
Chapter 14
Observers with Discrete-Time Measurements
in the Sliding Mode Output-Feedback
Stabilization of Nonlinear Systems

Elisabetta Punta

Abstract. The chapter investigates the problem of designing an observer for nonlin-
ear nonaffine systems with discrete-time measurements (continuous-discrete-time
systems). The chapter considers the variable-structure control of nonlinear systems
when the state vector is not completely available and the output measurements are
discrete-time; the use of suitably designed observers is required. The strategy of in-
troducing integrators in the input channel is exploited to enlarge the class of tractable
control systems. An observer is proposed and conditions are found under which the
convergence to the unique ideal solution is proven for both system and observer.
The control problem is solved by forcing a sliding regime for the observer, while
satisfying an exponential stability criterion for the observation error state equation.

14.1 Introduction

This chapter deals with nonlinear systems nonaffine in the control law when, due
to incomplete state availability, the design of sliding mode control calls for suitable
observation procedure.

It is proven in [[1]] that the control problem has a solution for perfectly known
nonlinear nonaffine systems, provided some uniqueness conditions, [[2]], are satisfied
by the coupled state-observer system, and a nonlinear matrix inequality involving
the Jacobian matrices of the observer has a solution. This method is “differentiator
free”, nevertheless in some cases the posed convergence conditions result to be too
restrictive.

In [[3]] nonlinear nonaffine systems are considered and novelties with respect to
[[1]] are presented. Integrators are introduced in the input channel, [[4]], [[5]], [[6]],
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with the aim of strongly simplifying the convexity constraints required to ensure the
global convergence of the coupled state-observer system to the unique ideal one.

In the present chapter we consider nonlinear nonaffine control systems. Integra-
tors are introduced in the input channel in order to deal with a larger class of non-
linear nonaffine control systems. A full-order observer is designed and the relevant
convergence conditions are found. The sliding motion of the state-observer coupled
system on a sliding manifold in the state space of the observer is guaranteed. The
analysis of the closed-loop robustness of the proposed scheme is performed with re-
spect to the discrete-time availability of the measurements of the system. Conditions
are posed about the considered system and the accessible measurements.

This chapter investigates the problem of designing an observer for nonlinear
nonaffine systems with discrete-time measurements (continuous-discrete-time sys-
tems). The contribution of the chapter is in the context of output feedback under
perfect plant knowledge and with discrete-time measurements.

The use of continuous-discrete observers to estimate the state of nonlinear sys-
tems has already been investigated in the literature, [[7]], [[8]], [[9]]. In particular slid-
ing mode observers have been developed in presence of sampled output informa-
tion, [[10]], [[11]], [[12]].

The practical issues relevant to differentiators, [[13]], [[14]], are not addressed in
the chapter.

The chapter is organized as follows. Section 14.2 proposes the statement of the
considered variable-structure control problem. Integrators are introduced in the in-
put channel in order to deal with a larger class of nonlinear nonaffine control sys-
tems. Conditions are posed about the considered system. In Section 14.3 an observer
with continuous time measurements is designed and the relevant convergence con-
ditions are found. In the following Section 14.4 it is considered the case when the
state vector is not completely available and the output is accessible via discrete-time
measurements: the use of a suitably designed observer is required. Finally a detailed
example and simulation results are presented in Section 14.5.

Throughout the chapter a prime denotes transpose and |·| is the Euclidean norm
or the induced matrix norm.

14.2 Problem Statement

We consider the nonlinear nonaffine control system

η̇ = ϕ (t,η ,u) t ≥ 0, (14.1)

where ϕ : [0,+∞)×Ω ×Rm → Rn is a Carathéodory mapping, η ∈ Rn is the state
vector,Ω is an open set of Rn, u ∈ Rm is the available control vector.

The state vector is not completely available and the output vector ζ ∈ Rk is ex-
pressed by the following equation

ζ = ρ (η) , (14.2)

where ρ is of class C2.
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The output is accessible via discrete-time measurements

ζi = ρ (η (ti)) , (14.3)

where ti, i = 0,1, . . ., is the sequence of positive real numbers, the sampling instants,
defined as ti+1 = ti+δ , t0 = 0, i= 0,1, . . ., and the constant δ > 0 is the measurement
sampling interval.

The sliding manifold is
ξ (η) = 0, (14.4)

with ξ (η) ∈ Rm.
We assume that n ≥ m,

ξ = ξ (η) : Ω → Rm,

ξ is C2 (Ω), and the m× n Jacobian matrix

ξη =
∂ξ
∂η

(η) has maximum rank m (14.5)

for η ∈Ω .
The objective is to control the state variables η (t), t ≥ 0, of the control system

(14.1) in order to guarantee that the sliding output

ξ [η (t)]→ 0 as t →+∞.

In the following section a solution is proposed, which introduces integrators in the
input channel. This procedure, traditionally implemented in order to reduce the chat-
tering phenomenon, allows to consider a larger class of nonlinear nonaffine control
systems and results in a strongly simplified convexity condition, [[3]].

14.2.1 The Introduction of Integrators in the Input Channel

Consider the control system (14.1) and sliding manifold (14.4).
Let us define the following augmented control system

η̇ = ϕ (t,η ,u) u̇ = v, t ≥ 0, (14.6)

with control vector v ∈ Rm. We measure ζ1 = ρ1 (u), where ρ1 : Rm → Rm and the

Jacobian matrix ρ1u =
∂ρ1

∂u
(u) has maximum rank m. The output ζ1 is accessible

via discrete-time measurements

ζ1 i = ρ1 (u(ti)) ,
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where ti, i = 0,1, . . ., is the sequence of positive real numbers, the sampling instants,
defined as ti+1 = ti+δ , t0 = 0, i= 0,1, . . ., and the constant δ > 0 is the measurement
sampling interval.

Assume that ϕ , ξ are both of class C2 everywhere. For almost every t, the first
time derivative of ξ is given by

ξ̇ = ξη (η)ϕ (t,η ,u)

We introduce a new sliding output

s = ξ̇ +Λξ , (14.7)

where Λ = diag(λ j), λ j > 0, j = 1, . . . ,m, is a constant m×m diagonal matrix.
Let the augmented state vector x = (η ′,u′)′ ∈ Rn+m and the measured vector

y = (ζ ′,ζ ′1)
′ ∈ Rk+m, we can write

ẋ =

[
η̇
u̇

]
=

[
ϕ (t,η ,u)

0

]
+

[
0
I

]
v =

= A(t,x)+Bv = f (t,x,v)

y =

[
ζ
ζ1

]
=

[
ρ (η)
ρ1 (u)

]
= h(x) ,

(14.8)

where A(t,x) =

[
ϕ (t,η ,u)

0

]
, B =

[
0
I

]
, f (t,x,v) = A(t,x) + Bv, and h(x) =

[
ρ (η)
φ (u)

]
. The control vector is v and the sliding output s is defined by (14.7).

Consider (14.6), (14.2) and (14.7). The following new variable-structure control
problem can be defined

ẋ = f (t,x,v) , t ≥ 0, state equation, (14.9)

u̇ = v, control equation, (14.10)

y = h(x) , output equation, (14.11)

yi = h(x(ti)) , discrete-time measurement equation, (14.12)

s(t,x) = 0, sliding manifold, (14.13)

where ti, i = 0,1, . . ., is the sequence of positive real numbers, the sampling instants,
defined as ti+1 = ti+δ , t0 = 0, i= 0,1, . . ., and the constant δ > 0 is the measurement
sampling interval. The vector field f (t,x,v) is defined by (14.8).

The output function h is such that

|h(x)| ≤ ψ1 |x| , ψ1 > 0, ∀ t, x, t ≥ 0. (14.14)
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Assume that the Jacobian matrix

ξη (η)ϕu (t,η ,u) is everywhere nonsingular. (14.15)

The objective is to control, by the vector v, the state variables (η ′ (t) ,u′ (t))′, t ≥ 0,
of the augmented system in order to guarantee the sliding property

s(t)→ 0 as t →+∞.

14.3 Nonlinear Observer with Continuous Time Measurement

In this section it is considered the case when the output is accessible via continuous-
time measurement.

The nonlinear observer with continuous-time measurements, [[3]], for system
(14.9) is defined as

˙̂x = f (t, x̂,v)+N1 [y(t)− h(x̂)] . (14.16)

We have x, x̂ ∈ R(n+m), y ∈ R(k+m), u, v, s ∈ Rm and m ≤ n. N1 ∈ R(n+m)×(k+m) is
a constant matrix. The function f is defined by (14.8). The functions f , h, s are
continuously differentiable in x, with f measurable in t and continuous in (x, v).

If (14.15) holds for system (14.9) and (14.16), then for every t ≥ 0, y, x̂ there
exists a unique solution

v1∗ (t,y, x̂) (14.17)

of the equation

st (t, x̂)+ sx (t, x̂){ f (t, x̂, ·)+N1 [y− h(x̂)]}= 0,

where N1 is as in (14.16). The mapping v1∗ is by definition the observer’s equivalent
control corresponding to the output y.

We consider solutions in [0,+∞) (either in the Filippov or a.e. sense) to (14.9),
(14.11), (14.16) corresponding to the observer’s equivalent control, i.e. solutions to

ẋ = f (t,x,v1∗ (t,h(x) , x̂)) , (14.18)

˙̂x = f (t, x̂,v1∗ (t,h(x) , x̂))+N1 [h(x)− h(x̂)] , (14.19)

the existence of which is guaranteed by previous conditions (14.15) and (14.17).
By specializing the results in [[1]] and [[3]] to the coupled state-observer sys-

tem (14.9) and (14.16), we obtain the following. If there exist matrices N1 ∈
R(n+m)×(k+m), M1 ∈ R(n+m)×(n+m), positive numbers α1, ω1 ∈ R+ such that the
eigenvalues of M1 are between α1 and ω1, and positive number ε1 ∈ R+ such that
the following matrix inequality holds

M1 ( fx −N1hx)+ ( fx −N1hx)
′ M1 ≤−ε1I, (14.20)
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and if |sx (t,x)| ≤ L everywhere, for some positive constant L, then for every t ≥ 0

|s(t,x(t))− s(t, x̂(t))| ≤ L

(
ω1

α1

) 1
2

|x(0)− x̂(0)|exp(c1t) ,

where ω1c1 =−ε1, for every a.e. solution (x′, x̂′)′ in [0,+∞) to (14.18) and (14.19).
The observer (14.16) is a nonlinear system with available state vector x̂. We as-

sume that the control vector v can be designed to reach in finite time the observer
sliding manifold s(t, x̂) = 0. Then, from previous inequality, once s(t, x̂) = 0, we
have that

|s(t,x(t))| ≤ L

(
ω1

α1

) 1
2

|x(0)− x̂(0)|exp(c1t) .

The previous conditions (14.15) and (14.17) guarantee that the sliding motion of the
state-observer coupled system on s(t, x̂) = 0 is described by (14.18) and (14.19),
independently of the nature (continuous or discontinuous) of the control v suitably
designed to enforce s(t, x̂) = 0 and actually applied.

14.4 Nonlinear Observer with Discrete-Time Measurement

Consider the system (14.9) and the sliding manifold (14.13). The control objective
is to steer to zero the sliding output s(t,x) by the vector v.

The state variables x are not available. The vector y = h(x) is the accessible
output, the measurements yi of which are received at discrete-times ti, with a fixed
sampling period δ , according to (14.12).

The observer with discrete-time measurements for system (14.9) is designed as
the following continuous-discrete-time observer defined by the following hybrid
system ⎧

⎨

⎩

ẋ(t) = f (t,x,v)−Ph(x) , t ∈ [ti, ti+1) ,

x(ti) = x
(
t−i
)
+P

[
yi − h

(
x
(
t−i
))]

,
(14.21)

where yi = h(xi) and xi = x(ti), the sampling instants are defined as ti+1 = ti + δ ,
t0 = 0, i = 0,1, . . ., the constant δ > 0 is the measurement sampling interval, and
P ∈ R(n+m)×(k+m) is a constant matrix, which will be specified in the sequel. The
functions f , h and s are defined by (14.8), (14.11) and (14.13). The functions f , h, s
are continuously differentiable in x, with f measurable in t and continuous in (x, v).

Since (14.15) holds for system (14.9) and observer (14.21), then for every t ≥ 0,
yi, x there exists a unique solution

v∗ (t,yi,x) (14.22)

of the equation
st (t,x)+ sx (t,x) [ f (t,x, ·)−Ph(x)] = 0,
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where P is as in (14.21). The mapping v∗ is by definition the observer’s equivalent
control corresponding to the measurements yi of the output y.

We consider solutions in [0,+∞) (either in the Filippov or a.e. sense) to (14.9),
(14.11), (14.21) corresponding to the observer’s equivalent control, i.e. solutions to

ẋ = f (t,x,v∗ (t,yi,x)) , (14.23)

ẋ = f (t,x,v∗ (t,yi,x))−Ph(x) , (14.24)

the existence of which is guaranteed by previous conditions (14.15) and (14.22).

Assumption 14.1. The observer (14.21) is a perfectly known nonlinear system with
available state vector x. The control vector v can be designed to reach in finite time
the observer sliding manifold s(t,x) = 0.

We assume that the sliding output is designed such that the state of the observer on
the sliding manifold of the observer is exponentially stable.

Assumption 14.2. For every a.e. solution x in [0,+∞) to (14.24), on s(t,x) = 0, we
assume that there exist a matrix M ∈ R(n+m)×(n+m), two positive numbers α , ε ∈ R+

such that the eigenvalues of M are between α and ε , and a positive number β ∈ R+

such that the first time derivative of the Lyapunov function V (x) = x′ M x satisfies

V̇ ≤−βV ≤−βα |x|2 .

Consider the coupled state-observer system (14.9) and (14.21), the following theo-
rem can be stated.

Theorem 14.1. Consider the system (14.9) and the observer (14.21), for which the
previously posed conditions, particularly Assumption 14.1 and 14.2, hold.
Assume that it is possible to find a symmetric matrix Q ∈ R(n+m)×(n+m) such that
the eigenvalues of Q are between two positive numbers μ and κ , and such that the
eigenvalues of the symmetric part of Q( fx −Phx) are less or equal −ν everywhere,
being ν a positive number.
Assume moreover that |sx (t,x)| ≤ D everywhere, for some constant D.

Provided μ , κ , and ν are such that c1 =
(
ν
κ − 2 κ

2

νμ ψ
2
)

> 0 and c2 =
(
β − 2 κ

2

να ψ
2
)
> 0 with ψ = |P|ψ1, ψ1, P, α , and β defined by (14.14), (14.21),

and Assumption 14.2, then for every t ≥ 0

|s(t,x(t))| ≤ D

[
κ
μ
|x(0)− x(0)|2 + ε

μ
|x(0)|2

] 1
2

exp(−ct) , (14.25)

where 2c = min(c1,c2), for every a.e. solution (x′,x′)′ in [0,+∞) to (14.23) and
(14.24), such that s(0,x(0)) = 0.
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Proof.
Set

W (t) =V1 (t)+V2 (t)
= [x(t)− x(t)]′ Q [x(t)− x(t)]+ x′ (t) M x(t) , t ≥ 0.

Then a.e. for t ≥ 0,

Ẇ (t) = 2 [x(t)− x(t)]′ Q
{ f (t,x,v∗)− f (t,x,v∗)+Ph(x)−P [h(x)− h(x)]}+ V̇2 (t) ,

where
v∗ (t) = v∗ (t,yi,x) .

Therefore Ẇ (t) =

= 2 [x(t)− x(t)]′ Q
[∫ 1

0 ( fx −Phx)da
]
[x(t)− x(t)]

+2 [x(t)− x(t)]′ QPh(x)+ V̇2 (t) ,

where fx and hx are evaluated at (t,α (a, t) ,v∗) and α (a, t) = ax(t)+ (1− a)x (t).
We have Ẇ (t) =

=
∫ 1

0 (x− x)′
[
Q( fx −Phx)+ ( fx −Phx)

′ Q′](x− x)da
+2(x− x)′ QPh(x)+ V̇2 (t) ,

from which, recalling that the symmetric part of a square matrix A is by definition
A+A′

2 ,

Ẇ (t) ≤−2
∫ 1

0 ν (x− x)′ (x− x)da+ 2(x− x)′ QPh(x)+ V̇2 (t)

≤−2 νκV1 (t)+ 2(x− x)′ QPh(x)+ V̇2 (t) ;

then
Ẇ (t)≤−2bV1 (t)+ 2(x− x)′ QPh(x)+ V̇2 (t) ,

with b = ν
κ .

From previous inequality, by standard computations, we obtain

Ẇ (t)≤−bV1 (t)+
1
b

h′ (x)P′QPh(x)+ V̇2 (t) ,

then
Ẇ (t)≤−bV1 (t)+

κ
b
|Ph(x)|2 + V̇2 (t)

and by (14.14)

Ẇ (t)≤−bV1 (t)+
κ
b
ψ2 |(x− x)+ x|2 + V̇2 (t) ,

where ψ = |P|ψ1.
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This can be rewritten as

Ẇ (t)≤−bV1 (t)+ 2
κ

bμ
ψ2V1 (t)+ 2

κ
b
ψ2 |x|2 + V̇2 (t)

and since Assumption 14.2 holds

Ẇ (t)≤−
(

b− 2
κ

bμ
ψ2
)

V1 (t)−
(
β − 2

κ
bα
ψ2
)

V2 (t) .

If μ , κ , and ν are such that

c1 =

(
ν
κ
− 2

κ2

νμ
ψ2
)
> 0

and

c2 =

(
β − 2

κ2

να
ψ2
)
> 0

with ψ = |P|ψ1, ψ1, P, α , and β defined by (14.14), (14.21), and Assumption 14.2,
we obtain that

Ẇ (t)≤−2cW (t) ,

where 2c = min

[(
ν
κ
− 2

κ2

νμ
ψ2
)
,

(
β − 2

κ2

να
ψ2
)]

.

If we set
W1 (t) =W (t)exp(2ct) ,

we have that Ẇ1 (t)≤ 0, thus giving

W (t) =W (0)exp(−2ct) .

Then
μ |x− x|2 +α |x|2 ≤W (t)

≤
[
κ |x(0)− x(0)|2 + ε |x(0)|2

]
exp(−2ct) .

We can conclude

|x− x| ≤
[
κ
μ
|x(0)− x(0)|2 + ε

μ
|x(0)|2

] 1
2

exp(−ct) ,

|s(t,x)− s(t,x)| ≤ D |x− x|
and therefore (14.25) since it holds s(t,x) = 0.

�
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14.5 Example

We consider the following variable-structure control system

η̇ = ϕ (t,η ,u) =

=

[ (
3+ sin2 (ωt)

)
(η2 −η1)− 4

(
η1 +η3

1

)
(
2− sin2 (ωt)

)
η1 − 4

(
η2 +η3

2

)
+ρ1 (u)

]
,

u̇ = v,

where η ∈R2, u∈R and ρ1 (u)=
√

3(u− 1)+
√

u2 + 3;ω = 2π ; the output equation
has the form ζ = ρ (η) = η1, ζ ∈ R; the sliding manifold is designed as ξ (η) =
η1 −η2 = 0, ξ ∈ R; it is trivial to verify that the corresponding zero-dynamics is
asymptotically stable.

Let the augmented state vector x = (η ′,u′)′; we consider the variable-structure
control system

ẋ = f (t,x,v) = A(t,x)+Bv =

=

⎡

⎣

(
3+ sin2 (ωt)

)
(x2 − x1)− 4

(
x1 + x3

1

)
(
2− sin2 (ωt)

)
x1 − 4

(
x2 + x3

2

)
+ρ1 (x3)

0

⎤

⎦

+

⎡

⎣
0
0
1

⎤

⎦v,

(14.26)

where x ∈ R3 and ρ1 (x3) =
√

3(x3 − 1)+
√

x2
3 + 3.

The sliding manifold is designed as

s(x) = ξ̇ +Λξ = A1 (t,x)−A2 (t,x)+Λ (x1 − x2) = 0, (14.27)

where s ∈ R, A1 (t,x) and A2 (t,x) are respectively the first and second element of
the vector field A(t,x) in (14.26), and Λ ∈ R is chosen Λ = 10. On s(t,x) = 0 the
system (14.26) is stable.
The output vector y ∈ R2 is

y =

[
ζ
ζ1

]
= h(x) =

[
x1

ρ1 (x3)

]
. (14.28)

The state vector x is not completely available. The vector y = h(x) is the accessible
output, the measurements yi of which are received at discrete-times ti, with a fixed
sampling period δ , according to (14.12).

The observer with discrete-time measurements for system (14.26) is designed
as the following continuous-discrete-time observer defined by the following hybrid
system ⎧

⎨

⎩

ẋ(t) = f (t,x,v)−Ph(x) , t ∈ [ti, ti+1) ,

x(ti) = x
(
t−i
)
+P

[
yi − h

(
x
(
t−i
))]

,
(14.29)
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where yi = h(xi) and xi = x(ti), the sampling instants are defined as ti+1 = ti + δ ,
t0 = 0, i = 0,1, . . ., the constant δ = 0.2sec is the measurement sampling interval,
and P ∈ R3×2 is a constant matrix, which will be specified in the sequel.

In particular the first equation of the observer (14.29) for system (14.26)–(14.27)
takes the form

ẋ = f (t,x,v)−Ph(x) =

=

⎡

⎣

(
3+ sin2 (ωt)

)
(x2 − x1)− 4

(
x1 + x3

1

)
(
2− sin2 (ωt)

)
x1 − 4

(
x2 + x3

2

)
+ρ1 (x3)

v

⎤

⎦

−P

[
x1

ρ1 (x3)

]
,

(14.30)

where P ∈ R3×2; x1 (0) = 1.5, x2 (0) =−1.5 and x3 (0) =−1.5.
We have the two jacobian matrices fx (t,x) =

⎡

⎢⎢
⎣

−(3+ sin2 (ωt)
)− 4

(
1+ 3x2

1

) (
3+ sin2 (ωt)

)
0

(
2− sin2 (ωt)

) −4
(
1+ 3x2

2

)
(√

3+ x3√
x2

3+3

)

0 0 0

⎤

⎥⎥
⎦

and

hx (t,x) =

⎡

⎣
1 0 0

0 0

(√
3+ x3√

x2
3+3

)
⎤

⎦ .

Let us choose Q =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and P =

⎡

⎣
8 0
5 1
0 1

⎤

⎦. It is easy to verify that the symmetric

part of θ = Q( fx −Phx), that is the matrix
θ +θ ′

2
=

⎡

⎢⎢
⎣

−(15+ sin2 (ωt)+ 3x2
1

)
0 0

0 −4
(
1+ 3x2

2

)
0

0 0 −
(√

3+ x3√
x2

3+3

)

⎤

⎥⎥
⎦ ,

is globally negative definite, independently of u, v and on the chosen sliding mani-
fold. The conditions of Theorem 1 holds.

Let us consider the sliding output s(t,x) = A1 (t,x)−A2 (t,x)+Λ (x1 − x2), Λ =
10, and its first time derivative, which can be expressed as

ṡ (t) =Φ (t,x,y)−
⎛

⎝
√

3+
x3√

x2
3 + 3

⎞

⎠v, (14.31)
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Fig. 14.1 The observation error vector (x−x) converges to zero exponentially
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Fig. 14.2 The sliding output s(x) converges to zero in finite time
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Fig. 14.3 The sliding output s(x) converges to zero exponentially
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Fig. 14.4 On s(x) = 0 the observer’s state vector x converges to zero
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Fig. 14.5 The system’s state vector x converges to zero

where the term Φ (t,x,y) is known and in the second term the control v is mod-
ulated by a known function with constant sign. It is applied the control law v =
−K̃ (t,x) sign [s(t,x)], where K̃ (t,x) is chosen to be able to dominate the drift terms
in (14.31) and therefore to guarantee sṡ ≤−ε2 |s|, ε �= 0, according to standard first
order sliding mode technique.

According to the proposed method, the observation error (x− x) converges to
zero exponentially, Figure 14.1. The controller relies on the availability of the vector
x from the nonlinear observer (14.30) with discrete-time measurement. The discon-
tinuous control law steers to zero in finite time the sliding output s(t,x), Figure 14.2.
According to Theorem 1, once s(t,x)= 0, the sliding output s(t,x) converges to zero
exponentially, Figure 14.3.

On s(t,x) = 0 the observer (14.30) is stable, Figure 14.4, as well as the system
(14.26), the state of which converges to zero, Figure 14.5.

14.6 Conclusions

The contribution of the chapter is in the context of output feedback under perfect
plant knowledge and with discrete-time measurements.

A class of nonlinear nonaffine systems is considered when the state vector is not
completely available and the output is accessible via discrete-time measurements;
the use of suitably designed observers is required.
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The proposed methodology introduces integrators in the input channel and com-
bines sliding mode and Luenberger-like observers.

The procedure considers an augmented state and a new control, which is the first
time derivative of the original one. The strategy attains chattering reduction, while
ruling out possible ambiguous behaviors.

A full-order observer is proposed and conditions are found under which the con-
vergence to the unique ideal solution is proven for both system and observer despite
the discrete-time measurements.
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