∈ A(C) .Aget(Cr, a) � Aget(Cs, a)

∀C ∈ C ∀a ∈ A(C) .Aset(Cs, a) � Aset(Cr, a)

We define the operations on views ⊕ : V × V → V and � : V × V → V
simultaneously as follows. Let s1, s2 ∈ V then, for each C ∈ C , a ∈ A(C) we set:

♦
(
Cs1⊕s2

)
= ♦(Cs1) + ♦(Cs2)

Aget
(
Cs1⊕s2, a

)
= Aget(Cs1, a)⊕ Aget(Cs2, a)

Aset
(
Cs1⊕s2, a

)
= Aset(Cs1, a)� Aset(Cs2, a)

♦
(
Cs1�s2

)
= min(♦(Cs1),♦(Cs2))

Aget
(
Cs1�s2, a

)
= Aget(Cs1, a)� Aget(Cs2, a)

Aset
(
Cs1�s2, a

)
= Aset(Cs1, a)⊕ Aset(Cs2, a)

Let
�− : D× D→ D be defined by: n

�−m =

{
n−m if n−m ≥ 0
0 otherwise

.

We define an operation (s �− n)D : V × D × C → V that takes a view s and a
number n ∈ D and class D and returns another view that is just like s, except
for the potential of Ds, which is ♦(Ds)

�−n. We set for each C ∈ C and each
a ∈ A(C):

♦
(
C(s �− n)D

)
=

{
♦(Cs) �−n if C = D
♦(Cs) otherwise

Aget
(
C(s �− n)D, a

)
= Aget(Cs, a)

Aset
(
C(s �− n)D, a

)
= Aset(Cs, a)

A refined type consists of a class C and a view r and is written Cr. We extend
the subtyping of FJEU classes to refined types as follows. Since both � and <:
on FJEU are reflexive and transitive so is <: on RAJA.

Definition 3 (Cr <: Ds). We extend subtyping to refined types by Cr <: Ds

iff C <: D and r � s.

In the following grammar, we define subtyping and arithmetic constraints. tt is
the empty constraint, i.e. a constraint that is always satisfied. Moreover, n ∈ D,
v ranges over view variables and p over arithmetic variables.

Automatic Type Inference for Amortised Heap-Space Analysis 601

vexp ::= v | Aget(Cv, a) | Aset(Cv, a) | v ⊕ v
ae ::= n | p | ♦(Cv) | ae+ ae

T C ::= Cvexp <: Dvexp

AC ::= ae1 ≥ ae2 | ae1 ≤ ae2
C ::= AC | T C | C ∧ C | tt

Let π = (πv, πa) be a pair of maps: πv is map from view variables to views and
πa is a map from number variables to numbers. We then define the meaning
of arithmetic expressions π(ae) in the obvious way, e.g. π(♦(Cv)) = ♦

(
Cπv(v)

)
.

The meaning of view expressions π(vexp) is defined as one might expect, e.g.
π(Aget(Cv, a)) = Aget

(
Cπ(v), a

)
. We say that π satisfies a conjunction of constraints

C, written π |= C, if π satisfies each constraint in C.
If v = v0, . . . , vn+1 is a vector of length n + 2, with n ≥ 0, we write v for

meaning the (possibly empty) vector v1, . . . , vn.

Definition 4 (An n-ary monomorphic RAJA method type)
An n-ary monomorphic RAJA method type T consists of n+2 views s and two

numbers m1,m2 written T = s0; s
m1/m2−−−−→ sn+1.

We also write Cs0 ;Es m1/m2−−−−→Hsn+1 to denote an FJEU method type combined
with a corresponding monomorphic RAJA method type.

Definition 5 (An n-ary polymorphic RAJA method type)
An n-ary polymorphic RAJA method type φ consists of n + 2 view variables
v and two arithmetic variables q = q1, q2 and existentially quantified (view and
arithmetic) variables w, t and a conjunction of subtyping and arithmetic con-

straints on them written φ = ∀v, q ∃w, t . v0;v
q1/q2−−−→vn+1 & C(v, q,w, t).

We often write ∀v, q ∃w, t . Cv0 ;Ev q1/q2−−−→Hvn+1 & C(v, q,w, t) to denote an
FJEU method type combined with a corresponding polymorphic RAJA method
type. A polymorphic method type stands for the set of all monomorphic types
that satisfy its constraints. Because this type does not depend on the method’s
callers, the type inference for the method can be performed modularly.

Definition 6 (Instance of a polymorphic method type).

Let T = Cs0 ;Es m1/m2−−−−→Hsn+1 be a monomorphic RAJA method type and

φ = ∀v, q ∃w, t . Cv0 ;Ev q1/q2−−−→Hvn+1 & C(v, q,w, t) a polymorphic RAJA method
type. We say that T is an instance of φ, written: “T instanceof φ” iff there ex-
ists a valuation π with π |= C such that π(vi) = si for i ∈ {0, . . . , n + 1} and
π(qj) = mj for j ∈ {1, 2}.

We define trivial polymorphic RAJA method types with no constraints for a

given class C and method m, by: �(C,m) = ∀v, q . v0;v q1/q2−−−→vn+1 & tt.

Definition 7 (Subtyping of monomorphic method types)

If T = r n1/n2−−−→rn+1 and T ′ = sm1/m2−−−−→sn+1 then T <: T ′ is defined as n1 ≤ m1

and n2 ≥ m2 and r0 = s0 and si � ri for i = 1, . . . , n and rn+1 � sn+1.

602 M. Hofmann and D. Rodriguez

Definition 8 (Subtyping of polymorphic method types)
Let C |= C <: D and let φ and ψ be polymorphic RAJA method types refining
a FJEU method type of method m in class C and D, respectively. Then φ <: ψ
iff: ∀T ′ with T ′ instanceof ψ . ∃T with T instanceof φ such that T <: T ′.

We call a polymorphic RAJA method type empty if its constraints are unsatis-
fiable and nonempty if they can be satisfied.

Definition 9 (RAJA program)
A RAJA program is an annotation of an FJEU program P = (C ,main) in
the form of a tuple R = (C ,main,M) where M assigns to each class C and
method m ∈ Meth(C) with n arguments an n-ary polymorphic RAJA method
type M(C,m).

3.1 Typing RAJA

The RAJA-typing judgement is formally defined by the rules in Figure 3. The
type system allows us to derive assertions of the form M;Ξ;Γ

n
n′ e : Cr where

e is an expression or program phrase, C is an FJEU class, r is a view (so Cr is a
refined type). Moreover, Ξ is a map from classes and methods to monomorphic
RAJA method types. Finally n, n′ are non-negative numbers. The meaning of
such a judgement is as follows. If e terminates successfully in some environment
η and heap σ with unbounded memory resources available then it will also ter-
minate successfully with a bounded freelist of size at least n plus the potential
ascribed to η, σ with respect to the typing in Γ .

We present here a syntax-directed version of the original typing system from [7],
which contains the following rule (♦Share) to ensure that a variable can be used
more than once without duplication of potential.

�(s |s1, . . . , sj) Γ,y :Ds n
n′ e : Cr

Γ, x :Ds n
n′ e[x/y1, . . . , x/yj] : Cr

(♦Share)

Here we integrate the rule (♦Share) into the rule (♦Let) using the fact that
�(r |s1, s2) is equivalent to r � s1 ⊕ s2. This result has been omitted in this
paper for lack of space; details can be found in [16]. We do not integrate (♦Share)
in other rules such as (♦Invocation) or (♦Update) because, for simplicity, we
require that in those expressions a variable appears only once.

Monomorphic vs. Polymorphic Recursion. In type systems with polymor-
phic types and recursion, polymorphic recursion is possible. Polymorphic recur-
sion means that, in recursive calls, any instance of the polymorphic type can
be used, whereas in monomorphic recursion only one instance can be used: the
same instance that the polymorphic type is being type-checked with.

Here we allow only monomorphic recursion. The reason for not treating poly-
morphic recursion is that type inference in the presence of polymorphic recursion
is difficult, in particular we would need to compute a fixpoint when generat-
ing constraints for recursive functions. We decided to develop a simpler type

Automatic Type Inference for Amortised Heap-Space Analysis 603

RAJA Typing M;Ξ;Γ
n
n′ e : Cr

∀a ∈ A(D) .Aset(Dr, a) � Aget(Dr, a) D <: C n ≥ ♦(Dr) + 1 n′ ≤ n− ♦(Dr)− 1

M;Ξ;Γ
n
n′ new D : Cr

n′ ≤ n+min{♦(Dr) | D <: C}+ 1

M;Ξ;Γ, x :Cr
n
n′ free (x) : Es

(♦Free)
D <: E Dr <: Cs n′ ≤ n

M;Γ, x :Er
n
n′ (D)x : Cs

(♦Cast)

n′ ≤ n

M;Ξ;Γ
n
n′ null : Cs

(♦Null)
Er <: Cs n′ ≤ n

M;Ξ;Γ, x :Er
n
n′ x : Cs

(♦V ar)

∀F <: C .Aget(F r, a) � s C.a <: D n′ ≤ n

M;Ξ;Γ, x :Cr
n
n′ x.a : Ds

(♦Access)

∀G <: E . s � Aset(Gr, a) F <: E.a Er <: Cq n′ ≤ n

M;Ξ;Γ, x :Er, y :F s
n
n′ x.a ← y : Cq

(♦Upd.)

x ∈ Γ M;Ξ;Γ
n
n′ e1 : Cr M;Ξ;Γ

n
n′ e2 : Cr

M;Ξ;Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Cond.)

M;Ξ;y :F p n
n′ e1 : Ds M;Ξ;y :F q, x :Ds n′

n′′ e2 : Cr ri � pi ⊕ qi

M;Ξ;y :F r
n
n′′ let Dx = e1 in e2 : Cr

(♦Let)

(
Gs0 ;Es t/t′−−→Hs′) instanceof M(G ,m)

Gr0 <: Gs0 F ri
i <: Esi

i Hs′ <: Cr′ n ≥ t n′ ≤ t′ + n− t
(♦PInv.)

M;Ξ;Γ, x :Gr0 ,y :F r n
n′ x.m (y1, . . . , yj) : C

r′

(
Gs0 ;Es t/t′−−→Hs′) ∈ Ξ(G ,m)

Gr0 <: Gs0 F ri
i <: Esi

i Hs′ <: Cr′ n ≥ t n′ ≤ t′ + n− t
(♦MInv.)

M;Ξ; x :Gr0 ,y :F r n
n′ x.m (y1, . . . , yj) : C

r′

RAJA Method Typing m M ok

m M′ ok dom(Ξ) = dom(M′′) ∀ (C,m) ∈ M′′ Ξ(C,m) = T

∀T = (Cr0 ;Er n/n′
−−→Hrn+1) instanceof M′′(C,m) (r0

�− p)C � s0

M′;Ξ; this :Cs0 , x1 :E
s1
1 , . . . , xj :E

sj
j

n + p
n′ e : Hrj+1 ri � si ♦(Cr0) ≥ p

m M′ �M′′ ok

Fig. 3. RAJA Typing

604 M. Hofmann and D. Rodriguez

inference algorithm, that does not require a fixpoint computation, because we
did not find useful examples where the polymorphic recursion is required.

We need to distinguish between recursive and non-recursive method calls.
With non-recursive methods calls, we can use any instance of the polymorphic
type of the called method. That is why there are two rules for method invocation:
(♦PInv.) for polymorphic method invocation and (♦MInv.) for monomorphic
method invocation. In the rule (♦PInv.) we assume that the called method
is not mutually recursive with the method we are currently analysing, and
consequently, we can use any instance of its polymorphic type. On the other
hand, we apply the rule (♦MInv.) when the called method appears in the map
Ξ : ∀C ∈ C .Meth(C) → MonoType which means that this method and the
method whose body we are analysing are mutually recursive.

The judgement for typing the body of a method (m M ok of Fig. 3) shall
mean that all the methods in the domain of the map M are well-typed.

Also notice in the judgement 	m M ok the number p. It represents the amount
of items of potential that we take from the potential of the refined type of this
in the type T for using in the method’s body. Thus, we need to check that the
potential of the refined type of this is at least p.

Definition 10 (Well-typed RAJA-program)
A RAJA-program R = (C ,main,M) is well-typed if the following conditions are
satisfied:

1. 	m M ok
2. ∀C ∈ C ,m ∈ Meth(C) .M(C,m) is nonempty.
3. ∀C,D ∈ C withS(C) = D ⇒ M(C,m) <: M(D,m).

A full soundness proof for this system is given in [16]. It consists of a small
modification of the soundness proof for the original RAJA system [7].

4 Type Inference for RAJA

4.1 Constraint Generation

In the following we present rules for generating subtyping and arithmetic con-
straints from FJEU programs. The rules (Fig. 4) describe a constraint generation
judgement M;Ξ;Γ

p
p′ e : Cv & C where e is an expression, Γ maps variables to

FJEU types refined with view variables, Cv is an FJEU type refined with a view
variable, p and p′ are arithmetic variables and C is a conjunction of subtyping
and arithmetic constraints. Further, Ξ is a map from classes and methods with
n arguments to n+ 2 view variables and two arithmetic variables.

We write π(Ξ) to mean the map from classes and methods to monomorphic
RAJA method types that is obtained after substituting every view and arith-
metic variable in Ξ with its value in the valuation π. Similarly, π(Γ) means
the context that we obtain after substituting the view variables in Γ with their
values in π. In addition, we use the notations |Ξ| and |Γ | for meaning the follow-
ing. If Ξ is a map from classes and method names to monomorphic RAJA types,

Automatic Type Inference for Amortised Heap-Space Analysis 605

M;Ξ;Γ
p
p′ e : Cv & C

C = (Ev <: Cu ∧ p′ ≤ p)

M;Ξ;Γ, x :Ev
p
p′ x : Cu & C

C = (p′ ≤ p)

M;Ξ;Γ
p
p′ null : Cv & C

C =
∧

D<:C p′ ≤ p + ♦(Dv) + 1

M;Ξ;Γ, x :Cv
p
p′ free (x) : Eu & C

E = Dv <: Cv AC = p ≥ ♦(Dv) + 1 ∧ p′ ≤ p− ♦(Dv)− 1

M;Ξ;Γ
p
p′ new D : Cv & E ∧ AC ∧

∧
a∈A(D) A

set(Dv, a) � Aget(Dv, a)
(�New)

C = (Dv <: Ev ∧ Dv <: Cu ∧ p′ ≤ p)

M;Ξ;Γ, x :Ev
p
p′ (D) x : Cu & C

(�Cast)
C =

∧
E<:C(C.a)A

get(Ev,a) <: Du ∧ p′ ≤ p)

M;Ξ;Γ, x :Cv
p
p′ x.a : Du & C

C = (
∧

E<:C Fw <: (C.a)A
set(Ev,a) ∧ Cv <: Du)

M;Ξ;Γ, x :Cv, y :Fw
p
p′ x.a ← y : Du & C ∧ p′ ≤ p

(�Update)

M;Ξ;Γ
p
p′ e1 : Cv & C1 M;Ξ;Γ

p
p′ e2 : Cv & C2 C = (C1 ∧ C2)

M;Ξ;Γ
p
p′ if x instanceof E then e1 else e2 : Cv & C

(�Cond.)

M;Ξ;y : F v p
p′ e1 : Du & C1 M;Ξ;y : Fw, x :Du p′

p′′ e2 : Cv & C2

M;Ξ;y : Fu
p
p′′ let Dx = e1 in e2 : Cv & (C1 ∧ C2 ∧

∧
i ui � vi ⊕ wi)

(�Let)

Ξ(G,m) = Gv0 ;Ev q1/q2−−−→Hvn+1

T C = Gu <: Gv0 ∧ F
ui
i <: E

vi
i ∧ Hvn+1 <: Cu′

∧ p ≥ q1 ∧ p′ ≤ q2 + p− q1
(�MInv)

M;Ξ;Γ, x :Gu,y :Fu p
p′ x.m (y1, . . . , yj) : Cu′

& T C

M(G,m) = ∀v, q ∃v′ , q′ . Gv0 ;Ev q1/q2−−−→Hvn+1 & D D′ = D[w/v,w′/v′, t/q, t′/q′]

T C = Gu <: Gw0 ∧ F
ui
i <: E

wi
i ∧ Hwn+1 <: Cu′

∧ p ≥ t1 ∧ p′ ≤ t2 + p− t1
(�PInv)

M;Ξ;Γ, x :Gu,y :Fu p
p′ x.m (y1, . . . , yj) : Cu′

& T C ∧ D′

�mc M ok

�mc M′ ok ∀i = 1 .. k (Ci,mi) ∈ dom(M′′) Ξ(Ci,mi) = C
v0
i ;Ev p1/p2−−−→Hvn+1

M′;Ξ; this :C
v̄0
i , x :Ev p̄1

p2
Mbody(C,m) : Hvn+1 & C(i)

ψ(i) = ∀v,p . Cv0 ;Ev p1/p2−−−→Hvn+1 & (C(i) ∧ v0 � v̄0 ∧ ♦(Cv0
i

)
+ p1 ≥ ♦

(
C

v̄0
i

)
+ p̄1)

S(Dj) = Ci λj =

{
M′(Dj ,mi) if (Dj ,mi) ∈ dom(M′)
�(Dj,mi) if (Dj ,mi) ∈ dom(M′′)

φ(i) = ψ(i) ∨
∨

j λj

M′′(Ci,mi) = ∀v,p . C
v0
i ;Ev p1/p2−−−→Hvn+1 & D(i) D(i) =

∧
l∈{1,...,k} constr(φ(l))

�mc M′
M′′ ok

Fig. 4. Generation of RAJA polymorphic types

606 M. Hofmann and D. Rodriguez

then |Ξ| denotes a map from classes and method names to view and arithmetic
variables with dom(|Ξ |) = dom(Ξ). Similarly, if Γ is an FJEU context, then |Γ |
is a context from program variables to FJEU types refined with view variables
with the same domain as Γ . The judgement reads: expression e has type Cv in
the context Γ , subject to the constraints C. Moreover, the judgement defines a
total function generateConstraints that generates constraints for an expression:

generateConstraints(M, Ξ, Γ, p, p′, e, Cv) = C if M;Ξ;Γ
p

p′ e : Cv & C

The subtyping constraints are of the form Cv <: Du where C and D are classes
and v and u are view variables. We also create constraints of the form u � v ⊕ w
in the rule (Let), where v ⊕ w is a view expression.

There are two rules for method invocation: (PInv) for polymorphic method
invocation and (MInv) for monomorphic method invocation. In (PInv) we
assume that the called method has already been analysed and so its polymorphic
RAJA method type is available. The constraints generated by this rule consist
of the method’s constraints, where we substitute the view and arithmetic vari-
ables with fresh ones, in conjunction with standard subtyping and arithmetic
constraints. We apply the rule (♦MInv.) when the called method appears in
the map Ξ, which means, as we discussed earlier, that the method and the
method whose body we are analysing are mutually recursive. In that case the
constraints for the method are not yet available. Thus, we only generate the
standard subtyping and arithmetic constraints.

The judgement 	mc M ok returns RAJA polymorphic method types for the
methods in M by generating the constraints for the methods’ bodies. We per-
form the analysis on the basis of the call graph of the program, which we modify
slightly by adding the inheritance relations to it. For example, the graph corre-
sponding to the program for copying lists defined in Fig. 1, can be represented
as follows:

(List, copy)(Cons, copy)

(Nil, copy)(Main, main)

After we have built the graph, we decompose it in its strongly connected com-
ponents to obtain the acyclic component graph GSCC. Afterwards, we sort the
obtained dag GSCC topologically and call the constraint generation algorithm
in that order, with the strongly connected components being analysed together.
When applied to the graph above, we obtain the following order where
(Cons, copy) and (List, copy) are analysed together.

(Nil, copy), [(Cons, copy), (List, copy)], (Main,main)

Now, why do we need to extend the call graph with inheritance relations? The
reason for this is that, before we analyse a method m in a class C, we would like

Automatic Type Inference for Amortised Heap-Space Analysis 607

to analyse the same methodm in each subclass D of C. For proving soundness of
the constraint generation algorithm we need to show M(D,m) <: M(C,m), and
this follows trivially when we add the constraints of D.m to the polymorphic
type of C.m. For example, the method List.copy should contain the constraints
of the methods Cons.copy and Nil.copy, as explained earlier.

In the following we prove that, if the constraints generated for the expression
e are satisfiable, then the expression is typeable in the RAJA system with the
result type, context and effect given by the solution to the constraints.

Lemma 1 (Soundness of constraint generation)

If E :: M;Ξ;Γ
q1
q2 e : Cv & C and π |= C then M;π(Ξ);π(Γ)

π(q1)
π(q2) e : Cπ(v).

Proof. By induction on E .

Lemma 2 (Soundness of constraint generation for methods)
Let P = (C ,main) be an FJEU program and let E ::	mc M ok and let M(C,m)
be non-empty for each (C,m) ∈ dom(M). Then:

1. 	m M ok.
2. S(D) = C implies M(D,m) <: M(C,m).

Proof. 1. By induction on E .
2. Follows by the design of the judgement 	mc M ok, as discussed earlier.

Next, we show that, when applied to a typeable expression, the constraint gen-
eration rules emit a satisfiable constraint set.

Lemma 3 (Completeness of constraint generation)
If E :: M;Ξ;Γ

n1

n2
e : Cr and M; |Ξ|; |Γ | p1

p2
e : Cv & C then there exists π with

π(pi) = ni, π(v) = r, π(|Γ |) = Γ , π(|Ξ|) = Ξ such that π |= C.

Proof. By induction on E .

Lemma 4 (Completeness of constraint generation for methods)
Let R = (C ,main,M) be a well-typed RAJA program and let N be a map
with dom(N) = dom(M) and E ::	mc N ok. Then for all (C,m) ∈ M holds
N (C,m) <: M(C,m).

Proof. By induction on E .

4.2 Constraint Solving

In this section we shall see how to apply RAJA types to the analysis of the heap-
space requirements of methods. Currently, our tool is not capable of computing
bounds for arbitrary methods, but only for the method main. This is because
translating refined types to closed-form upper bounds is challenging and requires
further research. We wish to compute an upper bound on the number of heap
cells needed for executing main as a function of main’s arguments, which follows
from the potential given to its arguments by its RAJA type. We have seen in

608 M. Hofmann and D. Rodriguez

the previous section how to obtain a polymorphic RAJA type for main, but, for
being able to read off the potential from that type, we need a concrete instance
of the type, which we can obtain by solving the type’s constraints.

Whereas solving linear arithmetic constraints is easily achieved by an LP-
Solver, solving subtyping constraints is more challenging. The task of solving a
constraint Cu <: Dv can be reduced to the tasks of solving C <: D and u � v,
by the definition of subtyping. C <: D can be checked easily by analysing the
inheritance relations in the program. Thus, the real challenge is solving u � v.
Solving these kind of constraints is difficult for various reasons.

First, views are infinite objects, and the inequality relation over views is de-
fined coinductively. Thus, unfolding the definition of inequality; that is, trying to
solve the constraints ♦(Cu) ≥ ♦(Cv) for each C ∈ C and Aget(Cu, a) � Aget(Cv, a)
and Aset(Cv, a) � Aset(Cu, a) for each a ∈ A(C) would lead to more unfolding
steps and this process would not terminate.

Second, subtyping over views is covariant in the get views and contravariant
in the set views. The contravariance also brings difficulties. For this reason, we
studied in previous work [14] a simpler type of infinite trees than views. We
fix a finite set L = {l1, . . . , ln} of labels to address the children of a node, e.g.
L = {L,R} for infinite binary trees and L = {tl} for infinite lists. Such trees
can be added, scaled, and compared componentwise; furthermore, we have an
operation ♦(.) that extracts the root label of a tree, thus if t is a tree then ♦(t)
is an element of D. Finally, if t is a tree and l ∈ L then l(t) is the l-labelled
immediate subtree of t. We define a preorder � between trees as follows:

Definition 11. Let t, t′ ∈ TL
D
. We define t � t′ coinductively by t � t′ ⇐⇒

♦(t) ≤ ♦(t′) and li(t) � li(t
′) for all li ∈ L.

This inequality relation is covariant in all cases. Because these trees are simpler
objects, solving constraints over them is simpler than solving constraints over
views. Thus, we solve the inequalities over views by reducing them to inequal-
ities over infinite trees. For solving constraints over infinite trees, we still have
the problem that unfolding the inequality relation would not terminate. This is
why, to ensure termination of unfolding, we developed a heuristic algorithm for
solving these constraints that assumes that the solutions to the constraints are
regular infinite trees. This implies, however, that the algorithm is not able to
solve all the constraints but only a subset of them that admit regular solutions.
Therefore, when using this algorithm, we can solve only subtyping constraints
that admit regular views as a solution, which correspond to programs whose
heap-space consumption is a linear function of its input. Hence, the algorithm
that we present in this paper can compute only linear bounds on the heap-space
requirements of programs. However, we remark that this is because no better
algorithm for solving the constraints over infinite trees is known at the moment.

We present here a reduction from views to infinite trees. The idea of the
reduction is to separate the “positive parts” and “negative parts” of a view, to
build infinite trees. To reduce a view r ∈ V , we define, for each class Ci ∈ C ,
the infinite trees r+i , r

−
i ∈ TL

D
, where L = L+ ∪ L− and L+ = {l+kj | Ck ∈

Automatic Type Inference for Amortised Heap-Space Analysis 609

rich =⇒ rich+ rich−
1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s
1

1

1

...
...

0

...
...

g s

0

0

...
...

1

...
...

g s

g s
0

0

0

...
...

1

...
...

g s

1

1

...
...

0

...
...

g s

g s

Fig. 5. View rich reduced to rich+ and rich−, assuming that C = {Cons}

C , aj ∈ A(Ck)} and L− = {l−kj | Ck ∈ C , aj ∈ A(Ck)} such that we can reduce
inequalities between views to inequalities between infinite trees. More exactly,
we want to prove: r � s ⇒

∧
Ci∈C s+i � r+i ∧ r−i � s−i . Fig. 5 shows a

representation of the reduction applied to the view rich.

Definition 12. Let r ∈ V . We define expand(r) = (r+, r−), where r+i and r−i
are defined coinductively as follows. Let Ci ∈ C and Ck ∈ C and aj ∈ A(Ck).

♦
(
r+i
)

= ♦(Cr
i)

l+kj(r
+
i) = Aget(Cr

k, aj)
+

i

l−kj(r
+
i) = Aset(Cr

k, aj)
−
i

♦
(
r−i
)

= 0

l+kj(r
−
i) = Aget(Cr

k, aj)
−
i

l−kj(r
−
i) = Aset(Cr

k, aj)
+

i
Lemma 5. Let r � s and let (r+, r−) = expand(r) and (s+, s−) = expand(s).

1. s+i � r+i for all i.
2. r−i � s−i for all i.

Proof. Simultaneously by coinduction.

Next, we build a view from two vectors of trees t and t′, with |t| = |t′| = |C |.
Definition 13. We define the function reduce(t, t′) = r, where r ∈ V , coinduc-
tively as follows.

♦(Cr
i) = ♦(ti) �−♦(t′i)

Aget(Cr
k, aj) = reduce(

−−−→
l+kj(ti),

−−−→
l+kj(t

′
i))

Aset(Cr
k, aj) = reduce(

−−−→
l−kj(t

′
i),
−−−→
l−kj(ti))

First, we notice that reduce is the left inverse of expand.

Lemma 6. Let r ∈ V . Then reduce(expand(r)) = r.

Proof. By coinduction.

Lemma 7. Let t, t′, p, p′ be vectors of infinite trees. Then, if t′i � p′i and
pi � ti for each i, then reduce(t, t′) � reduce(p,p′).

Proof. By coinduction.

Now we can reduce inequalities over views to inequalities of infinite trees, based
on the reduction from views to infinite trees. When we obtain a solution for the
set of constraints over infinite trees, we can build a solution for the original set
of inequalities over views, based on the reduction from infinite trees to views.
The details are omitted for lack of space, and can be found in [16].

610 M. Hofmann and D. Rodriguez

Table 1. Experimental results. The column Heap space shows the prediction of the
required size of the free-list which in each case was equal to the actual heap-space
requirements of the program and Run time represents the run time of the analysis.

Program LoC Heap space Run time

Copy 37 n 0.2s
CircList 56 1 + n 1.6s
InsSort 66 2 + n 1.9s
DList 70 3 + n 1.2s
Append 80 2 + n 3s

Program LoC Heap space Run time

CAppend 60 2 + 2n 0.7s

MergeSort 127 1 10.3s

BankAcc 200 2 + 8n 6.3s

Bank 908 11 + 6n 9.8 min

5 Experimental Results

We have implemented a tool in OCaml for type checking, evaluating and analysing
the heap-space requirements of FJEU programs, based on the algorithm pre-
sented in this paper. The tool uses the result of the analysis for building an
optimised heap for evaluating the programs; that is, it creates a heap with a size
equal to the size predicted by the analysis. The tool assumes that each FJEU
program contains a main method which has one parameter of type List. Further,
the tool assumes that it is given an input file for the program execution. The
interpreter then creates a singly linked list (one node for each row of the input
file) and saves it in the heap before it starts executing the program.

The analyser component of the tool can analyse methods whose heap-space
consumption is a linear function on the size of its arguments. When it analyses
the main method of a program, it delivers two non-negative real numbers a and
b, which shall mean that the program can be evaluated with no memory errors
with a heap of size at least a · |input file|+ b.

Table 1 shows some programs that we could analyse with our tool. For each
example, we could solve the constraints and resultantly provide a (linear) upper
bound for its heap-space requirements. The experiments were performed on a
2.20GHz Intel(R) Core(TM)2 Duo CPU laptop with 2GB RAM. The run-time
of the analysis varied from 0.2s to about 10 minutes on a program of 908 LoC.
Being able to analyse 908 LoC may seem rather modest, but one should note
that nearly all these LoC contribute to the analysis. A typical real program will
contain large portions that look like white space to the analysis, e.g. numerical
computations, I/O, etc. and resource-wise independent parts of a larger program
could be analysed separately.

All bounds are exact in the above experiments, although our soundness result
only ensures an upper bound. There is a demo website where the examples can
be analysed and downloaded, and the user can perform the analysis on their own
programs1.

1 http://raja.tcs.ifi.lmu.de

http://raja.tcs.ifi.lmu.de

Automatic Type Inference for Amortised Heap-Space Analysis 611

6 Conclusions and Related Work

We have presented a type-based analysis of the heap-space requirements of
object-oriented programs. The soundness of each step of the analysis has been
rigorously proved. Moreover, the analysis was modular, enabled by the use of
polymorphic types. Thus, in principle, the analysis is capable of scaling to large
programs, although there is plenty of room for improvement. Polymorphic types
also enable an incremental analysis because they can be saved after the analysis,
and in most cases they do not need to be re-generated when more classes and
methods are added to the programs.

Related Work. Constraint-based type reconstruction for numerically refine-
ment types has been introduced in [17] and been further developed in [18] under
the name “liquid types” which further introduces techniques from predicate ab-
straction and model checking.

Our method for the generation of view constraints is directly inspired by
those works, in particular [17]; however, the view constraints thus gleaned are
not directly amenable to algorithmic solution. The main conceptual contribution
of the present work is thus not so much the RAJA type system which has already
been presented elsewhere, albeit in slightly different and less general form, but
rather the solution of the generated typing or view constraints by translation to
tree constraints and iterated elimination.

Looking at the black-box front end of our contribution—the fully automatic
inference of symbolic resource bounds for object-oriented programs, we can place
our contribution in the following perspective. The topic has been researched
intensively in the past years and many different approaches to it have been
proposed.

In a series of papers [2, 13, 19] Chin and his collaborators have used sized types
and separation logic for the generation of symbolic resource bounds for object-
oriented programs. Presently, the method is not fully automatic because the user
must provide aliasing and shape information. Furthermore, in the functional
realm, the amortised approach has proved superior to related methods in the
case of algorithms that heavily use intermediate data structures whose size is
difficult to describe [10]. However, it might very well be possible to combine our
approach with the generic system “HIP and SLEEK” [19] that maintains and
propagates separation logic assertions for an object-oriented language.

In the recurrence-based approach COSTA [4, 1], one introduces an unknown
resource bounding function for each method and then derives recurrence con-
straints for those by going over the control-flow graph. The main methodological
innovation lies not so much in the analysis which uses mainly standard tech-
niques, but in the development of improved solvers for these recurrences. As
discussed above the amortised approach is superior when resource usage is in-
tertwined with size and layout of intermediate data structures. The path-length
analysis performed by COSTA to infer size-relations is sound with the condi-
tion that there is no aliasing and cyclic data, whereas the analysis performed
by RAJA is sound for all programs and we do not require an extra cyclicity

612 M. Hofmann and D. Rodriguez

analysis. Nevertheless, we hope that the advanced recurrence-solving technology
developed by the COSTA team could allow us to go beyond linear arithmetic
constraints and bounds.

For imperative non-object-oriented programs several other fully- or semi-
automatic analyses have been developed, notably SPEED [3] which is based on
the inference of linear arithmetic relationships between manually added counter
variables. Here, the performance in the presence of dynamically allocated data
structures strongly depends on the instrumentation. SPEED also uses user-
defined quantitative functions that are associated with abstract data-structures.
In contrary, RAJA is fully automatic and does not require any user-input.

Atkey [20] combined amortised analysis and separation logic to analyse im-
perative programs. Like RAJA, Atkey’s system can compute only linear bounds.
On the other hand, the user needs to provide complex annotations.

Acknowledgements. We acknowledge support by the DFG Graduiertenkolleg
1480 Programm- und Modell-Analyse (PUMA).

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning (2010)

2. Chin, W.-N., Nguyen, H.H., Qin, S.C., Rinard, M.: Memory Usage Verification for
OO Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
70–86. Springer, Heidelberg (2005)

3. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: POPL. ACM (2009)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

5. Grobauer, B.: Topics in Semantics-based Program Manipulation. PhD thesis,
BRICS Aarhus (2001)

6. Gomez, G., Liu, Y.A.: Automatic time-bound analysis for a higher-order language.
In: PEPM (2002)

7. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

8. Hofmann, M., Rodriguez, D.: Efficient Type-Checking for Amortised Heap-Space
Analysis. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 317–331.
Springer, Heidelberg (2009)

9. Jost, S., Loid, H.W., Hammond, K., Hofmann, M.: Static determination of quan-
titative resource usage for higher-order programs. In: POPL (January 2010)

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: POPL (2011)

11. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

12. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

Automatic Type Inference for Amortised Heap-Space Analysis 613

13. He, G., Qin, S., Luo, C., Chin, W.-N.: Memory Usage Verification Using Hip/Sleek.
In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 166–181. Springer,
Heidelberg (2009)

14. Hofmann, M., Rodriguez, D.: Linear Constraints over Infinite Trees. In: Bjørner,
N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 343–358. Springer,
Heidelberg (2012)

15. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. In: OOPSLA (1999)

16. Rodriguez, D.: Amortised Resource Analysis for Object Oriented Programs. PhD
thesis, Ludwig-Maximilians-Universität München (2012)

17. Knowles, K., Flanagan, C.: Type Reconstruction for General Refinement Types. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 505–519. Springer, Heidelberg
(2007)

18. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. ACM SIGPLAN No-
tices 43(6), 159–169 (2008)

19. Chin, W.N., David, C., Gherghina, C.: A hip and sleek verification system. In:
OOPSLA Companion (2011)

20. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2) (2011)

Keyword Index

A

(A)Synchrony 329
(functional) object-oriented programs

443
Algorithmic verification 534
amortised analysis 593–595, 612
automated theorem proving 472

B

barrier divergence 169
big-step semantics 290, 533

C

category theory 330
coinduction 350
compilers 21–23, 25–29, 31–33, 35–40
concurrency 188, 206–208, 250, 269,

290, 292, 306, 411–413, 419, 424, 425,
427–430

Concurrent software 530
consistency 290, 307–309
Context Free Grammar
continuations 229, 230, 235–239, 246,

247
contracts 229–237, 239–248
corecursion 80
counterexample guided abstraction

refinement 451, 456, 459, 468–470

D

datatypes 554, 558, 561,562,569
decision procedures
deductive program verification 125, 128
distributed computing
Distribution 310, 311, 317, 319, 320,

324, 325, 328

divergence 41, 43, 46–48, 52, 54, 58, 60

E

execution traces
Expressive Power 310, 311, 322,

326–329

F

Fence insertion 534–537, 552, 553
Functional Languages
Functional Programming 120

G

GADT 554,555, 557, 559, 561–565, 567,
569, 570–573

GPU kernels 270, 271–275, 277–279,
281, 283, 285, 287–289

gradual typing 229, 230, 232, 234,
246–248

H

Haskell 209, 210, 212, 223–225
heap-space 593, 595–597, 599, 601, 603,

605, 607–613
Higher-order calculi
higher-order model checking 450
Higher-Order Processes 250, 351, 353,

355, 357, 359, 361, 363, 365, 367, 369
higher-order recursion schemes 431,

432, 435, 450
Hindley-Milner
Hoare logic 189, 195, 197

I

Imperative languages
Implementation of probabilistic systems
interleaving semantics 270–272, 274,

277, 278, 282, 283–285, 288
intersection types
invariant checking

616 Keyword Index

Invariant generation 466
invariants 150–152, 154, 160, 165, 166,

168

L

laziness 81–87, 89, 90, 92, 93, 95, 96,
98–100

lazy data constructors 81
linear logic 331, 332, 334–336, 339, 340,

347–349
linearizability 290, 291, 293, 295–297,

300–309, 492–496, 503, 504, 507,
509–511

Lock correlation 391–393, 395–399,
402–404, 409

Lock types 392, 395, 396, 405, 408
lock-step execution 270–274, 278,

281–283, 285, 288
loop invariants 574–577, 590, 592

M

Maude 249–252, 254, 256, 268, 269
Memory Reclamation 593
Model Checking 485, 489–491, 531, 532
modularity 39
Monads 367–369

N

nested data structures 129
Non-blocking Algorithms 249–252, 269
Non-linear 574, 575, 584, 585, 590–592
non-well-founded recursion

O

object-oriented 593–595, 611, 612
observational disjointness 149, 150,

165–168
operational semantics
overlaid data structures 130
Ownership types 392, 393, 397, 400,
401, 409, 410

P

Parallel programs 537, 547, 548, 533
Petri Nets 411–416, 420, 421, 427–430
polymorphic type system
polymorphic types 340

precondition inference 451, 452, 458,
459, 461, 466, 468–470

predicated execution 270, 273, 274, 277,
288

Probabilistic modeling
Process algebra 492
Process Calculus 310–312, 315, 316,

319, 320, 321, 323, 326
program constructs 71
Program Inversion 101, 103, 106, 108,

119
Program transformation 101, 103, 113,

120, 512, 513, 515, 517, 519, 521, 523,
525, 529–531

program verification 450, 451

R

recursive types 431–435, 437, 439, 441,
443, 445–450

refactoring 81, 82, 85, 86, 91, 92, 94–97
Refinement Types 209–215, 217, 219,

221, 229–228
relational parametricity 330, 332, 339,

341, 342, 347–349
Relaxed memory models 536, 552
resource analysis 593–595, 612, 613
Reversibility 370–379, 381, 383, 385,

387, 389
Rewrite theories 124
Robustness 533–537, 539–541, 543, 545,

553

S

separation logic 129, 133, 135, 148–151,
158, 159, 165, 166, 167, 169, 170, 174,
175, 187, 188, 249, 251, 256, 268, 269

sequential 290, 291, 293, 295, 297–309
serializability 290, 291, 293, 295,

297–299, 307, 309
session types 331–334, 339, 347, 348,

349–351, 353, 368, 369
Slicing 121–124
SMT 209, 210, 212, 215, 217–220, 222,

225, 228
Software model checking 451, 471
software verification
specification and verification 165, 168

Keyword Index 617

strong normalization 333, 339, 341, 346,
347

subtyping 554, 555, 557–561, 563–565,
567–573

T

Test Generation 472, 475, 490, 491

Trace analysis 121–123

Trace based semantics

Transactions 370, 372, 384, 386–388

Type Inference 223, 225
Type systems 392, 393, 398, 408

V

variance 554–573
verification 204, 207–213, 218, 224, 227,

228, 256, 267–269, 299, 307, 308,
489–491, 574, 576, 585, 591

W

Weak memory models 511–513, 530,
531

Author Index

Aiken, Alex 574
Alglave, Jade 512
Alpuente, Maŕıa 121

Ballis, Demis 121
Beyer, Dirk 472
Birkedal, Lars 169
Bouajjani, Ahmed 290, 533
Budiu, Mihai 21

Caires, Lúıs 330, 350
Chang, Stephen 81
Charguéraud, Arthur 41
Collingbourne, Peter 270

Derevenetc, Egor 533
Dodds, Mike 189
Donaldson, Alastair F. 270

Emmi, Michael 290
Enea, Constantin 129, 290

Filliâtre, Jean-Christophe 125
Frechina, Francisco 121

Galenson, Joel 21
Goltz, Ursula 310
Gotsman, Alexey 249
Gupta, Saurabh 574

Hamza, Jad 290
Hariharan, Bharath 574
Hofmann, Martin 593
Holzer, Andreas 472

Igarashi, Atsushi 431

Jagadeesan, Radha 492
Jeannin, Jean-Baptiste 61
Jhala, Ranjit 209

Kassios, Ioannis T. 149
Katoen, Joost-Peter 411
Ketema, Jeroen 270
Kobayashi, Naoki 431

Kozen, Dexter 61
Kritikos, Eleftherios 149
Kroening, Daniel 451, 512

Lanese, Ivan 370
Liang, Percy 574
Lienhardt, Michael 370
Lu, Yi 391

Matsuda, Kazutaka 101
Meyer, Roland 533
Mezzina, Claudio Antares 370
Miller, Mark S. 1

Nestmann, Uwe 310
Nimal, Vincent 512
Nori, Aditya V. 574

Parkinson, Matthew 169, 189
Paskevich, Andrei 125
Peled, Doron 411
Pérez, Jorge A. 330
Peters, Kirstin 310
Petri, Gustavo 492
Pfenning, Frank 330, 350
Pitcher, Corin 492
Plotkin, Gordon D. 21
Potter, John 391

Qadeer, Shaz 270

Rémy, Didier 554
Riely, James 492
Rinetzky, Noam 249
Rodriguez, Dulma 593
Rondon, Patrick M. 209

Sapiña, Julia 121
Saveluc, Vlad 129
Scherer, Gabriel 554
Schmitt, Alan 370
Seghir, Mohamed Nassim 451
Sharma, Rahul 574
Sighireanu, Mihaela 129
Silva, Alexandra 61

620 Author Index

Stefani, Jean-Bernard 370

Strickland, T. Stephen 229

Svendsen, Kasper 169

Takikawa, Asumu 229

Tautschnig, Michael 472, 512

Tobin-Hochstadt, Sam 229

Toninho, Bernardo 330, 350

Tulloh, Bill 1

Van Cutsem, Tom 1
Vazou, Niki 209
Veith, Helmut 472

Wang, Meng 101
Wickerson, John 189

Xue, Jingling 391

Yang, Hongseok 249

	Title
	Preface
	Organization
	Table of Contents
	Invited Talk
	Distributed Electronic Rights in JavaScript
	Smart Contracts for the Rest of Us
	Dr. SES: Distributed Resilient Secure EcmaScript
	Just Enough JavaScrip
	Basic Concepts of Dr. SES
	SES: Securing JavaScript
	Q: Distributed JavaScript Objects
	NodeKen: Distributed Orthogonal Persistence

	Toward Distributed Electronic Rights
	Money as an Electronic Right
	The Escrow Exchange Contract
	The Contract Host
	Conclusions
	References

	Session I: Programming Techniques
	The Compiler Forest
	Introduction
	Compilers and Partial Compilers
	Definitions
	An Example: The Sequential Partial Compiler

	Compilers and Partial Compilers as First-Class Objects
	Star
	Conditionals
	Cases
	Functor

	Application to Query Processing
	LINQ and μLINQ
	Compiling μLINQ

	Mathematical Foundations
	Implementations
	Related Work
	Discussion and Conclusions
	References

	Pretty-Big-Step Semantics
	Introduction
	Pretty-Big-Step Semantics
	Decomposition of Big-Step Rules
	Treatment of Exceptions
	Treatment of Divergence
	Properties of the Judgments

	Error Rules and Type Soundness Proofs
	Explicit Error Rules
	The Generic Error Rule
	Type Soundness Proofs

	Traces
	Scaling Up to Real Languages
	Factorization of the Abort Evaluation Rules
	Side Effects
	C-Style for Loops
	List of Subterms
	Unspecified Order of Evaluation
	Formalization of Core-Caml

	Related Work
	Conclusion
	References

	Language Constructs for Non-Well-Founded Computation
	Introduction
	Motivating Examples
	Substitution
	Probabilistic Protocols
	Abstract Interpretation
	Finite Automata

	A Framework for Non-Well-Founded Computation
	Generating Equations

	Implementation
	Equations and Solvers
	Least Fixpoints
	Generating Coinductive Elements and Substitution
	Gaussian Elimination

	Future Work: Automatic Partitioning
	Conclusion
	References

	Session II: Programming Tools
	Laziness by Need
	Laziness in a Strict World
	Motivating Examples
	Reorganizations Interfere with Laziness
	Laziness Must Propagate
	Idiomatic Lazy Programming in a Strict Language

	Refactoring For Laziness
	Language Syntax
	Analysis Step 1: 0-CFA
	Analysis Step 2: Adding delay and force
	Analysis Step 3: Laziness Analysis
	The Refactoring Transformation

	Correctness
	Language Semantics
	Soundness of the Analysis
	Safety of Refactoring
	Idempotency

	A Prototype Implementation
	Constraint Solving Algorithm
	Laziness Refactoring Tool

	Laziness in the Large
	Related Work
	Future Work
	References

	FliPpr: A Prettier Invertible Printing System
	Introduction
	Overview
	Introducing Ugliness
	Construction of CFG with Actions

	Core Language and Parser Construction
	Syntax and Semantics
	Parser Construction by Inversion

	Surface Language: Making It More Flexible
	Problems with Programming in the Core Language
	An Overview
	Surface Language
	Conversion to the Core Language

	An Involved Example
	Discussion
	Related Work
	Conclusion
	References

	Slicing-Based Trace Analysis of Rewriting Logic Specifications with iJulienne
	Introduction
	iJulienne at Work
	References

	Why3 — Where Programs Meet Provers
	Introduction
	Programming Language
	Case Studies
	Future Work
	References

	Session III: Separation Logic
	Compositional Invariant Checking for Overlaid and Nested Linked Lists
	Introduction
	Overview
	Logic NOLL
	A Model-Theoretic Procedure for Checking Entailment
	Satisfiability Problem
	Entailment Problem

	Computing the Normal Form
	An Effective Procedure for Checking Entailment
	Inferring Additional Spatial Constraints
	NOLL Graphs
	NOLL Graph Homomorphism
	Checking Entailments of NOLL Formulas

	Experimental Results
	References

	A Discipline for Program Verification Based on Backpointers and Its Use in Observational Disjointness
	Introduction
	Contributions
	Structure of the Paper

	The Backpointers Discipline
	Background
	Backpointers
	Soundness

	Concurrent Copy-on-Write Lists
	Description of the Problem
	Record Definitions, Abstract Predicates, and Invariants
	Some Highlights of the Implementation

	Discussion
	Related Work
	Evaluation and Work in Progress

	Conclusion
	References

	Modular Reasoning about Separation of Concurrent Data Structures
	Introduction
	The Logic
	Concurrent Abstract Predicates
	Higher-Order Concurrent Abstract Predicates
	View-Shifts

	Concurrent Bag
	Semantics
	Conclusion and Future Work
	References

	Ribbon Proofs for Separation Logic
	Introduction
	An Example
	Formalisation
	Syntax of Diagrams
	Proof Rules for Diagrams
	Semantics of Diagrams

	Graphical Formalisation
	Proof Rules for Graphical Diagrams
	Semantics of Graphical Diagrams
	Using Variables-as-Resource
	Stratified or Graphical?

	Tool Support
	Related and Further Work
	Conclusion
	References

	Session IV: Gradual Typing
	Abstract Refinement Types
	Introduction
	Overview
	Parametric Invariants
	Index-Dependent Invariants
	Recursive Invariants
	Inductive Invariants

	Syntax and Semantics
	Syntax
	Static Semantics
	Soundness
	Refinement Inference

	Evaluation
	Related Work
	References

	Constraining Delimited Control with Contracts
	Ubiquitous Continuations
	Types and Contracts for Control Operators
	Types for delimited control
	Gradual typing, the broken variant
	Gradual typing, fixed
	Continuation Marks

	Formalizing Contracts for Stack Abstractions
	Complete monitoring and the Blame Theorem
	Implementing stack protection
	Related work
	Conclusion
	References

	Session V: Shared-Memory Concurrency and Verification
	Verifying Concurrent Memory Reclamation Algorithms with Grace
	Introduction
	Informal Development
	Running Example
	Reasoning about Hazard Pointers
	Reasoning about Read-Copy-Update

	Abstract Logic
	Preliminaries
	Assertion Language
	Rely/Guarantee Conditions and the Temporal Invariant
	Proof System
	Soundness

	Logic Instantiation and Hazard Pointers
	Assertion Language
	Actions and the Temporal Invariant
	Proof Outlines and a Derived Rule for Grace Periods

	Formalising Read-Copy-Update
	Related Work
	References

	Interleaving and Lock-Step Semantics for Analysis and Verification of GPU Kernels
	Introduction
	A Background Example
	Interleaving Semantics for GPU Kernels
	Syntax
	Operational Semantics

	Lock-Step Semantics for GPU Kernels
	Predication of a Single Thread
	Lock-Step Execution of All Threads

	Equivalence between Interleaving and Lock-Step Semantics
	Implementation and Experiments
	Related Work and Conclusion
	References

	Verifying Concurrent Programs against Sequential Specifications
	Introduction
	Preliminaries
	Unbounded Concurrent Systems
	Conflict Serializability
	Linearizability
	Linearizability with Pending-Closed Specifications

	Deciding Conflict Serializability
	Deciding Static Linearizability
	Undecidability of Linearizability in the General Case
	Deciding Bounded Barrier Linearizability
	Related Work
	References

	Session VI: Process Calculi
	On Distributability in Process Calculi
	Introduction
	Process Calculi
	Encodings and Quality Criteria

	Distributability
	Distributable Processes
	Preservation of Distributability
	Distributable Reductions

	Separation by the Synchronisation Pattern M
	The Synchronisation Pattern M
	Distributability of the Pi-calculus
	Distributability in Other Calculi

	Another Synchronisation Pattern
	Conclusion
	References

	Behavioral Polymorphism and Parametricity in Session-Based Communication
	Introduction
	Polymorphic Session Types
	The Cloud Application Server, Revisited
	Polymorphic Session-Typed Processes Are Strongly Normalizing
	Relational Parametricity for Session-Typed Processes
	Using Parametricity to Reason about the Cloud Server
	Related Work
	Concluding Remarks
	References

	Higher-Order Processes, Functions, and Sessions: A Monadic Integration
	Introduction
	Processes, Session Types and Functional Computation
	Combining Sessions and Functions
	The Contextual Monad
	Value Communication (and)
	Forwarding and Termination
	Example: Streams
	Linear Channel Communication (and)
	Choice and Branching (and)
	Example: An App Store
	Example: A List Process
	Sharing and Replication (!)

	Extended Examples
	Metatheory
	Related Work and Conclusion
	References

	Concurrent Flexible Reversibility
	Introduction
	Informal Presentation
	The croll- Calculus: Syntax and Semantics
	Syntax
	Reduction Semantics
	Barbed Congruence

	croll- Expressiveness
	Alternative Idioms
	Comparing croll- and roll-

	Programming in croll-
	Asynchronous Interacting Transactions
	Related Work and Conclusion
	References

	Session VII: Taming Concurrency
	Structural Lock Correlation with Ownership Types
	Introduction
	A Model of Structural Lock Correlation
	Ownership-Based Effects
	Structural Lock Correlation

	Examples
	The Type System for Structural Lock Correlation
	Dynamic Semantics
	Related Work
	Conclusion
	References

	Taming Confusion for Modeling and Implementing Probabilistic Concurrent Systems
	Introduction
	Preliminaries
	Covering Petri Nets by Agents
	Probabilistic Covered Petri Nets
	A Distributed Scheduling Algorithm for Making Probabilistic Choices
	Related Work
	Epilogue
	References

	Session VIII: Model Checking and Verification
	Model-Checking Higher-Order Programs with Recursive Types
	Introduction
	Preliminaries
	Recursive Intersection Types
	HORS

	Model Checking HORS
	Type Inference Procedure
	Type Checking by SAT Solving

	Applications
	Model-Checking Functional Objects
	Model-Checking Higher-Order Multi-threaded Programs

	Implementation and Experiments
	Related Work
	References

	Counterexample-Guided Precondition Inference
	Introduction
	Examples
	Preliminaries
	Precondition Inference
	Counterexample-Guided Precondition Inference
	Refinement for Precondition Inference
	Predicate Inference

	Experimental Results
	Related Work
	Conclusion
	References

	Information Reuse for Multi-goal Reachability Analyses
	Introduction
	Test-Goal Automata
	Reasoning on Test Goals
	Multi-goal Reachability Analysis
	Experiments
	Related Work
	Conclusion and Future Work
	References

	Session IX: Weak-Memory Concurrency and Verification
	Quarantining Weakness
	Introduction
	Background: Linearizability
	Related Work
	Traces
	Memory Actions and Memory Orders
	Components
	Linearizability
	Proving Linearizability
	Composition
	Properties of Linearizability
	Conclusion
	References

	Software Verification for Weak Memory via Program Transformation
	Introduction
	Context: Axiomatic Memory Model
	Simulating Weak Behaviours on SC
	Abstract Machine
	Illustration Using Examples
	Equivalence of the Axiomatic Model and the Abstract Machine
	Instrumentation

	Implementation
	Overview
	Abstract Event Structures
	Detecting Critical Cycles
	Selecting and Instrumenting Delay Pairs
	Weighted Selection of Unsafe Pairs

	Experimental Results
	Conclusion
	References

	Checking and Enforcing Robustness against TSO
	Introduction
	Parallel Programs
	TSO Robustness
	Attacks on TSO Robustness
	Instrumentation
	Instrumentation of the Attacker
	Instrumentation of Helpers
	Soundness and Completeness

	TSO Robustness for Parameterized Programs
	Fence Insertion
	Fence Sets for Attacks
	Computing an Optimal Valid Fence Set

	Experimental Evaluation
	Examples
	Benchmarking
	Discussion

	References

	Session X: Types, Inference, and Analysis
	GADTs Meet Subtyping
	Introduction
	Examples
	A Formal Setting
	The Subtyping Relation
	The Algebra of Variances
	A Judgment for Variance of Type Expressions
	Variance Annotations in ADTs
	Variance Annotations in GADTs

	Checking Variances of GADT
	Expressing Decomposability
	Variable Occurrences
	Context Zipping
	Syntactic Decomposability

	Discussion
	Upward and Downward Closure in a ML Type System
	A Better Control on Upward and Downward-Closure
	Subtyping Constraints and Variance Assignment

	Related Work
	Future Work
	Conclusion
	References

	A Data Driven Approach for Algebraic Loop Invariants
	Introduction
	Overview of the Technique
	Preliminaries
	Matrix Algebra

	The Guess-and-Check Algorithm
	Connections between Null Spaces and Invariants
	Check Candidate Invariants
	Nested Loops

	Extensions
	From Algebraic to Linear Invariants
	Richer Theories

	Experimental Evaluation
	Related Work
	Conclusion
	References

	Automatic Type Inference for Amortised Heap-Space Analysis
	Introduction
	Informal Presentation and Examples
	System RAJA
	Typing RAJA

	Type Inference for RAJA
	Constraint Generation
	Constraint Solving

	Experimental Results
	Conclusions and Related Work
	References

	Author Index

