
Chapter 10
Design of Sliding Mode Controller
with Actuator Saturation

Deepak Fulwani and Bijnan Bandyopadhyay

Abstract. This chapter discusses two methods of designing a sliding surface in the
face of an actuator saturation constraint for a class of nonlinear uncertain systems.
The first approach uses an ARE based approach to design the sliding surface and
the second approach uses the parametric Lyapunov equation to design the surface.
These methods are based on the low gain approach proposed by Lin et al. The de-
sign methods give a surface matrix as a function of the designed parameter. This
parameter can be modulated to reduce the control amplitude which ensures that the
control limits are respected in a region of the state space. This region can be made
sufficiently large by choosing appropriate values of the design parameter.

10.1 Introduction

Beginning in the late 1970s and continuing today, sliding mode control has received
plenty of attention due to its insensitivity to disturbances and parameter variations.
The well known sliding mode control is a particular type of Variable Structure
Control System (VSCS). Recently many successful practical applications of sliding
mode control (SMC) have established the importance of sliding mode theory which
has mainly been developed in the last three decades. This fact is also witnessed by
many special issues of leading journals focusing on sliding mode control [[2,4]]. The
research in this field was initiated by Emel’yanov and his colleagues [[6, 7]], and the
design paradigm now forms a mature and an established approach for robust con-
trol and estimation. The idea of sliding mode control (SMC) was not known to the
control community at large until an article published by Utkin [[16]] and a book by
Itkis [[11]].
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SMC is an established method to deal with uncertainty- inevitable in most prac-
tical systems. However, for any practical systems, the input is always limited in
magnitude. Therefore it is necessary to consider this limitation a priori while de-
signing the SMC. Design of a first order sliding mode is done in two steps viz.
design of a stable sliding surface and a control law which produces a sliding mode
in finite time. To ensure that the actuator does not saturate for a given set of ini-
tial conditions, the sliding surface (switching function) design should incorporate
this limitation. Some authors have contributed in this regard, Corradini and Or-
lando [[5]] proposed a nonlinear surface to handle actuator saturation. Bartoszewicz
and Nowacka [[3]] proposed an optimal sliding surface to handle input constraints.
Ferrara and Rubagotti [[8]] proposed an effective algorithm to handle saturation in
the higher order sliding mode framework.

In this chapter, we present two methods to design a sliding surface by which
the control magnitude can be made arbitrarily small by choosing an appropriate
surface matrix. Our method is based on the low gain approach proposed in [[12–14,
18]]. To enforce sliding motion, the required control input has two components, one
linear and the other, discontinuous (for first order sliding mode). The discontinuous
component is decided by the maximum amplitude of uncertainty therefore it does
not provide any flexibility to reduce the control input to avoid actuator saturation.
The linear component (linearly) depends on the sliding function matrix; flexibility
to design the sliding surface matrix can be explored to avoid actuator saturation. We
present two methods, based on the low gain approach as mentioned earlier, to design
the surface. In the first method, the sliding surface matrix is parameterized by the
parameter ε and in the second method, it is parameterized by γ . These parameters
can be altered to reduce the control amplitude. The rest of the chapter is organized
as follows. The work presented in this chapter is based on our work in [[9]]

Section 10.2 discusses the system description and problem statement. The sur-
face design is discussed in Section 10.3. The effect of actuator saturation is dis-
cussed in Section 10.4. Section 10.5 discusses another method to design the sliding
surface based on a parameterized Lyapunov equation. To verify the design method-
ology a numerical example is simulated in Section 10.6 followed by concluding
Section 10.7.

10.2 System Description and Problem Statement

Consider the following class of nonlinear uncertain systems

ẋ1 = x2

ẋ2 = x3

: (10.1)

ẋn = f (x, t)+ b2sat(u(t))

The function f (x, t) satisfies the classical condition for the existence and uniqueness.
sat(u(t)) is a saturation function and is defined as follows
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sat(u(t)) = sign(u(t))×min(umax, |u|)

In the above equation, umax is the maximum value of u(t). We make the following
assumptions for the above system:

Assumption 1. b2 is a non-zero scalar.
Assumption 2. Uncertain nonlinear function f (x, t) satisfies

‖ f (x, t)‖ ≤ R1‖x‖+R2 ∀x× t ∈ Rn ×R here R1 and R2 are positive constants.
Assumption 3. In a region Σ in the state space, there exists a constant Q such

that ∀x ∈ Σ , Q ≥ R1‖x‖+R2 +β where β > 0 is a small positive constant
which satisfies

∀x ∈ Σ , Q ≤ δumax (10.2)

where 0 < δ < 1.

Assumption 3 ensures that the maximum amplitude of disturbance/uncertainty is
smaller than the available control amplitude ∀x ∈ Σ . This assumption is necessary
to enforce sliding mode.

Let the switching function for the above system be

s := cT (ε)x(t) (10.3)

Here ε is a design parameter which will be discussed later. Control input to ensure
sliding mode (s = 0) in finite time can be defined as

u(t) :=−(c(ε)T B)−1{cT (ε)Ax+Qsgn(s)} (10.4)

It should be noted that the region Σ in the state space is the region where stability
with saturated actuator is ensured. Furthermore, we define the following matrices:

B :=

⎡

⎢
⎢
⎣

0
0
0
b2

⎤

⎥
⎥
⎦, A :=

⎡

⎢
⎢
⎣

0 1 0 ·· 0
0 0 1 ·· 0
: : : ·· :
0 0 0 0

⎤

⎥
⎥
⎦

The objective is to design a sliding surface matrix c(ε)T such that ∀x∈Σ , the control
law (10.4) respects the saturation limit and resulting closed loop system remains
stable.

10.3 Design of Switching Function

Consider the following representation of the system defined in (10.1)

ż1 = A11z1 +A12z2 (10.5a)

ż2 = A21z1 +A22z2 + f (x, t)+ b2u(t) (10.5b)
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Here
z1 := [x1 x2 ... xn−1]

T

z2 := xn

A11 =

[
0 In−2

0 0

]
, A12 =

⎡

⎢
⎢
⎢
⎣

0
0
...
1

⎤

⎥
⎥
⎥
⎦
, A21 = [0, · · · ,0], A22 = 0.

It is convenient to design the switching function in z− coordinates. The switching
function in z− coordinates is defined as

s := cT (ε)x :=
[

c1(ε) 1
]
[

z1

z2

]
(10.6)

Here c1(ε) ∈ R1×(n−1) is to be designed.

Design of c1(ε)
The control law (10.4) ensures that sliding mode s = 0 occurs in finite time. This
leads to

c1(ε)z1 + z2 = 0

⇒ z2 =−c1(ε)z1 (10.7)

Using (10.5a) and (10.7)

ż1 = (A11 −A12c1(ε))z1 (10.8)

c1(ε) should be designed such that the above closed loop system remains stable.
c1(ε) is defined as follows

c1(ε) := AT
12P1(ε) (10.9)

P1(ε)> 0 is a symmetric matrix and obtained by solving the ARE

AT
11P1(ε)+P1(ε)A11 −P1(ε)A12AT

12P1(ε)+Q1(ε) = 0 (10.10)

Q1(ε) can be chosen as Q1(ε) = εI as proposed in low gain design approach [[13,
14]].

Theorem 10.1. For some ε ∈ (0,1] there exists a P1(ε) which solves ARE in (10.10)
and it satisfies

lim
ε→0

c1(ε) = 0.

Proof. The ARE in (10.10) is the result of minimization of the following cost func-
tion

J(x,u) =
1
2

∫ ∞

0
[εz1(t)

T z1(t)+ zT
2 (t)z2(t)]dt (10.11)
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This is a standard LQR problem and the existence of a unique positive definite P1(ε)
for ∀ε > 0 was proved by Willems (1971) [[17]] for LTI system of the form

ẋ(t) = Ax(t)+Bu(t)

The pair (A,B) should be stabilizable. Replacing A by A11 and B by A12, the exis-
tence of P1(ε) can be proved in a similar way as it is proved in Willems (1971) [[17]].
The continuity of solution i.e. P1(ε)→ 0 as ε→ 0 was proved in [[15]]. Using (10.9)
it is straightforward to infer lim

ε→0
c1(ε) = 0.

Remark 10.1. With this condition ( lim
ε→0

c1(ε) = 0), we can find some ε to ensure

arbitrarily small norm of c1(ε).
We need to find a region Σ such that ∀x ∈ Σ implies | u |≤ umax. Define

c1(ε) := AT
12P1(ε) :=

[
c̄1(ε) c̄2(ε) ·· c̄n−1(ε)

]
(10.12)

Here c̄i(ε), i = 1 · · · (n− 1) are constants which depend on ε , moreover, lim
ε→0

ci(ε)
= 0.

Remark 10.2. It should be noted that all eigenvalues of A11 are at origin. Any
nonzero ε ∈ (0,1] ensures that closed loop system (10.8) is stable which also
ensures stability of sliding surface.

10.4 Effect of Actuator Saturation

For most of the physically realizable systems, the actuator capacity (amplitude) is
limited. This requires that for a given set of initial conditions, the control should
respects its boundaries. Consider the control law (10.4)

u(t) = −(b2)
−1{c(ε)T Ax+Qsgn(s)}

= −(b2)
−1 [ c̄1(ε) c̄2(ε) ·· c̄n−1(ε) 1

]×
⎡

⎢
⎢
⎣

0 1 0 ·· 0
0 0 1 ·· 0
: : : ·· :
0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

:
xn

⎤

⎥
⎥
⎦− (b2)

−1Qsgn(s)

= −(b2)
−1 [ c̄1(ε) c̄2(ε) ·· c̄n−1(ε)

]

⎡

⎢⎢
⎣

x2

x3

:
xn

⎤

⎥⎥
⎦

−(b2)
−1Qsgn(s)

= −(b2)
−1c1(ε)x̄− (b2)

−1Qsgn(s) (10.13)
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Where x̄ =

⎡

⎢
⎢
⎣

x2

x3

:
xn

⎤

⎥
⎥
⎦

The control law in (10.13) has two parts linear and nonlinear. The nonlinear com-
ponent of the control law is decided by the maximum value of uncertainty. However,
norm of linear component c1(ε) can be made arbitrarily small by choosing a small
value of ε which allows to reduce the contribution of linear component to the re-
quired proportion. Considering the equation (10.2), the linear part of the control law
(10.13) is limited by

|(b2)
−1c(ε)T x̄| ≤ (1− δ )umax (10.14)

Suppose Σ is the region in state space, such that x̄ ∈ Σ implies | u |≤ (1− δ )umax.
This region can be obtained as follows [[10]].

Find
g := Max x̄T P1(ε)x̄ ⇒ |(b2)

−1cT (ε)x̄| ≤ (1− δ )umax (10.15)

This actually has an analytic solution which can be obtained using [[10]].

g =
(1− δ )2u2

max

(b2)−1c(ε)T P1(ε)−1c(ε)(b2)−1

=
b2

2(1− δ )2u2
max

AT
12P1(ε)A12

(10.16)

Remark 10.3. We need only initial condition of x̄ ∈ Σ to respect saturation limits.
Recall that x̄ = [x2 x3 · · · xn]

T , this implies that the state x1 can take any value
without affecting the control input. Therefore initial condition of state x1 does not
influence control much. This is verified through simulation example.

Remark 10.4. It is desirable that the region Σ should include all possible initial
conditions. This region can be made arbitrarily large by choosing sufficiently small
value of ε . Consider (10.16), as it is discussed earlier, lim

ε→0
P1(ε) = 0 therefore a

small value of ε results in a large value of parameter ’g’ and thus region Σ also
becomes large.

Remark 10.5. Using control law (10.13), existence of sliding mode can be easily
proved using (10.2) in the region Σ .

10.5 Parametric Lyapunov Based Approach to Design
Switching Function

In this section, we will study another method to design switching function. This
method is based on low gain approach proposed in [[18]]. Consider the minimization
of cost function for the system defined in (10.5)
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J1(z(t)) =
∫ ∞

0
eγ t(zT

1 Mz1 + zT
2 Nz2)dt (10.17)

where M = ET E ≥ 0, N > 0 and γ is a positive scalar. Using [[18]], we have the
following proposition

Proposition 10.1. Consider the system equation (10.5a) and the cost function
(10.17). Assuming pair (A11, E) is detectable and the pair (A11, A12) stabilizable.
Stabilizability of pair (A,B) ensures the stabilizability of pair (A11, A12). With this
assumptions, the value of z2 which minimizes the cost function J1(z(t)) in (10.17)

z∗2 =−N−1AT
12P2(γ)z1(t) (10.18)

P2(γ) is the unique positive-definite solution of the following ARE

(A11 +
γ
2

I)T P2(γ)+P2(γ)(A11 +
γ
2

I)−P2(γ)A12N−1AT
12P2(γ) =−M (10.19)

Closed loop system (10.5) and (10.18) is exponentially stable with convergence rate
faster than e−γ/2 t .
With M = 0, (10.19) becomes

AT
11P2(γ)+P2(γ)A11 −P2(γ)A12N−1AT

12P2(γ) =−γ P2(γ) (10.20)

and corresponding cost function becomes

J1(z2) =

∫ ∞

0
eγ t zT

2 Nz2dt (10.21)

It should be noted that during the sliding mode, the state z2 behaves as an ’input’ to
the system and with the above cost function we are not penalizing z1. However, the
convergence rate is controlled by the parameter γ .

The ARE (10.20) has a unique positive definite solution

P2(γ) =W−1
2 (γ) (10.22)

W2 > 0 is obtained by solving the following Lyapunov equation

W2(A11 +
γ
2

I)T +(A11 +
γ
2

I)W2 = A12N−1AT
12 (10.23)

the above equation can be easily obtained by rearranging (10.20).
z2 which minimizes (10.21)

z2 =−N−1AT
12P2(γ)z1(t) (10.24)

By using (10.24), sliding surface matrix can be obtained as

cT (γ) =
[

N−1AT
12P2(γ) 1

]
(10.25)
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During the sliding mode s = 0, and the resulting closed loop system becomes

ż1 = (A11 −A12N−1AT
12P2(γ))z1 (10.26)

To prove stability of sliding surface, we need to prove stability of the above closed
loop system for γ > 0.

Theorem 10.2. All the eigenvalues of the closed loop system in (10.26) have nega-
tive real parts, thus the system is stable.

Proof. Consider (10.20)

AT
11P2(γ)+P2(γ)A11 −P2(γ)A12N−1AT

12P2(γ) =−γ P2(γ)
⇒ P−1

2 (γ)AT
11P2(γ)+A11 −A12N−1AT

12P2(γ) =−γ I

⇒ A11 −A12N−1AT
12P2(γ) = P−1

2 (γ)(−AT
11 − γ I)P2(γ)

It is clear from the above equation that the matrices A11 − A12N−1AT
12P2(γ) and

−AT
11−γ I are similar matrices and so have the same eigenvalues. It should be noted

that all n−1 eigenvalues of A11 are located at the origin. Any nonzero positive value
of γ ensures that eigenvalues of −AT

11− γ I have negative real part and thus stability
of sliding surface is proved.

Remark 10.6. When eigenvalues of A11 are located anywhere in the s-plane, the
scalar γ should be selected such that [[1, 18]]

γ >−2min{Re(λ (A11))} (10.27)

where Re(λ (A11)) denotes real part of eigenvalue of A11.

Remark 10.7. The matrix P2(γ) is differentiable and monotonically increasing with
respect to γ , [[1, 18]]

dP2(γ)
dγ

> 0 (10.28)

By choosing appropriate value of γ , norm of matrix P2(γ) can be chosen sufficiently
small and, as we discussed in the previous section, we can limit linear part of the
control. This property is needed to prove existence of sliding mode with saturated
actuator in a region of state space.

With this method we can use parameter γ in a similar way as we used the parameter
ε with the ARE based method. However, it should be noted that ε ∈ (0,1] while γ
can be any positive value for the given system.

10.6 Simulation Studies

In this section, we will simulate a fourth order nonlinear uncertain system. We will
design surface only by one method i.e. ARE based method. The following parame-
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Fig. 10.1 Plot of states for Case-I
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Fig. 10.2 Input for Case-I

ters are taken for the system in (10.1) f (x, t) = 0.4sint(t), b2 = 2, umax = 2.5. The
maximum value of f (x, t) is 0.4, therefore parameter Q in control law is chosen as
Q = 0.5 which satisfies (10.2). Linear part of the control depends on sliding surface
matrix c(ε)T . Linear part of the control can be reduced by choosing appropriate
value of ε . The maximum possible value of linear part becomes 2. We design and
simulate the system with two different values of ε parameter.

Case I. ε = 0.9
Solving ARE in (10.10) gives

P1 =

⎡

⎣
2.1969 2.2312 0.9487
2.2312 4.4975 2.3157
0.9487 2.3157 2.3519

⎤

⎦ (10.29)
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Fig. 10.3 Plot of switching function for Case-I
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Fig. 10.4 Input for Case-II

Thus surface matrix becomes

cT (ε) =
[

0.9487 2.3157 2.3519 1.0000
]

(10.30)

With initial condition x(0) =
[

1 0.5 1 0.5
]T

the system is simulated with Runge-
Kutta 4th order algorithm with maximum sampling time 0.001 sec. Fig. 10.2 shows
input. Fig 10.1 shows evolution of states and Fig. 10.3 shows evolution of switching
function with time. It is evident that system is stable and sliding mode establishes at
t = 10sec. and thereafter system remains in sliding mode.
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Fig. 10.5 Plot of states for Case-II
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Fig. 10.6 Plot of switching function for Case-II

Case II. ε = 0.2

By proceeding in a similar way as we did in Case I, we obtain

P1 =

⎡

⎣
0.5828 0.7492 0.4472
0.7492 1.7360 1.3032
0.4472 1.3032 1.6752

⎤

⎦ (10.31)

Thus surface matrix becomes

cT (ε) =
[

0.4472 1.3032 1.6752 1.0000
]

(10.32)
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Fig. 10.7 Input for Case-III

The system is simulated using the same numerical algorithm as in Case I. Fig. 10.4
shows control input with ε = 0.2 and comparing it with Fig. 10.2 verifies that con-
trol input reduces as ε is reduced. Figs. 10.5, 10.6 show the states and the evolution
of the switching function respectively.

Case III
The value of initial condition of x1 state is increased by 10 fold and by keeping
the same value of ε = 0.2. This case is simulated with initial condition x(0) =[

10 0.5 1 0.5
]T

Fig. 10.7 shows the control input plot and comparing it with Fig.
10.4 it is evident that influence of x1 on thecontrol input is negligible which agrees
with the discussion in Remark 2.

10.7 Conclusion

The sliding surface design to handle actuator saturation has been presented for a
class of nonlinear system. The control amplitude can be controlled by a parameter
ε . It has been observed that the control amplitude is not affected significantly by the
value of the state x1. Simulation studies verify the theoretical claims.
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