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Abstract. Temporal information retrieval exploits temporal features of docu-
ment collections and queries. Temporal document priors are used to adjust the
score of a document based on its publication time. We consider a class of temporal
document priors that is inspired by retention functions considered in
cognitive psychology that are used to model the decay of memory. Many such
functions used as a temporal document prior have a positive effect on overall
retrieval performance. We examine the stability of this effect across news and
microblog collections and discover interesting differences between retention func-
tions. We also study the problem of optimizing parameters of the retention func-
tions as temporal document priors; some retention functions display consistent
good performance across large regions of the parameter space. A retention func-
tion based on a Weibull distribution is the preferred choice for a temporal docu-
ment prior.

1 Introduction

Every moment of our life we retrieve information from our brain: we remember. We
remember items to a certain degree: for a mentally healthy human being retrieving very
recent memories is virtually effortless, while retrieving non-salient1 memories from the
past is more difficult [2]. Early research in psychology was interested in the rate at
which people forget single items, such as numbers. Psychology researchers have also
studied how people retrieve events. [3] let users remember entities, which prove to be
better remembered if they recently appeared in a newspaper; the authors propose models
of how people retrieve terms based on their findings. Similarly, [4,5] record events and
hits of web pages related to an event and fit models of how people remember, the so-
called retention function.

Modeling the retention of memory has a long history in psychology, resulting in a
range of proposed retention functions. In information retrieval (IR), the relevance of a
document depends on many factors. If we request recent documents, then how much
we remember is bound to have an influence on the relevance of documents. Can we use
the psychologists’ models of the retention of memory as (temporal) document priors?
Previous work in temporal IR has incorporated priors based on the exponential function
into the ranking function [6,7,8,9]—this happens to be one of the earliest functions used
to model the retention of memory. Many other such functions have been considered by

1 Salient memories are very emotional memories and traumatic experiences; human retrieval of
such memories is markedly different [1].
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psychologists to model the retention of memory—what about the potential of other
retention functions as temporal document priors?

Inspired by the cognitive psychology literature on human memory and on reten-
tion functions in particular, we consider seven temporal document priors. We propose
a framework for assessing them, building on four key notions: performance, param-
eter sensitivity, efficiency, and cognitive plausibility, and then use this framework to
assess those seven document priors. For our experimental evaluation we make use of
two (temporal) test collections: newspapers and microblogs. We show that on several
data sets, with different retrieval models, the exponential function as a document prior
should not be the first choice. Overall, other functions, like the Weibull function, score
better within our proposed framework for assessing temporal priors.

2 Related Work

We survey cognitive memory models and temporal information retrieval.

Memory Models. Modeling the retention of memory has been a long studied area of
interest in cognitive psychology. [10] hypothesizes that retention decays ex-
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Fig. 1. Retention curves for participants in a
study on how they remembered news and fit-
ted retention functions. Plotted separately are
participants who read many newspapers (≥
6/week) and those who read few (0–2/week).
Taken from [2].

ponentially and supports his hypothesis
with a self-experiment. [11] propose a
power law model for retention and learning
and [12] fit a power function to 100 partic-
ipants. [13] analyzes probability distribu-
tions for their suitability as retention mod-
els. [14] show that the exponential func-
tions fit much better. Finally, [2] perform
a study with 14,000 participants and com-
pare state-of-the-art memory models and
how they fit the retention data. Fig. 1 shows
how much people could remember over
time. [5] use large-scale experiments to
show that the Weibull function is a much
better model and the power law can merely
be an approximation.

Temporal Information Retrieval. Tem-
poral IR is a difficult problem. [15] state
the main challenges of temporal IR ranging
from extracting mentions of time within
documents and linking them [16] to spatio-temporal information exploration [17] and
temporal querying. We address issues they raise with respect to real-time search. [6]
introduce a temporal document prior. This exponential prior imitates the decay of news
documents over time and prioritize recent documents. [9] use a similar prior to re-
estimate term frequencies. Recent work focusses not only on a recency prior [7] but
also on detecting temporally active time periods (salient events) in the temporal distri-
bution of pseudo relevant documents [18,19,20,21]. [19] select top ranked documents
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in the highest peaks as pseudo relevant, while documents outside peaks are consid-
ered non-relevant. They use Rocchio’s algorithm for relevance feedback based on the
top 10 documents. [21] use salient events for query modeling in news and blog data.
[22] argues that dynamic functions might be the key. [8] uses document expansion and
incorporates a dynamic exponential prior.

We evaluate the effectiveness of the recency priors by incorporating them into query
likelihood similar to [6] and query modeling as in [7].

3 Methods

We introduce basic notation and well-known retrieval models into which the temporal
document priors that we consider are to be integrated. We then describe several retention
functions serving as temporal document priors.

We say that documentD in document collectionD has time time(D) and text text(D).
A query q has time time(q) and text text(q). We write δg(q,D) as the time difference
between time(q) and time(D) with the granularity g. E.g., if time(q′) = July 20, 2012
and time(D′) = June 20, 2012, we have δday(q

′, D′) = 30, δmonth(q
′, D′) = 1, and

δyear(q
′, D′) = 0.083 for a granularity of a day, month, and year, respectively.

Baselines. In order to keep our experiments comparable with previous work, we use
the query likelihood model [23,24], both as baseline and as retrieval algorithm for an
initially retrieved set of documents. We rank documents by the likelihood P (D | q);
with Bayes’ rule and the assumption that P (q) is uniform, we have P (D | q) ∝ P (q |
D)P (D). For query likelihood we set the prior distribution P (D) to be uniform and
rank documents by the probability that their model (the multinomial unigram language
model) generates the query. Formally, P (q | D) =

∏
w∈text(q) P (w | D). To obtain

P (w | D), we use Dirichlet smoothing, a linear interpolation between P̂ (w | D), the
maximum likelihood estimate of D, and a document dependent probability of observing
w in the background corpus C [24]:

P (w | D) =
P̂ (w | D) + μλP (w | C)

|D|+ μ
, (1)

where μ is the average document length of the collection. A variant of this baseline
for recency queries has been proposed by [6]; they use an exponential distribution as
an approximation for the prior (see (5)). We use different functions to approximate the
prior.

(Temporal) Query Modeling. [7] introduce a query modeling approach that aims
to capture the dynamics of topics in Twitter. This model takes into account the dynamic
nature of microblogging platforms: while a topic evolves, the language usage around it
is expected to evolve as well.

We rank terms according to their temporal and topical relevance selecting the top k:

score(w, q) = (2)

log

( |Dtime(q)|
|{D : w ∈ D,D ∈ Dtime(q)}|

)

·
∑

{D∈Dtime(q):wq∈text(q) and w,wq∈text(D)}
f(D, q, g),
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where f(D, q, g) is a retention function (introduced below), Dtime(q) is the set of docu-
ments published before the time of query q, and g is the granularity. The set Wq consists
of the top k terms w for query q, sorted by score(w, q). The probability of term t given
query q is:

P (w | q) =
{

score(w,q)∑
w′∈W score(w′,q) if w ∈ W,

0 otherwise.
(3)

We then use KL-divergence [24] to estimate the score of a document D for a query q:

Score(q,D) = −∑
w∈V P (w | q) logP (w | D), (4)

where V is the vocabulary, i.e., the set of all terms that occur in the collection and
P (w | D) is the generative probability for a term as specified in (1).

Retention Functions. We introduce a series of retention functions. The memory chain
models ((5) and (6)) build on the assumptions that there are different memories. The
memory model introduced in (5) is equivalent to the exponential prior used in the IR
literature. The Weibull functions ((7) and (8)) are of interest to psychologists because
they fit human retention behavior well. In contrast, the retention functions linear and
hyperbolic ((10) and (11)) have little cognitive background.

Memory Chain Model. The memory chain model [4] assumes a multi-store system of
different levels of memory. The probability to store an item in one memory being μ,

fMCM-1(D, q, g) = μe−aδg(q,D). (5)

The parameter a indicates how items are being forgotten. The function fMCM-1(D, q, g)
is equivalent to the exponential decay in [6] when the two parameters (μ and a) are
equal. As μ is document independent it does not change the absolute difference be-
tween document priors if used for query likelihood and fMCM-1(D, q, g) is equal to the
exponential function used in [6]. In the two-store system, an item is first remembered in
short term memory with a strong memory decay, and later copied to long term memory.
Each memory has a different decay parameter, so the item decays in both memories, at
different rates. The overall retention function is

fMCM-2(D, q, g) = 1− e
−μ1

(
e−a1δg(q,D)+

μ2
a2−a1

(e−a2δg(q,D)−e−a1δg(q,D))
)

, (6)

where an overall exponential memory decay is assumed. The parameter μ1 and μ2 are
the likelihood that the items are initially saved in short and long term memory, whereas
a1 and a2 indicate the forgetting of the items. Again, t is the time bin.

[13] discusses different memory modeling functions. The prefered function is the
Weibull function

fbasic Weibull(D, q, g) =

(

e−
aδg(D,q)

d

d
)

, (7)

and its extension

fextended Weibull(D, q, g) = b+ (1− b)μe

(
− aδg(D,q)

d

)d

. (8)
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Table 1. Summary of collection statistics for AP, LA/FT, and Tweets2011

AP (disks 1, 2) LA/FT (disks 4, 5) Tweets2011

# documents 164,597 342,054 4,124,752
period covered 02/1988–12/1989 04/1991–12/1994 01/24/2011–02/08/2011
topics 101–200 351–450 (test), 301–350 (train) MB01–MB49
recent queries 20 16 (train), 24 (test) –

Here, a and d indicate how long the item is being remembered: a indicates the overall
volume of what can potentially be remembered, d determines the steepness of the for-
getting function; μ determines the likelihood of initially storing an item, and b denotes
an asymptote parameter.

The amended power function has also been considered as a rentention function [12].
The power function is ill-behaved between 0 and 1 and usual approximations start at 1.
The amended power function is

fpower(D, q, g) = b+ (1− b)μ(δg(D, q) + 1)a, (9)

where a, b, and μ are the decay, an asymptote, and the initial learning performance.
baseline is given by the linear function,

flin(D, q, g) =
−(a · δg(q,D) + b)

b
, (10)

where a is the gradient and b is δg(q, argmaxD′∈D δg(q,D
′)). Its range is between 0

and 1 for all documents in D.
discounting function [25] has been used to model how humans value rewards: the

later the reward the less they consider the reward worth. Here,

fhyp(D, q, g) =
1

−(1 + k ∗ δg(q,D))
, (11)

where k is the discounting factor.

4 Experimental Setup

We introduce the data sets, detail a framework of requirements for priors and then pro-
ceed with a description of our experiments.

Data. A summary of the collection and topic statistics can be found in Table 1. We have
100 topics for TREC-2, of which 20 are selected as “recent queries” in [9]. We have
150 topics for TREC-{6,7,8}. We use a subset of the topics TREC-{7,8}. This query
set was selected in [9], based on its recency. Training and testing data are the queries
from TREC-6 and TREC-{7,8}, respectively. The Tweets2011 data set consists of 16
million tweets, collected between 24th January and 8th February, 2011. We consider
two flavors of the collection: filtered and unfiltered; only tweets were returned that have
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Table 2. Parameter values for document priors based on retention functions, as fitted on the news
training data and as fitted on human data (last column). For cells marked with *, the function was
fitted to data with a granularity of milliseconds, otherwise months.

function parameter TREC-6 optimized Tweets2011 optimized reported values

MCM-1 (5) r 0.0013 0.2 0.00142∗ [12]
µ 1 0.9 3800∗ [12]

MCM-2 (6) µ1 0.7 0.3 0.49–1.29 [2]
a1 0.007 0.004 0.018–0.032 [2]
µ2 0.6 0.7 0.01–0.018 [2]
a2 0.4 0.4 0–0.0010

basic Weibull (7) a 0.00301 0.3–0.9 –
d 0.087 0.4 –

extended Weibull (8) a 0.009 0.1 0.0017–0.0018 [2]
d 0.7 0.02–0.04 0.087–0.2 [2]
b 0.1 0.1 0–0.25 [2]
µ 0.7 0.7 1 [2]

amended power (9) a 0.03 0.9 840.56∗ [12]
b 0.01 0.02 0.33922∗[12]
µ 0.6 1 17037∗ [12]

linear (10) a 0.4 1.0 –
b 0.05 1.0 –

hyperbolic (11) k 0.0007–0.0009 0.5 –

a URL, do not have mentions, and do not contain the terms I, me, my, you, and your.
We have 49 topics for this dataset.

A Framework for Assessing Temporal Document Priors. We propose a set of three
criteria for assessing temporal document priors. Below, we determine whether the priors
meet the criteria.

Performance. A document prior should improve the performance on a set of test
queries for a collection of time-aware documents. A well-performing document prior
improves on the standard evaluation measures across different collections and across
different query sets. We use the number of improved queries as well as the stability
of effectiveness with respect to different evaluation measures as an assessment for per-
formance, where stability refers to that improved or non-decreasing performance over
several test collections.

Sensitivity of Parameters. A well-performing document prior is not overly sensi-
tive with respect to parameter selection: the best parameter values for a prior are in a
region of the parameter space and not a single value.

Efficiency. Query runtime efficiency is of little importance when it comes to dis-
tinguishing between document priors: if the parameters are known, all document priors
boil down to simple look-ups. We use the number of parameters as a way of assessing
the efficiency of a prior.
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Cognitive Plausibility. We define the cognitive plausibility of a document prior
(derived from a retention function) with the goodness of fit in large scale human exper-
iments [2]. This conveys an experimental, but objective, view on cognitive plausibility.
We also use a more subjective definition of plausibility in terms of neurobiological
background and how far the retention function has a biological explanation.

Experiments. To ensure comparability with previous work, we use different models
for different datasets. On the news data set, we analyse the effect of different temporal
priors on the performance of the baseline, query likelihood with Dirichlet smoothing
(D). We optimize parameters for different priors on TREC-6 using grid search. On the
Tweets2011 data set, we analyse the effect of different temporal priors incorporated in
the query modeling (QM). We do not have a training set and evaluate using leave-one-
out cross-validation. Table 3 lists the models whose effectiveness we examine.

We optimize parameters with respect to mean average precision (MAP). MAP, pre-
cision at 10 (P@10), R-precision (Rprec) and mean reciprocal rank (MRR) are the

Table 3. Abbreviations of methods and
their description

Run id Description

D smoothed query likelihood
QM Query modeling [7]
MCM-1 one store memory chain (5)
MCM-2 two store memory chain (6)
BW basic Weibull (7)
EW extended Weibull (8)
AP amended power (9)
L linear (10)
HD hyperbolic discounting (11)

quantitative evaluation measures. For the Tweets-
2011 collection we do not use the official metric
for TREC 2011 (sorting by time and then preci-
sion at 30), but the metric to be used for TREC
2012; the previously used metric proved to be
sensitive to good cut-off values [26]. The param-
eter values found are listed in Table 2. For the
values based on months, in particular, extended
Weibull and MCM-2, we can see that they are
in a similar range as the parameters in the litera-
ture. We find that using those parameters does not
yield very different results from the optimised
parameters. We use the Student’s t-test to eval-

uate the significance for all but the small temporal query sets from the news data. We
denote significant improvements with � and � (p < 0.01 and p < 0.05, respectively).
Likewise, � and � denote a decline.

5 Analysis

In this section we seek to understand whether document priors based on retention func-
tions meet the conditions set out above. We examine the retrieval effectiveness of the
approaches and then use our framework for assessing the document priors.

Retrieval Effectiveness. We analyze the effectiveness of the priors on the news data,
follow-up with the microblog data and conclude with a cross-collection discussion.

News Data. We compare the retrieval performance of our document priors on
the TREC-2 and TREC-{7,8} datasets. Table 4 shows the results for the TREC-{7,8}
dataset. We observe significant improvements (in terms of MAP and Rprec) for tempo-
ral queries using the basic Weibull function (BW) function as a document prior over the
baseline without any prior and using MCM-1. We see significant improvements in terms
of Rprec using the MCM-2 function, over both the baseline and using MCM-1. There
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Table 4. Results on news data, TREC-7 and TREC-8. Significant changes w.r.t. the baseline (D)
and the exponential prior (D+MCM-1). The latter is shown in brackets.

all queries temporal queries non-temporal queries

Run MAP P@10 Rprec MAP P@10 Rprec MAP P@10 Rprec

D 0.2220 0.3770 0.2462 0.2030 0.3667 0.2251 0.2281 0.3803 0.2529
D+MCM-1 0.2223 0.3750 0.2473 0.2057� 0.3625 0.2279 0.2275 0.3789 0.2534
D+MCM-2 0.2253 0.3640�(�) 0.2560 0.2108� 0.3542 0.2428�(�) 0.2299 0.3671�(�) 0.2602
D+BW 0.2270 0.3730 0.2603 0.2079�(�) 0.3625 0.2339�(�) 0.2331 0.3763 0.2687
D+EW 0.2268 0.3720 0.2611 0.2086� 0.3583 0.2346� 0.2326 0.3763 0.2695
D+AP 0.2222 0.3760 0.2462 0.2032 0.3667 0.2251 0.2281 0.3789 0.2528
D+L 0.2157� 0.3740 0.2468 0.1855� 0.3458 0.2123 0.2253 0.3829 0.2577
D+HD 0.2224 0.3770 0.2462 0.2042 0.3583 0.2261 0.2281 0.3829 0.2525

are interesting differences between MCM-1 and MCM-2; first, using MCM-2 yields
the worst precision at 10, for temporal and non-temporal queries; second, while using
MCM-2 yields the highest MAP for temporal queries, the change is not significant. A
per query analysis shows that the changes for MCM-2 are due to changes on very few
queries, while for the majority of queries the average precision decreases. Using the

(a) TREC-6

(b) Tweets2011

Fig. 2. The temporal document
prior instantiated with parameters
optimised on different datasets. Y-
axis shows the weight of the prior.

basic Weibull function as document prior, however,
has very small positive changes for more than half of
the queries and, hence, has more stable improvements.

Table 5 shows the results for the TREC-2 data
set. The improvements using the temporal priors over
the baseline D are not significant. However, functions
that work well on the temporal query set (D+MCM-1,
D+EW), yield significantly worse performance on the
non-temporal set. The only stable performance comes
with the use of MCM-1 and basic Weibull.

Using BW as a document prior improves the av-
erage precision of few temporal queries, without
decreasing the average precision of other temporal
queries very much. It improves average precision of
the temporal queries without harming non-temporal
queries.

Fig. 2a shows the slopes of our document priors.
The similarity between MCM-2 and basic Weibull is
apparent, both drop to a more or less stable function at
the same time. The basic Weibull function, however,
features a more gradual change. We also find that the
hyperbolic and MCM-1 functions are very similar. The
two functions that have a very similar slope to the ba-
sic Weibull are the amended power and the extended
Weibull, but using them does not change the perfor-
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Table 5. Results on news data, TREC-2. Significant differences w.r.t. D+MCM-1.

all queries temporal queries non-temporal queries

Run MAP P@10 Rprec MAP P@10 Rprec MAP P@10 Rprec

D 0.1983 0.3430 0.2287 0.2719 0.4000 0.2913 0.1799 0.3287 0.2130
D + MCM-1 0.1985 0.3400 0.2289 0.2730 0.4050 0.2937 0.1799 0.3238� 0.2127
D + MCM-2 0.1961 0.3330 0.2240� 0.2731 0.4150 0.2952 0.1769� 0.3125� 0.2063�
D + BW 0.1984 0.3420 0.2287 0.2727 0.4050 0.2915 0.1798 0.3263 0.2130
D + EW 0.1983 0.3400 0.2277 0.2749 0.4150 0.2927 0.1792 0.3213� 0.2114
D + AP 0.1983 0.3430 0.2283 0.2717 0.4050 0.2915 0.1799 0.3275 0.2125
D + L 0.1961� 0.3410 0.2288 0.2671 0.3950 0.2902 0.1783� 0.3275 0.2135
D + HD 0.1984 0.3410 0.2284 0.2730 0.4050 0.2915 0.1798 0.3250 0.2127

mance much. The main difference between the slope of the functions and basic Weibull
is close to 0: the steeper the function at the beginning, the better the performance.

Fig. 3 shows the temporal distribution of the top 100 retrieved documents for differ-
ent approaches on the TREC-{7,8} test set. The topmost distribution shows the distri-
bution for all relevant documents, which has only very few documents. The baseline, D,
ranks older documents high. Using a linear retention function as document prior (D+L),
the system retrieves even more old documents and fewer recent documents and it does
not outperform the baseline for queries with recent documents. The distribution for
D+MCM2 is the opposite and performs well for very recent queries, while D+MCM1
and D+BW reduce the number of old retrieved documents.

Microblog Data. We compare the retrieval performance of the different priors
on the Tweets2011 dataset. Table 6 shows the results for the Tweets2011 dataset. Query
modeling (QM) with the MCM-1 function does not yield significant improvements. QM
with basic Weibull (BW), amended power (AP), linear (L) and hyperbolic discounting
(HD) does yield significant improvements in MRR over the baseline QM. The increase

Fig. 3. Distribution of retrieved (cut-off:
100) documents. The solid line is the dis-
tribution for all, the dashed line for docu-
ments retrieved for improved queries.

is up to 15% for AP and BW. MAP improves
as well, but not significantly. Filtering im-
proves the results for all approaches and while
MRR increases by over 7%, this is not signif-
icant. There are similar effects on the filtered
results: the prior does not act a filter.

When we perform a query analysis of the
differences between QM and QM+BW, we see
that, in the unfiltered condition, QM+BW out-
performs QM on 17 (out of 49) queries, while
QM outperforms QM+BW on 6 queries; for
the filtered condition, the numbers are 11 and
6, respectively. The comparisons are similar
for the other functions.

Fig. 2b shows the slope of the differ-
ent functions for the optimized parameters.
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The functions that help significantly are the functions that share the same rapid de-
crease on the first day with a continuous, slower, decrease on the second and third
day. For the other functions, on the one hand MCM-2 decreases similarly on the first
day, but not on the following days: QM+MCM-2 even decreases the MAP and P@10.
MCM-1 decreases slowly and continues to decrease. The changes in performance with
respect to the metrics used are therefore not as visible as, e.g., using QM-HD: here, the

Table 6. Results on microblog data, Tweets2011

unfiltered filtered
Run MAP P@10 MRR MAP P@10 MRR

QL 0.2731 0.3898 0.6133 0.2873 0.5408 0.7264
QM 0.2965 0.4061 0.6624 0.3140 0.5367 0.7559
QM+MCM-1 0.3101 0.4143 0.7682 0.3062 0.5306 0.7944
QM+MCM-2 0.2903 0.4102 0.7192 0.2912 0.5265 0.7675
QM+BW 0.3058 0.4286 0.7801� 0.3057 0.5408 0.7971
QM+EW 0.3038 0.4224 0.7251 0.3024 0.5224 0.7644
QM+AP 0.3100 0.4327 0.7801� 0.3103 0.5408 0.8046
QM+L 0.3129 0.4245 0.7700� 0.3082 0.5286 0.8144
QM+HD 0.3080 0.4286 0.7698� 0.3081 0.5408 0.7944

slope of HD decreases sim-
ilarly to MCM-1, but then
settles, while MCM-1 con-
tinues to fall. Queries for
which the HD function in-
creases average precision
are queries submitted in the
second week of the col-
lection period with more
days of tweets to return and
to process. QM+BW and
QM+AP display significant
increases in MRR, but nei-
ther of them decreases MAP

and P@10; the two models have a very similar slope.

Assessing the Document Priors. We step back to assess the temporal document priors
based on the framework introduced in §4.

Performance. Using the BW retention function as prior performs significantly
better, better, or similar to MCM-1 over three data sets. Other retention functions either
do not show significant improvements or improve on one subset while decreasing on
others. BW, EW, and HD improve the greatest number of queries over MCM-1.

Parameter Sensitivity. We first examine parameter sensitivity on news data. Fig. 4
shows heatmaps for the different functions for parameter optimisation TREC-6. Fig. 4d
shows that D+ MCM-1 is very unstable with respect to the optimal value for r, es-
pecially when we look at the surrounding parameters. D+BW and D+AP have more
optimal points and are more stable with respect to those points. We observe similar
effects for D+EW. When we examine parameter sensitivity on Tweets2011, we look
at the optimal parameters selected for each fold in a cross-validation. We find stable

(a) Basic Weibull (b) Amended Power (c) MCM-1 (d) MCM-1, subset

Fig. 4. Optimisation of parameters on MAP on TREC-6. The lighter the color, the higher the
MAP. Black dots indicate the parameter combination with highest MAP.
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Table 7. Assessing temporal document priors; # improved queries is w.r.t. MCM-1

Condition MCM-1 MCM-2 BW EW AP L HD
# impr. queries (temp.) n/a 14 (58%) 5 (20%) 16 (67%) 5 (20%) 2 (8%) 6 (25%)
# impr. queries (non-temp.) n/a 27 (35%) 35 (46%) 26 (34%) 38 (50%) 36 (47 %) 33 (43%)
# impr. queries (Tweets2011) n/a 16 (32%) 17 (34%) 22 (44%) 0 (0%) 17 (34 %) 21 (42%)
MAP + – + 0 0 – 0
P10 – – 0 – 0 0 0
Rprec 0 ± + ± 0 0 0
MRR 0 0 + 0 + + +

Sensitivity of parameters – – + – + + +

Efficiency: # parameters 2 4 2 4 3 2 1

Plausibility: fits human behav. + ++ + ++ + n/a n/a
Plausibility: neurobiol. expl. + + – + – – –

parameters for all priors but the Weibull function. The Weibull function fluctuates
mildly between 0.3 and 0.4, with one exception being 0.9 (Fig. 2b).

Efficiency. The only difference in efficiency between the priors is the number of
parameters needed for prior optimization. A sweep for four parameters (for MCM-2
and EW) is feasible but time-consuming: ideally, the minimal number of parameters
(MCM-1, BW, L, and HD) should be optimized.

Cognitive Plausibility. Previous work [2] fitted retention functions to how partic-
ipants remember news (see Fig. 1). They report that the MCM-2 and EW functions fit
best while MCM-1, as a less general case of MCM-2, obviously fits worse. The AP
retention function does not fit well enough to be more than an approximation [5]. The
linear and hyperbolic discounting function have so far not been fitted on retention data.
Table 7 summarizes how the priors fulfill the requirements listed in §4. Priors using the
BW, AP, and HD retention functions show stable performance across collections, on
a query level as well as on a general level, with BW performing well and being sta-
ble. All three functions have a stable parameter selection process for at least the news
dataset. AP with three parameters is too inefficient, while BW and HD with two and
one parameter converge to a result much faster. We know that BW has a neurobiologi-
cal explanation and fits humans fairly well. The exponential function (MCM-1) as prior
does not fulfill the requirements as well as other functions. This prior does have good
results, but is not particularly stable when it comes to parameter optimization; signifi-
cant results from the news data set do not carry over to the microblog data set. In sum,
we propose to use the basic Weibull retention function for temporal document priors.

6 Conclusion

We have proposed a new perspective on functions used for temporal document priors
used for retrieving recent documents. We showed how functions with a cognitive moti-
vation yield similar, if not significantly better results than others on news and microblog
datasets. In particular, the Weibull function is stable, easy to optimize, and motivated by
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psychological experiments. For future work we propose to analyze the effect of using
temporal functions in more retrieval models, in particular in adaptive query models.
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