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Abstract. Water quality monitoring and forecasting plays an important role in 
modern intensive fish farming management. This paper describes an online water 
quality monitoring system for intensive fish culture in China, which is combined with 
web-server-embedded and mobile telecommunication technology. Based on historical 
data, this system is designed to forecast water quality with artificial neural networks 
(ANNs) and control the water quality in time to reduce catastrophic losses. The 
forecasting model for dissolved oxygen half an hour ahead has been validated with 
experimental data. The results demonstrate that multi-parametric, long-distance and 
online monitoring for water quality information can be accurately acquired and 
predicted by using this established monitoring system. 

Keywords: water quality monitoring, intensive fish culture, wireless sensor network, 
LSSVR. 

1 Introduction 

Aquaculture is the fastest growing food-producing sector in the world, with an 
average annual growth rate of 8.9% since 1970 [1]. China is one of the most 
important contributors to world aquaculture production. 41.3 million tons, or 69.6% 
of the world production, was produced in China [2]. As a result of a significant shift 
from wild fishing to aquaculture in the 1980s, aquaculture development has 
accelerated throughout the country. The production of intensive fish culture has  
been increased rapidly in China from 1.6million tons in 1990 to 13.5million tons in 
2005 [2,3]. 

Automatic remote monitoring and computer-controlled intensive culture is the 
future trend in aquaculture. In modern aquaculture management, water quality 
monitoring plays an important role. Appropriate control of water quality to keep the 
concentration of the water environment parameters in the optimal range can  
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enhance the fish growth rate, impact dietary utilization and reduce the occurrence of 
large-scale fish diseases [4,5]. Without gathering information regarding physical and 
chemical parameters of water quality together with the related ecological factors it is 
almost impossible to perform the appropriate water quality control at the right time 
and in the right place. 

However, there are a few applications of systems which could carry out real-time 
water quality monitoring continuously in China. According to the conventional 
methods of water quality monitoring, samples of water are taken and transported to a 
chemical laboratory to analyze the hazardous substances. On the one hand, the 
maintenance of the measurements and control process is manual and influenced by the 
personal experience. On the other hand, the process of forecasting is time-consuming 
and some contamination episodes might be missed [5]. For example, fish mortality 
occurred overnight in one incident and was only detected the next morning, after huge 
losses had already been caused. 

With the advent of new sensor technologies, data telemetry and wireless 
communication technology, various equipment has been developed to monitor remote 
areas in real-time [6-9]. At present, continuous monitoring of drinking water and 
wastewater quality at most treatment plants is applied in Europe, North America and 
Japan [10,11]. In China, online monitoring installations have been constructed for 
several large rivers, such as the Huanghe River and the Huaihe River, to provide real-
time information to support environmental protection decision-makers [12]. However, 
the financial burden for building the fundamental hardware of these high-tech 
facilities may only be affordable to governments. Realizing real-time data collection 
in a secure, robust, manageable and low-cost manner, without long-distance cable 
connections, will likely become a bottleneck in the development of information 
monitoring in fish culture. Therefore, using web-server-embedded and next generation 
telecommunication technologies will become increasingly important in sensing 
networks. 

In recent years, some researchers investigated integrated water quality remote 
monitoring systems [13,14] and management systems based on culture knowledge 
models and forecasting models [15-18], but these systems are not aimed at the present 
needs to develop aquaculture and not connected with any online monitoring system. 
Moreover, these installations cannot achieve real-time communication between data 
collection and control terminals, which is not yet a fully viable alternative for high-
density, open, and dynamic fish breed circumstances. 

In this work, water quality remote monitoring systems using a GPRS service 
combined with IPsec-based virtual private networking (VPN) functionality were 
developed for constructing a wireless sensing network on a countrywide scale. 
Integrated with a forecasting model on the basis of artificial neural networks (ANN), 
the system is able to provide real-time information and the dynamic trend of the water 
quality at different monitoring sites. The detected data can be collected and analyzed 
at any time via the Internet so as to know the status and changes of the system. 
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2 Aquaculture and Water Quality Requirements 

Aquaculture is defined as the high-density production of fish and plant forms in a 
controlled environment. Water quality for aquaculturists refers to the quality of water 
that enables successful reproduction of the desired organisms. The required water 
quality is determined by the specific organisms to be cultured and has many 
components that are interwoven. Aquaculture obeys a set of physical, chemical and 
biological principles. Since these principles compose the subject of water quality, in 
Section 2.1 we describe common water quality parameters related to these principles 
which have been used as indicators of water quality on fish culture, as well as the 
respective classification of these parameters by monitoring importance.  In Section 
2.2, we present a classification of the parameters based on their impact level in an 
ecosystem. 

2.1 Physical, Chemical and Biological Analysis 

The monitoring of environmental parameters in fish aquaculture allows the control 
and good management of water quality in fish ponds, avoiding the occurrence of 
unfavorable conditions that can be harmful for organisms [19,20] . 

Water quality is based on the results of toxicity tests. These tests measure the 
responses of aquatic organisms to defined quantities of specific pollutants [21]. The 
aquatic species have different tolerances for a specific toxic compound; in this paper 
the characteristics of the fish are analyzed to evaluate the performance of the model. 

Table 1. Water quality parameters classified by monitoring frequency 

Monitored daily Monitored Weekly Monitored by request 

Temperature (Temp) Total ammonia (NH) Alkalinity (Ak) 

Dissolved oxygen (DO) Nitrate (NO3) Phosphorus (P) 

Salinity (Sal) Nitrite (NO2) Hydrogen sulfide (H2S) 

pH Non ionized ammonia (NH3) Non ionized hydrogen sulphide (HS-) 

 Turbidity (Tb) Dioxide of carbon (CO2) 

  Suspended solids (Ss) 

  Potential redox (Px) 

  Silicate (Si) 

  Chlorophyll A (ChA) 

  Total inorganic nitrogen (N) 

  Total marine bacteria (Tmb) 

  Vibrio (Vb) 

  Fecal coliforms (Fc) 
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In extensive aquaculture systems on china, the water quality parameters are 
monitored in different frequencies. Dissolved oxygen, temperature, pH and salinity 
are monitored daily while ammonia, nitrates, turbidity and algae counts are analyzed 
weekly. Chemical analyses are not taken into consideration for water quality 
management on a routine bases, they are only monitored by request [22]. Table 1 lists 
common water quality parameters used as indicators of water quality on fish marine 
culture and their respective classification by monitoring frequency. 

In order to understand the effects of these water quality parameters, Table 
2 and Table 3 show the optimal and harmful ranges (reported in the literature) for 
daily, weekly and by request parameters which will be considered for the assessment 
of water quality in our work. 

Table 2. Daily and weekly measured water quality parameters and their importance to fish 
farming 

Parameters Importance on marine fish culture 

Temperature 

The temperature of water plays an important role in both environmental and 

intensive aquaculture processes. First, it affects the ability of living organisms to 

resist certain pollutants. Some organisms cannot survive when the water 

temperature takes a value beyond a specific range. Changes in temperature rates 

can stress fish and consequently high mortality rates can be present in the 

population [23]. Second, it controls solubility of gases, chemical reactions and 

toxicity of the ammonia. The demand of dissolved oxygen increases when 

temperature is high [24]. Temperature can be considered as normal from 28 to 

32 °C [22]. 

Dissolved oxygen 

The dissolved oxygen is breathed by fish and zooplankton and is necessary for 

their survival. Fluctuation of dissolved oxygen, hypoxia and anoxia crisis are 

events that can be normally presented in aquaculture systems. Dissolved oxygen 

is considered the most critical quality parameter, since fish in low dissolved 

oxygen concentrations are more susceptible to disease. The minimum levels 

recommended by authors oscillate between 4 and 5 ppm. It is recommended that 

Salinity 

Salinity is the saltiness or dissolved salt content of a body of water. The salt 

content of most natural lakes, rivers, and streams is so small that these waters are 

termed fresh or even sweet water. The actual amount of salt in fresh water is, by 

definition, less than 0.05%. The water is regarded as brackish, or defined as 

saline if it contains 3 to 5% salt. The ocean is naturally saline and contains 

approximately 3.5% salt. High salinity concentrations reduce dissolved oxygen in 

water ponds, and it can be dangerous for fish cultivation [21]. The optimal 

concentrations of salinity are from 15 to 23 ppt [21]. 
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Table 2. (continued) 

pH 

pH is a measure of the relative amount of free hydrogen and hydroxyl ions in the 
water. Water that has more free hydrogen ions is acidic, whereas water that has 
more free hydroxyl ions is basic. The values of pH range from 0 to 14 (this is a 
logarithmic scale), with 7 indicating neutral. Values less than 7 indicate acidity, 
whereas values greater than 7 indicate a base. Extremely low or high pH stresses 
fish and causes soft shell and poor survival [25].  

 
Water bodies with 6.5 to 9.0 pH concentrations are appropriate for aquaculture 
production. Reproduction decreases outside of this range. Acid death appears 
with values below than 4.0 and an alkaline death in values above 11 [22,24]. The 
presence of chemicals in the water affects its pH, which in turn can harm the 
animals and plants that live there. For example, even a mildly acidulous seawater 
environment can harm shell cultivation. This renders pH an important water 
quality indicator. 

Ammonia 

Ammonia is the main end product of protein catabolism in crustaceans. 
Ammonia increases tissue oxygen consumption, damages gills and reduces the 
ability of blood to transport oxygen. Ammonia exists in water in both ionized 
(NH4

+) and unionized (NH3) forms. Unionized ammonia is the most toxic form of 
ammonia due to its ability to diffuse readily across a cell membrane [26]. The 
safe level for unionized ammonia, recommended by Chien (1992) and Wickins 
(1976) [27], is less than 0.1 mg/l and for total ammonia is under 1.0 mg/l.  

Water nitrogen 

Inorganic nitrogen in water is chiefly present as ammonia, nitrate and nitrite. In 
fish, the respiratory pigment is hemocynanin, which can still bind oxygen in the 
presence of oxidizing agents such as nitrite [28]. The safe concentration of NO2 
is from 0.4 to 0.8 mg/l. Nitrates are nitrogenous compounds which can be toxic 
when their levels rise. According to Clifford (1994) [29], the optimal level for 
nitrates is from 400 to 800 μg/l. The expected total inorganic nitrogen 
recommended for crops is from 2.0 to 4.0 mg/l. [21,25]. 

Turbidity 

A high concentration of suspended solids can cause high turbidity in water, 
preventing the penetration of light and affecting photosynthesis. The amount of 
suspended solids can be determined indirectly by measuring the turbidity. The 
accepted range for suspended solids is from 50 to 150 mg/l; or turbidity from 35 
to 45 cm depth [24]. 

2.2 Environmental Classification 

Water quality parameters can be classified in different impact levels, depending on 
the toxicity and harmful situations the parameters introduce to the ecosystem. In order 
to classify the behavior of a water quality parameter, it is necessary to define levels 
and allowed deviations for optimal or harmful concentrations. These deviations are 
useful to determine the ranges where values are considered closer to or farther from  
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Table 3. Water quality parameters measured by request and their importance to fish farming 

Parameters Importance on marine fish culture 

Alkalinity 
Related to important factors in fish culture such as buffer effect on daily 
variation of pH in the pond, setting the soluble iron precipitated, and in ecdysis 
(molting) and growth [19,20]. 

Phosphorus 

Nutritive element, mainly appearing as orthophosphate, essential to aquatic 
life. From Esteves [30], phosphorus acts particularly in metabolic processes of 
living beings, such as energy storage and in the structure of the cell membrane 
[20]. 

Hydrogen sulfide 

In water, hydrogen sulfide exists in unionized (H2S) and ionized forms (HS− 
and S2). Only the unionized form is considered toxic to aquatic organisms. 
Unionized H2S concentration is dependent on pH, temperature and salinity, 
and it is mainly affected by pH [25]. 

Dioxide of carbon 
When dissolved oxygen concentrations are low, carbon dioxide prevents 
oxygen penetration. According to Boyd (2001) [31], the normal range of 
carbon dioxide is from 1 to 10 mg/l 

Potential redox 

This is an indicator of substance oxidation or reduction levels. Low values are 
indicators of strong reduction of sediment, which is associated with toxic 
metabolite formation, hypoxic or anoxic conditions and low pH values. In a 
pond, optimal ranges of potential redox are from 500 to 700 mV for water and 
from 400 to 500 mV for sediment [29]. 

Silicate 
In water, silicate is a composite of high importance particularly for diatoms. 
Optimal levels for silicate are established from 0.1 to 0.3 mg/l. [20,30]. 

Chlorophyll A 
Phytoplankton biomass represents the primary consumer feed, and indirectly 
determines the feed availability of the next trophic system level. The ideal 
concentrations for fish ponds are from 50 to 70 μg/l [29]. 

Total marine bacteria 

Microorganisms, particularly bacteria, play a vital role in pond ecosystems. 
Both beneficial (nutrients recycling, organic matter degrading etc.) and 
harmful (such as parasites) issues are caused by bacteria in the pond 
ecosystem. The optimal range for total bacteria counts should be below 
10,000 UFC/ml [20,31]. 

Vibrio 

Vibriosis is a bacterial disease responsible for mortality of cultured fish 
worldwide [32]. Vibrio related infections frequently occur in hatcheries, but 
epizootics are also commonly in pond reared fish species. Optimal ranges are 
defined as being below 1000 UFC/ml 

Fecal Coliforms 
Fecal Coliforms in water come from the feces of warm-blooded animals and they 
are an indicator of water pollution. The optimal range of fecal coliforms is below 
1000 MPN/ml and for crop it should not exceed 1400 MPN/ml [33]. 
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specified levels. In this study, tolerance thresholds were chosen using minimal 
changes in water parameters [33]. The levels for classification of the water quality 
parameters were defined by taking into account the levels and limits reported in the 
literature (see Table 2 and 3). In Table 4, 5 and 6 we show the classification, in 
different impact levels, for the water quality parameters from Table 1. The deviation 
column in these tables represents the tolerance for each level. 

Table 4. Classification levels for daily monitored parameters 

Water quality parameters Deviation 

Levels 

Hypoxia  

acid 
Low Normal High Alkaline 

Temperature (°C) 1.0  0–20 20–30 < 30  

Dissolved Oxygen (mg/l) 0.5 0–2 2–5 < 5   

Salinity (ppt) 1.0  0–15 15–23 < 23  

pH 0.5 0–4 4–6.5 6.5–9.5 9.5–11 11–14 

Table 5. Classification levels for weekly monitored parameters 

Water quality parameters Deviation 
Levels 

Low Normal High 

Total ammonia (mg/l) 0.10 0–0.1 0.1–1.0 < 1.0 

Nitrites (μg/l) 100 0–400 400–800 <800 

Nitrates (mg/l) 0.10  0–0.5 < 0.5 

Non ionized ammonia (mg/l) 0.01  0–0.1 < 0.1 

Turbidity (cm) 1.00 4–35 35–45 < 45 

 
The importance of water quality management, the correct interpretation of water 

parameters and the appropriate techniques for integrating these parameters are 
problems studied in the aquaculture field. This research deals with one of the most 
important objective of the aquaculture management: it proposes a new way to join 
dissimilar parameters for getting an accurate assessment of water quality, increasing 
the effectiveness of the proposed system over traditional methodologies. In this sense, 
we hypothesize that different effects and levels of parameter concentrations  
degenerate in different water quality, thus, an appropriate join of these parameters  
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Table 6. Classification levels for monitored by request parameters 

Water quality parameters Deviation 

Levels 

Low Medium High 

Alkalinity (mg/l) 10 0–100 100–140 < 140 

Phosphorus (mg/l) 0.01 0–0.1 0.1–0.3 < 0.3 

Hydrogen sulfide (mg/l) 0.01 0–0.05 0.05–0.1 < 0.1 

Non ionized hydrogen sulfide 
(mg/l) 

0.001 0–0.002 0.002–0.005 < 0.005 

Carbon dioxide (mg/l) 2 0–10 10–20 < 20 

Suspension solids (mg/l) 5 0–50 50–150 < 150 

Potential redox (mV) 10 0–400 400–500 < 500 

Silicate (mg/l) 0.2 0–2.0 2.0–4.0 < 4.0 

Chlorophyll A (μg/l) 5 0–50 50–75 < 75 

Total inorganic nitrogen (mg/l) 0.2 0–2 2–4 < 4 

Total marine bacteria (UFC/ ml) 1000 0–5000 5000–10,000 < 10,000 

Vibrio (UFC/ ml) 100 0–500 500–1000 < 1000 

Fecal coliforms (MPN/ml) 100 0–500 500–1000 < 1000 

 
could determine a better assessment of water quality. This assessment could be 
achieved using a fuzzy inference system, which involves different situations 
generated by water quality parameters. 

3 System Design 

3.1 System Architecture 

Accuracy, reliability, real-time and expandability are essential in the remote 
monitoring system. Therefore, the sensors of high sensitivity should be chosen and 
rationally distributed for data accuracy. Since some locations have no access to any 
cable network (telephone line) and harsh production environment could damage cable 
connections, wireless devices would be necessary. Accordingly, each station is 
designed to communicate with the server via wireless communication technology. In 
order to offer a better expandability, an intelligent “plug and play” sensor technology 
has been used. 
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The function of the data-acquisition component is to obtain signals of the most 
important environmental factors by using various sensors. The main variables that can 
be monitored are reported in Table 7. With the current measurement methods, pH 
value is measured by the glass electrode method, dissolved oxygen by the membrane 
electrode technique, and temperature by thermometer sensing technology. A method 
of measuring the conductivity and transforming it to salinity has been adopted to 
replace the common method for measuring the salinity. 

Table 7. The water quality variables of data acquisition 

Name Variable Units Name 

Water temperature Tw (℃) Water temperature 

Indoor temperature  Ta (℃) Indoor temperature  

Solar radiation S (W/m2) Solar radiation 

Percentage of oxygen saturation DOS (%) Percentage of oxygen saturation 

Oxygen concentration DO (mg/l) Oxygen concentration 

Pouvoir Hydrogène pH  Pouvoir Hydrogène 

Electrical conductivity EC  Electrical conductivity 

 
The data transformation and transmission component is composed of the signal 

conditioning circuits, data-acquisition board, core-processing chip and GPRS module. 
The sensors and the signal conditioning circuits convert the various environmental 
factors to electrical voltage standard signals in the range of 0–5V. The signal is 
transmitted to the Web-based monitoring chip, and then is converted into the digital 
signal through A/D conversion. Onsite data-acquisition nodes compose a wireless 
LAN, and the GPRS module enables the RMP to receive the data and transmit them 
to a PC for further analysis. 

3.3 Central Monitoring Platform 

The central monitoring platform receives, pre-processes and analyzes the data from 
the RMP, predicates the trend of the parameters according to historical information, 
and then warns stakeholders through early audio warning or early short message 
warning, as shown in Fig. 1. The central monitoring platform stores the data to a 
database daily, weekly, monthly and yearly. At the same time it compares 
measurements to the predefined acceptable limits calculated by the expert empirical 
knowledge. Furthermore, it records all measurements or functional errors in different 
log files, so that the personnel are aware that there has been an alarm in a specific 
tank. Real-time data is downloaded via web-based servers at scheduled intervals. 

3.4 Forecasting Model of Dissolved Oxygen  

One purpose of the current monitoring system is to detect a trend of water quality 
fluctuation using historical data. Most current models for prediction that focus on 
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pollutants in a river or lake are not applicable for intensive aquaculture. In this study, 
the stored water quality data is analyzed for temporal trends focusing on the dissolved 
oxygen half an hour after measurement. Due to their ease of development, decreased 
reliance on expert knowledge of the system under investigation and non-linear 
modeling capabilities, Least Squares Support Vector Regression (LSSVR) was 
selected as the modeling tool. In spite of this, the LSSVR performance heavily 
depends on the choice of several hyper parameters, which are necessary to define the 
optimization problem and the final LSSVR model. To design a LSSVR, one must 
choose a kernel function, set hyper parameters such as the kernel parameters and 
determine a regularization parameter γ. The hyper parameters that should be 
optimized include the regularization parameter γ and the kernel function parameters 
such as the gamma (σ) for the radial basis function (RBF) kernel. Thus, selecting 
appropriate model parameters has a crucial impact on the prediction accuracy [34]. 
Unfortunately, there no exact method to obtain the optimal set of LSSVR hyper-
parameters, so a search algorithm must be applied to obtain the parameters.   

In general, the search algorithms used to obtain LSSVR hyper-parameters can be 
summarized in two categories. One is based on analytical techniques, and the other is 
based on heuristic searches. The first kind of techniques determines the hyper 
parameters with gradients of some generalized error measures [35-39]. This procedure 
is time-consuming and can’t converge at the global optimum. The second kind of 
techniques determines the hyper parameters with modern heuristic algorithms 
including simulated annealing algorithms, differential evolution, genetic algorithms, 
particle swarm optimization algorithm and other evolutionary strategies [40-44], 
which are applied to implement a robust research on the hyper parameters search 
space. Compared with other heuristic algorithms, for example, genetic algorithm, 
particle swarm optimization (PSO) does not need evolutionary operators such as 
crossover and mutation. Furthermore, the advantages of PSO are that PSO possesses 
the capability to escape from local optima, is easy to be implemented, and has fewer 
parameters to be set [45-47]. Thus in this study, the novel prediction method based on 
the combination of least squares support vector regression (LSSVR) and improved 
particle swarm optimization (IPSO) is proposed to the water quality prediction in the 
intensive aquaculture of river crab, which IPSO is applied to optimize the hyper-
parameters. Traditional LSSVR model and BP neural network are used as comparison 
basis. The experiments results show that the predictive accuracy and capability of 
generalization is greatly improved by our proposed approach.  

For the nonlinear LSSVR, its generalization performance depends on a good 
setting of parameters γ and the kernel parameters σ. Inappropriate hyper-parameters 
combination in LSSVR lead to over-fitting or under-fitting, so IPSO is used to 
optimize the parameters of SVR: γ and kernel parameter σ of RBF-kernel function, 
which are two attributes of each particle. In solving the hyper-parameter selection, 
each particle represents a potential solution, comprised of a vector d = (γ, σ). The 
performance of each particle is measured according to the fitness function. In the 
training and testing process of LS-SVR, the objective is to minimize the errors 
between the actual values and prediction values of the testing samples. Therefore, the 
fitness function of IPSO is defined as:  
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where z is the number of each subset as validation, yij represents the actual values, and 
ŷij represents the prediction values.  The goal is to minimize the fitness, so the 
particle with the minimal fitness value will outperform others and should be reserved 
during the optimization process. Accordingly, also the optimal combinational 
parameters values of γ and σ are obtained.  

The implementation process of water quality prediction based on IPSO-LSSVR is 
described in steps as follows: 

(1)  Input data of water quality, construct training sample set and test sample set. 
Initialize the original water quality data by normalization and then form training 
patterns.  

(2)  Set algorithm parameters, select the kernel function, the regularization parameter 
γ and the kernel function parameter σ. 

(3)  Train LSSVR on the training set, solve the optimization problem and obtain the 
parameters of LSSVR by IPSO, get IPSO-LSSVR prediction model. Test the 
performance of the prediction model with test sample. 

(4)  For a new application of the prediction task, extract water quality index and 
form a set of input variables x.  

4 System Implementation 

4.1 Testing Environment 

In the testing environment set up for the purposes of this work, one central monitoring 
platform with an IPsec based VPN (Virtual Private Network) router (BV-601, 
NESCO Co., China) is deployed in China Agricultural University located in Beijing. 
The remote monitoring system is deployed in an intensive fish farm culture site, 
Fengze Corporation, located in Shandong province, which is a typical recycling 
aquaculture system [48]. Each fish tank is approximately 6.77m × 6.55m × 0.55m. 
The average fish stock density is 30–40 kg/m3. 

4.2 Remote Monitoring Platform 

Two prototypes of the remote monitoring platform have been installed in a practical 
fish farm in Shandong to verify the performance of the system, as shown in Fig. 3. 

The probes of the sensor in the present study for temperature, DO, pH, salinity are 
made by the Nantu Company (China) with accuracies of 0.1 °C, 0.1mg/L, 0.1, 0.1 ppt, 
respectively. The HQ 40d18 (HACH, USA) is chosen as a contrast providing long-
term stability and high accuracies of ±1.0% for relative DO and ±0.1 °C for 
temperature. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Finished prototypes of remote monitoring platform (a) installation of each module in 
RMP case, (b) sensors, and (c) a remote monitoring platform deployed in an experimental 
workshop in Shangdong Fengze fish farm 
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The RMP uses PICNIC2.0 (TriState, Japan) as the core-processing chip and a 
GPRS module (FASTRACK M1203 Q2358, InRouter210C, China) for data 
transformation and transmission. The data recorded by the sensors is transmitted to 
the remote information server through the China Unicom’s GPRS services. Once the 
virtual local area network based on GPRS and IPsec VPN router for wireless secure 
transmission has been established, the programs in the server can have real-time 
access to the data. The set of data acquisition nodes transmits the data by WiFi 
wireless LAN, while the computer running a communication program can transmit 
information to the remote server by the TCP/IP protocol. Automated collection and 
web-based dissemination of data provides a centralized database for use and a 
detailed data analysis for all water quality stakeholders. Therefore, the users will be 
able to monitor the water parameter values via the Internet. 

4.3 Central Monitoring Software 

The central monitoring software is programmed with JSP, Servlet and short message 
technology using Model-View Controller (MVC) architecture. It can operate on all 
operating systems that support this version of JAVA, so that the users can access the 
system through any commonly used browser such as Internet Explorer, Netscape, etc. 
Matlab 7.0 is used to implement and validate the algorithm. An Intel Core 2 Duo CPU 
personal computer with 1GB SDRAM is chosen as the test environment. The software 
of the monitoring system is developed under the software environment of Windows 
2003, Eclipse, MyEclipse 3.2, MySQL 5.1, Apache Tomcat 5.5. A client software 
program is created to communicate with the server and provides a user interface so as 
to know the real-time status of the system (Fig. 4). 

 

Fig. 4. The monitor interface window of no. 5 workshop 
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5 Results and Discussion 

5.1 Network Communication and Data Acquisition 

The entire system have been tested and verified for about 30 months from November 
2010 to August 2012. Statistics of the data of all nodes show that the monitoring 
system is rather reliable; more than 95.2% of the data have been correctly collected 
since April 2009. Each RMP has an isolated local area network which is connected to 
the Internet via GPRS (China Mobile). That means that a sensing network node can 
be a building block to construct a large-scale wireless sensing network in GPRS 
signal covered areas. The monitoring system is also easy expandable with more 
sensor channels as well as GPRS bandwidth. 

To validate the accuracy of the system, two sets of data sampled though different 
strategies (manually and automatically) have been compared. As shown in Fig.5, the 
curve monitored by the system matches the curve collected manually very well, with 
the maximum difference being less than 0.4mg/L for dissolved oxygen content. So we 
can conclude that the proposed system can monitor the DO accurately and 
continuously. Obviously, the frequency of measurements (every 1 min) could not be 
achieved by manually sampling. 

 

Fig. 5. The monitoring data of dissolved oxygen for a single day collected by RMP#1 on April  
15th, 2010 

As we can see from Fig. 5, there is a rapid decrease of DO at about 8:20 and 16:20. 
This is because the feeding time is set at that time in this experiment. It is possible to 
monitor daily variations of dissolved oxygen to control aerators in time, typically after 
feeding. This form of time series permits monitoring of the daily amplitude of 
dissolved oxygen fluctuation, which is an accessory indicator of the water quality 
status. This frequency permits dissolved oxygen to be utilized as a warning parameter. 
The system can provide an early warning especially helpful for large scale, high-
density and high risk aqua farms. 

The detailed changes of temperature, pH and salinity are measured using the 
proposed monitoring system in the same way with satisfactory results.  
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Table 8. Summary statistic on various water parameters in 4 months 

Name 
April 2010  May 2010 June 2010 July 2010 

Mean Min Max  Mean Min Max Mean Min Max Mean Min Max 

Tw (°C) 17.2 16.4 21.3  20.8 18.5 25.0 25.4 21.0 29.1 25.2 20.3 27.7 

pH 7.95 7.56 8.18  6.00 6.00 8.77 8.11 5.87 8.96 7.85 5.77 8.61 

Tr (°C) 17.7 16.1 23.7  19.4 16.9 24.8 25.6 22.0 32.4 25.4 22.0 31.3 

DO (mg/l) 6.21 3.90 8.02  6.18 3.14 7.57 5.94 3.49 7.90 6.22 3.50 7.4 

Salinity (ppt) 31.1 29.8 32.6  31.3 28.8 32.7 31.6 29.0 32.6 31.4 28.3 32.2 

Mortality 0.7%  1.5% 1.6% 0.5% 

 
After the system has been deployed, the pH was relatively constant, with an 

average pH of 7.943 (Table 8). Salinity was also high and relatively constant, with an 
average of 31.35 ppt and range of less than 1 salinity units (0.6 ppt) (Table 8). These 
two parameters are both around the optimal growth range with little fluctuation. Fish 
mortality has begun to drop to below 2% since the system was deployed. 

5.2 Pre-treatment Data 

In many real applications, the observed input data cannot be measured precisely since 
distinct numerical variable have different dimensions, and should be normalized in 
the first instance. In order to improve the accuracy of prediction, all data samples are 
standardized and normalized to the interval of [0,1] according to the following linear 
mapping function:  
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Where d is the number of dimensions and l is the number of samples, 
d
kx  and d

kx
are the original data and the normalized data, respectively.  

5.3 Experimental Environment and Algorithm Parameter Settings 

The proposed IPSO-LSSVR algorithm has been implemented in the JAVA 
programming language. The experiment is performed on a 2.50GHz Core(TM)2 CPU 
personal computer with 2.0G memory under Microsoft Windows Server 2003 R2 
editions. From Fig. 6, it is clear that the proposed model of IPSO-LSSVR has strong 
learning capability for small samples and simultaneously achieves excellent 
generalization performance since the LSSVR is a good compromise for guaranteeing 
both stability and accuracy improvement, and it is a suitable and effective method for 
predicting the DO content of the water quality in the intensive aquaculture.  
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Fig. 6.  The water quality prediction result based on IPSO-LSSVR model 

5.4 Model Performance Evaluation  

In order to analyze and evaluate the prediction performance of IPSO-LSSVR, the 
models (standard LSSVR and BP neural network) are selected to deal with the 
aforementioned water quality samples data. The standard LSSVR parameters are 
found by 5fold cross-validation method, and the selected optimal values of γ and σ are 
120.1530 and 1.6839, respectively. The initial architecture of the BP neural network 
consisted of six input variable, one output variable, the hidden layer with six initial 
neurons, and the learning rate is 0.08 and stimulating function is sigmoid, three 
thousand training epochs are also adopted as the termination criterion. The root mean 
square error (RMSE), the mean absolute error (MAE), the mean absolute percentage 
error (MAPE) and mean squared error (MSE) are employed as performance indicators 
to evaluate prediction capability of three models. These performance indexes are 
respectively computed from the following equations: 
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Where M is the total number of actual samples in the data set, yt and ŷt are actual and 
prediction values, respectively. The performance evaluate the prediction capacity of 
the three models are illustrated in Table 9. 

Table 9. Error statistic of three prediction models 

Model RMSE MAE MAPE MSE 

BPNN 0.5523 0.4077 0.2668 0.1241 

Standard LSSVR 0.2388 0.1561 0.0534 0.0570 

IPSO-LSSVR 0.1687 0.0508 0.0159 0.0147 

 
The obtained results indicate that our hybrid model has significantly yielded more 

reliable performance, generalization ability, and high prediction precision than 
LSSVR and BPNN model. For the same LSSVR, the relative RMSE, MAE, MAPE 
and MSE differences between the IPSO-LSSVR and standard LSSVR models are 
29.36%, 67.46%, 70.22% and 74.21% in the test period, respectively. It is clear that 
the parameters optimized by IPSO are of better choice to construct LSSVR model for 
the design of water quality prediction than the ones by 5fold cross-validation method. 
The relative RMSE, MAE, MAPE and MSE differences between the IPSO-LSSVR 
and BPNN models are 69.46%, 87.54%, 94.04% and 88.15% in the test period, 
respectively. It is obvious that IPSO-LSSVR has more accurate result than BPNN. 

This study presents an IPSO based approach, capable of searching for the optimal 
hyper-parameters values of LSSVR and RBF kernel function. The results of 
application in water quality prediction demonstrates that the prediction method based 
on IPSO-LSSVR is effective and feasible, and simultaneously this prediction 
information is important for decision making regarding the water quality management 
in modern intensive aquaculture, so the testing costs and production schedule can be 
optimized.   

6 Conclusion 

In this study, a remote wireless monitoring system using wireless communication 
technology and IPSO-LSSVR prediction model for the intensive aquaculture in China 
is introduced. Two prototypes of RMP deployed in an intensive aquafarm in 
Shandong have been tested over nearly a 2-year period. It realizes the remote wireless 
monitoring of the water environmental parameters and alarm notification when 
monitored variables take anomalous values.  On the basis of the present study, the 
following conclusions can be made: 
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(1)  The system can monitor DO, pH, salinity and temperature in real-time and 
continuously, considering that more than 95.2% of the data have been correctly 
collected. There are no significant effects on the monitored pH value since it is 
comparatively stable. The results indicate a periodic variation of water 
temperature, which has the similar regularity with air temperature. Salinity has 
sharply changed after a heavy rain event, so it could be an indirect indicator for 
early warning. Some other parameters of serious concern in aquaculture include 
ammonia nitrogen and hydrogen sulfide. The measurement and control of these 
and other key parameters will be performed in future work. 

 

(2)  The system can provide an early warning, especially helpful for high-density 
aquafarms. The forecasting model correctly predicts the further trend of 
dissolved oxygen half an hour after physical measurement. 

 

(3)  On the daily time scale, dissolved oxygen is found to repeat with a sort of 
regularity, mostly depending on the time of feeding. On the large seasonal scale, 
it shows an almost periodical trend, depending on the climatic situation. 
Therefore, it might be possible to improve the forecast model on this basis. 

 

(4)  The forecasting results of the dissolved oxygen are good after training, so 
changes in their coefficients will not be a priority for model improvement. Data 
sets of experiments that include all the necessary measurements along a growing 
cycle are not available. In addition, data sets from other pond environments with 
fish of different species are needed to make the model applicable to a wider 
range of culture environments. Special attention should be given to training data 
set as well. 

 

(5)  Application of the proposed system is still limited by its rather complicated 
operational requirements and high maintenance cost. The effects of water quality 
variations can be investigated in a good temporal and spatial resolution if more 
RMPs are installed. Moreover, the sensors need frequent cleaning and 
recalibration to prolong the useful span, because they need to have constant 
contact with the water, resulting in instrument fouling and loss in sensitivity and 
reproducibility. The long life span poles and the layout of sensor collection 
stations should be studied.  
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