
Chapter 3
Decentralised Variable Structure Control for
Time Delay Interconnected Systems

Xing-Gang Yan and Sarah K. Spurgeon

Abstract. A class of multiple time varying delay interconnected systems with non-
linear disturbances is considered in this Chapter, where both the known and un-
certain interconnections involve time delay. A decentralised static output feedback
variable structure control is synthesised, which is independent of the time delays, to
stabilise the system globally uniformly asymptotically. The stability of the closed
loop system is analysed based on the Lyapunov Razumikhin approach. Then, for
interconnected systems where each subsystem is square, it is shown that the effects
of the uncertain interconnections can be largely rejected by appropriate controllers
if the delays are known and the uncertain interconnections are bounded by a class
of functions of the outputs and delayed outputs. A case study relating to a river
pollution control problem is presented to illustrate the proposed approach.

3.1 Introduction

Interconnected systems exist widely in the real world. Examples include power net-
works, cellular systems, ecological systems and financial systems. Such systems are
often widely distributed in space. A fundamental characteristic of interconnected
systems, which holds for both natural and engineered systems, is that they tend
to operate in a decentralised manner. For interconnected systems, the presupposi-
tion of centrality generally fails to hold due to the lack of centralised information
or the lack of a centralised decision making focus. Even with engineered systems,
issues such as the economic cost and reliability of communication links, particu-
larly when systems are characterised by geographical separation, limit the appetite
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to develop centralised systems. This has motivated the development of a wide lit-
erature in the area of decentralised control for interconnected systems, see, for
example, [[12, 17, 20, 26, 27]].

3.1.1 Interconnected Systems

Interconnected systems are often modelled as dynamical equations composed of
interconnections between a collection of lower-dimensional subsystems. A funda-
mental property of any interconnected system is that a perturbation of one subsystem
can affect the other subsystems as well as the overall performance of the network.
The purpose of control and monitoring paradigms from the domain of engineering
within an interconnected system’s architecture is thus to minimise the effect of any
perturbation or uncertainty on the overall system behaviour.

Large scale interconnected systems were studied from the engineering perspec-
tive as early as the 1970’s [[24]]. This early work focussed primarily on linear inter-
connected systems. The dynamics of large scale natural and engineered intercon-
nected systems are usually highly nonlinear, and thus it is not only the structure of
the system which produces complexity but also the nonlinearity of the dynamics.
It is clear that although a linear dynamics may approximate the orbit of a nonlinear
system locally, it does not permit the existence of the multiple states observed in real
networks and does not accommodate global properties of the system. Such global
properties can be crucial because they may become significant when the system
is perturbed or a subsystem enters a failure state. Increasing requirements on sys-
tem performance coupled with the ability to model and simulate reality by means
of complex, possibly nonlinear, interconnected systems models have motivated in-
creasing contributions to the study of such systems. This interest has been further
stimulated by the simultaneous development of nonlinear systems theory and the
emergence of powerful mathematical and computational tools which render the for-
mal and constructive study of nonlinear large scale systems increasingly possible.

3.1.2 Decentralised Output Feedback Control

Decentralised output feedback control, where only limited local system state infor-
mation is available to design any corrective action, has received much attention in
the literature and many interesting results have been obtained. Many of these meth-
ods are based on Lyapunov approaches or involve adaptive control. In the contribu-
tions of Saberi and Khalil [[23]] and Yan et al. [[31]], Lyapunov methods are used to
form the control scheme and strict structural conditions are imposed on each of the
nominal subsystem models. The work also includes some strong limitations on the
admissible interconnections. Adaptive control techniques have been employed by
Zhou and Wen [[34]], and Jain and Khorrami [[11]], but only parametric uncertainty
is dealt with due to the limitation of the approach; this is clearly a strong limita-
tion as uncertainty in the possibly nonlinear system structure as well as external
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perturbations are key factors in any interconnected system of practical significance.
The corresponding results can thus only be applied to certain systems with spe-
cial structure. An appropriate methodology must be able to deal with a broad class
of nonlinear subsystems where the subsystems themselves as well as the possibly
nonlinear interconnections between them will be uncertain and only limited system
state variables will be measurable. So called sliding mode control has been used
successfully by many authors in such uncertain, nonlinear scenarios [[2, 3, 25, 32]].
However, the primary focus in the literature has been on centralised control which is
problematic to implement in large-scale interconnected systems using decentralised
control.

Sliding mode control schemes for large-scale systems have also been proposed in
the literature, see for example [[7, 13]]. However, in such contributions it is required
that the uncertainties and the interconnections have special structure, or else have
linear or polynomial bounds. In addition, most methods focus on the so-called state
feedback control case where all state information is assumed available to the control
design. Much less attention has been paid to the output feedback, or limited infor-
mation, case. Lee proposed a decentralised output feedback control scheme using
sliding mode techniques [[13]], where not only were the isolated subsystems required
to be linear, but the interconnections were restricted to the linear case as well. Also
all of the uncertainties and interconnections are required to adopt a specific struc-
ture, i.e. satisfy the so-called matching conditions whereby all the perturbations and
interconnection effects are assumed to be implicit in the control injection channels.
Recent work has made significant contributions to alleviating these constraints and
has developed constructive frameworks for the development of output feedback con-
trol strategies based on sliding mode techniques [[27–29]]. This work encompasses
nonlinear system representations, uncertainty and unknown perturbations as well
as limited available measurements of the system state. A class of nonlinear, large-
scale interconnected systems incorporating a broad range of uncertainties has been
considered where no statistical information about the uncertainties is imposed.

3.1.3 Time Delay in Interconnected Systems

Interconnections between two or more subsystems in a network are often accom-
panied by phenomena such as material transfer, energy transfer and information
transfer. From a mathematical point of view, transfer phenomena can be represented
by delay elements [[19]]. However, for such a time delay interconnected system, the
future evolution frequently depends not only on the present state but also on the past
history of the system. The presence of even a small delay may greatly affect the per-
formance of a system; a stable system may become unstable, or chaotic behaviour
may result [[19]]. This has motivated the importance of the study of interconnected
systems in the presence of delay [[1]].

It should be noted that time delay is another important factor which makes
the study of interconnected systems complex [[21]]. Mahmoud and Bingulac [[18]]
considered a class of interconnected systems where delay does not appear in the
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interconnection terms. Although time delay interconnected systems have been con-
sidered, and many results have been achieved [[1,8]], most of the existing results are
based on the fact that the system states are available. The associated decentralised
output feedback results for time-delayed interconnected systems are few [[10,15,33]].
An output feedback decentralised control scheme is given in [[16]] where discrete in-
terconnected systems are considered. A class of nonlinear interconnected systems
with triangular structure is considered in [[10]], and an interconnected system com-
posed of a set of single input single output subsystems with dead zone input is
considered in [[33]]. In both [[10]] and [[33]], the control schemes are based on dynam-
ical output feedback which increases the computation greatly due to the associated
closed-loop system possessing possibly double the order of the actual plant. A de-
centralised model reference adaptive control scheme is proposed in [[15]] where the
considered interconnections are linear and matched.

Some work considers systems of particular structure, such as the work of Hua
and Guan [[9]] where a triangular structure is assumed. In all of the existing output
feedback control strategies for interconnected time delay systems, the nominal iso-
lated subsystems are required to be linear, and the bounds on the disturbances are
functions of the outputs and/or largely linear [[9, 16, 33]]. A class of interconnected
systems with time delay is considered in [[8]] where a model following problem
is considered and state feedback is employed. Building on a strong track record
of work in the area of control of delay systems [[29]] and interconnected systems
[[27,28]], recent work has sought to develop a global decentralised static output feed-
back robust control scheme for interconnected systems [[30]] where it is assumed that
all the time delays are known.

3.1.4 Contribution

In this Chapter, a variable structure control is synthesised to stabilise a class of time
delay interconnected systems with nonlinear disturbances. The bounds on the uncer-
tainties are nonlinear and time delayed. Both the isolated subsystems and the inter-
connections involve multiple time varying delays. A decentralised variable structure
control scheme using only output information is proposed firstly which is indepen-
dent of time delay. Based on the Lyapunov Razumikhin approach, sufficient condi-
tions are derived such that the closed-loop systems formed by the designed control
and the considered interconnected systems are globally uniformly asymptotically
stable. Then, for interconnected systems composed of a set of square subsystems,
it is shown that the effects of the nonlinear interconnections can be largely rejected
if their bounds are nonlinear functions of only the outputs and delayed outputs, and
the delays are available for design. The limitation that the rate of change of the time
delay is less than one, is not required. A compensator, which increases the required
computation levels for large-scale interconnected systems, is not required either. A
case study on the river pollution problem is presented to demonstrate the work.
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3.2 Preliminaries

This section will provide the required notation and some basic results which will be
used later in this Chapter.

3.2.1 Notation

In this Chapter, R+ denotes the nonnegative set of real numbers {t | t ≥ 0}. The
symbol C[a,b] represents the set of Rn-valued continuous function on [a,b] and In

denotes the unit matrix with dimension n. For a matrix A, the expression A > 0
(A< 0) means that A is symmetric positive (negative) definite and λmax(A) (λmin(A))
represents its maximum (minimum) eigenvalue. The symbol diag{A1,A2, · · · ,An}
represents diagonal/block-diagonal matrix with diagonal entries A1,A2, · · · ,An. For
vectors x = (x1,x2, . . . ,xn1)

T ∈ Rn1 and y = (y1,y2, . . . ,yn2)
T ∈ Rn2 , the expres-

sion f (x,y) denotes a function f (x1,x2, . . . ,xn1 ,y1,y2, . . . ,yn2) defined on Rn1+n2 .
Finally, ‖ · ‖ denotes the Euclidean norm or its induced norm.

3.2.2 Basic Results

Definition 3.1. (see, [[6]]) A continuous function α : [0,a) �→ [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. Further, it is said to belong to
class K∞ if a = ∞ and limr→∞α(r) = ∞.

Consider a time-delay system

ẋ(t) = f (t,x(t − d(t)) (3.1)

with initial condition
x(t) = φ(t), t ∈ [−d,0]

where f : R+×C[−d,0] �→Rn takes R× (bounded sets of C[−d,0]) into bounded sets

in Rn; d(t) is the time-varying delay and d := supt∈R+{d(t)}< ∞.
Lemma 3.1. If there exist class K∞ functions ζ1(·) and ζ2(·), a class K function
ζ3(·) and a continuous function V1(·) : [−d,∞]×Rn �→ R+ satisfying

ζ1(‖x‖)≤V1(t,x)≤ ζ2(‖x‖), t ∈ R+, x ∈ Rn

such that the time derivative of V1 along the solution of system (3.1) satisfies

V̇1(t,x)≤−ζ3(‖x‖) (3.2)

whenever
V1(t + d,x(t + d))≤V1(t,x(t))
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for any d ∈ [−d,0], then the system (3.1) is uniformly stable. If in addition, ζ3(τ)> 0
for τ > 0 and there exists a continuous nondecreasing function ξ (τ) > τ for τ > 0
such that (3.2) is strengthened to

V̇1(t,x)≤−ζ3(‖x‖) if V1(t + d,x(t + d))≤ ξ (V1(t,x(t))) (3.3)

for d ∈ [−d,0] , then the system (3.1) is uniformly asymptotically stable. Further, if
in addition limτ→∞ ζ1(τ) = ∞, then, the system (3.1) is globally uniformly asymp-
totically stable.

Proof. See pages 14-15 in [[6]].

Lemma 3.1 is the well known Razumikhin Theorem [[6]]. From Lemma 3.1, the
following result can be obtained.

Lemma 3.2. Consider system (3.1). If there exists a function V0(x) = xT Px with
P > 0 such that for d ∈ [−d,0], the time derivative of V0 along the solution of system
(3.1) satisfies

V̇0(x)≤−q1‖x‖2 if V0(x(t + d))≤ q2V0(x(t)) (3.4)

for some q1 > 0 and q2 > 1, then system (3.1) is globally uniformly asymptotically
stable.

Proof. See Lemma 1 of Appendix 1 in [[30]].

Lemma 3.3. Assume the matrix/vector functions Hi j(t,x j) ∈ Rni×mj with ni and
m j positive integral numbers, and x = col(x1,x2, · · · , xn) where xi ∈ Rni for i =
1,2, . . . ,n. Then

n

∑
i=1

n

∑
j=1
j �=i

Hi j(t,x j) =
n

∑
i=1

n

∑
j=1
j �=i

Hji(t,xi)

Proof. From the fact that

n

∑
i=1

n

∑
j=1

Hi j(t,x j) =
n

∑
j=1

n

∑
i=1

Hi j(t,x j)

it follows that

∑n
i=1∑

n
j=1
j �=i

Hi j(t,x j)

= ∑n
i=1∑

n
j=1 Hi j(t,x j)−H11(t,x1)−H22(t,x2)−·· ·−Hnn(t,xn)

= ∑n
j=1∑

n
i=1 Hi j(t,x j)−∑n

j=1 Hj j(t,x j)

= ∑n
j=1 (∑

n
i=1 Hi j(t,x j)−Hj j(t,x j))

= ∑n
j=1∑

n
i=1
i�= j

Hi j(t,x j)

= ∑n
i=1∑

n
j=1
j �=i

Hji(t,xi)
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Hence the conclusion follows.

The results presented in this section will be used in the later analysis.

3.3 System Description and Basic Assumptions

In this section, the systems considered in this chapter will be presented and basic
assumptions will be imposed.

3.3.1 Interconnected System Description

Consider a time-varying delayed interconnected system composed of n ni-th order
subsystems

ẋi = Aixi +Bi
(
ui +Gi

(
t,xi,xidi)

)
+

n

∑
j=1
j �=i

(
Ei jx jd j +Fi jx j +Φi j(t,x j,x jd j)

)
(3.5)

yi = Cixi, i = 1,2, . . . ,n, (3.6)

where x := col(x1, . . . ,xn), xi ∈ Rni , ui ∈ Rmi and yi ∈ R pi are the state variables,
inputs and outputs of the i-th subsystem respectively. The triple (Ai,Bi,Ci) and
Ei j,Fi j ∈ Rni×n j with i �= j represent constant matrices of appropriate dimensions
with Bi and Ci of full rank. The functions Gi(·) are matched nonlinear uncertainties
in the i-th subsystem. The terms

n

∑
j=1
j �=i

(Ei jx jd j +Fi jx j) and
n

∑
j=1
j �=i

Φi j(t,x j,x jd j)

are, respectively, the known and uncertain interconnections of the i-th subsystem;
xidi := xi(t − di) are the delayed states, and the symbols di := di(t) denote the time-
varying delays which are assumed to be known, nonnegative and bounded in R+,
that is

di := sup
t∈R+

{di(t)}< ∞, i = 1,2, . . . ,n

The initial conditions associated with the time delays are given by

xi(t) = φi(t), t ∈ [−di,0]

where φi(·) are continuous in [−di,0] for i = 1,2, . . . ,n. It is assumed that all the
nonlinear functions are smooth enough such that the unforced interconnected system
has a unique continuous solution.
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Definition 3.2. Consider system (3.5)–(3.6). The systems

ẋi = Aixi +Bi(ui +Gi
(
t,xi,xidi))

yi = Cixi, i = 1,2, . . . ,n,

are called the i-th isolated subsystems of the system (3.5)–(3.6), and the systems

ẋi = Aixi +Biui (3.7)

yi = Cixi, i = 1,2, . . . ,n, (3.8)

are said to be the i-th nominal isolated subsystems of the system (3.5)–(3.6).

3.3.2 Assumptions

For the interconnected system (3.5)–(3.6), it is required to impose the following
conditions.
Assumption 3.1. There exist known continuous functions ρi(·) and ϖi(·) and con-
stants αi j and βi j such that for i �= j, i, j = 1,2, . . . ,n

‖Gi(t,x,xidi)‖ ≤ ρi(t,yi)+ϖi(t,yi)‖xidi‖ (3.9)

‖Φi j(t,x j,x jd j)‖ ≤ αi j‖x j‖+βi j‖x jd j‖ (3.10)

Remark 1. Assumption 3.1 is a limitation on the uncertainties that can be tolerated
by the system. It is not required that the interconnections are described or bounded
by functions of the system outputs. Unlike [[22, 33]], time delays are involved in the
interconnections; and the result obtained in this chapter will be global.

Assumption 3.2. There exist matrices Ki, Di and Pi > 0 such that for i = 1,2, . . . ,n

−Qi := (Ai −BiKiCi)
T Pi +Pi(Ai −BiKiCi) < 0 (3.11)

BT
i Pi = DiCi (3.12)

Remark 2. Assumption 3.2 describes a structural property associated with the triple
(Ai,Bi,Ci) which is the standard Constrained Lyapunov Problem (CLP) [[5]]. A sim-
ilar limitation has been imposed by many authors (see e.g, [[5, 31]]). Necessary and
sufficient conditions for solving the CLP can be found in [[4, 5]].

3.3.3 Problem Statement

In this chapter, it is assumed that all the isolated subsystems (3.7) and (3.8) are
output feedback stabilisable. The objective is to design a variable structure control
law of the form

ui = ui(t,yi), i = 1,2, . . . ,n (3.13)
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such that the associated closed-loop system formed by applying the control law in
(3.13) to the interconnected system (3.5)–(3.6), is globally uniformly asymptotically
stable even in the presence of the uncertainties and time delays. Since the control
elements ui in (3.13) are only dependent on the time t and output yi, and are in-
dependent of time delay, they are called a memoryless decentralised static output
feedback control. Then, for interconnected systems with square subsystems, delay
dependent decentralised output feedback control elements

ui = ui(t,yi,yidi), i = 1,2, . . . ,n

are proposed such that the effects of the uncertain interconnections are largely
rejected.

3.4 Decentralised Delay Independent Control

In this section, a decentralised output feedback controller which is independent of
the time delay will be designed for the interconnected systems (3.5)–(3.6).

3.4.1 Designed Control

Consider the control

ui =−Kiyi − 1
2εi

Diyiϖ2
i (t,yi)+ ua

i (t,yi), i = 1,2, . . . ,n (3.14)

where Ki ∈ Rmi×pi are design parameters satisfying Assumption 3.2, εi > 0 are
constant and ua

i (·) are defined by

ua
i (·) :=

{
− Diyi

‖Diyi‖ρi(t,yi), Diyi �= 0
0, Diyi = 0

(3.15)

where Di satisfy (3.12). Since the structure of the control ui in (3.14) are variable
due to ua

i (·) in (3.15), they are called a variable structure control. Clearly it is decen-
tralised because ui is only dependent on time t and local output information yi. Thus
ui in (3.14) are called decentralised output feedback variable structure controllers.

3.4.2 Main Result

The following result can now be presented:

Theorem 3.1. Assume that Assumptions 3.1–3.2 hold. Then, the closed-loop sys-
tem formed by applying the control (3.14)–(3.15) into system (3.5)–(3.6) is globally
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uniformly asymptotically stable if W T +W > 0 where the matrix W = [wi j]2n×2n is
defined by

wi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmin(Qi)− qλmax(Pi), 1 ≤ i = j ≤ n

λmin(Pi)− εi, n+ 1 ≤ i = j ≤ 2n

−2‖PiFi j‖− 2αi j‖Pi‖, i �= j and 1 ≤ i, j ≤ n

−2‖PiEi( j−n)‖− 2βi( j−n)‖Pi‖, 1 ≤ i ≤ n, j > n and j− n �= i

−2‖Pi−nE(i−n) j‖− 2β(i−n) j‖Pi−n‖, i > n, 1 ≤ j ≤ n and i− n �= j

0, otherwise

for constants q > 1 and εi > 0, where αi j and βi j are defined in (3.10) for i, j =
1,2, . . . ,n, i �= j.

Proof. Applying the control (3.14)–(3.15) into system (3.5)–(3.6), it follows that
the closed-loop system is described by

ẋi = Aixi +Bi

(
−KiCixi − 1

2εi
Diyiϖ2

i (t,yi)+ ua
i (t,yi)+Gi

(
t,xi,xidi)

)

+
n

∑
j=1
j �=i

(
Ei jx jd j +Fi jx j +Φi j(t,x j,x jd j )

)
(3.16)

where ua
i (·) are given by (3.15) for i = 1,2, . . . ,n. For system (3.16), consider the

Lyapunov function candidate

V (x(t)) =
n

∑
i=1

xT
i (t)Pixi(t) (3.17)

where Pi > 0 satisfy Assumption 3.2 for i = 1,2, . . . ,n. Then, the time derivative of
V (·) along the trajectories of system (3.16) is given by

V̇ = −
n

∑
i=1

xT
i Qixi + 2

n

∑
i=1

xT
i PiBi

(
− 1

2εi
Diyiϖ2

i (t,yi)+ ua
i (t,yi)

)

+2
n

∑
i=1

xT
i PiBiGi(t,xi,xidi)+ 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiEi jx jd j

+2
n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiFi jx j + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiΦi j(t,x j,x jd j) (3.18)

From (3.9), (3.12) and Young’s inequality, it follows that for any εi > 0
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xT
i PiBiGi(t,xi,xidi) = (Diyi)

T Gi(t,xi,xidi)

≤ ‖Diyi‖ρi(t,yi)+ ‖Diyi‖ϖi(t,yi)‖xidi‖
≤ ‖Diyi‖ρi(t,yi)+

1
2εi

‖Diyi‖2ϖ2
i (t,yi)+

εi

2
‖xidi‖2 (3.19)

From (3.12) and the definition of ua
i (·) in (3.15), it follows that

i) if Diyi = 0, then ua
i (·) = 0, and thus

xT
i PiBiu

a
i (t,yi)+ ‖Diyi‖ρi(t,yi) = ‖Diyi‖ρi(t,yi) = 0

ii) if Diyi �= 0, from the definition of ua
i (·) in (3.15),

xT
i PiBiu

a
i (t,yi)+ ‖Diyi‖ρi(t,yi)

≤ −(Diyi)
T Diyi

‖Diyi‖ρ(t,yi)+ ‖Diyi‖ρi(t,yi)

= 0

Thus, from i) and ii) above,

xT
i PiBiu

a
i (t,yi)+ ‖Diyi‖ρi(t,yi)≤ 0, i = 1,2, · · · ,n (3.20)

Further, from (3.12),

− 1
2εi

xT
i PiBiDiyiϖ2

i (t,yi)+
1

2εi
‖Diyi‖2ϖ2

i (t,yi)

= − 1
2εi

xT
i CT

i DT
i Diyiϖ2

i (t,yi)+
1

2εi
‖Diyi‖2ϖ2

i (t,yi)

= − 1
2εi

(Diyi)
T Diyiϖ2

i (t,yi)+
1

2εi
‖Diyi‖2ϖ2

i (t,yi) = 0 (3.21)

Therefore, from (3.19), (3.20) and (3.21)

2
n

∑
i=1

xT
i PiBi

(
− 1

2εi
Diyiϖ2

i (t,yi)+ ua
i (t,yi)

)
+ 2

n

∑
i=1

xT
i PiBiGi(t,xi,xidi)

≤
n

∑
i=1

εi‖xidi‖2 (3.22)

From (3.10),

xT
i PiΦi j(t,x j,x jd j ) ≤ ‖xi‖‖Pi‖

(
αi j‖x j‖+βi j‖x jd j‖

)

= αi j‖Pi‖‖xi‖‖x j‖+βi j‖Pi‖‖xi‖‖x jd j‖ (3.23)

Applying (3.22) and (3.23) to equation (3.18) yields
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V̇ ≤ −
n

∑
i=1

xT
i Qixi +

n

∑
i=1

εi‖xidi‖2 + 2
n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiEi jx jd j + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiFi jx j

+2
n

∑
i=1

n

∑
j = 1
j �= i

(
αi j‖Pi‖‖xi‖‖x j‖+βi j‖Pi‖‖xi‖‖x jd j‖

)
(3.24)

From the definition of V (·) in (3.17), it is clear that

V (x1d1 ,x2d2 , . . . ,xndn)≤ qV (x1,x2, . . . ,xn), (q > 1)

implies that

q
n

∑
i=1
λmax(Pi)‖xi‖2 −

n

∑
i=1
λmin(Pi)‖xidi‖2 ≥ q

n

∑
i=1

xT
i Pixi −

n

∑
i=1

xT
idi

Pixidi ≥ 0 (3.25)

Therefore, from (3.25) and (3.24), it follows that when V (x1d1 , . . . , xndn) ≤
qV (x1, . . . ,xn),

V̇ ≤ −
n

∑
i=1

xT
i Qixi +

n

∑
i=1
εi‖xidi‖2 + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiEi jx jd j + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiFi jx j

+2
n

∑
i=1

n

∑
j = 1
j �= i

(
αi j‖Pi‖‖xi‖‖x j‖+βi j‖Pi‖‖xi‖‖x jd j‖

)

+q
n

∑
i=1
λmax(Pi)‖xi‖2 −

n

∑
i=1
λmin(Pi)‖xidi‖2

≤ −
n

∑
i=1

(
λmin(Qi)− qλmax(Pi)

)
‖xi‖2 −

n

∑
i=1

(
λmin(Pi)− εi

)
‖xidi‖2

+2
n

∑
i=1

n

∑
j = 1
j �= i

(
‖PiFi j‖+αi j‖Pi‖

)
‖xi‖‖x j‖

+2
n

∑
i=1

n

∑
j = 1
j �= i

(
‖PiEi j‖+βi j‖Pi‖

)
‖xi‖‖x jd j‖

= −1
2

Y (W T +W)Y T

≤ −1
2
λmin(W

T +W)(‖x‖2 + ‖xd‖2)

≤ −1
2
λmin(W

T +W)‖x‖2
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where Y :=
[ ‖x1‖ · · · ‖xn‖ ‖x1d1‖ · · · ‖xndn‖

]
. From W T +W > 0, it follows that

λmin(W T +W )> 0. Hence the conclusion follows from Lemma 3.2.

Remark 3. Consider (3.10) in Assumption 3.1. The bounds on the uncertain in-
terconnections in system (3.5) are dependent on the systems states, and thus they
cannot be employed in the control design since static output feedback is used in this
chapter. The effects of such interconnections have been reflected throughαi j and βi j

in the matrix W .

3.5 Decentralised Control Synthesised for Square Case

Consider interconnected systems where all of the subsystems are square (each sub-
system has the same number of outputs as the number of inputs). In this case, it is
possible to design decentralised controllers such that the effect of the uncertain in-
terconnections can be largely rejected if delay is available for design. This problem
is far from trivial because the uncertain interconnections in each subsystem involve
all subsystems’ output information while the decentralised control is only allowed
to use local output information.

3.5.1 Controller Design

The following assumption is imposed on the system (3.5)–(3.6).

Assumption 3.3. It is assumed that mi = pi and the time delays di are known. The
uncertainties Gi(·) satisfy (3.9) and the uncertaintiesΦi j(·) satisfy

‖Φi j(t,x j,x jd j )‖ ≤ ξi j(t,y j,y jd j)‖y j‖ (3.26)

where functions ξi j(·) are known nonnegative and continuous for i �= j and i, j =
1,2, . . . ,n.

Since both Bi and Ci are of full rank, it follows that under Assumption 3.2 the
matrix Di is nonsingular in square case. Then, consider the following control law

ui =−Kiyi − 1
2εi

Diyiϖ2
i (t,yi)+ ua

i (·)+ ub
i (·) (3.27)

where Ki and ua
i (·) are the same as in (3.14), and ub

i (·) is defined by

ub
i (·) =−D−T

i yi

n

∑
j = 1
j �= i

1
ε ji

(λmax(Pj))
2ξ 2

ji(t,yi,yidi) (3.28)
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where ε ji > 0 ( j �= i) are constants for i, j = 1,2, . . . ,n. It is obvious that the delays
are employed in the control design for ub

i and thus it is required to be known.The
result in section 3.5.2 will show that the controllers in (3.27) can largely reject the
effects of the uncertain interconnections.

3.5.2 Main Result

Theorem 3.2. Under Assumptions 3.2 and 3.3, the closed-loop system formed by
applying control (3.27) with ub

i (·) defined in (3.28) into system (3.5)–(3.6) is glob-
ally uniformly asymptotically stable if Γ T +Γ > 0 where the matrix

Γ :=

[
Γ11 Γ12

Γ21 Γ22

]

is defined by

Γ11 :=

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

Π a
1 −2P1F12 · · · −2P1F1n

−2P2F21 Π a
2

. . .
...

...
. . .

. . . −2Pn−1F(n−1)n

−2PnFn1 · · · −2PnFn(n−1) Π a
n

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

Γ12 :=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

0 −2P1E12 · · · −2P1E1n

−2P2E21 0
. . .

...

...
. . .

. . . −2Pn−1E(n−1)n

−2PnEn1 · · · −2PnEn(n−1) 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

Γ21 :=

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

0 −2P2E21 · · · −2PnEn1

−2P1E12 0
. . .

...

...
. . .

. . . −2Pn−1E(n−1)n

−2PnEn1 · · · −2PnEn(n−1) 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

and

Γ22 := diag
{
Π b

1 ,Π
b
2 , · · · ,Π b

n

}

where Π a
i := Qi − (qλmax(Pi) +∑n

j = 1
j �= i
εi j)Ini and Π b

i := (λmin(Pi)− εi) Ini for i =

1, . . . ,n and q > 1.
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Proof. Consider the uncertain interconnection terms ∑n
j=1
j �=i
Φi j(t,x j,x jd j). From the

condition (3.26) and Young’s inequality (ab ≤ 1
2ε a2 + ε

2 b2 for ε > 0),

2xT
i PiΦi j(t,x j,x jd j)

≤ 2λmax(Pi)‖xi‖ξi j(t,y j,y jd j )‖y j‖
≤ εi j‖xi‖2 +

1
εi j

(λmax(Pi))
2 ξ 2

i j(t,y j,y jd j)‖y j‖2 (3.29)

for constant scalars εi j > 0. Then, from inequalities (3.29)

2
n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiΦi j(t,x j,x jd j)

≤
n

∑
i=1

n

∑
j = 1
j �= i

εi j‖xi‖2 +
n

∑
i=1

n

∑
j = 1
j �= i

1
εi j

(λmax(Pi))
2 ξ 2

i j(t,y j,y jd j )‖y j‖2

=
n

∑
i=1

( n

∑
j = 1
j �= i

εi j

)
‖xi‖2 +

n

∑
i=1

n

∑
j = 1
j �= i

1
ε ji

(λmax(Pj))
2ξ 2

ji(t,yi,yidi)‖yi‖2 (3.30)

where Lemma 3.3 is used to obtain the last equality. From the definition of ub
i (·) in

(3.28),

xT
i PiBiu

b
i (·)+

n

∑
j = 1
j �= i

1
ε ji

(λmax(Pj))
2ξ 2

ji(t,yi,yidi)‖yi‖2

≤ −xT
i CT

i DT
i D−T

i yi

n

∑
j = 1
j �= i

1
ε ji

(λmax(Pj))
2ξ 2

ji(t,yi,yidi)

+
n

∑
j = 1
j �= i

1
ε ji

(λmax(Pj))
2ξ 2

ji(t,yi,yidi)‖yi‖2

= 0 (3.31)

Therefore, from (3.30) and (3.31)

2
n

∑
i=1

xT
i PiBiu

b
i (t,yi)+ 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiΦi j(t,x j,x jd j)≤

n

∑
i=1

n

∑
j = 1
j �= i

εi j‖xi‖2 (3.32)

Consider the same Lyapunov function as given in (3.17). Following the analysis
and proof in Theorem 1, it is straightfoward to see that when V (x1d1 , . . . , xndn) ≤
qV (x1, . . . ,xn),
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V̇ ≤ −
n

∑
i=1

xT
i Qixi +

n

∑
i=1

εi‖xidi‖2 + 2
n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiEi jx jd j + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiFi jx j

+
n

∑
i=1

n

∑
j = 1
j �= i

εi j‖xi‖2 + q
n

∑
i=1

λmax(Pi)‖xi‖2 −
n

∑
i=1

λmin(Pi)‖xidi‖2

≤ −
n

∑
i=1

xT
i

(
Qi −

(
qλmax(Pi)+

n

∑
j = 1
j �= i

εi j

)
Ini

)
xi −

n

∑
i=1

(
λmin(Pi)− εi

)
xT

idi
xidi

+2
n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiEi jx jd j + 2

n

∑
i=1

n

∑
j = 1
j �= i

xT
i PiFi jx j

= −1
2

ZT (Γ T +Γ )Z ≤−1
2
λmin(Γ T +Γ )‖Z‖2 ≤−1

2
λmin(Γ T +Γ )‖x‖2

where Z := col(x1, · · · ,xn,x1d1 , . . . ,xndn).
Hence, the conclusion follows from Γ +Γ T > 0.

Remark 4. From the proof of Theorem 3.2, it is clear to see that the only terms re-
sulting from the uncertain interconnections, are ∑n

j = 1
j �= i
εi j in the matrix Γ . Compared

the matrix W in Theorem 3.1 and the matrix Γ in Theorem 3.2, it is straightforward
to see that the effects of the uncertain interconnections have been largely rejected by
the control (3.27) because the terms ∑n

j = 1
j �= i
εi j appeared in the matrix Γ , can be very

small if the parameters εi j are chosen to be small enough although small εi j usually
result in high gain control.

3.6 Case Study—River Pollution Control Problem

Consider a two-reach model of a river pollution control problem [[14]]. It is assumed
that the concentration of biochemical oxygen demand (BOD) for the first subsystem
is perturbed by a time delay. Then, the system can be described by (See, [[30]])

ẋ1 =

[−1.32δ 0
−0.32 −1.2

]

︸ ︷︷ ︸
A1

x1 +

[
0.1
0

]

︸ ︷︷ ︸
B1

(
u1 +(−13.2(1− δ ))y1d1︸ ︷︷ ︸

G1(·)

)
+Φ12(·) (3.33)

ẋ2 =

[−1.32 0
−0.32 −1.2

]

︸ ︷︷ ︸
A2

x2 +

[
0.1
0

]

︸ ︷︷ ︸
B2

(u2 +G2(·))+
[

0.9δ 0
0 0

]

︸ ︷︷ ︸
E21

x1d1

+

[
0.9 0
0 0.9

]

︸ ︷︷ ︸
F21

x1 +

[−0.9δy1

0

]

︸ ︷︷ ︸
Φ21(·)

(3.34)
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y1 = [1 0]
︸ ︷︷ ︸

C1

x1, y2 = [1 0]
︸ ︷︷ ︸

C2

x2 (3.35)

where x1 := col(x11,x12) and x2 := col(x21,x22). The variables xi1 and xi2 represent
the concentration of the BOD and the concentration of dissolved oxygen respec-
tively, and the control ui are the BOD of the effluent discharge into the river for
i = 1,2. The constant δ ∈ [0,1] is the retarded coefficient. The uncertainties G2(·)
and Φ12(·) are added to illustrate the results obtained.

By direct computation, it is obtained that the matrix W +WT defined in Theorem
3.1 is not positive definite even if it is assumed that both G2(·) and Φ12(·) are zero.
Therefore, for the system (3.33)–(3.35), the result in Theorem 3.1 does not hold.

Next a decentralised controller based on the result given in section 3.5 will be
proposed. Rewrite the system (3.33)–(3.35) as follows

ẋ1 =

[−1.32δ 0
−0.32 −1.2

]

︸ ︷︷ ︸
A1

x1 +

[
0.1
0

]

︸ ︷︷ ︸
B1

(
u1 +(−13.2(1− δ ))y1d1︸ ︷︷ ︸

G1(·)

)
+Φ12(·) (3.36)

ẋ2 =

[−1.32 0
−0.32 −1.2

]

︸ ︷︷ ︸
A2

x2 +

[
0.1
0

]

︸ ︷︷ ︸
B2

(u2 +G2(·))+
[

0.9δ 0
0 0

]

︸ ︷︷ ︸
E21

x1d1

+

[
0 0
0 0.9

]

︸ ︷︷ ︸
F21

x1 +

[
(1− δ )0.9y1

0

]

︸ ︷︷ ︸
Φ21(·)

(3.37)

y1 = [1 0]
︸ ︷︷ ︸

C1

x1, y2 = [1 0]
︸ ︷︷ ︸

C2

x2 (3.38)

It is assumed that

|G2(·)| ≤ 1+ siny2︸ ︷︷ ︸
ρ2

+ |y2|︸︷︷︸
ϖ2

‖x2d2‖, ‖Φ12‖ ≤ |y2y2d2 |sin2 t
︸ ︷︷ ︸

ξ12

|y2| (3.39)

Let ρ1 = 0, ϖ1(·) = 13.2(1− δ ) and ξ21 = 0.9(1− δ ). It is clear to see that the
Assumption 3.3 hold. Then let K1 = 20, K2 = 30 and

Q1 =

[
4.5280 0.3200
0.3200 2.4000

]
, Q2 =

[
8.6400 0.3200
0.3200 2.4000

]

The solutions to the Lyapunov equations in (3.11) are P1 = P2 = I2 and the equations
(3.12) are satisfied with D1 = D2 = 0.1. Comparing system (3.36)–(3.37) with the
system (3.5)–(3.6), it is straightforward to see that E12 = F12 = 0. Let ε1 = ε2 = 0.5
and ε12 = ε21 = 0.1. By direct computation,
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Γ11 =

⎡

⎢
⎢
⎣

3.4180 0.3200 0 0
0.3200 1.2900 0 0

0 0 7.5300 0.3200
0 −1.8000 0.3200 1.2900

⎤

⎥
⎥
⎦

Γ22 =

⎡

⎢
⎢
⎣

0.5000 0 0 0
0 0.5000 0 0
0 0 0.5000 0
0 0 0 0.5000

⎤

⎥
⎥
⎦

Γ12 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0

−0.3600 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , Γ21 =

⎡

⎢
⎢
⎣

0 0 −0.3600 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

and the matrix Γ T +Γ where Γ is defined in Theorem 3.2, is positive definite.
Clearly the controllers (3.27)–(3.28) are well defined, and, from Theorem 3.2, they
stabilise the system (3.33)-(3.35) globally asymptotically.

For simulation purposes, choose σ = 0.20 and assume the delays are chosen as
d1(t) = 3− 2sin(t) and d2(t) = 2− cost, and the delay related initial conditions
are chosen as φ1(t) = col(2cost,1) and φ2(t) = col(0,1− sin(t)). The simulation
results shown in Figure 3.1 are as expected.
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Fig. 3.1 The time responses of the state variables of system (3.33)–(3.34)
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3.7 Conclusions

This Chapter has presented two control strategies based on different classes of un-
certain interconnections. The proposed control schemes are decentralised and based
only on output information, which is convenient for real implementation. The differ-
ences between the inaccessible bounds which cannot be used in the control design,
and the accessible bounds on the uncertain interconnections which can be employed
in the control design, are shown. The proposed approach can be used to accommo-
date mismatched uncertain interconnections if the delay is known and the bounds
on the uncertain interconnections are a class of functions of the outputs and de-
layed outputs. The limitation on the rate of change of the time varying delay is not
required, as is required using the Lyapunov-Krasovskii approach. The case study
shows the practicability of the proposed approach.
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