
Chapter 7
Higher Order Sliding Mode Control by Keeping
a 2-Sliding Constraint

Prasiddh Trivedi and Bijnan Bandyopadhyay

Abstract. This article investigates a new algorithm for higher order sliding mode
control. The proposed control law keeps a constraint in 2-sliding mode such that
the finite time stabilization of the chain of integrators is achieved. The proposed
switching function has relative degree two with respect to the input and a second
order sliding controller is used. The twisting controller is used for achieving finite
time convergent 2-sliding mode to the switching manifold. The switching manifold
is designed to provide finite time convergence of the integrator chain. The fractional
powers in the switching function are carefully designed to prevent the unbounded-
ness or singularity arising because of the switching constraint being kept at zero.

7.1 Introduction

Finite time stability and Sliding Mode Control (SMC) are closely related areas of
active research. Since sliding mode control methods require finite time reaching
to the sliding manifold, finite time stabilization methods can naturally be applied
in SMC. However, SMC has more emphasis on robustness and sliding mode con-
trollers should be robust. The Higher Order Sliding Mode Control (HOSM) is a
necessity for achieving robust stabilization or tracking in the systems with outputs
having relative degree more that one with respect to the input. The sliding order by
definition gives better accuracy [[11]], [[13]].

The literature on second order sliding modes is abundant. However, few con-
trollers exist for achieving finite time convergence for an arbitrary order dynamical
system. In general this may not be possible but given boundedness of the states
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finite time robust stabilization of an arbitrary chain of integrators is an interesting
problem. Finite time stability with non-lipschitzian right hand sides is well docu-
mented [[2]], [[8]], [[15]]. Homogeneity properties of the vector field are also explored
and shown to be quite useful in proving the finite time nature [[1]], [[10]]. The gen-
eralization to systems with dynamics of order higher than 2 has been established
in different forms [[3]], [[9]]. These methods employ fractional powers and provide a
continuous control law.

Terminal sliding mode (TSM) was first introduced in [[7]] as a robust finite time
controller for a second order two-link robotic manipulator. The terminal sliding
mode has an extraordinary feature of providing finite time convergence of all the
system states through a non linear switching function. The more general formulation
was presented in [[17]], where nested non linear switching functions are designed. All
switching functions converge to zero in finite time sequentially and as a consequence
ultimately all system states converge to zero. The terminal sliding mode can easily
be used to achieve finite time stabilization of chain of integrators and thus providing
for a higher order sliding mode. However, as mentioned by Levant [[12]], this form
leads to unbounded control for systems of order three and higher. Thus, Filippov
solutions are not well defined for this formulation.This has led to development of
non-singular terminal sliding mode control. A slightly different switching function
has been shown [[6]], [[5]] to provide terminal sliding without causing unbounded
control. Non singular terminal sliding mode control has been used as second order
sliding mode control of uncertain multivariable systems [[5]].

The discontinuous control i.e., the sliding mode control has also been developed
for achieving finite time stabilization of higher order systems [[12]], [[16]]. The dis-
continuous feedback has the apparent advantage of robustness over the continuous
feedback laws. The most popular HOSM controller is detailed in [[12]]. The idea
in [[12]] for achieving finite time convergence is to keep a properly designed switch-
ing constraint in 1-sliding. The novel method proposed in [[16]] utilizes feedback
control with matrix exponentials, but needs the knowledge of initial conditions to
compute the gain matrix. The advantage is the reaching time can be easily specified
and the designed control law is able to steer the trajectory to the desired sliding set
in the specified time. The proposed controller in this article is based on the idea
of holding a 2-sliding constraint. The organisation is as follows. The first section
provides a basic introduction to HOSM. The second section describes the main pro-
posal and detailed proof that keeping a properly designed constraint in 2-sliding can
achieve finite time convergence of a triple integrator. Extension of the idea to the
chain of integrators for higher order sliding mode control is described in the third
section followed by numerical simulations and an example.

7.1.1 Higher Order Sliding Mode Control

The HOSM is introduced and well defined in terms of a family of real sliding tra-
jectories [[11]]. This article follows the same definitions and assumptions. Let the
dynamical system be described by,
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ẋ = f (t,x)+ g(t,x)u (7.1)

with x ∈ Rn,u ∈ R. Let σ(x) ∈ R be some output of the system with stable zero
dynamics and the problem is to steer it to zero in finite time. The classical sliding
mode approach makes σ̇ discontinuous using a relay feedback and provides for fi-
nite time stabilization. This approach would require σ(x) to have relative degree 1
with respect to the input and it makes the input discontinuous. Apparently when the
output has relative degree more than one, this approach would not work and HOSM
concepts have to be employed. In some situations, discontinuous control might be
unacceptable. Then the relative degree can be increased artificially by cascading
integrators and shifting the discontinuity in to higher derivatives of input. This ap-
proach increases the smoothness of control as well as σ(x).
Suppose σ(x) has relative degree r with respect to the input (it may have been ar-
tificially increased as mentioned). Then the control appears in the r-th derivative of
σ(x) with the direction derivatives of system functions. Thus,

σ (r) = φ(t,x)+ γ(t,x)u (7.2)

where, φ(t,x) and γ(t,x) contains directional derivative(Lie derivatives) of the sys-
tem functions f (t,x) and g(t,x). It is assumed that

|φ(t,x)|<Φ, 0 < Γm ≤ γ(t,x)≤ ΓM (7.3)

The problem is to find a control input u which stabilizes (7.2) in finite time.
It can also be stated as finite time stabilization of an integrator chain in the pres-

ence of uncertainties in the form of φ(t,x) and γ(t,x). Also, finite time stabilization
of an integrator chain without uncertainties is a good starting point for analysis of
new controller. The next section describes a new controller for triple integrator with-
out uncertainties and then extends it to the triple integrator with uncertainties.

7.2 Third Order Sliding via Non-singular Terminal Switching
Function

This section introduces the idea of keeping a constraint in 2-sliding to obtain third
order sliding. At first we consider the triple integrator without uncertainties. We
show that finite time convergence of the triple integrator is obtained by holding a
switching function in 2-sliding mode. The switching function is the one used in
non-singluar terminal sliding mode control. The triple integrator input has relative
degree two with respect to this switching function. The twisting controller is the
obvious choice to confine the trajectory on the manifold defined by this constraint
function.
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7.2.1 Triple Integrator without Uncertainties

Let the triple integrator be σ (3) = u. The constraint function, as mentioned earlier,
has to have relative degree two with respect to the input. Thus, it must be a function
of variables σ and σ̇ such that the input appears in the second time derivative of the
function. Consider the following function,

ψ(σ , σ̇) = σ + σ̇α (7.4)

where, α is a ratio of positive odd integers. Specifically α = p/q, with p,q ∈ N

and odd. This function also defines a 2-sliding manifold in σ ,σ̇ and σ̈ coordinates
as S = {(σ , σ̇ , σ̈)|ψ(σ , σ̇ ) = ψ̇(σ̇ , σ̈) = 0}. We have the following proposition to
show that keeping the constraint function (7.4) in a 2-sliding mode achieves finite
time stabilization of the triple integrator.

Proposition 7.1. The control law,

u =−k1sign(σ + σ̇α)− k2sign(σ̇ +ασ̇α−1σ̈) (7.5)

stabilizes σ (3) = u in finite time with the following sufficient conditions.

• α is a ratio of two odd integers with 1 < α < 1.5.
• k1 > k2 and Ξ3 +α ′Ξ2Ξ 2

3 +Ξ2(k1 − k2)<−Ξ3 −α ′Ξ2Ξ 2
3 +Ξ2(k1 + k2).

where, |σ̇ |< 1
α Ξ

1−α
2 , |σ̈ |< Ξ3 and Ξ2,Ξ3 ∈R are known.

Proof. Let us define the integrator states as, ξ1 = σ ,ξ2 = σ̇ and ξ3 = σ̈ , then the
state equations are

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = u

(7.6)

Consider the switching function ψ(ξ ) = ξ1 +ξα2 . The proof is divided in two major
parts. First we show that if the constraint ψ(ξ ) is held in 2-sliding, i.e., ψ(ξ ) =
ψ̇(ξ ) = 0 is kept then the reduced order dynamics of (7.6) is finite time stable. It is
equivalent to say that the zero dynamics of the (7.6) with functionψ(ξ ) as output is
finite time stable. The second part proposes a controller which keeps this constraint
in 2-sliding i.e, makes the trajectory reach the 2-sliding manifold in finite time.

The zero dynamics can be easily obtained by equating ψ(ξ ) and ψ̇(ξ ) to zero.
That is,

ψ(ξ ) = ξ1 + ξα2 = 0 (7.7)

ψ̇(ξ ) = ξ2 +αξα−1
2 ξ3 = 0 (7.8)
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The algebraic relationships are obtained as,

ξ2 =−ξ
1
α

1 (7.9)

ξ3 =− 1
α
ξ 2−α

2 (7.10)

Note that, (7.8) dictates two algebraic relations namely ξ2 = 0 or ξ3 = − 1
α ξ

2−α
2 .

However, ξ2 = 0 is not to be considered for reduced order dynamics for reasons
explain later in the proof. Thus, when the constraint ψ is kelp in 2-sliding, the dy-

namics of (7.6) reduces to one differential equation ξ̇1 =−ξ 1/α
1 which is finite time

stable with 1 < α < 2, and the other two states are algebraically related with ξ1.
Here, it is obvious that for finite time stability α > 1 is necessary but α < 2 is ap-
parent from the algebraic relation (7.10), where the ξ 2−α

2 converges to zero only
with α < 2.

We have established that if the constraint ψ(ξ ) = ξ1 + ξα2 is kept in 2-sliding,
then finite time convergence of (7.6) is achieved. Next we show that the proposed
controller achieves finite time convergence to the 2-sliding manifold S . To this end,
consider the second time derivative of ψ(ξ ),

ψ̈ = ξ3 +α(α− 1)ξα−2
2 ξ 2

3 +αξα−1
2 ξ̇3 (7.11)

= φ ′(ξ )+ γ ′(ξ )u (7.12)

where,

φ ′(ξ ) = ξ3 +α(α− 1)ξα−2
2 ξ 2

3 (7.13)

γ ′(ξ ) = αξα−1
2 (7.14)

The functions φ ′(ξ ) and γ ′(ξ ) are of utmost importance in the subsequent analysis.
Some remarks about these functions, follow, which are useful in the proof.

Remark 7.1. The function φ ′(ξ ) is not globally bounded so the question can be
raised about the existence of Filippov’s solution. Note that the equation (7.11) is
only a tool to understand the behaviour of ψ and ψ̇ . The solution of the system is
dictated by (7.6). It is obvious that Filippov solutions for ξ are very well defined
with the proposed control. The functions ψ and ψ̇ are algebraically related with ξ
so these are also well defined.

Remark 7.2. The set S = {ξ ∈R3|ψ(ξ ) = ψ̇(ξ ) = 0} is intended to be a positively
invariant set, hence, it is necessary to examine the dynamics when the trajectory is
within S i.e., during the sliding mode. Consider (7.11) when ψ(ξ )≡ ψ̇(ξ )≡ 0,i.e.,
substituting algebraic relations (7.9)-(7.10) into (7.11),

ψ̈ = αξα−1
2

(
α− 2
α2 ξ 2−3α

2 + u

)
(7.15)
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Note that it contains the term ξ 2−3α and 2− 3α > 0 is necessary for the right hand
side to be bounded while sliding. Thus, we obtain the condition 1 < α < 1.5.

Remark 7.3. γ ′(ξ ) is a sign definite positive function. The α is ratio of two odd in-
tegers, so α−1 has an even number in the numerator. Thus ξα−1

2 is always positive.
However, it does not have a lower bound. It is seen that γ ′(ξ )→ 0 as ξ2 → 0. Also
as ξ2 → 0 the function φ ′(ξ )→ ∞.

Remark 7.4. Also, it is crucial to note that on the manifold S the function φ ′(ξ ) is
bounded. It is evident from the following limit.

lim
(ξ2→0)|S

ξ3 +
α(α− 1)ξα2 ξ

2
3

ξ 2
2

=
α− 2
α

ξ 2−α
2 = 0 (7.16)

Thus, once the trajectories converge to the 2-sliding set S , φ ′(ξ ) is bounded.

Consider some identities relating the functions φ ′ and γ ′. These identities are useful
in the proof.

γ̇ ′(ξ ) = α(α− 1)ξα−2
2 ξ3 = α ′γ ′(ξ )ξ−1

2 ξ3 (7.17)

φ ′(ξ ) = ξ3 + γ̇ ′(ξ )ξ3 (7.18)

ψ̇(ξ ) =
ξ2

α ′ (α
′+ γ̇ ′), α ′ = α− 1 (7.19)

The proof of finite convergence will consist of showing that the real trajectory is
”majored” by a known fixed trajectory (majorant curve). This majorant curve con-
verges to zero in finite time and thus the real trajectory converges to zero. To this
end, consider the ψ̈ again in a more convenient form,

ψ̈ = ξ3 + γ̇ ′(ξ )ξ3 + γ ′(ξ )u (7.20)

= ξ3 + γ ′(ξ )
(
α ′ξ−1

2 ξ 2
3 + u

)
(7.21)

Next, consider the projection of the trajectory on ψ-ψ̇ coordinates. Without loss of
generality one can consider the trajectory starting from a point (0, ψ̇0). The trajec-
tory enters the quadrant ψ > 0,ψ̇ > 0. We shall show that the real trajectory of the
system with proposed control in this quadrant is confined by the axis ψ = 0, ψ̇ = 0
and the trajectory of the equation

ψ̈ = Ξ3 +α ′Ξ2Ξ 2
3 −Ξ2kM (7.22)

where, kM = k1 + k2,Ξ2 and Ξ3 are bounds considered as |ξ3|< Ξ3,γ ′(ξ )< Ξ2.
For the justification of this fact let us write the differential inclusion from (7.20)

as,

ψ̈ ∈ [−Ξ3,Ξ3]+ [0,Ξ2]

(
α ′

ξ2

[−Ξ 2
3 ,Ξ

2
3

]
+ u

)
(7.23)
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Table 7.1 Table gain conditions in state-space

Region ξ1 ξ2 ξ3 Condition for ψ̇ > 0 Condition for φ ′ < 0

O1 +,+,+ Always Never
O2 −,+,+ Always Never
O3 +,−,+ γ̇ ′ <−α ′ γ̇ ′ <−1
O4 +,+,− γ̇ ′ >−α ′ γ̇ ′ >−1
O5 −,+,− γ̇ ′ >−α ′ γ̇ ′ >−1

Now, refer to the Table-7.1. The table details the regions in ξ -space where ψ̇ can
be positive. The third column lists the condition for ψ̇ > 0 and fourth column lists
the condition for φ ′(ξ ) as in (7.18) to be negative. Interestingly the condition for
ψ̇ > 0 implies the condition for φ ′(ξ ) < 0 in the regions O4 and O5. For example,
consider ψ̇0 ∈ O4. Then, from (7.19) γ̇ ′ >−α ′ is necessary for ψ̇ > 0. Moreover, in
this region γ̇ ′ >−1 implies φ ′ < 0. It is trivial that when φ ′(ξ )< 0 the real trajectory
is obviously confined by trajectory of (7.22). Thus, the regions where φ ′(ξ )> 0 are
of concern which are O1, O2 and O3. Observe that in these regions ξ3 > 0 and in
the quadrant ψ > 0, ψ̇ > 0 we have ξ̇3 =−kM . Thus, ξ3 becomes negative in finite
time and enters regions O4 or O5. In these regions as we have already seen the real
trajectory is bounded by the trajectory of (7.22).

However, there exist initial points on ψ = 0 axis such that ψ̈ > 0. In this case
the trajectory is not bounded by (7.22). Note that such initial points exist only in the
regions O1, O2 and O3. We have already seen that the trajectory leaves this regions
never to enter again. Let the majorant curve intersection point on the axis ψ̇ = 0 be
(ψM,0), then

−2(Ξ3 +α ′Ξ2Ξ 2
3 −Ξ2kM) = ψ̇2

0 (7.24)

Similar analysis can be done to see that the trajectory in the quadrant ψ > 0,ψ̇ < 0
is confined by the trajectory of

ψ̈ =−Ξ3 −α ′Ξ2Ξ 2
3 −Ξ2km (7.25)

where, km = k1 − k2. Assume that the trajectory intersects the axis ψ = 0 at a point
(0, ψ̇1) then,

2(Ξ3 +α ′Ξ2Ξ 2
3 +Ξ2km) = ψ̇2

1 (7.26)

For the convergence of the majorant trajectory it is sufficient to have |ξ̇1|/|ξ̇0|< 1.
Thus, a sufficient condition can be written as

Ξ3 +α ′Ξ2Ξ 2
3 +Ξ2km <−Ξ3 −α ′Ξ2Ξ 2

3 +Ξ2kM (7.27)

This completes the proof.



152 P. Trivedi and B. Bandyopadhyay

Fig. 7.1 Real trajectory and the Majorant Curve

Thus, it is established that finite time convergence to a 3-sliding set is possi-
ble by keeping a switching constraint in 2-sliding mode. Unlike the usual terminal
sliding mode, the existence of Filippov solutions is also seen with a condition on
the fractional power. It is important to note that the derived gain conditions are too
conservative and in practice gains cannot be assigned using these inequalities.

7.2.2 Uncertain Triple Integrator

This section considers the triple integrator with uncertainties. The practical appli-
cation of the 3-sliding algorithm requires stabilization in the presence of uncertain
bounded system functions. Thus, it is necessary for the proposed controller to be
able to achieve finite time stabilization of,

σ (3) = φ(t,x)+ γ(t,x)u (7.28)

with bounds given as,

|φ(t,x)|<Φ,0 < Γm < γ(t,x)≤ ΓM (7.29)

Proposition 7.2. The control (7.5), stabilizes the uncertain integrator (7.28) in finite
time, if the following sufficient conditions hold.

• α is a ratio of two odd integers with 1 < α < 1.5.
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• ΓmΞ3kM −Ξ2Ξ 2
3 −Φ > ΓMΞ3km +Ξ3 +Ξ2Ξ 2

3 +Φ .

Proof. The equation for ψ̈ is changed incorporating these changes as,

ψ̈ = ξ3 +αα ′ξα−2
2 ξ 2

3 +αξα−1
2 φ(t,x)+αξα−1

2 γ(t,x)u (7.30)

Let φ ′(t,x) and γ ′(t,x) be,

φ ′(t,x) = ξ3 +αα ′ξα−2
2 ξ 2

3 +αξα−1
2 φ(t,x) (7.31)

γ ′(t,x) = αξα−1
2 γ(t,x) (7.32)

Exactly the same analysis as in the proof of Proposition 7.1 can be repeated to
determine the majorant curve in the ψ-ψ̇ plane. The majorant curve in the first
quadrant(ψ > 0,ψ̇ > 0) is determined as

ψ̈ = Ξ3 +Ξ2Ξ 2
3 +Φ−ΓmkM (7.33)

In the second quadrant(ψ > 0,ψ̇ < 0) the majorant curve is determined by

ψ̈ =−Ξ3 −Ξ2Ξ 2
3 −Φ−ΓMkm (7.34)

Thus, the sufficient condition in this case can be easily written as,

ΓmΞ3kM −Ξ2Ξ 2
3 −Φ > ΓMΞ3km +Ξ3 +Ξ2Ξ 2

3 +Φ (7.35)

Thus, the proposed control produces a 2-sliding mode on the constraint ψ(ξ ) and
in turn finite time stabilization of the triple integrator.

7.3 Extension to Higher Order Sliding

The idea presented in the previous section can also be used to achieve higher order
sliding modes. The key idea is to hold a 2-sliding constraint to obtain higher order
sliding. Consider the chain of r integrators with uncertainties which might be of the
form (7.2).

σ (r)(x) = φ(t,x)+ γ(t,x)u (7.36)

Assume that the r-sliding set S = {x∈Rn|σ = σ̇ = . . .= σ (r−1) = 0} is non empty.
The objective is to find an input u such that the trajectory of (7.36) is finite time
convergent to S . To this end, a switching function ψ(σ , σ̇ , · · · ,σ (r−2)) is designed
such that if ψ and ψ̇ are forced to zero the reduced dynamics of (7.36) is finite time
convergent.

Theorem 7.1. Let ψ0 = σ and further the switching functions defined as,

ψi = ψi−1 + ψ̇αi
i−1, i = 1, . . . ,r− 2 (7.37)
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where, r ≥ 4 and each αi is a ratio of odd integers with 1 < αi <
r−i+1

r−i .

u =−k1sgn(ψr−2)− k2sgn(ψ̇r−2), k1 > k2 (7.38)

The controller with sufficiently large gains k1 and k2 makes the trajectories of (7.36)
reach the r-sliding set S in finite time.

Proof. The control law (7.5) first establishes a 2-sliding mode on ψr−2, i.e., the
trajectory reaches the set {ψr−2 = ψ̇r−2 = 0}. This provides finite time conver-
gence of ψr−3 and ψ̇r−3. In turn the trajectory is successively transferred to the
set N = {ψ0 = ψ1 = · · · = ψr−2 = 0}. As seen earlier it is clear that if the trajec-
tory reaches within N and stays in N then the reduced order dynamics are such
that σ ,σ̇ ,· · · ,σ (r−1) converges to the origin in finite time.

The second time derivative of ψi can be obtained exactly as (7.14). A similar
argument holds for existence of Filippov solutions and the evaluation of ψ̈i on
the constraint manifolds is required which is obtained as (details are given in the
appendix),

ψ̈i =
r−2

∏
j=1
α jψ̇αi

i−1

(
βiψ̇3−2αi

i−1 + ψ̇αi−1−1
i−2

(
βi−1ψ̇

4−3αi−1
i−2

+ ψ̇αi−2−1
i−3

(
βi−2ψ̇

5−4αi−2
i−3 + . . .+ u

))) (7.39)

It is easy to see that for the right hand side of (7.39) to be well defined, the following
inequalities are necessary.

αi <
3
2
, αi−1 <

4
3
, . . . , α1 <

r
r− 1

(7.40)

The (7.40) can be written collectively as

αi <
r− i+ 1

r− i
(7.41)

As we have noted in previous sections with k1, k2 sufficiently large,ψr−2 is attractive
in finite time. Since, (7.37) define nested surfaces, ultimately the r-sliding set S is
reached in finite time.

This proves to be another algorithm for stabilizing an uncertain chain of integrators
in finite time. It can be noted that as this algorithm involves keeping the constraint in
2-sliding, it provides for extra accuracy compared to algorithms keeping a 1-sliding
constraint. The following section considers some simulation examples to illustrate
the proposed algorithm.



7 Higher Order Sliding Mode Control by Keeping a 2-Sliding Constraint 155

7.4 Simulation Examples

All simulations are carried out using MATLAB R©’s ODE45 program with all toler-
ances set to 10−4.

Example 7.1. This numerical simulation shows stabilization of an uncertain triple
integrator with the proposed controller. Consider the perturbed triple integrator

σ (3) = 1.5sin(2t)+ (1.5+ 0.5sin(t)+ 0.5cos(3t))u (7.42)

The switching function ψ(σ , σ̇) is taken as,

ψ(σ , σ̇) = σ + σ̇
7
5 (7.43)

According to the condition derived in Proposition 7.1, we have 1 < 7
5 < 1.5 and the

controller used for simulation is

u =−8sgn(ψ)− 6sgn(ψ̇) (7.44)

The Figure-7.3 shows that the switching function and its derivative reaches zero at
about 1 unit of time. Figure-7.2 shows σ ,σ̇ and σ̈ reaching zero in finite time as
desired.

Fig. 7.2 Switching function and its derivatives in 3-sliding in Example-1
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Example 7.2. This numerical simulation shows stabilization of pure fourth order in-
tegrator with the proposed control. Consider the fourth order integrator chain as
σ (4) = u. The switching functions are defined as

ψ0 = σ (7.45)

ψ1 = ψ0 + ψ̇
9
7

0 (7.46)

ψ2 = ψ1 + ψ̇
7
5

1 (7.47)

Since 7
5 < 3

2 , and 9
7 < 4

3 these are proper choice of fraction powers according to the
Proposition 7.2. The control law is determined as u = −13sign(ψ2)− 11sign(ψ̇2)
and the initial conditions are (−0.1 0.7 0.8 0.3)T . Figure-7.4 shows the 4-sliding
trajectories of σ ,σ̇ ,σ̈ , σ (3).

Fig. 7.3 Switching function and its derivative for Example-1

Example 7.3. To realize the proposed algorithm with uncertain functions, we con-
sider a non linear DC motor model. DC motors have been used widely for motion
control in industries. A wide variety of DC motors are available for specific applica-
tions. This example considers a series excited DC motor model. Motors are usually
non linear devices but frequently linearized for control design. However, there are
several applications where a linear model that ignores the friction nonlinearity is
not adequate. For example, for orientation angle control of large telescopes. Since
speeds are very small in these applications the friction force is dominant and cannot
be ignored. One such non linear model is considered here.
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Fig. 7.4 Switching function and its derivatives in 4-sliding

The model is described by [[4]],

ẋ1 = x2

ẋ2 =−m1x2 +m2x3 −m6sgn(x2)

−m7em8|x3|sgn(x2)

ẋ3 =−m4x2 −m3x3 +m5u

(7.48)

where, x1 = θ (angular position), x2 = ω (angular speed), x3 = ia (motor current),
u = Va (armature voltage). ki are motor parameters given as m1 = 0.0110,m2 =
16.16,m3 = 50.66,m4 = 1.31,m5 = 15.8,m6 = 19.27,m7 = 10.11,m8 = 0.0051.

The problem is to design a control to track a given position i.e., θd(t) is given and
the motor angle should track the desired angle at all times. Defining σ = x1 − x1d ,
it is clear that it has relative degree three with the input. Thus, the proposed method
in Section 7.2 is applicable here. Please note that the signum function is ẋ2 equation
is just a notational aid to represent the friction force reversal when the direction of
the rotation reverses. Thus, it does not affect the relative degree in any way.

The switching function is designed as ψ = σ + σ̇
7
5 and ψ̇ = σ̇ + 7

5 σ̇
2/5σ̈ is ob-

tained. The gains for the control law are determined as k1 = 17 and k2 = 13. Figure-
7.5,7.6 show the simulations with θ (0) = 0.35R and all other initial conditions zero.
The desired position is given as θd = π/2R.
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Fig. 7.5 Angle, speed and armature current with 3-sliding

Fig. 7.6 Armature Voltage with 3-sliding



7 Higher Order Sliding Mode Control by Keeping a 2-Sliding Constraint 159

Fig. 7.7 State Trajectories with 4-sliding control

Fig. 7.8 Armature Voltage with 4-sliding control



160 P. Trivedi and B. Bandyopadhyay

It is observed that having relative degree three output, the control is discontinuous
and if smooth control is desired then 4-th or higher order sliding mode control has
to be designed. According to the proposed method, a nested switching function can
be designed as

ψ0 = x1 −θd (7.49)

ψ1 = ψ0 + ψ̇
9
7

0 (7.50)

ψ2 = ψ1 + ψ̇
7
5

1 (7.51)

The controller is given as u = −3sign(ψ2)− 2sign(ψ̇2). Figure-7.7,7.8 shows tra-
jectories and input with 4-sliding controller. Comparatively smooth input can be
recognised.

7.5 Conclusion

A new algorithm to obtain higher order sliding mode control is presented in this
paper. The proposed algorithm keeps a properly designed switching constraint in 2-
sliding. The constraint design utilizes a form of non-singular terminal sliding mode
switching function, and keeping it in 2-sliding is achieved using twisting controller.
It has been shown that Filippov solutions exist with properly chosen fractional pow-
ers. The proposed controller is simulated numerically for third and fourth order
sliding modes. Also the proposed method is applied to a DC motor with friction in
an angle tracking problem, where fourth order sliding is used to avoid chattering in
the controller.

7.6 Appendix

7.6.1 The Switching Constraints and its Derivatives

The nested switching functions are listed as defined in (7.37),

ψ0 = σ
ψ1 = ψ0 + ψ̇α1

0

ψ2 = ψ1 + ψ̇α2
1

ψ3 = ψ2 + α̇α3
2

...

(7.52)
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The time derivatives of the functions (7.52) can also be listed accordingly

ψ̇1 = ψ̇0 +α1ψ̇α1−1ψ̈0

ψ̇2 = ψ̇1 +α2ψ̇α2−1ψ̈1

ψ̇3 = ψ̇2 +α3ψ̇α3−1ψ̈2

...

(7.53)

Since we are interested in the form of ψ̈i, while ψi = ψ̇i = 0, it is necessary to
evaluate the identities provided by (7.52) and (7.53).

ψ̇0 =−ψ
1
α1

0 (7.54)

ψ̇1 =−ψ
1
α1

1 (7.55)

ψ̇2 =−ψ
1
α1

2 (7.56)

... (7.57)

and from first time derivatives,

ψ̈0 =− 1
α1
ψ̇2−α1

0 (7.58)

ψ̈1 =− 1
α2
ψ̇2−α2

1 (7.59)

ψ̈2 =− 1
α3
ψ̇2−α3

2 (7.60)

... (7.61)

Now, if desired sliding order is r = 3 then using (7.54) and (7.58),

ψ̈1 = α1ψα1−1
0

(
α1 − 2

α2
1

ψ3−2α1
0 +ψ(3)

0

)
(7.62)

= α1ψα1−1
0

(
β1ψ3−2α1

0 +ψ(3)
0

)
(7.63)

For r = 4, using (7.55) and (7.59)

ψ̈2 = α1α2ψ̇α2−1
1

(
α2 − 2

α1α2
2

ψ̇3−2α2
1 (7.64)

+ψ̇α1−1
0

((
(α1 − 2)2

α2
1

−α1 + 1

)
ψ̇4−3α1

0 +ψ(4)
0

))
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Denoting real number terms of α1 and α2 by β1 and β2 respectively

ψ̈2 = α1α2ψ̇α2−1
1

(
β2ψ̇3−2α2

1 + ψ̇α1−1
0

(
β1ψ̇4−3α1

0 +ψ(4)
0

))
(7.65)

For r = 5, using (7.56) and (7.60),

ψ̈3 = α1α2α3ψ̇α3−1
2

(
β3ψ̇3−2α3

2 + ψ̇α2−1
1

(
β2ψ̇4−3α2

1 + ψ̇α1−1
0

(
β1ψ̇5−4α1 +ψ(5)

0

)))

(7.66)

Thus, this recursion leads to the rth-order equation as,

ψ̈i =
r−2

∏
j=1
α jψ̇αi

i−1

(
βiψ̇3−2αi

i−1 + ψ̇αi−1−1
i−2

(
βi−1ψ̇

4−3αi−1
i−2

+ ψ̇αi−2−1
i−3

(
βi−2ψ̇

5−4αi−2
i−3 + . . .+ u

))) (7.67)
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