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Abstract. Data mining techniques are widely applied and data ware-
housing is relatively important in this process. Both scalability and effi-
ciency have always been the key issues in data warehousing. Due to the
explosive growth of data, data warehousing today is facing tough chal-
lenges in these issues and traditional method encounters its bottleneck. In
this paper, we present a document-based data warehousing approach. In
our approach, the ETL process is carried out through MapReduce frame-
work and the data warehouse is constructed on a distributed, document-
oriented database. A case study is given to demonstrate details of the
entire process. Comparing with RDBMS based data warehousing, our
approach illustrates better scalability, flexibility and efficiency.

Keywords: Data Warehousing, Document-based, Big Data, MapRe-
duce.

1 Introduction

Data mining has always been a hotspot issue in computer science. Having the
rapid development in IT industry in the past two decades, data mining tech-
niques are now widely applied in almost every aspect of our economic and social
life and have enjoyed an explosive growth. From scientific research to Business
Intelligence systems, data mining is an irreplaceable part of the Knowledge Dis-
covery process.

Data warehouse is the basis of data mining, and is playing an important role in
modern IT industry and has evolved into an unique and popular business appli-
cation class. Early builders of data warehouses already consider those systems
to be key components of their data mining and even decision-support system
architecture [1].

Since the emergence of cloud computing, the demand of mining massive data
has become relatively urgent. In order to obtain valuable information hidden
in the ocean of data, data mining techniques are being applied to almost every
aspect of modern society. The ability of handling big data is so crucial that no
one could neglect. However, big data poses more challenges, among which, both
scalability and efficiency have always been the most important issues and have
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attracted tremendous interests. In recent years, large-scale data mining has been
extensively investigated [2], and many approaches have been proposed [3][4][5][6].

Traditional data warehousing is more like constructing a larger database, and
follows certain steps including requirements analysis, data modeling, normal-
ization or denormalization and so on [7]. However, as a RDBMS based data
warehouse, it is facing tougher challenges today. First of all, the problem comes
from scalability. The collected data is getting bigger and bigger, and even beyond
the tolerance of a traditional DBMS. Second, dealing with heterogeneous data
sources is complex. The schema of data sources could change more frequently
than before as the real business keep changing. The corresponding modification
job is a great burden, as redesign and reconstruction of the data warehouse
may take place from time to time. This could be tremendous time and money
consuming. Third, efficiency has become the bottleneck of RDBMS based data
warehouse. Data mining usually calls for millions of aggregation operations and
mathematical computations. Those operations are very likely to be inefficient
and complex because all data is organized as linked tables in RDBMS, thus each
query leads to several operations like projection and OUTER-JOIN. As a result,
the operating efficiency is sacrificed.

This paper focuses on presenting a better solution of data warehousing in
the big data era. We explore a document-based data warehousing approach.
This approach includes three phases, namely documentization phase, aggregation
phase and data loading phase. In the documentization phase, we extract all the
data from respective heterogeneous data sources, and write them to basic text
files. In the aggregation phase, a MapReduce process is applied to accomplish
ETL of data from multiple sources, and transform all the results into JSON
objects [8]. The main difference between our approach and the traditional ones
is that after the aggregation phase we keep all the data as recursive key/value
pairs, getting rid of their original schema which includes the table format and
foreign keys. The data loading phase is responsible for putting all the output
JSON objects into a document-oriented data warehouse. In order to demonstrate
details of the entire process, a case study is given in Section 4 and the result of
our experiments shows that our data warehouse is more scalable, efficient and
flexible.

The rest of this paper is organized as follows. Section 2 presents the back-
ground and related work. The Third section gives our solution and the fourth
section is a real case study in order to show details of the whole process. Evalu-
ations and discussions are also given in Section 4. Section 5 presents our future
plans and conclusion of this paper.

2 Background

2.1 Difference between Database and Data Warehouse

Data warehousing is an essential element of data mining or decision-support
system and has always been a focus in the database industry. Data warehouse
is a “subject-oriented, integrated, time-varying, non-volatile collection of data
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that is used primarily in organizational decision making” [9]. The main difference
between a data warehouse and a database is that the former one is targeting at
collecting useful data from heterogeneous sources, and seeking information and
patterns hidden behind the data. Whereas the later one is used to record data
generated during a transaction process. Therefore the ability of handling a huge
amount of data is more critical for a data warehouse and database emphasis
more on the atomic operation, which refers to accuracy and consistency in a
single operation.

Figure 1 is used to demonstrate different requirements for a data warehouse
and an ordinary database application. Data warehouse is a basic support for data
mining, whereas transaction process, for example, OLTP, is a typical applica-
tion of a database. In general, data mining is usually read-intensive and calls for
complex mathematical operations, but transaction processes are write-intensive
with simple operations. Therefore operating efficiency, including throughput and
response time, is more important for data warehouses and consistence and ac-
curacy is prior to an ordinary database.

COMPLEX OPERATION 

DATA MINING 

TRANSACTION 
PROCESSING 

READ INTENSIVE WRITE INTENSIVE 

SIMPLE OPERATION 

Fig. 1. Different Database Application Characteristics

2.2 Challenges in Data Warehouse

Considering both the different characteristics between data warehouses and
databases, and the demand of big data, we conclude the following three fea-
tures for a data warehouse as the most critical requirements.

Scalability

The data warehouse should have full support for dynamic scaling. When dealing
with big data, any database server would have the risk of running out of storage
and there is not a “large-enough-ever” storage. In the coming cloud era, dynamic
scaling is definitely the best solution.

Efficiency

This word here refers to two aspects, the efficiency of construction and main-
tenance of the data warehouse, and operating efficiency of the data warehouse
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responds to each query. Data mining usually studies large data set from multi-
ple sources. How convenient is the data immigration? How fast does the data
warehouse respond for millions of queries from data mining engine? Efficiency is
always of great concern.

Heterogeneity

In a real data mining application, data sources are usually heterogeneous. Data
sources may be RDBMS with different schema, or even different types of data
set, like XML files, logs or other NoSQL databases. Furthermore, changes in data
sources may take place at any time, including introducing new data sources, or
adjustment of schema due to commercial reasons. If the data warehouse is not
flexible enough to deal with heterogeneous sources, it will lead to reconstruction
of the data warehouse, which is really both money and time consuming. The
only solution is to put heterogeneity into consideration in designing your data
warehouse.

2.3 Related Work

Traditional data warehouse is constructed based on RDBMS, following certain
steps includes defining architecture of storage, integrating servers, designing
warehouse schema and views, implementing data extraction, cleansing, trans-
formation, loading and so on [10].

Even though Entity Relationship diagrams and other RDBMS techniques are
popularly used for database design in OLAP, the database designs recommended
by ER diagrams are inappropriate for decision support systems [10]. On one
hand, heterogeneous data sources are difficult to be integrated in one schema,
which is flexible enough to face possible adjustments of sources in the long run.
On the other hand, the RDBMS based data warehouse can not transcend limi-
tations of dynamic scaling due to the fixed schema.

The problem is so important that there have been lots of engineers working on
it and they have proposed lots of solutions. Yang Lai and Shi Zhongzhi proposed
an indexing method, aiming at more efficient data accessing for large scale data
mining [3]. Jane Zhao, proposed an optimization which adds a OLAP service
layer in between the data warehouse and data mining application [4]. Vuda
Sreenlvase Rao focus on distributed storage and has made some improvements
on the hardware [5]. Jin Han, et. al. believed that applying a shared-memory in
order to store temporary data, just like the idea of MemCache, would greatly
improve accessing efficiency [6].

These works have made some progress, yet they are still facing challenges. On
one hand, scalability remains a problem. When collected data gets larger than
the origin infrastructure thus corresponding hardware should be extended, but
that is not easy for these added in shared-memory [6] or OLAP query layer [4].
On the other hand, heterogeneity is making the problem harder. Both the schema
design and indexing system [3] lead to great modification job, because neither has
a support of incremental modification. And real business world changes rapidly,
any fixed schemas or indexes have problems adjust to any structural updates.
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3 Approach

This section gives a document-based data warehousing approach to tackle chal-
lenges in big data era. The entire process consists of three phases, namely doc-
umentization phase, aggregation phase and data loading phase, and is demon-
strated in Fig.2.

3.1 Glossary

MapReduce is a programming model and associated implementation for pro-
cessing and generating large data sets [11]. It is proposed by Google and used
for handling large data analyze tasks. MapReduce consists of two functions:
Map and Reduce. The Map function takes input key/value pairs and produces
intermediate data, also key/value pairs. The Reduce function collects the inter-
mediate data and produces the final output. This framework is a high efficient
distributed programming model and has been validated in recent years.

DFS (Distributed file system) is a file system that allows access to files from
multiple hosts via a shared computer network. This makes it possible for multiple
users on multiple machines to share files and storage resources. There are various
implementations, such as Google File System [12], BigTable [13] and Hadoop’s
HDFS [14].

JSON (JavaScript Object Notation) is a lightweight data-interchange format
[8]. It is based on a subset of the JavaScript Programming Language, Stan-
dard ECMA-262 3rd Edition - December 1999. JSON is a completely language-
independent text format, and is built on a collection of name/value pairs and an
ordered list of values.

3.2 Documentization Phase

The first challenge to tackle is heterogeneous data sources, varying from tradi-
tional RDBMS, to XML files, even log files and so on. Documentization refers to
extract data from original sources and transform them into independent docu-
ments. In this phase, we export all the data from each original sources into a set
of typical text files, and an extra document indicating corresponding structure
or format of each text file. This is a very important step which guarantees the
flexibility of our approach. After this phase, the overall system shall deals with
documents only, as shown in Fig.2.

3.3 Aggregation Phase

The core idea of our data warehousing approach is carried out in this phase.
In the big data era, thanks to distributed file systems, storage capacity is no
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Fig. 2. Document-Based Data Warehousing Process

longer a tough constraint. And the aggregation phase is aimed at promoting
query efficiency of the overall system.

Before getting started, all data exported from original databases are uploaded
on DFS. And afterwards, a MapRedeuce process is applied. The Map function
is applied to read through the data set by line, and transform each line into
recursive key/value pairs, having each attribute name as keys and its correspond
data as values, thus the intermediate output is produced. The Reduce function
is used to collect all the lines by separate identification key, as shown in Fig.2.
Lines from different table, which were linked by foreign keys in its previous
sources, are now gathered into one JSON object, and written to a document file
on DFS. Since data originally from different tables are now gathered via each
primary key, it is also convenient to kick out inconsistent data, wrong type data
and many other types of dirty data. The algorithm is given in Algorithm 1.

3.4 Data Loading Phase

For load balance and query efficiency considerations, we gather all the JSON
objects produced in last phase into multiple documents. In this phase, we read
all these files and insert the JSON objects into a document-oriented database.
Since all data are stored as JSON objects, which has a nature support for Object-
Oriented programming languages, such as JAVA and C++. All need to do in
future data mining process is to implement analyze algorithms in any Object-
Oriented programming languages without considering any SQL queries. This is
both agile and high efficient.
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Algorithm 1: MapReduce Data Preparation

Input: FileNames, OutputDirectory
Output: OutputFile

1 Procedure Mapper(key=Line Number, value=Line String)
2 begin
3 foreach attribute item in each Line do
4 if attribute item is not primary key then
5 attribute item ← {“attibute name:”, “attribute item”}
6 end
7 transform Line String into JSON Object
8 output(key=collect key, value=Line String in JSON format)

9 end

10 end
11 Procedure Reducer(key=collect key, value=Line String in JSON format)
12 begin
13 collect all Line String with same collect key
14 make new JSON Object: {“collect key: property”}
15 foreach Line String do
16 add Line String to {“collect key”: {Line String}}
17 end
18 output(key=NULL, value= {“collect key”: {Line String},...,{Line String}})
19 end

4 Case Study

In this section, we use a real case in order to show the details of our approach
and validate it.

4.1 Data Set

The dataset we use is released in KDD Cup 2012, provided by Tencent, one
of the largest micro-blog websites in China [15]. The entire data set is over 10
Gega Byte, consists of 13 entity-relationship tables. The dataset is a subset of
basic customer information of Tencent Weibo users, including personal infor-
mation, such as tweeting activity, comments and each person’s Follower and
Followee list, and advertisement information. The basic logic view of the dataset
is demonstrated in the Fig.3.

In order to estimate a big data input, we replicate this data set 100 times
to build a large data collection, which is over 1 TB. We use this data set for
two reasons. First, social networks have become tremendously popular in re-
cent years. Popular social network websites like Facebook, Twitter, and Tencent
Weibo are adding thousands of enthusiastic new users each day to their existing
billions of actively engaged users. Currently, there are more than 200 million
registered users on Tencent Weibo, generating over 40 million messages each
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Fig. 3. OR mode of original dataset

day [15]. Valuable information interfering with almost every aspect of social life,
including economic, social and political issues, state and regional security is-
sues, scientific and technological researches and so on. As a result, there is an
urgent demand of studying this kind of data. Second, the dataset also shares
the features of Web 2.0 service, which is a new trend in IT industry and needs
to be further investigated. One of the most unique characters of Web 2.0 is
that the database stores customer-provide data, therefore the database must be
heterogeneous-tolerant and robust enough in order to face customers’ different
requirements. Under this scenario, our approach is given full play.

4.2 System Environment

The experiment is carried out on a distributed Cluster consists of seven machines.
Environmental Parameters of each node is shown in Table 1.

Hadoop is an opensource implementation of MapReduce by Apache Foundation
[14]. The Apache Hadoop project consists of many subprojects, among which
HDFS(Hadoop DFS) and MapReduce are the most commonly used.

MongoDB is a C++ implemented, opensource document oriented database,
developed by 10gen [16]. It is a BSON(Binary JSON) based high performance
database, features its schema-free structure, well support for dynamic scaling,
powerful Javascript-like query language and high accessing speed.
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Table 1. System Environment Parameter

Environment Parameter

CPU Intel(R)Xeon(R)CPU E5405@2.00GHZ (2 cores)
Memory 8 GB RAM
Hard Disk 1 TB

Operating System Ubuntu 12.04 64-bit
JAVA Runtime Environment JDK 1.7

Hadoop Version Apache Hadoop 0.20.2
Database MongoDB 2.0.6 (Linux 64-bit)

4.3 Implementation

The structure of the overall system is shown in Fig.4. There are three parts, data
source, MapReduce Cluster and MongoDB Cluster.
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Fig. 4. System Structure of Implementation

In our case, the data source consists of 100 subsets, each of which is a docu-
ment collection exported from Tencent Weibo’s operating database. As for the
MapReduce cluster, we built a 6-node Hadoop cluster. One acts as the master
and the other five as slaves. Slave node can be dynamically dropped out or added
in, in order to validate the system’s scalability. The entire experiment is carried
out on this cluster separately with 3 nodes and 6 nodes. The last part of Fig.4
is MongoDB Cluster, based on which we constructed our data warehouse. The
logical view of the data warehouse’s structure is demonstrated in this figure.

• Mongos is the accessing node of the cluster.
• Conf ser i is the ith Configuration Server, maintaining name space, data
servers’ information and index.
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• Datanode i is the ith Data Server.
• Repl node i is the replica of the ith Data Server.

We choose MongoDB for two reasons. First, it has a very agile support of dy-
namic scaling. If the data warehouse run out of storage, it is very easy to add in
a new node into the distributed storage environment. Second, MongoDB has a
special key/value storage mechanism which has a nature support of MapReduce
framework. Since the data extraction and loading job is carried out in MapRe-
duce framework, the data loading phase doesn’t need to wait till the aggregation
phase is totally finished. Therefore, much time and memory is saved.

4.4 Experiment Result and Discussion

Scalability

Definition 1. Scale Sensitivity (ScaS) measures a system’s sensitivity facing
changes of workload. ScaS equals to the average value of the multiples of pro-
cessing time changes divided by the corresponding growth of input data size in
multiples. A system with a lower ScaS is less sensitive to workload change, there-
fore this system features better scalability.

ScaS = Ave(
T/t

F/f
) (1)

where F is the size of input file and f is the size of standard input file, and we use
the average size of input subsets as f in this case. T and t are the corresponding
running time of input F and f respectively.

In our experiment, we implement the entire process as mentioned in Fig.2, using
our MapReduce approach, marked as MR in Fig.5. As for comparison, we also
implement the same function as a none-MapReduce Java program, which is
named SoleJava here. SoleJava runs on single node, while MR is implemented
respectively on a 3-node and 6-node cluster. We use ScaS to compare the scale
sensitivity of each system.
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Fig. 5. System Scalability
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In Fig.5(a), the horizontal axis marks multiples of input data size of f, and the
vertical axis records the corresponding running time multiples. As input data
set gets larger, the running time multiples of both methods increase. However,
the Curve of MR grows always slower than SoleJava. And Fig.5(b) demonstrates
the ScaS of SoleJava, 3-node MR and 6-node MR. Facing increasing workload,
running time of SoleJava has almost a linear growth of almost the same speed,
while ScaS of MR is about two thirds of that of SoleJava. Therefore, facing
growing workload, data warehouse built through our approach is less sensitive.
That is to say, our approach is more scalable.

Efficiency

We evaluate overall system’s efficiency from two perspectives, the efficiency of
constructing and operating the data warehouse. As for constructing the data
warehouse, Table 2 shows a comparison between traditional approach and our
document-based approach. It is straightforward that our approach requires fewer
work to do and the process is very agile.

Table 2. Comparison of Data Warehousing Approaches

Phases Rational DW Document-based DW

Preparation Requirement Analysis Requirement Analysis
Data Modeling Data Modeling

Design Design Table Format
Choose Foreign Keys

Construction Data Extraction Documentization
Data Cleansing
Transformation Aggregation

Loading Loading
Operating SQL query Object Operation

OUTTER-JOIN, Projection
Modification Change Schema (Not Affected)

Possible Reconstruction

As for operating efficiency, we use an experiment to estimate accessing the
data warehouse and validate its performance. Figure 6 shows the efficiency com-
parison between the MongoDB based data warehouse and a MySQL Cluster
based data warehouse, both are build on the same physical machines. A write
experiment and a query experiment are carried on both data warehouses. The pil-
lar graph (a) shows the comparison of data insertion performance and the graph
(b) shows the QPS (query per second) curve of both system. As demonstrated
in Fig.6, the average processing capacity of MongoDB based data warehouse is
50,000 requests per second while that of MySQL based data warehouse is less
than 30,000. Therefore our data warehouse is more efficient.
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Fig. 6. Efficiency Comparison

Heterogeneity

Heterogeneity, as mentioned in Section 2, refers to the overall system’s flexi-
bility facing both heterogeneous structure and changes of data source. In our
experiment, the format of data source is given to our program as an input con-
figuration document, which is read automatically. The unique key/value storage
format and schema-free designment the flexibility of our data warehouse. Our
data warehouse has no dependence on the schema of data source. When input
file is changed, very few lines of code are changed. Also we find this approach to
be convenient enough facing similar kinds of data mining requirements.

5 Conclusion

This paper presents a better solution for data warehousing in the big data
era. Comparing with traditional RDBMS-based data warehousing, our approach
shows better performance in scalability, efficiency and heterogeneity. The ap-
proach consists of three phases, namely documentization, aggregation and data
loading. Our data warehouse is constructed on a distributed environment and
the MapReduce framework is applied for efficiency consideration. Even though
it is agreed to all that there is not, and will never be, a “one-fits-for-all” solution,
our approach definitely boosts its unique characteristic.

In future, we will introduce more data mining applications based on this data
warehouse structure under the similar scenario. More data mining algorithms
will be implemented on this platform. We will also work on more friendly docu-
mentization tools for different data sources.
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