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Abstract. Due to the outstanding characteristics of both fluorescence and 
phosphorescence signals, they are widely applied to the construction of chemical 
sensors. The development of these sensors for the detection and quantification of 
compounds of environmental concern is an active research topic, daily enriched with 
the contribution of new works in the area. This chapter provides fundamentals and 
practical aspects of this type of sensors, focusing in those works devoted to quantify 
both organic and inorganic pollutants in environmental waters. The chapter is 
organized upon the basic functional units of a chemical sensor. A few examples of 
strategies of evaluation involving multivariate chemometric analysis are also 
discussed. 

Keywords: Fluorescence, phosphorescence, chemical sensors, pollutants, natural 
waters. 

1 Introduction 

The definition of a chemical sensor is ambiguous, and different concepts have been 
proposed in the scientific literature. Many researchers of the sensor community 
indicate that sensing refers to a continuous process (i.e., continuously recording) of 
detection, and agree with the Cambrigde definition which states: “Chemical sensor is 
a miniaturized device that can deliver real-time and on-line information on the 
presence of specific compounds or ions even in complex samples” [1,2]. Similarly, 
Gauglitz considers that a complete sensor system involves a sensitive layer, 
transduction (recognition) principles, the signal processing and the strategies 
(software) of evaluation [3], and Janata suggests that the term “chemical sensor” 
should be restricted to those devices which acquire information continuously, while 
sensing systems which obtain information in discrete steps should be named as 
“analytical assays” [4]. These specifications are made because the term “sensor” is 
often used to refer to a probe or indicator (molecule or nanoparticle) that 
communicates the presence of an analyte via modulation of an analytical signal [5].  
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acid through both fluorescence and phosphorescence optosensors [45]. Tetracycline, 
oxytetracycline, chlortetracycline and doxycycline were detected in water using a 
phosphorescence flow-through optosensor and amberlite XAD-4 as solid support 
[46]. Recently, tetracycline was also determined using a fluorescence flow-through 
optosensor based on sephadex G-50 [47]. 

2.2 Reagent-Mediated Measurement 

When an analyte does not have native luminescence properties, sensing can be 
achieved by monitoring the optical signal of an auxiliar reagent (fluorophore, dye, 
enzyme, etc), whose response is modulated by the presence of the analyte. The 
reagent is generally immobilized (by adsorption, covalent bond, ionic attachment or 
encapsulated) in a matrix which is permeable to the analyte. The matrix can be a thin 
polymer membrane, controlled-pore glass or microbeads [9,48]. Many of the 
configurations discussed in Section 2.1 can be implemented in reagent-mediated 
sensors. 

Table 1. Luminescence sensors/probes for inorganic species in water samples 

Analyte Signal Method Remark LOD Sample Ref 

Cu (II) RET Disposable 
sensor 

TP/Zincon/PVC matrix 3.9×10−8 M 
2.5 ppb 

River, well, 
spring, 
swimming pool 
water 

[63] 

QF Probe LY immobilised on AE 
particles 

1×10−8 M,
0.63 ppb 

Tap water [49] 
 

Al(III)  
and 
Be(II) 

F BIS-FIA  Sephadex QAE A-
25/morin 

0.024 ppb Al(III), 
10 ppb Be(II) 

Tap and river 
water 

[50] 

V(V) F BIS-FIA Sephadex QAE 
A-25/Alizarin Red S 

0.450 ppb Tap and well 
water 

[51] 

Hg(II) 
 
 

F FIA and batch Rhodamine B derivative  
in PVC membrane 

8.3×10−11 M Pond  water [52] 

QF OM, probe L/PVC membrane/ 
KTpClPB  

 Well water 
 

[53] 

QF OM, flow-cell H2tpp/PVC membrane 4.0×10−8 M Tap water [54] 

QF OM, flow-cell Porphyrin/PVC 
membrane 

8.0×10−9 M River, tap, waste 
water 

[55] 

QF OM, flow-cell-
bifurcated OF 

H3(tpfc)/PVC membrane  River and tap 
water 

[56] 

QF OM, flow-cell-
bifurcated OF, 
HCl (R) 

DTPP/PVC membrane  River water, 
industrial 
wastewater 

[57] 

 QF OM, probe EHT/PVC membrane 1.8×10-10 M, 
36 ppb 

Tap water 
 

[58] 
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Table 1. (continued) 

 
 F Syringe 

procedure, 
probe 

Rhodamine 6G 
derivative and nylon 
membrane 

0.4 ppb Mineral, 
underground  
river water  

[64] 

QF Probe, EDTA 
(R) 

Mesoporous silica /1,8-
naphthalimide 

200 ppb Drinking, 
seawater 

[65] 

QF Probe Hacid/LDH film via EPD 
method 

6.3×10−8 M Spiked, tap, lake 
water 

[66] 

F Probe Rhodamine 6G/ QDs-
silica NPs 

0.520 ppb, 
2.59×10−9 M 

Tap, river water [76] 

SF Probe MPA stabilized CdTe/ 
dOB/QDs 

4.2×10-9 M Tap, lake water [81] 

Hg(II) 
and 
Cu(II) 

PLQ Probe, GSH 
(R) 

QDs-multilayer films 
 

Lineal range: 
(0.05-5)×10-7 M 
for Hg2+,  
(0.01-1)×10-6 M 
for Cu2+ 

Artificial water 
sample 

[82] 

Zn(II) QF Probe, EDTA 
(R) 

MCB/PVC membrane 2.5×10−8 M, 
1.6 ppb 

Tap water [59] 

Ni(II) QF Probe, EDTA 
(R) 

PVC/KTpClPB/TTBB  Wastewater [60] 

Pb(II) 
 

F Probe, HCl-
thiourea (R) 

Triazolo-thiadiazin 
derivative/PVC  

2.2×10−8 M Tap and river 
water 

[61] 

QF Probe, 
dithiotritol (R) 

Fluoroionophore  L2/ 
PVC/ KTpClPB 

2.0×10−7 M Tap water [62] 

Be(II) QF Probe, F- (R) Beryllon II/MgAl-LDH 4.2×10−9 M Lake and tap 
water 

[67] 

CN– Increase of 
F with 
Cu(II) 

Probe Boronic acid-linked 
hydrazide/fluorescein 
encapsulated in 
AMP/Gd3+CNPs 

20×10−6 M (naked-
eye) 4.03×10−6 M 
(instrumental) 

Drinking water [68] 
 

Cr(VI) IFE Probe Luminescence NPs 
(NaYF4:Yb3+, Er3+) 

2.4×10-8 M Tap, river and 
waste water 

[69] 
 

Cd(II) PL in NIR Probe 
 

CdTe/CdS QDs Lineal range: (0.1-
2)×10−6 M   

Tap and river 
water 

[80] 
 

As(III) QF SIA AsH3 diffused across 
PTFE membrane and 
interacted with CdS-
MAA QDs 

70 ppb Ground  water [83] 
 

Cu(II) 
and CN- 

Cu2+: 

QF; 

CN-: F    

FIA, EDTA (R 
for Cu2+), 
Cu(II) (R for 
CN-) 

Imidazole 
microspheres/functionali
zed CPs 

Cu(II): 1 ppb 
C N-: 8 ppb  

Tap and mineral 
water 

[86] 

Ag(I) F Distal OF 
bundle 

PVC microspheres onto 
the distal end of an OF 
bundle 

 Pond water [89] 
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Table 1. (continued) 

Abbreviations (other are defined in the text): AE, anion exchange; AMP/Gd3+ CNPs: nucleotide/lanthanide 
coordination nanoparticles;  Beryllon II, 2-(3,6-disulfo-8-hydroxynaphthylazo)-1,8-dihydroxynaphthalene-
3,6-disulfonate; CPs, conjugated polymers; DFC, diphenylcarbazone; dOB, chemically denatured 
ovalbumin;  DTPP, 5-p-[[4-(10’-15’,20’triphenyl-5’-porphinato)phenyloxyl]-1-butyloxyl]-phenyl-
10,15,20 triphenylporphine; EDTA, ethylenediaminetetraacetic acid; EHT, 4-ethyl- 5-hydroxy-5,6-di-
pyridin-2-yl-4,5-dihydro-2H-[1,2,4]triazine-3-thione; EPD: electrophoretic deposition method;  F, 
fluorescence; GSH, glutathione; Hacid, 1-amino-8-naphthol-3,6-disulfonic acid; H2tpp, 5,10,15,20-
tetraphenylporphyrin; H3(tpfc), 5,10,15-tris(pentafluorophenyl) corrole; KTpClPB: potassium tetrakis(p-
chlorophenyl) borate; IFE: inner filter effect; LDH, layered double hydroxide; LY: Lucifer yellow;  L, 
1-(dansylamidopropyl)-1-aza-4,10-dithia-7-oxacyclododecane; L2, (5,8-bis((5’-chloro-8’-hydroxy-7’-
quinolinyl) methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane); LOD, limit of detection; MAA, 
mercaptoacetic acid; MCB, 1-methyl-1-phenyl-3-[1-hydroxyimino-2-(succinimido)ethyl] cyclobutane; 
morin: 2’,3,4’,5,7-pentahydroxyflavone; NIR, near infrared;  NPs, nanoparticles; OF, optical fiber;  OM, 
optode membrane; MPA, 3-mercaptopropionic acid; PL, photoluminescence; QF, quenching of 
fluorescence; QPL, quenching of photoluminescence; R,  regenerating reagent;  RET, radiationless 
resonance energy transfer;  SIA, sequential injection analysis; TP, porphyrazine 2,7,12,17-tetra-tert-butyl-
5,10,15,20-tetraaza-21H,23H-porphine; TTBB, 2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole). 

 
This approach is widely used for the construction of probes and sensors devoted to 

determine metal cations and anions, which are not naturally fluorescent, through the 
signals produced by their interaction with auxiliary reagents. Table 1 summarizes 
reviewed works involving probes and sensors for ionic compounds found in 
environmental waters. 

Different fluorophors (lucifer yellow, morin, alizarin red S) immobilized in ionic 
exchanger particles were used to determine Cu(II) [49], Al(III) and Be(II) [50]  and 
V(V) [51]. Based on either the enhancement or quenching of fluorescence, polyvinyl 
chloride (PVC) membranes containing several organic molecules have been used to 
determine Hg(II) [52-58], Zn(II)  [59], Ni(II) [60], Pb(II) [61,62], and Cu(II) [63] in 
natural waters.  

A PVC membrane probe based on a Rhodamine B derivative (RND) was recently 
described for the determination of Hg(II) ion in environmental water samples and fish 
[52]. The method was developed in batch and also in a flow-system. For bulk 
measurements, RND-PVC-coated glass slides were placed in diagonal positions into a 
standard quartz cell, which was filled with a sample solution. The flow-through cell 
consisted of two separate teflon blocks, an optical glass window, a sample chamber 
containing the sensing membrane coated on the glass slide, a silicon gasket and 
screws for clamping the blocks, as is shown in Fig. 6. The measuring cell was 
mounted in the spectrofluorimeter and connected with a peristaltic pump. In this case, 
the conditioning, measurement and regeneration steps were implemented by passing 
carrier, Hg(II) ion and regenerating solutions, respectively, through the flow cell. In 
both batch and flow-through configurations the emission was detected at a 90◦ angle 
relative to the incident light. 

The viability of determining Hg(II) ion residues in real water samples was 
demonstrated through a probe based on the mercury-promoted ring opening of  
the spirolactam moiety of a rhodamine 6G spirocyclic phenylthiosemicarbazide 
derivative retained in commercial nylon membranes [64]. 
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was determined through the phosphorescence quenching of Mn-doped ZnS QDs [75]. 
The enhancement of emission signal of rhodamine 6G grafted on silica nanoparticles-
QDs was proposed to determine Hg(II) [76]. A low limit of detection (2.4×10−12 M) 
was achieved in the determination of 1,4–dihydroxybenzene using the fluorescence 
resonance energy quenching of mercaptosuccinic acid–capped CdTe QDs 
immobilized on silica particles [77]. Fullerene in spiked river water was analyzed 
using CdSe/ZnS QDs coated by p-terbutylcalix[8]arene. The method allows the 
detection of 5 µg L−1 of fullerene in a simple and fast way [78]. QDs-MIP composite 
nanospheres were successfully applied to direct fluorescence quantification of the 
organophosphate insecticide diazinon in water. This method selectively detects down 
to 50 ng mL−1 of diazinon and it provides a strategy to obtain inorganic-organic 
nanocomposites with potential applications in environmental analysis [79]. Cd(II) and 
Hg(II) were quantified in diverse types of waters (tap, river, lake) using CdTe/CdS 
[80] and CdTe-chemically denatured ovalbumin QDs [81], respectively. In addition, 
Hg (II) and Cu(II) were quantified by fluorescence quenching of QD-multilayer films 
[82]. Butwong et al proposed a method to quantify arsenic in ground water which 
consists in the measurement of the fluorescence quenching of mercaptoacetic-acid 
capped CdS QDs after on-line arsine generation with BH4Na and HCl through a SIA 
system [83]. 

The so-called “sol-gel” process is a technique widely used for the production of 
materials, starting from a colloidal solution that acts as the precursor (e.g. metal 
alkoxides) which undergoes hydrolysis and polycondensation reactions to produce a 
porous matrix in which the reagent is encapsulated and into which the analyte 
molecules can diffuse. Materials obtained from this process have outstanding 
mechanical and thermal stability and good optical characteristics and, therefore, are 
very suitable for the development of optical sensors [84]. A sol-gel technique was 
applied to develop luminescent Eu(II) transparent films deposited on glass slides, in 
order to obtain sensor devices capable of monitoring transition metal ions in aqueous 
solution [85]. Álvarez Diaz et al proposed an optosensor based on imidazole-
functionalized colpolymer microspheres, obtained by a sol-gel method, to quantify 
Cu(II) and cyanide ion [86]. A sol-gel membrane modified with 2-hydroxy-1-
naphthaldehydene-8-aminoquinoline was developed as a model for detecting Pb(II) 
[87].Trace levels of anthracene, phenanthrene and pyrene were detected in tap and 
mineral water through the enhancement of fluorescence of hydrophilic QDs (modified 
CdSe/ZnS) entrapped into sol-gel membranes [88]. 

3 Fiber-Optic Sensor Platforms 

Optical fibers are usually employed as platforms in optical sensors, especially because 
they allow optical spectroscopy to be performed on sites inaccessible to conventional 
spectroscopy. McDonagh et al [2] summarized common configurations used for fiber-
optic platforms (Fig. 7). In turn, fibers can only act to transport the optical signal to 
and from the sensing environment (passive fiber-optic system) or be doped with a 
selective indicator, having thus an active participation in the detection (active fiber-
optic system). In the first case, the intrinsic optical property of the analyte (e.g. 
fluorescence emission) is measured. In the second one, the signal of an immobilized 
indicator is monitored. 
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A MIP using Al(III) ion as the template molecule and 8-hydroxyquinoline sulfonic 
acid as the the ligand to form a fluorescence complex was characterised for the 
implementation of an optosensor for this metal ion [90]. A self-designed flow-cell 
included a glass tube filled with the MIP fitted into a black box (to avoid interference 
from stray light) and a fibre optic cable attached at the top of the box. 

3.2 Active Fiber-Optic System 

In reagent-based optical sensor systems, fluorescent indicator molecules are added to 
the fiber platform. In most active systems, the sensor material is included in a solid 
matrix in the form of a monolith or a thin film. The matrix encapsulates the reagent 
such that it is accessible to the analyte. In their review, McDonagh et al give a 
detailed explanation of the different configurations which can be achieved in these 
types of sensors [2]. 

Two commonly used immobilization matrices are polymeric and sol-gel materials. 
The most widely used polymers are polystyrene (PS), polyvinyl chloride (PVC), 
polymethyl methacrylate (PMMA), polydimethyl siloxanes (PDMS), and 
polytetrafluoroethylenes (PTFE) and ethyl cellulose. Besides, sol-gel materials are 
very adequate to be coupled to a fiber-optic system. The process can be controlled in 
order to obtain materials of desired porosity and polarity [91]. The auxiliary reagent 
can be either entrapped or covalently bounded to the sol-gel matrix. Fiber-optic 
sensors based on sol-gel films have been intensely explored as pH, gas, ionic species 
and solvent sensors [84]. 

Lieberzeit et al highlighted some features that imprinting offers for sensor design 
and showed the ability and variability of this technological platform for the detection 
of PAHs (naphthalene and pyrene) among other compounds [92]. 

The chemical agents EA2192, VX, sarín and soman were determined at part-per-
trillon levels in multiple water matrices using lanthanide-sensitized luminescence and 
MIP containing europium polymerized onto a fiber-optic [93]. A plasticized PVC–
curcumin moiety membrane was used in a bifurcated optical fiber based flow-
optosensor for the determination of 2,6-dinitrophenol through fluorescence quenching 
measurements [94]. Employing similar bifurcated optical fiber systems but different 
supports (β-CD polymer and pyrene/dimethyl-β-CD complex immobilized in 
plasticized PVC membranes), the same authors determined bisphenol A through 
fluorescence [95] and fluorescence quenching [96] signals, respectively. 

4 Strategies of Evaluation Involving Multivariate-Chemometric 
Calibration 

Because of the complexity of environmental samples, luminescence optonsensors, 
like most of sensors based on spectroscopic properties, suffer lack of selectivity due 
to the probability that similar compounds show similar luminescence properties. A 
current strategy for resolving the spectral overlapping in complex environmental 
matrices and, thus, ensuring interference-free quantitation is the coupling to 
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multivariate calibration methods [97]. Specifically useful are second-order calibration 
methods which achieve the so called ‘second-order advantage’. These methods  
allow the quantitation of analytes even in the presence of unexpected sample 
components [98].  

The simultaneous determination of the systemic fungicides carbendazim and 
thiabendazole in natural waters was achieved using fluorescence excitation-emission 
matrices obtained after the extraction of the analytes over a C18-membrane surface 
[99]. The applied algorithm, partial least-squares with residual bilinearization 
(PLS/RBL), was capable of both correctly predicting the concentration of the studied 
compounds in the presence of unsuspected species and overcoming the inner-filter 
effect. Valero Navarro et al determined two naphthylamines in drinking waters 
coupling second-order calibration to a MIP-fluorescence optosensing system [100]. 
Using a flow-through optosensor based on C18-bonded phase and second-order 
algorithms, thiabendazole and fuberidazole where quantified in the presence of 
carbaryl, carbendazim and 1-naphthylacetic acid [101]. A flow-through 
spectrofluorimetric sensor, also based on C18-bonded phase as substrate in the flow 
cell and a first-order calibration approach, was proposed for the resolution α-naphthol, 
o-phenylphenol and thiabendazole in environmental water samples [102]. First 
derivative emission spectra of the analytes recorded during the process of retention-
elution were used to provide multivariate data which were processed with the partial 
least-squares (PLS) algorithm. Benzo[a]pyrene and dibenz[a,h]anthracene were 
fluorimetrically determined in the presence of the remaining EPA-PAH priority 
pollutants using a probe based on nylon membranes and second-order calibration as 
strategy of evaluation [103]. The same research group determined six heavy-PAHs in 
the presence of another 10 interfering PAHs, applying second-order multivariate 
calibration to the data obtained with a flow-through optosensor (sensor phase: silica 
gel C18) interfaced to a fast-scanning spectrofluorimeter [104]. Very recently, 
microporous nylon membrane was employed as a fluorimetric probe for the 
quantification of the herbicide bentazone in natural waters. Second-order calibration 
using parallel factor analysis (PARAFAC) allowed the determination at low levels in 
a highly interfering medium [105]. 

5 Conclusions 

Chemical sensors based on luminescence signals are relevant in environmental 
measurements due to their multiple advantages, highlighting their high sensitivity and 
usefulness for the determination of contaminants at very low concentrations. 
Fortunately, most optosensors are compatible with green-chemistry principles, and 
this quality makes them even more attractive. Bulky sensors are being gradually 
replaced by miniaturized devices, and flow methodologies are preferable than those 
carried out in batch. However, independently of their final configurations, new 
approaches for the development of novel probes and sensors for the determination of 
contaminants in the environment are continuously reported.  
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