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Abstract. Current wastewater monitoring techniques rely on the use of nutrients 
detection as the result of some chemical reaction, which is undesirable for long-term 
use in real-time applications.  In addition, new legislation may render such systems 
obsolete if they cannot reliably determine the amount of nutrients in wastewater 
relative to allowable levels.  This chapter attempts to address this issue by considering 
the use of microwave sensing techniques as an alternative real-time approach that has 
the potential to monitor wastewater nutrients such as phosphate and nitrate.  The 
method utilizes a broad range of microwave frequencies (1-15 GHz) and is 
demonstrated with two different types of structure for this purpose, namely a 
traditional resonant cavity and a flexible interdigitated electrode structure.  A variety 
of experimental results are shown that validate the applicability of the microwave 
sensing for detecting phosphates and nitrates in the solutions.  LabView software used 
for analysis of captured data and for easy user interpretation of this data is also 
demonstrated. Future work to be undertaken is discussed in relation to improving the 
performance of the sensor further, as well as adding the capability to automatically 
determine both the type and concentration of nutrients in water solutions. 

Keywords: Water quality monitoring, wastewater, nitrate, phosphate, microwave 
sensor, interdigitated electrode, flexible sensor. 

1 Introduction 

Urban wastewater is defined by the Council of the European Communities [1] as 
“Domestic wastewater or mixture of domestic wastewater with industrial wastewater 
and/or run-off rain water”. Domestic wastewater is defined as “Wastewater from 
residential settlements and services which originates predominantly from the human 
metabolism and from household activities”. On the other hand, industrial wastewater 
is “Any wastewater which is discharged from premises used for carrying on any trade 
or industry, other than domestic wastewater and run-off rain water”. Therefore we 
can say that wastewater refers to a broad spectrum of contaminated water. 

                                                           
* Corresponding author. 
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In order to maintain a healthy environment and to control the spread of disease, 
wastewater has to be collected and treated prior to discharge back to the environment. 
UK directives have been implemented through the urban wastewater treatment 
regulations since 1994 [2]. The collection and treatment of wastewater plays a vital 
part in the protection of public health, water resources and wildlife; directives set the 
standards to be used for its collection and treatment.  As part of these standards, a 
sewerage system is provided for all urban areas above a specified population size, and 
the collected sewage receives at least secondary (biological) treatment before it is 
discharged to the environment. Discharges from the sewerage systems are only 
allowed under storm conditions. Areas where sewage requires extra treatment before 
discharge are identified by the Council of the European Communities as “sensitive 
areas” [1]. One example is the atrophic waters, where additional nutrients, mainly 
nitrogen or phosphorus, stimulate the growth of algae and other plants, damaging the 
natural environment. In these areas, larger sewage discharges must be treated to 
reduce their load of nutrients.  

Wastewater treatment plants (WWTP) and industrial sites that discharge more than 
1 m3 of effluent on a daily basis have to provide periodic reports for the quality and 
quantity of their effluent before discharging. They also need to pay fines for pollution 
events. Charges could be reduced if continuous monitoring is available to control and 
solve problems before discharging. As mentioned before, wastewater treatment 
involves removing nutrients from wastewater before it is discharged to the water 
course (e.g. canals and rivers). Many technologies have been developed for this 
purpose, such as the activated sludge system EBPR (enhanced biological phosphorus 
removal). These technologies made the detection of such nutrients more difficult 
because it reduces the nutrient levels significantly compared with previous practice. 
To solve these difficulties, many types of sensor and analyzer systems have been 
developed to detect and monitor the wastewater treatment process. However, most of 
these analyzers are based on off-line measurements which imply low frequency data 
sampling and significant delays between sampling and availability of results. 

Effective monitoring for the quality of effluent can be achieved by obtaining 
representative samples for lab analysis, or by installing an on-line analyzer. Current 
on-line technologies for monitoring the limits have a high capital cost, are unreliable 
and incur high maintenance costs.  

2 The Wastewater Treatment Process 

Wastewater, also known as sewage, contains more than 99% water and is 
characterized by volume or rate of flow, physical condition, chemical constituents and 
the bacteriological organisms that it contains. In general it contains pathogens such as 
bacteria, viruses, and parasitic worms, as well as organic particles such as plant 
material, humus, and paper fiber. The soluble organic material that also can be found 
in sewage could come from urea, fruit sugar and soluble proteins. Sand, grits and 
metal particles are considered as inorganic particles, and sewage also contains soluble 
inorganic material such as ammonia, road salt and hydrogen sulphide. In the UK, over 
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UK waste produced by the pre-treatment stage such as sewage screenings and grits 
must be treated before it can be land filled [7]. 

The primary treatment stage consists of a large settling tank, and aims to settle 
down the suspended solid and grits that are still in wastewater after the pre-treatment 
stage. The settled matter (sediment), known as sludge, is pushed into hoppers and 
carried out to be treated. Also the settling tank will allow the grease and oil to float on 
the surface so that it can be skimmed off. The primary treatment stage reduces the 
amount of solids by 50%, and also BOD (Biochemical Oxygen Demand) by at least 
20% before it is discharged [8].  

Once all noticeable solids have been removed, a biological treatment that targets 
the organic matter takes place during the secondary treatment stage. The most 
common type of biological treatment is called ‘Activated sludge’ where WW is mixed 
with air to provide oxygen for bacteria to grow and then consume the organic matter. 
Turbines and surface aerators can be used as air diffusers. Microorganisms degrade 
the content of the organic matter in the WW aerobically, i.e. when air is supplied to 
the biological reactor. 

The biological treatment stage has originally been solely to remove organic matter. 
However, many wastewater treatment plants today are also designed for the biological 
removal of nitrogen and phosphorous. A unique type of microorganism called 
Polyphosphate Accumulating Organisms (PAO) are enriched into the activated sludge 
tank for phosphorus removal in EBPR process The role of these organisms is to 
consume phosphate by accumulating it within their cells. PAO can incorporate up to 
0.38 mg/L phosphorous and remove 15-20% of it in many municipal wastewaters [9].  

Organic nitrogen is converted to ammonium through a process called hydrolysis 
while travelling through sewer pipes. In the activated sludge tank, a biological 
nitrification process is used for ammonium removal. In this process, ammonium ions 
(NH4

+) are converted or oxidized to nitrite ions (NO2
-) and then to nitrate ions (NO3

-) 
[10], with the nitrifying organisms (nitrosomonas and nitrobacter bacteria) adding 
oxygen to the ions during the oxidation process.   

Tertiary treatment involves chemical removal of any soluble phosphorus or 
nitrogen that remains after the biological removal to enhance the quality of the 
effluent before discharging. Phosphorus precipitation can be achieved by adding some 
metal salts such as Calcium (Ca2+), iron (either Fe2+ or Fe3+), or aluminum (Al2(SO4)3) 
[11]. The chemical process for nitrogen removal is called ammonia stripping, where 
pH is raised to convert the ammonium ion into ammonia, which can be stripped from 
the water by passing large quantities of air through the water [12]. Also, Chlorine 
could be added to oxidize ammonia-nitrogen into nitrogen gas; 9-10 mg/L of chlorine 
is required for every 1 mg/L of ammonia-nitrogen [13]. 

At the end of the treatment process, a secondary settling tank is used to settle down 
the remaining precipitates that resulted from either the biological or the chemical 
nutrients removal in the activated sludge stage. The final settled sludge is then carried 
out to be treated. Sludge can be recycled to produce an organic-based fertilizer and 
soil conditioner for use in agriculture. It also may be used for energy generation, large 
tanks called digesters are used to transform the organic solids of the sludge into 
gaseous end products with the absence of oxygen in a process called anaerobic 
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The output of the HPLC pump is connected to the PTFE piping that runs through 
the center of the sensor and feeds to a waste vessel – samples are not recirculated to 
prevent algae build up in the piping and also to prevent unwanted sample 
contamination or dilution.  A heating block heats the cavity to approximately 63°C,  
which heats the SWW to a maximum of 35°C when it leaves the cavity.  The stability 
of the cavity and SWW is monitored via thermal couple measurements which are 
incorporated into to a LabView interface (see Fig. 8) for monitoring.   

Measurements from the system are acquired in two stages.  In the first stage water 
only is pumped through the sensor to provide a reference level, and the LabView 
interface acquires an average of the stabilized microwave spectrum between 2480 and 
2620 MHz over the course of a 1 minute period.  Secondly, the SWW is pumped 
through the system and a similar procedure is applied.  Between each stage sufficient 
time is allowed for the water or SWW sample to propagate through the tubing.  When 
pumping at 10 ml/min, this waiting time is approximately 45 seconds. 

The method used here for acquiring data has proven to give considerable 
measurement reliability, and along with the heating block, helps to further negate 
external impacts on measurements to ensure that the system provides both short-term 
and long-term repeatability.  This is particularly important when the system is used as 
a predictive tool, as discussed later in this chapter.   

5 Results 

Data acquired for phosphate and nitrate concentrations are shown in Fig. 9.  Table 1 
notes the prominent features of the results – i.e. resonant peak amplitude and 
frequency – for each nutrient.  This data is also represented in Fig. 10, showing 
clearly the linear relationship between nutrient concentration and peak amplitude.  
The linearity of the peak frequency is not quite so clear, although there is a general 
trend of increasing frequency with increasing nutrient concentration. 

Table 1. Peak amplitude and frequency data for PO4-P and NO3-N concentrations, as shown in 
Fig. 9 and 10 

Concentration 
(mg/L) 

Peak Amplitude (dBm) Peak Frequency (MHz) 

PO4-P NO3-N PO4-P NO3-N 

0 -30.04 -30.04 2547.4 2547.41 

100 -30.36 -30.56 2547.83 2547.83 

200 -30.77 -30.99 2548.11 2548.11 

300 -31.20 -31.40 2548.11 2548.11 

400 -31.59 -31.79 2548.25 2548.25 

500 -31.89 -32.09 2548.39 2548.39 
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limited to the use of cavity structures, which are seen by many as bulky and expensive 
due to the use of reasonably expensive high conductivity metals (e.g. aluminum or 
copper).  Thus the authors have been considering new ways in which to achieve the 
benefits of microwave sensor capability but in a variety of formats.  The use of 
microstrip printed antennas operating as microwave sensors in the GHz frequency 
range with a Ag planar pattern printed on flexible substrate was recently reported 
[32]. These sensors are conformable to planar and non-planar surfaces, simple and 
cost-effective to manufacture using modern printed-circuit technology, mechanically 
robust when mounted on rigid surfaces, and when the particular patch shape and 
mode are selected they are very versatile in terms of resonant frequency, polarization 
and impedance. 

As an example, an interdigitated electrode (IDE) structure shown in Fig. 12 
operating at microwave frequencies was chosen for its versatile design that combines 
ease of manufacturing with desired functionality [32]. A distinct feature of IDE type 
sensors is their superior sensitivity to change close to the sensor surface, with this 
sensitivity decaying rapidly with distance away from the surface. This is 
advantageous as it reduces significantly the chance of undesirable factors influencing 
sensor response. Thin flexible substrate provides not only structural benefits for a 
wide range of applications, but also plays a pivotal role in controlling the strength of a 
microwave signal fed into the sensor. Thicker substrates are known to be prone to the 
following effect: as the height increases, surface waves are introduced which usually 
is not desirable because they extract power from the total available for interaction 
with the analyte material. The surface waves travel within the substrate and they are 
scattered at bends and surface discontinuities and degrade the antenna pattern and 
polarization characteristics [33].  

Silver was used as a metal material for both the bottom layer, which acted as a 
ground plane, and top IDE pattern to maintain chemical neutrality when the  
device is placed in contact with water. Fig. 13 (a) illustrates optical images of the 
manufactured prototype microwave sensor, which is bent to illustrate the flexibility of 
the substrate.  

 

Fig. 12. Schematic of a microwave sensor with interdigitated electrodes 
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(a) 

 
(b) 

Fig. 14. Illustrating the response of planar microwave structures to (a) different concentrations 
of NO3 and (b) to different analyte materials; air, deionized water and tap water [32] 

7 Conclusion 

This research was driven by the industrial need for a novel real-time monitoring 
method of water purity that would be able to meet strict regulatory demands and yet 
be versatile, sensitive and cost-efficient. It has been demonstrated that the method can 
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provide adequate sensitivity for measurement of different nutrients which would be 
found in wastewater, namely phosphate (PO4) and nitrate (NO3).  There is still work 
to be done in enhancing this sensitivity further, however this area is still under active 
investigation by the authors and the subject of a number on-going industrially focused 
research projects.  It is envisaged that the technique, once fully developed, could be 
used for a wide variety of applications, and at numerous stages in the wastewater 
treatment process as was briefly outlined in Section 2 of this chapter. 

It is notable that the work has demonstrated both traditional resonant cavity 
methods in addition to novel IDE structures which provide a cost effective and 
flexible means by which to apply the suggested technique.  This highlights one of the 
key benefits of using microwave sensors; they can take many different forms 
depending on the application and its requirements.  It is believed that the small 
flexible sensor shown in Section 6 would provide for long-term usage since this 
configuration is less prone to failure due to mechanical damage than perhaps a rigid 
substrate planar device. The sensor response was tested using a VNA in 1-15 GHz 
frequency range. It was clearly seen that the resonant peaks have shifted once 
deionized and tap water samples were placed in contact with the antenna pattern. 
Notably, the sensor’s response returned to its original position, namely the air 
spectrum, after each water sample measurement, confirming that the developed 
microwave sensor is reliable, re-usable and thus a sustainable solution for water 
monitoring.  
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