

Á. Rocha et al. (Eds.): Advances in Information Systems and Technologies, AISC 206, pp. 643–654.
DOI: 10.1007/978-3-642-36981-0_59 © Springer-Verlag Berlin Heidelberg 2013

High-Level Language to Build Poker Agents

Luís Paulo Reis1,3, Pedro Mendes2, Luís Filipe Teófilo1,2,
and Henrique Lopes Cardoso1,2

1 LIACC – Artificial Intelligence and Computer Science Lab., University of Porto, Portugal
2 FEUP – Faculty of Engineering, University of Porto – DEI, Portugal

3 EEUM – School of Engineering, University of Minho – DSI, Portugal
lpreis@dsi.uminho.pt, {ei01108,luis.teofilo,hlc}@fe.up.pt

Abstract. On the last decade Poker has been one of the most interesting
subjects for artificial intelligence, because it is a game that requires game
playing agents to deal with an incomplete information and stochastic scenario.
The development of Poker agents has seen significant advances but it is still
hard to evaluate agents’ performance against human players. This is either
because it is illicit to use agents in online games, or because human players
cannot create agents that play like themselves due to lack of knowledge on
computer science and/or AI. The purpose of this work is to fill the gap between
poker players and AI in Poker by allowing players without programming skills
to build their own agents. To meet this goal, a high-level language of poker
concepts – PokerLang – was created, whose structure is easy to read and
interpret for domain experts. This language allows for the quick definition of an
agent strategy. A graphical application was also created to support the writing
of PokerLang strategies. To validate this approach, some Poker players created
their agents using the graphical application. Results validated the usability of
the application and the language that supports it. Moreover, the created agents
showed very good results against agents developed by other experts.

Keywords: Knowledge Representation, Decision Support Systems, Artificial
Intelligence, Computer Games, Poker.

1 Introduction

Poker is the most popular betting game in the world. Played by millions around the
world, poker has become a very profitable business. Given its growing popularity and
the amounts of money involved (millions of dollars), Poker became a research subject
in very different areas such as Mathematics, Artificial Intelligence and Sociology,
among others. Key features such as incomplete knowledge, risk management, need
for opponent modeling and dealing with unreliable information, have turned Poker
into an important topic in Computer Science, especially for artificial intelligence.

Since the number of online Poker players still continues to grow, a large number of
tools have been created to assist players in their game. Most tools are statistics-based
programs that save information about the played games, creating statistical knowledge
about opponents in order to help the user to make the right decision in future games.

644 L.P. Reis et al.

The main goal of this work is to provide a tool capable of creating Poker Agents,
through the definition of high level rules. This way, anyone with interest and
knowledge about Poker can easily create a Poker agent, even without any computer
programming skills. This work has been divided into the following sub goals:

• Create a language of concepts, which includes the main ideas behind poker moves
and agent behavior.

• Build a graphical user interface for this language, which allows the user to create
rules in a more simple way.

• Develop a Poker agent that follows the language specification.
• Evaluate the interface usability and the performance of the developed agent.

The rest of the paper is as follows. Section 2 presents recent methods to create Poker
agents and information representation in Poker. Section 3 presents the specification
for PokerLang. Section 4 presents a graphical application that was built to aid the
creation of PokerLang files. Section 5 describes the agent that was built to follow
PokerLang strategies. Section 6 presents some experiments and results. Finally,
section 7 concludes and points directions for future research.

2 Related Work

First approaches to build Poker agents were rule-based, which involves specifying the
action that should be taken for a given information set [1]. The next approaches were
based on simulation techniques like [2], i.e. generating game random instances in
order to obtain a statistical average and decide the action. These approaches led to the
creation of agents that were able to defeat weak human opponents.

The great breakthrough in Computer Poker research was the discovery of the
Counter Factual Regret Minimization Algorithm (CFR) in [3]. The CFR algorithm
allows for the computation of a Nash Equilibrium strategy in large games such as
Poker through self-play1. This could be done before through linear programming
methods (e.g. Simplex) but CFR is much faster because the processing time is
proportional to the number of information sets instead of to the number of game states
(about 6 orders of magnitude less). Several approaches based on CFR, like Restricted
Nash Response [4] and Data-biased response [5] backed up the first victories against
Poker experts.

Other recent methodologies were based on pattern matching [6, 7], Monte Carlo
Search Tree algorithm [8], reinforcement learning [9] and case based reasoning [10].
More recent works are described in the reviews [11, 12].

Another possible approach consists on the defining of the agent’s strategy through
a high level specification language. One example is the Poker Programming
Language (PPL) [13], which is the most similar work to the one described in this
paper. The main issue about PPL is that it only considers low level features of Poker
which means that it takes a long time to specify a complete strategy. Moreover, the

1 Self-play – an agent playing against itself or against an agent with an equal strategy.

 High-Level Language to Build Poker Agents 645

absence of advanced game concepts (such as pot odds, implied odds and others)
makes it only possible to create very basic and static strategies which are easily
beaten by a medium level opponent.

3 PokerLang

Due to its stochastic nature, Poker players use rather different tactics in each game
situation. A tactic is used under certain conditions that are represented by specific
game features such as current stack, number of opponents, position at the table and
others. A set of tactics compose the player’s strategy. In order to specify these
concepts and determine when to use each tactic, a high-level language was created –
PokerLang – whose syntax and grammar was based on COACH UNILANG [14, 15]
and similar languages [15–17]. COACH UNILANG was successfully used in the
robotics soccer domain [18–21]. The generic approach of this language allows for its
easy adaption to other domains.

The language root starts by defining the concept of strategy: a strategy is a set of
tuples which one composed by a tactic and an activation condition for that tactic.
Each activation condition corresponds to a set of verifications of the visible game
features (through evaluators) or predictions about uncertain information (through
predictors). The activation condition consists of comparing those features with
parameterized values. The tactic is the procedure followed by the player when the
activation condition is met. The tactic could be either user-defined or language
predefined (based on common expert tactics). A top level specification of the
language can be found below. In the following subsections, each language concept
will be presented in depth.

<STRATEGY>::= {<ACTIVATION_CONDITION> <TACTIC>}

<ACTIVATION_CONDITION>::= {<EVALUATOR>}

<TACTIC>::= <PREDEFINED_TACTIC>|<TACTIC_NAME><TACTIC_DEFINITION>

<PREDEFINED_TACTIC>::= loose_agressive | loose_passive |

 tight_agressive | tight_passive

<TACTIC_NAME>::= [string]

<TACTIC_DEFINITION>::= {<BEHAVIOUR> <VALUE>}

<BEHAVIOUR>::= {<RULE>}

<RULE>::= {<EVALUATOR> | <PREDICTOR>} <ACTION>

<ACTION>::= {<PREDEFINED_ACTION><PERC> | <DEFINED_ACTION><PERC>}

3.1 Evaluators

Evaluators compare the game’s visible features with given values. Since Poker is an
incomplete information game, evaluators make use of only certain measures to assess
how the player is standing in the game.

<EVALUATOR>::= <NUMBER_OF_PLAYERS> | <STACK> | <POT_ODDS> |

 <HAND_STRENGTH> | <HAND_REGION> | <POSITION_AT_TABLE>

646 L.P. Reis et al.

Number of Players. This evaluates how many players one is competing against. The
number of players is an important measure because the higher it is, the lower is the
probability of success of a given hand2.

Stack. The stack is the relative amount of chips that a player currently owns given by
formula M (Equation 1). The value has to be relative since there is a plethora of

possibilities of a player’s amount of chips. ܯ ൌ ௌ௧௔௖௞ௌ஻ା஻஻ା஺௡௧௘௦. The stack evaluator is

defined by levels. They can be predefined (see Table 1) or customized as follows.

<STACK>::= <PREDEFINED_STACK_REGION> | <STACK_REGION_DEFINITION>

<PREDEFINED_STACK_REGION>::= green_zone | yellow_zone | orange_zone |

 red_zone | dead_zone

<STACK_REGION_DEFINITION>::= <STACK_REGION_NAME> <STACK_INTERVAL>

<STACK_REGION_NAME>::= [string]

<STACK_INTERVAL>::= <MIN_STACK> <COMP> <STACK_VALUE> <COMP>

<MAX_STACK>

<MIN_STACK>::= <STACK_VALUE> <MAX_STACK>::= <STACK_VALUE>

Table 1. User defined Stack Regions

Name Stack/M
Green Zone M>20
Yellow Zone 20>M>10
Orange Zone 10>M>5
Red Zone 5>M>1
Dead Zone M<1

Pot Odds. Pot Odds is the ratio between the size of the pot and the cost calling3 the
opponent’s bet. The pot odds are usually compared with the hand odds. When the pot
odds are higher than the hand odds, the player should call the hand.

Hand Region. The probability of winning a game in Poker depends on the player’s

starting cards. There are
ହଶ!ሺହଶିଶሻ!ൈଶ! ൌ 1326 possible combinations of starting hands.

This poses a problem because if the user were to define a tactic for every starting
hand, the number of possible combinations would be enormous. To solve this
problem, the language uses bucketing. Bucketing is an abstraction technique that
consists of grouping different hands that should be played in a similar way [5].
PokerLang allows the users either to define their own groups or to use Dan
Harrington’s groups (see Table 2) [22].

2 Hand – set of a player’s cards that determine his/her score in the game.
3 Call – match the current highest bet.

 High-Level Language to Build Poker Agents 647

<POT_ODDS>::= <REAL>

<HAND_REGION>::= <PREDEFINED_HAND_REGION> | <HAND_REGION_DEFINITION>

<PREDEFINED_HAND_REGION>::= a | b | c | d | e

<HAND_REGION_DEFINITION>::= <HAND_REGION_NAME> {<HAND>}

<HAND_REGION_NAME>::= [string]

Table 2. Dan Harrington’s Groups

Group Hands
A AA, KK, AKs
B QQ, AK, JJ, TT
C AQs, 99, AQ, 88, AJs
D 77, KQs, 66, ATs, 55, AJ
E KQ, 44, KJs, 33, 22, AT, QJs

Hand Strength. This defines the minimum hand strength to activate the evaluator.
The hand strength is given by the ratio between the number of hands that has lower
score than the player’s hand and the total number of possible hands [23].

Position at Table. The position at table is the player’s relative position to the current
Big Blind position4. The later the position is, the better chance the player has to
observe his or her opponents’ moves. Since games have a variable number of players,
in order to better abstract the strategies, the position value is defined through the
position quality PQ (Equation 2), which also depends on the type of the opponents.

PQ = Position – (Number of aggressive players + Number of tight players) (1)

The range of position quality depends on the number of players in the following
proportion: Range = [-(Number of players-2), (Number of players-2)]. For instance, in
a 10 player table, the range would be [-8, 8].

<POSITION_AT_TABLE>::= <PREDEF_POSITION_REGION>|<POSITION_REGION_DEF>

<PREDEF_POSITION_REGION>::= bad_pos | normal_pos | good_pos

<POSITION_REGION_DEF>::= <POSITION_REGION_NAME>{POSITION}

<POSITION_REGION_NAME>::= [string]

<POSITION>::= <MIN_POS> <COMP> <POS_VALUE> <COMP> <MAX_POS>

<POS_VALUE>::= <INTEGER>

There are 3 predefined regions but the user is allowed to defined custom regions.
Being ݊ the number of players, the regions are calculated as depicted in Equation 3. ݊݅ܯ ൌ െ݊ ൅ 2, ݔܽܯ ൌ ݊ െ 2, ܴܶ ൌ ሺ݊ െ 2ሻ ൈ ݀ܽܤ (2) 2 ൌ ሾ݊݅ܯ, ݊݅ܯ ൅ ܴܶ 3ൗ ሾ݈ܰܽ݉ݎ݋ ൌሿ݊݅ܯ ൅ ܴܶ 3ൗ , ݔܽܯ െ ܴܶ 3ൗ ሾ݀݋݋ܩ ൌሿ ݔܽܯ െ ܴܶ 3ൗ , ሿݔܽܯ

4 Big blind position – the position of the last player to act.

648 L.P. Reis et al.

3.2 Predictors

The predictors are game features that are estimated. Since the hidden information in
Poker (opponents’ cards) is crucial to the game’s outcome, to be competitive a player
must make predictions about what is the actual game state. Predictions are based on
the opponents’ moves on previous games.

<PREDICTOR>::= <IMPLIED_ODDS> | <OPPONENT_HAND> | <TYPE_OPPONENT > |

 <STEAL_BET> | <IMAGE_AT_TABLE>

Implied Odds. Implied Odds corresponds to the pot odds but taking into account the
evolution of the player’s hand.

<IMPLIED_ODDS>::= <REAL>

Opponent Hand. A possible opponent hand taking into account the player’s cards
and the community cards5. For instance, if the opponent hand predictor is “Flush”,
this should be read as “If the opponent is able to reach a flush”.

<OPPONENT_HAND>::= <HAND>

Type of Player. The type of the last opponent in the table taking into account his/her
past behavior in the game. There are 4 predefined types of opponents based on [24].

<TYPE_OPPONENT>::= loose_agressive | loose_passive | tight_agressive |

 tight_passive

Steal Bet. The steal bet is the amount of chips you need to get the pot with no hand at
all. It depends on the type of opponents that one is facing.

<STEAL_BET>::= <BET_VALUE>

Image at Table. The type of player that one’s opponents see in him / her. This is
rather important because if, for instance, the player is seen as a tight player, his/her
bluffs will have higher probability of succeeding.

<IMAGE_AT_TABLE>::= <TYPE_OF_PLAYER>

3.3 Actions

There are several poker plays that one can use in a game. These moves are specific
ways of handling a hand to achieve a goal. In this definition, the user can choose
predefined moves (based on common expert moves) or custom moves.

5 Community card – table card that every player can score with.

 High-Level Language to Build Poker Agents 649

<ACTION>::= {<PREDEFINED_ACTION><PERC> | <DEFINED_ACTION><PERC>}

<PREDEFINED_ACTION>::= <STEAL_THE_POT> | <SEMI_BLUFF> |

 <CHECK_RAISE_BLUFF> | <SQUEEZE_PLAY> | <CHECK_CALL_TRAP> |

 <CHECK_RAISE_TRAP> | <POST_OAK_BLUFF>

Moves can be customized by defining the bet amount on each round.

<DEFINED_ACTION>::= <ACTION_NAME>{<PRE_FLOP_ACTION> | <FLOP_ACTION> |

 <TURN_ACTION> | <RIVER_ACTION>}

<PRE_FLOP_ACTION>::= {<BET_VALUE><PERC>}

<FLOP_ACTION>::= {<BET_VALUE><PERC>}

<TURN_ACTION>::={<BET_VALUE><PERC>}

<RIVER_ACTION>::={<BET_VALUE><PERC>}

4 Poker Builder

After defining the high-level language, the next phase of this work was concerned with
building a simple graphical application to allow users to easily create PokerLang files
based on the group previous work on the area [25, 26]. Poker Builder is a Flex
application that allows the user to create rules of concepts using the language
previously introduced, and set the behavior of a poker agent. With a smooth interface
and simple features, Poker Builder is accessible to any user that understands the main
concepts of poker. One of the purposes of this work was to make a very practical
application, even usable to users only familiarized with the most basic computer usage.

For the implementation of the language of concepts, Poker Builder is divided in
four major classes: Strategy, Tactic, Rule and Property (Fig. 1). The interface begins
with an instance of the Strategy Class that creates instances of all other classes
depending on what the user is creating. Poker Builder gives the user two different
views to create rules: Strategy View and Tactic View.

Fig. 1. Main Classes Diagram

650 L.P. Reis et al.

The software includes a Strategy View to allow the user to create decision rules in
what tactic the poker agent should use on the defined circumstances. It is the most
high-leveled definition that the user can use from the language of concepts. The main
distinction from the Tactic View is that despite the fact that the evaluators and
predictors are the same, the actions are not. Instead of the list of poker moves that are
available to the user, the Strategy View presents the list of tactics already defined by
the user. The software also includes a Tactic View as the main view of Poker Builder.
It is presented when the program starts and is where the user defines the lower level
specifications of the agent. It is presented with a list of the evaluators, the predictors
and some common poker moves that professional players use in their game (actions).
The menus are only available in this view, which includes the possibility of saving
and loading strategies or tactics.

Fig. 2. Action Interface in Poker Builder

5 Poker Builder Agent

The final step of this work was to build the poker agent that uses the strategies
previously created. To be able to follow the strategies, the agent needs some reading
features of the information gathered at a poker table. Obtaining the evaluators’
features is trivial because they comprise perfect information (data obtained just by
looking at the table), as opposed to predictors. Predictors require a statistical study of
the played hands in order to get reliable information. Another feature required by the
agent is an algorithm to select which rule to apply. An agent with these features will
be an agent capable of strictly following the strategy defined previously.

The agent’s action sequence starts by reading the strategy to use from the
respective file. In each of the states, the agent will follow sequentially three major
steps: reading all the information of the table, which includes setting the values of
the evaluators, and trying to suit the imperfect information of the predictors, searching
the most suitable rules for the table circumstances and choosing the rule to follow. At
the end of each hand, the agent will save all the hand’s information: bets from the
opponents, each opponent hand (if shown), the position of the opponent and more.

 High-Level Language to Build Poker Agents 651

The agent was built to work on the LIACC Simulator described in [27]. This
simulator has features that ease the construction, test and validation of the agent.
Moreover, due to compatibility with AAAI simulator, it also allows the developed
agent to directly participate in the annual computer poker competition [28].

6 Tests and Results

Poker is a game with elements of chance thus complicating player rating. The purpose
of this work is not to build a poker agent to win against every opponent but to enable
the user to define behaviors in a simple way.

All the tests were conducted in the Pre-Flop version of No Limit Texas Hold’em in
head’s up games. Two distinct agents were built:

• Agent PokerTron - This agent has a simple strategy (with only one tactic and five
rules) but yet capable of trapping and bluffing opponents along the game. The
behavior of this agent with all hands has a good variety of moves making it very
difficult to read.

• Agent Hansen - This agent has a much more complex strategy than PokerTron. It
contains three different tactics, used in specific circumstances, being the choice of
what tactic to use based on the current stack. With a large stack, the agent will play
a very loose game, practically never folding any hand pre-flop and trying to get their
opponents out of the game with large bets. With a normal stack it will play more
specific hands (group A and B, see Table 2) more carefully, avoiding making bluffs.
With a very small stack, the agent will wait for a hand A or B and goes all-in6.

Two simulations were run: one to test the PokerLang agents’ behavior and another to
test their performance against two previously developed agents.

6.1 Behavior Test

In Table 3 we can see the percentage of rule activation for each agent, during the 10
games played. This represents the number of times each agent makes a decision based
on its strategy. The fact that a strategy is defined does not imply that it will be
followed every single hand. This happens because the strategy does not cover all
possible circumstances that can occur in a poker game. In Table 3, we can see that
agent Hansen has a higher percentage of rule activation. This means that the full area
of possible circumstances is more covered in agent Hansen than it is in agent
PokerTron.

Table 3. Rule Activation of Hansen and PokerTron Agent

 Hansen PokerTron
Rule Activation 64% 48%

6 All-in – betting the total amount of chips.

652 L.P. Reis et al.

Another important statistic is the tactic activation (Table 4). In the case of
PokerTron, there is only one tactic defined, but in Hansen there are three. The
“aggressive” tactic has a higher percentage (the agent won most of the simulated
games), which means it had a high stack most of the times. The low stack tactic was
less used because this tactic is only activated for low stack and for hands of group
A/B, which did not happen often since Hansen was almost always leading the
tournament.

Table 4. Tactic Activation of Hansen Agent

 HighStack NormalStack LowStack
Tactical Activation 56% 39% 5%

6.2 Performance Test

Hansen and PokerTron were put up against the two observing agents created by Dinis
Ferreira [12] in a tournament (limited resources). Figure 3 shows that the PokerLang
agents ended up competing against themselves with a final victory for Hansen (the
agent with a more complex strategy).

Fig. 3. Stack Evolution from one of the simulated games. Horizontal axis shows the number of
hands and the vertical axis displays the agent’s stacks.

Both Poker Builder agents gained advantage early in the game, being able to
eliminate Agent 1 and Agent 2 in the 31st hand and 33rd hand, respectively. The most
important fact to retrieve from these results is that Poker Builder can be used to
produce effective agents in a short time and in a very simple way.

These simulations could be made with several thousand games played, but the
purpose of these tests was to prove the efficiency of the application and the agent that
supports it. The first test showed the effectiveness of the agent reading and running
the strategies defined. In the Tournament simulation, the intention was to show how
Poker Builder agents would handle different agents from another. Satisfactory results
were obtained, despite the fact of running a small number of games.

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40 45 50

PokerTron

Hansen

Agent 1

Agent 2

 High-Level Language to Build Poker Agents 653

7 Conclusions

The purpose of this work was to create Poker playing agents more accessible to the
common user and, thus, a comprehensible high level language that represents Poker
strategies was created. PokerLang filled the gaps of previous approaches like the
Poker Programming Language because it allows the definition of much more complex
and complete strategies. An intuitive and pleasant graphical application to support the
creation of PokerLang files was also created, thus making it easier the creation of
Poker playing agents.

Tests and simulations showed that the created agents correctly followed several
PokerLang strategies. Moreover, agents made by Poker players were able to beat
previously developed agents. However, experiments with PokerLang agents
developed using professional Poker players and playing against the best poker playing
agents and the best human poker players, are still required to further validate this
approach.

In future research, more game concepts can be added to cover up more poker
specifications and to make the agents even more effective, such as the customization
of abstraction techniques. Another important feature would be the inclusion of an
exploration map to allow the agent to assume how to play with information sets that
were not defined, instead of just folding. The work will also be concerned with
gathering professional poker player models using this language and comparing the
models with the real players’ behavior in order to fully and further test the
expressiveness of the PokerLang language.

References

1. Billings, D., Papp, D., Schaeffer, J., Szafron, D.: Opponent modeling in poker. In: National
Conf. on AI, pp. 493–499. John Wiley & Sons (1998)

2. Billings, D., Papp, D., Peña, L., Schaeffer, J., Szafron, D.: Using selective-sampling
simulations in poker. In: AAAI Syring Symp. Search Tec. for Problem Solving under
Uncertainty and Incomplete Information, pp. 1–6 (1999)

3. Zinkevich, M., Bowling, M., Burch, N.: A new algorithm for generating equilibria in
massive zero-sum games. In: AAAI 2007, vol. 1, pp. 788–793 (2007)

4. Johanson, M.: Robust Strategies and Counter-Strategies: Building a Champion Level
Computer Poker Player (2007)

5. Johanson, M., Bowling, M.: Data biased robust counter strategies. In: AISTATS 2009, pp.
264–271 (2009)

6. Teofilo, L.F., Reis, L.P.: HoldemML: A framework to generate No Limit Hold’em Poker
agents from human player strategies. In: CISTI 2011, pp. 755–760 (2011)

7. Teófilo, L.F., Reis, L.P.: Building a No Limit Texas Hold’em Poker Agent Based on Game
Logs Using Supervised Learning. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A.
(eds.) AIS 2011. LNCS, vol. 6752, pp. 73–82. Springer, Heidelberg (2011)

8. Van den Broeck, G., Driessens, K., Ramon, J.: Monte-Carlo Tree Search in Poker Using
Expected Reward Distributions. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS,
vol. 5828, pp. 367–381. Springer, Heidelberg (2009)

654 L.P. Reis et al.

9. Teófilo, L.F., Passos, N., Reis, L.P., Cardoso, H.L.: Adapting Strategies to Opponent
Models in Incomplete Information Games: A Reinforcement Learning Approach for
Poker. In: Kamel, M., Karray, F., Hagras, H. (eds.) AIS 2012. LNCS, vol. 7326, pp. 220–
227. Springer, Heidelberg (2012)

10. Rubin, J., Watson, I.: Case-based strategies in computer poker. AI Communications 25,
19–48 (2012)

11. Rubin, J., Watson, I.: Computer poker: A review. Artificial Intelligence 175, 958–987 (2011)
12. Teofilo, L.F., Reis, L.P., Cardoso, H.L.: Computer Poker Research at LIACC. In:

Computer Poker Symposium, AAAI 2012 (2012)
13. Technologies, S.: Poker Programming Language User Guide (2009)
14. Reis, L.P., Lau, N.: COACH UNILANG - A Standard Language for Coaching a

(Robo)Soccer Team. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001.
LNCS (LNAI), vol. 2377, pp. 183–192. Springer, Heidelberg (2002)

15. Reis, L.P., Oliveira, E.C.: A Language for Specifying Complete Timetabling Problems. In:
Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 322–341. Springer,
Heidelberg (2001)

16. Pereira, A., Duarte, P., Reis, L.P.: ECOLANG - A Communication Language for
Simulations of Complex Ecological Systems. In: Merkuriev, Y., Zobel, R., Kerckhoffs, E.
(eds.) ECMS 2005, Riga Latvia, pp. 493–500 (2005)

17. Neves, R., Reis, L.P., Abreu, P., Faria, B.M.: A multi-agent system to help Farmville
players on game management tasks. In: CISTI 2012, pp. 409–414 (2012)

18. Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation League
Champion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS
(LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001)

19. Reis, L.P., Lau, N., Oliveira, E.C.: Situation Based Strategic Positioning for Coordinating
a Team of Homogeneous Agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.)
ECAI-WS 2000. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Heidelberg (2001)

20. Abreu, P.H., Moura, J., Silva, D.C., Reis, L.P., Garganta, J.: Performance analysis in
soccer: A Cartesian coordinates based approach using RoboCup data. Soft Computing 16,
47–61 (2012)

21. Mota, L., Reis, L.P., Lau, N.: Multi-robot coordination using Setplays in the middle-size
and simulation leagues. Mechatronics 21, 434–444 (2011)

22. Harrington, D., Robertie, B.: Harrington on Hold ’em Expert Strategy for No Limit
Tournaments. Strategic Play, vol. 1. Two Plus Two Pub. (2004)

23. Teófilo, L.F.: Estimating the Probability of Winning for Texas Hold’em Poker Agents. In:
6th Doctoral Symposium on Inf. Eng., pp. 129–140 (2011)

24. Sklansky, D.: The Theory of Poker: A Professional Poker Player Teaches You How to
Think Like One. Two Plus Two (2007)

25. Felix, D., Reis, L.P.: An Experimental Approach to Online Opponent Modeling in Texas
Hold’em Poker. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI),
vol. 5249, pp. 83–92. Springer, Heidelberg (2008)

26. Felix, D., Reis, L.P.: Opponent Modelling in Texas Hold’em Poker as the Key for Success.
In: Ghalib, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) ECAI 2008 – 18th
European Conference on Artificial Intelligence, Patras, Greece, vol. 178, pp. 893–894. IOS
Press (2008)

27. Teófilo, L.F., Rossetti, R., Reis, L.P., Cardoso, H.L.: A Simulation System to Support
Computer Poker Research. In: 13th MABS 2012, Valência (2012)

28. Zinkevich, M., Littman, M.L.: The 2006 AAAI Computer Poker Competition. Journal of
International Computer Games Association, 166–167 (2006)

	High-Level Language to Build Poker Agents

	Introduction
	Related Work
	PokerLang
	Evaluators
	Predictors
	Actions

	Poker Builder
	Poker Builder Agent
	Tests and Results
	Behavior Test
	Performance Test

	Conclusions
	References

