
Chapter 17
Applications of Sliding Observers for FDI in
Aerospace Systems

Christopher Edwards, Halim Alwi, and Prathyush P. Menon

Abstract. This chapter presents applications of second order sliding mode observer
schemes to three different aerospace problems. Two relate to ADDSAFE aircraft
fault detection benchmark problems. Firstly, the detection and isolation problem
associated with an actuator jam/runaway is considered and secondly an actuator os-
cillatory failure case is tackled. For the actuator jam/runaway scenario the actuator
deflection becomes decoupled from the demand issued from the flight control com-
puter and either remains fixed at some uncommanded point or ‘runs away’ to an
extreme value. For the OFC problem, the reconstruction scheme requires an esti-
mate of rod speed provided by a second order sliding mode observer. Ideally low
gains in the observer are required because of the noisy environment associated with
the physical system. An adaption scheme is therefore required to retain sliding in the
presence of severe faults. A problem associated with fault detection in a formation
flying scenario, associated with satellites is also discussed. This application to a rel-
ative degree two problem would be difficult to solve using linear observer methods.

17.1 Introduction

The study of fault detection and isolation (FDI) problems has been a popular and
widely researched area. One of the techniques which has gained a good deal of
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attention in recent years is sliding mode based FDI. One of the reasons is due to its
robustness properties, as well as its ability to reconstruct unknown signals (faults)
which may affect the system being monitored. The earliest sliding mode FDI re-
sults relied on simple residual based ideas (see for example [[14, 24]]). The under
pinning idea in [[14, 24]] is to allow sliding to break in the event of a fault, and the
deviation of the output estimation error away from the sliding surface indicates that
a fault has occurred. In the later developments (see for example Edwards et al [[6]],
Tan & Edwards [[22]], Jiang et al [[15]] and Kim et al [[16]]), instead of achieving
detection and isolation through residuals, reconstruction of the faults has been con-
sidered. In these approaches a sliding motion is always maintained even in the pres-
ence of faults. The direct reconstruction of faults can be beneficial, especially in the
case when redundancy is not available, and for sensor fault tolerant control (see for
example [[1]]).

One of the perceived drawbacks of using sliding mode schemes in physical sys-
tems is in dealing with the discontinuities which arise from using the signum func-
tion. However there has been extensive research to obviate these difficulties ranging
from simple pseudo-sliding approximations achieved through smoothing, to more
advanced higher order sliding mode concepts [[5,8,9,17,18,26]]. Second order slid-
ing methods require no smoothing and allow ideal sliding motions to be achieved
and therefore preserve the robustness property of sliding modes. Furthermore the in-
herent filtering property is beneficial for systems with noise. A recent development
in second order sliding mode approaches has made a significant impression due to
the inclusion of Lyapunov analysis techniques to demonstrate convergence [[4, 21]].
These concepts will be used in this chapter.

The Advanced Fault Diagnosis for Sustainable Flight Guidance and Control
(ADDSAFE) project is a European FP7 funded consortium. The aim of ADDSAFE
is to demonstrate the applicability of advanced fault detection and diagnosis (FDD)
methods to support the development of sustainable aircraft. It poses challenges to
improve existing FDD techniques to support new ‘green’ technologies allowing
optimization of the aircraft structural design, improving aircraft performance and
reducing the environmental footprint [[19]].

Two applications of 2nd order sliding mode observer schemes on the ADDSAFE
aircraft benchmark problem will be presented. The first problem is associated with
subtle jams and offsets in actuators which are usually automatically compensated
for by the flight control system which repositions the healthy surfaces. However
this can still pose a problem because drag is increased which results in excessive
fuel burn. Consequently it is important to detect these incipient problems.

The second FDI problem which will be considered concerns an actuator Oscilla-
tory Failure Case (OFC). An OFC is a type of failure in the Electrical Flight Control
Systems (EFCS). When coupled with the flexible modes of the structure, OFCs
can generate resonance phenomenon and cause unacceptably high vibrations and
loads [[10]] and therefore need to be detected quickly. In the context of ADDSAFE,
(as discussed in [[10]]) the improvement in performance of the FDI scheme allows
for better optimization of the aircraft structural design, which translates to weight
savings and therefore less fuel burn and a lower environmental footprint.
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The final case study relates to a fault detection problem in a leader follower
satellite formation situation. In the follower satellite, since the relative distance to
the leader satellite is small compared to the orbit, linearizations of the Hill equations
can be used to model the dynamics of the follower. These will be used as the basis
of an FDI scheme to detect actuator faults in the thruster systems of the follower
spacecraft. This constitutes a relative degree two problem between the measurement
and the fault signals. As such traditional linear unknown input observer methods
cannot be employed.

The structure of the chapter is as follows: the next section considered the ap-
plications of a sliding mode based fault detection scheme to an actuator problem;
then a super twisting differentiator based scheme is used to detect the presence of
oscillatory faults associated with aircraft actuators; finally a fourth order observer
based on second order sliding mode principles will be developed for a specific fault
detection problem in a satellite formation scenario.

17.2 Actuator Jam Problem

For this benchmark problem, a local LPV actuator model will be used for design.

17.2.1 Modeling of Hydraulic Actuator Using LPV

For the ADDSAFE benchmark problem, a LPV model representation (provided by
DLR [[13]]), derived from the high fidelity actuator in the ADDSAFE benchmark
model will be used for design. It has the form

ẋ(t) = −K(ρ)x(t)+K(ρ)u(t) (17.1)

y(t) = x(t)+ fo(t) (17.2)

where x(t) represents the deflection of the actuator and fo(t) represents the additive
fault in the actuator. In [[13]] the LPV parameters ρ chosen to describe the variation
of the dynamics are

ρ = [ρ1, . . .ρ4] := [m,Xcg,h,Vcas] (17.3)

which represent mass (m), center of gravity in the x-direction (Xcg), altitude h, and
conventional airspeed Vcas. As shown in [[13]], the scalar K(ρ) > 0 for all ρ and
varies according to

K(ρ) =Ca(ρ)+Cb(ρ)sign(ẋ(t))(x(t)+Cc(ρ)) (17.4)

The positive scalar Ca(ρ) can be interpreted as the dominant nominal gain, Cb(ρ)
represents the effect of deflection angle x(t) and Cc(ρ) represents the effect of a po-
sition offset from the trim position [[13]]. These coefficients have been
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obtained through an affine polynomial fit to data collected on the parameter grid
of m(kg) ∈ [120000, 220000], Xcg(%) ∈ [0.21, 0.38], h( f t) ∈ [0, 37000] and
Vcas(kt) ∈ [154.6, 176.1, 190.5, 229.6, 275]. Each coefficient can be represented
by

Ca(ρ) = Ca,0 +Ca,1ρ1 +Ca,2ρ2 +Ca,3ρ3 +Ca,4ρ4 (17.5)

Cb(ρ) = Cb,0 +Cb,1ρ1 +Cb,2ρ2 +Cb,3ρ3 +Cb,4ρ4 (17.6)

Cc(ρ) = Cc,0 +Cc,1ρ1 +Cc,2ρ2 +Cc,3ρ3 +Cc,4ρ4 (17.7)

17.2.2 Sliding Mode Observer

From (17.2), the fault appears at the output of the actuator model and therefore a
‘sensor fault’ reconstruction scheme will be employed. Consider a new state z f (t) ∈
IR which is the filtered output of y(t) given by

ż f (t) =−A f z f (t)+A f y(t) (17.8)

where A f is a positive design scalar. Substituting y(t) from (17.2) into (17.8) yields

ż f (t) =−A f z f (t)+A f x(t)+A f fo(t) (17.9)

Next, augment system (17.1) and (17.9) to create a 2nd order system

ẋa(t) = Aa(ρ)xa(t)+Ba(ρ)u+Fa fo(t) (17.10)

z(t) = Caxa(t) (17.11)

where the augmented states xa(t) =
[

x(t) z f (t)
]T and the augmented matrices

Aa(ρ) =
[−K(ρ) 0

A f −A f

]
, Ba(ρ) =

[
K(ρ)

0

]
, (17.12)

Fa =

[
0

A f

]
, Ca =

[
0 1

]

For the system in (17.10), the proposed observer has the structure

˙̂xa(t) = Aa(ρ)x̂a(t)+Ba(ρ)u−Glez(t)+Gnν(t) (17.13)

ẑ f (t) = Cax̂a(t) (17.14)

where the output estimation error ez(t) = ẑ f (t)− z f (t). The design parameters
Gl(ρ),Gn(ρ) ∈ IR2×1 are the observer gains and ν(t) is the nonlinear term used
to induce the sliding motion. Consider an error ea = x̂a−xa then subtracting (17.10)
from (17.13) yields

ėa(t) = Aa(ρ)ea(t)−Glez(t)+Gnν(t)−Fa fo(t) (17.15)
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The objective is to force ez(t) to zero in finite time, in order to achieve a sliding
mode on Sact = {ea ∈ IR2 : ez = 0}. Here the observer gains are chosen as

Gn =

[
0
1

]
Gl =

[
0

−A f + k2

]
(17.16)

where k2 is a chosen positive scalar. Substituting (17.16) into (17.15) the error sys-
tem can be written in expended form as

[
ėx(t)
ėz(t)

]
=

[−K(ρ) 0
A f −k2

][
ex(t)
ez(t)

]
+

[
0
1

]
ν(t)−

[
0

A f

]
fo(t) (17.17)

From (17.17) the reduced order sliding motion is given by

ėx(t) =−K(ρ)ex (17.18)

Since K(ρ)> 0 for all ρ [[13]], the reduced order sliding motion is stable and ex → 0
as t → 0. From the lower equation in (17.17)

ėz(t) = A f ex − k2ez(t)+ν(t)−A f fo(t) (17.19)

During sliding ez = ėz = 0 and since ex(t)→ 0, equation (17.19) reduces to

ν(t) = A f fo(t) (17.20)

Rearranging (17.20) an estimation of the fault is obtained as

f̂o(t) = A−1
f ν(t) (17.21)

which can be reconstructed online. The nonlinear injection term ν(t) has the super
twisting form

ν(t) = −k1 sign(ez(t))|ez(t)|1/2 + z(t) (17.22)

ż(t) = −k3 sign(ez(t))− k4ez(t) (17.23)

The scalars k1,k3,k4 are design freedom to be chosen. Note that (17.22)-(17.23) has
a similar structure to the one in [[21]]. For a sufficiently large scalar ε > | ḟo(t)|, if the
gains from (17.22) and (17.23) are chosen as

k1 > 2
√
ε (17.24)

k3 > ε (17.25)

k4 >
k2

2

(
k3

1 +
5
4 k2

1 +
5
2 (k3 − ε)

)

k1(k3 − ε) (17.26)

then ez(t) = ėz(t) = 0 in finite time [[21]].
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17.2.3 Simulation

The scalar A f which defines the output filter from (17.9) has been chosen as
A f = 0.5. The supertwist gains from (17.24)-(17.26) have been chosen as k1 =
6.6408,k2 = 0.1,k3 = 20,k4 = 0.3279.

The scheme proposed above has been tested on the nonlinear high fidelity
ADDSAFE benchmark model [[11]]. The simulations are conducted at an altitude
of 37000ft, a speed of 2267kts, a weight of 185 tonnes and center of gravity of 28%
MAC. Figure 17.1 shows the results from a right elevator jam during a coordinated
turn manoeuvre. Figure 1(b) shows that the right elevator jam which does not re-
spond to the command signal. Figures 1(c) shows that sliding is being maintained
despite the presence of the fault. Figure 1(c) also shows good reconstruction of the
fault.

17.3 OFC Problem

In this section, an adaptive second order sliding mode observer algorithm will be
used to estimate an actuator oscillatory failure case. The idea is to manipulate the
analytical mathematical nonlinear model of the actuator to obtain an expression for
the OFC signal. Most of the parameters used in the manipulated nonlinear equa-
tion are available, except for the actuator rod speed which will be supplied by the
adaptive observer.

17.3.1 Modeling of Hydraulic Actuator

The hydraulic actuator model from [[10]] is given by

ẋ(t) = Vc(t)

(
Δp(t)− sign(i(t))Faero(t)

S

Δpre f +
Kd(t)

S V 2
c (t)

) 1
2

(17.27)

where nominally

Vc(t) = Kci(t) (17.28)

and Kc is a conversion factor from electrical current (mA) to speed (mm/s). The
current i(t) is given by

i(t) = K(u(t)− x(t)) (17.29)

where K is the (fixed) servo control gain. The signal x(t) is the hydraulic actuator
rod position and u(t) is the commanded rod position (from the FCC). The fixed
constants are Δpre f which is the differential pressure corresponding to the maximum
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Fig. 17.1 Turn coordination: right elevator jam

rod speed1, and S which is piston surface area. The parameters which depend on
varying operational conditions (e.g. fluid temperature and/or the number of actuators
used simultaneously on a given hydraulic circuit) are: Δp(t) which is the actual
hydraulic pressure delivered to the actuator, Faero(t) which is the estimate of the

1 Maximum rod speed is achieved when the servo valve is fully open and Δp(t) =Δpre f [[10]].
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aerodynamic forces applied on the control surface and Kd(t) which is the adjacent
actuator damping coefficient (in the case of two actuators per control surface).

17.3.2 OFC Modeling

An OFC is caused by faults in any digital component (which generate unwanted
sinusoidal signals) in the actuator control loop between the FCC and the control
surface. These oscillations consequently propagate within the loop [[10]]. As in [[10]],
only an OFC located in the servo control loop is considered. Specifically, it is as-
sumed that the OFC source is in the analogic output signal between the FCC and
the actuator (See Figure 17.2 below). In the ADDSAFE model, the OFC affects the
computed/desired rod speed Vc(t) so that

Vc(t) =

⎧
⎨

⎩

V0(t) nominal
V0(t)+Kc fliq(t) liquid OFC
Kc fsol(t) i.e. V0(t) = 0 solid OFC

(17.30)

where
V0(t) = KcK(u(t)− x(t)) (17.31)

As in [[10]], the OFC signals are considered as sinusoids with amplitude and fre-
quency uniformly distributed over the range of 1-10Hz. Beyond 10Hz, the OFC has
no effect on control surface oscillation due to the low pass characteristics of the
actuator. As shown in (17.30) the liquid OFC behaves as an additive fault, and the
OFC signal adds to the desired position from the FCC and hence the control sur-
face tracks the corrupted demand signal. Equation (17.30) shows that for the case
of solid OFCs, the demanded surface position is replaced totally by the OFC signal.
In this case, the control surface is totally ‘disconnected’ from the FCC and does
not respond to the commanded rod position, but instead behaves as a pure periodic
motion. Any attempt to damp the oscillation does not have any impact as the control
surface is ‘disconnected’ from any demand signal from the FCC [[3, 10]].

17.3.3 OFC Estimation

Consider equation (17.27) as a special case of the differential equation

ẋ(t) = g(t,x) (17.32)

with measured output y(t) = x(t). Assume that the time derivative of the function
on the right hand side of (17.32) is bounded i.e.,

|ġ(t,x)| ≤ δ (17.33)

for some unknown constant δ > 0.
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Consider an observer with the following structure

ż1(t) = −κ1(t)|e1(t)|1/2 sign(e1(t))+ z2(t) (17.34)

ż2(t) = −κ2(t) sign(e1(t)) (17.35)

where e1(t) = z1(t)− x(t). Subtracting (17.32) from (17.34) yields the error system

ė1(t) = −κ1(t)|e1(t)|1/2 sign(e1(t))+ z2(t)− g(t,x) (17.36)

ż2(t) = −κ2(t) sign(e1(t)) (17.37)

Consider e2(t) = z2(t)− g(t,x), then (17.36)-(17.37) can be written as

ė1(t) = −κ1(t)|e1(t)|1/2 sign(e1(t))+ e2(t) (17.38)

ė2(t) = −κ2(t) sign(e1(t))− ġ(t,x) (17.39)

If a 2nd order sliding motion is induced, e1(t) = ė1(t) = 0, and therefore from
(17.38), e2(t) = 0 ⇒ z2(t) = g(t,x) = ẋ(t) and therefore z2(t) from (17.35) pro-
vides an estimate of rod speed ẋ(t). Since both x(t) and ẋ(t) are known, under the
three different conditions in (17.30), equation (17.27) can be rearranged to obtain
an expression for the OFC. For the liquid OFC case

fliq(t) =
z2(t) f (t)−V0(t)

Kc
(17.40)

where

f (t) =

( Δpre f

Δp(t)− sign(i(t))Faero(t)
S − z2

2(t)
Kd(t)

S

) 1
2

(17.41)

Fig. 17.2 Source of OFC in the servo control loop [[10]]
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All the variables on the right hand side of (17.40) are available (i.e., measured or
assumed to be fixed) except for the actuator rod speed. For the solid OFC case, since
V0 = 0 in (17.30), similar arguments give the estimate of the solid OFC as

fsol(t) =
z2(t) f (t)

Kc
(17.42)

Here, the gains κ1(t) and κ2(t) are chosen as:

κ1(t) =
√

2Γ (t) (17.43)

κ2(t) = 4Γ (t) (17.44)

for some time varying scalar

Γ (t) = r(t)+ � (17.45)

where the variable � is a fixed positive scalar while the varying r(t) (also positive)
is adapted based on the law

ṙ(t) =

{
γD(|e1(t)|1/2) if r(t)≤ rmax

0 otherwise
(17.46)

where γ > 0 is a positive design constant and the scalar rmax � δ . The function
D(z) : IR �→ IR is the dead-zone function

D(z) =

{
0 if |z|< ε
z otherwise

and ε is a positive scalar. The idea here is to adapt the gains when |e1(t)|1/2 unac-
ceptably deviates from zero. The gain r(t) will increase in magnitude according to
(17.46) to force e1(t) back into a sliding regime.

The choice of γ,ε, � depend on the system requirements and therefore require
some design iteration. The gain � represents the nominal gain when adaptation is
not required, whilst γ will influence how fast the adaptive gain r(t) increases. The
parameter ε dictates the sensitivity of r(t) to changes in e1(t) and is set to be small.

Proposition 17.1. Using the adaptation rule (17.46) ensures the error system given
in equations (17.38)-(17.39) and r(t) remains bounded, and a pseudo 2nd order
sliding motion is achieved in finite time forcing both e1 and ė1 to be small (depending
on the choice of ε).

Proof: See [[2]].
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17.3.4 Simulations

The scheme above has been tested on the nonlinear high fidelity ADDSAFE bench-
mark model provided by AIRBUS [[12]]. The simulations are conducted at an alti-
tude of 30000ft, Mach 0.64 (241kts), a weight of 200 tonnes and center of gravity of
30% MAC. In the benchmark model, the actuators are represented as high fidelity
nonlinear models with parameters Δp, Faero and Kd which vary based on changes in
the operational conditions. For the observer design, these parameters are assumed to
be fixed at constant values. Here, the control surface considered is the right inboard
aileron. The design parameters from (17.45) and (17.46) used in the simulation are
γ = 3× 106, �= 50 and ε = 0.6.

17.3.4.1 Simulation Results

Various OFC amplitudes and frequencies have been tested. For consistency and for
comparison, all the tests were conducted using the same manoeuvre (a pilot lon-
gitudinal stick doublet input). For all tests, the OFC occurs at 10sec. For brevity,
the results shown here represent the extreme cases of low and high amplitude and
low and high frequency, to highlight the performance of the proposed scheme. The
low amplitude case shows the smallest amplitude the scheme can detect, especially
when masked by the noise in the system. The high frequency OFC case represents
a challenge to detect the failure within the required time.

17.3.4.2 Solid OFC

Figure 17.3 shows an OFC of amplitude 0.5deg at a frequency of 0.5Hz. Figure 3(a)
shows the effect of the OFC on the left elevator. Here, the OFC signal (blue solid
line) totally replaces the commanded signal (red dashed line) and the elevator does
not respond to the command signal from the FCC.

Figure 3(b) shows that there is no supertwist gain adaptation required for this
level of OFC. Figure 3(c) shows both the estimated rod speed and the OFC. Here,
again a good estimate of the rod speed is obtained as the estimate (blue solid line)
overlaps the actual (red dashed line) rod speed. Subsequently, the good rod speed
estimate provides a good OFC estimate.

17.3.4.3 Liquid OFC

Figure 17.4 shows the results for a liquid OFC with amplitude 1deg and a frequency
of 7Hz. Due to the high frequency of the OFC, zoomed-in plots from 9-12sec are
presented. Figure 4(b) shows that when the OFC occurs, the quality of sliding de-
grades and the gain Γ (t) increases to regain sliding. Figure 4(c) shows the estimate
of both the rod speed and the OFC. Again, during the period of sliding degradation,
the rod speed and the OFC estimate slightly degrade, but quickly recover to provide
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Fig. 17.3 Solid OFC (amplitude 0.5, frequency 0.5)
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a good estimate once the gain Γ (t) is sufficiently big. After adaptation of the su-
pertwist gains, both the rod speed and the OFC estimate (blue solid line) provide a
good estimate of the actual rod speed and the OFC (red dashed line).

17.4 An Observer Design for a Leader/Follower Satellite
Formation

In this section a cluster of N + 1 identical satellites, consisting of a leader satel-
lite and N follower satellites, which are in nearby orbits, is considered. The leader
satellite is on a circular Keplerian orbit and the follower satellites can measure the
relative distance between all the nearby satellites as well as the leader satellite. The
coupling effect between the attitude and translational dynamics of the satellites is
assumed to be weak and is ignored. Also it is assumed the follower satellites have
information about the control forces employed by the leader.

Since the distances between the satellites are small when compared to the di-
ameter of the actual orbit, the relative dynamics of the ith follower satellite can be
studied using Hill’s equations [[25]]. In general, Hill’s equations consist of relative
dynamics in the radial, tangential and out-of-plane direction. Only the radial and
tangential (x− y) plane dynamics, which are coupled, is addressed in here. The Hill
equations representing the dynamics in the (x− y) plane can be written as:

ẍi − 2ẏi− 3xi = uxi + fxi (17.47)

ÿi + 2ẋi = uyi + fyi (17.48)

where xi and yi represent the displacements in the radial and tangential directions
respectively with respect to the leader satellite, which performs a circular orbit at an
angular speed of ωn. Note that (17.47) -(17.48) have been normalized with respect
to time, and have no visible dependency on ωn as written [[20, 25]]. The control
signals uxi and uyi are the net specific control forces, in the radial and tangential
plane respectively, acting on the ith follower. These are relative with respect to the
leader and can be written as

uxi = u f
xi − ul

xi (17.49)

uyi = u f
yi − ul

yi (17.50)

where the superscripts f and l indicate the follower and leader respectively, and so
for example, u f

xi is the control signal applied to the ith follower satellite in the radial
direction. The terms fxi and fyi represent possible actuator faults. For the remainder
of this section the use of the subscript i to denote the ith follower will be dropped.
Since all the followers are identical, there is no ambiguity in the absence of the
subcript i.
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To this end, for a typical follower satellite let

X = (x1,x2,x3,x4) = (x, ẋ,y, ẏ) (17.51)

The nonlinear observer which is proposed here has its roots in the second order su-
per twisting observer proposed in [[7, 8, 21]]. It will be designed to simultaneously
robustly estimate the states and the unknown faults, f = col( fx, fy), from the mea-
sured relative position outputs (x1,x3) in each follower satellite.

Let the state estimate of the satellite be X̃ := col(x̃1, x̃2, x̃3, x̃4). Consider the non-
linear observer dynamical system described by

˙̃x1 = x̃2 − k̃1|e1| 1
2 sign(e1) (17.52)

˙̃x2 = 3x̃1 + 2x̃4 − k̃3 sign(e1)− k̃2|e3| 1
2 sign(e3)+ ux (17.53)

˙̃x3 = x̃4 − k̃2|e3| 1
2 sign(e3) (17.54)

˙̃x4 = −2x̃2 − k̃4 sign(e3)+ k̃1|e1| 1
2 sign(e1)+ uy (17.55)

where: e = X̃ −X , such that e = col(e1,e2,e3,e4). The k̃i ∈ IR+, i = 1, . . . ,4 rep-
resent the positive design scalar gains to be determined. This will be discussed in
the sequel. When compared to the classical super-twisting observer proposed in [[8]],

additional significant cross coupling terms −k̃2|e3| 1
2 sign(e3) and +k̃1|e1| 1

2 sign(e1)
are present in (17.53) and (17.55). Furthermore the skew symmetry in the coupling
of the states in the satellite dynamics is exploited in proposing the new nonlinear
observer. The proposed nonlinear observer will be analyzed making use of the class
of Lyapunov function originally proposed in [[21]].

The error in the state estimate of the satellite is

ė1 = −k̃1|e1| 1
2 sign(e1)+ e2 (17.56)

ė2 = 3e1 + 2e4 − k̃3 sign(e1)− k̃2|e3| 1
2 sign(e3)− fx (17.57)

ė3 = −k̃2|e3| 1
2 sign(e3)+ e4 (17.58)

ė4 = −2e2 − k̃4 sign(e3)+ k̃1|e1| 1
2 sign(e1)− fy (17.59)

The proposed design ensures the convergence of the error dynamics associated with
the estimates of the states to zero in finite time.

It is assumed that the unknown faults fx and fy in the error dynamics satisfy a-
priori known upper bounds. Specifically suppose | fx| ≤ δ1 and | fy| ≤ δ2 for known
constants δ1,δ2 ≥ 0. This assumption is similar to the one made in [[20, 25]].

Consider a candidate Lyapunov function V (e) for the error dynamics system in
(17.56) - (17.59), which is inspired by the one in [[21]] given by:

V (e) = 2k̃3|e1|+ 1
2

e2
2 +

1
2
(k̃1|e1| 1

2 sign(e1)− e2)
2

+ 2k̃4|e3|+ 1
2

e2
4 +

1
2
(k̃2|e3| 1

2 sign(e3)− e4)
2 (17.60)
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Fig. 17.6 Estimates in disturbances

For simplicity, the proposed candidate Lyapunov function can be written as a
quadratic form V (ξ )= ξ TPξ where ξ := col(ξ1,ξ2) and ξ1 := col(|e1| 1

2 sign(e1), e2)

and ξ2 := col(|e3| 1
2 sign(e3), e4). The block diagonal Lyapunov matrix

P =

[
P1 02×2

02×2 P2

]
(17.61)
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where

P1 =
1
2

[
4k̃3 + k̃2

1 −k̃1
−k̃1 2

]
, P2 =

1
2

[
4k̃4 + k̃2

2 −k̃2
−k̃2 2

]

is radially unbounded if k̃3 > 0 and k̃4 > 0. It can be shown that the time derivative
of V (ξ ) along the trajectories of the system (17.56) - (17.59) is given by

V̇ (ξ )≤− 1

|e1| 1
2

ξ T
1 Q̃1ξ1 − 1

|e3| 1
2

ξ T
2 Q̃2ξ2 (17.62)

where

Q̃1 =
k̃1

2

[
2k̃3 + k̃2

1 −2δ1 −k̃1 −2 δ1

k̃1

−k̃1 −2 δ1

k̃1
1

]

and

Q̃2 =
k̃2

2

[
2k̃4 + k̃2

2 −2δ2 −k̃2 −2 δ2

k̃1

−k̃2 −2 δ2

k̃1
1

]

Note that significant algebraic manipulation is necessary to achieve the structure
in (17.62) because although V (ξ ) and V̇ (ξ ) present a decoupled block structure as
given in (17.60) and (17.62), the differential equations in (17.56)-(17.59) are cou-
pled. In achieving (17.62) the skew symmetry of the satellite plant and the additional
coupling terms have been exploited.

In this situation V̇ (ξ ) is negative definite if Q̃1 and Q̃1 are positive definite. Pro-
vided the scalar positive gains k̃i, for i = 1, . . . ,4, satisfy the following conditions

k̃1 > 0, k̃3 > 3δ1 + 2
δ 2

1

k̃2
1

(17.63)

k̃2 > 0, k̃4 > 3δ2 + 2
δ 2

2

k̃2
2

(17.64)

Q̃1 and Q̃2 are positive definite and consequently V̇ (ξ ) is negative definite for all ξ �=
0 and t > 0. Exploiting the very specific block diagonal structure of the Lyapunov
matrix in (17.61), rewrite the quadratic Lyapunov function in (17.60) as

V (ξ ) := ξ T
1 P1ξ1︸ ︷︷ ︸
V1(ξ1)

+ξ T
2 P2ξ2︸ ︷︷ ︸
V2(ξ2)

(17.65)

The functions V1(ξ1) and V2(ξ2) are positive definite with respect to ξ1 and ξ2 re-
spectively. Then following identical arguments to those in [[21]], the inequality in
(17.62) can be written as

V̇ (ξ )≤− 1

|e1| 1
2

γmin(Q̃1)‖ξ1‖2
2 −

1

|e3| 1
2

γmin(Q̃2)‖ξ2‖2
2 (17.66)
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As argued in [[21]], inequality (17.66) can further be written as

V̇ (ξ )≤−β1V
1
2

1 (ξ1)−β2V
1
2

2 (ξ2) (17.67)

where β1 =
γ

1
2

min(P1)γmin(Q̃1)

γmax(P1)
and β2 =

γ
1
2

min(P2)γmin(Q̃2)

γmax(P2)
and thus it follows that

V̇ (ξ )≤−β (V
1
2

1 (ξ1)+V
1
2

2 (ξ2)) (17.68)

where β =min(β1,β2). Since (V
1
2

1 +V
1
2

2 )2 >V1+V2, because V1 and V2 are positive,

it can be concluded that V
1
2

1 +V
1
2

2 >V
1
2 . This further implies that

V̇ (ξ )≤−βV
1
2 (17.69)

and hence V (ξ ) ≡ 0 in finite time. As argued above, the origin e = 0 is attained in
finite time. Substituting for e ≡ 0 in (17.57) and (17.59) yields

k̃3 sign(e1)︸ ︷︷ ︸
ν1

− fx = 0 (17.70)

k̃4 sign(e3)︸ ︷︷ ︸
ν3

− fy = 0 (17.71)

Therefore νeq,1 := fx and νeq,3 := fy, where νeq,∗ denotes the equivalent injection
signals [[23]] necessary to maintain sliding. Thus fx and fy can be obtained to good
accuracy by low pass filtering of ν1 and ν3 [[23]].

The following simulation shows the filtered injection signals tracking unknown
sinusoidal faults/disturbances within the system. Figure 17.5 shows super-twisting-
like performance. One the state estimation errors become zero after approximately
3 seconds, tracking of the unknown sinusoidal faults occurs.

17.5 Conclusions

This chapter has presented the application of second order sliding mode observer
schemes to the ADDSAFE benchmark problem and a satellite formation flying
problem. Two different FDD problems have been considered: firstly the detection
and isolation problem associated with an actuator jam/runaway, and secondly an
OFC scenario associated with the aileron actuators. Simulation results based on the
full nonlinear model of the ADDSAFE aircraft, using a highly detailed model of
the right inboard aileron actuator have been carried out. Both liquid and solid OFC
cases have been considered. The results show good estimates of both the actuator
rod speed and the OFC. A problem associated with fault detection in a formation



17 Applications of Sliding Observers for FDI in Aerospace Systems 359

flying scenario, associated with satellites has also been discussed. This application
to a relative degree two problem would be difficult to solve using linear unknown
input observer methods.
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