
Enterprise Resource Planning
Requirements Process: The Need
for Semantic Verification

Peter Bollen

Abstract This paper reviews the relevance of requirements determination in the
commercial-off-the-shelf (COTS) enterprise software era. State-of-the-art
requirements determination methods must contain, facilities for allowing semantic
verification. We will introduce a conceptual modelling approach that fulfills this
requirement and that can be used in the process of ERP configuration and
requirements determination in general. The fact-based conceptual modelling
approach that we will use in this paper is CogNIAM.

1 Introduction

The London Stock exchange automated trading system Taurus, had to be with-
drawn before it ever was used [38]. The failure of National Insurance Recording
System in England lead to tax overpayments by 800,000 people [40]. These are
examples of organizations that have become victims of an unsatisfactory user
requirements determination process. Unsatisfactory user requirements determina-
tion is one of the most prevalent reasons for faulty information systems or
information systems that turn out to be overdue and too costly. Requirements
determination is the least well-defined phase in the systems development process
[17] and: ‘‘has been widely recognized as the most difficult activity of information
systems development.’’ ([10], p. 224). Failures in the requirements determination
process represent one of the leading causes of system failure: ‘‘Given an appro-
priate design, most information systems departments can successfully implement a
system. The big problem is correctly determining information requirements and
designing the right system.’’ ([45], p. 52). Many IS failures can be attributed to a

P. Bollen (&)
Maastricht University, Maastricht, Netherlands
e-mail: p.bollen@maastrichtuniversity.nl

F. Piazolo and M. Felderer (eds.), Innovation and Future of Enterprise
Information Systems, Lecture Notes in Information Systems and Organisation 4,
DOI: 10.1007/978-3-642-37021-2_6, � Springer-Verlag Berlin Heidelberg 2013

53



lack of clear and specific information requirements.’’ ([11], p. 118). ‘‘The major
reason that IS does not meet user expectation is a failure to obtain the correct and
complete set of user requirements.’’ ([47], p. 412) ‘‘Often, much of post-delivery
maintenance work can be traced to requirements which had been poorly or falsely
described in the system requirements specification (SRS), or were missed alto-
gether.’’ ([22], p. 161). Errors in the requirements specification caused by a faulty
requirements determination process can remain latent until the later stages in the
IS development process ([43], p. 666) and will cost a manifold to fix in these later
stages [3, 4].

The information systems development market place changed in the early
nineties of the last century when the product software-suppliers, e.g. MFG/PRO,
IFS, ORACLE, SAP, BAAN, Marshal, Peoplesoft ([1], p. 369, [34], p. 387–389)
started to sell their enterprise solutions on the waves of the Business Process
Reengineering (BPR) sea [15, 20]. These product software solutions, promised to
solve many problems that were caused by the software crisis and were considered
to be an attractive investment option in ICT for the large (Fortune 500) companies.
The implementation of, for example, ERP systems in a company, however, in most
cases meant that the business process had to be reengineered or redesigned to fit
the ‘reference-model’ that underlies the ERP package. This reengineering process
turned out to be feasible for standard application functionality, for example,
accounting, payroll, human resource management, inventory control. However,
company-specific, functionality remained a problem in the first generation ERP-
solutions. The second generation ERP-solutions, however, tried to redefine the
concept of company-specific functionality, by developing ‘standardized’ software
solutions for specific ‘branches’, for example, health-care, utilities, retail and so
forth [8]. An example is Customer–Relationship Management (CRM) by Siebel
[26]. The development of the additional functionality in these second generation
ERP systems, implied, in many cases, additional reengineering efforts on these
specific application domains before an implementation could take place. In spite of
the availability of the second –generation ERP solutions, many companies needed
customized modules and interfaces that allows them to support the specific parts of
their business [37]. In the last decade firms have added modules that address inter-
firm activities [25] and cross-organizational coordination [13]. We will call these
ERP-implementations third generation ERP systems.

2 Roles in Requirements Determination

The improvement of the requirements determination processes for enterprise
applications is still a relevant research subject within the field of business infor-
mation systems because improving the state of the art in requirements determi-
nation methods to be applied in these requirements determination processes will
have the following impact on organizations:

54 P. Bollen



• It will enable them to express their (information) requirements using less
(human) resources (more efficient).

• It will enable them to express their (information) requirements in a more precise,
consistent and complete way.

If we now look back at the development in the development of (business)
information systems over the past 60 years we can distinguish a number of roles in
the requirements determination process:

1. The role of user or (business domain expert), these roles involve the knowledge of
the business domain as it exist with the knowledge workers in the enterprise, for
example the knowledge on how to process an invoice or how to approve a loan.

2. The role of the analyst, this role involves the knowledge on how to elicitate the
knowledge of a knowledge worker in the focal enterprise in a format that can be
used by a developer to develop an application system. The result of the work of
the analyst we will call a requirements specification.

3. The role of the systems developer, this role involves the knowledge on how to
transform an information systems specification into a working information
system that complies with the functional requirements as embedded in the
requirements specification.

In Fig. 1 we have illustrated the general relationships between the aforemen-
tioned roles.

The extent in which the role of an analyst can be played perfectly in the
requirements determination process depends upon the availability of ‘a way of
working’, ‘a way of modeling’ and ‘a way of controlling’ ([46], p. 14). A way of
modeling refers to the model types that are required: ‘‘A way of modeling struc-
tures the models which can be used in information systems development. Several
models are usually required for problem specification and solution in the appli-
cation area’’ ([46], p. 15).

A way of working or a prescriptive process model [32]: ‘‘is a description of
processes at the type level. It defines how to use the concepts defined within a
product Model. A prescriptive Process Model is used to describe ‘how things must/
should/could be done.’’ ([32], p. 62). The way of working refers to the process-
oriented view of information system development, whereas the way of modeling
refers to the product-oriented view of information system development.

User or
domain 
expert

Information systems
specification in which
Functional
Requirements are
embedded

Analyst 

Requirements
Determination
Process

Developer

Fig. 1 The roles in the
requirements determination
process in general

Enterprise Resource Planning Requirements Process 55



2.1 Sub-Steps in Requirements Determination

The general requirements determination process from Sect. 2.1 is generally
viewed as consisting of three steps [10, 21]:

1. Information gathering (or requirements elicitation), during which an analyst
elicitates requirements from (a) user (s) or domain expert(s),

2. Representation (or requirements specification), in which those requirements are
specified in some modeling language by the analyst,

3. Verification (or requirements validation) in which the analyst verifies the cor-
rectness of these requirements with the user.

If we consider the aforementioned steps in the requirements determination
process, then we can state that the scientific research on these steps has not
exclusively taken place in the fields of Fig. 1. For example, with respect to the step
information gathering or requirements elicitation, substantial research has taken
place within the field of Knowledge Engineering [2] leading to knowledge
acquisition methods like KADS [9]. These approaches are primarily directed at
‘knowledge’ green fields, i.e. those application domains that were generally con-
sidered to contain predominantly ‘tacit’ knowledge and these approaches were not
developed for business application domains in which available knowledge has to
be categorized and at most be made explicit.

With respect to the second step in the general requirements determination
process: representation or requirements specification we can conclude that the
definition of requirements specification languages has been a major research
stream within the conceptual modeling and IS fields of study that deal with
requirements determination. A Major data-oriented ‘language family’ in this
respect is the (extended) ER language [12, 40]. As an example of a ‘process-
oriented’ specification language we can consider Data Flow Diagrams (DFD’s)
[39] or Activity Diagrams (A-schemas) in ISAC [24].

With respect to the third step: requirements validation (or verification) we must
make a distinction into semantic verification and syntactic verification. Semantic
verification is the type of validation that is concerned with the capturing of the
‘right’ domain requirements in terms of the extent in which what the analyst
records is what the domain user intends to express. Dullea et al. ([16], p. 171–172)
define the concept semantic validity as follows: ‘‘An entity-relationship diagram is
semantically valid only when each and every relationship exactly represents the
modeler’s concept of the problem domain’’. We will generalize this concept to
every requirements determination method and more importantly, we will extend
this concept beyond the modeler’s interpretation of the application domain to the
user’s interpretation for the application domain, into our definition of a semantic
correct specification. The outcome of a requirements determination process
expressed in some specification language, therefore, should always be a seman-
tically correct specification.

56 P. Bollen



Syntactic verification, merely deals with the compliance of a specific applica-
tion specification to the modeling rules that are contained in the meta-model of the
specification language. We must be aware of the possibility that a semantic
incorrect specification can be syntactically correct in any given situation.

The steps in the requirements determination process that cover the semantic
verification are missing in the existing requirements determination methods for
management information systems or business information systems ([18], p. 376).
In this paper we will introduce a requirements determination method in which the
semantic verification is incorporated in an explicit way.

2.2 Eras in Requirements Determination

In the 1970s a clear separation took place between the functional requirements and
the way in which these functional requirements were coded in a specific imple-
mentation technology [42]. The distinction between an information analyst and
systems developer emerged. The application of information systems development
methodologies was aimed at the creation of ‘tailor-made’ information systems in
which the needs of the domain users served as input.

In the ERP era (1990 and onwards) the roles of the user (or domain expert),
analyst and developer were becoming more iterative instead of the linear sequence
in which those roles were performed in the 1970 and 1980s. Because the imple-
mentation of ERP-systems usually is linked to business process redesign [14, 33]
or a business process reengineering exercise ([35], p. 72), the role of the user or
domain expert becomes more complex. In cooperation with the ERP-analyst the
domain expert has to evaluate a number of proposed ways of working that will be
supported by the specific ERP system in the company ([36], p. 183).

The roles that we have depicted in Fig. 1 have deliberately different names in
Fig. 2, because an ERP analyst is not only modeling the user requirement of a
proposed (or ‘to-be’) business process but in addition has to confront the user or
domain expert with the different possible (or ‘to-be’) business logics or best
practices that are available in the chosen ERP system. The business, therefore, is
expected to select and adapt a reference model, based on available solutions with
minimal changes and leaving no record of the enterprise’s original requirements
([36], p. 183). On the other hand, even when they decide to implement an ERP
system some organizations (for example Reebok) still choose to customize ([23],
p. 417) and enhance the standard functionality of the ERP system [37]. We remark,
that the focus of the requirements determination in this article is on the concep-
tualization of the information and decision rules that must be contained in an
(ERP) application. The available functionality in the templates of an ERP product,
however determines the ‘boundaries of practice’ for the organization that wants to
implement an ERP system [44].

Enterprise Resource Planning Requirements Process 57



3 A Method for ERP Requirements Determination
and Semantic Verification

In this section we will introduce a conceptual modeling approach that has proven
successfully for the creation of (IS)-specifications that require a built-in semantic
verification process. This approach is called the fact-based conceptual modeling
approach and has evolved over 35 years from an architecture for databases [27]
towards a versatile methodology for specifying knowledge bases, business rules
and business processes [28]. Currently the fact-based approach is embedded in two
main methods : Object Role Modeling (ORM-2) [19] and CogNIAM [28, 29]. Both
methods take a single fact encoding modeling construct as a starting point. Both
methods also apply a rigid ‘way of working’ for creating a conceptual schema for
the data perspective. These methods, differ, however in terms of focus. In ORM-(2)
a very large selection of constraints to model business rules in the data perspective
has been introduced. In CogNIAM the focus is on a generic knowledge architecture
that also covers the process and behavioural perspectives in conceptual modeling.
In this article we will illustrate the application of the fact-based approach by using
CogNIAM’s knowledge architecture and notational convention for fact type dia-
grams. A theoretical foundation for CogNIAM can be found in [5–7].

In fact-based modeling we will use tangible documents or ‘data-use cases’ as a
starting point for the modeling process. In most, if not all cases, a verbalizable
knowledge source is a document that often is incomplete, informal, ambiguous,
possibly redundant and possibly inconsistent. As a result of applying the fact-
oriented knowledge extracting procedure (KEP), we will yield a document that only
contains structured knowledge or a knowledge grammar which structures verbal-
izable knowledge into the following elements (knowledge reference model(KRM))
([29], p. 766):

1. Knowledge domain sentences.
2. Definitions and naming conventions for concepts used in domain sentences.
3. Knowledge domain fact types including sentence group templates.

User or
domain 
expert ERP

specification in which
‘to-be’Functional
Requirements are
embedded

Available
functionality

‘to-be’functionality
propositions

‘to-be’functionality
discussion

‘as-is’ functionality
discussion ERP-Analyst 

Requirements
Determination
Process

ERP-configurer

Fig. 2 The roles in the ERP requirements determination process

58 P. Bollen



4. Population state (transition) constraints or validation rules for the knowledge
domain.

5. Derivation rules that specify how specific domain sentences can be derived
from other domain sentences.

6. Rules that specify what fact instances can be inserted, updated or deleted.
7. Event rules that specify when a fact is derived from other facts or when a fact

must be inserted, updated or deleted.

A KRM of a complete organization would contain hundreds, possibly thousands
of concept definitions, naming conventions, fact types, population constraints,
derivation rules and event rules. In [30] a successful application of fact-based
modeling using the NIAM2007 method (a predecessor to CogNIAM) for
requirements analysis is documented. In this project 125 fact types were derived,
1260 concept definitions were created, 704 (business rule) constraints were
modeled and 20 derivation rules were derived.

The fact-based knowledge extracting procedure (KEP) specifies how we can
transform a possibly informal, mostly incomplete, mostly undetermined, possibly
redundant and possibly inconsistent description of business domain knowledge
into the following classes: informal comment, non-verbalizable knowledge and
verbalizable knowledge to be classified into types 1 through 7 of the KRM. We
note that the knowledge extraction procedure that is needed to instantiate the
elements 1 through 5 (of the KRM) is an extension of ORM’s conceptual schema
design procedure (CSDP) [19]. In business domains, furthermore, we can capture
the dynamic aspects by defining the exchange rules (element 6 of the KRM) and
the event rules (element 7 of the KRM).

3.1 Knowledge Domain Sentences

The first element in the KRM is the group of sentences that represent an ele-
mentary fact (ground fact) in the domain. In our EOQ determination domain we
encounter following example elementary sentences (that represent elementary
(ground) facts):

The quantity of 1500 is the annual demand for the item ab3456
The quantity of 2500 is the annual demand for the item ab9876
The item ab3456 has an ordering cost of 25 euros
The item ab9876 has an ordering cost of 55 euros
The item ab3456 has a unit holding cost of 0,5 euros
The item ab9876 has a unit holding cost of 0,6 euros
The Item ab3456 has an economic order quantity 387
The Item df4567 has an economic order quantity 677

These sentences have a meaning for the people working in the logistics
department. However, as soon as people communicate with people outside of this

Enterprise Resource Planning Requirements Process 59



department, additional semantics have to be captured. For example, it should be
agreed upon to what time-frame the amount of holding costs for a product refers: a
day, a week, a month, a year ?. These agreements should be part of a list of concept
definitions in which it will be recorded that the term unit holding cost always refers
to the unit holding costs per year. Another semantic issue that has to be defined in
a list of concept definitions is the naming conventions for domain concepts. For
example of what name class is ‘ab3456’ an instance? In practice when there is
inter-organizational communication it must be crystal-clear which name classes
can be used in communication. In case more two or more alternative name classes
exist in the domain, it must be agreed upon to explicitly qualify the names used in
the communication with the name classes:

The item with item code ab3456 has an ordering cost of 25
euros
The item with EAN bar code 8734576287465 has an ordering cost
of 55 euros

3.2 Concept Definitions and Naming Conventions
for Concepts Used in Domain Sentences

In order to be able to grasp the meaning of sentences in the business domain it was
argued that when two or more actors are involved in a communication process,
semantic consistency can only be achieved if the different actors have the same
understanding of concepts and naming conventions. This will be established in
CogNIAM by creating (and maintaining) a list of concept definitions. An instance
of such a list of concept definitions for our running example is given in Table 1.

3.3 Knowledge Domain Fact Types

The next step in CogNIAM is the generalization of the ground facts into fact type
forms. The example ground facts from Sect. 3.1 will lead to the following fact type
forms by replacing the variable parts in those sentence by ‘placeholders’ (\..[):

The quantity \Quantity[ is the annual demand for the item
\Item[
The item\Item[has an ordering cost\Cost[
The item\Item[has a unit holding cost\Cost[

Next to the difference in naming conventions, inter-organizational and even
intra-organizational communication might necessitate the existence of two or more

60 P. Bollen



fact type forms to communicate instances of the same fact type in a target group
specific way. For example for the fact type Annual Demand Quantity the following
two fact type forms might exist together, each serving a different target group
within or outside) the organization:

1: The quantity\Quantity[is the annual demand for the item
\Item[
2: Item\Item[has an annual demand of quantity\Quantity[

In Fig. 3 we have graphically shown the fact type Annual Demand Quantity
together with the defining fact types for the object types that play the ‘variable’
roles in the fact type: Item and Quantity.

We note that we can define as many fact type forms for a fact type as are needed
by the domain(s), e.g. we might add fact type forms in German, Russian, French
and Spanish if a company’s international business contacts require this. The black
rectangles in the low-right corner of a ‘variable’ denote that a value must exist in
order to get a correct sentence.

Table 1 The list of concept definitions fort he EOQ

List of definitions for economic order quantity business process

Item An individual product that has an identifying item code and is held in
inventory somewhere along the value chain.synonym: stock keeping unit

Item code An {Item code} is a unique signification for an [item] that enables us to
identify a specific [Item] within the set of all [Item]s within the context
of a business organization

EAN bar code An {EAN bar code} is a unique signification for an [Item] that enables us to
identify a specific [Item]within the set of all [Item]s within the context
of a business organization in Europe

Lot A {lot} is a quantity of [Item]s that are processed together
Cost A sacrifice or expenditure
Ordering cost The [Cost] of preparing a purchase order for a supplier or a production order

for shop
Inventory holding

cost
The sum of the [Cost] of capital and the variable [Cost]s of keeping [Item]s

on hand, such as storage and handling, taxes, insurance and shrinking,
for a time period of a year

Cycle inventory
cost

The portion of [Inventory Holding Cost] that varies directly with [Lot] size

Economic order
quantity

An {Economic Order Quantity} is the quantity of a [Lot] that minimizes
total annual [Cycle Inventory Cost] and [Ordering Cost] for a given
[item]

Annual demand The yearly total demand for a given [Item]
Natural number A unique signification for an [Economic Order Quantity] or [Annual

Demand] that enables us to identify a specific quantity within the set of
all [Economic Order Quantity]s or [Annual Demand]s

Unit holding costs The costs for holding one unit of an [Item] in inventory for a year
Dollar amount A unique signification for a [Cost] that enables us to identify a specific

[Cost] within the set of all [Cost]s

Enterprise Resource Planning Requirements Process 61



3.4 State (Transition) Constraints or Validation Rules

In Fig. 3 we have shown the model for the fact type Annual Demand Quantity. The
next element of the KRM is the detection of those business rules that can be
expressed as constraints or validation rules on the possible populations of the fact
type(s), e.g. business rules that specify which actual sentence combinations are
allowed to exist at any point in time, and which transitions between sentence
combinations are permitted. In fact based modeling a large number of constraint
types exist: uniqueness- mandatory role-, value, set-comparison-, ring constraints
[19]. In this section we will give an illustration of uniqueness constraints and
referential constraints.

Uniqueness Constraints
As an example of the application of a semantic verification process we will

illustrate how we can meticulously derive all uniqueness constraints for a given
fact type, by starting with sentence instances that represent ground facts:

The quantity of 1500 is the annual demand for the item ab3456
(sentence 1)

We will now create a second example sentence in which the value of the 1st
variable or placeholder has changed:

The quantity of 1200 is the annual demand for the item ab3456
(sentence 2)

We confront the domain expert with these two example sentences and ask him/
her whether these sentences can exist in combination at any point in time. The
answer of the domain expert is: No, these sentences can not exist in combination,
because at a given point in time there exists (at most) one specific value for the
annual demand for a given item. This finding now has lead us to the detection of
uniqueness constraint C1 defined as an arrow covering the variable Item of fact
type AnnualDemandQuantity in Fig. 4. We will now create a third example sen-
tence by changing the value of the 2nd variable (of sentence 1):

Fig. 3 Domain model for fact type annual demand quantity including object types

62 P. Bollen



The quantity of 1500 is the annual demand for the item cd6457
(sentence 3)

In this case the domain expert will confirm that it is possible that sentences 1
and 3 coexist at any point in time. This means that there does not exist an
uniqueness constraint that is defined on the role Quantity of the fact type Annu-
alDemandQuantity (see Fig. 4). Uniqueness constraints C2 and C3 on the object
defining fact types Item and Quantity are implied because these fact types are
unary, i.e. they contain exactly one variable.

Referential Constraints
A second group of constraints or validation rules is concerned with the issue of

which object type is referenced by a variable in a fact type. The variable Quantity
in fact type Annual Demand Quantity is played by the object type Quantity, hence
the subset constraint c5 departing from the variable role quantity in fact type
Annual Demand Quantity and ending in the variable role NaturalNumber from the
object defining fact type Quantity (see Fig. 4). Implying that at any point in time
the set of annual demand quantities has to be a subset of all quantities.

We note that the referential constraint for the variable item from the fact type
Annual Demand Quantity to the object type item is the equality constraint C4 (see
Fig. 4). This means that for every item that exists an annual demand quantity must
be known. Similar reasoning for constraints C7 and C11: for every item a holding
cost and ordering cost must be recorded.

3.5 Derivation Rules

In Fig. 5 we have given a complete domain specific fact type model for the EOQ
domain area in which we have added all uniqueness and referential constraints.

Fig. 4 Fact type annual demand quality including object types and uniqueness- and referential
constraints

Enterprise Resource Planning Requirements Process 63



Furthermore, it can be noticed from the referential constraints that we do not
record an Economic Order Quantity for every item. But what we do know is that
for those items that fulfill the EOQ assumptions we will calculate the economic
order quantity using the EOQ formula and rounding it to the next integer number.
We will model this in fact-based modeling using derivation rules. In CogNIAM a
derivation rule is signified by an ‘f’ box connected to the variables in the fact type
that will be derived using the logic from the derivation rule (see Fig. 5).

To specify the logic of the derivation rule we use the notational convention
(definition style) from ORM-2 ([19], p. 99) in Fig. 6.

Fig. 5 Complete domain specific model for economic order quantity

64 P. Bollen



3.6 Exchange Rules

In the former section we explained how instances of a derived fact type can be
‘calculated’ by using a derivation rule. For those fact types that are non-derivable
or asserted we need to specify how, instances can be added, updated or deleted
from the information base. Basically we distinguish between an insert (I), an
update (U) and a delete (D) exchange rule.

3.7 Event Rules

The final element in the knowledge reference model (KRM) are the event rules. An
event rule basically determines when (an) exchange rule(s) and/or derivation
rules(s) must be executed. In the domain model from Fig. 5 three event rules are
contained. Event rule Er1 (Dr1 � U Item) tells us that whenever an update (U)
takes place on the holding cost for a specific item, derivation rule Dr1 must be
executed. In semantic terms this means that a new EOQ is calculated as soon as the
holding cost of an item change. A similar reasoning applies to event rules Er2 and
Er3 for a change in order costs and annual demand quantity.

4 Conclusion

What we can conclude is that in spite of the trends in information systems
development from ‘tailor-made’ towards ‘commercial-off-the-shelf’ (COTS)
software implementations, the requirement determination process still is a sig-
nificant process in the development life cycle of information systems. Moreover,
the increase in complexity of the requirements determination process due to the
use of ‘pre-fabricated’ software with its numerous implementation options (see the
discussion on configuration tables in [14]) has basically increased the need for
requirements determination methods that have a way of modeling that can capture
the complete set of user requirements and which way of working will guide the
analyst in extracting all relevant business entities and business rules for a specific
application domain. The steps in the requirements determination process that cover
the semantic verification are missing in the existing requirements determination

Fig. 6 Derivation rule logic for derivation rule Dr 1

Enterprise Resource Planning Requirements Process 65



methods for management information systems or business information systems
([18], p. 376). We have shown that there exists generic RE models [31], i.e.
CogNIAM [28] that fill this void in semantic-oriented coordination [13] and that
can deliver a semantically verified requirements specification by guiding ERP-
analysts and ERP-configurers in their task.

References

1. Bansal, V., Negi, T.: A metric for ERP complexity. LNBIP 7, 369–379 (2008)
2. Barrett, A., Edwards, J.: Knowledge elicitation and knowledge representation in a large

domain with multiple experts. Exp. Syst. Appl. 8(1), 169–176 (1995)
3. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
4. Boehm, B: Software Risk Management. IEEE computer society press, Los Alamitos (1989)
5. Bollen, P.: The Natural Language Modeling Procedure’. In: Halevy, A., Gal, A. (eds.)

Proceedings Fifth Workshop on Next Generation Information Technologies and Systems
(NGITS’2002), Lecture Notes in Computer Science 2382, pp. 123–146. Springer, Berlin
(2002)

6. Bollen, P.: On the applicability of requirements determination methods. Ph.D thesis. Faculty
of Management and Organization. Rijksuniversiteit Groningen (2004)

7. Bollen, P.: Natural language modeling for business application semantics. J. Inf. Sci.
Technol. 2(3), 18–48 (2005)

8. Boudreau, M. ERP Implementation and Forms of Organizational Change. Working paper
Georgia State University (1999)

9. Breuker, J., Wielinga, B.: Knowledge acquisition as modeling expertise; The KADS
methodology. Paper presented at the 1st European workshop on knowledge acquisition for
knowledge based systems. Reading University (1987)

10. Browne, G., Rogich, M.: An empirical investigation of user requirements elicitation:
comparing the effectiveness of prompting techniques. J. Manag. Inf. Syst. 17(4), 223–249
(2001)

11. Byrd, T., Cossick, K., Zmud, R.: A synthesis of research on requirements analysis and
knowledge acquisition techniques. MIS Q. 16(1), 117–138 (1992)

12. Chen, P.: The entity-relationship model: towards a unified view of data. ACM TODS 1(1),
9–36 (1976)

13. Daneva, M., Wieringa, R.: A coordination complexity model to support requirements
engineering for cross-organizational ERP. Requirements Engineering, 14th IEEE
International Conference, pp. 311–314 (2006)

14. Davenport, T.: Putting the enterprise into the enterprise system. Harvard Bus. Rev. 76(4),
121–131 (1998)

15. Davenport, T., Short, J.: The new industrial engineering: information technology and
business process redesign. Sloan Manag. Rev. 31(4), 11–27 (1990)

16. Dullea, J., Song, I.-Y., Lamprou, I.: An analysis of structural validity in entity-relationship
modeling. Data Knowl. Eng. 47, 167–205 (2003)

17. Flynn, D.: Information Systems Requirements: Determination and Analysis. McGraw-Hill,
London (1992)

18. Goldin, L., Berry, D.: Abstfinder, a prototype natural language text abstraction finder for use
in requirements elicitation. Aut. Softw. Eng. 4, 375–412 (1997)

19. Halpin, T., Morgan, T.: Information Modeling and Relational Databases 2nd edn. Morgan
Kaufmann Publishers, San Francisco (2008)

20. Hammer, M.: Reengineering work: don’t automate, obliterate. Harvard Bus. Rev. 68 (4),
104–112 (1990)

66 P. Bollen



21. Lalioti, V., Loucopoulos, P.: Visualisation of conceptual specifications. Inf. Syst. 19(3),
291–309 (1994)

22. Lang, M., Duggan, J.: A tool to support collaborative software requirements management.
Requir. Eng. 6, 161–172 (2001)

23. Light, B.: The maintenance implications of the customization of ERP software. J. Softw.
Maint. Evol. Res. Pract. 13, 415–429 (2001)

24. Lundeberg, M., Goldkuhl, G., Nilsson, G.: A systematic approach to information systems
development. Inf. Syst. 4, 1–12, 93–118 (1979)

25. Madapusi, A., D’Souza, D.: The influence of ERP system implementation on the operational
performance of an organization. Int. J. Inf. Manag. 32, 24–34 (2012)

26. Molenaar, T.: Siebel zet in op personeelsbeheer. Computable 43: 26 oktober: p. 11 (2001)
27. Nijssen, G.M.: On the gross architecture for the next generation database management

systems. In: Gilchrist, B., (ed.) Information Processing’77, pp. 327–335 (1977)
28. Nijssen, G.M., Le Cat, A.: Kennis Gebaseerd Werken: de manier om kennis productief te

Maken. PNA Publishing, Heerlen (2009)
29. Nijssen, M., Lemmens, I.: Verbalization for business rules and two flavors of verbalization

for fact examples. LNCS 5333, 760–769 (2008)
30. Nijssen, M., Lemmens, I., Mak, R.: Fact-orientation applied to develop a flexible

employment benefits system. LNCS 5872, 745–756 (2009)
31. Niu, N., Easterbrook, S.: Exploiting COTS-based RE methods: an experience report. LNCS

5030, 212–216 (2008)
32. Nurcan, S., Rolland, C.: A multi-method for defining the organizational change. Inf. Softw.

Technol. 45, 61–82 (2003)
33. Rolland, C., Prakash, N.: Bridging the gap between organisational needs and ERP

functionality. Requir. Eng. 5, 180–193 (2000)
34. Siriginidi, S.: Enterprise resource planning in reengineering business. Bus. Process Manag.

6(5), 376–391 (2000)
35. Skok, W., Legge, M.: Evaluating enterprise resource planning (ERP) systems using an

interpretive approach. Knowl. Process Manag. 9(2), 72–82 (2002)
36. Soffer, P., Golany, B., Dori, D., Wand, Y.: Modelling off-the-shelf. Information systems

requirements: an ontological approach. Require. Eng. 6, 183–199 (2001)
37. Soffer, P., Golany, B., Dori, D.: ERP modeling: a comprehensive approach. Inf. Syst. 28(6),

673–690 (2003)
38. Stock exchange kills projects to focus on Taurus. (1989). Editorial
39. Computing NoSystem problems leave Inland revenue with £ 20 of taxpayers’ cash (2002).

Computer Weekly. February 14
40. Theory, T., Yang, D., Fry, J.: A logical design methodology for relational databases using the

extended E-R model. ACM Comput. Surv. 18(2), 197–222 (1986)
41. Tsichritzis, D., Klug, A.: The ANSI/X3/SPARC DBMS framework. Info. Syst. 3, 173–191

(1978)
42. Viller, S., Bowers, J., Rodden, T.: Human factors in requirements engineering: a survey of

human sciences literature relevant to the improvement of dependable systems development
processes. Interact. Comput. 11(6), 665–698 (1999)

43. Wagner, E., Scott, S.V., Galliers, R.: The creation of ‘best practice’ software: myth, reality
and ethics. Inf. Organ. 16, 251–275 (2006)

44. Wetherbe, J.: Executive information requirements: getting it right. MIS Q. 15(1), 51–65
(1991)

45. Wijers, G.: Modelling support in information systems development. Doctoral thesis.
Technical University Delft (1991)

46. Wu, I.-L., Shen, Y.-C.: A model for exploring the impact of purchasing strategies on user
requirements determination of e-SRM. Inf. Manag. 43, 411–422 (2006)

47. Yourdon, E., Constantine, L.: Structured Design. Prentice Hall, (1979)

Enterprise Resource Planning Requirements Process 67


	6 Enterprise Resource Planning Requirements Process: The Need for Semantic Verification
	Abstract
	1…Introduction
	2…Roles in Requirements DeterminationRequirements Determination
	2.1 Sub-Steps in Requirements DeterminationRequirements Determination
	2.2 Eras in Requirements Determination

	3…A Method for ERP Requirements Determination and Semantic Verification
	3.1 Knowledge Domain Sentences
	3.2 Concept Definitions and Naming Conventions for Concepts Used in Domain Sentences
	3.3 Knowledge Domain Fact Types
	3.4 State (Transition) Constraints or Validation Rules
	3.5 Derivation Rules
	3.6 Exchange Rules
	3.7 Event Rules

	4…Conclusion
	References


