
Chapter 12
On Discontinuous Observers for Second Order
Systems: Properties, Analysis and Design

Jaime A. Moreno

Abstract. Smooth observers are able to converge asymptotically to the actual
value of the state, in the case where no measurement noise and no persistently
acting perturbations are present. Under the same conditions continuous observers
can converge in finite time. However, they are unable to converge if a perturba-
tion/uncertainty is present. In order to achieve finite time and exact convergence in
the presence of perturbations, it is necessary to use discontinuous injection terms.
In this chapter, some recent developments in this direction for second order systems
will be presented and the results will be illustrated by means of simple examples.
It will be also shown that by including non globally Lipschitz injection terms the
convergence time of the observers can be made independent of the initial condi-
tion. The restriction to the two dimensional case is due to the fact that all proofs are
done by means of Lyapunov functions, that are only available for planar systems.
However, this has as advantage that the treatment is mainly tutorial, and provides
on the one side an easy introduction to the topic, and on the other side it presents in
the simplest case the main results that are (probably) valid for the general case. We
hope to be able to provide a similar treatment of the general case in the near future.

Key words: Sliding Modes, Variable Structure Control, Lyapunov Methods, Dis-
continuous Observers, Second Order Systems.

12.1 Introduction and Problem Statement

We will consider the class of (second order) systems that are described by the (pos-
sibly multivalued or discontinuous) differential equation
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e-mail: JMorenoP@ii.unam.mx

B. Bandyopadhyay et al. (Eds.): Advances in Sliding Mode Control, LNCIS 440, pp. 243–265.
DOI: 10.1007/978-3-642-36986-5_12 c© Springer-Verlag Berlin Heidelberg 2013

JMorenoP@ii.unam.mx


244 J.A. Moreno

ẋ1 = f1 (x1, u)+ x2 + δ1 (t, x, u) ,

ẋ2 = f2 (x1, x2, u)+ δ2 (t, x, u, w) , (12.1)

y = x1

where x1 ∈ R, x2 ∈ R are the states, u ∈ R
m is a known input, w ∈ R

r represents an
unknown input and y ∈R is the measured output. f1 is a known continuous function
and f2 corresponds to a known possibly discontinuous or multivalued function. δ1

and δ2 represent uncertain terms. The measured variables are x1 and the known input
u. It is assumed that system (12.1) has solutions in the sense of Filippov [[8]].

When the uncertainty δ1 (t, x, u)≡ 0 in (12.1) the observability map is

O (x, u, w) =

[
y
ẏ

]
=

[
x1

f1 (x1, u)+ x2

]
,

which is clearly globally invertible for every known and unknown input u and
w. In the absence of unknown input w system (12.1) (with δ1 (t, x, u) ≡ 0 and
δ2 (t, x, u, w = 0)≡ 0) is uniformly observable for every input [[10–12]]. When there
is an unknown input w the system (with δ1 (t, x, u)≡ 0) is said to be strongly observ-
able [[13,25]]. In both cases it is theoretically possible to determine the unmeasured
state x2 from the measurement of x1. Note that if the uncertain term δ1 (t, x, u) �= 0
observability is lost, and it is imposible to determine exactly the state x2.

Many second order systems are described by equations (12.1). For example
(12.1) can represent a mechanical system when δ1 (t, x, u) ≡ 0 and f1 (x1, u) ≡ 0,
where x1 corresponds to the (measured) position and x2 is the velocity. u can rep-
resent a control force (or torque) and w can correspond to uncertain parameters or
forces. If there exist Coulomb friction forces or in the presence of back-slash or
hysteretic phenomena the functions f2 (x, u) and/or δ2 (t, x, u, w) are discontinuous
or multivalued.

Many other systems, although not represented by (12.1) in original coordinates,
can be brought to (12.1) by a (local or global) state diffeomorphism. In particular,
it is well known that smooth systems (without uncertainties) and that are uniformly
observable for every input [[10–12]] can be transformed to the form (12.1).

12.1.1 Objectives

Our aim in this chapter is to propose an observer that is able to estimate the un-
measured state x2 from the measurement of x1. It is clear from the observability
analysis of the previous paragraph that this will be possible in an exact manner only
if the perturbation term δ1 (t, x, u) ≡ 0 (we are only considering the case without
measurement noise).

Since many existing observer algorithms can be used for this purpose, we will
list the distinguishing properties of the proposed observer:
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1. It is able to estimate exactly the state x2 after a finite time and robustly with re-
spect to uncertainties/perturbations, represented by δ2 (t, x, u, w) in (12.1), that
are persistent. In order to achieve this feature it is necessary to introduce dis-
continuous functions in the injection terms of the observer. It is important to
note that finite time convergence can be achieved without discontinuous injection
terms (just with continuous but not locally Lipschitz continuous ones at zero), but
only in the absence of uncertainties/perturbations. See subsections 12.2.2, 12.4.1,
12.4.2.

2. The proposed observer is able to converge in a finite time that is independent
of the initial condition of the plant and of the observer. In order to achieve this
property it is required to introduce not globally Lipschitz injection terms. See
subsections 12.2.2, 12.4.4.

3. The observer is able to deal with a known function f1 that is continuous but not
necessarily Lipschitz (globally or locally). The function f2 can be discontinuous,
it does not have to be locally or globally Lipschitz in x1 and it can grow linearly
in x2. See subsections 12.2.2, 12.2.3, 12.4.3.

4. When a bounded uncertainty/perturbation δ1 is present, the estimation error will
be bounded. The same will be true in presence of measurement noise. See sub-
sections 12.2.2, 12.2.3, 12.4.5.

5. The design of the observer proposed in the chapter is in the spirit of the High-
Gain (HG) observer: the observer constants are parametrized in terms of a single
gain, that has to be set large enough to meet the convergence, robustness and
convergence time required. See subsections 12.2.1, 12.2.2, 12.4.

6. All proofs are based on Lyapunov’s method. The Lyapunov functions used here
are of quadratic type, so that the mathematical machinery required is very similar
to what is needed for linear systems. See Section 12.4.

7. The proposed method can be considered as a generalization and improvement of
other observer design methods in the literature. See subsections 12.2.3, 12.3.

In order to put in perspective the first two properties, we will in the next subsection
illustrate in a simple simulation example the behavior with respect to finite time con-
vergence, robustness to uncertainties/perturbations and the convergence time with
increasing initial estimation error for two typical observer design methods: High-
Gain Observer [[7, 11, 15]] and (First Order) Sliding Mode Observer [[27]].

12.1.2 Simulation Example

Consider a simple (mechanical) system described by

ẋ1 = x2 , ẋ2 = w(t) (12.2)

where x1 is the measured position, x2 is the (unmeasured) velocity and w is the
unknown applied force. Note that w can represent unmodeled nonlinear and discon-
tinuous phenomena as hysteresis, back-slash or Coulomb friction. The trajectories
of the plant, with initial conditions x1 (0) = 2 and x2 (0) = 1, are shown in Figure
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Fig. 12.1 Plant’s trajectories with vanishing unknown input w(t) = 0
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Fig. 12.2 Plant’s trajectories with a periodic unknown input w(t)

12.1 in the case w = 0 and in Figure 12.2 when w(t) = 0.9sin(0.2πt). We will use
this conditions for all the following simulations and those in Section 12.3.

12.1.2.1 A Linear Observer

The linear observer

˙̂x1 =−l1γ (x̂1 − x1)+ x̂2 , ˙̂x2 =−l2γ2 (x̂1 − x1)

with appropriately designed gains l1 > 0, l2 > 0 and γ > 0 is known to provide
an exponentially convergent estimate of the velocity in the absence of unknown
input. This can be seen in the simulation in Figure 12.3, where the gains have been
selected as l1 = l2 = γ = 1. The initial conditions of the observer have been selected
as x̂(0) = [−2,−1].

This is clear from the analysis of the dynamical behavior of the estimation errors
e1 = x̂1 − x1, e2 = x̂2 − x2, given by

ė1 =−l1e1 + e2 , ė2 =−l2e1 −w(t).
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Fig. 12.3 Estimation errors of the Linear Observer without unknown input

However, it is also clear from the last equation that in the presence of a non vanishing
unknown input w the estimation error will be unable to converge to zero. This is
also illustrated in the simulation in Figure 12.4, with the same gains and periodic
unknown input.
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Fig. 12.4 Estimation errors of the Linear Observer with unknown input

In synthesis, the linear observer converges asymptotically (not in finite time)
and is not able to converge to the true value of the unmeasured state in the pres-
ence of an unknown input. In fact, finite time convergence is impossible for any
observer having locally Lipschitz continuous injection terms, and the convergence
in the presence of persistent unknown inputs is also impossible for any continuous
observer.

12.1.2.2 A Discontinuous First Order Sliding Mode Observer

In order to alleviate the problem, we consider a (First Order) Sliding Modes (SM)
Observer [[27]], that has discontinuous injection terms, and has the form

˙̂x1 =−l1sign(x̂1 − x1)+ x̂2 , ˙̂x2 =−l2sign(x̂1 − x1) .
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However, this observer is also unable to either converge in finite time or to estimate
the velocity correctly in the presence of an unknown input. This is illustrated in
Figures 12.5 and 12.6, where l1 = l2 = 1, and the same initial conditions as for the
linear observer, i.e. x̂(0) = [−2,−1], have been used.
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Fig. 12.5 Estimation errors for the Linear and the SM Observers without unknown input
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Fig. 12.6 Estimation errors of the linear and the SM Observers with unknown input

Finally, we can observe that for the linear observer (and also for the sliding
mode observer) the larger the initial estimation error, the larger the convergence
time (see Figure 12.7, where the initial state for the observer has been set to
x̂(0) = 500 [−2,−1], and compare with Figure 12.3). This means that it is difficult
to estimate a priori the time required by the observer to provide a good estimation
of the velocity.

12.2 The Proposed Observer: Design Method and Properties

In order to achieve the features for the observer, that have been listed in Subsec-
tion 12.1.1, in this section we propose a (discontinuous) observer, named General-
ized Super-Twisting Observer (GSTO), for the plant (12.1). We also describe how
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Fig. 12.7 Estimation error of the Linear Observer without UI with very large initial condi-
tions

it is designed and discuss its properties. The proofs of the results will be given in
Section 12.4.

12.2.1 The Generalized Super-Twisting Observer (GSTO)

When the plant is given in the form (12.1), the proposed GSTO has the form

˙̂x1 =−l1γφ1 (e1)+ f1 (x̂1, u)+ x̂2 ,
˙̂x2 =−l2γ2φ2 (e1)+ f2 (x̂1, x̂2, u) ,

(12.3)

where e1 = x̂1−x1, and e2 = x̂2−x2 are the state estimation errors. l1 > 0 and l2 > 0
are positive, γ > 0 is an observer gain that has to be selected large enough to assure
the convergence of the observer. The injection nonlinearities φ1 and φ2 are of the
form

φ1 (e1) = μ1 |e1|
1
2 sign(e1)+ μ2 |e1|q sign(e1) , μ1 , μ2 ≥ 0 , (12.4)

φ2 (e1) =
μ2

1

2
sign(e1)+ μ1μ2

(
q+

1
2

)
|e1|q−

1
2 sign(e1)+ μ2

2 |e1|2q−1 sign(e1) ,

(12.5)

where μ1 and μ2 are non negative constants, not both zero, and q ≥ 1
2 is a real

number. Note that φ1 and φ2 are related, since φ2 (e1) = φ ′1 (e1)φ1 (e1), that they
are both monotonically increasing functions of e1 and φ1 is continuous while φ2

is discontinuous at e1 = 0. Solutions of the observer (12.3) are understood in the
sense of Filippov [[8]]. The state estimation errors (i.e. the estimation error vector
e = [e1, e2]

T ) satisfy the differential equation

ė1 =−l1γφ1 (e1)+ e2 +ρ1 (t, e, x, u)
ė2 =−l2γ2φ2 (e1)+ρ2 (t, e, x, u, w) ,

(12.6)
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where

ρ1 (t, e1, x, u) = f1 (x1 + e1, u)− f1 (x1, u)− δ1 (t, x, u) (12.7)

ρ2 (t, e, x, u, w) = f2 (x1 + e1, x2 + e2, u)− f2 (x1, x2, u)− δ2 (t, x, u, w) . (12.8)

Each of the perturbation terms ρ1 and ρ2 has two components:

• ρ1 f = f1 (x1 + e1, u)− f1 (x1, u), ρ2 f = f2 (x1 + e1, x2 + e2, u)− f2 (x1, x2, u) are
due to the known terms of the dynamics. Note that (in the absence of noise)
the term ρ1 f = f1 (x1 + e1, u)− f1 (x1, u) can be eliminated if one uses f1 (y, u)
instead of f1 (x̂1, u) in the observer (12.3).

• ρ1δ =−δ1, ρ2δ =−δ2 due to the uncertain/perturbation terms δ1 and δ2.

Each term has a different influence on the behavior of the observer, and this will be
discussed below.

If the dynamics of the plant is given by

ż1 = F1 (t, z1, z2, u, w) ,

ż2 = F2 (t, z1, z2, u, w) , (12.9)

y = H (t, z1, z2, u)

where z1 ∈ R, z2 ∈ R are the states, and it can be transformed into the form (12.1)
by a global diffeomorphism x = Φ (z), an observer in original coordinates can be
obtained from (12.3) as

d
dt

ẑ = F (t, ẑ1, ẑ2, u, 0)−
(
∂Φ (ẑ)
∂ z

)−1 [ l1γφ1 (ŷ− y)
l2γ2φ2 (ŷ− y)

]
,

ŷ = H (t, ẑ1, ẑ2, u) . (12.10)

12.2.2 Observer Design

In this subsection we will discuss how to design the gains l1, l2, γ and q of the
observer, so that, in the absence of perturbation δ1 = 0 (and measurement noise), the
estimation error e converges in finite time to the origin, and robustly with respect to
a perturbation δ2, when δ2 and the terms ρ1 f and ρ2 f satisfy some growth conditions
(to be specified later). Moreover, the effect of the gains in the convergence time will
be discussed. When a perturbation δ1 is present, we know from the observability
properties that it is impossible to obtain convergence to zero of the estimation error.
In this case we show that “practical” stability is achieved.

We impose the following growth conditions on the perturbation terms (when
δ1 = 0):

Property 12.1. We assume that there exist a real number 0 ≤ r, two real numbers
1
2 ≤ s1 ≤ s2 and non negative (real) constants α0, α1, α2, β1 and β2 such that
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|ρ1| ≤ β1 |e1|s1 +β2 |e1|s2 , (12.11)

|ρ2| ≤ α0 +α1 |e1|r +α2 |e2| .

The next Theorem provides a procedure to design the observer (See the proof in
Section 12.4):

Theorem 12.1. Assume that δ1 = 0. Suppose further that the perturbation terms
satisfy Property 12.1. Select the parameter q such that

q ≥ max

{
1, s2,

r+ 1
2

}
.

Select l1 > 0 and l2 > 0 arbitrarily, what implies that the matrix

Al =

[−l1 1
−l2 0

]

is Hurwitz. Set μ1 > 0 and μ2 > 0. Under these conditions there exists a value
γ0 > 0 such that for every γ > γ0 the state estimation error e(t) converges to zero
in finite time, for every initial condition and robustly with respect to the perturba-
tions satisfying (12.11). Moreover, if q > 1 the convergence time is upper bounded
by a constant, independent of the initial estimation error. Furthermore, if the per-
turbation δ1 is a signal uniformly bounded for all the time, the estimation error e(t)
will be ultimately and uniformly bounded [[15�Sect. 9.2]], i.e. there exists a positive
constant b and a finite time T such that ‖e(t)‖ ≤ b for all t > T.

12.2.3 Discussion of the Observer and Its Properties

It is important to note that from the inequalities (12.11), due to the parameter α0,
the perturbation ρ2 does not have to vanish at the equilibrium point, i.e. when e = 0,
and despite of this the estimation error can converge to zero. This situation appears
for example when a persistent perturbation, due to an external unknown input w,
is acting on the system (see (12.8)). Convergence under non vanishing unknown
perturbations is imposible for continuous systems. The GSTO is able to achieve
this property due to the discontinuous term in the injection function φ2 (see (12.5)).
This is a distinguishing feature of the GSTO, since a continuous observer, as the
well-known High-Gain Observer (HGO) [[3, 7, 11, 15]] cannot achieve this property.

For different values of the parameters (μ1, μ2, q) some important particular
cases are recovered:

(HG) The linear (or High Gain) Observer is recovered when (μ1, μ2, q)=(0, 1, 1),
so that φ1 (x1) = x1, φ2 (x1) = x1, and its properties can be derived in the same
form as for Theorem 12.1. However, to avoid confusion in the redaction they are
not included in the Theorem (see the related results in [[23]]). The GST observer
has much stronger properties, as described in the listing in paragraph 12.1.1.
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(STA) The classical Super-Twisting Algorithm (STA), originally proposed in [[13]],

is obtained by setting (μ1, μ2, q) = (1, 0, q), so that φ1 (x1) = |x1|
1
2 sign(x1),

φ2 (x1) =
1
2 sign(x1). In this case φ2 (x1) is a discontinuous function. The algo-

rithm has been used for observation in mechanical systems by [[6]]. A comparison
of (some of) the properties of the ST and the GST Observers is done in Section
12.3.

(H) A Homogeneous Algorithm is obtained if φ1 (x1) = |x1|q sign(x1), φ2 (x1) =

q |x1|2q−1 sign(x1), for q ≥ 1
2 . In this case system (12.6) without perturbations is

homogeneous [[4, 18]]. When q = 1
2 the previous ST algorithm is recovered. For

1
2 < q < 1 the algorithm is continuous but not locally Lipschitz, and it is able to
converge in finite time. However, it is not able to converge to zero when a non
vanishing perturbation δ2 is present. When q> 1 the algorithm is smooth, but not
globally Lipschitz, and although it converges only asymptotically its convergence
time is uniform in the initial conditions. An algorithm combining both terms
(with q < 1 and q > 1) can be obtained in the same framework as the GSTO
(see [[23]]), and it combines both convergence properties. This is in the spirit of
the observers designed in a recursive manner by [[1]]. The GSTO is not recursive,
and it provides the whole set of all possible gains. The structure of the injection
terms is different, and so is also the Lyapunov function used for the proof. Finally,
the insensitivity properties of the GSTO when there is a persistent perturbation
δ2 cannot be achieved by these continuous algorithms.

(UD) The Uniform differentiator introduced in [[5]] is recovered when q = 3
2 .

(GSTA) For q = 1 the Generalized Super-Twisting Algorithm (GSTA) proposed
in [[21]] is obtained.

The design method in Theorem 12.1 resembles the standard procedure for High-
Gain observers (HGO) [[3, 11, 15]] in which a gain has to be designed high enough
to assure the convergence. The design method presented here differs from the one
that can be derived from [[23]] (and originally proposed in [[21]] for the case q = 1)
since in [[21, 23]] the design of the gains l1 and l2 requires the solution of a Riccatti
Algebraic Equation when there are perturbations. Here this is much simpler, since
only the gain γ has to be set large enough.

The value of the gain γ required to assure the convergence depends on the growth
conditions of the perturbation terms (12.11) and on the selected gains l1 and l2 (see
(12.17) for an expression of the gain γ0 and subsection 12.4.3). Instead of calculating
this gain explicitly, what can be a difficult task, it is possible to tune the observer by
increasing γ until its performance is acceptable. Note that increasing γ results also
in a smaller convergence time, as can be seen from the convergence time estimations
provided by (12.19) and (12.20). Moreover, the larger γ is selected the smaller will
be the effect of the perturbation δ1 on the estimation error (see subsection 12.4.5),
but the estimation error cannot be better than a certain minimal bound, depending
on the size of the perturbation δ1 (see equation 12.25). This is coherent with the
observability analysis for the system (see Section 12.1), that indicates that x2 can be
estimated at the best within an error of the size of the pertubation δ1. However, as
for HGO, a large gain γ can produce a large peaking in the initial transient of the
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observer, what is an undesirable effect (see subsection 12.4.2). Furthermore, in the
presence of measurement noise, a large gain γ will amplify the effect of noise in the
estimation error.

12.3 Simulation Example (Continued).

In order to illustrate some of the properties of the observer proposed in the previous
section, we will perform a simulation study using the example presented in subsec-
tion 12.1.2. In particular we want to show the effect of the two terms in the injection
nonlinearity φ1 (12.4) (and the corresponding ones in φ2 (12.5)), that are obtained
setting μ1 = 0 or μ2 = 0.

12.3.1 Super-Twisting Observer

In this subsection we design an observer, derived from the GSTO (12.3) by setting
μ2 = 0. One obtains the well-known Super-Twisting Algorithm (STA), that has been
proposed by Levant [[14]] as a differentiator and also for control in [[9, 13]]. In [[6]]
this algorithm has been used as an observer for mechanical systems, that correspond
to (12.1) without the known nonlinearities f1 and f2. The observer is given by (with
γ = 1)

˙̂x1 =−l1 |e1|
1
2 sign(e1)+ x̂2 ,

˙̂x2 =−l2 sign(e1) .

The effect of the discontinuous term in φ2 is twofold:

• Convergence in finite time to zero of the estimation error. This can be seen in
the simulation in Figure 12.8, where the unknown input is w = 0, and the same
initial conditions for plant and observer as in the linear case were used.

• More importantly: The convergence in finite time to zero error is kept despite of
a non vanishing unknown input w(t) = 0.9sin(0.2πt). This can be appreciated
in Figure 12.9. This is a distinguishing feature of this observer, and it is clearly
due to the discontinuity in φ2.

The Super-Twisting Observer (STO) has, however, some disadvantages:

1. The convergence time grows very fast (and unboundedly) with the size of the
initial estimation error. This can be observed in Figure 12.10, where the initial
condition of linear and ST Observers is x̂(0) = 500 [−2,−1], i.e. 500 times its
value for Figure 12.8. One notes here that the convergence time of the STO grows
faster than that for the Linear Observer.

2. When the bound of the perturbation δ2 is larger than the gain l2, then the STO
can diverge. It is not possible to assure the desirable property that a bounded
perturbation produces a bounded estimation error (see [[20,23]] for more details).
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3. The STO is not able to assure global convergence in the presence of known terms
f1 and/or f2 in the plant’s model (12.1).

The two last features are not illustrated in the simulations.
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Fig. 12.8 Estimation error for the Linear and the Super-Twisting Observers without unknown
input
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Fig. 12.9 Estimation error for the Linear and the Super-Twisting Observers with unknown
input

12.3.2 Generalized Super-Twisting Observers

All these drawbacks of the STO can be solved by the GSTO (12.3) proposed here.
For the simulation we have used the Generalized Super-Twisting Observer (GSTO)
(12.3) with q = 3

2 , μ1 = μ2 = 1 and γ = 1. Figures 12.11 and 12.12 illustrate two
features: i) The GSTO converges to zero in finite time, with or without unknown
input. ii) The convergence time is basically the same for very large initial estima-
tion error conditions. This nice feature of the GSTO is due to the introduction of a
nonlinear term with a power q larger than one.
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Fig. 12.10 Estimation error for the linear and the Super-Twisting Observer without UI with
large initial conditions
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Fig. 12.11 Estimation error for the Linear and the Generalized Super-Twisting Observers
without unknown input and large initial conditions, i.e. x̂ (0) = 10 [−2,−1]
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Fig. 12.12 Estimation error for the Linear and the Generalized Super-Twisting Observer with
UI with very large initial conditions, i.e. x̂ (0) = 500 [−2,−1]
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12.4 Proofs of the Main Results

In this section we provide the proofs of the results presented previously. In particu-
lar, we provide a proof for Theorem 12.1. We proceed in several steps.

12.4.1 The Convergence Proof Using a Quadratic Lyapunov
Function

In [[19–21, 23]] a quadratic Lyapunov function (LF), that is continuous but not Lip-
schitz continuous, has been introduced for the analysis of the convergence and ro-
bustness properties of Super-Twisting-like algorithms. This Lyapunov function is
quadratic not in the state vector, but in a vector

εT = ϕT (e) =
[
φ1 (e1) , e2

]
, (12.12)

where ϕ (e) is a homeomorphism (i.e. it is continuous and bijective, with a contin-
uous inverse). To take the derivative of the LF it is necessary to calculate the time
derivative of ε , that is given by (where it exists)

ε̇ = φ ′1 (e1)

[−l1γφ1 (e1)+ e2 +ρ1 (t, e)

−l2γ2φ1 (e1)+
ρ2(t,e)
φ ′1(e1)

]

= φ ′1 (e1){(A0 −ΓL0C0)ε+ ρ̃} ,

with

A0 =

[
0 1
0 0

]
, L0 =

[
l1
l2

]
,C0 =

[
1, 0

]
, Γ =

[
γ 0
0 γ2

]

and

ρ̃ (t, ε, ·) =
⎡

⎣
ρ1 (t, e, ·)(

2|e1|
1
2

μ1+2qμ2|e1|q−
1
2

)
ρ2 (t, e, ·)

⎤

⎦

e=ϕ−1(ε)

,

where we have used the error equation (12.6). Note that the characteristic polyno-
mial of the matrix (A0 −ΓL0C0) is

p(s) = det(sI− (A0 −ΓL0C0)) = s2 + γl1s+ γ2l2 = (s− γλ1) (s− γλ2)

where λ1, λ2 are the eigenvalues of the (Hurwitz) matrix Al = (A0 −L0C0), i.e ma-
trix (A0 −ΓL0C0) with γ = 1. This shows that the eigenvalues of (A0 −ΓL0C0) are
γλ1, γλ2, multiples of the eigenvalues of (A0 −L0C0).

Similar to the by now classical proof method for High-Gain Observer [[3,11,15]]
we introduce here a further change of variables

ξ = θΓ−1ε =

[
θ
γ ε1
θ
γ2 ε2

]

,
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where θ > 0 is an arbitrary positive constant, and we obtain (since Γ−1A0Γ = γA0

and C0Γ = γC0)

ξ̇ = θΓ−1φ ′1 (e1)

{
(A0 −ΓL0C0)

1
θ
Γ ξ + ρ̃

}
= φ ′1 (e1)

{
γ (A0 −L0C0)ξ +θΓ−1ρ̃

}
.

Using a quadratic Lyapunov function (see [[23]])

V (ξ ) = ξ T Pξ

where P = PT > 0 is the unique, symmetric and positive definite solution of the
Algebraic Lyapunov Equation

(A0 −L0C0)
T P+P(A0 −L0C0) =−Q,

for Q = QT > 0, an arbitrary positive definite and symmetric matrix. The derivative
of V along the solutions of the error equation (almost everywhere) is given by

V̇ = φ ′1 (e1)
{
γξ T

[
(A0 −L0C0)

T P+P(A0 −L0C0)
]
ξ + 2ξ T PθΓ−1ρ̃

}

= φ ′1 (e1)
{−γξ T Qξ + 2ξ T PθΓ−1ρ̃

}
(12.13)

≤ φ ′1 (e1)
{
−γλmin{Q}‖ξ‖2 + 2‖ξ‖‖P‖∥∥θΓ−1ρ̃

∥
∥
}

where λmin {Q} is the minimal eigenvalue of Q, ‖ξ‖ is the Euclidean norm of ξ and
‖P‖= λmax {P} is the induced (Euclidean) norm of matrix P. Recall that φ ′1 (e1)≥ 0
since φ1 (e1) is monotone increasing.

Here we will consider the case that δ1 = 0, and we will assume here that there
exist some constants k1, k2 such that the perturbation terms satisfy the following
restrictions

|ρ̃1 (t, e1)|= |ρ1 (t, e1)| ≤ k1 |φ1 (e1)|= k1

(
μ1 + μ2 |e1|q−

1
2

)
|e1|

1
2 (12.14)

and

|ρ̃2 (t, e)|=
(

2 |e1|
1
2

μ1 + 2qμ2 |e1|q−
1
2

)

|ρ2 (t, e)| ≤ k2
(
φ2

1 (e1)+ e2
2

) 1
2 . (12.15)

Below, in subsection 12.4.3, it will be proved that (12.14-12.15) follow from the
Property 12.1. Using the relations

γ
θ
ξ1 = ε1 = φ1 (e1) ,

γ2

θ
ξ2 = ε2 = e2. (12.16)
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we obtain the inequalities

∥
∥θΓ−1ρ̃

∥
∥2

=
θ 2

γ2 ρ̃
2
1 +

θ 2

γ4 ρ̃
2
2 ≤

(
θ 2

γ2 k2
1 +

θ 2

γ4 k2
2

)
φ2

1 (e1)+
θ 2

γ4 k2
2e2

2

=

(
k2

1 +
1
γ2 k2

2

)
ξ 2

1 + k2
2ξ

2
2 ≤ k2 ‖ξ‖2

for

k2 ≥ max

{
k2

1 +
1
γ2 k2

2, k2
2

}
.

This implies that

V̇ ≤−φ ′1 (e1)(γλmin {Q}− 2kλmax{P})‖ξ‖2

so that V̇ is negative definite for a sufficiently large gain γ , i.e. for

γ > γ0 � 2k
λmax{P}
λmin {Q} . (12.17)

This can always be achieved, since P and Q are independent of γ and k decreases
with γ .

Recall the standard inequality for quadratic forms

λmin {P}‖ξ‖2
2 ≤ ξ T Pξ ≤ λmax{P}‖ξ‖2

2 ,

where

‖ξ‖2
2 = ξ

2
1 + ξ 2

2 =
θ 2

γ2 φ
2
1 (e1)+

θ 2

γ4 e2
2

=
θ 2

γ2

(
μ2

1 |e1|+ 2μ1μ2 |e1|q+
1
2 + μ2

2 |e1|2q
)
+
θ 2

γ4 e2
2

is the Euclidean norm of ξ . Note that the inequality

|e1|
1
2 ≤ 1

μ1
|φ1 (e1)| ≤ γ

μ1θ
‖ξ‖ ≤ γ

μ1θλ
1
2

min{P}
V

1
2 (ξ ) (12.18)

is satisfied for μ1 > 0, and therefore

− 1

|e1|
1
2

≤− μ1θ
γ ‖ξ‖ ≤ −μ1θλ

1
2

min{P}
γ

V− 1
2 (ξ ) .

Since

φ ′1 (e1) =
1
2
μ1

1

|e1|
1
2

+ qμ2 |e1|q−1
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it follows that

V̇ ≤−(γλmin {Q}− 2k‖P‖)
(

1
2
μ1

1

|e1|
1
2

+ qμ2 |e1|q−1

)

‖ξ‖2

≤−
(
γ− 2k‖P‖

λmin{Q}
)
λmin{Q}

(
1
2
μ2

1
θ
γ
‖ξ‖+ qμ2 |e1|q−1‖ξ‖2

)

≤−μ2
1
θ (γ− γ0)λmin{Q}

2γλ
1
2

max {P}
V

1
2 (ξ )− μ2

q(γ− γ0)λmin{Q}
λmax {P} |e1|q−1 V (ξ ) ,

where we have used the definition of γ0 in (12.17), and therefore V (ξ (t)) is mono-
tonically decreasing, and the origin is asymptotically stable.

12.4.2 About the Convergence Velocity of the Error

From the differential inequality satisfied by the LF, it is possible to estimate the
convergence velocity of the state estimation errors. We will do this explicitly for
two (simple) cases.

12.4.2.1 The Case When μ1 �= 0 and q Is Arbitrary

From the differential inequality satisfied by the Lyapunov function it follows that

V̇ ≤−μ2
1
θ (γ− γ0)λmin {Q}

2γλ
1
2

max{P}
V

1
2 (ξ ) .

Since the solution of the differential equation

v̇ =−γ1v
1
2 , v(0) = v0 ≥ 0

is given by

v(t) =

(
v

1
2
0 − 1

2
γ1t

)2

if γ1 > 0 ,

it follows from the comparison principle that

V (t)≤
⎛

⎝V
1
2 (ξ0)− 1

2
μ2

1
θ (γ− γ0)λmin {Q}

2γλ
1
2

max{P}
t

⎞

⎠

2

,

before the finite convergence time. This implies that

λmin {P}‖ξ (t)‖2 ≤ ξ T (t)Pξ (t)≤
⎛

⎝(ξ T
0 Pξ0

) 1
2 − 1

2
μ2

1
θ (γ− γ0)λmin{Q}

2γλ
1
2

max {P}
t

⎞

⎠

2

,
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and therefore

‖ξ (t)‖ ≤ 1

λ
1
2

min {P}
(
ξ T

0 Pξ0
) 1

2 − 1
2
μ2

1
θ (γ− γ0)λmin{Q}

2γλ
1
2

min{P}λ
1
2

max {P}
t .

In original coordinates (see (12.16)), and noting that (for γ ≥ 1)

θ
γ2 ‖ε (t)‖ ≤

∥
∥
∥
∥
∥

[
θ
γ φ1 (e1 (t))
θ
γ2 e2 (t)

]∥∥
∥
∥
∥
= ‖ξ (t)‖ ≤ θ

γ
‖ε (t)‖ ,

one obtains that

‖ε (t)‖ ≤ cPγ ‖ε0‖− μ2
1
γ (γ− γ0)λmin {Q}
4λ

1
2

min{P}λ
1
2

max{P}
t , cP =

√
λmax {P}
λmin {P} ,

where cP is the condition number of matrix P. The finite convergence time can be
estimated by

T (ε0)≤ 4λmax{P}
μ2

1 (γ− γ0)λmin {Q} ‖ε0‖ . (12.19)

We notice that the convergence time can be made as small as desired by increasing
the gain γ . However, the initial deviation term, given by cPγ grows also with the
gain γ . This corresponds to the peaking phenomenon, well-known for High-Gain
Observers [[15]].

12.4.2.2 The Case When μ1 �= 0 and q = 1

The Lyapunov function satisfies the differential inequality

V̇ ≤−μ2
1
θ (γ− γ0)λmin{Q}

2γλ
1
2

max {P}
V

1
2 (ξ )− μ2

(γ− γ0)λmin {Q}
λmax {P} V (ξ ) .

From the solution of the Differential Equation (See e.g. [[23]])

v̇ =−γ1v
1
2 − γ2v , v(0) = v0 ≥ 0,

given by

v
1
2 (t) = exp

(
−1

2
γ2t

)
v

1
2
0 − γ1

γ2
exp

(
−1

2
γ2t

)[
exp

(
1
2
γ2t

)
− 1

]
,

and the comparison principle [[15]] it follows that

V
1
2 (ξ (t))≤ exp

(
−1

2
γ2t

)[
V

1
2 (ξ0)+

γ1
γ2

]
− γ1
γ2

,
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or

V
1
2 (ξ (t))≤ exp

(
−1

2
μ2

(γ− γ0)λmin {Q}
λmax {P} t

)
⎡

⎣V
1
2 (ξ0)+

μ2
1θλ

1
2

max {P}
2μ2γ

⎤

⎦− μ2
1θλ

1
2

max {P}
2μ2γ

.

This implies that

‖ξ (t)‖ ≤ cP

{
exp

(
−1

2
μ2

(γ− γ0)λmin{Q}
λmax{P} t

)[
‖ξ0‖+ μ2

1θ
2μ2γ

]
− μ2

1θ
2μ2γ

}
.

In original coordinates (see (12.16)) results (for γ ≥ 1)

‖ε (t)‖ ≤ γcP

{
exp

(
−1

2
μ2

(γ− γ0)λmin {Q}
λmax {P} t

)[
‖ε0‖+ μ2

1

2μ2

]
− μ2

1

2μ2

}
.

When μ1 > 0 the Finite Convergence time can be estimated as

T (ε0)≤ 2λmax{P}
μ2 (γ− γ0)λmin{Q} ln

(
2μ2

μ2
1

‖ε0‖+ 1

)
. (12.20)

It is clear that this time can be made arbitrarily small by selecting a gain γ suffi-
ciently large. However, the initial bound (for t = 0), given by

‖ε (0)‖ ≤ γ λ
1
2

max {P}
λ

1
2

min {P}
‖ε0‖ ,

also grows with the gain γ , which corresponds to the Peaking Phenomenon.

12.4.3 About the Restrictions on the Perturbations

Here we show that (12.14-12.15) follow from the Property 12.1. To show (12.14) it
suffices to consider the case

|ρ1| ≤ β0 |e1|s , 1
2
≤ s ≤ q.

It is clear that there exists a constant k1 such that

|ρ̃1 (t, e1)|= |ρ1 (t, e1)| ≤ k1 |φ1 (e1)|= k1

(
μ1 + μ2 |e1|q−

1
2

)
|e1|

1
2 .

To show (12.15) suppose that

|ρ2| ≤ α0 +α1 |e1|r +α2 |e2| , 0 ≤ r ≤ 2q− 1, q ≥ 1 .

We will show that there exists a constant k2 > 0 such that
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|ρ̃2| ≤
(

2 |e1|
1
2

μ1 + 2qμ2 |e1|q−
1
2

)

(α0 +α1 |e1|r +α2 |e2|)≤ k2
(
φ2

1 (e1)+ e2
2

) 1
2 .

(12.21)

It is clear that the previous inequality follows if the following three are satisfied:

(
2 |e1|

1
2

μ1 + 2qμ2 |e1|q−
1
2

)

α0 ≤ k21
(
φ2

1 (e1)+ e2
2

) 1
2 (12.22)

(
2 |e1|

1
2

μ1 + 2qμ2 |e1|q−
1
2

)

α1 |e1|r ≤ k22
(
φ2

1 (e1)+ e2
2

) 1
2 (12.23)

(
2 |e1|

1
2

μ1 + 2qμ2 |e1|q−
1
2

)

α2 |e2| ≤ k23
(
φ2

1 (e1)+ e2
2

) 1
2 . (12.24)

The inequality (12.22) is equivalent to inequality (12.23) for r = 0. So we prove
(12.23), which is equivalent to

4α2
1 |e1|2r+1 ≤ k2

22

(
μ1 + 2qμ2 |e1|q−

1
2

)2 (
φ2

1 (e1)+ e2
2

)
.

Extracting the two terms with the highest and the lowest power of e1 in the right
hand side of the previous inequality one obtains that

k2
22

(
μ4

1 |e1|+ 4q2μ4
2 |e1|4q−1

)
≤ k2

22

(
μ1 + 2qμ2 |e1|q−

1
2

)2 (
φ2

1 (e1)+ e2
2

)
,

and therefore (12.23) follows if

4α2
1 |e1|2r+1 ≤ k2

22

(
μ4

1 |e1|+ 4q2μ4
2 |e1|4q−1

)
.

Clearly there exists a constant k22 if 1 ≤ 2r+ 1 ≤ 4q− 1, or equivalently if 0 ≤ r
and r ≤ 2q− 1. So both (12.23) and (12.22) are satisfied.

Now we show that (12.24) is fulfilled. It follows from the simple observation that
for q ≥ 1 the function 1/φ ′1(e1) is bounded by a constant, i.e.

2 |e1|
1
2

μ1 + 2qμ2 |e1|q−
1
2

≤ M .

We can conclude that (12.21) is satisfied.

12.4.4 On the Convergence Uniform in the Initial Conditions

When q > 1 it is affirmed in the Theorem 12.1 that there is a constant value T > 0
so that all the trajectories will converge to zero within a time lesser than T , i.e. for
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every initial condition. The previous paragraphs show that this property does not
follow from the quadratic Lyapunov function, which is a well-known fact, as it is
discussed in detail in [[23]]. In that reference a non-quadratic LF has been proposed
to show the uniformity in the initial conditions property. A similar procedure can
be used in our case, but the details are too long to be presented here. We refer the
reader to references [[5, 23]] for those details.

12.4.5 The Effect of a Non Vanishing Perturbation δ1

So far we have considered only the case when the perturbation δ1 = 0. If we take
into account this term in the derivative of the LF (see (12.13)) we obtain

V̇ = φ ′1 (e1)

{
−γξ T Qξ + 2ξ T PθΓ−1

(
ρ̃0 +

[−1
0

]
δ1

)}

≤ φ ′1 (e1)

{
−γλmin{Q}‖ξ‖2 + 2‖ξ‖‖P‖

(∥
∥θΓ−1ρ̃0

∥
∥+

θ
γ
|δ1|

)}

≤−φ ′1 (e1)

{
(γ− γ0)λmin {Q}‖ξ‖− 2λmax{P} θ

γ
|δ1|

}
‖ξ‖

where ρ̃0 represents ρ̃ without the term δ1, and we have assumed that ρ̃0 satisfies
Property 12.1. If the gain γ is set larger than the corresponding γ0 in (12.17) it is
clear that V̇ < 0 outside a ball containing the origin, i.e. for

‖ξ‖> 2λmax{P}θ |δ1|
γ (γ− γ0)λmin{Q} .

Using standard arguments [[15]] it follows that the trajectories are ultimately uni-
formly bounded, if δ1 is bounded. Moreover, in original coordinates

‖ε (t)‖> 2λmax{P}
λmin {Q}

γ
(γ− γ0) |δ1| , (12.25)

which implies that the final bound has an infimum value that can be approached the
larger the gain γ is selected. A similar proof (see also [[23]]) can be used to show
the boundedness of the estimation error when the perturbation δ2 is bounded, but its
bound is larger than the one used to set the gain γ , or when there is measurement
noise.

12.5 Conclusions

We have presented in this chapter a unified method to design a class of discontinuous
observers for second order systems. It generalizes and improves several other known
methods, as for example the High-Gain Observer, the Super-Twisting Observer and
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the Uniform Differentiator, enhancing their properties. We have restricted the treat-
ment to the two dimensional case for two reasons: i) We present all proofs in a
unified Lyapunov framework, which is at the moment only available for planar sys-
tems. ii) We provide a tutorial presentation that allows an easy introduction to the
topic and also presents the main results in the simplest case.

Much work is still necessary to complete the program. In particular a discus-
sion of the effect of measurement noise is crucial for estimation, that has not been
included here. It is clear that increasing the gain γ will improve the performance
of the observer with respect to convergence velocity and reduction of the effect of
the perturbations (unknown input), but it will also increase the effect of noise, and
viceversa. So a clear trade-off between estimation error due to noise and to per-
turbations/unknown inputs is to be considered. For High-Gain Observers (used as
differentiators) this has been done recently in [[26]], where a method to optimize the
gain γ has been presented. For the GSTO there are some preliminary results [[2]].

It is also clear that the extension of the results for higher order systems is an
important step, that is part of ongoing research. Applications of the observers are
manifold. In [[22]] they are applied for a class of chemical reactors, output feedback
control is presented in a Lyapunov framework in [[24]]. We hope to be able to provide
a similar treatment of the general case in the near future.
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